
U.S.
VAVAL ORDNANCE

WILLIAM R. PERKINS LIBRARY

DUKE UNIVERSITY

Digitized by the Internet Archive in 2016 with funding from Duke University Libraries

A TEXT-BOOK 11

OF

NAVAL ORDNANCE AND GUNNERY.

PREPARED FOR THE

USE OF THE CADET MIDSHIPMEN

AT the

United States Naval Academy.

IN CHARGE OF INSTRUCTION IN ORDNANCE AND GUNNERY AT THE U. S. NAVAL ACADEMY.

New-Yori :
JOHN WILEY \& SON, 15 astor Place.
18%
$\vdots \because$,

Entered, according to Act of Congress, in the year 18i5, by A. P. COOKE,

In the Office of the Librarian of Congress, at Washington.

Illustrations Engraved on Wood my Charles Moray, New Yoke.

PREFACE.

This work was undertaken by the Instructors in the Department of Ordnance and Gunnery at the Naval Academy, to supply a deficiency which has long been felt, and to render available, as far as possible, in a single rolume the course of instruction hitherto pursued by the Cadet Midshipmen; thus relieving them from the necessity which at present exists, of copying manuscript notes on the suljject.

The unsettled condition of various questions relating to ordnance, makes it necessary to prepare suitable texthooks for to-day, which should be revised as often as the progressive development of the sulject seems to require. Explosive-agents, rifled orknance, gun-carriages, and many othor branches of the subject, are in a state of transition, and it is impossible at the present moment to produce a complete and entirely satisfactory treatise on these suljects.

It is thought that no intelligent progress can be made in the sulject of the manufacture of cannon, and of many of the stores used in their service, without some preliminary linowledge of the metallurgy of iron, and of the means of producing the metals employed. As this: subject is not taught in any other department of the Academy it is given a place here.

A sufficient knowledge of mathematics, physics and chemistry; is attained by the students in their previous course, to enable them to grasp all the suljects treated in this work.

The subject of Field Fortifications was formerly taught in this department, but for want of time and an appropriate text-book it was taken out of the course. The last chapter, entitled "Naral Operations on Shore," has been arranged with a view of covering briefly the necessary ground in this branch.

In the compilation of the material employed, the writer is greatly indelted to Lieut.Commanders C. W. Tracy, G. WV. Coffin, N. Ludlorr, and C. F. Goodrich, to Lieut. J. C. Soley, and to Professors J. M. Rice and D. Fisher. The advice, assistance, and manuscript notes of many other officers have likewise aided materially in the preparation of this work.

Department of Ordnance and Gunnert,
U. S. Nayal Academit, Annapolis, Marcie, $18 \% \mathrm{~s}$.

CONTENTS.

CHAPTER I.

CANNON METALS.

Section 1.-Metallurgy of Iron.

Preparation of Iron Ores-Smelting-Fluxes-Fuel-The Blast-furnace-Charging-Temperıture of Blast-Hot-blast-Method of Heating the BlastBlowing in-Working of the Furnace-Chemical Action in the Furnace-Production of Gun-iron.

Section II.-Cast-iron.

Composition of Castiron-Varieties of Cast-iron - Gray Cast-ironWhite Cast-iron-Mottled Cast-irou-Classification of Pig-iron-Variations in Composition of Cast-iron.

Section III.- Wrought-iron.

Peculiarities-How produced-Conversion of Crude into Malteable IronVarious Processes-Chemical Reactions-Kind of Iron most suitable for Conversion - Variation in Quality -The Puddling-furnace - Process of PuddlingThe Puddle-balls-Shingling or Blooming.-Rolling-mills-Rolled Armor-plates-Welding-Upsetting:

Section IV.-Steel.
Peculiarities-Definitions-How obrained - Classification - Process of Cementation-Blister-steel - Spring steel - Shear-steel - Cast-steel - Steel Ingots-Bessemer Process-Annealing-Tempering Steel in Oil.

Section T.-Bronze.

Bronze for Cannon-Pure Copper-Pure Tin-Circumstances affecting the Production of Bronze-Constitution of the Alloy-Difficulty of making Sound Castings.

Section VI.-General Qualities.

Qualities necessary in Metals for Cannon-Properties of Metals-Density -Hardness-Brittleness-Tenacity-Porosity-Elasticity—Limit of Elasti-city-Permanent Set-Malleability-Ductility-Rupture-Qualities of Cast-iron-Qualities of Wrought iron-Qualities of Steel-Qualities of Bronze.

CHAPTER II.

GENERAL DESCRIPTION OF ORDNANCE.

Section I.-Terms and Definitions.

Classification-Nomenclature-Interior Form-Length of Bore-Wind-age-Seat of the Charge-l'he Vent-Exterior Form-Force to be restrainerl -Experiments-Devices-Mortars-Hcwitzers--Percussion Locks-The Gat ling Gun.

Section II.-Theory of Gun Construction.

The Kinds of Strains upon a Gun-Tangential Stra:n-Longitudinal Strain - Crushing-force -Transverss Strain-Total Barsting TendencyDetermination of the Exterior Model of Guns.

Preponderance-To determine the Preponderance-To determine the Position of the Trunnions-To decermine the Effect on the Preponderance of a Change in the Position of the Trumnions.

CHAPTER III.

cast guns.

Section I.-Stentard of Iron.

Smelting of Iron for Camnon-Difierence in Quality-Effects of different Treatment-Practical Treatment in Fusion-Tests while in Fusion-Crys-tallization-Development of Crystals-Chilled Castings-Effects of Crystallization on Strength-Size of Crystals-Contraction of Casting-Effect of sudden Change of Form-Effect of Irregular Cooling-Effect of Age on EnduranceImprovement in Casting-Standard of Quality-Comparison with StandarI Samples-To Determine the Density-The Hydrometer- Wr urdemann Balance for Specific Gravities.

Scction II.-Mechanical Tcsts.

The Testing-machine-Capacity of the Machine-Working the Machine -Arjustments-Tensile Strain-Crushing-force-Errors of the MachineModification of the Machine.

Section III.-Fabrication.

Fabrication of Cast-irou Guns-Charging the Furnace-Fusinns-Mold. ings-Models-The Flask-The Core-barrel-The Pit-Melting Down the Clarge-Tapping the Furnace-Cooling the Casting-Withdrawing the Core-barrel-Trimming Down the Casting-Remoring the Sinking-head-Cutting out Specimens-Boring-Cutting Hole for Elevating-screw-Drilling the Vent-Marking Guns-Fabrication of Bronze Howitzers-The Flask-Molding -The Pit-Charging the Furnace-Melting down the Charge-Casting.

Section IV.-Inspecticn.

Inspection of New Guns-The Inspecting Instraments-Tent Impressions - Gutta-percha Impressions - Powder-proof - Water-proof-Extreme Proof of Trial Guns-Enlargement of Vents-Endarance of Guas in Serrice -Injuries from the Powder-Injuries from the Projectiles-Descriptive List of Guns-Inspection of, at Termination of a Cruise-Inspection of Vents.

CHAPTER IV.

DUILT-UP GUNTS.

Section I.-Principles of Construction.

Defnitions-Nature of the Force to be Restrained-Limit of Thickness of Metal-M thods of Equallizing the Strain-System of Initial Tension-Defects of the System - Methols of Application--System of Varying ElasticityDefects of the System,

> Section II.-The Parrott Gun.

General Description-The Barrel-The Hoop-Placing the Reinforce.

> Section III.-British Nuvel Guns.

The Armstrong System-Dlethod of Manufacture-The Frazer SystemThe Wonlwich Gun-Details of Manafactu e-Palliser System of Conversion -Experimental Guns-The Whitworth Gun-The Blakely Gun-The Vavasseur System,

Suction IV.-French Vieval Guns.
General Description-Manner of Casting--Hoops-Breech-screw-Gascheck.

$$
\text { Sction } \Gamma \text {.-Germen Naval Guns. }
$$

Nomenclature-Features of the Mannfactnre-The Central Tube-The Hoops-Breech-plug-- '̇ils-cheč-Vent-tubə.

CIHPTER V.

rifling.

Sction I.-Principles.

Definitions-Origin of Rifling-Introduction of Rifle-cannon-Progress in Construction-Object of Ritling-Methol of Rifling-Uniform Twist-lncreasing Twist-Velocity of Rotation-Character of Grooves-Cutting the Grooves.

Section II.-Systems.
Definitions-Classification-Centring-Whitworth's, Vavasseur's, Scott's, Lancaster's-Studs or Ribs to fit the Grooves--The Woolwich System-The Shant System - Expansion System - Parrott's - Compressing Systems -Krupp's-Breech-loading,

CHAPTER VI,

PROJECTILES.

Section I.-General Deseription.

Classification-Spherical Projectiles-Elongated Projectiles--Length— Form of Head--Studdel Projectiles-Expanding Projectiles-Parrott'sDahlgren's -Schenkle's-Hotchkiss'-Lead-coated Projectiles-Solid Projec-tiles-Hollow Projectiles-Shells-Case Shot-Shrapnel-Rifle-shrapnel-Grape-shot - Canister-Rifle-canister- Tabrication of Projectiles - Shot-Shell-Bonching -Chilled Projectiles-Steel Projectiles-Inspection-Object -Condition of Louded Shell-Remoring Fuzes-Piling.

Section II.-Deviation.

General Consideration - Effect of Wind-Variable Projectile ForceRotation of the Earth- Faulty Disposition of the Line of Sight-Influence of the State of the Air-Deviation of Spherical Projectiles-Windage-Eccen-tricity-Deviation of Elongated Projectiles-Friction against the Air--Centre of Liravity-Conoidal-headed Projectiles-Flat-headed Projectiles-Drift.

Section TII.-Effects.

General Consideration-Impact of Projectiles-('ompression-Elongation -Shearing-Bending--Pulverizing-Friction-Heat- Penetration-Gieneral Theory-Penetration of Spherical Projectiles-Penetration of Elongated Projectiles-Formula for Penetration of 1ron Plates-Form of Head-Oblique Impact-Concussion-Armor-piercing Projectiles-Shape-Spherical-Elong-ated-The Effect of Hardening Projectiles-Advantages of Steel over Chilled Projectiles-Experiments against Armor-Armor-plates and Backing-Wood Backing-Effects on Wood-Effects on Earth_Effects on Masonry-Punching and Racking-Force of Impact-'The Pnnching Effects of Projectiles.

CHAPTER VII.

GUN-CARRI.LGES.

Section I.-United States Nieval Carriages.
General Considerations-Marsilly Broadside-carriage-Pivot-carriages-Xl-inch lron Pivot-carriage-20-pdr. Rifle Pivot-carriage-XV inch Turret-car-riage-Mortar-carriage - Howitzer Boat-carriage, wood-Iron Boat-carriage, Howitzer-Field-carriage.

Section II.-English Naval Carriages.

The Broadside Scott Carriage-Advantages of Mechanical CarriagesHigh and Low Carriages-The Depression-carriage-The English Tarret-car-riage-The Turret Indicator-The Moncrieff System—Hydraulic Appliances.

CHAPTER VIII,

Explosive Agents.

Seetion I.-Gencral Considcration of Explosives.

Definition-Explosive Compounds-Explosire Mixtures-Intensity of Explosion-Detonation.

Section IT.-Manufacture of Giunpowder.

Ingredients of Gunpowder-Refining Saltpetre-Description of the Pro-cess-Solution-Filtering-C'rystallization - Washing - Testing - DryingExtraction of Saltpetre from Damaged Powder-Sulphur-liefining Appara-tus-Process of Refining-Testing-Charconl-Converting Wood into Clar-coal-Effect of Temperature Employed in Conversion-Qualities of Charcoal -Proportions of Ingredients--Preparing and Mixing Ingredients-Incorpora-tion-Mill-cake-Pressing-Uniformity of Results-Graining-Dusting and Glazing-Drying-Special Powders-Explosion-Inflammation--Combustion.

Section III.-Inspection of Gunpowoder.

General Qualities-Examination by Haud-Flashing--Size of GrainGravimetric Density-Specific Gravity-The Mercury Densimeter--Initial Velocity - Ballistic Pendulum - Electro-ballistic Machines-Navez-Leurs Chronoscope-Benton's Thread Telocimeter-L Le Bonlengé's ChronographSchultz' Chronoscope--Bashforth's Chronograph-Noble's Chronoscope--Le Boulengés Electric Clepsydra-Strain upon the Gun--Pressure GaugesHygrometric Qualities-Analysis-Marking Barrels.

$$
\text { Section } I \mathrm{~T}^{\mathrm{r}} \text {.-Pieservation of Gumpooder. }
$$

Magazines on Shore-Classification of Powder--Service of the Magazine --Ships' Magazines-Powder-tanks--System of Marking Tanks-Service of the Magazine--Transportation of Powder.

Scetion V.-Explosive Compounds.

Gun-cotton - Nitro-glycerine - Uses-Compounds of Nitro-glycerine -Dynamite-Lithofracteur-Dualine-Fulminates.

CHAPTER IX.

PYROTECINY.

Section I.-Materials.

Buildings-Classification of Materials-Compositions-Cases-Drifts.

> Section II.-Means of Firing Cannon.

Percussion-primers-Friction-primers-Spur-tubes—Quick-match-Slow-match--Port-fires.
Scetion III.-Fuzes.

Time-fuzes - The Nary Time-fuze - Times of Burning - To Shorten Fuzes-Testing Fuzes - Time-fuze for Pifle-projectiles - Imperfection of Time-fuzes--Premature Explosion-The Bormann Fuze-Concussion-fuzes -Percussion-fuzes-Schenkle Fuze--Parrott Fuza-German Percussion-fuze -Mortar-fuzes-Electric-fuzes.

Scetion IV.-Signals.
Kinds-Signal Rockets-Costen Signal-lights-Holders.

> Section T.-Preparing Ammunition.

Making Cartridge-bags - Filling Cartridge-bags - Service-charges Strapping Shells - Filling Shei!s - Packing--Vads-B at AmmunitionStand of Ammunition-Metallic Cartridges-Incendiary Preparations.

CHAPTER X.

PRACTICE OF GUNNERY.

Section I.-Service of Ordnance.

Loading-Pointing-Siohting Cannon-Tangent Firing-Tangent Sights -Adjustmeut of Sights- Tarking Sights-Determining Distances-Use of Plane-tables-Accuracy of Fire-The Inclination of the T'arget-Transferring R.cord of Firing from Horizontal to Vertical Target-Record of Target Practice at Sea-Elevating Quoins and Screws.

Section II.-Different Kinds of Fire.

Classification-Direct Fire-Ricochet Fire-Curved Fire-Plunging Fire --Solid-shot Firing-Shell Firing-Shrapnel Firing-Grape and Canister Firing-Horizontal Fire-Vertical Firé-Falling Velocity-Small-arm Firing.

Scction III.-Gun Implements.

Staves-Sponges-Rammers-Ladlę̌-Worms-Sectional Staves.

CHAPTER XI.

the motion of projectiles.

Equation of the Path of a Projectile in a Non-resisting Medium-To find the Time of Flight of a Projectile on a Horizontal Plane-To find the Elevation necessary to cause the Projectile to pass through a Point given by its Co-ordinates-'o find the Velocity of a Projectile at any Point of its Patl-To obtain an Expression for the Direction of the Path at any PointTo find the Co-ordinates of a Point where a Projectile will strike an In. dined Plane, passing through the Point of Projection, the Range on the Inclined Plane, and the Time of Flight-Examples-The Motion of a Projectile in Air-Analytical Expression for the Cubic Law of Resistance-Equation of Motion for the Cubic Law of Resistance--Use of the Tables-ExamplesTo find the Range on a llorizontal Plane-Law of Penetration of Projectiles.

CHAPTER NII.

NAVAL OPERITIONS ON SHORE.

Section I.-General Considerations.

Employment of a Naval Force on Shore-The Base-Preparations.

$$
\begin{aligned}
& \text { Section II.-Landing. } \\
& \text { Details-Equipment--The Boats-Landing. }
\end{aligned}
$$

Section III.-On the March.

The Advance-Advance.guards-Rear-guarls-Bivouac-EncampmentGuards.
Section IT.-Engaging.

The Attack-The Skirmishers-The Infantry-The Artillery-The Defence.

> Scetion T.-Ficld Fortifications.

Definitions-Plans-Profiles-To Distribate the Workmen-Artillers in Field-works-Defence of Walls-Defeace of a Building-Defence of a Village-Defence of a Bridge-Attack of Works-Surprises-Open Attack-Defence-Sorties.
Section IT.-The Retreat.

Rear-guards-Destruction of Bridges-Passage of a Defile-The Embarkation.

THE FOLLOWING IS A LIST OF TIE PRINCIPAL BOOKS AND DOCUMENTS WHICH HAVE BEEN CONSULTED OR QUOTED IN THIS VOLUME

A Course of Tinstruction in Ordnance and Gumnery, prepared for the use of the Cadets of the United States Military Academy, by Brevet-Col. J. G. Benton, Major Orduance Department, U.S.A. ; late Instructor of Ordnance and Science of Gunnery, Nilitary Academy, West Point. 3d edition. (New York : D. Van Nostrand, 186\%.)

The Principles and Practice of Modern Artillery, including Artillery Material, Gunnery, and Organiãation and Use of Artillery in TI'arfare. By Lieut.Col. C. H. Owen, R.A., Prof. of Artillery, Royal Military Academy, Woolwich. (London: Jolin Murray, Albemarle strert, 18i1.)

A Text-boo? of the Construction and Manufacture of the Rigled-ordnance in the Britiv/ Service. By Captin F. S. Stoney, R.A., Asst.-Supt. Royal Gun Factories, and Lieut. Charles Jones, R.A., Instructor, Royal Gun Factories.

A Treatise on Ordnance and Armor, embracing Descriptions, Discussions, and Professional Opinions concerning the Material, Fabrication, Requirements, Capabilities, and Endurance of European and American Guns, for Nayal, Sea-const, and Iron-clad Warfare, and their Rifling, Projectiles. and Breech-loading ; also results of Experiments against Armor. By Ales. L. Holley. (New York: D. Yan Nostrand, 186す.)

A Treatise on Ordmance ard Naval Gumnery. Compiled and arranged as a Text-bok for the United States Naval Academy. By Lieut. Edward Simpson, U. S. Navy. (New York: D. Van Nostrand, 1863.)

The Artillerist's Mrmut, Compiled from various sources, and adapted to the Service of the United States. By Brig-(ien. John Gibbon, U. S. Vols., Captain fth Artillery U. S. Army. 21 edition. (New York: D. Van Nostrand, 1833.)

Gunnery Instructions U. S. Navy. Detail Drill, 1873.
A Treatise on the M. tellurgy of Tron, containing Outlines of the History of fron Manufacture, Methods of Assay and Analyses of lron Ores, Processes of Manufacture of Iron and Steel. By H. Bauerman, F.G.S. (New York: Virtue \& Vorston, Dey street, 1868.)

Metals : their Proparties and Treatment. By Charles Loudon Bloxam. 2d edition. (London : Longmans, Green \& Co., 18i1.)

Ordnunce Instructions for the United Sintes Nor\%. Published by ordcr of the Navy Dept. (Washingion: Government Printing-ofice:)

The Ordranee Manual, for the use of the Officers of the U. S. Army. (Philadelphia: J. B. Lippincott \& Co., 1861.)

Ammmition. A Descriptive Treatise on the Different Projectiles, Charges, Fuze, Rockets, etc., at present in use for the Land and Sea-service, and on other War Stores manufactured in the Royal Laboratory. By Capt. Vivian Dering Majendie, R.A., Asst. -Supt. Roýal Laboratory, Woolvich. (London : W. Mitchell \& Co., Military Publishers, 39 ('haring-cross, 1867)

Part I.

Ammunition for Smooth-bore Ordnance.

Part II.

Ammunition for Rifled Ordnance. By Captain Charles Orde Brown, R.A., Capt.-lnstructor Royal Laboratory, Woolwich.

> Part II.-Continued.
> By Capt. C. O. Brown.

A Treatise on Naval Gunnery. Dedicated by special permission to the lords Commissioners of the Admiralty. By Gen. Sir Howard Douglas, Bart. 5 th edition. (London : John Murray, Albemarle street, 1860.)

Shells and Sleell Guns. By J. A. Dahlgren, Commander in Charge of Experimental Ordnance Department, Navy Yard, Washington. (Philadelphia : King \& Bird, 185\%.)
On the Physical Conditions Involved in the Construction of Artillery, with an Investigation of the Relative and Absolute Values of the Materials principally employed, and some hitherto umexplained Causes of the Destruction of Cannon in Service. By Robert Mallet. (London: Longman, Prime, Green, Longmans, \&-Roberts, 1856.)
Reports of Experiments on the Proporties of Mitals for Cannon, and the Quatities of Camon Powder, with an Account of the Fabrication and Trial of a 15 -inch Gun. By Capt. T. J. Rodman, of the Ordnance Department U. S. Army. (Boston : Charles H. Crosby, 1861.)
Reports of Experiments on the Strength and other Properties of Metals for Cannon, with a Description of the Machines for testing Metals, and of the Classification of Cannon in Service. By Offiers of the Ordnance Department U. S. Army. (Philadelphia: Henry Carey Baird, 1856.)
Report on the Fabrication of Fron for Defensive Purposes, and its use in Modern Fortifications, especially in Works of Coast Defence. Professional Papers of the Corps of Engineers U. S. Army. No. ⒈ (Washington: Government Printing-offices, 18\%1.)
Report on Certain Experimental and Theoretical Investigations relative to the Quality, Form, and Combinution of Materials for Defensice Armor, together with Incidental Facts relative to their use for Industrial Purposes. By Brevet-Major W. R. King, Capt. of Engineers, U. S. Army. (Washington : Government Printing-ofice, 18\%0.) Professional Papers Corps of Engineers U. S. Army. No. 17.
A Manual of Gunnery for Her Majesty's Flect. Corrected up to 1st January, 1872.)

The Le Boulengé Chronogroph. By Brevet.Capt. O. E, Michaelis, First Lieut, Ord.-Corps U. S. Army. (New-Tork: D. Tan Nostrand, 18i2.)
Traité d'Artilleric Théorique et Pratique. Par G. Piobert. (Paris: Gauthier 1869.)

Electro-ballistic Machines and the Schultze Chronoscope. By Brevet Lieut.Col. S. V. Benet, Capt. of Ordnance U. S. Army. (New York: D. Van Nostrand, 1866.)
Notes on Gunpozoder, prepared for the use of the Gentlemen Cadets of the Royal Military Academy. By Capt. Goodenough, R.A., Instructor in Artillery, Royal Military Academy. (London : Mitchell \& Co., Charing-cross, 186s.)
Ure's Dictionary of Arts, Mranufactures, and Mines. Edited br Robert Hunt, F.R.S. Gtli edition. (London : Longmans, Green \& Co., i86i.)

Journals of the Royal United Service Institution. (London: W. Mitchell \& Co., Charing-cross.)
Inspection and Proof of Cannon for the United States Navy. (Washington: Government Printing-office, 1864.)
United States Navy Gunnery Notes. (Washington: Government Printingoffice, 1871.)
Uniter States Navy Laboratory Notcs. (Washington: Government Printing. office, 1871.)
Gunpointer as an Elemont in the Problem of Mrdern Ordnance, the Infinence of Density on its Explosive Action, and the Densimeter it uses, and Adjustments. Naval Ordnance Papers No. 1. By Lieut.-Commander J. D, Marvin, U. S. N, (Washington: Government Printing-office, 18i2.)
Mode of Fabricating the X Г.-in. Guns contracted for by the Chief of the Bureau of Ordnance, Navy Department, with the "Knap Fort Pitt Foundry," Pittsburg, Pa., 1870 and 1871. Naval Ordnance Papers No. 3. By Commander R. F. Bradford, U. S. N, (Washington: Government Printingoffice, 1872.)

A Concise Treatise on the Theory and Practice of Naval Gunnery. By W'm. N. Jeffers, Jr., passed Midshipman U. S. Navy. (New Tork: D. Appleton \& Co.)

Recent Investigations and Applications of Erplosive Agents. By F. A. Abel, F.R.S. (Washington : Government Printing-office, 18i1.)

A Mathematical Treatise on the Motion of Projectiles. By Francis Bashforth, Prof. Mathematics, Wool wich. (London : Asher \& Co., 13 Bedford Street, Covent Garden, W.C., 1873.)
Nicaise's Belgian Field Artillery. Translated with an Appendix and Notes, by O. E. Michaelis, Cap. Ordnance U. S. A. (W. E. \& F. P. Church, New York, 1872.)
American Breech-loading Small-arms. A Description of late Inventions, including the Gatling Gun, and a Chapter on Cartritges. Compiled by Brig.-Gen. C. B. Norton, U. S. Vols. (New York: F. IV. Christern, \% $\grave{7}$ University place, 187\%.)
Instructions for Offcers and Non-Commissioncd Officers on Outpost and Patrel Duty. Authorized and adopted by the Secretary of War. (Pliladelphia: J. B. Lippincott \& Co., 1863.)

Practical Treatiss on Strengthening and Defending Outpost Villages, Houses, Brilges, etc. By J. Jebb, Lieut.-Col., Corps Royal Engineers. 3d edi. tion. (London ; W. Clowes \& Sons.)
An Elementary Course of Military Engineering-Part I. Comprising Fixed Fortifications, Military, Mining, and Siege Operations. By D. H. Mahan, LL.D., Prof. Military and (ivil Engineering, U. S. Military Academy. (New York: John Wiley \& Son, 1866.)
The Soldier's Pocket-book for Field Service. By Col. G. J. TVolseley, Deputy Qnartermáster-General in Canada. (London : MacMillan \& Co., 1869.)

Camp and Outpast Duty, for Infantry with Standing Orders. Extracts from the Revised Regnlations for the Army, Rules for Health, Maxims for Soldiers, and Dnties of Officers. By Daniel Bntterfield, Maj.-Gen. U. S. Vols. (New York : Harper \& Brothers, 1863.)

Report to the Government of the United States on the Munitions of War exhibited at the Paris Universal Exhibition, 186\%. By Chas. B. Norton, late Lieut.-Colonel U. S. Vols., and IV. J. Valentine, Esq., President of U. S. Com., 1855, United States Commissioners. (Nev- York: Office ot Army and Navy Journal, 39 Park row, 1868.)
Chemical Phenomerio of Iron Smelting. An Experimental and Practical Examination of the Circumstances which determine the Capacity of the Blast-furnace, 'Temperature of the Air, and the proper Condition of the Material to be operated upon. By J. Lowthian Bell. (New York: D. Yan Nostrand, 23 Murray street, 1872.)
Boat Armament of tho Uniterl States Nirry. Designed by and executed under the direction of J. A. Dahlgren, Commander U. S. N. in Charge of the Ordnance Department, U. S. Nary Yard, Washington, D. C. $2 d$ edition. (Philadelphia: King \& Baird, 185̄6.)
The Management of Steel. By George Ede, employed at the Royal Gun Factories Department, Woolwich Arsenal. (New Iork: D. Appleton \& Co., 1867.)

Dictionnuire des Mathématiques Appliquées. Par H. Sonnet. (Paris: Libraire de L. Hachette et Cie., Boalerard Saint-Germain, No. ĩ, 186ĩ.)
Report on a Naval Mission to Eurrope. Especially devoted to the Material and Constraction of Artillery. By Captain E. Simpson, U. S. N. 2 vols. (Washington: Govermment Printing-olice, 18i3.)
Annual Report of the Chief of Ordnonce to the Secretary of War, for the years 1872 and 1873 . (Washington : Government Printing-oltice.)
Spons' Dictionary of Engincering: Civil, Mechanical, Military and Naval. Oliver Byme, editor. (London: E. \& F. N. Spon, 48 Charing-cross, 1873.)

A Handbook of the Manufacture and Proof of Gunponder as carried on at the Royal Gumpowder Factory, Walth im Abbey. By Capt. F. M. Smith, R.A., Ássistant-Saperintendent. (London, 1870.)

Instructions for the Care and Prcparation of Ammunition. (Published by the United States Naval Ordnance Bureau, 18it.)

The Determination of the Time of Fliyht of Projectiles, etc., by Mernns of the Electric Clepsydra, from Researelhes in Experimental Ballistics. By liajor P. Le Boulengé, Belgian Artillers. Translated from the French by Lieut.-Commander J. D. Marvin, U. S. Navy. (Washington: Government Printing-office, 1873.)
United States Naval Ordnance Notes. The IReffye Gun. $18 i 3$.

NAVAL ORDNANCE AXD GUNNERY.

CHAPTER I.

CANNON METALS.

Section I.-Metallurgy of Iron.

1. Metallurgy of Iron* is the art of extracting iron from its ores. This metal is used in the manufacture of most of the engines of destruction that modern science has introduced into the art of war. In its pure state it is rarely found in nature, but its ores exist in great abundance in all parts of the world.

The natural compounds of iron which are available as ores of the metal, are chiefly oxides and carbonates. These scarcely ever occur in a state of purity, but associated with clay and other silicious minerals, or with limestone, which substances are useful as slag-forming components; and also with compounds of sulphur and phosphorus, which are deleterious impurities.
2. PREPARATION OF IRON ORES.-The ironstone, or ores of iron, when extracted from the mines, being in a very rough state, and intermixed with earthy substances, it is first necessary to prepare them for the llast or smelting furnace.

Ores are subjected to different treatment in different countries and at different mines, depending upon their value and quality.
3. Dressing.-Some ores are not subjected to any particular dressing, while others are separated from a portion of the intermingled clay and sand by sifting, crushing, stanping and washing.

[^0]These processes are usually accomplished by breakingmachinery and roller-crushing-mills. The machinery used for washing the ores generally consists of a horizontal staff armed with projecting lnives or paddles, revolving in a cylindrical trough, through which a stream of water is kept flowing. The rough ore, after being well mixed up with the water by the action of the paddles, is carried by the stream into a settlingpit, where the hearier masses of clean ore deposit, while the finely divided earthy matter is carried off with the waste water.

Washing of ores is rarely practised, except in countries where labor is very cheap, or facilities for washing very great.
4. Weatherivg.-At some mines the ores are exposed to the action of the air for some time. Superficial oxydation takes place, the adherent fragments of foreign substances disintegrate, and can be readily removed; and impurities are also partially removed by rain.
5. Ironstone Breatiers.-In order to attain the greatest regularity in the process of smelting, it is adrisable that all charges of ores and fluxes should be reduced to fragments of nearly uniform dimensions. The size of the fragments should be proportioned to the height of the furnace and the greater or less susceptibility to reduction of the ore, varying from cubes of one to two iuches in the side, to as much as four to six inches in the side. The limits are determined by the conditions required : the larger masses being only adapted for tall furnaces, when by the slow descent of the charges, sufficient time is allowed for the heat to penetrate to the interior, at the same time that a free passage is afforded to the upper current of the gas. Smaller pieces, on the other hand, althongle exposing a greater surface to the action of the reducing gases, pack closer together and offer greater resistance to the blast.

The reduction in size is effected by various mechanical means of breaking, the most advantageous of which are crushing-rollers and lever-machines called breakers. The material operated upon is sometimes raw ore and sometimes washed ore.
6. Roasting or Calcination of Iron Ores.-In this comntry roasting of ores is much less practised than in England and on the Continent ; partly on account of the ligher price of labor here, but chietly because our principal ores-hematites and magnetites-are anhydrous.

The object of roasting is to expel the water, sulphtur, arsenic and other impurities with which the ores are combined: all volatile matters are thus remored, the amount of iron is concentrated into a smaller weight, and as the fragments of
mineral retain their form they are rendered porous and more readily susceptible of being changed in the subsequent operations in the smelting-furnace. The roasting is effected in various ways, which may be classified generally under two different heads.
7. First. Roasting in the Open Air.-This is done by distributing the ore in alternate layers with waste coal, wood or charcoal, and the pile thus formed is ignited and burned. This method is used in localities where fuel is cheap, when compared with labor, but is in many respects disadvantageous on account of the waste of fuel and the imperfect distribution of the heat, the interior of the pile often being heated to excess, with a partial fusion of the ore, when the outer parts have only attained the proper temperature.
8. Second. Roasting in Furnaces or Kilns.-This method is generally to be preferred when economy of fuel is of inportance, as the heat of combustion is more perfectly applied, and a more uniform product is obtained, than is the case with the more rude method of roasting in the air.

The construction of the kilns in different localities varies considerably, but the principle of working is, in the main, the same everywhere.

The ore is piled above a thin bed of fuel at the bottom of the kiln shaft, which may be conical, cylindrical, barrel or wedge shaped, and when ignited is covered with layers of ore and fuel alternately until the shaft is full to the top or throat.

The ore roasted by the combustion of the fuel at the bottom, where the air has access to the kiln, is withdrawn, and the next layer falls; the deficiency bejng made good by fresh charges at the top. (Fig. 1.)
9. SMELTING is the process by which the iron is reduced to the metallic state, and separated from the refractory substances with which it is combined in the ore.

It consists in raising the ore to a

Fig. 1. high heat, in contact with carbon and a suitable flux, in the blast or smelting furnace. The flux unites with the earthy matter of the ore, forming a glassy substance called slag or cinder, and the carbon as carbonic oxide unites with the oxygen of the ore, setting the iron free; which in turn unites with a portion of the carbon and forms a fusible compound called pig or cast-iron.
10. Fluxes used in Iron-smelting.-In practice, rery few ores are found to contain earthy ingredients in proportions sufficient to form readily fusible slags alone, and it therefore becomes necessary to supply the deficiency. This may be done, either by mixing ores of dissimilar compesition in such quantities as shall yield slags of the desired composition, or by the addition of calcareous or aluminous minerals not containing iron.

The first of these methods is certainly to be preferred, as by it the slag is formed without unnecessarily reducing the percentage of iron in the charge or burden, taken as a whole: whereas, the addition of fluxes increases the weight of material to be passed through the furnace for the same produce of metal ; but it can only be carried out in localities having a large and varied command of minerals. Usually, therefore, a combination of both methods is used, the lest mixture of ores obtainable being supplemented by the addition of earthy minerals.
11. Difficulty of Obtarning Pure Metal.-The reduction of iron ores can be effected practically only by car! 3 on or carbonic oxide.

The principal flux employed in iron smelting is carbonate of lime in the form of limestone. As a very high temperature is necessary to effect the reduction, the metal almost always combines with a greater or less proportion of the reducing agent, as well as of other elementary substances; such as silicon, sulphur and phosphorus, that may be present either in the ore, the fuel or the flux; so that the nltimate result is nerer a pure inetal, but a compound of iron with carbon, silicon, sulphur, phosphorus and sometimes manganese, and occasionally traces of other baser elements, as titanium, etc.

Small traces of foreign elements exert a very marked influence on the metal, and it is these small and in many cases unnoticed differences of composition, that render so many points in the chemistry and practical working of iron obscure and difficult to be understood.
12. Composition of Fluxes.-The composition of the limestone to be used is of considerable importance, and depends upon the kind of ores employed. Chemical analysis alone can determine to which class a particular limestone belongs, as there is often nothing in the external appearance by which a pure limestone may be distinguished from one containing fortr or fifty per cent. of foreign matter. Magnesium limestone is especially to be avoided as producing a very refractory slag.

The addition of fluxes to the blast-furnace is regulated by
several considerations. When the ores are of good quality, the chief point to be considered is the production of the most fusible slag, with the smallest addition of non-ferriferous matters; this is more especially the case with charcoal-furnaces. When mineral fuel is used, however, it is necessary to form a slag that is capable of absorbing sulphur, which would otherwise be taken up by the iron ; and, for this purpose, a larger quantity of flux is used than that indicated by theory, as giving the most fusible product. The quality of the iron produced, depends greatly upon the kind of flux employed.
13. Slag is the vitreous mass which covers the fused metal in the smelting-hearth. It is commonly called cinder.

The physical character of slag, such as color, texture, fluidity, etc., varies with the composition and the working condition of the furnace, so that it is not possible from inspection alone, to determine the character of the metal produced, except after considerable experience of the individual furnace; and the relation between the slag and metal in one locality may be totally different in another.
14. Fuel. The fuel used in iron-smelting varies in different localities and with the purposes for which the iron is intended. Charcoal is said to make the most superior iron, and is always used in the manufacture iron for ordnan purposes. Coke

Fig. 2.-Blast-furnace for Smelting Iron Ores. is very generally used, and bituminous and anthracite coals are also employed.
15. THE BLAST-FURNACE.-The means of reducing iron ore now almost universally in use, is the blast or smelting furnace. (Fig. 2.)

Construction.--This consists mainly of a tall shaft of brick and stone or of iron, and generally of the form of a truncated pyramid, but sometimes cylindrical or rectangułar.

The construction of blast-furnaces varies considerably in different localities in regard to size and proportions of parts to each other, as well as material employed.

The height and dimensions vary with the nature of the ores and fuel used.
16. The Stack.-The interior has the form of tro truncated cones, united at their bases. The upper one, C, which is the larger and more acute, is placed upright; it constitutes the furnace proper, and is known as the stack.
17. The Boshes.-The lower cone, B, which is inverted, is shorter and more obtuse than the other; their line of junction forming the widest part of the furnace, A, is called the boshes, and it terminates below in a space called the hearth, E.
18. The Hearth.-The hearth, properly speaking, is that part of the furnace only which receives the fluid metal and cinder as they fall below the level of the tryers, o.

Three of the sides of the hearth descend to the bottom of the furnace, or to the hearth-stone, while the fourth side, called the tymp, t, does not go all the way down, but leares an opening, and is supported by an arch or by strong bars of iron let into the sides of the furnace.
19. Fumace-lining.-The interior of the firnace has a double lining of fire-brick, i, l, the space between them being tilled with sand or broken slag to prevent injury to the outer wall by the expansion of the lining from the heat. The hearth and heartll-stone and boshes are built of refractory material becanse of the great heat which they have to endure.
20. Details of the lower Part of the Furvace.-Arched openings are built on each side of the shaft at the bottom, three of which are called the twyer-arches, and the other the tymparch.
21. The Twyers, or blast-pipes, are the ends of the pipes through which the blast is admitted to the hearth, and as they are exposed to a high temperature, they are cast so as to enclose a coil of wrought-iron tubes, through which a stream of cold water

Fig. 3. continually circulates. Fig. 3 represents a section of a twyer-nozzle thus protected, the cold water en-
tering the casing by the tube t, and the hot water running off by the tube t^{\prime}.
22. Twyer-loles.-Passages for the introduction of these pipes are perforated through the wall of the liearth, o, a short distance above the heartl-stone. These are known as twyerholes, and vary in number.

The smaller charcoal-furnaces have often only two, placed on opposite sides of the hearth. Three is a more usual number, one leing placed at the back, opposite to the tymp, and the others at the sides of the hearth. When a larger number is used they are generally placed at equal intervals all around the hearth.
23. The Fore-hearth is the front or working side of the hearth. This side is constructed differently from the others, its upper part being formed by a heavy block of stone, g (Fig. 4), called the tymp-stone, which is supported by a castiron tymp-plate, p, built into the masonry of the furnace; while the lower part is enclosed by the dam-stone, b, faced externally by a thick cast-iron dam-plàte, m. That portion of
 the hearth which is shut in by the dam-stone is called the crucible, for it is here that the cast-iron produced in the furnace accurnulates in a melted state covered with slag.
24. The Cinder-notch.-A semi-circular furrow in the top edge of the dam, known as the cinder-notch, forms a passage for the slag. In charcoal and other small furnaces the front of the dam is generally formed into a gently sloping, inclined plane, or cinder-fall, where the slag, as it runs out, solidifies in a comparatively thin layer, and may be broken up and removed by hand.
25. Tap-hole.-The tap-hole for withdrawing the molten iron from the hearth is a narrow vertical slit pierced through the dam, and extending from the hearth-stone upwards. During the time that the hearth is filling it is stopped by a packing of sand, rammed in tight, which can be easily perforated by a pointed bar at the time of casting.
20. Tymp-stopping.-The space between the top of the
dam and the tymp-stone is also stopped with sand or brick, a small passage being left for the escape of slag; this is called the tymp-stopping.
27. Detalls of the Top of the Furnace. -The top, or throat, of the furnace is surrounded by a platform for the convenience of charging, and is in many cases covered with a short cylindrical chimney which leads off the flame escaping at the throat, F. (Fig. 2.)
28. Throat, Cup, and Cone.-When it is desired to collect the gases given off at the top of the furnace, it is necessary to work with a closed throat.

The most simple contrivance for this purpose, and that most generally used, is known as the cup and cone. (Fig. 5.) It consists of an inverted, conical cast-iron funnel, A, fixed to the top of the furnace, whose lower aperture is of about onehalf the diameter of the throat.

An upright cast-iron cone, B, is placed in the furnace below the cup ; it is suspended by a chain attached

Fig. 5.-Cup and Cone for closing the Blast-furnace, in order that the waste gases may pass into the lateral the, as shown by the arrow. to its apex, so that it may be raised or lowered at pleasure. In the former position it bears against the bottom of the cup and forms an air-tight stopper, preventing the escape of gas from the top of the furnace; which then finds its way out by the proper passage through the wall of the furnace, C.
29. How suspended.-The cone is suspended by an arcliheaded lever, carrying a counter-balance at the end of the opposite arm.

The raising or lowering is effected by a pinion moved by a hand-wheel gearing into a ratchet attached to the counter-balance weight. The gas passes through a lateral flue into a wrought-iron main-pipe, which distributes it to the varions pipes feeding the boiler fires and hot-blast stoves.
30. Cinarging.--The charges are thrown into the space enclosed by the cup, then by lowering the cone, it allows the charges in the cup to be dropped into the furnace and at the same time acts as a distributer ; only the small amount of gas that is lost during the time of charging is allowed to escape, and as the operation is very quickly performed the current through the main-pipe is kept up with great regularity.
31. The Blast, or draft, in the furnace is introduced through the twyers, and is maintained by means of blowingengines of various constructions.
32. Pressure of Blast.-The working-limits of blast-pressure vary with the nature of the fuel employed, and the burden of the furnace, etc.
Λ steady current in the furnace is accomplished by arrangements for equalizing the pressure, and its amount and force are indicated by means of ganges.
33. Temperature of Blast.-How Determined.-In practice the temperature of the blast is generally determined by its power of fusing metals, mercurial thermometers not being reliable for temperatures much above 400° or $500^{\circ} \mathrm{F}$., orving to the irregular expansion of the mereury when near its boilingpoint. This is done by exposing a thin rod of the metal to the current in the twyer, a hole being made for the purpose in the elbow of the brancl-pipe connecting the twyer with the main blast-pipe.
34. The following table, from "Bloxam on Metals," contains the inelting points of various metals:

TABLE OF FUSIBILITY.

[^1]35. Hot-blast.-When the stream of air forced through a furnace is heated above 300° or $400^{\circ} \mathrm{F}$., it is called a hot-blast.
36. Fffects of Ilot-blast.-Whenever a forced stream of air is employed for combustion, the resulting temperature must evidently be impaired by the coldness of the air injected upon the fuel; fires fed with hot air should, with the same fuel, rise to a higher temperature than fire fed with common cold air:

Furnaces blown with heated air exert greater reductive power than those in which a cold-blast is used. This has led, since the introduction of hot-blast, to the extensive use in ironsmelting of refractory ores not formerly smelted; a larce part of which have been ores of a class calculated to produce inferior iron ; and it is to the use of ores of this nature, far more than from any deterioration in quality, arising from a heated blast, that the frequent inferiority of hot-blast iron is to be ascribed.

As the fusing metal is brought in contact with less fuel, and as less air is passed through the furnace, the chemical reactions are probably somewhat inodified, but it is thought the quality of the product is not injured.
37. Excessive Heat of Furnace.-An excessive temperature in the furnace is injurious, because unnecessary heat of fusion injures the quality of the metal produced: dark-gray graphitic iron resulting always from intensity of heat.

But this can be regulated as well with the hot-blast as witll the cold : since it depends on the fuel emplojed, the burden of ore, and the pressure of the blast, as well as its temperature.
38. Advantages of Hot-blast.-With fuels dificult of ignition, and with refractory ores, the adrantages of the lotblast are most marked. It effects a saving of heat, and accomplishes the reduction of the most refractory ores in less time and with a less expenditure of fuel than the cold-blast.

It is therefore employed at the present day almost to the exclusion of cold-blast, the latter being retained only for certain special makes, such as for gun-founding, which command an extra price, and may therefore be produced without strict regard to econoiny.
39. Warm-blast.-Even for purposes where it is desirable to produce the best possible quality of iron without regard to cost it is now customary to use a warm-blast rather than the cold; that is to say, a blast varying from 100° to $200^{\circ} \mathrm{F}$. , so as to obtain uniformity of temperature at all seasons of the year; which is not possible when using a blast absolutely cold.
40. Some of the latest experiments upon the comparative strengths of hot-blast and cold-blast irons appear to warrant the
conclusion, that so far as the temperature of the blast only is concerned, the hot-blast tends slightly to injure the quality of the softer (gray) irons, whilst it improves, sometimes in a very remarkable degree, the character of the harder (white) castirons.
41. Metiod of Heativg the Blast.-The combustible gases from the stack are generally used to heat the air. For this purpose a kind of oven is built near the stack, and the inflammable gases are drawn off from the top and passed through it. In this oven are series of pipes through which the air is forced before it enters the stack; sometimes this oven is heated independently of the stack.
42. The amount to which the temperature of the blast may be raised with advantage does not appear to have any practical limit, except that arising from the necessity of keeping the apparatus tight, and avoiding its rapid destruction by excessive heat. Yet, Bell says $1,000^{\circ} \mathrm{F}$. should be the limit even in the largest furnaces. (Art. 45.)
43. Blowing iv is the operation of starting the furnace.

In manufacturing gun-iron charcoal is used with limestone as a flux.

To commence blowing in, first put a quautity of good dry wood in the bottom, raising it to a height of three or four feet, and then several tons of charcoal ; over this are introduced regular layers of charcoal, flux, and a very light burden of ore. When the furnace is thus filled, to about one-third its height, the wood at the bottom is ignited. When the upper layers become incandescent the charging is resumed until the furnace is two-thirds full, the burden of ore being gradually increased, up to that necessary for producing gray irou of the proper quality in the ordinary working. When the fire reaches the top of the minerals the furnace is tilled up to the top, and the blast turned on to about two-thirds its full force.

This continues for a time, when the blast is turned full on, and the chavging goes on regularly.

The weight of the charges as well as the temperature and pressure of blast must be gradually increased so as to get to the proper burden by degrees.
44. Working of tie Furvace.-When the furnace is at work or in blast it is kept filled to the top or throat, with alternate layers of fuel, ore and flux, the latter being mixed in proper proportions, to produce the most fusible combination of the earthy matters; a constant stream of air being maintained through the twyers, at a sufficient pressure to pass freely through the contents of the furnace.
45. Chemical Action in the Furnace.*-The oxygen of the blast coming in contact with a great excess of incandescent fuel is saturated, so to speak, at once with carbon, and carbonic oxide is formed. The heat thus generated, though not the maximum which the fuel would produce if burnt with excess of air, suftices to fuse the carburetted iron, and the silicions compounds descending from above; and they fall into the hearth when they separate by liquation into metal and slag. The latter, being specifically lighter, rises to the surface, and protects the former from the decarbonizing action of the blast.

The carbonic oxide produced, together with the inert nitrogen, rises through the incandescent materials of the furnace and at a certain height, within ten or fiften feet of the top of a fifty or sixty-five feet stack, where the temperature is comparatively low (probably not exceeding the melting-point of zinc), the reduction of the oxide of iron takes place. The reaction may be approximately expressed thus: $-\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO}=2 \mathrm{Fe}$ $+3 \mathrm{CO}_{2}$.

The CO_{2} formed reacts immediately on the hot coal, and is converted again to CO, and this reduces more iron oxide, and thus the interaction continues until certain proportions of CO and CO_{2} obtain, when the reducing action of CO becomes less powerful than the tendency of CO_{2} to oxydize the nemly formed metal.

The power of CO_{2} to oxydize iron over that of CO to reduce it increases with the temperature. At a high heat, too, an excess of CO is produced, as carbon reduces CO_{2} better at high temperatures.

These facts, according to Bell, set a limit to the degree of heat at which the blast can be advantageonsly used.

The escaping gases searcely ever contain more than forty parts of CO_{2} to one hundred CO by volume, and this is diluted with about two hundred parts of nitrogen.

It follows that only one-tifth of the carbon is wholly consumed in the blast-furnace.

Another important reaction takes place below the reducingzone, depending on the fact that carbonic oxide is itself reduced with the elimination of carbon, or decomposed according to the formula $2 \mathrm{CO}=\mathrm{C}+\mathrm{CO}_{2}$ in the presence of metallic iron, and the lower oxides of iron at a certain temperature somewhat higher than that most favorable for the reduction of the iron oxide.

The spongy metallie iron, probably not wholly reduce!,

[^2]descends unmelted into the bottom portions of the furnace where the reduction is perfected, probably by the finely divided carbon resulting from the reaction described above. At the zone of fusion, just above the twyers, the iron combining with a portion of this carbon, and with varying quantities of silicon, ctc., melts and falls into the hearth below as cast-iron.
46. Production of Gun-iron.- It is very necessary that this should be of uniform strength and density. In order to produce the best quality of iron the greatest care is required.

All the materials which enter the furnace should be of the best and purest quality, and kept dry; regularly and uniformly mixed, and supplied to the furnace at regular intervals.

The temperature of the blast should be kept as nearly uniform as possible, without using what is termed the hot-blast, which is on no account to be used.
47. Tapping.-The molten metal accumulating in the hearth of the furnace is removed at regular intervals by tapping, or picreing a hole throngh the lower part of the dam, and allowing the metal to flow into sand or cast-iron moulds placed in front of the furnace.

Before tapping, the blast is shut off and the tymp-stopping removed.

The tap-hole is opened by driving in the point of a wroughtiron bar, which is lield by one man while another strikes the end with a sledge-hammer if necessary.
48. The molds, or pig-beds, usually consist of a series of furrows in the sand of the casting-floor, molded by a wooden core having the name or mark of the foundry attached to it.

The molds are arranged in parallel series on either side of a central feeder, known as a sow; and as soon as one series is filled the current is allowed to flow into the next, and so on, until the cast is completed. For gun-iron sand-molds should be used.

When this operation ceases the tap-hole is again secured, and the work proceeds as before. In this manner a furnace may be kept continually going night and day for years, until repairs render blowing out necessary.
49. Piling Pigs.-Each pig of any one run should be placed in a separate pile, and each of these piles should be kept scparate in transportation, and be re-piled in the foundry yard in the same order as at the smelting-furnace.

These precautions are necessary in order to have an accurate Listory of the metal of which each gun is made.

Section II.-Cast-Iron.

50. Compostrion of Cast-Tron.*-The only substance with which iron is invariably and indispensably associatel in castiron is carbon. By fusing finely divided iron with chareoal until the metal has taken up as much carbon as it will dissolre. a dark-gray mass is obtained, which is so brittle that it may be powdered in a mortar.

That carbon forms any definite compound with iron is very doubtful.

Iron seems to have the power of dissolving carbon at a high temperature, and on slow cooling the carbon is separated in distinct graphitic scales. If the cooling is very slow large crystals one-half to tlurec-fourths of an inch long are formed, and graphite may bo readily removed from the faces with a knife. On chilling gray iron the carbon is retainel in a more intimate state of combination or solution, and cannot be separated.

As to whether the carbon is chemically combined, or whether it is carbon in another form than graphite simply dissolved in the iron, different opinions exist.

The percentage of carbon in the best rarieties of pig-iron varies from three to rather over four per cent., except, perhaps, in the variety of iron known as spiegeieisen, which sometimes contains nearly five per cent.
51. Varieties of Cast-Iron.-On examining the fractures of freshly broken pieces of cast-iron, it will be found that some specimens have a silvery-white and others a gray color, catsed by the presence of very minute particles of carbon, which are interspersed among the lighter-colored particles of the metal.

When the gray samples of cast-iron are acted upon by acid (diluted sulphuric or hydrochloric) the iron is dissolved, but the black particles of carbon are left, and these are found to possess the same propertics as the natural variety of carbon, known as black-lead, or graphite, of which pencils are made.

When the white cast-iron is dissolved in acids very little black residue of carbon is left, because the greater part of the carbon, being intimately combined with the iron, is dissolved by the acid, or eliminated as gaseous hydro-carbons, and very little is presented in the form of graphite.
52. When a sample of gray cast-iron is melted, the particles of the free carbon are dissolved by the liquid metal becoming intimately combined with the iron; and if the melted mass be

[^3]suddenly chilled by throwing water upon it, or by running it when near its point of solidification into a thick iron mould, the carbon does not separate again, so that a mass of white castiron is thus produced.
53. It is more dificult to convert the white into the gray variety of cast-iron, but this can be done by exposing the melted metal to a high temperature, and allowing it to cool down very slowly, when a portion of the carbon separates from the iron, and the gray variety of cast-iron is prodnced.

The relative grayness or whiteness of pig-iron furnishes no real standard of quality as compared with the produce of other localities, but is rather an indication of the working condition of the firnace.
$5 \pm$. The variable qualities of ore, fuel, and limestone may exercise such an influence on the resulting crude iron as to render a low denomination of one manufacture of greater commercial value than a ligher denomination of other makes. Other things being equal white cast-iron can be more readily and cheaply produced than gray, as the same amount of fuel is made to carry a larger burden of ore, and the charges are driven more rapidly. As, however, it can only be used for forge purposes, while the more expensive gray metal is available for making castings or malleable iron, it is usually sought to diminish its production as much as possible, except in special cases, where quantity of make or an extreme economy of fuel is desired.
55. Gray Cast-iron.-Since in gray cast-iron a smaller proportion of the iron is in combination with carbon, and more of it in the true metallic state, this variety would be expected to exhibit more of the properties of metallic iron. Accordingly the gray cast-iron is much softer and less brittle than white iron; it is in a slight degree malleable and flexible. The larger proportion of metallic iron contained in the gray cast-iron causes it to require a higher degree of heat before it begins to show signs of fusion, but it is capable of becoming very liquid at a sufficiently high temperature, so as to be easily run into molds. It becomes more fluid and preserves its fluidity longer than white iron; it expands on becoming solid so as to be capable of filling up the smallest cavities and depressions of a mold.

Gray cast-iron is about one-twentieth lighter than the white variety; its average specific gravity is 7.1. The gray iron rusts more easily in air and is more readily acted upon with acids than white iron, which may be ascribed partly to its containing more iron in an uncombined form, and partly to the acceleration of chemical action caused by the voltaic disturbance excited by the contact of the particles of graphite with the par-
ticles of iron in the presence of the acid; in the case of air, carbonic acid. This variety of iron is used for ordnance purposes
56. Wifte Cast-iron.- Since in white cast-iron a considerable proportion of the iron is in intimate combination with carbon, this variety would be expected to present the characters of the compound of carbon with iron, described abore (Art. 50); accordingly the white cast-iron is very brittle and extremely hard, so that a file will scarcely tonch it, whereas gray iron is much softer, and admits of being filed and turned.

White cast-iron is softened at a lower temperature than gray, but becomes less perfectly fluid; in cooling it passes through the pasty or semi-fluid state, and contracts very considerably on solidification. It scintillates or throws off sparks, as it runs from the furnace, to a much greater extent than gray iron.

Its average specific gravity is 7.5 .
White irou usually, but by no means invariably, contains less total carbon than gray iron. Its qualities generally are the reverse of those of gray iron, and it is therefore unsuitable for ordnance purposes.
57. There are two distinct kinds of white iron. First, That obtained from ores containing a larger proportion of manganese crystallizing in large plates; this variety, called spiegelcisen, is lighly prized for making steel ; and Sccond, That resulting from a heavy mineral burden of the furnace, or from a general derangement of its working, and that caused from the rapid chilling of fused gray iron.
58. Mottled Cast-rron is composed of a misture of the white and the gray varieties in varying proportions, the gray iron sometimes appearing in spesks, like minute flowers upon a white ground, whilst in other specimens the mass is composed of gray iron and the white iron appears in spots. Fine gray mottled iron from its great tenacity is known to be the best fitted for large castings where great strength is required, and is employed for gun-founding. It may be nade by mising white and gray iron, or by continuing gray irou in fusion for some time, mitil it gets the proper color. The kind of mottle will depend much upon the size of the castings. (Art. 36t.)
59. Classification of Pig-iron.-Generally a medinm-sized grain, light-gray color, lively aspect, fracture sharp to the touch. and a close, compact texture indicate a good quality of iron: while a grain either very large or very small, a dull earthy aspect, loose texture, dissimilar crystals mixed together indicate an inferior quality.

The produce of the blast-furnace is divisible into sereral qualities, which for practical purposes are determined by the
appearance presented by a freshly fractured surface-a number of pigs taken from each cast being broken for the purpose.

The numerons gradations in the scale are mainly dependent on color or degree of grayness, texture or size of crystals, and their uniformity and lustre. The largest-grained, brilliant, and graphitic dark-gray metal is known as No. 1 pig, while the smaller-grained varieties, with diminishing lustre and color, are designated by the higher numbers as far as No. 4.

Beyond this point, when the metal ceases to be gray, it is usual to omit the numerical scale, and denominate the remaining qualities by their color, as mottled, weak and strong mottled, and white, the last being the lowest.

This classification is subjected to variations in different localities.

The gray numbers as far as No. 3, are also called melting or foundry-pigs; the lower qualities, which are only adapted for conversion into malleable iron, coming into the class of forgepigs.
60. Variations in Contposition of Cast-iron.-Although carbon appears to be the only substance indiepensably associated with the metal in cast-iron, the commercial varieties of this material always contain silicon, phosphorus, sulphur, and manganese, which are often present in considerable proportion, and are known to exercise an influence upon the character of the cast-iron; other substances, such as titanium, cobalt, nickel, chromium, copper, vanadium, calcium, magnesium and arsenic may also be discovered by a careful analysis of considerable quantities of cast-iron, but they are generally present in very small proportion, and are not known to produce any effect on the metal.

The following table illustrates the general composition of the three principal varieties of cast-iron:

Iron.	$\begin{aligned} & \text { Gray. } \\ & 90.24 \end{aligned}$	Mottled. 89.31	White. 89.86
Combined carbon.	1.02	1.79	2.46
Graphite.	2.64	1.11	0.87
Silicon.	3.06	2.17	1.12
Sulphur.	1.14	1.48	2.52
Phosphorus.	0.93	1.17	0.91
Manganese	0.83	1.60	2.72
	99.86	98.63	100.46

61. The difficulties attending the chemical analysis of cast2
iron are very great on account of the large quantity of iron which has to be separated from small quantities of the other constituents, so that, although numerous analyses are recorded, their results do not exhibit that agreement which is necessary in order that the composition of this material may be considere! to be thoroughly established.

There appears to be little knowledge of a thoroughly satisfactory character with respect to the eifect of different proportions of foreign matter upon the qualitr of iron, for the exact analysis of this material is tedious and difficult ; and those who are competent to execute it in a trustworthy manner have rarely the opportunity of becoming practically acquainted with the behavior of the metal.
62. Silicon.-Next to carbon silicon, or silicum, is the commonest and most abundant constituent of cast-iron ; its effect is very similar to that of carbon, and its tendency is to reduce the percentage of carbon. It is an element that is always present in every form of iron, although at times its quantity is sery minute; the proportion of silicon being higher in the gray than in the white variety, and the greater the quantity of graphite in the crude iron, the larger the amount of silicon.

The best common iron contains from one to one and onefourth per cent. of silicon. Such iron has a smoother face than inferior pig, and when struck with a hammer rings; it is brittle and crystalline; whereas inferior pig contains only two to four-tenths of silicon, is rough on the face or surface, breaks with less ease than the crystalline pig, and when struck sounds dead like lead, without ringing at all.

Silicon exists in cast-iron sometimes combined and sometimes separate, and is derived from silica in the ore or in the fuel; silica is a combination of silicon with orygen, and when the latter is abstracted by the carbon at the liigh temperature of the blast-furnace, the silicon enters into combination with the iron.

The presence of a large proportion of silicon in cast-iron is generally considered injurious to its quality, the strongest castirons being those which contain a small quantity of that element.

Iron which has been smelted with coke contains a larger proportion of silicon than that smelted with charcoal, and hotblast iron commonly contains more than that smelted by coldblast.

The presence of silicon in pig-iron affects in a remarkable degree the yield as well as the strength of the bar-iron produced therefrom. It is necessary that this element should be remored
as much as possible by a refining process, before the crude iron is submitted to the puddling process; but as this involves a great waste of material and trouble, it becomes an object of much practical importance to prevent, as far as possible, the presence of this eleinent in the crude iron.

In refining iron the silicon is oxydized before the carbon, and in some cases the silicon is separated completely from the metal, existing only as traces. The time required to refine iron seems to depend upon the amount of silicon present in the pig; thus, gray iron requires much longer time than white, and when very silicious white iron or glazed gray pig is used, it is almost impossible to refine it.

It lias always been the general impression that any amount of silicon in steel reduces its quality and seriously impairs its strength; good steel may, howerer, contain two per cent. of silicon, and its presence makes steel castings more solid.*
63. Mavganese is seldom if ever absent from cast-iron, for it is a metal which very nearly resembles iron in its chemical properties, and is commonly found in iron ores, so that the same operation which reduces the iron in the blast-furnace also reduces the manganese, and this metal becomes alloyed or closely mixed with the melted iron.

The manganese lias been found in the large proportion of one-sixteenth of the weight of the cast-iron, but it seldom exceeds one-fortieth.

The influence exerted by the manganese npon the character of the cast-iron is very decided, tending to the production of the white rariety, the manganese diminishing the tendency of the carbon to separate in the form of graphite.

White cast-iron, therefore, is found to contain the largest proportion of manganese.

The spatlic iron ores yield a cast-iron containing a particularly large quantity of manganese, sometimes exceeding one-tenth of the weight of the cast-iron. Such an iron is capable of containing upwards of one twenty-fiftly of its weight of carbon in combination with it, and the compound thus formed crystallizes in large and shining plates, whence it is named by the Germans spiegeleisen, or mirror-iron. It is largely employed in the manufacture of Bessemer steel.

It lias been asserted that the presence of manganese in iron ores encourages the passage of phosphorus, sulphur, and silicon into the slag, thus reducing the proportion of those injurious impurities in the metal.

[^4]64. Phospirorus is one of the most unwelcome ingrelients in iron ores, from the ease with which it passes into the metal during the smelting process, producing the most injurious effects, if present in more than a very small proportion.

Practically speaking, all the phosphorus in the ore and in the fuel passes into the pig-iron made ; like silicon it makes pigiron weak, although it is thought that when the anount is not more than one-half to three-fourths per cent., the strength of the pig-iron is not materially affected by it.

Phosphorns occasionally forms between one-fiftieth and onesixtieth part of the weight of cast-iron, but about one-hundredth part is a more common proportion of phosphorus. It exists in combination with a portion of the metal as phosplide of iron, and is derived either from phosphate of iron contained in the ore, or from phosphate of lime, which is frequently presint in the limestone employed as a flux, and in minute quantity in the coal. These phosphates contain phosphorus in a state of combination with oxygen, which is abstracted by the carbon of the fuel in the blast-furnace, and the phosphorus thus set free enters into combination with the iron. So completely is the phosphorus taken up by the metal, that only traces of that element in the form of phosphates are usually found in the slag from the blast-furnace.

The effects of phosphorus are to harden cast-iron, decrease its strength, and increase its fusibility. Iron made from ores containing much phosphorus is always cold-short, or incapable of being wrought cold under the hammer without breaking.
65. Sulpiur, though almost invariably contained in castiron, rarely forms as much as one-fiftieth of its weight. It is chiely derived from ironpypites, which is the yellor substance, of metallic appearance, so common in lumps of coal, and may be found in rusty globular masses on the sca-beach.

It is composed of iron combined with sulphur in nearly equal proportions, and since crystals of ironpyrites are foumd ii many iron ores, it is the chief source of the sulphur, which is the most objectionable impurity in iron.

The most prejudicial form in which sulphur can exist in the blast-furnace is when it occurs as sulphide of iron; it has no prejudicial effect when it exists as sulphide of calcium.

Large quantities of sulphur may be present as a sulphate of an alkaline earth without having any effect on the quality of the iron produced.

The white varieties of cast-iron contain a larger proportion of sulphur than the gray, and it will make gray iron white. It is thought that slightly different amounts of it may modify the
pig-iron, and produce the difference we find in it, for practically there is a rery great difference in the working of the different grades of iron, when chemically speaking there may be no difference apparent.

The percentage of sulphur usually increases as the quality of the pig decreases, and its presence tends to red-shortness in bar-iron, rendering it incapable of being worked at a red heat under the hammer. This element also imparts to crude iron the property of becoming viscid and of solidifying quickly with cavities ąnd air-bubbles.

Iron may he both red-short and cold-short at the same time. Such iron is the worst possible iron, and is made from ores containing a ligh percentage of sulphur and phosphorus.

Section III.- Wrought-Iron.

66. Wrougit or Malleable Iron.*--This is the nearest approach to the chemically pure metal that can be obtained on the large scale, and may lie almost absolntely free from carbon. It never contains more than one-fourth per cent.
67. It is a soit, malleable, and extremely tenacious substance, infusible except at extreme temperatures obtainable in furuaces of special construction, but capable of being agglomerated by pressure, when at a white heat, to a compact state by the process of welding.
68. How Produced.-It may be produced either directly from the ore, or by the conversion of pig-iron.

Varieties.-The varieties of inalleable iron are distinguished by many different names, but they have reference rather to form and destination than to difference of composition.
69. Conversion of Crude into Malleable Iron.-This is effected by one or more operations, which are necessarily of an oxydizing nature, the object being to eliminate from the castiron the carbon in the form of carbonic oxide gas, and the silicon, sulphur, phosphorus, and other foreign bodies in the form of oxydized products which pass either partially or wholly into slag or cinders.
70. Various Processes.-The numerous processes employed in the production of malleable from cast-iron are divisible into two classes, according to the nature of the furnaces employed.

First. The open-fire, or hearth-furnaces, where the pig-iron

[^5]is melted and decarbonized in a shallow hearth before the blast of an inclined twyer.

Secondly. The puddling-furnaces, where the same operation is performed on the bed of a reverberatory furnace.
71. Chemical Reactions.-The reactions going on during the process are similar in either case.

The carbon, if it exist originally as graphite, first passes into the combined state, and is then converted into carbonic oxide either by the oxygen of the blast directly, or indirectly by the oxide of iron dissolved in the slag.

Oxydizing agents for the indirect conversion may be derired from the pig-iron under treatment, which is always oxydizel to a certain extent under the influence of the blast during the melting, or they may be added in the form of ore, forge-scales, or slagz.

According to the relative importance of the parts played by these agents, the process is divided into dry and wet puddling, the former being dependent mainly on the exposure pf the metal to the action of the air, while in the latter, which is more generally known as the pig-boiting process, the slag and oxide of iron added are the most important oxydizing agents.

The removal of the foreign matter in combination with the iron takes place in the following order:-first, silicon, then manganese, then phosphorus, and lastly sulphur, the latter element being most difficult of remoral.

In the treatment of gray pig-iron, the graphitic carbon is transformed into the combined condition after the remoral of the silicon during the melting of the charge.
72. Kind of Iron most suitable for Contersiox.-White cast-iron is more suitable for conversion into malleable iron than gray, as in it the whole of the carbon in combined with the iron, and it does not, when raised to a high temperature, pass immediately from the solid to the liquid state, but assumes, when near its melting point, an intermediate or pasty condition farorable to the more effectual action of the air or other agents emploged in the removal of the combined carbon. Gray metal, on the other hand, though requiring a ligher temperature for fusion, becomes very liquid, and in a deep hearth sinks below the level of the blast, and, becoming covered witl a coating of slag, is completely protected against the action of the air, unless it is brought under the influence of the blast by stirring or lifting with an iron bar, an operation which involves great labor and delay, as well as an increased expenditure of fuel and waste of iron.

No sensible amount of decarburation takes phace until the whole of the graphitic carbon has entered into combination with
the iron, or, what amounts to the same thing, until the metal lias passed from the gray to the white state; and this conversion is an essential preliminary in all refining processes where the air is introduced above the surface of the melted metal.
73. Refinivg.-Gray pig-iron is often subjected, as a first step in the process of making malleable iron, to a preliminary decarburation in the oxydizing blast-hearth, or refinery; this process is called refining.
74. Tie Puddlivg Furnace is of the reverberatory form, one in which the flame is made to pass over a bridge and then beat down again or reverberate upon a hearth or surface on which the materials to be heated are placed.

It consists of an oblong casing of iron plates (Fig. 6), firmly bound together by iron tie-bars, and lined with fire-brick.

The direplace, F , is separated from the hearth, A , by a firebridge over which the heated products of combustion with a surplus of oxygen play upon the surface of the molten metal, effecting its conversion, and thence pass through the flue to a

Fig. 6.-Puddling Furnace.
lofty chimney, C , in which is suspended a metal damper-plate, by which the draught can be regulated.

The Fireplace varies in depth with the nature of the fuel employed, being greatest with the hard kinds of coal.

The fire-grate is made of plain wrought-iron bars. A forced draught, produced by blowing air in below the grate, is sometimes used. The surface of the grate should be between onehalf and one-third of that of the bed or hearth.

The charging or fire hole is about a foot above the grate.
The hearth.- The bottom of the bed is formed of cast-iron hearth-plates resting upon cast-iron beams.

The hearth is covered with cinders or sand, and is terminated at either end by a straight wall or bridge, called respectively the fire-bridge and the flue-bridge.

The Filue.-The roof of the furnace is curved to a flat arch, and is generally made to slope at a small angle towards the flue, which slopes towards the stack.

The sectional area of the flue varies with the nature of the fuel, being larger for soft coal.

The main working-door, D, is made of brick set in a cast-iron frame; it may be readily lifted and lowered by means of a lever. It is only opened during the introduction of the charge and the removal of the puddled balls. The sill of the door is about a foot above the level of the bed. There is sometimes a second work-ing-door near the flue for introducing the cast-iron, so that it may soften slowly till it be ready for drawing towards the bridge.

The Stopper-hole-A small rectangular or arched notch, called the stopper-hole, is cut out of the lower edge of the door for the introduction of the tool used in stirring the metal, and through which the workman can observe the state of the furnace. It may be closed air-tight.

The Tap-hote, through which the slag, or tap-cinder, is withdrawn from the hearth, is placed below the door-sill. It is plugged up with sand. A portion of the cinder also orerflows the flue-bridge, and runs down the inclined surface of the flue to the bottom of the stack, h.
75. Process of Pudding.-Although the process of puddling is susceptible of considerable modification according to the nature of the pig-metal employed and that of the iron which it is desired to produce, it may be generally stated to include the following operations:

1st. Melting down of the charge with or without the previous heating.

2d. Incorporation of oxydizing fluxes with the charge at a low heat.

3d. Elimination of carbon by stirring the contents of the furnace at a high temperature.

4th. Consolidation of the reduced iron to masses or balls fit for hammering.
76. Cinarging tie Furnace.-Pieces of metal are successively introduced with a long shovel, and laid one over another on the sides of the hearth in the form of piles rising to the roof, the middle being left open for puddling the metal as it is successively fused. The piles are kept separate to give free circulation of air round the metal. The working-door of the furnace is now closed, fuel is laid on the grate, and the mouth of the fireplace is filled up with coal; at the same time the damper is entirely opened.

In puddling refined metal, or in dry puddling, the furnace is charged with metal alone, but in puddling gray metal, that is, in wet puddling, or boiling, as it is termed, forge-cinder is charged along with the metal, and the temperature rises much higher.
77. Puddling-tools.-The tools employed are principally of two kinds, namely, long, straight, chisel-edged bars, or paddles, and hooked bars with similar flat ends, called rabbles. The number of tools used in the working of one charge depends on the quality of the iron, and may vary from four to eight, according to the amount of work required. When withdrawn fiom the furnace, the points are coated with molten cinder, which is removed by quenching the bar in a cistern of cold water.
78. In order to lessen the great amount of labor involved in working the charge, various mechanical appliances have been proposed in substitution for manual puddling, but these as yet have not been adopted to any great extent. They may be generally classified under two heads, namely, those imitating the motions of land-stirring, and those using rotating or oscillating hearths.

Dank's rotatory puddling-furnace is the most successful of these, and is being introduced quite extensively. It produces a better quality of iron with much less labor, and in less time than is possible by hand-puddling.
79. Manipulation of tue Molten Iron.- When the metal begins to soften, the workman or puddler introduces the rabble through the stopper-hole for the purpose of working the metal. The amount of handling required in this part of the process depends upon the nature of the iron operated upon.
80. White or Refined Iron.-When this is used it requires a continuous operation, which calls for much care and skill on the part of the workman. The pieces of metal that begin to melt are detached from the piles with the rabble, and new surfaces opposed to the action of the heat; as it softens it is removed from the vicinity of the fire-bridge, to prevent the metal from running together.

When the whole of the metal is reduced to a pasty condition,
the temperature of the furnace is lowered to prevent its becoming more fluid. The puddler now works about with his rabble the clotty metal, which swells up exhibiting a kind of fermentation, occasioned by the discharge of carbonic oxide, burning with a blue flame as if the bath were on fire. The metal becomes finer by degrees and less fusible, or, in the language of the workman, it begins to dry. The disengagement of carbonic oxide diminishes and soon stops. The workman continues meanwhile to puddle the metal till the whole charge is reduced to the state of incoherent sand; the damper is then progressively opened. With the return of heat the particles of metal begin to agglatinate, the charge becomes more difficult to raise, or, in the language of the workman, it works heavy.

The refining is now finished, and nothing remains but to gather the iron into balls.
81. Gray Pig-iron.-With this variety of iron, which requires a higher temperature for fusion, but which runs very liquid, the fragments may be melted down without being moved, if the furnace is sufficiently hot.

Oxydizing agents are charged with the iron. In order to bring about the reaction of the slag upon the melted metal it is necessary to incorporate the whole contents of the furnace well together after melting. For this purpose the temperature is lowered by checking the draught or eren throwing water upon the metal, the charge being stirred at the same time.

The slag is also reduced to a more basic condition by the addition of scale, or mill-cinder, to compensate for the silica produced from the oxydation of silicon in the pig.

When the mixture is complete and the mass somewhat stiffened, the reaction of the oxide and silicate of iron upon the combined carbon is apparent by the escape of blue flames of carbonic oxide, and as the temperature is increaset by opening the damper the whole surface commences to boil, from the rapid escape of gas, and at the same time a portion of the molten slag. flows out. The action is facilitated by constant stirring with the rabble.

As the carbon diminishes the ebullition becomes less riolent, and the bath from its reduced fusibility in spite of the high temperature begins to stiffen, and malleable iron separates, or, as it is called, comes to nature.

At this point of the process the whole contents of the furnace require to be well stirred and broken up, so that every part may be brought under the influence of the high temperature. The reduced mass is subject to a final heat in order to facilitate the separation of the cinder by rendering it perfectly fluid.
82. Tife Puddle Bills.-The last operation consists in forming up the balls, which is done by detaching from the reduced iron masses from sixty to eighly pounds weight each, and pressing them together with the tool until they are sufficiently coherent to be moved without failing to pieces. This may be done either by pressing against the bottom and sides of the furnace, or by a rolling inotion, the iron being gathered up around a small nucleus like a snow-ball.

As soon as a ball is made, it is placed close against the firebridge to keep it hot and out of the draught of air between the working-door and the flue; the second is proceeded with until the whole of the charge has been balled up; the stopper-hole is then closed, and the final heat is given to facilitate the operation of shingling.

The removal of the balls, which are of a roughly spherical furm, after they are drawn to the working-door with the tool, is effected by mems of a long pair of tongs with curved jaws. They are first lifted to the iron table in front of the workingdoor, and afterwards either tragged along the floor or carried on a wrought-iron truck to the hainmer, or such other machine as may be employed for shingling.
83. Siungling, or Blooming, is the process of converting the puddle balls into malleable stuff by hammering or compressing.

A Bloom is a rough lump or bar of wrought-iron which results from the shingling process.
84. Shingling Machines.-The machines used in the compression and welding of the rough balls of malleable iron into blooms are of two different kinds, namely, hammers and squeezers, the former acting by percussion, and the latter by compression. In addition to these, it is usual to reduce the blooms so obtained to short rough bars by passing them at the same heat through a rolling-mill.
85. Tue Farisied Bar.-The rough bars, or slabs, of malleable iron obtained in the process of puddling and shingling, require to be subjected to other treatment in order to produce finished, or merchant iron.

For this purpose they are cut into short lengths, which are made into nearly cubical packets or piles and subjected to a further consolidation by hammering and rolling, at a weldingheat, until a bar with a uniformly smooth surface, free from Hlaws or cracks, is obtained.

S6. Rolling-mills.--These are used in the production of finished iron from the blooms. In its simplest form a rollingmill consists of two cast-iron cylinders placed with their axes
horizontally one above the other, and connected by spur-gearing, so as to revolve at the same velocity. (Fig. 7.)

The surface of the rolls may be either smooth, as is the case in the plate-mills, or ${ }^{\circ}$

Fig. 7. grooved into rarious patterns, as in those used for the production of merchant bars. (Fig. 7.)

The reduction in the size of the bloom is effectel by regulating the rertical distance between the two rolls, by the use of groores diminishing regularly in size, or by a combination of both methods.
As the direction of rotation of the rolls is constant under ordinary circumstances, it is necessary after the bar has passed through one groove, to return it by lifting it orer the top roll, in order to bring it in position to pass through the next smaller one, and so on in succession. 'This may be easily done with blooms of small size, but it is attended with considerable difficulty when it is required to handle large masses of iron, and in any case gives rise to a certain loss of time and consequent waste of iron by scaling, from exposure to the atmosphere in a highly heated condition for a longer time than is absolutely required.

Very heavy mills, such as are used for armorr-plates, require to be reversed at each passage of the pile, the distance between the rolls being diminished each time.
87. Reheating.-The operation of reheating may be performed in several different ways. The plan most generally adopted is in a reverberatory fmrnace known as the mill-fumace, not unlike in external appearance to that used in puddling. The bed is inade of fire-brick covered with a thick coating of sand. On it the piles are placed, and brought rapidly up to a welding-heat, for rolling.

When the dimensions of the pile are such as to require sereral passages through the rolling-mill, in order to reduce it to the proper section, it is often necessary to subject it to a second heating.

In this process loss by oxydation consequent mpon unnecessary exposure must be prevented as much as possible. Oxide
of iron in the form of scales forms very rapidly when a heated bar is exposed to the air.

Those produced in the rolling-mill are called mill, or forge, cinders, and are much used in puddling by the wet way, or pigboiling.
88. Piling.-The amount of work put into bar-iron varies with the quality. For the common kinds, puddled bars, or No. 1 iron, cut into lengths, are piled, and when brought to a weld-ing-heat, are rolled off, either with or without first being worked into a bloom under the hammer. More usually, however, the iron of second-rolling, or No. 2, is employed at the top and bottom plates of the piles when making finished No. 3, or best iron. Beyond this, if further piled and wolded, the
 iron is distinguished as Fra. 8.-Sections of piles for finished iron. best-best and treble-best, according to the number of heatings and weldings to which it las been subjected. (Fig. 8.)

The harder and more granular kinds of iron are worked almost exclusively under the hammer, the rolling-mill being only used in giving the proper figure to the bar at the finishing stage.

The piles for the heavier classes of plates are built up of layer's of bars, placed alternately across each other, instead of having their longer sides parallel, as in the case of ordinary bariron, and the covering slabs, or top and bottom plates, are flat bars of greater width than the intermediate layers.
89. Eicamples of Piling.-The following examples, from Bauerman, give the details of manipulation in rolling bars.

For bars of one inch square the pile was made up of six bars, each three-quarters of an inch thick, and four inches wide. When at a proper welding-heat it was passed eleren times through the rolls.

The loss on the weight of the pile was about fifteen per cent., caused by oxydation, and in crop-ends and waste in rolling.

Crop-ends.-The waste material, or scraps, produced by shearing in finishing bar-iron is called crop-ends. They are reworked or utilized in many ways.

For boiler-plates measuring six feet long by three feet broad and three-sixteenths inch tlick, the pile was made twenty inches long, six to seven inches high, and twelve inches broad.

The whole of the work was done at one lieat, the pile reduced to a roughly squared bloom by passing leugthways
throngh three grooves in the blooming-rolls, then four times through the plate-roughing rolls, in the direction of the breadth, which draws it into a thick squared plate, and finally three times lengthways through the finishing-rolls.

The difference in weight between the finished plate and the rough bars taken for the pile is about twenty per cent., which includes the waste in reheating and scraps produced in shearing the edges to the proper size.
90. Rolled Armor-plates are put together as follows: The balls from the puddling-fnrnace are shingled, and rolled to slabs about twelve inches broad, thirty inches long, and one inch thick. Five or six of these slabs are in a second heat rolled to a slab about four feet square. At the third piling five or six slabs of the second heat are welded and rolled into a plate about eight feet long, four and one-half feet broad, and two and onehalf inches thick, weighing rather more than 30 cwt., and made up of between twenty-five and thirty-six original inch-slabs of No. 1 iron.

For the finished plates of four and one-half or fire and onehalf inches in thickness four of the large 30 cwt . plates are piled together and reheated.

The door of the furnace is placed parallel to the axis of the rolling-mill, and the pile, when sufficiently heated, is drawn forward with tongs, and received on a truck which runs upon a railway directly to the rolls. A similar truck is placed on the opposite side of the mill, their surfaces being supplied with fric-tion-rollers, so that the pile may be easily pushed between the rolls, through which it is passed forwards and backwards, by reversing the rolls, until it is reduced to the proper thickness.

It will be seen that the finished plate consists of between 100 and $1+4$ slabs, compressed to about one-twentieth or onethirtieth of their original thickness.
91. Peculiarities.-By the processes described, the cast-iron has been converted from a fusible, hard, and brittle substance into a tough and elastic bar. It has been rendered malleable, which is the property of extending or spreading munder the hammer without cracking ; ductile, a property similar to malleability, whereby it may be drawi out into wire without breaking, and its tenacity las been increased, a property which enables it to sustain a very great pressmre or force without crushing or breaking.

In a cold state it is hard and stubborn, but at a red heat it is soft and pliable, and, at a white or sparkling heat it mar be welded to itself or to steel, which is one of its greatest adrantages.
92. The great improvement in the strength of malleable iron by the processes of fagoting and rolling has been more satisfactorily established by experience than explained by theory.* One obvious effest of the violent compression between the rollers is the squeezing out of slag, which is liable to become entangled in the iron during hammering and rolling of the balls taken from the puddling-furnace. The occurrence of small masses of slag in malleable iron is not an uncommon cause of weakness, each particle of slag giving rise to a flaw in the metal. In the process of reheating the bars this slag is melted, and may then be squeezed out by the action of the rollers.

A marked diminution in the proportions of carbon and silicon present in the iron is also effected during the process, as shown by the following results of chemical analysis:

| In 100 parts. | Carbon. | Silicon. |
| :--- | :--- | :---: | :---: |
| Puddled bar. | 0.296 | 0.120 |
| Best bar. | 0.111 | 0.058 |

This may be explained by the action of the oxide of iron formed upon the surface of the bar during exposure to air at a welding-heat.

The rolling of several bars into a single bar would render the structure of the metal uniform, so that the bar would be equally strong throughout.

During the operation of fagoting and rolling the iron acquires a remarkable fibrous structure, so that if a bar of the best iron be notched with a chisel, and broken across by a steady pressure, the fracture will present a stringy appearance, resenubling that of a green stick; whilst a puddled bar thus treated would exhibit a crystalline, slining fracture, not unlike that of cast-iron. That this nerve, or reed, as the fibrous structure is sometimes called, should materially increase the resistance of a bar to any transverse strain, can readily be believed, for such a bar resembles a bundle of wires firmly bound together, whilst a crystalline bar must be regarded as composed of a number of particles of iron stuck together in a confused mamer.
93. But with our present imperfect acquaintance with the mutual relations and movements of the individual particles composing a solid mass, it is not easy to give a satisfactory explanation of the production of the fibrous structure by rolling, the softened bars in the direction of their length.

Much less can we explain the circumstance, which appears

[^6]to have been satisfactorily established, that this fibrous structure is liable to reconversion into the crystalline structure if the iron be subjected to a long succession of powerful vibrations.

The deterioration in the strength of bar-iron by often repeated forging under the hammer is commonly explained as resulting from this change in structure, and axles, girders, etc., originally made of fibrous iron, are said to lave snapped unexpectedly, exhibiting a crystalline structure. Hence, in cases where the iron is to be exposed to much vibration, a finegrained wrought-iron, richer in carbon, is preferred to a fibrous iron.
94. In drawing any inference as to the quality of wroughtiron from the character of its fracture, it is most important that the mode of breaking it should be taken into account, for it is found that a bar or plate which exhibits a fine fibrous structure, when broken by bending, appears crystalline when suddenly snapped, or when broken by a blow from a shot; and it is probable that a want of attention to this has given rise to many of the contradictory statements with respect to alterations in the structure of wrought-iron under various conditions.
95. Variation in Qualitx.--Forged, or wrought-iron, like cast-iron, varies greatly in quality according to purity and treatment in its manufacture.

It may be divided generally into four different kinds.
First. Iron which is tough and malleable at all temperatures. This is the best and most useful, as it may be bent in any direction without breaking, both when it is lot and when it is cold.

It may be known generally by the equable surface of the forged bar, which is free from cross fissures, or cracks, in the edges, and by a clear, white, small grain, or rather fibrous texture. The best and toughest iron is that which has the best welding properties, and which bears the highest heat without injury, and which has most fibrous texture, and is of a clear grayish color.

Second. The next best iron is that which has a texture consisting of clear whitish small grains intermixed with fibres. It is tough and malleable at all temperatures, bears a moderately high degree of heat without injury, and has good welding properties.

Third. Another kind of iron is tough when leated, but brittle when it is cold, so brittle that it will sometimes break with a single blow of the hammer, or by a sudden jerk, which makes it montit for several kinds of work where life and property are dependent upon it; but for some kinds of work that are to be
exposed to the weather it is very useful, as it will resist the action of the atmosphere better than the other kinds. It may generally be distinguished by a texture consisting of large shining plates, without any fibres, and is called cold-short iron.

Fourth. Hot-short, or red-short, iron. This is extremely brittle when hot, and malleable when cold. It will not bear bending without breaking, or piercing withont splitting, and it is never used for superior kinds of work.

But owing to its being much cheaper than the superior kinds, and being very tough and ductile in its cold state, for many purposes it is a very useful iron.

On the surface and edges of the bars of this kind of iron cracks or fissures may be seen, and its internal appearance is earthy, dull, and dark.

96 . Welding is that operation by which pieces of iron, or steel, or steel and iron, are heated nearly to a state of fusion, and appearing to be covered with a strong glaze, or varnish, are brought together, and united by repeated blows of the hammer, or under pressure, and the union not to be perceived.

The leat required for welding iron varies in some degree with the purity of the iron. Pure fibrous iron will bear almost any degree of heat without much injury, if not too long exposed to the heat, while impure iron bears but a moderate degree of heat without being melted or burnt.
97. Porter-bar. When a mass is too large to be handled conveniently with the tongs, a large iron rod is welded to it, to serve as a porter, or guide-rod. Sometimes a part of the porterbar is made to form the core of the forging, and the slabs of iron which form the forging are welded and built upon the bar. When the mass of iron is too large to be handled by the forge-man, it is supported by a crane, which serves to swing it from the fire to the hammer.
98. Upsetting.-When it is required to thicken any part of a bar of iron without welding, it is done by the operation called "upsetting." This consists in giving it the welding-heat at the part to be thickened, and while one end rests upon the anvil hammering at the other till the required size is produced. When the bar is large, if it be lifted and jumped upon the anvil its own weight will supply the required force for upsetting. When it is required to weld two bars of iron together the ends are first upset, or made thicker.
99. Scarfing.-Each end is then bevelled off to a thin edge, called scarfing; the two ends are then placed in the fire, and raised to a welding-heat, or nearly to a state of fusion ; care is required that both arrive at the proper heat at the same time.

The bars may in part be prevented from wasting by taking care to supply them at the heated part with powdered glass or sand just before they arrive at the welding-heat. The sand or other material melts on the surface of the iron, and serves to form a flux, or fluid glass, which protects the iron from the impurities of the fuel, and defends it from the air, at the same time uniting with and removing the oxide which may have been formed on the heated scarfs.

When the bars have obtained the welding-heat they are removed from the fire with the utmost dispatch, and struck across the anvil to remove as far as possible all seales and dirt which would hinder their uniting; they are then placed in contact at the heated part and hammered, the superfluous cinler is squeezed out as the clear parts are brought togethee, and the hammering continued until no visible seam or fissure remains.
100. In welding large pieces the process is more difficult. Several minutes must sometimes elapse before the parts can be brought together; meanwhile thick scales are forming on the exposed heated surfaces.

The rapidity with which iron at a welding-heat becomes oxydized is strikingly illustrated in the operation of "patting" the Armstrong tubes after they are welded end to end. (Jrt. 654.$)$

The scales that form on the inside of the tube are jarred off at every stroke of the hammer upon the outside, thus exposing fresh surfaces to oxydation. At the end of the process the scales form a pile in the tube several inches in depth.

> Section IT.-Steel.
101. Peculiartites.-Those varieties of iron in which the amount of carbon is above the maximum of malleable and below the minimum of cast-metal, are known as steel. The distinguishing property of this class of products is the capability of being hardened or softened at pleasure by sudden or slow cooling by the process known as tempering.

Being intermediate in position between wronght and castiron, steel is both fusible and malleable, but requires a higher temperature for fusion than cast-iron, and greater compressing power, owing to its lower welding temperature, than malleable iron.
102. Steel is a combination, or alloy, of iron that will forge, harden, and temper.

There are various kinds of steel, such as Carbon Cast-steel,

Tungstein Cast-steel, Chrome Cast-steel, Cyanogen Cast-steel, and Titanium C'ast-steel; and several other metals have been alloyed with Iron to make Steel.

There is also Blistered Sieel, which is made from malleable bar-iron, by a process called Cementation ; German Steel, which is made direstly from the ore, and sometimes from Pig-iron, in the Catalan forge; and steel which is made by other processes.
103. The line between Cast-iron and Steel is: when it is capable of being forged, it is Steel; and when it will not forge, it is Cast-iron. And the line betrreen Malleable Iron and Steel is: when it will harden and temper, it is Steel ; and when it will not harden and temper, it is Malleable Iron.

Cast-steel will harden slightly when it contains from 0.25 per cent. to 0.30 per cent. of carbon, and ceases to be capable of forging if it contains much more that 1.75 per cent. of carbon.

10t. High and Low Steel.-Those varieties that are the richest in carbon are the hardest and most fusible, and are known as high steels, or strong steels, while those that are nearer malleable iron in composition are distinguished as low steels, or mild s'eels, or homogeneous metals.
105. How Obtanved.--Steel may be obtained by a variety of processes, of greater or less complexity, from either cast or wrought-iron. These processes are directly opposed to each other.

First, by working pig-iron which contains too much carbon, in a suitable furnace until such carbon is reduced to that quantity required to constitute steel ; or, second, by heating bar-iron, in contact with charcoal, until it has absorbed that quantity of carbon which may be necessary.

The progress made within the past few years in the mannfacture of steel, has been such as to indicate that in a rery short time it may be produced as cheaply, if not cheaper, than wrought-iron is at present. In fact, steel is already taking the place of iron, for various industrial purposez, to a very great extent; and inventions of new processes and apparatus for its manufacture, and improrements in those already in use, have become so common as to attract but little attention.
106. Classification.--Steel may be classed into three kinds:

First. Natural Steel, whish is manufactured from pig-iron direct.

Second. Cemented Steel, or converted steel, which is produced by the carbonization of wrought-iron.

Third. Cast-steel, which is produced by the fusion of either natural or converted steel.
107. Pudded Steel.-This is a natural steel, made in the puddling-furnace by a modification of the puddling process.

The process of making puddled steel may be described in a general way as follows: Cast-iron contains from threa to five per cent. of carbon; ordinary sieel contains from three-fourths to one per cent. of carbon; while wrought-iron contains but a trace. In changing from cast to wrought-iron in a puddlingfurnace, the pig-metal passes through the state of steel, that is to say, it is steal beiore it is wrought-iron. Now making puddled steel is simply stopping the common puddling process, just at the moment when the decarbonizing mass under treatment is in the state of steel.

Several modifications in furnaces and processes hare been patented, and various fluxes, especially manganese, are differently used, by different manufacturers.
108. Cemented Stell.-The production of steel by cementation consists essentially in the exposure of bars of malleable iron, in close contact with charcoal, to a high and long-continued heat, the air being excluded.
109. Converting-furnace.-The furmace in which iron is cemented and converted into steel, is called a Converting-fur-

Fig. 9.-Cementation Furnace for converting Bar-iron into Steel.
nace. (Fig. 9.) It has the form of a large oren, constructed so as to form in the interior of the oren tro large and long cases, commonly called pots, and built of good fire-brick.
110. Packing the Pots.-Into each of these pots larers of the purest malleable-iron bars and layers of portdered chareoal are packed horizontally, one upon the other, to a proper height and quantity, according to the size of the pots, learing room every way for the expansion of the metal when it becomes heated. The bars are cut to certain lengths, according to the lengths of the pots.

Three or four of the bars are placed in such a manner that they can be drawn out at any period of the process, through a small hole in the end of the pot, and examined. After the packing of the pots is completed, the tops are corered with a bed of sand or clay, to confine the carbon and exclude the air.
111. Process of Cementation.--All the open spaces of the furnace are thén closel, and the fire kindled ; the flame passes betwean, under, and around these pots on every side, and the mhole is raised to a considerable intensity of heat. This heat is kept up for eight or ten days, according to the degree of hardness required, the hardest quality for melting purposes requiring the longest time.

The progress of the conversion is determined by the appearance of the trial bar ; the first is taken out after about a week's firing. When there is no longer an unaltered kernel of soft iron apparent in the centre, the conversion is considered to be complete, the fire is allowed to go down, the furnace is left to cool, and the cemented bars are then after several days withdrawn.
112. The physical propertics of the iron are considerably modified by consersion: the color of the fractured surface changes from the original bluish tinge of mallaable iron to a somerhat reddish-white, and the lustre is considerably diminished ; the texture, which was originally fibrous, has become granular, and is in all cases scaly-crystalline.

The finer the grain, and the darker the color, as a general rule, the more highly carbonized, or harder, will be the steel produced ; at the same time both specific gravity and tenacity are reduced.
113. Blister-steel.-A more decided peculiarity of the converted bars is the blistering of the external surface, whence the term blister-steel is derived. When the blisters are small and tolerably regularly distributed, the steel is of good quality; but when large, and only occurring along particular lines, they may be considered as indicative of defective composition or want of lomogeniety in the iron employed.

Blister-steel bars are generally subjected to one or more reheatings in packets, or fagots, and weldings by hammering or rolling, whereby the texture becomes more uniform, and strength and elasticity are increased, but with a progressive diminution of hardness.
114. Spring-steel, or tilted steel, is produced by heating blistered bars at an orange-red heat, and drawing them down either under the hammer, or by rolling.
115. Shear-steel is a better quality obtained by drawing out the original bars, which are piled together in fagots, and
welded. The product of this operation is known as single shear.

It may be further refined by doubling the bars, and repeating the process of heating and welding, making double shearsteel.

Shear-steel breaks with a finer fracture, is tougher, and capable of receiving a finer and firmer edge and a higher polish than blistered or spring-steel.
116. Cast-steel.-The best and most uniform quality of steel can only be obtained by fusion.

That obtained by cementation is, as a rule, very unequal in quality; and uniformity can only be attained by repeated fagoting and welding, steps which are necessarily attended with a loss of carbon and consequent reduction of hardness.

The requisite uniformity of composition may, howerer, be obtained by breaking up the crude bars produced in the force or by cementation, and exposing them to a strong lieat in crucibles out of contact with the air. The product, when melted, is poured out into cast-iron molds forming ingots of cast-stecl, which are much more regular in composition and texture than the original material.
117. Process of Manufacture.-Crucibles of the most refractory fire-clay, mixed with plumbago, varying in capacity

Fig. 10. - Furnace and Pot for melting Steel. g, Grate. c, Crucible. b, Cover of Furnace. a, Chimney. from thirty to fifty and a hundred pounds, or more, in treight. are charged with fragments of blister or shear-steel, and placed in furnaces. (Fig. 10.) The furnaces are furnished with covers, l, and a chimner, a, to increase the draught of air, and the crncibles, c, are furnished with lids of clay to exclude the air. The furnaces containing the crucibles are filled with fuel; and for the perfect fusion of the steel the most intense heat is liept up for two or three hours. When the steel is thoroughly melted the crucibles are remored. either by hand or machinerr, and their contents poured, in the liquid state, into ingot-moulds of the slape and size required.
118. Steel Lvgots.-Although steel may be cast into ingots, it is too imperfectly fluid to be cast into very small articles.

When the crncibles are emptied, if sound, they are returned to the furnace again and charged. The ingots of steel are taken to the forge or rolling-mill, and prepared by hammering or rolling into slape in the same manner as other steel, but with less heat and with more precantion.

The great secret of the manufacture is in tine selection and misture of irons, and in the pouring of sound ingots.

Large castings are made by emptying a sufficient number of large crucibles into an immense ladle placed over the mould; the ladle is then tapped from the bottom.

Great skill in melting and pouring the metal, and particularly in heating and forging such great masses, without burning them on the outside, or failing to condense them to the core, is of obvious importance.
119. Steel, like iron, is improved by hammering and rolling; consequently when a large east-steel block is required of great tenacity for a particular purpose, the metal is not run into a mold of the shape and size of the required finished dimensions, but it is east into a short, thiek ingot, and then hammered and drawn to the required finished dimensions, or it is rolled to tho required shape between the rollers.

The drawing down of a heary ingot requires: First, a uniform heat throughout t.le mass ; and to soften the ceatre of sach a casting without burning the outside requires a moderate and steady temperature maintained for several days. Second. The effect of the hammer must be felt at the centre of the mass, instead of being eonfined to the outside. A light blow would be absorbed in changing the figure of the surface-metal, and in breaking and distorting the grain, while a great weight falling from a moderate height wonld be resisted by the whole mass oi the forging, and thus felt at its centre.

The heaviest hammers, however, are found to p:oduce too much local and exterior, and too little distributed and interior, compression upon large masses of steel; therefore hydraulis prossures are much used for drawing and shaping large ingots.
120. Bessemer Process.-This is one of the simplest methods of producing east-steel in large quantities. It combines the action of the puddling and ordinary steel-melting furnace into one operation. The essence of the process consists in injecting large quantities of air into a bath of molten cast-iron through a large number of small orifices situated in the bottom of the converting-vessel in order that the combustion of the carbon, and other matters in combination, may take place rapidly and uniformly.

By this means a very high temperature is developed in the
converting-vessel, the heat being sufficient to melt the decarbonized malleable iron instead of producing it in a pasty, weldable condition, as is the case in the puddling-furnace.

Fig. 11.-Bessemer's process. A, Conrerting-ressel. B*, Hood for cantring the carbonic oxide gas into the chimney, B. C, Crane for swinging the ladle under the converter.

This great increase of temperature is obrionsly due to the rapidity of combustion owing to the intimate contact of the air with the molten metal, instead of being merely in contact with its surface as in puddling.
121. To Produce Bessener Steel.-Steel may be produced by this process by interrupting the blowing after partial decarbonization of the charge, the proper moment for stopping the operation being determined by the time employed and the appearance of the flame issuing from the mouth of the conrert-ing-vessel ; or the metal may be completely decarbonized, and then brought back to the composition of steel by the addition of highly carbonized melted pig-iron, in sufficient quantity to restore the necessary amount of carbon.
122. Tie Converter, or furnace, consists of an egg or pear shaped ressel suspended upon trunnions, and provided with appropriate moving mechanism, whereby it may be rotated vertically through an angle of about 150°. The outer casing, or shell, is made of wrought-iron plates riveted together, the interior lining of the most refractory material obtainable.

The Trunnions.-The suspension is effected by means of a stout hoop of wrought-iron slirunk on to the body of the con-
verter, and carrying two trunnions, which run in bearings supported by cast-iron standards.

One of these trunnions is solid, while the other is hollow, forming a passage for the blast. (Fig. 12.)

The Twyer-box.-
The botton of the converter is flat, and contains the twyerbox, E, which is a cylindrical chamber, connected by a curved pipe with the hollow trunnion.

The Twyers are cylindrical, or slightly tapered, fire-bricks, C, each perforated by seven parallel holes, about half an inch in diameter. Usually five to seren of these bricks are used, which are arranged vertically, and at equal distances apart in the lining of the bottom

Fig. 12.-Bessemer's steel converter.
A. Transverse section through trunnions.
B. Bottom plan.
C. Section of twyer brick. D. Plan of ditto. of the converter, their lower ends communicating with the twyer-box.
123. Charging the Converter.-The charge of pig-iron, which may be of any weight from one to ten tons, or more, according to the size of the vessel, is melted in a reverberatory or other furnace. The converter is turned to a horizontal position (Fig. 11), to receive the charge of molten metal, which is run in through a movable gutter of wrought-iron lined with sand.
124. The Blast.-After the converter is charged the blast must be admitted before it is turned back to the vertical position, otherwise the molten metal would run down through the twyers.

A pressure of from five to six pounds per square inch is required to overcome the hydraulic head of the liquid column of inetal, and from nine to fourteen pounds more to force the air through at the proper velocity, or from fifteen to twenty pounds per square inch total pressure.

After the blast is turned on the converter is slowly brought back to the vertical position.
125. Process of Conversion.-During this period, lasting from four to six minutes, the action going on is similar to that in the refinery in the first stage of puddling--the conversion of graphite into combined carbon, and the oxydation of silicon witl the formation of a silicate of iron and manganese.

In the second or boiling period, when the oxygen of the blast begins to attack the carbon, the action becones very violent, and the flame increases in brilliancy. This lasts for about six or eight minutes longer.

In some' establishments the process is stopped here, the required decarbonization being determined by the time of its duration, and by the color of the flames; but a far more exact method of ascertaining when the requisite amount of carbon has been removed, consists in viewing the flame through the spectroscope, which enables the observer to detect a certain line in the spectrum or image of the flame, the disappearance of which marlss, to within a few seconds, the conclusion of the process. In others it is continued until from the sudden dropping of the flame, the iron is known to be quite decarbonized. When the converter is turned back to the horizontal position, and the proper quantity of molten pio-iron of known quality is run in.
126. Casting tue Ingots.-The vessel is turned on its trunnions until the fluid steel will run out in to the casting-ladle (Fig. 11), which is attached to the arm of a hydraulic crane, C, so as to be brought readily over the molds.

The ladle is provided with a fire-clay plug at the bottom, the raising of which by means of a suitable lever, allows the fluid steel to descend in a clear vertical stream into the molds.

As soon as the first mold is

Fig. 13. filled the plug-ralve is depressed, and the metal prevented from flowing until the casting-ladle is moved over the next mold. To pour a heary ingot sereral converting ressels are emptied into one mold.

The molds usually employed are made of cast-iron, and arranged in a semicircle on the floor of the casting-pit.
127. IIammering the Ingots.When drawn from the molds the ingots, like those obtained from steel inelted in crucibles, are almar; more or less unsound, and require to be compacted by hammering after reheating. If this is done before the interior has
solidified much fuel is sared, and the core is certain to be thoronghly heatcd.

12s. Another and more recent Form of Converter, suggested by Bessemer, shown in Figs. 13 and 14, has a globular form, and is seven feet in diameter, the air-blast introduced through a single twyer passed through the top of the converter, and made of circular firebricks, D (Fig. 14), strengthened by a stout iron rod passing down the centre, and terminating in a kind of rosette with numerous apertures, through which the air is projected. into the liquid iron.

Fig. 14.-Section of Bessemer's globular Converting-vessel. A, The converter. B, Pulley whecl for tipping the converter, connected by a wire rope with a hydraulic ram. G, Pipe conveying the blast. H, Elbow-pipe with telescopic joint.

When the conversion
is finished the twyer is lifted out by an ingenious hydranlic crane, E , and the converter tipped by the action of a hydraulic ram in order to discharge its contents into the casting-ladle.

In the Bessemer methods, and in others, air passes through iron, thus endowing the latter with the carbon, whose addition makes the difference between iron and steel. A greater or less proportion of this air remains in the substance, and occasions holes and flaws. These, of course, weaken the steel, and make it liable to break up.
129. Whitwortii Metal.-In order to procure a more dense metal than forged steel, Whitworth has resorted to the expedient of compressing the steel while in a liquid state. He has applied a pressure of twenty-five tons to the square inch, but estimates that eight tons are sufficient to expel air-bubbles, and that then, reheating the ingot, the metal may be compressed by hammering, thus producing a resulting metal which may be regarded with certainty as free from air-cells, and as superior to all other steels.
130. Anvenling is a process applied to the manufacture of metals to prevent the particles arranging themselves in that condition which produces a brittle quality.

The texture of a metal depends greatly upon whether it has been gradually or suddenly cooled; and this influences many of
its most important mechanical properties: as, for instance, its hardness or brittleness, or its softness and malleability. The former qualities are given by cooling it rapidly, the latter by cooling it slowly.

When cast-iron has, by too rapid cooling, acquired the qualits of hardness, it may in some degree be taken from it again by heating it a second time and cooling it gradually. This process is called annealing.

Steel is most hardened when it is raised to the highest temperature which it can receive, and then suddenly cooled by being plunged in mercury or an acid, or into a mase of lead; if instead of these sulstances, water or oil be used to cool it, the temper obtained is not so hard.
131. Corresponding to every different degree of heat to which the metal is raised, there is a different hardness, but as these are all different degrees of red heat, which it is very difficult to distinguish from one another, it is customary to make use of a remarkable property by which the metal can be made to lose to any degree, the hardening which it has acquired, by heating it again to an inferior degree and allowing it to cool gradually. This is the process called tempering, communicating in the first place to the steel a hardness above that required, then leating it again orer charcoal and cooling it gradually.

This process is facilitated by certain remarkable changes of color which appear in the steel as it undergoes the second heating. These colors are: straw-color, yellow, purple, red, violetblue, blue, and clear-watery-blue, and they indicate the point at which the second heating should be arrestel to obtain the temper or degree of hardness required for different purposes.
132. 'I'emperivg Steel in Oif.-Oil is used as a bath for toughening large tubes of mild cast-steel, calculated to be used as barrels for heavy built-up-guns, becanse of the high temperature required to convert it to the raporous state, and its imperfect conducting quality, which causes the steel to part with its heat slowly. This slow rate of cooling is nesessary to form a uniform degree of contraction, thus giring the steel a longer time for the re-arrangement of its particles and making the strain more uniform thronghout the mass. Heary masses or thick lumps of highly carbonized steel, whether tempered in oil or water, cannot be lardened without becoming fractured either internally or externally.

The process.-A tube of mild cast-steel is lifted by a porrerful crane and placed in a perpendicular position in an upright furnace, which has been previously heated with wool to a red-heat. It rests on an iron-shoe placed on the grate-bars to
prevent the cold air from coming in contact with its extreme end.

Great care is taken to heat the mass uniformly, fuel being added giadually until the whole tube is entirely surrounded with wood, thrown in at the top of the furnace.

Wood is used because of its purity ; it is not so liable to degrade the steel as other fuels.

The amount of heat receired by the steel is judged by eye and by long practice and attention. The more uniform the temperature, the straighter the block will keep, and the more even its temper. After the steel has acquired the proper uniform temperature throughout, the travelling crane is brought over the furnace, its top removed, and the large iron tongs, pendant from the crane, fasten themselves to the steel tube ; a small collar being upon its end to prevent the tongs slipping.

The Oil-bath.- The tube of steel is now drawn out of the furnace and sunk into a large iron tank about twenty feet deep, containing several hundred gallons of oil. The heated steel in passing into the oil will sometimes cause the surface-oil to take tire, which is extinguiched by closing the top of the tank.

A covering of coal is also formed round the steel by the burned oil, which greatly retards transmission of heat.

The tank has a water-space surrounding it, and as the steel parts with its lieat, raising the temperature of the oil, the temperature of the water is also raised. The water, as it is heated, is drawn off by an escape-pipe, and a supply of cold water is continually running in, thus the heat is gradually taken from the mass. Exceeding toughness is the result of the operation; the tensile strength of the steel is made higher, and it is harder and more elastic.

Section V.-Bronze.

133. Bronze for Canxon, consists of ninety parts of pure copper and ten parts of tin, allowing a variation of one part of tin, more or less. When the mixture is well made the metal is homogeneons; the fracture is of a uniform yellow color with an even grain. The speciíc gravity of bronze is abont 8.750 , being greater than the mean of the specific gravities of copper and till.
134. Pure copper is of a red color, inclining to yellow; it las a tine metallic lustre. The fracture of cast-copper is even grained; that of the forged bar exhibits a short, even, close grain of a silky appearance, it is strong, very ductile, and very
malleable. The greater the purity of the copper, the more malleable it is and the finer the grain. Its specific grarity varies from 8.600 to 9.000 .

The copper of commerce is impure, frequently containing oxygen, silicon, iron, lead, tin, zinc, antimony, and arsenic. It should be rejected for the manufacture of guns, if it contains sulphur in an appreciable degree, more than one-thousandth of ansenic and antimony united, more than about thres-thousandths of lead, iron, or oxygen, or five-thousandths of other substances all together.
135. Pure Tin is of a white color, a little darker than silver; it is very malleable and susceptible of being rolled into thin sheets; it is not very ductile; it is soft, and when in rods or bars it is bent backwards and forwards gives a peculiar crackling sound, the distinctness of which is in proportion to the purity of the tin. Its specific gravity is from 7.290 to 7.320 . Tin for gun metal should be rejected if, when run into drops, it has not a smooth and reflecting surface, without any considerable sign of rough spots; if wheu analyzed it contaius onethousandth of arsenic and antimony united, three-thousandths of lead or iron, or four-thousandths of foreign substances.

All bronze ought to be rejected which contains sulphur in an appreciable amomnt, .001 arsenic and antimony, .003 lead, iron, or zinc, or in all more than .005 of foreign substances.

The fracture of bronze may give indications sufficient to anthorize the rejection of certain bronzes full of sulphur or oxydes.
136. Management of Bronze.-The circumstances of chief difficulty and importance in the manipulation of bronze, as affecting the production of cannon, are :-*

First. The chemical constitution of the alloy as infuencing the balance of its hardness and tenacitr.

Second. Its chemical constitution and what other conditions influence the segregation of the cooling mass of the gun, when cast, into two or more alloys of different and often rariable constitutions.

Third. The effect of rapid and of slow cooling, and of the temperature at which the metal is fused and poured.

Fourth. The effects due to repeated fusions and to foreign constituents in minute proportions entering into the allor.

In bronze, as in every other material for cannon, while suficient hardness must be secured to resist longest the abrasion of projectiles, and the deflagration of the powder along with the
greatest ultimate tenacity, there must be a certain rigidity and ductility, with ultimate cohesion.

The hardness and rigidity increase with the proportion of tin; the ductility and tenacity with that of copper, but not in any direct ratio in either case. The specific gravity increases with the copper. The fusibility is always greater than that of copper, and less than that of tin. The ultimate cohesion is always less than that of tough copper, but greater than that of tin. The ductility less than that of copper and greater than that of tin. The hardness is always greater than that of either.
137. In common with the great majority of metallic alloys, bronze is held so loosely in combination, that very slight forces are sufficient to induce its segregation into two or more different alloys, which on cooling are found to occupy difforent portions of the mass.

Thus, in a gun cast vertically, the external portions which cool first have a determinate constitution difierent from that assigned by the proportions of the metals, as fixed for fusion. The interior of the gun which cools last has another constitution different from either, and always richer in tin. But when the whole gun has become solid, and portions are examined from the extreme lowest, middle, and highest parts of the previously fluid column of metal, it is found that these again differ from each other, and that this difference varies, in the vertical or exterior, or crust alloy, which has cooled tirst, and for the interior column of alloy that has cooled last; so that, in fact of any gun, no two adjacent portions have strictly the same chemical constitution; the maxinum of copper being found in the exterior and breech of the gun, and the maximum of tin in the interior and lighest part of the metallic column.
138. The constitution of the alloy changes, not only in cooling, but in melting by oxydation; resulting in the continual reduction of the quantity of tin, which oxydizes much faster than copper, though the latter be present in so much greater mass. The oftener the alloys are melted the more difficult it is to produce solid castings with them.
139. The difficulty of making sound castings from old and often remelted alloys, arises from oxydation, which in bronze takes place in such proportions that for one part by weight of tin oxydized, there are from three to four of copper. A part of this oxygen is absorbed or combined and given up again by one or both metals, at the moment of consolidation, and its evolution canses the dissemination of minute air-vesicles through the mass which is the cause of imperfect castings.

These are seldom known to occur in such abundance in new, or not frequently, fused metals.
140. In consequence of the difference in the fusibility of tin and copper, the perfection of the alloy depends much on the nature of the furnace and the treatment of the melted metal. By these means alone, the tenacity of bronze has been carried at the Washington Navy Yard Foundry, as high as $60,000 \mathrm{lbs}$.
141. Otier Alloys.-For many years experiments have been made for the improvenent of alloys used in the fabrication of camon, and trials have beeu instituted to ascertain the modifications produced in the resistance of bronze for cannon, by different compositions and various modes of manufacture.*
142. Plosphorus Bronze.-By the addition of about two per cent. of phosphorus to ordinary bronze, and casting the metal in ingot-molds for the purpose of rapid cooling, a metal has been attained laving a hardness approaching that of steel; an elastic and absolute resistance varying between sixty and 175 per cent. above ordinary bronze, a composition more homogeneaus than that of bronze, and consequently resisting better the effects of the combustion of gun powder.
143. It is thought by some that the best gun will erentually be constructed with some extremely dense and homogeneous alloy, cast and used without being drawn under the hammer.
144. If a gun is made of an alloy possessing great densitr, the detonating force of the powder will be resisted by a greater quantity of the metal employed, than it can be by making use of one with greater elasticits.
145. No theoretical trials of any extent, specially designed to ascertain the truth concerning this point, have erer been made; and it is impossible, in the absence of further experiments, to predict either great success or failure for the alloys.

Although the alloying of copper, especially for cannon, has been practised for more than five hundred years, it is yet much undeveloped.
146. While certain alloys of both iron and copper have one important feature in common hemogeneity, due to fusibility at practicable temperatures, the alloys of iron have this grand advantage, iron is everywhere cheap and abundant; and the other necessary ingredients and fluxes-carbon, manganese,

[^7]zinc, and silicium-are equally abundant, and, in some localities, already mixed, although perhaps not in the proper proportions.

Section VI.-General Qualities.

147. Requirenents.-The qualities necessary in cannonmetals, are: strength to resist the explosion, weight to overcome the severe recoil, and hardness to endure the wear in the bore.
148. The selection of a suitable material is a very important consideration in the construction of cannon, in consequence of the difficulty of obtaining any ore that possesses all the qualities required of it.
149. Properties of Metals.-It is necessary to a clear understanding of the subject, briefly to consider the various properties of metals which affect their value for cannon construction.
150. Dexsity is a term used synonymously with specific gravity, to denote the quantity of matter which a body contains under a given or determinate surface; for example, a cubic foot.

The quantity of matter in any body is called its mass, and is measured by the weight of the body to which it is always proportioned. Hence, the density of any body is great in proportion as its weight is great and its volume small; or the density of bodies is directly as their mass, and inversely as their volume. It follows also from the definition, that if two bodies lave the same volume, their densities are directly as their masses, or weights; and, that if two bodies lave the sane mass, or weight, their densities are respectively in the inverse ratio of their volumes.
151. Hardness is the condition of the force of cohesion in solids, which enables their constituent particles to retain their relative position and resist any physical force which tends to alter the figure of the body. Hardness is entirely different from density, for although gold is denser than glass, yet glass is harder than gold. Iron is lighter but harder than gold.

Some metals are rendered hard with great readiness. This is of inestimable value in the manufacture of steel, which can be varied in harduess by heatiug, suddenly cooling, and then tempering. Hardness is oiten accompanied by brittleness; but this can be generally overcome by heating and slow cooling; this process, however, often takes away from the hardness.

In the production of alloys this useful property is frequently developed; copper and tin, neither of which are remarkable for
hardness, possess this quality when combined. Without a certain degree of hardness, the shape of the bore in cannon will be rapidly altered by the action of the projectile, and the gases resulting from the combustion of the clarge.
152. Beittleness is a property of bodies which, although solid, yet are so weakly bound together that a very small mechanical force suffices to separate their particles.
153. Tevactity is that quality of bodies which keeps them from parting without considerable force.
154. Tensile Strevgtir, is the degree of stretching which a body can endure by drawing it in the direction of its length.
155. Porosity.-All bodies have between the elementary particles, or atoms, interstices through which heat penetrates into them, and into some of them air, water, and other fluids. These last are said to be porous.

That metals are porous has often been proved by subinitting metallic vessels containing water to great pressure, by which the water was made to weep through the pores in the surface. That all metals are more or less porous sufficiently accounts for the fact that they are also more or less compressible.
156. Elasticity is the inherent property of certain bodies by which they recover their former figure, or state, after external pressure, tension, or distortion.

The force with which metals, when extended or compressed, tend to recorer their form, that is, the force necessary to keep them extended, or compressed, is proportional to the amount of the extension, or compression, they have received.

The property of the elasticity of metals is of the greatest moment in connection with their use in gun construction, as they are subjected to various degrees of pressure, and it becomes a matter of importance to know how far they will lengen themselves under a given thrust; also, how far these may be carried without rupture.

A bar of metal is said to suffer a strain when the forces which act upon it tend to lengthen it, and a thrust when they tend to compress it.

All metals used for cannon have an appreciable elasticits, but the range of this elasticity, that is, the extent to which thes: may be elongated by pressure, before permanently changing their figure, is very diverse for different metals, and very indefinitely determined for all.

The use of elasticity is, that it allows space for the power to act in without permanently stretching, and thus injuring the metal. Upon application of any force, metal haring no elasticity would either permanently stretch, or instantly break.
157. Limit of Elasticity.-The displacement of the particles of a body inust be confined within certain infinitely minute limits, in order that they may return to the position they before occupied in it. If those limits be passed, the displaced particle may be wholly separated from the rest of the body in the direction from which it has been moved, and thus a partial rupture may take place; or other particles of the body occupying the space which it has left, and through which it has moved, it may take tip its position under a new arrangement of particles exactly as it did under the preceding, and enter into precisely the same relation with them as before; so that in every respect, the qualities of the body shall remain unaltered under this new arrangement of its particles.
153. Permanent Set.-In this last case it is said to have taken a set, and the phenomenon described under this name includes all that we understand by ductility and malleability, which terms but imply different ways in which the same property of taking a set, is called into operation.

Experiments prove that the elasticity of the body is not injured when a set is given to it. When beams of iron are so loaded in the middle as to cause them to take a permanent deflection, or set, their elasticity is found to be unimpaired by it ; so that when again loaded, they tend to recover themselves with forces which are, as before, proportional to the deflection.

While some portions of the substance of a metallic body are made to take a set, others may be ruptured. Its elasticity may still remain, but its extensibility will be greater, and its strength impaired.
159. Elasticity of Torsion.-If a wire be twisted it will tend to recover its natural state with a certain force, which is called its elasticity of torsion. The law of this force is that it is always proportional to the angle through which the body has been twisted. While a piece of wire of small diameter may be in a degree homogeneous, this quality is not to be expected in a bar, therefore, the conditions of torsion in a bar become complicated and anomalous.
160. Malleablety.-The surface of a body always yields to an impact, however slight.

If a metallic surface thus yields beyond the limits of elasticity, it takes a set.

This property, by which a set is given to metals by impact, is called malleability.

There are certain metals, and certain states of the same metals, in which this property of malleability exists in a greater degree than in others. 'Thus, for instance, cast-iron is not per-
ceptibly malleable except in a slight degree, when annealed it flies in pieces under the hammer; but when converted into wrought-iron it becomes perfectly malleable.
161. Ductility is the power possessed by certain bodies, and especially by the metals, in virtue of which they are capable of being drawn out in length while their diameter is diminished without fracture, or separation. Among the metals it may be called the property of being drawn out into wires.

The order of the metals which are ductile is almost similar to the order of those which are malleable.

The ductility of metals is most effectually called into operation by rolling them. It is thus that iron plates and bars are made. Some metals, and especially soft wrought-iron, may be considerably and permanently stretched without rupture. Lfter stretching they appear to assume a new arrangement of particles and a new limit of elasticity, until close to the point of rupture. Wrought-iron increases in tenacity when drawn into bars, or wire, or rolled into plate3. Such parts as lave been so reduced have a greater tenacity per square inch, than when in the previous named condition.
162. Rupture.-When the parts of a body are by any external cause separated beyond the limits of ductility, the separation becomes permanent, and if it extend far enough, this separation constitutes a rupture of the mass. The rupture of a bar of metal may take place either by a strain, or tension, in the direction of its length, to which is opposed its tenacity; or by a thrust or compressing force in the direction of its length, to which is opposed its power of resistance to the crushing of its material, or each of these porrers of resistance may oppose themselves to its rupture; the one being called into operation on one side of it, and the other on the other side, as in the case of transversestrain ; or, lastly, the bar may be ruptured by torsion.
163. Tables of Strengiti of Materials.-It is important to know to which of these forces a material will first yield, and in what proportion it will yield differently to these causes of rupture.

Tables are prepared from experiments with the forces reduced to the square inch, which are necessary to tear asunder the materials enumerated, and to crush them.*

16t. Qualities of Cast-Iron.t-Comparative Strength.The chief argument against cast-iron as a material for an entire gun, made without regulated initial tension, is its comparative weakuess. Cast-iron, having a tensile strength of nearly

[^8]50,000 pounds per square inch, has been applied to cannon founding. Assuming a sufficient supply of such iron of uniform quality, and that its contraction when cooling and its elastic limit are favorable for cannon making, it is still a weak material when compared with steel at 100,000 to 150,000 pounds-twice to three times as much. But cast-iron does not average 50,000, nor even 40,000 pounds tensile strength. The average of the highest quality is not over about 30,000 pounds, and this is considerably above the strength of the greater proportion of the cast-iron of commerce.

It is further proved that the strongest iron does not always make the most enduring gun. Several experiments mentioned by Captain Rodman* illustrate the general experience in this direction.

This inferiority of the strongest iron for guns is attributed to its greater contraction in cooling ; and in the examples cited, the best guns were stated to have been made of low, soft, gray iron of moderate tenacity and small shrinkage; while the poorest were made of high, hard, close-grained, strong iron, having the greatest contraction of .10 to .15 inch more in the diameter of the gun than lower irons.
165. Want of Uniformity.-Cast-iron is far from being uniform ; we do not by any means know what qualities of castiron are necessary to make the best gun; nor if we did, do we know absolutely how, from any of its ores, constantly to produce cast-iron which shall possess those qualities.

The difference in the strength of the lighest and lowest gun-iron tested during a series of years (Art. 347), is stated at about 37,000 pounds, which is about equal to the highest castiron of commerce.

This want of uniformity must always be risked, because it cannot positively be remedied. Long experience, however, enables founders to mix iron with a great degree of certainty as to the intended product, but no two charges in the smeltingfurnace, or pigs broken for remelting, can be relied upon as being exactly alike.
160. Identity of chemical composition may coexist in different specimens of cast-iron with great variation of physical properties; therefore chemical identity does not involve uniformity in the mechanical properties of cast-iron. So that, however desirable it may be to ascertain the chemical qualities, practical men are very far from accepting them as indices of its tensile strength.

[^9]167. Cost.-The principal argument in favor of cast-iron as a material for guns, is its cheapness and the facility with which it can be produced compared with wrought-iron or steel. To convert and shape the latter, at a great expenditure of fnel and labor, wear of machinery and loss of machinery, costs in England, where prices are lowest, twenty to forty cents per pound; the cost of large guns increasing faster than their weight; melting cast-iron, preparing the molds, and dressing the surfaces already shaped, can be done from seven to thirteen cents per pound, which is about half the cost of wrought-iron for a given calibre. But calibre is not always a measure of work.
168. Qualities of Wrougit-mron.-Strength.--W Vroughtiron being comparatively refined is not necessarily so rarious in quality as cast-iron, and is very much stronger. Its permanent yielding-point is higher than the breaking-point of castiron, and its breaking-point is double that of its yielding-point. The average tensile strength of the best qualities of wroughtiron is about 60,000 pounds per square inch, or about double that of the best qualities of cast gun-iron.
169. Uniformity.-Although there is a wide range of strength between the highest and lowest specimens of wroughtiron, it is practically much more uniform than cast-iron; that is to say, the iron for a given service can be selected with much more certainty. The wrought-iron from any particular maker, who is careful in the manufacture, is found to be nearly uniform.
170. Detection of Weakness.-Unmistakable evidences of failure when it approaches, is obviously an important quality in any cannon metal. The detection of the coming fracture of cast-iron guns may undoubtedly be determined from minute cracks in the bore, and from close inspection of the gradual enlargement of the rent. But from the fact that cast-iron breaks in the testing-machine at the instant of perceptible elongation, these evidences must be more or less rague.

Wrought-iron continues to stretch after the point of permanent elongation, and the margin which lies between the point of yielding permanently and the point of ultimate rupture is of great importance as a condition of safety.
171. Resistance to Compression and Wear,-Another important quality of cannon metal is that the material shall be sufficiently hard so that the surface of the interior of the bore shall not in any way be indented or bruised, or otherwise acted upon by the powder or the projectile, or eren by the premature fracture or explosion of a sliell within the bore.

The bores of wrought-iron guns have been permanently
indented by moderate firing. This is a great objection to wrought-iron, and it becomes a serious defect under the high pressures which heavy guns have to endure.

The hardness of metals, their resistance to abrasion, such as the wear of projectiles, approximates to their resistance to compression. The average hardness of steel is highest, and that of wrought-iron lowest. Cast-iron is well adapted for this purpose.
172. Want of Homogeniety.-The grand defect of wroughtiron is, that it is not homogeneous. The puddling process, by which it is produced, the piling process, by which large masses are aggregated, and the welding process, by which all parts, large and small, are united, are all the means of interposing strata of impurities and planes of weakness.

In fabricating guns, the first necessity is the production of a large mass of material. While melted cast-iron and steel run into castings of any size by their own gravity, wrought-iron is not melted at a practicable heat, so that another process must be resorted to. If the gun is forged solid, the process consists in adding a little at a time under the hammer, and trimming off a great deal of scrap. Many weeks are occupied in forging a heavy gun. If the gun is built-up, small pieces are fitted together with tools at a still greater cost. When all this is done it is not homogeneous.
173. Qualities of Steel.-High Stee7.-Its distinguishing properties are extreme ultimate tenacity, hardness, and capability of extension without permanent change of figure; but its extensibility beyond the elastic limit is small, and it is therefore brittle under concussion. It will harden when heated and immersed in water; it is with difficulty welded, because it deteriorates under high heat, and becanse its welding heat is very near its melting point, and it is melted at a low temperature compared with wrought-iron.

Its obvious defect for cannon is its brittleness, but if so large a mass is used that its elastic limit will never be exceeded, or if it is jacketed with a less extensible metal, this defect is remedied or modified.
174. Low steel is a more suitable metal for cannon. It can be welded without difficulty, although over-heating deteriorates it, and it more nearly resembles wrought-iron in all its properties, although it has much greater hardness and ultimate tenacity, and a lower range of ductility, depending on its proportion of carbon. It las less extensibility within the elastic limit than high steel, but greater extensibility beyond it, that is to say, greater ductility.
175. The grand advantage of low steel over wrought-iron, for nearly all purposes, is, that it can be melted at a practicable heat and run into large masses; thns avoiding the serious defect of wrought-iron in large masses-want of somndness and homogeniety.

Its other important advantages for cannon are : greater elasticity, tenacity, and hardness.

If steel, or any metal requiring the highest attainable effort of force in motion to stretch it within its elastic limit, could also be made to have a great range of ductility beyond it, the safest and most perfect cannon metal would be obtained. But unfortunately as the one property increases the other decreases.

Elasticity is an indispensable quality in hoops, especially when the inner barrel is of cast-iron or a slightly ductile metal. If hoops change their figure permanently, their nsefulness is in a great degree destroyed. For a given elongation withont permanent change of figure higl-steel requires more " work done" than any other metal.
176. Strength.-The tensile strength of steel ranges all the way from 50,000 to 200,000 pounds.

The strength of low steel, adapted to cannon-making, arerages about 90,000 pounds, or three times that of the best castiron. The supariority of steel as regards hardness is too evident to require comment. and, considering the friction of rifle projectiles and the enormous pressure that modern camon are required to stand, this is by no means an unimportant quality.
177. Bronze.-The work done in stretching to the elastic limit, and the point of fracture, is less for ordinary bronze than for wronglt-iron of maximum ductility, and for low steel. This defect, added to the costliness of bronze, to the rarious embarrassments experienced in the casting of large masses, its softness and consequently rapid wear and compression, and to its injury by heat, has not warranted its employment for large calibres and high charges.

17S. The mean nltimate cohesion of bronze, according to European authorities and the experiments of the United States govermment is about 33,000 pounds per square inch.
179. Rifled bronze-guns would be naturally more liable to rapid deterioration than smooth bores, as the weights of projectile and charge are much greater in the former in comparison to the area acted upon, and consequently the local heating at the scat of the charge is much more intense, thus tending to separate the copper and tin, more or less, from each other, forming those tin spots and porous patches which injure the strength of the material. The reduction of windage also, in the rifle-gun, would
tend to increase this local heating, and it must be remembered that bronze becomes hot very easily, and tin melts rery soon ($442^{\circ} \mathrm{F}$.) ; moreover, the grooves in a rifle-gun open out many tin spots which would remain unexposed in a smooth-bore.
180. Conclusions.-The fitness of metals for cannon depends chiefly on the amount of their elongation within the elastic limit and the amount of pressure required to produce this elongation, that is to say, upon their elasticity.

It also depends, if the least possible weight is to be combined with the greatest possible preventive against explosive bursting, upon the amomnt of elongation, and the corresponding pressure, beyond the elastic limit; that is to say, upon the ductility of the metal.

Hardness to resist compression and wear is the other most important quality.
181. Cast-iron has the least ultimate tenacity, elasticity, and ductility; but it is harder than bronze or wrought-iron, and more inniform and trustworthy than wrought-iron, because it is homogencous.

The unequal cooling of solid castings leares them under initial rupturing strains; but hollow casting and cooling from within remedies this defect and other minor defects.
182. Wrought-iron has the advantage of a considerable amount of elasticity, a high degree of ductility, and a greater ultimate tenacity, than cast-iron; but as large masses must be welded up from small pieces, this tenacity cannot be depended upon; this defect, howerer, is more in the process of fabrication than in the material, and may be modified by improved processes. Another serious defect of wroughtitiron is its softness and cônsequent yielding under pressure and friction.
183. Low cast-steel has the greatest ultimate tenacity and hardness; and what is more inportant, with an equal degree of ductility it has the highest elasticity.

It has the great advantage over wirought-iron of homogeniety in masses of any size.

It is, unlike the other metals, capable of great variation in density, by the simple processes of hardening and annealing, and, therefore, of being adapted to the different degrees of elongation that it is subjected to, in either solid or built-up guns.
184. Bronze has greater ultimate tenacity than cast-iron. but it has little more elasticity and less homogeniety; it has a high degree of ductility, but it is the softest of cannon-metals, and is injurionsly affected by the heat of high charges.
185. In view of the duty demanded of modern guns, it
would seem that simple cast-iron is too weak, although it can be used to advantage for jackets over steel tubes. And, although cast-iron barrels, hooped with the best high wronghtiron, and with low-steel, cannot fulfil all the theoretical conditions of strength, and do not endure the highest charges, they have thus far proved trustworthy and efficient.

Wrought-iron in large masses cannot be trusted, and is in all cases too soft.

Bronze is impractically soft, and destructible by heat.
Low-steel is, therefore, by reason of the associated qualities, which may be called strength and tonghness, probably the only material from which we can hope to maintain resistance to the high pressures demanded in modern warfare.
186. The necessity for strength in any gun construction depends upon the amount of strain that is brought upon it, and this strain is affected by the method and rate at which the gases are evolved in the burning of the powder-charge, and the rate at which the powder-space behind the projectile is enlarged by the gradual movement of the projectile through the bore.

It is evident that if by any proper manipulation of the powder in mannfacture, the size, form, and density of the grain can be so determined and adjnsted as to confine the strain within certain limits, the strength of the gun to resist such a strain need not reach the maximum requirements of steel, but may be found within the well-known capabilities of our best cast-iron.

CHAPTER II.

GENERAL DESCRIPTION OF ORDNANCE.

Section I.-Terms and Definition.
187. Ordvance.-The term Ordnance includes artillery of all kinds in its most comprehensive signification.

Classification.-Ordnance is divided into three general classes, viz.: guns, mortars, and howitzers.
188. GUNS.-In a technical sense, a gun is a heavy cannon. Guns are used for firing projectiles at very low angles, with large charges, to obtain high initial velocity.

They are distinguished as rifle and smooth-bore cannon, as cast and built-up cannon, and as breech-loading and muzzleloading cannon.

Smooth-bore cannon are of two kinds, solid-shot-guns and shell-guns.

Solid-shot-guns are distinguished by the weight of the projectiles, and shell-guns by the diameter of the bore.

Shell-guns possess the adrantage of being lighter pieces, and yet firing shells of as large diameter.
189. A gun of ordinary construction is cylindro-conical in general form. As the strain upon the piece, when discharged, decreases from breech to muzzle, the thickness of metal may be proporticnately reduced, and advantage thus gained of lessening the weight of the gun without impairing its efficiency.

The greater part of the effect of the charge is sustained by the heary cylindrical portion, the other part of the gun being principally a directing tube.
190. NOMENCLATURE-Guns may generally be divided into five principal parts, viz.: Breech, Cylinder, Curve, Chase, and Muzzle. (Figs. 15 and 16.)
191. The Breech is the mass of solid metal in rear of the bottom of the bore.

The thickness of metal in the prolongation of the axis of the bore is of superior importance, for if a gun be weak there, strength in other parts will not save it from explosion.

The thickness is usually somewhat greater than the greatest thickness of metal in the cylinder.

In the Dahlgren pattern the hemispherical portion in rear of the base-line is struck from a centre at the bottom of the chamber, with a radius equal to the greatest semi-diameter of the piece.

Fig. 15.-Dahlgren Shell-gun.

Scale of 1869.
Length of gun, $\Lambda \mathrm{K}$.
Breech, Λ MI,
includingT $\left\{\begin{array}{c}\text { bemisphere } \\ \text { or base of } \\ \text { breech, } \\ \text { cascabel, L M. } \\ \text { jaws, ef. } \\ \text { block and pin, } m \mathrm{~m} .\end{array}\right\}$.
Crlinder, A C. Curve, C H.
Chase, II I.

Base line, A. Muzzle, $I K,\left\{\begin{array}{l}n, \text { strell of muzzle. }\end{array}\right.$
Bore, $\{$ cr, face of piece
Trunnion, E F.
Rim base, D G. Breec. s sight masc, λ. Front sight mass, l. Locklugs g. Vent, $h \ell$.
102. The Cylinder is that portion between the breech and trunnions, including the seat of charge and the point where the greatest strain is exerted upon the gun.

A thickness of one calibre, or the diameter of the bore, was formerly the general rule, but it has been found insufficient for heavy cast-iron cannons. The results of experiments show that for the larger calibre, the thickness of the cylinder should not be less than one and a quarter times the diameter of the bore, while no important increase in resistance is obtained by increasing the thickness of the metal besond one and a half calibres. (Art. 223.)
193. The Curve is the truncated cone connecting the crlinder with the clase. It is made somewhat thicker than necessary to resist the pressure of the powder, in order to serve as a proper point of support for the trunnions, and to compensate for certain defects of metal liable to occur in the ricinity of the trunnion of all cast cannon arising from the crystaline arrangement and unequal cooling of the different parts. (Art. 366.)
194. The Chase is the long, tapering portion of the gun extending from the curve to the muzzle. The principal injury to
which the chase is liable arising from the striking or balloting of the projectile against the side of the bore, in smooth-bored eannon ; and the thickness of metal should be sufficient to resist it. In pieces of soilt iron or bronze the indentation thus made may increase to the extent of bursting the piece; but in castiron camon, where they are always very slight, the taper of the

Fig. 16.-Parrott Rifle-gun.
Scale of 1869.

chase can be made more rapid, or, with the same weight of metal, larger than in bronze guns.
195. The IHuzzle is the increased thickness of metal which terminates the chase. Inasmuch as the metal situated immediately at the muzzle is supported only in rear, it has been usually considered necessary to increase its thickness to enable it to resist the action of the projectile at this point, but in late cannon designed to fire through embrasures, the swell of the muzale has been omitted. The swell strengthens a part liable to be impaired by an enemy's fire, and affords, also, a good position for a notch or sight.
196. Tine Trunntons are two cylindrical arms attached to the sides of a cannon, for the purpose of supporting it on its carriage. They are placed on opposite sides of the piece, with their axes in the same line, and at right angles to its axis.
197. Size.-The size of the trumions depends on the recoil of the piece, and the material of which they are made.

The resistance which a cylinder opposes to rupture, is proportional to the cube of its diameter ; on the supposition that the strain is proportional to the weight of the charge, it is usual to make the diameter of the trunnions equal to the diameter of the bore.
198. Position.-The position of the trunnions, with reference to the axis of the bore, inflnences the amount of recoil and the endurance of the carriage. By reference to Fig. 17, it will be seen that if the axis of the trunnions be placed below the axis of the piece, the resultant of the force of the charge, which acts against the bottom

Fig. 17. of the bore, will act to turn the piece around its trunnion, and cause the breech to press upon the head of the elerat-ing-screw, with a force proportioned to the length of the lever-arm, or distance between the axes.

The effect will be to throw an additional strain on the carriage by pressing down the rear part of it, and checking the recoil.

If the trunnions be placed abore the axis of the piece, rotation will take place in the opposite direction, and the effect of the discharge upon the carriage and recoil will be reversed. By placing the two axes in the same plane, the force of the charge will be communicated dinectly to the trumnions, withont incresing or diminishing its effect on the carriage or recoil; this position is given to them in all cannon of the United States serrice.
199. Preponderance.-The unequal distribution of the weight of a cannon, with reference to the axis of the trunnions, is called the preponderance.

It is the pressure which the breech portion of the gun, when horizontal, exerts on the elerating arrangement. To ascertain the preponderance practically, support the gun at the trmmions as freely as possible, and bring it horizontal by means of a long hand-spike in the bore. Place a platform scales under the breech, and fix a block of wood on it, tonching the gun underneath at the elevating-point. The hand-spike being then removed from the bore, the pressnre on the block is indicated on the arm of the scales, and is the preponderance of the gun. (Art. 318.)
200. The Rim-bases are two larger cylinders placed concentrically around the trunnions, for the purpose of strengthening them at their junction with the piece, and by forming shonlders, to prevent the piece from moving sideways in the trunnion-beds. The ends of the rim-bases, or the shoulders of the trunnions, are planes perpendicular to the axis of the trunnions.
201. INTERIOR FORM.-Calibre.-The diameter of the bore is termed the calibre of the gun; this shonld be so regulated that there may be no waste of powder, and that the
force of the gas may be expended in giving velocity to the projectile with as little strain as possible on the metal of the gun.

The calibre of a piese of ordnance depends upon the form and nature of the projectile; the general form of projectiles being that of a sphere, or cylinder (pointed), it is obvious that the bore of a gan should be cylindrical in shape, except when modified to a certain extent by a chamber, or ritling.

A rifled gun requires a less calibre than a smooth-bored piece, if both are intended to fire projectiles of equal weight, for with the former elongated projectiles can be used, but with the latter only spherical.

A gun intended only for shell firing has a large calibre in proportion to its weight, capacity of shell for bursting charge being rejuisite.
202. The calibre must also be suited to the charge. As the diameter of the bore is decreased, so with a given charge, must the length of the cartridge be increased, and the conversion of the powder into gas be retarded unless the cartridge be pierced like a tube; with the longer cartridge the strain will be thrown more forward.

In two guns of different calibres, the useful effect of a given charge is probably the greatest in the bore of the higher calibre, as regards the initial velocity of the projectile, for as the gas exerts a certain pressure per square inch on the base of the projectile, the one with the larger bore will receive the most pressure.

As the calibre of the gun is increased, so will the bottom of the bore receive a greater, and the metal surrounding the charge a less proportional strain for a given pressure per square inch; but the pressure will probably iucrease with the calibre, until the diameter of the cartridge is about equal to its length, on account of the more rapid conversion of the charge into gas.
203. Levgtin of Bore.-The length of the bore of a piece of ordnance, must be such as to allow of the decomposition of its whole charge, a certain time being necessary for its complete combustion. If the bore be not of suficient length for this purpose, a considerable portion of the charge will be blown out unfired, and therefore wasted.

The initial velocity of the projectile increases with the length of bore up to a certain point, viz.: when the retarding forces of the friction of the ball against the sides of the bore, and the resistance of the column of air in front of the projectile (which increases with the velocity), are equal to the accelerating force of the gas, it follows that after the projectile passes this point, its relocity decreases until it is finally brought to a state of rest.
204. Experiments have been made with smooth-bore guns at different times, to determine the influence the length of the piece exercises on the velocity of its projectile, and they show that the velocity increases with the length of the bore in a variable ratio, the increase of velocity for the short lengths being much greater than those for the long lengths.

Experiments made by Major Mordecai, U.S.A., on a piece of light calibre, show that the velocity increases with the length of the bore up to twenty-five calibres, but that the entire gain beyond sixteen calibres, or an addition of more than one-half to the length of the gun, gives an increase of only oue-e:ghteenth to the effect of a charge of four pounds.

The lengtle of the bore is always limited by several other practical considerations, such as the weight of the piece, and the space it will have to occupy.
205. The proper length of bore for a rifle cannon, has not been satisfactorily determined, so many different points requiring numerous and careful experiments, in order to firmish sutticient data for the proper consideration of the subject. However the length of the bore of a ritted piece, intended to fire a given charge and weight of projectile, should depend upon the calibre and system of rifling adopted; if two rifled guns are required to tire equal cliarges, but one has a less calibre than the other, the same amount of work will not probably be done r.pon the projectiles in the two bores, unless the respective lengtlis of the latter are nearly proportional to the lengths of the cartridges and so equal expansion is allowed to the gas in both bores.

In some systems of rifling a greater force is required to move the projectile than in others, and, consequently, more of the powder is converted into gas before the shot starts; also, in most of the breech-loading rittled guns, there is no windage, and, there being no loss of gas, greater force is exerted in a given space than where there is windage.
206. Windage is the space left between the bore of the piece and its projectile, and is measured by the difference of their dianeters.

The windage is strictly the difference between the area of a section of the bore at right-angles to its axis, and the area of its great circle of the projectile, but the linear windage is given in all official tables of ordnance.
207. The objects of windage being to facilitate loading, and to diminish the danger of bursting the piece, it is rendered necessary in all muzzle-loading cannon, by the mechanical impossibility of making every projectile of the proper size and shape, by the unyielding nature of the material of which large pro-
jectiles are made, by the foulness which collects in the bore after each discharge, and by the use of hot and strapped projectiles.
208. Windage diminishes the accuracy of fire, weakens the effect of the charge by allowing an escape of gas, and is the principal cause of deterioration in camnon. It is therefore of importance to make the windage as small as possible, compatible with ease and efficiency in loading.
209. The velocity of projectile and recoil of gun are considerably less as the windage is increased; experiments indicate that the loss of velocity by windage in smooth-bore guns, is proportional to the windage, but this point has not been deterinined for rifle guns.
210. The amount of gas which is lost will depend upon the form of the projectile, and the resistance which it offers to motion. The greater the force required to move the projectile, the longer the time for the escape of gas, so that the waste should increase with the weight of projectile, and there should be a greater loss in rifled than in smooth-bored cannon, if the calibre and windages are alike, but the elongated form of a projectile will tend to confine the gas as it escapes within narrow limits, and by retarding its motion diminish its waste.
211. Seat of the Ciarge. - The form of that part of the bore which contains the powder, will have an effect on the force of the charge, and the strength of the piece to resist it.

Chamber.-The chamber of a gun is the contraction, or cavity, at the bottom of the bore to receive the charge of powder. It is generally conceded that chambers are not advantageous except with charges less than would till a cylinder, whose length is equal to the diameter of the bore.
212. When a light piece is used to throw a projectile of large diameter and great weight, it is adrantageous to employ a small charge of powder. If such a charge was made into a form to fit the bore, its length would be less than its diameter, and being ignited at the top a considerable portion of the gas generated in the first instant of inflammation, would pass through the windage, and a part of the force of the charge would be lost. To obviate this defect, and to give the cartridge a more manageable form in loading, as well as to strengthen the gun, the diameter of this part of the bore is decreased so as to form a chamber.
213. Shape.-The necessity for a chamber being assumed, and its capacity decided upon, the determination of its proper form will be governed by several conditions. First. The chamber must be deep enough to receive a cartridge manage-
able in length. Second. As the tendency to transverse rupture varies directly as the square of the length of the bore subjected to maximum pressure-and as the chamber adds materially to this length, it must evidently be no deeper than the service of the gun renders necessary. Third. It should contain no angles,

Fig. 18.
on account of the well-known tendency of a split to begin at an angle; hence, the bore should terminate in a curve the hemisphere, semi-ellipsoid, paraboloid, and ogival, being those most frequently used.
214. The shape of the chamber generally in use is conical. The particular kind of chamber, represented in Fig. 1s. is called a Gomer Chamber after its inventor. Its principal adrantages are, that of distributing the force of the charge over a laree portion of the surface of the projectile, thereby rendering it less liable to break if it be hollow, and that of destroying the windage when the projectile is driven down to its proper place.

There are tro forms of chambers adapted in the serrice. The cylindrical and the conical, or gomer. The first is nearly obsolete.
215. Ties $V_{\text {ent }}$ is the channel passing through the metal, from the exterior of the breech into the bore, by means of which the gun is fired.

The size of the vent should be as small as possible in order to diminish the escape of gas and the erosion of the metal, rrhich results ffrom it. In Naval Ordnance vents are constructed trotenths of an inch in diameter.
216. In bronze pieces the heat of the inflamed gases mould be sufficient to melt the tin, and rapidly enlarge its diameter.

For this reason they are bouched by screwing in a perforated piece of pre wrought-copper, called the vent-piece. (Fig. 19.) This arrangement allows the vent. to be renewed when too much enlarged by continued use. Copper vent-pieces are especially necessary in rifle-guns, in consequence of the prolonged action of the gas arising from the resistance of the projectile. In the largest calibre the interior orifice is lined with platinum. The upper portion of the copper is replaced by steel to obtain a harder surface for receiving the blow of the hammer.
217. Position.-All smoothbore guns of the Dahlgren pattern have tro minbouched vents, situated

Fig. 19. on opposite sides of the axis of the bore, and inclined at an angle of 70° with that axis. (Fig. 76.)

The one on the right side is bored entirely through ; the other is simply initiated to give it direction.

When the open rent is too much enlarged by wear for further use it is closed with melted zinc, and the other is bored out. Each rent should endure about five hundred service rounds. (Art. 603.)

In smooth-bore cast-guns the rent enters the bore rery near the bottom ; the rents of heary built-up guns are usually bored rertically, and in such a position as to strike the cartridge at about four-tenths of its length from the bottom of the bore, it having been ascertained by experiment that the ignition of the charge at about this point realizes the greatest projectile force that can be produced by a given charge.

Experiment shows that the actual loss of force by the escape of gas through the rent, as compared to that of the entire charge, is inconsiderable, and may be neglected in practice.
218. Exterior Form.--In designing a gun it is necessary in the first place to endeavor to determine what thickness of metal is required for that part of the gun surrounding the seat of the charge, for it is here where the greatest strain from the explosion of the charge is exerted. No precise rules can be laid down for the regulation of this thickness in various kinds of ordnance, as so much depends upon the pliysical properties of the material used. The general resilts of experience, or of experiments, car-
ried on for the purpose of establishing this point, can alone furnish us with the requisite data. (Art. 221.)

The amount of metal in a gun must depend upon the charge,

Fig. 20.-IX-in. Dahlgren.

the weight. and form of the projectile, the material used, and the method of construction.
219. Force to be restratined.- When a charge of gunpowder is ignited in the bore of a gun, the gas exerts equal pressures in all directions, and therefore neglecting windage, the pressure in the bottom of the bore is equal to that on the base of the projectile, and the pressures on the top and bottom as well as those on the sides of the bore balance each other.
220. The metal of a gun is subjected to two principal strains (Art. 308), one, a transverse or tangential, which tends to rend the metal lengthwise, or from end to end, through A, B (Fig. 21), and the other, a longitudinal, tending to fracture the gun across, as through C, D (Fig.

Fig. 21. 21), or to drive out the breech.

As the projectile mores towards the minzzle so mill the space in which the gas is confined be increased, and the pressure be decreased ; the portion of metal surrounding: the space originally occupied by the cartridge, and a little in front of it, is that upon which the maximum pressure from the gas is exerted.

The maximum pressure will be influenced by the nature of the powder, the resistance offered by the projectile to motion, and by the absence or amount of windage.
221. Experinents.- Many experiments have been made to determine the gradual decrease of strain upon the metal of a piece of ordnance, from breech to muzzle. The first were
accomplished by perforating a gun in several places from the exterior to the bore, at right angles with the bore, and successively screwing a pistol-barrel, containing a steel ball, into each perforation, and discharging the gun with the pistol-barrel at the differ-

Fig. 22.-Heary Twenty-Pounder Bronze Rifle, $1,950 \mathrm{lbs}$.
ent perforations, the relative velocities with which the pistol-ball (received by a pendulum) is forced out at these different positions indicate the force exerted there to burst the gun; and consequently the relative strength of metal necessary in the various parts to resist explosion.

The results of these experiments are relatively as follows, in decimal parts:

At a calib	e in	ce		. 98
" centre	of proj			
" one	calibr		je	. 81
" two	"	"		. 68
" three	"	"	"	. 62
" five	"	"	"	. 53
" seven	"	"	"	. 44
" nine	"	"	"	. 40
" eleven	"	"	"	. 37
" fifteen	"	"	"	. 29

These decimals show the relative strength necessary at different parts to resist explosion.

The dimensions liere given are intended to apply to cast-iron ordnance, which it was assumed should have a thickness of one calibre round the seat of the charge where the greatest stran is exerted.
222. Other experinents have been made by using Rodman's pressure gauge (Art. 1332) in the holes instead of a pistol-barrel,

Fig. 23.-Navy XV-inch.
also using electricity by comuecting a chronoscope with wires in plugs fitted in the holes of the gun. (Art. 130 .)
223. In cast-irou guns of more recent construction the metal is distributed on difierent principles, viz.: in giving a greater thickness of metal, and consequently more strength about the seat of the charge, while the amount of metal in the chase is diminished, this part having to sustain but a small proportion of the strain from the discharge of the piece; also, in increasing the proportional thickiess of metal, as the calibre of the gun is greater. (Art. 311.)
224. Taprovements.-Gun-making is no longer the simple matter which it continned to be while the world was content with wooden ships and round shot. There are now almost as many ways of making a gun as of making a stean engine. Ingenuity has been exercised upon the inaterial, the construction, the rifling, and the mounting of the gun, as also in regard to the kind of powder with which it is to be loaded, the structure of the projectile which is to be fired, and the appliances by which the gun is to be worked. Eversthing is changed since the days when simple smooth-bores and canon-balls were deemed suticiently formidable and destructive.

Aiter many years of experiment and millions of expenditure foreign powers have established two or three systems of rifled ordnance as wortly of contidence. These are the German system (Art. 704 , the French system (Art. 679), and the English system (Art. 661).

In our country appropriations have been made for carrying on experiments with a view to establishing the best srstem of heavy rifled ordnance. The Army has been entrusted with this
important duty, and experimeatal guns on different plans are now in course of construction.
225. Devices.-Formerly cannon were highly ornamented witl figures represaiting some fanciful design, together with the national coat-oit-arms and eypher of the reigning monarch. Each

Fig. 24.-Dahlgren Shell Gun.

Parrott Rifle Gun, 1864.
piece also bore a particular name, borrowed from some animal or passion ; and sometimes mottoes were inscribed upon them. The most recent models are characterized by an entire absence of molding or ornaments, and by the utmost simplicity of tigure.
226. (See Table facing page 71 , and marked 71^{*}.)
227. MORTARS.-Mortars are short pieces of ordnance with large bores, used to throw shells at ligh angles, generally forty-five degrees, for reaching objects by their vertical fire. They are used in the navy only under exceptional circumstances.
228. Constroctron.-They are constructed stronger than guns, on account of the high elevation at which they are fired; and shorter, because the difticulty of loading would be increased by their length. In the new patterns, the axis of the trunnions passes through the centre of gravity, if the piece and the bore is unchambered.

The only mortar used in the naval service, is the thirtcen inch of $17,000 \mathrm{lbs}$., made of cast-iron. (Fig. 25.)
229. Howitzers.-Properly, howitzers are a description of shell-guns; slorter, lighter, and more cylindrical in shape than
a gun of the same calibre, and having a chamber for the reseption of the powder. They are employed to fire large projectiles at low angles, with comparatively small charges of powder.

Fig. 25.
230. Naval Howttzers are bronze shell-guns, adapted to field and boat serrice. They are made of bronze oul account of their comparative lightness for the same strength, and from their being less liable to burst than iron guns of the same calibre.
231. The Boat Howtrzers are both smooth-bore and rifle.

FIG. 26. -Light Twelve-Pounder Boat Howitzer.
They are alike in the principle of construction and general appearance, and differ only in weight and dimensions.

Around the charge the metal is distributed in form of a cylinder (Fig. 26), extending sufficiently in front of the seat of the projectile; thence to the muzzle it is continued as a truncated cone.

The breech is a portion of a sphere. The bore is terminated by a conical chamber (Fig. 18), and the piece is mounted on its carriage by a loop.

Fig. 27.-Rifled Twelve-Pounder Bronze Howitzer.
232. Percussion-Locks for Naval Ordnance.-The ham-

Frg. 28. -H. The head of the hammer. \} Made of strong gan metal.
S. The shank.
N. An iron nipple with a case-hardened face screwed into the head.
A. The hole for the axial bolt of the hammer.

A B. The extension of the hole, termed a slot, in the direction of the head \mathbf{H}; its length is such as to admit of the hammer's receding one ineh, which takes it entirely elear of the vent-blast.
L. A laniard entering beneath the rear end of the shank, which is rounded for that purpose, then through a perforated stud (Y) on the under-side of the shank.
mer has its revolution about the axial bolt traversing the hole A, and the force is applied by the laniard passing about the rounded rear end of the shank. When the hammer is thrown back, the laniard being steadily and quickly drawn, compels the hammer to turn on its holt until down on the vent. Now, if there were no other perforation for the bolt than that at A, the hammer could not escape from the gas issuing out of the vent, and must be thrown off by it. But when the hammer is down, if the force of the laniard be continued, the effort
is to withdraw directly from the vent, and the slot or extension of A permits this to be done until the end of the slot at B is arrested by the axial bolt. The receding motion thus obtained

has the extent of one inch, which is sufficient to take the ham-mer-head clear of the blast of the vent.

A lock-mass is cast with

Fig. 31. the gun near the rent (Fig. 22). It is slit so as to form studs, between which the hammer is secured and has its morement.

On boat-howitzers the lock has no slot, and does not recede from the rent. The rent-blast is aroided by having a perforation in the head of the hammer; which allows for its escape without throwing back the lock.
233. THE GATLING-GUN-(Fig. 32)-is a machine-gun consisting of a set of ten barrels, A, in combination with a grooved cartridge carrier, M , and a lock-cylinder, O and O^{\prime} (Fig. 36). The whole being rigidly secured to a centre-shaft, N. The grooves in the carrier, the holes in the lock-crlinder, and the barrels, all correspond in number. Each barrel is pro. vided with a lock, F (Fig. 37), which works in a chamber formed in the lock-cylinder; O and O^{\prime}, in a line with the axis of the barrels. The lock-cylinder is surrounded by an outer casing, H, connected to the framing, B , which is carried along on each side of the barrels and across the front of the gum; the rear end of each side frame forming a support for the breech-casing, H. In the breech-casing is a rerticle trans-
verse partition, D (Fig. 39), into which the main central shaft, N, which carries the lock-cylinder, O, carrier M, and barrels, A, is journalled. At its front end the main shaft is also journalled into the cross-piece of the frame, B .

Fig. 32.
234. On the rear end of the main shaft is fixed the revolving gear (Fig. 39), which is worked by a crank, G, on the right side of the breech-casing, H . The rear of the chamber in which the gear is placed is closed by a cascabel plate, C (Fig. 37), laving an opening througl which the lock may be entered

Fig. 33.
and withdrawn when necessary. This opening is closed by a plug of special construction, E, attached to the cascabel plate by a chain.

In front of the breach-casing and linged to the frame, B , is a curved plate, I (Fig. $3 \frac{1}{4}$), called the hopper, through which the cartridges are fed to the gun.

The gun is mounted on a swivel block, L (Fig. 32), on which are formed seats to receive the trunnions of the gun ; this block is secured to the carriage by a centre-pin, which allows it to turn and bring the gun to bear upon any object within the are of twelve degrees, the trunnions pernitting vertical motion of the muzzle of the gun.
235. The Hopper (Fig. 34) is a brass curved plate, I, hinged to the frame-work

Fig. 34. of the gun on the right side and encasing the chambers of the barrels. It is provided with an aperture, K , through which the cartridges descend to their places in the grooves of the carrier or chambers of the barrels; whereupon they are instantly taken possession of by the locks, forced into the barrels, and fired. A short distance in front of the cartridge aperture, is an upright pin I^{\prime}, in which the feed drum, V (Fig. 42), rests and revolves. The upper side of the hopper is flat and circular.
236. The Aperture, K (Fig. 42), for the cartridges, is nearly of the form of a cartridge and tapered downward. Its sides serve to guide the cartridges into the carrier singly, so that they can be removed one by one. The front end of the aperture is projected downward nearly into the carrier next the barrels, and thus serves to cut off the entrance to that particular barrel which is in front of it, while in this position; and prevents the cartridge which lies upon the one already in the groove from sliding forward and prematurely entering the opposite barrel.
237. The Carrier, M (Fig. 35), is a metal cylinder, attached to, and revolving with, the main shaft; its for-

Fig. 35. ward edge being sufficiently near the rear end of the barrels to insure the cartridges entering without jamming (Fig. 42). On its circumference are as many grooves as there are barrels, in which the cartridges rest and are pushed forward into the barrels by the locks; thins the grooves of the carrier act as chambers for the barrels (Fig. 33).
238. The Lock-cylinder, O and O^{\prime} (Fig. 36), is a metal piece, consisting of tro cylinders of different diameters, O , and O^{\prime}. On the circumference of the smaller and parallel with the
axis of the barrels, are as many slots as there are loeks, and in these slots, the lug on the underside of the lock-case, P (Fig. 37), travels. In the larger cylinder. and in line with the axis of the barrels, are the same number of holes, in whieh the locks move forward and back. A slot or opening is made between the holes and the eireumference of the cylinder, forming a guide for the ling, x, on the

Fig. 30. firing-pin, Z (Fig. 37), of the lock.
239. The Locks consist of hollow steel cylindrical cases of different diameters, F (Fig. 37); the larger cylinder, or rear part of the lockcase being open at the top for a portion of its length. In this portion is placed the firing-pin and spring, Z, the for-
 mer, which is reduced in diameter at its forward end to about one-eighth of an ineh, passes through the smaller portion of the loek-case, W, and projects very slightly beyond it. The spring, Z , is confined between the end of the slot and a lug, x, formed at the forward end of the larger part of the firing-pin. This lug is designed to take against the cocking-plate in the breaeh-casing and gradually press the spring and firing-pin baekward, until the proper moment, when it is released and the firing-pin is thrown violently forward, exploding the cartridge.

Attached to the lock-case, on the under side, are two lugs, P , intended to travel in the slot on the circumference of the smaller portion of the lock-cylinder O^{\prime} (Fig. 36). At the rear upper side of the case is a lug, p, whieh taking against the eam surface, R, in the breach-casing, (Fig. 38), communicates a forward and backward motion to the lock.

On the upper left-hand side of the lock-case (Fig. 37), is fixed a piece of steel, a, about four inches long, called the $E x$ tractor, having its forward edge rounded on the upper side and a shoulder on the latter, strikes a cam just at the edge of the barrel, drops over the rim of the cartridge, and when the lock moves back, brings the cartridge-shell with it and drops it on the ground beneath the gun.
210. The Preeciecasing, H (Fig. 38 and Fig. ${ }^{\text {3 }}$ 39), is a hollow cylinder extending from the front end of the lock-cylinder to the rear portion of the frame, B. Flanges, $h h$, on its sides rest on and are screwed to

Fig. 38. the frame (Fig. 32); near the rear end is a partition called the diaphragm-plate, D (Fig. 39), which dirides the cylinder into two parts and separates the lockcylinder and worm gear, which is placed in the rear portion of the casing. A cascabel plate, C (Fig. 37), screws to the rear end of the casing and serves to encase and protect the worm or revolving-gear. In the forward division of the casing are placed the cams, R (Fig. 38), for forcing forward and drawing back the locks. In the upper left-land side of the diaphragm-plates is an aperture, d (Fig. 39), through which the lock passes when entered or withdrawn; a brass tube, e, screwed to the apcrture, serving as a guide to the lock and breach-plug. At the proper distance from the front end of the casing, and on the right side, is placed a cocking-plate, which will be explained under the head of cocking apparatus.
241. 'Iue Revoluing or Worn-gear (Fig. 39).-To the rear end of the main staff passing throngh the diaphragm-plate, D , is fixed a worm-wheel, W, worked by a shaft, S , extending across the rear portion of the casing. On this shaft is a worm, ε, which works in the worm-wheel, W. A crank, G, at the right end of the transverse shaft conreys motion by means of the worm to the worm-wheel, and thus the lock-cylinder, carrier, and barrels are revolved.
242. Tratersing-gear.-To the opposite side of the transverse shaft on which the crank, G (Fig. 39), is fitted, is keyed a sleeve, t, haring cut on its exterior a right and lefthand screw, on which works the tapered end of a forked picce, T. This is dropped into a socket, in the outer end of a brass casting, U, against which the upper end of the eleratingscrew presses at U^{\prime}. The fork, ' I ', passes through the upper socket, then through a brass ring titted with a clamp, T^{\prime}, and finally through the lower socket of the casting, by which means the fork is permitted to turn as it passes along the cross-cut thread, t, in either direction. Fig. 40 represents the
fork detached and enlarged, and also in its proper position on the sleere.

On the outer end of the sleeve is keyed a ring, t^{\prime}, capable of adjustment at every half turn of the cross-cut-thread. This is effected by a pin on the ring, and corresponding holes midway between the intersection of the threads of the screws, thus regulating the range of motion of the breach of the gun. This ring serves to close one end and thus make the screw endless, and also to turn the fork into the return groore, the inner end of the sleeve being arranged so as to ac-

Fig. 39. complish the same object.

As the firing-crank, G, is turned, the bonds, carrier, lock-cylinder and right and left-hand screw are revolved. The latter, working on the fork, T, gives the piece a continuous lateral traverse which may be enlarged or contracted as desired, by means of the ring, t^{\prime}; thus spreading the fire over a wide range, or contracting it.

Elerating or depressing the gim does not interfere with the lateral traverse, as the elevating screw presses against the

Fig. 40. bottom of the casting to which the fork is attached, and thus both run up or down alike.
243. Tae Elevating-Gear (Fig. 32) consists of a screw whose lower part rests upon the trail of the gun, and whose upper part ends in a ball, working in a socket, U^{\prime} ($\mathrm{Fig}, 39$), on the under side of the brass-casting, U. On the upper surface of the casting is a rib which works in a corresponding slot, in a square brass plate, $\mathrm{U}^{\prime \prime}$, screrred to the under side of the breechcasing. By referring to Fig. 39, the arrangement of the elevating and revolving gear will be readily understood.
244. The hovenent of the Locks is accomplished by means of two spiral cams, R (Fig. 38), placed in the breech-casing and
a slot in the casing itself, along the edge of the cams. As the crank, G (Fig. 39), is turned, the rear lug, p (Fig. 37), on the lock-case travels in the slot along the spiral cam, forcing the lock forward on the lock-cylinder and carrier. The front end taking against the cartridge in the carrier, pushes it into the barrel. At the moment that the cartridge has fully entered the barrel the lug, x (Fig. 37), in the firing-pin takes against the cocking-plate and forces back the spring, z. When the lug, x, on the pir passes the highest point of the cocking-plate, the pin flying forward explodes the cartridge. The rear lug, p, having then reached the highest point of the spiral-cam, R, mores straight forward a short distance and then enters the slot of the other cam and is drawn back to its original position. The same occurs as each lock arrives at the cam and slot.
245. Renoving tife Locis.-The locks are removed and inserted through an aperture, d, cut in the cascabel and diaphragm plates (Figs. 37 and 39). Both these apertures are closed by a brass breech-plng, E (Fig. 37), which is inserted fro: the rear through the cascabel-plate, C . This plug carries at its front end a sleeve, E^{\prime}, which has a projecting cone, f, on the under side of which is cut a slot. When the plug is in position in the gun, this slot forms a continuation of a groove cut in the rear chamber, and in which a lug formed on the rear end of each lock revolves. When the lock is brought into line with the plug, by means of the outside handle, G, which is indicated by an arrow on the hopper, I, and a line on the rear brass barrelplate, the lug, p, on the lock engages in the slot on the arm of the plug, and on the latter being withdrawn, the lock follows. The sleeve, E^{\prime}, is connected to the body of the plug by a pin formed with the plug, and around which it is just free to revolve without being a close fit. To withdraw the plug, it is first partially rotated so as to bring the lug by which it is locked opposite the aperture, the sleere still retaining its hold on the lock to be extracted, and being retained against it by a spiral spring, which is interposed between the plug and the sleere. The lock and sleeve are guided into the aperture in the dia-phragm-plate by a tube, e, haring a slot in its upper side, through which the sleeve, E^{\prime}, of the plug passes, carrying the lock with it.
246. Cocking the Locks is accomplished by means of an inclined spiral cocking-plate, projecting on the inner side of the breech-casing, so that when the lock is moved forward, a lug, x, formed on the tiring-pil, is arrested by it, the spring of the lock is gradually contracted, and the firing-pin drawn back into the lock-case. When the lug, x, passes the end of the stationary
cocking-plate, it is suddenly released, relieving the spring, z, which forces the pin violently forward and explodes the cartridge. As the cocking-plate is stationary and the lngs, x, revolve with the locks, the cocking-plate acts upon the firing-pins, in the several locks successively, causing the discharge of each barrel, as its lock-lug passes the plate.
247. Tie Feed-druar V (Fig. 41), consists of a metal framing of cylindrical shape, having any convenient number of divisions or slots (usually sixteen) around its circumference, radiating from the centre. Each division, ${ }^{\prime}$, contains twenty-five cartridges, placed one above the other in a horizontal position, $\mathrm{V}^{\prime \prime}$ (Fig.42). A hole in the centre of the drum fits over a pin, I^{\prime}, on the hopper, I.

Fig. 41. The cartridges are fed to the carrier, M , below, and thence to the barrels, A . The cartridges pass to the hopper through an aperture at the bottom of each division of the drum. On the bottom face of the drum and to the left of the hopper is a projecting rib, $k^{\prime \prime}$, which fits into the slot, k^{\prime}, on the hopper-plate to steady the drum when firing. On its lower periphery the drum has a series of thnmb-lugs, m (Fig. 41), by which it is revolved. A small brass weight in each division is caused to bear upon and slide down a

Fig. 42. groove provided for it, so that it follows the cartridges as they descend, and prevents their becoming choked in the divisions. In firing the gun the man at the drum brings one of the thumb-lugs, m, coincident
with the rib on the hopper-plate, the one at the crank revolves the barrels and carrier, and the cartridges drop into the hopper from one division nutil it becomes empty. The operator then reverses the drum one-sixteenth part of its circumference, bringing the next lug over the rib, and at the same time the next division of cartridges over the hopper; the feed thus continues until the whole number of dirisions are emptied, when a full drum replaces the empty one , and the firing continues. A locking arrangement is provided for retaining the drum in position when not in use.
248. To Fill the Feed-drum.-Invert and unlock it, turn the bottom-plate, Y (Fig. 42), until the hole in the plate comes directly over a division of the drum, then raise the brass weight and fill in the cartridges regularly, letting the weight descend slowly until the division is full. Proceed in like manner with the remaining divisions; then lock the plate and place the drum upright.
249. The Working of tie Gun.-One man places the feeddrum filled with cartridges on the hopper-plate, with the two apertures coinciding; another, at the firing-crank, revolves it, which, by means of the worm-gear, revolves the main shaft, carrying with it the lock-cylinder, carrier, barrels, and locks. As the carrier revolves the cartridges in the drum drop one by one into the grooves of the carrier. Instantly the lock, by its impingement on the spiral cam in the breech-casing, mores forward, pushing the cartridge into the barrel, and when the lug on the firing-pin passes the highest point of the cocking-plate the charge is fired. As soon as this occurs, the lock is dratrn back by the spiral cam in the breech-casing, bringing with it the shell of the cartridge, after it has been fired, which is dropped upon the ground beneath.
250. Thus, when the gun is revolved, the locks in rapid succession move forward to load and fire, and returning extract the cartridge-shells. The whole operation of loading, closing the breech, discharging, and expelling the empty cases is thus conducted while the barrels are kept in continuons revolring morement. In operating the gm, firing in succession, there is no accumulation of recoil, and therefore no resighting, or relaying the gun, necessary between each discharge. When once sighted its carriage does not move, except at the will of the operator. The gron can be moved laterally while firing is going on so as to sweep the sector of a circle of 12°, or more, without moring the trail or changing the wheels of the carriage.
251. Its locks are made interchangeable, strong, and durable ; but shozld they get out of order, they can be replaced by new
ones in a very few moments. The lock mechanism is the only portion liable to derangement, the other parts being protected, or of sufficient strength to withstand all usage incident to the service.
252. The feed-drums are not absolutely necessary, except at close-quarters, and are likely to causs a wasteful expenditure of ammunition; the drums being liable at any time to become deranged and work badly.

The crew should therefore be exercised at feeding the gun by hand, in which case, all that is necessary is for one man, when the hopper is turned back, to lay the cartridges, one at a time, into the grooves of the carrier. The revolving of the crank loads and tires the gun.
253. When rapid fire is continued, the piece becomes heated, and the barrels are liable to bind and prevent the free working of the gun; recourse is then had to the adjustment-nuts in the front of the barrels. These must be eased up sufficiently to enable the barrels to revolve freely, care being taken that the crank is fastened to prevent the possibility of the piece being fired while the adjustment is being made.
254. In firing, the crank must be turned steadily, in a uniform manner, and not too rapidly; otherwise the cartridges will jam in the carrier, and thus effectually stop the fire until they can be removed.

The cartridge used is the same as that of the Navy Rifle, 5 in., and the arm is effective to the same distance-about 1,200 yards.
255. In exercising on board ship the locks should be removed to avoid unnecessary snapping of the spring, and the cartridges can then be run through the hopper at will, familiarizing the men with the use of the arm without wasting ammunition.
256. It is believed that the "Gatling " cannot be substituted for the "Howitzer" in boats, therefore no boat-carriage is provided, the instability of the boat causing the continuous fire (the great feature of the gun) to be extremely scattering, while the shrapnel or canister from its Howitzer is delivered only where the gun points.

In smooth water it may be used as a boat-gun by removing the wheels, resting the axles on the gunwale, with the trail of the carriage under the forward thwart.
257. Preservation.-The Gatling Gun, although an intricate piece of mechanism to put into the hands of seamen, is not liable to get out of order in use, or have its parts deranged, unless tinkered with by the quarter-gunner. It is not injured by being wet in landling, or liable to be clogged with sand or mud, provided it is cleaned and dried before the next firing.
258. The gun should never be taken apart unless absolutely necessary, and then, if possible, by a competent mechanic, under the supervision of an ofticer. It should be kept free from rust, dust, and moisture, and oiled frequently, using fine sperm-oil.

When it is possible, before firing, the barrels and carrier should be wiped and cleaned; in doing this the crank should be reversed to avoid unnecessary snapping.
259. Directions for taking the Gun apart.

1st. Take out the locks. To do this, turn the breech-plug so that the marks upon it and the cascabel-plates correspond; then turn the crank until one of the marks on the rear brass barrelplate is brought in line with the arrow on the hopper, and then pull out the plug, which will bring out a lock. Re-insert the plug, and repeat the operation, until all the locks are remored.
$2 d$. Take off the cascabel-plate, which is screwed to the breech-casing.
$3 d$. Remove the crank-axle ; first taking off the traversingscrew and worm, which are fastened to the slaft by a screw and a taper-pin through it; then remove the worm gear.
$4 t h$. Take out the screws that fasten the casing to the frame.
$5 t h$. Raise the barrels a very little by means of the assem-bling-rest ; then remove the breech-casing.
260. Directions for putting tie Gun together.

1 st. Put the axis in its place through the plates which hold the barrels, and then put to their places the carrier-block, lockcylinder, and large rear-nut. The last should be screwed up tight, and have the taper-pin put through the nut and shaft.
$2 d$. Place the gun within the frame, and let the front end of the axis rest in the hole designated for it, in the front of the frame; then adjust the assembling-rest, and, in this position, the breech-casing can be shoved over the lock-cylinder to its proper place; then screw the casing to the frame.

3d. Put on the worm-gear, replace the crank-axle, etc., and then put on the cascabel-plate. Revolse the crank to the right or left until one of the marks on the barrel-plate is brought in line with the arrow on the hopper, and then insert a lock, wlich is shoved to its place by the plug. Remove the plug, and repeat the operation until all the locks are in their places.
261. THE ARMAMENT OF SHIPS OF WAR."-The main points to be considered in determining the armaments of ships are:

[^10]First. The proportion of the aggregate weight of the guns to the tonnage.

Second. To dispose of this weight in such a manner as shall develop the greatest power of which it is susceptible.

Third. The relation of the battery to the speed of the vessel.
262. I. The relations of weight of battery to tonnage of ship depends upon the aggregate assigned to ordnance by the constructor in distributing his weights; and the weight of battery which experience shows can be safely and conveniently carried, is from one-third greater to double that allowed on the given displacement.
263. II. Having a ship of a certain tonnage, draft of water, and speed, with so many tons of displacement assigned to ordnance; the question is, how to dispose of that weight to the best advantage, distributing it with a due regard to the necessary power and range of the guns.
264. In every case our practice is, to assign the smallest number of the heaviest guns to form the weight; preferring pivot-guns to those in broadside when the deck arrangements will permit, because the former are always more under command than the latter; and it is thoroughly established that a small number of large pieces will inflict injuries beyond the power of a large number of small ones. The smallest number and heaviest pieces which can be conveniently handled will then form the armament.
265. One of the first elements to be considered is the ability to handle the projectile in the confined quarters of a ship subject to violent motions of rolling and pitching. Only one man can conveniently handle the projectile of a broadside gun, and but two that of a pivot; and experiment proves that the nine-inch and eleven-inch are the largest shells which can be so handled with ease.
266. No effort should be spared to use the heaviest calibre which can be conveniently carried, and any obstacles that are removable ought to be made to give way without scruple. The celerity of fire will not be materially affected, and the superior calibre always possesses superior range, accuracy, and power.
267. III. It is absolutely necessary that a ship of war should exercise \& full power of offence and defence, within the circle of which she is the centre: next to this, and to this only, in inportance is her ability to transfer this power to another point.
268. In order that a ship may exercise her full measure of offence, speed has become an indispensable attribute. Without
it her powers are altogether incomplete ; and experience appe to have determined that it is judicious to sacrifice a large portion of the armament in order to procure great speed at any cost.
269. When a vessel of war encounters a superior force, speed shonld be able to make her safe, but the necessary diminution of offensive power should not be so great as to disable a first-class steamer from watching any ressel of her own class, of inferior speed, but provided with a proper armainent.
270. Our vessels of war should have equal speed with those of other nations, for it is only by this equality that they can select and retain the distances preferred. If, however, our ship is inferior in speed, then the choice of distance is with the enemy, who is supposed to prefer close quarters; but if our ship is properly armed he can only reach this position after passing throngh the deliberate fire of powerful guns.
271. Kind of Gun.-The armament of our ships of war consists mainly of smooth-bore guns. These cannot compete with rifle-guns, except at short ranges, their efficiency depending on high velocities, which the resistance of the air greatly diminishes; besides, spherical projectiles are deficient in weight, and their form is not favorable for penetration.
272. Witli wooden ships, the mere lodgment of a shell, in the side, before its explosion, is sufficient to inflict serious injury ; but against armored ships complete perforation is essential. Since the general introduction of armored ressels, the conditions of warfare have been altered, and the sulject of penetration has become of paramonnt importance. This necessitates the introduction of rifle-camon as the entire armanent of our ships.
273. The principal advantage of rifle-cannon consists in their greater penetration, due to the concentration of effect on a smaller and better form of surface; nest, in greater explosive contents for the same weight; then range, and lastly, accuracy.

274 . It is comparatively easy to obtain accuracy to such an extent as is sufficient for the purposes of naval warfare. Under the ordinary circumstances of a naval action, the probability of striking an enemy's ship is dependent far more on an accurate knowledge of the distance, on the steadiness of the ship carrying the gun, and the skill of the man who fires it, than on the qualities of the gun itself.
275. Great extent of range is one of the especial merits claimed for rifled ordnance. But the instances in which a great range would be valuable in naval war are of such rare and exceptional occurrence, that it is not an important requirement in a good naval gim.

Section II.-Theory of Gun Construction.*

276. THE KINDS OF STRAIN UPON A GUN.-There

 are:1st. A tangential strain, tending to split the gun open longitudinally, and similar in its action to the force which bursts the hoops of a barrel.

2d. A longitudinal strain, tending to pull the gun apart in the direction of its length. This tendency is a maximum at the bottom of the bore, and diminishes to zero at the muzzle.
$3 d$. A strain of compression, exerted from the axis outward, tending to crush the truncated wedges of which a unit of length of the gun may be supposed to consist, and to diminish the thickness of the metal to which it is applied.

4th. A transverse strain, tending to break transversely the staves of which the gun may be supposed to consist, and similar in its action to the force which breaks the staves of a barrel.
277. Tangential Strain.-Barlow shows that the strain, produced on any cylinder by the action of a central force, diminishes as the square of the distance from the centre increases.

The demonstration of this law is based upon the hypothesis that the area of the cross section of the cylinder to which the force is applied remains the same before and during the application of the central force.

Assuming this to be true, call A the area of the cross section of the gun.

In Fig. 43, let
$r=$ the radius of the bore,
$R=$ the radius of the exterior,
$b=$ the increase of the internal radius,
$B=$ the increase of the exterior radius.

Fig. 43.

Evidently,
or

$$
\begin{align*}
& \pi R^{2}-\pi r^{2}=\pi\left(R^{2}-r^{2}\right)=A \tag{1}\\
& R^{2}-r^{2}=\frac{A}{\pi} \ldots \ldots \ldots \ldots \tag{2}
\end{align*}
$$

[^11]Differentiating eq. (2), bearing in mind that A and π are constants, gives

Hence

$2 R d R-2 r d r=0$.

Multiplying and dividing the first member of eq. (4) by R, and the second member by r, and substituting for $d R$ and $d r$ their values B and b, gives

$$
\begin{equation*}
R^{2} \frac{B}{R_{i}}=r^{2} \frac{b}{r} \tag{5}
\end{equation*}
$$

whence the proportion

$$
\begin{equation*}
\frac{b}{r}: \frac{P}{\bar{R}}=R^{2}: r^{2} . \tag{a}
\end{equation*}
$$

278. But the strain produced on any two pieces of the same material will be proportional to the increase in length divided by the original length of each respectively-the absolute strain, for a given increase of length, depending upon the coefficient of elasticity of the material strained. Hence, if $\frac{B}{R}$ be the strain on the exterior, then $\frac{b}{r}$ is that on the interior. It will therefore be seen from the proportion (a) that the strain diminishes as the square of the distance from the centre increases.
279. To find the whole resistance of the gun-cylinder to the tangential strain.

Let Fig. 44 represent a section of a homogeneous gun-cylinder.

Frg. 44.

Take C, the centre of the bore, as the origin, and two lines at right angles to each other as the co-ordinate axes. Denote CA, the radius of the bore, by r, and CB , the external radius, by R.

We may represent the degree of expansion of the metal at any point in the line $A B$, caused by an explosion at C , by an ordinate, erected at the given point proportional in length to the number of pounds' strain at that point, as AH; similarly we may represent a compression by a negative ordinate, as AM.
280. Erecting ordinates in this manner at every point in the
line $A B$, and drawing a line through their extremities, we have the curve HL.

From Barlow's Law we have for the equation to this curve

$$
\begin{equation*}
y=\frac{c}{x^{2}} . \tag{6}
\end{equation*}
$$

where c is a constant depending upon the force exerted.
To obtain the form of this curve when the expansion is at its limit, $i . e .$, when the tenacity of the metal is just sufficient to overcome the strain at A , we have for the co-ordinates of the point $\mathrm{H}, x=r, y=S$, where S denotes the maximum strain in pounds. Substituting these values of x and y in eq. (6), we find

$$
S=\frac{c}{r^{2}} \quad \therefore c=S r^{2}
$$

and the equation to the curve is therefore

$$
\begin{equation*}
y=\frac{S r^{2}}{x^{2}} . \tag{b}
\end{equation*}
$$

281. Taking $S=30,000$ pounds, $r^{\prime}=3$ inches, we find

$$
\begin{aligned}
\text { for } x=3 \mathrm{in} ., & y=30,000 . \\
x=4 \mathrm{in.}, & y=16,875 . \\
x=5 \mathrm{in} . & y=10,800 . \\
x=7 \mathrm{in} ., & y=7,500 . \\
x=5,510 . & y=2
\end{aligned}
$$

Thus the resistance offered by each part of the cylinder diminishes very rapidly as the distance from the axis increases.
282. As the ordinate at each point of the line AB measures the resistance of the gun at that point, the sum of all the ordinates, or the area of the curve AHLB, represents the entire tenacity of the gun-cylinder.

To find this area we have

$$
\begin{equation*}
A=\int y d x \tag{7}
\end{equation*}
$$

Substituting the value of y from eq. (b),

$$
\begin{equation*}
A=S r^{2} \int \frac{d x}{x^{2}} . \tag{8}
\end{equation*}
$$

Integrating between the limits R and r,

$$
\begin{array}{r}
A=S r^{2} \int_{r}^{R} \frac{d x}{x^{2}}=S r^{2}\left[-\frac{1}{x}\right]_{r}^{R}=S r^{2}\left[\frac{1}{r}-\frac{1}{R}\right] \\
A=S r \frac{R-r}{R} \ldots \ldots \ldots \ldots \ldots \tag{c}
\end{array}
$$

283. Taking the same numerical values of S and r as before, giving different values of $R-r$ (the thickness of the wall of the gun),

$$
\begin{array}{ll}
R-r=1 \text { inch, } & A=22,500 \mathrm{lbs} \\
R-r=2 \text { inches, } & A=36,000 \mathrm{lbs} \\
R-r=3 \text { inches, } & A=45,000 \mathrm{lbs} \\
R-r=4 \text { inches, } & A=51,429 \mathrm{lbs} \\
R-r=5 \text { inches, } & A=56,250 \mathrm{lbs} \\
R-r=60,000 \mathrm{lbs} .
\end{array}
$$

If we integrate between \propto and r, or, what is the same thing, make the wall of the gun infinitely thick,

$$
\begin{equation*}
A=S r . \tag{9}
\end{equation*}
$$

284. Now it may be shown that the whole force developed by an explosion, to burst a gun tangentially, is $p r$, where p is the pressure of the gas per square inch, and r the radius of the bore. But we see from eq. (9) that the greatest possible resistance of the cylinder is $S r$; therefore when an explosion takes place, and p is greater than S, the cylinder must gire way. That is, "No thickness of metal, however great, in a homogeneously constructed gun-cylinder, can withstand an expanding force greater than the absolute tenacity of a bar of the same metal."
285. To find the whole force exerted by an explosion in a cylinder to rend it longitudinally.

Let Fig. 45 represent a section of a cylinder, and let it be required to tind the force ex-

Fig. 45. erted by an expanding gaz to rend the erlinder along the line AB . Let $\mathrm{OA}=r$, the interior radius of the crlinder, and p denote the force the gas exerts upon a unit of surface. At any point, as P , the gas acts in the line OP, and the force may be resol red into the components $\mathrm{P} y$ and $\mathrm{P} x$, respectively perpendicular and parallel to the line $A B$. The sum of all the forces acting perpendicularly to $A B$ is the force requircd.

Let $\theta=$ the angle POA , then $\mathrm{P} y=p \sin \theta$.
The element of surface is $r d \theta$.
The required force $F=\int p r \sin \theta d \theta=p r \int \sin \theta d \theta \ldots(10)$

Taking the integral between $\frac{\pi}{2}$ and 0 ,

$$
\begin{equation*}
F=p r . \tag{d}
\end{equation*}
$$

At the limit of endurance the rupturing effort will be equal to the whole resistance offered.
or

$$
\begin{align*}
p r & =S r \frac{R-r}{R} \cdots \tag{11}\\
p & =S \frac{R-r}{R} \cdots \tag{e}
\end{align*}
$$

Should p become greater than $S \frac{R-r}{R}$, the gun will burst.
As a particular case, let the wall of the gun be one calibre in thickness, i.e., $R=3 r$, then

$$
\begin{equation*}
p=\frac{2}{3} S \tag{f}
\end{equation*}
$$

Rupture will hence ensue in this gun when the pressure per square inch exceeds two-thirds of the tensile strength per square inch of the metal of which it is constructed.
286. Longitudival Strafn.-The tendency of this strain is to blow the breech off.

Expressions for the ruptaring effort of this strain, and the resistance of the gun to it, can be readily found based upou the assumption, in itself highly probable, that the law of diminution of strain from the interior outward will be the same for any central section of the splere of which the breech may be supposed to consist as for any cross section of the gun.
287. To find the longitudinal rupturing effort.-If p be the pressure per square inch at the bottom of the bore, the whole rupturing effort in the direction of the axis of the gun will be p multiplied by the number of square inches in the area of the bore, or

$$
\begin{equation*}
E=\pi r^{2} p . \tag{g}
\end{equation*}
$$

258. To find the resistance of the gun to the longitudinal rupturing effort.-This will evidently be the sum of the resistances to longitudinal separation of the rings of metal composing the cross section of the gun, at the juncture of the breech and cylinder.

Let r be the radius of the bore.
R be the radius of the exterior of the gun.
S be the tensile strength of the metal per square inch.

Let x be the radius of any ring.
$d x$ be its breadth.
We have already seen that the resistance to an internal explosive force at any point of the wall of the gun is $S \frac{r^{2}}{x^{2}}$. Hence, that of a ring whose radius is x, and breadth $d x$, will be $S \frac{r^{2}}{x^{2}} \times 2 \pi x d x$, or $2 \pi r^{2} S \frac{d x}{x}$. The whole resistance of the wall of the gun will be found by integrating this expression between the limits R and r :

$$
\begin{align*}
\int_{r}^{R} 2 \pi r^{2} S \frac{d x}{x}= & 2 \pi r^{2} S[\text { Nap. Log. } R-\text { Nap. Log. } r] . \tag{12}\\
& =2 \pi r^{2} S \text { Nap. } \log \cdot \frac{R}{r} \ldots \ldots \ldots \ldots \tag{h}
\end{align*}
$$

At the limit of endurance the whole resistance will be equal to the whole rupturing effort, or

$$
\begin{equation*}
\pi r^{2} p=2 \pi r^{2} S \text { Nap. Log. } \frac{R}{r} . \tag{13}
\end{equation*}
$$

hence,

$$
\begin{equation*}
p=2 S \text { Nap.Log. } \frac{R}{r} \tag{i}
\end{equation*}
$$

289. As a special case, assume, as before, that the wall of the gun is a calibre in thickness, or $R=3 r$. Expression (i) now becomes

$$
\begin{equation*}
p=2 S \operatorname{Nap} \cdot \log .3=2 S \times 1.0986 \tag{14}
\end{equation*}
$$

or, in round numbers, $\quad p=2 S \ldots \ldots \ldots \ldots \ldots \ldots$.....................
Comparing this with eq. (f), we see that this gun wonld be three times as strong longitudinally as tangentially-if the burst-ing-effort were resisted by its tangential strength alone.

The tangential and longitudinal strains are in directions at right angles to each other, and hence, probably, neither affects the ability of the metal to resist the other-while the compressibility of the metal tends to diminish its capacity to resist either.
290. Crdsiing-force.-This force diminishes from the bore outward, while the area of resistance increases.

The effect of this upon a compressible truncated wedge would be to change its form from that of Fig. 46 to that of Fig. 47. And the appearance of a cross section of the gun after rupture would be that of Fig. 48. If the metal were in-
compressible, the appearance of a cross section of the gun after rupture would be that of Fig. 49, and no enlargement of the bore would result from the crushing of the metal; and any enlargement caused by the action of a central force would be accompanied by an equal enlargement of the exterior dianneter of the gun; and hence the strain upon the metal at the inner and

Fig. 46.

Fig. 47. outer surface of the gun woald be inversely as the radii of those surfaces instead of inversely as their squares (as in the cass of compressible metal).

Fig. 48.

Fig. 49.
291. To find an expression for the effect of a crushing-force.

Let $p=$ the pressure per square inch of gas on the surface of the bore,
$c=$ the compression per inch in length, due to p, of a prism one square inch in area of cross section,
$r=$ the radius of the bore of the gun,
$x=$ the radius of one of the thin cylinders which compose the gun.
The elementary compression of any prism taken in the metal of the gun will be $d u=c d x$. If the pressure were uniform (or c constant) throughout the length of this prism, the integral of this expression, or $c x$, would give the entire compression or increase in the radius of the bore. But, in a gun, the pressure per square inch against the interior of each consecutive, elementary cylinder of which we may suppose it to consist, will vary according to some law which must tirst be determined.

Suppose a thin, hollow cylinder, and
let $a=$ the tangential resistance per unit of length of one side of this cylinder,
$r^{\prime}=$ its interior radius,
$p^{\prime}=$ the pressure per square inch against its interior surface which would just produce rupture.

Formula (d), already obtained for the bursting-effort of a central force, gives

$$
\begin{equation*}
p^{\prime} r^{\prime}=a, \quad \text { or } p^{\prime}=\frac{a}{p^{\prime}} \tag{15}
\end{equation*}
$$

Or, the pressure per square inch against the interior of a hollow cylinder necessary to develop a constant amount of tangential resistance in its sides, varies inversely as its interior radius.

It has been shown that, at the limit of endurance,

$$
p=S \frac{R-r}{R}
$$

The tangential resistance developed in that cylinder of the gun whose interior radius is x will be equal to the total tangential resistance of the wall of the gun less that dereloped in the cylinder whose exterior radius is x, or by eq. (c),

$$
\operatorname{Sr}\left[\frac{R-r}{R}-\frac{x-r}{x}\right] .
$$

IIence the pressure per square inch against the interior surface of the elementary cylinder, whose interior radius is x, will be

$$
\operatorname{Sr}\left[\frac{R-r}{R} \cdot \frac{1}{x}-\frac{x-r}{x^{2}}\right]
$$

292. Supposing the compression per inch in length of the same metal to be directly proportional to the pressure per square inch, we shall have

$$
p: c=\operatorname{Sr}\left[\frac{R-r}{R} \cdot \frac{1}{x}-\frac{x-r}{x^{2}}\right]: c^{\prime},
$$

where c^{\prime} is the compression per inch of length due to the force p acting at the distance x from the origin. Solving the proportion with reference to c^{\prime},

$$
\begin{equation*}
c^{\prime}=\frac{S c r}{p}\left[\frac{R-r}{R} \cdot \frac{1}{x}-\frac{x-r}{x^{2}}\right] . . \tag{16}
\end{equation*}
$$

The expression for the elementary compression now becomes $d u=c^{\prime} d x$. Substituting the value of c^{\prime} from eq. (16),

$$
\begin{equation*}
d u=\frac{\operatorname{Ser}}{p}\left[\frac{R-r}{R} \cdot \frac{1}{x}-\frac{x-r}{x^{2}}\right] d x . \tag{1i}
\end{equation*}
$$

Integrating between the limits R and r,

$$
\begin{equation*}
u=\frac{S c r}{p}\left[\frac{r}{R} N a p \cdot \log \cdot \frac{r}{R}+\frac{R-r}{R}\right] . \tag{k}
\end{equation*}
$$

As before, in a special case, assume the gun to be one calibre in thickness, or $R=3 r$,

$$
\begin{align*}
u & =\frac{S c r}{p}\left[\frac{1}{3} \text { Nap. Log. } \frac{1}{3}+\frac{2}{3}\right] . . \tag{18}\\
& =\frac{S c r}{p}\left[\frac{2}{3}-\frac{1}{3} \text { Nap. Log. } 3\right] . \tag{19}
\end{align*}
$$

But the Naperian logarithm of 3 is 1.0986 . Assuming this as 1 ,

$$
\begin{equation*}
u=\frac{S}{p} \cdot \frac{c r}{3} . \tag{l}
\end{equation*}
$$

293. Now supposing $p=S$, or that the pressure per square inch on the bore of the gun is equal to the tensile strength of the metal, we have $u=\frac{c r}{3}$, or, the increase in radins of the bore, due to the compression of the metal, in a gun, one calibre in thickness is equal to one-third of the total compression which a prism, whose height equals the radius of the bore would undergo under a pressure per square inch equal to that against the bore of the gun.

29t. Now if we suppose a given pressure to be exerted upon the surface of the bore of a gun, while its exterior diameter is prevented from undergoing any increment, the total enlargment of the bore and the consequent extension of the metal will be wholly due to compression, and all the effects of compression will be produced as if the exterior of the gun were unconstrained.
295. If we now suppose the exterior restraint removed, the interior and exterior diameters would undergo precisely equal increments. Or the gun would expand in the same manner as one of which the metal is incompressible, the metal having already undergone all the compression which this pressure could produce, and the extension of the metal at the tivo surfaces of the gun, which would take place after the removal of the exterior restraint, would therefore be inversely as their radii.
296. It has just been shown that in a gun one calibre thick the total enlargeinent of the bore due to compression is $\frac{2}{8} r c$; the total extension of the surface of the bore due to this enlarge-
ment is $2 \pi r \frac{c}{3}$, and the extension per inch of the same surface is

$$
\frac{2 \pi r^{\frac{c}{3}}}{2 \pi r}=\frac{c}{3} .
$$

If a be the total extension per inch of which the metal is susceptible, then $a-\frac{c}{3}$ will be the extension per inch which the surface of the bore underwent after the removal of the exterior restraint, and the extension per inch of the exterior surface is

$$
\frac{a-\frac{c}{3}}{3}=\frac{3 a-c}{9}
$$

297. To exemplify: a cylinder was taken the total extension per inch of which was .00303 , the compression per inch .00441 , one-third of which is .00147 ; and $.00303-.00147=.001$ 厄̆ 6 , onethird of which is . 00052 , the extension per inch of the exterior of a gun one calibre thick, made of this metal, at the moment of interior rupture.

But the strain necessary to produce an extension of .00054 was found to be 11,000 pounds; hence the exterior of the gun would be under a strain of between 10,000 and 11,000 pounds per square inch at the moment of interior rupture; while, if the metal were perfectly incompressible, it would, at the same moment, be under a strain of 18,000 pounds.
298. The expression $\frac{r e}{3}$ was derived from the hypothesis that the compression per inch of cast-iron is directly proportional to the pressure. Experiment shows the compression of this metal to increase in a higher ratio, so that the effects of compressibility will be even greater than those just determined.
299. This example suffices to establish the importance attaching to the property of compressibility in gun metal, its action being to prevent the full development of both the transverse and the tangential resistances, and to that degree it is beliered (in guns of large calibre, and consequently of great pressure of gas) as to cause internal longitudinal rupture before the transverse resistance is fully developed, even for the shortest practicable length of surface pressed.
300. Transverse Stram.-In estimating the resistance which a gun can offer to a tendency to transerse rupture, it will
be more simple to regard it as composed of staves, firmly secured at their ends, the rear ends being supposed to be secured to a central cylinder; and, in this case, it will be only necessary to consider a single stave, as all others of equal width and length would be subjected to similar and equal strain.
301. Let us, therefore, consider the action upon a single stave, whose breadth is one inch. If the gun be one calibre in thickness, the exterior breadth will be three inches.

We shall be something below the actual resistance which the stave can offer, if we consider it as of rectangular section of two inches in breadth: this is apparent from inspection of Fig. 50.

Let the stave a be acted upon by the pressure of gas along its inner surface, and suppose the pressure to be applied between the points b and b^{\prime}. Now this stave is secured at both ends, and the

Fig. 50. rupturing-force equally distributed along its lengtl between the points of support. It suffers a tendency to

rupture at three points, as shown in Fig. 51 by the lines be, $\mathrm{c}^{\prime \prime \prime}$ $c^{\prime}, b^{\prime} c^{\prime \prime}$.
302. The formula for the resistance which a bar thus strained can offer is

$$
w=\frac{12 S^{\prime} b d^{2}}{l}
$$

in which w is the breaking-weight distributed equally along the bar, b the breadth of the bar, d its depth, l its length, and $S^{\prime \prime}$ the weight required to break a bar of the same material one inch square, firmly secured at one end, when applied at one incli from the point of support.

If p be the pressure of gas per square inch, the whole pressure on the stave be $p l$, and the tendency to rupture (i. e., the
ratio of the bursting-effort to the resistance) will be represented by

$$
\frac{p l}{\frac{12 S^{\prime} b d}{l} l^{2}}=\frac{p l^{2}}{12 S^{\prime} 6 d^{2}}
$$

It thus appears that the tendency to transverse rupture increases as the square of the length of the bore under pressure, and that the resistance offered to this kind of strain increases as the square of the thickness of metal.
303. The resistance offered by the transrerse strength of the staves acts in concert with the tangential resistance, and when the length of the bore under pressure is such that the increase of its diameter due to the bending of the staves plus that due to the compression of the metal at the moment of rupture, shall be equal to that which it would attain at the same moment from the action of the tangential strain alone, then will the resistance to rupture be equal to the sum of the transverse and tangential resistances.

30t. This can ouly occur for one particular length of surface pressed ; and, for any' greater length, the staves would require to be bent ont beyond the breaking diameter for the tangential resistance before reaching their breaking transverse strain; and the transverse resistance would only be equal to the pressure necessary to bend the staves out to the position of tangential rupture, minus the compression of the metal. Thus the tangential resistance would be overcome and the gun split longitudinally before the transverse resistance rould be brought fully into action
305. The effect of the crushing force on compressible metal is to prevent the derelopment of the transverse resistance in the same manner as it did that of the tangential resistance: to diminish the amount of aid which the transrerse resistance can bring to the tangential for any greater length of bore.
306. When the length of surface pressed becomes less than that which develops the joint action of both resistances, the diameter due to transverse rupture will be less than that dne to tangential rupture, and transverse rupture would first ensue; or, what is more probable, in guns of any considerable thickness of metal, rupture will occur by splitting through the breech, or by forcing the rear ends of the staves outward, causing rupture along the lines be and de (Fig. 51).
307. Recurring to the expression for the tendency to transverse rupture,

$$
\frac{p l^{2}}{12 s^{\prime} b d^{2}}
$$

and supposing the transverse strength of iron to be one-fourth the tensile or $S^{\prime}=\frac{1}{4} S$, and substituting for S^{\prime} this value, we have

$$
\frac{p l^{2}}{3 S^{5} b d^{2}}
$$

Then supposing $b=2 \mathrm{in}$., $d=10 \mathrm{in} ., l=20 \mathrm{in}$., we have the tendency to transverse rupture $=\frac{2 p}{3 S^{3}}$; or the transverse strength alone, supposing the tensile streugth to be $30,000 \mathrm{lbs}$. per square inch, would resist a pressure of $45,000 \mathrm{lbs}$. per square inch for two calibres in length of a 10 -inch gun, if it could be brought fully into action. This, for reasons already given, cannot, however, be done; but the transverss is doubtless a powerful auxiliary to the tangential resistance for short lengths of bore and where the pressure is greatest.
308. The Tendencies to Rupture in Guns of One Calibre in Tirckness, each considered as independent of all others, will be as follows, viz. :-

$$
\begin{array}{r}
\text { Tangential............. } \frac{3 p}{2 S}, \\
\text { or rupture will ensue when } 3 p>2 S \\
\text { Longitudinal............ } \frac{p}{2 S}, \\
\text { or rupture will ensue when } p>2 S \\
\text { Transverse................ } \frac{2 p}{3 S}, \\
\text { or rupture will ensue when } 2 p>3 S .
\end{array}
$$

309. Total Bursting Tendency.-As already indicated, the bursting tendency is the ratio of the bursting effort to the total resistance which the gun can offer.

The bursting effort against one side of the gun is, from what has already been shown, eq. (d), the product of the pressure per square inch multiplied by the radius of the bore and the length of the bore to which pressure is applied.

Let R be the exterior radius of the gun.
r " radius of the bore.
L " length of the . bore to which pressure is applied.
l " length of the surface pressed which fully develops both transverse and tangential resistance.
p " pressure per square inch.

Let S be the tensile strength of the metal.
Then $p r L$ is the bursting effort.
The whole tangential resistance will be equal to that for an element of the gan cylinder one unit in length multiplied by the length of surface pressed, or, from eq. (c).

$$
\operatorname{LSr} \frac{R-r}{R}
$$

The formula for the transverse resistance of a bar of rectangular cross section is (Art. 302)

$$
w=\frac{12 S^{\prime} b d^{2}}{l}
$$

310. By mechanics it is known that the resistances which bars of the same material can offer when the strain is equally distributed along their lengths, and the bars lent to their breaiking deflection, are to each other directly as the fourth powers of their length. But in the case of the staves forming a gun cylinder, except for short distances, tangential will ensue before transverse rupture. In order to determine, therefore, the transverse resistance, calling x the transverse resistance due to that length, the following proportion may be instituted:

$$
\begin{array}{rlrl}
\frac{12 S^{\prime} b d^{2}}{L}: x & =L^{4}: l^{4} \\
\text { whence } & x & =\frac{12 S^{\prime} b d^{2} l^{4}}{L^{6}} \ldots \ldots \ldots \ldots \ldots(20) \tag{20}
\end{array}
$$

S^{\prime} may be taken as one-fourth of the tensile strength, or $\frac{S}{4}$; b is the mean breadth of the stare, or $\frac{R+r}{2 r}$, when the inner breadth is one unit; d is the thickness of the stare, or $R-r$.

Substituting these values, the whole transverse resistance of a bar thus strained whose length is L, is

$$
\frac{3 S(R+r)(R-r)^{2} l^{4}}{2 r L^{6}}
$$

The total bursting tendency is, hence,

$$
\begin{aligned}
C & =\frac{p r L}{L S r \frac{R-r}{R}+\frac{3 S(R+r)(R-r)^{2} V^{0}}{2 r L^{6}}} \\
& =\frac{2 p r^{2} R L}{2 L S r^{2}(R-r)+3 S R(R+r)(R-r)^{2} \frac{L^{\circ}}{L^{0}}}
\end{aligned}
$$

$$
\left.=\frac{2 p r^{2} R L}{S(R-r)\left[2 r^{2} L+3 R(R+r)(R-r) \frac{l^{4}}{L^{j}}\right.}\right] \cdot .(\mathrm{m})
$$

311. Determination of tie Exterior Model of Guns.-In order that the gun may be equally strong throughout, the bursting tendency must be the same at all points of the bore; or, in other words, for all values of L, C, in the foregoing paragraph, must be constant. Equation (m) then becomes that of a portion of the curve of intersection of one side of the gun by a plane containing the axis of the bore.

In this formula, p will obviously be a function of L; and if we suppose the maximum pressure to be exerted upon a length l,of the bore, and the pressure from the forward extremity of l^{\prime} to the muzzle to be inversely as the volume occupied by the gas (and hence, in this case, as the length of the bore thus oceupied), then the pressure at any distance L from the bottom of the bore should be expressed by

$$
\frac{p^{\prime} l^{\prime}}{L}
$$

(p^{\prime} being the maximum pressure), and the foregoing formula would become

$$
\left.C=2 \frac{p^{\prime} r^{2} l^{\prime}}{S^{\prime}} \cdot \frac{R}{(R-r)\left[2 r^{2} L+3 R(R+r)(R-r) \frac{l^{4}}{L^{5}}\right.}\right] . .(\mathrm{n})
$$

Now since $2 \frac{p^{\prime}, r^{2} l^{\prime}}{S^{\prime}}$ is constant, the other factor is constant also, so that this last expression need alone be regarded in determining the relative values of R corresponding to the assumed values of L.
312. From the great excess of the transverse over the tangential resistance for the smaller values of L, and from the rapid diminution of the transverse resistance as L increases, the value of this expression, with a constant value of R, will first increase to a maximum and then decrease as L increases.

In order, therefore, to determine the proper exterior model of a gun, we first decide upon the volume of the charge; and, from the quality of the powder, and the form and weight of the projectile, determine the length of the bore subjected to maximum pressure and the value of this pressure.
313. We then establish the relation betwen l^{\prime} and L, or the law of variation of pressure, and then assume l equal to or a little less than two calibres, since experiment has shown the
transverse resistance to be fully developed for about that length of surface pressed.

Then take R equal to or a little less than the greatest exterior radius of the gun and determine the value of L that renders

$$
\frac{R}{(R-r)\left[2 r^{2} L+3 R(R+r)(R-r) \frac{l^{4}}{L^{5}}\right]}
$$

a maximum. Then if R have been assumed equal to the greatest exterior radius, the gun will be cylindrical from this point back to the curve of the breech; and the curve of that portion forward of this point will be determined by assuming values for L and determining for R such corresponding ralues as will cause expression (0) to remain constant and equal to its maximum.
314. Illustration.-On account of the influence of compression in preventing the development of the full strength of

Fig. 52.
the material, only one-third of the theoretical transrerse resistance was used in computing the exterior radii of the fifteeninch gun, and the pressure was assumed to vary not as L but as $\sqrt{ } \bar{L}$. The formula used was

$$
\left.\mathrm{C}=\frac{2 p r^{2} \sqrt{ } \bar{l}^{\prime}}{S} \times \frac{R \sqrt{L}}{(R-r)\left[2 r^{2} L+R(R+r)(R-r) \frac{l^{1}}{L^{b}}\right.}\right](p)
$$

The value of R used in determining the value of L which rendered the bursting tendency a maximum was 22.5 inches.

The outer and extreme inner dotted lines in Fig. 52 give the exterior form and proportions and the diameter of the bore of the gun as cast. The imner curred dotted lines gire the form and proportions of a gun of the same bore and maximum exterior diameter computed on the hypothesis that the pressure of the gas is inversely as the space behind the projectile (or p varies inversely as L). The middle dotted lines give the form
and proportions of a gun of the same diameter of bore and maximum exterior diameter on the hypothesis that the pressure is inversely as the square root of the space behind the projectile, (or p varies inversely as \sqrt{L}). The full lines show the form and proportions of this gun as finished.
315. It will be observed that this gun is heavier in the chase than the hypothesis would make it. This was done purposely, for the reason that it was intended to use charges of such character as would produce a more uniform pressure in the chase of a gun, for a given maximum pressure, than is obtained by the use of ordinary powder.
316. It should be here remarked that even for guns in which a quick powder is to be used, the lines due to the law that the pressure is inversely as L should not be strictly adhered to, in that part where the most rapid diminution of exterior diameter occurs; for the reason that, in so doing, the front ends of the staves for those lengths of bore subjected to the greatest pressure would be deprived of their proper support and the transverse resistance would be greatly diminished just where it is most needed, and where its value is greatest in a properly modelled gun.

The berinning of the taper should be, therefore, say half a calibre farther forward and the taper less rapid than the loss of pressure in this part of the gun would make it.
317. Experiment has not yet satisfactorily established the law of variation in pressure due to the ordinary cannon powder. But it is thought that no powder is fit for use in guns of large calibre that will not so far approximate to uniformity of pressure as to conform to the law that the pressure is inversely as \sqrt{L}.
318. PREPONDERANCE.-Defintions.-The moment of a solid with reference to a plane is equal to the product of the weight of the solid multiplied by the perpendicular distance of its centre of gravity from the plane.

If moments tending to produce rotation with the hands of a watch are considered positive, evidently those tending to produce rotation against the hands of a watch are negative.

The preponderance of a gun is the moment of the weight of the gun about the axis of the trunnions divided by the distance between the axis of the trunnions and the centre of the elevat-ing-screw-hole. It is the pressure in pounds on the screvr when the gun is level.
319. To Determine tife Preponderance.-It is thus seen that the weight of the gun and its moment about the axis of the trunnions must be determined.

As the measurements in guns are made from the base-ring, it will be convenient to take its plane for the plane of reference. Having obtained the moment of the weight of the gun with reference to this plane, to deduce that about the axis of the trunnions involves but a simple transformation.

The gun being assumed homogeneous, the weights of its parts are proportional to their volumes. The latter can therefore be used in the calculation, and only changed into weights at the last step.

Fig. 53.
In the accompanying figure (No. 53), let A, B, C, and D be the positions of the elevating-screw-hole, the plane of the base-ring, the centre of gravity of the gun, and the axis of the trunnions respectively ; P , the preponderance acting at the ele-vating-screw-hole, and W, the weight of the gun acting at the centre of gravity.

By the principle of the lever, the moments of these forces must be equal ; or

$$
\mathrm{P} \times \mathrm{AD}=\mathrm{W} \times \mathrm{CD}
$$

Letting $\mathrm{AB}=b, \mathrm{BD}=a$, and $\mathrm{BC}=\bar{x}$

$$
\begin{gathered}
\mathrm{P} \times(a+b)=\mathrm{W} \times(a-\bar{x}), \\
\therefore \mathrm{P}=\frac{\mathrm{W} a-\mathrm{W} \bar{x}}{a+b}
\end{gathered}
$$

Since $\mathrm{W}=\mathrm{V} d ;$ by substitution,

$$
\mathrm{P}=\frac{\mathrm{V} a-\mathrm{V} \bar{x}}{a+b} d, \ldots \ldots \ldots \ldots \ldots \text { (a) }
$$

Where V is the volume of the gun in cubic inches.
$V \bar{x}$, the moment of the volume of the gun with reference to the plane of the base-ring.
a, the distance of the axis of the trumions from the plane of the base-ring.
b, the distance of the centre of the elevating-screwhole from the plane of the base-ring.
d, the weight of a cubic inch of the gun-metal.
320. The volume of the gun is obviously the sum of the volumes of the parts of the gun, regarded as solid, diminished by the sum of the volumes of all its carities.

From Mechanics, it is known that the moment of a solid with reference to a plane is equal to the algebraical sum of the moments of its parts with reference to the same plane.

In applying this principle to the case of preponderance, the following summary may be taken as a guide; subject, of course, to such modification as the form of the particular gun considered necessitates.

The portion of the gun forward of the base-ring is divided into parts whose volumes and moments can be computed, the gun being considered solid. Generally speaking, the gun may be divided into a cylinder, a solid of revolution having an odd number of equidistant sections, and therefore coming under "Simpson's Rule," and one or more frustums of a cone.

These moments and those of the trunnion and rim-bases are expressed and marked positive.

The moments of the bore and chamber are expressed and marked negative.

In rear of the base-ring are the breech and cascabel, whose moments are expressed and marked negative.

Should there be any cavities here whose moments need be considered, these are expressed and marked positive.

This distinction of signs flows from the definition of positive and negative moments.

$$
\begin{align*}
& \text { Since } V \bar{x}=\text { sum of the moments, } \\
& \qquad \bar{x}=\frac{\text { sum of the moments }}{\text { sum of the volumes }} \ldots . \tag{b}
\end{align*}
$$

321. The formula is written in this manner merely to save space. The division indicated in the second member is not performed, as the terms of the fraction, and not its value, are sought.

The moments are collected and placed in the numerator with their appropriate signs; the denominator being similarly made up of the volumes.

Factor's common to the two terms are then taken out, and written before the algebraical sum of the resulting quotientsand, in turn, such of these quotients as contain common factors are combined into one. By thoroughly carrying out the princi-
ple of factoring and combination, much time and labor may be saved in computing.

The indicated additions in the numerator and denominator are performed, and the results used in the expression for the preponderance.

It must be borne in mind that we have assumed the metal to be homogeneous, though in practice, the breech is more dense than the chase, owing to the mode of casting; lence, the preponderance, as calculated, is always somerwhat less than in reality.

This excess of weight, in rear of the trumnions, is reduced to a minimum to allow the breech to be easily elerated or depressed. It is practically impossible to place the trumnions so that there shall be no preponderance; nor has it been deemed advisable to dispense with it entirely in Navy guns, as the weight of the projectile in loading would depress the muzzle, and even when home, the breech would not readily follow down the screw for elevation.

Examiple.

322. The form and dimensions of a $X V$-inch gun being given in the accompanying diagram (Fig. 5t) and table, to compute its preponderance.

Dimensions.

	Lexgtil iv inches of												
	AC	AD	AE	AF	AG	AH	AK	AT	AU	AL	ATI	AO	AP
42,000	23	35	37.5	45	55	65	\% 5	85	95	146	24	28	31

Diameter, in inches, at

A	C	D	F	G	H	K	T	U	L	O	P
48	48	47.8	45	39.8	36.2	33.2	30.8	29.0	21.0	12.0	12.0

Trunnions.

Length.	Span of Rim-bases.	Diameter at	Length of	Diameter at			
QR	QS	Q	R	ac	ab	b	c
5.5	48	12	12	146	15	15	$1 \tilde{y}$

Taking the moments of the parts of the gun with reference to the plane of the base-ring, due rearard being had to the signs, gives equation (1) [from formula (b)].
323. a. Volume of cylinder $=\pi r^{2} h=\pi \times 24^{2} \times 35$.

Its centre of gravity is distant ${ }_{2}^{\frac{h}{2}}$, or 17.5 from its base. Its moment, therefore, is $\pi \times 24^{2} \times 17.5 \times 35$.
321. 6. By Simpson's Rule, the moment of the solid DV with reference to the plane of its first section is equal to

$$
\frac{d}{3}\left(h_{1} x_{1}+4 h_{2} x_{2}+2 h_{3} x_{3}+4 h_{4} x_{4}+2 h_{5} x_{5}+4 h_{6} \lambda_{6}+h_{7} x_{7}\right)_{2}
$$

and its volume is equal to

$$
\frac{d}{3}\left(h_{1}+4 h_{2}+2 h_{3}+4 h_{4}+2 h_{6}+4 h_{6}+h_{7}\right)
$$

the h 's being the areas of the sections, the x 's their distances respectively from the first section, and d the common interval. Substituting the numerical values of these quantities, the expression for the moment becomes

$$
\begin{gathered}
\frac{10}{3} \pi\left(23.9^{2} \times 0+4 \times 22.5^{2} \times 10+2 \times 19.9^{2} \times 20+4 \times 18.1^{3}\right. \\
\left.\times 30+2 \times 16.6^{2} \times 40+4 \times 15.4^{2} \times 50+14.5^{2} \times 60\right),
\end{gathered}
$$

and that for the volume

$$
\begin{aligned}
& { }^{10} \pi\left(23.9^{2}+4 \times 22.5^{2}+2 \times 19.9^{2}+4 \times 18.1^{2}+2 \times 16.6^{2}+\right. \\
& \left.\quad 4 \times 15.4^{2}+14.5^{2}\right),
\end{aligned}
$$

which reduce to $\frac{10}{3} \pi \times 157,495.4$ and $\frac{10}{3} \pi \times 0,408.7$.
Dividing the moment by the volume gives the distance of the centre of gravity of the solid from the first section, equal to 24.58 . Hence the moment of the solid with reference to the plane of the base-ring is

$$
\begin{aligned}
& \frac{10}{3} \pi \times 6,408.7(35+24.58)=\frac{10}{3} \pi \times 6,408.7 \times 59.58 . \\
& \text { 325. c. Volume of a frustrum }=\frac{\pi}{3} h\left(R^{2}+R r+r^{2}\right),
\end{aligned}
$$

and its centre of gravity is distant from its larger base

$$
\frac{h}{4} \frac{R^{2}+2 R r+3 r^{2}}{R^{2}+R r+r^{2}}
$$

where h is the altitude of the frustrum, R and r the radii of the larger and smaller bases respectively; hence the moment of the frustrum with reference to the base-ring is equal to

$$
\begin{aligned}
& \frac{\pi}{3} \times 51\left(14.5^{2}+14.5 \times 10.5+10.5^{2}\right) \times\left(95+\frac{51}{4} \times\right. \\
& \left.\frac{14 . \dot{5}^{2}+2 \times 14.5 \times 10.5+3 \times 10.5^{2}}{14.5^{2}+14.5 \times 10.5+10.5^{2}}\right)=17 \pi \times 55,691.3
\end{aligned}
$$ and its volume $17 \pi \times 472.7$.

526. d. The trunnions are crlinders whose rolumes are $\pi \times r^{2} \times h=\pi \times 6^{3} \times 5.5$, and their centres of gravity are distant from the base-ring 37.5. Their moment is $2 \pi \times \dot{\theta}^{2} \times$ 5.5×37.5.
527. e. The rim-bases are sections of cylinders br cones. The expressions for their volumes and the positions of their centres of gravity are integrals of such complicated forms, that, in practice, the rim-bases are taken as cylinders; on account of their small volume and their proximity to the centre of gravity of the gun, the error introduced through this assumption is so small as to be inappreciable.

Volume of each rim-base $=\frac{1}{2} \pi \times 7.5^{2} \times . \%$.
Moment of both rim-bases $=\pi \times \pi .5^{2} \times . \pi 5 \times 37.5$.
328. f. The breech is a hemisphere whose rolume is $\frac{2}{3} \pi r^{3}$. and moment with reference to the plane of the base is $\frac{2}{3} \pi \times r^{3}$ $\times \frac{3}{8} r$, or $\frac{2}{3} \pi \times 24^{3}=2 \pi \times 2 \frac{1}{2}^{2} \times 8$, and $\frac{2}{3} \pi \times 2 t^{3} \times \frac{3}{5} \times 24$ $=2 \pi \times 24^{2} \times 8 \times 9$, respectively.
329. g. The cascabel is taken as a cylinder whose height is

7 , and its radius 5 . Its rolume, therefore, is $\pi \times 5^{2} \times 7$, and its moment $\pi \times 5^{2} \times 7(24+3.5)=\pi \times 5^{2} \times 7 \times 27.5$.
330. h. The metal of the juncture of the cascabel with the breech may be assumed, in practice, to compensate that taken from the screw-hole; both are neglected.
331. i. The bore is a cylinder whose height is 131 , its radius 7.5. Its volume, therefore, is $\pi \times 7.5^{2} \times 131$, and its moment $\pi \times 7.5^{2} \times 131(15+65.5)=\pi \times 7.5^{2} \times 80.5 \times 131$.
332. j. The chamber is taken as a paraboloid of revolution whose height is 15 , and radius 7.5 . Its rolume, being half that of the circumscribing cylinder, is $\pi 7.5^{2} \times 7.5$. Its centre of gravity is distant $\frac{2}{3}$ its height from the vertex. Its moment, therefore, is $\pi \times 7.5^{2} \times 7.5 \times 10$.
333. Substituting these numerical expressions in equation (1) gives equation (2).
(See page 110 for equations.)
334. To Deternine the Position of the Trunnions.-In designing a gun, the preponderance is decided upon beforehand, thas giving rise to the inverse problem, "For a desired preponderance, where should the trunnions be placed?"

The weights and moments of the trunnions and rim-bases are neglected, as being at the axis about which the gun rotates, these cannot perceptibly affect the result. The remaining volumes and moments are obtained as before.

Referring to equation (a) (Art. 319), P is now known, and $\mathrm{BD}=a$ becomes the unknown quantity to be determined. Solving this equation with reference to a gives equation (c).

$$
\begin{equation*}
a=\frac{P b+V \bar{x} d}{V d-P} \tag{c}
\end{equation*}
$$

For convenience P may be assumed equal to $Q d$. With this substitution and the cancelling of d in numerator and denominator

$$
\begin{equation*}
a=\frac{Q b+V_{\bar{x}}}{V-Q} \cdots \tag{d}
\end{equation*}
$$

Example.

335. In the XV-inch gun already computed, where should the trunnions be placed that the gun may have a preponderance of $1,78 \pm \mathrm{lbs}$?

Here $Q=\frac{1784}{7,26}=6,861.54, b=28, V \bar{x}=5,980,271.2$, and $V=162,087 . \%$.
$\pi \times 24^{2} \times 17.5 \times 35+\frac{10}{3}-\pi \times 381830.3+17 \pi \times 55691.3+2 \pi \times 6^{2} \times 5.5 \times 37.5+\pi \times 7.5^{2} \times .75 \times 27.5-2 \pi \times 24^{2} \times 8 \times 9-\pi \times 5^{2} \times 7 \times 27.5-\pi \times 7.5^{2} \times 131 \times 80.5-\pi \times 7.5^{2} \times 7.5 \times 10$

Substituting these numerical values in equation (d), and solving,

$$
a=\frac{6861.54 \times 28+5980271.2}{162087.7-6861.54}=\frac{6172394.3}{155226.2}=39.76 .
$$

Hence the axis of the trunnions must be placed at the distance of 39.76 inches from the base-ring in order that the gun may bear the desired preponderance.
336. To Deteriinte tite Effect on tite Preponderance of a Cifange in the Position of tie Trunnions.

Different values of P are taken, and the corresponding values of a computed. P and a are assumed to vary proportionally, and the variation in pounds of P for a change of a tenth of an inch of a thus obtained.

This assumption is not absolutely true, but nearly enough so for all practical purposes.

Example.-Had we taken 780 lbs . for the desired preponderance of the XV-inch gun, a would have been found equal to 38.12.

Hence changing the position of the axis of the trunnions by 1.64 inches, has caused the preponderance to vary by 1004 lbs . -or 61.2 lbs . for each tenth of an inch.

CIIAPTER III.

CAST GUNS.

Section I.-Standard of Tron.

337. Smeliting of Iron for Cannon."-It is in the smelting furnace that the character of the iron is fixed. Iron of good character and high susceptibility may be spoiled by its treatment at the foundry; but this, with ordinary experience and intelligence, ought rarely to occur.

It is impracticable, with our present knowledge, to make good and reliable guns from iron that leaves the smelting-furnace with bad qualities.
338. The smelting of iron is a purely chemical process, and should be conducted with the same regularity and precision as any other important chemical process. There are so many disturbing causes tending to affect its character and qualities, that, after every precaution shall have been taken to remove them, perfect uniformity in the quality of the iron produced from day to day cannot be effected, yet a near approximation to uniformity is practicable.
339. All the stock for a "blast" of gun-iron should be carefully prepared and housed before beginning to "blow." The ore should all be roasted and well mixed so as to be as nearly uniform, as to size of lumps and all other qualities, as possible.

The charcoal should all be made as nearly as possible from the same kind of wood, of the same uniformity as to quality, and well mixed together after charring. All the stock should be carefully weighed and supplied to the furnace at regular intervals of time.

340 . The pressure, temperature, and hygrometrical condition of the "blast," should be kept as nearly constant as possible. The temperature of the blast may be kept very nearly constant without using what is termed a "hot-blast," by warming it just enough to bring it above the highest summer temperature.

[^12]341. The quantity of moisture may, it is believed, be kept nearly constant by passing the blast some distance over water heated to the proper temperature. And this may be readily done by passing the blast through a long horizontal tube, like a cylindrical steam-boiler, partly filled with water, and kept at a constant temperature ly the waste heat from the furnace.

The temperature of the water should be such as to satmrate the blast with moisture, and thus render it hygrometrically independent of atmospheric changes.
342. Piling the Pigs.-Supposing a standard of quality to have been determined (Art. 374), with the stock all prepared for a giren number of guns, and having determined by comparison with the standard the quality of iron required, a further approximation to identity in quality of the metal in the guns may be made by casting each run of metal from the smelting-furnace into a number of pigs of equal size, something greater than the number of the guns to be made, and piling them in separate piles-each run of metal furnishing one pig to each pile.
343. Each pile should contain metal enough for one gun and one test-cylinder ; and be kept separate and distinct from all others in transportation, and be repiled in the foundry-yard in the same order as at the smelting-furnace: one gun being made from each pile, after the treatment which the iron should receive at the foundry shall have been determined by experiments made on the iron in the surplus piles. The pig's should be cast in molds as prepared from a pattern, so as to be smooth and free from adhering sand as possible.
344. Difference in Quality.-The difference between iron as it exists when presented for use in "pigs" and when in the body of the finished gun is very great, sometimes amounting to a difference in density of more than 20 pounds per cubic foot, and in tenacity more than as 1 to 2.

This serves to show how unreliable the tests of the first fusion pig-iron are, as means for determining the quality of iron and its suitableness for making cannon.

345 . The quality of cannon may be improved by endeavoring to ascertain the different qualities of the metal used in making them, and the best methods of treating it in the processes of melting, casting, and cooling.

346 . It is found that some kinds of iron are susceptible of very great improvement, by different methods of treatment at the foundries; while other kinds are at their maximum strength in the crude pigs. The cause of this difference in the susceptibility for change and improvement will doubtless be found in
the qualities of ores used, and in the processes of smelting them.
347. The following table enables us to compare the various qualities of cast-iron and bronze, and see the variations which occur in each.

Various qualities of cannon metals.*

Metals.	Density.	Tevactity.	Transverse StRENGTH.	$\begin{gathered} \text { Compres- } \\ \text { sive } \\ \text { Streagri. } \end{gathered}$	Hardness.
Cast-iron \int Least...	6,900	9.000	5,000	84,529	457
Cast-iron. . , Greatest	7,400	45,970	11,500	174,120	3:3. 51
Wrought- \{ Least...	7,704	38,027	6,500	40,000	10.45
iron. . . . , Greatest	7,858	74,592	. . .	127,720	12.14
Bronze.... \{Least. .	7,978	17,698		4.57
Bronze.... \{ Greatest	8.953	56,786			5.94
Cast-steel. $\{$ Least...	7,729			19×,944	
Cast-steel. Greatest	7,862	128,000	23,000	391,985

A prominent feature of this table is that which shows the great difference between the lower and higher grades of the same metal. In cast-iron the density differs as 6.9 to 7.4 . a difference equal to 31 pounds per cubic foot; in tenacity it differs as 45,970 to 9,000 pounds per square inch, or as 5 to 1 , and in hardness as 7 to 1 . The bronze varies in tenacity from 56,786 to 17,698 , more than 3 to 1 , and in density it is as 5.953 to 7.978 , equal to 61 pounds in the cubic foot.

34S. Effects of differext Treatient.-Usually the quality of iron is greatly modified and improved by remelting and long continnance in fusion. But all kinds of iron are not affected in like manner by these processes.

In examining the effects of the different treatment of iron at the foundry, such samples should be chosen as will best exhibit the following particulars and characteristics, viz.:

1st. The properties which distinguish the different grades of iron made from the same ores at the same furnace.
$2 d$. The changes in the mechanical properties of iron produced by repeated meltings of one of these grades, separately, showing the changes effected at each melting.

3 d . The changes produced by repeated meltings of the different grades of iron and of different fusions mixed.

[^13]4th. The changes produced in iron of the same melting and quality, by casting it into masses of different bulk, and by different methods of cooling.
349. The softest kinds of iron will endure a greater number of meltings with advantage than the higher grades. It appears from Major Wade's experiments with Greenwood iron that when it is in its best condition for casting into proof-bars of small bulk, it is then in a state which requires an arditional fusion to bring it up to its best condition for casting into the massive bulk of cannon.*

In selecting and preparing iron for cannon, we may proceed by repeated fusion, or by varying the proportions of the different grades and different fusions, until the maximum tenacity is attained.
350. Variation of Density and Tenacity.-An increase of density is a consequence which invariably follows the rapid cooling of cast-iron, and as a general rule, the tenacity is increased by the same means. The density and tenacity usually vary in the same order. It appears that the tenacity generally increases quite uniformly with the density, until the latter ascends to some given point; after which an increased density is accompanied by a diminished tenacity.

The turning-point of density at which the best qualities of gun-iron attain their maximum tenacity appears to be about 7.30. At this point of density, or near it, whether in proofbars or in gun-heads, the tenacity is greatest.

As the density of iron is increased its liquidity when melted is diminished. This canses it to congeal quickly, and to form cavities in the interior of the casting.
351. If in preparing iron for guns it is carried too high, either by long continuance in fusion or by using a large portion of a liard grade of iron, the casting will be lost.

High Iron.-The condition of the iron at casting is said to be too high, when the process of decarbonization has been carried too far; and the result will be a very hard iron.
352. Practical Treatment in Fusion.- - In the practical treatment of iron in fusion while preparing it for casting into cannon, it may be safely continued in fusion, with increasing improvement of its quality, so long as sufficient liquidity is retained to insure an exemption from cavities in the interior of the casting.

The point at which such cavities of a fatal character will form, will be reached before arriving at the point of density for maximum tenacity.

[^14]353. Tests while iv Fusion.- A convenient method for determining the condition of the iron while in fusion, and whether it has arrived at the proper condition for casting, or should be longer continned in fasion, is found, in dipping from the melted pool of iron and casting into small bars about 10 inches long and from 1 to 2 inches square at one end, and tapering to a point at the other end. The first one is taken from the furnace and cast soon after the iron is all melted, and others are east at such intervals afterwards as may be judged proper. They are cast vertically, point downwards, in sandmolds, and cooled rapidly.
354. Great care must be taken in the preparation of the molds for these samples, as upon sample-bars so small, eren a little, more or less moisture of the sand of the molds will make a difference as to the rate of progress towards white iron.
355. As samples cannot be olitained from the heads of large guns (Art. 367) until several days after they are cast, separate proof-bars are made and tested, to aid in directing the progress of the work. This enables the founder to determine the relative quality of the iron soon after it is cast, and in the intervals between each successire daily casting.
350. The proof-bars are broken in different places, and the condition of the iron is judged by the appearance of the several fractures.

These fractures will exhibit rarious aspects, from white at the small end to dark gray at the large end; and the bars at the latter periods of the fusion will exhibit the white at a greater distance from the small end, and the mottle. bright, and lighter shades will be found advancing towards the large end. This method, althongh much less reliable than that of an actual measure of density and strenglh, is convenient, because of its ready application at short intervals, Thile the iron is in fusion; and a practical eye will soon be able to mark the progress of the changing quality of the iron, and to determine the proper time for casting the gun.
357. CRYSTALLIZATION.--Of the rarious circumstances which affect the strength of camon-metal, the most important appear to be those which comnect themselves with crystallization.

General Law.-It is a law of the molecular aggregation of crystalline solids, that when their particles consolidate under. the influence of heat in motion, their crystals arrange and group themselves with their principal axis in lines perpendicular to the cooling or heating surfaces of the solid; that is, in the lines of direction of the heat-ware in motion, which is the
direction of least pressure within the mass ; and this is true, whether in the case of heat passing from a previously fused solid in the act of cooling and crystallizing on consolidation, or of a solid not having a crystalline structure, but capable of assuming one upon its temparature being sufficiently raised, by heat applied to its external surfaces, and so passing into it."

3ä. Molecular Constriftion of Cinnon Metals.-The metals used in gun construction are crystallizing bodies, which in consolidating obey more or less perfectly, according to their conditions, this law; so that in castings of these metals, the planes of crystallization group themselves perpendicularly to the surfaces of external contour; that is, in the directions in which the heat of the fluid metal has passed outwards from the body in cooling and solidifying. Because the crystals of these metals are always small and are never very well pronounced, these directions are seldom very apparent to the eye, but they are not the less real.
359. Developnext of Cristals.-Their development depends upon:

First. The character of the metal itself; all irons that present a coarse, large-grained, dark, or spangled fracture, contain a large proportion of uncombined carbon or graphite, and form in castings of equal size the largest crystals.

Second. The size or mass of the castings-the largest castings presenting for any given variety of metal the largest and coarsest aggregation of crystals; but by no means the most regular arrangement of them, which depends chiefly upon-

Third. The rate at which the mass of the casting has cooled, and the regularity with which heat has been carried off by conduction from its surfaces to that of the mold adjacent to them.
360. Chilled Castings.-Those castings in which the fluid iron is poured into a nearly cold and rery thick mold of cast-iron, whose high conducting power rapidly carries off the heat, present the most complete and perfect development of the crystalline structure perpendicular to the chilled surfaces of the casting. In such, crystals are often found penetrating more than an inch into the substance of the metal, clear and well-defined.
361. Illustrations.-These prevailing directions of crystalline arrangement may be made more clear to the eye by the accompanying Figure 55, which slows sections of a round and a square bar of cast-iron where the crystallization is well devel-

[^15]oped. In the round bar the crystals all radiate from the centre ; in the square bar they are arranged perpendicularly to the four sides, and hence have four lines in the diagonals of the

Fig. 55.
square-in which the terminal planes of the crystals abut or interlock, and about which the crystallization is always confused and irregular.

The result of this arrangement is to create planes of weakness where the different systems of crystals intersect.
362. Effect of Crystallization on Strexgtit.-The size and arrangement of the crystals of a metal have an important influence on its strength. This arises from the fact that the adhesion of the crystals by the contact of their faces is less than the cohesion of the particles of the crystals themselves, and that conseruently rupture takes place along the larger or principal crystalline faces.

A metal will therefore be strongest where its crystals are small.
363. Size of Crystals.-The size of the crystals of a particular metal depends on the rate of cooling of the heated mass; the most rapid cooling giving the sinallest cerystals. The size of the crystals or coarseness of grain in castings of iron depends, for any given make of iron and giren mass of castings, upon-

First. The high temperature of the fluid iron abore that just necessary to its fusion, which influences-

Second. The time that the molten mass takes to cool down and assume again the solid state.

The lower the temperature at which the fluid iron is poured into the mold, and the more rapidly the mass can be cooled down to solidification, the closer will be the grain of the metal, the smaller its crystals, the fewer and least injurious the planes of weakness, and the greater the specitic gravity of the castings.

Slow cooling develops a coarse, uneven grain, with large but thoroughly irregular and confused crystallization ; cast-iron
with such a grain is never strong or cohesive, though soft and extensible.
364. The more rapidly a casting once consolidated can be cooled, without introducing injurious effects, the finer, closer, and more even will be its grain on fracture, and with any given metal the greater will be its strength. The rate of cooling cannot be accelerated beyond a moderate limit. If this limit be exceeded, as by casting in a cold, thick, highly conducting metallic mold, the iron is "chilled," its constitution changed, and the carbon, not having time to crystallize out, remains combined or diffused through the mass.

It cannot be so fast as to endanger mnequal contraction, nor must it be so fast in large castings, such as guns requiring to be "fed," from a feeding or sinking-head, with fresh portions of hot fluid metal during consolidation to fill up the internal cavities or porosity due to contraction and crystallization, that this feeding cannot be accomplished.

The larger the mass of the casting, with any given quality of iron, generally the coarser is the grain ; that is, the larger are the crystals that develop themselves in the mass.

The same metal that shall produce a fracture bright gray, mottled, and withont a crystal visible, in a small bar, will in a large casting produce a dark, confusedly crystalline surface of fracture as coarse as granite rock.
365. Contraction of Castings.-A certain amount of contraction, on becoming solid from the liquid state, occurs in all castings. For iron this is variable, and depends upon the mass of the castings; being greatest for small and least for large castings, of the same make of iron, and poured at the same temperature.

There are two conditions that principally affect the degree of contraction, namely, the extent to which the fluid metal as entering the mold has been expanded by elevation of temperature, and the state of final aggregation of the particles, depending upon the size of the mass.
366. Effect of Sudden Change of Form in Castings. Sudden changes of form or of dimensions in the parts of castguns, besides the injury they do to the crystalline structure of the mass, introduce violent strains, due to the unequal contraction of the adjoining parts, whose final contraction has been different.

For this reason, in the method of casting heavy guns as adopted in Sweden, it is considered necessary to form the exterior of the casting as a perfect cylinder.
367. Time Required for Cooling Castivgs.-The enormous
time required by a large casting for cooling is not gonarally known. A solid casting sufficiently larga for a XV-inch gen weighs about 35 tons; it is red-hot three days after having been cast, and only becomes cold enough to handle after a fortnight. The cooling of a casting must be uniform, so far as uniformity is possible. This is impossible strictly in any casting; the approach to it is most difficult in heary solid castings, and hence the great advantage of the practice of hollow casting upon a suitably made core, admitting of internal cooling by artificial means.
368. Effects of Irregllar Cooling of Castivgs.-The contraction of cast-iron in becoming solid introduces strains into the mass by consolidation of one portion of the casting lefore another. When a large gun is cast solid and the metal cools in the ordinary way, the external portions solidify long before the interior has ceased to be liguid, and the process of solidification is propagated as it were, in parallel layers from the outside to the centre of the mass. When the first layer or thickness of solid crust has formed in the exterior, it forms a complete arch all round, so that the contraction betreen fluidity and solidification of each subsequent layer is accommodated br portions of matter withdrawn radially from the interior towards the still cooling exterior; that is to say, from a smaller towards a larger circumference.
369. The final effect of this, propagated to the centre of the mass, is tro-fold.

First. To produce a violent state of internal tension in the particles of the metal in radial lines from the axis of the gun iuward as a cylinder, tending to tear away the external portions of the mass from the internal nucleus.

Second. To produce about the centre or along the axis a line of weakness, and one in which the texture of the metal is soft, porons, and of extremely low specific gravity.
350. The effect of this unequal contraction may be so great as to crack the interior metal of cast-iron cannon, even before it has been subjected to the force of gunporder, and large masses of iron which have been cooled very rapidly by casting them in iron molds, have been known to split open longitudinally, from no other canse than the enormous strains to which they are thus subjected.
371. Sininvg-head.-Guns have long been cast in a vertical position and with a certain amount of head of metal abore the topmost part of the gun itself. From this head the casting is fed with fresh portions of fluid metal during consolidation; it also affords a gathering-place for all scoria or other foreign
matter. But the great value of increased head of metal is in adding to the density of castings, and so also to their strengtl. Fineness of grain, smallness of crystal, density, increased cohesion and elasticity, are all induced by casting under largely increased statical heads of fluid metal. By apparatus not dificicult to contrive, atmospheric pressure or that of condensed air might easily be brought to aid that of the head of metal, with economy in reducing the labor and cost of the mass of metal to be melted, and with the advantage of enabling the pressure on the solidifying mass to be varied.
372. Effect of Age on Endurance.-The length of time that a piece has been cast influences its endurance. A gradual adjustment takes places of the internal strains produced in cooling, and lise many other substances iron possesses the property of accommodating itself to an unnatural position, and finally of adopting this as its natural one.
373. Improvement in Castings.-The principal improvement in the fabrication of cast-iron guns, is Captain Rodman's process of cooling them as far as possible from the interior, and for this purpose casting them hollow.

The design is to remedy the various defects of the old process; principally to obviate the tendency of solid castings to burst by their own initial strains, by reversing the process of cooling and shrinking described above. Since there would then be no force opposed to the contraction of the inner layers of metal, except the trifling cohesion of the liquid or pasty mass that they shrink away from, they would not be left in tension, and therefore they could not exert any power to pull the exterior layers into compression.

The method employed is, to carry off the internal heat by passing a stream of water through a hollow core, inserted in the centre of the mold-cavity before casting, and to surround the flask with a mass of burning coals to prevent too rapid radiation from the exterior. (Art. 445.)

Extensive trials have leen made to test the merits of this plan, and the results slow that cast-iron cannon made by it are not only stronger but are less liable to enlargement of the bore from continual firing, the surface of the bore being the hardest and densest part of the casting, and best calculated to resist pressure and abrasion.,
374. STANDARD OF QUALITY.-Before proceeding to execute a contract for cannon, a trial-gun should be made and exposed to extreme proof with service charges. After undergoing this proof in a satisfactory manner, the trial-gun should serve as a standard, and the proportions of the several kinds of metal
used, and the methods employed in its manufacture should bs followed in all respects in the fabrication of other guns. With the trial-gron should be cast a sample-gun or a cylinder of equal diameter, and at least half the length of the gun, from which test specimens should be cut and tested.
375. The sample-gun or cylinder should be of the same diameter as the guns to be made, and should be made under. the same circumstances which are to attend the preparation of the iron for, and the casting and cooling of, the guns themselves.

The object of the sample is to obtain specimens which have not been subjected to previous strain and vilration, as would be the case if taken from the fragments of the broken trialgun.

For it is impossible to reason back to what would have been either the capacity for work or the work due to elasticity of an unstrained specimen by knowing to what extent these properties were possessed by that specimen after it had been subjected to both strains and vibrations of unknown intensity and number.

And although it is interesting to know to what extent these properties are possessed by the fragments of a worn-out gun, yet it would be of far greater practical utility and importance to know the value of these properties in the new untried guns.

Specimens thus obtained would afford reliable results; and in connection with the powder-proof with service-charges of guns, cast at the same heat, these results would become standards with which to compare other lots of iron or other guns, and thus determine beforehand the number of rounds which a gun will stand.
376. Comparison witi Standard.-While the cannon are making, the inspecting ofticer examines and tests the metal before it is used, witnesses its melting and casting, and tests the metal in the first gun made, before the second one is cast. If the first proves unsatisfactory, such changes are made, either in the material or in its treatment, as will tend to produce the desired result.

This practice of ascertaining the quality of the materi:al used, and of the casting made from day to day, as the work proceeds, enables the founder to distinguish the material, to select those of best quality, and to treat them in the best manner.

If these tests are satisfactory, the inspecting officer is assured of the good quality of the guns, before any proof by firing is made. And this supersedes the necessity of using excessire proof-charges in the final proof, which may do serious and even
fatal injury to guns, without bursting them or leaving any visible marks of the injury.

- 377. Means of Conparison.-The testing-instrument (Art. 396) furnishes to the founder a convenient and accurate method of comparing the qualities of iron. It therefore enables him to select his materials before casting, with greater certainty and safety. He can also by this means determine the comparative utility of different methods of melting and casting the gun. As the quality of the iron is essentially changed by the different ways of treating it while in the molted state, and by the different means adopted for cooling it after it is cast into the mould, the testing-instrument enables one to ascertain the effect produced by these processes in all their several stages of progress, and to decide upon that which is found most suitable for making the guns of the best quality.

378. Contract with Founder.-The metal of guns made for the naval service is subjected to tests to ascertain its hardness, specific gravity, and tensile strength.

The particular hardness, density, and strength which the metal must possass is specified in the special contracts with the Founder.

Each foundry keeps an accurate record of the character, mixture, and mode of working the metal of each gun, so that its foundry number will at once refer to its class, date, weight, etc.
379. Samples.-The quality of the iron as it exists in the gun is more accurately represented by samples taken from its sinling-head than by any which can be obtained from other parts of the casting without injury to the gun. These samples are taken from the lower end of the sinking-head, next to the muzzle of the gun, and are cut out so that their axes will be parallel to the axis of the casting, at a distance from the centre of the head equal to the distance between the axis of the bore and the middle of the metal in the wall of the piece when bored.

When guns burst from extreme proof, samples are taken from different parts to test the strength of the metal. The radial specimens are generally found to be somewhat stronger than the longitudinal from the same cross-section of the gun. (Art. 362.)
380. Marking-samples.-The sinking-head and the gun to which it belongs have the same foundry-number.

The samples lave the foundry-numbers and the letter II stamped upon both ends of them.

All samples taken from any gun-casting, whether from the
sinking-head, the proof-bars, or other casting, from the same melting, bear the foundry-number of the gun. The letter II, added to the number, denotes that the sample is taken from the head. OH denotes a sample from near the outer or exterior surface. IHI an inner sample, and other letters are used denoting the locality from which the specimen has been taken. The letter B on any sample, denotes that it was taken from a proof-bar. The figures which follow the letter indicate the fusion or the number of times the iron has been melted.
381. Valee of Tests.-The samples are tested as soon as practicable. The tests are carefnlly made and recorded with the oher proofs and inspections, and afford the means of comparison between the metal of different guns and of different foundries.

No particular value is attached to these tests as an indication of the absolute endmance of the gun, but only as exhibiting the similarity that the several guns bear to the standard. Experience has shown that a variation of about 2,000 pounds more or less, in the tensile strength, is a sufficient limit to be allowed, and within which to contine the founders; an exact adherence being impossible.
382. Standard Speciaen.-In order to obtain a suitable sample for de-

Fig. 56. termining the density and strength; a crlindrical piece about four inches long and two inches in diameter is taken, and prepared by reducing it to a form that will fit the holders of the testing-machine (Fig. 56), and of such bulk as will be conven:ent for ascertaining its density. In order to obtain reliable comparative results, it is necessary that the specimens slall all conform to the standard in size and shape.
383. To Deternine tie Dexsitt.-The samplè is weighed in air and in pure distilled water; clear rain or river rater may be sulbstituted, if its relative density be first accurately determined.

In taking the specific gravity of iron, the operations are unaroidably performed with water at different temperatures, varying with the state of the weather at the time; and as the density of the water varies with its temperature, it is necessary to note the temperature of the water at the time of weighing the sample, and to reduce the ascertained density to what it would have been if the sample had been weighed in water at the temperature of the assumed unit.

A thermometer is suspended in the water, and its temperature is noted at each weighing. The temperature of $60^{\circ} \mathrm{F}$. is taken as the standard ; and when a sample is weighed in water of any other temperature, the weight of water displaced by it is corrected by the table compiled for that purpose.

The instruments employed for determining the density of specimens are-The Hydrometer and the Densimeter, or Balance for specific gravaties.

3St. The Hydroneter.-Fig. 57 exhibits the form of the instrument. The bulb B is of thin copper about 7 inches diameter at top, and 8 inches high, having a brass handle, II, and a solid stem of brass, S , screwed into the bottom.

A vertical index-stem made of steel, I, is inserted in the upper part of the handle. The upper end of this stem receives the weight-pan, W, which is supported in its place by a conical socket on its under side.

The height of the hydrometer, from the bottom of the ball to the weight-pan, is 21 inches. Its gen-

Fig. 57. eral form and the distribution of the metal within it, place the centres of gravity and buoyancy so far apart that it readily takes a vertical position, when immersed, and will deviate very little from it, however irregularly it may be loaded.

Its maximum buoyancy is about 14,000 grains; but this may be reduced when weighing lighter samples, by adding at the bottom one or more adjusting-weights, which may vary it one-half.

The index-stem is of very small diameter, a length of one inch displacing one grain of water.

The zero-mark is in the middle of the length of the stem.
The weights are marked in grains, decimally divided, varying from one-tenth of a grain to 4,000 grains.

The vessel which contains the water is a glass jar aboat a foot in diameter and two feet in height. It must be placed on a level support, and the height of the water in the jar should be such that when the hydrometer descends to the bottom, the weight-pan shall still be above the surface of the water.

The weight-pan is attached to the index-stem by an open socket, so that it may be removed with its load, and placed on a table, where the weights may be more safely and accurately counted.
385. To Determine tie Dexsity of Water.-The hydrometer may be employed to determine the relative density of distilled and any other kind of water. The weight of the hydrometer, added to its balance-weight in distilled water, at the temperature of 60°, gives the weight of a quantity of pure standard water, which is equal in bulk to the immersed part of the instrument. The weight of the hydrometer and its load when immersed in like manner, in other kind of water at the same temperature, gives the weight of an equal bulk of the latter, and this weight divided by the former, gives the multiplier for correcting the density, when ascertained in any other than pure distilled water.

At the foundries generally, river-water is found to be sufficiently pure for use without needing any correction.
386. To Use tile Instromext.-First load the pan with grain weights until the instrument rests at its zero, and record the sum of these weights, as the balance of the hydrometer. Next, place in the pan the samples together with as many weights as will again bring the instrument to its zero, and record thess weights, as the sample balance in air. The difference between these balances is equal to the weight of the sample in air. Then place the sample on the bulb of the instrument at P, and immerse both until the hydrometer again rests at zero, and record the weights on the pan, as the sample balance in water. The difference betreen this balance and that in air is equal to the weight of the water displaced by the immersed sample. The temperature of the water at the time
of weighing is noted, and if it is not at 60°, divide the weightdisplaced by sample, by that number in the table which is op-posite the noted temperature, and the quotient will give thecorrected displacement for the temperature of 60°. Then, theweight of the sample in air divided by the corrected displace-ment gives the density of the sample.
sample No. 4, H. Grains.
Balance of the hydrometer. 11485.0
Balance with sample in air. 923.0
Difference $=$ weight of sample in air. 10562.0
Balance with sample in water. 2370.4
Balance with sample in air. 923.0
Difference $=$ weight of water displaced. 1447.4
Noted temperature, 722^{10}.
Tabular number, $72 \frac{1}{4}=.995912$.
Then, $\frac{1447.4}{.998912}=1449.0$ corrested displacament,
and $\frac{10562}{1449}=7.289=$ density.
Or by Logarithms-
Water displaced at $72 \frac{1}{4}^{\circ}=1447.4$.
Logarithms.
Tabular number for $721^{10}=.998912$. 1.9995274
Logarithm of corrected displacement. 3.1610612
Weight of sample in air $=10562$. 4.0237461
Corrected displacement. 3.1610612
Density $=7.289=$ 0.8626849

The determination of densities by the hydrometer requires much practice to arrive at correct results, and is, moreover, very tedious.

The densimeter, or balance, may therefore be advantageously substituted for it, the results being occasionally checked by the hydrometer.
388. Thie Densineter,* or Balatce for Specific Gravities, is in principle a simple beam scale of accurate workmanship. As made by Wurdemann, it consists of an open beam of German silver, A (Fig. 58), fitted with knife-edge bearings, and mounted

Fig. 58.
in a hollow standard, B. The central knife-edge, C, upon which the beam is balanced is 1.4 inch long, and those at extremities, d, from which the scale-pans are suspended are 0.0 in . long; all bearing their lengths on steel plates.

When not in use the beam rests on its Y's, $e e$, on a crossbar, F, at the top of the standard.

This cross-bar also supports the scale-pans on separate rests, $y g$, free from contact with their knife-edges.

Through the standard a rod passes for lifting the beam when in use ; it connects with the crank, h.

The standard is set on a brass plate furnished with a circular spirit-level and foot-screws, oo, for accurately levelling it.

[^16]The whole apparatus is enclosed in a glass case to protect it from dust or currents of air; the case is fitted with a sliding front which is counterpoised for convenient manipulation.
389. When not in use the glass case should be kept closed to protect the balance from dust, and a vessel containing crystalized chloride of calcium, to absorb the moisture of the air, ought to be always placed inside the case.

The best arrangement for this purpose is a glass funnel, containing the chloride set in a beaker-glass. The beaker shonld always be emptied before the water reaches the end of the funnel-stem.
390. Adjustments.-The beam is balanced by two adjustments placed above it.

First, by the horizontal screws, $p p$, with milled heads, for the zero of the index below r, and, second, by the large nut, s, on the perpendicular screw for vertical balance. This last, when once set, it is seldom necessary to touch.
391. The Arms are adjusted to equal lengtli. There is to each knife-edge end a steel screw with capstan-head, which when screwed forward will spring out the part upon which the knifeedge rests, and thus lengthen its distance from the centre. Both ends are made thus adjustable, by which means perfect symmetry of the two parts of the beam is obtained and the necessity of screwing back during the adjustment is obviated, since it will merely be necessary to lengthen the arm which proves to be shortest.

To test this the relative place of the seales should be changed after first balancing them exactly, if, after the change either preponderates, it proves that arm to ba the longest. One half the difference is to be corrected with weights, and the other half with the adjusting-screws. Great cantion must, however, be observed in not screwing up too much at a time.

A correct result in weighing may be obtained without this adjustment being absolutely exact, by first balancing the specimen to be weighed, with any convenient substance, then removing the specimen and substituting in its place known weights until equilibrium with the counterpoise is restored.
392. Use of the Instrument.-By the crank, h; placed in front of the case, the centre bearing is gently raised, which, lifting the beam off its Y's, also takes up the scales.

When the baan is completely raised the oscillations of the saales ara arrested by touching the spring-lever, V, on the right of the crank, which works the steadying-pins, $w w$, under each pan.

On abandoning the lever the preponderance of the specimen
or the weight, will immediately be manifested, and additional weights may be added or removed mntil they are in equilibrium.

When placing the specimen and estimated counterbalancing weights in the scales, the beam should always be let down on the supports; but small weights may be added or changed whilst simply arresting the scales with the lever.

The door slould not be pushed up higher than is just necessary to obtain convenient access, as the balance is very sensitice. Care should be taken not to abrade the pans by carelessly putting in the specimens or rubbing to remove dust.
393. Determination of Specific Gratity.-For the determination of specific gravities a German-silver vessel is used just large enough to conveniently hold the specimen, and open at the top, which is planed off perfectly straight so that a plateglass provided for the purpose can be slid over it, and will shut air-tight. This vessel is filled with distilled water, carefully removing air-bubbles from inside the ressel, or drops mechanically adhering to the outside.

Weight and temperature are noted, and a table may be computed, so that this element constitutes for the instrument nsed a constant.

It will be convenient to keep the water in a reservoir of considerable size, to avoid the inconvenience of frequent changes of temperature.

The absolute weight of the specimen haring been previously taken and noted, it is then sabmerged in the ressel, a small pair of tongs being used for the purpose, when it will displace a quantity of water equal to its rolume. The ressel is again covered with the plate-glass, using the same precautions as before, and the weight taken.
394. Since specific gravity is represented by the ratio of the absolute weights of the same rolume of water, and of the article to be determined, we have to divide the weight of specimen by a quantity obtained, by deducting the meight of the ressel, with specimen inserted, from the sum of weight of ressel filled with water, and of the weight of specimen.

Therefore if -
$\mathrm{C}=\mathrm{W}$ cight of ressel filled with water (constant),
W $=A$ bsolnte weight of specimen,
$\mathrm{W}_{\mathrm{s}}=$ Weight of ressel with specimen submerged,
$\mathrm{S}=$ Specilic gravity.
We have

$$
S=\frac{W}{C+W-W_{i}}
$$

Example.

Grains.		Logarithms.
$\mathrm{C}=$	8618.5	
$\mathrm{~W}=$	9888.0	3.9951085
$\mathrm{C}+\mathrm{W}=$	18506.5	
$\mathrm{~W}=$	17137.7	
$\mathrm{C}+\mathrm{W}-\mathrm{W}_{1}=$	1368.8	$\underline{3.1363400}$
$\mathrm{~S}=$	7.223	0.8587685

395. Form of Record of Compttation.

By Densimeter.

By Hydrometer.

Section II.-Drechanical Tests.
396. THE TESTING-MACHINE affords the means of ascertaining those properties of metals on which the endurance of guns is beliered mainly to depend.

As yet, however, no standard of properties has been determined, nor is it beliered to be practicable to fix such standard except by connecting the mechanical tests of a metal with the endurance under the powder-proof of the guns made from it.
397. The Rodman Testivg-machine.-This instrument is used to determine the capacity of any metal to resist a tensile, transverse, torsional, or crushing force. It is also used to obtain the indenting-force, and an internal force can be applied for bursting hollow cylinders.
398. Power Exerted.-By a combination of levers and cog-wheels the action of the power employed is greatly augmented and transmitted to the specimen under trial.

The machine consists essentially of a system of three levers, $\mathrm{AC}, \mathrm{A}^{\prime} \mathrm{C}^{\prime}$ and $\mathrm{A}^{\prime \prime} \mathrm{C}^{\prime \prime}$. (Fig. 59.)

The position of the fulcrum in each of these cases is denoted by $\mathrm{F}, \mathrm{F}^{\prime}$ and $\mathrm{F}^{\prime \prime}$ respectively. The power is applied at P , and the position of the weight is denoted by W. The levers are connected by rigid rods.

Fig. 59.
The mechanical advantage of the lever AC is 10 to 1 ; that of $\mathrm{A}^{\prime} \mathrm{C}^{\prime}$ is 20 to 1 , and that of $\mathrm{A}^{\prime \prime} \mathrm{C}^{\prime \prime}$ is 10 to 1 .

We have, therefore, by the formula for componnd levers:

$$
\frac{W}{P}=\frac{10}{1}+\frac{20}{1}+\frac{10}{1}=2000
$$

399. EXPLANATION OF TIIE RODMAN MA-Ciline.-Tire Midder Lever, so called because it is intermediate between the other two, is the upper lever, $\Lambda^{\prime} \mathrm{F}^{\prime}$ (Fig. 60). All its bearing knife-edge pivots are in the same horizontal plane. Its fulcrum, F^{\prime}, is supported by au interior frame which is attached to the screw, D, above it. The knife-edge A^{\prime} connecting by means of a long vertical rod, $\mathrm{A}^{\prime} \mathrm{C}$, with the small lever, $A F$, is ninety seven inches from the fincrum, F^{\prime}, and the knife-edge C^{\prime} connecting by means of a strap, $\mathrm{A}^{\prime \prime} \mathrm{C}^{\prime}$, with the main lever, $\mathrm{A}^{\prime \prime} \mathrm{F}^{\prime \prime}$, is four inches and eighty-tive hundredths from the fulcrum F^{\prime}, making a proportion between the two arms of the lever as 20 to 1 .
400. The Marv Lever, $\mathrm{A}^{\prime \prime} \mathrm{F}^{\prime \prime}$, is the one which acts directly mpon the specimen under trial, and is acted upon by the middle lever throngh a long iron strap, $\mathrm{A}^{\prime \prime} \mathrm{C}^{\prime}$, which connects them. All'its knife-edges are in the same plane.

Its fulcrum, $\mathrm{F}^{\prime \prime}$, is supported by a pair of heavy iron stanchions, BB, fitted to the bed-piece, EE. The knife-edge A" which is linked with the middle lever is ninety inches from the fulcrum, $\mathrm{F}^{\prime \prime}$, and the knife-edge $\mathrm{C}_{. \prime}$, which acts upon the speci-

- men under trial is nine inches from the fulcrum, $\mathrm{F}^{\prime \prime}$, making the power of this lever as 10 to 1 .

401. The Sarall Lever, AF, is the one to which the weights are attached.

All its bearing knife-edge pivots are in the same plane. Its fulcrum, F, is supported by the lower end of the gride, G. G', attached to the main lever stanchions. The knife-edge C, connecting with the middle lever, is two and twenty-five huudredths inches from the fulcrum, F, and the knife-edge A, to which the weights are attached, is twenty-two and five-tenths inches from the fulcrum, F, making the power of this lever as 10 to 1.
402. Tife Combination of Levers.-A combination of the small lever with the middle lever gives a proportion of two hundred to one; and a combination of all three of the levers gives a proportion of two thousand to one. A weight of one pound, therefore, applied to the platforms of the suspending rod, T , on the small lever exerts a force of two hundred pounds on the strap, $\mathrm{A}^{\prime \prime} \mathrm{C}^{\prime}$, connecting with the main lever, and of two thousand poinds at $\mathrm{C}^{\prime \prime}$, where the strain acts upon the sample.
403. Capacity of the Machine.-The weights used are of two denominations, viz., half pounds and five pounds, representing respectively one thousand and ten thousand pounds. Smaller increments of strain than one thousand pounds are noted on the small lever, which is provided with a sliding weight and graduated from zero to ten ; each number representing an additional hundred pounds.

Of the first denomination, there are ten weights, representing a strain of ten thousand pounds, and of the second, there are nine weights, representing a strain of ninety thousand pounds.

The aggregate strains of all the weights or the capacity of the machine being one liundred thousand pounds.

40t. The Cog-whfel Gearing.-The large rertical frame, EII, at one end of the machine (Fig. 60), supports the cog-rheel gearing which is set in motion by a crank.

To the heavy main lerer stanchions, BB , a guide, G.G., is attached; through the upper end of which the small end, G^{\prime}, of the middle lever passes. This guide ascends and descends evenly with the screw, D , and the fulcrum, F^{\prime}, of the lever, by means of a rack and pinion, $L^{\prime \prime} L^{\prime \prime}$, at each end of the revolvingrod, L. A mortise through the guide receives the lever and allows it a free motion to a limited extent. The lever is thus maintained in a position always nearly horizontal, while it remains free to oscillate on its fulcrum in either direction, as the strain or the weights may preponderate. The supports of the
small lever are attached to the guide, G.G', so that it ascends or descends with the middle lever.

Fig. 60.-Testing-machine. (Side elevation).
405. Multiplication of Power.-Fifty turns of the handcrank, I, gives one turn to the horizontal wheel, M, at the top of the frame, E .

A screw nut is cut in the axis of this wheel, through which the vertical screw, D, passes. This wheel, when turned, elevates or depresses the screw, and sets in motion all the movable parts of the machine.

Two turns of this horizontal wheel move the vertical screw one inch, and this requires one hundred turns of the handcrank, and gives one-tenth of an inch of motion to the knife edge of the main lever, where the strain on the samole is exerted.

The cran's to which the power is first communicated moves a distance of seveaty-two inches at each turn, and serentytwo hundred inches for eacla

Fig. 61.-Testing-machine. (End Elevation.) tenth of an inch of motion at the straining-point of the machine. Such a great power is needed only when heavy strains are exerted.

When beginning a strain, or when lowering down the leve:s, the small pinion, o, on the crauk shaft is thrown out of gear, by lifting the latch, N, and shifting the shaft; thus bringing into action the large pinion, R, which change of gearing gives a relocity nine times as great to all the morable parts of the machine, bat the force exerted will be only one-ninth as great as before.
405. Tine Torsion Leter, L', works between trwo heary pillow-blocks, B^{\prime}, fitted on the bed-frame, E , and within these pillow-blocks the journals of the torsion-lever rerolve. Its axle has a cylindrical aperture concentric with its axis. This lerer is set in motion by a chain, S, which connects directly with the middle lever throngh the strap, S.
407. Pedestals for Transverse Strains.-Two hollow morable pedestals, TT, are attached to the bed-frame, E, fitted with steel knife-edges, Which serve as points of support for the test-bars.
Horizontal braces secure the stability of the frame-work of the machine.
408. WORKING THE MACHINE.-Adjestaeats.-- 111 the working knife-edges, and the seats on which they hear, are made of hardened cast-steel; the other principal parts of cast-iron.

Before beginning a test, it is necessary to see that all the knife-edges are properly adjusted, and that the vertical screw through the horizontal wheel on the top of the machine is run down its full lengith, to obtain all its scope.

To adjust the equilibrium, there is a small horizontal rod, R^{\prime}, with a weight working upon it, which is attached to the upper end of the slide, G.G', supporting the small lever.

Before the spacimen is secured in its place, the machine must be accurately balanced by moving the weight, W^{\prime}, of the adjusting-rod either in or out, as it may require. The final and accurate adjustment is made with the small brass weight, W', attached to the end of the small lever.
409. The Sayple Holders in all forms of strain, excepting that of torsion, are attached at one end to a stirrup, $\mathrm{C}^{\prime \prime}$, on the main lever, and at the other to the bed-frame. -To apply the strain to the specimen, the hand-crank, I, is turned with regularity in the direction which raises the screw, and sets in motion all the movable parts of the instrument.

The slide on the small lever, $\mathrm{S}^{\prime \prime}$, is moved gradually, just keeping its equipoise; as the strain is increased, weights are supplied at P, in such manner: as will keep the lever evenly balanced, so that the force applied at the instant of breaking may be accurately determined by counting the weights then on the platforms.
410. Tevsile Stratr.-After the density of a specimen lias been ascertained, and before it is inserted in the holders, its smallest diameter is accurately measured and recorded. This is done by sliding-calipers, an instrument provided with a Venier, which ineasures hundredths of an inch, and thousandths of an inch may be readily determined by a practiced eye.

The specimen is now fitted between the holders used for the purpose; one of which is attached to the shackle hung on the stirrup of the main lever; the serew, U , connecting with the bel-frame, is then run up by the handles, H^{\prime}, underneath, until the specimen can be caught between the holders that fit on its upper end.

After the sample is sesured batween the holders, the screw is run down until a sufficient strain is obtained, to keep them in place. Then proceed with the test.

The breaking-weight is divided by the area of the smallest diameter of the specimen, and the quotient gives the tenacity, or the strength per square-inch.

That is, let a represent the breaking weight, b the area, and x the tenacity per square-inch.

$$
b: 1 \text { sq. in. }=a: x
$$

Examples.

> Sample No. 4. H. Logs.
> Breaking-weight, $50500 . .$. 4.7032914
> Diameter, 1.2 Jin . ; area $\left(\pi \mathrm{r}^{2}\right), 1.22719 \mathrm{in} .0 .0889099$
> Tenacity per sq. in., 41151 lbs.. 4.6143815
411. The following table contains the area and the logarithms for all the variations of diameter likely to occur in tensile samples:

Diam.	Area.	Logs.	Diam.	Are	Logs.	Diam.	Aren.	Logs.
1.190	1.11220	0461839	1.204	1.13853	. 05633429	1.297	1.32120	. 1209
1.191	1.11407	. 0469135	1.205	1.14042	. 0570639	1.298	1.32324	. 121639
1.192	1.11594	. 0176425	1:206	1.14231	. 0571845	1.299	1.32528	.12330
1.193	1.1178 \%	. 0433707	1.297	1.14421	.058.5045	1.300	1.32732	.129976
1.194	111963	. 0490985	1.208	1.14610	.059223\%	1.301	1.32937	. 12364
1.195	1.12157	. 0 ± 93257	1.209	1.14800	. 0599425	1.302	1.33141	. 124312
1.196	1.12345	.00-523	1.210	1.14990	.0506607	1303	1.33346	.124978
1.197	1.12333	. 0512783	1.290	1.30398	.1162693	1.304	1.33550	. 12354.
1.198	1.12\%21	. 0520035	1.291	1.30301	. 1169423	1.305	1.33755	. 1293310
1.199	1.12909	. 0527283	1.292	1.31104	. 1176148	1.303	1.33060	. 123976
1.200	1.13037	. 0534523	1.293	1.31307	. 1182838	1.307	1.34165	. 12 T (441
1.201	1.13256	. 0541759	1.294	1.31510	. 1189583	1.308	1.343 i0	.128303
1.202	1.13475	. 0548989	1.295	1.31713	. 1196293	1.309	1.34576	.1239691
1.203	1.13664	. 0556211	1-296	1.31617	. 1202998	1.310	1.34782	.129632

412. Transverse Strain.-For determining the transverse strength of metals, a specimen-bar is taken two or three feet long, and about two inches square. It is prepared for the test with a slight dressing with the file or grind-stone, on one of its faces near each end, in order that the bar may bear more erenly against the supports when under the strain. The middle of the bar-the part where the fracture occurs-is dressed in like manuer on each of its four faces, in order that its breadth and depth in this part may be accurately measured.
413. To Place the Bar.-Run the screw, U, down nearly level with the bed-frame, out of the way; slide the pedestals to the proper distance on either side, to accommodate the length of the specimen. Suspend the long link, S (Fig. 62), from the same shackle used in the tensile-strain, and pass the har through the pedestals and the long link, so that it rests in the middle of its length on the knife-edge in the bottom of the link. The latter is then drawn upward until the ends of the bar bear
firmly against the knife-edge supports in the pedestals, which must be at equal distances from the link.
414. Tie Deflection.-The breaking-force is applied on the under side of the bar, in the middle, and forces it upwards against the supports at the ends.

The deflection is measured by inserting a graduated, tapered metallic scale between the upper surface of the bed-frame and the under side of the bar-holder, directly beneath the forcingline of the latter, against the centre of the bar. The space enlarges as the bar bends, and the graduated wedge measures minutely the deflection of the bar at any stage of its progress.

A record is kept of the "deflection" and "set," which shows the quantity of deflection and permanent set under a given pressure, which is designed to be near to, but somewhat less than, the minimum breaking-weight. Also of the "last deflection," which gives the amount of deflection under the pressure of the breaking-weight.
415. The Unit of Strength represents the weight in pounds required to break a bar one inch square, rigidly supported at one end ; the weight being applied at a distance of one inch from the point of support. For square bars it is determined by the formula-

$$
\begin{aligned}
\frac{l \mathrm{~W}}{4 b d^{2}} & =\mathrm{S}, \text { the unit of strength. } \\
l & =\text { the length between the supports. } \\
W & =\text { the breaking- weight. } \\
b & =\text { the breadth of the bar. } \\
d & =\text { the depth of the bar. }
\end{aligned}
$$

The breadth and depth are accurately measured near the fracture; and, as the dimensions are irregular, it is proper to measure in three places for each; one measure to be taken in the middle of the bar, and the other two near the comers. The mean of the three measures to be taken as the true dimension. If the bar is defective, the results cannot, of course, be relied on.

Example.

Proof Bar No. 484.

Logs.

$b=1.969$ (mean of three measurements)......... 0.2942457
$d=1.9683$ (mean of 3) $\log .0 .2940913 \times 2=\bar{l}^{2} \ldots 0.5581826$

$\frac{1}{4} l \times T V=\frac{20}{4} \times 13900=69500$	$\begin{array}{r} -0.8824283 \\ -\quad 4.5419848 \end{array}$
Transverse strength $=\mathrm{S}=9111$	3.9595565

416. Torsioval Stranc.-For determining the torsional strain, or the weight required to break by twisting, a specimenbar is used, which is long enough to project beyond the journals of the torsion-lever, and receive the indices, e^{\prime}, which are attached to its ends, a. The parts against which the holdingkeys, k^{\prime}, are pressed are made square. All the other parts are round.

The part hetween the keys is dressed to a true cylinder, the length of which should not be less than three diameters.

This length is necessary to allow a full development of the fracture to occur within the dressed part of the specimen. The distance between the keys is nineteen inches.
417. To Place the Specimen.-The bar passes through the axle of the torsion-lever.

One end is held firmly to the pillow-block of the bed-frame, and the other to the journal of the torsion-lever, L^{\prime}, by means of keys, K^{\prime}. The axis of the bar is made to coincide with the axis of the torsion-lever, by passing its ends through concentric rings, r, insorted in recesses provided for the purpose, before the keys are fixed in their places. Indices, e^{\prime}, are attached to the projecting ends of the bar and adjusted to the zero of the are beneath, before the strain is commenced.

The diameter of the specimen is carefully measured before it is secured in the journal. Bring the keys up on the bottom, until the bar rests firmly upon them, then ley up from the top to keep it firmly in its place. Connect the chain on the tor-sion-lever to the strap communicating with the middle lever, and proceed with the test.

When a bar is in the machine for torsion, the lever, L^{\prime}, is placed at its lowest point, but sometimes the screw, D, ascends to its highest limit betore the bar breaks. When this happens the lever is propped up, the chain is detached and shortened by removing its upper link; then, on its being again attached, the work is resumed and the strain extended until the bar breaks.
418. Reconding the Strain.-In torsional strains the main lever of the testing-machine is inoperative. The recorded breaking-weight then is only two lundred times greater than the actual weights on the platforms, which is equal to one-tenth of the usual reading in other tests. But as the torsion-lever is thirty inches long from its axis to the point where the centre of the chain acts upon it, the weight as abore ascertained is multiplied by thirty, and the product represents the strain exerted at a point one inch from the axis of the strained bar. In practice it is found more convenient to read off the weights
for torsion in the same manner as in other tests, and to multiply that reading by three.
419. The Deflection.-Although one end of the bar is firmly fixed, it will yield a little by its compression on the keys, and

Fig. 62.-Stirrup for Holding Indenting Apparatus.
therefore its angular deflection is determined by the difference between the reading on the arics.

The deflection of the bar is noted at each addition of a cer-
tain number of pounds of pressure; and at each addition of, say, five hundred or a thousand pounds, the bar is released from strain and the permanent set ascertained. 'The greatest angle of deflection and the breaking-weight are also recorded.

The torsional strength is

$$
\mathrm{S}=\frac{w r}{\bar{d}^{3}},
$$

in which

$$
\begin{aligned}
& w=\text { breaking-weight } \\
& r=\text { radius of torsion-lever }, \\
& d=\text { diameter of specimens. }
\end{aligned}
$$

420. Crusiing-Force.-The samples submitted to the test of compression are small cylinders, the lengths of which are generally two and a half times their diameters. Bars of greater length than these diameters are liable to bend nuder the pressure before the fracture occurs; and if the length be less than two diameters, the fracture in its regnlar form may not be fully developed, and a portion of the sample may be pulverized or reduced to small grains. The ends of each sample are made perfectly parallel and perpendicular to the axis, so that all parts of the sample will be equalty pressed.
421. Placing the Specimen.-Fig. 62 shows the form of the stirrup used in holding the instruments for crushing, bursting, and indenting samples when the straining force is applied. S is a stirrup attached at its upper end to the straining-stirrup, $C^{\prime \prime}$, on the inain lever; and R is attached to the bed-frame by means of the screm U.

V is a block of iron upon which the sample may rest.
The samples or the instruments for holding them are inserted in the space, T.
422. Recording the Compression.-The dimensions of the sample are carefully measmred before placing it. The depression or permanent set at every fire thousand pounds, for instance, are then carefully noted. The breaking-weight is recorded as well as the angle of fracture of the specimen.

The strength per square inch will be

$$
S=\frac{\text { weight }}{\text { area }}
$$

423. Indenting-force.-The comparative softness or hardness of metals is determined by the bulk of the carities or indentations made by equal pressure; the softness being as the bulk directly, and the hardness as the bulk inversely.
424. Indenting-tool.-Of the different forms of carity
made by indenting-tools, that of the pyramid is preferred, because of its simplicity and the ease with which its volume may be computed.

The instrument used for making indentations is represented by Fig. 63.

Fig. 63.
The indenting part of the tool is in the form of a pyramid, having a rhombus for its base, the diagonals of which are respectively one inch and two-tenths of an inch; the height of the pyramid one-tenth of an inch.

In late experiments the form of the pyramid has been changed and improred somewhat, by causing it to make a longer line, and mark minute differences more accurately.
425. Standard of Comparison.-The volume of an indentation made with this tool is taken as the measure of the work required to produce it, and is inversely proportional to the hardness of the specimen, that is (denoting by $I I$ the hardness of any specimen).

$$
\Pi=\frac{k}{v}, \ldots \ldots \ldots \ldots \ldots \ldots \ldots(1 .)
$$

\approx denoting any convenient constant, and v the volume of the indentation corresponding to $I I$.

It has been found by experiment that a pressure of 10,000 pounds on the base of the pyramid, makes an indentation, in
the softest metals used in gins, about nine-tenths of an incl long.

The maximum indentation, one inch in length, of the instrument is therefore assumed as the unit of harduess; therefore, denoting by V the volume corresponding to an indentation one inch in length, we obtain from equation (1),

$$
1=\frac{K}{V} \text { or } K=V ;
$$

and in general,

$$
I I=\frac{V}{v}
$$

or, putting $l=$ the number of tenths of an inch in the length of any given indentation,

$$
I=\frac{V}{v}=\frac{1000}{l^{3}} ;
$$

since pyramids are to each other as the cubes of any similar dimensions.

A pressure of less than 10,000 will probably be fonnd better suited to the purpose, with the improredstools. A better standard of comparison may be found in some metal of uniform density and hardness, easily obtainable in all places.

The silver coin of the country best fultils these conditions. The volume of the cavity made in this, by the adopted unit of pressure, may be assmmed as the mit of hardness; and this divided by the volume of the carity in any sample tested, will denote the hardness of that sample as compared with that of silver coin.*
426. Errors of the Rodman Macmine.-The errors incidental to the use of this machine are due to three causes:

1st. Weight of its different movable parts.
2d. Motion of the centres of gravity of the levers towards or from their fulcrums.

3d. Friction.
The First cause of error is avoided in practice by means of the adjusting-weights, already described.

The system is brought into perfect equilibrium, so that any increase of W will be balanced by a proportionate increase of P .

The Second cause of error is comparatively unimportant,
because the levers AC and $\mathrm{A}^{\prime} \mathrm{C}^{\prime}$, are so adjusted as never to make a large angle with a horizontal line passing through the fulcrum, and in the case of the lever $\mathrm{A}^{\prime \prime} \mathrm{C}^{\prime \prime}$, which makes a larger angle, the sliape is such as to bring the centre of gravity very near the centre of motion.

Let D denote the distance throngh which the centre of gravity noves.
a denote the distance of the centre of gravity from the centre of inotion.
L denote the angle described by the lever during the breaking of a specimen.
In general the levers are so adjusted that the line connecting the centres of gravity and of motion is horizontal when the movement of the lever is half completed.

$$
\therefore D=a \text { versine } \frac{1}{2} L
$$

It is evident that one or both of these factors is very small in each case.

The Third cause of error is made as small as possible by the use of knife-edges and steel plates, and is practically incousiderable.

The determination of the absolute breaking and other strains involve the elimination of errors due to friction, etc., but for obtaining the comparative strength of specimens, the machine is all that can be desired.
427. Modifications of the Maceine.-This machine is arranged for short tensile specimens only, and as the power is at present applied, admits of only a very slight stretch, which is unsuited to the breaking of specimens giving elongations of several inches.

A change has therefore been tried in the lower fastening of the specimen, by which the power was applied at that point, through a screw and cogwheels, and this arrangement was found to answer the purpose in the most satisfactory manner."

Another change was made in order to get a continmous increase in the weight upon the scale-beam, instead of adding one weight at a time as is generally done. This was accomplished by using a chain for a weight, which, being wound upon a reel, was readily reeled into the scale as fast as required to balance the strain upon the specimen. The principal advantage of this method is in working the indicator.

42S. The Indicator.-In connection with the testingmachine it has been found desirable to have an instrument which would give a continuous curve representing the elongar

[^17]tions and corresponding tensile-strains for specimens of various kinds, in order to arrive at the exact dynamical value of the metal.
429. An instrument has been devised for this purpose (Fig. 64). It consists of a brass frame, AB , supporting a rertical cylinder, C , revolved by the endless screw, S . This screw being turned by the tape, T, which draws around the pulley, P , as the weight, W , is

INDICATOR
(for tensile strains and elongation.)

Fig. 64. wound along the scale-beam. When the chain was used as a weight, the cylinder revolved as the chain was paid into the scale.

This arrangement causes the cylinder to revolve as the weight or strain upon the specimen increases or diminishes, and if the marker, M, remains stationary, it will describe a horizontal circle upon the paper with which the cylinder is covered. Starting from the zero-point of the scale, the length of any arc of the circle will represent the strain upon the specimen at the instant the marker lias arrived at the end of the arc.
430. If now the elongation of a given portion of the specimen carries the marker in a direction parallel to the axis of the cylinder, it is clear that the curve, NO, described upon the paper, will accurately and continuously represent the relation between the elongation of the specimen and the corresponding strain upon it. In order to move the marker in this manner, it is connected with one end of the specimen by the clamp, Q', which tits into a centre-punch-mark on the specimen, while the frame and cylinder are attached to the other end, Q , of the specimen in a similar manner.
431. The portion of the specimen between the tro centre-
punch-marks is evidently the only portion whose elongation will move the marker along the paper, and the space passed over by the marker divided by the original length of this portion, will give the elongation per unit of length of the specimen, or the per cent. of elongation; and the area bounded by the curve, NO, and the co-ordinates, NR and RO, measures the work of breaking the specimen.
432. Fig. 65 shows examples of the record made by the Indicator. It will be seen that in the specimens indicated, the

first part of the elongation gives a very slight curve, which shows that the elongation increases rather more rapidly than the strain upon the specimen.

This part of the curve extends from the origin to the point a. When the specimen begins to elongate freely, and there is a well-defined change in the rate of increase, the point a probably coincides with the elastic limit.

The strain increases as the elongation continues almost up
to the breaking-point, b. This shows that the tenacity of metal, which has been stretched beyond the elastic limit, is not entirely destroyed, as is commonly believed, but the work of the rupture has but just commenced.
433. Just before rupture takes place, in case of good wrought-iron, the specimen is observed to suddenly contract at some point, sometimes at two, and very rarely at a greater number; strain slightly diminishing at the instant, and the specimen breaks generally with a sudden snap, though rery soft iron sometimes breaks so quietly as not to be heard at all.
434. The effect of the elongation of specimens in this manner is to change the smooth surface of the specimen to a rough and scaly appearance, and in case of bronze the specimen becomes so irregular as to resemble a roll of putty flattened in various directions between the fingers. The elongation of steel develops innumerable fine cracks nearly perpendicular to the surface.
485. In breaking a specimen a second or third time, it would seem that the metal must get weaker, especially since the sudden breaking produces a violent shock; but on the contrary, the specimen cridently breaks at the weakest point, and the shock and previous stretching have not been sulficient to reduce the strength of the next rreakest part of the specimen below that of the first one. It is sometimes found that eren the third breaking requires a greater strain than the second.
436. Much labor in turning out specimens may be sared by the use of sockets with conical wedges (Fig. 66), which hare been devised for the purpose of taking hold of the middle portion of broken specimens, and breaking them a second time. It will be seen that by cutting out the specimen barely large enough to turn up to the required diameter, a great saring may be effected orer the usual method which requires the ends of the specimen to be quite large, while the middle portion, for nearly the whole length, has to be turned down to a much smaller diameter.

Quite a number of specimen of each kind shonld, if possible, be tested under as nearly identical circumstances as practicable, in order to get reliable mean results.
437. The usual form of specimens for tensile strain is such, that unless the weakest point happens to occur at the smallest section of the specimen, the fractured area will be larger than the measured section. By using longer cylindical specimens this source of error will be avoided, in all but exceptional cases, arising from flaws or other defects. Besides, the usual or standard form of specinen admits of transrerse strains due to
the unequal bearing of the ends in the sockets of the testingmachine. This defect is greatly improved by using longer specimens.
438. The simple measure of the strain required to break a piece of metal, without regard to the elongation produced before rupture takes place, is not a measure of what occurs in practice; for when a bar of iron is broken, a certain space is passed over by the breaking-force in separating the fibres, and as this space bears no analogy whatever to the tensile strength of the metal, it must come in as an independent factor. For example, the metal of cannon is stretched at every discharge; and whenever metal is subject to a variable strain, there must be a corresponding change of length. These elongations may be very small in amount; so small, in fact, as to be inappreciable in ordinary measurements, but it is no less certain that they exist.
439. RIEHLE'S TESTING-MA-CHINE.-This is a good example of a horizontal testing-machine adapted to testing rope, chain, wire, bar or plate iron, etc. The iron frame, CC (Fig. 67), and the timbers which support the iron guides, SS, are all firmly secured to a solid foundation of masonry.
440. The Levers.-Enclosed in the frame, CC, is a heavy intermediate lever, A, one fulcrum of which bears against a

Fig. 66. smooth steel surface composing a part of the frame. - The lower fulcrum, D, presses against the clevis, E, which connects directly with the clamps holding one end of the test specinen. This lever is suspended at the larger end by clevises, F , swinging from the iron frame, C , and at the sinaller end by a link or rod connecting with the differential lever, or scale-beam, G.
441. Recording the Strain.-On this beam is an ordinary weight-dish, H, upon which standard weights are placed for recording the strain to which the specimen is being subjected. A weight of one pound on the weight-dish indicates a strain of one thousand pounds on the specimen under trial.
442. Application of Power.-At the other end of this
machine is placed a hydraulic pump and jack, I; the cross-head, L, carrying the clamps for one end of the specimen, being attached to this by the bolts MM. The whole arrangement

Fig 67.-Riehlé Testing-machine.
travels along a railway, SS , on low, strong wheels, and may be secured in any position, to accommodate the length of the specimen, by keys dropping into slots on the railway. The porer is applied to the jack, I, by the pump, J, while the scale-bean is kept horizontal by the use of the weights; its equipoise being indicated by a pointer attached to the centre fulcrum of the beam.

FIg. 68.-Differential Lever.
443. Adjustment.-When the specimen is in position, the lever and beam must be balanced by means of the balance-cup, K , hanging from the extreme end of the scale-beam. All the knife-edge bearings and fulcrums are made of steel, and are
very strong and true. As each part swings perfectly free, there is comparatively no friction, and the strain on a specimen can be weighed to within a few pounds.
444. The Differential Lever.-Fig. 68 represents the differential lever and scale-beam used in this instrument.

The link O is connected with the intermediate lever, A (Fig. 67). If a weight of one hundred pounds be suspended from the link O, one half, or fifty pounds, will be suspended by the bearing P , and fifty pounds by the bearing P^{\prime}. These weights being transmitted through links to the bearings Q and $\mathrm{Q}^{\prime}, \mathrm{P}$ and P^{\prime} are equidistant from the bearing T , while Q and Q^{\prime} are at unequal distances from the centre bearing or fulcrum, R. If the distance $Q^{\prime} R$ be $6 \frac{1}{2}$ inches, and $Q R$ be $5 \frac{1}{2}$ inches, and the weight at Q and $\mathrm{Q}^{\prime} 50$ pounds, then the moment on the side Q will be $50 \times 5 \frac{1}{2}=275$; and the moment on the side Q^{\prime} will be $50 \times 6 \frac{1}{2}=325$. The difference of these moments, or $325-$ $275=50$, will be the unbalanced moment; and if a weight of 5 pounds be suspended on the scale-beam at a distance of 10 inches from the fulcrum, R, it will counter-balance the extra moment on the side Q^{\prime}. The rertical planes passing through R and T are one-half inch apart; therefore if a one-hundred-pound weight be suspended at one-half inch from R , acting as a simple lever, it will be under precisely the same conditions as the differential lever with the above dimensions.*

Section III.-Fabrication.

445. FABRICATION OF CAST-IRON GUNS.-The details of the casting of a XV-inch gian, as practiced at the Fort Pitt Foundry, Pittsburgh, Pa., will be taken as an example. \dagger
446. The Furnaces.-Two reverberatory air furnaces are used for melting the iron of which the gun is made, the draught being produced by high chimneys instead of by a blast. Fig. 69 represents the Fort Pitt Air Furnace, the peculiarity being that, as the iron melts, it runs backwards toward the bridge-wall, C ; the crown of the furnace being so constructed as to cause the flame to impinge against the surface of the pool of melted metal, while at its greatest temperature ; thus it is melted without coming in direct contact with the carbon, as in the blast-

[^18]furnace - where the fuel and fire are mixed together. Bituminous coal is used in these furnaces.
447. In the Fig. 69, A represents the metal-chamber, being

Fig. 69.-Sectional Elevation.
that part of the furnace where the iron, for what is termed a "heat," is placed. The bed of this chanber is first prepared by covering it with a layer of sand, which is hardened down, giring it at the same time the desired curve; then boards are laid, upon which the pigs of iron to be melted (or charged) are piled; B represents the fuel chamber, or fireplace, the flame passing over the bridge-wall, C, and through the metal chamber on its way to the chimner, $\mathrm{D} ; t$ is the tap-hole: X , the charg-ing-door, made of fire-brick bomd together by iron bands; E is the ash-pit ; and f, the grate-bars. The dotted line represents the surface of the metal when "down," or melted.
448. In the charge used for a XV-inch gun, the greatest depth of metal, when down, is about nine inches, exposing about one hundred square feet of surface to the flame.

It is very necessary, in casting a lot of guns, to have the bed
of the furnace prepared, in every instance, the same as with the standard gun, as the treatment of a given charge of iron may be varied by the manner of dressing the bed of the furnace. By exposing the same amount of iron in a broad, shallow poo!, it is more eifectully brought under the influence of the flame than when collected in a narrow, deep pool.
449. Charging the Furnaces.-In charging the furnace for a "heat," the different grades of iron which have been decided upon are weighed and piled, in the proper proportions, in the metal-chamber of the furnace, always having the second-fusion iron nearest the fire.
450. Fusions.-The iron, as it comes from the smelting-furnace, is termed "row pig," and is a first fusion. The secondfusiou iron (as understood by founders) is produced by a combination of raw pig and second-fusion, melted in an ordinary sir-furnace, and then run out. These pigs are usnally of a different shape than the raw pig, but to prevent confusion, and at the same time to distingaish different sacond-fusion irons one from another, each should be distinctly marked and piled separately.
451. The object of using a second-fusion iron in a casting is to obtain greater density than can be produced from the raw pig alone; it also increases the tensile strength. (Art. 349.)
452. Tife Charge.-In casting the XV-inch gun, the furnaces were each charged as follows:

The second fusion, marked "red-dot," consisted of the following combinations, viz. :

> Bloomfield raw pig. 50,000 lbs.
> Bloomfield second fusion.19,575"
> Run into pigs and marked "redidot". $\overline{60,575}$ "

The proportions of the other grade, marked "red-cross," are as follows, viz. :

Bloomfield raw pig......................... 29,410 lbs.
Bloomfield second fusion................. . . 32.590 "
Run into pigs and marked "red-cross". ...62.000 "

The second-fusion iron used in these combinations is produced by melting two parts of raw pig with one of second fusion.
453. Molding, in general terms, is the process by which a cavity of the form of the gun is obtained, by embedding a model in sand and then withdrawing it.
454. Melding-composition.-The sand most used for this purpose is a kind of loam, which contains a sufficient quantity of clay to render it moderately cohesive when damp. Sand, possessing all the qualities required for molding, is seldom, if ever, found in a state of nature; but when the requisite qualities are known the materials may be selected, and an artiticial composition produced without difficulty. The sand should be principally of silex, very refractory, and of the kind commonly called sharp-sand. When not sufficiently refractory, the sand is vitrified by the high temperature of the meltet metal, and protuberances are found upon the casting which are not easily removed.
455. The method of preparing the molding-composition artificially, varies according to the kind of casting for which it is to be used. In preparing it for camon, great care is taken to introduce the exact quantity of clay required. When too little is used, the composition is not sufficiently adhesive; when too much is used, the mold is injured by contraction in drying. The sand is first carefully sifted, then properly mised and moistened with water in which clay has been stirred; the composition is considered sufficiently adhesive when it will retain its form after having been taken in a moist state and squeezed in the hand.
456. The same composition may be repeatedly used for molding, but as the adhesive property of the clay is destrosed br the heat to which it is exposed in casting, more clay must be added every time, in the same manner as when the composition is first formed.
457. Models.-The wooden model is technically called the pattern.

Models for castíng should be made of one or several pieces, according to the form of the mold required. When the form is such that the whole model can be withdrawn from the sand at once, without injuring the mold, a single piece will suffice; but generally the model is composed of sereral pieces, so titted that they can be put together in succession as the molding progresses, and tinally taken apart and removed by piecemeal when the molding is complete.
455. Tue Flask.-The mold is formed in a case of cast-iron, called a flask, consisting of several pieces, each of which has

Fig. 70.-Uircular Flask in Pit.
flanges perforated with holes for screw-bolts and nuts, to unite the parts firmly.

In casting the XV-inch gun, a circular flask (Fig. T0) is used, consisting of five upright sections, secured together by clamps fitting over flanges, AAA, at either end of the sections; its thickness is one inch, and it is pierced with holes. (Art. 481).
459. Divisions of tie Flask.-The breech, or lower section, BB, is made of sufficient length to cast the base of breech, cascabel, and square knob; the next above, CC, is twenty-five inches in length and cylindrical, being the part which embraces the cylinder of the gun; the next is the trunnion-sections, DD, fitted with trunnion-boxes having movable plates on their ends, that the trunnion pattern may be placed and removed after the mold is finished; then there are two sections above this, EE and FF, the upper being about three feet longer than the required length of the gun, to admit of a "sinking-head."

The entire length of the flask is twenty feet.
460. Process of Molding.--The pattern is in five sections, each slightly tapered, that the mold might be uninjured in its withdrawal. The average thickness of sand forming the inold is about eight inches.
461. In making the mold, the lower section is placed upon a plate of iron in an upright position; the pattern being introduced and centred, the space between the pattern and the flask is then filled with molding-sand, using thin layers, which are rammed uniformly until the whole of that section is complete. The patterns for the "runners," RR, and their branches, b, b, b, are introduced as the work progresses; the latter, being tapered, are easily removed.
462. After the mold for the breech, or lower section, is finished, the next section of the flask is placed upon it and secured, the pattern for which is introduced, and, being fitted with dowels, held accurately in place. The molding is continned with this section as with the first, and when completed is lifted off, care being taken not to break the mold (the pattern being left in the mold).
463. The third or trunnion section is then placed upon the second, the model being adjusted as with the second, and the molding is continned in this way, until the whole is completed, thas insuring a perfect mold throughout, free from irregularities at the junction of the sections.
$46 \pm$. The patterns are then withdrawn, and the molds finished and smoothed about the lock-lngs, sight-masses, and sidegates, after which it is placed in the drying-oren, the tro lower
sections being clamped together, the others singly ; and when thoroughly dry, withdrawn.
465. A wash composed of pulverized coke-cinders, molasses, and water is then applied; this dries quickly, and produces a smooth, hard surface, thus preventing the molten metal from entering into the sand of the mold, and it insures a smooth, clean-coating.
466. The Core-barrel:-The core-barrel (Fig. T1) consists of a watertight iron tube, AD , about fifteen feet long, and

three-fourths of an inch thick, its exterior diameter at the head being twelve inches, and tapering one-fourth of an inch, at the lower extremity, to facilitate its withdrawal after the cast.

It is rounded at its lower end, D, and fluted throughout the
cylindrical part, to allow the escape of gas generated by the burning of the composition with which it is covered.
467. Preparing the Core.-To prepare the core for casting, journals (Fig. 71) are first fitted, at either extremity of the barrel; it is then placed in a lorizontal position upon an iron truck, being supported by the journals, which rest in bearings. While so supported it is easily turned by means of a crank attached to one of the journals, and is first wrapped or served with white-hemp stuff (18 -thread), covering that portion of the barrel which comes in contact with the inolten iron.
468. Over this a coating of molding-composition is applied quite wet, which is wrapped with twine, to insure its adhering. When about half dry, the outer or last layer of composition is applied, which, being made quite sticky, adheres readily. Great care is taken to have the surface of the core perfectly smooth, and the composition of uniform thickness. The diameter of the core-barrel for a XV -inch gun, when complete, is 13.7 J inches at the top, and slightly tapered at the bottom.
469. When ready, the truck supporting the core-barrel is rolled into the drying-oren, and when perfectly dry remored; the usual time required being eighteen hours. The composition then receives a coating of coke-wash, when it is again placed in the oven, where it remains until thoroughly dry.

Upon its final removal the journals at either extremity are removed, being replaced by the regular cap on top, and a tightfitting screw-plug at the bottom, which is covered with mold-ing-composition, and dried by a fire built under it.
470. The Pit.-The pit (Fig. 70) is circular in form, nineteen feet deep, and twelve feet in diameter; the walls are of brick, and the bottom, an iron tank of one-half inch sheet-iron, extending upwards eight feet.

The mouth of the pit is provided with iron covers, made to fit closely to prevent escaping of heat from the fire built around the flask.
471. Placing mine Flask.-The mold being thoroughly dry, the two lower sections, clamped together, are lowered and secured in an upright position in the centre of the pit-a layer of sand having been previously placed in the bottom, for the flask to rest upon; the other sections are lowered singly, and secured in their places, the whole being braced from the sides of the pit to retain it in a vertical position.
472. Cranes.-Cranes are employed for moring cannon. molds, and other heavy masses about a foundry. They are fitted with cog-wheel gearing to obtain power at the expense of time, and are often worked by steam. Care must be taken
to give great strength to this machine, and to canse its motion to be easy on its pivot. When properly adjusted a weight may be lifted and transported from one point to another, anywhere within the limits of the circle described by the arm.
473. Adjusting the Core.-The core is then lowered into the mold of the gun. To centre and secure the core-barrel in position it is necessary to have a frame, usually termed a "spider," to support and hold rigidly in place the core when properly centred.

The spider, SS (Fig. 70), is of cast-iron, about two and onehalf feet high, having three legs, each of which having a projection at the bottom, fitted with an adjustable screw, which rests upon the upper flange of the flask; there is also a funnel or sleeve fitted in the central part of the top, through which the core-barrel passes and fits closely, holding it firmly, so that any movement of the frame wili produce a change in the position of the core.
474. The Gauge, for centering the core, consists of a long, wooden rod, on the end of which a piece of board is fixed at right-angles, and on this board a light is placed.

The length of this projecting board, previously determined, is the distance the core should be from the mold when in the centre.

Having adjusted the core in the mold, by means of the screws fitted in the legs of the spider, it is secured firmly by clamps, H (Fig. 70), made to fit over the top of the frame and under the flange of the flask.
475. Melting down the Charge.-The mold and core-barrel being in readiness, and the furnaces charged, the fires are started and regulated so that the iron will be "down" in both furnaces at about the same time.

Particular attention is paid to the manner of firing, that it be uniform and steady; also that the fires be kept clean to produce not only the best, but uniform, results.

The length of time required to obtain complete fusion of the charge depends in a great measure upon the state of the atmosphere, etc., being from five to eight hours.
476. When nearly "down" it is necessary to work or puddle it, that any lumps or balls of unmelted iron may be brought in contact with the flame. This is done by inserting long iron rods or green saplings in the air-holes of the metal-chamber. Saplings are preferred, as the steam generated from the sap in the wood causes the molten iron in the pool to boil, and the more dense iron at the bottom is mixed with that of the surface, while many of the impurities are dispelled at the same time.
477. When the charge is "down" specimens are taken out to ascertain if the iron is in proper condition, or sufficiently "high" (Art. 351); that is, snfficiently decarbonized ; these specimens are run in dry-sand molds, and are about six inches in length, varying in size from one-quarter of an inch to one inch square. When cold they are broken, and the appearance of the fracture indicates whether the iron is sufficiently "high" (Art. 356). The three-quarters of an inch specimen is required to be well mottled.
478. As the density and tensile strength of the iron depends in a great measure upon the "highness" to which it is brought, extreme care is required in this operation. Where the first specimens proved are unsatisfactory, the iron is kept in fusion still longer, during which time it is puddled with green-poles.
479. Tapping tie Furaage.- When everything is in readiness the furnaces are tapped, and the molten metal conducted by runners or troughs coated with fire-clay directly to the sidegates of the mold, RR. It flows into these and down to the bottom, entering the mold by branch-gates, b, b, b , at intervals of one foot apart from bottom to muzzle.

The branch-gates are cut so that the metal will enter the mold in a direction toward the axis, upward, care being taken to keep the molten iron after it enters the mold well stirred with long poles to prevent scoria from entering the trunnionholes, and also to assist in mixing the metals from the different furnaces.
480. When the mold is nearly full the tap-holes are stopped, and the surface of the metal in the gun-head corered by a layer of pulverized charcoal, to present its chilling. The time of tilling the mold is abont fourteen minutes.

The surplus iron remaining in the furnaces is run into pigs, but is not used again for gun-metal.
481. Meating the Pir.-During the casting, the gas which is generated and passed out throngh the holes in the flask is ignited by dropping small quantities of molten metal into the pit, and as soon after the "cast" as possible, a fire is built in the pit, about the bottom of the flask-rood and bituminous coal being used in sufficient quantities to burn four or fire days; the mouth of the pit being corered, after the mass is thorouglly ignited.
482. Cooling the Castivg.-The water for cooling is taken from a hydrant, where the supply is constant and miform, the comections being made by rubber hose. It is conducted to the bottom of the core-barrel by means of a copper tube, one and a half inches in diameter, TT (Fig. T0). This tube passes through
a water-tight joint in the centre of the cap, and extends to within a few inches of the bottom of the barrel ; being open at its lower end, the water passes out and ascends through the annular space between the tubes, and is discharged from the core-barrel at a point above the casting, V.
483. The water for cooling the core is started before the furnaces are tapped, and allowed to run through the barrel, and off by the disclarge-pipe, V, V, to ascertain if every part is perfectly tight; it continues thus to circulate mntil the core is remored, at about the rate of forty gallons per minute.
484. Withdrawing the Core-barrel.-This is done about eighteen hours after the casting, as soon as the metal becomes sufficiently cool to permit of its removal. The withdrawal causes no delay or trouble, as the rope with which it is wrapped is consumed, and therefore leaves the barrel detached from the composition surrounding it, the latter adhering to the bore of the gmn.
485. Cooling by air.-After the withdrawal of the core-barrel the cooling is continued by forcing a continnous stream of air into the cavity thus left, by means of a rotary blower, driven by a small steam-engine, the air being conducted from the blower to the gun through an eight-inch sheet-iron pipe, which is introduced into the bore and to within one calibre of the bottom.
486. A record of the rate of cooling is kept by noting at regular intervals of time the temperature of the water or air on entering and leaving the core. When the temperature of the air in the bore is nearly down to that of the outside atmosphere, the blower is stopped, and the pipe removed.

Time of Cooling.-The time of cooling is about eight days.
For XV-inch guns it usually varies from seven to nine days, depending mainly upon the temperature of the air and the speed of the blower.
487. Removing the Casting.-The gun is hoisted from the pit ten days from the time of casting. Preparations for removing the flask commence the day before.

Transporting-lugs are cast on the sinking-head, to which slings are attached for hoisting and landing the casting in the foundry, where all irregularities are chipped off, and the surface thoroughly cleaned of sand or foreign substances, and prepared for the lathe.

[^19]means of side-gates, is resorted to in order to preserve the form of the mold. If the metal was conducted into the upper opening of the mold itself, its fall upon the sides and bottom wonld injure their forms.

The condition of the casting in reference to smoothness depends in a great measure upon the state of the mold when the metal is run. It should be perfectly dry and hard, otherwise the metal mixes with the sand, and adheres in clumps, producing a rough and irregular casting, the cleaning of which is a difficult and laborious job.
489. Heading-lathe.-The casting is next placed in what is called the "heading-lathe (Fig. 72), where it is prepared for the boring-lathe. The cascabel-bearing, base of breech, and a

FIG. 72.-Heading-lathe.
section of the chase are all turned down to finished dimensions while in this lathe, as the chase and rounded part of the cascabelknob form the bearings for the boring-lathe.

The cut at the muzzle, or place where the sinting-head is to be broken off, is also made in this lathe.

A (Fig. 72) represents the muzzle-ring with adjustable screws; B , the bearing in which the mozzle-ring revolses: C, the chuck, or mortise, into which the square knob of the cascabel is inserted and secured; D, the tools or cutters with rests.

The bearing in which the muzzle-ring revolres is a heary casting, the bottom of which fitsinto groores in the rack, and can be moved to or from the chuck, being adaptable to long or short guns.
490. Adjustment in Lathe.- The gun is lowered into place, the square knob in rear of the cascabel titting into the chack, while the muzzle is introduced and projects sereral inches beyond the face of the muzzle-ring, in which position it is approximately centred, and held tirmly in place by adjustable screws in the chack and muzzle-ring.
491. The breech is adjusted by placing a sharp-pointed instrument in the rest, and bringing it in contact with the surface of the casting near the base-line, and while turning the gunwhich is done by machinery-the screws in the chnck are mored until coincidence of the line around the gun is obtained.
492. At the muzzle a bar of iron is laid upon blocks, so that it shall be just inside the bore, and nearly in contact with its interior surface. As the gun turns, the distance between this point and the metal of the bore is observed, and equalized approximately, by the screws in the muzzle-ring bearing.
493. A wooden disk turned to fit the bore accurately, bearing a string attached to its centre, is then pushed to the bottom of the bore, and made to assume a position in a plane perpendicular to its axis. The string from the centre of the disk is long enough to reach some distance outside of the muzzle ; the outer end being made fast to an upright the same height as the inner end or centre of disk; the string is now hauled perfectly tant, and the gun again turned, a square being placed upon blocks about one foot in front of the muzzle, close to the string; and as the gun revolves, the distance, if any, which the string deviates from the square is observed and corrected by again moving the screws in the muzzle-bearing.
494. When properly centred, the string will remain in the same position in the square and be the same distance from the interior surface of the gun, throughout an entire revolution, showing that the axis of the gun and lathe coincide.

With the hollow cast-gun it is necessary that it should be centred from the bore, as it sometimes lappens that its axis does not coincide with the axis of the casting, which is one reason for casting them above the true size, to admit of being finished by the interior, or so that the axis of the cast bore shall coincide with that of the gun when turned.
495. Measuring the Casting.-The easting is next measured, taking diameters at the principal points, length of the casting, sinking-head, diameter and length of trunnions, distance from centre of trunnions to base-line, size of lock and sightmasses; also excess of metal over finished dimensions at points ten inches apart, commencing at forty-five inches ahead of baseline.

Should cavities or defects of any kind be discovered, their depth and full extent will be ascertained and noted, thus preventing useless subsequent labor in case they exceed the limits of toleration.
496. Turning down the Casting.-The gun being centred, the turning commences at the muzzle; this is done by placing a tool in the rest, which is brought in contact with the surface at the desired point, the metal being turned off as the gun revolves. The rest, or support which holds the tool, is arranged to move in two directions, one toward the gun, or at right angles to the axis of the lathe, by which means the depth of cut is
regulated, and the other in line parallel with the axis, that is, from muzzle to breech.
497. This last movement is effected by means of a fecd, the motion being given by a fork attached to one of the trumnions, and at every revolution of the gun the rest is made to advance.

The first cut is usually an inch deep, commencing at the muzzle where the sinking-head is to be cut off and extending thirty inches towards the trunnions.

The second and third cuts are commenced at the same point as the first, and are about one and one-eighth of an inch deep; iucreasing as the tool advances in the gun, other cuts are made until the metal is reduced to the finishing diameter.
498. Removing the Sinking-ie.id.-The cut at the muzzle, or the place where the "sinking-head" is to be broken off, is next inade; its depth is nsually about seven inches or to within three or four inches of the cast bore.

The gun is now taken from the lathe, and the "sinkinghead" broken or wedged off, at which time the appearance of the metal at the fracture should be examined as to color, form, and size of crystals, texture, and whether sharp to the touch; it is also necessary to ascertain its degree of hardness, and how the metal works under the tools, in the different stages of its fabrication; all of which should be duly noted and form part of the record of the gun.
499. Cutitiag out Specimexs.-Three specimens for density, tensile strength, etc., are taken from the face of the "sink-ing-head," next the muzzle, at points equally distant from each other aromed the circle and as near as possible to the outer crust of the casting (about onc-fourth of an inch), the axis of the sample being parallel to the axis of the gun. These specimens are of the standard size, and are inarked on each end with the letter II, to denote head-specimens; also number of gun from which taken, and the number of specimen. (Art. 350 .)
500. Boring-Lathe.-This lathe (Fig. 73) consists of the

Fig. 73-Boring-lathe.
rack, RR , two journals, $\mathrm{A} A$, and the boring-rod, B , the supports
of which rest upon the rack, and are of such a height that the axes of the journals and boring-rod shall be in the same horizontal plane.
501. The gan while in the lathe rests in the journals at the cascabel bearing and chase; the metal at these points having been turned down to the finished size while in the headinglathe, the square knob or cascabel is secured in the chuck by tightening the screws equally in all directions.
502. Adjustment in the Lathe.-The boring-rod is first introduced a short distance into the bore of the gun, and the space between the exterior surface of the boring-rod, and the exterior surface of the gun at the muzzle, observed. For this purpose a thin wooden gange is used, pointed at one end and having a notch at the other, which takes the outer surface of the gun at the muzzle, the gauge being laid on the face of the muzzle, and, of course, perpendicular to the axis of the bore. As the gun revolves, the distance above, below, and on either side is observed, thus verifying the perfect concentricity of the axis of the gun at the muzzle.

The adjustment is completed at the breech, by slackening the bolts at the cascabel bearing, leaving it free to move on the rest; and should any lateral motion be perceptible, it is corrected by adjusting the screws in the chuck, after which the concentricity is complete from breech to muzzle.
503. Boring.-In boring, the first tool or cutter used is fourteen inches in diameter, being secured on the end of the boring-rod, or arbor, C, which is made to advance by machinery as the gun revolves, until arriving at the bottom of the cylindrical part of the bore. The chamber is next ronghed out, and then the "reamer," or finishing-tool (fifteen inch), for the bore is used ; and lastly the chamber "reamer."

504 . During the process of boring, the turning continues, and the exterior is finished, except between the trunnions and abont the lock and sight-masses; the former being planed off by a machine for the purpose, and the latter reduced by chipping and filing. To insure a smooth surface in the bore, all the work on the exterior surface of the gun is suspended while the reaner, or finishing-tool, is being used.
505. The boring being completed, the cylinder-guage is inserted before removing the gun from the lathe, to ascertain if it passes freely to the bottom of the bore; the chamber-reamer should also be measured after use in each gun, and, if found correct, the gun is moved from the lathe.
506. Trunnion-latue.-The gun is next placed in the
trunnion-lathe, which consists of the rack, two journals, and the trumnion-head, or shaft.

The gun is placed in the journals, which are of such a height that the axis of the gun, when properly adjusted, shall be level, the gun being supported at the chase and cascabel.
507. The trunnion-head consists of a hollow shaft in which the cutters are placed, and is supported upon a rack previously placed at right angles to the axis of the gun, and of such a height that it shall be in the same horizontal plane as the axis of the guo.
508. In turning and finishing the trunnions, the hollow shaft of the trumion-machine is made to rerolve about the trumnion, the gun being stationary; and, as the turning progresses, the shaft moves on its rack towards the gun, its speed being regulated as circumstances require. One truunion and rim-base being finished, the gun is turned over, bringing the other trunnion in the same position as the first, and is turned in like manner.
509. The Planing-machine.-The metal in excess between the trunnions is remored by the planing-machine (Fig. it),

which is placed on the side opposite the trunnion-machine, and is so arranged that the movable point in which the cutter is sccured, A , traverses forward and back in a horizontal plane over that portion of the gun between the trunnions that has not been turned down. The cutter is secured in a spring-set, B, by which means it cuts only while moving forward, the gun being turned the width of the cut after each passage of the planer.
510. The desired curse of metal is obtained by introducing a guide-plate of the proper form, C , in rear of the cutter-rest.

After the planing is finished, the gun is remored from the
lathe, and placed upon the skids, where the surplus metal abont the rim-bases, lock, and sight-masses is reduced by chipping, and finished by hand.
511. Cotting Hole for Elevating-screw.--The gun being carefully levelled, and the trunnions placed horizontal, the position of the centre of the screw-hole, which in the guns of the Dahlgren pattern is tangent to the radius of the breech, is marked on the neck of the cascabel with a centre-punch.
512. The Boring and Screw-cutting Machine, which is a convenient, portable hand-drill press, is then placed on the cascabel, the boring-shaft inserted in the hollow leading-bar, and its movable centre placed in the mark. The instrument is then set vertical, by a spirit-level, on the cogged driving-wheel and the four pairs of set-screws on the clamp-head embracing the cascabel.
513. The centre is then removed, and a drill inserted in the lower extremity of the boring-shaft, which, being held firmly by a shoulder and turned by a four-armed wrench, while pressed up to the metal by slowly turning the cogged driving-wheel, cuts the hole. This is successively enlarged, by two or more counter-bits, to the size of the body of the screw.

The cutter is then inserted in the leading-bar, and the thread cut.
514. Drilling the Vent.--The proper position for the exterior orifice of the vent having been determined and marked upon the base-line, the drill is set at the required angle by the

Fig. 75.
vent-guide (Art. 566), and held in position by a frame of castiron, which is secured on the gun.

After the vent is fairly started, the gun is turned over, that the cutting may not obstruct the drill. The left rent is simply indicated, being bored two inches.

The square knob of the cascabel is now browen off and the end of the cascabel rounded and finished ; also the foundry number is stamped on the right rim-base in one-fourth-inci figures.
515. Marking Guns.-Guns for the Naval service, received by anthority of the Bureau of Ordnance, are to be marked in the following manner, viz. :

On the cylinder, in the line of sight near the sight-mass, all accepted guns are to lave stamped an anchor two inches long.

On the base ring or line, the initials of the foundry, the register number, and weight of gun in pounds.

On the right trunnion, the calibre and year of fabrication. On the left trunnion, the letter P, and the initials of the Inspecting Officer; all the above in one-inch letters.

On the upper jaw of the cascabel, the preponderance in pounds to be stamped lightly with half-inch figures.

On the end of the upper jarr, the cascabel Block, and head of pin, the foundry number in quarter-inch figures.

The foundry number is also to be marked on the right rimbase.

Guns rejected for imperfections of any lind will hare the letter C stamped on the anchor, so as to partially obliterate it.
516. FABRICATION OF BRONZE HOWITIZERS.- 1 model or pattern of the gun is first prepared; to do this it is first necessary to lay down on paper an exact drawing of the gun desired ; showing, on a convenient seale, its general appearance and the relative proportions of its different parts, botly exterior and interior; the full dimensions being put down opposite each part.
517. A drawing of the gun is now made on a smooth board, full size, the dimensions taken from the draught, but laid dorm by a rule, which is larger than an ordinary one by 0.15 of an inch to the foot, which allows for the shrinkage of the metal in cooling.
518. Two pieces of clear, well-seasoned white pine are selected of such proportions that, when joined, they will form a square piece of timber, considerably larger, and of greater diameter, than the gun itself.

The two corresponding faces being smoothed, so that a perfect junction may be formed, four holes are made in the face of one, while corresponding pins, termed steadying-pins. are fitted in the face of the other; this is for the purpose of insuring the exact adjustment of the parts while molding.

The pieces are then joined face to face, the extremities rounded off, and iron bands driven over the ends, for the purpose of uniting then firmly.

Thus fitted, the whole is carefully adjusted in a lathe, so that the axis shall fall directly in the plane diriding the two parts. It is then turned down to the required form.
519. The pattern consists of three parts: the model of the gun itself, the sinking-head, and knob of the cascabel, which is enlarged to form a square projection by which the piece can be held while being turned and bored.

When the pattern is detached from the lathe these parts are separated with a saw. Pieces of wood representing the sight-masses, the lock-lug, and the loop are tacked on in their proper places, and the whole is sand-papered and varnished. The pattern is now complete, and the parts will represent the appearance of two semi-cylindrical bodies exactly similar in size and shape.
520. The Flask is a long, rectangular box, F (Fig. 76), made of iron-plates bolted together, the top and bottom ones, which are movable and called lids, being of one-quarter inch wrought-iron and the sides of half-inch cast-iron.

It consists of two equal parts, each of which is large enough to contain half the mold ; these parts are each fitted with a flange, extending entirely around the flask, and perforated with hole; for screw-bolts and nuts to unite the tro parts firmly.

They are also fitted with journals at the ends for convenience in suspending them; and with eve-bolts for the purpose of moring them abont, lowering the flask into the pit, etc.

The head of the flask has a large hole and two small ones, in which to pour the inetal and to permit the escape of gases. The flask has strengthening pieces at different places, and inside is divided into compartments by iron plates having a score cut in them to receive the pattern. These plates serve to make the mold more compact.
521. Molding.-A smooth, flat board, whose dimensions are a little larger than the flask, is placed on the ground, and the half-model is placed upon it flat side down. The corresponding half-flask with its lid remored is then placed around it and clamped to the board. Molding-composition is introduced in small quantities at a time and rammed compactly around the model. This is continued until the flask is filled; the lid is then bolted on, the flask hoisted, turned over, and again deposited on the ground with the lid down. The board is then unclamped; the face of the mold then brushed off, and
sprinkled with a kind of white sand, called parting-sand, to keep the two parts of the mold from sticking together.

The other half-model is then placed in position on top of the first, and the corresponding half-flask with its lid removed secured in place to the under one.

The sand is again introduced and rammed compactly around the upper half-model as before, the steadying-pins holding it firmly in place; when the flask is filled the second lid is bolted on.

The half-flasks are now separated and each is found to contain one-half of the mold with the corresponding parts of the model embedded.

The latter are then carefnlly withdrawn and all imperfections on the face of the mold are repaired, when it is coated with a composition of brick-dust, pipe-clay, molasses, and water, which gives the interior of the mold a smooth, hard surface.
522. A runner is made on one side with a single branch at the bottom for the purpose of introducing the molten metal. This channel is made by embedding a rod in the sand between the two half-llasks in molding the piece. The branch rumner enters the mold in an oblique direction.

The entrance of the metal to the mold at its bottom is at an angle which gives a rotary-motion to the liquid, the effect being to produce a depression in the centre and a graritation to it of all scoria.

A narrow channel is cut in the molding-composition somewhat larger than the small hole in the head of the flask, and leading from it to the channel left by the rod. Another narrow channel is cut from the other small hole, intersecting the mold about a foot from the top, by which the height of the metal in the mold can be ascertained during the casting.
523. The drying-oven is a rectangular apartment built of brick, with an arched roof and iron doors, having tracks led into it for the cars upon which the flasks rest. It is heated by an open fireplace which is fed from the outside with coal.
524. Drying the Mold.-The half-flasks are securely bolted together, when the whole is placed upon a car and run in to the oven or drying-room, where it is allowed to remain three or four days, or until it is perfectly dry. The temperat ure of the oven ranges from 200° to $250^{\circ} \mathrm{F}$.
525. The Prt.-The pit is of a circular form and lined thronghout with water-proof cement. It is situated directly in front of the furnace, and is fitted with an adjustable apparatus for receiving the flask, and sustaining it in an upright position.
526. Placing the Flase.-The Hask is lowered into the pit,
breech down, until the npper end is about twelve inches below the spont at the mouth of the furnace; it is then secured in this position, and boards are placed over the mouth of the pit for the convenience of the founder.
527. Charging the Furnace.-A reverberatory furnace is used.

Fig. 76.
The proportions of the metals selected for this species of bronze are such as to prodnce the toughest and most indestructible alloy. It consists generally of ninety parts of copper and ten of tin. Lake Superior copper is preferred on account of its toughness, and German tin for its purity. The greatest care is necessary to keep the compound free from sulphur, lead, iron, and arsenic, for any of these would lessen the value of the alloy for the required purpose. (Art. 135.)
528. In consequence of the different fusibility of copper and tin, the perfection of the alloy depends much upon the treatment of the melted metal. If the tin be not quickly united with the copper, it will be burned, and converted into scoria; but such are the affinities of the metals, that the loss which might be expected from the burning of the tin is prevented by its being retained by the more stable copper. It is very essential that the metals be thoroughly incorporated, for the tin, being the lighter, would remain on the surface, and there would be no union of the metals whatever.

The copper is first introduced into the furnace through the side-door, 1), in the form of ingots of about eighteen pounds weight : two thousand pounds of copper being required in casting the heavy twelve-pounder howitzer of seven hundred and fitty pounds weight.
523. Meltivg down the Charge.-The fuel used for melting is spruce pine, three-fourths of a cord being required for each ton of copper; wood is used in preference to coal, because the gases evolved are not so injurions to the copper.

The furnace being closed. the fire is started; from three to four hours are required to fuse the copper, depending upon the force and direction of the wind and the state of the atmosphere.
530. At the moment at which fusion takes place, the tin, which is prepared in the form of ingots, each weighing about seven pounds, is thrown into the furnace through a door, one at a time; care being taken to submerge the ingot thus introduced ial order that it may not spread itself on the surface of the copper and become oxydized; the whole mass being kept in a state of agitation by means of a rabble introduced through the same door.

The molten mass is thus puddled until the metals are thoroughly incorporated, which operation requires about four minutes; the ralble is then withdrawn, the door closed, and the damper raised.
531. The compound is now subjected to an intense heat for about thirty minutes, or until the founder is satistied that the mass has been reduced to the required state of liquefaction. It is almost impossible to give any rule as to when the metal is ready for running, as those who are experienced in the matter tell by its color and general appearance ; which is defined as a yellow-red color.
532. When the pure metals are not used, the charge is made up of remnants of other castings and shavings from the lathe, etc., which are re-melted with a suficient quantity of zinc and tin to preserve the proper proportions. (Art. 13s.)

In a light 12 -pdr., cast in 1871, the furnace was charged with:

One 2t-pdr., IIowitzer	1,2s0 lbs.
Lake Copper.	75 "
A gun muzzle.	100
Ingots (Bronze).	145
Total	1,600

In a light 12 -pdr., cast in 1872 , the furnace was charged with :

$$
\begin{aligned}
& \text { Two Heads................................. . . } 1,420 \text { lbs. } \\
& \text { Ingots (Bronze)................................ } 205 \text { " } \\
& \text { Tin.. } 2 \text { " } \\
& \text { Zinc.. } 2 \text { " } \\
& \text { Total............................... 1,629 " }
\end{aligned}
$$

In a heavy 12 -pdr., cast in 1865 , the furnace was charged with:

Lake Copper.	
Ingots (Bronze)	1,000
One Head.	600
Total	2,400

533. Casting.-In casting it is customary to allow the melted metal to run first through the side-runcr, until it rises tro or three inches above the loop; the stream is then transferred directly through the top of the mold and allorred to ran in until the mold is filled. This is done to prevent the upper part of the casting from cooling too rapidly, and thereby causing an unequal distribution of the tin, this metal being fo:md always in the greatest quantities in that part of the casting which retains heat the longest. (1 rt. 137.) It is considered impossible to render the alloy perfectly homogencous, because of the difference of fusibility and specific gravity of the constituent metals. (Art. 140.)
534. To transfer the stream of meltel metal, a simple device is resorted to. It consists of two runner-boxes of cast-iron, A, B (Fig T6). The lower one has a partition dividing it into tro chanbers, with an orifice in the bottom of each, so fitted that when it is placed on the flask, F , one orifice will lead fair into the runner, and the other directly into the mold.
535. The upper runner-box slides on the upper edge of the lower one, and is furnished with handles to facilitate the operation. Its bottom is pierced with a single orifice to allow the stream of metal to flow successively into the ianer and outer chambers of the lower one.

The upper runner-box is also fitted with a spout, which, when they are in position, comes directly under the spont, S , at the gate of the furnace; it is long enough to allow for the distance between the first and second positions of the upper rumner-box.
536. The spouts and rumer-boxes, well lined with clay, being secured in position, and the furnace ready to tap, an orifice is made in its gate and the metal allowed to rum in the mold. From the gate it is conducted by the spout into the upper runner-box; flowing from thence throngh the orifice, it passes into the inner chamber of the lower runner-box, and down through the side-runner and its branch into the bottom of the mold.
537. At the moment the founder, who is looking down into the mold, discovers that the metal has arisen above the loop, he canses the upper runner-box to be shifted, so that the stream is transferred to the outer chamber of the lower runner-box. When the mold is filled the gate is plugged up, the runnerboxes are removed, and the casting allowed to cool. When the casting has become sufficiently solid to be removed, the mold is hoisted out. The remaining metal in the furnace is drawn off in ladles, and cast into rough ingots for future use.

The casting having become sufficiently cool to be handled, the flask is opened, the gun taken out, and with a hammer and chisel the sand and rough projections remored. The gun is then ready for the lathe.

Section IV.-Inspection.

538. Inspection of New Guns.-New guns are to be closely examined and measured inside and out, for defects of metal or manufacture, as soon after being finished as possible, if it has not already been done in the varions stages of manufacture.

For this purpose the gun is placed on skids, so that it may be easily moved, and its foundry number is noted so as to identify the piece.
${ }^{3}$ As rust tends to conceal defects, this examination is to take place before exposure to the weather; and previously to the final examination and proof of the guns, they are not to be covered with paint, lacquer, oil, or any material which may conceal defects of metal.
539. If it is ascertained that any attempt has been made to conceal defects, the guns so treated are to be rejected without further examination.

The water-proof, which is of great importance in detecting defects of metal, not otherwise developed, necessarily succeeds immediately the powder-proof, and can only be effectively employed in tine weather, and when the temperature is above the freezing-point; final inspections are to be made at such times only.
540. THE INSPECTING-INSTRUMENTS.-The in-specting-instruments are first carefully verified before any measurements are taken. They may be described and their uses explained as follows:
541. A Mrrror, for reflecting the sun's rays.

Use.-The interior of the bore is to be examined by reflecting the rays of the sun into it from the mirror or mirrors ; or, if the sun is obscured, and there can be no delay, by means of a spirit-lamp or of a wax-taper on the end of a rod, taking care not to smoke the surface of the bore.

542 . The Searcher consists of a long staff of wood, fitted with a head of six or seven steel points (Fig. 77). The points are arranged at equal intervals around the head, and attached with a tendency to spring out and increase their diameter; this tendency is restrained by a hoop of iron embrac-

Fig. 77. ing them, and capable of being worked in and out on the the head of a rod extending along the staff.
543. Use.-The searcher is used for detecting the presence of small cracks or flaws. To use the instrument the hoop is pushed out on the head, thus contracting the points; it is then introduced in the gun to the bottom of the bore, and the hoop being pulled back allows the points to spring ont and take against the surface of the bore. The searcher is then slowly withdrawn, turning it at the same time ; if one of the points catches, its distance from the muzzle is measured on the staff, and its position in the bore noted, and marked on the exterior of the gun. The size and figure of the cavity is then determined by taking an impression of it in wax.
544. The Cylinder-gavge.-This is a hollow cylinder of iron, turned to the least allowed diameter of the bore, and one calibre in length (Fig. 78). It has a cross-head at each end, one of which has a smooth hole through its axis to fit the staff, and the other is tapped to receive the screw in the end of $i t$.

Fig. 78.-Cylinder-gauge.
545. Use.-The cylinder-gange is introduced in the bore of the gun, and must pass freely to the bottom of the bore.

This instrument shows that the bore is not too small.
546. A Measuring-staff.-This is a staff of steel or iron (Fig. 79), in joints of suitable lengths, connected together by screws. Each joint is provided with a light brass disk, DD, the diameter of which is 0.05 inches less than that of the bore.

Fig. 79.
Throngh the centre of the disk there is a hole which fits mpon the shoulder at the joint; the whole is so arranged that when the joints are screwed together the disks between them are held firmily in place, while the length of the staff is not affected by them. Λ steel point, P, is screwed on to the end. When pushed to the bottom of the bore, the staff coincides very nearly with its axis. The outer joint is graduated to inches and tenths.

A slide, S, is made to play upon it with a vernier seale, graduated to hundredths of an inch. On the inner end of the slide, a branch, B , projects at a right angle, sufficiently loug to reach across the muzzle-face, and, when in contact with it, to indicate the precise length obtained from that point to the end of the measuring-point on the other end of the staff.
547. Use.-The instrument is introduced until the point reaches the bottom of the bore, and the branch placed so that it takes across the muzzle-face, and the reading shors the leagth of the bore of the gun.
548. Cinaitber-G.atge.--The head should be made of closegrained, well-seasoned wood, and of the exact dimensions of the chamber.

Two planes crossing each other at a right angle, coinciding with the vertical and horizontal central sections, have been found better than a solid block. The edge shond be berelled. A socket in its centre connects it with the measuring-staff.
549. Use.-Being pushed to the botton of the bore, if the length coincides with that obtained by the point, it is obrions that the chamber is large enongh, provided the cylindrical pari has not been bored too deep, in which case a shoulder would be found at the junction.

The edges of the gauge should be chalked before inserted. When withdrawn, if the chalk-marks are visible all around the chamber, it is evident the chamber is not too large.

An examination of the chamber-reamer (Art. 503) will be very satisfactory, and if found correct in size and shape, the impossibility of making the chamber too large will be apparent.
550. Star-gauge.-This instrument is composed of the staff, the head, and the handle (Fig. 80).

Fig. 80.-Star-gauge.
The staff is a brass tube, S , made in three pieces, for conrenience of storage, and connected, when required, by screws. It is graduated to inches and quarters, so that the distance of the head from the muzzle of the gun may always be known.

A centre-line, starting from the centre of the upper socket in the head, is marked upon the staff throughout its length.

551 . The Head. -The inner end of the staff expands into a head, II (Figs. 81 and 82), in which are placed four steel

Fig 81. -Head of Star-gauge.
sockets, K , at equal distances from each other; two of the sock-
ets opposite to each other are secured permanently, and the other two are movable.
552. A wedge, or tapering plate, W, the sides of which are cylindrical, runs through a slit in the head (Fig. 82); an aper-

Fig. 82.
ture in the inner end of the movable sockets, AA, embraces the cylinders, so that when the wedge is moved forward or backward, the sockets are projected or withdrawn.

The tapering of the wedge has a certain known proportion to its length, so that if it is mored in either direction a giren distance, a proportional movement is imparted to the sockets. The sides of the wedge incline 0.35 inch in a length of 2.2 inches, so that by pushing it the thirty-fifth part of this distance (about 0.06 inch), the distance between the tro sockets is increased . 01 inch .
553. There are four steel measuring-points, P , for each calibre, fitted with strong shoulders at one end, below which threads are cut for screwing into the sockets in the head. A wrench is made to fit the shoulders, so as to turn the points
firmly into their places; when two of these are screwed into the fixed sockets, the distance between their extremities is equal to the true diameter of the bore.

554 . Λ square steel sliding-rod, R , is connected with the wedge in the head, and runs throngh the whole length of the staff, projecting some inches beyond the onter end. This rod has as many parts as there are joints in the staff (three), and, like them, connects by screws.
555. The Handle (Fig. 83) is attached to the projecting end of the sliding-rod. It is a short hollow tube of brass, MB, made to fit over the outer end of the staff, S , and connect with the sliding-rod, R , by a screw at its onter extremity fitted with a large milled-head, M. The handle is divided into two parts,

Fig. 83.-Handle of Star-gauge.
one fitting and working closely over the other. On each side of the inmer part is a small tube, CD ; a thread is cut in one, D , through which a fine screw, held by a stud on the onter part, E , works and gives it motion; a guide, F, runs through the other. A slit, G, through the inner part of the handle permits a part of the staff near the end to be seen beneath, and a scale is placed on one side of the slit gradnated with the distance that the wedge moves to throw the points .01 inch apart.
556. Adjusting the Instrument.-There is a steel adjustingring (Fig. 84) for each calibre, reamed

Frg. 84. out to the exact minimum dianeter of the bore. The fixed measuring-points of the head will just pass into the adjustingring of the corresponding calibre; the movable points are made to touch the inner circumference of the ring by pressing in the wellge; and this is accomplished by moving in the handle, which works the stiding-rod. Seen through the slit of the handle, G, is a small plate of silver, I, inserted in the staff, and a fine mark upon
it to show the place of zero when the measaring-points are adjusted.

The zero-mark on the scale along the slit is made to correspond with it by means of the fine acrerr, ED.
557. A Muzale-rest in the form of T is employed to keep the staff of the star-gange in the axis of the bore while it is being used (Fig. 85). It contains a groore, Λ, in the centre of the transverse branch, to

Fig. 85.-Star-gange Rest. receive the lower half of the staff, and can be nsed with any calibre, as there is a movable slide on each branch, S, which can be adjusted to marks for the calibre, so that points projecting from the rear will enter the muzzle and hold the rest in place. In this position the upper edge of the transrerse branch coincides with the diameter of the bore. A hook is secured on the inner side of the transverse branch, on one side of the groore, and so fitted that when the star-gauge is in the grm, it embraces one-half of that portion of the staff which is above the groore. Therefore, if the transverse branch be placed so as to coincide with the axis of the trumions, the hook thrown orer the staff, and the latter turned so that the centre-line just meets the end of the hook, two of the measuring-points will be in a plane perpendicular to the axis of the trumnions (Art. 550). If the staff is then drawn out carefully, without turning, measurements may be taken in the same plane. A notch in the enl of the hook, made to coincide with the face of the muzzle, will mark the distances on the staff.
558. A disk for circular measurements is employed when it is desired to take the diameter of the bore at many points of the circle. There is a brass tompion, V, to fit the muzzle of the gun, with a hole through its centre to receive the staff of the stargange (Fig. S6).

It is turned to fit snugly the bore of the piece. into which it enters two or three inches, to hold it firmly in place: and has a projecting tlange or face to prevent it going in too far: The face is a plane surface with its circumference divided into as many equal parts as may be thought desirable, and numbered in regular order.
559. On the staff of the star-gange a brass slide, X. is fitted, laring a thumb-screw to hold it in any position; from its inner
end an arm, Z, extends at right angles to the staff, of sufficient length to meet the points on the circum-

Fig. 86. ference of the disk and having a centre-line marked upon it. This slide is secured at any distance on the staff at which a circular measurement is desired, and with the centreline of the arn coinciding with the centreline of the staff; when the arm will indicate the direction of the pair of measuringpoints; being in the same plane with them.
560. The disk is secured in the muzzle, with its zero-mark coinciding with a light punch-mark on the muzzle-face directly below the line of sight, so that it is in a plane passing througli the axis of the piece and perpendicular to the axis of the trunnions. To take the measnrements, press the staff home mitil the arm of the slide comes in contact with the face of the disk, and turn it to coincide with the various divisions of the disk at which measurcments are desired.
561. The disk is divided into lalves, and the centre-hole is reinforced on the inside by a projection, which is turned to reccire a collar that fits closely around it, and holds the two halves together when they are placed on the staff.
562. Use.-The star-gauge is used to obtain the exact diameter of the bore. It is obvious that the determinations will not be absolutcly accurate, for when the gin is worn, shonld the stationary points be perpendicular, the movable points, being then horizontal, wonld fall below the true horizontal diameter; and measurements would be more in error than it would be with the points in any other direction. Still if care is taken to preserve the points at the greatest length possible, a very tolerable degree of accuracy may be attained.
563. In the inspection of guns arranged on skids, the grn itself should be turned, which will insure accurate measurements. Care must also be taken not to allow the joints of the staff to become so loose that the coincidence of the centre-line
is destroyed when they are screwed together. If this shonld occur, however, a few turns of thread, placed between thein at the time of putting the instrument together, would remedy the difficulty.
564. The bore must be measured at intervals of one-quarter inch from the bottom of the cylindrical part to the seat of the projectile ; of one inch from that point to the trunnions; and of five inches from the trunnions to the muzzle. If any marks of the reamer, or other defects are seen in the bore, they are to be searched for, and their depths and positions noted.

These results are to be tabulatel according to the blank forms furnished by the Biurear of Ordnance.
565. In recording the measurements of the bore in extreme proof and after service, it is necessary to distinguish between "indentation," that is, the depression at the "seat of the shot," which is always below, the "wear of the bore," which is generally above, and the increase of bore, or "enlargement" from any other cause (Art. 608.)
566. A Vext-guide, to be used with rents in guns of the Dahlgren pattern (Fig. S7).

This instrument is made of bronze or composition. When placed upon the gun, one of its branches coincides with the curve of the cylinder, and the

Fig. 87.-Vent-guide. other, starting from its centre, lies along the cylinder in contact with it longitudinally. The lower edges of the branches are a right line and a curred line, making two right angles with each other. The length of that of the transverse branch is equal to the distance betreen the centre of the tro rents. The rear surface of the transrerse branch is curved and quadrilateral. Its sides are inclined so that their rear edges, VV , show the exact direction of the vents. Erery point in the upper edge lies in the same horizontal plane. The height is sufficient to permit the edges to give an accurate direction to the drill. The upper edge of the other branch runs off in a sloping curve to its extremity:

A centre-line is drawn through the lower edge of the longitudinal branch, and is continued upwards on the rear surface of the transverse branch to the top.
567. Use--The guide being placed with its centre upon the centre-mark of the gun, and the centre-line of the longitudinal branch being made to coincide with the centre scribed upon the cylinder, the rear lower end of the transrerse branch will theu
coincide with the base-line, its extremities will indicate the centres of the vents, and the rear edges of the sides will show their true direction.
568. An instrument for verifying the interior position of vents.

A head of well-seasoned wood, which fits the chamber, is attached to a wooden disk of the diameter of the main bore. The surface of the head corresponds with a longitudinal central section of the chamber; at the point where the projection of the vent would meet it a piece of hard wood is inserted. A central line drawn through its length, crossed at a right-angle by another line at any known point from the smaller end, will afford convenient points to measure from.

A stout wooden staff is attached to the axis of the head; at a distance equal to the length of the bore, the end is jogged into the centre of a half-disk of wood, which is fitted to the bore.

The whole is so constructed that the straight edge of the half-disk (or the cord) is in the same plane as a horizontal section of the head. A few holes are bored through the disk attached to the half-head, to allow the instrument to pass freely into the gun and out of it.
569. A wire of untempered steel, of the size of the vent, with a sharp, well-centred point, and a small spirit-level, are required to use with this instrument.
570. Use.-The gun being levelled, and the instrument being pushed to the bottom of the bore, the upper edge of the halfdisk near the outer end of the staff is then brought to a level.

The surface of the half-head then corresponds with the horizontal central section of the chamber. The point of the wire being pushed gently to meet it, will show very accurately the interior position of the vent.
571. Vent-gadges of untempered steelwire, with shoulders to prevent them from slipping into the vent (Fig. 88). One should be of the proper diameter of the vent, one of the greatest, and one of the least, diameter allowed.
572. Use.-The diameter of the vent is measured by the gauges, the smallest of which must enter freely, and the largest not at all.

Fig. 88.-Vent-gauges.
573. A Vent-searcher, a steel wire of the length of the vent, bent to a right angle at the lower end and pointed.

Use.-The vent is examined for roughness or for cavities in
the metal by means of the searcher, the point of which should feel every portion of it carefully.

57 4. A Semicirctlar Protractor of metal for measuring the inclination of vents, or for ascertaining their deviation from the guide.
575. Profile-boards, for distances in front and rear of baseline.

Their lower edges are adapted to the shape of the gun, and the upper ones are parallel to the axis of the bore.

The distances from the base-line of the several parts, and of points at which diameters are to be measured (Fig. 24), are laid off accurately on the upper edge, and then marked in lines perpendicular to it on the sides and lower edges of the profile. An iron strap is attached to the upper edge to prevent warping, and the whole is well coated with shellac-rarnish to keep it from absorbing moisture.
576. The following instruments are used in connection with the profile-boards:

A rule, for verifying the marks, of such a length that not more than one fleeting may be necessary, to be graduated decimally according to the standard.

A small square of steel, to be used in referring the marks on the board to those on the rule.

A steel straight-edge, long enongh to extend across the muz-zle-face and several inches on the board, to ascertain the extreme length from base to muzzle. It is also used for the same purpose at the extreme end of the cascabel.

A steel seratcher, to mark the gun at points, not otherwise indicated, where diameters are to be mensured.

577. A Beam-caliper, for measuring diameters, is a square
of steel or iron (Fig. 89), with two branches, one of which is fixed and the other sliding.

The inner edges of the two branches, when pushed together, lie, of course, in contact with each other throughont their length. The beam is graduated to inches and tenths. A vernier is attached to the sliding-branch, graduated to hundredths of an inch.

The latter is provided with a thumb-screw to fasten it at any point.

The length of the beam must be rather greater than the diameter ; and that of the branches than the semi-diameter of the guns to be inspected, at their largest points.
578. A Cascabel-block is a wooden cylinder of the proper diameter of the breeching-hole, the size of which it is used to verify.

The opening between the jaws may be ascertained by measuring the iron block which is fitted to go between them, or by a template.
579. A Trunnox-gauge is an iron ring of the proper diameter of the trunnions (Fig. 90). Its outer edge coincides with the diameter of the rim-bases.

Use.-To verify the position and alignments of the trunnions of a gun, it is first necessary to ascertain, by means of the trunuion-gange and of the calipers, their cylindrical form and their diameters, which should be the same, or allowance must be made for half the difference in measuring their axial distances from the base-line, by the trunnion-rule, which should next be done. These distances should be equal, or their axes do not coincide, an error not tolerated.

The lengths of the trunnions are

Fig. 90.-Trunnion-gauge. measured with the foot-rule, and the diameters of the rim-bases by that of the exterior rim of the trunnion-gange.
580. A Trunnton-square (Fig. 91) of steel or iron for ascertaining the position of the trumious, with reference to the axis of the bore. This instrument is a square, with two branches, one of which is fixed, and the other movable.

The foot of each branch, TT, is in the same plane, and is parallel to the upper edge of the main piece which connects them. The latter is graduated to inches and tenths. The movable branch, B, slides on the main piece, and may be secured to it by two thumb-screws, S . It is provided with a vernier-scale graduated to hundredths of an inch.

Petween the branches there is a slide, R , also provided with a vernier, graduated as before, with a thumb-screw to secure it firmly; in its centre there is a sliding point, P , moving vertically, with a thumb-screw to fasten it. Above the foot of each branch there is a slit to receive the shank of a plate, H , on the end of which a thread is cut ; the lower edge of the plate forms a right angle with the branch, and the plate is fastened to the branch by a nut, at a point from the end equal to the semidiameter of the trunnion which is marked on each branch.

A graduated steel wedge, W, is used to measure the deriation of the trunnions from the feet of the square.
581. Use.-When the feet of the branches, or the lower edge of the plates, rest upon the trunnions, the upper edge of

Fig. 91.-Trunnion-square.
the main piece is parallel to their axis, if their alignement is correct. When in the latter position, the edges of the feet will lie close against the sides of the trumnions.

The trunnion-square is placed upon the trunnions in the plane of their axis. The feet of its branches should coincide with the surfaces of both trunnions, throughout their length, above and in rear, and their inner edges with the faces of the rim-bases.
582. Then, with the beam-compass (Fig. 92), scribe on the

Fig. 92.-Deam-compasses.
upper surface of the gun the distance of the axis of the trun-
nions from the base-line, and push the sliding-point of the square down, till at that distance it touches the surface of the gun, and screw it fast.

Turn the gun over, and again scribe on it the same distance from the base-line. The square, being again applied, will determine whether the trunnions are above or below the axis of the bore, which will coincide with that of the gun, if accurately bored, and turned on the same centres and bearings. If the branches rest upon the trunnions before the point of the slider touches the gun at the scribe, their axis is below, but if the point touch first, above the axis of the bore by half the space betreen. The graduated wedge, being placed under the vertical sliding-point, will determine the amount. If both touch at once, both axes are in the same plane.

No gun can be received, the axis of the trunnions of which is above the axis of the bore.
583. A Trunnion-rule (Fig. 93).-To measure the distance of the trunnions from the base-ring or line. This is an iron rod

Fig. 93.-Trunnion-rule.
with a head at one end, through which passes one branch of a small square, A. The centre of the rod is marked on the end, and the square is set so that the inner edge of the branch which is parallel to the rod is at a distance equal to the semi-diameter of the trunnion from the centre. It is secured in this position by screws and clamps.

The upper side of the rod is graduated to inches and tenths. A slide, B, with a slot through it, to show the graduation beneath, traverses upon it, and is kept from turning by a guide on the lower slide. There is a vernier on the slide, graduated to hundredths of an inch; a thumb-screw serves to secure the slide at any point on the rod. That end of the slide from which the graduation of the rod commences has both of its sides drawn out, to form knife-edges; the knife-edges and the end of the slide are in the same plane.
584. Use.-When the square at the end is placed on the trunnions, the end of the rod will touch its side at the point of its greatest diameter. The rod being held parallel to the axis of the bore, with the side of the head pressing the rim-base, the
knife-edge will be in a proper position to fall into the base-line when moved to find it.
585. Line of Sight.-If the alignement of the trunnions be correct, it will serve as a means of determinating the correctness of the line of sight, which, before the gun is removed from the lathe, slould be distinctly traced on the sight-masses and the swell of the muzzle, and should be at right angles to the baseline, to the axis of the trunnions, and to the connecting-piece of the trunnion-square, when its branches rest against their rear, with the plates across their upper surfaces.

The Inspector will further satisfy himself of the correct tracing of the line of sight on the gun, by examining the lathe and the manner of tracing it in the plane of the axis of the bore at right angles to the axis of the trunnions, as by it are placed the sights and vent, and in their absence it serves as a line of metal sight.
586. A Set of Templates (Fig. 94), for verifying the shape of lock-lugs, the angle of the rear sight-mass, the curve betreen the base-line and the front

Frg. 93.--Templates for Sight-masses. of the rear sight-mass, that at the end of the cascabel. the berel of the breechinghole, the opening of the cascabel, and the shape of the mizzle-swell.

If the inspection shonld take place at the foundre, the templates use for chipping might be rerified and used for inspection.

For guns of Dahlgren's pattern, a bronze model, showing the shape of the lugs and rear sight-mass, and the position of the rents, is furnished as a guide to the contractors.
557. A standard foot-rule for verifying measures.

A foot-rnle of steel for measuring the masses, the length of the trmmions, and for other purposes. The graduation should be extended to each end.
558. A set of ring-gauges, large, medium, and small, for inspecting the projectiles used in proof.
559. A small beam-caliper, with outside edges, for examining the adjusting-rings and the ring-ganges.

The measmes are to be taken by scales corresponding with the standard measures of the United States.

If two or more carities should be near each other on the exterior, the gim may be rejected, though the carities should be of less depth than tolerated in the table."
590. If the trumnions are placed within the limits of tolera-

[^20]tion, the preponderance must not vary more than five per cent., more or less, from that fixed in the contract.
591. Impression-taker for Vents.-This consists of a wooden head, one half of which is cylindrical, and the other half is of the shapa of the chamber, both being rather smaller than the parts of the bore for which they are intended. A staff, flat on its upper sides, and rounded on its under side to fit the curve of the bore, is mortised into the cylindrical portion of the head. A mortise is cut through the chamber part of the head, extending several inches in rear and front of the position of the rent. Into this mortise a loose piece is fitted, capable of free motion upwards and downwards, the top of which is pierced with holes to secure the wax or composition which is spread orer its surface. This movable piece rests on a wedge attached to a flat rod running through a slot in the head; there is a slot in this rod about four inches long, a pin passing through it into the staff.
592. Use.-To use the instrument, withdraw the rod as far as the slot will permit, which will allow the movable piece upon which the composition has been spread to drop below the surface of the head, and protect it. Push the head to the bottom of the chamber and arrange the position of the staff, so that the movable piece will cover the rent, then press the end of the rod home. This motion will throw out the composition, an! a distinct impression of the vent and of fire-cracks (should there be any) will be left upon its surface; draw the rod back as far as the slot will allow, and withdraw the instrument ; the impression, being protected thereby, will come out uninjured. Impressions of injuries or cavities in the bore may easily be taken by a similar contrivance.
593. Gutra-perciia Impressions.-Impressions are also taken of the interior of the bores of camnon on softened strips of gutta-gercha.

The following inethod is used in the English Service : *
A set of instruments are provided consisting of a semi-cylindrical iron frame, about two feet long, connected with an iron tube in such a manner that by screwing up a rod which passes through the tube, the frame can be worked up or down; upon this frame an iron plate, corresponding to each calibre of gun, is screwed, and when an impression is taken gutta-percha is spread on the plate, and by ineans of the rod is pressed against the defective part.
594. In the absence of special instruments for the purpose, the following method may be used:

[^21]The blocks of wood, as slown in Fig. 95, are of a wedgeshape, they can be made by any carpenter, but refuire some practice to work with them so as to get perfect impressions.

Breech-loaders.

Muzzle-loaders.
Fig. 95.-Wood Blocks for taking Impressions of the Bores of Guns.
The blocks, Λ, tapering from the centre for breech-loading guns, and from the breech for muzzle-loading guns, with their wedges, B , should be made to suit the diameters of the bores to be taken, leaving room for about . 25 inch of gutta-percha, when the wedge or wedges are driven home, and proceed to take the impression as follows:

A sufficient quantity of gutta-percha, having been softened in water just below the boiling-point, is well knexded and worked to expel the air and water, and is laid along the block, A, which has been previously prepared by rubbing it orer with a little soft' soap.

The gun is so placed that the impression required will be taken upwards, the block, A , is inserted into the bore, and the wedge, B (if a breech-loading gun, by simultaneous blows at both ends), is driven well home with mauls: a small wedge, C , is then forced betreen the ends of the blocks A and 13 .

This can be easily withdrawn in about ten or fifteen minutes, according to the weather, when the impression has become cold, and thus gives slackness to the wedge, B, and the block, A, which are withdrawn in the order named, together with the impression, which can be readily remored from the block, being prevented from sticking by the soft soap.

Before impressions are taken the bore should be clean, but slightly greasy; if quite dry the gutta-percha will adhere to it,
and the impression be damaged in the removal. The impression should be reduced to the smallest dimensions compatible with showing the whole of the defect.
595. The impressions of any defects are cut off, the position in the gun is marked on the back, and they are registered and preserved for future reference.

The defects are noted in the following manner:
The distance is recorded in inches from the muzzle, and the position round the gun is recorded in all cases according to the diagram (Fig. 96), looking from the muzzle, as "np," " D," "R," "L," or in intermediate positions, as "R of D, ," L of up," etc., etc. If a defect extends any length it is noted as in the following examples: " 36 in., D to L," which means a defect thir-ty-six inches from the muzzle running round the bore from "dorn" to "left;" or "49 inches to 56 in . up," meaning a defect running along the top of the bore

Fig. 96. from forty-nine inches to fifty-six inches; or, in other words, seven inches long.
596. Veat Inpressions.-The implements required for taking permanent vent impressions in lead are a soft wire about 0.07 in . in diameter, and 3 or 4 fathoms long.

A lever about twice the length of the bore, about 3 inches in diameter, and shod to suit the curve of the bore nearly. A small button of soft lead, judged to be of sufficient size to fill the vent at least one inch from the bore. This is to be pierced lengthwise to receive the wire.
597. To Take the Impression.-Shove the wire through the vent; let it pass along the bore and out at the muzzle ; put it through the leaden button and tie a knot at the end.

Draw the wire back through the vent until the leaden button is introduced firmly into the inner oritice. Apply the lever, making its shoe bear on the button, and force it well in by repeated blows, the muzzle being the fulcrum. This done, disengage the button by pushing in the priming-wire.

In taking impressions of the vent and cracks, each button in turn is used as a pattern for molding its successor, allowing for the progressive enlargement of the vent or the cracks emanating from it. When the crack shows itself, the head of the button should be so enlarged as to include it.

These examinations should take place after every twenty fires, at least, and more frequently when any unusual enlargement of the vent or extension of cracks are developed, and indi-
cate its speedy destruction. Before each examination the bore of the gun is carefully washed and dried.
598. Powder-proof.-The powder-proof is based on the highest charge which the gun will fire in service, and bears a certain relation to it.

The proof-charges are as follows:

calibre and class of gun.	Charge of POWDEt, LES.	projectile.	$\begin{aligned} & \text { xo. OF } \\ & \text { EPRES } \end{aligned}$
XV-inch. 43,000 lbs.	Pounds.		
	$\left\{\begin{array}{l}35 \\ 45\end{array}\right.$	Shell. 330 lbs.	3 3
	55	Cored Shell. 400 "	3
XI-inch, 16,000	¢ 25	Solid Shot....... 16.1	1
	\{ 15	Shell............127 "	10
X-inch. 12,500	$\{18$	Solid Shot 124 "	1
	$\left\{\begin{array}{l}12 \\ 15\end{array}\right.$	Shell. 95 "	10
IX-inch.......9,000 "	$\left\{\begin{array}{l}15 \\ 10\end{array}\right.$	Solid Shot 90 '، Shell.	10
VIII-inch of.....6,500 "	10	Shot............ . 6.5	10
32 -pdr. of 4,500 "	8	Shot............ 32 "	10

The cannon-powder for proof is of not less than 1.500 feet initial velocity. It is filled in service-cylinders and well settled.

For chambered pieces the increased charges should fill the chamber and necessary portion of the bore.

The projectiles are of full weight, and not below the mean gauge; the shells filled with a mixture of sand and ashes. to bring them up to the weight of the filled shells. Sabots for the shell, and a grommet wad orer the shot.

The gun should be fired on skids or a proving-carriage to test the trunnions.

If five per cent, out of any lot offered for ordinary proof under a contract fails to sustain it, the whole may be rejected, as may be stipulated in the contract.
599. Water-proof.-The pressure to be applied in the water-proof is two atmospheres, or thirty pounds to the square inch.

The penetration of water in this proof through the metal of the piece, in any place, wili canse the rejection of the gun; and if, on examination after the water-proof, there are any defects indicated by weeping or dampness in the bore, the guin is rejected.

The water-proof is alone to be depended on to detect minute clusters of cavities in the bore, which for this purpose
should be perfectly dry, and examined by sunlight. All inspections, consequently, should take place in fair weather, and when the temperature is above the freezing-point.
600. Iydraulic Pump and Apparatus for the water-proof. -Any of the various patterns of this machine may be applied to the proof of guns. An iron cross-head is secured to a stout wooden block which fits into the muzzle, and which has a flange or shoulder to cover the muzzle-face; rings of guttapercha are placed between thein; an iron rod with a ring in one end, to fit over the trunnion, and with a thread cut on the other end, is used on each side of the gun, to comect the trunnions with the cross-head. The whole is set up with nuts, and the pressure on the rings makes a tight joint; a coupling on the cross-head receives the hose, and the water is forced into the gun through a hole in the wooden block. Care should be taken that the valve is loaded with the proper weight for proof.

In the construction of the built-up steel-lined cannon of the English service, the steel tubes are subjected, after toughening in oil, to a water-pressure in the interior of $8,000 \mathrm{lbs}$. per square inch, to detect any latent cracks; and after the powderproof they are subjected to a pressure of 120 lbs . on the square inch, to make sure that the end has not been split at proof.
601. Extreme Proof of Trial-guns.-The extreme proof of guns intended for trial of metal is conducted as follows:

A suitable butt is erected to arrest the flight of the projectiles used in proof, and to admit of their easy recovery, and a bombproof, readily accessible, for the protection of the firing-party:

After undergoing the ordinary proof established for its calibre and class, the gun selected for extreme proof is subjected to at least 1,000 rounds with service-charges.

It may be fired from skids or suspended.
During the trial the gun is frequently and critically examined, inside and out, for cracks or defects, especially about the interior orifice of the vent, of which impressions are taken in wax at regular intervals.

If they show that the vent is corroded in furrows, and enlarged considerably in diameter at its juncture with the bore, a permanent impression is to be taken in lead, to show the conical enlargement.
602. Enlargement of Vents.--When, from the appearance of the bore at the interior orifice of the vent, it is evident that the latter has enlarged beyond the limit of safety, and especially when a crack or cracks appear to be extending rapidly, the vent so enlarged may be filled with melted tin or zine; a
tight-fitting sponge-head being pushed to the bottom of the chamber to close the interior orifice-and the other vent being drilled through for the purpose of continuing the firing. The precise time at which this is to be done will vary accordin's to circumstances; such as quality of metal, charge, and elevation.
603. The endurance of a smooth-bored gun with servicecharges may be surely predicted by observation of the progressive wear of the interior orifice of the vent. There are certain general forms in which this enlargement takes place. They may be classed as triangular, lozenge, quadrilateral, star, circular, and elliptic. (See, Plates in Ord. Ins.)

With the lateral vent of the Dahlgren system, it usually takes the lozenge form, the cracks extending from the opposite angles lengtliwise of the bore.

With those rifled-cannon in which the rent is bonched, the cracks appear around the bouching, and although the bouching preserves the vent, yet the formation of fissures around the enlarged orifice, when once commenced, canses a greater tendency to rupture. With the vent not bouched, the wear in rifle-cannon is about double that of the smooth bore.

So long as the wear of the vent is regular and without cracks, a mere enlargement is not indicative of danger; but when it reaches a diameter of four-tenths of an inch, the rent sliould be closed and a new one opened.
604. A gun of large calibre should not in serrice be expected to stand more than 400 or 500 rounds before it will be necessary to open the new rent, which, howerer, will be of no advantage unless the old one be closed at its interior orifice, on which the gases otherwise would continue to act as a wedge.

The first distinct appearance of the cracks, as shown by the button, is the proper limit.

After the gun bursts, a sketch or draft is made showing the lines of fracture, and specimens are reserved for trial of density and tensile strength; and, if practicable, a photograph is taken.
605. Endorance of Guns in Service.-The principal injuries caused by service are internal, arising from the separate action of the porrder and the projectile. Thes increase in extent with the calibre, whaterer may be the nature of the gun, but are modified by the material of which it is made.
606. Induries from tie Powder.-The injuries from the powder generally occur in rear of the projectile. They are, 1st. Enlargement of that portion of the bore which contains the porrder, arising from the compression of the metal. This
injury is more marked when a sabôt or wad is placed betreen the powder and the projectile, and is greatest in a vertical direction. 2d. Carities produced by the melting away of a portion of the metal by the heat of combustion of the charge. 3d. Cracks arising from the tearing asunder of the particles of the metal at the surface of the bore. At first a crack of this kind is scarcely perceptible, but it is increased by continued firing until it extends completely throngh the side of the piece. It generally commences at the junction of the chamber with the bore, as this portion is less supported than the others. 4th. Furrows or scoring produced by the erosive action of the inflamed gases. This injury is most apparent whe"e the current of the gas is most rapid, or at the interior orifice of the rent, and on the surface of the bore, immediately over the seat of the projectile.
607. Scoring commences very early in large guns; at first, it is only a mere roughness, which gradually insrenses in depth and forms lines along the bore ; but it is not until a grn lias been fired rery considerably that it becomes of importance.

The impressions of deep scoring resemble the bark of an old elm-tree, the metal being eaten away into irregular furrows and ridges. Even when it has reached this extreme case, howerer, scoring has not caused the destruction of the gun, though in some instances, acting like a wedge, it has split the bore at that part.

Some experimental guns, excessively scored on the upper side of the bore, have been turned orer, reated and sighted on the under side, but this has not been found necessary until the gun has been used more than is probable under ordinary circumstances.
608. Injuries from tie Projectile.-The injuries arising from the action of the projectile occur aroand the projectile and in front of it. They are:

1st.-Indentation in the lower side of the bore, produced by the pressure on the projectile by the essape of gas through the windage, before the ball has moved from its seat. The elasticity of the metal, and the burr, or crowding up, of the metal in front of the projectile, cause it to rebound, and, being carried forward by the force of the charge, to strike against the upper side of the bore, a short distanca in front of the trunnions. From this it is reflected against the bottom, and again reflested against the top of the bore, and so on until it leaves the piece.

The first is called "indentation," and the others are called "enlargements."

In pieces of ordinary length, there are generally three enlargements when this injury first makes its appearance, bat their number is increased as the "indentation" is depressed and the angle of incidence increased. The effect of this buunding motion is alternately to raiss-and depress the piece in its trun-nion-holes, and to diminish the accuracy of fire, until finally the piece becomes unfit for service.

It is principally from this injury that bronze guns become unserviceable. Mortars and howitzers are not much affected by it.

The principal means used to prevent this injury are to wrap the projectile with cloth or paper, and to shift the seat of the projectile.

The latter may be done by a wad or lengthened sabôt, or by reducing the diancter and increasing the length of the cartridge. The last of these methods is considered the most practical as well as the most effective ; and it has the additional adrantage of decreasing the strain on the bore, by increasing the space in which the charge expands before the ball is mored.

2d. Scratches or furrows made upon the surface of the bore by rough projectiles, or by case-shot.

3d. Cuts made by the fragments of projectiles which break in the bore.

4th. Wearing away of the lands of rifle-cannon, cspecially at the dividing edgres. A little rubbing of the side of the grooves from the friction of hard bearings is of little importance.

5th. Enlargenent of the muzzle, arising from the forcing ontward of the metal ly the striking of the projectile against the side of the bore as it leares the piece. By this action the shape of the muzzle is clongated in a rertical direction.

6th. Cracks on the exterior. These are formed by the compression of the metal within, generally at the chase, where the metal is thinnest. This portion of a bronze gm is the first to give way by long firing, whereas cast-iron gmus usually burst in rear of the trumions, and the fracture passes through the rent, if it be much enlarged.
609. Descriptirn List of Guxs.-Before sailing, the Inspector of Ordnance furnishes the Commander with a descriptive list of his battery, together with a statement of the number of times each gun on board has been fired, in the following form (a copy of which the Commander transmits to the Burean of Ordnance before sailing; this list is returned to the Inspector of the yard to which she may return, with all additional firing, noted opposite the number of each gun, certified correct by the Commander):

610. Set of Vent Impressions.-The Inspector also furnishes the Commander with a set of leaden impressions of the interior orifice of the vents of the guns, secured in a suitable box, that he may be able to compare the wear and gradual enlargement. These are transferred with the guns to other ships, or when landed. (Fig. 97.)
611. Inspection at Termination of a Creise.-At the termination of a cruise the guns are carefully examined by the Ordnance Officer of the Yard, and such others as may be directed, with the view to discover and report any injuries which they may have sustained in service, or any defects which may not have been developed in the original proof.

Before proceeding to examine a gun the bore should be thoroughly cleaned; it will generally be sufficiently prepared for examination by washing, sponging, and drying.

If, however, there be hard rust or a coating of

Fig. 97.-Vent Impressions. any kind on the surface of the bore, it may be cleansed either by firing, if circumstances admit, one or two scaling-charges, about one-third the full charge, without projectiles, which will usually loosen the scale; or the bore may be scrubbed ont with hot water and potash.

No sharp-edged or pointed scraper should be employed for cleansing the bores of rifled-guns, as they are unnecessary and liable to injure the rifling.
612. In this examination the attention of the Inspecting Officers is directed to the following points, viz.:

Enlargement of the interior orifice or exterior orifice of the vent.

Indentations or hollows produced by the projectile balloting against the surface of the bore, or by the action of the gases.

Cuts or scratches in the bore, producel by fragments of broken, or roughness of imperfect, projectiles.

Roughness or corrosion of the metal on the exterior, produced by neglect or exposure.

Similar injuries in the bore, or any eulargement of the bore, which is to be ascertained by measuring with the star-gatge, at every onc-fourth of an inch, from the bottom of the cylindrical part to the seat of the projectile, every inch from that point to the trunnion, thence every five inches to the muzzle, and the resnlts recorded in the usual form, and reported to the Bureau, that they may be compared with those noted at the original inspection.

In riffed-cannon, cracks or injuries produced ly firing, or the rupture of shells, are to be songht for, arome and in the rear of the vent bouching; on the top of the bore, between the trumions and reinforce-band; on the lower side of the bore, near the seat of the projectile, at the junction of the lands and the grooves; near the inside of the muzzle, caused by explosion of shells.

Care is to be taken that the distinguishing marks and numbers are always accurately noted, that the correct history of each gun may be preserved.
613. Inspection of Vexts.- As the best indication of the amount of firing to which any smooth-bored gum has been exposed, when it is not otherrise known, is given by the enlargement of the rent; particular attention is paid, in the re-inspection of the guns, to this point. The standarl ganga is used to aseertain the general cnlargement, and the sarcher to detect defects which may lave been dercloped in firing. Impressions are taken of the lower orifice of the vent with softened was, and if they show that the rent is corrodel in furrows and enlarged considerably in diancter at its function with the bore. a permanent impression is to be taken in lead to show the conical enlargement.
$61+$. When the number of rounds fired is net known, an estimate may be made from an examination of the rent by erlindrical ganges, differing from each other by .01 inch, passed throngh it.

In all the gruns of the Dahlgren pattern the vents are twotenths of an inch in diameter.

Observation of the wear of the vent in proof-firing of smooth-bored guns gives the following as the average diameter of the vent, after the under-mentioned number of fires:

> No. of Rounds................. $100,200,300,400,500$.
> Diameter of Vent........... $24, .26, .30, .35, .40$.

These combined with examination of the interior orifice, will enable a very correct judgment to be formed of the probable number of fires sustained and duration of the gun.

The larger the calibre and the heavier the charge, the more promptly the wear is manifested on the interior and exterior.

The enlargement does not extend very far from the lower orifice until the enlargement of the exterior has reached a diameter of .3 of an inch. So long as the wear is regular, and the cracks, although numerous, do not exceed .5 of an inch in length, the indications are good. If the cracks are but few or diminish in number, running into each other and extending rapidly, it is a very unfavorable sign. In the ritle-cannon (Parrott's) cracks athwart the bore, either running into the bouching or into the rear of it, are very unfavorable to the gun's endurance.

CHAPTER IV.

BUILT-UP GUNS.*

Section I.--Principles of Construction.

615. GENERAL CONSIDERATIONS,-No modern theory of constructing guns can be called new, since guns are in existence that hare been either recovered from wrecks. or preserved in other ways, showing every variety of coils, hoops, casting, wire-binding, and so on, as far as the appliances then in use conld furnish the quondam inventors with means of carrying their inventions into effect.

That in which novelty has been attained, is the improvement of processes by which large castings or forgings, accurate turning and boring, can be secured, or by which chemical knowledge can be brought to bear on the manipulation of metals ; but no such progress can make a built-up gun, or machine of any sort, stronger than a perfectly homogeneous one, in which the varying strains are closely calculated and properly met by the scientific disposition of the necessary strength.
616. DEFINITION.-The terms "built-up" and "hooped" are applied to those camon in which the principal parts are formed separately, and then mited in a peculiar manner. They are not necessarily composed of more than one kind of metal; some of the most important are made of steel alone; and they may be made by welding or by screwing the parts together, and by shrinking or forcing one part over another.
617. OLJECT.- The object of this method of manufacture is to correct the defects of one material by uniting with it opposite qualities of the same or other materials. The defects which follow the working of large masses of iron or steel, such as crystalline structure, false welds, cracks, etc., are avoided by first forming the parts in small masses of good quality and then uniting them separately.
618. Nature of the Force to be restrained.-In considering the effect upon a yielding material of any force which may be applied, the rate of application of the force, or the time which elapses from the instant when the force begins to act, until it attains its maximum, should not be neglected; for, with equal ultimate pressures per square inch of surface, that force

[^22]will be most severe upon the gun which attains this pressure in the shortest period of time. (Chap. II.)
619. HOW TO INCREASE THE STRENGTH OF A GUN.-The most obvious method of enabling a gun to sustain a greater elastic pressure is simply to thicken its sides, thus increasing the area of the parts to be torn asunder. This rule has been found to work practically with guns of small calibre, but in larger guns it does not work, from the fact that, in cast guns, of whaterer metal, the outside helps but very little in restraining the explosire force of the powder, the strain not being communicated to it by the intervening metal. The consequence is that, in large guns, the inside is split while the outside is scarcely strained. This split rapidly increases, and the gun ultimately bursts.
620. Example.-If we make equidistant circular marks on the end of an India-rubber cylinder (Fig. $98)$, and stretch it,

Fig. 98.-India-rubber cyiinder, with equidistant concentric marks. we can plainly see how much more the inside is strained than the outside, or even the intermediate parts; the spaces between the marks will become thinner, each space becoming less than that outside of it ; but the inner spaces, much thinner than the others (Fig. 99), showing that when

Fig. 99. -The same cylinder, stretched by internal pressure ; the concentric marks show the inferior stretch of the exterior. the inside is strained almost to breaking, the intermediate parts are doing much less work, and those far removed almost none.
621. Limit to Thickvess of Metal.-Now, if we take any transverse section of a gun, any unit in length, and suppose the metal to be divided into any number of concentric rings, it will be evident that the greater the distance of any ring from the axis of the gun, the less will it be stretched by the expansion of the bore when the piece is discharged, and consequently the less will it contribute to the general strength of the gun. If the strain upon the bore from the discharge be considered merely as a pressure,--statical force,--the resistance offered to it by any two rings will be inversely proportional to the square of their circumferences or distances from the axis of the gun.
622. It will, therefore, appear that there is a certain limit beyond which it would be useless to increase the thickness of the metal, viz.: When the force exerted on the surface of the bore would be sufficient to rupture the interior portions of the metal before the strain acted to any extent upon the exterior parts. Any arrangement of the parts by which the explosive strain is distributed equally over the entire thickness of the piece, necessarily brings a greater amount of resistance into play. In order to obtain the requisite resistance, and with a moderate thickness of metal, it is desirable to equalize, as far as possible, the strain upon every portion of the metal.
g23. MeTHODS OF EQUALIZNNG THE STRANNS. -There are two general methods of accomplishing this, riz.: First, by giving the exterior portions a certain initial tension, gradually decreasing and passing into compression towards the interior, which is done by shrinking heated iron bands or tubes around the parts to be compressed, or by slipping a tube into the bore, which has been slightly enlarged by heat.

Secondly, by means of the system of rarying clasticity; this is accomplished by placing that metal which stretches most within its elastic limit around the surface of the bore, so that, by its enlargement, the explosive strain is transmitted to the other parts.

These two methods of equalizing strains without an inordinate increase of thickness, are so important that they deserve more than a passing notice. They are called the systems of Initial Tension and Varying Elasticity. Some gun-makers nse the one, some the other, some a combination of the two, and even in our own hollow-cast guns the idea of Initial Tension is one of primary importance.
624. Phinciples of Systea of Inttial Tersioz.-The system of Initial Tension consists in making a gun of concentric tubes, by putting on each successive layer, proceeding outward from the centre, with an initial tension exceeding that of those below it; in other words, so that each hoop shall compress the one within it. The imner layer is thas in compression while the outer layer is in the highest tension. The imner layer is able to sustain the first and greatest stretch, and the outer layer, although stretched less by the explosion of the powder, "has already been stretched into high tension, and thus has to do an equal amount of work. The intermediate layers bear the same relation to the initial strain, and to the strain of the powder. so that, in short, all the layers contribute equally of their tensile strength to resist the strain of the explosion.
625. Defects of tie System.-Each hoop, or tube, has this
element of weakness that its inner circumference is more stretched than its outer one. Absolute perfection would necessitate infinitely thin hoops, and, practically, the thinner the layers the greater will be the strength, provided the mechanical difficulties in constructing, and more especially in applying, a great number of thin strata with the proper tension do not outweigh the advantages.
626. Methods of Applicatron.-The two principal methods of applying the system are by shrinking on, or by forcing on, the hoops.
627. Shrinking.-If the hoops are put on by shrinking, two embarrassments arise: First, the hoops inust be accurately bored, and after each layer has been put on, the gun must lee put in a lathe and the ontside turned. Great accuracy of labor is required-labor of the most expensive class.

Secondly, the process of shrinking on is not to be depended upon; not only is there a difficulty in insuring the exact temperature required, bint scarcely any two pieces of iron will shrink identically. The fitting of hoops with nice adjnstment would be difficult, theoretically; practically, it would not be done. But the chief embarrassment is the unequal effect of heat.

In the first place, heating the layers over a fire to expand them subjects one part to more heat than another; the temperature of the surface and interior are unequal, thus causing irregular strains. This may be remedied by boiling the hoops in oil, which would toughen as well as expand the hoops. In the second place, the hoops are often heated to redness when oxydation takes place. The internal diameter of the hoop is increased, and scale is left between some parts and not between others. In the third place, cast-iron and steel sensibly and permanently enlarge in proportion to the amount of carbon they contain when snbjected to the heat.
628. Forcing on.-Whitworth and Blakely advocate the method of forcing the hoops on with hydrostatic pressure. The forcing of a slightly conical ring over a correspondingly conical tube obviates the necessity of great accuracy in the diameter of either pieces. The truth of the cone depends upon the correctness of the lathe. The truth of the sufaces is also a question of good tools. The tension of the ring depends on the distance to which it is forced in the conical tube, and this may be regulated by the safety-valve of the hydrostatic press. With special tools, and when correctuess depends upon the mechanical appliances, which can be adjnsted with the utmost nicety, an inexpert workman could hardly fail to do well.
629. Principles of System of Varying Elasticity.-Let us now suppose the hoops or tubes forming a gun to be fitted together accurately, but without tension. If the inner hoop is very elastic, and the next less elastic, and so on throughout the series, the outer hoops being the least elastic, and the degree of elasticity being exactly proportioned to the degree of elongation by internal pressure, all the hoops will be equally strained by the powder, and none of their strength wasted. If the inner hoops be stretched by the powder-pressure $\frac{-1}{10}$ of an inch, and the outer hoop $\frac{1}{100}$ of an inch, the material of the inuer hoop should have such elasticity that it shonld be no nearer its breaking-point when stretched $\frac{1}{10}$ of an inch than the less elastic onter hoop when stretched $\frac{1}{100}$ of an inch. Both hoops would then be equally strained by the powder, and oppose an equal resistance to it.
630. Defects of the Systenc.--It has been found difficult to obtain materials having the respective ranges of elasticity necessary to perfectly carry out this system. For this reason the outer tulve or tubes are sometimes put under an initial tension equal to the working load, in order that the work done mar be eqnal for all. This severe and permanent strain on the outer tube of conrse, tends to relax it; but if the imner tube can stretch very much withont injury, and the outer tube can only stretch a little, the permanent strain upon all parts of the gun, in order that it may be uniformly strained under fire, will be slight, and the tendency to relaxation limited.
631. Longimdinal Strength.- Care must be talen to have sufficient longitudinal strength. The theoretical resistance of a cylinder under internal pressure to cross fracture is four times as great as its resistance to splitting longitudinally, if the tenacity of the metal is the same in all directions. To obtain strength in this direction, some circumferential strength may be sacrificed by making one part the length of the entire gun, and of adequate thickness. It is probably better that this single large piece should be inside, and this is the general practice.
632. Levgth of Hoops.-Hoops of considerable lencth are desirable to add to the frictional surface, thus giring longitudinal strength to the gun. But length or continuity is chietly desirable to transfer the strain upon one point to a large resisting area.
633. Number of Hoops.-An obrious disadrantage of a large number of hoops is that the transrerse strength of the gun is much reduced.
634. Want or Continutity.-A hooped gun must always
possess the defect of want of continuity of substance. However perfect the workmanship at first, in large guns the jar of repeated firing would soon shake them loose. The great defect in the Armstrong guns was developed in the shaking loose and fracturing of some of the hoops under the tremendous vibration due to firing large charges.
635. Vibration.-Both the means, that have been considered, of increasing the resistance of a gun to mere pressure, are perfected only in proportion to the number of separate tubes or layers employed; but on the other hand, increasing the number of parts lessens the resistance of the body to the effect of sudden strain. When a gun is fired the shock is propagated from layer to layer in a wave; if the layers are already detached tubes, the outer one has no help from the rest in resisting the vibration, and the only way to modify the effect of the wave of force upon the outer layer is to give that layer great mass and thence inertia.
636. CONCLUSIONS.-To sum up briefly the principles of gun construction, merely thickening the walls of a gun beyond a certain point adds very little to its resistance to internal pressure. A homogeneous gun, in a state of initial repose, however thick it may be, cannot sustain permanently a pressure per square inch greater than the tensile strength of a square inch of the metal of which it is composed. The reason is that the imner layers of metal are more stretched and strained by an internal pressure than the outer layers, in the inverse ratio of the squares of their dianeters. Therefore, the layers must be placed under such initial strain, or must possess such varying elasticity that all parts of the gun will be equally worked at the instant of firing.

Both these conditions are perfectly carried out in proportion to the number of separate layers or tubes thus treated; but the wave of force (in distinction from statical pressure), and the effects of unequal vibration, distress a gun in proportion to the number of its parts, so that the building-up principle cannot be carried far without depriving the gun of the necessary mass and continuity of substance.
637. The system of hoops with initial tension, although theoretically perfect and an acknowledged improvement in the construction of ordnance, involves certain practical difficulties. When several thicknesses of hoops are used, it is dificult to maintain the proper longitudinal strength, and it has been found that a gun composed of two or three tubes, although not so strong to resist statical pressure as one composed of five or six tubes, would resist a greater number of heavy charges of gunpowder and prove a more trusty weapon.
639. With the present materials, it would be almost impessille to insure uniformly a degres of elasticity in the different laye:s, exactly proportional to their respective elongations under fire. The Initial Tension system, slightly modifie1, may be brouglat to the aid of the system of Varying Elasticity. If the internal tube of a gun cannot stretch to the extent required without injury, placing the external tube in slight tension will reme $\begin{aligned} & y \\ & \text { the }\end{aligned}$ defect; then the inner tube will have a greater range of sate elongation, and the outer tube will take a greater share of the strain.

Section II.-The Parrott Gun.

639. General Description.-The Parrott Guns nsed in the United States Navy are chiefly the 100 -pdr. and 60 -pdr. They were fabricated exclusively by Capt. Parrott, at the West Point Foundry; none have been manufactured since 1565.

The peculiarity consists in the fact that the gun is a cast-iron piece strengthened by shrinking a coiled hoop of wrought-iron over that portion of the body which surrounds the charge.

6! 0 . The Barrel.-The cast-iron main portion, or body. Λ (Fig. 100), is made like any ordinary cast-iron gun, except that it is a little lighter at the breech. The body of the $100-$ pdr. is cast on a core, that of the 60 -pdr. is cast solid. The

Fig. 100.
body haring been bored, has that portion of its exterior which is to receive the reinforce turned to a cylindrical formi, and of a diameter about $\frac{1}{10}$ of an inch to a foot larger than the interior dianneter of the reinforce when cold.

G+1. Tire Hoor, B , is formed by bending a rectangular bar of iron spirally romd a mandrel and then welding the mass together by hammering it in a strong cast-iron erlinder. In bending the bar, the outside, becoming more elongated than the imer one, is diminished in thickness, giving to the

Fif. 101. cross section of the bar a wedge-shape which possesses the adrantage of allowing the cinder to escapz throngh the opening, thereby securing a more perfect weld.
642. Placing the Reinforce.-The body is placed in nearly a horizontal position upon bearings which permit it to be rotated on its axis, and which will permit the reinforce to be put on when sufficiently expanded by heating it ; a pipe is introduced into the muzzle for conveying a constant stream of cold water to the bottom of the bore. When the reinforce has been properly heated, and so expanded as to enable it to pass loosely on to the body, it is placed in its position on the body, and cold water is introduced into the bore and the body is rotated on its axis. By this rotary movement, the reinforce, while hanging loosely on the body, is prevented from remaining in contact with it at any one point, and so prerented from cooling first at this point. By the introduction of the water which likervise passes out at the muzzle, the heat, imparted to the body by the reinforce, is carried off, and the body is prevented from being materially expanded, and so lessening the pinch or force with which the reinforce finally binds upon it.
643. As soon as the reinforce is found to bind upon the body, it is covered with sand or some other non-conductor of heat, the flow of water continuing until the gum is entirely cold. The object of so covering up the reinforce is to prevent the outer portion from cooling and contracting quicker than the inner portion, and to cause the reinforce to bind more firmly upon the body. The thickness of the reinforce when finished by boring the interior and turning the exterior is about equal to from .4 to .5 the calibre of the gun, and its length sufficient to cover the usual charge of powder extending a distance of one calibre in rear of the bottom of the bore and one calibre in front of the seat of the charge. The principle of construction is that of Initial Tension.

64t. The Vent is bored perpendicularly, and enters tho bore at the distance of half a calibre from the bottom of the bore. It is made in a bouching of pure copper screwed into the gun. The upper portion of the copper is replaced by steel $\frac{3}{4} \mathrm{in}$. thick, to obtain a harder surface for the blow of the hammer.

Section III.-British Naval Guns.

645. THE ARMSTRONG SYSTEM.-To Sir William Armstrong is undoubtedly due the merit of employing wroughtiron coils shrunk together to form a gun.

His main princuples of gun architecture consist essentially:
646. First, in arranging the fibre of the iron in the several parts of the gun so as best to resist the strain to which they
are respectively exposed; thus the walls or sides of a gun are composed of coils with the fibre running round the gun, so as to enable the gun to bear the transverse strain of the discharge without bursting; whilst the breech is fortified against the longitndinal strain or tendency to blow the breech off, by a solid forged breech-piece with the fibre, running along the gun.
647. Secondly, in shrinking the successive parts of the gun together so that not only is cohesion throughout the mass insured, but the tension may be so regulated that the onter coils shall contribute a fair share to the strength of the gun.

With regard to the first principle, a gun may be destroyed either by bursting the barrel or by blowing off the breech. Now wrought-iron in the direction of its fibre is about trice as strong as it is in the cross-direction; hence the best way to employ it to resist the transverse strain, is to wrap it round and round the picce like a rope. This is the foundation of the Armstrong Coil System.

For a similar reason the best way to resist the longitudinal strain is to place the fibre lengthwars; so a breech-piece was made from a solid forging with the fibre in the required direction.

With regard to the second principle, it has been shown that the strength of a gun is not proportional to its thickness, and the gun should be constructed so that each part of its mass would do its proportion of work at the instant of firing.
648. The Aristrong Gun. - The Armstrong System is the basis of the system now in use in Great Britain, and a description of the 9 -inch, 12 -ton gun is giren, as a type of the Armstrong System, although it is nearly obsolete. It was the method of construction up to April, 1867, for all heary guns. (Fig. 102.)

Fig. 102.
649. Number of Parts.-The gun consists of a solid ended
steel barrel, a forged breech-piece, a cascabel, a B tube, a trun-nion-ring, and seven coils : twelve separate parts.
650. The Barrel, or A Tube.-The steel cylinder, having been bored for a barrel, and toughened in oil, is turned on the exterior to snit the interior of the breech-piece.

651 . The Breech-piece is built by a series of wrought-iron slabs being successively molded together, and then drawn out, bored, and turned. The breech-piece will not fit on the steel tube when both are cold, the difference in size being the designed shrinkage. The breech-piece must then be expanded by heat until it is sufficiently large to go over the end of the steel tube, where it is allowed to cool and shrink.
652. Cascubel.-The screw is then cut for the cascabel in the breech-piece, the end of the screw fitting evenly against the end of the barrel. The cascabel is a solid forging of wrought-iron.
653. Shrinking on tie Coils.-The mass is now turned down for the B coil, which is shrunk on. The coils are heated over a wood-fire and placed in position as soon as they are sufficiently expanded, jets of water being turned on to assist in slrinking them. The B tube is then shrunk on, and so on, coil by-coil, until the whole gun is shrunk up.
654. Coils and Tubes.-To make a coil, a bar is taken of the shape shown in the figure (103), heated, and drawn, while hot, upon a revolving mandrel and coiled into a close spiral of any required diameter, the narrower side of the bar being placed next to

Fig. 103. the mandrel ; in winding, the section of the bar is changed to rectangular. The spiral is

Fig. 104.-Bar coiled to make a hoop. heated, placed on end under a hammer, and upset into a hoop (Fig. 104), the sides of all the adjacent coils being thus welded together. The hoop is also patted on the outside to preserve its cylindrical form. The rear coils are flanged to hook over the breech-piece. Two. coils or hoops form the B tube; one of these is turned down at one end forming a shoulder half an inch long, and the other has a corresponding recess (Fig.

Fia. 106.-Section of weld. 105). This last, having been expanded by heat, is fitted to the other, and the recess contracts on to the shoulder (Fig. 106). They are then heated, slipped over a loose

Fig. 105.--Hoop recessed to fit others.
mandrel, and hammered to perfect the weld, thus forming the B tube.
655. The Trunnion-ring is made of slabs of iron consecutively welded together on the flattened end of a porter-bar, and gradually formed into a ring by slitting the pile with a small iron wedge, and then with a series of taper mandrel. The trunnions are hammered at the same time out of the ends of the pile. It is then cut off from the end of the porterbar, the ring bored and slightly recessed to fit a corresponding projection on the coil beneath it, and is slipped over when sufficiently expanded by heat.
656. TIIE FRAZER SYSTEM.-Mr. Frazer’s plan is an important modification of Armstrong's, from which it differs principally in building up a gun of a few long double and triple coils, instead of several short single ones, and a forged breechpiece. (Fig. 107.)

Fig. 107.-Frazer 9-inch.
657. Great expense is saved by this means, as there is much less surface to be bored and turned. With respect to theory, it may be urged in its favor, in the first place, that a forged breech-piece (which is comparatively expensire and liable to fly into fragments, should the gun burst) is not required with a solid ended steel-barrel and long thick coils, although it is necessary with several short coils to compensate for the longitudinal weakness of their joints. The whole of the wroughtiron, therefore, can be coiled round the barrel, and thus give extra transverse strength. Again, the trumion-ring, which was shrunk on in the original construction, is welded on to the breech coil in the Frazer plan, so that there is no fear of slipping.
658. With regard to the second Armstrong principle, although a series of thin coils helps us to distribute the induced strain upon a gun by shrinking on each coil separatelr, the method is open to the serions objection, that it is practically dificult to calculate the respective proportionate amount of extension, and, consequently, the greater the number of pieces in a gun, the more likely that some weakness will exist in the mass owing to the undue strain on some of its parts.
659. Shrinking on the coils successicely was adopted by Sir William Armstrong, as a convenient mode of adhesion, and not on the distribution theory. In the formation of a triple coil, it is generally a manufacturing necessity to have the first coil cold before the second bar is wound round; but the third bar is wound on while the second coil is hot ; the second and third layers, therefore, contract nearly simultaneously, and are kept in a state of tension, by the first which they compress to a certain degree, thus carrying out the theory of Initial Tension.
660. Bnt the grand decisive fact bearing upon this question, was the favorable result of the trials for comparative endurance, which the 64 -pounder and 9 -inch specimen guns underwent, and in virtue of which the Frazer system superseded the original single coil system of Armstrong, towards the close of 1866.
661. THE WOOLWICH GUN.-The name " Woolwich Gun" is the term applied to all the guns manufactured in England since 1866 . The term is a comprehensive one, and might be expanded into "Wrought-iron-muzzle-loading-guns, built on Sir William Armstrong's principle, modified by Mr. Frazer, improved by Mr. Anderson's method of hooking the coils with solid-ended steel tubes toughened in oil, rifled on the French system, modified as recommended by the Ordnance Select Committee, for projectiles studded according to Major Palliser's plan."
662. Details of the Gun.-The gun consists of:
(1.) $\Lambda n \Lambda$ tube.
(2.) A B tube.
(3.) A breech-coil.
(4.) A cascabel.

Fig. $10{ }^{0}$.
663. (1.) The A tube, or inner barrel (Fig. 109), is made from a solid forged cylinder of cast-steel, which is supplied to the Royal Gun Factory by Messrs. Firth, of Sheffield. Casting is necessary, not only for the purpose of obtaining a sufficiently large block of steel, but also of making the block homo-
geneous and uniform in density. Forging imparts to it the properties of great solidity and density.

Fig. 109.
A piece is cut from the block at the breech end, and divided into small pieces which are tested for tensile strength and elasticity in the natural state, and also to ascertain at what temperature the block can be immersed in oil to the best advantage.
A steel-block which stands all the tests, is rough-turned, in which operation a lip is formed on the muzzle to facilitate lifting the tube into or out of the furnace or oil-bath. It is then bored roughly from the solid.

The tube thus formed is heated from four to six hours to the approved temperature in a rertical furnace, and then plunged into an adjacent bath of oil, in which it is allowed to cool and soak, generally twelve hours. It must then be turned and bored to make it straight inside and outside, and to remove any flaws.

It is then subjected to the water-test of 8,000 pounds per square inch, and, if no flaw is detected, the barrel is considered safe, and remains in this condition until the B tube is ready to be shrunk over it.
664. (2.) The B tube is composed of two single and slightly taper coils united together (Fig. 110). The two coils, being made and welded in the usual manner, are faced and reciprocally recessed to the depth

Fig. 110. of about one inch, and then mited together endways by expanding the recess of a coil by

Fig. 111. heat, and allowing it to shrink around the shoulder of the other (Fig. 111). This holds the two coils together enough to allow the tube thus formed, to be placed upright in a furnace ; when it arrives at welding-heat, it is remored to a steam-hammer, and receives on its er.d six or seren blows,
which weld the joint completely. The tube is next roughturned, in which process a rim is left near the muzzle for convenience in lifting, and then rough and fine bored (Fig. 112). The interior of the B tube having been brought to the required smoothness for contact with the steel barrel, it is gauged every twelve inches down the bore, and at the shoulder.

To the measurement the calculated

Fig. 112. amount of shrinkage is added, and the exterior of the Λ tube is turned so that it shall be exactly larger than the interior of the B tube by the required amount of shrinkage.
665. (3.) The Breech-coil is composed of a triple-coil, a double-coil, and a trunnion-ring. The triple-coil (Fig. 113) is made of three bars, all of the same section, but differing, of course, in length; the middle one is coiled in a reverse direction so as to break joints. To weld the folds, it is raised to welding-heat in a furnace, and hammered on end; then a mandrel is forced down inside from either end, and it is hammered on the outside, bring heated before each operation. When cold, the ends are faced, and the outer coil is turned down at the muzzle end to form a shoulder for the reception of the trunnion-

Fig. 113. ring.

The double coil (Fig. 114) is made of two bars of the same section as those of the triple coil, but of different lengths. It is made in the same manner as the triple coil, and it has a shoulder formed at its

Fig. 114. lower end, so that it may overlap the trun-nion-ring.

The trunnion-ring (Fig. 115) is made like all wrought-iron trun-

Fic. 115. nion-rings, being built up on the end of a porter-bar.

All these parts, triple-coil, double-coil, and trunnion-ring, being thus prepared, the trunnion-ring is heated to redness and dropped on the shoulder of the triple-
coil, which is placed upright on its breech end for this purpose; while the trunnion-ring is still hot, the double-coil is dropped down on the front of the triple-coil through the upper portion of the trunnion-ring, which thus forms a land over the joint, and in cooling grips the two

Fig. 116. coils (Fig. 116) sufficiently to admit of the whole mass being placed bodily in the furnace, where it is raised to weldingheat. It is then placed on its breech end under a heavy hammer; six or seven blows suffice to amalganate all the parts ; but to make the weld more perfect in the interior, a_cast-iron mandrel is forced down the bore to within 20 inches of the breech. The mass is then reversed, and the mandrel driven out again. It is then turned and bored. The front of the donble coil is recessed to a distance of nine inches, and deep enough to overlap the B tube. Finally the

Fig. 117. thread is cut for the cascabel. (Fig. 117.)
666. (土.) The casculbel is made of the best scrap-iron. It is first forged into a single cylinder, then turned, and a bevel thread cut on it. A hole which is afterward enlarged to a loop is drilled through the end. (Fig. 118.)

One round of the thread is turned off at the end of the cascabel, so that there may be an annular space there, which. in connection with the channel now cut along the cascabel and across the threads $\frac{1}{16}$ inch in depth, forms the gas-escape which comes out at the right side of the loop. This will give notice, in case

Fig. 118. the steel tube should split.
667. Building up the Gun.-The A tube and the B tube, being prepared as described, are shrunk together in the following manner: the \bar{B} tube is placed over a grating, and heated for about tro hours by a wood-fire, for which the tube itself forms the flue, until it is
sufficiently expanded to drop easily over the muzzle-end of the A tube, which is placed upright in a pit ready to receive it. The B tube is then raised, the ashes brushed from its interior, and it is dropped over the steel barrel (Fig. 119). During the process of shrinking, a stream of cold water is poured

Fig. 119. into the isteel barrel by meaus of a pipe and syphon-to keep it as cool as possible. A ring of gas is placed at the muzzle-end of the B tube to prevent its cooling prematurely, and jets of cold water play on the other end, and are gradually raised to the muzzle for the purpose of cooling the whole tube consecutively from the breech end, which it is desirable should grip first. The method of cooling the tube prevents it from being drawn out into a state of longitudinal tension.

The A and B tubes, shrunk up, are placed in a lathe, and while one cutter fine-turns the B tube to its proper shape, another cutter fine-turns the breech end of the A tube according to the plan of the breech-coil.

The half-formed gun, composed of the A and B tubes, is placed on its muzzle in the shrinking-pit, and the breech-coil is heated and shrunk on in the same manner as the B tube; it is, however, being nearly of the same thickness throughout, allowed to cool naturally, and cold water is forced up into the bore of the gun by a jet round which the muzzle rests.

The cascabel is next screwed in, which operation requires great care, as the front of it must bear evenly against the steel barrel. After it is screwed in, it is splined to prevent it from turning.
668. The abore method of construction is now applied to

Fig. 120.
the 7 -inch and 8 -inch guns (Fig. 120). It has been modified
for the 9 -inch guns (Fig. 121), and upwards, by using a slightly thinner steel tube and two double coils on the breech instead of one triple coil.

Fig. 121.
The higher natures have an intermediate B coil in addition (Fig. 122), and the 12 -inch 35 -ton gun has a button instead of a cascabel hole.

Fig. 122.
669. Vent.-The rent enters at a point tro-fifths the length of the service-cartridge from the end. The rents are lined with copper, specially hardened, and bored rertically in the 7 -inch, 8 -inch, and 9 -inch guns; but in the 10 -inch and 12 inch guns they are bored at an angle of 45° with the vertical, and on the right side of a broadside gun, but on the most convenient side in a turet-gun.
670. Nomenclature.-The guns are named as follows:

$$
\begin{aligned}
& \text { The 12-inch. 35-ton. } 500 \text {-pdr. } \\
& \text { 12-inch. } 25 \text {-ton 600-pdr. } \\
& \text { 10-inch. 18-ton. } 400 \text {-pdr. } \\
& \text { 9-inch. 12-ton. } 250 \text {-pdr. } \\
& \text { S-inch............. . } 9 \text {-ton........... . . . } 180 \text {-pdr. } \\
& \text { 7-inch. 61 } 6 \text {-ton. 115-pdr. }
\end{aligned}
$$

671. PALLISER SYSTEM OF CONVERSION.-This system of Major Palliser depends on the principle of Tarying Elasticity, and recourse has been had to it in order to utilize the smooth-bore cast-iron guns. Some smooth-bore 64 -pdrs. are the only ones which have been converted.
672. Theory of the System.-A barrel or hollow cylinder of coiled wrought-iron is introduced into a cast-iron gun, the barrel being of such thickness in proportion to its calibre that the residual strain borne by this tube shall bear a relation to the strain it transmits to the surrounding cast-iron which shall be best proportioned to their respective elasticities. The precise proportions will depend on various circumstances, the principal of which are the excessive expansion of wrought-iron due to heat, and great range between the limits of elasticity and rupture.

The cast-iron will have to do nearly all the longitudinal work. By varying the thickness of the tube, the transmitted strains can be regulated to the greatest nicety.
673. Method of Construction.-The gun having been bored, a coiled wrought-iron tube is inserted (Fig. 123). The

Fig. 123.
tube consists of two thin wrought-iron barrels, the outer one being much shorter than the inner one, and shrunk to it at the breech end. Two are used for the purpose of obtaining the benefit of the tension, and also to break the continuity of any internal fracture. The end of the tube is closed by a solid wrought-iron breech-screw. The tube is made slightly taper, and the bore of the gun is tapered correspondingly; the tube is placed in the bore, and as soon as it comes in contact throughout its length, a screw-locking-ring A, which takes against a shoulder on the tube, is screwed into the mazzle, and sets the tube home; and since in practice it has been found that the elasticity of the wrought-iron inner tube is not proportioned to its greater elongation, the deficiency is supplied by putting the tube under a slight compression, which is effected by permanently stretching the wrought-iron in the gun by heavy proof-
charges. The tube is further secured in the gun by means of a screw which passes through the cast-iron shell a short distance before the trumions at right-angles to the bore, and screws into the tube.
674. PARSON'S SYSTEM OF CONVERSION.-Mr. Parsons has proposed that the tube should be made of steel, having a solid breech, A (Fig. 124), the ingot not being bored

Fig. 124.
through its entire length. He proposes to reinforce the tube with jackets of steel shrunk on, B, and to insert the whole, tube ind jacket, from the rear of the iron casting, the cast-iron gun being so bored out as to require force to insert the tube in its place. The tube being inserted, a steel plug, C , is to be screwed in from the rear, which presses against the rear of the tuve, and the breech is then closed by a cast-iron plag representing the cascabel of the piece, D .

Various projects have been brought forward to convert our present smooti-bore guns into rifies, but these are all makeshifts. All of our smooth-bore guns are of too high a calibre, relative to their length of bore and weight, to be usefully converted.
675. EXPERIMENTAL GUNS.-The Thitworth Gux is made of a smbstance called compressed steel, which is said to be obtained by melting short bars of Swedish iron with a small quantity of carbonaceous matter in crucibles, after which it is cast into round ingots and compressed by hydraulic presses while fluid. The smaller Whitworth guns are forged solid; the larger ones are built up with hoops (Fig. 120)). The barrel is made by casting an ingot hollow. A taper mandrel is inserted in the hole, and the whole tube is hammered mntil it is of the desired size and shape. The hoops are first cast hollom, and then hammered orer a steel mandrel or rolled in a revolr-ing-machine. Before receiving their final finish they are annealed. The hoops are screwed together to form a tube, and
the tubes are bored with a slight taper and forced on over each other by hydraulic presses, in order to secure initial tension. In the iarger guns the breech is hooped with a harder and a

Fig. 12J.
higher steel than the barrel. The breech-plng is made with offsets in such a way as to screw into the barrel and the two adjoining hoops.
676. The Blakely Gun.-The most approved pattern of the Blakely Gmn combines in its construction the principles of Initial Tension and Varying Elasticity, in order to call all the metal of the piece into simultaneous play (Fig. 126). The

Fig. 126.
inner tube is made of low steel having considerable elasticity, but not quite enough. The next tube is made of high steel with less elasticity, and is shrunk on to the inner tube with just sufficient tension to compensate for the want of elasticity. It is hooked at the breech end over the inner tube. The outer cast-iron jacket, to which the trunnions are attached, is the least elastic of all, and is put on only with the shrinkage obtained by warming it over a tire. It is hooked over the tube within. The steel tubes are cast hollow and hammered over steel mandrels, by which the tenacity of the metal is much increased. All the steel parts are annealed.
677. The Vavasseur System consists of a steel tube with hoops of the same material. The strength is cast more upon the hoops and less upon the tube, which is quite thin and jacketed from the breech to a slort distance in front of the trunnions, with a second tube slirunk upon it ; the hoops encircle the jacketed and unjacketed parts, extending to the muzzle. (Fig. 127.)

The figure represents a 7 -inch gun of this make. It is built entirely of Firth steel, except the trunnion-band, F, which is

Fig. 127.-Varasseur 7-inch [steel].
made of wrought-iron. The tube, A, the jackets, B, C, D, and the breech-plug, G, are of cast-steel, the tube, A, being oiltempered. The exterior rings, E, are forged and rolled like railway tires (Art. 706). The rent is at a distance from the bottom of the bore equal to two-fifths length of the cartridge.

> Section IV.-French Naval Guns.

67S. General Descriptiox.-Breech-loading, riffed castiron guns hooped with steel were introduced into the French navy about 1860. On these being considered deficient in porver, efforts to obtain increased strength were made, which resulted, in 1871, in the adoption of the system now in use.
659. Model of 1571.-The model of 1571 comprises the calibres of 12.48 inches, 9.36 inches, 7.32 inches, and 5.46

Fig. 128.
inches. They are all cast-iron breech-loading guns, hooped and lined with steel.
680. Casting.-Second-fusion gray cast-iron is used exclusively in the manufacture of these guns. They are cast in a mold with a hollow core, and cooled from the interior. The chase occupies the lower part of the mold.
681. Lining.-The tubes to line the bore are made of Bessemer steel, forged and tempered in oil, furnished by Messrs. Petin \& Gaudet. The tube is introduced into the gun from the rear or breech end, and has welded on its after-end a collar having a thread on the outside which screms into the metal of the gun; on the inside of the collar is the thread for the breech-screw.

The tube is introduced into a lodgment about .007 inches less in diameter than the exterior diameter of the tube; the length of the lodgment is also about .007 inches less than that of the tube.
682. To insert the tube, that part of the gun which is to contain it, is raised to a certain heat which will insure the right amount of expansion. The tube is inserted cold and screwed up, and the cast-iron in cooling compresses it, both longitudinally and transversely. The greatest objection is the difficulty of making the joint tight. Tubes extending the whole length of the gun have been used, but without such good results.
683. The Hoops.-The hoops are rings of puddled steel, rery strong and elastic ; mild steel, homogeneous, with a regular tibre, is generally chosen. The body of the gun is turned perfectly cylindrical, and of a diameter slightly greater than the interior diameter of the hoops; they are then heated and shrunk on, and the gun is cooled interiorly by running water through the bore.
684. The gun is cast withont trunnions, and they are built upon one of the hoops, which is called the trunnion-hoop. The larger calibres have a double row of hoops breaking joints.
685. Gas-check.-The Broadwell Ring forms the gascheck for these guns. This is the invention of Mr. Broadwell, an American, and it is adopted generally as the gas-check in all successful breech-loading systems.
686. The Broadwell Ring is an arrangement illustrated by Fig. 129. It consists of a curved ring, I, and flat bearingplate, H. The curved ring is fitted in a correspondingly shaped chamber, and like a steam-valve, for instance, may be made perfectly gas-tight, independently of the expansive force of the gas, by being pressed tightly into the chamber by the breech-closing apparatus.

The curved self-adjusting gas-ring and adjustable bearingplate are exceedingly simple,-the ring completely filling the chamber, and being free to move in any direction that may be
necessary in order to bear accurately upon the plate, without in the least impairing its mechanical tit in its chamber.

Fig. 129.
687. The French Guns of old model had the gas-check fixed to the axis of the breech-plug, bat this led to difficulties of working, particularly when using very quick powder, and when the initial velocitics became considerable. These ghns lad two lodgments for the gas-check, the one nearest the brecch being reserved for the time when degradations of the bore at the other, had occurred sufficiently to prerent a complete closure.

This change was yery efficacious in prolonging the life of the piece, and only required a shorter axis for the new gas-check.
688. In the model of 1571, only one lodgement is made in the gun ; the gas-check, DE (Fig. 130), is of the same shape, but is placed by hand in the lodgement, and driven up by the breech-screw, S . It remains in place throughout the firing. The central opening ismade of the same diameter as the porr-der-chamber, and the side is strengthened by a projection. It freely admits the passage of the ammunition. In the large guns the gas-checks are made of copper, and in the small ones of steel. If destroyed, they are easily renerred.
689. Breech-screw.-The breech is closed with a scretrphog of cast-steel, having fourteen threads, which is screwed into the rear part of the bore.

Were it necessary in firing to screw and nnscrew the whole length of this plug at every romen, much time would be
wasted; but this is obviated by dividing the screw into six parts, in the direction of its axis, the threads being removed

Fig. 130.
from every other one, both from the plug and from the breech of the gun. When the breech is to be closed, the threaded portions of the phag are presented so that they come opposite the smooth parts of the breech-hole. The plug is then pashed in, when a sixth of a turn with a handle brings the screw of both parts together. (Fig. 132.)
690. This system of closing the breech by means of a slotted screw, or one having interrupted threads, was first proposed by an American named Eastman, and has been adopted by the French with excellent results.
691. In the model of 1871 the threads are inclined so that the plug will be better supported from the rear. (Fig. 130.) There is a slight hollow in the front end of the plug opposite the central opening of the gas-check. To make the closure still more complete, a copper ring, AB , projecting .01 inches, is sunk into the front end of the plag. This ring, on which the bottom of the gas-check rests, offers a surface of softer metal, and assists in making the contact more perfect.
692. The ring, as well as the base of the gas-check, has three concentric grooves, .05 inches wide and deep, which furnish lodgements for any gas that may escape, and prevent it from
reaching the metal of the gun. To reserve a place of deposit for the residuum from the bore, the part, AC , betreen the lodgement of the gas-check and the threads of the collar, is bored out to the same diameter as the bottom of the threads.
693. To close the Breech.-A strong cranked lever serves to manipulate the breech-plug, by

Fig. 131. turning which the threads of the screw enter the corresponding grooves. The movement in the contrary direction disengages them.
694. The breech being closed, the lever-handle is prevented from moving back, and thus al. lowing the plug to be unscremed by a short metal catch, a (Fig. 131), working freely on a stud placed in the upper part of the right side of the breech. This catch lifts as the lever-handle reaches it, and allows it to pass, but drops by the action of a spring when the handle has passed, and thus prevents the lever from moring to the left, a stud on the breach prevents it from moring to the right.
695. To open the Breech.-The weight of the breech-plug for a $9 \frac{1}{2}$-inch gun is about 500 pounds; therefore a support, or collar, is used to hold it, when withdrawn. This is a metallic frame carrying a bracket, A (Fig. 132), hinged to the side of the breech near the open-

Fig. 132. ing. It has a kind of gutter in which slides the screw portion of the plug. This support being placed in a line with the bore, the hand gripe at the middle of the breech-plug is seized, and the screw being disengaged, a strong pull will bring the whole to the rear. The impulse given swings it open, the breechscrew remaining fixed in its support, or collar. A safety-catch held by a spring secures the collar fair in a line with the bore.
696. Loading.-The breech-plug being swung round at right angles to the bore on its support, an iron bearer is introduced to facilitate the loading of the projectile, and prevent the cartridge from being torn by the threads of the screw. It is kept in position by a lever and stud fixed to the under side of the breech. The bearer has a groove to guide the projectile, and it is long enough to clear the tapped portion of the breech. It is readily moved in and out by hand. The projectile is placed on this bearer and pushed into the bore; a wad of dried sea-weed is then pushed in, and afterwards the cartridge ; the plug is then pushed in, and screwed up.
697. Safety-catch.-To obviate the danger resulting from a neglect to screw up the plug when the breech is closed, the lock-lanyard, which has a bob on it, is made to pass throngh the eye, c (Fig. 131), of a piece of iron fixed to the breech. When the handle is not in its place, that is, when the plug is not properly screwed in, a spring, b, closes the eye and does not allow the bob to pass. When the handle is in position with the plug screwed up, it opens the eye and allows the bob to pass, when the gun can be fired.

69s. The Reffye Gux.-This is a small bronze breechloader, introduced during the war of 1870 by Col. De Reffye. Its distinctive feature seems to be its metallic cartridge, which is interesting because it is proposed to introduce in our service a breech-loading 3 -inch rifled howitzer using a metallic cartridgecase.
699. The Reffye Cartridge.-This is composed of compressed powder enclosed in a metallic case. The rigidity of the cartridge-case offers the valuable advantage of permitting the employment of powder pressed in cakes, which preserve that form and condition calculated to produce the best effect from the expanding gases. Besides, the case furnishes a lining to the chamber, and also serves as a gas-check. (Fig. 133.)

The cartridge cylinder is made from a sheet of tin, rolled on a mandrel and covered with several layers of paper rolled on, using glue between all surfaces.

The head, $A B$, is a brass cup contracted at the open end and slightly enlarged at the bottom. A depression is formed in its base, called the priming-chamber, which also serves as a compartment for the rent gas-check arrangement, CD. A hole is drilled in the centre of this indentation, E, for the riret of the gas-check, and the sides are pierced at the point where the bottom joins with six holes, $h h$, to permit the passage of the flame to the charge. A brass disk or gas-check, CD , is riveted to the bottom of the priming-chamber, and it is chamfered at
the edges, so as to avoid closing the holes communicating with the charge. A brass cup fits snugly in the depression of the head, forming a part of the priming-chamber, and it is pierced to correspond with the axis of

Fig. 183. the vent.

The wad, GH, is made by rolling sheets of paper in cylinders, which are then cut up into the required sizes. These serve as wedges, binding the tube and head close together.

In making up the case, the lower edge of the cylinder, having been slit, with handshears, is inserted in the head and shoved down until the edge takes against the primingchamber.

The cylindrical paper wad is now dropped in the case, just fitting over the primingchamber, and pressed down with a punch, which forces it against the sides and upon the bottom of the bent tin. The head is secured by rivets, RR, to the bent edges of the tin, and to the wad, securing all firmly together.

The charge is made up of six cakes or rings of compressed powder having central holes. ${ }_{\boldsymbol{B}}$ The bottom cake is slightly convex at its lower surface, to take the form of the pressed paper wad. 'The cartridge is charged by rolling the six cakes in a paper envelope, and inserting the cylinder thus formed in the case.

By a certain degree of compression a greater force is developed, when an appropriate surface of ignition is presented, by the explosion of a given quantity of gunporder, than in a loose state; therefore a charge of powder when compressed should give a greater velocity than an ordinary charge fired in the ordinary way.

A pasteboard cup, L, is placed over the powder and filled with lubricating material, having first inserted a wad of tow. The end of the case is covered with a cloth patch secured with a ribbon, to keep the pasteboard cup in place. The edges are then slightly crimped.

The priming-chamber, CD, is filled with musket-powder, the vent-hole being closed with a small patch, one corner of which is left free.

The gas-check arrangement operates as follows: The powder in the priming-chamber being ignited by the priner, the flame will immediately reach the charge through the sinall holes pierced for the purpose, when the gases from the latter pressing in the opposite direction flatten out the indented brass, which carries with it the gas-check, and the whole closes down upon the vent, forming a metallic obstruction to the escape of the gases.
700. In the forward face of the breech-screw of this gun, a cupped recess 0.4 in . in depth is sunk to receive the head of: the metallic case. This recess has three left-handed spiral groaves, in which the head of the case is firmly grasped, and as if embedded after firing. On opening the mechanism and withdrawing the morable breech, these projections bring with them the cartridge-case. The latter strikes with its open end at the rear opening in the breech, and falls to the ground. In case it is too firmly held, it may be readily detached by unscrewing. The Eastman breech-closing arrangement operates well in this gun, except a slight upsetting will sometimes appear in the threads of the screw-box. In our gun sereral important modifications will be made in the details of the screw-breech by increasing the length of the screw, adopting a better form of thread, and the insertion of a steel thimble containing the screw-box, in the rear of the gun. At the centre of the recess, in the body of the breech-screw, is the vent, by which the flame from the primer passes to the centre of the cartridge.*

Section V.-German Naval Guns.

701. Nomenclature.-The heavy rifled guns for vessels are breech-loaders, of Krupp's cast-steel, all hooped, and with round breech closure and axial vent. The calibres of the guns, that is, diameters of rifled part of bore from land to land, are as follows:
[^23]| 11-inch, or 29 centimetre, | | |
| :---: | :---: | :---: |
| 10-inch, or 26 | | |
| 9 -inch, or $23 \frac{1}{2}$ | 6 | $96-\mathrm{pdr}$. |
| 8-inch, or 21 | 6 | T2-pdr. |
| 6.6-inch, or 17 | " | $36-\mathrm{pdr}$. |
| 5.7 -inch, or 15 | « | t-pdr. |

Fig. 134.
702. Features of the Mancfacture.-The great features of the manufacture are the forging of large masses from single homogeneons ingots withont seams or welds, the forging and rolling of hoops without welds, the nse of rery heary hammers, and the quality of the steal which contains one-half per cent. of carbon and a considerable quantity of silicon.
703. Old Krupp Construction.-The guns are made at the factory of Krupp, at Essin, in Prussia. He supplies all the cast-steel guns that are used in the German service. Until within a fer years, he made all his heary guns of a single ingot, cast, forged, and turned; but this method left the gun open to the serions objection of liability to bursting explosirely or withont warning. No matter what care has been used in the manufacture, cast-steel is a treacherous metal, likely to burst without warning; and in many instances the failure of Krupp's guns have been attended with disastrous consequences.

T0t. New Krupp Construction.-Mr. Kiupp has abandoned the preceding method, and now builds up all his large guns by shrinking hoops of steel over a central tube with initial tension.

The guns consist of a central tube, and the single (in guns of 9 -inches calibre, and upwards double) layer of hoops protecting those parts most exposed to damage by the expansion of the porder-gas.

The 6.6-inch and S-inch guns of the old construction have been altered to the new on account of its greater durability. The outside parts are named: the breech or bottom-piece, P

Fig. 130.
(Fig. 185), the hooped or middle piece, A, and the cone, or chase, C. The length is measured betreen the planes of the base of the breech and the muzzle. The breech-piece immediately abaft the hooped piece contains the wedge-hole, H, cutting throngh at right angles to the axis of the bore. In the base of the breech is the hole for loading, L (Fig. 140); on each side of the hole is a hook, V, with two slots for the hinges of the loading-box, and hooks of shell-bearer ; farther forward are the holes for the sights.

The hooped piece, diminishing in front by steps towards the chase, has in its rear the protruding end-hoop, D (Fig. 135). In its front part, on a broad hoop, are the rim-bases and trunnions, whose axes pass through the axis of the piece. On top of the trunious are the screw-holes for sights. The afteredges of the end-hoop and of the bottom-piece are considerably rounded off. The bore extends to the wedge-hole, and includés the chamber, the seat of the projectile and rifling. The chamber is equal in diameter to the diameter of the bottoms of the grooves.
705. The Central Tube, T , is very massive ; almost a gun by itself. It is forged and turned from a single ingot, and loses half its weight in the lathe. The gun-blocks are cooled slowly by throwing them, after hammering, into the hot ashes and cinders from the furnaces, where they are allowed to remain. This tube supplies all the longitudinal strength, and projects far enough to the rear to accommodate the breech closmre. It is not tempered. The walls are 0.9 of a calibre thick from a point over the middle of the charge to the point where the rings terminate.
706. Hoor's.-The hoops are made with an endless fibre by forging an ingot into the shape shown in Fig. 136, with a slot through the middle ending in holes. This slot is

Fig. 136. pressed with wedges into a ring, which is half the diameter and twice the thickness of the finished ring. The ring, laving been heated, is put orer the central roll of a machine like the tire-rollingmachine (Fig. 137). The rolls, while revolving, gradually approach each other, and thus the hoop is rolled to its proper size, and at the same time an endless fibre is developed in the direction of the circumference;

Fig. 137.-Machine for Rolling Hoops. they are cooled by a jet of water while on the rolls; this prevents distortion. They are then heated and shrunk on with initial tension. They are kept from working on the gun by key-rings, a (Fig. 135), which are half-lioops laid into scores cut to receive them.
707. Breecid-plug.-For the hooped guns which with heavy charges had not sufficient durability, the cylindro-pris-

matic wedge, P (Fig. 139), has been adopted. It slides in a
horizontal mortise of the same shape in the breech-piece. The plug is made of steel, the wedge and cylinder forming one body; the rounded part is on the rear side, as that gives a greater bearing-surface. It is generally drawn out on the left side, except in turrets or when the position of the guns may require a chauge. The front side is flat and forms the bottom of the bore. The wedge has small grooves parallel to its afteredge on the top and bottom for the leading-lasts, which keep it in position while it is being moved out and in.

In the guns of 8 -inch calibre and upwards, the plug is moved in and out by a transporting-screw, a. In the smaller guns it is moved by hand. The transporting-screw rests in a groove on the upper side of the wedge, and has a shoulder which takes against the locking-plate, b, and a rounded end which turns in a ring at the other end of the wedge and keeps the screw in position. The screw works in a nut, c, on the upper side of the wedge-hole. (Fig. 139.)

The transporting-screw has a square end to which a crank,

Fig. 139.
f, is fitted for turning it. The end projects through a plate, b, called the locking-plate. This plate is screwed on to the extreme end of the wedge.

In a hollow on the after-side of the wedge is the lockingscrew, d, with its joint against the locking-plate, out of which one end protrudes square, for shipping the crank, while the other end rests in the wedge and is held by a pin. It may be turned, but cannot be moved in the direction of its axis. Upon it is the nut, e, shorter than the hollow, with several rings cut away on one side, but with one full end ring at the outer
end. Upon the latter a projection, u, is formed, which, coming out of a segment of the locking-plate, may be turned about one-third of a circle. As

Fig. 140. soon as the projection stops the turning of the nut, it can be pushed forward or back. With closed breech, the ring parts of the nut fit into cuts, g, g, g, in the gun; but when open, the part not having rings turns to the rear. The same crank, f, fits both screws. The locking-chain, o, on the gun, with the hook on the lockingplate, limits the movements of the wedge.
708. Gas-check.-To pre-

Fig. 141. vent the escape of gas breechwards without a perfect mechanical fit of the parts of the breech, a Broadwell-plate, h (Fig. 129), and ring, i, are used. The ring is a circle of steel, which fits into a groore or chamber at the bottom of the bore close to the wedgemortise. As an aid to the steel Broadwell-ring of the chamber, a circular, slightly hollowed out Broadwell-plate, h (Fig. 13S), is entered into the wedge, which is cut out for this

Fig. 142. purpose on its front side at $\%$ (Fig. 138), so that, at the closing of the breech, its rim, projecting a little over the wedge, meets the ring, which also projects orer the front side of the wedge-hole. At the discharge this check is closed by the action of the pors-der-gas, which presses the thin edges of the ring against the gun and plate. The plate has circular plates of thin brass behind it, for an equalizing, spring support; and the plate is kept
in position by a pin which is screwed into the wedge at the centre, for which the plates of brass are pierced.
709. The Vent-tube.-The vent is in the direction of the axis of the bore, and is filled with a rent-tube; this is made of steel, cylindrical, and is lined with copper, more or less conical, and fits exactly into its place in the wedge; this place is enlarged at the rear, and fitted with a thread for the primer-tube screw. It has also a broad flange upon whose rear side the lock for confining the friction-primers is placed, A (Fig. 142). This consists of a flat cover which has a cut in it for the wire of the friction-primer, and it has a button on top for handling it, a. It turns easily on its hinge, and is hollowed out on the side of the vent, so that it may be raised by the escaping gas, and thrown aside. The whole lock is placed in a hollow of the wedge, so that it can be moved at pleasure without interfering.

CIIAPTER V.

- RIFLING.

Section I.-Principles.

710. Defintion.-A rifle is a fire-arm which has certain spiral grooves or "riffes" cut into the surface of its bore, for the purpose of communicating a rotary motion to a projectile around an axis coincideut with its flight.
711. Origin of Rifling.--The rifle-principle was first - developed in small-arms. With the smooth-bore gun the windage which allowed the ball to be entered freely at the muzzle of the piece gave rise to great inaccuracy of flight, from the fact that the projectile was thereby caused to ballot along the bore, and be projected in a direction due to its last contact, and this deviation was complicated by a motion of rotation generated at the instant of the last contact of the ball with the bore, and perpetuated throughout the entire flight of the projectile.
712. To avoid the bad effects of the shocks in the bore, windage was suppressed, the ball made of a calibre equal to that of the piece, and straight grooves cut in the barrel ; which diminished the surface in contact with the projectile, thus enabling it to be pushed home with slight pressure. By accidentally making these grooves inclined, it was immediately seen that increased accuracy was given to the weapon; but the science of the day was unable to assign a reason for this superiority.
713. About the year 1600 the rifle-musket began to be used as a military weapon for firing spherical bullets. It is well known, however, that this means of obriating the effects of the irregular rotary movement of the projectile was applied long before the nature of the difficulty which it remedied was itself apprehended.

71土. The rotation of the ball upon a given axis, by means of the tight-fitting spiral groore, and tlie consequent inrariable presentation to the resistance of the atmosphere, of the surface originally placed in that direction, would seem to indicate beyond the possibility of misconception, the adrantage that was to be obtained from it. And yet it is only in onr own time that the round ball has giren way in the rifle to the conical or
elongated projectile. The great merit of the arm was consequently of little account, because the resistance experienced by the round ball from the atmosphere was nearly the same, whether fired from one piece or another; while with light charges there was a certain decrease of initial velocity from the friction in the rifle. But with the conical or elongated projectile the surface of the transverse section was decreased, while the weight remained; therefore there was less resistance to overcome with the same power.
715. It is obvious, however, that the introduction of elongated projectiles would follow that of rifled-bores; and, indeed, it is rery doubtful if cannon wonld ever have been rifled were it not for the sake of firing such projectiles-for the advantage of such accuracy as might be given to a spherical projectile would very probably be counterbalanced by the curved and irregular ricochet that rotation imparts to it, and the increased strain on the gun. Thus rifling being necessary for the employment of elongated projectiles, and such projectiles being essential to the success of rifled cannon, the two have become inseparably connected in the mind.
716. Difficulty of Loading.-The great difficulty of loading the rifle prevented it for a long time from being generally used in regular warfare, but the improvements which have been made of late have entirely overcome this difficulty, and rifles are now used almost universally in place of smooth-bored small-arms.
717. INTRODUCTION OF RIFLE-CANNON.-The general adoption of rifled small-arms necessitated the introduction of rifled-cannon. It is plain that the principle has application to all sizes of projectiles, and would therefore be nsed for the heaviest ordnance as well as for the smallest. Contemporaneons attempts so to adapt it have not been wanting, but they are in many cases isolated in point of time and connection.

The first persevering and rational efforts to apply the rifleprinciple to cannon were initiated some twenty years since, and the names of Wahrendorff, Cavalli, Lancaster, and others, are identified with the first efforts to overcome the difficulties-of no ordinary character-that beset the question.
718. Difficulty of Constrdetion.-The yielding nature of lead renders the application of the rifle-principle of easy accomplishment in the case of small-arms; but such is not the case with riffe-cannon, where the projectiles are made of iron.

The application of this principle to cannon also required an increase of strength in the piece.
719. The greater the weight and the length of a projectile, the greater is the opposition from inertia and friction which it
offers in the bore to the expansion of the ignited charge, and this opposition is considerably augmented if the projectile is constrained to travel throngh the bore in a spiral course. Hence it is not difficult to comprehend why a riffed-gun must be of a stronger, tougher, and more elastic material than is necessary for a smooth-bore gun in which the spherical projectile yields promptly to the first impnlse of the powder-gas to which it presents half its surface, and bounds freely forward through the bore, almost unimpeded by friction; while the strain on the gun is immensely relieved by the comparatively great windage.
720. Again, as the explosive power of a cartridge. as well as the inertia and friction of a projectile, increase as the cubes of their respective weights, while the surface of the chamber and the base of the projectile against which the powder-gas acts increase only as the squares, it follows that the larger the charge and the heavier the projectile, the harder and stronger must be the inner barrel, or else the slower must be the combustibility of the powder used.
721. The difticulty of perfecting more powerful guns for rifle-cannon than previously existed, has been rery great; nor have we by any means reached perfection in the construction of such guns. The successful application of the rifled principle and the possibility of throwing enormons shells with the greatest initial velocity have exhibited the importance of the strongest camon and the utility of the largest calibres, but their development minst be in harmony with the progress of the manufacturing arts.
722. Progress in Construction.-The progress of the art of war depends essentially upon that of the sciences and manufactures, for the manner of tighting depends upon the character of the arms which we possess. These will be more effective, as their mode of construction is more perfect, and as the means employed in their manufacture produce greater strength and precision.

This is particularly the case with reference to cannon, in evidence of which we have only to call to mind the great rerolution in warfare which has taken place since their introduction, and which is continually taking place as the means of perfecting camou increase.
lt is only of late years that our knowledge of the metallurgy of iron, and our ability to manufacture and handle large masses of that metal, have rendered possible the fabrication of the enormous pieces of the present day.

But now the great improvements which hare been intro-
duced in the manufacture of iron, in the fabrication of cannon, and in the facilities for the transportation and bandling of heavy guns, render possible the success of cannon of mammoth proportions.
723. Designivg Rifle-cannon.-In designing rifle-cannon, the practicability of manufacture and the durability of structure must be ascertained. The weight, calibre, length, system of rifting, weight and shape of projectile, etc., etc., must be all scientifically calculated so as to ensure excellence in range, accuracy, and penetration; and then each and all of these constructional details are liable to alteration, should the thorough trial of a specimen gun render any amendment advisable.
724. Early Experinents.-The first comprehensive experiment with rifled-cannon appears to have been made in Russia, about 1836, on the invention of a Belgian, but did not prove successful.

In 1845, Cavalli, a Sardinian officer, experimented with a breech-loading cannon which was rifled with two grooves, for a plain iron projectile, adapted to fit them. In the next year, Wahrendorff, of Sweden, fitted heavy projectiles to take therifling by aftixing lead to their elongated sides by means of grooves cut in them. And not long after this, Tinmerhans, of Belgium, invented art expanding saböt, which, being fitted to the base of the projectile, was forced into the rifle-grooves and thus gave rotation.

In these early experiments we find the germs of the leading systems of the present day. The solid projectile, fitted to enter ${ }^{\circ}$ the groores of the gun; the compression of a soft covering on the projectile by the lands of the gun; and the expansion of the rear of the projectile by the pressure of the powder to fill the groores of the gun.
725. OBJECT OF RIFLING.-The object of rifing a gun is to increase its accuracy of fire, and, by enabling elongated to be substituted for spherical projectiles, to obtain from it longer ranges.

Rifling diminishes the deviations of ordinary projectiles, due to the following causes :

1st. Want of uniformity, in figure and weight, around the longitudinal axis of the projectile, passing through the centre of gravity.

2d. Position of the centre of gravity, before or behind the centre of figure.

3d. Resistance of the air.
I. By rotating the projectile around its longitudinal axis, the direction of these deviations is so rapidly shifted from side
to side, that the projectile has no time to go far out of its course either way.
II. The velocity of this rotation is such as to make the axis stable on leaving the bore, and to counteract the pressure of the air tending to turn the projectile over, or render it unsteady in flight.
III. A given weight of projectile can be put into such a form as to oppose the least practicable cross-sectional area to the air, and thus to receive the least practicable retardation of velocity.
726. Advantages of Elongated Projectiles.--Certain peculiar advantages follow from the rotation of the projectile, causing it to present the same part to the front throughout its flight.

It becomes possible to make a much simpler percussion-fuze, because it is only necessary to provide for action in one direction in place of every possible direction.

Shells required to act towards the front in any peculiar way have their bursting-charge and metal placed with a view to this object. So, again, the centre of grarity may be brought to any desired part of the shell; and this is an important feature in the construction of projectiles.

Rifling gives the power of altering the form of projectiles at will. The head may be made of any desired shape, for penetration or flight. The projectile may be elongated so as to give a diminished surface for any resisting medinm to act upon: thus in flight, velocity is kept up and the range extended, or on impact sreater penetration is obtained.

Weight for weight, the same effect may generally be produced with an elongated projectile by using a smaller charge of powder than with a spherical one.

It follows from the flight of an elongated projectile meeting with less resistance from the air, and keeping up its relocity better, that at all but very short ranges the trajectory is flatter; lience the probability of hitting an ordinary object is greater.

The power to vary the length of the elongated projectile enables all those for the same gun to be made of the same weight, and hence to require the same elevations with the same charge of powder. Or it is possible to make a projectile specially heary if required. This obviously camnot be the case with spherical projectiles, which must be of the same size.
727. Disadvantages of Eloxgated Projectiles.-The chief disadvantages are, bad ricochet, increased complication. and expense of manufacture, liability to injury arising from the necessity of soft studs, expanding rings, or a soft lead coat; increased
strain on the gun, besides greater probability of jamming and injury to the bore, uncertainty of time-fuzes.
728. METHOD OF RIFLING.-To rifle a fire-arm, spiral grooves are cut in the surface of the bore, into which the projections or soft metal coating of the projectile are made to enter.

The grooves may be of any number, and may extend partially around the bore, or once, twice, or several times in its length. They may be of the same pitch or curvature throughout, or the twist, if desired, may increase in curvature towards the muzzle. It is essential, however, that all the grooves be of the same curvature, and exactly parallel to each other ; their object being to impress upon the projectile a rotating motion about its axis of progression, and thus keep it in a straight line as it spins forward. The motion of a top lolding itself upright while rapidly spinning, illustrates the principle of the rifle.
729. Lands.-The spaces between the grooves are called "lands." Where the grooves are very wide, and the lands very narrow, they are termed " ribs."
730. Calibre.-The calibre of a rifle-gun is measured across the lands. In the case of a rib-rifled-gun, it is measured to the bottom of the grooves.
731. Forar of Groove.-The form of the grooves and their number vary very much according to the method of riffing.

The form of the groove is determined by the angle which the tangent makes at any point with the corresponding element of the bore. If the angles be equal at all points, the groove is said to be uniform. If they increase from the breech to the muzzle, the grooves are called increasing, or the rifling has a gaining twist.
732. Twist is the term generally used to express the inclination of a groove at any point, and is measured by the lengtlo of a cylinder corresponding to a single revolution of the spiral. This, however, does not convey a correct idea of the inclination of a groove.

A correct measure of the inclination of a rifle-groove at any point, is the tangent of the angle which it makes with the axis of the bore; and this is always equal to the circumference of the bore divided by the length of a single revolution of the spiral, measured in the direction of the axis.
734. Uniform Twist.-Let A B C (Fig. 143) be a right-angled triangle, in which-
$\mathrm{BC}=$ circumference of the bore of a gun,
$\mathrm{AB}=$ length of the bore.

Now suppose the triangle ABC to be wrapped around the
surface of the bore as in Fig. 143, so that B and C meet. AC will be the helix, or curve of the groove. Norv in Fig. 143 the groore makes a complete turn in the length of the bore; but in ordinary

Fig. 143.
rifle-guns the twist is more gradual, making less than one turn in the bore.

In the case before us, AB equals the length of rifling due to one turn, that is, the distance travelled by the projectile while it is turning on its axis. AC is the total length of spiral and θ the angle of twist, or angle of the rifling. Let $n=$ number of calibres in which the projectile makes one turn.

$$
\begin{aligned}
& \tan \theta=\frac{\mathrm{BC}}{\mathrm{AB}}= \\
& =\frac{\pi \times \text { calibre }}{\text { number of calibres } \times \text { calibre }}= \\
& =\frac{\pi}{\text { number of calibres }}=\frac{\pi}{n} .
\end{aligned}
$$

735. Uniforaly Ivcreasing Twist.-When this system is adopted, the grooves start in a direction parallel to the axis of the bore, and the twist increases miformls towards the muzzle.

In the Fig. 14t, ABCO denotes the derelopment of the bore. and OM that of a groove. The origin of the co-ordinate axes is taken at the commencement of the groore at the bottom of the bore; the axis of Y is parallel to the axis of the bore.

The curve OM is tangent to OA at O, since the projectile starts in the direction OA. Let o denote the rariable angle between OX and the direction of the curre OM. If the twist increases uniformily, $\tan \varphi$ will decrease uniformily as the ordinate increases, and we shall have $\tan \varphi=\frac{m}{y}, m$ being an undetermined constant.

But
$\cdot . \quad y d y=m d x$;
integrating,

$$
\begin{align*}
\tan \varphi & =\frac{d y}{d x}=\frac{m}{y}, \\
y d y & =m d x ; \\
y^{2} & =2 m x+K .
\end{align*}
$$

The constant of integration (K) is zero, since the curre passes throngh the origin. (a) is the equation to ar parabola referred to the vertex and priucipal axes.

In the Figure, MT is the tangent at M, and MLI' equals $\mathrm{AB}=\pi \mathrm{c}, \mathrm{c}$ being the calibre of the gun.

Also $\mathrm{N}^{\prime} \mathrm{T}$ is put equal to $n c, n$ denoting the number of calibres in which the projectile makes one turn after leaving the muzzle.

To determine m, putting φ^{\prime} for the value which φ has at M we have
\therefore

$$
\begin{aligned}
\tan \varphi^{\prime} & =\frac{m}{l} ; \\
\text { also } \tan \varphi^{\prime} & =\frac{n c}{\pi c}=\frac{n}{\pi} ; \\
m & =\frac{l n}{\pi} .
\end{aligned}
$$

Whence the equation to the curve is

$$
y^{2}=\frac{2 l n}{\pi} x \ldots \ldots \ldots \ldots \ldots \ldots(b) .
$$

By means of equation (b) the curve is easily traced.
736. Comparative Advattages.-The Increasing-Twast.The advantages claimed for this method of rifling are, that the projectile, not being forced to take the whole twist of the rifling at once, moves more readily from its seat, and thus the initial strain upon the breech of the gun is reduced, thereby prolonging its life; also that the bearings on the projectile are not liable to be torn off.

Theoretically it would seem that a system of rifling which permits the projectile to more directly forward from its seat, at
the moment of ignition of the charge, must be more farorable to endurance than one which, by impeding the first movement of the projectile in the bore, narrows the space for the expanding gas, and consequently brings a greater pressure on the breech of the gun.

But practically this method does not appear to be successful, in the enormous cannon of recent construction.
737. The greatest objection to the increasing-twist is that it camnot be used with a long bearing of projectile. Indeed, the theoretical bearing, whether it is a soft metal ring, a strip, or a stud is infinitely short-a mere line-and practically, length of bearing is only obtained by a constant molding of the projectile to the new angle of rifling, so that the portion of the projectile intended to take the grooves, must be short and also soft. for if it cannot obtain, by changing it tigures, more bearing on the grooves than on a mere line, it will undoubtedly cut the groores, thous increasing friction, and soon ruining the bore.

In the absence of further experiments, it would hardly be safe to couclude that long bearings will not prove indiepensable to the heavy projectiles and ligh velocities that are now required.

A projectile, if balanced on weakening studs in each groore (Art. 782), is liable to break up through the stud-holes, thereby injuring the gun.

To rapidly rotate an iron cylinder, say 12 inches in diameter and three calibres in length, weighing nearly a third of a ton, by a ring of such points, is very likely to produce a acabling niotion and unsteady movements in flight. with reduced range. Very rapid twist, although it conduces to steadiness of motion, cannot be given because small bearings will not endure the great effort necessary.
738. The Cniform Twist.-In this case the same angle of twist obtains throughout, from the seat of the projectile to the muzzle; it is more simple in construction, and as accurate in results.

The effort of rotation may be diffused over a long centring bearing, exteuding along the whole cylindrical body of the projectile, which is an adrantage of great importance, and when the projectile is free to escape, its motion will be much more unform than if it received, as it were, a serere wrench on learing the muzzle, while it is not beliered that the life of the gun is materially affected by differences of powder pressure within the possible limits which can obtain, between guns rifled with the same final angle of twist, on the uniform and on the increasing systems.
739. Initial Velocity of Rotation.-Let V be the initial velocity of the projectile or space which it would pass over in one second, in the direction of flight, moving with the velocity with which it leaves the piece, and l the distance passed over by the projectile in making one revolution ; then $\frac{\mathrm{V}}{l}$ will be the number of revolutions in one second and $2 \pi \frac{\nabla}{l}$ the angular velocity of the projectile at the muzzle.

The velocity of rotation of a point on the surface is given by the expression

$$
r w=2 \pi r \frac{V}{l}
$$

in which r is the distance from the axis of motion, and w is the angular velocity.
740. Velocity of Rotation.-The velocity of rotation required by a projectile will depend chiefly upon the initial velocity, the form, the density, the distribution of the material, and the position of the centre of gravity of the projectile; therefore, there is a particular inclination of grooves which is best suited to each calibre, form of projectile, charge of powder, etc.

This has not yet been fully determined by experience, and the consequence is that a wide diversity of twists is employed in different services and by different experimenters. A long course of very careful experiments is necessary to establish laws that could be generally applied.
741. Initial Velocity.-As the initial velocity of a projectile is increased, so will the resistance of the air tending to overturn the projectile be greater.
742. Form.-Long projectiles require a more rapid rotary motion than short ones of equal weight, for the resultant of the air acts with a greater leverage as the length of the projectile is increased, teuding to give it a rotation round its shorter axis.

The cause of this tendency to turn over in flight, is apparent from the accompanying diagrams.* As the effect of the pressure of the air differs according to the shape of the head of the projectile, both a conoidal and a flat head are here given in Figs. 145 and 146.

In each of these Figures, R, representing the resultant of the air's resistance, acts below a, and is half-way between the dotted lines, which include between them a space representing
tho opposing current of air; it is evident these lines should le parallel to AB .

Fig. 145.

Fig. 146.
The effect of R in Fig. 145 is to give the projectile a rotation around one of its shorter axes, the head being turned up, as shown by the dotted lines. In fact a pressure exerted anywhere and at any angle between a and b, that is, before and be low the centre of gravity, G, will have a tendency to raise the head; and a force exerted behiñd and below G, between b and c, will have a tendency to depress it.

In Fig. 146, the pressure, R, will not raise but depress the head, as shown by the dotted lines; and if R acts anywhere betreen a and b, the same effect will be produced; but if R acts between b and c, the head will be raised as with the cylindroconoidal projectile. (Fig. 145.)

It is necessary to give a flat-headed projectile a greater relocity of rotation than a conoidal or ogival-pointed projectile; for thie current of air meeting the projectile, instead of having merely, as with the latter form, to pass around the pointed head, presses with the flat head upon a surface almost at right angles to the previous direction of the current, and consequently exerts a rery much greater force proportionally, tending to overturn the projectile.
743. Density.-The greater the density of a projectile, the
less will its velocity of rotation be decreased by the resistance of the air during the time of flight, because of its greater momentum. For instance, a leaden shot would retain its velocity of rotation longer than one of iron; consequently, as the densities of projectiles are increased, so may their respective velocities of rotation be diminished.
744. Distribution of the MFaterial.-A hollow, elongated projectile will be steadier during flight than a solid shot of equal weight, for, the mass being distributed farther from the axis, the radius of gyration is lengthened. Thus it is found in practice that elongated shells are steadier in flight than shot from the same gum, when the latter are of the same weight as the shell.
745. Position of the Centre of Gravity.-If the centre of gravity of a projectile is very far forward, as in Fig. 147,

Fig. 147.
the resultant of the resistance of the air acting at Z behind the centre of gravity, the hinder part of the projectile would be pressed upwards, if the velocity of rotation be very low, so that the axis might correspond very nearly during flight with a tangeat to the trajectory.

In this case an irregular motion of the axis will generally result from the opposite tendencies of the forces which act upon the shot; the air endeavoring to press up the hind-part of the projectile, while the rotatory motion resists any change in the direction of the longer axis. Witl the centre of gravity in this position, there is little fear of the projectile turning over even with a low velocity of rotation; but, in order that the axis may be stable, a rapid rotatory motion must be given to prevent any " wabluting" which might arise from the cause just explained.

Should the centre of gravity be situated near the base, a very ligh velocity of rotation is requisite to compel the projectile to proceed head first. In Fig. 148, the pressure, R, of the air acting at b would doubtless turn up the point a and cause
the projectile to rotate around its shorter axis, unless counterbalanced by a very rapid rotatory motion around the larger axis.

Fig. 148.
746. Conclusions.-A very high velocity of rotation is objectionable for the following reasons: That the strain upon the metal of the cannon will be very great, as the charge must be comparatively large, and the grootes will require a sharp twist, mach resistance being thereby cansed to the motion of the piojectile; that the projectile, after grazing, will deflect consilerably; and that, should the projectile be a shrapnel, the pieces would spread laterally to too great a distance to be effective.

It will generally be sufficient, as far as accuracy is concerned. to give an elongated projectile such a relocity of rotation that the axis may be stable during the whole time of flight for the longest required range; shond the rotation be not sufficiently rapid at any part of the trajectory, the axis of the projectile mill become unsteady, and inaccuracy of fire will be the result.

To determine theoretically the relocity of rotation which onght to be giren to a projectile of definite form would be a rerr difficult problem, and therefore recourse must be had to actual experiment to obtain approximately the velocity required.
747. CHARACTER OF GROOTES.-The width of the groove generally depends on the diameter of the bore, and the peonliar manner in which the groore receires and holds the projectile.

Wide and shallow grooves are more easily filled by the expanding portion of a projectile than those which are narrow and deep; and the same holds true of circular-shaped grooves when compared to those of an angular form. An increase in the number of grooves increases the firmness with which a projectile is held, by adding to the number of points which bear upon it.

The effect of decreasing the depth of ritle-groores is, generally, to increase the accuracy but diminish the range. The increase of accuracy undonbtedly arises from the tact that the projectile is held more firmly by the grooves as it passes along the bore; while the diminution of range arises from an increase of friction between the projectile and the groores.

The depth of the grooves has an obrions infuence mpon the strain brought upon the gun, and the extent of the bearing-surface required to rotate the projectile will depend upon its velocity and the angle of twist. With a high velocity or a sharp twist, shallow grooves would strip a soft metal bearing, or cut a hard one.
748. Loading and Driving Edye.- 1 rifle projectile both on entering and leaving the bore, is driven by a force acting along its axis, and rotation is given by the projections coming against the spiral formed by the edge of the groove. Thus, in Fig. 149, if the projectile was pushed base first, the studs would move against the loading-dige, CC , of the grooves, while if pressure were applied to the base so as to move it head first, the studs would ineat the divingedge, DD, and work along it.
749. Advantage of Radial Bearing. -A great source of strain from rifling is due to the wedging of the projectile in all grooves of which the bearing-sides do not lie in the plane of the diameter of the bore. For instance, the inertia of a projectile rotated by the groove CD, Fig. 150, tends only to rotate the gun in the opposite direction, but the greater part of the pressure imposed in the

Fig. 149. groove LMNP assists the powder in enlarging the diameter of the bore. In addition to this direct rupturing strain, the friction of the projectile is increased by the same cause.

The slightest inclination of the bear-ing-surfaces from being truly radial, causes increased friction, as at G, where the pressure, acting in the tine GH, can be resolved into two forces: GI, useful, and GK, the reverse.

In the form of groove LMNP, the force is applied to the projectile by the surface MN in the direction RS, whereas motion is intended to be given

Fig. 150. in the direction RT.
750. Advantage of Rounded Angles. -The angle of the side
of the land with the bottom of the groove has the usual relation to strength generally observed in mechanical construction. A sharp angle in a part subjected to strain and vibration is considered the beginning of a fracture. For this reason, Parrott and others who understood the adrantage of a radial bearing side, nevertheless rounded the angle of their grooves.

Another reason for rounding the groove, especially in the case of the Centring System (Art. Toty), is to prevent the riolent shock of the projectile when its bearing-edges strike the rifling. Figs. 151 and 152 are exaggerated to illustrate this.

Fig. 151.

Fig. 152.

The projection a bears and remains upon the side d of the groove going in, and so leaves the windage, c, on the other side. In going out the projectile will hare acquired considerable relocity before it strikes the side c, so that the blow will be violent and the commencement of the rotation instantaneons. But the projection (Fig. 152) not only slides up the rounded groove without a blow, but lifts the projectile into the centre of the bore, thus centring it.
751. Cuttivg the Grooves.-The practical method of cutting the grooves consists in moving a rod, armed with a cutter, lack and forth in the bore, and at the same time revolving it aromed its axis. If the relocities of translation and rotation be both uniform, the groores will have a uniforns twist; if one of the velocities be variable, the groove will be either increasing or decreasing, depending on the relative relocities in the two directions.

All the grooves are first cut ronghly in succession, and then finelr. The distance between the groores is regulated br a disk fastened securely to the breech of the gun, haring its periphery equally divided by as many notches as there are to be grooves.

The gim is held each time by a parrl, and when a new groove has to be cat, is turned romid to the next notch.

The rifling-machine is horizontal. and permanently placed in position; the gun to be operated upon is fixed in front of it, in line with the riffing-bar, which has a motion of translation along its bed as well as a certain amount of rotation on its own axis,
regulated to the required pitch. An automatic reverse motion is contrived for the bar, so that when once set in motion the machine is self-acting.

Section II.-Systems.

752. A System of Rifling consists essentially in the means of giving rotation to the projectile.

The twist of the grooves, the length, diameter, or form of the projectile, must depend upon the purpose for which a gun is required, no matter upon what srstem it may be riffed. Inventors often claim principles which are as applicable to one as to another system. As regards precision of fire, one system will give as good results, for all practical purposes, as another, provided the conditions of charge, projectile, and twist of groores are alike, and the riffing of the bore and the manufacture of the projectiles have been performed with the same amount of care and skill in both cases.

The conditions that are especially desirable in a system of rifing for ordnance are :-A ccuracy of fire, simplicity and durability in both projectile and gun, non-liability of projectile to jam in the bore in loading or firing. It must not cause too great strain, and for heary ordnance, must allow of the use of large charges.

It will be observed that in many of the systems of riffing in use, one or more of these conditions have been sacrificed to some extent, to secure a closer compliance with others thonght to be of greater importance, or of easier attainment.
753. Great numbers of riffed guns, with projectiles to correspond have been proposed, but most of the systems of riffing that have been adopted by any service, or tried on the practiceground, may be divided into the following classes, each of which has its advantages and its disadrantages, and none are withont objections.

First. Muzzle or breech-loading guns, having projectiles of hard metal, fitting the peculiar form of the bore mechanically.

Second. Muzzle or breech-loading guns, with projectiles having soft metal studs or ribs, to fit the groores.

Third. Muzzle-loading guns, with projectiles, having a soft metal envelope or cup, which is expanded by the gas in the bore.

Fourth. Breech-loading guns, with projectiles having a soft metal coating larger in diameter than the bore, but which is compressed by the gas into the form of the bore.
754. First Class.-In this class, the hard metal projections are so shaped as to fit the peculiar form of the bore mechanically. The gaining-twist is obvionsly impracticable with this form of rifling.

Centring.-In consequence of windage, which is necessary in all muzzle-loading guns, the axis of the projectile does not always coincide with that of the bore; in firing, this leads to inaccuracy of fire.

In order to secure accuracy of fire, it is essential that the axis of the projectile should correspond with that of the bore of the gun ; for, otherwise, the axis of rotation will be variable, and the deflection of the projectile uncertain. Should the axis of the projectile on leaving the bore be unsteady, the projectile will have the wabling motion so frequently observed in experimental practice.

A projectile is said to be centred when the grooses of the riffing are so constructed as to bring the axis of the projectile in line with that of the bore when the piece is fired.

Centring may embody the compressing or expanding systems in any required degree.

While the projectile is rotated by the solid projections formed upon it, and fitting into the groores of the gun, the exterior of these projections, or of the whole projectile, may be corered with a soft substance which may, in the case of a breech-loader, be larger than the bore, and thus he compressed While passing out of the grn ; or which may be expanded, by the pressure of the powder, to fill the gun.

When the projectile is well centred, windage cannot affect its straight passage through the bore.

Usually, in the first class, the hard surface of the projectile is dressed to bear directly on the surface of the bore, leaving a little windage. The systems of Whitworth, Varasseur, Scott, and Lancaster are examples of this practice.
755. Whitworti's System.-The Whitrorth gun has a hexagonal spiral bore, the corners of which are rounded off. The form of the bore is not, howerer, strictly hexagonal.

The interior of each gun is first bored out cyindricalls, and when the riffling is completed, a small portion of the original cylindrical bore is retained along the centre of each of the sides of the hexagonal bore, and the other parts of each side recede or incline ontwards towards the rounded angles; hence the dianeter of the hexagonal bore is greatest at the rounded angles.

This description will be readily understood by reference to Fig. 153.

The reasons for thus modifying the general form of the rifling are, to facilitate loading, and thus allow of a reduction of windage, and also to ensure, if possible, the bearing of the sides of the projectile on surfaces instead of on mere lines, as would be the tendency with a plain hexagonal bore having windage.

A liexagonal bolt revolved on its axis within a slightly larger hexagonal orifice would not bear upon its side, but only upon its six corners. The points of contact would be mere

Fig. 153. lines.

In this system, the bore must obviously be slightly larger than the projectile. In Fig. 154, while the face, a e, of the projectile is flat, the face, $d e$, of the bore is so inclined, that the

Fig. 154.
projectile in coming out will bear upon the whole of it, as shown. If the face, $a e$, of the hore was also plain, the projectile would bear only on the corners $e b$, etc.

The following table gives the particulars of the Whitworth guns and rifling :

Particutars and Charges of Whitu										
Name of Gın.	Borc.		Length.	Windage on going in. balf sidcs.	Weight.	Twist of Riaing.	Weight of Chargc.	Weicht of Projectilc.	Length of Projectile.	Bursting-charge of Shell.
	Across Flats.	Across Angles.								
				Ins.		1 turn in inches.	Lbs.		Ins.	Lıs.
120 -pounder*.	$6-4$	7	144	. 06	16660	1 in 180	$27 \dagger$	$151 \dagger$	20.5	5
70-porunder .	5	5.5	118	. 0.5	8582	1 in 100	13.	$81+$	19	$3 \mathrm{lbs}$.12 oz .
12-pounder ..	2.75	3	104	.02005	1092	1 in 55	$1 . \% 5$	121bs. 2160 oz .		6 oz .

The 80 -pounder has 118 in . length, and 5 in . diameter of bore, with 1 turn in 120 in . Charge 10 lbs.
The 8 -pounder has 72 in. length of bore, 1.5 bore across the flats, and is rifled with 1 turn in 40 in.
Charge, 8 oz .

* Made at Woolwich, on the Armstrong principle.
+ Irou targets at Shoeburycess. Maxinum charge.

The peculiarities of this system are the polygonal riffing and comparatively small bore. It has great range and penetration, but has never been adopted for heary guns by any nation except Brazil.

The polygon has twentr-four surfaces with six groores, each .4 inch deep.

Though the long iron bearing diffuses the strain orer a large surface, and enables a rapid twist with grreat rotation to be

Fig. 155.--Diagram of Ritling.
given, yet the hearing is really on a mere line in each groore, and is much nearer the axis of the projectile than in systems with projecting flanges, and the leverage for rotating is therefore much less.

In muzzle-loading guns of this system it is difficult to thoroughly sponge the bore.

A patent lubricating cartridge in a metallic case is used with the breech-loaders.
756. Vavasseur's System.-This method comes under the head of rib-rifing (Art. 729)-the rotation being giren by means of raised ribs in the bore, while the projectile itself has corresponding grooves cut along its cylindrical surface.

The ribs are three in number ; their shape, and also that of

Fig. 156.
the corresponding grooves, are shown in Fig. 156. There are no sharp angles either in the projectile or the bore of the piece.

The dimensions and particulars concerning the guns and rifling are given in the following tables:

The twist of the rifling is one turn in thirty calibres for all sizes. The angle of the twist is $5^{\circ}, 58^{\prime}, 41^{\prime \prime} .6$, and is thus obtained :

In the right-angled triangle ABC (Fig. 157), let $\mathrm{AB}=n=$ the number of calibres in which the projectile makes one revolution $=30=$

$$
\begin{aligned}
\mathrm{BC} & =\text { circumference of bore } \\
\theta & =\text { angle of rifling }
\end{aligned}
$$

$$
\begin{gathered}
\text { Then } \tan \theta=\frac{\mathrm{BC}}{\mathrm{AB}}=\frac{\pi}{n}=\frac{3.1416}{50}= \\
\text { nat. no. } 0.10472 \log 9.020029=5^{\circ} .58^{\prime}, 41^{\prime \prime} .6
\end{gathered}
$$

Fia. 157.
To find the Width of Rib. -Having width of rib for one gun, to find that of another

Fig. 158. gun, when r^{\prime} of the latter is known.
$w^{1}=$ width of rib.
$\mathrm{v}^{2}=\frac{1}{2}$ diam. inside of rib (col. c. of Tab).
$1.5=$ width of rib of 12 in. gun.
$5.7=\mathrm{r}^{\prime}$ for 12 -in. gun.
Then $\pi^{\prime}: 1.5=r^{\prime}: 5.7$.
Suppose w^{\prime} is required for 10 -in. gun, when $r^{\prime}=4^{\prime \prime} .75$,
$' \mathrm{w}^{\prime}=\mathrm{r}^{\prime} \times \frac{1.5}{5.7}=.263 \mathrm{r}^{\prime}$

$$
=.263 \times 4.75=
$$

$1^{\prime \prime} .24925$, or $1^{\prime \prime} .25$ (col. e of Table).
In this system the bore of the gun is not weakened by haring grooves cut into it, and the projectile is also considerably stronger than those fitted with studs, becanse the metal cut out of the body of a twel ve-inch projectile, for instance, by the countersinks for fixing the studs (Art. 782), is more than that cut out of the same projectile by the three grooves.

There is also considerable less scoring in the bore, as the part most affected by the rush of the gas in the part betreen the ribs, nearly one-third the whole circmunference in width; the scoring is, therefore, much less local and takes place in a part not weakened by groores cut into it, as is the case in grooved guns, where the grooves being the highest part of the bore act as channels along which the gas rushes.

It is claimed that as the ribs in this system project from the
surface of the bore, they are much more effectnally cleaned than are grooves, by sponging, so that much less windage can be allowed.

Late experiments to determine the relative values of long and of short rifle-bearings have demonstrated the great superiority of the system.

This arrangement necessarily involves a considerable amount of friction, the more so as both the metals which come into contact are hard. It is necessary that the projectiles should be fitted witl peculiar precision, so as to prechude jamming on the one land, and too much windage on the other:
757. Scott's Sys-ten.-In this method the bore is rifled with narrow, shallow groores (Fig. 159), deeper on the driving than on the loading side. The projectile is one iron casting having ribs alnost triangular in section, extending the whole length of the cylindrical body, and set to the angle of the rifling. In cross section the ribs give a deep bearing-surface on the driving-side.

Fig. 159. (Fig. 160.)

By shallowing the loading-side of the groove, the ribs rest on inclined planes so that the projectile, when forced into its seat, has a natural tendency to slip round so as to cling to the drivingside before the gun is fired, to start easily, and to mount into the centring position the moment it begins to move out.

Less windage is given to the ribs on the projectile than to its body, so

Fig. 160.-Scott's Groove and Rib. that it rests upon its projections, and its body does not tonch the bore at all.

The ribs almost fill up the grooves, and check the escape of the gas, with its consequent erosion of the bore, and unequal
action on the projectile. While by striking the curve of the cross section of the groove and of the rib with two different radii, the latter is driven up into the centre of the bore at once, cansing the axis of the projectile and of the bore to coincide. (Fig. 161.)

Fig. 161.
In this system there are 3 groores for 9 -ton guns and under; 5 grooves for 12 and $1 S$-ton gras ; and 7 groores for 25 ton gruns and upwards. The grooves are of the same size for all guns. Width, 0.8 inch; depth, 0.125 inch. This sretem has not, as yet, been generally adopted br any mation.
758. Linolster's Systen.-This method may be described as that of the usual circular bore with two wide groores. each about one-third the circumfer-

Fig. 162.-Lancaster's Rifling. ence in width, the shonlders of the groores being shaved off so as form an ellipse. (Fig. 16\%.) The cross section of the bore is oval, only a trace of the original bore being left at the minor axis.

The absence of shoulders to the two grooves conserts the two places of contact of the projectile with the ritling, into circular wedges tending to borst the gun or to compress the projectile.

This srstem has mach to commend it, on account of its simplicity, but it has never obtained success; on the contrary, it has been rery unsuccessful in competition with other systems.

T59. Comparitite Adravtages of the First ClassThe advantages of this class are : economy, simplicitr, an 1 duralility of projestile. The rithe-motion is communicated with great certainty and regularity. The projectile does not expand
by the explosion, and hence get's more windage as the bore warms, so that its safety-valve gets larger as the guns expands and gets weaker.

The chief objections are, that both projectile and bore being hard, fracture of one or the other is liable to occur from a projectile janming, and that unless the bore be made of very hard material, it will be rapidly worn by the friction of the projectile ou it.

The obvious mechanical advantages of the Centring System recommend it. It decreases the strain upon the gun by allowing windage without affecting the accuracy of the tlight of the projectile; and when so applied as to bring the minimum wedg-ing-strain and friction upon the gun, and to place and hold the projectile in the centre of the bore without shock, and to allow its centre of gravity to be in the centre of figure and to support the projectile at or on both sides of its centre of gravity, thus pronoting velocity and accuracy, it would seem that this system inust be the best to be adopted for heary ordnance.
760. Second Class.-In this class the body of the projectile is composed of a hard metal, as cast-iron, and there are attached to it projections of soft metal in the form of ribs, or romnded buttons so arranged as to enter the grooves of the rifing. The Woolwich or French rifling, and the Shunt system are examples of this class.
761. Tie Woolwich Ststen.-The present English service rifling is called by this name. It is a modification of the French System, and consists of deep broad grooves (Fig. 163), each of which receives two soft metal circular studs attached to the projectile.

The groores are three or more in number, according to the calibre of the piece; they are 1.5 inches wide, and 0.18 inches deep, with curved

Fig. 163.-Woolwich Groove. edges, both the loading and driving edges being struck with the same radius. The bottom of the grooves is eccentric to the bore, being struck with a radius of 3 inches; they are of the same width for all natures of heary guns, but are a little deeper for the 10 -inch gun and upwards; the grooves are also widened at the muzzle in the larger guns, in order to faciliate loading by cutting away the loadiug side slightly for two inches from the muzzle.

This system embraces uniform and increasing twists, the latter being preferred.

Both the direction and twist are given by the bearing of the studs on the grooves, the body of the projectile never being intended to come into contact with the bore. The windage is 0.5 inch in all calibres.

The projectiles have two studs for each groove in all instances; both studs in the case of the uniforin twist, and the rear one where the twist is increasing, are nearly of the size of the groore, with their faces corresponding to the curved bottom of the groove.

The rear stud is four inches from the bottom of the projectile, and the studs of each groore are equidistant from the centre of gravity. (Art. 783.)

Particulars of the Rifling:
12-inch gun, 9 groores; twist increasing from 1 in 100 to 1 in 50 calibres at muzzle. 10 -inch gun, 7 groores; trist increasing from 1 in 100 to 1 in 40 calibres at muzzle. 9 -inch grm, 6 groores; twist increasing from 0 to 1 in 45 calibres at muzzle. 8 -inch gun, 4 grooves ; twist increasing from 0 to 1 in 40 calibres at muzzle. 7 -inch guu, 3 grooves; twist uniform 1 in 35 calibres.

The 7 -inch gun has a uniform twist becanse, at the time of its introduction, the uniform was preferred to the increasing spiral.
1762. The Shunt Systeat.-This is one of Armstrongs systems of rifling. The peculiarity of this system is that the depth and width of the grooves vary at different parts, the object aimed at being to proride a deep groore for the studs of the projectile to travel down when the grn is being loaded, and a shallow groove throngh which they must pass when the gun is fired, so that the projectile may be gripped and perfectly centred on learing the muzzle. This is obtained by making one side of the groove (the driving-side) near the muzzle, shallow, as shown in Fig. 164, the unshaded portion representing the slallow part, or grip.

The projectiles have soft copper studs, which fit easily with a windage of 0.025 inch into the deep portion of the groore; when the gun is loaded, the studs travel down this deep portion until they reach about the middle of the bore, where they meet with an incline, by which they are "shunted." or switched off, into a narrow part of the groove, still of the same depth, down which they travel to the chamber.

On discharge the studs bear against the other side of the groove, until they come to the incline, up which ther travel,
the studs being thereby compressed. With this compression they pass through the remaining part of the bore.

Fig. 164.
There are three grooves with a uniform pitch of one turn in 40 calibres, the edges being augular.

This system was introduced with certain guns of the Armstrong pattern in the English service, after the repeated failures of his lieavy breech-loading guns, because, it carried out two favorite theories of Sir Tilliam Armstrong, viz., the centring of the projectile and its retardation. The last is now generally conceded to be a disadvantage. It has been abandoned, because it was not found to answer well in practice.

It was complicated ; the projectile was gripped at the muzzle when at its highest velocity, thus greatly straining the piece, and the sharp angles at the edge of the grooves rendered the tube liable to split.
763. Comparative Advantages of the Segond Class.In this class the studs being soft, the bore is not liable to injury from the projectile, if, as should always be the case, the height of the stud is rather greater than the depth of the groove, so that the projectile moves through the bore on the studs alone. Also if a jam should occur, the studs will give away, and so prevent injury.

Studs in the middle of the projectile instead of long bearings on its cylindrical portion, or expanding material at its base, allow the rifling to stop farther away from the chamber; so that the gun is not weakened by it, at the point of greatest powder-pressure.

On the other hand, the studs cause additional expense in manufacture, and they are liable to injury in transport or store. And they are a frequent canse of injury to the bore from orerriding the grooves.
764. Third Class.--In this class the body of the projectile is composed of a hard metal. and there is attached to it, generally at the base, a cup, band. or other arrangement of soft metal, by the expansion of which into the grooves of the gum the projectile is given rotation.

The expansion system is carried out on the most extensive scale in this country. The plan of rifling which has lieretofore been almost universally adopted in the United States consi-ts of lands and groores of the same or nearly equal width. Is the standard Army and Navy projectiles are of the expanding class, they may all be used in any gun of the proper calibre, irrespective of the width or depth of the groore.

The Parrott, Hotchkiss, and Shenkle, and many other projectiles, belong to this class. The Parrott system will illustrate it. (Art. TS5.)

Fig. 165.
765. Tine Parrott Siserem.-In the rifling of the Parrott guns the groores and lands are of equal width, the former being one-tenth inch deep for all calibres. The bottom corners of the grooves are rounded to facilitate cleaning and to do aray with the mechanical disadrantage of a sharp corner. (Fig. 165.)

The projectiles are recessed around the corner of the base to receire a brass ring which is expanded into the groores of the gun by the explosion of the powder.

All calibres are riffed with an increasing-twist.
The following table gives the particulars of the Parrott guns and rifling.

The calibres in use in the naval serrice are the $100-\mathrm{pdr}$. and the $60-\mathrm{pdr}$.

The 30 -pdrs. and 20 -pdrs. have been withdrawn, and a new bronze 20 -pdr. rifle substituted.

Round shot can readily le med in these guns when adrantageons, as for the ricochet. They should be wrapped in canvas or other suitable material, with the object of bringing their centre as nearly in the axis of the bore as practicable.

Particulars and anmiunition of the parrott gnns.

name of gun.				苞		$\begin{aligned} & \dot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		号	
	Ins.	Ins.	Ins.	Lbs.			$\begin{aligned} & 1 \text { tirn } \\ & \text { in ft. at } \\ & \text { muzzzl. } \end{aligned}$	Lbs.	Lb
10-pdr.	70	3	11.3	880	3	$\frac{1}{10}$	10	1	$\left\{\begin{array}{l} \text { Shot, } 10 \frac{1}{2} \\ \text { Shei, } 9 \end{array}\right\}$
$20-\mathrm{pdr}$	79	3.67	14.5	1750	5	$\frac{1}{10}$	10	2	$\left\{\begin{array}{l} \text { Shot, } 19 \frac{1}{\frac{1}{2}} \\ \text { Shell, } 18 \frac{a}{2} \end{array}\right\}$
30-pdr. Army.	120	4.20	18.3	4200	\} 7	$\frac{1}{10}$	12	$3 \frac{1}{4}$	2 2 to 30
30-pdr. Navy.	96.8	4.20	18.3	3550			12		2 to 3
60-pdr. Navy.	105	5.3	21.3	-360	-	$\frac{1}{10}$	15	6	55
100-pdr.	130	6.4	25.9	9700	9	$\frac{1}{10}$	18	10	70 to 100
8 -inch.	136	8	32	10300	11	$\frac{1}{1 \cdot 0}$	23	16	132 to 175
10-inch.	144	10	40	28500	15	$\frac{1}{10}$	30	25	230 to 250

766. Comparative Adfantages of Third Class.-Expanding projectiles cannot be fired with as heary a charge of powder as others, for fear of breaking, nor are they always sure to receive the rifle-motion. The windage being greatly reduced or entirely stopped, the strain on the gun is increased, and an ordinary time-fuze will not always be lighted by the Hame from the charge of the gun. Fragments of the expanding attachment are liable to fly off and injure those in advance. The centre of grarity is almost necessarily behind the centre:
of figure, and the bearing of the projectile is usually behind the centre of gravity.
767. Fockth Class.-With this class the projectile is larger than the bore, and is squeezed or planed to fit the bore by the lands of the rifling. The projectile, therefore, mist have a soft coating, and be entered at the breech into a clamber larger than the rest of the bore; and whaterer escape of gas there may be around the breech-closing apparatus reduces its range and velocity.

This plan was early adopted and perfected by the Germans, who obtained great accuracy and range with charges of onetenth weight of the projectile. The rifling consisted of numerous shallow rectangular grooves.

The Armstrong system of rifling for breech-loaders formerly used in the English service does not differ in principle from this. The rifling consists of a great number of shallom, narrow grooves (the 7 -inch has 76), the object being to gire the soft metal covering a very large bearing on the driving-side of the grooves, and thus prevent stripping, and make up for want of depih. This system has been abandoned.

The German system will illustrate this class.
768. Tife German Sisten, or Krepp’s Method.-In this system the grooves are thirty in number for all calibres, quite shallow, and of the form shown in Fig. 166, their sides being radial and forming sharp angles with the bore. The rifting has a uniform-twist of one tirn in 25 feet.

The grooves are wider at the bottom of the bore than at the muzzle, so that the compression of the lead-coated projectile is gradual, and less force is expended in changing the shape of the projectile.

This change of shape is effected by making the whole groove of the same size as at the muzzle, and then cutting away gradually on the loading-edge of the groore. Of connse, as the twist is uniform, the driving-side of the groove cannot rarr.

The outer surface of the lead coating of the projectile is in raised rings with groores between, to allow space for its being drawn down in passing throngly the bore. (Fig. 182.)
769. Comparative Advantages of the Focktil Class.-The compressing system maduly strains the gum by suddenly stopping windage, by fonling, and by forcing the projectile into a bore of smaller diame:er. The compressed projectile must be fired from a breech-loading gun, and the increasing-twist is impracticable from the great length of the soft-metal bearing. The soft coatiag of the projectile is liable to injury in handling and in store ; also to be stripped on tiring.

Its advantages are that the projectile is centred during its passage through the bore, which prevents balloting; the angles of departure and the initial velocities are therefore more uni-

Fig. 160.
form, and the stability of the axis of rotation on leaving the bore is better assured; from which result great regularity and precision of fire. There is little or no difficulty as to erosion of the metal caused by the gas forcing its way between the projectile and the bore.

The lead jacket of the forced projectile does not prevent the employment of heavy charges. Forced projectiles do not wedge in the bore. The regularity of the movement of these projectiles does not wear or injure the bore. The soft-metal coating prevents damage to the lands.

The bursting of a projectile covered with soft metal has comparatively no baneful effect on the gun.

TT0. BREECH-LOADING.-Intimately connected with the subject of the different systems of rifling is that of the ad-
vantages and disadrantages of breech-loading for cannon. There are strong arguments both for and against the use of the breech-loaders-some nations using them altogether and others not at all.
771. Advantages.- Λ principal adrantage claimed for breech-loading guns is rapidity of fire, but the result does not seem to have been attained in the large guns.

The gun can be loaded when run out, without exposing the men, and worked in a smaller space by limiting the recoil. Any ignited substance left in the bore can be seen and removed; and there is no danger of the projectile not being home.

The breech-loading gun may be made longer, occasionally, which is a great adsantage where there is difficulty in burning the powder; moreover, a large porder-chamber may be employed for the better burning of the charge.

The advantages of the lourth Class of Rifling (Art. 769) may be claimed in favor of breech-loading.
772. Disadrantages.-The breech-loading cannon is hearier and more expensive than one loading at the muzzle.

There are more parts to be damaged. In heary guns, far from there being any increased facility in loading, considerable force has to be nsed and applied in a very careful way to the breech-closing apparatns, or the gum may be rendered temporarily unserviceable. Escape of gas, fouling or corrosion of the closing surfaces, and injury to the delicate Broadwell-ring or gas-check, are among the contingencies that may arise in service.

Much additional labor and outlay are required to construct and fit up interchangeable hollow screws or sliding stoppers; to fit and renew gas-checks; to apply opening and closing apparatus, which camot be very simple, but which mnst be very strong and durable; to fabricate, keep clean, and waintain all these parts on such a plan that two or three men can manipulate them with ease and certainty, and without unusual risk of disaster from excitement or carelessness ; and of such size and strength that the heaviest projectiles can be tired, with large charges of powder.
773. Conclusions.- The adoption of a system of working and loading grus by liydranlic power (Art. 8S6) must lave an important bearing upon the question of the comparative merits of breech and muzzle loaders. One of the chief adrantages claimed for breech-loaders is that any length of bore can be adopted withont increasing the difficulty of loading. and that, therefore, a higher duty can be obtained from the
powder. It has also been urged that a gun of larger size can be worked in a given turret as a breech-loader. Successful mechanical methods for loading at the muzzle would seem to negative these advantages.

The suppression of windage and the power of placing the vent in the breech-block are important adrantages claimed for breech-loaders. It has now become very important to suppress windage, which tends much more rapidiy to score and cut up the bore in rery heary guns, fired with large charges of slow burning powder, than in small guns fired with light, quick-burning charges. The vent is also a serious trouble in rery heavy guns, from its rapid erosion by the same cause. But it is claimed that the windage can be effectually suppressed in many muzzle-loading systems of rifing and projectiles, and an arraugement has been devised for stopping altogether the passage of gas through the vent, thus removing the difficulty of its erosion.*

In view of these facts, the relative merits of the two systems must remain undetermined for the present.

[^24]
CHAPTER VI.

PROJECTILES.

Section 1.-General Description.

774. Classification.-Projectiles may be classified-according to their form, as spherical and elongated; according to their structure and mode of operation, as solid, hollow, and case shot.
775. SPHERICAL PROJECTILES. - Spherical projectiles are commonly used in smooth-bore-guns, and for this purpose possess certain advantages over those of an elongated form. 1st, they present a miform surface to the resistance of the air as they turn over in their flight; 2d, for a given weight they offer the least extent of surface to the resistance of the air ; $3 \dot{d}$, the centres of figure and inertia coincide; 4th, they touch the surface of the bore at only one point; they are therefore less liable to wedge in the bore and endanger the safety of the piece. 5th, their rebound on land and water being certain and regular they are well suited to ricochet-firing.
776. ELONGATED PROJECTILES.-The great improvements which have been made of late, in the accuracy and range of camon, consist simply in the use of the elongated instead of the spherical form of projectile.

To attain accuracy of flight and increase of range rith an elongated projectile, it is necessary that it should more through the air in the direction of its length. Experience seems to show that the only sure method of affecting this is to give it a rapid rotary motion around its long axis by the groores of the ritles.
777. Levatir.-This necessarily varies in the different descriptions of projectiles for the same gun, inasmuch as it is to some extent subordinate to the consideration of bringing them all, with certain exceptions, to the same treight; but experments go to prove that a length of two calibres at least is necessary for very accurate firing, and it is desirable for good "ris riva," or destructive effect on impact at any but very short ranges, to have the weight great in proportion to the calibre, or, in fact, to the surface of resistance, and of course this is farored br an increased length of projectile. As a rule, the best length for
accurate firing with any ordinary twist, has been found to be from two to three calibres.
778. Forar of Head.-The form of head is governed by two considerations, flight and penetration. The latter gives different forms in different instances. (Art. 851.) The question of flight affects all equally, and on this many experiments have been made, which have resulted in the general adoption of what is termed an ogival head, or figure generated by the revolution of an ogival, or pointed arch, about its axis.

It has been found that the total pressure on a nine-inch spherical projectile, moving with a velocity of 1150 feet per second, is about 555 lbs . ANBMI representing the spherical nine-inch projectile (Fig. 167), and the total pressure on a hemisphericalheaded, elongated projectile of the same diameter represented by ACD

Fig. 16%. BM, and moving with the same velocity, is 48% lbs.-thus showing a difference of 6 Sllbs . total pressure."

Now supposing the elongated projectile to move steadily, point first, the pressure` on the respective heads, $A \backslash B$, must be the same; therefore the difference of the total pressure, viz., $681 \mathrm{bs} .$, must be due to the difference of minus pressure on the bases $\mathrm{ANB}, \mathrm{ACDB}$ respectively, thus showing that the form of base of a projectile, materially influences the total pressure which it meets with, when moving through the air at a high velocity.

The total pressure on an ordinary ogival-headed projectile of nine-inch diameter, represented by ACDBII', is only 3891 bs ., thas showing the great difference of pressure, viz., 166 lbs ., on an elongated ogival-headed projectile and a spherical projectile of the same diameter when moving at the same velocity through the air. Another great adrantage which the elongated projectile possesses over the spherical, is that, for the same calibre, the momentum of the former is much greater, varying, of course, in proportion to their respective weights, which would be nearly three to one, depending on the length of the elongated projectile.
779. The construction of ogival heads of radii of $1,1 \frac{1}{4}$ and $1 \frac{1}{2}$ diameter respectively, may be seen in Figz. 168, 169, and 170-

[^25]C and C^{\prime} being the centres and R the length of the radii in

Fig. 168.
Fig. 169.
Fig. 170.
each case. It will be seen in the case of $1 \frac{1}{4}$ diameter's radius that the head is exactly 1 calibre long.
780. Newton gives the form of body (Fig. 171) which would, in passing through a fluid. experience the least resistance. This form, it is seen, is tery similar to the ogival.
731. Piobert says that the figure (1i2) will experience the least resistance from the air. Its length is fire times its greatest diameter, and its largest section is placed $\frac{2}{5}$ of the length from the hind part.

Fig. 172.
The shape of some of the Whitworth projectiles approach more nearly to this form than those of any elongated projectiles liitherto used. (Art. .)
782. Studed Promectiles.-These are fitted

Fig. 173. for ritling of the second class. (Art. T60.) The studs are usually of bronze, the proportions of the alloy being from seren to ten parts of copper to one of tin, which is sufficiently soft to enable the stud to be attached to the projectile by pressing it into under-cut holes in the latter, causing the end, which is cupped or hollowed out, to expand and rivet itself firmly in ; it is swedged cold intu the holes. (Fig. 173.)

In studding a projectile, two rings of circular holes are usually cast in the walls, the number of holes in each ring corrasponding to the number of groores in the gan. The weakening of the walls by so many holes, and the concentration of the effort of rotation at these points, serionsly affects the endurance of the projectile.
783. The system of studding to accommodate the increasing spird, can be readily understood by Fig. 174 , and the following explanation. $E E^{\prime}, D^{\prime}$ represent the groove at seat of projectile; $\mathrm{AN}^{\prime}, \mathrm{BB}^{\prime}$ represent the groore at the muzzle.
O and O^{\prime} are the studs.
The object sought is to combine a double bearing with an accelerated spiral. The difticulty lies in the fact, that since the angle at which the grooves are inclined is continually increasing, the grun would be trying to turn the fore part of a rigid projectile faster than the hinder part, which would be impossible.

To overcome this difficulty, the rear stud is made larger than the front one. Thus, at starting, the three rear studs do all the work of turning the projectile, since EE^{\prime} is the driving-edge of the groore when it commences to more. This work is inconsiderable, as the ang!e of the twist at first is zero. But as the projectile travels along the bore, the friction will wear down the rear studs, and the assistance of those in front will be gradually called into play.

The rear studs are made large enough to till the groores; the size
 and position of the front stud is thus determined. Draw AA^{\prime} tangent to the larger stud at C , and making an angle A^{\prime} AII $=$ final angle of riffing. From O, the
centre of the rear stud draw OO^{\prime}, making $\mathrm{O}^{\prime} \mathrm{OH}=\frac{1}{2} \mathrm{~A}^{\prime} \mathrm{AH}$. It will readily be seen that a circle described with any point O^{\prime} as a centre along the line OO^{\prime}, and the perpendicular ' O ? let fall upon BB^{\prime} as a radius, will touch DD^{\prime}, and that the projectile will freely enter the gun, and that the bearing-edges of the stud will all press equally on the driving-edges of the grooves as the projectile approaches the mazzle.

The front stud touches the driving-edge on entering the bore, and the loading-edge when well home; and the reverse action occurring in firing, the share it takes in the mork of rotation is very small, for until the driving-edge meets it, the whole pressure is on the rear studs. Its chief use appears to be to steady the projectile.
784. These projectiles must be handled and stored with great care to prevent the studs being bruised and injured so as to jam in the bore, or fail to grip on the grooves in firing.

They are liable to break up in the bore if tired a second time, and the studs are liable to sheer and thus prevent the centring of the projectile.
785. Expanding Projectiles.-These are used with rifling of the Third Class. (Art. T6t.)

All the projectiles used in the navy for rifled orduance are of the Expanding Class; being forced to take the groores by the action of the charge of porder, and require no other precaution in loading than spherical shell. It is essential, loorever, that the base-ring of every rifle projectile. especially the Parott, shall be greased before entering it into the gum, to prevent the formation of a hard deposit in the grooves.

Parrott Projectile.-Parrott's projectile is composed of a cast-iron body and brass ring cast into a rabbet formed around its base.

The ring is from 1 in . to $1 \frac{1}{2} \mathrm{in}$. in widtl, and about 1 in . in maximum deptli. The gas presses against the bottom of the ring and moderneath it, so as to expand it into the groores of the gun. (Fig. 175.)

To prevent the ring from turning in the rabbet, the latter is recessed at several points of its circumference, like the teeth of gearing.

The diameter of the rabbet is greatest at the extreme rear of the shot, so that the brass ring camot fly off without breaking. The entire projectile is slightly smaller than the bore, so as to be easily ranmed home.

Very few of the rings have been broken in practice; ther should be separated from the iron base of the projectile at
three or fomr parts of the circumference, in case any fail to expand and take the grooves.

This should be done very lightly with a cold-chisel, so as not to interfere with loading. It is only necessary to sever the

Fig 175.-Parrott 100-pounder shell.
contact of the two metals. The use of a little grease or other lubricating material around the ring of the projectile, before firing, is adrantageous.
786. Daklgren Projectile.Dahlgren's ritte projectile consists of a cast-iron cylindro-conical projectile with a leaden cup attached to its base; offsets from the cup entering into recesses in the iron securely attach the cup to the projectile. (Fig. 176.) There are projections cast on the cylindrical portion which are but slightly raised from the surface of the shot; and in the groove around the cup is placed a mixture

Fig 176. of tallow and lamp-black, which lubricates the bore after each discharge.
787. The Shenke Projectile.-Shenkle's projectile is composed of a cast-iron body, having its greatest diameter a little more than $\frac{1}{3}$ of its length from the forward end, from which point, to the rear end, it presents the form of a truncated cone, with straight projections cast upon it. (Fig. 178.)

Around the rear portion is placed a ring of papicr-maché (Fig. 179), the interior of which is made conical and grooved to fit the projections on the casting; so that there shall be no lateral slipping' ; the exterior is cylindrical and slightly smaller than the bore, so as to run home easily. The powder-gas. drives the papier-maché ring forward upon the case, whence it.
is jammed into the grooves of the gun, and made so compact as to rotate the projectiles without stripping. On issuing from

the bore the ring is blown to pieces, leaving the projectile unencumbered in its flight.

A great difficulty has been found in practice in always getting a proper guality of material for the sabôt ring.

These projectiles hare gone out of use, as the papier-maché case was found to swell and expand upon being exposed to dampness and moisture.
788. Hotchkiss Projectile.-The Hotchkiss projectile is composed of three parts. It consists of a cast-iron body with a cylindrical base of diminished diameter, over which a cast-iron cap is fitted. These parts are slightly less in diameter than the 'bore of the gun. The groove between the body and the cap contains an expanding ring of lead; offsets from the lead entering into recesses in both the iron parts, and holding all secure. (Fig. 181.)

The first power of the powder, before the inertia of the whole projectile is orercome, is deroted to driving the cap farther upon the body, thus squeezing out the intermediate lead into the grooves of the gun, and at the same time holding the lead, as in a vice, so that it cannot revolve on the projectile. When discharged, the base piece is driven forward upon the front piece to an extent which is definitely limited by its contact with the extreme rear, and by this morement expands the soft-metal ring to an amount just sufficient to fill the gun and take the groores.
789. Lead-coated Projectiles.-These are used with rifling of the fourth class. (Art. 767.)

To attach the lead-coat the surface of the iron is well cleaned,

Fig 180.

Fig. 181.
and covered with a zinc solder, when the lead is cast directly on that. The zinc amalgamates snfficiently with the iron and lead to give a very complete attachment. In order to get a clean metallic surface to which the zinc may adhere, the projectile is dipped into a sal-ammoniac solution ; the next operation consists in dipping the projectile into molten zinc.

The lead-coat occasionally becomes detached in spots, where the lead has risen up into blisters from the formation of gas underneath it, occasioned by voltaic action between the differcnt metals. Such blisters are generally very small, and may be pricked and then hammered down, without affecting the fitness of the projectile for service. If left to develop themselves they have been known to attain a large size. In the German service, the lead-coat is covered witl a mixture of beeswax and benzine applied warm, and rubbed smooth with flannel rags. This does away with any necessity for lubricating the bore. (Fig. 182.)

Fig. 182.
790. The lead-coating is preserved from injury by two grommets which are nearly cut in two to facilitate
removal, and the projectiles are stored in racks fitted in the shell-room.

Sometimes the body of the projectile is not strictly cylindrical, but rather smaller at the base, the lead-coating bringing the finished body into a cylinder. This form is considered good for penetration, but any lead-coating must considerably retard the projectile in endeavoring to force its way through armor.

This lead-covering causes a great waste of power, as it is the iron part alone, of the shell, that can do work against the iron plates, and consequently a considerable force is expended in projecting a part of the projectile which is useless for the work which has to be performed.
791. SOLID PROJECTILES.-Solid projectiles when used in heavy guns are known as solid-shot, round-shot, or shot. They are employed to destroy, fracture, or penetrate an object by the mere force of impact, and are used when great range, accuracy, and penetration are required. Solid shot are classified according to their weight.
792. HOLLOW PROJECTILES.-Under the head of Hollow Projectiles are included shells for guns, howitzers, and mortars. These are usually made of cast-iron, and are classified according to the diameter of the bore of the piece.
793. Shell.-A shell is a hollow projectile filled with gunpowder, which is ignited by a fuze at the required moment, the bursting of the shell causing destruction by its explosire force and by the fragments, and, if the object be combustible, by setting it on fire.

The thickness of metal must be such that the shell may contain as large a bursting-charge as possible, but that it be strong enough to withstand the shock of the discharge within the bore of the gun.

The thickness of metal in a spherical shell is about onesisth of the diameter, and the weight of the shell is about three-fourths that of the solid-shot of the same calibre.

Crane's IX-nv. Suell consists of a shell within a shell. The advantage claimed is that upon bursting it separates into double the number of pieces.

It is made by first casting an VLI-in. shell with a IX-in. core; this casting (when sufficiently set, and before cold) is used as the core for a IX-in. shell.

Pever's Shell is made similar to the Crane's, excepting that there is a space of about seven-tenths ($\tau-10$ ths) of an inch between the two shells, which is filled with small-sized iron balls.

The shell of a rifle-gun, being elongated, is, by giving it a greater length than the shot, brought up to the same weight as the latter.
794. Mortar-shells are fired from Mortars at high angles, being intended to fall upon and set fire to buildings, vessels, or other combustible constructions; to destroy earth-works, or by their great penetration before bursting to explode magazines protected from other projectiles.

They are fitted with two lugs placed one on each side of the fuze-hole, which serve for attaching a pair of shellhoolis.

The fuze-holes of mortar-shells are larger in diameter than those of other common shells, and they are not countersunk or bouched with composition.
795. CASE-SIIOT.-Case-shot are a collection of small projectiles enclosed in a case or envelope.

The envelope is intended to be broken in the piece by the shock of the discharge, or at any point of its flight by a charge of powder enclosed within it ; in either case the contained projectiles continue to move on after the rupture, but scatter ont into the form of a cone; so as to cover a large surface and attain a great number of objects.

The three principal kinds of case-shot in use are grape, canister, and shrapnel.

They are adapted to all guns, and receive their names from the pieces in which they are used.
796. Shrapnel.-Shrapnel are thin-sided shell, in which are placed, besides the bursting-charge of powder, a number of snuall balls embedded in sulphur. They are cast in the same manner as ordinary shell, excepting that their sides are made thimer to allow for a greater number of balls. The charge of porrder is quite small, being only sufficient to rupture the case and liberate the balls.

The thickness of the metal should be such that it will resist the explosion of the charge within the bore of the gun, but open readily with a small bursting-charge. The bursting-charge should be merely sufficient to open the shell without affecting the flight of the bullets.

A spherical shell of this class has a less thickness of metal than a common shell, viz., about one-tenth of its diameter, and its weight when empty is about half that of a solid shot of similar diameter. (Fig. 183.)
797. Filling.-To fill a shrapnel a funnel is screwed into the fuze-hole, and the case filled with the requisite number of balls. A round, hollow steel mandrel, made slightly tapering
towards the lower end, which is rounded off, and haring a score cut on either side throughout its length to almit of a free passage for the melted sulphur to the interior of the shrapnel, is driven and worked through the fuze-hole to the bottom of the case. The projectile is then thoroughly warmed, generally in warm water, to prevent the cold metal from solidifying the sulphur before it has filled all the interstices.

It is then filled with melted sulphir, and as soon as the sulphur is set the mandrel is withdrawn; this is accomplished by first heating it from the interior by the insertion of a hot rod. when it is readily removed. The funnel is also remored, and the magazine formed by the mandrel is cleaned and the fuzehole carefully tapped ont.

In this magazine is deposited the charge of powder, where it is protected against all injury from the movement of the balls. By this arrangement the quantity of powder required to open the shrapnel is very small, and the bullets are prevented from striking by their inertia against, the sides of the case and cracking it when the piece is fired.

Lead being much more dense than iron, the shrapnel is, when loaded, nearly as heary as a solid shot of the same calibre

Fig. 183.-Section of 12-pdr. shrapncl, with Bormann fuze and filling of sulphur.
for the lighter guns. A shell of this class is, in fact, simply a canister-shot adapted to loug range. The mpture may be made to take place at any point of its tlight, and in this respect it is superior to canister and grape shot, which begin to separate the moment they leare the piece.

Table of contents and weights of spherical shrapmel for navy guns.

Calibre.		Contenis.				
		${ }_{\text {No. }}^{\substack{\text { No. } \\ \text { balls. }}}$	Siza of	$\begin{gathered} \text { Linj, of } \\ \text { sulphur. } \end{gathered}$	Bursting- clarge.	
xy-inch	178 lbs .	1,000 iron.	1 inch.	30.		358 lbs .
XT-inch.	76	$6{ }^{635}$ iron.	0.85 0	10.	${ }_{4}^{6}$ "	141 "،
X-inch..	57 38	435 iron. 350 iron.	${ }^{0.55} 0.8$	${ }_{7}^{8.5}$	$\stackrel{4}{4} 36$	
Vİ-insch....	398	${ }_{220}^{300}$ iron.	${ }_{05}^{0.85}$ "		${ }_{2}^{3} 5{ }^{2}$	58.
	15 "	235 lead.	0.65 "	2.25	1.25 "	32 ،
24 -pdr	11 "	175 lead.	0.65 "	1.5	450 grs .	24 "
12-pdr	6.5 "	80 lead.	0.65 "	$0 . \%$	350 grs .	12 "

795. Rifle-shrapnel.-In the Boxer shrapmel for the rifiedordnance of the English service the essential features of a shrapnel-shell are embodied.

This shell (Fig. 184) has a cylindrical iron body, with a chamber at the bottom, and fonr longitudinal grooves inside to facilitate breaking up; it is cast withont a head. A tin case for the bursting-charge fits into the chamber, on the shoulder of which rests a wronghtiron disk. The shell is lined with paper, and filled with balls embedded in rosin. A wrought-iron tube passes down the middle of the shell and throngh a hole in the centre of the iron disk, to lead the flame from the fuze to the burstingcharge. A disk is placed over the top of the bullets.

The wooden head is ogival in form, and made of ehn covered with thin wronghtiron, which is riveted to the shell. This head contains a socket and bouching for the fuze.
799. Grape-shot.-A grape-shot is

Fig. 184. composed of a number of sinall shot arranged around a spindle on an iron disk. Formerly the shot were
enclosed in a canvas-bag, which was drawn together between the balls, or "quilted" by a strong line; but the present method is more simple and durable. It consists of nine shot of a size appropriate to the calibre used, which are held together by two rings and a plate at each end of the stand connected by a rod. (Fig. 185.)

The diameter of balls for grape-shot varies

Fig. 185. with the calibre, being in all cases larger than those used for canister.

Grape-shot are now nearly obsolete, it being considered that canister-shot are sufficient for short ranges; and the canister-shot possesses the advantage of striking a great many more points at one discharge than grape. There is an adrantage, too, in not having so many different kinds of ammunition.

It is the intention to abolish grape as soon as the stock on hand is exhausted.
800. Canister-shot. - A canister-shot is a metallic cylinder about one calibre in length, filled with balls and closed at both ends with wooden or metal disks. They are supplied for all guns.

For 8 -inch canister, and all those of less calibre, the envelope is made of tin, while canister for the larger calibres have an envelope of iron.

The bottom of XV -inch canister is made of tro thicknesses of 1 -inch hard wood, crossing each other, and put together with wrought-iron nails clinched. A spindle, with a wrought-iron handle passing throngla the centre of the canister, is riveted on the bottom through a square plate. All other

Fig. 186. canister have bottom-heads of one thickness of hard wood. Top-heads are all made of whitepine.

The case is notched, turned over the heads, and tacked down.

The balls for all canister are 1.3 inch diameter, and the number used raries with the calibre. To give more solidity to the mass. and prerent the balls from crowding upon each other when the piece is fired, the interstices are closely packed with sawdust.
801. Rifle-canister.-These are rery similar in general appearance to those used in smooth-hore cannon. (Fig. 186.)
The case is of sheet-iron, or tin, with fringed ends which are turned over and soldered or riveted to iron or zine disks.

The balls are of iron or zinc packed in rosin or coal-dust, sometimes in disks of wood. (Fig. 187.)

Fig. 187.

They are fitted with solder studs or rings of lead on the outside to take the rifling (Fig. 187), or with an expanding cup (Fig. 186).

Hand-grenades consist of small cylindrical shaped shell, with conical ends, fitted with a planger at the striking-end, and a directing-feather at the other. The plunger fits loosely into the carity in the forward part of the shell, and is made to project two or three inches beyond its face, being retained in place by a slight spring; it has attached to its outer end a circular piece of sheet-iron several inches in dianeter. At the bottom of the cavity in which the plunger is placed a nipple is fixed, communicating with the bursting-charge, on which is placed an ordinary percussion-cap, which is exploded when the plunger is driven in violently, thereby igniting the charge.

There are three sizes of grenades, one (1), three (3), and five (5) pounds, and are intended to be thrown by hand, and may be very effectively used in repelling attacks by boats or by persons well sheltered against other's completely exposed.
802. FABRICATION OF PROJECTILES.-They are usually made of gray or mottled cast-iron of good quality. Shells should be made of the best quality of iron, and with particular care, in order that they may not break in the gun.
803. Patterv.-The pattern of a spherical projectile is composed of two hollow cast-iron hemispheres, which unite in such a manner as to form a perfect sphere; on the interior of each hemisphere is fastened a handle to enable the operator to draw it from the sand when the half-mold is completed. The flaskis which contain the mold are made of iron, in two equal parts, united by means of hooks at their larger bases. The other ends are fitted with movable covers. (Fig. 188.)
804. Molding.-This operation is performed by placing the flat side of one of the hemispheres on the molding-board and

Fig. 188.
corering it with a flask. Sand is then poured into the flask. filling up the entire space betreen it and the hemisphere, and well tammed. The corer is then attached, and the flask turned orer, the hemisphere is withdrawn, and the eutire surface of the sand painted with coke-wash and dried.

The remaining half of the mold is formed in the same war, except that a channel for the introduction of the melted iron is made by inserting a round stick in the sand before it is ranmed and withdrwwing it afterwards, A, Fig. 185.
805. Hollow Projectiles.-Thus far the operations of molding and casting solid and hollow projectiles are the same. The cavity of a hollow projectile is formed by inserting a core of sand. This is a sphere of the proper size, made by compressing the molding-composition on a half-inch hollow iron spindle by means of two hemispherical cups. (Fig. 189.)

The requisite compression being giren by screrrs. The core is by means of a gange placed exactly in the centre of the mold and supported in that position by the stem which forms the
fuze-hole. The stem is perforated with small holes to allow of the escape of steam and gas generated by the heat of the melted

Fig. 189.-Core-box.
metal, that part of it which comes in contact with the melted iron, and forms the fuze-hole is coated with sand.

In pouring the melted iron into the mold with the ladle care should be taken to prevent scoria and dirt from entering with it, and for this purpose the surface should be skimmed with a wooden stick.

After the iron has become sufficiently hardened the flasks are opened and the sand knocked from the casting. Then the core is broken up and removed, and the interior surface cleaned by a scraper.

The greatest care is to be taken to remove every particle of sand or fragment of iron from the interior.

The sinking-head or projecting portion at the gate, and around the base where the two halves join, are taken off with a file or chisel if necessary.

A number of the balls are now placed in a large revolving iron cylinder, which by friction polishes and makes the surface more uniform.
806. Botchirg. - The fuze-holes of all shell are bouched with gun-metal to receive the Nay-fuze-stock. In fitting the shell to receire the bouching, the bore should be tapped with a full threal, and the proper shoulder left at the botton to prevent the bouching from being driven in by the shock of firing and causing premature explosion.

The object of the bouching is to prevent rust, and to have
the same kind of metal in contact with the fuze-stock, so that there will be less danger in extracting or exchanging a fuze.

The fuze-holes of heavy rife-shell are necessarily cast larger than the diameter of the regular fuze-stock, which can, however, be used with the aid of an adapting-ring of gunmetal, which is screwed in to reduce the diameter of the hole to the proper dimensions.

The fifteen-inch spherical shell are cast with three fuzeholes equally distant from each other, and situated in the angles of a triangle 4 inches apart.
807. CHILLED PROJECTILES.-Chilled-iron projectiles have been profitably employed to pierce armor-plates, on account of their intense hardness.
808. Palliser Projectiles.-The English projectiles recommended by Major Palliser may be described as an example of chilled projectile.

The form of these are cylindro-conoidal, the head being ogival, struck with a radius of $1 \frac{1}{2}$ diameters. The total length varies between 2 and $2 \frac{1}{2}$ calibres. The bottom is flat, and in the centre of the bottom is a filling-

Fig. 190. hole for shells, closed with a composition screw-plug. (Fig. 190.)

All Palliser shells are lacquered internally to give them a smooth, clean lining, which prevents the iron from either oxydizing at the expense of the powder, or firing it from friction by rapid rotation during flight. As the lacquer does not always hold well to the metal, serge-bags are introduced to contain the bursting-charge as an additional prevention against premature explosiou. These bags are made bottle-slaped, and are introduced through the filling-hole.

Palliser shot are cored. The hollow up the centre enables them to conl more uniformly, and renders them less liable to split. It also slightly improves its proportions and its regularity of flight. The bottoin is closed mith a plug.
809. How made.-These projectiles are made of carefully selected iron, which, if run in sand-molds, would solidify as mottled, iron.

The projectiles are cast point down, for the sake of density and soundness in the head. The mold is formed of a metalchill at the bottom extending up past the junction of head and body; the remainder of the mold is formed of sand, as also is the case for the formation of the interior. The chilling action therefore extends a little past the head of the projectile, which thus has a mottled body and a white head.

The Grüson projectiles are cast with a dead-head on the base, which is aftermards cut off, the object being to obtain a solid bottom to stand well under the shock of the discharge. The chilling is effected by the metal molds, in virtue of their great conducting-power, their thickness greatly affecting the extent of their action. The head thus chilled white, possesses generally the quality of white-iron, intense hardness, crushingstrengtli, considerable brittleness, and increased density.

The tip or point of a chilled projectile, is occasionally broken off by the impact of a shell or shot rolled or struck obliquely against it ; for the point which may penetrate directly through many inches of armor without injury, may be fractured by a very slight transverse blow.
810. Steel Projectiles have proved more efficient than those of any other metal, but their expense has heretofore been too great to warrant their general u:se. For rifle projectiles they are made from solid ingots of steel turned to form, and bored out for shells. They are hardened by heating and cooling quickly, the head being to a certain extent chilled. The manufacture is expensive and tedious, and the tempering is a matter of difficulty, the shells being liable to crack. In order to orercome this difficulty hollow shot have been devised, the hole through the centre allowing the sudden shrinkage to take place without the injurious effects above alluded to.
811. Whitworth's Steel Shell are made from ingots of steel cast in the form of hoops, and drawn down to the necessary size under the hydraulic press. The ends are closed with screw plugs. They are therefore less costly than might be supposed.
812. INSPECTION.-Object of Inspectiox.-The principal points to be observed in inspecting projectiles are, to see that they are of proper size in all their parts, that they are made of suitable metal, and that they have no defects, concealed or otherwise, which will endanger their use or impair the accuracy of their fire.

As it would be impracticable to make all projectiles of exact dimeusions, certain variations are allowed in fabrication, which are specified in the "Ordnance Instructions."
813. Inspection of Solid Projectiles.-The projectile is
inspected while unlacquered, perfectly clean, and before becoming rusty, so that the eye can detect any flaws or imperfectious in the metal.

Each projectile is placed upon a table and examined to see that its surface is smooth, and that the metal is sound and free from seams, flaws, and blisters. If clusters of cavities - or small holes appear on the surface, strike

Fig. 191. the point of the hammer into them, and ascertain their depth with the searcher. If the depth of the cavity exceeds 0.2 inch, the projectile is rejected; it is also rejected if any attempt has been made to conceal defects by plugging or filling holes in any mode whatever.

The projectile must pass in erery direction through the large gauge (Fig. 191), and not at all through the small one; the calipers and scale will determine exactly the difference of diameters of the same projectile. The ring and cylinder gauges are examined before each inspection, and when found to have enlarged 0.01 of an inch, are laid aside and marked as unserviceable.

The projectiles are next passed throngh the cylinder-gauge, placed at an inclination of about two inches between the ends, and supported in such a manner as to be easily turned from time to time, to prevent its being worn in furrows. Projectiles which slide or stick in the cylinder are rejected.

The next proof is to drop a few taken indiscriminately from the lot under inspection from a height of twenty feet on a solid platform of iron, or roll them down an inclined plane of the same height against a mass of iron, after which they are again examined for defects of metal.

The average weight of solid projectiles is determined by weighing at least three parcels, of from 20 to 50 each, taken indiscriminately from the lot.

As many of the lightest are weighed separately as the Inspecting Officer deems necessary, and all found to fall below the least weight allowed by the Ordnance Instructions are rejected.
814. Inspection of Hollow Projectiles.-The surface of the shell and its exterior dimensions, form, weight, and strength, are examined and tested as in the case of solid projectiles, and subject to all the conditions there specitied.

The shell is next struck with a hammer (Fig. 192), to judge by the ring or sound whether it is free from cracks; and the exterior and interior diameters of the fuze-hole (which should be accurately reamed) are verified, and the soundness of the metal about the inside of the fuze-hole ascertained.

To determine the thickness of the metal,

Fig. 192. three points, at least, on the great circle at right angles to the axis of the fuze-hole are measured (Fig. 192.) ; also one at the fuze-hole (Fig. 193), and one at bottom. No shell is received which deriates more than one-tenth of an inch from the proper thickness in any part.

The shell is next placed in a tub of water, which should be

Fig. 193.-Gauge for thickness opposite fuze hole.
deep enough to completely cover it. A pair of hand-bellows and a wooden plug are inserted into the fuze-hole, the plug to fit the fuze-hole and the nozzle air-tight. Air is then forced by the bellows into the shell. If there are any air-holes in it, air-bubbles will rise on the surface of the water, and the shell is rejected.

This occasionally occurs from the escape of air from porous spots which do not extend to the interior of the shells. In this case the action of the bellows produces no increase of bubbles, which cease rising as soon as the spots or cavities are filled with water. Porous spots are also detected by their absorbing water, and drying slowly when exposed to the air, and likewise cause the rejection of the shell.

The Inspecting Officers stamp the shell at one inch from the fuze-hole with their intials, also those of the foundry at which they are cast.

The Inspector or one of his assistants must be present when shot or shell are inspected; and the stamps and marks are always retained, in the possession of the Inspector.

Rejected shells are mutilated by chipping a piece out of the fuze-holes.
815. Inspection of Grape and Cantster.-The dimensions are verified by means of a large and small gauge.

Table of Gauges for Smooth-bore Projectiles.
SHOT.

Dimensions, Weight.	XV.	XIII.	XI.	x.	IX.	8.	32.
Mean Diameter (in.).....	14.80	12.80	10.80	9.80	8.80	7.85	6.25
Mean Weight (lbs.).......	440.	$2 \pi 6$.	166.	124.	90.	65	32.5

SHELL.

Dimensions, Weight.	IV.	IIII.	XI.	X.	LX.	8.	32.	24.	12.
Mean Diameter (in.)	14.50	12.50	10.85	9.85	8.55	\%.E5	6.95	5.67	4.52
Thickness (in.)	2.85	2.57	2.	1.80	1.60	1.50	1.25	. 90	. 60
Diameter of fuze-hol	65	65	C5	65	.65	. 65	.G5		
Mean weight, empty (lbs.)	330.	208.	12%.	95.	6S.50	50.	25.	12.	8.4
Weightof filled and saboted (lbs.)	352.	216.5	135.5	101.50	73.50	52.75	26.5		.

GRAPE.

Dimensions, Weight.	IV.	II.	X.	L5.	S.	82.
Weight of Stand (lbs.).	.	34.5	26.10	20.4	15.5	8.75
Weight of Balls (lbs.).	.	\$9.10	71.70	52.20	5\%. 12	2.80
Number of Balls.	..	15.	15.	18.	18.	12.
Diameter of Balls (in.).	..	3.55	3.34	2.80	2.50	2.50
Weight complete (lbs.).	..	125.08	98.62	T.4.10	53.25	33.50

SHARPNEL.

CANISTER.

816. PRESERVATION OF PROJECTILES.-They are cleaned from rust and covered with a thin lacquer, when they are first received and when they are stored.

The following colors are established when put on board ship : all shot, black; shell, red; and sharpuel, white. The length of fuze is stencilled on the shell.

Corers of boxes containing projectiles are painted the same color as their contents, and the length of the fuze of a loaded projectile is stencilled in black on the box. Empty shell, whether in store or in transportation, are most carefully protected from dampness. They have the fuze-bouching coated with compo-
sition, and the fuze-hole is stopped by a plug of very soft wood which is well coated with a mixture of oil and tallow and screwed in. The ends of the plugs are notsawed off eren with the shell, but left square and project sufficiently to allow them to be unscrewed by means of a wrench; and when these plugs are removed for the purpose of fitting the shells for service, they are not thrown away, but preserved for future use.
817. Stowage.-They are piled with the fuze-holes down, and free from contact ; under cover, when practicable, but with free ventilation. Projectiles in boxes must be stowed in tiers with thin battens of wood between the tiers, so that there may be free circulation of air.

Platforms of masonry, or of condemned projectiles, are prepared to pile them on. Square piles are to be preferred where there is room.

Projectiles, after having been piled, are so far examined each year, as to ascertain if they require to be cleaned, relacquered, and repiled to secure their proper preservation.

For the proper stowage and preservation of projectiles on board ship, shell-rooms are provided, the same care and attention being given to their construction, location, and means of lighting and flooding as in magazines. The loaded shell, being either in boxes or bags, are stored in the shell-room in tiers or ranges, held in place by wooden battens if necessary ; and when there are various kinds, they are to be stowed on separate tiers, with pieces of plank between them, in such manner that each kind can be readily obtained. It is seldom that the shell-room will contain the full allowance boxed ; the remainder will be put on board empty.

Empty shell are to be stowed on board ship by themselres, in a dry place, unsaboted, in bulk. A sabot, straps, tacks, and lashing is furnished for each empty shell; after target practice the number of loaded shells is to be made complete.
818. Lacquering.-Whenever projectiles are to receive lacquer, care is taken that the quantity applied does not increase the diameter more than is indispensably necessary, and in no case above established high gatuge. Old lacquer and rust are removed by scraping, as far as can be conveniently done, before a new coating is applied.

Neither hammering nor beating is resorted to for this purpose.

After numerons experiments upon different lacquers employed for the preservation of projectiles from rust, the French have abandoned all of them.

The projectiles are simply piled, under sheds when practica-
ble, or in the open air, and, when put on board of ship, cleaned of rust and rubbed over with whale-oil : the same means adopted every three months of the cruise.
819. The Condiriox of Loaded Shfle, and especially of their fuzes, is frequently examined into, taking out a fuze occasionally so as to detect any injury which may arise from moisture, and such as may be found damaged are replaced by spare fuzes.

Projectiles returned from cruising ships are emptied, cleaned, and plugged.

In emptying shell ther are handled carefully and placed on a bench with a hole in it to receive and support the inverted shell. A wooden ressel placed below receives the powder.

The powder which has been removed from shells is only used for filling shell, as it always contains a small quautity of grit, which renders it unfit for general service.

All powder taken from shell is sifted, and all dust and particles of dirt removed, as far as possible, before putting it into barrels.

Should the powder have become caked, so as not to be easily removed by washing out the shell, a handful of small iron shot put in the shell facilitates this operation.
820. Removing Fuzes.-Whenever it is expedient or necessary to examine the fuzes and loading of shell which have been already prepared, great care is observed in removing the fuze, and it is never done in the shell-room.

The fuze-stock may generally be safely unscrewed with the fuze-wrench, taking care, in the first place, to strike the side of the shell gently with a wooden mallet, to detach the powder from the fuze, to work very slowly, and not to endeavor to overcome any unusual resistance. No attempt should be made to open a shell, for the purpose of unloading it or destroying its charge, in any other way than by unscrewing the fuze-stock.

In doing this, if the stock do not yield at once to an ordinary effort with the wrench, then the shell should be marked and immediately set aside, to be thrown overboard.
821. To find the number of balls in a pile, multiply the sum of the three parallel edges by one-third of the number of balls in a triangular face.

In a square-pile, one of the parallel edges contains but one ball; in a triangular pile, two of the edges have but one ball in each.

The number of balls in a triangular face is $x\left(\frac{x+1}{2}\right) ; x$ being the number in the bottom row.

The sum of the three parallel edges in a triangular pile is $x+2$; in a square pile, $2 x+1$; in an oblong pile, $3 \mathrm{X}+2 x$ -2 ; X being the length of the top row, and x the width of the bottom tier; or $3 m-x+1 ; m$ being the length, x the width of the bottom tier.

If a pile consist of two piles joined at a right-angle, calculate the contents of one as a common oblong pile, and of the other as a pile of which the three parallel edges are equal.

Section II.-Deviations.*

822. General Consmerations.- The term deviation must be understood to mean not only the deflections, right or left, of the line of fire, but also the differences between the ranges of similar projectiles fired under like condition from the same guns.

Very great irregularities occur in the paths of spherical projectiles. If a number of projectiles be fired from the same gun, with equal charges and elerations, and with gunpowder of the same quality, the gun-carriage resting upon a platform, and the piece being pointed with the greatest care before each round, very few of the projectiles will range to the same distance; and, moreover, the greater part will be found to deflect considerably, unless the range be rery short, to the right or left of the line in which the gun is pointed.

With elongated projectiles the fire is far more accurate, but still the ranges and deflections are subject to rariations of greater or less amount.

The causes of the deviations of projectiles, whether fired from smooth-bore or rifle guns, and independent of inaccuracy in pointing, and rariable position of the gun-carriage, are wind, variable projectile force, and rotation of the earth.

S23. Effect of Wind.-Should the wind be blowing in gusts and be changeable in direction, it is difficult to allow for it in pointing the gun; but with a steady breeze, in a pretty constant direction, a few rounds will generally be sufficient to show the allowance necessary. The relocity of the wind is very low compared with that of the projectiles, but it remains usually nearly the same thronghout its flight, whereas the relocity of the projectile decreases rapidly; it therefore frequently happens that the wind appears to have greater effect towards the end of the range, and it may be often noticed in
practice, that projectiles deviate in a rapidly increasing curved line.

The wind, if strong, will greatly affect the ranges of projectiles; decreasing or increasing the range according as it may be blowing with or against the projectile.

The lower the velocity of a projectile, the greater will be its deflection caused by the wind, as, for instance, upon mortarshells, on which, laving low velocities and long times of flight, the wind exercises a very disturbing influence. The greater the density of the projectile, the less will its motion, during flight, be affected by the wind; and thus shells are more influenced by wind than sliot.

The wind exercises a very great deflecting influence upon an elongated projectile during its flight, rendering it difficult to obtain accuracy of fire at long ranges, even from rifled guns, excepting in very calm weather.

If the centre of gravity be placed very near the centre of the long axis, the force of the wind will be pretty evenly distributed over the whole length of the projectile. Should, however, the centre of gravity be placed far in advance of or behind the centre of figure, the force of the wind will press unequally upon the shot, and uncertain deflections will most probably occur.
824. Vartable Projectile-force.-It is impossible with our present facilities to maunfactnre large quantities of powder of a perfectly uniform quality; but supposing it could be accomplished, the force from a given charge would be liable to variation according to the state of the atmosphere, and the condition of the powder as affected by the time it has been in store; it will also be frequently found in practice that the charges have not been weighed out with perfect accuracy, nor the gun loaded so that the projectile is always in the same position with reference to the cliarge. The consequence is, that very few projectiles fired from the same gun with what are called equal charges, leave the bore with exactly the same initial velocity.
825. Rotation of the Earth.-The deviation of a projectile caused by the rotation of the earth is a complicated problem. The principle that this rotation will impress upon the projectile a tendency, upon leaving the bore, to move with the same velocity in the same direction as the point upon the surface from which the gun is fired, is readily comprehended, but not its application to some particular cases.* The devia-

[^26]tion due to this cause is too slight to be regarded in practice.
826. Fatlty Disposition of the Line of Sight.--The line of sight may be improperly placed and situated out of the vertical plane, either in consequence of the construction of the gun or its carriage, or by the effect of the inclination of the plane upon which it is placed. In these two cases the line of fire maintaining a fixed and determined position, in respect to the axis of the gun and the vertical plane of fire, the deviations are constant for equal distances and equal inclinations, and it becomes easy to correct them after a few trials.
827. Influence of the State of the Air.-The barometic state of the atmosphere may also produce an effect upon the ranges; for the greater the density and elasticity of the displaced fluid, the greater will be the retardation of the projectile.

The phenomenon of refraction also slightly modifies the range, but these last causes are scarcely appreciable in practice.
828. DEVIATION OF SPIIERICAL PROJECTILES. -The principal causes of the deviations of projectiles fired from smooth-bore guns, are

1st. Windage.
2 d . The imperfect form and roughness of the surface of the projectile.

3d. Eccentricity of projectiles arising from their not being homogeneous.
829. Windage.-Windage causes irregularity in the flight of a projectile, from the fact of the elastic gas acting in the first instance on the upper portion of the projectile and driving it against the bottom of the bore.

The projectile reacts at the same time that it is impelled forward by the charge, and strikes the upper surface of the bore some distance in advance, and so on, by a succession of re-

Fig. 194.
bounds until it leaves the bore in an accidental direction and with a rotatory motion, depending chiefly upon the position of the last impact against the bore. (Fig. 19t.)

Thus, should the last impact of a concentric projectile, when fired from a gun, be on the right-hand side of the bore, as represented in the figure, it will have a tendency to deflect to the left in the direction b, while at the same time a rotation will be given to it in the direction indicated by the arrows, or to the right. The effect of this rotation being to cause the projectile itself to deviate to the right during its flight, so that the deflection will not be to the left, but to the right, unless the range is very short.

If the projectile leave the gun, rotating on a vertical axis, with its forward part moving from left to right-supposing the observer to be behind the piece-there will be a diminished pressure on the right side and an increased one on the left side, which will therefore cause it to deviate to the right.

If a projectile strike the bottom of the bore, the rotation of the fore-part would be from up downwards, and instead of deflecting to the right, the range would be decreased.

Suppose the projectile to rotate in an opposite direction, the results would be reversed. Should it, ou leaving, strike any intermediate part of the bore, a compound effect would be produced, according to the position of the point of impact.

It appears from these explanations, that a projectile leaving the gun, rotating on any axis, except one parallel to that of the bore, will deviate according to the direction of the rotation.
830. Eccentrictity.-Should the centre of grarity of a projectile not coincide with the centre of figure, it is termed eccentric, and is found to deviate according to the position of the centre of gravity when the ball is placed in the bore of the grn ; should the line joining the centre of gravity and the centre of figure of a projectile be not parallel to the axis of the bore, the charge of powder will act on a larger surface on one side of the centre of gravity than on the other, so that there will be a rotation from the lightest towards the heaviest side.

If Fig. 195 represent an eccentric shot, the centre of gravity, G, of which is below the centre of figure F, the powder, acting on a larger surface above than below G, will give it a rotation as iudicated by the arrow, and from what has been previously said, the deviation will be to the side on which the centre of gravity lies; this is the case in practice, for it has been ascertained by experiment that if a projectile be placed in a gun so that its centie of gravity is to the right of the vertical plane passing throngh the axis of the bore, it will deviate towards the right, and vice-versa; also if the centre of gravity be upwards, the range will be increased; and if downward, diminished.

It is found in practice that projectiles deviate in a curved line, either to the right or to the left, the curve rapidly increasing towards the end of the range. This probably occurs

Fig. 195.

Fig. 196.
from the velocity of rotation decreasing but slightly compared to the velocity of translation; or if a strong wind is blowing steadily across the range during the whole time of its flight, this deffecting cause being constant, while the relocity of the projectile diminishes, the curve will manifestly increase with the range; the trajectory is, therefore, a curve of double curvature, its projection on either a horizontal or rertical plane being a curved line.
831. Conclusion.-From the foregoing considerations it follows, that the smoother the surface of the projectiles and the less their windage and eccentricity, other things being equal, the greater will be their accuracy. Experiments show that the preponderating side should be put next the charge, and the line joining the centre of gravity and the centre of figure should be parallel to the axis of the bore.

The position of the preponderating side is found by floating the projectile in a bath of mercury, and the degree of promptness with which an eccentric shot, floated as above, assumes the position due to its preponderance, is regarded as the measure of that preponderance.
832. DEVIATION OF ELONGATED PROJECTILES, - If the projectile come out of the gun perfectly centred, that is, rotating round its longest axis, and haring that axis coincident with the line of flight, there will be no tendency, either of the axis of rotation, or of the projectile itself, to deflect, so long as the motion is in a straight line, because the resistance of the air will act uniformly all around. As soon, however, as the trajectory has begun to curve downwards under the influence of gravity, the resistance of the air acts more on the under side than on the upper, and effects will be pro-
duced depending on the resultant direction of the resistance of the air in relation to the centre of gravity.
833. Practically, the path of the projectile is found to result in a deviation, increasing uniformly with the distance from the gun, and depending, as to its direction, on the direction of the deflecting-force at the moment of its first aplication.

If the defleating-force act on the projectile in a vertical direction upwards, the horizontal projection of the line of flight will be a line deviating to the right or left, of the plane of fire, according as the twist is right or left handed. If the deflecting-force act in the opposite direction, the projectile will be deflected to the left or right, according as the twist is right or left; and whatever be the direction of the deflectingforce, the deviation will be a uniformly increasing one at right augles to it.
834. These effects may be illustrated experimentally by means of a gyroscope provided with a small elongated projectile instead of the disk used for ordinary experiments. (Fig 197.)

The projectile must be made with the greatest care, so that its centre of gravity coincides exactly with that of the two rings within which it is placed; the rings are so arranged that one can turn round a vertical axis, and the other round a horizontal axis, the projectile being therefore free to turn in any direction. A cylindrical portion of metal extends beyond the base of the projectile, in prolongation of its longer axis, round which the string is wound to give the required rotatory motion.

As the projectile in the gyroscope has no motion of translation, a strong current

Fig. 197. of air must be directed upon it, so as to represent the resistance of the atmosphere to a projectile moving with a high velocity. The diameter of the nozzle of the blower should be equal to, or rather larger than, that of the projectile, and the centre of the blast should be directed below the point of the projectile in the position indicated by Rin Fig. 145.
835. If Fig. 145 represent the elongated projectile of the gyroscope, it will be found that a pressure, R, exerted anywhere between a and b will produce a similar effect to an
upward pressure exerted at the point E. Supposing, however, the projectile to be rotating rapidly in the direction indicated by the arrow in Fig. 197, and the pointed end is facing the spectator: then, if a pressure be exerted at b, corresponding to E in Fig. 145, the point of the projectile will not rise (at least perceptibly), but will move laterally in the direction c, that is, to the right, with reference to an observer behind the gyroscope; if a pressure be exerted at d (Fig. 197), the point will fall ; if at a, the point will move laterally in the direction d, or to the left, with reference to an observer behind the gyroscope; lastly, if a pressure acts upon the rotating body at c, the point will rise. Now should a pressure be exerted in any intermediate part of the circle $a b c d$, as, for instance, between b and d, then the motion of the point of the projectile will be compounded of the motions caused by respective pressures at b and d, that is to say, the point will move laterally to the right (with reference to an observer behind the gyroscope), and droop at the same time.
836. If a strong blast of air be directed on the fore part of the rotating projectile, the centre of the current being a little below the point, but in the same vertical plane with it, as shown by the dotted lines in Fig. 145, so as to represent the resistance of the air to a projectile moring with a high velocity, the pointed end will first move slowly to the right (towards c, Fig. 197), effects being afterwards successively prodnced by the blast similar to those which would be cansed by a pressure acting gradnally round the circle acbd (Fig. 197), as already described.

If pressure be exerted behind the centre of gravity instead of in front, or on the fore part of a projectile rotating with a left-handed rotation, the above effects will be reversed.
837. The line of flight is therefore not absolutely a straight line, but becomes a curve of double currature; and if projected on a vertical plane at right angles to the plane of tire, would consist of a series of cycloidal curves, were the time of flight snfficiently great, increasing the distance of the projectile from the plane of fire by the length of one of them at each revolution. The lengtly of these curres depends upon the amount of the deflecting-force, and their nmmber is equal to the number of revolutions made by the projectile in its flight.

83s. When an elongated projectile is fired from a riffe-gun, it leases the bore rotating rapidly rond its longer axis; and if the initial velocity were very low, the projectile experiencing but
slight resistance from the atmosphere, the larger axis would remain (as in vacuo) during the whole time of flight parallel or nearly so to its primary direction, as shown in Fig. 198.

Fig. 198.
In explaining the effect produced by the resistance of the air upon an elongated projectile moving with a high velocity, the projectile will be supposed to have what is termed a righthanded rotation: that is, the upper part turns from left to right, with reference to an observer placed behind the gun ; for the direction of the grooves of riffed pieces are almost invariably so as to give such rotation.

After the projectile has left the bore, the resultant of the resistance of the air will, unless the centre of gravity be very far forward, act upon a point in front of the centre of gravity and below the longer axis, at all angles of elevation given in practical gunnery. The effect produced by this pressure will depend chiefly upon the form of the head of the projectile; therefore, let us first consider the effect upon a conoidal head.
839. Deviation of the Conoidal-headed projectile.

The pressure R (Fig. 145), exerted anywhere between a and b, will have a tendency to raise the point a or to prorluce a similar effect to an upward pressure exerted at the point E . This will result in giving the point a a lateral movement to the right. (Art 833.) As this lateral movement of the point proceeds so will the resultant act more and more to the left of the vertical plane, passing through the longer axis of the projectile. And as the deviation continnes at right angles to the direction of the deflecting-force, the point will soon begin to droop.

The point of the projectile first moves to the right, then downwards, still keeping to the right, then to the left, and so on, describing a portion of the circle, the continuance of the motion depending upon the time of Hlight and velocity maintained. As the velocity becomes low, the circular motion of the point will gradually cease; but in practice, during the few seconds of tlight which generally elapse, as the velocity is
pretty high throughout, there is probably sufficient time and pressure not only to turn the point to the right, but to bring it down on to the trajectory, or even below it.
840. Of course the longer axis of an elongated projectile does not remain, during flight, continually a tangent to the trajectory, unless the centre of gravity, as in an arrow or rocket, is very near the face end ; yet, practically, on account of the drooping of the point, the longer axis may throughout a considerable portion of the time of flight approximate very nearly to a tangent to the trajectory, as in Fig. 199.

Fig. 199.
The effects on targets furnish most satisfactory evidence of this; it is almost invariably found that the holes made in targets are circular, even when elongated projectiles descend at considerable angles.

The most probable explanation of this fact must evidently be, that the point of the projectile has drooped during flight, so that, on striking the longer axis is nearly perpendicular to the plane of the target. (Fig. 199.)

This drooping of the point is of importance, for did the axis remain parallel during flight to its primary direction, the projectile would most probably, when fired at any but a very low angle, on striking an object of hard material and solid structure turu up against it lengthways, and therefore produce but tritling effect. This has not, however, been found to take place in practice, but on the contrary the penetration of elongated projectiles at considerable ranges, are always remarkably great. There is little fear of the projectile turning up against an object unless the velocity of translation and rotation be rery low, and the angle of fire very high.
841. Deviation of the Flat-lieaded Projectile. - A pressure exerted upon the head and below the larger axis, as (R Fig. 146), will have a tendency to cause the head to droop; or will produce
an effect similar to a downward pressure, acting at C ; just the opposite of what is observed with a conoidal-pointed projectile.

Therefore (Art. 833), the projectile will be deflected to the left or right, according as the twist is right or left handed.

It is found in practice that conoidal-headed projectiles fired from rifled guns giving a right-handed rotation, always deviate to the right; and in the few cases tried with guns giving a lefthanded rotation, the deviation is to the left; with flat-headed projectiles, these deviations are reversed.
842. Drift.-This peculiar deviation is called drift, and is generally constant for the same ranges-so that it can be allowed for in pointing the gun, by using a horizontal slide graduated and attached to the tangent scale, or by inclining the tangent scale to the left.

Section III. - Effects.

843. General Consideratiox.-A knowledge of the destructive effects of projectiles is of very great importance. In general, these effects depend upon a variety of circumstances, such as the velocity of the projectile at the moment of impact, its weight, form, diameter, the material of which it is made, the nature of the object struck, and the relative position of this latter with regard to the trajectory of the projectile.

When a projectile strikes an object, its energy is expended, not only in penetrating, fracturing, or producing vibration in the material of the object, but, when the latter offers great resistance, in breaking up or changing the form of the projectile.
844. Impact of Projectiles.- In order to arrive at a clear understanding of what takes place when the motion of a projectile is arrested by any resisting medium, it is necessary to recall some of the elementary principles upon which these phenomena depend."

The manner in which a projectile acquires its relocity, is a good illustration of the manner in which its motion is destrosed.

If the mean pressure, P , of the gas be multiplied by the space, S , passed over by the projectile while acquiring its velocity, the result will be the measure of the work done by the charge of powder; and it will also be equal to the work of stopping the same projectile, no matter how or by what means it may be brought to rest.

The same result is generally arrived at by measuring the velosity imparted to the projectile under the circumstances mentioned, and multiplying the square of the velocity by one-half of the mass of the projectile ; or, since the mass is equal to the weight divided by the force of gravity, the expression for the work stored in the projectile, and which must be expended in bringing it to rest, $=\frac{W \cdot v^{2}}{2 g}$, where $W=$ weight of the projectile in pounds, $v=$ velocity of the projectile in feet, and $g=$ the force of gravity in feet, or the relocity which a body will acquire by its own weight in one second of time.

This expression involves indirectly the same quantities as that first mentioned; namely, the mean pressure of the gas and the distance passed over by the projectile; assuming this measure for the work stored in the projectile, it remains to consider how this work is expended.
845. The following are the different effects produced by the impact of a projectile upon any solid body; some of these being so connected as to render their relative importance extremely doubtful.

Compression.-The first effort of impact is to compress or drive back those portions of both projectiles and target first coming in contact upon those immediately behind them; the amount of this compression depending upon the material and velosity of impact, as well as upon the form of the projectile.

Elongation.-The greater part of the work of the projectile in penetrating wrought-iron and similar materials is expended in overcoming the tenacity of the material, or in elongating the fibre. This is erident when we consider that punching or shearing consists not so much in cutting the fibre, as in bending it, and afterwards pulling it in two lengthwise.

Shearing.-This, as just stated, cousists chiefly in the tro strains already mentioned.

Bending.-This also implies tension and compression ; the back of the target being elongated, and the front compressed.

Pulverizing-a portion of the material. This takes place only in case of hard materials, as stone or cast-iron, and it then absorbs a very great amount of work. Like bending and shearing, it involves compression and elongation, the material being compressed until it jields laterally to a tensile strain.

Motion.-While the work is being expended, a certain amount of time is allowed for the force of the projectile to impart motion to the target, especially that portion immediately in front of the projectile.

Friction.-The friction is very great, especially in the case
of the more pointed form of projectile, and varies inversely with the velocity of the projectile.

Heat.-This is due to friction, both external and internal, that is, of the projectile and fragments against the target, and against each other during the distortion of the material, from compression, bending, etc.

The suddenness with which this heat is generated is almost unequalled by any known source of heat. It is well known that the heat developed in the interior of loaded shells, on striking violently a thick iron plate, is sufficient to ignite the powder, and this fact has been utilized in dispensing with fuzes for exploding armor-punching shells.

The effect of a projectile on striking a mass or target of any form or material, may be divided into two general portions, one being entirely local, while the other is distributed over more or less surface according to circumstances.

The former is the penetration, and the latter may be called the concussion.
846. PENETRATION.-General Theory.-The most common substances encountered by projectiles are arranged in the following series, in the order of their resistances to penetra-tion:-air, water, sand, wood, lead, copper, wrought-iron, soft steel, cast-iron, chilled iron, hardened steel, etc. All other substances may be arranged between these, or in continuation of the series.

Air opposes the motion of a projectile by its inertia, elastic force, and the pressure due to its weight. The projectile compresses the air in its front and disperses it laterally, while the rear of the projectile is relieved by its motion of the normal pressure of the air. A small amount of resistance is also met with in the shape of friction.

Water.-In the case of water these resistances are increased by the greater density and weight of this substance, and there is also a slight additional resistance due to the cohesion among the particles.

Sand, being a solid, or at least made up of solid elements, presents the additional resistance of "crushing-strength." It cannot be penetrated at a high velocity without crushing some of the grains, and the ligher the velocity the greater the amount of work expended in this manner. This resistance to crushing implies a continuation of the elastic force beyond the elastic limits, and involves indirectly tensile strength, since a solid in being crushed must enlarge laterally and finally yield to a strain of tension.

Wood.-In penetrating wood, lead, or any of the other
materials, "tensile strength" forms the chief element of the resistance, while inertia and friction become of minor importance.
847. Elasticity.-The office of elasticity in all these cases is to transmit the effect of the projectile from those particles first acted upon to those more remote, and thus calling into play their inertia or tensile strength, as the case may be ; and were it not for this property, the statical resistance of a plate of any material to perforation would be entirely independent of the thickness of the plate; a thick plate would offer no greater resistance than a thin one, since each layer or unit of thickness would be perforated without receiving any assistance from its neighbors.

The worl of penetration would then vary directly with the distance penctrated, or the thickness of the plate; elasticity, however, has its maximum point of usefulness in resisting penetration, and beyond this it becomes a great disadrantage. While increasing the number of fibres or elementary portions of the material broken at once, thereby increasing the statical resistance, it diminishes the time during which this resistance opposes the motion of the projectile in like ratio; and the amount of motion destroyed or generated increases with the time as well as with the force or resistance. For this reason hardened steel and chilled iron are less efficient in stopping projectiles than soft iron, although they offer a much greater statical resistance to penetration.

There are many reasons for believing that a general formula for the penetration of projectiles in all materials may be deduced, when experiments have been sufficieutly extended, in which the constants will simply require changing to suit any particular case under consideration.
848. Penetration of Spherical Projectiles.-The area presented by a ball may be taken as equal to that of its great circle; if, then, $R=$ the mean resistance per square inch offered by the object throughout the penetration, and $r=$ the radius of the shot,
$\mathrm{R} \pi r^{2}=$ resistance to be orercome by shot-the formula for accumulated worl being:

$$
\begin{aligned}
\mathrm{P} . \mathrm{S} & =\frac{w v^{2}}{2 y}, \\
\mathrm{P} & =\mathrm{R} \pi r^{2} ;
\end{aligned}
$$

and putting p for S , the space penetrated

$$
\mathrm{R} \pi r^{2} p=\frac{w v^{2}}{2 g}
$$

$$
p=\frac{w v^{2}}{R \pi r^{2} 2 g} .
$$

Let $d=$ weight of a cubic inch of the material of the shot;
then

$$
\begin{gathered}
w=\frac{4}{3} \pi r^{3} d, \\
p=\frac{4}{3} \frac{r \pi^{3} d}{\mathrm{R} \pi r^{2} 2 g}=\frac{2 r d v^{2}}{3 \mathrm{R} g} .
\end{gathered}
$$

This formula, althongh answering for low velocities, gives too great penetration for high velocities; it is, however, sufficiently accurate for the deduction of the simple laws stated below.

R , which will vary with the nature of the material fired at, whether wood or masonry, or other substances, must be found by experiment.

When the resisting material is the same,

$$
\mathrm{P} \text { varies as } r d v^{3},
$$

or the penctration is proportioned to the diameter and density of the shot, and to the square of its velocity on impact-so that the larger the diameter of the ball, and the greater its density, the deeper will be the penetration; especially as the final velocity for the same initial velocity will be higher.

When projectiles of the same density are fired into the same material,

$$
\mathrm{P} \text { varies as } \mathrm{r} v^{2},
$$

or with the diameter of the shot and the square of its velocity on impact.
849. Penetration of Elongated Projectiles.-The penetration of an elongated projectile is greater than that of a spherical projectile of equal weight, when both are fired with the same initial velocity; for the former presents a less area to the resistance of the object ; it can have a pointed head, and it will have a greater final velocity, being less retarded during flight.

In general, however, an elongated projectile is fired with a lower initial velocity than a spherical projectile of equal weight from a smooth-bore gun ; and, therefore, at a short distance, the latter will most probably produce more effect as regards penetration than the former ; but as the range is increased, so will the penetrating power of the elongated projectile be greater compared with that of the spherical, for the former will maintain a ligh velocity much longer than the latter.
850. Formula for Perforation of Iron Plates.-One of
the first questions to present itself in connection with armorplating is the relation between the thickness of the plate and the diameter, weight, and velocity of the projectile required to perforate it; or, lhaving given the diameter, weight, and velocity of a projectile, required the thickness of a single wroughtiron plate which it will just perforate.

Several formulæ have been proposed for this purpose, but the great difficulty has been the want of experimental results sufficiently accurate and comprehensive to verify the principles upon which they are based ; and to give the correct values for the constants or co-efficients which enter them. Captain Noble, R. A.," gives the following formula for the penetration of wronght-iron plates by steel shot, the impact being direct :

$$
\begin{aligned}
& \frac{W v^{2}}{2 g}=2 \pi \mathrm{R} \hbar \cdot b^{2}, \text { where } \\
& \mathrm{W}=\text { weight of shot in pounds, } \\
& v=\text { velocity on impact, in feet, } \\
& g=\text { the force of gravity }, \\
& 2 \mathrm{R}=\text { diameter of shot in feet, } \\
& b=\text { thickness of unbacked plate in feet, } \\
& \%=\mathrm{a} \text { coefficient depending on the nature of the } \\
& \text { wrought-iron in the plate, and the nature and } \\
& \text { form of head of the shot. }
\end{aligned}
$$

Solving the above equation for b, gives :

$$
b=v \sqrt{\frac{\mathrm{~W}}{4 \pi \mathrm{R} g k}} ;
$$

and for k,

$$
k=\frac{W \mathrm{v}^{2}}{4 \pi \mathrm{R} g b^{2}} .
$$

In order to determine k the following series of equations can be formed:

$$
\begin{gathered}
4 \pi \mathrm{R}_{1} g b^{2} \hbar-W_{1} v_{1}{ }^{2}=0 . \\
4 \pi \mathrm{R}_{2} g b^{2} k-W_{2} v_{2}{ }^{2}=0 . \\
4 \pi \mathrm{R}_{3} g b^{2} \hbar-W_{s} v_{s}{ }^{2}=0 . \\
\text { etc., etc., etc. }
\end{gathered}
$$

The variable quantities in these equations are $\mathrm{R}, \downarrow, v$, and \imath;

[^27]π being the usual representative of the ratio of diameter to circumference of the circle, and g representing the force of gravity in dynamical terms.

Haring determined the value of k, the "work" necessary to penetrate any unbacked plate of given thickness may be calculated.

This formula is only claimed to give a near approximation, as the case is one which does not admit of absolute accuracy, involving, as it does, many sources of error and uncertainty, which it is impossible to eliminate without an almost interminable series of experiments.
851. Form of Mead.-That the penetration of an elongated projectile is influenced by the form of its head has been shown by experiment, many different forms of head having been tried. The flat head has been strongly advocated, because it is asserted to be a better form for punching than any of the pointed heads, and because it is also asserted that it will bite into an iron plate at such an oblique angle as would cause a pointed head to merely glance. But the truth of these assertions has not been generally admitted. The flat-headed projectile is objectionable both as regards accuracy and velocity, and it has also a tendency to upset or bulge at the head on impact, and this result is very marked.

The pointed projectile is superior in accuracy and range, and does not upset on impact to anything like the same extent.

It is asserted that it cuts through an iron plate to a better advantage, or rather tears through bending back the plate.
852. Obliefe Impact.-Another point in connection with the penetration of elongated projectiles is the effect of different forms of head upon the rotation of the projectile when the impact is oblique.

If the axis of the projectile is tangent to the trajectory on impact, and at the same time normal to the target, there will be no tendency to rotate about any axis parallel with the plane of the target. In Fig. 200, if we suppose a projectile to arrive at A, under these conditions it will undoubtedly penetrate the plate directly. But let one arrive at D or E , and there will be a tendency to rotate, and this tendency will depend upon the form of the projectile as well as upon the angle between the trajectory and its axis.

Now it is asserted, on the one hand, that the advantage in the latter case will be in favor of the flat-headed projectile, since the moment of the rotating force will be the variable resistance of the plate multiplied by the lever arm Dd, for the pointed
projectile, and the same multiplied by a much shorter lever arm, Ee, in case of the flat-headed projectile, and this may be negative; or in other words, there may be a tendency to rotate

Fig. 200.
towards the normal, which would be a decided advantage. This would take place when the line of the trajectory passed within the base of the shot.

In the third case, represented at B and C , a projectile is moving with its axis tangent to the trajectory, but oblique to the target; here there is also a tendency for the flat-headed projectile to rotate toward the normal, but it is questionable whether such rotation would be advantageous. The pointed projectile would have a less tendency to such rotation.

On the other hand the respective motions of a flat and pointed headed projectile on oblique impact are explained as follows: It is asserted that the flat-headed projectile on striking (Fig. 201), cuts out a portion of the face of the plate, which it carries along in front, thus increasing the thickness to be penetrated, and, remaining nearly parallel to its original direction, it has to pass througl? the plate obliquely.

While if the projectile has a pointed hend (Fig. 202), the point enters at first more deeply into the plate than the flat head, and the centre of gravity moving forward, the projectile turns around more readily than with the latter, so that its aris becomes perpendicular, or nearly so, to the face of the plate, having then only the least thickness to penetrate.

It is difficult to obtain for comparison the results of practice with the flat and pointed headed projectiles of the same material fired at targets inclined to the line of the range; the former having been so little used, as its form is so objectionable, both as regards accuracy and relocity.

On the whole it may be said that in the case when the pro-
jectile ought to be capable of piercing the plate or target, there is little difference between the effect of a flat head and a hemispherical head; but when the target is beyond the power

Fig. 201.

Fig. 202.
of the projectile, the hemispherical head makes the deepest indent.
853. Concussion.-The impact of a projectile, in addition to indenting or penetrating a target, produces more or less bending, tearing, and other damage at a distance from the point of impact; which effects may be classed under the term "Concussion."

The effect of concussion is transmitted from the point of impact in all directions, in the same manner as sound-waves and increases with the elasticity of the matcrial. Whatever tends to diminish the elasticity of the structure, as dividing it into many pieces, or using soft ductile material to receive the projectile, will diminish the effect of concussion. This effect is expended in two ways:

First, in giving motion to the structure or in developing inertia; and, second, in overcoming the tenacity of the material, either in bending or tearing those portions first acted upon from those more remote.

Both of these components, increase with the whole amount of work expended by the projectile, other conditions being equal.

The first component, being motion converted into motion, is nearly independent of the amount of penetration; it would be absolutely independent but for the fact that where the penetration is very slight the projectile or pieces of it may be thrown
to the rear by the elasticity of the target, and this effect, re-acting upon the target, would be in addition to that due to the stopping of the projectile. Taking an extreme case, suppose the target and projectile to be perfectly elastic, and to resist all penetration: the projectile would be thrown to the rear with nearly the velocity with which it struck, and the velocity imparted to the target would be double what it would have been had the target and projectile been perfectly inelastic.

The second component twill increase as the amount of penetration diminishes, since the less the penetration, the greater must be the force exerted by the structure to absorb a given amount of work from the projectile. But the amount of penetration for the same form of projectile, and with other conditions equal, diminishes nearly as the diameter of the projectile increases; and since the work stored in a projectile raries directly with its weight, or the cube of the diameter, we may conclude that that portion of the effect of concussion expended in overcoming the cohesion of the material varies directly with the fourth power of the diameter of the projectile; on this supposition this effect, for the $X, X V$, and $\bar{X} X$ incle spherical shot, would be as 1,5 and 16 , respectively, while the relative penetration of these projectiles would be only about as $1,1 \frac{1}{2}$, and 2 .

The same effect may also be shown to vary directly with the velocity of impact. For a given amount of trork expended by the projectile, it is evident that the lower the relocity, or the longer the time allorred for the force or resistance of the target to work, and the concussion to be transmitted to distant points, the greater will be the effect in bending the target, breaking bolts, and otherwise shattering the structure; bat the whole work arises with the square of the relocity, and this, divided by the velocity, leares the first power of the relocity as before stated.

The form of projectile is supposed to be the same in all cases.

The effect of changing the form would depend upon the change in penetration, those forms which give the greatest penetration giving the least effect of concussion.
854. Armor-pierchag Profectiles.*-Projectiles intended for practice at objects composed of wood, masonry, or carth, are made of cast-iron, but since the introduction of iron for the defence of ships and fortifications, a material possessing greater hardness than ordinary cast-iron is required to orercome the resistance opposed by thick wrought-iron plates. Both elon-

[^28]gated and spherical projectiles for use against armor should be of the hardest and toughest material possible.

The power of a projectile to stand up to its work and deliver its full blow on the target depends on the shape as much as on the quality of the metal of which it is composed.
855. Shape.-Spherical Projectiles.-The resistance of the plate, neglecting friction, acts as a normal to each point of the surface of contact of the projectile; thus, in Fig. 203 it will be seen that the portion of a spherical projectile included between A and B , which we may term the zone of compression, is subject to a crushing pressure towards the centre, O , but it may be said to be under no tensile strain. While the posterior portion of the projectile is suddenly checked by it in the form of a wedge, when a portion of the work stored up in it-(the amount depending on the tensile strength of the material of the projectile)-is impressed on the target through the front portion, A O B, while the remainder is carried off unprofitably in the fragments into which the posterior portion breaks.

On examining the projectile after inpact, a part very nearly corresponding to A O B in form, will be found intact (Fig. 203), with the fractured surface scored and polished,

Fig. 203. - Anterior Fragment of round shot after impact against armor coinciding nearly with zone of compression. while the remainder will be dispersed in small fragments.

We know that any casting fractures most easily in the direction of a normal to its surface, the crystals sattling themselves so as to form lines on this direction.

Theoretically, the portion represented by Fig. 203 ought to be smaller as the penetration is less-except in the case of the entire blow being too small to orercome the tensile strength of the metal in the manner described:-when the projectile would only split irregularly or in an extreme case remain entire.

In all instances, obviously a great amount of the work
stored $u p$ in the projectile is wasted; not that actually employed in breaking it, for such work is clearly the result of the reaction from the target; but whatever power remains stored up in the fragments, after they sever themselves from the mass of the projectile.

Since it is impossible to predict what part of a spherical projectile fired from a smooth-bore gun will come in contact with the target on impact, it is necessary that the material should be such as will offer the greatest union of hardness, crushing-strength, and tenacity; therefore steel has been resorted to in some instances, and may be regarded as the culminating point of development of the smooth-bore projectiles.
856. Elongated Projectiles.-The flat-ended form possesses a peculiar advantage as regards the projectile, and another as concerns the plate.

Fig. 204.

As to the projectiles, it may be seen (Fig. 204) that in direct impact the whole of the resistance of the target acts in lines parallel to the projectile's axis, which direction is the most favorable to the projectile retaining its mass and delirering its full blow on the target, and again, if the target is to be pnnched by actual shearing, the flat-
head is the form best adapted to effect it.
The flat-head would probably be best in the case of direst firing against plates composed of hard iron, for it is easy to conceive of a hard material offering sery great resistance to the forcing open of a pointed head, which might be punched by the clean shearing of a flat-headed projectile.
857. The power given by rotation, of keeping the same portion of a projectile presented to the front, is of peculiar value in punching armor-plates; it enables the head of a projectile to be made of any desired form, while the power of reducing the calibre of a projectile in proportion to its weight, which is perhaps the principal advantage obtained by rifling, is also most important here, the depth of penetration being in inverse proportion to the circumference.
858. In shells, however, this stability of the axis of rotation
tells more fully, for it enables every part of the projectile to be made of such proportions as will give the maximum power at the moment of impact. The walls of an elongated shell being chiefly subjected to a longitudinal strain, an interior hollow may be made without entailing the great weakness existing in spherical shells as compared with solid shot. Hence it follows that while smooth-bore shells have seldom or never been fired at armor, rifled shells have proved very successful.
859. There are two causes which contribute to give shells peculiar power against iron plates.

The first is that it is not necessary to weaken the head of a shell by making a fuze-hole in it; because no fuze is required, the heat generated on the impact of a projectile against the armor being sufficient to fire the bursting-charge. To such an extent is light as well as heat generated, that on firing at a target after dark, a pale flash is seen to follow the impact.

The second cause that operates to favor the action of shells, is the face that when the shell has penetrated to a depth of even a few inches before rupture occurs, the sides are supported by the armor around them, and the explosion, being confined at the sides, acts to the front with greatly increased force.
860. In a conical head (Fig. 205), the normal pressures throughout form a zone of compression acting as a wedge towards the body of the projectile, whose angle

Fig. 205. is the supplement of that of the cone of the head. This is better than that formed in the spherical head, because the angle is less acute, and becauss the apex of the wedge, instead of being a fixel point throughout (the centre of the sphere), moves along the axis of the projectile as it enters deeper and deaper into the target.

In the ogival head (Figz. 206 and 207), it will easily be seen how much superior is the action. In this the wedge is at the commencement slightly acute, but then the resistance acts on a small surface and is comparatively small, and the angle increases, till, at the junction of head and body, it becomes 180°, or a straight line (Fig. 207), so that we then have the body of the projectile in much the same condition as the flat-headed
bolt driving before it an ogival wedge, which opens the armor by wedging rather than by clipping or punching.
861. It is possible, no doubt, to conceive of a material that

Fig. 206.

Fig. 20\%.
might be sheared by the flat projectile more easily than opened by the ogival ; but it would be to contradict the results of experience to say that plate-iron was such a substance; and as the softer and more plastic natures of plate-iron hare been found to hold their bolts the best, and stand the longest, and so have been universally adopted, the ogival has become obriously the correct form of head.
862. The Effect of Hardexing Projectiles is probably much greater than is generally supposed; that is, the amount of work gained is much greater than the increase of strength of the projectile.

It is well known that a very small force may under certain circumstances determine the performance or non-performance of a very large amount of work. In like manner a very slight addition to the rigidity of a projectile, by hardening or otherwise, may determine whether a very large amount of work shall be wasted npon the projectile or expended upon the plate.
803. Another means of increasing the mork done upon the armor-plate in comparison with that done upon the projectile is by increasing the velocity of the latter. That is, a projectile moving at a low velocity may be smashed up or flattened against the plate, while the same projectile fired at a higher velocity may go through the same plate almost uninjured. On this principle a lead shot may be fired through an iron plate, or a tallow candle through a pine board.
864. For the larger calibre of rifled guns, but one style of armor-punching projectile is usually supplied; this being a shell with thick walls, which may be fired empty as a shot, or with the bursting-charge to give the explosive action of a shell. It is found to penetrate best when fired as a shot; the action of the bursting-charge, generally taking place before the projectile reaches its full depth, interferes with penetration when the armor is very strong; but when the front-plates are not very thick, the backing may be shattered to a greater extent from the explosion of a bursting-charge.
865. Advantages of , Steel over Chilled Projectiles. --Late trials have shown a superiority of steel projectiles over those made of chilled cast-iron, and although the former are somewhat more expensive than the latter, on the principle that the best is at the same time the cheapest, it would be misplaced economy to leave any means unavailed of to increase the penetrating power of projectiles.

The quality of chilled projectiles, from the nature of their manufacture (Art. 809), is necessarily unreliable; whereas this is not the case with hammered cast-steel, or at least not to the same extent by far, even when large masses are produced, and the difficulty of manufacture increases with the calibre.

The most essential difference in the behavior of steel and chilled projectiles on striking the target, consists in the reaction on the projectile showing itself in the latter by breaking up, while the former are only set up. As the breaking up of the chilled shells may take place before the bursting-charge comes into operation, whereby the rending effect is considerably prejudiced, this material appears far less adapted for shells than steel.

The superiority of steel in this respect is still further increased by the fact that the steel shell. can have thinner walls, consequently a larger chamber, and can thus hold a larger bursting-charge than the chilled metal.

S66. EXPERIMENTS AGAINST ARMOR.-The experiments made of late years, although numerous and costly, have not been carried out in such a manner as to afford the necessary data for establishing the laws of penetration. In these experiments numerous circumstances have been approximated to, or assumed, and there have been generally many points of absolute difference between the experimental structures and those to be built for service.

By far the larger number of all the experiments of which we have record, were made upon targets small in area, althongh representing the entire thickness of parts to be used in
practice ; these small targets being held and braced up in various ways, generally different from the manner in which the same targets would be supported were they to form integral parts of a permanent structure. Nor have the tests applied to these targets been as a rule correct imitations of what they would probably receive in service; having been fired at deliberately with the guns and projectiles of the same country, as the targets.
867. Armor-Plates and Backivg.-The following deductions have been made from trials with armor-plates extending over several years.

The best material to resist projectiles is soft, tough wroughtiron ; and to attain these qualities it should be pure, free from sulphur, phosphorus, and carbon. Steely-iron, commonly known as homogeneous iron, puddled steel, etc., when in large masses is easily cracked by projectiles, and is not, therefore, suitable for armor-plates. Soft-steel may be used for armorplates; but when cost is taken into consideration, it is doubtful if it possesses any advantages orer wrought-iron.

Rolled iron does not offer quite so much resistance as hammered iron, yet if the size of the plate admit of it, it is to be preferred on the score of economy. Plates should be as large as possible to reduce the number of joints which are lines of weakness.

A solid plate offers for the same thickness a greater resistance to a projectile than a laminated one, or one made up of several thinner plates; but when the surface is rounded in shape, and of small extent, as in the Monitor turrets, the latter may be used to great advantage, as great thickness may thereby be easily obtained.

It is difticult in practice to obtain very large and thick masses in great numbers of uniformly good quality and at a moderate cost.

With targets made up of several plates, the chief dificulty has been to contrive bolts of suitable form, and to dispose them so that the strength of the target is not quickly impaired by the shearing of the bolts from the vibrations of the separate plates, or by their fracture on being struck by projectiles.
868. Wood-backing alone, unless combined with rigid horizontal angle iron stringers, affords but little support to the plate; that is to say, a projectile which is capable of penetrating a plate unbacked, will also be capable of doing so if it be backed with wood alone. Wood-backing is, hovever, of great value because it distributes the blow; it deadens the vibrations and saves the fastenings ; also it stops the splinters.

The best form of backing appears to be that in which wood is combined with strong horizontal angle-iron attached to the inner skin, and extending to the armor-plates; this, by giving rigidity, very considerably assists the plate to resist penetration.

An inner skin of iron is of the greatest possible advantage ; it renders the backing more compact, and prevents the passage of many splinters.

Oak and teak are the most suitable timbers for backingplates, and are used as such on vessels. A yielding backing is formd to occasion less strain on the fastenings than a very hard one.

Where projectiles are made of the same material, and are similar in shape, their penetration into unbacked plates is nearly in proportion to their living force, or their weight multiplied by the squares of the velocity of impact.
869. The resistance which an unbacked plate offers to penetration is nearly in proportion to the square of its thicleness, provided this thickness be confined within ordinary limits. In the case of oblique plates the penetration diminishes nearly with the sine of the angle of incidence.
870. The most suitable material for shells to be used against iron plates is tempered steel. These projectiles should be made of cylindrical shape, with thick sides and bottom to direct the explosive effect of the charge forward after penetration is effected.

The most suitable material for solid shot is hard, tough cast-iron.

Palliser's chilled shot are made of this material, and so are the shot made for our service.
871. It follows from the preceding, that the most suitable covering or shield for cannon is a conical-shaped turret made of wrought-iron plates, as large as it is practicable to make then, backed with oak or teak.

To protect the inen from the fragments of projectiles which may penetrate completely through this covering, there should be an "inner skin" of thick boiler-plate placed behind the wood.
872. With our XV-incli cast-iron projectiles, made of the best charcoal-iron, poured and worked in a peculiar manner so as to obtain hard and solid masses, the penetration is quite as great and uniform as that obtained with steel shot of equal weights propelled by similar charges, the only difference being that the iron breaks after passing through, while the steel is only compressed or flattened, a result rather in favor of the iron
shot, if entrance is made between-decks, where men are exposed to its fragments.
873. Effeuts on Wood.-The effect of a projectile fired against wood varies with the nature of the wood and the direction of the penetration. If the projectile strike perpendicular to the fibres, and the fibres be tongh and elastic, as in the case of oak, a portion of them are crushed, and others are bent under the pressure of the projectile, but regain their form as soon as it has passed by them.

It is found that a hole formed in oak by a ball of four inches in diameter closes up again, so as to leave an opening scarcely large enough to measure the depth of the penetration.

The size of the hole and the shattering effect increases rapidly for the large calibres. A nine-inch projectile has been found to leave a hole that does not close up, and to tear away large fragments from the back portion of an oak target representing the side of a ship-of-war, the effect of which on a ressel would lave been to injure the crew stationed around; or, if the hole had been situated at or below the water-line, to have endangered the vessel. If penetration take place in the direction of the fibres, the piece is almost always split, even by the smallest shot, and splinters are thromn to a considerable distance.

In consequence of the softness of white-pine, nearly all the fibres struck are broken, and the orifice is nearly the size of the projectile; for the same reason the effects of the projectile do not extend much beyond the orifice.

When a round-slot strikes against a surface of oak, as the side of a ship, it will not stick if the angle of incidence be less than 15°, and if it do not penetrate to a depth nearly equal to its diameter.
874. Effect on Earth.-Earth possesses advantages orer all other materials as a covering against projectiles; it is cheap and easily obtained, it offers considerable resistance to penetration, and to a certain extent regains its position after displacement. It is found by experience that a projectile has rery litthe effect on an earthen parapet unless it passes completely through it, and that injury done by day can be promptly repaired by night.

The powers of resistance of pure, compact quartz-sind to the penetration of projectiles has been found rery much to exceed that of ordinary earth.

The size of the openings formed by the passage of a projectile into earth is about one-third larger than the projectile, increasing, however, toward the outer orifice.

Elongated projectiles are easily deflected from their course in earth. They are sometimes found lying in a position at right-angles to their course, and sometimes with the base to the front.

Unless a shell be very large in proportion to the mass of earth penetrated, its explosion will produce but little displacement.

8\%5. Effect on Masonry.-The effect of a projectile against masonry is to form a truncated conical hole terminated by another of a cylindrical form. The material in front of and around the projectile is broken and shattered, and the end of the cylindrical hole even reduced to powder.

Pieces of the masonry are sometimes thrown 50 or 60 yards from the wall.

The elasticity developed by the shock reacts upon the projectile, sometimes throwing it back 150 yards.

The exterior opening varies from forr to five times the diameter of the projectile, and the depth varies with the size and density of the projectile and its velocity.

Solid cast-iron shot break against grimite, but not against freestone or brick. Spherical shells are broken into sinall fragments against each of these materials.

The most destructive projectile against masonry is the elongated percussion shell.
876. Puncming and Racking.- It has been shown that the penetration of a projectile depends more upon velocity than weight, and that the elongated is a better form than the spherical for mere penetration or punching. It must, however, be remembered that very heavy shot, fired with velocities which might not enable them to penetrate or punch holes in iron armor, may still do great damage, especially if many are fired successively, by breaking bolts and shakiug the whole fabric; also, that a spherical shot, having a larger diameter than an elongated projectile, may often do more damage in cracking or shattering a plate, than the latter in punching it, the work done by the ball being distributed over a larger area ; the same argument will apply to the case of two elongated projectiles, having different diameters, striking a target with the same force, as measnred by $w v^{2}$. Hence there are two general methods of attempting the destruction of iron-clad vessels, termed respectively racking and punching. We have preferred the racking system.
877. The Racling System requires heavy projectiles of large diameters, fired with low velocities, to destroy and shake off the armor by repeated shocks without penetration, and thus to expose the vessel to the effects of ordinary projectiles.
878. The Punching System requires elongated projectiles of moderate weight, fired with high velocities, so as to perforate the armor, and, if near the water-line, to sink the ressel, or at any part to injure men or machinery, or explode the magazine within the vessel.
879. The Two Systems Combined.-The two forces may prepare the way for each other, so as to produce a more formidable result than when they are independently exercised.

The defect of the light-shot system when the range is very long or the armor very thick, and of the heary-shot srstem when the range is even very short and the armor is laminated or so constructed as to suffer little from racking and shaking, is the waste of power in producing local effect, that is fruitless because it is incomplete.

By combining the two systems, the light fast shot may weaken the arnor by the loss of substance and continuity, until the heavy shot can carry in a large section of it bodily; and at the same time the general straining and cracking of plates produced by the heavy shot will make punching all the easier.
880. Force of Impact.-In order to estimate the probable effect of a projectile upon an object, it is necessary to calculate the total energy in the projectile at the moment of impact.

The "vis viva," or total cnergy of a body in motion, is the whole mechanical effect or work which it will produce on being bronght to a state of rest, without regard to the time occupied; and it varies as the weight of the body multiplied by the square of its velocity. This work, accumulated in the moving body, is represented by the weight which it is capable of rasing one foot high, and is equal to the weight in pounds of the moring body multiplied by the square of its relocity in feet, and divided by trice the accelerating force of gravity.

$$
\text { Or, Total Energy } \quad=\frac{w v^{2}}{2 g},
$$

where $w=$ weight of projectile,
$v=$ final velocity,
$g=$ force of gravity. (32.2 ft .)
Example.-Thus, if a projectile of 165 lbs . weight be moring with a velocity of 1470 feet per second, the work accumulated in it, or the power it will actually exert on impact, is

$$
\frac{165 \times(14 \tau 0)^{2}}{64.4}=24 i 2 \text { foot-tons. }
$$

S81. The Punching Effects of Projectiles are usually compared by calculating what is termed the energy per inch of circumference in foot-tons, which is found by dividing the total energy by the number of inches in the circumference of the projectile.
Energy per inch of circum. $=\frac{w v^{2}}{2} \frac{}{g} \times 2 \pi \mathrm{R}$,
where $R=$ radius of projectile.
It will be readily seen that more force is required to drive a large projectile through a plate than a small one.

Therefore, if the object is to know the depth to which projectiles will penetrate, size must enter as an element in the question. It has been found that an approximate standard of comparison is furnished by dividing the total energy stored up in a projectile by its circumference.

The reason of this is plain. Suppose the projectile to act literally as a punch, and to clip a round disk out of the plate of sufficient size to allow it to enter; it is clear, in such a case, that the work performed is simply that of shearing the plate round the edge of the projectile. This the energy of the projectile will be met by the resistance required to shear the target in this manner, in a line which coincides with the exact circumference of the projectile. No doubt this supposition is not correct, as any one knows who has seen plate-firing. It is, however, sufficiently near the truth to furnish a standard of comparison between projectiles of various calibres.

CHAPTER VII.

GUN-CARRIAGES.*

Section I.-United States Naval-gun-carriages.

882. General Considerations.-The first of all considerations as to the mounting of the battery, is that it should admit of the utmost possible rapidity of fire, united with accuracy of aim. It is important to secure the greatest possible efficiency of the weapon under the conditions in which it is required to be employed.

The duty of providing the most perfect means of working guns seems to be second only in importance to that of adopting the best material, form, and construction for the gun itself. Of two similar guns, that which can fire the greatest number of rounds in a given time is certainly most effective, and rapidity of fire depends much more on the gun-carriage and conveniences for loading, than upon any peculiarity attaching only to the gun.
883. Owing to the increase in the size and power of ordnance since the introduction of armor, gun-carriages have gradually become elaborate machines; and mechanical science, in the hands of naval experts, has produced carriages and stides which enable the heaviest guns to be easily, accurately, and safely worked on the broadsides of ships. The great superiority of wrought-iron to timber as a material for gun-carriages is now unirersally acknowledged.
881. Althongh the mechanism has been greatly improred. the physical force of the gun's crew is still the source of the power by which the gun is worked. As long as this is the case a practical limit to the weight of gun that can be efficiently worked is imposed, and it would seem that this limit has been already reached. As still larger guns are in prospect, the necessity naturally presents itself for substitutiug an inanimate and unlimited power-like that of steam acting directly or throngh the medimm of water under pressure.
885. The heat and elasticity of steam, and the dificulty of convering it frou place to place, render it unsuitable for direct application to the working of guns; but in the hydraulic system, so successfully dereloped for commercial purposes, steam is

[^29]made available as a central source of power, by employing a steam-engine to pamp water into pipes, which transmit it at high pressure to the varions points of application of the force where it acts in lyydraulic pressure to prodnce the different morements required. It is this system which has been applied to the loading and working of heary guns.
886. The application of this systen to naval gunnery was put in successful practice in some of our iron-clads during the late war.

Loading from below deck by depressing the inuzzle (Art. 1028) was devised by Mr. Stevens and practised on board one of our vessels.

Taking up the recoil on a steam or air cylinder (Art. 1026), and running out ased in by steam as recommended by Captain Eads, was also successfully practised.

Muzzle-piroting the guns so as to obtain 25 deg. eleration and lateral train in a fixel turret with a port no lareer than the muzzle was practised on some of our monitors with entire success.
887. Requirements of Mecianical Carriages.-These are: powerful moving-machinery so contrived as to be unaffected by the concussiou of tiring; seli-acting controlling gear, almost independent of human carelessness; the gradnal absorption of, rather than ridgid resistance to, shocks; the dispersion of concussions over large surfaces; independence of distortion of or other injuries to, the ship's side; smoothmess and ease of motion in every direction, and safety under all conditions of the sea.
888. Dis.appearing Systens.-Guns mounted on the disappearing principle, are arranged to drop when fired into a position in which they can be loaded under cover, and from which they are only raisad when required again to deliver their fire. (Art. 1022.)

It is yet undecided how far this principle is generally applicable in substitution of turrets for the protection of guns at sea. One great difficulty would seem to be that of effectually closing the opening, by which the gun must pass up and down, through the deok so as to prevent the entry of water, and it is difficult to conceive how rapidity or accuracy of fire can be attained in this way.
889. In this system the gun must not only bo loaded while lowered and under cover, but it is usually fitted to be trained and aimed while there, by indire't methods, such as by telescopic apparatus adapted to the grun's axis, and so arranged that it can enable an observer to look over and above the cover. It is not probable that any such indirect instrumental apparatus
can be constructed which, when adapted to a heavy rifled gun shall admit of the accuracy of fire of the piece being adequately met ly a corresponding exactness of aim.

The disappearing principle was first recommended by Captain J. B. Eads, and was adopted for trial in several of our western iron-clads.
890. The Marsilly Broadside Carrlage (Wood).

Nomenclature.

A.-Brackets.	M. -Trucks.
B,-Rear Transom.	N.-Cap Squares.
C.-Breast Piece.	9.-Side Tackle-bolt.
D.-Sweep Piece.	10.-Train " "
I.-Saucer.	11.-Transporting Tackle-bolt.
F.-Front Transom	K. -Roller Handspike.
L.-Boss of Roller Handspike.	P.-Washer and pin.

Dimensions.

891. The Brackets, A, are made of hearr white oak, jogged and dowelled together as in Figure 20s, and firmly secured to each other by the bolts $1,2,3,4,5-1$ and 2 capsquare bolts; 3, 4, and 5, bracket bolts. The rear portion of the brackets are extended downward to the deck, the upper descending by a curve and two steps; the latter being faced by strips of metal, to take the chafe of the handspikes when used on them. The brackets are joined by the Front (F) and Rear Transoms (B), which are jogged into them, the front transom having two bolts (7 and 8), and the rear, one (6): the Front Transom, F, is scored out to permit vertical motion of the chase of the gmin in the carriage.
892. The Breast Piece, C, is firmly bolted to the front transom and works against the Sweep Piece, D, fitted to ship and unship from the ship's side by composition pins and sockets.
893. The Socket Plate consists of a metal plate. with indentations or sockets for the boss, L, of the Roller Handspike, K , to take in. It is placed under and at the rear edge of the Transom B.
894. The Roller Handspike, K, consists of a bronze head
and socket with a hickory handle; in the head are placed two lignum-vitce rollers, four inches in diameter, working on a line through the sides of the head. A boss, L, is cast at the junc-

Fig. 208.
tion of the head and socket, making an angle of 70° with the socket. In the socket is placed the hickory handle.

When in use, the lift of the carriage is greatest with the boss, L, vertical, as it is then raised $\frac{1}{2}$ inch above the deck. In
service the best result is obtained with the handle at the hip; cara must be nsed to maintain the axis of the roller perpendictrlar to the motion of the carriage, otherwise the weight cants the head, causing the rollers to deface the deck.
895. The Tructe Axle is let into the Brackets, A , and secured to them ly the cap-square bolts, 1 , and the brace, 12 , throngh which the other cap-square bolt passes and is set up by a nut.
896. The Trucks, MI, are of lignum-vitce, one calibre in thickness, and retained on the axle ly a washer and flangepin, P.
897. The Saucer, I, is of composition, and secured to the Rear Transom, B. From its shape it permits a horizontal movement of the lower end of the screw, due to its deriation from the perpendicular, in elevation or depression.
808. Resistance to Recoil.-As the recoil of the gun is to the rear and downward, considerable resistance is offered by the friction excited between the carriage brackets and deck; the recoil is thus checked in proportion to the friction exerted.
899. Manourring the Carriage.-To run the carriage in and out, or transport it about the deck, the Roller Handspike, K (Fig. 208), is shipped under the rear transom, B, and the gun readily moved on its trucks and the roller handspike.
200. Elevation Obtainable.-Broadside carriages are so constructed as to give 11° elevation and 7° depression to the gun, and for four different heights of the lower port-sill above the deck, viz., $24,20,18$, and 16 inches, according to the requirements of their position.
901. Preservation.-New carriages should be kept well painted, and the trucks, axle-trees, and trunnion-holes oiled. Staining or keeping them bright is strictly prohibited.
902. Gun Tackiles are to be of well-stretched manilla, cut of sufficient length to allow of full recoil, and with end enough to hitch around the straps of their inner blocks.
903. Metallic Gun Tackle Blocks are supplied to all Marsilly and heavy pivot carriages; these have ribs on the hooks, which keep the blocks fair with the falls, and prevent their fouling on recoil.

Breechings are of the best three-strand, shroud-laid, and soft, hemp rope, 9 and 10 inch for the larger guns, from 6 to 9 for the smaller; they should be long enough, when titted, to allow the muzzle of the gun to come one foot inside of the port. Breechings are never to be covered, blackened, or in any way rendered less pliable than when first fitted.
904. Wrought iron Carriage for VIII-Ixci Gux.

Nomenclature.

A.-Brackets.
B.-Rear Transom.
C. -Breast Piece.
D. -Sweep Piece.
F.-Front Transom.
K. -Composition Shoes.
L.-Elevating Screw.
M.-Trucks.
N.-Cap Squares.
O. - Angle Iron.
9.-Side Tackle-bolt.
10.-Train
11.-Transporting-bolt.

Principal Dimensions.

905. The Brackets, A, are made of $\frac{3}{4}$ inch wrought-iron ; on their rear lower portion are placed composition shoes, K , which rest upon the deck.
906. The Transoms, BF, of the iron carriage, are of wrought-iron plate, and occupy the same position as in the wooden carriage ; the front transom, F, and rear, B , are riveted to the brackets by angle-iron, O .
907. The Truch Axle passes through the formard lower ends of the brackets, shown in the figure by the dotted line; on these axles composition trucks, M, one calibre in thickness, are placed.
908. Elevating Gear.-At the height of the Breast Piece, D, and just in rear of the Trumnion Holes, are rods connecting the brackets; on these are piroted a bar, P , whose rear end rests on the head of the male and female screw, L, which works in the bed-plate of the carriage to such an extent that when the gun has extreme elevation, the screw is considerably below the Bed-plate, B, yet does not tonch the deck.
909. Side (9), Train-tackle (10), and Transporting Bolts (11) are of composition, and occupy the same position as in the wood carriage.
910. The Breast Piece, C, is of wood and arranged to be at the height of, and work on, the Sweep Piece, D.

The Socket Plate is very similar to that on the wood carriage, occupying the same position.
911. Cap Squares, N, are of composition, and secured to the brackets by screw nuts.
912. The Recoil is checked by the friction exerted betmeen the deck and the composition shoes, k , whose rear edges are curved npward to prevent injury to the deck on recoil.
913. Wrought-iron is employed in the manufacture of guncarriages for the reason that it does not splinter like cast-iron on the impact of shot. Because of their less weight, less space occupied, and non-liability to injury in service, these carriages promise to entirely supersede the wood carriages.
914. When Parrott guns are mounted in broadside, a Marsilly carriage is employed, differing from the ordinary carriages in that the brackets are extended farther to the rear to accommodate the additional length of gun.
915. Pifot Cirriages.-Object.-Guns which are expected to be fired at greater elevations than the ordinary port will admit of, are mounted upon pirot-carriages, which give an elevation of 20° to the gron, and a nuch larger are of train than the broadside carriage, the bulwarks of the ship being arranged to let down in order to accomplish it.

On Spar Deckis the slide may usually be pivoted amidships, and on both bows when placed forward; if aft, astern and on both quarters; and there being fewer obstructions aft, the gun in some cases has a full sweep from one beam to the other.

On Gun Deckes the arc of train is somewhat limited, yet considerably greater than with the broadside carriage; the ship's side is arranged to let down like the bulwarks on spar-decks, the fighting pivot being at the ship's side.
916. The XI-Inch Pivot Carriage (Wood) is composed of two principal parts, the slide and the carriage proper (Fig 210), the former being secured at one of its ends by a pivot bolt, P. Fig. 212 is traversed by tackles, to bring the guns to bear upon the object, or to change position in firing.
917. The Carriage differs from the Broadside in the suppression of trucks, and the substitution, therefor, of three transoms B (Fig. 214), front, middle, and rear; the lower sides of which rest upon the slide, and by their friction modify the recoil.
918. The Brackets, A, are in two parts, gogged and dowelled together, and they and the transoms, B , are firmly secured to each other by the bolts, O .
919. Thie Transoms, B, extend beyond the brackets and slide-rails, C , the forward being for the compressors, f, and the rear for the double eye bolted to it, to which the blocks of the in and out tackles hook ; a third called the Breast Transom J is bolted between the front ends of the brackets, and is scored out as in the Broadside carriage.
920. The Journal Plates (g) attached to the brackets, carry rollers on an eccentric axle, extending across, between, and beyond the brackets; levers are supplied to be shipped on

Fig. 210.-Plan of XI-Inch Gun-carriage and Slide.
the end of the axles, throwing the eccentrics in and out of action.

Fig. 211-Plan of Slide for XI-Inch Gun-carriage.

NOTE.-All metal parts are composition, except the axles, levers, elevating screw and bracket. bo:.ss.
921. The Compressor, f (Fig. 214), is placed upon the projecting portion of the Front Transom B, and is worked by means of a screw and handles, binding the transom and compressor-batten D , closely tomether, by which the recoil is restrained, and kept within the limits of the slide. On the rear transom is placed a metal
saucer, L, on which the lower end of the Elevating Screm, K, rests, the upper portion working in the cascabel of the gun.
922. The Slide consists of two mooden rails, C, jogged into transoms, front, middle, and rear (E, Fig. 214), and connected beneath by slots, and at their ends by cross-pieces called Hurters. (F, Fig. 214.)

CARRIAGE.

WOODEN PARTS.
J. Breast Transom scored for elevation, as is also the middle transom.

METAL PARTS.
K. Elevating Screw.
L. Sanecrs
N. Insiđe journal-plate.
O. Bracket-bolts.

SLIDE.
METAL PARTS.
P. Bussed Sockets, Plates, \& Pivot Bolts
R. Middle Training Truck, with Journals.
S. Transporing Trucks, Axles, \& Journals.
T. Guide Plates inside of rails.

Fig. 212.-Scctional View of XIInch Gun-carriage and Slide.

The transoms, E, three in number, project beyond the sliderails, and have attached to them rollers, G; on eccentric axles:
the rear for training, and the front for shifting the slide, or traversing it. At the proper position in each of the transoms, front and rear, is placed a metal plate, with hole for the pivotbolt (Fig. 211), 6.
923. The Compressor Battens, D (Fig. 214), are two strips of oak equal in length to the distance between pirots, which are attached to the slide-rails, C, on the outside; against these the under lip of the compressor, f, takes when set taut.

Fig. 213.-Pivot Compressor.
924. The IIurters, F, are the two cross-pieces bolted to the rails, and having their inner sides curved for the carriagerollers to run against, should the carriage get beyond control, going out or in. To these and the slide are attached composition eyes for the blocks of the in-and-out training and traversing tackles.
925. Metal Tracks are laid upon the deck for the slide-rollers, G and II (Fig. 214), to run upon, being struck with a radius equal to the distance between their rollers and the opposite pivot. For each position of the slide, in traversing, bossed sockets, P (Fig 212), are inserted in the deck for the front and rear pivot-bolts.
926. The Bossed Socket, P (Fig. 212), consists of a raised rim of metal around the pivot-hole, a corresponding slot in the slide transom securing the coincidence of the hole in the slide with that in the socket, thus facilitating the entrance and removal of the pivot-bolt, V .
927. The Eccentrics, G and II (Fig. 214), when out of action
allow the slide-transoms, E , to rest upon the deck, and those of the carriage upon the slide. In order to train or shift the slide, the levers are shipped upon their axles, the rollere, G and II, put in action, thus lifting the slide from the deck, and learing it free to be moved by its tackles. In the same way the carriage is lifted from the slide to run in or out.
925. Recoil--Before firing, the compressor, f , is set taut by the screw, binding the carriage transom, B , and compressorbatten, D , together. When the gun is fired, the recoil is absorbed by the friction exerted between them.
929. The Compressors, f (Figs. 213 and 214), are not intended to entirely supersede the use of breechings, but rather as an anxiliary ; the main reliance being placed on the Breeching, which should be shackled to the ship's side, and not to the slide, as in the latter position unnecessary strain is brought on the pirotbolt.

Fig. 214—Side Elevation of XI-Inch Gun-carriage and Slide.

CARRIAGE.

wooden parts.
metal Parts.
A. Brackets of two picces, with jog,
a, and dowels. b.
B. Transoms, projecting beyond the rails, front, middle, and rear, jogged into brackets.
d. Cap Squares.
e. Trunnion Plates.
f. Compressor, with screw and lever. g. Rollers and Joumal Plates.

SLIDE.

WOODEN PARTS.
C. Rails.
D. Compressor Battens.
E. Transoms; front and rear, cach in two parts, middlc in one part.
F. Hurters, front and rear.

METAL PMRTS.
G. Shifting Trucks.
H. Training Trucks, both with journals, and eccentric axles.

Firing to Windward, the compressor, f, should be set just tant enough to check the recoil and ease the strain on the breeching.

Firing to Leeward, the gun on recoil has to run up an inclined plane; consequently the compression required is rery slight.

With the Vessel on an Even Keel, it is usual to set the Compressor a certain number of turns, which is known to give the proper compression.
930. Shipping the Levers.-In order that this may be done expeditiously, both axle and lever are marked with a coldchisel, and should always be hove úp past the centre and rest against the wood of the slide or carriage.
931. Transporting.-For transporting the pivot-carriage and slide from one end of a ressel to the other, composition sockets, S , are attached to the under side of each slide-rail; throngh these pass square axles, carrying at their extremities metal rollers. The axle, being passed through the slide, is lifted on its rollers, the transporting trucks shipped, and the slide lowered; it now rests on the transporting trucks, S , and may be readily moved to any desired position. (5, Fig. 211.)

A Iİdale Roller, 7 (Fig. 211), has in some cases been provided for the slide of the XI-inch gun, which from its great length is liable to sag at the centre.
932. Rumning out to Leeward in a sea-way, even with precautions and a well drilled crew, there is liability of the gun breaking away and doing damage. To gnard against this,

Fia. 215.

Fig. 216.

Preventer Breechings, Y, are fitted (Fig 210), of such a length as to be just taut when the gun is out, and allow the front carriage trucks to reach but not ascend the curve of the front hurter, F ; for if the trucks should ascend this curve, the compressor-straps must surely give way to the power exerted to separate the carriage and slide by such a heavy weight moving with its velocity.

933. XI-inch Iron Pivot-Carriage.-

Nomenclature.

sLide.
A. - Slide rails.
B. -Transoms.
C.-Front and Rear Hurters.
D.-Pivot-holes.
E.-Transporting Trucks.
F.-Slide Rollers.

1, 2, 3.-Tie Bolts.
4.-Transporting Axle.

CARRIAGE.

G.-Brackets.
H.-Front Bed-plate.
I.-Rear Bed-platc.
K.-Eccentric Rollers.
L.-Front Rollcrs.
M.-Cap Square.
N.-Composition plates to increase P'. P'.-Journal Plates. V Compressor. friction.

principal dmensions.

Extreme length.
O.-Angle iron connecting brackets, etc.
P.-Bolts for Preventer Breeching.

Q-Compressor Plate.
R.-Bolts of In-and-Out Tackles.
S.-Vertical Transom.

Length betwecn Pivots... $11 \mathrm{ft} 10 in.$.
Width of Slide.. 3 ft. 6 in.
Width of Rails... . . . 0 ft. 5 in.
Radius of Training Track................................... 10 ft. 10 in .
Radius of Traversing Track................................. 12 ft .6 in .
934. The Slide, A, consists of two rails of double T rolled

Fig. 217.
wrought-iron, 8.87 inches high by 5 inches wide, connected by the tie-bolts, $1,2,3$.
935. The Transoms, B, are of $1 \frac{1}{2}$-inch wrought-iron of the form shown in the figure, and riveted to the under side of the

Fig. 218.-XI-inch Carriage.
rails, A ; they project beyond and have fitted to them composition rollers, F , on eccentric axles, the latter being secured by plates and bolts; levers shipped on the projecting ends of the axles put the rollers in and out of action.
936. The Hurters, C, are the brass castings riveted to each end of the slide-rails for the carriage-trucks to run against. Each of these carries bolts for the blocks of the in-and-out tackles be-
neath them, and to the vertical part of the T rail, are attached brass plates with bolts for the blocks of the shifting and training tackles.
937. Coincidence of the Pivot-holes, D, is secured by plates screwed to the slide transoms, B , and distant from each other a little more than the diameter of the bossed socket, indicated in the figure by the dotted circle around the pivot-hole, D.
938. Form of Rail.-The wrought-iron rails, A, when first manufactured have the form shown in Fig. 215, but before being placed for the slide the under side of the upper outer portion of the T is removed, giving it the form of Fig. 216, in order that the compressor may have a flat surface to act on.
939. Transporting.-About ten inches in rear of the front and the same distance in front of the rear trucks are placed the sleeves for the transporting axle and trucks, E , the latter of such a diameter as to sustain the slide clear of the deck when let down from its eccentric rollers, F.
940. The Carriage.-All iron parts of the carriage are made of $1 \frac{1}{8}$-inch wrought-iron, the journal-plates, rollers, cap-square, trunnion-rests, and preventer-breeching-bolts being of brass.

Immediately beneath the trunnion-hole is a vertical iron plate, S, extending down between the brackets to the bedplate, II.
941. The Brackets, G, rest on the bed-plates, and they and the vertical transom, S, and bed-plates, II and I, are riveted together with the angle iron, O .
942. The Bed-plates, II and I, extend beyond the brackets, the rear, I, being slaped to a double eye, for the blocks of the in-and-ont tackles, the front, H , contracting into a plate for the compressor-screw to work upon.
943. The Journal Plates, P', for the eccentric axle and rollers are riveted to the rear end of the brackets, G, the axle extending across, between, and beyond the plates and carrying rollers, K , revolving in the plates. These asles are eccentric in order that, by the use of levers, the trucks may be placed in or out of action at pleasure. In the former case the carriage is raised and rests on its rollers, K ; in the latter, it rests on the slide, A.
944. Form of Eccentric Axle.-An ordinarr crlindrical axle has cast on it an eccen-
 tric (Fig. 210), that is, instead of the two evlinders being concentric, the axle passes on one side of the contre, I , of
the larger circle. With the axle at its lowest position, the rollers are out of action ; at its upper position, the carriage is raised by the action of the rollers, a height corresponding to the escentricity of the axle.

The front trucks, L, are like those of an ordinary carriage, always resting on the slide and revolving on any movement of the carriage.
945. The Compressor, V (Fig. 220), consists of a composition casting, V, laving a vent, V^{\prime}, at the centre of the upper arm, through which works a screw bolt, W, with handles. It is placed on the compressor plate, O, its under lip, x, taking against the under side of the upper, T , of the rail. When the

Fig. 230.-XI Compressor.
screw is turned, the rail is compressed between the compressor plate, O, and the lip of the compressor, x. The recoil is thus limited by the friction of the different parts.
919. Recoil.-As the bed-plates, H and I, and rail are each of iron, acting alone, sufficient friction would not be excited to keep the recoil within the desired limits. To correct this deficiency, after the brackets, G, lave been riveted to the bed-plates, plates of composition, N , are screwed to that portion of the bedplates in contact with the slide, thus increasing the friction to the required point. Λ s the compressors are placed as near as possible to the brackets, the latter are cut out to allow space in turning the handles of the compressor.
947. Necessity of Eccentric Rollers in the Slide.-The slide-rollers, F , are all eccentric for the reason that when shifting the slide at sea, with much motion on the ship, it is absolutely necessary to have complete control of it; for should it once get away from the crew, it becomes a scrious matter to again confine it.

When this is likely to occur, the levers are at once let down, throwing the rollers out of action and the slide upon the deck, when, from the great weight, the friction of the transoms on the
deck will almost immediately stop it. This would be impossible were the slide always free to move on its rollers, and only confined by tackles.
948. 20́-pdr. Rifle Pivot Carriage.-

Fig. 221.
Principal Dimensions.

Its construction is essentially the same as the XI-inch carriage, the only difference being that the bed-plates of the tren-ty-pounder are of bronze cast ivith two upright picces, to which the iron brackets are riveted, while in the XI-inch, angle iron is used to connect their brackets and bed-plates. Only one tie bolt is used to connect the slide-rails at their centres. As the beds are of bronze the requisite amount of friction can alrays be obtained by the compressor. (Figs. 221 222.)
949. X'V-incii Turret Carrlige.-

Nomenclature.
A.-Box Bracket.
B. - Bed Plate.
C. -In-and-out gear.
D.--Compressor.
E.-Cog-wheel.
F.-Guides.
G.-Carriage-braces.
H. - " Rollers.
I. -Iron rails.
K.-Balance-wheel.
L.-Elerator-rest.
M.-Curred lever.
N.-Front Transom.
0.-Rear "

O'-Sleere.
O", -Nut.
P. -Small Cog-wheel
R.-Compressor Plates,
950. The Slide cousists of two heavy iron rails, I, extending from one circumference of the Turret to the other, and

Fia. 222.
firmly secured to it ; on these run the carriage rollers, HI . Between the two iron rails, and parallel to them, are four wooden joists, L, called compressor-battens, each six inches square. (Fig. 225.)
951. The Carriage is of wrought-iron. The brackets, A, being of the box form, while the bed-plate, B , and front, N , and rear O, transoms, are of single plate-iron. All parts of the carriage being riveted together, and the brackets, A, supported by the two traces, G. At each under corner of the bedplate, B, is placed an angular metal plate, F, called a guide, preventing lateral motion of the carriage on the rails.
952. The In-and-Out Gear, C, consists of an axle extend-
ing across the front end of the carriage, carrying rollers, H, placed in the brackets. Just inside the outer bracket, the axle

Frg. 223.
has on it a large cog-wheel, E, a shorter axle placed higher in the bracket, working the larger cog-wheel by means of the

Fig. 224.
smaller cog, P, in its inner end. To the outer end is fixed a crank, C^{\prime}, to be worked by hand.
953. The Carriage Rollers, H, are four in number: the forward two attached to the axle of the "In-and-Out Gear," and the rear to short axles in each bracket.
954. The Compressor Gear, D.-To the bottom of the carriage is piveted an iron plate (P. Fig. 225), whose end project downward through the Bed-plate, B; on these are hung curved levers, M. To one is pivoted a sleeve, O^{\prime}, and to the other a nut, $\mathrm{O}^{\prime \prime}$. A rod passing through the bracket and the sleeve has on its end a thread, which works in the nut on the opposite lever; lateral motion of the sleeve on the rod being prevented by collars outside the bracket. The rod has attached to it a bal-ance-wheel and crank, K.
955. The Compressor Plates, R , five in number, are of $\frac{1}{2}$ inch iron (Fig. 224); their ends project through the Bed-plate and are keyed; their lower portions extending downward between the wooden joice or battens, L (Fig. 225), parallel with them and the iron rails.
956. Action of the Compressor Gear.-As the balance-

Fig. 225
wheel, K , is revolved it carries the rod with it, causing the upper ends of the curved levers, M, to separate, and the lower to approach; the latter press against the two outer compressorbattens, L, forcing them out of parallelism, and binding the iron plates, R, and battens, L, firmly together. When the gun is fired its recoil is absorbed by the friction of the several parts. Reversing the motion of the wheel separates the plates and battens, leaving the carriage free to move on its rollers.
957. Elcoator-Rest.-The elevating screw usually rests on the projecting portion, L^{\prime}, of the bed-plate. In some carriages a semicircular plate is riveted to the rear transom, having on
its circumference a vertical plate connected to a fure and aft plate, the two supporting an iron saucer, on which the lower end of the elevating-screw rests, the upper end passing through the cascabel of the gun.
958. The Iturters are flat plates of iron bolted to the rails, to prevent the carriage going beyond the proper point, out or in. 959. Elevation. - The port is cut from the circumference, of the turret, of such dimensions as to allow of 10° elevation and 5° depression, and permit only vertical motion of the muzzle of the gun in it.
960. The Port Stopper, S (Fig. 226).-When the gun recoils after firing, the open port, \mathcal{Z}, is free to the entrance of an enemy's shot. To protect those in the turret while loading the gun, a heavy mass of iron, S (Fig. 226), curved to allow the gun to pass going in and out, is pivoted at the top and bottom of the Turret, and worked by a lever and tackle. As the gun recoils, the Port Stopper is swung around, covering the port, and swinging sufficiently near to the inner circumference of the Turret to prevent shot fired at an angle from entering the Turret between it and the port. The gun being loaded the port-stopper is swing around and the gun run out.
961. Loading.-The loading hatches, T, are placed abreast the rear of each carriage when in, the communication between the turret and below being open when the guns are pointed abean. As the projectiles are very heavy and the space in the turret limited, mechanical appliances are made nse of to carry the projectile to the muzzle of the gun. These consist of a long iron rod, U, pivoted above the loading-hatch, the movable end being fitted to slide on a guide at the top of the turret abreast the mnzzle of the gun. The shell-tackle is hung on the rod by its strap, which carries a roller travelling on the rod. Then the gun is to be loaded, the shell is whipped up to the requisite height, the whip hitched, and the projectile run to the muzzle of the gun on the rod. After each fire, the turret is revolsed so as to bring the gun abeam and leare the loading-hatches open.
962. The liammer and Sponge.-The port being closed by the port-stopper, S, an ordinary handle cannot be used, hence that in use consists of a number of sections which connect with each other by a spring catch. The rammer or sponge, being fixed to the first section, is entered and the next section put on ; in this way the whole is made up and the gun sponged or the projectile, pushed home. In remoring the sponge or rammer, each section is taken off as its catch comes to the muzzle.
963. Pointing.-The guns being fixed in the turret, point-
ing is effected by revolving it until the guns bear upon the object, which is determined by the person at the sight-hole, Y.

Fig. 226.
This consists of a circular opening of about two and a half or three inches diameter cut through the turret, parallel to the rails
on which the carriage runs. In this opening is placed an instrument (Fig. 227), consisting of a hollow cylinder of brass,

Fig. 227.
having a portion of its circrmference at the outer end cutaway, and a vertical piece soldered to it. The inner end of the cylinder is closed, and a vertical slit cut in it. The officer at the sight-hole, looking through the slit, brings the vertical piece on the object, when the engineer at the starting-bar ceases to revolve the turret.
964. Sights.-The gun besides being fitted with the ordinary sight has a trunnion-ledge and level (Fig. 228). This con-

Fra. 228.-Trunnion-ledge and Level for XV-inch Gun.
sists of a brass plate pivoted to the centre of the trunnion, the upper portion ending in a pointer, the lower haring a slot and thumb-screw working in it. A ledge projects from the plate, on which is placed a spirit-level. The upper face of the trun-
nion is graduated for a certain number of degrees of elevation and depression.

To elevate the gun, loose the thumb-screw and more the pointer to the number of degrees desired; tighten the screw and lower the breech until the bubble of the spirit-level marks zero. The gun then has the elevation indicated by the pointer; reversing the operation, depression is obtained.
965. The Turret when not in use rests upon the deck, a raised rim of metal protecting its lower edge from being jammed by shot. A shaft, L, passes down through the vessel to the keison, with arrangements at its lower end for being raised by a wedge and ram. When this is done the turret is raised from the deck and rests on the shaft, and is revolved by steam gearing. The turret is composed of a number of oneinch wrought-iron plates, firmly bolted together, making a total thickness from eleven to thirteen inches. The people in the turret are protected from the fastening bolts, which are likely to fly out on the impact of heavy shot, by a casing of iron placed a few inches from the inner circumference of the turret.
966. Above the turret is placed an iron pilot-house, from which those controlling the movements of the vessel may see by the bevelled openings in its circumference. In some monitors the guns and their carriages have been arranged to work by steam, and the turret to be raised by an hydraulic-pump attached to the lower end of the shaft, instead of the wedge and rams. This would seem to be a decided improvement over the old method, or that generally in use.
967. Mortar Carriage (Fig. 229).

Nomenclature.
1.-Cirele.
2. - Bracket.
3. - Mortar.
4. - Face.
5.-Trunnion.
6.-Carriage Steps.
7.-Eccentric Soclset.
8.-Carriage Rollier.
9.--Circle Eccentric.

> 10.-Hurter.
11.-Ratchet.
12.-Clovis lug.
13.-Stringers.
14.- Rear Transom.
15.- -Iteary Cross-bolt.
16.-Lever (eccentric).
17.--Cirele-lever.
18.-Guides.

Principal Dimensions.

968. The Carriage.-In consequence of the high angles at which mortars are tired, their carriages differ from ordinary gun-
carriages in that they rest for their whole length on the circle or platform.
969. The Brackets, 2 , are each made of two pieces of boileriron, separated from each other by flat bars of iron placed at suitable intervals, to stiffen the brackets in the direction in which the weight and recoil bear upon them. All parts are held together by screw-bolts. The brackets are united to each other by the steps, 6 , axle-tree, 8 , two iron stringers, 13 , crozsing

Fig. 229.
diagonally under the piece near the bottom of the brackets, a rear transom, 14, and a heary cross-bolt, 15 .
970. The Transoms.-The steps, 6 , serve the purpose of front transoms, and are made by laying plates of boiler-iron horizontally; the lower being nearly twice the size of the upper, and bolted to the brackets. The upper is scored out in the rear to allow for the curved form of the piece. The rear transom, 14, is a plate of iron placed vertically between the brackets in rear of the piece, and is fitted with an elerating loop, which serves as a fulcrum for the elerating lever.
971. Running In and Out.-The motion of the carriage in running in or ont is obtained by a pair of rollers, S, on an eccentric axle, placed underneath and a little in front of the curve
of the trunnions. On the projecting end of the axle a lever, 16 , ships, by which the rollers may be thrown in or out of action. The motion of translation of the carriage is given by handspikes placed in holes in the circumference of the trucks, 8 ; the latter being first thrown in action by the lever in the socket, 7. The movements of the carriage are directed by composition guides, 18 , screwed to the circle and fitting over flanges at the bottom of the brackets. A heavy piece of oak, called the Hurter bolted to the circle, limits its outward movement, the brackets being curved to fit the slope of the hurter.
972. The Mortar Circle, (Fig. 230).-The naval mortar is

Fig. 230.
generally used on board schooners built for the purpose. It is carried amidships, and that part of the deck on which the circle rests is raised about three inches above the remainder. The circle is a circular platform made by two thicknesses of oak beams; the upper, called the deck planks, are laid at right angles to the direction of the recoil; the lower layer, called sleepers, being laid parallel to the axis of the piece. The two layers are bolted to each other horizontally and vertically, and strength-
ened circumferentially by two steel hoops, 19 and 20 , one at the top and bottom. This disposition of the planks offers the greatest resistance to recoil. On its upper surface are bolted composition tracks, 22 , for the carriage rollers. A heavy bolt through its centre, working in a frame-work beneath, keeps it in position.
973. Ecsentric Rollers (23) are four in number, and placed at equal distances in the circumference of the circle. On the ends of the axles, curved levers (17) ship, by which the circle is raised on its rollers, and may be revolved about its central pivot by tackles hooked to eye-bolts in the circle and deck.
974. The Deck is strengthened underneath the circle by a column of heavy beams laid across each other, and extending from the kelson up to the under side of the deck.
975. Howitzer Boat-carriage. (Wood.)

Fig. 231.
Nomenclature.
A.--Bed.
B.---Slide.
C.--Compressor Piate.
D.-Compressor Bolts.
E.-Compressor Handles.
F.--Lugs for Loop.
G.-Bed-plate.
H. - Elevating Screw.
K. - - thwart-ship Sweep
L.-Pi rots.
M.--Pirot Plates.
N.-Fore and aft Sweep Piece.
' 976. The Slide consists of a wooden top-piece resting on two side pieces which are slightly inclined from the rertical and slope at cach end towards the end of the top-piece, where metal plates are attached for the pirot-bolts, of the carriage. In the top-piece, and extending nearly its whole length, is a slot in which move the bolts, D, and wooden guide of the Bedplate. The bolts, D, are square at their lower ends and pass through the bed-plates, up the slot, and through the bed, A. On their upper ends a thread is cut, and corresponding niuts
with handles, E, work on a composition plate let into the wood, flush with it. On this the nuts press when serewed down, compressing the slide, B , between the bed, A , and bed-plate, G, and controlling the recoil by the friction of the different parts.
977. The Compressor is composed of the scveral parts C, D, E, G, and A ; that is, it consists of a combination of all, resulting in friction between certain parts and modification of the recoil. When the compressor handles are set as taut as the strength of an ordinary man will allow, it alwars suffices to keep the recoil within the limits of the stop in the slide. In order that the compressors shall invariably perform their function, the surface of the parts in contact must be plain but not smooth.

The Botts, D, being passed through the bed-plate loosely, were the handles taken off, they would drop out; to prevent this, small buttons are placed on the under side of the bedplate, G.

The Lugs, F, are cast of composition with a cavity to receive the loop of the gun, which rests in it, and is retained there by a bolt passing through the lug and loop; the latter being secured by a pin and washer.
978. Eleration is oltained by a screw, H, passing through the cascabel of the gun; its lower end has a knob working in a box fitted to the bed; a disk a few inches above the knob serves to turn the screw.
979. The Boat-carriage should be so placed in the bow of the boat as to carry the muzzle of the Howitzer just above and clear of the gunwale and stern of the boat. Two pieces of yellow pine, \widehat{K}, are laid athwart-ships so as to bear the carriage at that height, and on these it traverses when pivoted at the stem.
980. Pivots.-Six pivots, are pivoted to each boat; stem, each bow, stern, and each quarter. The two iron plates, M, of each pirot, being welded together and bolted to their positions, the distances between the stem pirot-plate, and that of either bow, must correspond to the distances between the pirot-holes in each end of the slide; they are thus at the points of an equilateral triangle, which enables a rapid and certain management of the gun in changing its position. (Fig. 232.)
981. Pivoting.-If the carriage be pivoted at the stem, it may be brought to either bow, by piroting the rear end of the slide to one bow, removing the stem pivot, and training the forward end to the opposite bow ; to change it from the bow to
the stem pivot, the process is reversed. To sustain the carriage when piroted at the bow in sweeping, a piece of jellow pine scantling, N, is placed fore and aft amidships and mortised irto the rear cross-pieces.

The stern of the boat is similarly arranged, but from the form of the boat at that part there is more space, and the gun can always be worked easier there than forward.

Fig. 232.
982. The Iron Boat-carrtage.-(Fig. 233.)

Wrought-iron Boat-carriages ara now being made and supplied to vessels in service, the dimensions being the same as those of the wooden carriage, in order that they may replace them and not entail any change in the present fittings of boats.

983.	Nomenclature.
A.—Slide	E.-Elerator Box.
B.—Bed.	F.-Compressors.
C.—Bed-plate.	G.-Rests of Slide.
D.-Lugs for Loop.	

Principal Dimensions.

Extreme length	681 inches.
Length between Pirots.	64.1 '
Length of Bed.	37
Length of Bed-plate.	26.3
Width of Bed	7.55
Extreme width of Slide	11.75
Height of Loop-bolt.	13.05

984. The Slide, A, consists of a wrought-iron plate, riveted to two wrought-iron Z-shaped sides, the heads of the rivets
being taken off to present a plain surface to the bed, B. The upper plate of the slide contains a slot extending nearly its whole length. Between the ends of the slot and slide are holes for the front and rear pivot bolts.
985. The Bed Plate.-Between the side pieces, a composition bed-plate, C, travels forward and back; to this plate are attached bolts, having a thread cut on their upper ends; these pass through the slot in the slide and holes in the bed, and

Fig. 233.
have working on them corresponding nuts with handles by which the necessary compression of the slide between the bed and bed-plate is produced, thus modifying the recoil.
986. The Bed, B , which rests on the slide, A , is a bronze casting, consisting of a plate having on its upper surface projecting pieces, D , called the lugs, which have a cavity in them for the toop of the gun; the elevator box, E, and holes for the compres-sor-screws.
987. Recoil.-As the slide is of wrought-iron, while the bed
and bed-plate are of bronze, advantage is taken of the friction exerted between the different metals to check recoil. This is accomplished more effectually by having the frictional surfaces of different kinds of metal, than when only one kind is employed.
988. The Sides curve upward at each end to allow space between the carriage and pivot-plate, and to facilitate its movements.

By reference to the rear elevation of the carriage (Fig 233), the manner of riveting the top plate to the Z -shaped sides will be readily understood, and that the slide rests on the lower portions of its sides, which, being $2 \frac{1}{2}$ inches wide, give abundant stability to the carriage in training.

Three tie-bolts, not shown in the figure, placed at the front, rear, and centre of the slide, connect the sides and prevent lateral motion. As these are placed low down, they do not interfere with the movements of the bed-plate, C.

These carriages are considerably lighter than the wooden carriages; and being of iron, are consequently less liable to injury from exposure in service.
989. The Howitzer Field-carriage. (Fig 234.)

Nomenclature.

B. -Trail.
C.-Trail-braces.
D.-Lugs.
H.-Elevator-box.
E.Trail-wheel.
F.-Socket.
G.-Elevator.
K.-Ammunition boxes.
990. The Carriage is of wrought-iron, its weight beng reduced to the least limit, about 500 lbs ; the axle, has cast at its centre lugs to receive the loop of the gun.
991. The Trail, B , is curred, being bolted to the axle. and supported on either side by the rod braces, C, which bolt to the trail and axle. At its rear end the trail expands, and is slotted for the trail-wheel, E. This is hung on a hollow axle, to which is attached on each side a guide that is hinged at the forward part of the seat; this allows the trail-wheel to be thrown back on the trail and put out of action. A pin chained to the trail passes through it and the hollow axle. With the wheel in the slot and contined by the pin, the trail of the carriage rests on it, as in Fig. 234. Beyond the slot is a socket for the trail handspike. The elevator-box is like that in the boat-carriage.
992. The Field Carriage ashore.-As it is desigued to operate independently of a limber, light composition frames, haring pins projecting upward, are attached to the trail and axle on
each side, on which the ammunition boxes rest. Their bottoms are fitted with metal sockets for the projecting pins of the frames. The carriage is drawn by means of a drag-rope hooked to a becket near the sockets; this rope has inserted at suitable intervals wooden handles for the crew to hold. At the liook are two shorter ropes, called guide ropes, by which the direction of the trail is governed when on the march. To the axle is hooked a short drag-rope, which is used as a check, or holdingback rope in steep descents.

Fig. 234.
When in action, the trail-pin is removed, and the trail-wheel thrown back on the trail, allowing the trail to rest upon the ground, which serves to check the recoil.
993. The Field Carriage in the Boat is placed aft with its trail over the quarter (Fig. 235), so as not to impede the movements of the coxswain. For convenience in running it forward or aft, as when shifting the gun from the boat to the field-carriage, or the reverse, three wooden tracks or skids are laid fore and aft on the tlwarts, and bolted. The centre being for the trail, the other two for the carriage-wheels.
994. For Landing the Field Carriage, slort skids projecting ahead to the beach or landing are provided; these hook to the bows of the boat, and are braced at the shore end by a long iron rod and hook ; on these the carriage-wheels run.
995. Implements.-With the field and boat carriage are supplied Rammer, Sponge, Ladle, Worm, and Handspike; two of
those mentioned being on the same handle, one at each end. The latter answering a double purpose, first as a trail handspike, and second as a shifting-spar ; having fitted to its centre

Fig. 23J.-Frigate's Launch.
a metal hook used in the gromet around the neck of the cascabel in shifting, mounting, and dismounting the Howitzer.

> Section II.-Enylish Naval Gun-Carriages.

996. The Broadside Scott Carriage.

Nomenclature.

A. -Bracket.
B. - Bow Compressor.
C.-Elevating Gear.
c.-Releasing Lever of Elevating Gear.
D.--Chain Nipper of In-andOut Gear.
E.-Carriage Wedges of Bow Compressor.
b.-Eccentric Lever and Gear.
b.-Eccentric Lever and Gear. T.-Shaft Support.
F.F.-Coned and Grooved Rollers. W.-Training Brake.
G.-Metal Hook for lip of Front Track.
H.H.H.'-Raised Metal Tracks.
K.-Cogged Training Track.
L.-Preventer Pivot Bar.
M. -Slide Wedges of Bow Compressor.
N.-In-and-out Gear.
O.-Endless Chain.
P.P.-Winches of Training Gear.

R--Shaft of Training Gear.
S.-Training Wheel.
S.-Cog-track.
X.-Hydraulic Jack.
Y. -Compressor Pawl.
Z. -Buffer Blocks.
997. The Carriage is of the box girder description, of mixed wrought and cast iron (wrought outside, and cast inside),
and, unlike the old pattern, is long and low, thus remedying the rearing back tendency of short and high carriages, and the consequent downward strain on the deck and slide, and giving a

Fig. 236.
much greater surface to absorb the concussion or shock of recoil. As the carriage is made so much lower, the slide is correspondingly raised, thus maintaining the same height of the axis of the trumnion above the deck, and allowing room for the cogged gear beneath the slide.
998. The Stide is of girder wronght-iron, filled in on each side with teak (see Fig. 239), with no headplate, thus allowing the gun to be run farther out and facilitating pointing. The upper surface of the slide is an inclined plane, having an angle of from 3° to 5° for ordinary broadside guns, which serves to check the recoil, and facilitates the running out of the gun.
999. The Deck (Fig. 237) beneath the slide has bolted to it four (4) metal tracks, $\mathrm{H}, \mathrm{H}, \mathrm{H}^{\prime}$, and K ; the first two, H, are usually solid, and have cast on their upper surface a rib to take the groove of the slide-rollers F. These tracks are raised at their extremities, to allow for the deck curvature, and thus prevent alteration of the sights in extreme training. The track, K, is cogged for the cog-training

Fig. 237. wheel, and may be of brass or iron, usually the former. The track H^{\prime} is of metal, having cast on its forward side a strong projecting lip, under which the metal hook, G , attached to the slide, takes.
1000. The Pivot (Fig. 238) is independent of the ship's side and any accident that might occur to it, as the recoil is received from the coned and grooved rollers, F, of the slide,

Fig. 238.
and the metal hook, G, by the three metal tracks, H. Were the shock received by a pivot at the side, a heary shot impinging there might and probably would prevent the further service of the gun.
1001. The Dimensions of a 12 -inch 2 -ton Broadside Guncarriage are as follows: Length of slide, $15 \mathrm{ft}$.6 in ; width, 6 ft. ; length of carriage, 8 ft .9 in. ; height of trunnion abore the deck, $5 \mathrm{ft} .1 \frac{1}{2} \mathrm{in}$., the relative length of slide and carriage permitting a recoil of 6 feet.

Fig. 239.-Section at Compressor.

Fra. 241.-Rear view of Slide.

Fig. 240.-Rear view of Carriage.

Fig. 212.-Front view of Slide.

For other gums the dimensions are similarly proportioned.
1002. The Self-Acting Bow Compressor, B, consists of strong metal bows hung by their centres through a hole in each side bracket. (See Fig. 246, B.) From the cariage short wedge-shaped plates, E, are suspended between hard wooden baulks, and wedge-shaped iron plates fixed to the girders of the slide M. A wheel with screw attached works throngh the outer end of the metal bow, setting the plates firmly together (Fig. 239). The circumference of the wheel is notched to receive a pocwl, Y , attached to the bow at the height of the wheel. The weight of the gun, when let down from its eccentric rollers, drives the upper wedge, E, tight between the lower ones, M, and the downward concussion of firing tends to drive them still more together, while the action of lifting the guncarriage on its eccentric rollers, to run it out, releases the wedges because of their shape.
1003. The Elevating Gear, C (Fig. 238), consists of a cogged arc attached to the side of the breech of the gun, acted on by a cog-wheel inside, and drum outside the bracket, and fixed to the same pinion. Through it, sockets are pierced in the periphery of the drum, into which pointed handspikes are placed in elevating or depressing the gun-a clamp outside the drum nipping it at the desired elevation; a holding-pin attached to the bracket assists the clamp.
1004. The Eccentric Gear, b (Fig. 238), consists of a shaft across the rear end of the carriage, car-

FIG. 243. rying the eccentric rollers, placed in the under and rear side of the brackets. A cog-wheel on the inside, worked by levers on the outside, acts on a V-shaped cog when on the eccentric axle, throwing the eccentric rollers in and out of action. A pawl, or releasing lever (Fig. 238), is provided for holding the eccentric in action. The latest carriages have their eccentric rollers worked by an lydraulic jack, X , on one side, and cogwheels and drum on the other (Fig. 243) ; with the jack the heaviest gun may be easily lifted by one man.
1005. The In-and-Out Gear (N, Fig. 237).-The carriage, being lifted out on its rear eccentrics as before described, is run in and out by means of spur wheels and pinions fixed to the rear end of the slide on each side, worked by winch-handles, which drive a shaft across the rear end of the slide. Two
endless chains, O , run around spocket-wheels fitted to this shaft, and the forward end of the slide (that forward having an elastic shackle) by which the chain is kept taut at all times, the upper part of the chain passing through holes in the carriage. When not in use, the chains are not attached to the

Fig. 244.
carriage ; but when required, the upper part of each chain, O , is caught by an arrangement called the chain-nipper. (See Tig. 244, D.) This consists of an eccentric in the bottom of the carriage, worked by a lever, by which the eccentric catches the chain in the teeth fitted to the upper side of the box in the bottom of the carriage, and through which the chain passes. When the In-and-Out Gear is moved with the chain caught, it carries the carriage with it, either in or ont. By throwing the lever up, the chain is released, and the carriage ceases to more.

Buffer Blocks, Z (Fig. 237), of india rubber are placed at each end of the slide to receive the carriage should it move out

or in violently. Eye-bolts are fitted to the carriage, to be used with tackles should occasion require it.
1006. The Training Gear, R, S, T, W, (Figs. 23S, 241, 245),
consists of a crown-wheel and bevel pinions, fixed to the rear end of the slide, worked by winch-handles, which drive a shaft, R , extending forward beneath the slide, and armed at its forward end with a cog-wheel, working in the cogged track, K, on the deck.

For Extreme Train, when the vessel is rolling deep, or at any time that additional power is required, a second drivingpinion is provided, giving twice and a half the power of the single pinion ; a pawl, to lock the training-gear, when the gun is stationary, and a brake, W, to control the rapidity of training. The latter consists of a diminutive bow compressor applied to the training-gear, near the winch-landle (Fig. 245, W). Eye-bolts for training are fitted to the slide to be used with tackies.
1007. Advantages of Megianical Carriages. - The shoc\% of recoil is received by metal ribs cast on the upper surface of the heavy solid metal tracks, H, and by a strong metal hook, G, attached to the front end of the slide, which ties it down to the deck by the hook, taking under the strong metal lip of the front track, H^{\prime}. By this means the shock of recoil is not received at any single point, but is distributed over the surface of the three tracks, and thence to the deck, and thus the tearing or rending effect is much less at any one of these points than it would be on a single pivot-bolt. Again, the compressor wedges, E and M, are not only wedge-shaped vertically, but are slightly so longitudinally, by which arrangement the recoil is gradually checked or absorbed, instead of being suddenly resisted as with ordinary compressors.

100s. The Bow Compressor, B, is self acting, from its peculiar construction. The compressor-plates being wedge-shaped hoth vertically and horizontally, lifting the carriage must necessarily ease them; lowering the carriage, the reverse occurs. Therefore the wheel being set to a point (determined by practice) and pawled, the mere rumning out of the gun, in one case, and firing in the other, operates the compressor. So that the compression by the wheel having once been determined, the gun may be fired a long time without the compression being altered.

Experiments prove that one man may set the wheel so taut
as to reduce the recoil to 3 feet, one half that allowed by the slide. By this arrangernent the danger occurring with most compressors, viz., that the compressor-man will set the compressor too taut or not enough, is entirely obviated; and any compressor not self-acting is liable to be worked so, and the gun and carriage seriously injured thereby.

1009 Training Gear.-As this gear is attached to the rear end of the slide, it is much less exposed to an enemy's shot than at the ship's side, or in any other position about the slide. And at night, or when smoke and noise would hinder the men at the side of a gun worked by tackles from seeing or hearing their gun-captain, the captain of a gun, fitted with mechanical training gear, regulates the movements of the slide with the greatest ease, as the motive power, viz., the men at the winchhandles, are within a few feet of him. Again this position of the motive power enables him to train and keep lis gun on the object as it is being run out, and save much valuable time, especially in firing at a moving object. In practice the controlling brake, W, has answered its purpose very well, and the training gear greatly increases the rate of firing under any conditions, its advantages being best shown in bad weather. With it and the in-and-out gear, much manual labor is sared, the crew being reduced thereby to one-third. In training guns by tackles and handspikes, the motion is very irregular, the guns being many times jumped beyond the desired point, while rith the Mechanical Gear the greatest nicety is obtained.
1010. High and Low Carriages.-The effect of reducing the height and increasing the length of carriages may be illustrated by assuming an extreme case. Imagine a rery high and short carriage on one slide, and a very long and low earriage on another. The gun being fired horizontally, the shock of recoil in the first instance will be communicated by a lever, represented by the vertical height and length of the carriage, and the leverage being great, the shock will be more powerful, while with the long, low carriages the leverage is much reduced, and consequently the slock on the slide, and a longer surface is provided for absorbing the recoil. Hence the same decks will sustain the firing of heavier guns by the use of long, low carriages and high slides, preserving the axis of the gun at the same height above the deck.
1011. Tiie Depressiox Carriages (Fig. 247).-These were designed by Capt. Scott, R. N., for the smaller upper guns of Broadside vessels, as an auxiliary defence against Torpedo or attacking boats very near or alongside the vessel, as at such times the main-deck guns do not possess sufficient depression to protect
her against them. Referring to Fig. 247, the slide, A , is of iron and has an inclination of 10° to the front. To the slide is at-

Fig. 247.
tached the cylinder of an hydraulic compressor, B , the piston being fixed to the front end of the carriage, which is of iron; an elevating arc, C , attached to the gun and worked by a pinion and wheel instead of the drum and handspikes in use with heavy guns, permits of 20° elevation and 30° depression. A clamp fitted to the axle fixes the gun as desired. Thus with the ship on an even keel, projectiles may be thrown 100 ft . high, at 100 yards' distance, or into a boat as near as 13 yards from the ship's side. The great amount of depression obtained makes them a very useful addition to Broadside Iron-clad armament, as with the utmost depression obtainable with the Broadside carriages, the shot would fall over twice as far from the ship's side. Without these depression carriages, there would be left around the ressel a free zone of fire of considerable size, in which attacking
boats might lie with perfect immunity from the vessel's heary gruns.

Fig. 248.
1012. The English Turret Carblage. (Figs. 248, 249.

The Slide consists of four wroughtiron girder beams, A , built into the Turret below the deck (see Fig. 248), constituting strengthening struts, and forming a part of the ship. These fixed girders have an inclination of about 3°, and form slides on which are mounted tro compound piroting guncarriages, the training being effected by the revolution of the Turret itself.

The only point of principle in which the Turret differ from the Broadside carriages, is in their possessing compound vertical pivoting gear, to minimize the vertical area of the port. To accomplish this, the carriage and slide with the gun were lifted bodily to set heights by means of screws working irregularly, involving considerable loss of time. It is now obtained by lifting the gun only. This is effected by supporting the gun in wrought-iron blocks, susceptible of vertical motion in the brackets. These blocks are united beneath the gun by a curred transom acted on beneath its centre by the ram of an hydraulic jack attached to the bottom plate of the carriage, which raises the gun bodily about 6 inches per minute. Iron props of different lengthis are used to support the trunnion-blocks in the different positions in which it is intended to fire.
1013. Elevation.-On each step the eleration and depression is regulated by elevating gear, differing from the Broad-
side gear, in that it is adapted to use with the axis of the gun at the three different heights; a single man at the cascabel of the gun works the pinion and spur-wheel, which raise or lower the gun along the cogged arc, or elevating-bar. The steps are so arranged that the upper gives no elevation and 7° depression, the bottom step 15° elevatiou and no depression; the middle or ordinary fighting step gives 9° elevation and 2° depression. This division of step may be changed at any time, by substituting iron props of other heights.
1014. The Carriages are adapted to the circular form of the turret by longthening the minor bracket of each, and both are so reduced in front as to leave considerable space between them and the turret, thus rendering them, like the broadside carriage, independent of concussions or indentations of the armor.
1015. Recoil.-The shock of recoil on the trunnion-blocks is distributed over large bracket surfaces by the wrought-iron guides in which they move. That from the carriage is conveyed to the girders by the long brackets of the carriage, whose inner plate of cast-iron resting on the girders form excellent frictional surfaces.
1016. The Turret has a spindle at its bottom extending downward a short distance into a strong framework built for it; the lower edge of the turret rests on coned rollers, connected by rods with a tlange or collar on the spindle. The whole being protected by a slield (Fig. 248). It is revolved by machinery worked by steam or by hand power; usually both are provided. If worked by hand, the handles by which the power is applied are placed on the deck below, outside the turret, requiring with eighteen men about eighty seconds to perform one-half revolution; with steam, eighteen seconds.
1017. The In-and-Out Gear consists of a shaft carrying two endless chains, cominected and detached from the carriage in the same way as with the Broadside carriage. The shaft extends through the iron girders and the sides of the turret, to which handles are fixed to be worked by the men outside. It is arranged in halves and connected by a coupling, so that each gun may or may not be worked separately. As nearly twice the power is required to run in and out a Turret gun as a Broadside, the gearing is arranged to multiply the manual labor to the desired extent, with the Turret one hundred and tifty times and Broadside ninety.

Elastic Buffers are placed at each end of the girders or slide, to check the gun should it go in or out violently.
1018. Pointing is effected by sights on top of the turret, on which allowance is made for the height above the gun. Inaccu-
racies in the parallelism of the sights and axis of the gun are so far compensated for by the greater distance between the front

and rear sight (Turret), that with rolling motion, better shooting is sometimes made than with the short radius sights on the gun itself. By reference to the figure, it will be seen that the same compressor and in-and-out gear are used with both Turret and Broadside carriages. When the Turret is fixed and the gun movable, the latter rests on a turn-table worked by steam, which brings the gun to the port, the training being effected by the mechanical gear.
1019. The Turret Indrcator.-With Turret guns, extreme depression can only be given when aiming directly abeam, and as the gun is pointed forward or abaft the beam, a corresponding reduction of the extreme beam depression occurs. There is also great liability of firing through the decks or shooting away rigging, etc. To obviate this danger and enable the person
pointing the gun, either on top or in the turret, to point the gun at night or in the day-time, clear of the deck and all obstruc-

Fig. 250.
tions, an instrument has been devised called the Turret Indicator, (Fig. 250), fixed either on the turret or in it. By which is seen at a glance, by day or night, the angle of depression at which both or either of the guns can be fired at every bearing, clear of the deck and all obstructions.
1020. Referring to Fig. 250, it will be seen that the indicator consists of a hollow disk, with a rod throngh its centre carrying a pointer; it is graduated near its outer circumference to
indicate the are of train that the gun makes with the beam. The number of degrees marked on the inner circle, as seen by daylight, indicate the amount of safe depression which may be given at that arc of train, the gun right or left being marked on the disk; also the fore and aft and beam points, the black spaces indicating the obstructions to fire.
1021. For use at night, the clear space of the disk as seen by daylight is illuminated, by which, although it appears blank by day, at night it shows the same graduated arc of train and corresponding amount of depression as the outer disk, the fore and aft points being indicated by illuminated letters seen through the open space in the upright piece. By machinery or hand power the pointer is made to follow the movements of the Turret, recording the are of train and corresponding depression.
1022. THE MONCRIEFF SYSTEM OF GUN-CAR-RIAGE.-The principle on which this carriage is constructed may be shortly stated as that of ntilizing the force of the recoil in order to lower the whole gun, so that it can be loaded out of sight and out of exposure, while retaining enough of that force to bring the gun up again into the firing position.

This principle belongs to all the carriages: but the forms of these carriages, as well as the method in which this principle is applied, vary in each case. For instance, in siege guns, where weight is an element of importance, the recoil is not met by counterpoise. With heavy garrison guns, on the other hand, which when once mounted remain permanent in their positions, there is 110 objection to weight. In that case, therefore, the force of gravity is used to stop the recoil, becanse it is a force always the same, easily managed, and not likely to go wrong.

The great difficulty arising from the enormous destructive force of the recoil of heavy guns is here overcome.
1023. That part of the carriage, E (Fig. 251), which is called the elevator, may be spoken of and treated as a lever; this lever has the gun-carriage axle at the end of the power-arm, and the centre of gravity of the counter-weight, C, at the end of the weight-arm, there being between them a moring fulcrum.

When the gun, G, is in the firing position, the fulcrum on which this lever rests is almost coincident with the centre of gravity of the counter-weight, C , and when the gun is fired the elerators roll on the platform and consequently the fulcrum, or point of support, travels away from the end of the reight-arm towards the end of the porer-arm, or in other words, it passes from the counter-weight, C , towards the gun, G .

When the gun is fired, its axle passes backwards on the upper or flat part of a cycloid. It is free to recoil, and no strain
is put upon any part of the structure, because the counterweight commences its motions at a very low velocity. As the

Fig. 251.
recoil goes on, however, the case changes completely, for the moving fulcrum travels towards the gun, making the weightarm longer and longer every inch it travels. Thus the resistance to the recoil, least at first, goes on in an increasing progression as the gun descends, and at the end of the recoil it is seized by a self-acting pawl, or clutch.

The recoil takes place without any jar, without any sudden strain, and its force is retained under control by the men at the gun, to bring it to the firing position at any moment they may choose to release it. The recoil, moreover, however violent at first, does not put injurious horizontal strain on the platform.
1024. Hydraulio Appliaxces.-The hydraulic system of

FIG. 252.-Turret with two 38 -ton guns, showing loading from below under port, and hydraulic buffer.
loading and working guns as applied to the turret of the Thunderer, is illustrated by Fig. 252.

The principal mechanism of a gun-carriage mounted on a slide is that for absorbing and regulating the force of recoil, and for moving the gnn from loading to firing position, (1) back. In the usual English type of carriage the former office is performed by a peculiar and very porerful brake, known as the compressor, and the latter usually by winch-gear, giving motion to an endless chain so placed beneath the carriage that it may be seized at any point by a clutch on the carriage.
1025. In the hydraulic arrangement all this mechanism is replaced by the press or cylinder seen in the figure; this press acts both to check recoil and to give motion to the gun-carriage on the slide. It is fixed on the slide in the line of recoil, with its piston-rod permanently attached to the carriage.
1026. Running In or Out.-To run the carriage in or out it is only necessary to admit to one side or other of the piston the water delivered from the steam-pumps. When the gun recoils the water is driven out of the press through a loaded and partly balanced valve, the resistance of which to its passage arrests the recoil, and can be adjusted at a moment's notice, so as to regulate the extent of recoil under different conditions. In its office of checking recoil it is self-acting, and always ready for use without any preparation. Whaterer the meight of the gun, no men are required for running in or out beyond the one whose duty it is to open and close the valves which allow the water-pressure to act.
1027. The gun is made partial muzzle-piroting by hinging the slide horizontally at the rear, the front end being free to be raised or lowered upou suitable chocks from the floor of the turret, at the different heights required to give the desired range of elevation to the gun in the port.
1028. Loading.-The loading is effected by turning the turret so as to bring the muzzle of the gun opposite either one of two distinct sets of loading-gear placed on the main deck, and locking it in this position by a catch. The gun is at the same time depressed, so that the charge nay be raised to the muzzle and pushed home in the bore at au inclination from below the upper deck.

The projectile is brought up to the loading-place on a small railway-truck controlled by a friction-plate, which clamps it to the rails whenever the truck-handle is lowered. It is then run on to a hoist which rises with it out of the main deck until arrested by stops placed so as to bring the hoist to rest mhen the projectile is in line with the bore of the gun. It is then pushed off the truck into the muzzle, and rammed home by an
hydraulic rammer, consisting of a parallel tube in which runs a piston-rod armed with a rammer-head.
1029. Sponging.-The same rammer is used for pusling home the charge and also for cleaning the bore after each round. For this purpose the head of the rammer is formed like an ordinary sponge, and it contains a self-acting valve, which opens when pushed against the end of the bore, so as to discharge a strong jet of water within the gun. In loading, this valve does not act, because it does not then come in contact, owing to the peculiar form of the rammer-head.

The same form of rammer has been made telescopic to reduce its length. A wad pushed home with the projectile prevents it from running forward when the rammer is withdrawn.
1030. Advantages.-The advantages claimed for this method are:

1. The loading operation is transferred from a confined space and exposed position in the port, to a roomy and convenient place on the main deck, where the apparatus is completely protected.
2. The dimensions, and consequently the weight, of the turret required to protect any given gun are greatly reduced, because the minimum diameter that will take in the length of the gun is all that is necessary, without additional space for loading.
3. Instead of a large gun's crew, one man in the turret and one outside may direct and control all the movements of the heaviest gun, and may load and fire it without other help than that involved in bringing up the ammunition; and, finally, far greater rapidity of fire is obtained than would be possible by manual power.

The loading positions are duplicated, to give a reserve in case of accident, or to enable that one to be selected which may best keep the turret-port out of the line of the enemy's fire. In the event of accident to the hydraulic loading-gear, the gun may be loaded from below by hand.

The carriages are arranged so that recourse may be had to hand-power for working the guns, should any accident to, or failure of, the lydraulic system occur. For this purpose the mechanical means of working by hand have been retained side by side with the hydraulic apparatus, and it has been necessary to adhere generally to the usual mode of mounting a gun. But it is thought that where this condition is not imposed, great advantages in simplicity and strength of the apparatus required, and in the safety with which exceptionally heavy guns may be worked, can be obtained by a radical change in the method of mounting the gun.

CHAPTER VIII.

EXPLOSTVE AGENTS.

Section I.-General Consideration of Explosives.*

1031. Defintirons.-An explosion may be cousidered as the result of a chemical change in the solid or liquid body, by which is suddenly, or very rapidly, produced from it a great volume of highly expanded gas.

Explosives may be defined as a class of bodies, the molecules of which are in such a state of unstable equilibrium, that a slight disturbing agency will cause chemical change among them; the effect of which change is to produce suddenly a very large volume of highly expandel gas.
1032. Explosive Effect.-Explosive reaction is the term applied to the chemical change which takes place in explosive bodies when their equilibrium is destroyed, while the blow or impulse given by the sudden production of the large volume of lighly heated gas is termed explosive effect.
1033. Explosive Confpounds.-An explosire compound is a single definite chemical compound, the particles of which rearrange themselves to form the gases evolved by explosion.

The more important of the explosive compounds in extensive use for various purposes are:

> Fulminute of Mercury,
> Fulminate of Silver,
> Nitro-glycerine, Gun-cotton.

Explosive compounds are much more sudden and riolent in their action than explosive mixtures.
1034. Explosive Mixtures.-An explosire mixture consists of combustibles and supporters of combustion, mixed so that by their mutual action a large quantity of gas is dereloped. The most important explosive mixture is gunpowder.
1035. The combustible bodies that may be used are very numerous, but practically there are only two bodies which are used to supply the oxygen necessary for burning the combusti-

[^30]ble. These are potassium nitrate or saltpetre, and potassium, chlorate. Therefore all mixtures may be divided into two classes, namely: nitrate and chlorate mixtures.

Nitrate Mixtures.-The most important one under this head is that composed of saltpetre, sulphur, and charcoal (Art. 1047). In various proportions this mixture is employed for very many purposes; the action is the same in all cases, so that the explosion of gnopowder fully illustrates them all. Nitra e mixtures are not greatly susceptible to friction, concussion, or percussion. In general the explosion of these mixtures is comparatively slow.
1036. Chlorate Mixtures.-In general, the explosion of these mistures is much more sudden and violent than that of nitrate mixtures, and they are also much more sensitive to percussion, concussion, and friction. Generally speaking, all chlorate mixtures are unsafe, and dangerous to handle or transport on account of their susceptibility to accidental explosion.
1037. As examples of this class may be mentioned, potassium chlorate mixed with resin, galls, gambia, tan, etc. ; such as Hosley's, Oriental, Erhardt's powders, ete. ; with sugar, potassium ferrocyanide, or ferricyanide; such as white or German gunpowder; with sulphur as used in explosive bullets.
1038. A gaseous explosive mixture is nearly as sudden in its action as an explosive compound, for it contains particles in a state of perfect mixture, each gas acting as a vacuum to the others. This is not the case with solid explosive mixtures; therefore these latter are less sudden and violent in their action than either gaseous mixtures or explosive compounds.
1039. Intensity of the Explosion.-Explosion may be of different degrees of intensity, from that where the body is converted into gas by gradual combustion up to detonation, where the whole mass of the body is suddenly and violently converted into gas ; as for example: when gunpowder is ordinarily fired, each grain commences to burn on the surface, the burning gradually extending to the interior, until the whole is consumed, while nitro-glycerine seems always to detonate, which partially accounts for its excessive violence.
1040. Means of Causing Explosion.--The application of heat either directly or indirectly is the principal means of cansing an explosion. Directily, as by a match, a red-hot iron, etc. Indirectly, by friction, where the mechanical energy of rubbing is converted into leat; by percussion, where heat is generated by the direct application of a blow; or by concussion, where heat is generated by a jar or shock communicated through a second body.
1041. Method of Pronucing Explosion.-The circumstances under which an explosion takes place create a marked difference in the effect produced. Every one is familiar with the different effects produced by firing gunpowder in the open air and firing it in a confined space; but, apart from this, the mode by which it is fired exercises immense influences, both upon the force and the rapidity of its explosion.

Suppose that a quantity of fulminate of mercumy be exploded within a mass of any other explosive; apart from the flame produced, a blow will be given by the gas suddenly formed by the fulminate, which will act upon the surrounding explosive percussively, like the blow of a hammer upon an anvil. The very rapid motion of the particles of gas will give them a force, as regards any resisting body, similar to that exercised by a solid, having a great velocity, against any obstacle in its path.
1042. DETONATION.-When the flame of the fulninate is applied directly to the explosive, the chemical change is initiated at the point of application, and, if the flame alone were considered, would gradually spread from this point through the inass; but the percussive blow is extended through all parts of the body with very great rapidity, enormously expediting the speed of the explosive charge. In certain cases the effect is practically simultaneous throughont the whole mass of the body exploded, thus producing detonation, the effect of which is much more powerful than that of an ordinary explosion.
1043. Explosives Capable of Detonation.-Each explosive body that has bcen experimented with seems to have a particular mode of detonation, and probably all explosives may be detonated if the right method of doing so be known. Guncotton seems to have a greater range of susceptibility to different modes of firing than any other explosive agent. It can be made to burn slowly without explosion, and the rapidity of its combustion can be increased up to the point of detonation. Nitro-glycerine, as before stated, appears always to detonate. (It is not sensitive to flame as directly applied.) Fulminate of mercury is a detonating substance, but the quantity of gas given off is comparatirely small, hence the limited range of its destructive effect. Gmopowder is said to be capable of detonation, but it is more difficult to obtain detonating effects with it than with any of the others.
1044. Detonarion, how Produced.-Detonation can only be produced by the application of the requisite blow or shock, and this is usually accomplished by means of a detonating fuze
containing the required amount of fulminate of mercury, the amount differing for each explosive.

Fulminate of mercury has been found to be by far the best agent for producing detonation; less of it is required than of any other explosive. Nitro-glycerine is much more powerful than fulminate of mercury, but while a certain amount of the latter will detonate gun-cotton, seventy times as much nitroglycerine will not accomplish it. Chloride of Nitrogen and Iodide of Nitrogen are much more violent than fulminate of mercury, yet a larger quantity of them are required to produce detonation. These facts indicate that there is some peculiarity in the impulse given by the firing of fulminate of mercury that affects other explosives more powerfully than that given by any other body, though the latter may be the stronger. It may be considered that this is owing to a peculiarity of vibration, or wave motion, due to the explosion of fulminate of mercury, which causes greater disturbance among the molecules of other explosives than the vibrations produced by any other explosives.
1045. Nature of Detonation.-Detonation is really only an exceedingly rapid explosion. In an ordinary explosion like that of powder in a gun, much force is lost by the slowness of the action. As gases expand heat is absorbed, so that if the gases can expand as they are formed, much of the heat of the chemical reaction is absorbed, diminishing the sharpness of the explosive effects, which is therefore not sudden but gradıal. With a force gradually generated and exerted, we have a propulsive effect, but a detonation has a disruptive violence, which may become almost irresistible.
1046. Illustrations of Explosion by Detonation.-The practical value of this mode of developing the force of explosive agents is very great. The necessity of confining gunpowder and other explosive materials in strong receptacles for the purpose of developing their explosive force, is greatly reduced, and indeed entirely dispensed with in the case of charges fired under water, when detonating fuzes are used as the exploding agents.

Masses of hard material of great size or strength, such as blocks of hard rock, large iron castings, or thick bars of iron, may be broken up by simply placing upon one of their surfaces a comparatively sinall charge, quite muconfined, of compressed gun-cotton, or of a nitro-glycerine preparation, and exploding it by means of a detonating-fuze.

In such operations the destructive effect of the detonation will be increased by covering the charge with sand or other material, but in hurried operations good results may be obtained
with either of the materials specified by detonating them when freely exposed to air.

For hasty demolition of buildings and of military works, the explosion by detonation affords most important facilities, reducing the difficulties, dangers, and cost of such operation to a minimum.

Section II.-Manufacture of Gunpowder.

1047. Gunpowder is the agent employed for the firingcharge of all ordnance, and for the bursting-charge of all projectiles.

Its use depends upon the fact, that at the moment of ignition, violent deflagration takes place, accompanied by the erolution of a large volume of gas. It is evident that if the explosion occur in a limited space, a vast pressure accumulates and becomes a propulsive force. The gas produced by the explosion of good gunpowder occupies nearly 900 times the rolume of the powder itself; but, owing to the high temperature, the space occupied by the gas at the moment of formation is probably 3,000 times greater than the volume of the powder.

It has been found that no composition fulfils so many requisites for charging fire-arms as a mixture in due proportions of nitre, charcoal, and sulphur, and it is this composition which constitutes gunpowder.

The ingredients should be of the greatest possible purity, both for the quality of the porder and the prerention of disastrous accidents in the manufacture.
1048. INGREDIENTS OF GUNPOWDER."-The ingredients for the manufacture of gunpowder should be supplied in the rough state, and refined and prepared for use at the factory, in order to insure as far as possible uniformity of results in manufacture and safety in carrying it on.

It is manifestly useless to attempt to obtain powder possessing uniform qualities unless measures are taken to insure the nuiform purity of its constituent elements: and although presence of chemical impurities may be readily detected in samples of refined saltpetre and sulphur supplied by contract, and though it might be possible to derise a series of practical tests for the various physical qualities by purchase, there can be no guarantee for the purity of the former and uniformity of the latter equal to that of careful supervision during the actual processes of preparation and refining.

[^31]A manufacturer who refines his own saltpetre and sulphur, and burns his own charcoal, has means of insuring the purity and uniformity of the ingredients of which he makes use, far superior to that of any system of testing, however careful.
1049. The additional security against accidents in the course of manufacture, gained by careful exclusion of all foreign matter from the ingredients during the processes of refining, is of even greater consequence in the manufacture of gunpowder. The question, how far the too frequent explosions in powder factories are dependent on the presence of minnte particles of foreign bodies introduced into the ingredients after refining and before they come into the hands of the mixer, has not received the attention which it deserves. But it is too often found that though care be taken to exclude any fragments of sand, grit, etc., from the powder from the time it leaves the mixing-house till the time that it is finished, the same vigilance is not exercised in excluding minute particles of foreign substances from the unmixed ingredients, by which negligence the subsequent precaution is altogether thrown away.
1050. Those engaged in removing saltpetre from the refinery to the mixing-house should be scrupulously careful not to step into the bins where it is stored without putting on clean magazine shoes, and should not make use of any shovels, barrels, etc., but those kept specially clean and free from grit for the purpose; and the same precautions should be taken in handling sulphur and charcoal, the latter of which should be picked over by hand, piece by piece, before being gromed, and after that treated with the same care as the other ingredients. If precautions to avoid accidents are worth taking at all, they must, to be effectual, be commenced whenever the ingredients are taken in hand, and maintained to the end of the manufacture.
1051. Refining Saltpetre.-The principle on which the process depends, is that saltpetre is greatly more soluble in hot than in cold water, while the impurities generally found in it do not present the same disparity in their solubility at different temperatures. Thus a saturated cold solution of crude saltpetre will, as its temperature is raised, take up a much greater additional quantity of saltpetre proportionately than it will of the other salts present. Hence if a boiling saturated solution of the impure salt be made and allowed to cool, it will deposit the excess of saltpetre and retain the other salts in solutiou. Boiling water will take up 39.61 parts of chloride of sodium, and about 240 of saltpetre. Water at the temperature of 70° will take up about 36 of the former and abont 32 of the latter. Consequently, if a boiling solution saturated with salt-
petre and chloride of sodium be cooled to 70°, it will deposit about 208 parts of the former to about 3.6 of the latter.

All, therefore, that has to be done in refining saltpetre is to make a concentrated solution of this crude material at a high temperature, to run the solution into flat troughs, to keep it in constant agitation as it cools down, and then to remove from it the saltpetre as it crystalizes out of the mother liquor.
1052. Description of the Refintag Process.-Solution. -About two tons of crude saltpetre are pressed in a large open copper pan capable of holding about 500 gallons of water, and about 270 gallons of water are added to it. This is generally done over night, and the fires are lighted under the copper early the following morning. Over the bottom of each pan is placed a false bottom of iron perforated with holes of an inch in diameter, to allow the sand and insoluble impurities to fall to the bottom. In about two hours the whole of the saltpetre will be found to be dissolved and the solution boiling, and the specific gravity of the solution being about 1.49, it reaches the temperature of $230^{\circ} \mathrm{F}$. The false bottoms are pulled out just before the solution begins to boil, and the scum, containing the greater part of organic impurities, is removed from the surface. The solution is allowed to boil for about half an hour longer, until no more scum rises to the surface; the copper is then filled up with cold water, and the solution again boiled briskly for a few minutes, after which it is allowed to cool down to become of a proper temperature for being pumped into coolers.
1053. Filtering.-The filtering process is almost always used when refining saltpetre for gunpowder-making, but is sometimes omitted when refining for other purposes. In the latter case the solution is made of extra strength and consequently denser, and the cooler being placed below the level of the coppers, the solution is run directly into it through a pipe, the oritice of which in the copper is placed at a certain height above the bottom, to prevent the sediment running out with the clear liquor. But filtering affords a much more certain plan of obtaining a clear liquor for crystallization, and presents little difficulty and causes very little loss of time.

1054 . When the temperature of the solution has fallen to $220^{\circ} \mathrm{F}$., with a specitic gravity of about 1.53 , it is ready for pumping into the filters. When the solution has arrived at the proper temperature for the process, a common hand-pump is lowered into the copper, and the solution is pumped into a wooden trough leading to another larger one, termed the supplytrough, furnished with six holes in the bottom, beneath which the filtering-bags are suspended. Wooden plugs are provided
for these holes in the bottom of the supply-trough, so that if the bags become clogged, the flow of solution may be stopped till they are replaced by clean ones.

1055 . The bags are suspended on iron hooks underneath the holes in the supply-trough. They are always rinsed with hot water before the tiltering commences, and require occasionally a little poured over them to prevent the formation of crystals during the process, which would clog the canvas and prevent the solution running.

Occasionally a solution is found to contain so much organic impurity, that it will not run through the filters. In this case a little glue, about 1 lb . to 2 tons of saltpetre, is added to the solution in the copper, which has the effect of throwing up a great part of the impurity as a scum, which can be removed before the liquor is pumped out.
1056. The filtering of a copperful of liquor, of the strength described (Art. 1052), takes about three-quarters of an hour. As soon as it is all removed from the copper, the pumps, which are suspended overhead on a small pulley, are pulled up and the coppers, if necessary, cleaned out. The sediment, consisting principally of sand in the proportion of about $\frac{1}{4}$ per cent. of the crude, is washed and the washing reserved for evaporation. A wooden trough placed directly underneath the filtering-bags receives the solution as it runs from them, and conducts it directly into the cooler. When all the solution is filtered, the bags are rinsed with hot water into the evaporat-ing-pots, and then washed and hung up to dry.
1057. Crystallization.-The cooler, or crystallizing cistern, is a large, shallow, flat trough of sheet copper, being about 12 feet long, 7 feet wide, and 1 foot deep. By the time the solution runs into it the temperature will have fallen to between 190° and $180^{\circ} \mathrm{F}$. As the temperature continues to fall, the excess of saltpetre crystallizes out, leaving, of course, a considerable quantity still in solution, and along with it the chemical impurities of the crude salt, the chlorides and sulphates.

If the solution were left to crystallize without agitation, the salt would be deposited in the form of large crystals, each of which would enclose a small quantity of this impure mother liquor. To prevent this, the liquor in the coolers must be kept in constant agitation, to cause it to deposit the salt in the form of flour, or minute crystals. This is effected by a workman who, for the first hour or so, until the temperature of the liquor falls to about 90°, keeps it constantly stirred by means of a large wooden hoe, with which also the flow is drawn to the side of the cooler, to be shovelled out with a copper shovel.

As it is removed, it is first thrown into an inclined board, or drainer, to allow the excess of liquor to run back into the cooler. It remains on the drainer for some minutes, after which it is transferred to the washing-vat.

105s. When the liquor falls in temperature to about $90^{\circ} \mathrm{F}$., the agitation is discontinued, because the crystals are deposited much more slowly, so that the cost of labor would be considerably increased. The crystals which are deposited at a temperature below this also contain a much larger quantity of mother liquor. About three quarters of the entire quantity of saltpetre is removed from the solution, if the agitation be stopped at $90^{\circ} \mathrm{F}$.

The crystallizing process may be very materially hastened by artificial cooling. In some refineries, where a good fall of water can be obtained, a stream of cold water is made to run under the bottom of the cooler. This reduces its temperature very rapidly, and causes the flour to be deposited with less loss of time.
1059. The mother liquor is left to cool down after the proper amount of flour has been removed from it. As soon as its temperature approaches that of the atmosphere, large crystals are deposited in the cooler. The liquor, still, of course, a saturated solution containing all the original soluble impurities, is run off and reserved for subsequent evaporation. The crystals are scraped off and transferred to the refinery copper with the next charge of crude salt.

The following is an analysis of a sample of the salts left in solution in the liquor:

$$
\begin{aligned}
& \text { Saltpetre. } 1.40 \\
& \text { Chl. Sodium.................................... . . . } 18.51 \\
& \text { Sulphate of Soda. } \\
& 3.39 \\
& \overline{99.30}
\end{aligned}
$$

-which should be compared with the anaysis of the crude salt.
1060. Washivg.-The washing-rat, to which the saltpetre flour is transferred, is of wood, about 6 feet long, 4 wide, and $3 \frac{1}{2}$ deep. It is provided with a false bottom pierced with small holes, nonderneath which is a plug-hole mhich can be closed or opened as required. In this vat the saltpetre receires three washings, the first being given at once, as soon as it is raked from the strainers into the rat, to remore the excess of mother liquor still adhering to it. About 70 gallons of water are run through the vat, and, escaping from the plug-hole nuderneath the false botton, are conducted into an underground
tank. The second washing is done by covering the crystals with water and allowing it to stand for half an hour, the plug being in, and then allowing it to run off into a second moderground tank. The crystals are allowed to drain for half an hour after this washing. The third washing is given by running about 100 gallons of water through the crystals, as in the first washing, the plug-holes remaining open.

The water from the third washing runs into the tank which receives the second, the contents of which, being comparatively free of impurities, are used in the refining coppers. The water from the first washing is only used in the evaporating-pots. It is, of course, most important that the purest water should be used for these washings. Distilled water should, if possible, be alone employed. The washings, as they run off, are saturated solutions of saltpetre; but they take up, in passing through the salt, any traces of chlorides remaining in it.
1061. Tests.-Supposing all the foregoing operations to have been properly carried on, the saltpetre will be found to be perfectly pure. Should it be deemed necessary to test it for impurities, it should be subjected to the following. A solution should be tested :

1. With blue and red litmus paper, for the presence of an acid or alkali.
2. With a solution of nitrate of silver, for the presence of chlorides, which would throw down the insoluble chloride of silver.
3. With a solution of chloride of barium, for the presence of sulphates, which would give the insoluble sulphate of baryta.
4. With a little oxalate of ammonia, for lime, which would give oxalate of lime.
In the ordinary practice of a refinery, the second test, viz., that for chlorides, more especially the chloride of sodium, is the only one ever used.
5. The saltpetre is transferred to the store bins generally the day after it is refined. In removing it from the washing vats, about six inches deep at the bottom is left, as it contains a great deal of water. After remaining in the bins three or four days, it will be found to contain from three to five per cent. moisture, according to the season. It remains in the bins till required for use in the mixing-house, the saltpetre used for powder-making being always used moist.
6. Drying.-Should a supply of refined saltpetre be required for storage or transport, the salt is generally dried before being placed in barvels. This is done in a lot-chamber : a small room with a stone floor, underneath which runs a flue; and pro-
vided with racks inside, on which are placed the flat copper trays containing the saltpetre.

The hot-chamber is capable of containing two or three tons of saltpetre, and the temperature is generally raised to about $220^{\circ} \mathrm{F}$., which dries it completely in from four to six hours. The salt is covered in a flat tray, placed outside the store before being barrelled up.
1064. Extracion of Saltpetre fromi Damaged Powder.The extraction of saltpetre from powder sweepings, a considerable quantity of which accumulates in the course of manufacture, and from powder which may have been accidentally wetted or damaged by long storage in damp magazines, forms a part of the ordinary nature of duties in a refinery of saltpetre. Copper pans are used for stirring the sweepings, and any damaged powder which may be sent to the factory is also placed in pans. As a precaution, the contents of each pan are carefully and thoroughly melted, and the supply is not allowed to become dry by evaporation.
1005. The Operation.-About 240 gallons of water are pumped into a copper of 400 gallons capacity, and brought nearly to the boiling-point. Pure water must be used for the first day's operation, but afterwards the liquors obtained in filtering the previous day's work. About 900 bbls. of the damaged powder are then thrown in, care being exercised that it is thoroughly wetted throughout before being brought into the extracting-house. The mixture is stirred and boiled for threequarters of an hour, after which the fire is damped and the solution ladled into filters of coarse sheeting. From the first series of filters, the solution passes to a second row, through which it passes, clear, into a tank. From the tank it is subsequently pumped into the evaporating-pots and boiled down. The saltpetre being of course pure, the boiling is merely to drive off a certain quantity of water. When sufticiently reduced it is again filtered and crystallized in small copper pans. The crystals obtained are nsed as crude saltpetre. The carbon and sulphur obtained are thrown on the waste-heap, being of no value.
1060. The whole process of extraction is dirty and troublesome, and the expediency of carrying it on to any great extent depends on the price of saltpetre at the time, and the price which can be obtained in the market for damaged porrder. Powder sweepings should of course almays be extracted, as they are liable to contain particles of foreign substances; but provided powder be merely old and dusty, it may still be well adapted for blasting operations, and may command a good price.
1067. About 94 per cent. of the saltpetre contained in powder can always be obtained by extraction, against the value of which must be set off the cost of the men's wages employed in the process, the amount of fuel expended, etc.
1068. Sulphor.-The sulphur used in gunpowder-making is imported from Sicily. The finest quality is alone employed. As imported, the sulphur contains from three to four per cent. of earthy impurities, having already undergone a rough purification by distillation before it comes into the merchant's hands. It is finally and carefully purified at the factories by a second distillation.
1069. The substance exists in several distinct conditions or forms, two of which require special notice, viz., the soluble, or electro-negative form, and the insoluble, or electro-positive. Distilled sulphur consists alnost entirely of the former. Sublimed sulphur, contains a large proportion of the latter. Distilled sulphur, as used in the manufacture of gunpowder, consists of masses of clear yellow crystals in the form of rhombic-octahedra, and is readily soluble in bisulphide of carbon. Sublimed sulphur, known as flowers of sulphur, is a pale yèllow powder, composed of minute particles which do not present a crystalline structure, but which are merely minute granules consisting of insoluble sulphur, enclosing a small portion of the soluble variety. This latter form of sulphur is to a great extent insolble in the bisulphide.
1070. Description of Refining Apparatus. - The apparatus employed consists of a large pot of cast-iron, A (Fig. 253), set in brick work, the metal being very thick. Round the top edge is shrunk a strong ring or tire of wrought-iron, to prevent splitting by explosion. On the top is fitted a large dome-shaped cover, also of cast-iron, secured to the pot by three wronght-iron tie-rods, which are secured by screw-bolts to a wrought-iron ring passing round the neck of the cover. At the top of the cover is a circular opening fitted with a heavy cast-iron lid, the weight of which is sufficient to keep it in its place during the refining process. In this lid is an iron plug-lole having considerable taper, through which the pot is charged. The castiron plug which closes it fits sufficiently tight to prevent escape of sulphur-vapor, particularly if a little sand be thrown over it; but at the same time it acts as a safety-valve, being lifted out if an unusual pressure of vapor is exerted inside the pot.
1071. From the dome-shaped cover two pipes proceed at right angles to each other, one to the subliming-dome, the other to the distilling-tank, or receiving-pot. The tirst pipe is furnished with a throttle-valve (Fig. 254), D, which can be closed
or opened by a handle from without. The other pipe is encased in a water-jacket, and can also be closed or opened by means of

FIG. 253.-Ground Plan of Sulphur-refining Apparatus.
A. Melting Pot.
B. Pipe with Water Jacket leading to C.
C. The Receiving Pot.
D. Pipe leading to Subliming Dome.
a valve. When distilling, a constant How of water is maintained through the water-jacket (Fig. 255). An escape pipe fitted to this jacket allows of the escape of water when there is a sudden development of steam caused by the heat of the sulphur rapor.
1072. The receiving-pot, C, is merely a large circular vessel of cast-iron, which is set on a frame inserted in small trucks, to allow of a slight movement when the pipe which connects it with the melting-pot becomes expanded and lengthened br the heat of the sulphur rapor passing through it. There is a large circular opening in the lid through which the melted sulphur can be ladled out when necessary. This opening is closed by an iron lid similar to that of the melting-pot, in which is also in small plug-hole through which the depth of melted sulphur in the receiving-pot can be ganged with an iron rod. A small pipe leads from another opening in the lid of the receiring-pot into a square wooden chamber lined with lead to receire any new condeused vapor, and sares it to deposit its sulphur in the form of flowers. This chamber is provided with a tall chimney, also of wood, containing a series of steps or traps to catch as much of the flowers as possible.
1073. The subliming-dome is a large dome-shaped building of brick, E (Fig. 254). The pipe for the sulphur-pot enters it

Fig. 254.-Sulpur Refining Pot and Dome.
near the top. The chamber is lined with flag-stones, and the floor is covered with sheet-lead. It is provided with two doors, an inner one of iron, an outer one of wood lined with sheetlead, both close fitting, through which passes a pipe to allow the escape of air. This pipe terminates in a vessel of cold water.
107t. Process of Refining. -If distillation alone is to be carried on, about $5 \frac{1}{2}$ cwt. of crude sulphur are placed in the pot each morning. An extra hundred-weight must be put in, if both distillation and subliming are to be carried on together. The fire being lighted, the conical cast-iron plug is left out of the hole in the lid of the pot, the passage into the dome is opened, and that into the receiving-pot closed. The heat is maintained for three hours till the sulphur is of a proper temperature for distillation. The rapor which first rises from the pot is of a pale yellow color, and as much of it as passes into the dome falls down condensed as flowers of sulphur. But at the end of three hours the vapor becomes of a deep reddish-brown color, showing that the temperature of the melted sulphur has reached the proper point.

The plug must then be inserted in the lid, the communication to the dome closed, and that leading to the receivingpot opened, allowing the heavy rapor to pass throngh the pipe surrounded with the water-jacket, by means of which a constant circulation of cold water is kept up round it. In this way the sulphur vapor is condensed, and runs down into the
recoiving-pot as a clear orange liquid resembling molasses in color and consistency.
1075. The person who watches the operation knows, by gauging the depth of the melted sulphur in the receiving-pot, when the greater part of the material has distilled over. He then lowers the fire, opens the communication into the dome,

Fitg. 2j5.-Sulphur-refining Apparatus. Section through Pipe leading to Receiving-pot.
and cuts off that leading to the receiring-pot, allowing the remaining sulphur to pass off into the dome as flowers. A low fire is maintained till the whole has been driven off, leaving the earthy residue quite free from it, and consequently loose like coal-ashes, so that it may be easily ladled out before recharging the pot.
1076. When both subliming and distillation are carried on at once, the first part of the process would be exactly as described above; but when the distillation was finished the fire would be maintained for the remainder of the day, but somerbat lower. to drive off the quantity required into the dome. And in this case the subliming process would be carried on for sereral days, and the pot and dome never allowed to cool down altogether till the required quantity of flowers of sulphur liad been obtained.
1077. It is of the greatest consequence that the fires should
be carefully regulated in all cases, for if the heat become too great and the temperature of the melted sulphur be allowed to rise to 836°, the rapor disengaged at that temperature is highly explosive when mixed with common air ; and if the plug be driven out by the pressure of the vapor, or if air be drawn into the pot through some leakage in the pipes, an explosion invariably happens.
1078. When the distilled sulphur in the remaining pot has conled down sufficiently, which it will do in the course of an hour or two, it is ladled by liand into wooden tubs and allowed to solidify. These tubs are constructed of a number of loose staves held together by broad wooden hoops, which can be struck off when the sulphur has set, allowing the staves to fall asunder and leave it as a solid cylindrical mass.
1079. Distilled sulphur immediately after being removed from the tubs is placed within a boarded-off enclosure, to guard against coming in contact with any fragments of grit or sand which might thus enter the powder, and is broken up into larger lumps, which are sent up to the factory to be ground under a small pair of millstones. After being ground it is reeled through 32 -mesh wire-cloth, and is then fit for the mixing-house.
1080. Testing.-Its fitness for use as an ingredient of gunpowder may be readily tested:

1st. By burning a small quantity on porcelain, when the amount of residium should not exceed 0.25 per cent.

2d. By boiling with water and testing with blue litmus paper, which it should only very feebly redden.
1081. Use as an Ingredient of Gunpowder.-As an ingredient of gunporder, sulphur is valuable on account of the low temperature ($560^{\circ} \mathrm{F}$.), at which it inflames, thus facilitating the ignition of the powder. Its oxydation by saltpetre appears also to be attended with the production of a higher temperature than is obtained with charcoal, which would have the effect of accelerating the combustion, and of increasing by expansion the volume of gas evolved.
1082. Charcoal.-The woods from which charcoal is now manufactured for powder-making, appear to have been in use from a very early period. Modern research has shown that there was a grood reason for their selection, and that the cause of their superiority over all other woods is probably that their charcoal when burnt with saltpetre and sulphur yields larger volumes of gas than any others.
1083. The Woods Used.-The woods generally used for the best gunpowders are the willow, the alder, and what is popularly known as the black dogwood. The more rapidly a wood has
been grown, the less dense will it be, and the better for powdermaking when converted into charcoal. The willow is one of the soitest and lightest of moods; it is of very rapid growth, nearly white, and has a tolerably large circular white pith. The alder is somewhat harder and denser in texture than the willow, and is not of such rapid growth. Its color is reddish-brown, and the pith is triangular in section. The dogwood is dense and tough, of slow growth, and having circular pith of a reddish color.
1084. Small wood of about ten years' growth is preferred for powder-making. Alder and willow of this age will be probably four or five inches in diameter, dogwood about one. The mood must be straight, perfectly sound, and entirely free from bark, and must be felled in the spring. Great stress is laid on the cleanliness of the wood. Any traces of bark adbering to it are not to be tolerated. If the wood is cut in the spring when the sap is rising, the bark is easily removed, and the wood is left perfectly clean. Wood cut at any other season of the year is just as good, only in this case the removal of the bark is a much more difficult matter.
1085. To Convert the Wood into Charcoal.-Wood is con-

Fig. 256.
verted into charcoal in iron retorts or cylinders, set into brickwork. Fig. $2 \breve{6} 6$ shows a transverse section of a set of crlinders,
giving the arrangement of the flues, by which the flame is made to play all around them; and Fig. 257 shows a longitudinal section of one cylinder, showing how the second cylinder, or slip, A, containing the wood is placed in its interior, and the arrangement of pipes by which the gaseous matter evolved from the wood is conducted into the fire.
1086. Each cylinder is made of cast-iron, having two pipes passing out at the inner end of it. When set, the lower one of these is closed with brick-work, the upper one only being used, and the lower one being only intended for use should the cylinder be turned round and reset. To the uppermost pipe is attached a branch pipe leading to a horizontal pipe extending behind the whole set of cylinders, from one end of which another pipe descends perpendicularly, joining another leading directly into the former. Each cylinder has a false bottom of brickwork, in front of which is bolted on a piece of wrought-iron plate having a cylinder hole corresponding to the uppermost pipe of the cylinder. The cylinders are closed with tight-fitting iron doors secured by a powerful screw, much in the same way as the ends of gas retorts are fastened.
1087. For convenience of handling, the wood is placed in

Fig. 257.-Longitudinal Section of Retort.
small cylinders of sleet-iron, A, termed slips, which are placed on small iron travelling carriages, on which they can be rom up
directly to the mouth of the cylinders and shot in. The back end of each slip is provided with a landle to facilitate withdrawal. The slips are a little over three feet in length so as just to take the cord-wood in easily.
1088. Provided the cylinders are hot, the wood is thoroughly charred in two or three hours. The plan of conducting the gas and tar from the wood into the fire is fomnd greatly to economize fuel, and to be the readiest means of ascertaining when the charring is properly and thoroughly done. This is shomn by the flame which issues from the pipe leading into the fire becoming of a violet tint, indicating the formation of carbonic oxide.

As soon as this is observed the doors of the erlinders are opened, the slips are hoisted out and lowered into large iron extinguishers having close-fitting lids, in which they remain for half a day, after which the charcoal is sliot into coolers-larse cylindrical cases of sheet-iron fitted with lids-and sent to the charcoal store. Wood yields abont 25 per cent. of charconl.
1089. Fffect of Temperature employed in Conversion.-It is of the highest importance that the charring of the wood should always be conducted as nearly as possible at the same temperature; for the chemical composition of the charcoal and the temperature at which it will ignite is undoubtedly affected by the temperature at which it has been charred. Charcoal prepared at a low temperature is softer, more inflammable, and contains more gaseous elements than charcoal prepared at a higher heat, and the gmpowders made from these charcoals would be similarly affected. It is hopeless, therefore, to attempt to obtain uniform results in manufacturing porrder, unless means be taken to insure uniformity in the preparation of charcoal.
1090. Qualities of Charcoal.-The fitness of charcoal for gumpowder depends on its chemical composition, which is indirated by its physical qualities. If properly made it should be jet-black in color, its fracture should show a clear, veliet-like surface, and it should be light and sonorous when dropped on a hard surface.

Underburnt charcoal, that is, charcoal that is prepared at a very low temperature is at once known by its reddish-brown color; overburnt charcoal. by its hardness and density. The former is greatly more infiammalle than the latter, charcoal prepared at a temperature of $500^{\circ} \mathrm{F}$. being readily ignited at a temperature of $640^{\circ} \mathrm{F}$., while chareoal prepared at $1500^{\circ} \mathrm{F}$. requires a temperature nearly double the last to inflame it.
1091. Underbmint charcoal has found faror for some smallarm powders. It certainly appears to render the powder more
inflammable, and consequently quicker, but it has the disadvantage of being more hygroscopic than denser charcoal, and of rendering the powder therefore more liable to suffer damage from damp. That underburnt charcoal produces a rery marked effect on gunpowder there can be no doubt. Recent experiments have proved that if two powders be made identical in all other qualities, the one with black charcoal, the other with red or underburnt charcoal, the latter will give a higher velocity to the projectile than the former. Powder made from underburnt charcoal can be readily distinguished, when crushed to tine dust, by its color.
1092. Proportions of Ingredients.-In determining the proportions in which the constituents shonld be mixed, the circumstances in which it is to be used must be considered.
A. rast number of experiments have been made at various times to discover the proportions of nitre, stlphur, and charcoal best adapted for the production of guupowder. It has been found that no general rule can be given which shall fultil every requirement, yet all nations appear to have found by trial the proportions most generally useful for ordinary purposes, and they all approximate to the percentages required by the formula

$$
2 \mathrm{KNO}_{3}+\mathrm{S}+3 \mathrm{C}
$$

supposing the charcoal to be pure carbon.
The percentage composition is generally thus: Nitre............................... 74.8
Sulphnr..... 11.9

$$
\text { Charcoal. } 13.3
$$

The percentage of nitre varies from 70 to 80 ; that of sulphur and charcoal from 10 to 15 each.

The best powder is intended for war and sporting purposes, and contains usually a little less sulphur and a little more charcoal than the above.
1093. The proportions required by regulation for gunpowder in the United States services are:

Nitre.
75
Charcoal
15
Sulphur
10
These proportions are not those which theoretically would give the greatest amount of gas. The charcoal is in excess, to allow for ash, and the sulphur is diminished, as it acts injuriously on the metal of the piece by the formation of a sulphide of iron, which eats away the surface of the bore.

When the proportion of charcoal is greater than that contained in common powder it will be less completely and rapidly burned.
1094. Blasting Powder, for example, contains a greater proportion of charcoal and less nitre ; its action is consequently slower, and if nsed in fire-arms, not only is the piece very soon rendered foul, but the ball is projected to a much less distance.

This alteration in the proportions is mainly on account of the great reduction in price thereby effected.
1095. Preparing and Mixing the Ingredients.-Before the ingredients can be mixed, they must be reduced to a powder sufficiently tine for the pirpose. It is important to bear clearly in mind the meaning of the terms mixing and incorporating, as they are used by gunpowder-makers. Though gunpowder is really only a mixture, very intimate, no doubt, of the three ingredients, and not a new chemical substance formed out of them, yet by mixing is understood only the stirring together for a few minutes of the saltpetre, sulpliur, and charcoal, to get them perfectly distributed amongst each other; and by incorporating, the long-continued trituration and grinding which the mixture undergoes under heavy edge-runners, by which a mass of the ingredients becomes transtormed, from a mere mixture of three different substances into gunpowder. A preliminary mixing, such as is employed at most gunpowderworks, may be dispensed with; incorporation, whether performed by pestle and mortar, in the stamping-mill, or under edge-rumners, never.
1096. If the saltpetre is used moist, an allorrance for this must be made in weighing. The percentage of moisture in the quantity used is ascertained by drying and pressing a sample, and comparing the weight before and after the operation. In this country it is found highly adrantageous to have the saltpetre dried and pulverized before weighing out.
1097. Occasionally dried, refined saltpetre may be employed for manufacture in the case of a stoppage in the saltpetre refinery. In this case the dried salt is first ground under a pair of small stone-edge runners, fitted rith scrapers to prerent the salt adhering to them, and then passed througl a slope reel covered with 28 -mesh wire, that which passes through the wire being used for mixing, the larger fragments being reground.
1098. The sulphur is ground in quantities of $2 \frac{1}{2}$ errts. at a time, under a pair of iron edge-runners, also fitted with scrapers, and sifted in a slope-reel corered with 32 -mesh wire.
1099. Charcoal, after being carefully hand-picked. to guard against the introduction of any fragments of foreign matter and underburit knots of wood, is ground in a mill resembling
a coffee-mill in action. (Fig. 258.) It consists of a cone working in a cylinder, each being furnished with diagonal ribs, or teeth, which are widely apart at top, but approach closely to-

Fig. 258.-Charcoal Mill and Reel.

$$
\text { A.-Cylinder. } \quad \text { B.-Cone. } \quad \text { K.-Reel. }
$$

gether at bottom. The charcoal, which is shot in at the top, passes out at the bottom into a slope-reel, covered with 32 -mesh wire, all fragments which do not pass through being transferred again to the mill.
1100. An important caution must be mentioned in comnection with the grinding of charcoal. After being burnt it should be allowed to stand for a considerable time-ten days to a fortnight-before being ground ; for when ground fresh after burning, the finely powdered charcoal absorbs and condenses oxjgen so rapidly as to generate a great amount of heat ; enough, in so bad a coudnctor, to cause spontaneous combustion. Instances of fires in gunpowder factories from this cause are on record, fresh-ground charcoal having been left overnight in wooden bins.
1101. Mixing-Machine.-The relative proportions of the three ingredients are weighed out in quantities of 50 lbs ., and
transferred to the mixing-machine. (Fig. 20ั9.) This consists of a hollow drum of gun-metal, which is made to revolve at a

Frg. 259.-Mixing-machine.
speed of 40 revolutions per minute. The bearings of this drum are hollow, to receive a shaft which passes through them. This shaft carries in the interior of the drum a series of 44 arms, or fliers, the points of which just clear the interior of the drum, and revolves at twice the speed of the drum, and in the opposite direction.
1102. A $50-\mathrm{lb}$. bag of ingredients is emptied into the drum through a square opening at the top of it, and the drum and shaft carrying the fliers being set in motion for five minutes, the saltpetre, sulphur, and charcoal are thoronghly mised together. The opening at the bottom of the drom allows the mixed ingredients to fall down the shoot into a tub, from which they are transferred to an 8 -mesh wire siere placed orer another shoot having a composition-lag placed beneath it. On the sieve the charge is carefully sifted by hand, to guard against any foreign matter, such as splinters of wood from the saltpetre bins, etc., passing into it, and falls through into the bags, in which it is tied up tightly and transferred to the chargehouse, ready for the incorporating-mill.
1103. Incorporation.-Incorporation is unquestionably the
most important of all the operations in the manufacture of gunpowder. Without it there would be no mannfacture, for the charge of saltpetre, sulphur, and charcoal goes to the in-corating-mill a mere mixture, and leaves it gumpowder. Nothing that can be done to it afterwards will add to its strength or explosiveness; no future treatment can remedy defective incorporation. By incorporation is, of course, meant the longcontinued grinding together of the ingredients which blends them together and brings them into such close juxtaposition, that they appear to form a new smbstance. Unless this be done perfectly, perfect mutual decomposition of the constituents of the gunpowder cannot be expected on combustion. The more thoroughly it is effected, the stronger will be the resulting gunpowder.
1104. Upon the thorough and effectual incorporation which it receives depends mainly the excellence of powder. Great attention is paid to the process, not only for military, but for sporting purposes, and the most powerful mills are always used. It has been carried to the highest pitch of excellence, and in many cases it is carried on for an unnecessary length of time; some of the finer sporting porders are said to be incorporated for twelve hours. Provided the incorporating-mill is sufficiently powerful, and is worked at a sufticient speed, a most thorough incorporation can be effected in a fev hours, after which there is no object in continuing the process. But as imperfectly incorporated powder cannot fail to be of inferior quality, and to foul the gun under most circumstances, it is best to incorporate the materials as thoronghly as possible; and if the powder is thus rendered too explosive, this quality can be reduced by increasing its density and hardness, and by rarying the shape and size of its constituent grains. (Art. 1114.)
1105. Imperfect Incorporation.-W Wat may be expected of an imperfectly incorporated powder may be at once seen by burning small quantities of different powders, varying in the amount of incorporation they have undergone, on plates of glass or porcelain. A perfectly made powder flashes off, leaving nothing but some smoke-marks; an imperfectly worked powder will coat the plate with specks of undecomposed saltpetre. This flashing test is a simple and effectual way of ascertaining the amount of working which has been bestowed on the powder in the mills, and is the only safe and infallible test of incorporation. This test must be performed by an experienced person, and no powder which does not stand it can be expected to shoot either strongly, uniformly, or cleanly.
1106. Tie Incorporating-mile.--In order to effect a close
and intimate reunion between the saltpetre, the sulphur, and the charcoal, they must be rolled and ground together for a

Fig. 260.-Incorporating-mill. (Eleration).
length of time; and the gunpowder-maker finds the most effectual way of accomplishing this, is to grind the materials together under heary edge-runners of stone or iron, which by their motion-a compound of rolling and twisting-soon work them into a homogeneous mass.

110\%. The millgenerally used consists of a pair of large heary edge-rumers of iron or stone, which revolve on a strong circu-
lar bed, the bed being, of course, stone for the stone, and iron for the iron rumners. (Figs. 260 and 261.) The runncrs are of

Fig. 261.
various sizes, weighing from 3 to 4 tons each, and being from 4 to 7 feet in diameter. Those of the smaller diameter are better than the larger, as the latter canse a greater twist on the bed, and are therefore more apt to cause accident. The face of the runners should be nearly flat, with a slight bevel towards the edge.
1108. The runners are connected by a powerful spindle of wrought-iron, which rests in brass bouches placed in the crosshead, so as to allow the spindle and runners to rise and fall according to the thickness of the layer of material on the bed. The spindle is placed in the cross-head, so as to bring one runner nearer to it than the other, and therefore cause them to describe different paths when in motion.
1109. The cross-head is fixed on a vertical shaft, on which is fixed, underneath the flooring of the mill, a wheel driven by
a pinion on the driving-shaft, which passes underneath the whole group of mills. By this arrangement the whole of the

Fig. 262.-Incorporating Mill. (Section.)
machinery is kept underneath, and out of reach of damage from explosion. The cross-head is fitted with a bracket on each side, to carry a plow, or wedged-shaped piece of wood shod with felt and leather, which travels round on the bed immediately in
front of the runners, and thus keeps the composition from working away from them.

The bed lias a curb or edge round the outside, formed by a sloping rim or casing fixed all round it; that on the inside is formed by the circular base of the conical socket, down which the vertical shaft of the cross-head passes. Both the inside and the outside curbs lave gun-metal rings round them for the plows to work against. Every fitting and bolt is arranged with the greatest care, so as neither to break nor become loose from the jolting of the mill, and thus drop into the charge.
1110. Tools Used.-The instruments used are a wooden rakic, to distribute the charge over the bed; a shover, or flat board on the end of a staff, to push off the charge from the bed occasionally; a copper chisel, to be used in getting the charge off the bed when finished; a brush for brushing the materials into the centre of the bed; a wooden mallet, to break up any caked powder which may adhere to the runners or bed ; and a copper watering-pot, used for watering the charge.
1111. The Operation.-The charges, which hare been carefully sifted in order to avoid the possibility of foreign matters getting into the mill-bed, are thrown one lalf on each side of the bed, and distributed evenly over it. The runners are then moved round a quarter revolution, and the piece of mill-cake left under them from the former charge is broken off and distributed over the fresh charge.
1112. This portion of mill-cake is of course finished powder, and quite hard, if the runners have been left standing on it. It is broken up and distributed to prevent its adhering to the bed and cansing too much friction. The runners are usually left on the portion of powder on which they stop when the incorporation is complete, as the attempt to move them off on to a leather placed on the mill-bed involves the risk of a portion of the runner coming down in contact with the bed, and thereby igniting some of the powder-dust with which every crevice is tilled.
1113. Before starting the mill about two pints of pure water are sprinkled over the charge. The runners are then started at a speed of about eight revolutions a minute. The millman does not remain in the mill, but only goes in from time to time to push up the charge from the bed and to add a little more water according to the state of the charge. From two to three pints are generally found to be necessary in rery damp weather, and as many as eight or ten in very bright days. The watering of the charge is left to the millman's judgment.
1114. Time Required for Incorporation.-The times of in-
corporation vary with the power of the mills. Thus, cannon powder requires $3 \frac{1}{2}$ hours working under stone runners weighing $3 \frac{1}{2}$ tons, and making $7 \frac{1}{2}$ revolutions a minnte, but only $2 \frac{1}{2}$ under iron runners of 4 tons, making 8 revolutions a minute. Small-arm (dog-wood) powders require $5 \frac{1}{2}$ hours in the former mills, and 4 in the latter.

Taking about 50 lbs . as the maximum amount which it is best to incorporate at one time under one pair of runners, it is easy to calculate the capacity of a gunpowder factory. A certain amomnt of work can be obtained from them, and no expedient can produce more; no extra time or work can be expended on the process.
1115. The powers of a gunpowder factory are therefore known, being regulated by the numbers of pairs of incorporating runners which it possesses. The manufacture of gunpowder cannot be hastened, and even if it could, an explosion may happen at any moment which may cripple a factory for the greater part of a year, so that an extensive store of gunpowder is always required to be kept on hand in case of war.
1116. Mill-cake.-As the process of incorporation approaches completion, the charge requires to be carefully watched, in order to ensure each tinished charge learing the mill in as nearly as possible the same state as regards moisture. The appearance of the powder when finished depends mainly on the state in which the charges leave the mill. The finished charge usually has from two to three per cent. of moisture. If too much moisture be present as the incorporation draws to a close, the charge must be repeatedly pushed up with a shover; if too little, some more must be added from the watering-pot. The color of the charge gives a very good indication of the amount of moisture present.
1117. When the process is finished, the charge, now known as mill-cake-bsing partly in the state of soft cake, and partly of dust-is scraped and swept up from the mill-bed, placed in woodentubs, and transferred to the charge-house to await inspection. If the charges are found to be of a proper color and consistencr, samples from each are taken, which, atter being ronghly granulated by land, and dried, are flashed on a glass plate to ascertain the thoronglness of the incorporation which they have undergone. This flashing is more a matter of form than anything else, for the mill-cake seldon fails to give satisfactory results.

111s. Danger of Incorporation.-As incorporation is the most important of all the operations in the manufacture of gunpowder, so it is by far the most dangerous. Accidents in the subsequent processes, where large quantities of powder are sub-
jected to treatment at one time, are fortunately rare; but in the incorporating-mills they may be expected from time to time. It is hardly possible it can be otherwise, considering the enormons friction to which the powder is subjected in them.
1119. The amount of water added to the charge does not reduce the ingredients to a pasty mass, and so lessen their explosiveness; on the contrary, the charge when it approaches completion is highly explosive. If a large amount of water were added, the saltpetre would be partly dissolved, and all the incorporation previously effected would be undone.
1120. It is difficult to conjecture how accidents do happen, unless it be from the charge adhering to the runners and leaving the bed bare, in which case the friction between the runner and the bed is so great as to canse a spark. Of course the more obrious canses of accident, such as some foreign body falling into the bed, are not alluded to here, but only those canses which are as yet unknown, and which no amount of vigilance can altogether avert.
1121. Drenching-apparatus.-Admitting, therefore, that occasional explosions in the incorporating-mills are inevitable, the object of the manufacturer is to render them as harmless as possible. As the mills are generally built in groups, an explosion in one, is very apt to spread amongst all the others round it. To prevent this a drenching-apparatus (Fig. 263), is erected over each pair of runners.
1122. The apparatus consists of a large shatter pivoted on a spindle, which runs through the whole group of mills. To this spindle the shintter in each mill is attached, and the spindle passes through bearings in the partition-walls, so that the lifting of the shutter lifts all the others. Balanced on the pivot-edge of the shutter is a large copper ressel full of water. This vessel is so arranged that the slightest lift of the shutter capsizes its contents into the bed of the mill beneath it.
1123. An explosion in one mill, therefore, lifts the shutter above it and throws down the water into the mill-bed, and though, of course, too late to do any good in the mill which has exploded, the movement of the shutter turns the spindle and drowns the charges in all the adjacent mills, and thus saves them from explosion. This drenching-apparatus is found to answer very well.
1124. The explosion of a green charge does not, in some cases, do much damage to the structure of the mill or the machinery; that of a worked charge is very violent, and leaves generally no part of the structure standing. Consequently all mills should be made of very strong framework, covered with
light boards, which can be quickly replaced if destroyed by an explosion. Fortunately the men do not require to be always in

FIG. 263.—Drenehing-apparatus for Incorporating-mill.
A. - Cistera made of copper to hold 40 crallons.
B. -W ight made of east-iron to balance the shatter.
C.-Shutter made of wood. When lifted by an explosion relieves the foot of the cistern, A, causing it to turn over, drenehing the mill. and also turaing over ail the cisterns in conneetion with the slaft, D, which passes through the stuffing-box, L , it being built in the wall.
F.-Couplings eonnecting tice shafts on both sides of the wall.
the mills; on the contrary, they only enter them from time to time for a minute or so-either to liquor the charge, or to see that all is going on well.
1125. PRESSING.-Gunpowder leares the incorporatingmill partly in the state of soft cake, partly dust. The calie hardens very considerably, if allowed to stand for a fer days. In this form it would be unfit for use. The cake may be broken up into grains, but such grains are too soft to stand much handling or transport without crumbling to dust. Porrder made from mill-calke will always be found to be dustr, and snch powder must always be irregular in action. It will also be much more liable to absorb moisture, and therefore to cake and become lumpy.
1120. To ensure uniformity and good-keeping qualities, and freedom from dust, porder must be conrerted into firm grains. This is done by compressing the soft material into hard masses by pressure alone, and then crushing up these masses into the description of grain required. The object of pressing, then, is
to convert the soft dusty mass of incorpotated ingredients, now gunpowder, into hard cakes of the particular density which is found to gire the best results when the powder is finished. After the cakes are formed they can be broken up by various contrivances into grains of any size, all of which will have a uniform density and hardness, and which can be freed from dust, and glazed and polished so as to bear handling and transport withont breaking or crumbling.
1127. Gunpowder is generally pressed in layers between plates of gun-metal or copper, in a hydraulic press. Screwpresses are sometimes used, and there are different ways of placing the powder in the presses used. The best results are tound to be obtained by pressing in thin layers.
1128. Description of Press.-A convenient form of hy-

Fig. 264.-Press. Elevation and section showing press in action.
A.-Cylinder. B.-Ram. C.-Press-box.
D.-Overhead-block. E E.--Standard.
draulic gunpowder-press is shown in Firs. 264 and 265. The
press-box is made of gun-metal, lined inside and out with oak boards, and is of great strength. The bottom and one side are

Fig. 265-Press. Elevation and section showing press partly unloaded.
permanently attached to each other. The other three sides are hinged to the bottom, so that they can be opened out to facilitate unloading. When closed they are secured with short, coarse-threaded screws of gun-metal. The box has tro projecting gun-metal claws, which hinge on to a tixed horizontal rod of the same metal, so that the box can be turned on it, on the table of the hydraulic press, when filled and ready for pressing, or outwards when it has to be unloaded.
1129. Loading the Press.-Being first turned down on its side, the open top is closed temporarily with a piece of board which is fitted to it. What is now the uppermost side is uncovered and raised. and the other two sides are fastened in their places. Gun-metal racks to hold the press-plates, haring per-
pendicular grooves in them $\frac{1}{2}$ inch apart, are then slid in on each side, and the plates being put in, the powder-meal is shovelled in and falls down readily between the plates till the box is full; the racks are then drawn out, leaving the plates free, with layers of powder between them. The excess of powder being carefully swept off the edge of the box, the upper side is lowered and screwed to the other three; an overhead-block and tackle are made fast to the gun-metal eye on the side of the box, and the box is turned over on the press-table.
1130. The box now stands on its bottom, and the temporary board with which the top has been closed during charging being lifted off, the powder and plates will be found to have settled down several inches by their own weight. The vacant space at the top is filled up by shovelling in a few more layers of meal, placing a plate by hand on each in succession, till the press-box is full. The overhead-block, which exactly fits into the pressbox, is now run into its place, over and nearly touching the contents of the box, and secured there, when everything is ready to apply the pressure until the box rises to a sufficient beight.
1131. Unloading the Press.-After the designated pressure has been attained, the press-table, carrying the press-box, is allowed to descend. The pumps are in another building, separated from the press-house by large traverses, and here the workmen remain while the pressure is being applied. The workmen now re-enter the press-house and proceed to unload the box. The overhead-block is first run out of the way, and the block and tackle being attached to the box, it is turned over on its side. The fixing-screws are now taken out of their sockets, and the three hinged sides of the boxes opened out, leaving the powder and press-plates standing in a solid mass. Each plate, with a layer of hard slate-like cake adhering to it, is separated from the one beneath it, and, being lifted into a wooden bin, gets a few knocks with a wooden mallet, which canse the cake to fall off in irregular fragments, which are broken into pieces of the size of a man's hand, shovelled into tubs, and removed.
1132. Uniformity of Results.-To obtain pressings of equal density, equal quantities of powder-meal must be compressed equal distances. It is a matter of considerable difficulty to ensure uniformity of results in pressing powder. It is of the highest importance that the density obtained should be uniform, for recent experiments have proved conclusively that the qualities and explosive effect of gunpowder are materially affected by comparatively slight variations in density. It is perfectly possible to manufacture powder of uniform density, and such powder will give accurate and uniform results, both as regards
pressure in the gun and, consequently, velocity imparted to the projectile. The density of powder is given in the press; the importance of accuracy in pressing, in which the shooting qualities of powder therefore entirely, or at least mainly, depend, is evident.
1133. As the powder-meal possesses varying degrees of elasticity and resistance to pressure, depeading to a great extent on the moisture it contains, and, as far as can be judged by experience, on the state of the atmosphere at the time, equal pressures will not always have equal effects. It is therefore rery necessary to have all the conditions made as nearly as possible the same in each experiment. If equal quantities of meal containing equal quantities of moisture could be compressed to the same amount in equal times and under the same atmospheric conditions, then there is little donbt that tolerable uniformity of density would be attainable. But it must be always a matter of the greatest difficulty to fulfil all these conditions exactly. In the first place, the moisture in the porder-meal depends mainly on the amount of liquoring the charges have received. This is usually left to the judgment of the workman, who is guided by the state of weather. And though the charges may be uniform as regards moisture, on leaving the mills, it is obvious that rariations of temperature between the days of incorporation and pressing will affect them unequally. In the next place, the bulk of the meal is affected by the moisture contained in it, so that fill the press-box as carefully as we can, we do not get equal quantities to be subjected to pressure each time.
1134. If the quantities operated on were very small, it might be possible to devise some method of equalizing the moisture contained in them ; but when large charges are required to fill the press-box, it becomes a much more difticult matter. It is necessary, when examining the densities of press-cake in order to ascertain if it is fitted for the manufacture of a particular powder, to have it previously dried.
1135. It is found in practice that though absolute uniformity cannot be guaranteed in pressing, rery close results can be obtained. To attain absolute uniformity in the finisled porder, the density of every pressing, after it has been converted into grain, is taken, and the different pressings are then mixed in the proportions to give the density required. Thus if the density fixed for the powder be 1.67 , and the densities of the pressings be found to be 1.70 and $1.6 \pm$, they would be mixed in equal proportions, and would give a powder of 1.67 densitr. Powders which differ to a great extent in density are nerer mixed.
1136. GRAINING.-The press-cake must now be converted into the particular size of grain required. And the means employed to break up the press-cake must be so arranged as to crnish it up as nearly as possible into the size or sizes of grain wanted, without reducing much of it to dust. The smaller the size of grain, the larger will be the percentage of it obtained from granulated press-cake; hence with the small size of grain formerly used with cannon, any of the older and ruder appliances for effecting granulation gave good percentage of grain. But as recent experiments have conclusively proved that much larger-sized grains should be employed in large charges for hexry ordnance, new and improved grauulating-machines liave been introduced. Large powders have been made by throwing the press-cake on a table and breaking it up by hand with mallets; but there is little doubt that arrangements and alterations can be made in the machines so as to enable them to granulate powders of any size of grain.
1187. Granclating-machine.-The granulation is effected by passing the press-cake between revolving toothed rollers of gun-metal. The machine contains four pairs of such rollers arranged in a slanting direction, one above the other. (Fig. 266.)

Fig. 263.-Granulatiug machine. (Eleration and Section.)
A. - Hopper with raising arrangement. B. -Endless Band. CCCC. -The 4 pairs of Rollers. DDD.-The Short Screens.

EE.-Long Screen.
F.-Box for Dust.
G.-Box for Grain.
H.-Box for "Chucks."

These rollers are set in the two strong side-frames of gunmetal which form the framework of the machine. Each pair is adjusted at the proper distance apart by set-screws; but the back roller of each pair works in a sliding bearing, which is kept up against the bearing of the other roller by a weighted lever, so as to admit of the rollers opening out and admitting min excess of material to pass througl without injury to the ma-
chine. The two upper pairs of rollers have coarser teeth than the lower pairs.
1138. Slanting rectangular sieves or screens are placed underneath each of the three upper pairs of rollers to the top of the next, to convey any fragments which escape proper crushing in one pair into the teeth of the next pair. Underneath the whole is a long rectangular frame carrying two long screens to separate the proper size of powder, and a board underneath to receive the dust and carry it down into a tub placed to receive it. Both the short screens and the long frame are attached to the framework of the machine, and receive a vibratory motion by means of appropriate mechanism.
1139. Attention must be paid to the angles at which the different screens are placed; this varies in different machines, and the proper inclination can only be ascertained by experiment. These screens will of course require to be changed for each different size of powder that is being made.
1140. Action of the Machine.-The general action of the machine will be understood from Fig. 266. The press-cake is placed in a hopper at the back of the machine, and carried up by means of an endless band of canras haring strips of leather sewed to it to catch the cake. The band passes under a scraper which prevents too much cake being carried up at once. The cake falls between the first pair of rollers, which work at a speed of about thirty revolutions per minute, and is immediately crushed up into grauular fragments which fall in the first short screen. The whole of the grains, except the fragments which are too large, fall through this screen directly on to the surface of the upper long screen underneath, and fall through it likewise to the second, which permits the dust and minuter particles to fail throngh on to the sloping board underneath, down which they slide into the tub placed to receire them. but which retains the proper size of grain, which in turn rolls down it into another receptacle at the bottom.
1141. The larger pieces which escaped proper crushing in the first pair of rollers are shaken down by the first short screen into the second pair, to undergo the same process as at first, and so on with the third and fourth pairs of rollers. Some fragments of too coarse a size will escape all the rollers, and conscquently require a third box to receive them in front of the other two placed to receive the dust and grain respectivelc. These pieces, termed chucks, require to be passed through the machine again.
1142. When the hopper has reached the limit of its travel upwards, and all the cake has fallen out into the band and been
conveyed up to the machine, a clutch is relieved which stops the upward travel of the hopper, and a bell is rung in the watchhouse where the workmen remain during the time the machine is working. The machine, being self-supplying, requires no watching when working. As soon as the bell rings the workmen re-enter the house and place the grain and dust in tubs ready for transmission to the proper store-rooms.
1143. Danger 'of the Process.-To judge from the large proportion of accidents which take place in granulating-houses, the process would appear to be specially dangerous. It is difficult to account for the fatality which accompanies granulatinghouses. In any well-regulated factory the operation is not considered to be any more dangerons than any of the other processes, but statistics show beyond doubt that it must be specially dangerous. The probable explanation appears to be that if there has been any negligence anywhere in keeping fragments of foreign matter from the powder as it progresses through the various stages of manufacture, the granulating-house, in which the powder undergoes more crushing and grinding than it does anywhere else, and where there are a number of metal axles and bearings at work, is the place where such negligence will most surely tell.
1144. Dustivg and Glazing.-The granulated powder as it comes from the machine contains amongst it a large quantity of dust. This is formed by the crushing action of the granulating machine, and must of course pass through the various sieves and screens with which the machine is provided along with the grain. The grain itself is not in a condition to be made use of as powder, being rough and porous on the surface and very angular in shape; and moreover, the presence of a large quantity of fine dust amongst it would render it not only most inconvenient to handle, but would also render it more liable to absorb moisture, and to deteriorate.
1145. A rough, unpolished angular grain would also very speedily rub down into dust, if subjected to much shaking in transport. It becomes necessary, therefore, to free the granulated powder from all traces of dust, and to polish or give a surface to the grains themselves to enable them to bear a great deal of friction without deterioration.
1146. Powder is freed from dust by placing it in revolving reels covered with cloth or wire mesh of various degrees of fineness, through which the dust escapes. It is glazed by causing the grains to rub against each other in revolving wooden barrels. The extent to which the operations of dusting and glazing are carried, and the nature of the appliances used, de-
pend entirely on the density, harluess, and size of grain of the powder operated on.
1147. Large-grained, deuse, hard powder will hear a great deal of knocking about in the reels rithout besoming disintegrated and forming fresh dust ; and will, moreover, bear a great deal of friction in the glazing barrels, acquiring speedily a ligh degree of polish. But when operating on a small-grained, soft powder of low density, the dustinç must be carefully conducted. as the process will develop as minch fresh dust as it removes: and the amount of friction the grains will bear in glazing must be likewise carefully regulated.
1148. It is found in practice that powder mar be divided into tro general classes, each of which requires different treatment in dusting and glazing, viz., the cannon povider of all classes, and the small-arm powder of all classes. The former is not only pressed to a ligher densitr, but is made of a larger size of grain ; the latter generally is of lower density and much smaller siza.

Modern cannon powder, being of large-sized grains and of firm consistency, admits of a comparatively oper-meshed reelcovering being used in dusting, and of the process being continued as long as required withont risk of imjury to the grain. The powder can therefore be rendered perfectly free from dust, and sufficiently glazed at the same time, coming out of the reel as finished powder at one operation.
1149. Tife Dusting-renc.-There are troo classes of reels in use, the horizontal and the slope, the former usually employed with powder of large grain, and the latter with fine-grain porrder. Different powders take different lengths of time to be freed from dust, and require different descriptions of reel-corerings. It is impossible, therefore, to lay down exact rules in such matters, and it wonld be tedious to go orer all the particulars of the numerous dustings that all kinds of powders nindergo.
1150. A horizontal reel (Fig. 267), consists of a crlindrical skeleton of wooden hoops supported on a shaft br radial arms, the skeleton being corered with canras or wire cloth. The reels are made in halres for conrenience of repair and re-corering. The shaft is of iron, covered with wood: the radial arms are of gun-metal ; the ends are formed of two short disks of wood screwed upou the shaft. One end can be unscrewed and drawn back. The bearing of the reel-shaft next this morable end is fixed in a block which can be lowered if necessart, so as to put the reel for the time being on a slope. In the middle of the reel is a square opening closed with a wooden door, throngh which the powder is placed in the reel, being run through a
hopper at the top of the parallel wood-casing in which the reel is placed to confine the dust which escapes from it.

Fig. 267.-Horizontal Reel. (Section.)

AA.-Reel Covering.	D.-Opening for loading.
B.-Shaft.	E.-Hopper for loading.
CC.-Movable End.	FF.-Rieel Case.

G. - Block carrying the bearing of the lower end, which can be raised or lowered by means of the rope, K, and Lever, L.
1151. Horizontal reals are intended to receive a quantity of powder for a certain length of time, and to revolve with it, shaking it against the real covering, and thus forcing the dust through the meshes. When a reel has run the required time, say a half-hour, making forty revolutions, with a charge of powder, the driving-wheel is made to revolve very slowly, the end of the reel is lowered by means of a rope and lever, and the morable end of the reel is unscrewed and drawn back. As the reel slowly revolves the powder runs out into a hopper and is conducted into the barrels.
1152. Slope reels are not intended to retain the powder, hut only to extract a certain portion of dust as it runs through them. They resemble the horizontal reels in general construction, except they have no ends and the shaft is set at a permanent slops. Each reel is provided with a feeding-hopper at its upper end; attached to which is a loose spout for guiding the powder into the reel.
1153. The Glazing-barrel.-Glazing-barrels consist of
large strong wooden barrels (Fig. 26S) supported on an iron shaft which runs through their centre. The barrels, two of

Fig. 268.
which are generally placed in line on one shaft, are made of oak, and are about 5 feet long and $2 \frac{1}{2}$ in diameter; the shaft is cased with wood where it passes throngh the barrels. Each barrel is provided with a small square door for charging and uncharging.
1154. The barrels are found to be peculiarly well adapted for the purpose, owing to their shape. Formerly wooden cylinders with straight sides were used, but it was found that the different sizes of grain had a tendence to separate in them, so that all did not receive an equal amount of polishing. But in the barrels, which are larger in diameter at the centre, there is a constant intermingling of the grain and a more uniform action.
1155. With large-grained porders sometimes a little graphite is used to obtain a better surface. This gires a fine silvery surface to the grain, but care must be taken to use the proper description of black lead. This is really an impuritr, and should therefore be sparingly supplied to porder. It is never used with any of the fine small-arm portders, but only with powders intended to be used in large charges and with the express intention of giring them a surface mhich mill, if anything, retard rather than quicken ignition. Inferior blastingporder is sometimes polished in this way to a high degree of brilliancy, but the lustre is no test of its quality.
1156. The friction of the grains in the glazing-barrels
necessarily gencrates a good deal of heat. Some of the finegrain powders which require a long time in glazing come out so hot as hardly to admit of the hand being plunged in them. In all cases the heat generated is so great as to cause the powder to part with almost all its moisture; but as there is little or no escape for it, it condenses on the interior of the barrels and forms a hard coating with the powder-dust.*
1157. The glazing process not only polishes the grains, but tends to rub off their more prominent angles and to bring them to a rounded form. It generates a little dust, and requires, therefore, a second dusting, after which it has only to be dried to be ready for use.
1155. Drying.-The drying-rooms consist of large chambers having an arrangement of steam-pipes running along the floor, and provided with double doors which can be closely shut, and with ventilators at top and bottom which can be closed or opened from without. The temperature is maintained at from 125° to $130^{\circ} \mathrm{F}$., and regulated by a large thermometer inside, which can be read from without.

The chambers are fitted with wooden racks, on which are placed the trays containing the powder. The powder is generally kept one day in the drying-room. In the case of largegrain powder, when withdrawn it is placed in barrels and headed up for issue. But in the case of fine-grain powders, a third dusting is sometimes requisite to remove all traces of dust and fit them for service. This is termed finishing, and is done in a horizontal reel.

Explosions of drying-rooms are comparatively rare.
1159. Spectal Powders.-On the introduction of the mammoth modern ordnance it became apparent that the ordinary powders in use were too sudden in their action for the power of the guns. This led to the making of special powders in the shape of prisms, cylindrical pellets, spheres, etc., with a view of modifying the explosiveness of the charges.
1160. Large-grain powder for heavy guns was first adopted in this country in 1861, at a time when other nations continued the use of small-grain. This great improvement in the mode of manufacture was the result of careful study and experiment. The invention of Rodman's "perforated cake," or prismatic powder, which has been adopted by, and is now in use in both Russia and Germany, and the "pebble" powder, similar to our "mammoth," adopted by England, created that revolution in the manufacture of gunpowder, based upon purely scientific

[^32]principles of combustion and evolution of gases, that has enabled all nations to increase the size of their ordnance.

The question of variations of the density of porder and of the effect which such, especially when combined with variations in shape and size of grain, could not fail to produce, soon began to attract general attention. Those who studied the subject soon became aware of the immense advantage to be derived, not only from increasing the density of porvder, and thereby lessening explosiveness and consequent strain on the gun. but from uniformity of density and shape of grain as affecting regularity of effect.
1161. Expernents are still being made with a view of determining the description of gunpowder whose employment in large charges is attended with the least risk of overstraining the heavy guns in service.

The projecting charge should be so related, in its rate of combustion to the form of the gun from which it is fired, that, with a given convenient thickness of metal and length of bore, the naximum velocity of projectile attainable from such gan should be produced.

In comparing one gunpowder with another, the radical question is, which contains the best supply of gases, and which maintains this supply most advantageonsly at the required tension. The tension may be too low as well as too high; what is wanted is an elastic force which will not strain the gun more than is needed to give to the projectile the required terminal speed.

The causes which affect the quality and character of ghmpowder, and the phenomenon which attends its application to projectile purposes, depend upon the concurrence of a variety of conditions, not a few of which are unknown.

In powder-making, alility to reproduce results will always be the important question; so many disturbing causes tend to affect its final qualities that, after every precaution has been taken to remove them, perfect uniformity in the finished article produced from day to day cannot, with our present means and knowlelge, be surely counted upon.
1162. TERMS APPLIED TO DIFFERENT KINDS OF POWDER.- Sunpowder for the Naral Serrice is known and designated under the following heads: Hexagonal, Mammoth, Ritle, Camon, Shell, and Smatl-arm ; classed according to the size of the grain. They are all, as a general rule, made of the same proportion of ingredients, although the size and density of the grains, harduess, and amount of glazing is different with each.

These points are now being expcrimented on, and change of classification about to be made.
1163. Mannotil Powder.-This is an irregular, largegrained powder about 0.8 inch in diameter, which is used for large charges in heavy guns.

The large-grain powder greatly diminishes the strain on the gun, in producing a given velocity, from that due to ordinary camnon powder, because of the longer time required for the complete combustion of each grain. The larger the grain, other things being equal, the less will the maximum exceed the mean pressure, and the greater will be the charge required to produce a given velocity.
1164. Prismatic Powder, or perfdrated cake-powder (Fig. 269.)-This is ordinary powder made in the form of regular hexagonal prisms abont one inch thick and 0.8 inch in the side, perforated with seven holes about 0.1 inch in diameter.

The cakes are formed by placing mealed powder, moistened sutficiently with water, in a mold of the proper form, and subjecting it to the required pressure.

In making up charges of this powder the prisms are built up regularly in the cartridge-bags like honeycomb, which are then tightly tied at the mouth, so that the grains are kept in place. These perforations thus form long tubes through the charge, by which the gas permeates the whole mass.

This powder, originally from the United States, has been introduced into the German, Russian, and Austrian services, and

Fig. 269. tinds many advocates elsewhere. This form of powder is based on the theory that the grains, being ignited through the perforations, burn outwardly, producing a progressively increasing surface of ignition, thereby evolving greater volumes of gas, as the relocity of the projectile is increased, and the space through which the gas develops is auginented.
1165. Hexagonal Powder.-This powder, represented in

Fig. 270, is about 0.7 inch in diameter, and made by Dupont \& Co. It has lately been introduced. and

Fig. 270. has given very good results. The granulation is very uniform. It is called "Hexagonal" by the manufacturers probably because it is nearly so in cross-section.
1166. Waffle Powder.-This powder proposed by Commodore Jeffers, has bcen experimented with to some extent in the navy, with excellent results. It is pressed between plates with projecting ribs similar to "waffe-irons," which

Fig. 271. furnish a simple means of obtaining regular granulation, and thus controlling the surface. The fracture of the press-cake takes place along the groores thus formed, dividing the cakes into squares, or rather truncated pyramids, precisely as in Fig. 271, and of about the same general size as the hexagonal powdce.
1167. Pebble Powder-so called from its resemblance to small black pebbles. This is an English powder, similar to our Mammoth powder. It consists of irregular cubes, having edges from fire-eighths to four-eighths inch in length, made by cutting up the press-cake into the required form.
1168. Pellet Powner.-This is an English term applied to a large-grained powder. The pieces of the
 Pellet powder are all of uniform size and crlindrical shape, about one-half inch long and three-quarter inch diameter, with a perforation at one end to give greater igniting surface. (Fig. 272.)
1169. Rifle Large Grain porter, or "R. I. G." porder, is an English service porrder, in grains which pass through a sieve of four meshes, but are retained in one of eight meshes

Fig. 272. to the inch.
1170. Machines for Maktyg Speclal Poit-ders.-The fundamental parts of every machine, for making this class of powder, are: 1st, a mold in which to place the porder-men: $2 d$, a punch accurately fitting the mold, with which to compress the portder; 3d, some appliance for pressing the finished pellets out of the molds.
1171. A safe arrangement for combining these three is shown in Fig. 273. A is a small charge of powder placed in

Fig. 273.
the mold, B, which fits it accurately. This punch has a shoulder on it on which it rests loose on a second plate, C, underneath the mold-plate. The lower end of this punch rests on the upper surface of the hydraulic ram, D. An upper descending punch, E, of larger diameter than the mold, can be brought
down to the surface of the mold-plate either by a screw or by a hydraulic pressure, so as to close the mold.

With such an arrangenent a pellet can be safely made, firstly, by bringing the top punch down on the plate and fixing it there so as to confine the pormer'; secondly, by raising the lorrer ponch, by means of the ram, till a pooper amount of compression has been given to the powder; thirdly, by stopping the pressure from beneath and rasing the uppar punch; and, fourthly, by raising the finished pellet out of the mold by the pressure of the ram underneath.
1172. It is plain that any form can be given to the pellets by altering the slape of the molds and punches. and that hol lows or perforations can be made in the pellet if required. There is no difference really in ary of these porders. except in the shape. A machine exactly similar to this could be med for making powder into hexagonal prisms perforated with holes. However, machines of different descriptions are employed in different countrics and by different makers. Whatever arrangement is used, it must be always remembered that the only safe way of ensuring tolerable uniformity of density is to compress a certain amount of meal into a certain space: and that giving each pellet the same amount of pressure in pounds does not necessarily turii out porder of uniform density.
1173. EXPLOSION.-The phenomenon of explosion of gumpowder may be dividel into threa parts, viz. : ignition, inflammation, and combusiton.

By ignition is understool the setting on fire of a particular part of the charge; by intammation, the spread of ignition from grain to grain; and by combustion, the burning of each grail from its sturface to centre.

11ヶt. Ignition.- - (xmporder may be ignited by the electric epark, by contact with an ignited bods, or by a sudden heat of ar2 F . A gradual heat decomposes porder withont explosion, by subliming the sulphur. Flame will not ignite cumporder minless it remains long enough in contact with the grains to hant them to redness. Thus the flame from burning papar may be tonched to grains of porrder withont igniting them, orring to the slight intensity of the flame and the cooling effect of the grains.
1175. It may ba ignited by friction, or a shock between two solid bodies, even when they are not very hard. Experiments show that gunpowder may be ignited by the shock of copper against copper, copper against iron, lead against lead, and erea lead agrainst wood; in hindling grinporder, therefore, riolent shocks between all solid bodies should be aroided.
1176. The time necessary for igniting powder varies according to circumstances. For instance, damp powder requires a longer time than powder perfectly dry, owing to the loss of heat consequent on the evaporation of the water; a powder the grain of which has an angular shape and rough surface will be more easily ignited than one of rounded shape and smooth surface; a light powder more easily than a dense one.
1177. Inflamanion.- When grains of powder are united to form a charge, and fire is communicated to one of them, the heated and expansive gases evolved insinnate themselves into the interstices of the charge, envelop the grains, and ignite them one after another.

This propagation of ignition is called inflammation, and its relocity, the velocity of inflammation. It is much greater than that of combustion, and it should not be confounded with it. When powder is burned in an open train, fine powder inflames more rapidly, than coarse; such, howerer, is not the case in fire-arms, owing to the diminution of the interstices. If a charge were composed of mealed-powder, the flame could no longer find its way through the interstices, and the velocity of inflammation and combustion would become the same.
1178. Now supposing one grain or particle alone be ignited, it will first be inflamed orer its whole surface, and the progiessive combustion will take place from the exterior to the interior. Its rate of combustion will therefore depend upon both its slape and size, learing ont entirely, for the present, the question of density and hardness. 1 particle of spherical or cubical form will expose less surface to ignition in proportion to its volume than one of an elongatel or flat shape, and will consequently require a longer period for the combustion of its entire mass; the larger the particle, also, the longer will be the time required for its combustion.
1179. Looking, then, at one grain of porvder by itself, we may say that the larger it is, and the more nearly its form approaches a sphere, the longer will its combustion take and the slower will be the evolution of the gas. When, however. we come to regard the action of an aggregation of such particles, as in the charge of a gun, the rate of ignition of the whole charge is also affected by the size and shape of the grain.
1180. The part of the charge first ignited is that near the vent, and the remainder is inflamed by contact with the heated gas generated by the combustion of this portion, so that the rate of ignition of the whole mass will be regulated by the greater or less facility with which the gas can penetrate throughout the charga, which is itself dependent upon the
shape and size of the interstices between the grains. If the grains be spherical and regular in form, the interstices will he comparatively large and uniform, and the gas will penctrate the nass with facility; again, the larger the grains, the larger the interstices between them. If, on the other hand, they be flat or flaky and irregular in shape, the passage of the gas will be more difficult, and the rate of inflammation of the charge reduced.

11s1. We see, therefore, that the considerations which affect the more or less rapid combustion of an indiridual grain of gunpowder, also affect the rate of ignition of a charge of such grains, but in an opposite direction; so that a form of grain which will individually burn rapidly may offer an increased resistance to the passage of the heated gas through the charge, and thereby retard its ignition, while a grain which will burn more slowly may allow of the charge being more rapidly ignited.
$11 s 2$. By varying the size and shape of the grain alone, a powder may therefore be obtained, a charge of which shall be jguited rapidly throughoat, but burn comparatively slomly, or one which sball be ignited more slowly, but when once inflamed burn very rapidly. It is nesessars to dratr a clear distinction betreen a rapilly-igniting and a quickly-burning porder.
1185. Ratio of the Charge.-The heat dereloped increases with the charge, and as the relocity of the gases increases with their temparature, it is therefore evident that a large charge is consmerd quicker than a small one; it is also true that the loss of heat absorbed by the surface of the bore is much less sensible when the charge is great than when it is small, that is, the quantity absorbed is proportional to the surface, or the square of the calibre of the gun and the heat developed increases as the cube of the calibre.

11st. The Resisiunce to be overcome. - When the projectile offers a great resistance it is not so quickly displaced as when the resistance is slight: its motion in the first instance is then less rapil, and it eridently follows that the intlammation takes place in a space more contined as the resistance to be orercome is greater. The smaller this space is, the more heat is concentrated. the ligher the temperature of the gases is raised, and consequently their relosity is increased, the intianed gases have a les ditance to expand through, and there follows from all these causes a train of effects which accelerates the iuflammation of the charge.
1185. The Place where the Fire is Communicated to the Cherge.-When a quantity of powder is contained in an enclosed space, all the sides of which offer an equal resistance,
it is evident that the complete inflammation will be the quickest possible when the fire is applied to the centre of the charge.

In cannon, however, the force developed does not meet with the same resistance in all directions; the projectile yields as soon as sufficient force acts upon it, and as the combustion of the powder requires a definite interval of time, it follows that a great part of the charge is not consumed until after the displacement of the projectile.

Now the position of the interior orifice of the vent may inflnence the time required to displace the projectile, and this influences the inflammation of the charge. For example, with the regulation rent, it is the upper part of the charge which first takes fire ; the inflammation is communicated to the adjacent parts and promptly reaches the projectile; the gases expanding displace it, and the inflammation takes place in a larger space than that at first occupied by the charge.
1186. The Glazing of the grains facilitates the rapid transmission of the flame throngh the mass.
1187.-Combustion.-The velocity of combustion is the space passed over by the surface of combustion in a second of time, ineasured in a direction perpendicular to this surface. The diameter of the grains in "cannon powder" does not esceed 0.15 inch; the time required for combustion of sach grains, therefore, is altogether too transient to be ascertained by direct observation.
1188. The velocity of combustion may be determined by compressing the powder composition into a tube and burning it, or by burning the press-cake. In the latter case take a prism of the cake of convenient length and about one inch square at the base, smear the sides with hog's-lard and place it on end in a shallow dish of water. The object of the lard is to prevent the spread of the flame to the sides, and the water is to prevent the lower end from being ignited by burning drops of porvder. Set the upper end on fire and note the time of burning of the column with a stop-watch beating tenths of seconds.

In either way it will be shown that the composition, if homogeneous, burns in parallel layers, and that the velocity of combustion is uninfluenced by the size of the columns or by the temperature and pressure of the surrounding gas.
1189. Now take a spherical grain of powder of lomogeneous structure, and so hard pressed that the gas cannot penetrate it. Apply fire to any part of its surface; the flame will immediately envelop it, and burn away the first spherical layer; the radii of the grain undergoing equal reductions in equal
successive portions of time. Then at the end of half the time required for the total combustion of the whole grain, there will remain uncons:amed a sphere of which the radius is one half the original radins, but the colume will be only one-eighth the original volume (spheres being to each other as the cubes of their radii.) At this epoch, therefore, seven-eighths of the grain will have been consumed.
1190. It will be seen from this, that for equal intervals of time, those taken in the first pariod of combrstion give forth very much larger amounts of gas than those taken in the last ; and that with a charge of such grains the gas is evolved in the inverse order desired: the evolution being greatest while the velocity of the projectile is least, and least while that relocity is the greatest; thus giving rise to excessive pressure at and near the seat of the charge. This may be remedied in some degree by increasing the size of the grain, the effect of which will be to diminish the amount of gas erolved in the first in-tant of time, and thereby diminish the pressure in the gun.
1191. It may ba shown by dire experiment that the burning of a grain of powder in a fire-arm is progressive, and that the size of the grain exerts a great influence on the velocity of the projectile. For instance, if one piece of the press-cale was placed in a small mortar and fired, little or no motion wonld be given to the projectile. If this piece be divided into seven or eight parts, the projectile will be thrown a short distance, and by increasing the number of the parts or grains, so will the effect of the powder on the projectile also increase.
1192. The progressive burning of powder is further confirmed by the fact, that burning grains are sometimes projected from the gun with sufficient force to perforate screens of paper and wood at considerable distance. It is even fomnd that they are set on fire in the gun and afterrard extingnished in the air before they are completely consumed. The large grains of porder used in the fifteen-inch gun are sometimes thrown out burning to a distance of one hundred yards.
1193. Tife Veloctry of Combustion raries with the purity, proportions, trituration, density, and condition of the ingredients, also with the pressure under which the porrder is burned.

Purity of Ingredients.-To secure the greatest relocits of combustion, it is necessary that the nitre and sulphnr should be pure or nearly so.

This can always be effected by a proper attention to the prescribed modes of refining; but with charcoal it is different, for the part which it plays in combusion depends upon certain
characteristics which are indicated by its color and texture. The velocity of combustion will be greater for red charcoal than for that which is black and strongly calcined; and for light an-l friable charcoal, than that which is hard and compact.
1194. Proportions.-By varying the proportions the velocity of combustion is raried.

The increase of sulphur tends to make a more violent explosion and a more quickly lindling mixture, as the sulphur is the kindling ingredient. Too much charcoal canses too slow burning. The diminution of the sulphur-or nitre checks the rapidity of combustion, but may be made up by using more inflammable charcoal. The quality of the charcoal is powerfully afiected by the temperature at which it is made. That made at a low temperature, or red charcoal, contains more hydrogen and less carbon, is more inflammable, and burns more rapidly, but, from its smaller proportion of carbon, must he need in greater quautity. It may be said that the charcoal is the rarying ingredient; so that the proportions used at any time will depend ipon the quality of the charcoal. In all naral powder, great care is taken to get a uniform quality of black coal, giving the nearest attainable approach to pure carbon.
1195. Trituration.-Gmpowder, unlike nitro-glycerine, fulminate of mercury, and other detonating substances, is not a chemical componnd but only a mechanical mixture. By the incorporating process during manufacture the three substances. of which powder is composed are so intimately mingled that the eye caunot detect the presence of any particular one. They are, notvithstanding, only mixed, and the saltpetre can be readily dissolved out by water, or the sulphur sublimed in the form of a vapor, by the application of a moderate heat, leaving in either case the other two ingredients chemically unchanged. The more intimate the mixture, the more nearly does gunpowder approach to a chemical compound, and the more violent is its combustion; but there always must remain a vast difference between the most complete mechanical mixture and the most unstablechemical compound. For this reason the combustion of gunporrder is only very rapidly progressive and not instantaneous, as is the case with the violent explosives mentioned above. It is this difference that renders gunpowder so valuable as a propelling agent, for were it not for its comparatively mild action, 110 gun could be made sufficiently strong to resist its force. The material of the cannon would be broken before the ineria of the projectile could be overcome.
1196. Density.-The deasity and hardness of the grains of powder are of quite as vital importance as their size and form, in determining the rate of ignition and combustion of a charge.

By density is meant the quantity of powder actually present in a given bulk.

It is important that this quality should not be confounded with hardness. A substance may be very hard and jet be of a low density. A powder with a rery hard surface may be really less dense than another, the surface of which is softer. Of course very high density cannot be communicated without producing a considerable degree of hardness; but powder can be made hard without rendering it very dense, by pressing the dust in a comparatively dry state.
1197. Hardness seems to bear a direct relation to the power exerted in compressing, while density does not. Porder-dust, at a high degree of moisture, say 6 per cent. can be made very dense by application of moderate pressure, while that of 1 per cent. can only be brought to the same point in density by the exertion of enormous force. Of the two the latter will be the harder powder.
1193. Explosive Force.-By using a slower burning powder less heat and pressure are erolved at first, and, the waste of leat in the stage of initial pressure being less. more heat remains for expansive action. Hence the slower burning powder is weaker at first but stronger afterwards; and although the total quantity of gas be only the same and the pressure not so great at any point, yet the aggregate pressure throughout the bore may equal that of the more energetic and more dangerous porders.
1199. The question of the instantaneous explosion of gunpowder is one of extreme importance, for, independently of the increase of the actual amonnt of pressure which it wonld cause in a gun, this pressure when suddenly applied will have twice the destructive effect that the same pressure would have if slowly applied.
1200. The objects to be attained in regnlating the size and density of the grains are, the greatest possible velocity of projectile combined with the least strain oin the gun. These cannot be obtained by one set of conditions for all natures of ordhance. A small projectile moves quickly and relieres the strain in a still greater ratio. A heary projectile not only mores slowly, but eren a considerable motion does not reliere the strain in a proportionate manner, because the column of porrder is larger in a large gun than in a small gun. With smallarms, consequently, we must use fine-grain powder, but largegrain powder witlı heary guns.
1201. Owing to the effect which heat and pressure have in accelerating combustion, the size and density of grain that will suit any particular gan, and as a consequence the actual pressure in the gron itself, can only be determined practically.
1202. The explosive force of groporder may be calculated
from the products of combustion, on the assumption that certain laws hold good, such as that the teusion of a gas varies with its density and also with its temperature. It must, however, be remembered that these laws have been rerified only within certain limits of pressure and temperature; and therefore, when we come to such very great pressures and temperatures as are met with in the explosion of porder, any conclusions founded on them must be received with caution, until the results have been confirued by experiment.
1203. It is of little practical utility to attempt to determine the exact value of the explosive force of gunporder, for the nature of the action in charges of equal weights will vary considerably not only from atmospheric canses, or in consequence of imperfections in the manufacture or in the qualities of the ingredients, but with the size, form, and density of the grains and the form of the cartridge.

120t. PRODUCTS OF COMBUSTION.-It was formerly supposed that in the combustion of gunpowder the whole of the oxygen of the nitre entered into combination with the carbon, forming carbonic acid, the nitrogen being set free, while the potassium combined with the sulphur, forming potassium sulphide, thus:

$$
2 \mathrm{KNO}_{3}+\mathrm{S}+3 \mathrm{C}=\mathrm{K}_{2} \mathrm{~S}+2 \mathrm{~N}+3 \mathrm{CO}_{2}
$$

Although the proportions indicated by the first term of this formula would coincide very closely with the proportions in which the ingredients are ordinarily mixed, if the charcoal used were pure carbon, that coincidence disappears when the actual composition of the brown charcoal generally used is taken into account. Thas the formula would give:

$2 \mathrm{KNO}_{3}$	$202.1=7+$. 4 per cent
S	$32 .=11.84{ }^{\text {c }}$ " ${ }^{\text {c }}$
	$36 .=13.32$

If, howerer, we substitute for C the constituents of brown charcoal as given below, we have:

Nitre..	74.84 per cent.
Sulphur.	11.84 ${ }^{\text {¢ }}$
Carbon.	9.69
Hydrogen	. 39
Oxygen.	2.97
	. 27

Wherein the O 2.97 per cent. corresponds to 6.2 per cent. additional nitre.

It has been found, too, that the actual products of the combustion are much more complicated than this theory would indicate, and that they vary greatly with the conditions of the pressure and temperature under which the explosion takes place.
1205. The elaborate investigations of the products of combustion of gumpowder made some years since by Togel, by Bunsen and Schischkoff, by Link, and by Korolyé, all coincided in proving that very little potassium sulphide is formed, but that it becomes oxydized to potarsinm sulphate and liypo-sulphate, and that notable quantities of potassium carbonate are produced.

It results from this that a much smaller rolume of gas is generated than the old theory calls for; only $\frac{5}{9}$ as much, according to Bunsen.

Bunseu found that one gramme of gunpowder yielded 193 cubic centimetres of gas reduced to $0^{\circ} \mathrm{C}$, at the normal atmospheric pressure.
1206. The experiments referred to above were made under conditions differing widely from those obtained in actual practice, and since the abore researches were made, experiments have been instituted both in America and Russia so as to imitate the condition of pressure and temperature which exist where powder is fired in guns. They agree in finding that when gunpowder is exploded at a low temperature, $\mathrm{K}_{2} \mathrm{SO}_{4}$ is formed, but under high pressure and great heat the sulphate is partially reduced to sulphide, thus accounting for the wellknown fact, that if a gun be washed out after a discharge a large amount of potassium sulphide is found in the solution. Potassimm carbonate seems to be formed under all conditions.
1207. The following is the result of an analysis of the residue obtained from firing a cannon loaded with shot, with a charge of 3 pounds of porrder:

$$
\mathrm{K}_{2} \mathrm{SO}_{4} \ldots . . .
$$

$\mathrm{K}_{2} \mathrm{CO}$ 37.00
$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ 8.29
$\mathrm{K}_{2} \mathrm{~S}$ 35.15
$\mathrm{K}_{2} \mathrm{C}_{4} \mathrm{~S}$ 33
C. 09
Sand S2
99.7
Composition of the powder used: KNO_{3} 74.175
S 9.590
Charcoal 14.835
Moisture 1.000

Composition of the Charcoal:

The composition of the residue was found to vary consider. ably in experiments made with different kinds of fire-arms, and with different charges of powder and shot, but the general conclusion was, that the increased pressure, by prolonging the time of interaction of the ingredients, and by augmenting the heat, gives rise to more gas and leaves less oxygen tixed in the residne.
1205. Berthelot, in an important research made during the late war in France, "On the Explosive Force of Gunpowder," draws attention to the importance of bearing in mind the phenomena of dissociation, according to which, the products found after cooling do not exist at the high temperature produced by explosion, but are replaced by more sinple compounds.

> Section III.-Inspection of Gunpowder.
1209. Inspection--Before gunpowder is received from the manufacturer it is inspected and proved. As it may have the required strength and still be incapable of being long preservel, it is necessary to inquire into the manner in which the mixing, pounding, and other manipulations have been performed, for upon these the powder depends in a great measure for the preservation of its qualities.
1210. General Qualities.-Gunpowder should be of an even-sized grain, angular and irregular in form, without sharp corners, and very hard. It should be free from dust; and when flashed in small quantities in a copper plate, it should leave no bead or fouling. It should give the required initial velocity to the projectile, and not more than the maximum pressure on the gun, and should absorb but little moisture from the air.
1211. Examination bx Hand will determine the firmness, crispness, and shape of the grains, and their freedom from dust; which can also be ascertained by pouring a portion of powder quickly from one vessel to another.
1212. Flasiming.-This is done by firing abont ten grains with a red-hot iron. Should there be many sparks, or should white globules or beads appear, or any spots be left on the plate, it would indicate that the incorporation had not been
effectually performed, or that the proper proportion of ingredients had not been employed.
1213. Size of Grinn.-The size of the grain is tested by standard sieves made of sheet-brass pierced with ronnd-holes. These sieves are fire in number, two being used for each kind of powder. Nos. 1 and 2 for rifle, 2 and 3 for cannon, and 4 and 5 for shell powder.

The holes are of the following diameters, riz:

No. 1, . 3	of an inch	Pifle.
No. 2, 15		Rine
No. ${ }^{\text {No. }}$, 15	"	Cannon.
No. 4, . 06	"	
No. 5, . 02	"	Shell

The size of the grain is required to conform to the following:

$$
\left.\begin{array}{ll}
\text { Pass through } & \text { No. } 1 \ldots \ldots \ldots \ldots \text { all } \\
\begin{array}{l}
\text { Remain on }
\end{array} & \text { No. } 2 \ldots \ldots \ldots \ldots \text { all } \\
\text { Pass through } & \text { No. 2............ } \\
\text { Remain on } & \text { No. 3........all }
\end{array}\right\} \text { Cannon. }
$$

Ten per cent. of variation is tolerated.
1214. Gravinetitio Dexsity is the treight of a given measured quantity; it is usually expressed by the weight of a culic foot in ounces. The cube box is constructed with great accuracr, and the powder is simply poured into it until filled. A tlat ruler is then drawn across the swrface, and the box with its contents weighed. The weight of the box when enpty being deducted, that of a cubic foot of the powder under examination is ascertained.

This cannot be relied on for the true densitr, as the size and shape of the grain may make the denser porter seem the lighter.

Cannon-portder should hare a gravimetric density of about 875 oz ., and not exceeding 900 oz ., to the cubic foot. It raries with different makers from Sis to 975.
1215. Specific Grattitr.-Assuming the usual values assigned to the elements of gunporder in the scale of specific grasity, the absolute density of a homogeneous mass of the mixt.rre is 1.985 . This point is never reached in practical manufacture, and eren in Goremment supplies the rariation from this standard is such that frequently in a given bulk, powder consists of 25 per cent. of pores, in addition to all airspaces between the grains:

The specific gravity of gunpowder is generally between 1.65 and 1.75. It is important that it should be determined with the greatest accuracy.
1216. The Mercury Densimeter,* invented by Colonel Mallet, of the French army, is the best apparatus yet devised for this purpoce, and has, with slight modifications, been adopted for testing Nary powder. It is an instrument by means of which, in connection viitlı an airpump and a delicate bolance, the density of a solid may be obtained. (Fig. 27t.)
It consist of two principal parts-the immovable standard, A, with rarious fittings, and a hollow ellipsoidal glass vessel, A^{\prime}, called the vase, haring tubular extremities, each furnislied with a metallic cap or collar, B, into which is serewed a short iron plug, C, perforated in the direction of its length, and fitted with a stop-cock. The upper orifice of the pling, which screws into the lower end of the rase, is covered with a diaphragm of chamois leather, the lower

Fig. 274. end of the upper plig being similarly fitted with one of rery fine metallic ganze.

[^33]The leather dipphragm strains the mercurs, that of wire prevents grains of powder from being sucked up into the barometer-tube. A nozzle, d, strewed to the lower end of the bottom plug, dips into the mereury in the dish, e. The standard is a bracket of wronght-iron mounted on a table of convenient height.

It is fitted with a thermometer, g , a graduated seale for the barometer-tube, h, and a socket with a stop-cock, i, into which the barometer-tnbe and upper comnection of the vase are screwed. A long bulb, which forms a part of the barometer-tube, surrounds and encloses the upper end of the stem. This acts as a receiver for the overthow of mercury, which is liable to be thrown up when leaks occur about the comnections of the rase or tube. The bull, which is in general ontline a cylinder, contracts at its top, terminating in a conical point, over which the open end of a flexible India-rubber hose is slipped, thins connecting the tube, and through it the vase, with the air-pump.
1217. The Ajustments.-As all of the different connections of the vase where air-tight joints are made, are - tittel with leather washers of constantly changing thickness, it follows that a rariable degree of screwing up is resuired in order to make the junctions absolutely parfest. With the plngs which screw into the ends of the rase, it is of great importance that the exteat to which they enter should be uniform for any given mumber of trials with the same powder. that is, they should be rim into the same distance when each sample of powder is tried, that they were when the rase was filled with mercury alone: for if not in far enough the capacity of the rase is increased. In order to control this source of error as far as possible, set-marks are put on the collars and on the plngs. So long as these are either brought together or kept separated by a fixed and coastant amount at different trials the experiment will be accurate. As coincidence will probably only occur when the washers are new, the separation, as they wear away or become compresed, mnst be estimated and carefully reaained the same at different trials, so long as the same value is assumed for the weight of the vase filled with mercury alone.

In screwing on the nozzle and in screwing in the plugs, both wrenches should be used-one as a spanner, to hold against the other used as a wrench, otherwise the cementing of the collars may be started and leaks produced.

The zero of the barometer-scale is the lower end of the nozzle. The quantity of mercury in the dish and the lerel on which the dish rests should be so reculated that the immersion of the nozzle will not be greater, when the rase is full, than is neces-
sary to prevent the admission of air. If this precaution be disregarded, the flactuations in the height of the barometic column are rery liable to mislead by attaching suspicion to the working of the pumbs or to the closeness of the densimeter connections.
1218. When leaks in the connections of the vase occur they are indicated by air-bubbles, which an be distinctly seea passing up throngh the enclosed mercary. They can generally be located, if about the junctions, by closing the cocks in succeession from down up, meantime working the pump. If about the tube-connections, the flow of air will continne with all the cocks closed; if below this, the leak can be located between the two cocks. By tightening the junctions with the wrenches, or, if in the cocks, by screwing them up with a screw-driver, the difficulty is reatily orercome. It sometimes happens that the cement which holds the collar to the neek of the rase becomes cracked and produces a laak. This can be located by filling the rase, closing both cocks, and then expanding the mercury by holding the rase in the hands or by wrapping a warm cloth around it, the effect of which is to forca globules of mercury out at the point where the leak has occurred. Λ mixture of tallow and beeswax, applied at the same time that the pump is worked, will stop a leak of this kind.
1219. When the rase is unscrewed after the filling, the mercury which remains in the fine tubes of the end plugs mnst be carefully jarred out. This precaution is very important ; for as the amount of mercury which thins remains raries at diferent trials, the accuracy of the weight taken is sensibly affected, if care is not taken to remove all the mercury ontside the cocks. For this reason the globules which adhere to the vase and its fittings shoald be removed by brishing, before any attempt is made to get the weights. In testing fine powder, both plugs shonld bz unscrewed, and, with the vase, carefnlly wiped after each trial ; with mammoth this is only occasionally ne essary.
1220. Whenever the barometer-tube or vase becoms coited on the inside with sulphiret of mercury, they should be dismounted and washed with aqua regia (by measure, two parts hydrochloric acid to one part of nitric acid). In the event of breaking the barometer-tube, expose the metallic socket, which holds the lower end, to the Hame of a lamp, until the cement softens; remove the broken tube, and then screw the socket in place again. Coat the end of the new tube with cement, and insert it in the socket before the latter cools off, taking care that it stands rertical whei in place; for if at all inclined it will be dificult to unsceer it for the purpose of cleaning or emptriing the overflow-bulb.
1221. The Arp-pemp.-The air-pump used with the densimeter is of the ordinary construction, and is mounted on a light table. (Fig. 275.)

The vacuum-gauge, a, is in an air-tight glass case, which is

Fig. 270.
placed between the standards on which the brake works. It can be shut off from comnection with the cylinder br the cock b. and air is admitted to it ; and thence to the crlinder. ctc., br unscreming the glass cover, which can be turned by means of a chamfered ring on the brass collar into which it fits. Connection with the densimeter is controlled by the cock c. The cylinder, d, of brass, oscillates on trunnions at its base: its connections with the vacnum-gange and the hose leading to the densimeter are through the curved pipe, e, which is held against its several bearings by set-screws. The upper erlinder head is fitted with an oil-hole closed by the screm-phog. f. and has an overflow-can g, to catch oil forced out in exhausting.
1222. The Precautions to be obserred in using the pump,
are: 1. Always keep the piston-rod and piston well oiled. 2. Keep the cocks b and c, and the connections of the tube, e, airtight. 3. Screw down the vacumn-gauge case securely before commencing to exhanst. To determine whether the pump is tight and working well, close the cock c under the bell-glass table, h, and work the brake.

The vacuum-rauge will show whether air is admitted, and the leak may be located by the hissing sound made by the air rushing in.

The connections of the India-rubber hose require occasional looking to. The air-pump end is tightened by screwing up; the other can always be made perfect by cutting off a short section, thus getting a new and unstretched portion to adjust over the end of the barometer-tube of the densimeter.
1223. The Balance.-The balance employed in the process of determining density, is a simple beam-scale, constructed with great accuracy. (Art. 388.)

The great convenience of a decimal system of reights has led to the adoption of the scale of grammes in ascertaining the density of powder.

The set of weights used is of 5,000 grammes; approximately 11 pounds. The heaviest, 1 kilogramme, 2,204 ponnds; the lightest, 5 centigrammes, 0.75 grains.
1224. The Process of taking tie Density.--The potrder to be tested, if of mammoth size, will require breaking up to a smaller granulation ; for in its natural state it will not readily enter the vase, which is of but one-half-inch interior diameter at the neck. This is readily and safely done by using a light steel hammer, the powder resting on a table of wood.

For convenience of computation, it is advisable to use samples of 100 grammes; or, if employing grain weights, of 1513.3 grains.

Recourse may then be had to tables (see Appendix II.) for finding the density.
1225. To talie the Density.-Weigh out the sample with great accuracy, taking 100 grammes, if practicable. The vase being mounted, with the nozzle screwed in place and well immersed in the mereury, close the lower cock, opening both the others, and exhanst the air from the tube and vase. When the gauge shows nearly a perfect vacmum, open the lower cock. The mercury from the dish will then enter and fill the vase, rising in the tube to nearly the barometic height, the vacuum meanwhile being kept up by continnous pumping. As soon as the column becomes stationary, close the lower stop-cook and re-admit the air to the top of the tube by unscrewing the casing
of the racuum-guage; close the other cocks and unscrew the nozzle; dismount the vase, jar out the mercury from tha tubular spaces outside the cocks, brush the outside clem, enl then place the vase on its rest and weigh it. Call this weight of vase and mercury $\mathrm{VM}=\mathrm{W}$. Empty the rase by opening the cocks, and allow the mercury to return to the dish; also lit the mercury run out of the barometer-tube. If the inside of the vase is coated, unscrew both plugs and wipe it out with a cloth; or, if necessary, wash it with acqua regia. With clean mercury, washing is rarely required.
1226. In general practice, after having emptied the vase, one plug is unscrewed, and the sample of powder previously weighed out is poured in. The plug being again securely in place, the rase is mounted and the mercury pumped into it, passing up throngh the powder, filling its interstices, driving out the air, and rising to the same height in the tube as before. When this point is reached, close the cocks, admit the air, unserew and weigh the vase as before, calling the weight of porder, rase, and mercury $\mathrm{PV} \mathrm{M}=\mathrm{W}^{\prime}$. From these two weights, together with that of the powder sample, the density is calculated by the proportion :

Density of mercury: density of powder $=$ weight of mercury displaced by powder: weight of powder: or, if-

$$
\begin{aligned}
\text { WV } & =\text { weight of rase and mercury, } \\
\mathrm{W}^{\prime} & =\text { weight of porder, rase, and mercury, } \\
w & =\text { weight of powder, } \\
\mathrm{D} & =\text { density of mercury, } \\
d & =\text { density of powder, }
\end{aligned}
$$

then $W^{\prime}-w=$ weight of mercury, rase, and porder, less the weight of powder, and $\mathrm{W}-\left(\mathrm{T}^{\prime}-w\right)=$ reight of mercury displaced by the powder, and the proportion becomes-

$$
\begin{aligned}
& \mathrm{D}: d=\mathrm{W}-\mathrm{W}^{\prime}+w: w, \\
& \text { or, } \quad d=\frac{\mathrm{D} \times w}{\mathrm{~W}-\mathrm{W}^{\prime}+w} .
\end{aligned}
$$

The weight of W should be determined at the beginning and end of each set of trials, and the mean be used to correct the result of the whole series.
1227. The occasions will be rare when the accuracy of the results given in the table will be sufficientlए affected by temperature to require correction ; but if the thermometer raries materially from 66° Falirenheit, and great accuracy is required, the density of the powder may be calculated by the formula already given, in which D will be the density of the mercury at the temperature of the time of obserration, to be taken from
the table; or, if no table is at hand, the effect of the temperature can be computed by the formula-

$$
\mathrm{D} t=\frac{\mathrm{D} o \times 5550}{5550+t}
$$

in which $\mathrm{D}_{0}=$ density of mercury at zero centigrade, and $t=$ any temperature above zero; or the correction may be attained with sufficient accuracy for ordinary practice by multiplying the decimal .00245 by the temperature expressed in degrees (centigrade). This product, subtracted from 13.596, gives the density for the temperature under consideration. The proportion given abore, riz., $\mathrm{D}: d=\mathrm{W}-\mathrm{W}^{\prime}+w: w$, must be used to compute the density of the sample, if its weight be other than 100 grammes or 1543.3 grains; and the actual value of D should also enter into the calculation when the temperature varies materially from 66° Fahrenheit. For example:

$$
\begin{aligned}
& \text { Suppose } \mathrm{V}^{\prime}=4120 \text { grammes, } \\
& \text { Suppose } W^{\prime}=3400 \text { grammes, } \\
& \text { Suppose } w=90 \text { grammes, }
\end{aligned}
$$

and the temperature $=90^{\circ}$ Fahrenheit, then $\mathrm{D}=13.52$, approximately, and the density of the sample is 1.502 .
1228. Test of the Quality of the Dercury.-The mercury used should be of specitic gravity- 13.55055 at 66° Falirenheit. Its purity can be tested by comparison with distilled water by the following process:

Clean the vase and its connections thoroughly, and weigh it. Call this weight a.

Mount the vase and fill it with mercury, and again weigh it, calling the result b. Empty clean, and connect it again, substituting a dish of distilled water for that of mercury ordinarily used. Fill the rase by pumping slowly to aroid overflowing. Detach and weigh it again, calling this last weight c; then-

$$
\frac{b-a}{c-a}=\mathrm{D}
$$

the density of the mercury, which, if up to the standard, will correspond to that given in the table for the temperature at the time of trial.

The mercury used with the densimeter should frequently be strained through chamois-leather to remove impurities which are accidentally introduced into it in experimenting.

Form for recording experiments with the densimeter.

	品						

1229. Use of tire Tables.-Tables I. and II. are arranged for use precisely like a table of logarithms of numbers. (Appendix II.)

Example, Table I.-Required the density corresponding to $\mathbf{W}-\mathrm{W}^{\prime}+w=824.5 . \quad$ Opposite 824 , in the left-hand column, will be found in the column headed $o=$ for the iirst three figures, 1.64 ; and looking to the right in the column lieaded .55, the remaining figures 348 are taken, giving $1.643 \pm S$ for the density.

If $W-W^{\prime}+w=821.6$, the first figures are taken from below, as indicated by the bar over 928 in the column headed 6 .

Exaniple, Table II. (Appendix II.)
732.6 grammes $=1130 \pm .1$ grains.
$73 \pm .5$ grammes $=11333.3$ grains.
1230. MUZZLE VELOCITY.-A projectile on learing the bore of a gun will have acquired its maximum relocity, generally termed the initial ve?ocity. This essentially depends upon the powder, and is an important test of its quality.
1231. ELECTRO-BALLISTIC MACIIINES.-The nceurate determination of the velocity of a projectile at any point of its trajectory, has been one of the most difticult problems in the science of gunnery. It has exercised the talents and in-
genuity of the best scientific minds of the age, and has given rise to much interesting discussion and many valuable experiments. The wondrous mechanical skill of the day, and our mastery over the powers of electricity, have, however, recently given us instruments which, in their results, more than realize the brightest drems of the experimenters of a ceatury ago. Their bulky, unwieldy, and expensive machines lave given place to the neat and compact chronoscope, which, with its pencil of electrical light, now notes with unerring certainty infinitesimal intervals of time.
1232. BALLISTIC PENDULUM.-The ballistic pendulum invented by Robins, who is justly held to be the pioneer of modern gunnery, was first used in 1740, with the object of measuring the velocity of projectiles and the resistance of the air. It consisted of a tripod, from the top of which was suspended a pendulum vibrating freely on its axis of suspension. The bob was arranged, and of a size, to receive the impact of the projectile. Its prolongation below the bob was so contrived as to register the degree of vibration.

If such a pendulum, being at rest, is struck by a body of known weight, and the vibration which it makes after the blow is known, the velocity of the striking body may thence be determined. The quantity of motion of the body before impact is equal to that of the pendulum and body after impact.
1233. GUN PENDULUM.-The use of the gun penduInm seems to have been suggested by Robins, although Count Rumford first reported, in 1781, the results of various experiments made with it for the determination of the initial velocity of projectiles, and the most advantageous position of the vent. It consisted of a gun suspended in a horizontal position, and vibrating freely; the are of its recoil being accurately measured when the gun was fired.

The quantity of motion of the gun as a pendulum is equal to that of the projectile, charge of powder, and the air. From this the velocity of the projectile may be deduced.

Extended experiments with both the ballistic and gun pendulums were made in England, from 1775 to 1791, by Hutton; at Metz in 1839 and 1840; and in the United States from 1843 to 1848, by Major Mordecai of the Ordnance Department. The instruments used in this country were the most perfect of their kind, and the importance of the results obtained cannot be too highly estimated. The instruments were, however, very expensive, had to be erected on permanent structures, and were rather limited in their application.
1234. ELECTRICITY.-Professor Wheatstone, in 1840,
first suggested the employment of electricity in determining the velocity of projectiles. It was tried in the following manner: Two sercens or targets of wire were so placed as to be cut by the ball during its flight. Each screen formed part of the circuit connecting a galvanic battery and an electro-magnct. This last suspended a pencil over a cylinder made to rerolve uniformly. The rupturing of the target wire by the ball interrupted the current, and cansed the magnet to rolease the pencil, which made a mark on the revolving cylinder. The time of recolution being known, the angle between these two marks determined the time of the ball's passage betreen the two targets; and knowing the distance of the targets apart, the velocity could be readily ascertained.
1235. The application of electricity, as seen in this first attempt, depends upon its very great velocity, which may be considered instantaneous for short distances. The greatest difficulty to be overcome lies in the manner of recording and preserving the time of flight, or, rather, of registering the instant the projectile strikes each target. When this is performed with the necessary accuracy, and the time it takes a projectile to pass over a certain distance thus obtained, the mean velocity will be the quotient of the space divided by the time. It may be said, without appreciable error, that this mean velocity is the actual velocity of the projectile at the middle point of the space passed over.
1236. In May, 1843, Professor Henry, now secretary of the Sinithsonian Institution, presented and read a paper before the American Philosophical Society, "On a new method of determining the velocity of projectiles." It consisted in the application of the instantaneous transmission of an electrical action. Tro wire screens placed in the path of the projectile were made to form parts of galranic currents, comnected with the axis and surface of a revolving cylinder which was covered by a graduated paper. The terminal point of the wire at the surface did not quite touch the paper, and the interruption of the primary current by the rupture of the wire of the screen by the projectile, induced an intense secondary current, on the principle of the common coil machine, which gave a spark that pierced the paper at the instant of the rupture.

To Professor Henry belongs the credit of first proposing the use of the spark from what is now known as the Rulmkorff coil, which has been since adopted in the most improved and successful instruments.

Attention was thus early dramn to the novel question of devising and constructing a machine based on the employment
of electricity, and to serve in solving the most difficult problems in gunnery. We will describe the most successful of the various instruments in use.
1237. Navez-Leurs Chronoscope.-This is probably the most successful of all the pendulum instruments, where the value of the time is expressed in arc. It may be said to consist of two separate instruments: the penduium and the disjunctor.
1238. The Pendulum.-An upright plate of vulcanite with a graduated arc, A (Fig. 276), mounted on a stand, supports two pendulums, two electro-magnets, a pair of springs, and the

Fig. 276.-Navez-Leurs Chronoscope.
\qquad Circuit from the battery which magnetizes the chronometer electro-magnet.
Circuit from the battery which magnetizes the register electro-magnet.
_ - - .-. - _ _ _ Arrangement of the second circuit to investigate the valve of the coefficient x.
pivot upon which the escapement system works. One of the penduhnms, a, is termed the chronometer pendulum, and the other, b, the register pendulum; and the magnets are so adjusted, one behind each pendulum, that when magnetized by a current of electricity they will just sustain the bobs of their respective pendulums, into both of which a piece of soft iron is inserted.
1239. An index-needle, having a vernier at the end to slide along the graduated arc, is riveted to a steel disk, c, working in the same axis as the chronometer peudulum, with which it oscillates, simply by friction, until clamped by the action of the escapement.
1240. The springs are attached to the vertical plate, and pass one on each side of the steel disk, c; near the ends of the springs are two cleats, one on each spring, between which a wedge-lever, e, can be adjusted to keep the springs apart; two other cleats close on the disk of the index-needle, which is between the springs, when the wedge-lever, e, is displaced by the face of the stirrup, d.
1241. The rod of the register pendulum is providel with an arc carrying a stirrup, d, which, in its descent when the pendulum is released, knocks away the wedge-lever, e, from between the springs, and so closes them upon the disk, c, of the indexneedle, thus clamping it.
1242. The Disjunctor. - This consists of a small stand, B, on which are two pieces of brass, $f f$, each prorided with a pres-sure-screw, a brass spring, g, fastened by another pressurescrew, and a cam, h, to work the spring; the brass pieces have platinum points, separated from each other by a very short interval, and the spring has also a platinum point below it, which, when pressed down by the action of the cam, connects the two other points; thus connecting, when requisite, the circuits through the apparatus.
1243. The Electric Currents are obtained by means of Bunsen's voltaic batteries, there being two circuits for an ordinary experiment, one (Fig. 276) passing through the magnet of the chronometer pendulum and the first screw, the other through the magnet of the register pendulnm and the second screw; as both pass through the disjunctor, the simultaneous disjunction of both circuits can be effected by turning the cam, releasing the spring, and so disconnecting the platinum points.
1244. Arrangement of 'िargets.-The apparatus is placed in a small house at a distance of about 130 Jards from the gun, so that it may not be effected by the firing, and the arrangement of the gun and targets is as follows: The first target (Fig. 276) is placed at a distance of 10 yards in front of the muzzle of the piece, and the second target 40 yards besond the former; both targets are of the same construction and dimensions; each consisting of a wooden frame haring copper wires stretched across in parallel rows by means of pins in the sides of the frame, and these wires are broken by the passage
of the projectile through them. In order to protect the wires of the first target from the action of the gas, a wooden screen is placed about 40 inches from this target, between it and the gun ; the screen has a circular hole, about $1 \frac{1}{2}$ calibres in diameter, through which the projectile passes.
1245. Operation of the Instrument.-The gun is fired the projectile passes through the first target, breaks the first circuit, and demagnetizes the magnet of the chronometer pendulum; the bob begins to fall, carrying with it the index-needle. When the projectile cuts the wires of the second target, the second circuit is broken, and the magnet of the register pendulum is demagnetized; the bob falls, carrying with it the are and stirrup, which in its descent knocks away the wedge-lever and clamps the index-needle.
1246. The time due to this are of vibration can, by the theory of the pendulum, be readily ascertained, but it must be greater than the time taken by the projectile to pass from one target to the other ; for a certain small interval of time elapses between the rupture of the second circuit and the clamping of the index-needle. This small portion of time is found by means of the disjunctor, before the gun is fired, by breaking both circuits at once, and the small are so found must be deducted from the are determined by firing the gun.
1247. Bentor's Thread Velocnieter.-This is a gravity instrument in which the weights are suspended by the tension of a cord, and it may be worked with common thread in place of the usual electro-magnetie currents.

The principle involved in this arrangement is, that the loosening effect of cutting a taut thread is transmitted to equal distances along the thread from the point of rupture, in equal, or sensibly equal, times. It is a principle that can be applied to others of the large class of machines for measuring small intervals of time.

The peculiar advantages found in the use of threads over electricity are, simplicity and cheapness of the apparatus, freedom from acid and water for the batteries, and the certainty and ease with which it can be operated by a single person, and that person the one who fires the gun.

The Velocimeter may be depended upon to give results sufficiently accurate for all the practical purposes of proving powder and making ballistic calculations.

For the purpose of explanation, the apparatus may be divided into the time-marker, or pendulum-machine, the targets No. 1 and No. 2, and the threads.
1248. Pendulum Macmine.-The pendulum machine is
shown in Fig. 277. a is a bed-plate of metal, which supports a graduated are, b. This are is placed in a vertical position by means of thumb-screws and spirit-levels attached to it ; and it

Fig. 27%.
is graduated into degrees and fifths, commencing at the lowest point of the arc, and ending at 90°.
$p p^{\prime}$ are two pendulums having a common axis of motion passing through the centre, and perpendicular to the plane of the arc. The bob of the pendulum p^{\prime} is fixed, but that of p can be moved up and down with a thumb-screw, so as to make the times of vibration equal.
1249. The apparatus to record the point at which the pendulums pass each other when they fall is attached to the prolongation of the suspension-rod p^{\prime}, and consists of a small pin enclosed in a brass tube; the end of the pin near the are has a sharp point, and the other is terminated with a head the surface of which is oblique to the plane of the are.

As the pendulums pass each other, a blunt steel point attached to the lower extremity of the suspension-rod p strikes against the oblique surface of the head of the pin, which presses the point into a piece of paper clamped to the arc, learing a small puncture to mark the point of passage. An improrement to the foregoing consists in attaching to the pendulum p^{\prime} a delicate bent lever, which carries on its point a small quantity of printer's-ink; the pendulum p presses upon this lever, catasing the point to touch the are and leave a small dot opposite to the point where the pendulums pass each other.
1250. The Compressors.-The lever-compressors, A A', are made to hold up the pendulums by tightening the threads. $\mathrm{B} \mathrm{B}^{\prime}$, leading to the two targets. When the threads are serered at the targets by the projectile and slacken, the compressors are
forced back by their springs, and the pendulums are released and immediately begin to fall.

The compressors are shown in detail in Fig. 278.

They have each a slight notch at the lower end to receive the sharp end of the pendulum-rod, D, and hold it firmly in a horizontal position. At the upper end is also a notch for attaching the thread. C represents the spring which presses the compressor away from the pendulum when the thread is severed.
1251. The pendulum machine should be placed equidistant from the two targets, and sufficiently remote from the piece not to be affected

Fig. $2 \pi 8$. by the jar of the discharge before both pendulums have commenced to fall. In the case of small-arms, it may be placed directly in the plane of fire; but in the case of cannon, it should be at least 100 feet to the right or left of it. (See Fig. 279.) In the figure, target No. 1 is

Fig. 279.
placed 125 feet from the muzzle of the piece. At this distance the thread will be serered by the ball before it can be broken by lurning grains of powder. For ordinary purposes, however, target No. 1 may be placed directly in the muzzle of the piece, by attaching it to a vertical string stretched across the muzzle. A board supported on two posts may be used to
screen the thread leading to the pendulum from target No. 2.
1252. Targets for Cannon are similar in construction, and composed of a single post fixed in the ground, to which are attached horizontal arms, as shown in Fig. 279. A thread, $d d$ (Fig. 280), is stretched vertically between these arms, to which is attached the thread leading to the

Fig. 280. pendulum at one side. The point of attachment of this thread should be a little below where the projectile cuts the vertical thread, and is shown at l. Both threads to the pendulum pass through the loops of the compressors, and are fastened to posts set in the ground, in such relative positions to each other and the pendulum that the compressors will sustain the pendulums when the threads are tightened, and will relax their hold when broken. When cannon are carefully aimed, the projectile will cut both rertical threads directly ; but in the case of small-arms, it is found dilicult to ensure the cutting of the thread of No. 2 target without a special arrangement.
1253. Targets for Small-arms.-Target No. 1, for smallarms, consists of a piece of board (Fig. 2S1) with a rertical opening to serve as a

Fig. 381. rest for the muzzle of the gun. Across this opening, and directly in front of the muzzle, is stretched a short horizontal thread secured to two leather washers.

The thread a to pendulum Ňo. 1 is drawn around the middle of the horizontal thread, and secured at the leather washer, b.

The muzzle of the piece is in contact with the intersection of the threads, which should be a little below the centre of the bore. The thread b is cut the instant the bullet reaches the muzzle, and the thread a slackens, generally, without breaking.

Target No. 2, for small-arms (Fig. 282), is composed of an iron target-plate, $B, 1$ inch thick, which swings freely on horizontal trannions at its upper edge. The lower back edge of the plate rests lightly against the back of a sharp knifeblade, D , hinged at E . The thread, I, leading to pendulum No. 2 is wrapped around the slitted part in which the knife-blade operates, and fastened to the leather washer, F. C O are two flat-iron bars bolted to a post of wood let into the ground, and serve as supports of the trunnions of the

Fig. 282. target-plate, B. When the bullet strikes the plate, B , the knife-blade, D , is pressed backwards, cutting the thread, I, and releasing the pendulum. C and H are screens of boiler-plate to protect the thread and knife from fragments of the bullet.

The target-plate, B, is made of tough wrought-iron about 6 inches wide, 6 inches deep, and 1 inch thick.

The knife should be made as sharp as possible, so that a slight tap of the finger on the target-plate will suffice to cut the . thread.
1254. To Deternitne the Tine.-It is considered that each pendulum begins to move at the instant the projectile cuts the thread, and that the interval of time corresponds to the difference of the arcs described by the pendulums up to the time of meeting.

Let m and m^{\prime} (Fig. 283) represent the positions of the two pendulums before rupture, and let the interval between the rapture be such that the centres of oscillation will. pass each other at i. As the times of vibration are equal, the interval of time will correspond to the arc $i i^{\prime}$, the are $m^{\prime} i$ being equal to $m i^{\prime}$. A vertical line through the centre of

Fig 283. motion bisects the are $i i^{\prime}$. The reading, therefore, corresponds to one-balf of the
required time, or time of passage of the projectile between the threads.

To determine a formula for the time that it takes for one of the pendulums to pass over a given are, let l be the length of the equivalent simple pendnlum, v the velocity of the centre of oscillation, or point m^{\prime}, y the vertical distance passed over by this point, x the variable angle which the line of suspension makes with the horizontal, and t^{\prime} the time necessary for the point m^{\prime} to pass over an entire circumference, the radius of which is l, with a uniform velocity, v, we have.

$$
v=\sqrt{2 g y} .
$$

Substituting for y its value in terms of the constant angle of half-oscillation and the variable angle x, the above expression becomes

$$
v=\sqrt{2 g l \cos \left(90^{\circ}-x\right)}
$$

from which we see that the relocity of the pendulum increases from its highest to its lowest point, and vice versa.

The time t^{\prime} is equal to the circumference of the circle, the radius of which is l divided by the relocity, v; again dividing this by 360 , we have the time of passing over each degree, or

$$
t=\frac{2 \pi l}{360 \sqrt{2 g l \operatorname{cos.(90^{\circ }-x)}}}
$$

To determine l, it is necessary to change the cylindrical arms of suspension to knife-edges, in order to determine the time of vibration throngh a very small arc. The mean of 500 vibrations will be rery near the exact time of a single ribration. Knowing the time of a single vibration, the length of the equiralent simple pendulum can be obtained by the relation $l=l^{\prime} t^{\prime \prime 2}$, in which $t^{\prime \prime}$ is this time, and l^{\prime} is the length of the simple second's pendulum at the place of observation.

In this way all the constants of the expression for t are known, and by assigning different values to x, a table can be formed from which the times corresponding to the different ares can be obtained by simple inspection.
1255. Le Boulexgés Chronograpii.-In Captain Le Boulengés instrument, the shot is made successively to cut tro currents, and thus to demagnetize two electro-magnets which had previously supported two heary bodies; the fall of these bodies, under the action of gravity, is the measure of the time taken by the shot to pass over a known distance.
1250. In the Navez-Leurs instrument the weight liberated by the shot is a pendulum oscillating in front of a graduated arc, the angle described by the pendulum being the measure of

Fig. 284.
the time. In Le Boulenge's instrument, however, the weight
 cal direction, and the distance actually described by it is measured; the corresponding time being readily ascertained, and the velocity calculated.
1257. For cases where extreme aceuracy is not required, a scale has been prepared whereby the relocity of the projectile can at ouce be read off without any calculation, an adrantage which this instrument possesses over all others. Every part of the ehronograph is of inetal, and is consequently little influenced by change of climate, a property which would appear to render it peculiarly suitable for use in countries where rulcanite and other insulating materials rapidly deteriorate. This is probably the simplest and most popnilar of all the gravity instruinents.

125S. Tief Instrcalent.*Le Boulengé's Chronograph has been invented for two distinct purposes, riz.: 1. For taking the velocity of projectiles; 2. For measuring any short intervals of time. The instrument is set up for use as in Fig. 25t, showing the arrangement for taking relocities, and Fig. 285 when required for measuring short intervals of time. It consists of a hollow brass colmmn, S, which supports two eleetro magnets, A, B, and a sunall bracket, K.
Fig. 285.

* The instrument is bere represented mounted on its transporting box. For aeeurate work from fixed positions it should be plaeed upon a pedestal resting upon masonary; and should be established with all the care whieh characterizes the setting up of astronomical instruments. This point has received great attention at the U. S. Naval Experimental Battery.

The column stands on a triangular base, upon which is fixed the Trigger, T. (Fig. 287.)
1259.-The electro-magnet, A, supports a long cylindrical rod (Fig. 284) suspended vertically and called the Chronometer. This rod is partially covered with two zinc tubes, D E, called Registers. The clectro-magnet, B, sustains a shorter rod, F , named the Registrar. The Trigger (Fig. 287) consists of a circular steel knife, G, fixed in a recess of the spring, H, by means of the screw, N , which forms an axle upon which it can be turned so as to bring a fresh portion of the edge opposite the chronometer.

The spring, Π, can be "cocked," or restrained, by means of the catch on one end of the lever, I. The other end of this lever carries a disk, O, fixed to a screw, by means of which it can be raised or lowered as required.
1260. This disk is vertically below the registrar when suspended to its electro-magnet; consequently, when the current through the second screen is broken, the registrar falls on the disk and releases the spring, H. The tube, L (Fig. 284), retains the registrar after its fall.

If it be required to alter the time taken by the registrar to release the knife, it is done by raising or lowering the disk of the trigger by turning it in the direction with the sun to increase the time, and against the sun to reduce it. The screw has a pitch of one millimètre, and the circumference of the disk is divided by notches into ten equal parts in which the pawl, P , works; by this arrangement

Fig. 286.-Flectro-Magnet. the disk can be moved any required number of tenths of a millimètre (within certain limits), and is retained in the required position by the pawl.
1261. The screw, M, passes through the lever and acts against the fulcrum supporting it ; it is intended for regulating the hold of the catch of the lever on the spring, whi hishould always be as light as possible. This is regulated once for all, but should the spring at any time show a tendency to escape of itself, this defect can be remedied by slightly withdrawing the screw, M.
1202.-The Disjunctor (Fig. 288) is composed of a mainspring, t, carrying a cross-piece, covered with insulating material, and passing under the two steel plates, q q'. By pressing the milled-headed screw, z, the spring is compressed and held by the catch, x , allowing the plates, $\mathrm{q} \mathrm{q}^{\prime}$, to come into contact with the metal pins, r^{\prime}, and thus complete the circuits by bringing the screws $\mathrm{s} v$ and $\mathrm{s}^{\prime} \mathrm{v}^{\prime}$ into connection with one another. When the catch, x, is pressed, the mainspring being released, its cross-piece strikes the tro plates exactly at the same instant, raises them from the screws, and thus breaks both currents identically at the same time.

Should it be thought at any time that the disjunctor is working inaccurately, the method of testing it, and of correcting it when out of order, is very simple, and will be described under the heading of " Method of correcting irregularities."
1263. The arrangement of the screrrs and electric current is precisely the same as when using the Narez-Leurs instrument, except that the chronometer battery must be increased in strength (because its electro-magnet is required to support a greater weight than in the Navez-Leurs instroment), and a different method adopted for introducing the disjunctor into the circuit. With the Le Boulengé chronograph, the two wires from the positive poles of the batteries are not joined as with the Navez-Leurs, but are taken to the tro connecting screws, ss^{\prime}, of the disjunctor; and thus the two currents, though passing through the disjunctor, are kept entirely separate.
1264. The electro-magnet, A , is magnetized by the current passing through the first screen; consequently when the shot cuts this screen, the chronometer is released and falls freely in a vertical direction. The other electro-magnet is in the circuit through the second screen, so that the registrar falls when this screen is cut, and, striking the disk on the free end of the lever of the trigger, liberates the spring, which carriesformard the knife until it strikes the chronometer in its fall and makes an indent in the upper zinc tube.
1265. A very simple relation exists (as will be seen hereafter) between the height of this indent and the relocity of the projectile. It is evident that the time which elapses after the fall of the chronometer before the registrar is released, is the
time taken by the projectile in passing over the distance between the screens; tha less, therefore, the velocity of the projastile, the further in adrance will the chronometer be, and the higher will be the indent.

Fig. 287.—The Trigger.
1266. A Graduated Rule is used for measuring the height of the indent above the zero-point. It is of brass, and is graduated on both edges; the upper edge is a scale of equidistant parts, divided into millimètres, reading to tenths with a veruier, and is intended for use in connection with the tables. The lower scale is for reading off the velocity of the projectile without any calculation; it is graduated in mètres for a distance between the screens of 50 metres. The zero-point on the scale
corresponds with the origin, or the point at which the knife marks the chronometer, if the trigger is set in action when it is at rest. The rule is fitted at the zero-end with a jointed piece having a slightly conical projection, which enters into a recess in the bob of the chronometer, when applied for measuring the marks. Care must be taken not to injure this portion of the scale, or the measurement may be rendered inaccurate."
1267. Theory of the Instrunevt.- Λ s stated above, if the trigger be set in action when the chronometer is at rest, a mark will be made by the knife on the zinc, which point we will call the origin, as it is the zero-point from which the height of fall of the chronometer must be calculated.

Let II be the height above the origin of the mark obtained by firing a projectile through the screens. Since the chronometer follows the law of the fall of heavy bodies,

$$
\mathrm{T}^{\prime}=\sqrt{\sqrt{2 \mathrm{H}}}
$$

will be the time it was in motion before receiving the impression. Now T^{\prime} would be the time required by the projectile to traverse the distance between the screens, supposing that the chronometer commences to fall the instant the projectile passes through the first screen, and further, supposing that it is struck by the knife at the precise instant the shot cuts the second sereen. But this is not the case. In fact, after the rupture of the first screen, a certain time, θ, clapses before the electro-magnet is demagnetized sufficiently to free the chronometer ; the morement of the chronometer will therefore be delayed, and the observed time consequently diminished, by the quantity θ.
1263. Again, some time elapses between the cutting of the second screen and the moment when the knife reaches the chronometer, viz., the time required for the following operations:
θ^{\prime} for the demagnetization of the electro-magnet supporting the registrar.
t^{\prime} for the fall of the registrar to the disk of the trigger.
$t^{\prime \prime}$ for the disengagement of the catch.
$t^{\prime \prime \prime}$ for the knife to pass over the horizontal distance which separates it from the chronometer.

Now it is evident that the chronometer, before it is struck by the knife, will have been in motion during the sum of the above time in addition to the time taken by the shot in passing

[^34]over the distance between the screens. Consequently the observed time, T^{\prime}, is too great by the sum of ($\theta^{\prime}+t^{\prime}+\dot{t}^{\prime \prime}+t^{\prime \prime \prime}$). We have also shown above that T^{\prime} is too small by the quantity θ, the time required to demagnetize the ehronometer electromagnet. Therefore, to ascertain the true time, T, we must deduct from T^{\prime} the quantity $\left(\theta^{\prime}+t^{\prime}+t^{\prime \prime}+t^{\prime \prime \prime}-0\right.$), which we will call t.

Fia. 288.-Disjunctor.
We have then $\mathrm{T}=\mathrm{T}^{\prime}-t$.
1269. Now suppose $T=O$, or, in other words, suppose the shot to cut both screens simultancously, then we should have
$\mathrm{T}^{\prime}=t$. From which it appears that t should be the time recorded on the chronometer if both currents were cat identically at the same instant. This we can do by using the disjunctor, and we thus obtain a mark, on the lower ziuc tube, at a height abore the origin equal to the space passed over in the time t, trhich we call the disjunctor-reading; the time corresponding to this reading must be deducted from the whole time recorded on the chronometer, to arrive at the time taken by the shot to traverse the distance between the screens. As before stated, the disk of the trigger can be raised or lowered so that the disjunctor-reading can be altered (if required) within certain limits, and we can thus regulate the instrument so that the time t shall have a constant value. The ralue of t for which the relocity seale has been calculated is $0^{\prime \prime} .15$, and the lieight of the corresponding mark above the origin is 110.370 mill. (4.248 inches). Starting with this assumption, a scale has been calculated for a distance between the screens of 50 metres, by means of which the velocity of the projectile can be at once determined without the aid of any calculation. Should it be neceasary to place the screens nearer to one another, the velocity can be found by multiplying the number read off on the scale by the fraction $\frac{\mathrm{D}}{50}, \mathrm{D}$ being the actual distance between the screens in mètres.
1270. The method of calculating this scale is as follors:

Suppose the shot to liave a velocity of 500 mètres a second, it would take $\frac{50}{50 \overline{0}}=0^{\prime \prime} .1$ to traverse the distance betreen the screens.

The instrument will, therefore, mark $0^{\prime \prime} .15$ (disjunctor-reading) $+0^{\prime \prime} .1$, or $0^{\prime \prime} .25$, and the corresponding height of fall from the origin will be $H=\frac{1}{2} g \mathrm{~T}^{\prime 2}=\frac{g \times(0.25)^{2}}{2}=613.17 \mathrm{mill}$.

Conversely, if the mark on the chronometer is 613.15 mill. above the origin, we know that the relocity of the projectile is 500 metres a second. The disjnnctor-reading being at a height corresponding to $0^{\prime \prime} .15$, and the screen 50 mètres apart.

This calculation lias been made for a series of relocities increasing from mètre to mètre for all ordinary relocities, and the corresponding heights engraved on the scale supplied with the instrument.

This scale is inconvenient, as it is necessary to use a multiplier in order to ascertain the velocity in feet corresponding to
the number read off, and this multipler raries with the distance between the screens.
1271. Metiod of Adjusting tie Instrumer--Setting up the Chronograph.-For transport the different portions of the instrument are packed in a box, which can be made to serve the purpose of a stand by means of an iron tripod supplied with it.

This arrangement is no doubt very convenient in cases where it is required to move the instrument constantly and set it up in different positions. For proving powder, or in similar cases, where the instrument is stationary it is advisable to have recourse to a more permanent arrangement, as at the Experimental Battery, Annapolis.
1272. The triangular piece which supports the trigger and the column is fastened to a heavy cast-iron base by the three screws supplied with the instrument. This base is 13 inches square and 1 inch thick, and is supported on four milledheaded levelling-screws, which work in brass V's let into the oak block.
1273. The instrument is permanently fixed to the stand, and is covered, when not in use, by a glass case to protect it from injury, a small beaker containing calcined chloride of calcium being used to absorb the moisture under the case.
1274. The electro-magnets are fixed in position by passing the screwed stems through the column and fastening them with milled-headed nuts (Fig. 286). Two zinc tubes, or regisiers, are placed on the chronometer; to put on the small one the bob at the lower end must first be unscrewed. The tubes should be pressed slightly out of shape before being put on, to canse them to fit tightly on the rod, and not to shift too easily. It is well to see, from time to time during the operation, that the bottom of the tube is resting against the bob.
1275. The connections with the battery and the sereens having been established, and the currents found to pass correctly, and to be of sufficient strength, the next step is to adjust and regulate the instrument.

This consists of three operations, viz.:
1 st. Levelling the instrument.
2d. Regulating the power of the electro-magnets.
3 d . Regulating the height of the disjunctor-reading.t
1276. 1st. Levelling the Instrument.-For this purpose the chronometer is used. After having cocked the trigger, suspend the chronometer to its electro-magnet, and bring it into its proper position by means of the levelling-screws.

In levelling from front to rear see that the inclined plane
on the bob, on the side opposite the number, rests very lightly against the projecting edge of the triangular base.

To level laterally, the right face of the bob is brought exactly in line with the salient angle formed by the projection above referred to. In this position the left face of the bob is a short distance from the screw, E ; the edga of the knife is opposite and slightly behind the zinc tube; and when the chronometer falls, the projecting ring passes clear of the knifeedge. To test whether this is the case, break the circuit, by means of the disjunctor, and notice whether there is any friction, or if anything catches during the fall.

To ascertain whether the chronometer is properly levelled from front to rear, see that the inclined plane on the bob rests along its whole length against the projecting edge; then remore it sideways out of the vertical, by pushing the bob against the screw, E, when it will return into its original position, if properly levelled.

The levelling being completed, and the registrar suspended to its electro-magnet, the inclined plane on the bob, on the side opposite the number, should rest rery lightly against the edge of the arm, K. This arm is fitted in a bracket, and its position can be altered by means of an adjusting-sarew. This adjustment need only be performed once for all ordinary positions of the instrument when used in taking velocities.

If the electro-magnet and the bracket be removed to the upper part of the column, as shorrn in Fig. 285, it may be neeessary to raadjust the arm in order that the registrar may still hang vertically. The levelling of the registrar is verified in the same manner as in the case of the chronometer, viz., by asser-taining-1st. That when moved laterally it returns to its original position; 2d. That it falls freely without tonching the tube, L.
1277. 2d. Regulating the Electro-magnets.-This is done (as with the Navez-Leurs instrument) by rithdrarring the core of the maguets until they are only capable of just supporting the rods. It is always an advantage to work with weak magnets, as the variation in the time required to demagnetize them need not be taken into account; should, however, their power be insufficient, the operator will experience some difïculty in suspending the rods.

The following method has been adopted for making the electro-magnets of just sufficient power :

The chronometer, with its zine tubes, is increased in weight by means of a brass tube, which is slipped over the upper zinc. It is then suspended to the magnet, and the core gradually
withdrawn until the power is insufficient to support the weight, when it falls. The core must be turned slowly and gently, so as not to free the rod by any jar or vibration. The extra weight is then removed, and the chronometer can be suspended without difficulty.

The other magnet is regulated in the same manner, a smaller brass tube being supplied for increasing the weight of the registrar.

In order to suspend the chronometer to its electro-magnet withont difficulty, the following method should ba adopted: Hold it lightly in the left hand at the centre, the fingers open and towards the body; allow the bob to rest upon the second joint of the first finger of the right hand, the haud being half open, the palm vertical and turned towards the body, and the fingers together ; the chronometer is thins held in a vertical position, the numbered face of the bob being turned towards the operator. Bring it in this position to the electro-magnet, by placing the exterior surfaces of the two cones in contact, and, as soon as attraction is perceived, let go with the left hand, still keeping the fingers near to eatch the chronometer shonld it fall. Then slowly lower the right hand, so that the tro cones, sliding over one another, remain with their points only in contact, and place the bob in its proper position by moving the first finger of the right hand, upon which it still rests. This donc, withdraw the support of the right hand by lowering it vertically, when the chronometer will remain suspended in its proper position. If there should be any vibration it will soon cease from the friction against the rest.

The registrar is suspended in the same manner, but the chronometer is always placed in position first.

Difificulty is sometimes experienced by beginners in suspending the parts of the chronograph; minute details have therefore been given as to the best way of doing so.

The other operations are exceedingly simple.
To cock the disjunctor, so as to establish the currents, press the milled-headed screw, z (Fig. 288), with the centre finger of the righthand, until the spring is held by the catch, x.

To break the currents press the catch, x, with the forefinger of the right hand, the thumb being placed against the support, y .

In cocking the trigger care must be taken not to disturb the level of the instrmment; consequently the left hand only is used, the fingers being placed against the support of the tube, L, and the spring drawn back with the thumb until it is held by the claw of the lever.

The trigger must always be cocked before attempting to suspand the chronometer.
1278. 3l. Regulating the Disjunctor Reading.-As we have said before, this reading should represent a time $=0^{\prime \prime} .15$, and the mark should consequently be 110.37 mill. above the origin. This height is shown on the scale by a special mark called disjunction. To facilitate the operation, commence by tracing on the small zinc tube a circle at the required height. For this purpose fasten the vernier by means of the clampingscrew, with the index opposite the line marked "disjonction." Place the chronometer flat on a table with the numbered face next the body, and apply the rule to it by inserting the conical point of the hinge in the recess of the bob, allowing the index of the vernier to rest on the zinc. Support the end of the rule in the right hand, and with the left turn the tube, taking care to keep it pressed against the bob at the lorrer end of the chronometer. In this manner a fine line is traced on the tube, with which, when the instrument is well regulated, the disjunctormarks ought to correspond.

The indent made by the knife is a notch, clearly cut in the metal, the base of which is in a plane perpendicular to the axis of the tube. It is the section of this plane with the tube which must be taken as the mark, and the index of the rernier must always be brought against it when reading the height of the indent.

The point of the vernier index is of the same form as the edge of the knife, and consequently fits accurately against the plane (or lower) side of the indent, so that there can be no uncertainty in the measurement.

The instrument having been prepared, a disjunctor-reading is taken; if the mark is exactly on the circle previously traced, no alteration is necessary, and the experiments can be proceeded with at once.

Should the mark, however, be abore the circle, the space through which the registrar falls must be diminished by raising the disk of the trigger; if below, the disk must be lowered. In the former case it is turned in the contrary direction to the sun, and in the latter case with the sun.

The arrangement by which the amount of alteration in the height of the disk is regulated has already been pointed out when describing the trigger. When the height of the disk has been regulated for some previous experiments, the reading will not vary on another occasion more than a few tenth of a millimètre, and this can be (at once) corrected by turning the
disk, in the proper direction, through the required number of divisions of the circle.
1279. Method of Taking Velocities.-The instrument is prepared for measuring velocities in the same manner as for taking the disjunctor-reading. First cock the disjunctor, then the trigger, and afterwards suspend the chronometer and registrar. Before suspending the rods, however, it is advisable, in order to prevent the possibility of errors in measuring the indents given by different rounds, to make ink-marks round the lower edge of the upper zinc tube, about one-twentieth of an inch apart, and to turn the tube after each round so as to bring these marks successively opposite the line on the centre ring. Equidistant lines are thus obtained, upon which the marks of successive rounds will be registered.

The same may be done with the lower (or disjunctor) tube ; by this means each tube can be made to register about twenty indents at each end, and can be turned end for end when the circle at one extremity is completed.

An indent having been obtained on the upper tube by firing a projectile through the screens, the velocity may be ascertained in two ways: 1st, by measuring the height of the mark above the origin, and calculating the time and corresponding velocity from the tables; 2 d , by measuring the velocity on the scale adapted for that purpose.

The former method is the more accurate, while the latter takes less time, and, for ordinary purposes, such as the proof of powder, indicates the velocity within sufficiently narrow limits.

12S0. Method of Correcting Irregularities.-When the foregoing directions for adjusting and regulating the instrument are adhered to, not only do successive disjunctor-readings taken between the rounds agree within very narrow limits, but the readings generally remain constant from one round to another. It is therefore sufficient, when accustomed to the chronograph, in order to ensure its regularity, to take a reading of the disjunctor after every three or four rounds.

The operator must judge from the regularity of these readings whether he should repeat them, and whether it may be necessary to readjust the instrument.

The following directions will assist him. If the reading is too high or too low, repeat it; and if the difference remains constant, and is small, the lieight of the disk of the trigger need only be altered. Should, however, the error be considerable, indicating that there is a variation in the force of one of the magnets, this force must be regulated.
1281. Should the disjunctor-readings become irregular, the following points must be looked to, viz.:

1 st . If one of the magnets has not become too strong.
2d. If the instrument is properly levelled; that is, if the rods hang vertically, and do not rest too beavily against the support.

3d. If there be not an imperfect connection in the circuits, including the battery and the screens.

Should the mark obtained be indistinct, the chronometer must be brought nearer to the knife (by means of the levellingscrews), care being taken that it still falls freely and without friction.
1282. If, during the experiments, one of the currents becomes broken without any apparent cause, try (after ascertaining that the screens are properly mended), whether there is contact between the plates, $q q^{\prime}$, of the disjunctor (Fig. 2S8), and the pins, $r r^{\prime}$, by removing the wire from the binding-screw at one extremity of the plate, and bringing it into contact with the screw at the other end. If the current is thus re-established, it shows that the break occurs at the point of contact of this plate with the screw, which should be cleaned by passing a piece of paper between them.

12S3. 'the only parts of the instrument that require special attention are the points of contact between the rods and the electro-magnets.

These four points ought to be kept clean and polished, and it is as well never to touch them with the fingers, and to rub them frequently with a chamois-leather. The rest of the instrument may be covered with rust and dift withont affecting its working, whilst a single spot of rust on one of these points may cause irregularity in the disjunctor-readings. If by accident they should get rusty, very fine emery cloth must be used to clean them, care being taken to rub round the point so as not to alter its form.

12St. From the nature of the instrument itself nothing can affect the chronometer while falling, and the rate of falling being according to a well-known and invariable law, it is erident that there can be no constant error in the measurement of velocities, provided that the scale is correctly graduated, and the disjmictor in proper working order.
1285. The accidental errors which may be committed correspond to those which odeur when a series of disjunctor-readings are taken, after the instrument has been properly regulated ; and any one at all accustomed to using the instrment will see at once that the errors in determining velocities (inclu-
ding errors in reading the scale) do not exceed a few decimètres, and that the results are sufficiently accurate for ordinary experiments, the variations being far less than those due to other causes.
1236. If the two currents are not broken by the disjunctor identically at the same iustant, there will be a constant error in the readings. The disjunctor is not liable to get out of order, but, if required, its accuracy can at any time be verified as follows:

Determine the height of the disjunctor-reading, and then invert the currents by removing the wires which were first at s and v to s^{\prime} and v^{\prime}, and those at s^{\prime} and v^{\prime} to s and v (Fig. 288), so as to send the chronometer current through the side on which the registrar current first passed, and vice versa. Having done this, take several readings, and ascertain whether they agrae with those previously taken, which will be the case if the disjunctor is correct.

If there should be any difference between the height of these two series, it represents double the error of the disjunctor, and from the relative position of the marks it can be seen on which side contact is first broken; i.e., which plate is raised before the other. To correct this error, it is only necessary to elevate or lower one of the screws, $\mathrm{v} \mathrm{v}^{\prime}$, until both plates are raised by the cross-picce of the spring exactly at the same moment.
1287. SCHULTZ CHRONOSCOPE.-This instrument, invented by Captain Schultz, of the French artillery, is designed for measuring very short intervals of time. By means of it, periods varying from thirty seconds to the $\frac{1}{3000}$ part of a second have been measured with very great approximation, and with great ease and accuracy. It was introduced into the United States by Colonel Laidley for the purposs of determining the initial velocity of projectiles in the proof of gunporvder.

A tuning-fork, making an ascertained number of vibrations per second, is arranged to trace on the blackened surface of a revolving cylinder a sinuous line, showing the beginning and end of each vibration. This sinuous trace will be an actual scale of time. If, then, the instant the projectile reaches each of the two given points in its trajectory be marked upon the cylinder, beside the sinuous line or scale of time, the number of vibrations compreliended between the two marks will be an exact measurement of the time required.

The inportant parts of the machine (Fig. 289) are the Cylinder, Vibrating-fork, Electric Interrupter, Ruhmkorff

Coil, Pendulum, and Micrometer ; and, while experimenting, the Galvanic Batteries and Targets.
1288. The Cylinder, with its connections, forms the most

Fig. 259.-Schultz Chronoscope.

1. Cylinder.
2. Clock-work.
3. Pendulum.
4. Tibrating-fork.
5. Ruhmkorff Coil.
6. Interrupter.
7. Micrometer. 8. Target.
bulky of the working parts. A double motion of rotation and translation is given it by means of a cord and weight acting on a system of clockwork. These motions can also be giren sep-
arately by hand, independent of the weights. The cylinder is detached from or connected with the clockwork by a thumbscrew that clamps one of the wheels; and the sliding motion is produced or stopped by closing or opening the nut in which the translating-screw works.

The silver face of the cylinder is covered with a thin coating of lamp-black, which is removed by the trace and spark, and the bright surface exposed in strong contrast to the blackened parts.
1239. The Vibrating Fort stands immediately in front of the cylinder. It is clamped tightly to the bed-plate of the machine, which is of iron, resting on a stout oak table. On each side of the fork, supported on a stand, are two small electromagnets, meant to originate, sustain, and equalize its vibrations, and can be set at any required distance from it. The leit branch of the fork is armed with a flexible quill point, which can be made to tonch the cylinder at pleasure, and thus trace upon it both the middle line and the line of vibration, in the form of a helix; the former while the fork is at rest, and the latter while it is vibrating.
1290. The Interrupter is the point of termination of the poles of the battery which supplies the current for the small electro-magnets. It consists of a light beam one end of which is fixed, and the other end, extending beneath two electro-magnets and over a small cup containing mercury and alcohol, has a platinum blade attached which rises from or descends to the surface of the mercury as the beam is affected by the electromagnets above it. One pole of the battery passes through a platinum wire into the mercury; the platinum blade at the end of the beam becomes the other pole, and eacl time it tonches the surface of the mercury, completes the circiit and excites the electro-magnets on each side of the fork, as well as those which act on the beam itself. The magnets lift the blade out of the mercury by attracting the beam and thus rupture the current. This done the magnets lose their magnetic force, release the beam, and the blade descends to the mercury, completing the circuit, and so on. All the electro-magnets being in the same current, are subject to a change of condition with each motion of the beam, which must rise and fall as often as the fork vibrates, accommodating itself to and acting in unison with it, in order that the small electro-magnets shall always assist and never retard the vibration of the fork.

Small sliding weights are attached to the bean, which, when moved, change its time of rise and fall ; the mercury-cup, when raised or lowered, has the same effect. Should the above means
fail, recourse is had to the nuts that clamp the beam, and these are tightened or loosened until the proper movement is obtained. If the fork vibrates for twenty or thirty seconds without apparent change, the beam is supposed to be moving in unison with it, as there can be no permanent vibration of the fork unless this condition be fulfilled.
1291. The Rulmkorff Coil.-The secondary currents obtained by magnetic induction possess a high degree of intensity, and if the circuit be broken at the moment the current is passing, a brilliant spark will be observed at the point at which the interruption is occasioned.

The secondary currents are rendered efficient by means of the Ruhmkorff coil. It consists of two concentric helices of copper wire; the primary or inner coil consisting of a stouter and shorter wire than the secondary or onter coil, which is made of a very thin wire, insulated by silk, and each layer of coils is carefully insulated from the adjacent layer; a bundle of soft iron wire is placed in the axis of the coils. The primary coil is not continuous through its length, bnt admits of being broken. So long as the current circulates uninterruptedly through it, the iron core becomes an artificial magnet. As soon as the current is broken, however, the iron core ceases to be a nagnet, but a powerful secondary current is induced in the secondary coil, which will emit a spark at any point in its circnit where broken.

The power of the instrument, and the intensity and striking distance of the spark, may be much increased by comecting the primary wire with the modification of the Leyder jar, commonly called a condenser. This consists of a pile of alternate sheets of brown paper or oil-silk and tin-foil.

To use the Ruhmkorff coil, the primary wire is connected with a battery and the targets; the secondary wire with the instrument; one of the ends is brought through a glass tabe close to the cylinder just over the fork, the other end is connected with the bed-plate and thence with the crlinder and other parts of the machine, except the support for the glass tube, which is carefully insulated. By this arrangement, when the primary current is broken by rupturing the target wire, a secondary current is induced and a spark is projected from the end in the glass tube to the face of the cylinder, which represents the other end, where a bright spot beside the trace indicates the exact instant the rupture took place.
1292. The Pendulum is used to determine the exact number of vibrations of the fork in a second of time, a matter of the greatest importance. It is connected with an ordinary clock-work, and should be regulated to beat laalf seconds
with accuracy. Below it is an insulated upright spring, the movable end of which is in contact with a metallic stand. To determine the number of the fork's vibrations, the Ruhmkorff coil is put in connection, no longer with the targets, but with the pendulum, one pole of the primary current being attached to the spring, and the other pole to the metallic stand. A spring is fixed to the end of the pendulum itself, which, at every double beat, strikes the insulated spring from its place, thus breaking the current and giving a spark on the cylinder to mark each second of time. As the cylinder can run for thirty seconds, the number of vibrations sought can be obtained with close approximation, by dividing the entire number of vibrations registered on the cylinder by the number of seconds.
1293. The Micrometer serves to divide a vibration on the cylinder into very small parts for close reading. It magnifies the trace, and, by means of movable cross hairs, fixes the position of the spark. A double vibration of ordinary length may be divided into 2,000 parts, and as each of the former is about the $\frac{1}{250}$ portion of a second, the readings of the micrometer may approximate to the $\frac{1}{50000}$ portion of a second of time.
1294. The Batteries.-A Bunsen's battery of eight cups, the zine cylinders of which are seven inches long and three inches in diameter, is connected with the interrupter and tuningfork; and another battery of two, three, or four cups is connected with the Ruhmkorff coil. The number of cups used with the latter will depend on the size and distinctuess of the spark required, and on the length of the wire used. The wire need not be more than .06 inclı in thickness.

By using a solution of bi-chromate of potash instead of nitric acid in the porous cups, a saving in the cost of the liquid is effected and the injurious fumes of nitrous acid avoided, without loss of strength in the battery. The liquids in the cups should be renewed, and the parts of the battery cleaned, once a week.
1295. The Targets.-In working the instrument it is essential that the current pass only through one target at a time, there being but one coil and one battery, no matter how many targets may be used. After the first target is ruptured, the current innst be transferred to the succeeding one before the projectile reaches it, and so on throughout the series. The targets must therefore be so made and arranged as that each shall transfer the current to the succeeding target the instant its wires are ruptured ; and that the transfer shall be completed before the projectile reaches the latter.

To effect this, a wire from one pole of the battery connects.
both targets on one side. From the other pole a wire leads to the first target, and is attaehed to one of two brass rods that are on the top of the frame. A wire from the second brass rod leads to the second target. If the rods be connected by resting a piece of metal on both, the eurrent will pass continuously through both targets; but if the rods be diseonnected, the eurrent, being interrupted by their separation, will pass through the first target only. A series of brass levers are placed on the top of the frame, extending directly over the two rods. From their lower ends a wire passes down and up to form the target ; when the wire is tightened, the levers are raised from contact with the two rods. Now, the first target being broken, the lerers are released by the slackening of the wire and are instantly pressed down upon the two rods by a series of steel springz, and the connection made with the second target.

In the experiments made at the Frankford Arsenal, with targets one foot apart, the eurrent was transferred from one to the other by means of a simple brass spring, in less than $\frac{10{ }^{2} 00}{100}$ of a second of time.
1296. Principles of the Machine.-

Fig. 290. From the above description of its parts, it will be understood that the Fork, when vibrating, traces a scale of time on the eoated surface of the revolving cylinder, the unit of which is the duration of a double vibration. The value of the unit for this machine is $\frac{1}{249.055}$ of a second of time. The Interrupter originates, sustains, and equalizes the lateral extent of the vibrations of the fork; and the Coil, in connection with the targets, deposits a spark beside the traced scale of time, to indicate the instant the wire of a target is broken, thus marking the beginning and end of each interval to be measured. The Pendulum serves to determine the number of vibrations made by the fork in a second of time.

The measurement of time by this instrument, then, depends on the equality of duration of the vibrations made by the fork. These vibrations are known to be isochronal for the same fork, when their amplitude is constant, and are in no way affected by the motions of the other parts of the machine.

The vibrations made by the fork are recorded on the cylin-
der in the form of a sinuous line, as in Fig. 290, making the scale of time. The middle line, $c d$, traced by the fork when at rest, is of great importance, as it divides the sinuous line and gives the exact points of the origin and end of each vibration. Even when not in the middle, no error can occur when double vibrations are counted.

As expressed on the cylinder, each of the double vibrations is sutticiently large to admit of being divided into tenths by the eye; when greater accuracy is required, the micrometer must be used.

To determine the value of the interval between two sparks, the number of double vibrations are counted. Where both sparks fall immediately opposite the intersections of the two lines, the value will be summed up in entire double vibrations, as in Fig. $290, x$ and y being the sparks.

When one or both of the sparks do not fall opposite an intersection, the value of the interval is thus arrived at. In Fig. 291 the sparks are at x and y. From a to b are twenty-three double vibrations. By the eye or the micrometer, the distances $a x$ and $b y$ are found to be .8 and .25 of a double vibration. Therefore $x y=23+.8+.25=24.05$ double vibrations $=\frac{24.05}{249.055}=.096565$

Fig. 291. seconds of time.

As the velocity $=\frac{\text { space }}{\text { time }}$, suppose the space between the targets to be one hundred feet, then the velocity of projectile will be equal to $\frac{100}{.096565}=1035.5$ feet per second.
1297. To Use the Chronoscope.-The cylinder is coated by revolving it over the flame of an oil-lamp with a flat wick. This takes ten minutes, and twelve or fifteen rounds may be fired before the coating needs renewal. The operator, standing in front of the instrument, releases the translating-screw, pushes the cylinder to the right, clamps it to the wheel-work, and throws the translating-screw into gear again. He then sets the point of the quill, at the extremity of the fork, very lightly
against the face of the cylinder, and releases the brake. While rotating, the cylinder will be removed toward the left by the

translating-screw, and receive the trace of the middle line in the form of a helix. This done, the quill is raised and the cylinder is pushed to the right as before. The quill is again set with
its point exactly on the middle line, the translating-screw thrown into gear, the circuit of the battery and the interrupter closed, and the beam touched gently to start it vibrating. At this point the caution "Ready!" is given, the circuit of the battery and the Ruhmkorff coil promptly closed, and the cylinder started rotating when the command "Fire!" is given. As soon as the report is heard, the machiue is stopped by the brake, both currents opened and interrupted, the quill point removed, and the cylinder detached from the wheel-work; when the operator counts the result, while the gun is being reloaded, and the targets mended preparatory to another round.
1298. Tife Bashforth Chronograph.-Profr. Bashforth, of the Artillery School, Woolwich, England, has made extensive experiments to determine the resistance of the air to the motion of rifle projectiles, with a chronograph of his own invention. Fig. 292 gives a general view of the instrument.
1299. Description.-The fly-wheel, A, is capable of revolving about a vertical axis, and carrying with it the cylinder, K , which is covered with prepared paper for the reception of the clock and screen records. The length of the cylinder is 12 or 14 inches, and the diameter 4 inches. B is a toothed wheel which gears with the wheel-work, M, so as to allow the spring, CD, to be slowly unwrapped from its drum. The other end of CD, being attached to the platform, S, allows it to descend slowly along the slide, L , about $\frac{1}{4}$ inch for each revolution of the cylinder. $\mathrm{E} \mathrm{E}^{\prime}$ are electro-magnets; $d d^{\prime}$ are frames supporting the keepers; and $f f^{\prime}$ are the ends of the springs, which act against the ${ }^{-}$ attraction of the electro-magnets.

When the current is interrupted in one circuit, as E , the magnetism of the electro-magnet is destroyed, the spring, f, carries back the keeper, which, by means of the arm, a, gives a blow to the lever, b. Thus the marker, m, is made to depart from the uniform spiral it was describing. When the current is restored the keeper is attracted, and thus the marker, m, is brought back, which continues to trace its spiral as if nothing had happened, E^{\prime} is connected with the clock, and its marker, m^{\prime}, records the seconds. E is connected with the screen, and records the passage of the projectile through the screens. By comparing the marks made by $m m^{\prime}$ the exact velocity of the projectile can be calculated at all points of its course.

The slide. L, is fixed paralled to F , and the cylinder, K , by the brackets, G H. Y is a screw for drawing back the wheel-work, M ; and J, a stop to regulate the distance between M and B. The depression of the lever, h, raises the two springs, s, which act as levers, and bring the diamond points, $m \mathrm{~m}^{\prime}$, down upon the paper.

When an experiment is to be made, care is taken to see that the two currents are complete. The fly-wheel, A, is set in motion by hand, so as to make abont three revolutions in two seconds. The markers, $m m^{\prime}$, are brought down upon the paper, and after four or five beats of the clock the signal to fire is given, so that in about ten seconds the experiment is completed and the instrument is ready for another. The pendulum of a half-seconds clock strikes once, each double-beat a very light spring, and so interrupts the galvanic current in E^{\prime} once a second.
1300. The Targets.-Fig. 293 gives the details of the screen. It represents a piece of board 1 inch thick and 6 or 7 inches wide, and rather larger than the width of the screen to be formed. Transverse groores are cut at equal distances, something less than the diameter of the projectile. Staples of hard brass springwire are fixed with their prongs in the continuation of the grooves. Pieces of sheet copper, $a c e$, are provided, having two elliptical holes the distance of whose centres equals the distance of the grooves. The pieces of copper are used to connect each wire staple, b, d, f, with its neighbor on each side. These copper connections hold down the wire springs, which, when free, are in contact with the tops of the holes; but when properly weighted, they rest on the lower edge of the holes. Thus the copper c forms a connection between the staples b and d; the copper e joins d and f, and so on.

A galvanic stream will therefore take the following course, whether the springs be weighted or unweighted: copper a, brass b; copper c, brass d; copper e, $\operatorname{brass} f$, etc. The current will only be interrupted when one or more threads have been cut and the corresponding spring is flying from the bottom to the top of its hole. About one-fiftieth of a second is required for the complete registration of such an interruption, the spring traversing about half an inch.

The shelf, A (Fig. 293), is placed for the weights to rest against, partly to prevent them from being carried formard by the projectile, but chietly to prevent the untristing of the threads which support the weights. The weights used are about 2 lbs . each, and the strength of the sewing-cotton for supporting them is equal to a stress of about 3 lbs., which is sufti-
cient to withstand a tolerably strong wind. As the weights are equal the threads are kept equally stretched.
1301. Arrangement of Screens for an experiment is shown in Fig. 291. The wires for conveying the galvanic current are like the common tele-graph-wires carried on posts. $a b$ c d ef $g h$ is a continuous piece of wire, and the current is made to circulate through the screens. The ends, a h,

Fig. 294. are connected with the instrument and battery. The projectile, being fired through the screens, in passing cuts one or more threads at each screen, so that corresponding to the instant at which the projectile passes each screen there is an interruption of the galvanic current and a simultaneons record on the paper.
1302. The Noble Chroxoscope.-The principle of action of this instrument consists in registering, by means of electric currents upon a recording surface, travelling at a uniform and very high speed, the precise instant at which a projectile passes certain defined points in the bore. (Fig. 295.)

Fig. 295.-Chronoscope.
It consists of two portions: firstly, the mechanical arrangèment for obtainiug the necessary speed and keeping that speed
uniform ; secondly, the electrical recording arrangement. The first part of the instrument consists of a series of thin metal disks, A A, each 36 inches in circumference, fixed at intervals upon a horizontal shaft, S S, which is driven at a high speed by a heavy descending weight, B, throught a train of gearing multiplying 625 times. The driving-weight is, during the experiment, continually moved up by means of the handle, H . If the requisite speed of rotation were got up by the action of the fall-ing-weight alone, a considerable waste of time would ensue; to obviate this inconvenience, the required velocity can be obtained with great rapidity by means of the handle, C.
1303. The precise rate of the disks is obtained by means of the stop-clock, D, which can at pleasure be connected or disconnected with the revolving shaft, E , and the time of making any number of revolutions of this sliaft can be recorded with accuracy to the one-tenth part of a second. The speed usually attained in working this instrument is about 1,000 inches per second, linear velocity, at the circumference of the revolving disks, so that each inch travelled at that speed represents the one-thousanth part of a second; and, as the inch is subdivided by the vernier, V, into a thousand parts, a linear representation at the circumference is thus obtained of intervals of time as minute as the one-millionth part of a second.
1304. As a small variation in speed would affect the relation between the several records obtained. the uniformity of rotation is ascertained on each occasion of experiment by three observations: one immediately before, one during, and one immediately after the experiment, the mean of the three observations being taken for the average speed. With a little practice there is no difficulty in arranging the instrument so that the disks may rotate either uniformly or at a rate very slowly increasing or decreasing.
1305. The arrangements for obtaining the electrical records are as follows: the revolving disks are covered on the edge with a strip of white paper, and are connected with one of the secondary wires, G , of an indnction-coil. The other secondary wire, II, carefully insulated, is brought to a discharger, I, opposite the edge of its corresponding disk, and is fixed so as to be just clear of the latter. When a spark passes from the discharger to the disk, a minnte hole is perforated in the paper covering upon that part of the disk which was opposite the discharger at the instant of the passage of the spark; but as the situation of this hole in the paper would be very difficult to find, on account of its extreme minuteness, the paper is previously conted with lamp-black, and the position of the hole is thus readily seen ; a
distinct white spot is left on the blackened paper, the lamp-black at that point having been burnt away by the spark, so that the white paper is shown beneath. By means of the micrometer the distance between the sparks on the disks is read off.
1306. In order to connect the primary wires of the induc-tion-coils with the bore of the gun, so that they may be cut by the projectile in its, passage, the gun is tapped in a number of places for the reception of hollow steel plugs carrying at the end next the bore a cutter which projects slightly into the bore. This cutter is held in position by the primary wire, which is carefully insulated and passed down the plug, through the cutter, and back out of the plug, the ends being connected to the main wires leading to the induction-coils. When the projectile reaches the point where the plug is screwed in, it presses the cutter in flush with the bore, and, by so doing, cuts the primary circuit. As each plng is reached a spark is delivered, and thus the passage of the projectile along the bore is recorded at regular intervals.

Some idea may be conveyed of the minute intervals of time which can be measured by this means, from the fact that the distances between the parts of a X -inch gun at which the time records have been obtained are in some instances only 2.4 inches, while the total time the projectile takes to reach the muzzle of the gun-a distance of 100 inches-when fired with a full charge, is about the one-hundredth part of a second.

By this means the time nay be recorded which the projectile occupies, from the cominencement of motion, in reaching different parts of the bore, and from these time records may be deduced the velocity with which the projectile is passing through the different parts of the bore, and the pressures in the gun which correspond to these velocities.
1307. Tife Electric Clepsydra".-Generally, with chronometric instruments, the time is deduced from the space passed over during the interval to be measured, by a body which moves according to a determined law. This moving body, which we call "chronometer," is the important part of the apparatus; the other fittings are but accessories serving to put the chronometer in operation; that is to say, to render it capable of marking the commencement and the end of the time to be measured.

The choice of chronometer, then, is of first importance. A weight falling freely constitutes, incontestably, the most simple and most exact chronometer; regulated by an iminutable law of nature, its motion is accomplished without the aid of any

[^35]

Fig. 296.-Electric Clepsydra.
intermediary force; neither use nor time can alter its rate ; it is absolutely invariable.

Unfortunately, this chronometer is only applicable to the measure of times relatively short, for the extent of fall increases with the time in very rapid proportions.

One can, it is true, transform the vertical fall into a movement of rotation, whether continuous, such as that of revolving cylinders, or alternate, such as that of pendulums ; but in both cases the great adrantage of a constant chronometric movement is lost; account must then be taken of friction, and this may be varied by causes which escape the observation, and certainty and reliability in the result no longer exist. In order to avoid this inherent inconvenience in the employment of such a mechanical instrument, we may employ as a chronometer the flow of a liquid, and determine the time by means of the weight run out during the interval to be measured. For this purpose mercury presents itself naturally to the mind; this metal, very fluid and homogeneous, has great specific weight; its evaporation is insensible, and, not moistening the inclosing surfaces, its use is extremely clean and convenient.

This has been done by Major La Bonlengé of the Belgian Artillery, in an instrument to which he has given the name of Electric Clopsydra.
1308. Description of the Instrument.-It is composed (Fig. 290) of a circular reservoir, A, of $0^{\mathrm{m}} .20$ diameter by $0^{\mathrm{m}} .03$ high, containing inercury, and supported by a hollow central column, B, of $0^{m} .20$ height, terminating in a tripod fitted with levelling-screws X. This vessel, of cast-iron, rests on a circular plate, C, of the same metal, which is titted with a rim to catch the mercury which may through inadvertence flow out of the receiver, D. A disk of cast-iron, E, covers the reservoir and bears the electrical fittings of the apparatus. The hollow colunn, which makes a part of the receiver, terminates at the lower end in a fine orifice, above which is fitted a conical valve, which prevents the mercury from running out. The face of the orifice, the body of the valve, R, and its seat, F, are of steel.

A rigid stem, G, connected by a swivel-joint to the body of the valve, rises, following the axis of the receiver, traverses a central opening in the upper disk, and then connects above this latter to a horizontal lever, H , which is called the valve-lever. If the arm of this lever opposite to the connection of the stem be pressed down, the valve is opened and flow is produced. If the effort be discontinued, the valre falls back upon its seat, and the flow is arrested instantaneously.
1309. The opening and closing of the valve are performed by the action of two levers, I and J, which fall successively, and of which the heavier extremities, fitted with armatures of soft iron, K and L, are held in the state of "ready" (shown in the figure) by electro-magnets, Mand N. The lever for closing is formed of two parallel arms, united at one end by the armature, at the other by a cross-piece used to raise the lever, K ; this disposition permits it to move without touching the valve-lever.

If the current which actuates the electro-magnet M be broken, the opening lever falls upon the end of the valve-lever, opens the valve permanently, and the mercury flows into the receiver, D, placed immediately under the orifice. We call the lever K, opening-lever; its magnet current and circuit will lee called by the name of electro-magnet current and circuit of opening, to distinguish them from similar fittings which operate the closing. If the second current be broken, the closing-lever falls in turn, raises the opening-lever to its original position; then the lever of the valve being freed, this latter falls back into its seat, and the flow is arrested.

A catch, T, prevents vibration of the closing-lever after its fall. This simple combination of three levers fulfils perfectly the mechanical conditions imposed, for the valve opens suddenly by a shock, while it closes freely by its own action.

In actual practice the two currents are broken snccessirely by the projectile, a weight, P^{\prime}, of mercury flows into the receiver, and it is required to deduce from it the period which has separated the two ruptures.
1310. Let us suppose for a moment that the apparatus furnishes a constant flow, and let P be the flow of the oritice, that is, the weight of mereury which flows per second; by diriding P^{\prime} by P , the time is obtained which has elapsed between the instant of opening and that of closing the valve.

The relation $\frac{\stackrel{P}{P}}{P^{w}}$ will also give the time which has elapsed between the rupture of two currents, if the valve has opened and closed at the precise instant of the rupture of the corresponding current. But this is not the ease; when the first current is broken, a certain time is necessary in order that the maguet nay arrive at such a state of demagnetization as to release the armature, then a certain time for the fall of the lever, and finally an additional time for the complete raising of the ralre. Analogous periods transpire between the rupture of the closing current and the arrest of the flow. The determination of these short periods is obviated by applying to the instrument the method of simultaneous disjunction, the import-
ant feature of which has been devised by Major Navez. To this end the fall of the levers is regulated in such a way that the opening-lever occupies less time than the other, from the commencement of its fall to its action on the valve. Thus, when by means of a disjunctor both currents are cut at the same time, the first lever opens the valve a certain time before the second closes it ; the weight, P , of mercury run ont in this way, is the precise quantity to be deducted from P^{\prime}, in order to obtain from the expression $\frac{\mathrm{P}^{\prime}-p}{\mathrm{P}}$, the time which has elapsed between the rupture of the two currents.

This method of procedure takes into account both the time lost in the working of the mechanism and that of demagnetization, which varies with the respective force of the two currents.
1311. The disjunctor is the same as that which has been adopted for Le Boulenge's chronograph. It is composed (Fig. 297) of a bent spring, t, the free end of which is caught by a catch, x, when it is pressed down by bearing on the button, z. In this position it permits two thin plates of steel, q and q^{\prime}, to bear upon the conducting-pins, r and r^{\prime}, and closes by this contact the two circuits. If the catch be released, the spring rises suddenly; its cross-piece, u, covered with an insulating-plate of ivory, raises the two plates, q and q^{\prime}, and breaks the currents. The two pins, r and r^{\prime}, are fitted with a screw thread, and thus provide for the adjustment of the height of the two plates, so that they may be raised at the same time by the spring. The head of the screw, p, limits the play of the spring; the bottom surface of the disjunctor is covered with a sheet of India-rubber, for the purpose of deadening the vibrations, which pernits it to be set up on the same table as the instrument.

Experience has proved that this disjunctor is without fanlt; once regulated, it is not liable to be deranged; its regularity is perfect, for with the chronograph it gives identical disjunctions, and as to its exactitude it can be verified whenever desired, by establishing that inversion of the currents does not produce any change in the disjunction.
1312. Basis of the Calculation of the Times.-We will now explain how the time is deduced from the weight of mercury run out.

We have supposed the flow constant; but it is not so in reality, for in proportion as the liquid runs out the height of the level diminishes, and with it the discharge. In order that the flow may always commence under the same conditions, before each trial the mercury is brought to a fixed level, which is done
by a very simple operation. For this purpose, the instrument being levelled by means of an air-bubble level, which is laid in two directions at right angles to each other on the upper disk, a freslı quantity of mercury is added to that in the receiver; then an overflow is opened (called level-escape) formed by a simple serew, o. The orifice being opened, the excess runs out into a little bucket, s, hung under the level-escape.

The level thus obtained, which we will call the original level, is always of the same height; for the determining expariments show that in the first unit of time the same volume always runs out. But the weight of this volume will vary with the temperature ; consequently, to reduce all experiments to the same terins, each weighing must be brought to a uniform temperature. They are reduced to 0° by the formula $\mathrm{P}_{0}=\mathrm{P}(1+\alpha t), \alpha$ being the coefficient of the expansion of mercury, $0^{\mathrm{m}} .00018$, and t the temperature of the receiver. This temperature is indicated by a thermometer, which forms a part of the apparatus, the bulb of which is immersed in the mercury-reservoir by passing it through an opening, U , in the upper disk.

The rapidity of flow will vary at each instant by reason of the lowering of the level, but on account of the great surface of the receiver as compared with that of the orifice, this lowering during the interval of a second is very small (about one-tenth of a millimètre, and the time may be calculated without errors in the results by supposing-

1. That the flow is constant during the interval of one second.
2. That in passing from one second to another, the amount of flow decreases by a constant quantity.
3. We will support this method of calculation by an example, the data for which are given by the instrument itself.

Let H be the height of the original level above the orifice, and P the weight run out during the first second. At the end of this time the level will have been lowered by a quanity, h, which will be the altitude of a cylinder having for a base the surface of the upper reservoir, and for volume $\frac{\mathrm{P}}{\delta}, \delta$ being the density of mercury, 13.598.

We shall have then $h=\frac{\mathrm{P}}{\pi \mathrm{R}^{3} \delta}, \mathrm{R}$ being the radius of the reservoir.

At the beginning of the second second the height of the level will be $\overline{\mathrm{H}}^{\prime}=\mathrm{H}-h$.

Let us call A the surface of the orifice, and m the co-
efficient of the contraction of the stream, we will have, by the laws of hydraulics-

$$
\mathrm{P}=m \mathrm{~A} \sqrt{2 g \mathrm{H}} .
$$

Since from second to second the level falls only by an almost inappreciable fraction, the coefficient, m, will not change, and

Fig. 29%.
we shall have also the weight run out during the second second,

$$
\begin{array}{r}
\mathrm{P}^{\prime}=m \mathrm{~A} \sqrt{2 g \mathrm{H}^{\prime}} \\
\mathrm{P}^{\prime}=\mathrm{P} \sqrt{\frac{\mathrm{H}^{\prime}}{\mathrm{H}}}
\end{array}
$$

Consequently
is the formula which enables us to calcnlate the weight of the second second; that of the first, the height of the original level, and the radius of the reservoir being known.

Having calculated P^{\prime}, we may deduce from it in the same way $\mathrm{P}^{\prime \prime} \mathrm{P}^{\prime \prime \prime}$, etc., the weights run out during the thirl, fourth, and following seconds.

The data given by the instrument are $\mathrm{H}=0^{\mathrm{m}} .20, \mathrm{R}=0^{\mathrm{m}}$. 10 , and $\mathrm{P}=6200$ centigrammes."
1314. Applying these values to the preceding calculation, we have the following results :

SECOnds.	Height of Level.	Discharge.	1st. Dif.	23. Dif.
	Millimètres.	Centigrammes.	Centgr.	Centgr.
First.	0.200000000000	6200. 000000	2.250042	
Second.	0.199854862517	6197. 74995	2. 250032	0.000011
Third.	0.199709777705	6195. 49992	2. 250020	0. 003011
Fourth.	0.19956474.5545	6193.249907	2. 250008	0.009012
Fifth	0. 199419766096	6190.999899	2. 249995	0.000013
Sixth	0. 199274839298	6188. 719904	2. 249982	0. 000013
Seventh.	0.199129965171	6186.499922		

The figures of this table prove that it is permissible to consider the difference of weights run ont from one second to another as absolutely constant.

The column of second differences shows, in effect, that they are so, to nearly the ten-millionth of a gramme, or in time $\overline{620000000}$ or $0^{\prime \prime} .000000002$, a quantity ten thousand times smaller than the fraction of time which tre can hope to measure in practice.

In the second place, the difference between the weights run out in two consecutive seconds being but $2^{c} .25$, which represents in time $0^{\prime \prime} .0003$, no appreciable error is committed in calcuiating the time as though the flow were constant during the interval of one second.
1315. In order to compute the table of times of the clepsrdra according to the principles indicated, it will be seen that we must know the height of the original level. Owing to the convex curve formed by the mercury, it is very difticult to measure this height exactly, but fortmately this exact measure is unnecessary, as will be shown. The weight of the first second being $6,200^{c} .00$, we have, by supposing $H=0.200$, found

* In the use of the instrument the centigramme is adopted as the unit of weight.
for the second, $6,197^{\circ} .75$. Suppose that in the measurement of H a mistake of a millimètre is made, and that in reality $H=0^{m} .201$, the weight of the second second, calculated with this new value, wonld be 6197.76 ;
for $\mathrm{H}=0^{\mathrm{m}} .202$ it would be............. 6197.77
for $\mathrm{H}=0.203$ it would be. 6197.78
for $\mathrm{H}=0.204$ it would be............. . 6197.79
That is to say, an error of a millimètre in the measurement of H brings into the calculation of the second second only an error of. $0^{\prime \prime} .000002$, a quantity which can clearly be neglected in practice.

1316. Experimental Determination of the Table of Times. -In order to determine experimentally the weight of mercury which runs out in the first second, the two currents of the apparatus must be broken at intervals, separated by exactly one second. A first method would consist in passing the current through a plate rheotome, which we will describe farther on, and by bearing on the plates in following the beats of a seconds pendulum. From the weight obtained we wonld subtract the weight of disjunction, and thus have the weight of the first second. But by this method even a very experienced operator could never obtain in his observations the precision of which the instrument is susceptible ; for this reason, a more exact method has been sought out, which consists in causing the currents to be broken by the pendulum itself, which divests the process of all personal skill. A system of two small metallic circuit-closers, $a b c$ and $d e f$ (Fig. 299), are fastened to the lower part of the case of a seconds-beating regulator, and in the vertical plane of the pendulum. Each of these closers is movable around an axis, b and e, perpendicular to the plane of oscillation. The pendulum terminates in a cutter, O , which, meeting in its course the points of the closers, causes them to fall alternately to the right and to the left of their respective vertical positions. Let $t s$ be the opening circuit, and let a point, r, of this circuit be united by a conductor to the connection k, and a point, q, to the connection l.
1317. The base, p p which supports the whole system is insulated, but the connection k commmicates through metal with the axis b, and the connection l with the screw g; consequently, when the pendulum is at $m m$, that is to say, at the end of its beat to the left, the closer $a b c$ being in contact with the screw g, the diverted circnit, $r k l q$, is complete. If in this state of things the circuit be cut in the part $q r$, the opening current will not be destroyed; it will pass entirely by the diversion
$r k l q$, but the pendulum continuing its corrse will destroy the continuity of the diversion, and consequently the opening current, at the instant when, arrived at $z z$, it touches the arm c. It must be remarked that so long as the circuit between q and r is not interrupted, the movement of the pendulum cannot break the current. Let an analogous diversion, $x i j v$, be established by means of the closer $d e f$, in the closing circuit $u y$. The pendulum, having arrived at $m^{\prime} m^{\prime}$, will have met the $\operatorname{arm} f$, pressed down the closer d e f upon its screw of con-

Fig. 298.
tact, h, and closed the diversion of the closing current. If at this instant a rupture be made between v and x, the closing circuit will not be broken; but this rupture will take place when the pendulum, arriving at $z^{\prime} z^{\prime}$, touches the arm d.
1318. It is apparent, then, that the operator can break the opening current by means of the pendulum, when it, in passing
to the left, arrives on the line $z z$, and in the same way he can break the closing current at the moment when the pendulum coming to the right, arrives on the line $z^{\prime} z^{\prime}$. To accomplish the breaking of the circuits $q r$ and $v x$, a rheotome (Fig. 298) is used haring two plates, A and B, which close the circuits by their contact with C and D. These contacts established, the opening current passes at the same time through the general cirenit $t q \mathrm{~A} r s$, and through the diversion $q \eta \hbar r$, which includes the contact of the closer. If the finger be pressed on the extremity, E , of the plate A, the general circuit is interrupted between q and r, and the closing current passes as a whole through the diversion. The same effect is produced in the closing circuit by means of the plate B. The circuits being established in the manner which has just been explained, and the clepsydra being in readiness, that is to say, the mercury at the level-mark and the two levers raised, the operator follows with the eye the movement of the pendulum. When he has taken up the cadence accurately, he places the forefinger on E when the pendulum is nearly in the position $m m$; then the pendulum, arriving at $z z$, breaks the opening current, and the running out commences. Toward the end $m^{\prime} m^{\prime}$ of the same oscillation, the operator presses down the second plate, B , and the pendulum, repassing to $z^{\prime} z^{\prime}$, breaks the closing current, and the flow is arrested. Let us call α the weight of mercury obtained by this operation, and β that which would have been obtained if the two currents liad been broken at exactly the same instant; then $\alpha-\beta$ will be the weight run out while the pendulum is passing over the angular space $z m^{\prime}+m^{\prime} z^{\prime}$. This space will correspond exactly to one second, if the two oblique lines $z z$ and $z^{\prime} z^{\prime}$ are equidistant from the vertical; but this condition is realized with difficulty in practice, and if we were to bind ourselves to its acceptance, the process would be subject to serious errors; therefore we have made the process independent of it, by proceeding in the following way:
1319. After having obtained the weight α, as has just been explained, the mercury is again raised to the level-mark, and the instrument put in readiness; then the operation is recommenced, but a longer time is measured. After having broken the first current, the second is not ruptured at the end of the oscillation; on the contrary, the pendulum is allowed to return, and it is not until its arrival for the second time at $m^{\prime} m^{\prime}$ that the second plate, B , is pressed down. Let γ be the weight obtained in this second operation; $\gamma-\beta$ will be the weight which runs out while the pendulum is passing over $z m^{\prime}+m^{\prime}$
$z^{\prime}+z^{\prime} m+m m^{\prime}+m^{\prime} \boldsymbol{z}^{\prime}$. If from the time $(\gamma-\beta)$ we subtract the time $(\alpha-\beta)$ which is required by the pendulum to pass over $z m^{\prime}+m^{\prime} z^{\prime}$, there will remain $\gamma-\alpha$, which will be the time employed by the pendulum to pass over the space $\left(z m^{\prime}+m^{\prime} z^{\prime}+z^{\prime} m+m m^{\prime}+m^{\prime} z^{\prime}\right)-\left(z m^{\prime}+m^{\prime} z^{\prime}\right)$ or $z^{\prime} m$ $+m m^{\prime}+m^{\prime} z^{\prime}=2 m m^{\prime}$, that is to say, two complete oscillations, and $\frac{\gamma-\alpha}{2}$ will be the weight run out in one second.

Fig. 299.
By this method we obviate the determination of the weight β, corresponding to a simultaneous disjunction. The electrical conditions not varying from one trial to another, this weight will remain the same, and since it is included in each of the above partial operations, it is eliminated by the subtraction.
1320. Knowing the weight, $\frac{\gamma-\alpha}{2}$, of one second, we can calculate the weight of the following by the process which has been explained, and we will discover in consequence the constant difference ω, from one second to another. These two quantities suffice for calculating the weights $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}, \mathrm{P}_{\mathrm{n}}$, corresponding to the $1^{\text {ta }}, 2^{\text {a }}, 3^{d}, 4^{\text {th }}, n^{\text {th }}$ second. Let it be remarked, first, that the systen of closers being established as far as possible in the vertical plane of the pendulum, the weight $\gamma-\beta$ will be very nearly that which runs out during the first three seconds.
$\alpha-\beta$ will in the same way be the weight of the first second; consequently the weight $\gamma-\alpha$ will be that which flows during the secoud and third seconds.

We will have then-

$$
\mathrm{P}_{2} \times \mathrm{P}_{3}=(\gamma-\alpha),
$$

and

$$
\mathrm{P}_{2}-\mathrm{P}_{3}=\omega,
$$

whence

$$
\begin{aligned}
& \mathrm{P}_{2}=\frac{(\gamma-\alpha)+\omega,}{2} \\
& \mathrm{P}_{3}=\frac{(\gamma-\alpha)-\omega}{2} .
\end{aligned}
$$

The first second will be $P_{2}+\omega$, the fourth $P_{3}-\omega$ and the $n^{\text {th }} \mathrm{P}_{(0,-1)}-\omega$?

Before giving the results furnished by this process, a remark in relation to its use remains to be made. The contact between the closer and the bearing-screw not being very close, this point presents a great resistance to the passage of the current, and it often happens that when the direct circuit is cut by the rheotome, the current does not retain sufficient force to hold the armature of the magnet; it is for this reason that one should, in this experiment, give to the magnets a great force of attraction, in order that they may preserve a sufficiency when the current passes through the diversion alone.
1321. Use of the Instrument in Experimental Firing.The clepsydra is set up in a place in close proximity to the firing-ground, and on the same table are placed the disjunctor, B, and the balance, C (Fig. 300). The batteries are on the floor or elsewhere near by. They are formed of Bunsen's elements, arranged in the ordinary way, that is, with nitric acid in the porous cup, and a mixture of sulphuric acid and water in the glass. Two or three cells generally suffice for the opening current, the number necessary for
the closing current varying with the extent and resistance of the circuit. In certain special cases Bunsen cells, such as are used for telegraphy, have been employed. In these cells the carbon is replaced by a plate of copper, riveted to the zinc cylinder; the glass contains only water, and the porons cup a mixture of water and sulphuric acid. This system has the advantage of being serviceable for two months without its being necessary to touch it, but the electro-motive force which it develops is very rapidly exhausted. When the current is allowed to circulate during any time, the battery is very sensibly weakened; if the circuit be interrupted, it stores up a fresh force, and the current returns to its original intensity. These batteries are very irregular, and much inferior in this respect to the ordinary Bunsen batteries, the action of which can be considered constant during the same series of experiments.
1322. The opening-circuit, $a b \operatorname{cdef} g$ (Fig. 300), includes the first target, the disjunctor, and the opening electro-magnet; it passes in front of the muzzle of the gun, whether on an ordinary target-frame placed at 10^{m} from the muzzle, or in a simple wire stretched across the face of the muzzle. In this latter case it nust be ascertained whether the wire used is strong enough to resist the blast of gas which precedes the projectile.
1323. The second circuit, $h i j k l m$ nop $q r s$, includes the second target, the disjunctor, and the closing electro-magnet. In the trials at the Naval Experimental Battery, Annapolis, Md., there is used in forming this circuit a telegraphic line parallei to the line of fire. The current is brought to the second target, $l: l$, by a conductor, $i k$, united to the line at the top of the target. After its passage through the target the current reaches the earth throngh a plate, m, thrust into the ground near by, the circuit being continued by a second plate, n, planted near the location of the instrument; the current returns from this plate to the battery by passing through the instrument. By this arrangement, when the range is changed, it suffices to simply move the second target and its earth-plate. These plates, which are formed of a simple plate of copper or of zinc of a few decimeters long, or of a coil of wire, ought to be placed either in water or in a damp stratum of soil. If by the nature of the ground this kind of soil is difficult to reach, the current should be returned to the battery by a second metallic conductor.
1324. All these dispositions being made, it is ascertained whether the currents pass, and whether they have sufficient force to hold the levers of the clepsydra in position.

The magnets are then regulated by running the morable
core more or less inside the coil. The force of attraction is regulated so that the levers will be held with the least power necessary to prevent their being subject to accidental release. The operator then fills to level by pouring a cup of mercury into a glass funnel placed in the orifice, V, and then opening the overflow. It is to be remarked that by this operation the mercury, which forms the surface of the bath, is drawn from the receiver, and this is the only portion which can contain impurities. This mercury is poured into a flannel strainer, from which it comes out freed from oxide and dust. This process is necessary, for experience has proved that the mercury employed ought to be perfectly clean; it must then be improved in quality by use in the instrument, owing to these successive filtrations.
1325. To make ready the instrument, the currents are first made to circulate, by pressing on the button of the disjunctor

Fig. 300.
until the spring is caught in the catch; then with the forefinger the catch, T, is disengaged, while the closing-lever is brought in contact, with its magnet by using the thumb. As to the opening-lever, it is self-acting, for it is raised against its magnet each time the mechanism operates.
1326. To canse disjunction, the spring of the disjunctor is released by bearing with the forefinger on the trigger, x, and with the thumb on the guard, v. These operations, as will be seen, are extremely simple and rapid; the principle las therefore been adopted of making three disjunctions before each fire, which requires hardly a half minute. The mercury being received each time in the same vessel, the total weight, divided by three, will be that of the disjunction obtained by a mean of three trials. After having made the disjunctions, the original
level is not restored preparatory to the firing, for the quantity of inercury run off is too small to alter, in a sensible degree, the height of the liquid in the reservoir. At the instant of firing, the levers I and J fall successively, but if the magnets be regulated too "fine," it will follow that the shock produced by the fall of the first lever will cause that of the second. This effect is avoided in the following way: If the time to be measured exceeds one second, which is generally the case, before giving the order "fire," the closing-lever is held against its magnet by the finger until the opening-lever has fallen. Operating in this way in the measure of a time less than a second, there would not be time to remove the finger before the rupture of the second target ; therefore, in this case, sufficient force is given to the magnet to prevent its releasing its hold when the first lever falls.
1327. The weights are taken by means of a balance forming a part of the apparatus, which is constructed with a riew to this special use. For convenience of trausport, it can be dismonnted and placed in the instrument-case. This balance not being sensitive beyond a half centigram, the weights are easily taken. This degree of precision is quite sufficient, for the half centigram represents a time less than the twelrethousandth of a second. Iminediately after firing, the disjunction is weighed; then the discharge during the passage of the shot, and the mercury poured back into the instrument, restores the original level. In this way the operation of levelling need be done but once at the commencement of the practice; if, however, the temperature changes sensibly, it ought to be done over.

As the tro-fold weighing is quite a long operation, a mongrel process is used which possesses very nearly the same exactness. In the experiments the weight which will be obtained is always approximately known, and this weight, varying but very little from tire to fire, a counter-balance is used which balances this approximate weight placed in one of the scalepans with the vase in which the mercury is to be weighed. At each trial it is only necessary to replace the approximate weight by the mercury obtained, and to balance the scale with small weights, which are the anount to be added or subtracted in order to get the weight sought. In order to simplify this operation, the counter-balance is adjusted for the minimum which can be obtained, and in this way the difference is always to be added. A counter-balance is also nsed in weighing the disjunctions. Experience has shown that, with a little practice at the balance, the operation of weighing is easily doue within
the tine required for repairing the targets and the serving of the piece.
1328. Force of Gravirt.-In the use of nearly all electroballistic machines, the force of gravity enters as a necessary element in the calculation. The following formula* may be employed to calculate the most probable value of the apparent force of gravity-being the resultant of true gravitation and centrifugal force-in any locality where no pendulum observations of sufficient accuracy have been made.

This formula with the two coefficients which it involves, corrected according to modern pendulum observations, is as follows:

Let G be the apparent force of gravity on a unit mass at the equator, and g that in any latitude λ : then

$$
g=\mathrm{G}\left(1+.00513 \operatorname{Sin}^{2} \lambda\right) .
$$

The value of G in terms of the absolute unit is 32.088 .
When the point of observation is materially above the sea level, the true gravity may be derived with sufficient accuracy for all practical purposes from

$$
g=g^{1}\left(1+\frac{5 h}{4 r}\right)
$$

in which g^{\prime} represents the force of gravity at the height, h, above the sea, and r, the radius of the earth. (Army Ordnance Manual, p. 469.)

The formulæ given by different standard anthorities will give somewhat varying results for the same station. That used at the Naval Experimental Battery, Annapolis, and deduced from what are considered the most reliable data, is $\mathrm{g}=32.1533$.
1329. STRAIN UPON THE GUN.-The resistance opposed to the motion of a projectile in the bore of a gun, and which tends to increase the explosive force of the powder, depends upon the form and weight of the projectile, upon the circumstance of the piece being smooth-bored or riffed, and upon the system of rifling adopted.

The projectile will commence to move when the force of the gas has become equal to the resistance offered to motion.

The time necessary for the conversion into gas of the quantity of powder required to move the projectile, will depend upon the nature of the gunpowder used, the form of the cartridge, and the point of ignition of the latter.

[^36]The maximum strain upon the metal of the gun will mainly depend upon the rapidity of the conversion of the powder into gas.
1330. The initial velocity of the projectile may not, however, be in proportion to the maximum strain, but it varies as the work done on the projectile, or as the pressures into the spaces through which they act, or:

$$
\mathrm{PS}=\frac{W V^{2}}{2 \mathrm{~g}}
$$

where $\mathrm{P}=$ pressure of gas,
$\mathrm{S}=$ space through which P acts,
$\mathrm{W}=$ weight of projectile,
$V=$ velocity of projectile,
$\mathrm{g}=$ force of gravity.
And if S be a very small interval, a fair approximation to the mean strain exerted through it in the bore of a smoothbored gun may be calculated by this formula.
1331. Pressure-gauges.-These are instruments used for determining, by the method of indentation, the pressure exerted within the bore of the gun by the ignition of the powder.
1332. Rodman's Pressure-gauge is shown in Fig. 301, and in using it, a hole is drilled

Fig. 301.-Capt. Rodman's pressure piston. (Section.) through the gun at any point or points in the bore where it is desired to ascertain the pressure exerted by the exploding charge. Into this hole the tube, A, is screwed, its lower end, which is open, being flush with the bore.

The other end is closed with the pistou, or indenting-tool, B, the joint being rendered tight by means of the gas-check, g. The piston carries a knife, I. (Art. 424), and upon the knife rests a piece of copper, E , which is held tightly against it by the screw, S.

The hole in the tube shown at C , and the recess around the stem of the indenting-tool, are made for the purpose of letting ont any gas that might pass the piston, and thus prevent its acting against the shoulder of the indenting-tool.
1333. Use.-In using this apparatus the shank or piston of the indenting-tool and the hole in the tube into which it is inserted for use are well cleaned and oiled, and the indenting-tool inserted into the tube, which is then screwed into the gun, and a disk of soft copper placed on the point of the indenting-tool, the disk being held in position by the screw, S, acting cither upon a second copper disk or upou a piece of iron having a plain surface next the disk to be indented.

The pressure on the inner end of the indenting-piston forces the point of the indenting-tool into the copper disk when the gun is fired.

This disk is then removed to the testing-machine, and the pressure required to produce an equal indentation with the same tool: in the same disk, or one from the same bar of copper, is accurately weighed; then, knowing the area of a cross-section of the indenting-piston, the pressure per square inch is calculated. For the purpose of getting greater accuracy of results the indenting-point is very broad and thin so as to make a very long cut as compared with its breadth and depth.
1334. Internal Pressure-gauge. -This apparatus is placed wholly within the bore of the gun, being inserted in the bottom of the car-
 tridge-bag, and having the charge filled in over it so that no powder will get under it and come between it and the bottom of the bore when rammed home in the gun.

Fig. 302 shows the construction of this instrument.

A, outer cylinder; B, screw-plug for closing mouth of outer cylinder; G, copper gasket to form gas-tight joint; C , specimen of copper to be indented ; I, indenting-tool ; P, in-

FIG. 302. denting piston; g, gas-chicck.
1335. Use.-All its parts except the exterior of the outer cylinder are carefully clcaned before each fire, and the threads of the screw-pling and the indenting-piston carefully oiled; the
copper specimen is then placed in the bottom of the cylinder, the indenting-piston inserted into the screw-plug, and with the outer cylinder horizontal, the plug is screwed home; being afterwards tightly set in with a wrench while the cylinder is held in a vice. The cylinder is then carefully set down upon the closed end, and the indenting-piston gently pushed down till the point of the indenting-tool rests upon the copper specimen ; a small gas-check is then inserted, mouth outwards, till it rests upon the end of the indenting-piston.
1336. At the Naval Experimental Battery, a gauge called the "double plug," from its giving two indications, has been designed for use with disks of pure silver, and the records of pressure obtained are very reliable.

The instrument is inserted into the gun with the screw-plug towards the muzzle, and is generally found in the bore of the gun or near the piece after its discharge, when the screwplag is withdrawn, and the specimen removed, having an indentation in its surface, due to the pressure that has been exerted upon the outer end of the indenting-piston.
1337. The indications of pressure by this instrument are generally found to be something less, for equal charges of powder, than those by the external gauge.

One reason for this is probably owing to the fact that in the external gange the gas has a considerable space to travel through between the powder-chamber and the indicating parts, so that before reaching the piston the gases have attained a high vis-viva, especially with quick-burning powders.

To enable those who have not the means of determining the pressure corresponding to a given length of indentation to obtain approximate results from the pressure-gauge, tables are constructed by accurately measuring the length of cut due to each 100 lbs . of pressure.
1338. Martiv's Estimator * is an instrument for measuring and verifying indentations in the disks used with the pres-sure-gauge.

Description.-Fig. 303 is a profile, and Fig. 304 a midship vertical section of the Estimator. The instrument consists (Fig. 304) of a cutter-stem, A B C, cylindrical as far as B, and from B to C rectangular, as per cross-section. This stem carries two nuts, E and F, and one disk, D ; E, working on a left-handed screw of 12 to the inch pitch; F , on a righthanded thread cut accurately to $\frac{1}{20}$ inch pitch.

The lower end of the cutter-stem is groored to receive the

[^37]feather of a knife, m, about $1 \frac{7}{10}$ inches long. G is cylindrical from a to b, but square from b to c, and has through it a slot in which the lower end of the cutter-stem, A B C, fits accurately. H is a square plate having in its centre a circular recess to contain the disk, I. J is the saucer which centres the plate, H, and guide-block, G; ee (Fig. 304) are holes in which to place a punch, to drive out the disk or plate in case they jam. K (Fig. 303) is a pointer with a bob on its end, pivoted at d, in a slot cut in G ; it is horizontal when the nut, F, rests on G, but drops down by its own weight when they are separated.

The nut, F, is of precisely 3.183 inches diameter on the out-

Fig. 303.

Fig. 304.
side, the circumference being 10 inches; this has a scale of inches marked upon it, and is graduated to .02 inches. The cutter has a trifle over 0.2 inch vertical play, which exceeds the depth of an ordinary cut.

When the point of the cutter is tangent to the disk, I, the zero of the scale on F should be opposite the point L; F resting firmly on G, and the pointer, K, horizontal.

The length of cut corresponding to any given projection of the cutter beyond the lower face of G may be determined either mathematically or by experiment.

The pitch of the screw on which F works being $\frac{1}{20}$ inch, and the diameter of F being 3.183 inches graduated to fittieths of an inch on the circumference, it follows that the extension of the cutter can be read by the index, L, to $\frac{1}{1 \pi v o 0}$ of an inch. By applying inside calipers between D and F at f and g, a check can always be had on the setting of the cntter.
1339. Use.-Place the disk in the recess of the plate, H, and place H in the saucer, J. Adjust the guide-block, G , on the top of H, slack up the locking-nut, E, and revolve F the number of times necessary to give the play between F and G needed to make the required cut. Run down the locking-nut firmly, to relieve the thread of F of as much strain as possible. Insert the cutter-stem in the slot, G, and the instrument will now be ready to place in the testing-machine, where weights are applied, until the pointer, K, comes horizontal as shown by a mark on the index, L. As soon as the pointer is up, reverse the crank and relieve the pressure. The pressure comes npon the point iudicated by the arrow.

A gradnated scale of lengths of cut corresponding to readings on the circular scale F , is used with the estimator. The reading corresponding to the length of the cut to be duplicated is brought opposite to the point L. The cutter actually used in the pressure gange, is usel in the estimator, on a fresh mucut disk. The power required to force the knife down to duplicate the cut is the measure of the pressure.
1340. The Crusiler-gauge.-This is a term applied to the English pressure-grange. (Fig. 302.) It consists of a tube or cylinder of steel which admits of the insertion of a small cylinder of copper, 13 , which is retained in the centre of the chamber, c de f, by a small watch-spring. One end of this cylinder rests against an anvil, A, and the other is acted upon by a movable piston, C, which is kept tight against the cylinder by the spring, i. A gas-check, D, is inserted against the lower extremity of the piston, and should any gas get past this, there are passages by which it can escape into the open air. In this apparatus the method of compression is used for ascertaining the pressures.

The crusher-gange is used in exactly the same way as the Rodman-gauge. Upon the explosion of the charge the gas acts upon the area of the piston and crushes the copper cylinder against the anvil. The amomet of compression the copper thus sustains becomes an indication of the pressure exerted upon the piston.
1341. In order to obtain data whereon to base the calculations of the pressures, a series of experiments is made by means of a testing-instrument to determine the pressure required to produce a definite amount of compression on copper cylinders similar to those used in the instrument. The results of these experiments are tabulated, and they furnish a means of comparison whereby the amount of compression produced in the crusher becomes a direct indication of the pressure exerted by the gases at that part of the bore where the gange is placed.
1342. The results of experiments show that the copper disks cannot be depended upon to give uniform results, but latterly disks of pure silver have been employed, and the margin of error has been much reduced.
1343. One great obstacle to the attainment of correct pressure indications is the difficulty of obtaining perfect uniformity in the quality of the metal upon which the pressures are recorded. To this possible defect as well as the probable imperfect action of the piston may be attributed the very wide differences between the results sometimes obtained with equal charges of the same kind of powder.
1344. Pressure-curves.-Having obtained the pressures and velocities as they actually occur in the bore, we may make a graphic representation of them by constructing a curve which would liave for abscissas the times, and for ordinates the pressures, of the gases. We would find it somerhat similar to Fig. 306. That is, the tension increases with great rapidity in the first moments

Fig. 305.-Sectional elevation of Crushing-instrument. of combustion; it attains promptly the maximum, and then decreases with less rapidity. It is to this circumstance that are due the bursting properties of the powder and the destructive effects which it sometimes exerts upon the bore of the piece.

But with equality of charge the curve is found to vary very much with different powders ; therefore it is desirable to produce such a powder that the curve O M B may be replaced by a curve such as $\mathrm{O}^{\prime} \mathrm{M}^{\prime} \mathrm{B}^{\prime}$, in which the maximum may be less elevated, but whose total area may be equal or even superior.

Thus we should

Fig. 306. endeavor to take away from the powder its bursting properties and preserve to the projectile the same velocity in leaving the bore, or even impress upon it a greater velocity. In order to accomplish this it is necessary to consider what has been said under the head of Explosive Force of Giunpowder (Art. 1198).
1345. HYGROMETRIC QUALITIES.-If the powder be made of pure materials and hare the required density, its lhygrometric quality follows as a matter of course. It may be determined by exposing the powder to air saturated with moistwre. For this purpose, samples of about 1,500 grains weight may be placed in a shallow tin pan, uine inches by six inches, set in a tub the bottom of which is covered with water. The pan of powder should be placed aboat one inch above the surface of the water, and the tub covered over. In this manner any sample of powder may be compared with another of known good quality. Good powder, made of pure materials, will not absorb more than two and a half per cent. of moisture in twentyfour hours.
1346. ANALYSIS. - Whatever may be the mode of proof adopted, it is essential, in judging of the qualities of gunpowder, to know the mode of fabrication, and the proportions and degree of purity of the ingredients. The latter point may be ascertained by analysis.

The following plan is recommended by Fresenius:
Determination of the Moisture.-Weigh two or three grams of the substance (not reduced to dust or pulverized) between two well-fitting watch-crystals, and dry in the desiccator, over concentrated sulphuric acid, or at a gentle heat,
not exceeding 60° centigrade, till the weight remains constant.

Determination of the Saltpetre.-Place an accurately weighed quantity (about tive grams) on a tilter and moisten with water; then saturate wth water, and after some time, repeatedly pour small quantities of hot water upon it, until the nitrate of potassium is completely extracted. Receire the first filtrate in a small weighed platinum dish, and the washings in a beaker. Evaporate the contents of the platinum dish cautionsly, adding the washings from time to time; heat the residue cautiously to incipient fusion, and weigh it.

Determination of the Sulphur.-Oxydize tiro or three grams of the powder with pure concentrated nitric acid and c'llorate of potassium, the latter being adde 1 in small portions, while the fluid is maintainod in gentle ebullition. If the ope"ation is continnel long enough, it nsually happens that both the charcoul and sulphur are fully oxydized, and a clear solution is tinally obtained. Eraporate with excess of pure hydro chloric acid in a water-bath to dryness; filter, if undissolsel charcoal should render it necessary, and then precipitate the sulphnric acid by barinu chloride with the usual precautions.

Determination of the Charcoal.-Digest a weighed portion of the powder repeatedly with sulphide of ammonium, till all the sulphur is dissolved; collect the charcoal on a filter (prerionsly dried at 100° and weighed), wash it first with water containing sulphide of ammonium, then with pure water; dry at 100° and weigh.

The charcoal so obtained must, under all circumstances, be tested for sulphur by the method given above, and, if occasion require, the sulphur must be determined in an aliquot part.

These operations can only be performed with accuracy, in a properly appointed chemical laboratory, by one somewhat experienced in quantitatire analysis.
1347. INSPEOTION REPORT.-The report of inspection should show the place and clate of fabrication and of proof; the Find of powder and its general qualities, as the number of grains in 100 grs. ; whether hard or soft, round or angular ; of uniform or irregular size; whether free from dust or not; the initial relocities obtained in each fire ; the amount of pressure for each charge ; the amount of moisture absorbed; and, finally, the height of the barometer and hygrometer at the time of the proof.
1348. Maris on the Barrels.-Barrels must be marked on the head (Fig. 307) with maker's name, date of manufac-
ture, initial velocity when manufactured, density, pressure, kind of powder, lot, class, last initial velocity and pressure obtained.

Fig. 307.
1349. Restoring Uyserviceable Powder.-When powder has been damaged by being stored in damp places, it loses its strength. If the quantity of moisture absorbed does not exceed seven per cent., it is sufficient to dry it, to restore it for service. This is done by exposing it to the sun.
1350. Coxdeyned Powder. - When porwder has absorbed more than seren per cent. of water, it is condemned, and sent to the powder-mills to be worked over:

When it has been damaged with salt water or become mixed with foreign matter which cannot be separated by sifting, the nitre is dissolved out from the other materials and collected by evaporation.

When powder is condemned by surver, it should be turned into store; as the nitre contained, which forms three-fourths of the powder, is still perfectly good, and can be made serviceable in making new powder. (Art. 1066.)
1351. Purciasivg Powder Abroad.-In case of necessity, powder for saluting may be purchased abroad in order to preserve a supply of our own proof-powder for battle.

Should it become necessary to use powder for service charges which has not been regularly inspected and proved in the manner required by regulations, such tests of it must be made as circumstances will admit. The ranges given by it may be compared with those of service powder of good quality under the same circumstances. If deficient in strength, the quantitr of the charges should be increased, until the ranges are equalized, in order that the sight-bar may still indicate the proper elevations for each charge and distance.

Section IV.-Preservation and Storage of Gunpowder.

1352. PRESERVATION AND STORAGE.-In the stowage of powder, both ashore and afloat, especial pains should be taken to secure it from the dangers of explosion and the effects of moisture ; and to this end great care is observed in the construction and locality of magazines and shell-rooms, par-
ticularly on board ship, where many details have to be considered, and every possible precaution taken to accommodate the full allowance of powder completely, to guard it to the ntmost against injury and accidental explosion, and to deliver it from the magazine as required, with facility and certainty.
1353. Magazines on Shore for the storage of gunpowder are generally built of brick or stone in a rery substantial manner, and in places free from moisture, and should be remote from danger. The magazine should be fire-proof and dry, and protected by lightning-rods, which are attached to masts or poles planted from six to ten feet from the walls of the building; the mast should be of such height that the point of the stem may be about fifteen feet above the building. Magazines should never be opened while there is thunder and lightning.

For the preservation of the powder, and of the floors and lining of the magazine, it is of the greatest importance to preserre unobstructed the circulation of air under the flooring as well as above. The windows should have inside shntters of copper wire-cloth. The ventilators must be kept free. No shribbery or trees should be allowed to grow so near as to protect the building from the sun. The magazine-yard should be paved and well drained, and kept scrupulously clean.
1354. Storage.-Powder barrels in magazines on shore, when there are no racks, slould be stowed on their sides, with their marked ends towards the alleys, three tiers high, or four tiers if necessary, with small skids on the floor and between the several tiers of barrels, using chocks at intervals on the lower skids to prevent the barrels from rolling. If it is necessary to pile the barrels more than four tiers high, the upper tier's should be supported by a frame resting on the tloor; or the barrels may be placed on their heads with boards between the tiers.

Whenever practicable, the barrels should be arranged in double rows, with a passage-way between the rows, so that the marks on each barrel may be seen at a glance, and any barrel easily reached.

Barrels must be carefilly examined before patting them into the magazines, to see that they are perfectly tight ; that the hoops are not fastened with iron nails; that there is no iron or anything objectionable about the barrel.
1355. The powder should be separated according to its kind, the place and date of fabrication, and the proof-riange.

Each parcel of powder should be inscribed on a ticket and attached to the pile, slowing the entries and the issues.

Powder, when stored in magazines on shore, must be
kept onty in barrels, and arranged in lots, being classed as follows:

Class 1. New powder.
Class 2. Powder returned from ships and other sources which has been found after proof to be up to the required standard for service.

Class 3. Returned porder, fit only for filling projectiles. (Powder taken from projectiles shall be used again only for tilling projectiles.)

Class 4. Returned powder fit only for saluting.
Class 5. Powder unfit for use.
There should be an unencumbered space of six or eight feet square at the door or doors of the magazine.
1356. Preservation.- Powder-houses or magazines on shore are to be inspected by the ordnance officer at least once in every week, and every precantion taken to guard them against explosion, and to preserve the powder dry and in good condition.

Magazines should be opened and aired in clear, dry weather, when the temperature of the air outside is lomer than that inside the magazine. The moisture of a magazine may be absorbed by chloride of lime or charcoal, suspended in an open box under the arch of the door, and renewed from time to time.

The use of quicklime is dangerous and forbidden.
The powder in barrels should be turned from time to time, at least as often as every three months, and being arranged as mentioned before, the oldest porrder will always be accessible for first delivery, without disturbing that of more recent manufacture.
1357. Sertice of the Magazine.-When powder is handled in porrder-houses or magazines on shore, either for the purpose of inspection or preparation for delivers to ships, the baize-cloth is to be spread, and the people before entering the magazine must divest themselres of every metal implement, empty their pockets,-that nothing likely to produce tire mar escape detection,-and put on the magazine-dresses and slippers. Neither loose powder nor open barrels will be permitted to remain in a magazine, nor shall barrels on any accome be opened in a magazine. Should a barrel-head start, the barrel must be immediately remored to the slitting-house, and the powder shifted into a serviceable barrel. The barrels must be opened only on the floor-cloth in the shifting-honse, and no metallic setter used in driving either copper or wooden hoops. Powder-barrels should never be opened except when required for use, as grains of powder falling between the staves would
prevent their being tightened. Samples must always be taken from the bungs.

Mlagazine-lrcsses.-They are to be of worsted, like a simple shirt, to reach to the knees; no metal buttons to be worn.

Magazine-slippers.-They must be made wholly of cotton, cloth or luckskin. In hot or warm climates the naked feet are generally preferred. India-rubber and woolen-slippers are prohibited.

135s. Fixed Ammunition should not be put in the same magazine with powder in barrels.

Firewort's shonld never be stored in a porrder-magazine.
1359. The Magazine Ledger should show at all times the quantity of powder on land, the number of barrels, the marks on each barrel, and, in fact, a complete history of all the powder in the magazine.
1360. Issuing Powder. - When powder is to be issued for use to any ressel, it shall be selected as far as practicable from deliveries made by the same manufacturer, at the same time or date. The powder is measured in copper measures and put into cartridge-bags, and the cartridges stowed in powder-tanks. A correct history of all powder issued must accompany it. When powder is shifted from one barrel or tank to another, care must be taken to remore all old marks, and to mark the barrel correctly for its contents.

Great irregularities having been discovered in the weight of cartridges supplied from the different magazines, it is ordered that at least ten measures shall be weighed at each filling, and allowance made for different densities, by using a small compensating measure to supply the deficiency or to remove the excess.
1361. Ships' Magazines.-All powder, whether public or private, must be safely stowed in the magazine.

Form. - In view of the fact that all the porrder for use on board of ships is now put up in cartridge-bags and stowed in cubical copper tanks made water-tight, the form of magazines should be as nearly rectangular as the shape of the vessel will admit.

Strength.-They should be built strong enough to resist sufficiently the effect of the working of the ressel in heary weather, and also the pressure of water they will have to sustain in case of being flooded.

Situation.-W Wen there is only one magazine, it is always in the after part of the ressel ; but when two, one aft, the other formard; and they are to be as nearly equal in regard
to capacity as the shape of the vessel and other circumstances will admit.
1362. Construction.-The magazine consists of three parts: (Fig. 308.)

The room where the charges are stowed; a small delivery-

Fig. 308.
room or passage, usnally athwartship, immediately outside of this, into which the charges are passed before going on deck; and the light-rooms, or boxes.

The magazine and its passage, considered as one, must be made perfectly water-tight, by caulking the bottom and sides, and then lining them internally, first with white-pine boards, tongued and grooved, and again with sheets of lead of extra thickness, soldered together over these boards. Both these linings are to extend entirely orer the bottom, or floor, and all the way up to the crown on all sides.

When the magazine reaches the ceiling of the ship it must be battened off two inches; the lining of the floor must be battened up one inch, and also the magazine-deck, so that water leaking through the sides of the vessel may run by and under, and not into, the magazine.

An external lining of sheet-iron must be resorted to as a protection against fire, and to present the intrusion of rats.

When it is impossible to avoid extending the sides of the
magazine so far out towards the skin of the ship as to leáve only an air-passage on either side, the crown should be at least six feet below the deep load-line.

In all cases where this crown is less than six feet below that line, the sides should be made susceptible of protection by allowing a space to interpose materials, such as sand, coal, or water in tanks, between them and the interior planking of the ship. An average space of six feet or more on both sides will be sufficient.

Under no circumstances, however well the side be guarded, should the crown of the magazine, if it can be avoided, be less than four feet below the load-line.

Their floors may rest on the kelson, but should not come below it.
1363. Their height should be equal only to an exact number of times the height of a powder-tank when lying on its side, in addition to the thickness of the shelving ; an additional inch should be allowed for play or spring.

The whole height in the clear should be limited by the condition that a man standing on the floor may reach the upper tier of tanks with ease.

Four tiers of 200 -pound tanks, three of them resting on shelves two inches thick, and the other on inch-battens on the magazine-floor, with an allowance of one and a half inch for play, will require a height, in the clear, of six feet two inches. Both safety and convenience would suggest this as the maximum limit in height, even for the largest magazine.

If, however, in a ship of great draft of water, it should be found practicable to have height enough for five tiers of tanks, then the lower tier may be laid so as to occupy the whole of the magazine-floor ; and on the top of this tier, in the alleyway, a light false bottom is to be placed for the men to stand upon to enable them to reach the upper tier, which is the one that should be exhausted first. This false bottom should be made of gratings, and in sections convenient for speedy removal.

A magazine aft in a ship is to have its passage for delivering powder adjoining its forward part; and one forward in a ship is to have this passage adjoining its after part, in order that it may never be necessary to pass powder over the lightbox scuttle.
1364. As many doors, D (Fig. 309), are to be cut in the bulk-head, I HI (Fig. 30s), separating this passage from the magazine-room, as there are alleys to be left in the latter, between the racks or shelves on which the tanks are stowed; and
these doors must correspond with those alleys. They are not only to afford a means of entrance to the magazines, but alsu for passing the tanks in and out.

Section on H I, Fig. 308.

Fig. 309.
Through the upper part of each door a small scuttle. S , is to be cnt,-two, if necessary,-for the purpose of passing the cartridges ont of the magazine-room with the door itself closed: and is to have a lid so arranged as to open outwards only, and to close of itself when the scuttle is not actually in use.

Frigates should have two alleys for each magazine. In screwvessels of large size, where the shaft will interfere with this arrangement, two alleys for the forward magazine. In smaller vessels one alley will suffice. In all cases the alley is not to be less than two feet and ten inches in breadth, and it ought to be more, if practicable, to prevent confusion and delay: Each alley (A E, Fig. 308) is to be illuminated by a separate light.

If there be room in the magazine, there should be space left at one end for a man to pass from one alley to the other without going into the passage.

All the metallic fixtures about a magazine, delireringpassage, and light-room must be of copper.

In order to increase security against the effects of lightning. a magazine should be placed, if practicable, so as not to include a part of a mast.
1365. Flooding the Magazine.- Each magazine as a whole, that is, including the delivery-passage, being made as stated before, water-tight, is to be provided with an independent cock, T, for tilling it rapidly with water; a waste-pipe leading from the upper tier of tanks to carry off the superfluons water, and a cock just at the floor to empty the magazines after havirg been flooded. Both the cocks mnst be turned from the decks abore, each having a lever attached to its spindle for the purpose, dis-s tinctly marked with engrased letters what it is and how it is to be used, and kept secured by a proper lock, the key of which is to be kept among those of the magazine. A perforated disk or strainer is to be secured inside of the hole, at the upper part
of the magazine, for the waste-pipe; the delivery-pipes are trapped to prevent vermin or vapor entering.

Section on A.E, Fig. 308.

1366. Lighting tefe Magazine.-The magazine is to be lighted by means of one regulation lantern, to correspond with each alley of the magazine-room, placed in a box arranged for the purpose, R (Fig. 310).

The lantern. is fitted to hold a regulation candle of large diameter. The box, of which a portion of the magazine bulkhead forms a part, is lined internally with soldered sheets of copper. The entrance to it is at the top, through a scuttle in the deck large enough to admit the lantern. For single-decked ressels this scuttle may be surrounded by a composition covering pierced with holes one-fourth of an inch in diameter, on the forward and after sides, near the top. The cover must be so arranged that, when placed on in one position, all the holes will be closed; by turning it half round, they are all open, thus supplying air to the lantern and carrying off the smoke. A small dome or reversed funnel of copper, when it can be conveniently done, is to be placed above the lanteru and fitted with a pipe of the same metal to convey the smoke off. This pipe may pass up through the covering of the light-box, which is to have a plug-hole lined with brass for the purpose, and then led farther, if necessary, taking care, however, to consult perfect safety throughout.

The admission of air to the light-box may be from the division of the hold in which it is placed, by small holes near its top, through its side or back, protected with copper-wire gauze, inside and outside of the box.

In the portion of the magazine bulkhead before alluded to, and so as to throw as much light as possible into the magazineroom, an opening with great berelling is cut, which is covered by two plain glasses of suitable thickness, somewhat separated from each other, one of which, W (Fig. 311), that next to the
lantern, must be permanently fixed; and the other, that next to the magazine, X , is to be let into a wooten frame so that it may be easily removed, and thus both glasses cleaned with convenience and safety. These glasses are held in place by brass screws, after being closely fitted, having their edges made perfectly tight.
1367. Stowing the Magazine.-Ledges on the shelves,

Section on F L, Fig. 308.

Fig. 311.
or a bar of wood (Fig. 310), to ship and unship with facility, will be provided for each tier of tanks on both sides of the alleys, to secure them from getting out of place when the ship rolls.

The powder-tanks containing charges for each class of guns are stored on their sides with the lids next to the alleys and hinges down, near the magazine-scuttles through which these charges are delivered. When tanks are emptied they are stowed on the apper shelres in order that the powder may be kept as much as possible below the water-line.

Before the tanks are filled they must be thoroughly cleaned, and before stowing them in the magazine the exteriors are carefully cleaned and the lids examined.
1368. Powder Tanks.-The powder-tanks, for the reception, and safe storage of the powder on board ship, are rectangular metallic cases, the sides and bottom being of sheet-copper, zinc-coated, and the top of composition. They have a circular hole or opening in the top, which is closed by a composition lid on hinges, c (Fig. 31:), and made water-tight by means of a rubber-gasket inserted in an annular groove on the lower side of the lid, shatting down upon a knife-edge around the opening, and when closed is retained in place by a screw-bolt fitted in the lid opposite the hinges. There is also a circular copper disk, or cover, Λ, fitting over the charges, inside the composition lid. On the same end are two handles for transporting the tank.

All tanks before issue should be thoroughly tested, to see
that they are water-tight. This is done by immersing them in water six feet in depth, for twenty-four hours.

They are made of four sizes and are denominated as 200 lb ., 150 lb ., 100 lb ., and 50 lb . tanks respectively, this being their capacity for powder in grain; but the $200-$ pound tank is considered the standard size for service, the others being used only in exceptional cases, and to fill up small vacant spaces.
1369. Tie System of Maring Powdertanks is as follows: The lid end is painted white, and is marked with the weight of

Fig. 312. cartridge, number of cartridges, and calibre of gun for which they are intended, thus: the lower part of the lid end, as the tank lies in the rack (Art. 1367), is marked with the number of charges contained (Fig. 313). The upper right-hand corner is marked with the number of pounds in eacli charge. The upper left-hand corner of tanks for supplying the battery, is marked with the calibre of the gun for which the contents is intended, and the calibre is also marked in red on the lid, in large Roman numerals, for all smooth-bore guns.

They are marked on their upper sides, next the lid end, with the name of the manufacturer, kind of powder, initial velocity, density, pressure, and date of manufacture.

And in order to distinguish more readily those tanks containing "Service," "Saluting," "Torpedo," or other charges from each other, the following plan of painting the lids hasbeen adopted: Tanks containing saluting-charges lave one-half of the lid painted red, and "Saluting" is marked on the other half.

Tanks containing shell-charges have a red circle painted on the lid, and inside the circle is marked "Shell."

Tanks containing powder for torpedoes are marked on the upper left-hand corner of the lid end "Torpedo," and on the

FIg. 313.
lid is marked in red a large letter T. Powder for torpedoes is put in cartridge-bags properly stencilled.

Tanks containing howitzer charges are marked on the upper left-hand corner of the lid end "Howitzer," and on the lid is painted in red a large letter II.

Tanks containing shell-powder hare a large letter S painted in red on the lid. This kind of powder is put up in any conrenient size of bag which will make the best storage, the bags being properly stencilled.

Tanks containing rifte-charges, beside haring the calibre marked on the upper left-hand corner of the lid end, have also on the lid a large letter R painted in red.

A history of the powder contained in each is to be pasted or stencilled on the inside of the tank-lid.

No loose powder is ever to be taken or carried on board ship.

18\%. Service of the Magazine.-Whenever the magazinss are opened, every precaution is to be taken to guard against accident by fire ; to examine that all the men stationed in any way, in or about the magazine, embracing all stationed within the magazine-screen, put on the magazine-dress and shoes, and on no account have anything metallic about them, and that no improper articles are introduced; and to see that all the articles required for sweeping and remoring loose powder are at hand, and that these operations are performed before the magazine is closed.

The tanks are never to be opened muless by special order, or when powder is actually required for service, and then no more of the lids are to be unscrewed than the immediate supply necessitates. The strictest attention to this is required, as experience has proved that the preservation of the powder in good condition depends upon the entire exclusion of damp air.

No coopering is ever to be done in the magazines of ships. Should powder be received on board in barrels, the lioops and heads must be started on the orlop, or berth-deck, before entering the magazine.
1371. Dampness of Magazine.--Sponge dipped in a solution of salt water, dried and weighed, is a means of ascertaining if dampness exists in these places. If it becomes heavier the magazine is damp.

Ventilation.-Provision must be made by means of grat-ing-hatches for sufficient rentilation in action, to supply the men with fresh air, and allow the dampness caused by perspiration to pass off ; and fan-blowers are to be fitted to increase the supply of fresh air, and to assist the rentilation. The magazine should be opened and aired at least once a fortnight, for a few hours, on bright, clear days.
1372. Magazine Screexs.-They are made of thick fearnanglit or double-baize, with holes through which to pass the porder; these holes to be corered with flaps of the same material. One screen is to be lung abaft, and another forward of the magazine passing-hatch, and scuttles in sloops-of-war: in frigates, one is usually lung abaft the fore, and one forward of the after magazine-scuttle; but as sliips are differently arranged, two to each magazine are allowed, if they are necessary.
1373. Transportation of Powder.-Barrels of powder slould not be rolled for transportation; they should be carried in hand-barrows, or slings made of rope or leather. In moving powder in the magazine a cloth or carpet should be spread;
all the implements used there should be of wood or copper, and the barre!s should never be repaired in the magazine.

When it is necessary to roll the powder for its better preservation, and to prevent its caking, it should be done with a small quantity at a time, on boards in the magazine yard.

In wagons, barrels of powder must be packed in straw, secured in such a manner as not to rub against each other, and the load covered with thick canvas. In transportation by railroad, each barrel should be carefully boxed, and packed so as to avoid all friction. The barrels should have a thick tarpaulin under them. The cars should have springs similar to those of passenger-cars.
1374. Vessels-of-war always receive their powder and loadel shell in the stream.

When receiving powder the red flag is always to be hoisted at the fore, and all proper precaution taken to guard against accidents from fires and lights. The tanks should be passed through the ports most convenient to the magazines, and landed on mats to prevent injury.

The red flag is always to be hoisted at the porrder-houses when they are open, and kept flying until they are closed.

The wharf or landing-place must be spread with old canvas, so that the barrels or tanks may not come in contact with, and convey, sand or gravel to the magazines.

When avoidable, gunpowder is not to be sent from vessels to powder-houses, nor from powder-houses to ressels, in wet weather, nor when there is a probability of wetting the barrels or tanks; and the packages must be conveyed in corered boats or wagons showing a red flag.

The powder-boat, before being used, must be swept thoroughly clean, and the bottom corered with mats.

Before shipping powder by a ressel, the hold must be examined to see that all iron bolt-heads, etc., are corered with sheet lead, leather, or old canvas ; that the hold is clean swept and free from grit or dust.

A cushion (stuffed with oakum) corered with leather is to be used for landing all powder barrels or tanks upon, whether in the hold of a vessel, or on a wharf, when loading or discharging powder.

> Section V.-Explosive Compounds.
1375. General Constderatioxs.-Numerous as have been the attempts to apply other explosive agentsas substitutes for
gumpowder in fire-arms, no rival of the latter has established any good claims to success as a propelling agent, except for sporting purposes.

The varions fulminating substances known to chemists are unfit for use in fire-arms, owing to a rariety of circumstances; one of which is the extrome rapidity of their explosion, the whole mass appearing to be converted into gas at once. The action of fuhminates is also too local; if a portion of any of the more violently explosive substances be fired on a piece of metal, the latter will be perforated or depressed exactly at the spot occupied by the substance; and if it be attempted to use it to charge fire-arms, they will be destroyed, yet in all probability the ball not projected ; moreover, these substances are not serviceable for charging shells, because the latter, instead of being blown into pieces of moderate size capable of inflicting great damage, become converted into fragments so small as to be far less destructive.

But, although gunpowder is still the only propelling agent susceptible of general application, it no longer enjoys a monopoly in connection with some equally important applications to naval, military, and industrial purposes, such as blasting, demolition of walls, buildings, or wrecks, and destruction of vessels by torpedoes.
1376. GUN-COTTON.*-This is obtained by the action of concentrated nitric acid on cotton. Cotton is nearly pure cellulose, which is the principal part of the ligneous fibre or woody matter of plants. Cotton, linen, and hemp fabrics and unsized white-paper are nearly pure cellulose.

When cellulose, cotton wool for instance, is acted upon by a strong mixture of nitric and sulphuric acids, its external appearance remains unchanged, but its chemical composition is very much altered, pyroxyline being formed. This is a nitrosubstitution product. A certain number of equivalents of hydrogen being abstracted from the cellulose, and their place supplied by an equal number of equivalents of nitryl.

There are a number of these substitution products in which the substitution is more or less complete, and they differ more or less in their properties.

The pyroxyline used to make collodion is a mixture of several of the lower ones. The lower products decompose more readily than the higher ones, and at a lower temperature they are more prone to spontaneons decomposition and more inflammable, and will explode, but with less violence than the higher ones.

* Eill.

The term Gum-cotton should lee restricted to the highest one of the products; and in making it, the substitution must be carried as far as possible, so that none of the lower and les; stable componnds may be obtained mixed with the higher ones. The cotton used must be perfectly dry, and frea from grease or other impurities. Only the very strongest nitric acid must be used, and the treatment minst be prolonged until the conrersion has become complete. The gmo-cotton must be finally freed from every particle of acid.
1377. Manufacture.-The varions details connected with the manufacture of gun-cotton are frequently changing, and, therefore, only a general description of the mode of preparation will be given.
1378. Pcrification of tie Cottox-Long-staple raw cotton of the finest quality is the best to use. It is first cleaned and then washed in an alkaline solution to get rid of all oily matters, which would otherwise prevent the complete saturation of the cotton by the acids used in its preparation. After being purified, it must be again thoronghly washed and then dried before going through the subsequent operations.
1379. Treatnent weti Acid.-The perfectly dry cotton is converted into gun-cotton by immersion in a mixture of strong nitric and sulphuric acids, in the proportion by weight of one part of nitric to three parts of snlphuric acid.

The sulphuric acid does not act at all in forming the guncotton, but only takes up the water that is formed during the process, thens preserving the strength of the nitric acid. The nitric acid is of the strength not less than spec. grar. 1.50. The sulphuric acid is the ordinary oil of vitriol, spec. grar. 1.83.

The cotton is first dipped in this mixtnre, and exposed to its action for a few moments. It is then taken out, and as much as possible of the acid that has been taken up remored by pressure. It is then put in fresh acid. where it remains 48 hours. The ressels are kept cool during this time by a stream of cold water. In the first acid the cotton is nearly all conrerted, but it is a matter of the greatest importance that the conversion should be complete. It is therefore necessary that the second and prolonged operation should be made.
1380. To Rearove tife Acid.-To remore all the acid from the gun-cotton thens made, it is placed in a centrifugal drering machine, and then thoroughly steeped for a considerable time in running water, and subsequently dried.

It is finally treated with an alkaline solution, as carbonate of soda, and again washed, thoronghly dried, and packed.
1381. Abel's Method.-In the manufacture of gun-cotton,
there is great difficulty in thoroughly washing the cotton, because the long, hollow fibres get tristed and bent, so that it is very hard to free them from the acid. Abel has instituted the pulping process, by which the cotton is so torn as to be easily washed; and instead of raw cotton of high quality and long staple, any description of cotton can be employed; and the waste cuttings from spinning-machincs, such as are used for cleaning machinery, are more suitable than cotton in any other form. The pure, fine pulp is pressed into compact masses while wet.
1382. Pulping. - The cotton, after being washed and strained, is carried to a long tub, or beater, filled with water, in which a wheel revolves, armed on its periphery with steel cutters. From the bottom of the tub under the wheel extend similar projections of steel, and as the motion of the wheel carries the cotton around, all parts are driven through the contracted space between the cutters, thus reducing the whole to a pulp. From the beater the entire contents is run into a poacher, or large tub in which a paddle-wheel revolves. The object being to continue the washing of the cotton, after being reduced to pulp, so as to secure the perfect cleansing of the material. All parts of the pulp are carried over and over by the wheel, and this operation is continued several hours. The operations of the preparation of the cotton are now complete, and it only remains to drain off the water and press the pulp into the required shape.
1383. Compressing.-In order to drain off the water, the first operation is to draw off the pulp and water from the poacher to a large iron cylinder, or stuff-chest, where it is agitated by paddle-wheels. From the bottom of the stuff-chest there runs a pipe to lead the pulp to the press for forming the cakes.

This press is a circular machine consisting of a shelf having thirty-six circular perforations about two and a half inches in diameter, which have cylindrical continuations extending about one foot below. Beneath these hollow cylinders are a correspouding number of solid cylinders fitted so as to enter them, which are attached to a plate that is actuated from below by a hydraulic force. The solid cylinders being entered into their corresponding hollow ones, the pulp is allowed to run in through a morable trough, and fill the recesses. The upper orifices are now covered with a weight, the solid cylinders forced up, and the pulp compressed, the water being allowed to escape through strainers or perforations in the pressing cylinders.

The cylinders of gun-cotton thus formed are removed to a
second press having only four cylindrical recesses, in each of which are placed three of the cylinders, separated from one another by disks of iron having scored edges to allow the escapa of water. The operation is repeated, the pressure being six tons to the square inch. This press 1 roduces cylinders about three inches in length by two and one-half inches in diameter, and weighing one-half pound ; about six per cent. of moisture being still retained.
1384. General Properties.-Gun-cotton is entirely insoluable and unaffected by water, so it may remain in it any length of time without injury. Its permanency has been a natter of donbt, and for this reason the more extended use of gun-cotton has been greatly hindered. Of course if it is liable to spontaneous decomposition, it cannot be used with any degree of confidence, but the late improvements in its manufacture seem to give a very stable and safe product. If so regarded, it possesses many advantages over gunpowder, as follows: less danger in making; unaffected by moisture, or even immersion in water; easier transportation ; it leares no residue and makes no smoke.
1385. Forms in which Gun-cotton is Used.-It can be worked into many forms for different uses. The process of manufacture when not pulped leaves it in the loose state, resembling ordinary cotton. It can then be run into threads and ropes, and the threads into webs or hollow cylinders. For ordnance purposes it is made into disks from the pulp, or the yarn is wonnd on a hollow tube or core. Besides this, the compact masses pressed from pulp can, while still moist, be cut, sawed, or drilled into any shape, granulated or mixed trith other bodies.

Potassium nitrate or chlorate, is msually mixed with the pulped article. Abel has proposed a misture called Glyoxiline composed of compressed nitrated gun-cotton saturated with nitro-gly cerine.

13s6. Uses of Gux-cotton.-It is much used for mining purposes and snbmarine explosions, since it is more readily handled than gunpowder, is not injured by water, and less is required to do the same work. Compressed gun-cotton is much used for torpedoes and large engineering operations, for which it presents very great adrantages. It is very effective mhen great destructive effects are to be produced rery quickly, as blowing up bridges and military works. For instance, to destroy a bridge it is only necessary to place upon it a charge of ymu-cotton and fire it with a detonating fuze. In the same way large yuantities of rock may be broken u_{p} and guns may be disabled.
1387. Mode of Firevg.-Dry gun-cotton when unconfined flashes off without explosion; when ignited, therefore, to obtain its force it must be confined in strong vessels so that the gases first generated will be driven throngh the whole mass enveloping every particle with flame before the case is ruptured. Under these circumstances great explosive effects may be obtained. The explosion is very much influenced by the manner in which it is effected. It can be readily detonated, and then it is unnecessary to have it strongly confined. The more powerfully it is compressed the more readily it can be detonated, since the particles are less able to move on one another, and therefore offer a greater resistance, causing more rapid evolution of heat.

Compressed gun-cotton can be fired while moist, or even when saturated with water, by exploding in it a disk of the dry, by means of a fulminate fuze. When dry and unconfined, if ignited by a flame, it burus steadily and quietly until consumed ; but if fired by a detonator, it explodes violently.
1388. NITRO-GLYCERINE.-This is a nitro-substitution product of glycerine; it is a violently explosive substance produced by the action of nitric-acid on glycerine.

Its formation resenbles that of gun-cotton, three equivalents of hydrogen being removed from the glycerine by the nitric acid, and three equivalents of nitre introduced in their place.
1389. Glycerine is the sweet principle of oils and fats. It is a sweet, viscid, colorless liquid, soluble in water and alcohol in all proportions. In this country it is principally derived from the fats of hogs. That of commerce contains more or less water, and is slightly colored. Sometimes it also contains small quantities of fatty acids. This is a very dangerous impurity, if it is to be used in making nitro-glycerine, and must be guarded against.
1390. Metnod of Manufacture.-It is prodnced by the action of strong nitric-acid on glycerine at a low temperature.

As in making gun-cotton, the nitric-acid is mixed with a large proportion of strong sulphuric acid,--one part of the former to two parts of the latter, by weight,-which acts in taking up the water that results from the reaction, and so keeps the nitric acid at its full strength.

Glycerine is mixed slowly with the acid mixture, which is constantly agitated during the operation, and great pains is taken to keep down the temperature. When all the glycerine has been added, the mixture composed of nitro-glycerine and the remaining acid is poured in a thin stream into a large volume of water, where the nitro-glycerine is precipitated as a white, opaque, heavy oil. When it has subsided the water may
be poured off. It must be thoroughly washed, as too much stress caunot be laid upon the importance of a complete removal of the acid from the nitro-glycerine.

After some time, depending on the temperature, the white, opaque, thick fluid changes to a clear, pale amber, somerwhat thinner liquid, and then should be entirely free from acid. If so, it will remain unaltered, not becoming acid again.

Converting glycerine into nitro-glycerine must be carefully and properly conducted, if good results are to be obtained. It must be carried on at as low a temperature as possible, and a great rise of temperature must be prevented during the operation. The glycerine must be free from dangerons impurities.

The strongest nitric acid must be used ; if weak acid is used, the quality of the product may greatly vary.
1391. General Propertres.-Nitro-glycerine is more riolent in its explosive effects than gun-cotton, more nearly resembling the fulminates, thongh not so easily exploded. It hen not pure, it undergoes spontaneons decomposition with evolution of nitrous fumes, frequently causing explosions; but when well purified. it may be kept for a long time withont alteration.

It is unaffected by, and does not mix rrith, water, so that it can be exploded when in direct contact with it. It is a light yellor, oily liquid, has a faint, peculiar smell, and a sweet, pungent aromatic taste. A drop of it is said to canse rery riolent headache, and in large doses it appears to be decidedly poisonous.
1392. Mode of Firivg.-To explode nitro-glycerine it is necessary to use what is technically called a strong exploder. that is, one that in itself gives a strong blow or shock. Therefore, fulminate of mercury is generally employed for that purpose. Nitro-glycerine explodes only locally by percussion. If placed upon an anvil and struck with a hammer, the particles receiving the blow detonate, not exploding, but scattering the rest of it. It is not exploded by friction or concussion in the ordinary sense of the words, that is, by an ordinary or reasonable friction or concussion. Simple application of fiame rrill not fire it, thongh, of comrse, it may be heated to explosion ; but it is not sensitive, that is, not easily exploded by slight causes, therefore an ordinary fuze or slow match is useless.

Howrerer exploded, it seems always to be instantaneons through the whole mass. When fulminate is used, this is eridently by direct detonation. In other cases, probably by initial detonation of a small particle. It is more easily detonated than any other body, and less fulminate is required. It can readily be tired by this means, when unconfined; but as is al-
ways the case, greater effects are obtained if it is confined, however slightly. It is with the greatest difficulty that it is fired when frozen ; therefore it is used in the liquid state.
1393. Transportation.-It is usually kept in cans and frozen for transportation or preservation, and must be melted before it is used. It solidifies at 40° Fahr., which can readily be accomplished by keeping it in melting ice a sufficient time. It freezes to a nearly pure white crystalline mass. When frozen, it can be melted by means of hot water not above 90° or 100° Fahr.
1394. Stability or Permanence.-The history of nitroglycerine closely resembles that of gun-cotton. The manufacture has been carried on before it had been properly studied or its characteristics known. As to its stability, the little exact knowledge obtained of it has caused the opinion to be formed that it is very unstable. Even jet we have very little precise knowledge of it, but it is believed that its permanency depends upon its purity, and that if pure and well made it is sufficiently stable, provided proper care is taken of it. As an explosive it is so valuable that it would still be used even were it much more dangerous.
1395. Uses of Nitro-glycerive.-It has generally been used for submarine and other blasting. For heavy work it surpasses any other agent, being so much more powerful than gunporder; less is required and less drilling is necessary. It is a powerful shattering agent, and breaks up the rocks finely. It leaves no residue and gives no smoke. It is well adapted to many kinds of submarine work; good results are obtained by placing it on the surface of rocks under water, the latter acting as a tamping.
1396. COMPOUNDS OF NITRO-GLYCERINE.-The successful application of the remarkable explosive liquid, nitroglycerine, has been developed chiefly in the last few years, and the existence of several most serious obstacles to its use in the pure liquid condition has been practically demonstrated ; in several instances, indeed, by most disastrous accidents; therefore, many attempts have been made to devise some method of promoting safety, and also certainty of action in its employment.

These ends have been attained to a great extent by mixing nitro-glycerine with some solid substance of perfectly inert niture, and of absorbeut character, through the medium of which the liquid is susceptible of employment in a condition assimilating to that of other explosive agents in practical use.
1397. Dranaite.-This is the name given to a compound of nitro-glycerine formed by absorbing it in a light silicious
earth, which may be mixed with about three times its meight of nitro glycerine without becoming more than moist to the touch, and is therefore readily susceptible of manipulation as a solid material. This mixture is as readily susceptible of explosion through the initiative agency of a detonating fuze as nitro-glycerine itself, and though it obviously cannot be so porrerful an explosive agent as that substance when successfully applied in its undiluted state, its destructive powers are still greatly in excess of those of gunpowder.

Dynamite is applicable to all the uses for which nitro-glycerine is employed. When properly applied it does nut need confinement for the development of its explosive forces, and it is especially applicable for military purposes.

It is by far the best of the nitro-glycerine mixtures, and is probably the best form for its use in torpedoes.

Certain defects are inherent in the material, such as its losing its susceptibility to detonation by the ordinary means at a low temperature,* and the tendency of the nitro-glycerine to partial separation from the silicious earth during transport and storage; but in balancing its adrantages against those of other explosive agents, the special defects of these have also to be taken into account, so that, provided the uniform stability of the material becomes established, and the apprehensions as to its comparatively dangerous character, to which certain accidents have given rise, are allayed by further experience in its storage and use, and, possibly, by improvements in its manufacture, a high position may be assigned to dynamite among the most useful explosive agents of the present time. It is the best of all the nitro-glycerine preparations.
1398. Lithofracteur.-Several other methods of applying nitro-glycerine as a destructive agent have been brought forward. Among these is the substance to which the inventor has given the name, lithofracterr, and which contains, in additiou to nitro-glycerine and an absorbing medium of the description used in dyuamite, some proportion of other explosive materials, such, for example, as the constituents of gunpowder. This substance is of a plastic and almost pasty nature, and is emplosed in the form of rolls made up in paper.

Lithofracteur may be considered a dynamite to which has been added about twenty per cent. of bad guupowder containing an enormous excess of carbon. The addition of the constituents of gunpowder lowers its firing-point, which is of

[^38]doubtful advantage and makes it more liable to be injured by moisture. Its force must be less than dynamite, for it depends on the amount of nitro-glycerine in it; no additional force being derived from the other ingredients.
1399. Dualine.-Sawdust and similar absorbent materials have also been used as vehicles for the application of nitro-glycerine, under the name of dualine.

This mixture also contains about twenty per cent. of saltpetre. It, however, owes its explosive qualities to the nitro-glycerine, and the only thing in its favor is that it is not liquid. In other respects there are serious objections to it. The slight absorbent power of the sawdust makes the amount of nitro-glycerine taken up comparatively small, while holding feebly what is absorbed. The misture of nitre and wood makes dualine more sensitive to flame or blows, and lowers the firing-point. It contaius less nitro-glycerine than dynamite, and hence is weaker. It is much lighter than dynamite, aud for equal volumes has much less force. It has an excess of carbon from the wood, so that great amounts of that deleterious gas, carbonic-oride, are formed, diminishing the force of the reaction.
1400. FULMINATES.-Fulminate is the general name for a class of explosive bodies which are compounds of fulminic acid with a base. They are all more or less explosive by the action of heat or friction ; of these the fulminates of mercury and silver are the most important.
1401. Fulminate of Mercury is prepared by dissolving one part of the mercury in twelve of nitric acid, sp. gr. 1.42, aided by a gentle heat. As soon as the mercury is dissolved add eleven parts of alcohol sp. gr. 0.87 . A brisk action will ensue and the solution will become turbid from the separation of crystals of the fulminate. Dense, white clouds are also evolved at the same time. When the action has subsided the vessel may be filled with water and the fulminate allowed to settle, after which it is collected on a tilter, washed, and dried by exposure to the air. When dry, it must be handled cautionsly, as it explodes by friction or percussion, especially when in_contact with particles of sand or glass. It is also exploded by heating to about 300°, by the electric spark and by contact with concentrated nitric acid or sulphuric acid.

When wet it will not explode. Its explosive force is not much greater than that of gunpowder, but it is much more sudden in its action.

The readiness with which it is fired makes it an excellent agent for exploding other substances, and this gives it its value. It is used in percussion-caps, primers, and fuzes-not pure, but
mixed with nitre, mealed-powder, and other substances, because it is necessary to moderate its explosive property, since it is otherwise too rapid and violent for the purpose. It is sometimes mixed with chlorate or nitrate of potash, and ground glass is often added to increase the sensibility of the mixture to explosion by percussion.
1402. Fulminate of Silter is prepared by a process similar to that for fulminate of mercury, but as its explosive qualities are far more violent it is advisable to prepare it only in minnte quantities. When dry, it must be handled with the greatest caution. Nothing harder than paper should be used in manipulating it, or for wrappers. It is exploded in the same way as fulminate of mercury, but is of no practical value on account of its sensitiveness.
1403. Picric Acid and Picrates.-Picric Powder.-Picric, or tri-nitrophenic acid, is another nitro-substitution compound. It is formed by the action of nitric acid upon phenol, or phenylic alcohol, better known as carbolic acid. It is used as a dre-stuff. It has but feeble explosive properties, yet many of its salts are highly explosive.

Potassium picrate is so very sensitive to friction or percussion as to be practically useless.

Abel's picric-powder is a misture of ammonium picrate with saltpetre. It is very little affected by blows or friction, possesses considerably more explosive force than gunporder, and can be worked in a moist state like ordinary powder. It is said to be useful for torpedoes.

CHAPTER IX.

PYROTECIINY.

> Section 1.—Materials."
1404. Defintrion.-Prrotechny is the art of preparing ammunition and fireworks for military and ornamental purposes.

Buildings.-To conduct the operations of the laboratory with safety and convenience, the following rooms are necessary, viz. :

1st. Furnace-room, for operations requiring the use of fire.
2d. Cartridye-room, for making all kinds of cartridges.
3d. Filling-room, for filling cartridges with powder.
4th. Composition-room, for mising compositions.
5th. Driving-room, for driving rockets, fuzes, etc.
6th. Packing-room, for putting up articles for transportation.

7th. Carpenter's and Tinner's-shop.
8th. Magazine, for storing powder and ammunition.
A laboratory, like a powder-mill, should be situated apart from inhabited buildings; and for convenience of comnunication, the rooms, with the exception of the furnace-room, carpen-ter's-shop, and magazine, should be situated under one roof.
1405. Furnaces.-A furnace is composed of a cast-iron kettle 2 feet in diameter set in a fireplace of brick. In the field, sods may replace the brick, if the latter cannot be obtained.

Two kinds of furnaces are employed in a laboratory; in the first, the flame circulates around both bottom and sides of the kettle; in the second, it only comes in contact with the bottom; the latter is used for compositions, in which gunporder forms a part.
1406. Precautions.-To prevent accidents in the operations of a laboratory, avoid as much as possible the use of iron in the construction of the buildings, fixtures, etc.; sink the heads of iron-nails, if used, and cover them with putty ; cover the floor with oil-cloth or carpets, and have it frequently swept. Let the

[^39]workmen in the powder-room wear socks, and take them off when they go ont. Keep no more than the requisite amount of powder in the laboratory, and have the ammunition and finished work taken to the magazine. Let powder-barrels be carried in hand-barrows made with leather, or with slings of rope or canvas, and the ammunition in boxes. Let everything that is to be noved be lifted, not dragged or rolled on the floor. Never drive rockets, port-fires, etc., in a room where there is any powder or composition except that used at the time. Never enter the laboratory at night, unless it is indispensable, and then nse a close lantern, or wax or oil light well trimmed. Allow no tobacco to be smokod, nor friction-matches to be carried in or around the laboratory.
1407. Materials.-Laboratory materials may be divided into four classes, viz. :

1st. Those for producing light, heat, and explosion.
2d. Those for coloring flames and producing brilliant sparks.
3d. Those used in preparing compositions.
4th. Those used in making cartridge bags, cases, etc.
1408. 1st Class.-Nitre.-For laboratory use, nitre must be reduced to a fine porder or very minute crystals. It is best pulverized in rolling-barrels at the powder-mills, but it may be pulverized by hand, in the laboratory, with a rolling-barrel, or by pounding in a brass mortar, or by stirring a crystallizing solution.
1409. Chlorate of l'otassa.-Chlorate of potassa is formed by passing a current of chlorine, in excess, through lime-water, and then treating the mixture with the chloride of potassium, or by the carbonate or sulphate of potassa. The chlorate of potassa and chloride of calcium are formed ; the former crystallizes, the latter remains in solution. It is solnble in water, but not sensibly so in alcohol. As before stated, it is a more powerful oxydizing agent than nitre ; and when mixed with a combustible body, easily explodes by shock or friction. It is inflamed by simple contact with sulphuric acid, and thus affords a simple means of exploding mines.

A convenient form of apparatus for this purpose is a glass vessel with two compartments; one containing sulphuric acid, and the other chlorate of potassa and gunpowder. It is placed near the surface of the ground, and when broken under the feat of the enemy, the two substances are brought in contact, producing fire, which explodes the mine.
1410. Charcoal.-For laboratory use, charcoal may be made by charring wood in an iron kettle buried in the ground. It may be pulverized by rolling in a barrel with bronze balls, or
by beating in a leather bag with a maul. It should be kept in close barrels in a dry place.
1411. Sulphur--When melted sulphur is to be nsed, care must be taken that it does not become thick, which occurs at about 400°. It may be pulverized in a rolling-barrel, or by being pounded in a mortar and sifted. Roll brimstone is better for melting than flowers of sulphur. When flowers of sulphur are to be mixed with cllorate of potassa, it should be washed to remove the free sulphuric acid. Sulphur hastens the combnstion of compositions to which it is added.
1412. Antimony-Antimony, or regulus of antimony, is a grayish-white metal, easily reduced to a powder, and by its combustion with sulphur produces strong light and heat; the color of the flame is a faint blue.
1413. Sulphuret of Antimony.-Sulphuret of antimony is mixed with inflammable substances to render them more easily ignited by flame or friction.
1414. Gunpowder.-For compositions, gunpowder is pulverized, or mealed, by the rolling-barrel, or by grinding with a muller on a mealing-table, or by beating in a leather bag. The simple incorporation of the ingredients of gunpowder does not answer the desired purpose.
1415. Lampllack.-Lampblack is the result of the incomplete combustion of resinous substances. It is composed of about 80 parts of carbon and 20 of impurities. It is employed to quicken the combustion of certain mixtures; but before it is used, it should be washed with a strong alkaline solutiou, to remove all traces of empyreumatic oil.
1416. 2d Class.-Coloring Materials.-A flame is colored by introducing into the composition which produces it a substance the particles of which, on being interspersed through the flame, and heated to the incandescent state, give it the required calor. Coloring substances do not generally take part in the combustion, and their presence more or less retards it; it is for this reason that chlorate of potassa, a more powerful oxydizing agent than nitre, is used in lieu of it, in compositions for colored fires.
1417. Colors.-There are a great variety of substances which give color to Hlames, the principal of which are nitrate and sulphate of strontium, and chloride of strontium, for red; the nitrate of barium, for greeu; the bicarbonate of soda, for yellow; the sulphate, carbonate, and acetate of copper, for blue Lampblack is employed to give a train of rose-colored fire in the air; powdered flint-glass, for white flames; and oxile of zine, for blue flames.
1418. Sparks.-Brilliant sparks are produced by introducing into the composition filings or thin chips of either wrought-iron, cast-iron, steel, or copper, or by fragments of charcoal; the effect depends upon the size of the particles introduced. The particles should be freshly prepared, or should have been well preserved from rust.
1419. 3d Class. Preparing Compositions.-Turpentine is the substance which exudes from the freshly cut surface of a pinetree in warm weather. The first year's ruming is called virgin, or white, turpentine ; after this it becomes more hard and yellow.
1420. Spirits of Turpentine.-This is the essential oil obtained by distilling native turpentine.
1421. Rosin.-This substance is sometimes called colophony, and is the residinum of the distillation of turpentine.
1422. Tar.-Tar is a semi-fluid substance, obiained from the heart of the pine-tree by a smothered combustion, as in charcoal-pits.
1423. Pitch.-Pitch is obtained by boiling domn tar to the requisite consistency, either by itself or combined with a portion of rosin ; it becomes solid on cooling, but is softened by the heat of the hand.
1424. Venice Turpentine.-Tenice turpentine is obtained from the larch; but what is commonly known by that name is a compound of melted rosin and spirits of turpentine. The for:going substances are chiefly employed in the preparation of compositions for producing light.
1425. Alcohol, etc.-Alcolkol (spirits of wine). brandy, whiskey, or vinegar, is used for mixing compositions in which nitre enters, because this salt is but slightly soluble in these liquids.
1426. Gum-Arabic.-Gum-arabic in solution is employed to give body to certain compositions. It retards combustion; and as the solution is liable to spontaneous decomposition, it should only be prepared as wanted.
1427. Deeswax and IFutton-tallow are employed chiefly in mixing compositions intended to produce heat and light.

142S. 4til Class.-Preparing Cartridges, etc.-The material of which cartridge-bags are made is woren expressly for the purpose. The color is white, and the calibre of the gun and the weight of the charge must be stencilled on the bag in figures two and a half inches long. When procured of necessity elsewhere, the stuff should be chosen of wool entirely free from any misture of thread or cotton, and of sufficiently close texture to prevent the finer powder from sifting throngh. Wild-boar, satinet, merino, and bombazette are named as proper materials for cartridge-bags; of these the thinnest stuff, not twilled, but
haring the requisite strength and closeness of texture, is the best. Fabrics of cotton and flax are not used, because the powder sifts through them, and they are more apt to leave fire in the gun than woollen stuffs.
1429. Compositioxs.-The term composition is applied to all mechanical mixtures which by combustion produce the effects sought to be attained in pyrotechny. If these compositions be examined, it will be found that many of them are derived from gunportder, by an admixture of sulphur and nitre, in proportions to suit the required end.
1430. Preparation.-Compositions are prepared in a dry or liquid form ; in either case it is necessary that the ingredients should be pure and thoroughly mixed.
1431. For dry compositions, the ingredients are pulverized separately, on a mealing-table, with a wooden muller ; they are then. r eighed and mixed with the hands, and afterwards passed three times through a wire sieve of a certain fineness. When a highly oxydizing substance, as the chlorate of potassa, is present, great care must be observed in mixing to aroid friction or blows which might lead to an explosion. When coarse charcoal or metals in grains are used, they should be added after the other ingredients hare been mixed and sifted.
1432. For the liquid form.--W Wen it becomes necessary to use fire to melt the ingredients, the greatest precaution is necessary to prevent accident, especially when gunpowder enters. The dry parts of the composition may be generally mixed together tirst, and put by degrees into the kettle, when the other ingredients are fluid, stirring well all the time. When the dry ingredients are very inflammable, the kettle must not only be taken from the fire, but the bottom must be dipped in water, to prevent the possibility of accidents.
1433. Form.-To give a portable form to compositions, they are inclosed in cases, cast in moulds, or attached to cottonyarn, rope, etc.

143土. Cases.-Cases are generally paper tubes, made by corering one side of a sheet of paper with paste, or gum-arabic, wrapping it around a former, and rolling it under a flat surface until all the layers adhere to each other. The quality of the paper and the thickness of the sides of the case should depend upon the pressure

Fig. 314. of the gases evolved in the burning. (Fig. 31t).

14シ3. Filling.- To fill a case, it is first cut to the proper
length and placed in a mould; the composition is then poured in, a ladleful at a time, and each ladleful is packed by striking a certain number of blows on a drift with a mallet of a given weight. The height of each ladleful of composition should be about equal to a single diameter of the bore of the case.
1436. Drifts, etc.-Small drifts receiving heary blows should be made of steel, and tipped with bronze (Fig. 315); large drifts may be made of wood or bronze, depending on the force of the blow. In driving

Fig. 315. highly inflammable compositions, as that of the rocket, care should be taken to settle the drift so as to exclude the air before striking with the mallet, as the heat generated by the sudden condensation of air mighit be cufticien: to ignite the composition.

Preliminary tests of all new materials should be made by burning one or more specimens of the composition, and the proportions of the ingredients corrected, if necessary.
1437. Vent.-The length of the flame from a given composition depends on the size of the rent and the extent of the lurning-surface. The vent is made small by choking the end of the case with stout twine; and the buming-surface is increased by driving the composition around a spindle which, on being withdrawn, leaves a conical-shaped caritr. A rent may be also formed by driving in moist plaster of Paris or clay, and boring a hole in it with a gimlet. If the end of the case is to be closed up entirely, the boring is omitted.

Section II.- Means of Firing Cannon.

1438. Prmiers.-One of the most important subjects to be considered in connection with the efficiency of the ship's batterr, is that of providing a simple and efficient means of discharging the guns instantaneonsly and with certainty ; to this end numerous contrivances and inventions have been suggested and tried.

Percussion and friction primers are now used in the service, although electric primers, tubes, port-fire, and slow-match are manufactured, and may be used in special cases.
1439. Percession-primers.-The percussion-primer has a wafer or flat-head attached to a quill-barrel. The process usually observed in selecting the material and manufacturing the primers is as follows:

Each quill must be clarified and furnish a barrel at least two and a half inches long. The barrel is to be round, free from flavis, pith, and brittleness occasioned by clarifying, or any other defect which may render it unfit for the purpose required. (Flatness of the quill-barrel will subject it to be rejected at the discretion of the Inspecting Officer.) It must not exceed in diameter nineteen-hundreths of an inch at any part, nor be less than serenteen-hundretlis of an inch, within one and one-half inches of the end that is cut from the quill. The small end must not be broken or bruised.
1440. Fabrication.-Cut the barrels of the quills close from the feather, and insert them into the socket of a wooden block made two inches deep and two tenths of an inch in diameter.

A punch, having ton cutters radiating from the stem, is entered into each quillbarrel, and driven down with a smart tap, so as to slit the upper end of the barrel into ten prongs, and as far as the upper surface of the block permits. (Fig. 316.) Turn back the prongs, so that they will lie on the surface of the block; a circular punch is applied to each, and made by a blow to cut off the prongs to its own diameter (0.52 inch).
1441. Very stout paper, previolisly prepared by two coats of shellac varnish (gumlac dissolved in alcohol), is punched with holes 0.17 inch in diameter, and so arrauged as to correspond with the sockets of the wooden block. The quill-barrels are freed from pith, the punched paper laid on the block, the holes corresponding and the varnished side up, the quill-barrels put

Fig. 316. through the paper into the sockets of the block, filled with grained powder, seven grains Troy, and pressed firmly down with their prongs flat on the varnished side of the sheet of stont paper.
1442. Brush the shellac-varnish over the spaces of paper between the heads of the quill-barrels, and spread a sheet of good writing-paper, slightly moistened with water, over the entire surface of the stont sheet and the prongs of the quills. Put the block and the sheets thus stuck together, with the quill prongs between them, into a press, apply a force of about thirty tons, and keep them long enough to set the prongs and make the sheets of paper adhere firmly.
1443. Each quill is separated from the card by means of a circular punch, which cuts out a disk 0.62 inch in diameter, and of course includes the prongs enclosed between them. A stellated disk to cover the head of the primer is punched out of linen-made paper of the finest and closest fabric. This disk has twelve points-diameter from exterior points, 1.23 inches, from interior 0.700 inch. Metal plates are at hand with superficial recesses about 0.65 inches in diameter. On each of these a stellated cover is placed, and four grains of fulminate deposited on it. This is composed of five parts of fulminating mercury and one of mealed-powder, hoth dry. Place the head of the primer on the charge of fulminate, holding it by the quill-barrel and pressing it down firmly; brush good wheat paste on the points of the cover and on the interior smiface of the head, turn the points orer, and unite them neatly and closely on the paper head.
1444. The primer is now made and only requires to be protected from moisture. For this purpose, shellac is dissolved in alcohol, so as to be thin enough to be laid on with a brush. This is of a brownish yellow; a portion is pre-

Fig. 317. pared with lamp-black. Coat over the guill-barrel with shellac, then the under side of the wafer with the black shellac-varnish. Then shellac the upper surface of the wafer. Tip the end of the quill-barrel with black varnish, and apply a second coat of uncolored shellac thickly about the primer. (Fig. 317.)
1445. The primers, being put in tin boses made to hold fifty of them, are ready for inspection. After which the lids are coated with sliellac to exchude moisture, until wanted for immediate use. These boxes are intended to fit in and form a lining to the primer-boxes which slip on the waistbelts worn by the Gun Captains.
1446. When primers have been returned from cruising ships, or have remained in store for one or more years, they must be tested by firing five per cent. of the number, and not issued again without special orders.

The date of manufacture or re-inspection, with the initials of inspecting officer, are to be legibly written and pasted within the cover of the laboratory cases, and, when issned for serrice, the date and station to which sent is to be added.

1447 Friction-proners.-The friction-primer for cannon is a small brass tube $1 \frac{1}{2}$ inches in length, and 0.19 inch in diam-
ter, filled with fine-grained powder, which is ignited by drawing a rough wire briskly through friction composition contained in a smaller tube inserted into the first near the top, and soldered at right-angles to it.

The short tube is 0.44 inch long, and 0.15 inch in diamter. The wire is 3.4 inches long, of brass, annealed, the end in the small tube flattened, and fitted with dentate edges, a; while the other end is doubled on itself and twisted, leaving a loop 0.2 inch in diameter, and then bent alongside the long tube for packing. (Fig. 318.)
1448. Friction Composition.-This is made of two parts of the sulphuret of antimony and one part of the chlorate of potassa moistened with gummed water, 50 grains of gum-arabic in two ounces of water to one pound of composition. The materials are first pulverized separately, mixed together dry, moistened with gun-water, and ground in an iron mill such as is used for grinding paint.

Friction-primers are packed in tin boxes in the same manner as percussion-primers.

Fig. 318.
1449. In case either lock or percussion-primer should entirely fail, recourse will be had to the friction-primer. In using them, the Gun Captain, after taking the primer from the box, will raise the twisted wire loop until it is on a line with the spur; place the tube in the vent with the spur towards the muzzle of the gum, then hook the lanyard into the raised loop, and pull it, when otherwise ready to fire the gun, as though it were a lock-string, using, however, a less degree of force. The lanyard may be hooked to the loop before the tube is put into the rent.
1450. Storage of Primers.-Percussion and friction primers and all other articles containing fulminating matter are kept in boxes prepared for the purpose, and the boxes are stored, separately from other articles, in a dry, secure, and safe place, under lock and key, and are on no account to be put in the magi-zines-being distributed in two or three places, and a portion kept constantly at hand.
1451. Allowance of Primers. -The allowance of percus-sion-primers to ships fitting for sea is three hundred for each one hundred rounds, and fifty per cent. additional for practice: in pulling the lock-string.

The allowance of friction-primers is fifty to each gun on board ship.
1452. Spur-tubes.-These are quill priming-tubes (Fig. 319) filled with inflammable composition, and ignited by applying the inatch.

Fig. 319.

The body of the tube is filled with a composition of mealed-powder moistened with camphorated alcohol until a thick paste is formed; the composition is introduced into the quill by pressing its lower end into the paste, thus taking up a portion of it, and repeating the operation until the quill is filled.

A small wire is then run through the axis of the tube, and allowed to remain there until the paste is dry; when it is withdrawn, learing the composition perforated thronghout its entire length. The object of piercing the composition is to expose more surface to the action of the flame; the ignition of the whole contents of the quill is thus rendered instantaneons.
1453. The head of the tube, or spur, is formed by inserting a strand of quick-match, about an inch long, into the composition, through a hole near the head of the quill. This is protected by a small tube of stiff paper lashed at right angles to the quill.

The end of the quick-match is covered with a paper cap.
The whole is shellaced over to protect it from moisture.
Spur-tubes are packed in tin boses in the same manner as percussion-primers.

When spur-tubes are used the Gun Captain exposes the priming, and the 2d Captain applies the match.

1454 . Slow-match is used to preserve fire. It mar be made of hemp, flax, or cotton rope. The rope is saturated with the acetate of lead or the lye of wood ashes; if it is made of cotton it is only necessary that the strand be well twisted. It burns from four to five inches in an hour, forming a hard-pointed coal, which readily communicates fire to any inflammable material with which it comes in contact.

For the Nary, loosely laid, one-inch flax-rope is used.. It is placed in a solution of one pound of acetate of lead to fire gal-
lons of water, for twenty-four hours; then taken out, rove through blocks and well stretched. It is left on a stretch for eight or ten hours, and rubbed down smooth with rags; when it is cut in lengths of about two fathoms each, and packed in boxes ready for issue. For service a piece of this rope two or three feet long is wound around a match-staff, having a slit in one end and a point of iron on the other, which can be stuck in a match-tub.
1455. Qutck-match is used to commmicate fire. It is made of cotton-yarn (lamp-wick) saturated in alcohol and then put into a composition formed of mealed-powder and gummed spirits; after saturation the yarn is wound on a reel or hung up until perfectly dry.

The burning of quick-match is very irregular, varying with the condition of the match and the quantity of porder over its surface. One yard in thirteen seconds is about the mean rate of burning of new match when not confined. The rate of burning may be much increased or rendered almost instantaneous by enclosing it in a tube of any description.

The ignition of any combustible which it is not safe to approach may be readily effected by enclosing quick-match in a paper case or leader of the required length.
1456. Port-fire.-Port-fire is a crlindrical paper case containing a composition which burns with an intense flame. It is usel for firing guns in the absence of other means, and also employed, as its name implies, to carpy fire whenever required. In order to stop the combustion in a port-fire it is best to cut it off as near as possible to the flame. Port-fire is used for lifebuoy lights, because of its ability to resist water. The power of a burning composition to resist the penetration of water to the mass is in direct proportion to the volume of gas erolved and to the rapidity of its escape, and consequently to the rapidity with which it burns. Port-fire cut up into small pieces and placed in a shell forms a very good incendiary material.

1457 . In an emergency when port-fire cannot be procured, a substitute may be made by impregnating paper with a solntion of 12 oz . of saltpetre to 1 gallon of water. When dried, the paper is rolled up into a solid cylinder about the size of the ordinary port-fire. It burns slowly, or rather smonders.

The finished port-fires are 15 inches long and $\frac{7}{8}$ inch in diameter.

The composition is composed of : nitre, 4 lbs ; sulphur, 1 lb . 10 oz . ; mealed-powder, 12 oz . ; and burns at the rate of about one inch in a minute.

The bottom of the case is filled with clay and the top with
mealed-powder. The case is painted black and the top tipped with red, to show which end to light.

When dry, the port-fires are packed in laboratory boxes, 50 or 100 in a box.

145s. Firleg Cannon by Electrictry.-Many methods have been proposed with this object in view. Such, for example, as if in the percussion-primer (Art. 1439) there was substituted for the flat-head an arrangement for electrical ignition constructed in the manner described under the head of Electric Fuzes (Art. 1509). Several contrivances on this principle have been brought forward, but experiment has not decided upon the best. A satisfactory mode of discharging cannon br electricity would be very serviceable in simultaneons and concentrated firing. Firing salutes by electricity may be very simply and easily performe by placing an electric fuze in each cartridge and leading the wires out of the muzzle of the grn to their appropriate connections.
1459. Electric Primer.-The electric primer chiefly used consists of a quill tube filled with fine-grained powder or pierced composition, to the top of which is secured a small hard-woorl plug, in which is placed a small quantity of priming composition, and the copper wires so arranged as to ignite the composition upon the passage of the electrical current, by which means the powder in the tube is fired.

The head of the primer is arranged with proper connections for attaching the ends of the circuit-wires leading from the battery or electrical machine.

These primers are useful in firing time-guns, and also those subject to extreme proof.

Section III.-Fuzes.

1460. Fuzes are the means used to ignite the burstingcharges of hollow projectiles at any desired moment of their flight.

There are a great many rarieties of finzes. Ther mar be classed according to their mode of operation, as percussion, concussion, and time fuzes.

1t6i. The Time-fuze consists of a column of inflammable composition which, being ignited by the charge in the gun. burns for a certain space of time, at the end of which it communicates its flame to the bursting-charge in the shell. In the Navy, all spherical shells except those for howitzers and for shrapnel are fitted with the Nary Time-fuze.
1462. Requirements.-The conditions required to constitute a good time-fuze are, that it should ignite with certainty; that it should burn regularly, and that when ignited it should not be liable to extinction.

Time-fuzes have the adrantage of being independent of the object, and of furnishing a core of dispersion whose apex is abore the target.

But they are entirely dependent upon the exactness of their adjustment, and eren when properly adjusted they sometimes gire premature or tardy explosions without assigned reasons; besides, they afford no means of estimating at sight the distance at which the projectiles burst, and consequently no criterion for correcting them, which is a great disadrantage.
1463. The Naty Tace-fuze (Fig. 320). -This fuze is composed of a composition driven in a paper case and then inserted in a metul stock, which screws into the fuze-hole; so that one end of the composition lies eren with the exterior surface of the shell, and is expozed to the flame of the charge in the gun, the other end being within, amidst the charge of the shell. The composition is corered with a safetycup, which protects it from moisture and accidental ignition; also with a watercap of peculiar construction, intended to protect the flame from being extinguished on ricochet.

146t. A Safety-plug at the lower extremity prevents the communication of fire to the powder in the shell, in the event of the accidental ignition of the fuze after being uncapped.
1465. Composition.-The ingredients of all time-fuze compositions are the same as for gunpowder, but the proportions are varied to snit the required rate of burning. Pure mealedpowder gives the quickest composition, and the others are derived from it by the addition of nitre and sulphur in cer-

Fig. 320.-Nary Tinefuze. tain quantities. The rate of burning of a fuze composition
depends on the purity and thorough incorporation of the materials, and on its density.

These qualities are best secured by procuring the materials from the powder-mills ready mixed and granulated like powder, in which form it is not more liable to deteriorate than gunporsder, and can be preserved for a long time without the possibility of alteration.

The three compositions used are manufactured at Dupont's Powder-mills, and are known by the letters L, M, and Λ.

These compositions have the appearance of ordinary unglazed cannon-powder, but the proportions of the ingredients differ from those composing cannon-powder. By combining these compositions in different proportions and adding small quantities of mealed-porder, driving a few fuzes and burning them for trial, the several compositions

Fig. 321.

$$
1.1 .1010 \text {. } 1
$$ cut into slips leaving one end square, the other tapered to a point (Fig. 321).

These pieces of paper are placed on a smooth board and covered with a refined glue, used rather thin and kept warm in a suitable vessel. They are then rolled on a steel crliudrical former, beginning with the square end, the gradual diminution of the other end of the paper producing the required taper on the exterior of the case. If one of these cases is cut in any part, the several layers of paper are not perceptible, but appearas if resolved into a perfectly firm and homogeneous material.

The finished case (Fig. 323) is put in a gauge to see that it is of the proper dimensions and both of its ends cut off eren with the faces of the gauge.
1467. The Safety-p?ugs are made of the softest lead wire. This wire is cut into short lengths and put through molds to bring them to the proper diameter. They are then put into the plug-making machine, which cuts and forms the lead wire into the proper shape and length for safety-plugs.
1468. Before the composition is driven into the case, the safety-plug, P (Fig. 322), is inserted with its carity end in the smaller end of the paper case, and the solid portion of it projecting below the tapering end of the case. A steel punch with a conical-shaped end, being introduced into the case and entering the cavity of the safety-plug, is struck a smart blow with a mallet, which forces the soft lead out, pressing it hard against the sides of the paper case.
1460. The jar of concussion consequent upon the explosion of the charge in the bore is so great as to detach the phog from

Fig. 322.
the case, so that from the moment the shell leares the gun the communication is open between the burning composition in the fuze and the burstingcharge in the shell, and as soon as the composition is consumed the shell will explode.
1470. Fuze-driving

Fig. 323. Machine.-This is done by a machine. It is a screw-press requiring two persons to work it. The driving-shaft mores vertically through a metal tube on the exterior of which is a strong square thread. A nut works upon this by means of a large disk attached to it, of sufficient diameter to create the requisite power, and upon the upper side of this disk are established two levers, attached to the head of the sbaft. By adjusting the weights upon the levers a bell is rung, when a pressure of 2,000 pounds is obtained with the screw.
1471. The paper case is secured in a steel mold or socket, which is made to adjust so closely to the exterior of the case as to sustain it and also protect the safety-plug against the pressure applied in condensing the composition. Two or more of these molds are placed around the edge of the circular plate carried upon the lower part of the frame, and revolving so as to bring the molds in turn to the shaft.
1472. Driving the Composition.-The composition, being first pulverized to a fine powder, is put into the case by a small scoop which holds eight or ten grains. Each charge is driven by a steel drift which fits suugly into the case. the workman moving around the lower plate so as to bring the drift under the driving-shaft of the machine, the positions being determined by a spring and catch working into a notch in the edge of the plate. The disk is now given a quick whirl by means of the handles on its periphery, and the driving-shaft descends on the drift; the morement is sustained and the pressure increased until the sound of the bell indicates that the lever has risen and the action of the machine has ceased.
1473. The motion of the disk is now reversed and the shaft sufficiently raised to allow the workman to revolve the lower plate and bring in place another mold, which has meanthile been charged. The operation proceeds until the column of condensed composition is rather larger than required.

In this way the composition is solidified until its density is doubled and it becomes as hard as stone. The paper cases are removed from the driving-mold and placed in another of the exact length required; the projecting portion is then cut off evenly with a sharp knife.
$14 \overline{7}$. The Water-cap is made of copper, and is cylindrical in shape (C, Fig. 322). The upper end has a recess . 10 inch deep, in which there are three holes, one going down to the centre of the cap and connectiug with the side-holes; the other two are made to hold a small piece of quick-match. There are trro holes in the sides of the cap opposite to each other and connecting, but leading at different angles; and one hole leading from the bottom of the cap to those through the sides. Thus the water-cap is perforated with a chanuel, which is tilled with mealed powder. This communicates fire to the composition in the paper case, and the angles of the channel prevent the entrance of any matter, such as sand or water, over which the shell may ricochet.

The recess on top has two small pieces of quick-match, each secured in its own hole, and a small quantity of powder poured into the recess and pressed down, so that the outer surface is
prined with mealed-powder and strands of quick-match, which are ignited by the scorching flame that rushes over the projectile at the firing of the charge in the gun.
1475. The Safety-cap is a circular leaden patch with a lip or lug attached (S, Fig. 322), cut ont of soft sheet-lead that is abont .06 iuch thick. It is punched out with a cutter of the proper shape and dimensions.

This patch, with a thin piece of parchnent of the same shape and size under it, is put on over the top of the watercap and driven down into the recess in the head of the fuzestock with a punch made for the purpose, having the length of the fuze in raised letters on the end, so as to leave this mark on the leaden patch.
1476. The Fuze-stock is made of tongh bronze, with a stout shoulder or flange at the outer end (F, Fig. 322). It length over all is 2.44 inches. The tilled paper case, or fuze proper, is placed in the metal stock, safety-plng-end first, and then pressed down until the end of the paper case is nearly even with the lower end of the stock, the satety-pling projecting below the stock. The water-cap is screwed in on top of the fuze and covered with the safety-patch. A circular label is pasted on over the patch showing the length of the fuze, the date of fabrication, and the initials of the inspector.

A little shellac is brushed around the safety-plug and lower end of fuze-stock; also around the leaden patch and top of stock. A pasteboard cap is put on over the safety-pluz-end of the fuze-stock to prevent the plug from being broken off, and the fuzes thus prepared are stowed in boxes.
1477. Time of Burning. -The Navy Time-fuzes are of $3 \frac{7}{2}$, $5,7,10,15$, and 20 seconds time of burning; which times are supposed to offer a sufficient variety for most of the exigencies of the service, and a certain proportion of each are supplied to each ship.

There are also supplied for special purposes paper-case fuzes of greater length, which when used are always to be inserted in metal stocks.

General Working-fuze.-All loaded spherical shell supplied are fitted with the five-ssconds fuze, which is to be regarded as the general working-fuze. This fnze may be drawn and any of the others snbstitnted. The XV-inch shell are fitted with three finzes, each $3 \frac{1}{2}, 5$, and 7 seconds.

One-half of the shell allowed for rifled grms are fitted with time-fiuzes, and the remainder with perens;ion-fuzes.
1478. To Shorten Fuzes.-For spacial firing any timefuzes may be shortened. To do this, unserew the water-cap
and back the paper case out from the lower end with a drift and mallet, cut off from the lower end with a tine saw, or sharp knife struck with a mallet, the proportional part required, and insert the upper part in the stock, forcing it down with a few gentle blows with the drift; screw in the water-cap.

It is preferable, however, when circumstances will admit. to take up such distance as will correspond with the time of flight of one of the regulation lengths. In shortening the fuzes there is danger of disturbing the column of composition.
1479. Testing Fuzfs.-Fuzes are tested by securing them in some convenient place, lighting them, and noting the time of burning. In testing the Navy time-fuze, the safety-plug must be removed. Being intended for use under a water-cap, they burn a longer time in the open air. Under the water-cap the gases are so confined that the combustion is augmented.
1480. Time-fuzes for Rifle-projectiles.-Time-fuzes are very unreliable in rifle-guns in consequence of the flame being cut off from the fnze; with the Parrott shell, however, the Navy time-fuze is the most certain of ignition and regular in its time of burning.

For rifle-projectiles, where the flame of the charge is entirely cut off from the fuze, the time-fuzes are fitted with a detonating arrangement at the top. This consists of a small hollow cylinder of metal, termed the detonator, containing a small quantity of detonating composition, and haring a fire-hole communicating with the fuze-composition. A plunger is suspended in the detonator by means of a wire, and when the gun is fired the suspending-wire is broken, and the plunger coming in contact with the detonating composition explodes it, thus firing the fuze-composition.
1481. Imperfection of Tine-fuzes.-It is impossible that any species of fuze should be absolutely perfect. When suitable opportunities for observation oceur, it is noticed that in firing a number of shells many do not explode. The failure of the composition to ignite is probably generally due to the absorption of moisture ; and therefore all fuzes taken from shell or returned from ships, which have been more than one year in service, are to be returned to the Laboratory in the Ordnance Yard at Washington, where all fuzes are prepared. Fuzes of over two years' date of manufacture are not to be issued for service.

Sometimes the fuze is extinguished after haring been ignited. This may occur when the shell ricochets on soil or water: Water is not so detrimental as sand, and the fuze is rarely extinguished by several ricochets upon it.

Generally the gases evolved by the combustion of the composition will repel with great energy any obtrusive matter which would extinguish the fuze if once in contact with the ignited surface.
1482. Prematurd Explosron.-This may be caused by the increase of the ignited surface of the composition resulting from cracks in the case or composition itself, or by interstices between the case and composition; and in proportion to the extent of this cause so will be the increased celerity of the combustion. Crevices may occur in the composition from some defect in the tools or in the mode of using them, or they may be created by bending the case.

It may also happen that the displacement of the shell by the charge of the gun will force in the column of composition or the case with it. This would of course cause the shell to explode very quickly.

The shell may be defective in thickness or quality of metal, and be crushed by the force of the discharge, when the explosion will take place in or near the gun.

The bursting of shell near the muzzle of the gun is sometimes attributed to the detonating qualities of the powder in the shell. It is manifest that the premature explosion of shells is far more detrimental to their efficiency than the failure to explode at all.
1483. Commanders of vessels are required to observe carefully the action and result of all fuzes, and report in detail to the Bureau of Ordnance whenever opportunities may occur, particularly specifying the number and kind fired, elevation of gun, failure to explode, and satisfactory action; also whether the fire was ricochet or direct.
1484. The question of a good fuze for all conditions of service is still to be determined. For ordinary firing with smonth-bore projectiles, the service time-fuze, as made for many years past, continues to give good results, but the greatly increased range and time of flight at present obtainable with heavy guns render it desirable to adopt a principle of shellexplosions independent of the time of tlight and of the preservation in good order of a long column of composition.
1485. The Bormany Fuze was invented by Captain Bormam of the Belgian army.

The case is a metallic disk about 1.6 inches in diameter and half an inch thick (Fig. 324), made of lead, hardened sufficiently for the purpose by the infusion of some tin. It is cast without the thread by which it is to be screwed into the fuzehole, and this is afterwards cut in an ordinary slide-lathe.

The metallic fuze is screwed in flush with the shell, and well luted around the edge on the exterior surface.

The composition is firmly con-

Fig 324. densed into an interior canal, or horseshoe-shaped indentation, cast in the disk around its periphery and as near to it as possible, opening below, a strand of quick-match being first placed in the bottom of the channel. The canal is closed, after the composition is driven, by a piece of the same metal, corresponding in shape (Fig. 325), the crosssection of it being wedge-shaped. This is pressed down upon the composition by a machine sealing it hermetically.
1486. The upper surface of the disk above the composition is very thin, so as to yield readily to the cutting-tool employed to open it, its whole external corresponding of course with the composition below. It is graduated into

SECTION

Fig. 325.
 seconds and fourths of seconds. The end of the composition where the enumeration begins communicates with a small magazine at the centre of the disk, which is charged with grained powder, and closed on the inner side with a very thin disk of sheet-lead so as to yield in that direction to the explosion. A pin-liole is sometimes punched in this disk to insure the escape of the flame into the shell.

145\%. The Operation of the Fuze oceurs thas:

The thin corering of metal above the composition is cut so as to lay bare the upper surface of the composition. and to afford the flame access to it at the part desired. The cut should be made with the fuze-cutter close to the right of the mark in the indexplate ; and it is best made in two or three efforts instead of trying to effect the cut at once.

Under fire, the Bormann fuze, though perfectly simple, is very liable not to be cut to the desired time; it is often done incorrectly, and sometimes not at all.

Shell fitted with this fuze should be placed in the gun with the cut of the fuze up, because in this position it is more certain of being touched by the flame of the charge as it rushes over the top of the shell.

The combustion occupies the assigned time in passing from the incision towards the origin of the graduation, when it trarerses the orifice leading into the magazine, the contents of which explodes snartly towards the

Fig. 326. interior, and then encounters instantly the charge in the shell.
1488. The metal of this fuze being soft and its diameter great, there is danger of its screw-thread being stripped, and its being driven in by the shock of firing, or of its being driven out on the ignition of the bursting-charge, thus affording a means of escape for the gas erolved, without bursting the shell. To prevent the former, a broad shoulder, $a a$ (Fig. 326), is left when the fuze-hole is tapped. To avoid the possibility of the latter, and at the same time to increase the effect of a small burst-ing-charge, the fuze-hole below the shoulder is closed by screwing in a composition disk, b, with a small hole in its centre through which the fire from the fuze is communicated to the charge.
1489. Advantages.-The peculiar excellence of this fuze consists in the driving of the whole mass of the composition by a single pressure, and its disposition in such wise that the combustion occurs not with the stratification of the mass, but transversely to it, while in the ordinary fuzes the solidification and the process of combustion are just the reverse; that is, the column is composed of a number of layers solidified successively by an equal pressure; but as the inferior layers have, besides the pressure applied to them, to bear that of the superincumbent layers, it follows that the mass is not homogeneous, but increases in density with the inferior position of the layers.

The whole error of fabrication, whatever it may be, in the Bormann fuze, is only experienced when the fuze is opened at its extreme duration. At all inferior times it is reduced proportionally. The regularity of this fuze burning is very great. The Bormann fuze is fitted to all shrapnel and howitzer ammunition.
1490. Percussion and Concussion Fezes.-A perchesion or concussion fuze is one which is independent of the element of time of flight, and which depends wholly upon impact for its ultimate action.

The distinction between percussion and concussion fuzes has been somewhat arlitrary, and the application of the terms has depended upon the sense in which the inventor of any particular fuze chose to apply them.
1491. Conctssion-fuze.- A concussion-fuze is one which is put in action by the discharge, but the effect of that action is restrained until it strikes the object.
1492. Requirements.-Such a faze, in order to be serriceable, must not only produce explosion on striking, but it must not produce it on the shock of the explosion of the gun-charge, nor of that produced by the ricochets of the projectile in or out of the gun. These fuzes hare usually consisted of some combination of the highly explosive fulminates, but the extreme danger of using them has been a great obstacle to their adoption. There is no fuze of this kind in use in the Navy.
1493. Tife Splingard Fuze is both a concussion and time fuze; the appearance of the paper case is similar to that of the Nary tine-fuze, but the internal arrange-

Fig. 327. ment is different. The case is filled with fuze-composition, and a long cavity is formed in the lower part of the composition by driving it around a spindle as in a rocket ; this cavity is filled with moist plas-ter-of-Paris, and a long needle is inserter in it, nearly to the bottom of the plaster, forming a tube enclosed in and supported by the composition. (Fig. 32T.)

The composition is ignited in the usual way at the top, and as it burns away, leares a portion of the plaster tube unsupported. When the shell strikes its object. the stock breaks off the unsupported part of the tube, and the flame of the composition immediately communicates with the burstingcharge ; if the tube does not break the composition burns up, and the bursting-charge is ignited as in an ordinary time-fuze.
1494. The Bacon and McIntyre Feze is very similar to this, except that the internal tube is differently formed. In this fuze a thin copper tube, E (Fig. 328), extends through
the centre of the fuze-composition, and has a solid copper head, F , secured in its mpper end by a little soft solder. The copper tube is enveloped with paper, C , and between the paper and the tube is a thin layer of plaster-ofParis, D.

Fig. 328.-A, outside paper case. B, pow, der composition. C, inside paper case. D. coating of plaster of Paris. E, conical tubeF , ball on tube.

The fuze being ignited by the flame from the gun, the upper part of the composition burns away in the first second or two of time, melting the solder and learing the head of the tube free to be displaced by the shock of impact.

Under ordinary circumstances this fuze acts like the timefuze, the stopper, F, being kept in place by the plaster-ofParis; but npon impact, the plaster breaks, the ball falls, and the flame passing through the tube at once ignites the burstingcharge.
1495.-Percussion-fuze.-A percussion-fuze is one which is prepared for action by the discharge, and put in action by the shock on striking the object. Like the concussion-fuzes, they have usually been dangerous from the fulminate employed, or from their complicated and delicate construction.

The embarrassments that beset the efforts to realize an efficient percussion-shell of the ordinary spherical form arise from the impossibility of having the projectile present a given point to the impact, and no reliable fuze of this nature has yet been arranged for spherical shells. In elongated rifle-projectiles this is more easily accomplished, and there are on trial for the rifled-cannon the percussion-fuzes of Schenkle, Parrott, and others.

Perhaps the case most completely illustrating the advantages that may accompany the use of percussion-fuzes is that of vessels firing shell at short and frequently changing ranges.
1496. Requirements.-The essential requirements of a good percussion-fuze are : that it should not be ignited by the shock of discharge or on striking water ; that it shall be ignited on the impact of the shell against the object, and that it may not be liable to explode by handling or during transport.

The percussion-fuze has many points in its favor: it assures the bursting of the projectile; it can be used for all ranges, be they never so great; it admits-a very important desideratum in war-of estimating distances, and of correcting the error of the estimation ; it angments the result of firing by adding great
moral to physical effect, due to the explosion of the projectile in the midst of the enemy.

Its only inconvenience is its inability to canse the bursting of the projectile before it has tonched the object, thus rendering the effects of fire dependent upon the nature and conformation of the target at the point of impact.
1497. Scuevkle-fcze.-One of the simplest forms of this kind of fuze is the Schenkle percussion-fuze, which has been found very reliable, and is now the only one issued in the Narr.

It is a metal fuze-stock (Fig. 329),

Fig. 329. enclosing a morable core-piece, or steel plunger, bearing a musket-cap. The plunger, primed and capped, is confined inside the stock, in which it fits loosely, by a scretr or pin, which passes through a hole in the side of the stock and plunger, to prevent it from moving. A safetr-cap is screrred into the top of the fuzestock, and its bottom is closed by a cork or leather stopper.
1498. When the projectile is set in motion, the plunger by its inertia carries away the pin which confines it, and presses against the bottom of the fuze-stock. When its motion is arrested, the inertia of the plunger causes the percussion-cap to impinge against the safety-cap, which ignites the priming, when the stopper in the bottom of the fuze-stock is blown out and the shell exploded.
1499. As a precaution against danger while landling, the brass safety-cap is countersunk on one end and flat on the other. It is kept with the countersunk end down at all times except when loading; while this end is down, should the plunger become loose, the percussion cap is prevented from coming in contact with the hard surface of the safety cap, but on being turned end for end a plane surface is opposed to the percnssion cap, upon which it may strike. There is a slit cut in the top of the fuze-stock and cap which is designed for the entrance of the fuze-wrench.

These fuzes are made of two sizes, the smaller size being fitted to 20 and 12 pdr. rifle-shell, while the larger ones are used for the heavier shell.
1500. Parrott Percussion-ftze.-This consists of a metal fuze-stock, A B (Fig. 330), enclosing a plunger, P ; but the ar-
rangement is different from the Schenkle. In the Parrott fuze the plunger closes the bottom of the stock, and is prevented from slipping through by a shoulder, $c d$, on the plunger, taking against a projection on the interior of the stock. The plunger is surmounted by a long nipple, N, armed with a per-cussion-cap, which strikes against a safety-cap, S , screrred into the top of the fuze-stock. The ring, R, being placed over the plunger, its lugs, $x x$, take against the lip, N, and in this position the cap of the fuze-stock screws close down on the ring, holding the

Fig. 330.-Parrott Percussion-fuze. shoulder of the plunger at $c d$ firmly against the projectile on the inside of the stock. The planger, capped and primed, is held firm until the projectile strikes the object, when its inertia carries away the lugs, $x x$, and the plunger impinges against the safety-cap, producing the explosion.
1501. Germav Percussion-ftze (Fig. 331). -In this fuze the plunger, $a h$, haring a central fire-hole, b, is let into the fuzehole and rests against the shoulders, $c c$. This plunger is surmounted by a perforated cap, p, having a terminating point on the top side.

The plunger is retained in its place by a pin, E, which passes tranversely into the fuze-hole, the side of which is put in contact with the point of the cap.

The outer end of the pin projects on the side of the shell, the projection being limited by the line of the cylindrical portion. The fuze-hole is closed by a screw-cap, $f f$, having a small central screw-hole into which the fulminate-cap, g, is screwed.

When fired from a rifle-piece, the centrifugal force generated by the revolution of the shell throws out the pin, E; the plunger by its inertia is retained at the bottom of the chamber during the flight of the projectile; at the moment of impact the plunger impinges against the fulminate, which, exploding, ignites the charge in the shell.
1502. This is one of the simplest, and, at the same time, most safe and reliable percussion-fuzes yet invented. The ful-

Fig. 331.
minate-cap, g, and pin, E, are not applied to the shell until the instant of loading, when the loader, who carries these articles in a pouch, screws in a fulminate-cap and inserts the pin, previously feeling that the plunger does not stick.

To keep the bursting-charge in place in the shell, a brass thimble, h, with a flange about the top, and a small hole in the bottom, is first pressed into the fuze-hole and takes against the shoulder, c. It is made a trifle large, and a small slit on either side at the top gives it sufficient spring to fit snug and tight. A piece of cloth is pasted over the fire-hole in the bottom of the thimble. In this thimble the leaden planger rests.

Failure to Ignite.-Percussion-fuzes frequently fail if fired into a bank of soft earth, sand, or other material which does not offer a sufficiently sudden resistance; also if fired at high eleration, owing to the fact that the rifle-shells may not strike point foremost.
1503. Mortar-fezes.-The mortar-fuze now used is a paper-case time-fuze, similar in general appearance to the ordinary paper-case fuze, of long time of burning. Ther are made up in packages and marked with the kind and length of fuze. For any shorter time the fuze is cut with a sharp linife or tine saw. With this fuze is used a wooden fuze-plug, having a conical opening, which is reamed out to fit the paper case.

When the shell is loaded, and the fuze cut to the required length, it is pressed in the plug and the plug firmly set in the fuze-hole.

The head of the fuze having been covered with tow or something to prevent breaking the composition, the fuze-setter is placed on the plug, and it is driven with the mallet until the head is about $\frac{1}{4}$ of an inch above the surface of the shell.
1504. The old form of mortar-fuze consists of a conical plug of wood, of the proper size for the fuze-hole (Fig. 332). The axis of this plug is bored out cylindrically, from the large down to within a short distance of the small end, which is left solid. At the large end a cap is hollowed ont, and the outside of the plug is divided into inches and parts, commencing at the bottom of the cap. Seven inches extreme length, and each inch burning seven seconds, giving a total length of forty-nine seconds.

The orifice is filled with composition pressed hard and evenly as possible.

The cup is filled with mealed powder and moistened with alcohol. The rate of burning is determined by experiment, and marked on a water-proof paper

Fig. 332. cap, which is tied over the cup.

This is removed when the fuze is used. Knowing the time of flight, the fuze is cut with a saw at the proper division, and firmly set in the fuze-hole with a fuze-setter and mallet.

The great disadvantage of this fuze is its irregularity, it being very difficult to press such a large column of composition so that equal lengths will burn in equal times.
1505. Running-flzes for Mines and Blasting.-The running fuzes most used are those known in England as Bickford's fuze, and in this country as safety-fuze and Toy's fuze. The common fuze ordinarily used in blasting with powder is of this kind.

It consists essentially of a column of fine gunpowder enclosed in flax, hemp, or cotton, and made up with different coverings according to the use to which it is applied. When intended for immediate use on light work in dry ground, it is unprotected by additional coverings. When intended for use in wet ground or under water, it is covered with varnished tape or gutta-percha.

These fuzes cause ignition, by con veying flame to the charge to be exploded. They are somewhat uncertain in their rate of burning, but average about one yard in a minute.

The ordinary varieties must be kept in a cool, dry place, and preserved from contact with grease or oil.

The gutta-percha-covered varieties are liable to become injured by keeping, from the deterioration of the gutta-percha. Before using, care must be taken that cracking of the guttapercha has not occurred. They should be able to resist water for twenty-four hours.
1506. Quick-match Fuze is made by enclosing quick-match in a paper case with plaited cotton covering, and water-proofed. (Art. 1455.)

Gun-cotton Fuze.-Gun-cotton thread or rope burns with great rapidity: not less than thirty feet per second.
1507. Detonating-fozes or Explodiers.-By a detonatingfuze, or detonator, is meant one that causes a detonating explosion. The ordinary method of producing explosion is by the direct application of flame. By the detonating method, explosion of the main charge is caused by the concussion exerted by a small charge of explosive material in the fuze. Fulminating mercury seems to possess peculiar properties as a detonator, and practically is the ouly body so used.

Detonating-fuzes are used when violent shattering explosions are desired. Thus nitro-glycerine, gun-cotton, and their preparations are always fired by means of a fulminate exploder. The ignition of the fulminate may be accomplished in the ordinary manner, or by the use of electricity.
1508. The simplest fulminate exploder is made by attaching a copper case or large cap containing the fulminate to the end of a piece of common running-fuze. If the fuze fits the cap closely, it may be retained in place, and the cap protected against moisture by pressing round it wax, hard soap, or other similar substance. If the fuze is too small, it must be passed through a plug of wood or small cork fitting the cap, and the whole fastened on as above. Before it is fastened into the cap, the end of the fuze must be spread out so as to ensure contact with the fulminate. Fifteen grains is the usual amount of fulminate placed in the cap; it should be put in when wet, with some gummy solution or varnish, so that it will dry to a solid lump which will not shake loose.

Even in exploding powder there is often great adrantage in using detonating-fuzes. It is difficult to prove that actual detonation of the powder is brought about, but experiment has shown that a much more violentaction can be obtained by using this mode of firing.
1509. Electric Fuzes and Exploders.-Evidently when ordinary running-fuze is employed as the means of ignition, but one charge or mine can be exploded at a time. In large blasting operations, and in military engineering, simultaneous firing
of many charges is constantly required. Again it is often desired to explode charges from a distance, as in torpedo work.

The applications of electricity to this purpose lave become quite extensive, and offier many advantages in the greater certainty of their action, and the ease with which they can be employed under circumstances where the ordinary running-fuze would be useless. Electric fuzes are always used with gruncotton, nitro-glycerine, and their preparations, when any continuous or extensive work is to be done with them.

Electric fuzes or exploders may be divided into two classes: those in which the heat is oltained by the passage of the electric spark orer a break in the circuit, and those in which the heat is obtained by the passage of the current over a conductor of great resistance.
1510. The first, or tension-fuzes, may be used with the Leyden jar, induction-coil, or any statical electric machine, such as Von Ebner's, Smith's, etc. The forms in which they are made are numerous, but essentially they are all alike.

All that is necessary for a fuze or exploder of this class is, that there shall be a break in a circuit not greater than the spark can easily be made to pass over ($\left(\frac{1}{16}\right.$ " to $\frac{1}{32}$ " is the usual distance), and that between the two points of the break shall be placed some composition that will be ignited by the passage of the spark.

Gunpowder can be so fired, if packed closely between the points, but it is better to use some more sensitive material as a priming. Fulminating mercury is fired by the spark, and may be used for this purpose, either pure or mixed with other substances, as in percussion-cap composition. Abel's composition has been thus used. It is composed of sub-sulphide of copper, 64 parts; subphosphide of copper, 14 parts; and chlorate of potash, 22 parts. Other priming compositions are also employed.

The wires of the fuze must be firmly held in a wooden block or similar contrivance, in such a manner that the priming cannot be displaced, or the distance between the points altered. Outside the priming-material is placed fulminating mercury, gunpowder, or other substance, and the whole properly enclosed in a wooden or metallic case. In other respects the fuze may be made up as desired, by coating with water-proof composition, varnishes, gutta-perclia, etc.
1511. The principle difficulty comnected with the use of statical electricity for causing explosion is the high insulation of the conducting-wires that is required. If the insulation is imperfect, the loss is so great as to render the firing of the fuze
uncertain or impossible. Some persons have tried to avoid this need of perfect insulation by the use of very sensitive priming-compositions. Many fatal accideuts have been occasioned by this recklessness.
1512. The second class of electric fuzes or exploders are those in which, by the passage of the current, a portion of the circuit having a great resistance becomes sufficiently heated to ignite some explosive or inflammable body in contact with it. These fuzes are used with the voltaic battery and the various magneto-electric machines, such as Farmer's, Gramme's, Wheatstone's, Beardslee's, etc.

For convenience, these may be divided into tro dirisions: those in which plumbago, copper sulphide, Abel's composition, or other similar highly resisting substance forms the part of the circuit which is to be heated, and those in which a fine platinum wire or other comparatively good conductor occupies that position.
1513. Of the first division are the fuzes made for Theatstone's, Beardslee's, or other similar machines. Ther consist essentially of a break in the circuit which is bridged by a layer of plumbago or composition which has a certain conductingpower, and which will burn when heated. In contact with this is placed the gunpowder, fulminating mercury, or other substance which is the charge of the fuze. This arrangement is made up in any desired shape.

The difficulties connected with the use of these fuzes and the machines for which they are made are, that good insulation of the leading-wires is necessary, and that they are somewhat uncertain for various caluses.

The curreut from these machines has less intensity and greater quantity than the static, but is more intense, and has less volume than the voltaic current, or that generated by Farmer's or Gramme's machines. Safe fuzes of this sort may be made, since no very sensitive composition is required as a priming.
1514. Of the second division are those known as platinumwire fuzes or German-silver-wire fuzes. These are used with the galvanic battery and Farmer's or Gramme's machines. Several varieties are made in this country and in Europe. Of this kind are the fuzes made at the Torpedo Station, and issued for torpedo purposes, to be used with Farmer's drnamo-electric machine.

The essential point in the construction of all the fuzes of this division is the placing of a short piece of rery fine metallic (platinum or German silver is generally used) wire in the cir-
cuit, and in contact with it a priming-material which when fired ignites the fuze-mass, or the wire may be embedded in the fuze-miss itself, and thus inflame it directly, without the intervention of a priming.
1515. This form of electric fuze has many advantages. The current with which it is used is one of great quantity and low intensity, so that the insulation of the conducting-wires need not be as complete as in the other cases. In fact, no insulation is required, if the fuze is sufficiently delicate and the whole circuit is not too long.

As long as the fuze is whole, the current is complete, as may be shown by the passage of a weak current. It may, therefore, be tested at any time before using it, even when in the charge and the certainty of firing demonstrated, whereas with the other kinds, actual trial is necessary.

Greater uniformity is attained, since these fuzes can be made to conform to any standard of resistance. This point becomes of great importance when firing takes place at great distances, or when a great number of simultaueous explosions are to be made. These fuzes are safe to handle, since no lighly sensitive composition is needed as a priming.
1516. The Dinamo-electric Igniter now supplied to the service (Fig. 333) consists of a hard wooden plug, a, half an inch in length, and about $\frac{3}{16}$ of an inch in diameter, laving a score cut about its centre, and a longitudinal groove on either side (the bottoms of which are $\frac{3}{16}$ of an incli apart) for the reception of the copper wires. There are also two cotton-covered (braided) copper wires, which are twisted together for about an inch, and are stripped of their insulation almost to the twist; these uncovered parts are pressed firmly into the grooves in the sides of the plug, and cut off, so that they project about one-eighth of an inch above the plug; the ends of the wires are now

Fig. 333. split with a very fine saw, in the direction of the plane passing through them, and the distance between the ends carefully adjusted to $\frac{3}{16}$ of an inch, after which
platinum wire No. 40 is stretched between them, to form the bridge, and securely soldered to the ends of the split wires, $i i$.

A wisp of gun-cotton, f, is next wrapped around the platinum wre, and the ends of the copper wire pinched together sufficiently to take all strain off the platinum wire. The plug is now inserted in a hollow wooden case, l, two inches long, countersinking it about an eighth of an inch. The resistance of the wire is next found and marked upon the case; it should not vary more than five-tenths either side of 0.42 ohms. The upper part of the case is filled with rifle-powder, the top being closed with a disk of cork, over which is poured some waterproof composition, and the whole is properly coated with shellac to render it water-proof.
1517. Tife Dynano-Electric Fuze is made by enclosing one of the D. E. Igniters in a stout paper case about six inches in length, which is filled with rifle-porrder to give

Fig. 334. more flame and consequently a more perfect ignition of the charge than can be obtained by the igniter alone. (Fig. 334.)

The ends of the case are properly closed, a wooden plug, B, with grooves cut in the sides for the wires, being used for the bottom, aud a disk of cork for the top, which is coated with collodion, and seals the cork firmly into the case. The fuze is given two coats of brown shellac. The ends of the wires below the plug are stripped of their covering and brightened.

Section IV.-Signals.

151S. Kinds.--The preparations emplored for signals are; rockets, signal-lights, navy red, white, and blue lights.
1519. Signal-rockets.-A signal-rocket is a cylindrical case of paper or metal. a (Fig. 335), attached to one extremity of a light wooden rod, f, and coutaining ar inflammable composition, b, which, being fired, shoots the whole of the arrangement through the air, by the principle that an unbalanced reaction from the heated gases which issme from openings in fireworks, gires them motion in the opposite direction. The principal parts of a signal-rocket are: the case, a; the composition, b; the head, c; the decorations, e; and the stick, f.
1520. Case.-The case is made by rolling stout paper covered on one side with paste around a former, and at the

Fig. 335.
same time applying a pressure until all the layers adhere to each other. The vent is formed by choking one end of the case while wet, and wrapping it with twine.

The paper case is covered outside with paste, and enclosed in a cylindrical case of tin, $1 \frac{3}{16}$ inches in diameter and 9 inches long. The lower edges of the tin case are turned under slightly, to keep the paper case from going through.
1521. Composition.-A variety of compositions are employed for signal-rockets; the best can only be determined by trial, as it varies with the condition of the ingredients.

The following proportions are used in the Naval Laboratory :

Nitre.	4 lbs .8 oz.
Sulphur.	1.2 oz
Charcoal	2 lbs.
Mealed-p	4 oz.

To increase the length and brilliancy of the trail, add steel or cast-iron filings.
1522. Driving.-The case is placed in a steel mold, which has a conical spindle attached to the centre of its base to form the bore, g. This spindle is made of composition, $6 \frac{1}{2}$ inches long, and goes up through the vent into the centre of the case, having a hemispherical bottom to fit the choke, h.

The composition is driven with a screw-press regulated to a pressure of about 5 tons. The first and second drifts are made hollow to fit over the spindle, and the third is solid. A small ladleful of pulverized clay is first put in and pressed down around the spindle, forming a bottom $\frac{1}{4}$ inch thick. The composition is next put in, a ladleful at a time, each one pressed down separately.

The top of the case is closed with clay, which is one diameter thick, and perforated with a small hole for the passage of the flame from the burning-composition to the head; through this hole a strand of quick-match is placed.

The rocket is primed by inserting one end of a strand of quick-match, eight or ten inches long, through the vent into the
bore, and coiling the remainder in the recess formed by the choke. A piece of paper is pasted over the end to protect it.
1523. Head.-The head is formed by a tin cylinder $1 \frac{3}{16}$ inches diameter and $2 \frac{1}{2}$ inches long, joined to a hollow tin cone $2 \frac{1}{2}$ inches high, making the length of head 5 inches. (Fig. 336.)

The long tin case goes about $\frac{1}{2}$ inch into the cylindrical part of the head, and a piece of paper is pasted over the joint. The object of the head is to contain the decorations, which are scattered through the air by the explosion which takes place when the rocket reaches the summit of its trajectory. The explosion is produced by a small charge of rocket-composition, which is put into the head with the decorations. When the composition is consmed, the bursting-charge explodes the head and ignites the decorations, which, falling, produce a brilliant light that can be seen at a great distance.
1524. Decorations.-The decorations of rockets are of various kinds; those used in the navy are white stars.

Stars.-Stars are formed by driving the composition moistened with alcohol and grum-arabic in solution in port-fire molds, or molding it in brass cylinders of the desired diameter. It is then cut into short lengths and dredged (sprinkled) with mealed-powder. The gum-arabic is intended to give such consistency to the stars that the explo-

Fig. 336. sion of the head of the rocket may not break them in pieces, and thereby destroy the effect.

> White Star Composition.

1525. Sticks.-The stick is a tapering piece of pine, about nine times the length of the case, and the large end is tied to the side of the case, to guide the rocket in its flight, as it has no rotary motion.

The common centre of gravity of the rocket and stick is a little below the former. The stick counteracts by the resist
ance of the air upon it and tendency to turn over, and maintains the rocket, daring its flight, as nearly as possible in the direction in which it is tired.
1526. Motive-power.--The object of having the cavity or bore in the interior of the rocket is, that a large surface of composition may be at once ignited when the rocket is fired, and so great a quantity of gas generated in the case that it cannot escape from the rent as quickly as formed, and therefore exerts a pressure in every direction on the interior surface of the rocket. The pressures on the sides of the rocket mutually balance each other, but the pressure on the head is greater than that on the base, in consequence of the escape of gas from the vent; it is this excess of pressure on the head over that on the base which causes the rocket to move forward, this being merely a similar action to the recoil of a gun.

The force which produces motion in a rocket is therefore different from that which acts upon a projectile fired from a piece of ordnance; the former is a constant force producing accelerated motion in the rocket until the resistance of the air is equal to the force or the composition is consumed; while the latter may be considered merely as an impulsive force, which ceases to act upon the projectile when it has left the bore of the piece.
1527. Packing Rockets-The cases are painted red and packed in laboratory-boxes, 30 to 50 in a box. The sticks are tied up in bundles and packed separately.
1523. Firing Rockets.-A few rockets are always kept mounted and ready for use. To fire a rocket, the stick is placed in a trough or tube, as a guide; a musket-barrel will answer the purpose. The paper covering the bottom is torn off, exposing the priming. Holding the guide rertical or nearly so, a slowmatch is applied to the priming, which ignites the composition. The inflamed gas issmes violently from the bottom of the case as the rocket ascends.

The time of ascent is from 7 to 10 seconds, and they will attain a height of about 500 yards.

Under farorable circumstances, a signal-rocket may be seen within a circuit of from 30 to 40 miles. In mounting rockets the stick is attached so that it will hang end down, when supported, close up along side the bottom of the rocket.
1520. Coston Signal-inghts. - These are the usual nightsignals of the Nary. They consist of red, green, and white lights, and their various combinations, representing the different numbers and pendants. The colors assimilate as far as possible with those of the day-flags.
1530. The case is made of fuze-paper three inches long and $1 \frac{1}{4}$ inches in diameter. A cylindrical block of soft wood $\frac{1}{2}$ inch long forms the bottom, A, with a wooden nipple attached, to fit into the signal-holder, or firing-pistol. (Fig. 337.) Through

Fig. 337.
the centre of the bottom is a small lole, with a thin copper tube $\frac{3}{10}$ inch in diameter, B , extending through the middle of the case to within $\frac{1}{4}$ inch of the top. Hollow drifts are used in filling, which are struck 15 moderate blows with a half-pound mallet for each charge. The case is filled to the top of the copper tube; the last charge being $\frac{3}{4}$ ounce of mealed-powder. A small strand of quick-match is put through the copper tube and wooden bottom, the upper end stitched to the side of the paper case above the mealed-powder, and the lower end split to

Fig. 338.
make sure of its ignition by the cap from the pistol. (Fig. 338.) 1531. The top of the case is covered with a thin wafer of
brown paper, immediately over the quick-match and mealedpowder; then over all is a pasteboard top, with a rim secured to the body of the case by a strip of paper pasted on both, C . The wooden bottom is corered with shellaced paper. The signal is finally covered with white, red, or green paper, according to the color of the composition, and packed in labor-atory-boxes for issue.

The several colors in the Coston signals are intended to burn from 8 to 10 seconds.
1532. In a signal composed of three colors, $1 \frac{1}{2}$ charges of the composition of the last color to be burned are put in first and driven ; a thin circular disk of paper is put in the case on top of this composition, then $1 \frac{1}{2}$ charges of the second color are put in and driven, a piece of paper put on, and then $1 \frac{1}{2}$ charges of the first color to be burned are driveu.

When a signal is composed of but two colors, the lower third of the paper case is filled with powdered clay, and driven the same as the composition, then on top of this clay the second colored composition is driven, and on that the first. When bat one color forms a signal, two-thirds of the case is first filled with clay, and the composition driven in the upper third.
1533. Composition of White Signals:
${ }^{5}$ parts of Sublimate of Sulphur,
5 " "Sulphuret of Autimony,
2 " " Red Oxide of Lead,
3 " " Sulphuret of Arsenic,
$\frac{1}{2}$ " " Bleached Shellac,
$2 \pm$ " " Nitrate of Potash.

For the Red Light.

16 parts
6
6
2 " Chlorate of Potash,

> For the Green Light.

4 parts of Chlorate of Mercury,
1_{12}^{2} "" "Bleached Shellac,

Red, White, and Blue Lights are made in the same man-
ner as the Coston signals, and are of the same size. They only differ in the burning composition, which is, for the

Navy White Light.

Composed of 68 parts of Nitre, 18 " " Sulphur, 13 " " Mealed-powder, $4 \frac{1}{2}$ " " Orpiment, $3 \frac{1}{2}$ " " Antimony.
Navy Red Light.
Composed of $6 t$ parts of Strontium,

20	"	"
37	Shellac,	
3	"	" Chlorate Potash,
7	"	"
Sulphateal, Antimony.		

Navy Blue Light.
Composed of $2 t$ parts of Ammoniated Copper,
18 " " Oxide of Copper,
12 " "Shellac,
6 " " Orpiment,
68 " " Chlorate of Potash.
1534. Stowage of Fireworis.-The fireworks, after carefully remoring all fulminating matter, such as caps or primers, if any such be used to ignite them, are stowed in their proper packing-boxes, or other light boxes of suitable length, made water-tight and secured with lock and key.

These boxes are made to fit between the beams and carlines of the gun-decks of frigates and berth-decks of single-decked ressels.

Those for instant use are placed near the after-hatch, and the remainder abaft that position, if possible, so as to be constantly under the care of the sentinel at the cabin-door. In no case, however, are they to be placed orer any standing light or lantern on any deck.

Section T.-Preparing Ammunition.

1535. Composrrion.-Ammunition is composed of projectiles, cartridges, etc.

The cartridges and projectiles used with heary ordnance are fitted and stored separately.
1536. Making Cartridge-bags.-Cartridge-bags are made of two shapes: conical, for gomer chambers, and cylindrical for other ordnance. The cartridge-cloth from which the bags are made is woven expressly for the purpose, being entirely of wool, and of close and uniform texture. It is manufactured in pieces varying in width from sixteen to thirty-six inches; the different widths being adapted for the several lengths of cylinders to save waste in cutting.

Cartridge-bags for cylindrical chambers are made of a rectangle to form the cylinder, and a circular piece to form the bottom. The flat patterns, by which the cartridge-bags for the 8 -inch and 32 -pounder guns are cut, are consequently to be made rectangnlar for the cylindrical part of the bag, and circular for the bottom. The length of the rectangle is equal to the development of the cylinder, together with the allowance for seam; and its width, to the whole length of the bag before sewing, including the allowance for seam and tie. Special patterns are furnished for those of XV-in., XI-in., X in., IX-in., S-inch of $6,500 \mathrm{lbs}$., and 32 -pounder of 4,500 lbs., shell-guns, all of which have gomer chambers.

Cartridges for goner-chambered ordnance are made conical in shape, and out of two pieces. In cutting, the length of the rectangle should be taken in the direction of the length of the stuff, as it does not stretch in that direction, and the material should be chosen, as nearly as possible, of the width required for the length of the bags, to sare waste in cutting.

The bags are to be sewn with worsted yarn, with not less than eight stitches to the inch; they must be stitched within four-tenths of an inch of each edge, and the two edges of the seam felled down upon the same side, to prevent the powder from sifting through. The edges of the bottom are felled down upon the sides.

The bags when filled must be tied with woollen thrums.
1537. Cartridge-bags for Saluting-charges.-Old cartridgebags. which have been condemned for service-charges are to be repaired and used for saluting-charges; and whenever it is necessary to make bags expressly for the purpose, or for inmediate use, they may be formed by sewing together two rectangular pieces with semi-circular ends.
1538. Inspection.-The material especially procured for car-tridge-bags is to be carefully inspected, to detect any mixture of cotton wich the wool, by burning a few bits taken at hazard from each piece, or by dissolving it in a solution of half an
ounce of caustic potassa in a pint of water-the cloth to be put in when the water is boiling, which is to continue until dissolution takes place. The texture of the stuff is also to be examined and its strength tried, such standard for the latter being established as may be found sufficient to ensure perfect efficiency.
1539. Preservation.-Cartridge-bags, as well as the material for making them, must be frequently examined, to prevent their being damaged by moisture, as well as to guard against moths. And they are never to be exposed on the shelves in store, but must be carefully packed by hydraulic press in linen cloth, or by enveloping them in water-proof paper hermetically sealed.
1540. Filling Cartridge-bags.-Standard powder-ineasures for filling cartridges for great guns are distributed as they may be required for the use of vessels and shore-magazines. As the gravimetric density of powder varies from 860 to 940 , the weight of the contents of ten measures should be ascertained for each lot, and allowance made accordingly before filling the cartridges. In taking the weights, the powder is to be scooped up from the filling-chest with the measure until it is heaped, tapped twice moderately on the sides with the palms of the hands, and then struck with a mooden straight-edge. If the weight differs matcrially from that marked on the measure, a small compensating-measure should be used to supply the deficiency or remove the excess.

When cartridges are filled for issue, the powder should be selected, as far as practicable, from deliveries made by the same person, and at the same time or date.
1541. Marking Cartridge bags.-The color of the cloth is white, and when made up each bag is stencilled in black with the calibre of gun and weight of charge in figures two and a half inches long, for all service-charges.

The cylinders, or cartridge-bags, in which the powder is put, up for "saluting," "torpedo," "howitzer," "shell-powder," or ${ }^{6}$ shell-charges ${ }^{*}$ are also to be distinctly stencilled as such, in the same namner.
1542. Service-charges.-There are certain fixed charges termed service charges for all guns.

The amount of powder in the service charge of a gun should be such that it will give the greatest initial velocity to the projectile without too great strain on the metal of the piece, or a too violent recoil of the gun.

The service-charges for the different calibres and classes of Naval smooth-bore guns now used in the Nary are as follows, and the cartridges are to be filled accordingly, viz. :

Service Charges for Naval Guns.

Charges for Naval Rifle Guns.

Gun.	Cailibre.	Weight.	Diameter of bare.	Cirimge of Powder.		
				Weight.	Kind.	Diameter of guage.
		Pounds.	Inches.	Pounds.		Inches.
Parrott.	$100-\mathrm{pdr}$.	9,700	6.40	8	Rifle	5.50
"	60 "	5,460	5.39	6	"	4.60
'6	30 "	3,550	4.20	3.25	Cannon	3.70
"	29 "	1,750	3.67	2	4	3.25
Dahlgren	20 "	1,340	4.00	2	"	
	12 "	880	3.40	1	،	

With the XV-inch guns at close quarters against iron-clads, 100 pounds of hexagonal or mammoth powder and a solid shot
may be used for twenty rounds; so also with the XI-inch, 30 pounds of rifle and a solid shot.

With all other guns, under like circumstances, and where penetration is desired, the distant firing-charges should be sulbstituted for the ordinary firing.

Saluting charges are to be of under-proof powder.
Experiments have established the ability of our XV-inch guns to endure charges of one hundred pounds of powder and a solid shot, and it is believed that they will stand even hearier charges.

The service demanded of them requiring a wide range of charge, the service-charge will vary with the object to be attained.
1543. For Mortars.-The bag is only used to carry the powder, and when the piece is loaded the portder is poured into the chamber; bags of any suitable size will answer for this service.
1544. For Нот-shot.-Cartridge-bags should be made double by putting one bag within another. The charge ought not to exceed three-fourths the service-charge, for in consequence of the expansion of the shot the windage is rednced and a greater strain will be exerted on the metal of the gun. The expansion of the gas will also be increased br the heat generated within the bore ; and, moreover, very great penetration is not required, the object to be attained being that the shot shall merely lodge in the timber.
1545. Strapping Shell.-All spherical shell and shrapuel are fitted with sabots.

The sabôt is a thick circular disk of wood, cut with the grain running plank-ways, about the diameter of the low gauge of the projectile, and with a carity or saucer on one end to receive it. The projectile is secured to it with four straps of tin. The straps are fastened to a ring of tin encircling the fuze-hole by cutting four slits in the ring, into which the upper ends of the straps are hooked, turned down on the inside of the ring, and soldered. The lower ends of the straps are tacked to the side and under the bottom of the sabôt, at equal distances from each other. A piece of twine is passed around between the sabot and projectile to frap the parts together.

The English attach the sabôt by a single expanding riret through its centre, the hole in the projectile into which the rivet fits being under-cut, so that, on a blow being given, the end bulges out and grips the edge of it. This method is preferable to the straps.
1546. Advantages.-The sabôt secures the position of the
fuze in loading，which should be in the axis of the piece and from the cartridge．It tends to prevent the formation of a lodgment in the bore．It moderates the action of the powder on the projectile and helps to keep the projectile in its place． The fragments of the sabôt are scattered as soon as the projec－ tile leaves the bore of the piece．

1547．Filling Sifells．－All shell are filled with shell－ powder of the highest initial velocity．The shell must be filled and the powder well shaken down，leaving room only for the insertion of the fuze．A wooden plug the size of the lower part of the fuze will always determine this．

For the purpose of increasing the effectiveness of hollow projectiles，a quick and strong bursting－charge is required to break the projectile into a large number of fraginents．

1514．Tife Charges of Powder for Sifell are as fol－ Lows：

Charges for Spherical Shell．

		号	皆	号	$\begin{aligned} & \stackrel{.}{0} \\ & \stackrel{\rightharpoonup}{4} \\ & \stackrel{3}{y} \\ & \hline \end{aligned}$	它	Boat and Field Howitzers．		13－in．Bomb．		
							24－pdr．	12 pdr.	Full Charge．		Blowing Charge
	lbs．	lbs．	lbs，	lbs．	lbs．	lbs．	lbs．	lbs．	lbs．oz．	lbs．oz．	1bs．oz．
Bursting or Service Charge．．．．．．．．．	13.	6.00	4.00	3.00	1.85	0.90	1.0	0.5	110	60	06
Blowing Charge．	1.0	0.25	0.25	0.25	0.25	0.25					

Charges for Parrott＇s Shell．

100－pdr．	60－pdr．	30－pdr．	20－pdr．
lbs，oz．	lbs．oz．	Tos，oz．	$l b s .0 z$ ．
311	22	18	10

Charges for Dahlgren Rifle－shell．

The weight of charges for shells varies slightly from those given in the tables, according to the size of the grain and density of the powder.
1549. The Bursting-charges for Shell are made up in cotton bags and packed in separate tanks. Shells are tilled by capacity, and not by weight. When it is not required to burst the shell, but merely to blow the fuze out at practice, small charges called " blowing-charges" are used. In uaval practice, however, it is seldom possible to recover the shells.
1550. Whenever it is necessary to load and fuze shell on board ship-a properly secured place being first prepared, not in the shell-room, and as far as convenient from the maga-zine-the shell, being strapped and sabôted, are to be examined to see that they are clean, both inside and out, and thoroughly dry. The greatest care is taken to remore every particle of sand or fragment of iron from the interior. The prescribed charge of powder is next poured into them through a proper funnel, care being taken that the end of the funnel passes below the screw-thread in the top, or bouching, to prevent any grains of powder from entering it. Any grains of it which may remain sticking to the thread of the bouching are brushed away carefully, and then, after putting a light coat of lacquer for small-arms, or sperm oil, on this thread and on that of the fuze, the latter is screwed in carefully with the fuzewrench. The fuze must be screwed in tight, care being taken to have the proper leather washer under the head. The laequer should be of the consistency of cream, and when, from eraporation, it becomes too stiff, should be thinned by adding more spirits of turpentine.
1551. The date when shell are fuzed or filled, as well as that on which any of these arrangements are changed, or the shell are examined before jssue, together with the initials of the officer superintending these operations, should be legibly written and pasted on the shell.

Projectilés are filled only as required for ships fitting for sea. No projectile should be fuzed until it has been filled, and they must be fuzed as soon as filled.
1552. Packing.-Loaded shell, as well as the sabôts attached, are to be painted red and placed in boxes or bags marked with a red cross on the sides, and with the length of fuze in black.

All spherical shell are packed singly. The smaller calibres of rifled shell are packed several in a box, and the larger calibres singly.
1553. WADS.-No wad is required over a shell, but a grommet-wad may be used in heavy rolling, or to prerent the
projectile moving forward shonld the bore be depressed; also if it is shaken by the running out of the gun.

When loading with shot, a grommet-wad is placed over it. No wad is placed between the charge and the projectile in ordinary service, and it is positively prohibited, to place a wad over an elongated projectile.
1554. Gronnet-wad.-This consists of a selvagee, or circle of rope equal in diameter to the bore of the gun. They are made by a wad-machine. This consists of pairs of disks adapted to each calibre of guns, which, being placed face to face on a spindle and keyed, present an anuular score grooved in such a way as to make, when fitted, a grommet of the required size. Transverse notches are cut in the circumference of the disks to the bottom of the score, for the convenience of marling the wad before taking it off the mold. In making the wad, the end of a rope-yard is left in the score, and the mold is turned by a crank until the score is filled.

The grommet thus formed is marled like a selvagee-strap, and a section of about an inch is taken out of it, in order to make the wad, when swelled by the dampness, enter the bore of the gun readily. Grommet-wads should be made neither too hard nor too soft; and to avoid either of these two extremes, a sufficient number of hitches only will be taken to give the wad the consistency required for service. Sections of one-third or one-fourth of these wads will answer as well in case of need.
1555. Jenk-wads.-They are now seldom used. They are made of oakum or cuttings of old "junk" compressed into a solid cylinder and bound around with spun yarn. They are of similar diameter to the bore of the gun, and somewhat less than one calibre in thickness.
1556. Воat Ammuntion.-When the cartridge is attached to the projectile, the two together are termed "fixed ammunition"; this is employed for service with boat-howitzers. It has the edvantage of great convenience in the huried preparation that frequently precedes boat operations, and the guns can be served more rapidly with fixed ammonition, simultaneous loading is more simple, and the cartridge is sure to be placed correctly in the bore, and not with the choked end first, as is sometimes the case when the projectile and cartridge are separate.

Fixed ammunition has, however, the disadvantage that in packing or stowing much greater space is required, and it is more difficult to arrange and to preserve.

The charges for " Boat and Field Howitzers" are :

$$
\begin{aligned}
& \text { For the } 24 \text {-pdr. of } 1300 \mathrm{lbs}2 .00 \mathrm{lbs} \text {. } \\
& \text { For the mediun 12-pdr. of } 760 \mathrm{lbs} \\
& \text { For the light 12-pdr. of } 430 \mathrm{lbs} \text {. } 0.625 \text { " }
\end{aligned}
$$

The strength of the pieces would justify greater charges than these; but the carriages, the fixtures, and the frame of the boat might be injured by the severe recoil of pieces so light, and even be disabled by the continued repetition of the firing with heavier charges.
1557. Stand of Ampenttion.-A stand of ammunition is composed of the projectile, the sabôt, the straps, and the cartridge-bag. (Fig. 339.)

The projectiles used in howitzers are shell, slrapnel, and canister.

For the two former the sabôt has a spherical cavity and a circular groove to which the cartridge-bag is tied; in the latter the spherical carity is omitted and a circular offset is added.

155s. Packivg.- $A \mathrm{~s}$ soon as the ammunition is finished it should be gauged to see that it is of the proper calibre ; it is afterwards packed in well-seasoned pine boxes, so disposed that the sabôt may rest on a ledge in the box, leaving the charge below free from any pressure.

Fig. 339.

The sliell, shrapnel, and canister for the 24 and 12 pdr. howitzers are packed in boxes containing nine each. A fuze-cutter (for the Bormann fuze) is placed in the rim of each box containing loaded projectiles. The boxes are painted black and marked with the contents. The lids are titted with hinges and secured with screws.

A key is becketed to each bor for unscrering the lid.
1559. In consequence of the objection to packing powder in wood on board ship, thereby rendering it more liable to deterioration, various plans have been suggested for fitting the cartridge to be attached to the sabot at will, and storing them separately; and it has been lately ordered that this be done.

The cartridge-bag has a brass wire ring sewed into the cloth outside of the tie, for the purpose of attaching it to the sabot of the projectile, the ring being made to open and fit into the fillet of the sabôt, being retained in place by the force of the spring.
1560. Metallic Cartridges.-The metallic cartridge furnished the navy is a central-primed metallic cartridge, and is manufactured by the United States Cartridge Company, Lowell, Mass.

It consists of a brass case or shell having a solid head, made from one continnous piece, and by a peculiar process the metal throughout is of the same condition, and therefore not liable to burst at the head or rim, nor stick in the barrel of the gun after tiring.

The method of priming is very simple and effective, being arranged so that the case or shell, which forms the greater part of the cost of the ammunition, can be reprimed and reloaded many times.

The primer consists of tro copper cups fitting inside of one another, fulminating compound being contained between them. The inside or smaller cup has two small perforations through the bottom to allow for the passage of the flame to the charge of porder, the bar formed between the perforations serving as an anvil against which the fulminate is exploded.

The head of the case is made with a small circular cavity for the reception of the primer, the latter being applied from the outside ; there is also a perforation in the centre of the cavity to allow the flame from the primer to communicate with the powder-charge in the case.

The charge of powder is 70 grains; the bullet is cylindroconical in shape, having three rings and a concare base, and is well lubricated; the catibre .50, weighing 450 grains.

They come in packages of 20 each, and weigh 2 lbs .2 oz .
The regular packing-box contains 50 packages, or 1,000 cartridges, and weighs 118 lbs .4 oz .

The empty shells or cases are to be carefully preserved, replaced in their boxes, and returned to the nary-yards for reloading.
1561. Dumay Cartridges, made of the same size and form as the service cartridge, are supplied to ships, and must always be used during the manual exercise with the Remington rifle, in order to prevent injury to the striker by snapping the piece at "Fire."
1562. Blank Cartridges are supplied for funeral firing ouly ; they are not to be used in drill.
1563. Incendiary Preparations are fire-stone, carcasses, incendiary-match, and hot-shot.

Fire-stone is a composition that burns slowly but intensely; it is placed in a shell along with the bursting-charge, for the purpose of setting fire to ships, buildings, etc.

Composition.-It is composed of :

> 10 parts of Nitres,
> 4 parts of Sulphur,
> 1 part of Antimony,
> 3 parts of Rosin.

Preparation.-In a kettle in the open air, melt together one part of mutton-tallow and one part of turpentine. The composition, having been pulserized and mixed, is added to the melted tallow and turpentine in small quantities. Each portion of the composition should be well stirred to prevent it from taking fire, and each portion should be melted before another is added.

How used. - When fire-stone is to be nsed in shell it is cast into cylindrical molds, made by rolling fuze-paper around a former and securing it with glue. A small hole is formed in the composition by placing a paper tube in the centre of each mold. When the melted composition has become hard this hole is filled with a priming of fuze-composition.

The object of this priming is to insure the ignition of the fire-stone by the flame of the bursting-charge.
1564. Carcass.-A carcass is a hollow cast-iron projectile filled with barning-composition, the flame of which issues throngh several fuze-holes, to set fire to combustible objects.

The fuze-holes are situated in the upper hemisphere, equidistant from each other.

Composition.--The composition is the sume as for port-fires, mixed with a small quantity of tinely chopped tow, and as much white turpentine and spirits of turpentine as will give it a compressible consistency.

Preparation.-The composition is compactly pressed into the carcas; with a drift, so as to fill it entirely. Sticks of wood one-half inch diameter are then inserted into each fuze-hole with the points touching at the centre, so that when withdrawn corresponding holes shall remain in the composition. In each hole thus formed three strands of quick-match are inserted and held in place by dry port-fire composition, which is pressed around them. About three inches of the quick-match hang out when the carcass is placed in the piece; previously to that it is coiled up in the fuze-hole and closed with a patch. The metal of a carcass is considerably thicker than that of a common shell, because, being much weakened by the rents, there mould be danger of the carcass breaking up under the shock of the discharge ; and besides, as the carcass is not required to burst,
it must have sufficient strength to withstand the pressure exerted upon it by the gas which is generated in the interior by the burning-composition.

A Common shcll may be loaded as a carcass by placing a bursting-charge in first, and covering it with carcass-compositiou driven in until the shell is nearly full, and then inserting strands of quick-matcll secured by driving more composition. This projectile, after burning as a carcass, explodes as a shell.
1565.-Incendlary-matcii is made by boiling slow-match in a saturated solution of nitre, drying it, cutting it into pieces, and plunging it into melted fire-stone. It is principally used in loaded shells.
1566. Hot-shot may be fired for the purpose of setting fire to vessels or buildings, though they are rarely used. Shot of low gange should be chosen for this purpose with reduced charges. They can be made red-hot in from 15 to 30 minutes, but care must be taken not to bring them beyond a bright red, as they are then liable to fuze and become misshapen. The part resting on the furnace-bars heats more quickly than the upper part, so they must frequently be turned. Shot expand $\frac{1}{65}$ of their diameter when bronght to a red-heat; therefore, to prevent accidents, each shot shonld be passed through a red-hot shot-gange before being taken from the fire-room. Should the shot jam in the bore it must be cooled by pouring water in at the muzzle; but if that fails, the charge must be drowned before attempting to blow ont the shot.

Precautions in Loading.-Junk and grommet wads which have been soaked in water for two or three hours, and the water pressed out of them, are to be used in loading. The junk-wads must be small enough to fit easily when swelled by being soaked. The cartridge must be perfectly tight, so that powder will not be seattered along the bore. Sufficient elevation having been given to enable the shot to roll home, first enter the cartridge, a dry junk-wad, and then a wet junk-wad, and ram them lome. Bring the shot in a bearer and eater it, with a wet grommet-wad on top; as it cools rapidly, no time should be lost. Quantities of smoke will come up through the vent, but a red-hot shot does not burn more than the outer yarns of a well-soaked junk-wad, even if left in the gun till it becomes cold.

CHAPTER X.

PRACTICE OF GUNNERY.

Section I.-Service of Ordnance.

1567. LOADING.-The charge is placed in the muzzle with seams from the rent, small end in and tie outrards. It is pushed steadily to the bottom of the bore and on no account to be struck. The space which the powder occupies effects the initial velocity.

Cartridges that have left the magazine are not to be retmrned until after the "Retreat" is beaten, in order to prerent confusion.

Powder-passers are to throw all cartridges that are injured in the slightest degree overboard, or in tubs of water prepared for that prerpose.

The shell is entered sabôt first and fuze ont. After remoring the fuze-cap it is pushed gently to its place and never struck.
1565. Marks on Ramner. - With the view of affording the Loader a certain and independent means of knowing when the load is really home, the handle of the rammer has a mark upon it, for the place of both charge and shell, exsily distinguishable either by night or day.

This mark is a narrow circular indentation, in a portion of which a strip of brass is secured, which is marked, for the outer one, with the charge in pounds, and for the inner one, with the projectile used.
1569. Removing Fuze-patch. - In loading with shell, the cap is never to be remored until the shell is entered in the gun. With high elerations, or when rolling, care should be taken that the shell does not slip down the bore before this is done.

The cap or patch is removed by taking hold of the lug with the forefinger and thumb, first raising it a little, and without twisting; a pull readily removes it.

The patch is passed to the Gun Captain, as an eridence that the priming has been exposed; the patches are to be preserved and accounted for at the end of the tiring.

The Loader must be careful not to touch the fuze-composition with his fingers, for fear of injuring it with moisture.

In loading with percussion-shell, the screw-head of the fuze must be reversed. (Art. 1497.)
1570. The XV-inch Shell, being very heavy, is apt to slip in the straps by which it is secured to the sabôt; therefore, in loading, care must be taken to examine the position of the fuze-hole.

When the distance is known to be less than the range of the shortest fuze, uncap all the fuzes. At other times uncap the fuze suited to the distance and the one of longest time of burning. (Art. 1477.)

15ヶ1. Withdrating Projectiles.-If, in loading, a projectile jams in the bore, no attempt should be made to force it down, but it should be withdrawn.

This may be done with the ladle, by depressing and striking the muzzle against the lower sill of the port, or by running the gun out hard against the side, at extreme depression. Should these means fail to start the projectile, it will be necessary to destroy the charge by pouring water down the vent and muzzle, and then introduce a small quantity of powder and blow it out.

Should a projectile jam in the bore in action, the Gun Captain will not attempt to withdraw it, but discharge the piece at once.

A gun is not to be loaded with more than a single projectile, and solid shot are not to be fired from shell-guns unless specially directed.
1572. Care iv tife Use of Shelf.-In action, shell should never be allowed to accumulate on deck. Experiments have proved that any loaded shell at rest, when struck by a solid shot, fired with even a moderate charge will be exploded, with force sufficient to scatter in every direction, and to considerable distances, any other shells that may be placed in near proximity.
1573. Keeping Guns Loaded.-Guns should never remain loaded longer than necessary, as the cartridge speedily deteriorates by the effects of moisture. If a shell has been loaded twenty-four hours, it should be drawn and refnzed.
1574. Renmisg Out.-As the projectile slides in the gun with very little friction, particular care should be taken not to let the carriage strike with too great a shock in running out, as it vill surely start the projectile from its seat.
1575. Closing the Vent.-After a piece has been discharged, the vent should be cleared with the priming-wire and the bore well sponged to extinguish any burning fragments of the cartridge that may remain.

To prevent the current of air from fanning any burning
fragments that may collest in the vent, it should be kept firmly closed with a thumb-stall in the operation of sponging. Λ moist sponge is always to be used.

After sponging, the vent must again be cleared with the priming-wire and closed with the thumb-stall. These precautions are taken to prevent the possibility of the vent becoming obstructed.
1570. Clearing the Vent.-If at any time the Gun Captain should find the vent obstructed, and be unable to clear it with the priming-wire or boring-lit, he will at once report to the ofincer of the division, who will order the vent-punch used; or. if this should fail, have recourse to the vent-drill and brace int charge of the Quarter Gunne:. The boring-bit, vent-punch, and drills should be used with cantion, as, being of steel, they are liable to be broken off in the vent and thus effectually spike the gun.

After clearing the vent, the bore should be sponged.
1577. Spongers and Loaders should keep their bodiez clear of the muzzle, and as much within the port as practicable for their own protection.
1573. Rapidity of Loading.-Loading can not be executed with too much rapidity, provided neither the safety of the gun nor of its crew be compromised.
1579. Use of Projectiles not adapted to the Pifce.-If it should be:ome necessary to use a projestile much smaller than the bore, it is strapped to a stout sabôt which fits the bore; if a mortar-shell, it is placed in the centre of the bore with wedges and the surrounding space is filled 1 p with earth or old jank.

We may also fire from a gun, shot of a greater calibre placed upon the muzzle; this species of fire is generally at an angle of 45°; the bomb placed mpon the muzzle is secured by a cord which is broken by the first impulse; the aceuracy is nearly equal to that of shells from a mortar, and the range of an S-inch shell fired from a 24 -pdr. cannon, with 8 lbs . charge of powder. is about 600 yards: the shorter the gum, the greater the range.
1550. Loading Mortars. - The powder is to be emptied into the mortar from the cartridge-bag, which must be well shaken to remove dust and fine grains of powder. The bag is retained in the hands of the Loader to be used in wiping the shell before it is lowered into the bore. The powder is levelled off with a spatula, when the bomb, loaded and fuzed, is carefully lowered into the bore by the hooks, and allowed to rest upon the charge, keeping the fuze exactly in the axis of the bore. In mortars, where a sponge is seldom used, the stopping of the vent is not necessary ; but it should always be cleared out with
the priming-wire before the powder is placed in. The bore is cleared with a scraper, and wiped out with an empty cartridgebag or swab. If a sponge is used, it is much smaller than the bore.
1581. Loading Syall-arms.-Bring the piece to full-cock and open the breech-block; if there be an empty shell in the chamber, it will be removed by the extractor. The firing-pin may be mada to protrude by being choked with rust, or by wedging of the firing-pin spring, and in this position lead to a premature explosion in closing the breech-block. Pass the finger over the face of the breech-block, to ascertain that the firingpin does not protrude.

Place the cartridge in the chamber and close the breechblock. Should there be any difficulty in closing the breechblock, it is probable that the rim of the cartridge is too thick; it should be withdrarn and another tried.

The chamber should be kept clean, and great care observed to prevent cartridges fouled with dirt, and particularly sand, from being inserted or discharged in the piece, as the expansion of the shiell presses the sand into the metal and mars the surface of the chamber, and thus causes the shells to stick. Care should also be taken in cleaning the chamber for the same reason. The shell of an exploded cartridge should not be allowed to remain in the chamber any length of time, for fear it may adhere by corrosion.

To prevent premature discharges, and to relieve the firingpin spring, the piece should be always kept at half-eock.

In coming to "order arms," the butt should be brought to the deck without shock, as a jar may injure the piece.
1582. POINTING.-To point or aim a fire-arm is to give it such direction and elevation that the projectile shall strike the object. To do this properly, it is neeessary to understand the relations which exist between the line of sight, line of fire, trajectory, etc.
1583. Definttions.-The line of sight is the right line containing the guiding points of the sights. The sights are two pieces on the upper surface of the gun, the situation of which with regard to the axis of the bore is known.

The front sight is usually situated between the trunnions or on the rim base, and is generally fixed; the rear sight is placed on the breech, and is movable in a vertical plane.

The natural line of sight is the line of sight nearest the axis of the piece; the others are called artificial lines of sight.

The line of fire is the axis of the bore prolonged in the direction of the muzzle.

The angle of fire is the angle included between the lins of fire and horizon ; on account of the balloting of the projectile. the angle of the fire is not always equal to the angle of departure or projection.

The angle of sight, or angle of elevation, is the angle included between the line of sight and line of fire; angle; of sight are divided into natural and artificial angles of sight, corresponding to the natural and artificial lines of sight which enclose them.

The plane of fire is the vertical plane containing the line of fire.

The plane of sight is the vertical plane containing the line of sight.
1584. Point-blank.-The term point-blank oripinated when it was imagined that a shot travelled for some distance in a straight line, or direct ; it is of no practical use, and is differently defined in different countrics.

The French definitions of point-blank and point-llank range are as follows:

The point-blant is the second point at which the line of sight intersects the trajectory: and the distance from the face of the muzzle to this point is the point-blank range.

The natural point-blank corresponds to the natural line of sight ; all other points-blank are called artificial points-blank.

In the British service, as well as in our own, the point-blank distance is the distance at which the projectile strikes the horizontal plane on which the trucks of the carriage rest, the axis of the piece being horizontal.
158. Range is the distance from the muzzle of the gin to the second intersection of the trajectory with the line of sight.

In practice the range is usually measured from the muzzle to the point of impact on the object, or to the first graze of the projectile.

The range depends upon the initial relocity, the form. and density of the projectile, the angle of eleration of the gun. and the difference of level between the planes upon which the gun and object respectively stand.

Extreme range is the distance to the point at which the projectile is brought to a state of rest.
1586. Ravge at Level.-The gun being placed a certain height above the water, depending on the class of ressel and the deck on which it is mounted, it is erident that, when the axis of the bore is horizontal, the projectile will have a range proportionate to this height.

The distance to which the projectile will range in this case,
before it grazes the water, is called the range-at-level, and depends upon the class of gun, the charge, and the lieight above the water.
1587. SIGHTING CANNON.-In order that a projectile fired from a gun may strike a required object, it is necessary to adjust the line-of-fire with reference to the horizon and the vertical plane passing through the object in such a manner that the trajectory will reach it.

The axis of the gun is not visible, and it is necessary to resort to notches or sights on the exterior surface to determine practically the position of the axis.

The line of metal is a visual line, joining the notches cut on the highest points of the basering and swell of the muzzle.

The inclination of the line of metal to the axis of the bore varies in guns of the same class as well as in those of different classes. Aiming, therefore, by the line of metal cannot be relied on for definite ranges ; besides that, within those ranges it is apt to mislead by giving too much elevation to the piece. If a gun be pointed at an object by means of a line of metal, it will be seen, by prolonging that line and the axis of the bore, that the latter will pass over the object.
1588. Dispart-sigit.-A dispart is a piece of metal placed on the top of the gun to give a line-of-sight parallel to the axis of the bore.

The dispart is generally defined as half the difference between the diameters of those parts of the gun upon which the sights are placed.

Half the difference between the diameters of the gun at the base-ring and swell of the muzzle, or at any intermediate point on the line of metal, will give the proper height of the dispart-sight at the point where the least diameter was taken.

In the absence of other means of sighting, wooden dispartsights lashed on the reënforce can be nsed. A narrow groove in the upper surface of the wooden sight, made to coincide with the plane of the line-of-sight marked on the gim, will assist in getting the true direction.

The guns of the Dahlgren pattern are cylindrical for a certain distance forward of the base-line, always giving a line-ofsight parallel to the axis of the bore.

Guns are marked on the top of the base-ring, the sightmasses, and swell of the muzzle, by notches, which indicate a vertical plane passing through the axis of the bore at rightangles to the axis of the trumnion.

In range-at-level, the bore being horizontal, the dispart-
sight is directed at a point above the water-line or point struck equal to its own distance above that line.

If the gun is pointed by dispart directly at an object, the projectile will fall short, more or less, depending upon the distance.

In pointing by dispart, therefore, it is necessary to direct the sight a certain height above the object, to allow for the fall of the projectile during flight; the height to be pointed above must depend upon the distance of the object.
1589. Tangent Firing.-Before the introduction of the tangent scale or breech-sight, all pointing at sea was done with the dispart-sight. When desiring to strike an object beyond the range-at-level of the piece, it was necessary to direct the lineof sight, which was parallel to the axis of the piece, at a point a certain distance above the object; this elevation being intended to allow for the space through which the projectile falls by the action of gravity in the time of flight.

The vertical space through which the projected body in its flight descends below the line of fire is equal to the tangent of

the angle of elevation multiplied by the range or horizontal distance of the object from the gun.

In the figure (3t0), $\tan \mathrm{A}=\frac{\mathrm{BD}}{\mathrm{AB}}$

$$
\mathrm{BD}=\mathrm{AB} \tan \mathrm{~A}
$$

Thus, suppose a gun to be, at A, at a known height, AA^{\prime}, above the level of the water and at a known distance, AB , from a vertical object, $\mathrm{B}^{\prime} \mathrm{D}$, as a ship's mast. For any particular nature of ordnance we know the eleration necessary to project the projectile a certain distance.

$$
\begin{aligned}
& \text { Now in the equation } \\
& \mathrm{BD}=\mathrm{AB} \tan A,
\end{aligned}
$$

AB , equal to the distance, is known, as is also the angle A , which is the angle of elevation necessary to give the gun in
order to project the ball the distance, AB . But we have no means of pointing the gun at this angle, except by finding the length of the vertical, which will subtend this vertical angle at the distance of the object. The required length of the vertical, BD , is found by the equation,

$$
B D=A B \tan A
$$

If, then, the line of sight parallel to the axis, be directed at the point D , we know that the gun has the elevation that is required in order to make the ball reach to the distance, AB . Adding to both sides, BB^{\prime}, we have

$$
\mathrm{B}^{\prime} \mathrm{D}=\Lambda \mathrm{B} \tan \mathrm{~A}+\mathrm{BB}^{\prime}
$$

To strike an object, then, at the water-lins, at the distance $A B$, greater than the range at level, the aim being taken with the dispart-sight, it is necessary to direct the line of sight at a point situated at the distance, $B^{\prime} D$, above the water-line.

The heights of certain points on the masts of foreign men-of-war being known, tables have been constructel, in the coltumns of which are designated the points at which the line of sight must be directed, corresponding to certain distances of the object which it is desired to hit. Such tables are to be found in the old editions of the Ordnance Instructions.

This mode of firing presents serious disadwantages. The points arrived at have often to be estimated, as well as the distance of the enemy's ressel : the class of which can seldom be accurately determined. The men are taught to aim where they are not expected to hit, and the chances of the ricochet are lost; lience, tangent firing should only be resorted to when there are no other means of regulating the elevation of the guns.
1590. Tangent Sights.-To facilitate the operation of pointing guns according to the distance of the object aimed at, sights are prepared and fitted to each gun.

The ordinary sights consist of two pieces of bronze gunmetal, one of which, called the reënforce or dispart-sight, is a fixed point, firmly secured to the sight-mass, upon the upper surface of the gun between the trunnions.

The other, or breech-sight, is a square bar or stem with a head, in the top of which is a sight-notch. It is set diagonally so as to expose two faces to the rear'; the rear angle chamferred, to afford a bearing for the clamp-screw. This bar or stem is made to slide in a rertical plane, in the sight-box fixed to the breech-sight mass, and is leld at the various elevations for which it is graduated by means of a thumb-screw. Its length is sufficient for all the elevation which can be given-about 5° -before the inuzzle appears above the front sight, after which
a long woodeu sight must be used, graduated for the whole length of the gun, using the notch in the mnzzle.
1591. The brass tangent-scale or breech-sight may be said to be a tangent to an are the radius of which is the distance from the outer point of the fore-sight to the fore part of the hind-sight, and the dirisions are calculated accordingly ; this distance is called the short radins.

The wooden tangent-scale may be said to be a tangent to an arc of which the radius is the distance from the notch on the swell of the muzzle to the front of the hind-sight ; this distance is called the long radius.

The tangent-scale is set at an angle of 60°, so that it may slide up and down withont tonching the breech of the piece.

Every gun is furnished with two sight-bars, a long mooden and a short brass one ; the longer is nsed for ranges arer 1,700 yaids; for all ranges less than this, which is the extreme distance at which accmate practice may be expected at sea, the short bar is used.
1592. Pirot Guns have their tangent-scales fitted to be placed on the side of the breech, and the forward-sight is placed on the trumion or rim-base.

The advantage of this arrangement is that the tangent and trumnion sights can be used at any eleration; for, being placed at the side of the gun, the muzzle of the piece does not interfere with the line of sight when pointing.

The sights of all howitzers are fitted in this way :
1593. Sights for Rifled Guns.-These consist of a fixed sight upon the right rim-base, and a brass morable sight in a socket which is screwed into the rear of the reënforce at the breech of the gun. The movable sight is furnished with a sliding eye-piece, and is gradnated up to 10°. The eje-piece is also capable of lateral adjnstment to allow for the drift as far as 10°, and for the effect of the wind. It is desirable that the sights should be placed on both sides of the breech ; otherwise, in firing from a port at extreme train, there may be considerable loss of lateral aim.
1594. The radins between the sights should be as long as possible for sea-practice, with an mnsteady platform, and where the eye is far remored from the rear-sight.

In order to see the object in line with the onter sight, the eye must pass a certain rertical distance above the rear-sight. The amount of rertical height between the rear-sight and the line of rision depends upon the state of the weather, and upon the motion of the ship. When the ship is steady it will prob-
ably be 0.1 or 0.2 of an inch. When the ship is very lively it may be half an inch.

At all known distances, all considerable errors in firing at sea are dependent upon the height that the line of vision passes above the rear-sight. Take a given vertical height of risual error, say half an inch : the effect it will have upon the range depends upon the distance between the sights; if they are but a ferw inches apart, the error will canse some thousands of yards increase of range.

If they are as far apart as they can be placed, the same visual error will probably cause an error in range of less than a 100 yards with a IX-inch gun.
1595. Adjustwent of the Sigits.*-Roll the gin in the direction of its trumions until the line of sight is uppermost. The cylindrical portion of gun forward of base-ring is supposed to be turned at the foundry parallel to axis of bore, so the next wbject is to trim down the reënforce and breech sight-masses until they are level with the cylindrical portion of gun. To do this, scrape off all the paint which may be on the gun in line of sight. Place a straight-edge on the portion, its two ends resting respectively on the reenforce and breech sight-masses. Trim down both masses until daylight cannot be seen between the straight-edge and the gun along its whole length where the straight-edge takes.
1596. If possible, all sighting of guns should be done under cover, as the wind outside deflects the thread of the tompion-arm when fixing the point of the reënforce-sight. If the gun, however, is out of doors and difticult to move, build a screen, fore and aft, the length of the gun to windward. The gun being in Gun Park, lying on wooden skids taking at chase and breech, build up with blocks under muzzle and at trumnions, using these in connection with chocks to bring the gun to an exact level both as to axis of bore of gun and axis of trunnions.
1597. The bore having been thoroughly cleansed, its axis is levelled by inserting a small steel T-square in bottom of bore at the muzzle. The square itself is tirst levelled by placing an ordinary level on the transverse brancl. When the T-square is levelled, the level is then placed on the longitudinal brauch of the T-square lengthwise with the bore of gun, and the axis of gun is then levelled by striking the chocks previously placed on each side under chase of gun, which of course either raise or lower the muzzle. When the gun has been levelled as to axis of bore, it is to be levelled as to axis of trunnions.

[^40]1598. To level as to axis of trumnions: First, scrape off the paint on top of each trunnion, then place the trunnion-square as seen in Fig. 341, and put the spirit-level on it as at s. Ad-

just the piece by means of the chocks under the trunnions until they are horizontal. This levelling the gru by axis of trunnions may throw out the axis of gun-level, in which case return to that, and then to the other, approximating closer aud closer each time until the gun is levelled.

If the gun be lying on wooden skids, the levelling must be verified from time to time, as the great weight will cause it to sink trifie by trifle, thus throwing the level ont.
1599. Firtivg Ceatre-sigits.--The gun being levelled, nest proceed to tind initial point on base-ring. Eucircle the breech of the gun at the base-ring with the trumion-square, first scraping off the paint on gun where the lers of square take on either side, and level the square by a spirit-level. Then take the sliding pointer on transverse branch of square, and set it at a point exactly half way on the branch, by means of the graduated seale. Hit the gun on the base-ring a slight tap with the pointer. Take the square off and turn the legs end for end, again embracing the gun, and again level square with spirit-lerel. Again hit the gun on the base-ring a slight tap with the pointer. Should the pointer not strike in the same point as it did in the first instance, choose a point half way between the tro for the initial point.
1600. The initial point on base-ring being determined, place

Fig. 342.
the sighting-tompion (Fig. 312) in bore of gun. When the tompion is being placed ia, be gaided by the rings on the side to
insert it cuenly, so as to prevent jamming. In large calibres it is also better to close the rent before inserting the tompion, as thus, with the compressed air, it can be taken out more easily. Adjust the vertical arm of tompion by the spirit-level and tan-gent-screw. Extend the thread from vertical arm to the rear, resting for a second point on the initial point established by trunnion-square on base-ring.
1601. Now with a slight dent of the centre-punch, mark the point where the thread crosses the reënforce sight-mass. Take a straight-edge and lay it in the straight line determined by the two points, namely, the initial point on base-ring and the point determined on the reënforce sight-mass by thread of tompionarm. Take a scriber and, with the straight-edge lying on these two points, scribe out a centre-line on the cylindrical portion of breech, also extending the line to the rear sight-mass.
1602. Proceed to cut out the breech sight-mass to its proper size (using as an initial line the line just described by means of straight-edge). For proper width, length, and bevels of breech sight-mass use templets and gauges. There is a standard distance given for distance of front part of rear sight-mass from base-ring.
1603. As soon as the rear sight-mass is marked out by the templets, proceed to cut down the mass and fit rear sight-box. To fit the rear sight-box so as to bring the rear sight-box to proper angle, and also to a true plane perpendicular to axis of trunnions, nse the levelling-bar. (Fig. 343.) Lay the reënforcesight on the reënforce sight-mass. Then lay the levelling-bar with one end on the reëenforce sight, the sight taking in the line scribed on bottom of levelling-bar.
1604. The Levelling-bar, B (Fig. 343), is a square steel bar with parallel faces, somewhat longer than the distance between the sights on the largest gun. The rear end is bevelled at an angle of 60°, the angle at which the sight is placed. It has a

Fig. 343.
central line marked on it throughout its length, on the under side, and along the bevelled end. It has also marked on its sides, near the forward end, the distance at which the sights should be placed for each class of gun. It is also fitted with screws for bringing it to a level.
1605. The levelling-bar being laid on the reënforce-sight, and its bevelled end taking against the rear-sight-bar, bring it to a level with the spirit-level and screws. This will give the true guide for angle of rear-sight-bar, and the latterss proper plane. As soon as rear-sight-box is fitted, bore hole for same through rear-sight-mass. This hole is bored with the rear-sighthox on, and the latter is kept down in its place by a sling around cascabel set up by a landspike.
1606. The rear-sight being fitted true as to the levelling-bar, again level the arm of sighting-tompion, and stretch the thread back over gun, this time bringing the thread to the exact middle of the rear-sight-bar notch. Now in theory, the thread ought to come directly over the initial point of base-ring, and over the mark already laid off on reënforce-sight-mass; but practically this is never the case, as it is almost impossible to fit a rear-sight box so true as to bring the middle of the sightnotch in the exact line of sight already laid off. It will be found, upon stretching the thread the second time, that it will fall a trifle one side or other of the initial point on base-ring. So, virtnally, it is necessary again to lay off a line of sight.
1607. With a measure take the distance that the thread falls to one side of the initial point on base-ring. Take this same distance that the thread is out, and lay it off horizontally on the cross-bar of the vertical sighting-arm. Of course when the thread is also moved this distance on the sighting-arm, the thread will fall the same distance to one side on the reënforce-sight-mass; therefore mark this last point where the thread falls over the reënforce-sight-mass, and thus is established the second and final line of sight. Also mark the point where the thread now crosses the base-ring, and this is the final initial point to be marked for a fall due on the base-ring. Where the thread crosses the reënforce-sight-mass, hold the reënforcesight itself directly under the thread. When the reënforce-sight-mass was lined out, at the same time with the breech-sight-mass, a regulation distance was given from base-ring to centre of reënforce-sight-mass, and from this central point the mass was marked out and cut.
1608. To Fit Sight on Reënforce-Sight Mass.-Holding the sight directly under the thread, mark out the places of the scrersholes on mass. These screw-holes are then drilled and tapped. The reënforce-sight being screrred on to the mass, cut off a certain portion of the steel bar in the sight, determined as follows: Let the rear-sight bar drop to a level. Then lay the lerellingbar on gum as in determining the angle of rear-sight bar. A distance is given on the levelling-bar from rear-sight bar to for-
ward part of the steel-bar of the reënforce-sight, and this distance being measured, cut off all the steel bar of reënforcesight which is over.
1609. After the reënforce-sight is finally fitted as above described, again stretch the sighting-tompion-thread over all parts, and the thread must coincide as follows: it must pars directly over the steel bar of the reënforce-sight; then directly over the initial point on base-ring, and then directly through the exact middle of the notch of the rear-sight-bar. This must be particularly observed when inspecting the gun for final stanıping of Inspector's initials.
1610. Next to determine the amonnt of shoulder that the rear-sight-bar is to have. The projection on head of sight-bar that takes on rear-sight-box is called the shoulder of sight-bar. This is done by again putting the levelling-bar on reënforcesight, and bringing it to a level by the spirit-level. The shoulder is then trimmed down until daylight can be just seen through the notch when the rear-sight-bar rests on sight-box. Do not cut the shoulde: down so low that the extreme tip of the reënforce-sight can be seen, as that will bring the rear-sight-bar too low. The bar is then graduated by the seale furnished. On no account must the bar be cut as to the shoulder, after being stamped.
1611. To marls the line of sight on swell of muzale.Again stretch the thread from arm of sighting-tonpion to middle of notch of rear-sight, at the same time raising the rearsight to its greatest elevation, and lowering the thread on vertical arm of tompion. This of course brings the thread down to touch the swell of the muzzle, and it is there marked with a long cut of a cold-chisel. This line-of-sight mark on muzzle is to determine the position of the reënforce-sight in case the latter should be knocked away. With the initial point on base-ring and mark on swell of muzzle, there are two points available for determining the straight line.
1612. In case a gun should be received rough-turned at its cylindrical part from foundry, and it should become necessary to sight the gun, the breech and reënforce sight-masses will be brought down to a horizontal plane parallel to the axis of the bore as follows: the straight-edge will be laid on the upper side of cylindrical portion of breech, and brought to a level with the spirit-level. The mass can then be trimined down to this plane.
1613. Instruments used in sigleting a gun:

Trunnion-square. Lerelling-bar.
Sighting-tompion with arm. Steel T-square for levelling at Common spirit-level. muzzle.

Steel straight-edge. Scribers.
Drills.
Steel wedges for slot of lock-

mass.

1614. Firtivg Side-sights.-This is considered the most difficult kind of the ordinary sighting of guns, and requires an experienced mechanic. First level the gun as to axis of bore and trunnions in the same way as already described. Then determine the initial point on base-ring in the same manner as above. This point was probably determined when the gun was central-sighted, but it is always preferable to commence anew. especially when the central-sighting was done by some other mechanic. To fix the position of the rear-sight-bos on the side of the gun, proceed as follows:
1615. First to determine the distance that the sight, EG (Fig. 344), ought to be in rear of base-ring, BR: A standard

B R.-Base-ring. A.-Sight on Rim-base. E G.-Breech-sight and Box.
Fig. 344.
distance is given for this, measuring from base-ring. Now to determine the distance below BH that the rear sight onght to be. Take a small, hard piece of wood of a thickness equal to the rim-base-sight when the latter is finally sciewed into rimbase. Lay this piece of wood on rim-base. Next take a steel straight-edge and lay it with its edge one end on the block of wood and the other end on the sight fitted to the box, with the shonlder of sight resting on top of box. The end of the straight-edge that rests on the notch of rear-sight is so cut awray that its edge fits in the notch neatly. The straight-edge is now levelled by moving the rear-sight-box up or down. When levelled take off straight-edge and hold rear-sight-box firmly in its place on side of gun. Take out the rear-sight from its box and place therein, in its stead, a steel T-square, the longitudinal branch of which is round.
1616. The T-square being in the rear-sight-box, place the
level on top of T-square, and bring the box itself to a level. This of course will require the slightest possible morement of the box, as when the straight-edge was on, the sight-box was approximately adjusted. The rear-sight-box being levelled, withdraw the T-square and hold the box firmly. Then mark out its place on the gun, and also the places of its holes for securing to gun. Bore out the screw-holes with drill and tap them. Fit box to side of gun with screws, remembering to place rubber washers on screws between the gun and rear-sight-box. As soon as the box is fitted to gun with screms, replace its sight-bar, and again go through the operation of testing the position of the box as to leight, by placing the straight-edge on block of rrood and notch of sight as before. Some of the screws may be set too tiglit, and others too slack, which can be remedied before proceeding.
1617. To find the distance of the rear-sight from the axis of the bore, place the steel T-square in the rear-sight-box as before, raising it until it tonches a straight-edge resting on top of rear-sight-mass, and crossing the gun. Now measure with accuracy on this straight-edge the distance from the initial point established on base-ring to a point on top of T-square at the exact intersection of its longitudinal and transverse branches, which will be the distance required.

161s. To fit the rim-base-sight: Having obtained this distance, lay it off on the horizontal arm of a sighting-tompion.

Fig. 345.

This tompion and arm are to be placed in the muzzle as represented in Fig. 345. At the point H have a centre-line marked on sighting-arm, and when the arm is levelled it will be in the same vertical plane as the initial point already established on base-ring. Now take the distance already fom from initial point on base-ring to point on T-square when in rear-sight-box, and lay it off on horizontal arm of tompion, thus establishing a plane parallel to axis of bore. Take the thread on the horizontal arm at this point, and stretch it so that it falls on the exact centre of the notch of rear sight-bar, and mark the point where it touches the rim-base.
1619. The distance that the sights should be apart is furnished by authority. With a straight-edge mark off this distance, and drill a hole for rim-base-sight. Then counter-bore rim-base-sight. As soon as it is screwed in, lay one end of the straight-edge on it, and its other end on notch of breech-sight. Place level on straight-edge. Now the lerel will generally be found to be slightly out, and it can be brought to a level by either screwing the rim-base-sight up or down as occasion requires, or by cutting dorn the notch-of-breech sight if it should want to be lowered at that end.
1620. For side-sights, the breech-sight-bar is generally supplied with the proper firing distances marked on it. Whenever a sight-bar is received already marked with ranges, the level should never be remedied by cutting away the shoulder of bar, as the edge of shoulder is the initial point from which the bar is marked. If, however, the sight-bar is marked after it is fitted to the gun, the shoulder can be thimned down. The levelling-bar is not rised in side-sighting a gun.

The straight-edge is now applied as before, resting on rim-base-sight and notch of rear-sight-bar, and rerified as to the 'level of that plane. If the spirit-lerel remains at lerel, the gun is properly sighted as to the level of sights.
1621. Fitting Thenniox-sights to Mortars, Glas, etc.The gun is first lerelled as to axis of bore and axis of trumnions. Get with dividers the exact centre of exterior side of trunnion that the sight is to be fitted to. Drill and tap hole in trunnion large enongh to receive the screw of "stud " which clamps the sight to trumion. As soon as this hole is drilled, screw the "trumnion-plate" to trumion. Where the trunnion is not of sufficient lengtl to admit of a trumnion-sight without extension of the trunnion, a "trunnion-box" is fitted, which prolongs the trumnion and admits of the sight being fitted to it. The "trum-nion-plate" being screwed on, screw in the "stud" with the "heaver." Fit the trumnion-sight on this stud by means of the
hole through sight at the centre., Place washer on stud and set up the whole with "wing-nut." Some of these trunnionsights are fitted with levels in them, and others have to be used

in connection with an outside level. In either case bring the trumnion-sight to a level, and then mark on the trunnion-plate where the point zero degrees of trumnion-sight comes. Hare this point for a permanent mark on trunnion. (Art. 1678.)
1622. Markivg Tangent-sights.--The uppermost line on the stem marked level is the zero of the other graduations; and when adjusted to the level of the top of the sight-box, the bottom of the notch in the head of the breech-sight and the apex of the reënforce-sight show the dispart of the gun. When the line of sight coincides with these points it is parallel to the bore; and whei continued to a distant horizon, the gun is laid level or horizontal.

Sights should in rariably be made so that the level line on the stem will correspond with the bottom of the head when it rests on the sight-box, and thus secure a dispart-sight in case of accident to the screw in sight-box.
1623. The ranges are marked in even hundreds of yards, beginning with 100 yards, and marking downwards to the greatest range. The longer lines, representing the odd hundreds, have the number marked upon them; the slorter lines not marked, the even hundreds. The proper time of fuze is also marked for the corresponding distance.

These sights being each adjusted to a particular gun, and marked with its class and number, do not, in strictness, admit of being transferred to other guns, eveu of the same class. The graduation differs for each class of guns and for the same guns for different charges.
1624. When used, the stem of the breech-sight must be raised or lowered, to correspond with the ascertained or estimated distance, in yards, of the objeet aimed at, and firmly secured there by the thumb-screw. Then, if the ship be steady, elevate or depress the gun until the line of sight from the bottom of the noteh of the breecl-sight, the top of the reënforcesight, and the point to be struck will coincide ; but if the ship have a rolling motion the gun must be so laid after the sight is set for the distance, that this coincidence may be obtained, if possible, at the most favorable part of every roll which the ship makes.
1625. Graduation for Degrees.-To determine the gradmation of the breech-sight for degrees involves the solution of a triangle of which one side and the three angles are kuown. Thus in the figure (347), A is the position of the front-sight, A

Fig. 347.
B is the distance from the front-sight to the rear face of the breech-sight-bar ; this line being parallel to the axis of the bore, the angle B is 60°; the problem is to determine the length of the side BC for all the values given to the angle A .

We have

$$
\begin{aligned}
& \sin C: \sin A:: A B: B C \\
& B C=\frac{A B \sin A}{\sin C}=A B \cdot \sin A \cos C
\end{aligned}
$$

It will be sufficiently accurate, after having determined the value of BC for one degree, to multiply it by two, three. four. etc., in order to determine BC for these different values of A .

It is evident that, for the same value of A, the length of the side BC will increase with the length of the side AB : hence, when it may be necessary to shift the front-sight from the reënforce to the muzzle, the breech-sight must be replaced by another graduated in proportion to the increased length of the side AB. (Art. 1592.)

All guns fitted with a dispart-sight on the top of the piece near the trunnions have what is called a clearance-angle.

This may be defined as the angle of eleration obtained when the top of the tangent-scale and dispart-sight and the notch on the muzzle are in line.

If the scale is raised above this angle, the dispart-sight falls below the line, joining the liead of the scale and the muzzle.

The muzzle-notch must then be taken as the second point of sight.
1626. Tables of Fire.-A properly constructed table of fire for a particular piece contains the range and time of flight for each elevation, charge of powder, and kind of projectile. Its object is to serve as a guide in pointing, without waste of time and ammunition, and also when the effect of the projectile cannst be seen. It aids in securing good practice.

The Ordnance Instructions contain approximate range tables for the service cannon.

It is with great difficulty that tables are constructed from the results of the most careful experiments, owing to the very different ranges and deflections obtained in firing projectiles even from the same gun with similar charges and elevations.

It must be remembered that any practice table will only serve as a general guide, and that small alterations in elevation or deflection are required according to the force and direction of the wind, the position of the piece with respect to the object, the quality of the powder, and several other circumstances.
1627. In the instruction of inen at gun practice, the inutility of constantly altering the eleration to correct small errors in range should be pointed out, and the necessity of observing the results of several rounds withont making any change, so as to allow for the necessary probable errors, should be strongly inculcated, as, under the most favorable circumstances, with smoothbore ordnance the variation of range is found to equal fifty yards more or less.

Errors can be diminished by allowing the Gun Captain to estimate the distance to windward or leeward, right or left, to be allowed for the deflection, by indicating the number of yards right or left of the object; which, after all, depends on lis estimation of distance, or, by furnishing a sight which in addition to the elevation allows for the deviation, and permits the Gun Captain in all cases to aim directly at the target.

Such a sight is furnished to the Parrott rifle, and is desirable for all guns. (Art. 1593.)
1623. DETERMINING DISTANCES.-In all circumstances where ordnance is employed, whether in the field or on the water, a knowledge of the distance is the essential element of correct practice.

When considerable, it is usually estimated very vaguely; but the necessity of knowing it as correctly as possible at long ranges is greater than when the trajectory is nearly flat, as in
short ranges; elevation being given according to the distance, and inaccuracy increasing with length of range.

At considerable distances, also, there is inore leisure and opportunity, as well as greater necessity for determining those distances with precision, while in closer action all that is required is to be certain that the enemy is within range at level.

Within that range, if the hull of an enemy's ship is obscured by smoke or darkness, the aim may be directed by the flash of his guns.
1629. Various modes have been practised to ascertain at sea the distance from the object aimed at, so as to regulate the elevation of guns, but none can be depended upon for giring it with minute accuracy, and even when obtained, it is continually varying ; therefore, when the projectile is seen to exceed or fall short of the object considerably, the sight-bar must be readjusted accordingly. It thus becomes, under ordinary circunstances, a good instrument for approximating distances.

The correction of the fire by previons rounds is a practical means which is much resorted to on all occasions, but it is hardly to be relied on when the observer is near the piece fired.

In departing from the line of fire, however, the means of noticing correctly the errors of range increase. Tessels in line, therefore, can easily amend their eleration of gun and time of fuze by the siguals of those most remote from them.

Officers of divisions and Gun Captains shonld be occasionally practised in measuring the distances of objects by the eye. at times when opportunities offer, of verifying the accurace of their estimates, by comparing it with the distance obtained by measurement, or by any other method which will aftord the best means of comparison.
1630. Angle subtended bi the Mast of the Enemi.Among other methods of estimating distances is that of making use of the different angles subtended at different distances by the heights, when known, of the masts of the ships whose distance is desired. The heights and distances being arranged in a table so that by simply measuring with a sextant the angular leight of the mast,-as is commonly done iu chasing, to ascertain whether the chase be gaining or losing distance-and entering the column of angles, the corresponding distance may be taken out. In the old editions of the Ordnance Instructions, tables were inserted in which the distances corresponding to different angles subtended by the masts of English and French vessels were given, and the sights might be regulated accordingly, if circumstances should require it.
1631. Horizontal Angles taken at Bow and Stern.-Another method which has been recommended consists in taking simultaneously at the bow and stern of the ship the horizontal angles between the lines joining the stations of the obsercers and lines drawn from those stations to the object. This method requires a farorable position of the object.
1632. Using Ship's owf Mast as tife Given Height.-The distance may be determined by making use of the ship's own mast as a given height, carsing an observer aloft to measure the angle formed by the mast when vertical and the line of sight from the observer to the object, and then computing the required horizontal distances.

Another application in an oblique plane of the horizontal method is to let two observers, each visible from the other, take their stations at the ends of a rope whose length is accurately measured, and simultaneously measure the angle between the other observer and the object; the three angles and one side of a triangle are thus obtained, and the side wanted can be readily calculated. Take, for instance, one observer at the main topmast cross-trees and the other in the main-chains, the main topmast back-stay will answer for a base.
1633. Buckner's Method.-To determine the distance of an object at sea by observing its augular distance from (within) the offing.

This is done as follors:
In the figure (348) let OB represent the sea-level ; A, the

Fig. 348.
position of the observer at the height, AB , above it ; AC , a horizontal line and parallel to it; O, the offing, or edge of the visible horizon; K , the object whose distance is required:

We have CAO $=$ dip. Bowditch Table XIII.
$\mathrm{OAK}=$ angular distance of K within the offing.
Hence we have
$\mathrm{KAB}=\mathrm{CAB}-(\mathrm{CAO}+\mathrm{OAK})$,
$\mathrm{KAB}=90^{\circ}-(\mathrm{CAO}+\mathrm{OAK})$,
$A B=$ height of observer.

Hence, in the right-triangle KAB , we know the angle A and the side ΛB.

We may find KB from the formula

$$
\begin{aligned}
\tan A & =\frac{\mathrm{KB}}{\mathrm{AB}}, \\
\mathrm{~KB} & =\mathrm{AB} \tan \Lambda .
\end{aligned}
$$

No correct use can be made of this method when the proximity of land interferes with the distance of the horizon.

The corrections for curvature of the earth and terrestrial refractions, being slight, are neglected.

In the Ordnance Instructions there is a table for finding the distance of an object at sea computed by this formula, KB being taken for every 100 yards and the angle A calculated for the height of $20,30,40$, etc., feet.

To use the table let an observer from the cross-trees or any other station measure the angle between the distant horizon and the object, and look into the table with that angle; opposite to it, in the column marked "Distances" will be found the distance of the object in yards.
1634. By tie Velocity of Sound.-To estimate the distance by the bursting of shell, when the flash can be seen, multiply the number of seconds which elapse between it and the sound of the report by 1100 , and the product will be nearly the distance in feet. (Art. 1696.)
1635. By the Three-polnt Problem.-It is sometimes convenient, when at anchor, and the object is fixed, to measure with a sextant the horizontal angles between any three points conveniently located, and whose positions are accurately laid down on the chart, then plotting the angles or working them out; or a base-line can be taken between the ressels at anchor, or measured on shore, then, by angling on the object to be aimed at, the distance can be calculated.
1636. Tife Military Telemeter, represented by Fig. $348 \frac{1}{2}$, is the inrention of Major P. Le Boulengé, of the Belgian Army. The want of some method of measuring the distance has not been satisfactorily supplied, for the reason that the telemeters litherto proposed all depend upon more or less simplified processes of triangulation ; and none of these instruments hare been generally adopted.

This instrument measures the distance by obserting the interral which elapses between the smoke or flash and the report of fire.

It is a glass tube graduated along its length into divisions which represent distances. This tube, closed at both ends, is
filled with liquid, through which moves a metal index formed of two disks united by a central stem. The diameter of these disks is somewhat smaller than that of the tube, so that, when the latter is vertical, the index slowly descends with a uniform movement. The glass is protected by a brass casing having an aperture which discloses the scale and index.

Fig. $348 \frac{1}{2}$.
To use the telemeter, hold it horizontally in the hand, the index at the origin of the scale, and attentively regard the enemy's position. At the instant the smoke or flash is perceived quickly turn the wrist so as to bring the instrument into the vertical, when the index descends; upon hearing the report return it to the horizontal by the inverse movement of the wrist, and the index stops. The number on the scale corresponding to the lower disk, which serves as marker, is the distance sought.

This very simple chronometric device is characterized by a uniform movement and works with extreme precision. Hence, knowing the velocity of sound and that of the inder, it is easy to graduate the scale into divisions which exactly represent distances.

An important attribute, which has been successfully given the instrument, is its power of self-adjustment for temperature. To effect this the volume and density of the index and the density and dilatability of the liquid are so combined that the velocity of the index is influenced by temperature in the same proportion as is the velocity of sound; consequently the readings arealways correct.

A velocity 1-25000 that of sound has been adopted for the index, so that a millimetre on the scale represents twenty-five metres of distance. Each degree of the scale represents twentytive metres, and with the eye the fifth of a division can be estimated.

When proved by vibrations of a pendulum or the beats of a watch, this telemeter is absolutely truc, while the exactness of
its indications in measuring distances depends upon the aptness of the observer.

From the results obtained, the following conclusions may be drawn: the accidental error committed by the ordinary observer does not generally exceed fifty metres; with practice this is diminished to twenty or twenty-five metres. Erery one has his own personal equation, and this should be known to derive all possible advantage from the instrument; though it varies little among observers, and on the average lessens the distance fifty metres, the report being noted more quickly than the flash or smoke. This mean equation is corrected on the instrument itself by making the origin of the scale correspond not to zero but to fifty metres. It is an advantage always to use the same telemeter in order to unite in the personal equation the slight error which may exist in the graduation. An observer is liable to commit very great errors in his first attempts, beaause, unaccustomed to the duty, he is surprised by the flash or smoke and does not promptly note it. The error is independent of the distance, hence the personal equation deareases slightly with the distance. The fire of small-arms may be observed as exactly as that of artillery up to two thous.nd metres in farorable weather. The wind appears to have very little influence upon the observation; this, however, has not yet been fully proved.
1637. Plane-tables may be used on shore to determine

distances and to note the fall of projectiles in target practice or firing for ranges. An ordinary plane-table (Fig. 3 ± 9) is a tripod
surmounted by a drawing-board covered with paper. To be used in connection with it is an alidade for observing and marking the ranges.

This is a flat metallic ruler, resting and moving on the surface of the paper and carrying upon it a light upright column, at the head of which is another ruler having a rertical movement only ; its extreme points are fitted with raised sights (a notch and a point) which collimate with the bevelled edge of the lower ruler. At one end of the lower ruler is an extension of the metal perforated to receive the head of a pin the centre of which is to concide with the bevelled edge of this horizontal ruler.

Near one of the corners of the plane-table, a small brass plate is counter-sunk in the wood and tapped, so as to receive a pin about half an inch long and screw-cut, having a milled-head above which is a continuation of the pin two-tenths of an inch in length, turned perfectly smooth so as to permit the rule to pirot about it as a centre.
1638. If the target is on the water, a point along the shore, the distance of which from the battery has been ascertained, is selected so that a line drawn from it towards the place where the first grazes are expected to occur will be at right angles to the line of fire, or nearly so: here, one of the plane-tables is placed. The other is situated as nearly in line with the target and battery as convenient; sufficiently removed, however, not to be inconvenienced by the smoke. The two stations should be so situated that lines drawn from them to the target will be nearly at right-angles to each other.

Their distances from each other and from the battery are known.

The table is adjusted with the small metal plate over the stake that marks the station, and levelled.

The observer places his alidade on the pivot-pin, sights carefully on a given point at the battery, and marks on the paper attixed to the table the direction assigned by the bevelled edge of the ruler. The direction of the other station is noted in the same way, as is also the target and any stakes which may be placed in the line or fire.

When the cannon is ready to fire, a preparatory signal is hoisted at the battery; seeing this, the observer points the alidade in the expected direction of the first graze.

The signal is lowered and the gun fired. The instant the jet takes place, the sights of the alidade are aligned npon it, and the direction indicated by the bevelled edge of the ruler marked upon the paper.

The line connecting the two stations is a base from which is determined the position of the point struck and of the battery. The projection of this base on any scale will enable one to ascertain in terms of that scale the distances desired.

After the firing, the tables are returned, the observations made on one table transferred to the other, and the intersections of the lines locate the positions of the points struck.
1639. Dangerous Space.-If the object tired at be wide but of small depth, the deflections, unless very great, will be of small importance so long as the ranges are regular: should the object be deep and only present a narrow front, uniformity in range will be of little importance when the deflections rary considerably.

The range varies with the angle of fire and the initial relocity, and depends at the same time upon the diameter and density of the projectile. The greater the relocity, the flatter the trajectory, and consequently the greater the chance of the object intercepting the projectile, and, also, the longer the extent of ground covered by the projectile, or the danjerous space, making the practice more accurate.
1640. ACCURACY OF FIRE.-Firing for accuracy, whether with artillery or small-arms, may inrolve two entirely separate and distinct things:

1st. The determination of the personal skill of the individual using the weapon.

2 d . The determination of the qualities as regards accuracy of the weapon itself.

The most common way of determining the relative accuracy of guns is to ascertain their mean differences of range and mean reduced deflection for a given mean range, and compare them-that gm being the most accurate for which these quantities are smallest.
1641. Hean Range.-The mean range is found by adding all the ranges together, and dividing the sum by the number of shots fired.

16 12 . Nean Difference of Range, or the mean error in range, may be found by taking the difference betreen each range and the mean range: add the differences together, divide by the number of shots fired, and the quotient will be the mean diff $\boldsymbol{o}^{2}-$ ence of range.
1643. Mean Deflection.-Add together separately all the right deflections and all the left deflections; subtract the smaller sum from the larger, and divide the difference by the number of shots fired; the result will be the mean deflection.
1644. Hean reduced Deflection, or the mean error in di-
rection, is found by taking the distance of each deflection from a line passing through the mean deflection; add these distances, termed reduced deflections, together, and divide by the number of slot fired, for the mean reduced deflection.
1645. Example.-Five shot fired under similar circumstances gire the following ranges and deflections:

ranges.	deplections.
Tards.	Yards.
1010.	4-Right.
1060	1-
1040	. 2-Left.
1020.	5- "
1030.	. 3-Right.

$\frac{\text { Sum of ranges }}{\text { Number of shot tired }}=\frac{5160}{5}=1032$ yards, mean-range.
The differences between each range and the mean range are $22,28,8,12$, and $2=72$ yards.
$\frac{72}{5}=14.4$ yds., mean difference of range. Sum of right deflections $=8$ yards.
Sum of left deflections $=7$ "
Difference $=1$ "
$\frac{1}{5}=0.2$ yards, right mean deflection.
Deflections from line through mean deflection: 3.8, 8, 2.2, 5.2 , and $2.8=14.8$.
$\frac{14.8}{5}=2.96 \mathrm{yds}$. , mean reduced deflection.
1646. An exact definition of the accuracy of a gun is a matter of no little difficulty. Of two guns fired from the same place, the same number of rounds, at the same target, with their axis in the same direction, that would evidently be the more accurate which planted its shot more nearly together. But it is not always possible to test the practice of guns under precisely similar circumstances; therefore we must seek a definition equally true, but admitting, in addition, more elasticity in its application.

Upon reflection, it becomes evident that an absolutely accurate gun is one with which, fired under identical circumstances, the chance or probability of striking the same spot twice amounts to certainty. Adopting the mathematical notion of probability, this will be represented by unity-guns less accurate having probabilities represented by fractions. Such a mode, thongh suggested, has not been accompanied by the requisite tables to render it of general use.
1647. It is easier to determine, from the practice of the gun itself a rectangle with which there would be an equal clance of any shot from the gun striking or not striking; or, if a given number of shots were fired, half the number might be expected to fall within the area.

The accuracies of two guns would be inversely as these rectangles for the same range. This method was proposed by Captain Noble, R. A., who furnished the following formula for application. If a be the length, and b the width of the area or rectangle required, then
$a=3.12 \times .8453, \frac{\text { sum of differences of ranges. }}{\text { one less than number of ranges }}$
$b=3.12 \times .8453, \frac{\text { sum of reduced deflections. }}{\text { one less than number of deflections }}$
1648. Accuracy of Small-arms.-The relative precision of small-arms is decided by varions methods.

Centre of Impact.- The point of impact of a ball is the point where it strikes the target, and the mean of all the hits is called the mean point of impact, or the centre of impact.

To determine this point, let the piece be pointed at the centre of a target stationed at the required distance, and fired a certain number of times, and let the positions of the shot-holes, measured in vertical and horizontal directions from the lower left-hand corwer of the target, be arranged as in the following table :

No. of shot.	Above.	Ristances from lower left-hand corner in feet.
$\mathbf{1}$	9	10
2	0	4
3	5	8
	$3) \frac{14}{4.67}$	$3) \frac{22}{7.33}$

The sum of all the rertical distances divided by the number of shots gives the height of the centre of impact above the origin.

Similarly the sum of all the horizontal distances divided by the number of shots gives the horizontal distance from the origin to the centre of impact.

Thus from the above table the co-ordinates of the centre of impact are 4.67 and 7.33. The co-ordinates of the centre of the target being 6 each, the centre of impact is 1.33 below and 1.33 to the right of the centre of the target.
1649. Absolute Mean Deviation.-The co-ordinates of the centre of impact being known, the point itself is known, and its distance from the centre of the target is called the absolute mean deviation. This is equal to the square-root of the sum of the squares of its vertical and horizontal distances from the centre of the target.
1650. Mean Deviation.-To obtain the mean deviation it is necessary to refer each shot-hole to the centre of impact as a new origin of co-ordinates, and this is done by taking the differences between each tabular distance and the distance of the centre of impact and adding them. The sum of all the distances thus obtained in one direction divided by the number of shots gives the mean deviation or figure of merit.

A shorter rule may be found: for if there are m distances greater, and n distances less than the distance from the origin to the centre of impact, \bar{x}, calling a the sum of the greater and b the sum of the less, we may write

$$
\frac{a-m \bar{x}+n \bar{x}-b}{m+n}=\frac{a-b+(n-m) \bar{x}}{m+n}=\text { figure of merit. }
$$

In using this formula, due care must be paid to the sign of $(n-m)$.

This method might be applied to the fire of cannon by reducing the grazes to an imaginary vertical target, the angles of descent being assumed equal for all shot fired at the same elevation.

Applying this formula to the table given above, we get 3.11 feet vertically, 2.22 feet horizontally for the mean deviation or figure of merit.
1651. Mean Horizontal and Mean Vertical Error.The meau horizontal error is found by adding the horizontal distances by which the balls have missed the centre of the target, and dividing this sum by the number of balls; this quotient indicates how much the average of the balls have missed horizontally the point aimed at.

It may be directly and readily found by using the formula of the preceding article, substituting for x the horizontal distance of the centre of the turget from the origin.

Similarly the mean vertical error may be found, by using the same formula, with the substitution for \bar{x} of the height of the centre of the target above the origin. The result shows evidently by how much the average of the shots have inissed vertically.
1652. The Absolute Mean Error.-To get this, there are two methods. The first is short and simple, and consists in calculating the hypothenuse of a right triangle, in which the other two sides are the mean horizontal and mean vertical errors.

The second, which should be called the calculation of the mean of the absolute errors, consists in measuring for each ball its absolute error, a distance from the point aimed at, and to take the mean of these absolute errors by dividing their sum by the number of balls fired.

This method is very long, since to have the absolute error of each ball it is necessary to square two numbers and then extract the square-root of these sums as the distance of the points struck have been measured upon the vertical and horizontal lines passing throngh the point aimed at.

The resnlts are not exactly the same : the mean of the absolute errors will be greater than the absolute mean error.
1653. Radius of a Circle Containing a Fraction of the Balls.-The radins of a circle containing a fraction of the balls, the third, half, or two-thirds is a common test of accuracy. Its centre is the point aimed at ; its radius is the absolute error of the third, half, or two-thirds of the other absolute errors arranged in order of size. Thus: $3,4,6,7,9,15,15,21,25$. being the order in size of the absolute errors of nine balls, 6 will then be the radius of the circle containing the third of the best shots, 9 that containing the best half, and 18 that containing the best two-thirds. If the number of balls fired be even, the circumference of the circle shonld pass equally distant from the two balls which limit it.

For example, if we have twelve balls, and wish the circle containing the best third, the circunference should pass between the fourth and frith balls at equal distances, the fourth within and the fifth without. If the number of balls be meren, 9 for example, and we want the circle containing the best half of them, we pass it throngh the centre of the fifth ball.
1654. The Per cent.-This test of accuracy indicates how many of one hundred balls tired have hit the target. To get the per cent., count the number of balls, A, that have liit the target, of the number, B, that have been fired, and from the proportion $\mathrm{B}: a:: 100: x$., we lave the per cent.,

$$
x=\frac{100 \times a}{B} .
$$

1655. Comparison of the Different Metiods.-The determination of the mean point of impact can only be used in comparing the accuracy of two pieces that are of the same model and fired moder precisely the same conditions; thus in gencral the mean point of impact gives only an inperfect idea of the accuracy of a piece. The mean horizontal error indicates only that the greatest number of balls have gone too far to the right or left. Moreover, it may occur that two pieces lave the same horizontal error, while the mean vertical error will be very different.

The radius of a circle containing a fraction of the balls cannot give a perfect iden of the accuracy of a piece unless the balls are placed progressively distant, which cannot reasonably be expected.

The Per Cent.--If a piece be fired that has many causes of error, and we wish to test the skill of the marksman or the accuracy of the arm, only to the extent of ascertaining how many balls can be placed in the target, this method is simple and sufficiently exact. The surface corered by the balls shonld, however, be taken into account, for it may occur that with one arm the balls are scattered over the entire target, while with the other they are grouped in a small space; this latter piece would be the more accurate.

It would appear, then, that the method of the absolute mean error should be preferred: for it represents a quantity the ratio of which to the accuracy of the piese the mind can readily perceive; and this quantity depending upon the position of each one of the balls varies when one of them varies, and thus gives a clear idea of the accuracy of the piece.
1653. The Inclination of the Target.-The most common modes of recording target-practice are: vertically, as for small-arms, and horizontally as for great guns.

Fia. 350.
Slight vertical errors on a vertical target are magnified into large errors in range, while the deviations are unchanged. Doubtless the fairest position of the target is that which would
receive the projectile at right angles to its own surface; for with this a normal target, there will be no distortion of errors either in favor of or against the gun.

There is no real objection to any of these positions of the target, as points on one can be transferred to each of the other two with facility, using the angles of fall from Buclener's Tables, and assuming that the path of the projectile from the vertical target to the ground is a straight line.

From an inspection of Fig. 354, it is seen that error on rertical target $(\mathrm{B} c)=$ error on horizontal target $(\mathrm{A} c) \times \tan \mathrm{A} \ldots$. (1)

Error on normal target $(c \mathrm{D})=$ error on horizontal target

If A, the angle of fall, be very small, there will be no appreciable difference between its sine and tangent, and the vertical and normal targets will virtually coincide. If A be large. however, all determinations of the accuracy of the guns should strictly be made upon the normal target.
1657. Record of Target-practice at Sea.-The record of a target-practice with great-guns should give for each shot the calibre and class of the gun, the weight of the charge, the nature of the projectile; if a shell, whether it burst before or after striking the water, or not at all, the obserred distance of the target, the observed error in range, observed or estimated deviation, and the distance for which the sight was set. In the record should also appear the character of the wind and the sea, the motion of the ship, and the circumstances, so far as can be ascertained, attending any special occurrence.
1658. The following method of keeping the record is based upon suggestions by Capt. Jeffers, U. S. N.:

An otticer and a recorder are stationed at the topmast crosstrees. The former takes frequently the angles between the sea horizon and the target, and gives them to the Narigator, who looks out the corresponding distances and reports them to the executive otficer. The officer aloft also takes the angles between the horizon and each point of impact.

The recorder enters on a ruled form all the angles in succession, denoting target angles by a check. He also has a paper divided into quarters by two lines at right angles to each other through the centre of the page. Whenerer a shot is fired, he notes in the appropriate quadrant the number of the shot; his own estimation of the distance short, orer, right, or left; and the bursting of the shell as either before or after impact.

Thus the diagram (Fig. 351) indicates that the fifth shell in the order of firing burst before impact, and the pieces struck
ten yards short and fifteen to the left; also that the seventh struck thirty yards over and five to the right, bursting after impact. Ricochet hits are marked by an R.

An observer furnished with a similarly ruled paper, and stationed forward or aft, depending upon the wind, keeps an independent record of his estimation of the fall of the projectile and the explosion of the shell as a check upon the first recorder.

A competent person on the gun-deck records the number of the guns in their order of firing, and the distances for which the sights

Fig. 351. were set.

The clerk noics the time when firing began, and the distance of the target, the time (by the order of firing) when changes of fuze or elevation are ordered and the observations of the Captain.
1659. From these data a plan on the scale of one inch to sixteen yards should be made giving the positions of the several shot on the plane of the horizon. All shot not falling within 100 yards of the target should be rejected and reported in the aggregate as " wild."

Accompanying this should be an elevation on the same scale, of the ship's side, transferred to which are all the shot which would have struck it. This is easily made by means of tabulated angles of fall and eq (1) of the preceding article. (Art. 1G506.)

In summing up, a proper proportional value should be allowed for any difference in distance. At 600 yds., the IX-in., XI-in., and 100 -pdr. are equal. At 1,300 fds., the proportion of hits for IX-in. should be 3, for 4 of XI-in. or $100-\mathrm{pdr}$. in the same number of rounds.

With the same guns, the hits at 600 yds . should be twice as many as those at 1200 yds ., to maintain equality of firing.

As the ordinary variation in range of a gun is about 50 yd ., the siglits should be altered only when the distance of the target changes by more than that amount.

It should be remembered that line shots over will appear to fall to the right or left of the target to observers on the right or left of the gun.
1660. QUOINS AND ELEVATING-SCREWS.-Most

Naval guns are now fitted with elerating-screws, passing through a hole in the cascabel or attached to the carriages; but the ordinary beds and quoins are also still in use; they are arranged to allow the extreme elevation and depression of the guns which the ports will admit with safety. When the inner or thick end of the quoin is fair with the end of the bed in place, the gun is level in the carriage, or horizontal, when the ship is upright.

The degrees of elevation above this level, which may be giveu to the gun by drawing out the quoin when laid on its base, are marked on the side or edge, and those of depression on the flat part of the quoin, so that when the quoin is turned on its side for depression the marks may be seen. The level mark on the quoin is to correspond with the end of the bed. When the quoin is entirely renoved, and the breech of the gun rests on the bed, the gun has its greatest safe eleration; and when the quoin is pushed home on its side, the gun has the greatest safe depression that the port will admit.

Care must be taken that the stop on the quoin is always properly lodged, to prevent the quoin from flying out or changing its position, and that the bed is secured to the bed-bolt.

Porter's bed and quoin (Fig. 352) has been adopted for all carriages requiring quoins. This quoin, being graduated to

Fig. 352.
whole degrees, requires a small additional quoin for slight difference of elevation in smooth water:
1661. When the elevating-screw is used, a quoin should be at hand to place under the breech of the gun, when at extreme elevation, to reliere the screw from the shock of the discharge, and prevent a change of the eleration, as well as to take the place of the screw if it should be disabled.
1662. When the fire is continuous at the same distance, the lever of the elerating-screw should be secured by a lanyard, to prevent the screw from turning and altering the eleration.
1663. To obtain readily the changes of eleration necessary in the use of ritle-guns, the heavier calibres are made with very
small preponderance, and are supplied with an elevating-screw which is attached to the carriage at the lower end, while the nut is connected with the cascabel of the gun.

Both screw and nut admit of movements by which the screw can take any position required in the various degrees of elevation. The parts should be allowed a certain amount of play.
1664. Dahlgren's screw is a single screw working through the cascabel and resting in a saucer in the carriage.
1665. Hart's screw consists of a male and female screw attached to the carriage.
1666. Pointivg Guns and Howitzers.-In ordinary firing it is not supposed that the trajectory changes its position with reference to the lines of sight and fire for angles of elevation and depression less than 15°. In aiming at any objest, therefore, the angle of elevation of which is less than 15°, aim as though it were in the same horizontal plane with the piece.
1667. In pointing guns and howitzers, under ordinary angles of eleration, the piece is first directed towards the object and then elevated to suit the distance. The accuracy of the aim depends, 1st: on the fact that the object is situated in the plane of sight. 2 d : that the projectile moves in the plane of fire, and that the planes of sight and fire coincide or are parallel and near to each other. 3d : on the accuracy of the elevation.

The first of these conditions depends on the eye of the gunner and the accuracy and delicacy of the sights; the errors under this head are of but little practical importance.
1668. When the trunnions of the piece are horizontal and the sights are properly placed on the surface of the piece, the planes of sight and fire will coincide; but when the axis of the trunnions is inclined and the line of sight is oblique to the axis of the bore, the planes are neither parallel nor coincident, and the aim will lee incorrect.
1669. When the line of sight is parallel to the line of fireas when the tangent-sight is at level-the planes of sight and fire will be parallel and at a distance from each other equal to the radius of the breech multiplied by the sine of the angle which the trunnions make with the horizon.

To show this, let the circle, A B C D (Fig. 353), represent the section of the breech of the piece taken at right angles to the axis, and C the projection of the natural line of sight ; upon this plane let $\Lambda^{\prime} B^{\prime}$ be the inclined position of the trumnions. C^{\prime} marks the revolved position of the line of sight, and $\mathrm{C}^{\prime} \mathrm{D}^{\prime}$, the trace of the plane of sight which is parallel to C D, the plane of tire. As the lines of sight and fire are parallel in thcir
revolved position, the planes of sight and fire must also be parallel.

Fig. 353.

The angle $\mathrm{C} O \mathrm{C}^{\prime}=\mathrm{B} \mathrm{OB}^{\prime}$, therefore $\mathrm{C}^{\circ} \mathrm{C}^{\prime}=\mathrm{OC}^{\prime} \sin \mathrm{BOB}{ }^{\prime}$.

It is easily seen that in this case the error of pointing can never exced the radius of the breech. By an inspection of the figure, it will also be seen that in the rerolved position of the line of sight, the elevation is diminished by a small quantity, thich is equal to the versed sine of the arc $\mathrm{C}^{\prime} \mathrm{C}^{\prime}$.
1670. When the tangent-scale is raised and the line of sight is no longer parallel to the line of fire, the planes of sight and fire intersect at a short distance from the muzzle; hence it follorss, that as the object is situated in the plane of sight, the projectile will deviate from the object to the side on which the lower trunnion is situated, and at a distance from it which is proportional to the distance of the object from the piece.

This is shown in Fig. 354, where the piece is directed by

Fig. 354.
the notches at A and C on the object, B. The shot will proceed in the line, D E, to the right of the object, B , and at long range this deflection, BE , would be considerable.
1671. This cause of deviation is very common on ship-board. for the motion of the ressel renders it very mencertain that the axis of the trumnions will be horizontal at the moment that the gun is fired. The guns forward and aft are particularly subjected to the disadrantage arising from this canse, on acconnt of the sherr of the ship, and the guns amidships are usuall more accurate in practice, because they rest on a more lerel platform.
1672. In chase-firing, this deviation must be taken into consideration. . The pursuing and pursued have generally a cousiderable heel or inclination to leeward; in consequence of this, the trumions of the guns in the bow and stern parts of each are inclined, and in pointing them it will be necessary to aim at the weathermost part of the hull in order to avoid the effect of this error. The proper elevation due to the distance must be given; as althongh the tangent-sight is slightly lowercd by the heel of the ship, yet it is of no practical importance.

These deviations will, of course, increase with the elevation of the gun and its distance from the target. To give an idea of their extent, suppose the plane to have an inclination of 10°; distance of target, 900 yards; elevation, 6° : the lateral deviation will be six yards, and the projectile will strike too low by about 20 inches; if the inclination is but $5{ }^{\circ}$, the lateral deviation is reduced to 3 yards, and the fall to five inches.

Then to correct for this source of error: point a little above the target and towards the side of the elevated trunnion, and make the corrections proportionally greater as the distance of the target and elevation of the gun are increasel.
1673. Pointing Small-arms and Mortars.-In pointing small-arms and mortars the piece is first given the elevation, and then the direction necessary to attain the object.
1674. Pointing Sarall-aris.-The rear-sights of small-arms are graduated with elevation-marks for certain distances, generally every hundred yards; in aiming with these, as with all other arms, it is first necessary to know the distance of the object. This being known, and the slider being placed opposite the mark corresponding to this distance, the bottom of the rear-sight-notch and the top of the front-sight are brought into a line joining the object and the eye of the marksman.

The term coarse-sight is used when a considerable portion of the front-sight is seen above the bottom of the rear-sightnotch; and the term fine-sight when but a small portion is seen.

The graduation marks being determined for a fine-sight, the effect of a coarsesight is to increase the true range of the projectile.
1675. Pointing Mortars.-First give the elevation by adjusting the quoin or ratchet until the requirel number of degrees is obtained ; then the direction is given. The cirele on which the mortar stands, being fitted with eccentrics is made to revolve so as to point the mortar at the object without the trouble of swinging the vessel or moving the mortar around with handspikes. The elevation is given with gunner's quadrant, the spirit-level-quadrant, or the trunnion-sight.
1676. Gunner's Quadrant.-This is made of erass and consists of a quarter of a circle fixed to a long arm. (Fig. 355.)

Fig. 355.
The edge of the circle is divided into degrees, and the inclination of the arm to the horizon is determined by a plummet which is fastened at the centre of the curve. This quadrant gives the elevation only to within a degree. To use it place the arm in the muzzle with the quadrant down; raise the muzzle until the plumb-line cuts the required angle on the graduated arc.
1677. Spirit-level Quadrant.-This is similar to the gunner's quadrant, having instead of the plumb-line a morable limb fastened at the centre of the are, and a spirit-lerel attached to it. The end of this limb mores along the graduated arc, and has on it a vernier, by means of which parts of a degree can be read off. (Fig. 356.)

Fia. 356.
This instrument is more especially intended for use with
long pieces of large calibre, when firing at great elevations. To use it, insert the long arm into the bore, with the quadrant up; there is a stop on the under side of the arm to prevent its slipping into the chamber; the spirit-level attached to the graduated arc being set to the required angle, and the piece elevated until the spirit-level becomes horizontal, which will appear by the bubble resting in the centre of the glass tube. (Ait. 964.)
1675. Trunnion-Sight.-This consists of a bar of mahogany or other hard wood not liable to warp (Fig. 346), of about forty inches in length, two inches wide, and one inch thick, with a brass notch at the rear end and a point at the other, so placed that an imaginary line froin the top of the point to the bottom of the notch is parallel to the upper edge. A semicircular plate, graduated to degrees, is attached to the middle of the bar, so that the bar's upper edge corresponds to the 0 of the graduation. A small spirit-level is let into the upper surface of the rear end of the bar, and a stout thumb-screw passes through the bar and the centre of the semi-circular plate.

To use this instrument a screw-hole is tapped in the axis of the left trunnion to receive the thumb-screw ; a line is marked on the trunnion perpendicular to the axis of the piece and passing through the axis of the trunnions. The sight is secured by the thumb-screw, with its rear end raised until the mark on the trumion coincides with the degree of elevation required. The piece is now elevated until the sight is level, which will be indicated by the spirit-level. This instrument is also designed to be used with pivot-guns when the required elevation passes the limits of the other sights.
1679. To give Lateral Train in mortar firing the trunnionsight may be used, or it can be done by a white line drawn on the exterior of the mortar, in the same vertical plane as the axis of the piece when the trunnions are horizontal. The line is sometines painted on the mortar-bed.

In pointing mortars on shore it is an easy matter to get the direction, because the mortar is stationary; but on ship-board, owing to the motion, it is attended with difficulty, especially when the ressel is rolling, and the line of fire can only be approximate.
1680. On shore, the plan of giving the direction is to determine practically, two fixed points, which shall be in a line -with the piece, and the object, and sufficiently near to be readily distingnished by the eje. A plummet is held in the hand immediately behind the mortar and the string made to coincide with these points. The mortar is then trained until the line of the plummet covers the central line on the mortar.
1681. In mortars, if the axis of the trumnions is not horizontal, the vertical plane passing through the line of sight will still be parallel to the vertical plane of fire, and may be taken for it, so that it is not necessary to have the platform of mortars horizontal.
1682. Bearing of the Enemy.-It frequeutly happens in action that ships become quickly enveloped in a clond of smoke so dense that when looking through the ports everything beyond the muzzles of the guns will be invisible. But, though objects are thus shut out from the view of the battery, a mast or a spar may generally be seen from the upper deck sufficiently defined to mark the position of a vessel, and enable her bearings to be accurately taken either by compass or by pointers.

The principal care of the Commander mnst be to keep his guns always bearing on the enemy, and never pass the limits of extreme train for all his guns, unless absolutely necessary in manœuvring.
1683. Director.-This may be regulated by the aid of a bearing-plate, or director, fitted in a convenient position on the npper deck. It is a species of alidade working on a graduated circle and giving the angular bearing of the object, The are is marked in degrees and points, and the several bearings of concentration are indicated as well as the limits of extreme train for all the gins.

The sights of the alidade are graduated so as to be set to any degree of elevation or depression, according to the heel of the ship.
1684. In Pointing, the amount of lateral train required is usually designated by points, and the elevation by the corresponding number of yards of range.

In the case of guns which work npon pirots or on centres, the motion of the rear of the gun-carriage being strictly confined to the arc of a circle, the position of the gun with reference to the vessel can always be exactly defined by an are divided into points, half-points, and quarter-points, being markedon the deck.

The ordinary broadside carriage, having no centres or pirots to work on, will rarely occupy the same place in the ports when the guns are run ont for firing, so that an are marked on the deck would not be strictly applicable.
1685. Concentrated Fire.-When all the guns of a battery are directed to the same point and are discharged simultaneously, it is called "concentrated firing." This kind of firing is used to the greatest adrantage at short distances. One of the guns of the battery is selected as the directing.gun.

To Concentrate a Ship's Broadside, the guns are trained in the direction of the object by means of The Directing-batten, or The Convergingline, and laid according to the heel of the ship and the distance of the object: the direction being given by the aid of the Director from the upper deck.
1686. The Directing-battens.-These consist of metal or wooden battens, a (Fig. 357), sliding in two beckets attached to

Fig. 35%.
ench of the brackets of the carriage, and retained in any position by a thumb-screw. They are arranged to slide out parallel to the deck, directly to the rear of the carriage.

The upper sides of the battens are marked for the convergence on the bow, beam or quarter, and the outer sides in degrees for parallel firing.

To give direction, one of the battens is clamped at zero, the zero mark coinciding with the rear face of the becket in which it slides; the other batten is drawn out to the mark designating the points of convergence ordered, and clamped. A cord or bar is now placed over the ends of the two battens and the gun
trained until this is parallel to a mark on the deck indicating the direction of the keel.
1687. The Converging-Line. - This is a line hooked to the centre and near the outside of the upper port-sill, and held immediately under marks made on the beams or deck orerhead, for the several bearings of a-beam, on the bow and quarter; when the gun is trained until the sights are parallel to it.

The midship gun is usually employed as the directing-gun, and the angles of training ascertained for the different bearings at a constant distance of say 500 yards. Though the calculations are made for this distance, yet this method of training will answer for all ranges within 1,000 yards.
1688. To Calculate the Aagles for Concentration.On the Beam.-Let A (Fig. 358) be the midship gun trained

Fig. 3 3is. right a-beam, B the foremost one, C the object at a constant distance of 500 yards. Let the distance from A to B, supposed known, equal 96 feet, and the distance from the centre of port in-board be taken as $1 \pm$ feet, being the same for all the guns. Then the angle C can be easily found for $\frac{A B}{A C}=$ Tan. C, the angle of training for the foremost gun.

Again, in triangle B D E, we have $D E=B D \cdot T a n . C$, the length of the tangent to be set off orerhead, from the point opposite the centre of the port. For the intermediate guns dixide the length D E by the number of gans bejore the midship one, which will give the length of the tangent before the gun next to the midship one; twice this will be the length for the next gun, and so on: Thus, if D E $=10.7$ inches, and the number of gums before A be 8 , we have $\frac{10.7}{8}=1.3$ inch, or the length

Fig. 359. for the grm next to $A: 2.6$ inches $=$ the length for the next grun, and so on. The same measurement answering for the guus abaft A.
1659. On the Bow or Quar-ter.--Let A (Fig. 359) be the midship gun trained 3 points abaft the beam, B the foremost one, C the object distant 500 yards. Let the distance from A
to B, supposed known, equal 96 feet, and the distance from the centre of the port in-board equal $1 t$ feet as before. Then from the expression,

$$
\frac{\mathrm{AC}+\mathrm{AB}}{\mathrm{AC}-\mathrm{AB}}=\frac{\operatorname{Tan} \cdot \frac{1}{2}(\mathrm{~B}+\mathrm{C})}{\operatorname{Tan} \cdot \frac{1}{2}(\mathrm{~B}-\mathrm{C})}
$$

the angle B can be easily found, which, taken from 90°, will gire the angle of training for the foremost gun. Again, in triangles A D E, B F G, we lave D E $=$ A D - Tan. A and $\mathrm{FG}=\mathrm{FB} \cdot \mathrm{Tan} . \mathrm{B}$, which are the required lengths of the tangents to be set off overhead from the points opposite the centres of these ports. For the intermediate guns, divide the difference between the two lengths D E and F G by the number of guns before the midship one, and add this common difference to the length D E for the gun next before the midship one, and so on to each gun in succession. Thus, let F G $=10 \mathrm{ft} .5$ in., and D E $=9 \mathrm{ft} .4$ in., the difference $=1 \mathrm{ft} .1 \mathrm{in}$.; let the number of ρ uns before A be 8 , then we hare $\frac{13}{8}=1.6$ in., the common difference for each gun; therefore 9 ft .5 .6 in . = the length for the gun before A; $9 \mathrm{ft} .7 .2 \mathrm{in} .=$ the length for the next gun, and so on.

The measurements for the corresponding guns abaft the midship one will be found by subtracting the common difference from D E, and so on, from each gun in succession.

The calculation of the angles for 3 points before the beam, or for $1 \frac{1}{2}$ points before and abaft the beam, is performed in the same manner.
1690. To Mark the Beams.-Having a line parallel to the keel, overhead, at any convenient distance in rear of the guns, measmre the assumed distance 14 ft . from the centre of port inboard, and place a perfectly straight-edged batten there, parallel to the keel line ; then transfer the centre of the port to the batten by stietching a line taut across from the centre of two opposite upper port-sills; or with any length of line as radius, from the centre of the port, describe an arc cutting the batten before and abaft the centre; half the distance between these marks will give the point corresponding to the centre of the port. From this centre, measure off on the batten, to the right and left, the lengths of the tangents for the different bearings, as calculated above; and then transfer these points to the beans or deck immediately orer the batten.
1691. The Elevatiox.-Each turn of the elevating-screv represents 1°; therefore, if the gun is once levelled, by stretching a line across from the reinforee sights of opposite guns, and raising the screws until this line just touches the bottom of the
sight-notch at level, and the number of threads above the cascabel noted, it is apparent that each turn raises or lowers the breech by 1°, and that the gun can be first made parallel with the deck and then laid level to compensate for the degree of heel given by the pendulum or director.
1692. P'endulums to Marls the Heel of the Ship.-The tangent sights give the elevation of the gun above the horizontal plane, and when the deck is steadily inclined from the horizontal line, by the pressure of the wind for instance, the tan-gent-scale will give the elevation of the gun abore the plane of the deck, and not above the plane of the sea.

Pendulums are fitted in convenient localities, working in a graduated are, to indicate the amount of heel or inclination at any time, and slow the number of degrees of eleration or depression required to bring a ship's guns to a horizontal position. In practice, however, very little reliance is placed upon these contrivances (Art. 1660).

Section II.-Different Kinds of Fire.

1693. Classification.-The different kinds of fires are distinguished, 1st. By the flight of the projectile, as direct, curved, ricochet, and plunging-fires ; 2d. By the nature of the projectile, as solid-shot, shell, shrapnel, grape, and canister fires; and 3d. By the angle of elevation, as horizontal fire, or the fire of guns and howitzers under low angles of eleration, and vertical fire, or the fire of mortars under high angles of eleration.
1694. Direct Fire.-A fire is said to be direct when the projectile hits its object before striking any intermediate object, as the surface of the ground or water.

This species of fire is employed where great penetration is required, as the force of the projectile is not diminished by previons impact; it is necessarily employed for shrapuel fire and for rifle-projectiles, which from their form are liable to be deflected by previously striking a resisting substance.

This lind of fire requires a good knowledge of distance, and precision both of eleration and lateral direction, in order to strike an object which is comparatively a point. It is always to be preferred when the distance is accurately known, or when the object is so near that the chances of hitting it are rers great; also when the intervening surface between the grun and object is so rough or irregular that a projectile striking it trould
have its relocity much diminished or destroyed, and its direction injuriously affected.
1695. Ricochet Fire.- When the angle of fall is small enough, the projectile rises and continues to more on, forming a series of bounds or ricochets. A ricocheting ball makes a furrow in the surface struck, and each time the angle under which it leaves that surface is greater than that under which it enters it; for, having lost a portion of its velocity in passing over the first part of the curve, it has no longer the same power to overcome resistance, and must pass out by a shorter path than the one it followed in entering, and consequently the angle is increased, which causes the more or less rapid extinction of the ricochet.

The number, shape, and extent of the ricochets depend on the nature of the surface struck, the initial velocity, shape, s:ze, and density of the projectile, and on the angle of fall.
1696. The most favorable circumstances under which this fire occurs are where the angle of fall is least, and the surface perfectly smooth. A $32-\mathrm{lb}$. spherical projectile will then roll 3000 to 3500 yards on water, rising but little above the surface -never as high as the hull of a frigate-while the greatest range obtained from an elevation of 5° with the same gun and charge is less than 1800 yards.

At first the bounds are of considerable extent, perhaps 350 to 400 yards betwreen the first and secend grazes; they diminish gradually, so as to leave intervals not exceeding fifty yards as they approach the end of the range, and finally roll along the top of the water as if ploughing it. Long before this, however, they are apt to curve ofl to the right or left from the true direction, so as to make an extreme deriation, often amounting to 100 or 200 yards.
1697. Ricochet firing, properly so called, is performed at level, or at most at three degrees of elevation ; sliot will often ricochet at much greater angles, but it is not what is meant by ricochet firing.

Upon smooth surfaces within certain distances this fire has some important advantages over direct firing. When the guns have very little or no elevation and are near the water, as they are in a ship's battery, the projectile strikes the water at a very sinall angle; its flight is not greatly retarded by the graze, and it rises but little above the surface in its course, but the penetration is not to be depended upon beyond 1500 yards against ships of war.
1698. Ricochet firing at low elevations requires only correct' lateral direction, since the projectile would rarely pass over, and
would probably strike a vessel, if within its effective rangr. whether the actual distance had been ascertained or not.

The deviation of projectiles is, howerer, gererally increassl by ricochet, and in proportion to the roughness of the surface of the water. Even a slight ripple will make a perceptible difference, not only in direction, but in range and penetration, and the height to which the projectile will rise in its bounds.
1699. Although these facts demand attention, yet when the estimated distance does not require an elevation of more than three degrees, projectiles from guns pointed rather too low for direct firing will probably ricochet and strike the object with effect, even when the water is considerably rough. This may be called " accidental ricochet."

When the water is not smooth, the most farorable circumstances for ricochet-firing are when the flight of the projectile is with the roll of the sea, and the roll is long and regular.
1700. Ricochet will be effective against small objects up to 2000 yards, but should not commence at less than 600 yards : at less distances it is preferable to fire direct.

Ricochet is of no ralue from rifled guns firing elongated projectiles, as they lose all certainty of direction on the rebound.

Projectiles rarely ricochet at all with elerations above 5°, and the bounds are always higher, with equal charges from the same gun, as the elevation of the gun is increased.
1701. Curved Fire.- When a projectile is fired so as just to clear an interposing cover and then descend upon the objest without ricochets or rebounds, such practice is termed curced fire.

Sinaller charges and higher angles are required than for ordinary direct fire. On shipboard it is more convenient to fire with service-charges from such distances as to obtain the proper angle of fall.
1702. Pldnging Fire.-A fire is said to be plunging when the olject is situated below the piece. This fire is particularly effective against the decks of vessels.
1703. Solid-Snot Firing.-Solid shot are generally used when great accuracy at very long range and penetration are required. From their great strength they can be fired with a large charge of powder, which gives them great initial velocity: and having great density, which diminishes the effect of the resistance of the air, they have great range and accuracr.

In riffe-guns of large calibre it is found that solid slot strain the guns from their weight, and shoot comparatively badly from their length, which is usually less than that of shell. It appears that the ininimum lengtli for good shooting is two calibres, and
that shell have an advantage from having the weight so dis. posed as to give a longer radius of gyration, and therefore a better spin.
1704. Shell-Firivg.-The diameter and velocity of two projectiles being the same, the retarding effect of the air is inversely proportioned to their weight; hence a shell has less accuracy and range than a solid shot of the same size. The shot has superior accuracy, but the shell superior power, as it acts both by impact and explosion.

If there be any difficulty in striking a given object, the shot will do so oftener than the shell ; or the shot will cluster more closcly about any desired spot. On the other hand, the power exerted by a single exploding shell is infinitely more destructive than that of many shot. The shot has greater penetration, but the shell does not require this property to the same extent, because the former must always perforate entirely to operate with effect, while the action of the lattcr will be materially lessened in its explosive power, if it does pass through instead of lodging. Hence, it may be assumed that the penetration of the shell is adequate to its special purpose at any distance where shot of like weight are cffective; that is, if the shot pass entirely through, the shell may do likewise and explode inboard; or it may lodge and work great destruction to the side.
1705. A shcil may be made to burst either while in motion or when at rest ; in the first case, each of the fragments will have a forward relocity proportioned to that of the shell at the moment of fracture, and spreading out will act in the same way as a charge of grape; while, if the shell is stationary when it bursts, its effect will mainly depend upon the size of the bursting charge and the consequent violence of explosion.

Shells may, therefore, be considered as haring two distinct applications; they may be used as missiles or as mines. As missiles they are most formidable, and most generally used against the personnel of an enemy; but as mines they are most destructive against his materiel.

The effects of shells depend in part upon the number of fragments produced by the explosion.

Shells should be used against ships at all distances where the penetration would be sufficient to lodge them. They are of no service in breaching solid stone walls, but are rery effective against earthworks, ordinary buildings, and for bombarding.
1706. In firing shells with time-fuzes it is neccsary to know the time of flight, in order to regulate the burning of the fure for the range required. The times of flight can be found with safficient accuracy for such purposes by observation; but they
may be roughly calculated for low angles of elevation by the formula-

$$
\begin{aligned}
& t=\frac{1}{4} \sqrt{\mathrm{R} \text { (in feet) } \tan a .} \\
& \text { Where } \mathrm{R}=\text { range, } \\
& a=\text { angle of elevation. }
\end{aligned}
$$

Example.-An 8-inch shell is fired at an object 1400 yards distant, and for this range four degrees of elevation is required; find the time of flight.

$$
t=\frac{1}{4} \sqrt{4200 \times .07}=4.3 \text { second. }
$$

The times of flight found by the above formula are, however, too short, the resistance of the air retarding the projectiles in their descent.
1707. At ranges from 1000 to 1100 yards, the $3 \frac{1}{2}$-second fuze is employed.
The 5 -second fuze is serviceable between. . 1200 and 1400 yards. The 7 -second fuze between 1500 and 1700 ".
The 10 -second fuze between
1800 and 2000 "
At ranges exceeding this, fuzes of longer time are employed.

It is best to employ the slortest time fuze that will reach the object, becanse its combnstion is more powerful, and therefore less liable to extinction than the fuze of greater duration.

The times of flight and length of fuze for all projectiles, so far as ascertained, are given in the Table of Ranges, Ordnance Instructions.

It is preferable, when circumstances will admit, to take up such distances as will correspond with the time of tlight of one of the regulation lengths. When firing against ships or earthworks, the fuze should be a little longer than necessary in order to reach the object before bursting: but a little shorter when firing against boats or masses of troops, in order to insure its bursting in front of them.
1708. Snrapnel. Firisg.- The slirapnel may be defined as a combination of the shell and the canister, by which the former is made to serve as a case or enrelope to the balls of the latter. carrying them to the desired point near the object, and then opening to permit their egress. Its sphere of operation can only begin where the dispersion of the common canister becomes too great, and its effect feeble.

With shrapnel the effect produced by the bullets will chieftr depend upon the bursting of the shell at exactly the required instant; no precise rule can be absolntely laid down as to the dis-
tance short of the object at which the shell onght to burst, as so much will depend mpon the relocity of the shell just before it opens, and other circumstances. They are fired with the heariest clarges allowed for the guns.

The bursting of a shrapnel at the proper distance is of the very greatest importance; if the shell bursts too soon, the whole or greater part of the balls will fall short, the velocity and penetrating power being greatly diminished in consequence; if the shell pass the object before exploding, its effect as a slirapnel will be entirely lost.
1709. The effect of shrapnel greatly depends on the correct cstimate of the results that are being produced, and in most cases on the judgment displayed in the constant efforts to improve on the shooting; when used intelligently the effect is most excellent. It is possible generally from the gun to estimate the line and the height of the burst of the shell, but not the distance at which it occurs, and bad practice commonly arises from a too sanguine estimate of effects, judging from the appearance of the smoke of the burst alone; particnlar attention should therefore be paid to any visible marks of the bullets grazing; on water, splashes will be seen; on dry ground, puffs of dust; and the greater their velocity at the moment of bursting, the greater will be the effect.

Shrapuel should be used from 300 to 900 yards with the 12 -pdre., and from 400 to 1500 yards with XI-inch,

A well-delivered shrapnel shell from a heary gun must sweep away the crew of a pivot or other gun, on a spar-deck not protected by bulwarks.
1710. Riffe-slirapnel.-The effect of the oblong slirapnel is said to be inferior to that of the spherical, but this has been disproved by practice. At all ranges the effects of the oblong slirapnel are found to be superior to those of the spherical.

Such a projectile fired from a rifled cannon, haring previous to breaking up a rotatory motion, considerable lateral spread is given to the bullets when released. The charge is usually placed in a chamber at the base, so that on explosion there is no tendency to increase the lateral spread of the bullets, but rather to increase their velocity and penetration.
1711. Grape and Canister Firing.--In grape and canister firing, the apex of the cone of dispersion is situated in the muzzle of the piece, and the destructive effect is confined to short distances. The shape of this cone is the same as in shrapnel; its intersection by a rertical plane is circular, thile that of a horizontal plane, as the ground, is oval, with its greatest diameter in the plane of fire.

The greatest number of projectiles are found around the axis of the cone, while the extreme deviations amount to nearly onetenth of the range.

Grape and canister are effective at short distances against boats, exposed bodies of men, and the rigging of vessels. Grape being larger than canister, are effective at greater distances. Canister can only be used with effect at short ranges, o:1 account of the rapid dispersion of the balls, and from the fact that their velocity is soon lost in consequence of their comparative lightness.
1712. The fire of canister does not always produce the effect anticipated for it, because the object is often thought to be nearer than it really is, and the firing sometimes commences too soon ; also, the danger is often thought to be more imminent than it really is, and consequently proper care is not observed in aiming.

On hard flat ground, the effect of canister depends chiefly on its ricochet. The guns being level, the projectiles will effeetually sweep the ground for several hundred yards in front.

When the men on the spar-decks of the enemy are exposed. by the heeling of the ship, grape or canister may be used against them, at distances ranging from 200 to 300 yards. Against light vessels a single stand of grape from heary guns may be used at about 400 yards.
1713. Riffed Canister.-It has been beliered that the canister practice of rifle-guns is inferior to that of smooth-bores, but the comparative trials instituted by various countries prove that the conister practice of rifle-guns is at least as effective as that of smooth-bores.

The smooth-bore practice does not usually extend beyond the dangerous fire of modern small arms, so that generally at all distances where it can act usefully, the canister as well as the shrapnel practice of rifled-guns is superior to that of smoothbores.
1714. Horizontal fire includes all linds in which the projectile strikes its object with a velocity due whollr, or nearly so, to the charge.' In this fire the ranges are regulated by alteration in the elevation of the axis of the piece, a fixet charge being generally used with each nature of gun ; this charge is the largest the piece is capable of firing, so as to give rery high relocity to the projectile, and consequently a low trajectory, upon which accuracy of fire and the extent of ground effectively covered by the projectile mainly depend.
1715. 'Vertical fire includes all kinds in which the projectile strikes with a relocity due wholly, or nearly so, to grarity.

The usual angle of fire of mortars is 45 degrees, which corresponds nearly with the maxinum range. The advantages of the angle of greatest range are:

1st. Economy of powder. 2d. Diminished recoil and strain on the piece, bed, and platform. 3d. Nore uniform ranges. When the distance is not great, and the object is to penetrate the roofs of magazines, buildings, etc., the force of fall may be increased by firing under an angle of 60 degrees.

The ranges obtained under an angle of 60 degrees are about one-tenth less than those obtained with an angle of 45 degrees.

If the object be to produce effect by the bursting of the projectile, the penetration should be diminished by firing under an angle of 30 degrees.

When the object and the nortar are not on the same level, the angle of greatest range, instead of being 45°, is $45^{\circ} \pm \frac{1}{2}$ the angle of elevation or depression of the object. Thus, to reach an object elevated 15° above a mortar, the angle of greatest range would be $45^{\circ}+7 \frac{1}{2}^{\circ}=52 \frac{1}{2}^{\circ}$; while, if the object was depressed 15°, the angle would be $45^{\circ}-71^{\circ}=372^{\circ}$.
1716. The angle of fire being fixed at 45° for objects on the same level with the piece, the range is varied by varying the charge of powder. The practical rule is founded on the knowledge of the amount of powder necessary to diminish or increase the range a certain quantity.

The 13 -in. mortar with a charge of 3 lbs . of powder gives a range of 850 yards, and every additional $\frac{1}{2}$ lb. increases the range about 180 yards. The elevation being 45°.
1717. A practical rule for finding the time of flight by which the length of the fuze is regulated, is to take the squareroot of the range in feet, and divide it by four ; the quotient is the approximate time in seconds.
1718. The greatest difficulty in firing mortars is to regulate the charges properly ; very great differences are found to exist between ranges obtained under the same circumstances, and these increase with the range, whilst the lateral deviations are much less.

The utmost exactness is to be observed in measuring and filling the cartridges, as an ounce of powder makes an important variation in the range.

Tables of charges, elevations, and ranges for the $13-\mathrm{in}$. mortar are given in the Ordnance Instructions.
1719. To estimate the distance by the bursting of the shell, where the flames can be seen, multiply the number of seconds
that elapse between it and the report by 1100 , and the product will be approximately the distance in feet." (Art. 1636.)
1720. Falling I'elocity.-The falling velocity of a mortarshell at ordinary range may be found with sufficient accuracy for practical purposes as follows: The shell may be assumed to be rising during half the time of flight and falling during the other half; therefore, if t be the time of flight, and V the velocity required, the latter will be due to $\frac{1}{2} t$; thus, if for 500 yards $t=10^{\prime \prime}, \mathrm{V}=g t \therefore \mathrm{~V}=32 \times 5=160$ feet.
1721. Mortars afloat are usually not to be much dreaded; though mortar-vessels moored in smooth water may be rery effective.

Large mortars should be nsed for the defence of nary yards. or other iuportant stations on the sea-board; for, although their inaccuracy of fire may cause many shells to be wasted, the chance of one or two falling upon the deck of any ressel would usually prevent its coming within short range.
1722. Vertical fire is of all practice from ordnance the most uncertain as regards precision. The chief canses of inaccuracy of vertical fire are: that the shells having comparatively low velocity, but long times of flight, are peculiarly liable to considerable deviation from wind and other disturbing causes: that the angles of descent of mortar shells, fired at the usual angle of 45°, are so great that unless the object be of some extent, an error in range of a few yards might render the shell useless; whereas, when a projectile is fired at a low angle of elevation, so much ground is covered by it before and after grazing that an error of some yards under or over would not generally. be of much consequence; also, that it is difficult in practice to ensure the requisite care in weighing out the charges, or to obtain powder of uniform quality. In vertical fire, as the object cannot generally be seen, and the piece is usually short, it is very difficult to point the mortar exactly in the same line for a number of rounds; but if the pointing could be performed with the greatest accuracy, irregularities must alwars occur in practice with projectiles fired at high angles and with low relocities.
1723. Small-Arm Firing.-The fire of the rifle-musket is not effestive beyond 1200 yards; the angle of fall, howerer, is so great that great care must be exercised in determining the exact distance of the object. If the ground be farorable, the

[^41]projectile will ricochet at 1000 yards, which increases the dangerous space, and therefore the chances of hitting the object.

The limit of any fire is determined by the distinctness of vision.

The effect of small-arm firing depends much on the skill and self-possession of the individual, for without these qualities the most powerful and accurate arms will be of little avail.

Section III.-Gun Implements.*

1724. Stafes.--The staves of all implements are made of tough ash, round, 2 in . in diameter for all lengths of over 150 in., $1 \frac{3}{4} \mathrm{in}$. for all other lengths above 100 in ., and $1 \frac{1}{2} \mathrm{in}$. for all below. A tenon is made on one end, $\frac{1}{4}$ of an in. less in diameter than that of the staff.
1725. Sponges.-The sponge complete is 18 in . longer than the bore of the gun for which it is intended.

The staff is 2 in . shorter than the implement complete. The tenon is $1 \frac{1}{2} \mathrm{in}$. shorter than the head. In the end of the tenon a worm is secured by means of a copper pin passing throngh a hole in its shank and the tenon. The worm, 2 in . in length and $1 \frac{1}{4} \mathrm{in}$. in diameter, is made of elastic composition wire $\frac{2}{10}$ of in. in diameter, tapering at the points. It is right-handed in order to act when turned to the right, or with the sun. (Fig. 360.)

The sponge-lead is made of poplar or other suitable light wood, and for smooth-bore guns consists of a cylindrical body 4 in . in length, surmounted by a section whose surface is similar to that of the chamber of the gun. This section is $\frac{1}{2} \mathrm{in}$. shorter than the chamber, and the diameter of the head

Fig. 360. at any point is 1 in . less than the diameter of the chamber, or bore, at that point. For unchambered guns the sponge-head conforms in slape to the bottom of the bore; the radius of its curve being $\frac{1}{2}$ in. less than that of the bore, the cylindrical body is reteained.

[^42]1526. Sponge-heads for all rifled guns are 2 calibres in length. A hole of the size of the tenon is bored through the

Fig. 361. axis of the head, and the head is secured to the staff by means of a copper pin $\frac{2}{10} \mathrm{in}$. in diameter, throngh the cylindrical body. When the head is properly fixed to the staff it bears firmly against the shoulder of the tenon, allowing the end of the worm to project $\frac{1}{2}$ in. (Fig. 361.)

Sponge-heads for greater calibres than XIII-in. smooth-bore and YIII-in. rifles are built up, hollow. All sponge-heads, when finished, are primed with several coats of boiled linseed oil or varmish.
1727. The woollen sponge is made of the shape and size requisite to tit the head, with an allowance of 1 in . in length for tacking over the edge of the base. The wool is sheared so as to allow no windage.

Sponge-caps for gims on corered decks are made of duck, of a size to fit the sponge smgly, lapping 1.5 in . over the base. The mouth is fitted with a draw-string, and a becket is fitted to the other end. These caps are not painted but kept scrubbed. For uncovered guns and all howitzers, the spongecaps are similar to the others, except that they are long enouch to gather around the staff. Ties are fitted to secure them instead of a draw-string; and they are kept painted white. The cap is never put on the sponge unless both are clean and dry.

172s. Bristle sponye-heuds are 1.5 in . less in diameter than the chambers and bores of the gun for which ther are intended. The bristles are sheared so as to work easily and leare no windage. Three spiral spaces are left the whole length of the spongehead, in order to bring out unconsumed portions of cartridge; these spaces are right-handed. Two-thirds of the head is covered with bristles, one-third bare; the end of the sponge is entirely covered ; there is no worm in bristle sponges.
1729. Ranmers.-The rammer complete is shorter than the sponge, by the lengtli of the sponge-head. The rammer staff for smooth-bores is equal to the length of the complete rammer, minus one-third the length of the head.

The rammer-head for smooth-bores (Fig. 362) is made of asll, birch, beech, or other tough wood, and consists of a crlindrical body and hemispherical neck. The neck is struck with a radius
of 2 in . The necks of rammer-heads nbove 13 in . are cylindrical, with the same radius, and ono-third the length of the head. The diameter of the body is .25 in . less than that of the bore ; its length, two-thirds that of the whole head. The head of a 32 -pdr. rammer is 1 calibre in length. For every clange of calibre of 1 in . there is a corresponding change of .25 in . in the length of the head. The rear of the body is berelled off to the neck, in a curve of 1 calibre. The front end is hollowed out with the same radius, the bottom of the curve being bevelled off where it meets the hole for the staff, leaving the exterior of the hole 2 in . in diameter. An annular surface is left around the face of the head, 1 in . in width,
 for calibres above XI-in. ; . 5 s in. for all others. The staff tenon is two-thirds the length of the head, its shoulder coming square up to the base of the neck. The head is secured to the staff

Fig. 363. by a copper pin . 2 in . in diameter through the thickest part of the neck. Rammerheads for greater calibres than XIII-in. are strengthened by copper bands .5 in . wide around the ends of the head and neck; the copper is No. 17 American wire-gange.
1730. Rummer-luads for ritted guns are made of composition (Fig. 363), cup-shaped, 1 calibre in length, with a neck two-thirds the length of the body, and tapering from 2 in . in diameter at the throat to 1.2 in . at the end. The extreme diameter of the head is .25 in . less than that of the bore. The diaphragm between the hollow of the head and neck is . 2 in . in thickness. The hollow of the head, for a depth of 1.25 in.. corresponds to the head of the projectile in shape; the rest is cut away, so as to leave a shell . 2 in . in thickness. The head is secured to the staffly two composition pins. 2 in. in diameter through the neck. Metal rammer-heads for all guns above VI-in. calibre are lightened by laving segments cut out of the body.
1731. Ladles.-The ladle complete is of the same lengtle as the ranmer. The staff and head are of the same dimensions, except the length of the staff, which is

Fig. 364. 1_{2}^{1} calibres shorter than the rammer-staff. (Fig. 364.)

The diameter of the head is reduced (to make a seat for the scoop) 4 in . in length for calibres above XI-in. ; 3 in. for all others. The scoop is secured to the head by two rows of copper tacks. The copper used for making scoops is No. 11 for calibres above XI-in., No. 13 for XI-in. and IX-in., No. 15 for VIII-in. and $32-\mathrm{pdr}$., and No. 17 for all howitzers (American wire-gatuge).
1732. Worms.-The worm complete is the same length as the rammer. (Fig. 365.) The head consists of a round composition shaft, having a worm 2 in . in length at one end, and two straps 8 in. long at the other, the total length being 20 in . At 8 in . from the end of the worm is a shoulder, for a dise of composition .25 in . less in diameter than the bore for which it is intended. It is kept in its place by a key. The staff fits into a socket formed by the straps, and is kept in place by two composition pins passing through both straps.
1733. Sectional Stavfs. - The staves for turret and casemate guns, where stoppers and shutters are used, are sectional, with spring connecting joints. (Fig. 366.) One section is permanently fixed to the head of the implement, projecting 12 in . beyond its base. As the length of the implement is arbitrarily fixed, by the necessity of having a certain amount of staff beyond the end of the bore when the implement is home, one length is made longer or shorter than the average, ac-

Fig. 365.
cording to necessity. All other sections are 36 in . long exclusive of the tenons, which are 3 in . in length, a corresponding socket being fitted in the other end of the section. All detacha-

- Fig. 366.
ble sections are interchangeable. Each gun is supplied with three of the $36-\mathrm{in}$. sections. These, together with the fixed and odd sections, make the length of the different implements.

CHAPTER XI.

THE MOTION OF PROJECTILES. ${ }^{*}$

1734. A knowledge of the motion of projectiles in a non-resisting medium is useful as an introduction to the disenssion of the motion of projectiles in air ; the following investigation, in which the resistance of the air is not considered, is therefore introduced here. The attraction of gravitation is assumed to be constant and parallel to a fixed line.

Tine Equation of the Patif of a Projectile in a Nonresisting Medium.-Let the origin be taken at the point of projection, and let the axis of y be vertical, and that of x horizontal and in the plane of projection ; x and y are the current co-ordinates of the centre of gravity of the projectile. It is

evident that this point will continue to more in the plane $x y$, as it is projected in it, and is subject to no force tending to withdraw it from that plane. u denotes the initial velocity, a the angle of projection, and t the time reckoned from the instant at which the projectile starts from O.

[^43]The equations of motion are

$$
\frac{d^{2} x}{d t^{2}}=\text { aceeleration parallel to the axis of } x=0 \ldots .(1)
$$

and $\frac{d^{2} y}{d t^{2}}=$ acceleration parallel to the axis of $y=-g \ldots .(2)$.
Integrating equations (1) and (2), we obtain

$$
\begin{align*}
& \frac{d x}{d t}=\text { constant }=u \cos a \\
& \text { and } \tag{3}\\
& \frac{d y}{d t}=\text { constant }-g t=u \sin a-g t \ldots
\end{align*}
$$

Integrating again,

$$
x=u \cos a . t \ldots \ldots(4), \text { and } y=u \sin a . t-\frac{1}{2} g t^{2} \ldots \ldots .(5) .
$$

Eliminating t between (4) and (5), we obtain the equation of the path or trajectory

$$
\begin{equation*}
y=x \tan a-\frac{g x^{2}}{2 u^{2} \cos ^{2} a} . \tag{a}
\end{equation*}
$$

or, putting $h=\frac{u^{2}}{2 g}$,

$$
\begin{equation*}
y=x \tan a-\frac{x x^{2}}{ \pm h \cos ^{2} \alpha} . \tag{b}
\end{equation*}
$$

h is evidently the height from which a body must fall to acquire the relocity u. (b) is the form in which this equation is usually employed. It is evidently the equation of a parabola.

To find the Vertex of the Trajectory.

1735. Multiplying (b) by $4 h \cos ^{2} a$ and transposing, we have

$$
x^{2}--4 h \sin a \cos a . x=-4 h \cos ^{2} a . y .
$$

Completing the square by adding $4 h^{2} \sin ^{2} a \cos ^{2} a$, we have
or

$$
(x-2 h \sin a \cos a)^{2}=4 h^{2} \sin ^{2} a \cos ^{2} a-4 h \cos ^{2} a \cdot y,
$$

$$
(x-h \sin 2 a)^{2}=t h \cos ^{2} a\left(h \sin ^{2} a-y\right) .
$$

If we pass to a new system of co-ordinate axes parallel to
the old, by putting $x_{1}=x-h \sin 2 a$, and $y_{1}=h \sin ^{2} a-y$, we obtain

$$
x_{1}^{2}=4 h \cos ^{2} a \cdot y_{1}
$$

the equation of a parabola referred to the vertex and principal axes. The co-ordinates of the new origin, which is also the vertex, are

$$
x_{0}=x-x_{1}=h \sin 2 \alpha \ldots \ldots \ldots \ldots(6)
$$

and

$$
y_{0}=y+y_{1}=h \sin ^{2} a \quad(\text { see diagram }) \ldots(7)
$$

Since the curve is symmetrical with reference to $S M, O R$, which is called the range on a horizontal plane, is equal to $2 x_{0}$; but

$$
2 x_{0}=2 h \sin 2 a=R \ldots \ldots \ldots \ldots(S)
$$

R denoting the range.
$2 h \sin 2 a$ is ε maximum when

$$
2 a=\frac{\pi}{2}, \text { or } a=\frac{\pi}{4} \text { or } 45^{\circ}
$$

That is, the greatest range is obtained, when the angle of elevation is 45°; its value is $2 h$, and the corresponding maximum height is $\frac{h}{2}$ [see equation (7)]. When a is 45°, the range is therefore four times the greatest height.

Again, since

$$
\sin 2 a=\sin \left(180^{\circ}-2 a\right)=\sin 2\left(90^{\circ}--a\right)
$$

the complement of any angle gives the same range as the angle itself.

To find the Time of Flight of a Projectile on a Horizontal Plane.
1736. To find the time of flight, we divide the range [2h sin $2 a]$ by the horizontal velocity $[u \cos a]$ thus,

$$
\begin{equation*}
t=\frac{2 h 2 \sin a \cos a}{u \cos a}=\frac{4 h \sin a}{u}=\frac{2 u \sin a}{g} \tag{9}
\end{equation*}
$$

This equation gives the time of flight in terms of u and a; to obtain t in terms of R and a, which is sometimes desirable,
we put $x=R$ and $y=0$ in equations (4) and (5), which then become

$$
R=u \cos a . t \text { and } 0=\dot{u} \sin a . t-\frac{1}{2} g t^{2} .
$$

Eliminating u, we obtain
or

$$
\begin{gather*}
R \tan a=\frac{1}{2} g t^{2}, \\
t=\sqrt{\frac{2 R \tan a}{g}} . \tag{10}
\end{gather*}
$$

1737. To find the Elevation necessary to cause the Trajectory to pass through a Point given by its Co-ordinates x^{\prime} and y^{\prime}, the inttial Velocity being given.

We have $y^{\prime}=x^{\prime} \tan a-\frac{x^{\prime 2}}{4 h \cos ^{2} a}$, to find $\tan a ;$
putting $\tan \alpha=z$, we have

$$
\frac{1}{\cos ^{2} a}=\sec ^{2} a=1+\tan ^{2} a=1+z^{2} ;
$$

substituting in the above equation, it becomes
or

$$
\begin{aligned}
& y^{\prime}=x^{\prime} \cdot z-\frac{x^{\prime 2}}{4 h}\left(1+z^{2}\right), \\
& \frac{4 h}{x^{\prime 2}} \cdot y^{\prime}=\frac{4 h}{x^{\prime}} z-1-z^{2} .
\end{aligned}
$$

$$
z^{2}--\frac{4 h}{x^{\prime}} z=--\frac{4 h}{x^{\prime 2}} \cdot y^{\prime}-1
$$

or $\quad\left(z-\frac{2 h}{x^{\prime}}\right)^{2}=\frac{4 h^{2}}{x^{\prime 2}}-\frac{4 h y^{\prime}}{x^{\prime 2}}-1=\frac{1}{x^{\prime 2}}\left(4 h^{2}-4 h y^{\prime}-x^{\prime 2}\right)$

$$
z=\frac{2 h}{x^{\prime}} \pm \frac{1}{x^{\prime}} \sqrt{4 h^{2}-4 h y^{\prime}-x^{\prime 2}} \ldots \ldots .(11) .
$$

If y^{\prime} and x^{\prime} have such values as to make

$$
4 h y^{\prime}+x^{\prime 2}<4 h^{2}
$$

there will be two real values of z, but if

$$
4 h y^{\prime}+x^{\prime 2}>4 h^{2}
$$

the values of z will be inaginary; in this case it is therefore im-
possible to so change a as to make the trajectory pass through the point.

If

$$
\begin{equation*}
4 h y^{\prime}+x^{\prime 2}=4 h^{2} . \tag{12}
\end{equation*}
$$

there will be one real value of z.
Making x^{\prime} and y^{\prime} variables in equation (12), we have

$$
\begin{equation*}
x^{2}=4 l^{2}-4 l y=4 h(h-y) . \tag{13}
\end{equation*}
$$

the equation of a parabola having its vertex on the axis of y at the height h above the origin.

Since the co-ordinates of any point in this curse will give, when substituted in equation (1i), a single value of z, all the trajectories thus formed touch, but do not cut the curve of equation (13) ; this curve is called an envelop.
1738. To fend the Velocity of a Ploojectile at any Pontt of its Path.

We have $\quad v^{2}=\left(\frac{d s}{d t}\right)^{2}=\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2} ;$
substituting the values of $\frac{d x}{d \bar{d}}$ and $\frac{d y}{d t}$ from equations (3) we deduce

$$
v^{2}=u^{2} \cos ^{2} a+[u \sin a-g t]^{2} ;
$$

expanding and reducing

$$
v^{2}=u^{2}-2 g\left(u t \sin a-\frac{1}{2} g t^{2}\right),
$$

therefore, by equation (5), $v^{2}=u^{2}-2 g y$.
If we put for u^{2} its value $2 g h$, we obtain

$$
\begin{equation*}
v^{2}=2 g(h-y) . \tag{14}
\end{equation*}
$$

1739. To find the direction of the patil at any point, we differentiate equation (b); thus

$$
\begin{equation*}
\frac{d y}{d x}=\tan a-\frac{x}{2 h \cos ^{2} a}=\tan \phi . \tag{15}
\end{equation*}
$$

ϕ being the angle of inclination of the curve to the axis of x.

Putting $\frac{d y}{d x}=0$, we have $x=2 h \sin a \cos a=h \sin 2 a$, for the abscissa of the summit, or highest point of the path. The corresponding value of y is

$$
h \sin ^{2} a
$$

which is therefore the greatest height the projectile attains ; it is also, as might have been anticipated, the ordinate of the vertex ; see equation (7).
1740. To find the Co-ordinates of the Point where a Projectile wll strike an Inclined Plane passing tirodgh the Point of Projection, the Range on tie Inclined Plane, and the Time of Fligit.

Let $y=x \tan \beta$ be the equation of the line $O P$, which is the intersection of the inclined plane with the vertical plane of the path of the centre of gravity of the body.

FIG. 368.

Let x_{1} and y_{1} be the co-ordinates of P, and let $O P=r$, the range; theu

$$
x_{1}=r \cos \beta \text { and } y_{1}=r \sin \beta .
$$

Substituting in equation (a) we have

$$
r \sin \beta=r \cos \beta \tan a-\frac{r^{2} \cos ^{2} \beta}{ \pm / \cos ^{2} a}
$$

whence $r=0$, or $r=\frac{4 h \cos ^{2} a(\cos \beta \tan a-\sin \beta)}{\cos ^{2} \beta}$,
and reducing $\quad r=\frac{4 h \cos a \sin (\alpha-\beta)}{\cos ^{2} \beta}$.

$$
\begin{equation*}
r \cos \beta=x_{1}=\frac{4 h \cos a \sin (a-\beta)}{\cos \beta}, \tag{14}
\end{equation*}
$$

and $\quad r \sin \beta=y_{1}=\frac{4 h \cos a \sin \beta \sin (a-\beta)}{\cos ^{2} \beta}$.

If the inclined plane cut the path of the projectile below the axis of x, β will be negative.

The time of flight is found by dividing x_{1} by $u \cos a$, the horizontal component of initial velocity ; thus,

$$
t=\frac{4 h \cos a \sin (a-\beta)}{u \cos \beta \cos a} ;
$$

putting for h its value $\frac{u^{2}}{2 g}$ and reducing,

$$
\begin{equation*}
t=\frac{2 u \sin (a-\beta)}{g \cos \beta} . \tag{15}
\end{equation*}
$$

1741. The resistance of the air to the motion of spherical solid shot evidently increases with the square of the diameter, while the weight of the shot is proportional to the cube of the diamoter. This resistance is therefore less effective with large spherical shot than with small shot; but it is nevertheless so considerable, even in the case of the heavy slot now in use, as to render the above formulas inapplicable in practice, except to cases of low initial relocities not exceeding 400 ft . per second. It increases rapidly with the velocity, being nearly proportional to the cube.
1742. Equations (8), (9), and (10) are sometimes used in mortar practice. If in equation (10) we put $g=32 \mathrm{ft}$., we have approximately

$$
\begin{equation*}
t=\frac{1}{4} \sqrt{R \tan a} . \tag{16}
\end{equation*}
$$

If a is 45°

$$
\begin{equation*}
t=\frac{1}{ \pm} \sqrt{R} . \tag{17}
\end{equation*}
$$

Example 10 will serve to show that the results obtained by these formulas are sufficiently accurate for some purposes, when the velocities are small. The charge of powder used in the experiments which furnished the data of Ex. 10, was a little less than two pounds in the first case, and a little more than two pounds in the second case. The following example, taken from Owen's Modern Artillery, will show how entirely untrustworthy these formulas are in the cases of ordinary practice.

The range of a $32-\mathrm{lb}$. shot, fired with an initial relocity of 1600 ft ., and with an angle of elevation of 4°, was 2070 ft .; as computed by formula (s) it should be $11,130 \mathrm{ft}$.

Examples.

1. The horizontal range of a projectile is 1000 ft . and the time of flight is 15 seconds. Required the angle of elevation, velocity of projection, and greatest altitude.

$$
\begin{aligned}
\text { Ans. } a & =74^{\circ} 33^{\prime} 09^{\prime \prime} . \\
v & =250.29 \mathrm{ft} . \\
\mathrm{H} & =904.69 \mathrm{ft} .
\end{aligned}
$$

2. Find the velocity and angle of elevation of a ball that it may be 100 ft . above the ground at the distance of one quarter of a mile, and may strike the ground at the distance of one mile.

$$
\text { Ans. } \begin{aligned}
a & =5^{\circ} 46^{\prime} 05 . \\
v & =921.566 \mathrm{ft} .
\end{aligned}
$$

3. What must be the angle of elevation of a body in order that the horizontal range may be equal to three times the greatest altitude? What, that the range may be equal to the altitude?
4. A body is projected at an angle of elevation of 60°, with a velocity of 150 ft .; find the co-ordinates of its position, its direction, and velocity at the end of 5 seconds.
5. A body is projected from the top of a tower 200 ft . high, at an angle of elevation of 60°, with a velocity of 50 ft . ; find the range on the horizontal plane passing through the foot of the tower, and the time of flight.
6. A body, projected in a direction making an angle of 30° with a plane whose inclination to the lorizon is 45°, fell upon the plane at the distance of 250 ft . from the point of projection, which is also in the inclined plane; required, the velocity of projection and the time of flight.
7. At what elevation must a shot be fired with a velocity of 400 ft . that it may range 2500 yards on a plane which descends at an angle of 30° ?
8. Find the velocity and angle of elevation that a projectile may pass through two points whose co-ordinates are $x=300 \mathrm{ft}$., $y=60 \mathrm{ft} ., x^{\prime}=400 \mathrm{ft}$. , and $y^{\prime}=40 \mathrm{ft} . ;$ also find the horizontal range, greatest altitude, and time of flight.
9. Show that the maximum range on an inclined plane, of a projectile having a given initial velocity u, is $\frac{u^{2}}{g}\left(\frac{1-\sin \beta}{\cos ^{2} \beta}\right)$ in which β denotes the inclination of the plane to the horizon.
10. The observed time of flight of an S-in. mortar shell was $16^{\circ} .0$. the range being 3760 ft ., and the angle of elevation 45°; find the difference between this observed range and that obtained by computation when the formulas of the preceding articles are employed. Find the difference when the range was 55.9 .4 ft ., and the observed time $20^{\text {s.S.S. }}$

$$
\text { Ans. }-0.7 \text { and }-1.6 .
$$

Tife Motion of a Projectile in Air.

1743. A complete and satisfactory solution of this problem has not hitherto been published; in fact, the law of resistance of the air, which must be found by experiment, is not $y \in t$ fully established.

Some recent experiments made in England by Professor Francis Bashforth slow that the resistance of the air to the motion of a projectile is approximately proportional to the cube of its velocity. The direction of the resistance of the air at any point of the path of a projectile is evidently that of a tangent to the path drawn through the point.

The following mathematical inrestigation is, with some changes in the notation, substantially that of Professor Bashforth, and the accompanying tables which will be found in the appendix to this work are reprinted from his treatise" ; by means of these tables the trajectory of a projectile and its time of flight may be approximately found.
1744. R denoting the resistance of the air, and Γ^{r} the velocity of the projectile, the cubic law of resistance is expressed thus-

$$
R=2 b V^{3} .
$$

In this expression $2 b$ is a quantity to be determined br experiment; it is not the same for all values of Γ, and has therefore been tabulated. The following notation is adopted for the purpose of simplifying the formulas:

Let u denote the horizontal component of the relocitr. v the

[^44]vertical component, and ϕ the inclination of the curve to the axis of x,
then
\[

$$
\begin{equation*}
u=V \cos \phi, \text { and } v=V \sin \phi \tag{1}
\end{equation*}
$$

\]

Eliminating V, and writing p for $\tan \phi$,
we have

$$
\begin{equation*}
\frac{v}{u}=\tan \phi=p ; \tag{2}
\end{equation*}
$$

differentiating, $\quad d p=\frac{u d v-v d u}{u^{2}} .$.
Again, squaring and adding equations (1),

$$
\begin{equation*}
V^{2}=u^{2}+v^{2}=u^{2}\left(1+p^{2}\right) . \tag{4}
\end{equation*}
$$

The equations of motion are, in this case,

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}=\frac{d u}{d t}=-2 b V^{3} \cos \phi . \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}=\frac{d v}{d t}=-2 b V^{3} \sin \phi-g \tag{6}
\end{equation*}
$$

which may be written thus-
and

$$
\begin{equation*}
\frac{d u}{d t}=-2 b V^{2} u \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d v}{d t}=-2 b V^{2} v-g . \tag{8}
\end{equation*}
$$

Eliminating $V, \quad \frac{u d v-v d u}{d t}=-g u$;
hence

$$
\begin{equation*}
\frac{u d v-v d u}{u^{2}}=-g \frac{d t}{u} \tag{9}
\end{equation*}
$$

or [equation (3)] $\quad d p=-g \frac{d t}{u}$.
Combining equations (7) and (4),

$$
\begin{equation*}
\frac{d u}{d t}=-2 b\left(1+p^{2}\right) u^{3} . \tag{10}
\end{equation*}
$$

and, eliminating $d t$ between (9) and (10),

$$
\frac{d u}{u^{4}}=\frac{2 b}{g}\left(1+p^{2}\right) d p
$$

This equation involves but two variables, and is readily integrated. Denoting by u_{0} the value of u corresponding to $p=0$, or in other words the velocity at the highest point of the curve, and integrating, we obtain

$$
\left.\left.-\frac{1}{3 u^{3}}\right]_{u}^{u_{0}}=\frac{2 b}{g}\left(p+\frac{p^{3}}{3}\right)\right]_{p}^{0}
$$

or

$$
\frac{1}{3}\left(\frac{1}{u^{3}}-\frac{1}{u_{0}^{3}}\right)=-\frac{2 l}{g}\left(p+\frac{p^{3}}{3}\right)
$$

therefore

$$
\begin{equation*}
\frac{1}{u}=\frac{1}{u_{0}}\left\{1-\frac{2 b u_{0}^{3}}{g}\left(3 p+p^{3}\right)\right\}^{\frac{1}{3}} \tag{11}
\end{equation*}
$$

Putting $\quad \gamma=\frac{2 b u_{\mathrm{a}}{ }^{3}}{g}$,

$$
\begin{equation*}
\frac{1}{u}=\frac{1}{u_{0}}\left\{1-\gamma\left(3 p+p^{9}\right)\right\}^{\frac{1}{3}} \tag{12}
\end{equation*}
$$

but $\left[\operatorname{equation~(9)]~} \frac{1}{u}=-\frac{d p}{g d t}\right.$.
therefore, eliminating u,

$$
d t=-\frac{u_{0}}{g} \frac{d p}{\left\{1-\gamma\left(3 p+p^{3}\right)\right\}^{1 / 3}}
$$

or

$$
\begin{equation*}
t=-\frac{u_{0}}{g} \int_{p}^{p^{\prime}} \frac{d p}{\left\{1-\gamma\left(3 p-p^{3}\right)\right\}^{1 / 3}} \tag{1t}
\end{equation*}
$$

Again, dividing equation (13) by the identity $u=\frac{d x}{d t}$,
we obtain

$$
\frac{1}{u^{2}}=-\frac{d p}{g d x}, \text { or } d x=-\frac{u^{2}}{g} d p
$$

and, substituting the value of u^{2} obtained from (12), and integrating, we have

$$
\begin{equation*}
x=-\frac{u_{0}^{2}}{g} \int_{p}^{p^{\prime}} \frac{d p}{\left\{1-\gamma^{\prime}\left(3 p+p^{3}\right)\right\}^{2 / 3}} \cdots \cdots \cdots \cdots(\tag{15}
\end{equation*}
$$

Also, by means of the identity $d y=p d x$, we obtain from (15)

$$
\begin{equation*}
y=-\frac{u_{0}^{2}}{g} \int_{p}^{p^{\prime}} \frac{p d p}{\left\{1-\gamma\left(3 p+p^{3}\right)\right\}_{3}^{2 / 2}} . \tag{16}
\end{equation*}
$$

The quantity $\frac{2 b u_{0}{ }^{3}}{g}$ for which γ is substituted in equation (12) may be written thus, $\frac{2 b m u_{0}{ }^{3}}{m g}$; the numerator denoting the resistance of the air at the vertex of the trajectory, and the denominator the weight of the shot.

Putting $\tan \phi=p$ and $\tan \phi^{\prime}=p^{\prime}$,
$d p=\sec ^{2} \phi d \phi=\left(1+p^{2}\right) d \phi$; introducing this value of $d p$ in equations (14), (15) and (16), and changing limits, we obtain

$$
\begin{align*}
& \left.t=-\frac{u_{0}}{g} \int_{\phi}^{\phi^{\prime}} \frac{\left(1+p^{2}\right) d \phi}{\left\{1-\gamma\left(3 p+p^{2}\right)\right\}^{1 / 2}}=-\frac{u_{0}}{g} T_{\gamma}\right]_{\phi}^{\phi^{\prime}} \tag{a}\\
& \left.x=-\frac{u_{0}^{2}}{g} \int_{\phi}^{\left\{1-\gamma\left(3 p+p^{3}\right)\right\}^{2 / 3}}=-\frac{u_{0}^{2}}{g} X_{\gamma}\right]_{\phi}^{\phi^{\prime}} \tag{b}\\
& y=-\frac{u_{0}^{2}}{g} \int_{\phi}^{\phi^{\prime}} \tag{c}\\
& \left.\frac{\left(1+p^{2}\right) d \phi}{\phi^{\prime}} \frac{\left(p+p^{3}\right) d \phi}{\left\{1-\gamma\left(3 p+p^{3}\right)\right\}^{2 / 6}}=\frac{u_{0}^{2}}{g} Y_{\gamma}\right]_{\phi}^{\phi^{\prime}}
\end{align*}
$$

1745. Inasmuch as it is impossible to find the values of x y and t by direct integration, it has been necessary to compute by quadratures the values of X, I and T for all practical values of $+\phi$ not greater than 60°, and of $-\phi$ not less than 60° or 45°, for values of $\gamma=0.00,0.01,0.02 \ldots 0.15,0.19,0.2$, $0.3,0.4 \ldots 4.9,5.0$. The ralue of $d \phi$ generally used was the circular measure of 1°, but when $1-\gamma\left(3 p+p^{3}\right)$ became small, the successive values of $\frac{1}{1-\gamma\left(3 p+p^{3}\right)}$ were subject to rapid variation; in such cases intervals of $\frac{1^{\circ}}{5}$ were used, and the results have been given in preliminary tables (see Appendix). By the ordinary rule of proportional parts, or, where great accuracy is required, by interpolation, it will not be difficult to find the values of X, Γ, and T for values of γ and ϕ intermediate to those given in the tables.

Examples of the Metiods of flyding the Nemerical Valefs of A, Y and T, γ being given.
From the tables, page 71, Appendix:

$$
\begin{aligned}
& \left.\left.\left.X_{0.7}\right]_{5}^{10 .}=X_{0.7}\right]_{0}^{10}-X_{0.7}\right]_{0}^{5}=.20430-.09348=.11052, \\
& \left.\left.\left.I_{0.7}\right]_{10}^{4}=Y_{0.7}\right]_{10}^{0}-Y_{0.7}\right]_{4}^{0}=.013448-.002299=.011149, \\
& \left.\left.T_{0.2}\right]_{0}^{6}=.11027, T_{0.2}\right]_{5}^{0}=.07836 .
\end{aligned}
$$

Suppose it was required to find the ralue of $\left.Y_{3.2}\right]_{3 .}^{\tau, 41}$, *

$$
\begin{aligned}
\left.Y_{3.2}\right]_{3}^{7.41} & \left.\left.\left.=Y_{3.2}\right]_{3}^{\top}+\left(Y_{3.2}\right]_{0}^{8}-Y_{3.2}\right]_{0}^{\top}\right) \times 0.41, \\
& =.004059+(.006548-.005196) \times 0.41 \\
& =.004059+.001352 \times 0.41 \\
& =.004059+.000554 \\
& =.004613 .
\end{aligned}
$$

In the same way $\left.X_{3,2}\right]_{3}^{7.41}$ and $\left.T_{5,8}\right]_{3}^{7,41}$ may be found.

> * In this example both limits are negative.

1746 . In order that the tables may be used for the solution of problems, we see from the above examples that γ must first be determined numerically* having found its ralue, we turn to the corresponding table, and obtain [see Fig. 369]

$$
\left.\left.O M=\frac{u_{0}^{2}}{g} X_{\gamma}\right]_{0}^{a}, M A=\frac{u_{0}^{2}}{g} Y_{\gamma}\right]_{0}^{a},
$$

and the time in $\left.O A=\frac{u_{0}}{g} T_{\gamma_{0}}\right]_{0}^{a}$, for the ascending branch.
Now for the descending branch we have for the co-ordinates of the point P^{\prime}, where the direction of the curve is inclined at an angle β to the horizon, β being negative.

$$
\left.\left.A N^{\prime}=\frac{u_{0}^{2}}{g} X_{\gamma^{\prime}}\right]_{0}^{\beta}, N^{\prime} P^{\prime}=\frac{u_{0}^{2}}{g} Y_{\gamma^{\prime}}\right]_{0}^{\beta},
$$

and the time in $\left.A \dot{P^{\prime}}=\frac{u_{0}}{g} T_{\gamma^{\prime}}\right]_{0}^{\beta}$.
To find the Range ox a Forizontal Plate.

Fig. 369.
Having computed $O M$, we make $A M=N^{\prime} P^{\prime}$, whence

$$
\left.\left.\left.\left.\frac{u_{0}^{2}}{y} Y_{\gamma}\right]_{a}^{0}=\frac{u_{0}^{2}}{g} Y_{\gamma^{\prime}}\right]_{0}^{\beta} \quad \text { or } Y_{\gamma}\right]_{a}^{0}=Y_{\gamma^{\prime}}\right]_{0}^{\beta}
$$

By the help of the tables β can be found, and this value of β must be used in calculating M / p.

Suppose it were required to find the height at which the shot would strike a rertical target placed at the distance $O L$, and the time of flight. Here we have

$$
\text { * See article } 1 \pi 48 .
$$

$$
\left.M L=L O-O M=\frac{u_{0}{ }^{2}}{g} X_{\gamma}\right]_{0}^{\beta}
$$

or

$$
\left.X_{\gamma}\right]_{0}^{\beta}=(L O-O M) \frac{g}{u_{0}^{2}},
$$

which gives β by the help of the tables. The value of β so found must be used to find $N^{\prime} P^{\prime}$, which subtracted from $A M$, computed by the formula on page 641 , gives the required height. We must proceed in the same way if it be required to tind where the shot will be at a given time.
u_{0} may be obtained by putting $\phi=a$ in equation (19) below (a denoting the angle of projection); replacing ϕ, and substituting the value of u_{0}, we can obtain from the same equation the value of u_{ϕ} (ϕ being known or assumed).
1747. Functions belouging to the descending branch are usually distinguished from those belonging to the ascending branch by a prime; thus, ϕ^{\prime} denotes the angle made by the descending branch of the curve with the horizontal plane.

The symbol $f-s$ is sometimes used to denote feet per second.

The relation between the horizontal component of the relocity and the corresponding velocity in the curve is expressed thus:

$$
v_{\phi} \cos \phi=u_{\phi}
$$

and, cousequently (a being the angle of projection, and V the initial velocity),

$$
\mathrm{V} \cos a=u
$$

1748. To determine γ.

$$
\begin{equation*}
\text { We have } \gamma=\frac{2 l u_{0}^{3}}{g} \text { (by definition, page 639); } \tag{17}
\end{equation*}
$$

Now, it is obvious that b must increase directly with the transverse section of the projectile, and inversely with its weight: that is, it must be proportional to $\frac{c^{2}}{w}$, c denoting the calibre of the projectile; we therefore put

$$
\begin{equation*}
2 b=\pi \cdot \frac{c^{2}}{w} \cdot\left(\frac{1}{1000}\right)^{3} . \tag{18}
\end{equation*}
$$

in which K has been determined experimentally for such velocities as are likely to occur in practice; the factor $\frac{1}{(1000)^{3}}$ is introduced to save space in printing the tables.

From equations (11) and (18) we obtain by eliminating $2 b$

$$
\begin{array}{r}
\frac{1}{u_{0}^{3}}=\frac{1}{u_{\phi}^{3}}+\frac{K c^{2}}{g w} \cdot \frac{3 \tan \phi+\tan ^{3} \phi}{(1000)^{3}} . \\
\text { or }\left(\frac{1000}{u_{0}}\right)^{3}=\left(\frac{1000}{u_{\phi}}\right)^{3}+\frac{K}{g} \cdot \frac{c^{2}}{w}\left(3 \tan \phi+\tan ^{3} \phi\right) . . \tag{20}
\end{array}
$$

and introducing the value of $u_{0}{ }^{3}$ from (20) in (12) and reducing. we have

$$
\begin{equation*}
\gamma=\frac{\frac{K}{g} \cdot \frac{c^{2}}{w}}{\left(\frac{1000}{u_{\phi}}\right)^{3}+\frac{K}{g} \cdot \frac{c^{2}}{w}\left(3 \tan \phi+\tan ^{3} \phi\right)} . \tag{21}
\end{equation*}
$$

$\log \frac{K}{g}$ is found in Tables I and II, and
$\log \left(3 \tan \phi+\tan ^{3} \phi\right)=\log P_{\phi}$, in Tables III and V.

Examples.

1749. A 16 -pounder fires an ogival-headed shot 16 lbs. in weight and 3.54 in . in diameter, the angle of projection being 2°, and the initial relocity 1358 ft . per sec. ; find the trajectory and time of flight.

> Putting $N=\left(\frac{1000}{u_{\phi}}\right)^{3}$, and $P_{\phi}=\left(3 \tan \phi+\tan ^{3} \phi\right),(21)$ becomes

$$
\gamma=\frac{\frac{K}{g} \cdot \frac{c^{2}}{w}}{N+\frac{K}{g} \cdot \frac{c^{2}}{w} \cdot P_{\phi}}=\frac{\frac{K c^{2}}{g w}}{\left(\frac{1000}{u_{0}}\right)^{3}} .
$$

$$
u_{\phi}=u_{2}=\mathrm{V} \cos 2^{\circ}=13 \check{ } 8 \cos 2^{\circ}
$$

$$
w=16 \mathrm{lbs} ., \text { and } c=3.5 \pm \mathrm{in} .
$$

1.358 ar. co. 9.86710
2°, sec
10.00026
$\frac{1000}{u_{2}}$.
Log 9.56736

$$
\left(\frac{1000}{u_{2}}\right)^{3}=0.40002 \ldots .3 \log \overline{9.60208}
$$

$$
\frac{K}{g}(v=1358) \ldots \ldots \text { Log } 0.51793 \text { (Table I.) }
$$

$$
c=3.54 \ldots \ldots \ldots 2 \log 1.09800
$$

$$
w=16 \ldots \ldots \ldots \text {. co. } 8.79588
$$

$$
\frac{K}{g} \cdot \frac{c^{2}}{w} \ldots \ldots \ldots \ldots \log \overline{0.41181 \ldots \ldots \ldots \ldots \log 0.41181}
$$

$$
P_{2} \text { (Table III.).Log } 9.02038
$$

The value of $\frac{\pi}{g}$ (for $v=1358$), employed in the abore computation, is too small; a more accurate result may be obtained by taking the value corresponding to the mean of the initial velocity (1358), and the value of u_{0} obtained from $\log \left(\frac{1000}{u_{0}}\right)^{3}$ found above, thus:

$$
\log \left(\frac{1000}{u_{0}}\right)^{3}=9 \cdot 82642
$$

whence $u_{0}=1143$; but $u_{2}=1357$

$$
\therefore \frac{1}{2}\left(u_{0}+u_{2}\right)=1250 ;
$$

corresponding correction of $\log \frac{K}{g}=+0.01077$.

$$
u_{0}=1139
$$

$$
\left.\left.\left.\therefore X_{\mathrm{s} \cdot \mathrm{~s}}\right]_{0}^{2}=0.04118, \text { and } x\right]_{0}^{2}=x^{\prime}=\frac{u_{0}^{2}}{g} \cdot X_{\mathrm{s} .9}\right]_{0}^{2}=1659.7 \mathrm{ft} .
$$

$$
\left.\left.\left.Y_{\text {s.9 }}\right]_{0}^{2}=0.00076, \text { and } y\right]_{0}^{2}=y^{\prime}=\frac{u_{0}^{2}}{g} Y_{3.9}\right]_{0}^{2}=30.67 \mathrm{ft} .
$$

$$
\left.\left.\left.T T_{3.9}\right]_{0}^{2}=0.03788, \text { and } t\right]_{0}^{2}=t^{\prime}=\frac{u_{0}}{g} T_{3.9}\right]_{0}^{2}=1^{\prime \prime} .34 .
$$

1750. For the descending branch, suppose we wish to find the co-ordinates of the point at which the curve makes an angle of $2^{\circ} .4$ with the axis of x, and suppose that by a rough computation it has been found that the mean velocity is about 1080 ft . per sec.

From equation (22) we have

$$
\begin{aligned}
& \gamma=\frac{K}{g} \cdot \frac{c^{2}}{w}\left(\frac{u_{0}}{1000}\right)^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { c........................... } 2 \log 1.09800
\end{aligned}
$$

$$
\begin{aligned}
& \text { * Obtained by adding correction to } 9.43219 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{K}{g} \cdot \frac{c^{2}}{w}(1250) . \\
& . \log 0.42258 \\
& 0.27730 \ldots \ldots . \log 9.44296 \text { * } \\
& \left(\frac{1000}{u_{2}}\right)^{3}=\underline{0.40002} \\
& 0.67732 \\
& \text { Log } 9.83079
\end{aligned}
$$

$$
\begin{gathered}
\left.\left.\therefore X_{3.4}\right]_{2.4}^{0}=0.03670, x\right]_{2.4}^{0}=x^{\prime \prime}=1479.2 \mathrm{ft.} ; \\
\left.\left.Y_{3.4}\right]_{2.4}^{0}=-0.000737, y\right]_{2.4}^{0}=y^{\prime \prime}=29.70 \mathrm{ft} . \\
\left.T_{3.4}\right]_{2.4}^{0}= \\
0.03920, \quad t]_{2.4}^{0}=t^{\prime \prime}=1 " .387 . \\
u_{2.4}^{\prime}=1002.3 \mathrm{ffs.}
\end{gathered}
$$

The point of projection being the origin, and x and y the coordinates of the centre of gravity of the projectile, and t the time when it is moving in the descending branch of its trajectory in a direction inclined to the horizon at an angle of $2^{\circ} .4$, we have

$$
\begin{gathered}
x=x^{\prime}+x^{\prime \prime}=3138.9 \mathrm{ft} . \\
y=y^{\prime}+y^{\prime \prime}=0.97 \mathrm{ft} . \\
t=t^{\prime}+t^{\prime \prime}=2^{\prime \prime} .727 .
\end{gathered}
$$

The velocity

$$
=v_{2.4}^{\prime}=u_{2.4}^{\prime} \sec 2^{\circ} .4=1002.3 \sec 2^{\circ} .4=1003.2 f_{-8} .
$$

The range on the horizontal plane

$$
=\left(3138.9+0.97 \cot 2^{\circ} .4\right) \text {, nearl } 5 .
$$

1751. A projectile 3.24 in . in diameter is discharged from a $16-\mathrm{p} d \mathrm{r}$. with a velocity of $130 \tau f_{-8}$; to find $u_{\mathrm{v}}, u_{2,4,}^{\prime}, v_{2,4}^{\prime}, x, y$, and t; the values of $\frac{K}{g}$ and x being the same as in the preceding example.

$$
\begin{aligned}
u_{0} & =1136.5, u_{2.4}^{\prime} \\
x & =1015.6, v_{2.4}^{\prime}
\end{aligned}=1019.5, ~=3101, \quad y=-1.09, \quad t=2^{\prime \prime} .715 .
$$

A spherical shot 8.9 in . in diameter, and weighing 94 lbs , is discharged with an initial velocity of $156 \pm f-s$, the angle of elevation being 5°; find $u_{0}, u_{s}^{\prime}, v_{\mathrm{s}}^{\prime}, x, y$ and t, the mean ralue of $\frac{K}{g}$ being, for the ascending branch that corresponding to a velocity of $1300, f-s$, and for the descending branch that corresponding to $900 f-s$.

$$
u_{0}=920.5, \quad x_{\mathrm{s}}=63+3^{\prime}, \quad y_{\mathrm{s}}=3^{\prime} .3
$$

To find the Range on a Morizontal Plane.
ϕ denoting the angle of incidence, we have

$$
\left.\left.\left.y]_{a}^{0}=y\right]_{0}^{\phi} \text { or } \Gamma_{\gamma}\right]_{a}^{0}=\Gamma_{\gamma^{\prime}}\right]_{0}^{\phi} .
$$

In the above example, $\gamma=3.017$ and $\gamma^{\prime}=2.522$,
also $\left.\left.\quad Y_{\text {a.011 }}\right]_{0}^{0}=0.006910=Y_{2,082}^{\prime}\right]_{0}^{\phi}$,
but $\left.\left.Y_{2.882}\right]_{0}^{9}-Y_{2.822}\right]_{0}^{8}=0.008329-0.006788=0.001541$,
and

$$
\left.\left.Y_{2,022}\right]_{0}^{\phi}-Y_{2,292}\right]_{0}^{\infty}=0.000122 .
$$

$\therefore \quad \phi=8^{\circ}+\frac{122}{1541}=8^{\circ} .079$ the angle of incidence.

$$
\text { Range } \left.=x]_{5}^{0}+x^{\prime}\right]_{0}^{9.079}=3 \check{0} \check{9} 9.7+2804.9=6364.6 .
$$

In a similar manner we obtain time of flight $=6^{\prime \prime}$.ss .
1752. A more accurate solution of the problem may be obtained by dividing each branch of the trajectory into successive portions, and using a mean approximate value of K for each portion; the final values of x, y and t will each be equal to the algebraic sum of the corresponding partial ralnes thus obtained. It will be convenient to change l_{1}^{\prime} at points of the curve where its direction is inclined to the horizon some entire number of degrees, becanse the ralues of X, Y, and T are given for all those cases in the tables."
1753. It will be found sufficient for manv practical purposes to neglect the effect of gravity, and treat the motion of a shot as if its path were a straight line; this will suffice for experimental purposes when it is desired to find the loss of velocity, or the time of flight for a limited space, the initial velocity being high. The less the shot is affected by the resistance of the air the more accurate will be the results; therefore this

[^45]method will apply better to pointed elongated shot than to spherical shot, and better to solid shot than to shell of the same external form.

The equation of motion for the cubic law of resistance is

$$
\begin{gather*}
\frac{d^{2} s}{d t^{2}}=\frac{d v}{d t}=-2 b v^{3} . \tag{1}\\
\frac{d v}{v^{3}}=-2 b d t .
\end{gather*}
$$

or
Suppose that $v=V$ when $t=0$,

$$
\text { then } \int_{V}^{v} \frac{d v}{v^{3}}=-2 b \int_{0}^{t} d t
$$

integrating and substituting value of $2 b$ (page 643),
or

$$
\begin{align*}
& \frac{1}{v^{2}}-\frac{1}{V^{2}}=4 b t=2 t K \frac{c^{c^{2}}}{w} \frac{1}{\left(100()^{3}\right.}, \\
& \frac{c^{2}}{w} t=\frac{500}{K}\left\{\left(\frac{1000}{v}\right)^{2}-\left(\frac{1000}{V}\right)^{2}\right\} . \tag{2}
\end{align*}
$$

which connects t and v.

$$
\begin{array}{lc}
\text { Again, } & \frac{d^{2} s}{d t^{2}}=\frac{d v}{d t}, \text { since } v=\frac{d s}{d t}, \text { or } \frac{1}{d \bar{t}}=\frac{v}{d s} \\
\therefore & \frac{d v}{d t}=\frac{v d v}{d s}, \\
\therefore & \frac{d^{2} s}{d t^{2}}=\frac{v d v}{d s}=-2 b v^{3}[\text { equation (1)], } \\
\text { whence } & \int_{V}^{v} \frac{d v}{v^{2}}=-2 b \int_{0}^{s} d s,
\end{array}
$$

$$
\therefore
$$

and therefore

$$
\frac{1}{v}-\frac{1}{V}=2 b s=s \Pi \frac{c^{2}}{w} \frac{1}{(1000)^{3}},
$$

or $\quad \frac{c^{2}}{w} s=\frac{(1000)^{2}}{K}\left\{\left(\frac{1000}{v}\right)-\left(\frac{1000}{V}\right)\right\}$
which connects s and v.
If in the equation $\frac{1}{v}-\frac{1}{V}=2 b s$, we substitute $\frac{d t}{d s}$ for $\frac{1}{v}$, we have

$$
\frac{d t}{d s}=\frac{1}{\bar{V}}+2 b s
$$

and integrating, we have

$$
\begin{equation*}
t=\frac{s}{V}+b s^{2} \tag{4}
\end{equation*}
$$

which connects t and s.
If we divide

$$
\begin{align*}
& \frac{1}{v^{2}}-\frac{1}{V^{2}}=4 b t \\
& \frac{1}{v}-\frac{1}{V}=2 b s \\
& \frac{1}{v}+\frac{1}{V}=\frac{2 t}{s} \ldots \tag{5}
\end{align*}
$$

which connects v, t, and s independently of $2 b$, the coefficient of resistance.
1754. In determining the velocity of a shot it is usual to measure the time in which a given short range is described, and then, dividing the space in feet by the time in seconds, the result is adopted as the approximate velocity at the middle point. If the cubic law of the resistance of the air be supposed sufficiently near the truth, this may easily be shown to be strictly correct for any range, so long as the path of the shot may be considered to be a straight line.

We have seen that when V is the initial velocity and v the velocity at the distance s, then

$$
\frac{1}{v}=\frac{1}{V}+2 b s
$$

or if v^{\prime} be the velocity at the distance $\frac{s}{2}$, then

$$
\frac{1}{v^{\prime}}=\frac{1}{\bar{V}}+b s
$$

- Also $\frac{\text { space in feet }}{\text { time in seconds }}=\frac{s}{t}=\frac{s}{\frac{s}{V}+b s^{2}}$, by equation (4),

$$
=\frac{1}{\frac{1}{\bar{V}}+b s}=v^{\prime},
$$

the true velocity at the middle point of the range s.
1755. Inasmmeh as the resistance of the air does not vary strictly as the cube of the velocity, when formulæ (2), (3), and (4) are used for considerable differences of V and v, it is necessary to use several numerical ralues of K. But as this would be a troublesome operation to perform in each case, general tables of the ralues of $\frac{500}{K}\left\{\left(\frac{1000}{v}\right)^{2}-\left(\frac{1000}{\Gamma}\right)^{2}\right\}$ for spherical and ogival-headed shot [Tables IX and XI], and also of the values of $\frac{(1000)^{2}}{K}\left\{\frac{1000}{v}-\frac{1000}{V}\right\}$ for spherical and elongated shot [Tables V III and X], have been computed. It is manifest that these quantities depend upon v and V, which are quite independent of the nature of the shot, while K is a coefficient dependent on the form of the projectile.
1756. Suppose the initial velocity to be T, and that the velocity falls from V to v_{1}, in space s_{1}, and in time t_{1}; from r_{1}, to v_{2} in space s_{2}, and in time t_{2}; from v_{2} to v_{3} in space s_{3}, and in time $t_{3} ; \ldots$ and from v_{n-1} to v_{n}, in space s_{n}, and in time t_{n}. Let $K_{1}, K_{2}, K_{3}, \ldots K_{n}$ be the particular values of K due to the mean of the velocities V and v_{1}, v_{1} and v_{2}, v_{2} and $v_{3} \ldots v_{n-1}$ and v_{n}. Then we have from equation (2)

$$
\begin{aligned}
& \frac{c^{2}}{w} t_{1}=\frac{500}{h_{1}}\left\{\left(\frac{1000}{v_{1}}\right)^{2}-\left(\frac{1000}{V}\right)^{2}\right\} \\
& \frac{c^{2}}{w} t_{2}=\frac{500}{h_{2}}\left\{\left(\frac{1000}{v_{2}}\right)^{2}-\left(\frac{1000}{v_{1}}\right)^{2}\right\}, \\
& \frac{c^{2}}{w} t_{3}=\frac{500}{h_{3}}\left\{\left(\frac{1000}{v_{3}}\right)^{2}-\left(\frac{1000}{r_{2}}\right)^{2}\right\}, \\
& \text { etc. } \quad \text { etc. }
\end{aligned}
$$

$$
\frac{c^{2}}{w} t_{n}=\frac{500}{K_{n}}\left\{\left(\frac{1000}{v_{n}}\right)^{2}-\left(\frac{1000}{v_{n-1}}\right)^{2}\right\}
$$

Adding these equations, we have

$$
\frac{c^{2}}{w} \Sigma t_{n}=500 \Sigma \frac{1}{K_{n}}\left\{\left(\frac{1000}{v_{n}}\right)^{2}-\left(\frac{1000}{v_{n-1}}\right)^{2}\right\} \ldots \ldots(\mathrm{I} .)
$$

Proceeding in the same way with equation (3), we have
therefore

$$
\begin{gathered}
\frac{c^{2}}{w} s_{1}=\frac{(1000)^{2}}{h_{1}}\left\{\frac{1000}{v_{1}}-\frac{1000}{V}\right\} \\
\frac{c^{2}}{w} s_{2}=\frac{(1000)^{2}}{K_{2}}\left\{\frac{1000}{v_{2}}-\frac{1000}{v_{1}}\right\} \\
\text { etc. }
\end{gathered}
$$

$$
\begin{equation*}
\frac{c^{2}}{w} \Sigma s_{n}=(1000)^{2} \Sigma \frac{1}{\Pi_{n}}\left\{\frac{1000}{v_{n}}-\frac{1000}{v_{n-1}}\right\} \tag{II.}
\end{equation*}
$$

In calculating the numerical values of the right-hand members of the above equations, V was taken for elongated shot $)=1700 \mathrm{f}-\mathrm{s} ; v_{1}=1690 ; v_{2}=1680 ; v_{3}=1670$, etc., and K_{1} the coefficient corresponding to the velocity $1695 \mathrm{f}-\mathrm{s}, K_{2}$ to $1685, K_{3}$ to 1675 , etc. Tables of the values of $\frac{c^{2}}{w} t$ and $\frac{c^{2}}{w} s$ were thus formed corresponding to a loss of every ten feet in the velocity. By interpolation, the values of $\frac{c^{2}}{w} t$ and of $\frac{c^{2}}{w} s$ which have been given in the tables, were then found for every foot lost in velocity.

Examples of the use of Tables VIII, IX, X, and XI.
1757. (1) Let it be required to find in what range an 11.52inch ogival-headed shot weighing 600 lbs . would have its velocity reduced from 1400 to $1300 \mathrm{f}-\mathrm{s}$. Let s denote the required space, then

$$
\begin{gathered}
\frac{c^{2}}{w . s}=\frac{(11.52)^{2}}{600} s=1865-1348=517 \\
s=\frac{517 \times 600}{(11.52)^{2}}=2337 \mathrm{ft}
\end{gathered}
$$

517 is the difference of the ranges opposite 1400 and $1300 \mathrm{f}-\mathrm{s}$ in Table VIII.
(2) Let it be required to find in what time the velocity of the same shot would be reduced from $1+00$ to $1300 f-s$.

Here $\frac{c^{2}}{w} t=1^{\prime \prime} .258-0^{\prime \prime} .875=0^{\prime \prime} .383$, the difference of the times opposite 1400 and $1300 f$-s in Table IX. Hence $t=1^{\prime \prime} .732$.
(3) If, on the other hand, the initial velocity being giren $1350 f-s$, it was required to find what would be the loss of velocity in 1500 ft ., we should have given

$$
\frac{c^{2}}{w} s=\frac{(11.50)^{2}}{600} 1500=331.8
$$

the reduced range. Now opposite the initial relocity $1350 \mathrm{f}-\mathrm{s}$ in Table VIII we find 1599, to which must be added the reduced range 331.8, making 1930.8; and corresponding to this we find the velocity $1288.2 f-s$, by the same table; hence the velocity of an 11.52 -in. $600-\mathrm{lb}$. elongated shot would fall from 1350 to $1285.2 f-s$ in 1500 feet.
(4) In like manner, if it was required to find how much the velocity of the same shot would be reduced in half a second. its initial velocity being $1334 f-s$, we must find the reduced time, $\frac{c^{2}}{w} t=.2212 \times 0^{\prime \prime} .5=0^{\prime \prime} .1106 ;$ adding this to $1^{\prime \prime} .120$, the numher opposite the velocity $133 \pm f_{-s}$ in Table IX, we obtain $1^{\prime \prime} .2300$; and opposite $1^{\prime \prime} .2306$ we obtain by proportional parts 1306.6 . $f-s$, which is the velocity the shot will retain at the end of half a second.
(5) Suppose a 15 -in. spherical shot weighing 452 lbs . to be fired with an initial velocity of $1400 f-s$ at a target 500 rards off; to find the striking velocity. Here $c=14.88$ in.; then

$$
\frac{c^{2}}{w} s=\frac{(1+s s)^{2} \times 15}{45200}=i 34.7,
$$

the reduced range ; opposite the relocity 1400 in Table X we find 1501, and adding 734.7 to this, we have 2235.7, opposite which, in the same table, we find the velocity $1215.8 f-8$, which is the required striking velocity.

Table VIII was deduced from experiments made with ogivalheaded shot struck with a radius of $1 \frac{1}{2}$ diameters.

For high initial velocities and low angles of projection, tables VIII to XI may be used to find approximately the time of flight and trajectory of the shot; thus, suppose V the initial velocity, and v the velocity when the shot has described the space $O P^{\prime}$ (Fig. 369) in time t, the effect of gravity not being considered; then, by tables VIII to XI, it is possible to find $O P^{\prime}$ and t. If x, y be the co-ordinates of P^{\prime} at time t, then

$$
\left.\begin{array}{l}
x=O P^{\prime} \cos a \\
y=O P^{\prime} \sin a-\frac{1}{2} g t^{2}
\end{array}\right\}
$$

become known because $O P^{\prime \prime}$ and t are known approximately.
Table XII will be useful in finding the values of $\frac{1}{2} g t^{2}$.

The Law of Penetration of Projectiles.*

1758. A Commission, appointed by the French Minister of War, carried on experiments at Metz, in 1834 and 1835, with a view to determine the law of penetration of spherical shot into various kinds of wood, masonry, and earth. The conchusions arrived at were, first, that the resistance of the same substance to spherical shot of different diameters varied as the square of the diameter of the shot; and, secondly, that the resistance of different substances to the same shot varied as $a+\beta \times$ (velocity $)^{2}$, where a and β were constant for each substance. If, therefore, c be the diameter of the shot in inches, w its weight in pounds, and v its velocity in feet per second, then the resistance to the shot will be expressed by $\frac{1}{4} \pi c^{2}\left(a+\beta v^{2}\right)=c^{2}\left(\lambda+\mu v^{2}\right)$, and the retarding force by $\frac{g}{w} c^{2}\left(\lambda+\mu v^{2}\right)$.

The following are the values of λ, μ, and $\frac{\lambda}{\mu}$ calculated from the values a and β, as given by Didion, \dagger and adapted to English measures.

[^46]| Substances. | λ | μ | $u=1 /\binom{i}{\mu}$ |
| :---: | :---: | :---: | :---: |
| Oak, Beech, and Ash | 2329.4 | . 004328 | 734 |
| Elm | 1787.5 | . 003322 | 734 |
| Fir and Birch | 1296.0 | . 002408 | 734 |
| Poplar | 1217.7 | . 002263 | 734 |
| Sand, mixed with Gravel | 486.0 | . 009031 | 232 |
| Earth, mixed with Sand and Gravel | 670.3 | . 012456 | 232 |
| Clayey soil | 1167.5 | . 003799 | 554 |
| Earth from an old Parapet | 782.0 | . 004360 | $42 \pm$ |
| Damp Clay | 297.2 | . 002209 | 367 |
| Moistened Clay | 102.4 | . 000762 | 367 |
| Masonry of good quality | 6166.9 | . 008595 | 847 |
| Masonry of medium quality | 4915.7 | . 006851 | 847 |
| Brickwork | 3530.4 | . 004920 | 847 |

1759. Suppose that V is the striking velocity of a spherical shot, and that when it has penetrated a distance δ. its relocity is v; let S denote the value of s when the shot comes to rest, that is, when $v=0$.

$$
\begin{gathered}
\text { We have } \frac{d^{2} s}{d t^{2}}=\frac{v \cdot d v}{d s}=-\frac{g c^{2}}{w}\left(\lambda+\mu v^{2}\right) ; \\
\therefore \int_{0}^{V} \frac{v d v}{\lambda+\mu v^{2}}=-\frac{c^{2} g}{w} \int_{S^{\prime}}^{0} d s,
\end{gathered}
$$

or

$$
\begin{gathered}
\left.\frac{1}{2 \mu} \log _{\varepsilon}\left(\lambda+\mu c^{2}\right)\right]_{0}^{V}=\frac{c^{2} g}{w} S \\
\therefore \quad S=\frac{w}{2 \mu c^{2} g} \log _{\varepsilon}\left(1+\frac{\mu T^{2}}{\lambda}\right), \\
S=\frac{w \log _{\varepsilon}^{20}}{2 \mu c^{2} g} \log _{10}\left(1+\frac{\mu V^{2}}{\lambda}\right), \\
S=\frac{w}{2 \mu c^{2} g \log _{10} \varepsilon} \log _{10}\left(1+\frac{\mu T^{2}}{\lambda}\right) .
\end{gathered}
$$

CHAPTER XII.

NAVAL OPERATIONS ON SHORE.*

Section I.-General Considerations.

1760. Considerations.-The application of a naval force to the purposes of littoral warfare can only be considered as incidental to the general purposes for which the nary is created, and the character of the operations is necessarily limited by the character and strength of the force. The squadrons which the nary might collect would seldom be able to land a sufficient number of men to cope successfully with the forts or troops of any civilized nation with whom we might be at war. When they have been employed by foreign nations against each other, or against us, the operations have been desultory and generally attended witlo deplorable results.
1761. The landing of seamen would rarely be resorted to when opposed by goodinfantry, or when the object to be attained would take them very far from their base of operations. It would be unwise, generally speaking, to expose them voluntarily to measure force in the field with disciplined infantry and cavalry. When necessity leads to such a measure, it should be based on the unquestioned superiority of the sailors and marines, both in numbers and appointments. Exceptional cases occur where the strength of a ship or squadron may be landed with important effect, as when the rights of the Hag, of civilization, or of humanity require the use of a naval force for want of other means. The offences of savage nations or islanders, or of a piratical people, may be instanced as cases requiring punishment or intimidation.
1762. Should it be judged expedient, however, to prosecute this desultory kind of warfare, the commanders employed in it will do well to consider that a descent ought never to be hazarded

[^47]into an enemy's country without having taken proper precautions to secure a retreat; that the severest discipline ought to be preserved during all the operations of the campaign ; that a commander onght never to disembark but on a well-concerted plan, nor commence his military operations without some immediate point or object in view ; that a re-embarkation ought nerer to be attempted, except from a clear, open beach, where the approach of an enemy may be seen and the forces covered by the fire from the ships.
1763. Tife Base.- In all naval operations on shore, the first point to consider and fix should be the base of operations. Whenever it is possible, this base should be the squadron ; but when operating in shallow waters, the largest possible ship or ships, whose draught will admit of it, shonld accompany the boats and keep up a constant communication with the forces on shore, so as to be ready at all times to forward with dispatch supplies botlo of prorisions and ammunition, and to send forward reinforcements if required.

176t. Preparatioxs.--Before landing, many points must present themselves for the consideration of the commander-in-chief : the means of approach, the opportmities for landing, the nature of the ground, the possibility of maintaining communications with a snitable base, the character and numbers of the opposing force, the possibility and probability of accomplishing the objects of the expedition, and the safe withdrawal of the forces.
1765. Taking it for granted that all the preliminary drills have been thoroughly tanght, and that the men are fully accquainted with the manual of the howitzer and with the skirmish drill, and have some knowledge of battalion drill, the first consideration is the means of approach. Every care should be taken to keep the men fresh for their work; and to this end, the boats containing the landing-force should be towed to the place of disembarkation by the steam launches and cutters of the Heet.
1766. The officer in command of the landing-force shonld be furnished with accurate information of the depth of water and the dangers of navigation. Care must be taken also to get as much knowledge as is possible of the character of the ground and the opportmities for landing. Generally speaking, an open beach which may be swept by the fire of the shipping and will offer a firm footing, should be selected. Judicious means, however, must be used to get the force landed withont opposition: avoiding it either by keeping out of sight, or, if seen, by pulling rapidly to some point which may be more readily reached br the boats than by the party on shore, or by dividing the force and making false attacks upon different points.
1767. If, however, such attempts are unavailing, then it only remains to land promptly in the face of the cnemy; and to this end, that part of the beach must be selected where the footing is most likely to be firm, the bank gencrally shelving, and the bottom freest from stones and mud, least exposed to the surf, and most especially where no cover of any kind for the enemy exists within some hundreds of yards from the shore. It is also of the utmost importance to keep up communication with the base, and for this purpose some vessels should be stationed to cover and protect the boats, and also to furnish assistance to the party on shore in whatever way it may be needed.

Section II.-Landing.

1768. Details.-Before landing, the station of each boat should be fixed, and every officer should be made acquainted with the details of the organization, and particularly with his position after landing.

The small-arm men should be formed into companies of forty men, with four petty officers, and armed with breech-loading rifles and bayonets; each company to be commanded by a lieutenant and two other officers. The howitzer crews should be composed of twenty-one men, each man being armed with a cutlass and breech-loading pistol.
1769. Each ship landing two companies should also furnish twelve pioneers : four with a saw and axe each, four with a pickaxe and spade each, four with small crowbars and sledge-hammers each, or such intrenching or other tools as the nature of the expedition may require ; the men should be equipped with those tools to whose use they are most accustomed: carpenters with saws and axes, firemen with intrenching-tools. Vessels furnishing a smaller contingent of infantry should furnish a proportionate number of pioneers. An armorer, who will join the pioneers, should be sent with each landing-party, and furnished with cleaning-rods, screw-drivers, and gimlets. The ship's bugler and the drummer and fifer should be sent with the men.
1770. Every man in the command should have a canteen and haversack, and a blanket, folded and slung over his shoulder.
1771. Each division of boats should carry a distinguishing flag; scaling-ladders, intrenching-tools, and other implements should be carried by designated boats.
1772. If landing in a heavy surf, the ammunition should be put into small powder-tanks with the lids well screwed down,
and the howitzers might be rafted on shore if they could not be carried safely in the boats.

Fig. 3 3.0.
1773. Landing.-Should the distance to the point of landing be considerable, the boats should be towed to within a suitable distance of the beach, being carcful to keep out of range. On arriving opposite the place of disembarkation, the tow-ropes shonld be cast off and the line formed preparatory to landing. The boats containing the heary howitzers should be on the extreme flanks, next the light howitzers which are to be landed, and the main body of infantry in the middle, with the skirmishers in the centre. There should be a reserve force of howitzers and infantry ready to be directed to either flank, or to reinforce any particular part of the line. The howitzer divisions should be formed in echelon, so as to deliser a cross-fire on that part of the beach where the landing is to be made. When all these dispositions have been made, the boats should pull in for the landingplace.
1774. It should be borne in mind that the force will be at the greatest disadvantage when disembarking in the face of a strong opposition ; for in using all the celerity that is practicable with
trained men, there must be a few minutes when the pieces to be put ashore must be inactive. Therefore it is necessary that, as soon as the howitzer fire has cleared the beach, a strong body of skirmishers and infantry should be landed, to engage the enemy during the disembarkation of the howitzers. No gun should be landed before there are at least forty men on the beach.

1775 . Meanwhile the fire of the heavy howitzers should be discontinued, unless they can safely fire shell over the heads of the party on shore. The skirmishers should inmediately advance and seize the nearest cover, while the main body of infantry will pull in and land, followed by the howitzers. Immediately the main body of infantry has landed they should be deployed into line of battle, with a strong skirmish line in advance, and they should take up the strongest position possible, the howitzers being brought into position as fast as they are landed. The line should be formed in such a manner that the lanks will if possible be protected by the nature of the ground, or by the fire from the ships.
1776. The Boats will always land a boat's length apart. Before leaving the ship, four boat-keepers should be appointed to each boat carrying a howitzer, and two for the others, with an officer in charge of each division of boats, who should on no account leave them. The boats should be hanled off to their anchors with a long scope of cable, and a man left in each boat to veer in, that the troops may be readily embarked. The officer left in charge of the boats should be careful to avoid being surprised, and, if circumstances will admit, should strengthen his position by cutting down trees and throwing up small breastworks a short distance in front. There should be at least one boat with a full crew left with him, to enable him to keep up communication with his base; he should also endeavor to keep up commonication with the commander of the forces by means of signal-men.

Section III.-On the March.

1777. The Advance.-If the force has landed without opposition, the first dnty will be to make a reconnaissance, in order to ascertain the position of the enemy, the situation of the nearest towns and villages, the direction of roads, streams, etc., and to obtain a general idea of the country. If it becomes necessary to advance into the country, the manner of advance must be determined by the commanding officer. If the country be open, or if no opposition be met with, the column may take up the march in close order.
1778. Advance-guards.-If, on the other hand, the line of march should pass over hilly country, or through woods, or if there are any indications of the presence of an enemy, every precaution should be taken against a surprise, by throwing out advance-guards, rear-guards, and flankers, as may be deemed necessary.
1779. The object of these guards is to give time for the colimu to make the necessary preparations for attack or retreat in case the enemy are discovered.
1780. The guards should each consist of at least one officer,

Fig. 371.
one petty officer, and twenty men, arranged as in the figure. Generally speaking, the adrance-guard should be from one-fifth to one-tenth of the whole force, and should be accompanied by a detachment of signal-men and pionerrs. The advance-guard may be increased or diminished at the discretion of the commanding officer.
1781. When the column halts, the adrance-guard does the same, but the men at the head should occupy the neighboring heights, if there be any within four or five hundred yards. There should never be less than three men at the head, and different divisions should endeavor to keep their distance from the others. On coming to a wood, the mer at the head should be reinforced, and some sent through, and others around it. the column halting until the wood has been patrolled. The same rule should be followed on coming to a village. Ther should never enter a defile without previously occupying the heights on either side by flanking-parties. At night the distances should be reduced, and communication kept up with a chain of men just far enough apart to see each other. Should the advance-guard be attacked, it should engage with spirit, and never fall back until absolutely obliged to do so, and then the retreat should
be made on either side of the column, and never on the column itself.
1782. Rear-gdards.-The object of rear-guards is to prevent the enerry from approaching the column unperceived, and the men composing it should be picked men. Should they be attacked, the men in rear should be reinforced by the other squads, and the enemy must be held in check. If they retire, the same rules apply to them as to the advance-guard. Whenever the

Bivouac of a force of
1 Comp. Pioneers. ... 70
10 Howitzers........ 220
12 Companies....... 1008
1352 men.
Officers............. 54
column halts, the rear-guard should face to the rear. Flankers are placed as in the figure, on either or both flanks, as may be necessary, and their movements are governed by the same general rules as the other guards; all parties so thrown out should keep themselves concealed as much as possible.
1783. Bivouac.-In selecting a site for a bivouac, wood and water are the great requisites. In cold weather, woods are the warmest places, but in tropical climates it is better to birouac in the open. Dry and sheltered positions should be chosen. If obliged to bivouac where one may have to engage, it is better to take a position in advance of the one which must be occupied in fighting. If obliged to bivouac near a marsh, there should be some rising ground between it and the position selected; this should be done if possible some time before the arrival of the column.
1784. On arriving on the ground selected, the infantry and howitzers should wheel into open column by divisions, crews of howitzers formed to the rear and the men mustered, absentees reported to the commanding officer, and arms stacked. The men should sleep where they stand in ranks, officers sleeping opposite the flanks. Cooking places should be made on the other flanks, and sinks dug some two hundred yards off. The camp-gnard should be immediately posted, whose duty it is to prevent all persons from leaving, except officers and authorized persons. The advance-guard and rear-guard should be relieved in the afternoon, at the time of going into birouac.
1785. Grand-guard.-Besides the regular camp-guard, which is charged with maintaining order and discipline in the camp, there should be a grand-guard thrown out in the direction of the

Sentinels.

enemy. This should consist of one or two companies, according to the nature oi the service and the ground to be covered. The first line is the grand-guard, one-hali of whom may rest six hours, and the otner half be awake and ready for duty six hours. This is the post from which the pickets, outposts, and sentinels radiate. The picket-guards compose the second line, and are relieved from the grand-guard every eight hours; one-half to be under arms half the time, the other laalf to rest half the time. The third line are the outposts, consisting of nine men, relieved from the pickets every two hours: these men should be always watchful. The forrth or front line of sentinels are to be relieved from the outposts every homr: they patrol constantly, and connect with one another.

1783 . The officer commanding the grand-guard should be stationed at the first line, visiting the second every six homrs, and ge:aerally supervising. The other ofticers should be stationed with the pickets, and should risit the outposts and sentinels frequently. The petty officers command the outposts. It is not necessiry that the line should be straight, but the general principles should always be carried out. It is generally advisable to have some howitzers with the grand-guard, on the first line, poited so as to command the approaches.
1787. When attacked, the outposts forming as skirmishers move to the support of the sentinels; pickets may move forward to support the others, or all may retire skirmishing as the nature of the attack may suggest. Should the attack be so strong that the whole grand-guard is compelled to retire, then each line will retire fighting. When an attack commences, a message should be instantly sent to the commanding officer, detailing is nature and giving any necessary information.

Section IV.-Engaging.

1788. The Atrack.-This operation must be considered under two phases: 1st. The column has halted within sufficiently easy distance of the enemy to make a march of from five to ten miles, with the intention of attacking as soon as it arrives. 2d. It has halted at too great a distance for that purpose, so it marches up to him, and bivouacs for the night to attack next morning.
1789. If the column has been closely pursuing the enemy, with the adrance-guard continually in contact with the enemy's rear, it may happen that the retreating force moy be suddenly found drawn up to receive battle. Under sush cirmumstances, it would be better to act as in the second case, particularly if it occurs late in the day, in which case all preparations for attack
should be made late in the night; but should the enemy be demoralized from previous defeats or other causes, he should be attacked when he turns to show fight, as in the first case.
1790. In either case, the nature of the country and its communications must determine the mode of the advance; but it should resemble closely the order in which it is intended to fight, covered by swarms of skirmishers as an advance-guard. If it is impossible to advance in line of battle, the double column is suggested as being the easiest to deploy. In any case, the column sloould be kept closed up and ready to be deployed into line, followed in the rear by the reserve.

Skirmish Line-3 Companies.

Fig. 374.-Force deploỵed, ready to attack.
Arrived within the fire of the enemy's guns, the position should be reconnoitred, and the column deployed into line and placed in position.
1791. These arrangenents chould be made under cover of the advanced line of skirmishers. Haring decided on what part of the enemy's line to make his false and real attacks. the commanding officer should attack as soon as possible, if the chances are in his favor: delays in such cases are very darigerons. The artillery should be massed opposite that part of the enemy's line where the real attack is to be made. It is sometimes necessary to begin an action with all the guns avalable at the moment, in order to keep the enemy at a distance while the troops are getting into position.
1792. The commanding officer must decide whether the assault is to be made in line or in column. If in line, it must be remembered that the charge must occasion much disorder in the line, which, unless supported on the instant of its first success. is sure to be driven back by a counter-charge. For this reason, a second line should be formed and placed so as to cover the assault.
1793. Taking it for granted that it was decided to attack the enemy's left, the disposition would be as in the figure. Of

Fig. 375.-Force attacking Enemy's Left Flank.
course, before the advance, all the available guns slould be brought to bear on the left. When it was considered that the artillery fire had told sufficiently, the attacking-party should advance. As soon as they become engaged a partial advance of the whole line should take place. The advance should be closely covered by skirmishers, who should push on as near to the enemy's lines as possible.
1794. If, however, during the march the enemy should be unexpectedly found in position, or when called upon to act as in the first case, more time will be required to deploy and to make arrangements for attacking. The advance-guard should take up some defensive position, and strengtheu it if possible. The commander should hasten to the front and xeconnoitre the
ground. Having done so, orders must be sent to the commanders of the several divisions, telling them where to deploy, etc. These dispositions must depend entirely on whether it is intended to await the enemy's attack or to attack first, and in the latter case, oll what part of the enemy's line the attack is to be made.
1795. Tife Skifmishers.-Specially instructed men are necessary for this work. In covering a line or a column advancing to attack an enemy, their numbers should be increased according as the nature of the ground to be moved over affords cover ; every skirmisher of the enemy should be wiped out by them from the front of the attacking-line, and a continued fire maintained up to the last moment, as this will serve to screen the adrance and to steady the men. They should move forward quickly as soon as the advance commences, keeping about 150 yards ahead, and under cover as much as they can, and press as close to the enemy's line as possible, eren up to 150 yards. Too much care cannot be taken in guarding against a waste of ammunition: the firing should be deliberate and careful in the extreme, and not a shot thrown away. Random tiring only encourages and gives confidence to the enemy, while it depletes one's own resources.
1796. The Infantrx.-In advancing the main body of the infantry to the attack, they should be distributed in two lines, as above shown (Fig. 370). The lines should adsance together at a steady quick march to within 150 yards of the enemy, when the order will be given to the first line, "Prepare to clarge." If the skirmishers have pushed up close to the enemy, they will lie down, and the first line passing over them will commence their charge as they do so. The second line should continue the movement in quick-step. At the order "Charge," let the meu cheer with a will, and take up the run with their pieces at a trail, seizing them with the left land as they close with the enemy.
1797. The Artilefry.-The ground in the vicinity of the point to be attacked must be swept by a heary cannouade before the attacking-force is launched forward. The heariest possible fire should be maintained up to the last moment, and when the attacking-force has adranced into such a position as to impede the fire, the howitzers should, if possible, be adranced into sucle a position that they can reopen.
1798. After the charge commences, they should devote themselves to the other part of the line, or be placed in such a position as best to repel a counter-charge, or they mar be used as circnmstances dictate, being carefnl to keep some companies with them. The skirmishers, after the charge has commenced, shonld form on the artillery
1799. The guns should always be massed when it is possible, as the moral effect is much greater than when they are scattered, and their fire should be directed to the enemy's men rather than to his guns. They should always ba supported by infantry on one or both flanks, but never in rear.
1800. The Defence.-Great care is necessary in the selection of a position where a defence is to ba mads. It should afford a deptli of five or six hundred yards on which to manœuvre, with free communication from right to left, and with roads in rear by which to retreat. The protection of the flanks is a serious consideration ; one at least ought to rest on some impassable obstacle. The general line of positions must either curve convexly or concavely towards the enemy, or there must be a mixture of both. If the flanks are strong and not easily approached or turned, the concave is the stronger. If, on the contrary, the spots where the flanks rest present no feature of strength, it is better to have them retired, thus forming a convex front to the enemy.
1801. An obstacle, not actually an impassable one, running somewhat parallel to the general line of the position and about two or three hundred yards in front of it, adds greatly to its strength ; but such obstacles as high banks, hedges, etc., which would afford any cover, are most dangerous. Obstacles that cut up one's own lines are to be avoided, and also positions with wooded ground in front of them. If there is but one road to retreat by, it should run from near the centre.
1802. The Infantry.-In distributing the troops along a chosen position, some parts of it will require to be held by a much greater number than others, and the commander must decide which is the important point or key, and that point should be occupied in force, with the reserves near at hand. He should then set to work to strengthen himself artificially. The formation of the command into two lines instead of one has many advantages, as it keeps it more compact and renders it easier to support any particular point of the line; but the second line should be used very sparingly, and only when the necessity is urgent.
1803. The front of the infantry will always be covered by skirmishers, so that no fire can be deliveral till they have been driven in: when the front las been cleared and the enemy is advancing, it is time for the infantry to open fire, kneeling and with volleys, by word of command. File-firing should not be used at such a time, as it is so difficult to stop it. It will be for the commander to decide when it shall stop, and then the order should be given, "Prepare to charge," and let then go in with
a cheer. An adrancing enemy should never be awaited in the open plain: in all such attacks there is a moment when the defendant must charge. Immediately after charging the men should be reformed and led back to their original position without being allowed to go too far in their broken state.
1804. The Artillery.-In defence, as in attack, it is the duty of the artillery to derote itself to the enemy's men, and it shonld be placed on that flank which occupies the strongest position. When neither flank lias any natural supports, the guns shonld be massed in the centre. These rules can be adhered to when the front does not exceed 1200 yards; beyond that, batteries must occupy several parts of the position.
1805. Squares to resist cavalry should only be formed when absolutely necessary, as the square is a mark for every description of fire. In forming them, adrantage should be taken of any favorable ground. If there is an obstacle, such as a small hedge, ditch, or fence, it is better to form at about twenty yards from it than to hug it closely.

Section V.-Field Fortification.

1806. Defintrions.-When an armed force is constrained to act on the defensive, from disparity of numbers or strength, it should endeavor to counterbalance this disparity by selecting a position on which to receive battle which will afford every military advantage to itself and prove, in a corresponding degree, unfavorable to the assailant. Such a position should present natural obstructions to the adrance of an assailant; it should screen the assailed from fire; it should command the ground over which the assailant must adrance ; it should command the lines of approach by a front and cross fire ; it should offer no obstructions to the free movements of the assailed; it shonld hare natural points of support both on the flanks and in the rear; and its lines of retreat should be ample and secure. As natural defensive positions may rarely possess the most essential of these adrantages, their defects must be remedied by artificial means. These means are termed fortifications.
1807. Fortification may therefore be defined as the art of so arranging a position selected for defence that an inferior force shall be able to resist with adrantage the assaults of one superior to it.

The covering mass is termed a Parapet when it shelters the assailed from the view and fire of the assailant, and affords a sweeping fire over the lines of approach.
1808. The Profile is the vertical section showing the thickness and height of the parapet and the slopes in front and rear.

Fig. 375.
$A B M N$, Ground line.
$B C$, Banquette Slope.
$C D$, Bauquette.
$D E$, Interior Slope.
$E F$, Superior Slope. JK, Counterscarp. FG, Exterior Slope. HIJK, Ditch. GH, Berm. LM, Glacis. HI, Scarp.

The most usual obstraction to impede the enemy's approach is the Ditch, which is placed in front of the parapet, for which it furnishes the material.

Any little ditch made behind a breastwork for the men to stand in for cover is called a Trench. The excavation of this also furnishes material for the parapet.
1809. A Bunquette is a step on which men stand to fire over the parapet. It should generally be about 4 feet 6 inches below the top.
1810. A Berm is a narrow strip left between the parapet and the ditch to prevent the earth from falling into the ditch.
1811. The top of the parapet is temed the Superior Slope; the interior face, when arranged for infantry, is termed the Interior Slope ; whenfor artillery, the Genouillere ; the exterior face is the Exterior Slope.
1812. The side of the ditch adjacent to the parapet is called the Scarp; the side opposite, the Counterscarp.
1813. A mound of earth placed in front of the counterscarp, with a gentle slope outwards, is called a Glacis.
1814. An Abattis is an obstacle formed by felling trees and laying them side by side, with the branches pointed and turned towards the enemy.
1815. A Traverse is any mass which is interposed to protect the men from fire which comes in any direction except the front.
1816. A Revetment consists of a facing of stone, wood, or sods, or any other material to sustain an embankment when it receives a slope steeper than is natural. They are used only for the interior slope of the parapet, and for the scarp.
1817. Relief is the height of the crest of the parapet above the bottum of the ditch.
1818. Command is its height above the level of the surrounding country.
1819. In order to establish mutual defensive relations between all the parts, certain parts may be thrown forward towards the enemy, and they are denominated advanced parts ; other portions, denominated retired parts, are withdrawn from the enemy and protected from their fire by the advanced parts.

Fig. $3^{7 \pi} 6$.
$P Q R$ and $U V W$, Advanced Parts. RSTU, Retired Parts.
$P Q, Q R, U V, V W$, Faces.
RS, TU, Flanks.
ST', Curtain.
$Q T, S V$. Lines of Defence. $P Q R, U V W$, Salient Andles. RST, STU, Re-entering Angles, $V A, Q B$, Capitals.
1820. This arrangement naturally indicates that the general outline of the plan inust present an angular system-some of the angular points, denominated salients, being towards the enemy, and others, called re-enterings, being towards the assailed. When such a disposition is made it is termed a flank disposition, because the enemy's flank is attained by the fire of the retired parts when he is advancing upon the salients. No salient

Fig. 377.-Indented Line.
should be less than 60°. A line of defence should not exceed 300 yards.
1821. Plans.-The simplest line that can be nsed, where the front to be defended is of limited extent and the flanks and rear are secure, is a right line. But from this line only a direct fire can be obtained; and for extended forms a combination of front and flank fire may be obtained by using the indented line. (Fig. 377.)
1822. The plan of works for positions which have the rear secure, but are assailable in the front and on the flanks, admits of great variety. The simplest is a work of two faces only, the salient being towards the enemy's line of approach. This is termed a Redan (Fig. 378). Its faces should receive such a direction as to sweep the approaches to the flanks; from the angular point, however, only a single line

Fig. 378.-Plan of tile Redan. $A B, C D$, Faces. $A D$, Gorge. $B C$, Pan-coupée. of direct fire can be bronght to bear on the scetion in ad

Fig. 379.-Plan of the Priest-cap. angle too acute, the plan may cap or Swallow-tail (Fig. 379), in which the two main faces sweep the flank approaches, and instead of the pan-coupée, a broken line forming a re-entering angle is placed in the salient, and attords a cross-fire on the ground in front.
1824. When the flank approaches extend to the rear, a tlank (Fig. 330) is added to each vance of it; to remedy this a portion of the salient is filled in so as to form a short defensive line, perpendicular to the capital. This is termed a Pancoupée.
1823. When the faces of the redan cannot be placed so as to sweep the flank approaches without making the salient be what is termed a Priest-
 face of the redan, and receives Fig. 380.-Plan of the Lunette. such a direction as to sweep that $B C, C D$, Faces. $A B, D E$, Flanks.
portion of the flank approach which cannot be reached by the faces except by a very oblique fire. This is termed a Lunette.
1825. Such works as are assailable on all

Fig. 381.
Plan of a Square Redoubt, with one angle indented and the other arranged with a pancoupée. sides must present an unbroken line to the assault, and are termed enclosed works. They are generally of three classes: redoubts, star forts, and bastioned forts.
1826. A Redoubt may be a polygonal figure of any number of sides (Fig. 3s1). That most usually taken is the square.
1827. A Star Fort consists of a polygon haring alternate salients and re-enterings (Fig. 382). It is generally planned by placing redans on the middle of the faces of a square redoubt. The star fort is but little, if at all, superior to the square redoubt, as its flanking dispositions are imperfect, and it presents a much longer line to be defended. It would only

Fig. 382.
Plan of a Star Fort, with the be useful on broken ground or irregu- faces of two redans prolonged lar sites.

182S. The Bastioned Fort las been designed to remedy the defects in the two preceding classes. It may consist of a polygon of any number of sides, but for field forts the square and pentagon are generally preferred. To plan a work of this kind, a square or $1 \in \ln ^{2}$ agon is first laid out (Fig. 383), and the sides bisected by perpendicu-

Fig. 383.-Plan of a Bastioned Fort constructed on a square. lars, III ; a distance, GI, of one-eighth of a side in a square (one-serenth in a pentagon) is set off on the perpendiculars: from the angular points of the polygon, lines DA. CF, are drawn through the points thus set off: these lines gire the direction of the lines of defence; from the salients of the rolygon, distances equal to tro-sevenths of a side are set off on the directions of the line of defence. which gire the faces; from the extremities of the
faces the flanks are drawn perpendicular to, or making an angle of 110° with, the lines of defence; the extremities of the flanks are connected by curtains, CD.
1829. In deciding on the general plan to be carried out, the following considerations require attention: the object the work is expected to fulfil, and its situation with respect to the enemy ; whether it is likely to be attacked by overwhelming forces; whether artillery is likely to be brought against it, or infautry; and whether it can be surrounded; the number of men there will be for its defence, observing that it is better to have a force concentrated, and that it is therefore injudicious to make works of a greater extent than can be well manued and vigorously defended. Another consideration that must not be omitted is the number of men that can be collected for working, whether they are one's own men or inhabitants, and whether there are tools enough and time enough to do it.
1830. Profiles.-Having decided on what is the best plan of the works, the next consideration is the protile. This will also depend on much the same considerations as the general plan, particularly on the tume in which the work is to be done and the number of men there are for work. A general idea may be formed of the quantity of work that may be performed in a given time, and of the proportion of cover that may be obtained in that time, by adopting different sections and referring to the annexed figures and corresponding estimates.
1831. In ordinary soils, a man can excavate one cubic yard per hour for 8 hours; in stiff clay, he would only do half as much; and in dry, light soils, three times as much. Each man should have 6 feet in length to execute, which distance enables him to use his tools with freedom; but when only improving the natural advantages offered by banks, fences, etc., the work-ing-parties might be distributed at much wider intervals than 6 feet; for instance, a man might convert 20 or 30 feet of hedge into a good breastwork in three hours, when he could not execute 6 feet in length equally defensible on a level field.
1832. Fig. 384 represents the section of a small trench and the parapet that has been formed by throwing the earth up in front. The trench is $2 \frac{1}{2}$ feet deep and the same

Fig. 384. width, having a rough step 1 foot broad in rear. The earth thrown out will make a parapet of a lieight nearly equal to the
depth of the trench withont taking any precautious to make it stand at a steeper slope than is natural ; we will assume that is 2 feet high, which will make a total of $4 \frac{1}{2}$ feet from the bottom of the trench. A man, therefore, though he can fire over the parapet, has to stoop to be concealed by it, and it therefore affords about the least amount of protection that should be considered. The solid contents of the excavation, from which the probable time to execute it may be determined, is found by multiplying the depth and breadth of the trench together, and that product by the length each man has to do-

$$
\begin{aligned}
& \text { Trench, } 2 \frac{1}{2} \times 2 \frac{1}{2} \times 6=36 \frac{1}{2} \text { c. feet. } \\
& \text { Step, } 1 \times 1 \times 6=\frac{6}{43 \frac{1}{2}} \\
& \text { Earth to be removed }
\end{aligned}
$$

Divide this sum by the amount excavated in one hour by one man, 27 c. feet, and it will be found that it will take a little over one hour and a half to throw up this parapet on level ground.
1833. Fig. 385 affords more cover, for the top of the parapet

Fig. $38{ }^{3}$.
is 6 feet from the bottom of the trench. The best may to execute it would be to sink a trench 3 feet deep and 3 feet wide. and to throw the earth about 2 feet in front of it : so that, in the progress of the work, when the trench became too deep to stand in and fire over the parapet, a little step might be cut out of the solid left in front for a banquette; another step in the rear would complete it. The steps might be 18 inches wide and deep. To find the time it will take to execute

The Trencl, $3 \times 3 \times{ }^{3} \times 6=5 \pm$ c. feet.

$$
\text { Steps, } 1 \frac{1}{2} \times 1 \frac{1}{2} \times 2 \times 6=27
$$

C. feet removed by one man per hour, 27$) \overline{51}$ "

$$
\text { It will require } 3 \text { hours. }
$$

But it offers no impediment to an enemy, and men conld only be drawn up in single file for its defence.
1834. A treuch of the dimensions shown in Fig. 356 might be completed in five hours on the presumed data, and being roomy enough to dispose men in double files for its defence, and high

Fig. 386.
enough to screen and cover them, may be considered as large as is necessary for merely fulfilling these conditions.
1835. Fig. 387 is a form of breastwork that might be adopted

Fig. 387.-Profile of Revetted Parapet for Rocky or Marshy Soils.
for obtaining cover in rocky or marshy situations, where a ditch or trench could not be made deeper than two feet ; the men inight be set to work in two lines, the interior slope revetted by stakes or sods, and it could be accomplished in from two to three hours.
1836. If more time could be devoted to strengtliening a post, or if other circumstances were favorable, it would become a consideration whether some other profile of a different form could not be substituted with advantage for such as only afford cover witlout opposing an obstacle to the advance of an hostile force, and this would properly be accomplished by excavating a ditch in front of the parapet instead of naking a trench in rear.
1837. Fig. 388 shows the general profile which such a work

Fig. 388.
might have. The dimensions of the parapet are determined by the following considerations: The height, $a b$, by the cover required,
and the position of the enemy; the thickness, $b c$, by the penetrating power of the projectiles likely to be bronglit against it. For field artillery, 15 feet is required; forrifles, 4 feet. The banquette, ef, should be 3 feet wide, if for single rank; $4 \frac{1}{2}$ feet for double rank. In eg, the banquette slope, the height is equal to half the base; the interior slope, af, is $4 \frac{1}{2}$ feet and steeply revetted; the superior slope, $a h$, is sufficiently sloped to enable the fire over it to defend the edge of the counterscarp ; the exterior slope, $h k$, is left at the natural slope at which unrammed earth will support itself; the berm, $k l$, is made sufficiently wide to prevent the earth of the parapet from slipping into the ditch; the counterscarp, $p n$, is made as steep as the soil will permit, and from 6 to 12 feet deep; the scarp, $l m$, is not made so steep because it has to support the weight of the parapet : but both should be as steep as possible to resist escalade. The ditch is first excavated in steps, as represented in the tigure, which are subsequently cut away. The breadth of the ditch is thus determined by calculation:
1838. If $a b=8$ feet; $b c=15$ feet; of $=3$ feet; in the slope $e g$, the base $=$ height $\times 2 ;$ in slope $a f$, the base $=\frac{h e i g h t}{3} ;$ in slope $h k$, the base $=$ height ; in the scarp $l m$, the base $=\frac{\text { height }}{2}$: in the counterscarp, $p n$, the base $=\frac{\text { height }}{3}$; and if the ditch is to be 10 feet deep,
the area, \quad gefob, $=\frac{4 \frac{1}{2}+11 \frac{1}{2}}{2} \times 3 \frac{1}{2}=28 \mathrm{sq}$. feet.

$$
\begin{gathered}
a 0 f=\frac{4 \frac{1}{2} \times 1 \frac{1}{2}}{2}=3 \frac{3}{8} " \\
a b c h=\frac{8+5 \frac{1}{2}}{2} \times 15=101 \frac{1}{4} \\
h c k=\frac{5 \frac{1}{2} \times 5 \frac{1}{2}}{2}=15
\end{gathered}
$$

Area of profile of parapet or ditch $=147 \frac{3}{4} \quad$ "
Mean breadth of ditch $=\frac{147 \frac{3}{4}}{10}=14.775$ feet. Breadth at top or bottom of ditch $=14.755 \pm \frac{\frac{10}{2}+\frac{10}{3}}{2}=18.9$ or 10.6 feet.

Time required to execute $\frac{147 \frac{3}{4}}{27} \times 6=$ nearly 33 hours. To throw up a length of parapet of 100 yards would require a working-party of 100 men : 50 diggers, 34 shovellers, 16 rammers.
1839. Having selected a position on which a field-work is to be thrown up, and determined its dimensions, it is to be remembered that the salient angles should be directed towards points that are difficult of access; the faces of the work are then

Fig. 389. marked out by sinall pickets, and traced with a piece of tape and the angles set off. To gnide the workmen in the construction, right profiles (Fig. 359), made with slips of board, are constructel along every face, about 10 yards apart.
1840. Experience has shown that, in ordinary soils, a man with a pick can furnish employment to two men with shovels, and that, not to be in each other's way, they should be from $4 \frac{1}{2}$ to 6 feet apart, and, finally, that a shovelful of earth can be pitched by a man 12 feet horizontally or 6 feet vertically.
1841. To distribute the workmen, the comterscarp crest is divided into lengths of $1 \doteq$ feet and the scarp crest into lengths of 9 feet, the points being marked by pickets. In each area thus marked out, a working-party is arranged, consisting of a pick with two shovels near the counterscarp, two shovels near the scarp, and one man to spread and one to ran the earth for two parties. The pick commences by breaking ground so far from the counterscarp crest, that by digging vertically 3 feet, he will arrive at the position of the connterscarp. This is carried on at the same depth of 3 feet advancing towards the scarp, where the same precaution is observed. The earth is thrown forward and evenly spread and rammed. If the ditch is deeper than 6 feet, an offset, abont 4 feet broad, should be left at the scarp at mid-depth of the ditch, to place a relay of shovels. When the ditch has been excavated to the bottom, the offsets are cut away, and the proper slope given to the sides. The earth furnished by the offsets, if not required to complete the parapet, may be formed into a small glacis. Care should be taken not to have any pebbles on top of the parapet, and also to have a drain to take the water off without letting it run down the scarp.
1842. Artillery in Field-woris.-The proper positions for artillery are on the flanks and salients of a work, and the guns should be collected at these points in batteries of several pieces. The term battery is used of a collection of several guns, and it is named according as the parapet is arranged for firing over or
through it: in firing over, it is called a barbette battery; in firing throngh, an embrasure battery.
1843. The barbette consists of a mond of earth thrown up against the interior slope; the upper surface is level and 1 foot 8 inches below the interior crest; the earth at the sides and rear receives the natural slope. To ascend the barbette a construction termed a ramp is made of earth ; it should be 5 feet wide on top, and the slope is 6 feet of base to 1 of perpendicular. It should be at some convenient point in rear, and take up as little room as possible.
1844. An embrasure is an opening made in the parapet for a gun to fire through. The bottom of the embrasure is termed the sole, and shonld be 1 foot 8 inches above the ground, and should slope ontward. The interior opening is termed the mouth ; it should be 18 inches wide. The embrasure opens outwards; the sides of it are called cheeks.

18t5. Defence of $W_{\text {alls.- Walls are readily made arailable }}$ for purposes of defence by loop-holing them, the mode of doing it varying with their height and situation. It is a general rule that

loop-holes must be so placed that an enemy, if he succeeds in rushing up, shall not be able to make use of them. To prevent this they should be 8 or 9 feet above the ground on the outside (Fig. 390, \boldsymbol{a}), but on the inside (Fig. 390, b) the banquette from which the defenders are to fire should not be more than about 4 feet 6 inches below them. A portion of the wall not less than 18 inches high shonld be left above the loop-holes to screen the men's heads when firing.
1846. These points are attainable in several ways; if the walls are high, the loop-holes may be made near the top, and a temporary stage or earthen banquette might be placed inside; if the wall is not over 6 feet high, the loop-holes may be made at 4 feet 6 inches above the inside level, and a ditch made ont-
side. The quickest way of making a loop-hole is to break the wall down from the top for about 2 feet (Fig. 390, a), and then to fill it up at the top with a stone or sand-bag. If the wall should be lorr, a piece of timber supported on a couple of stones would be a ready expedient. If exposed to the fire of artillery, a wall will not afford good cover, but it may be improved by sinking a trench in rear and throwing the earth against the wall, or by digging a ditcl in front and throwing the earth over the wall.
1847. Defence of a Building. - The great art of making a defensible post out of a building and the adjoining outhouses and walls, consists in selecting from all the objects in view only what will be useful in strengthening the work, and in sacrificing everything else, making use of the materials for fortifying.
iS4S. A building proper for defensive purposes should be in a commanding position; it should be substantial, and of a nature to furnish materials for placing it in a state of defence; it should be of an extent proportioned to the number of defenders, and only require the time and means that can be devoted to completing it ; it should have walls and projections that mutually Hank each other ; it should be difficult of access, and yet have a safe retreat; and the walls should be of moderate thickness. Brick houses or walls are to be preferred to those of stone or wood.
1849. The number of men necessary for defence may be roughly estimated by allowing 1 man to every 4 feet on the lower floor, 1 to every 6 on the next, and 1 to every 8 on the next.
1850. To put a building in condition to rep 1 an immediate attack, certain points would naturally claim primary attention, and they should be attended to in the order in which they are given.

1st. To collect material and barricade the doors and windows on the ground floor, to make loop-holes in them, and to level any obstruction outside that would give cover to an eneny. 2 d . To sink ditches opposite the doors on the outside, and to arrange loop-loles in the windows of the upper story. 3d. To loophole the walls, generally attending first to the most exposed parts, and to make communications through all the walls. 4th. To place abattis or any feasible obstructions on the outside. 5 th. To place out-buildings and garden walls in a state of defence, and to establish communications between them

18ă1. Defence of a Yillage.-In arranging the general plan, some substantial buildings within musket-range of each other should be selected for the prominent or salient points of the line. These, with the intervening walls, hedges, or open spaces, will be prepared for defence as has been already explained, so as to completely enclose the position. Care should be taken not

to attempt to enclose a larger space than can be mamed and defended by the available force. Anytling which would afford cover to an enemy outside of the lines shonld be destroyed, buruing houses, filling ditches, throwing down fences, etc. The roads by which an enemy can approach shonld be cat across by trenches. All obstructions on the inside which are perpendicular to the line of defence should be removed so as to adinit of manœenvring. All streets and roads open to attack should be

Fig. 392.-Plan of the Woris for the Defence of a Village. barricadel, or breastworks should be thrown up. If several barricades are to be disputed in succession, the means of retreat through them must be preserved, and communications should be made from honse to honse on each side of the street.
1852. Some strong building or buildings should be selected in a ceutral position, commanding the principal roads and streets. which should be strengthened and made to serve as rallyingpoints in case the assailants penetrate the outer defences. A reserve force should always be kept ready to reinforce any part of the walls.

180̃3. Defence of a Bridge.-If a body of troops had to retire orer a bridge in the presence of a superior force, works would naturally be thrown up in front of it for corering the retreat and ensuring its being held until the passage was effected, and others might be placed in rear for giving support and prolonging the resistance. If the protection of the bridge were the object, the same plan would be followed; but if it were merely for disputing the passage in order to cover a line of operations

Fig. 393.-Plan of Woris for the Defence of a Bridge.
or a flank march, works might be placed in rear, which is the proper position for defensive purposes. The annexed Fig. (393) may serve as an example of temporary works in front as well as in rear of a bridge for guarding and disputing the passage with a force of 600 men arailable for work and defence. The first consideration should be the distribution of the men. Threefourths of them should be placed in adrance, and one-fourth as a reserve in rear, and a small proportion of the former number
as a support close to the front of the bridge. A file of men slould be allowed to every yard of parapet in front, and the main reserve in other works in rear, which should be large enongh to receive two-thirds of the whole number, if the force is obliged to fall back.
1854. This arrangement would give 400 men on the outer line in front, 50 men in rear of the outer line as a support, and 150 men partially occupying the works in rear as a reserve. This would require 200 yards on the outer line, 25 yards for the support: in all, 225 yards in front.

1895 . The next point to decide would be the plan; and a simple and serviceable one would be the one shown in Fig. 393, a priest-cap with a redan on each face. A ready way of laying this out would be, first of all, to trace a rough semicircle with pickets about one-sixth less in running length than the required breastwork. This could be done with a radius of 64 yards. The salient angles being fixed in the outline of the work so traced, and their lengths being disposed within the semicircle so as to flank each other, the total length, though it may vary with the figure adopted, will be near enough the required extent for practice.

In rear of the bridge about 200 yards more would be required, but so disposed as to protest the men from enfilade.
1856. At a convenient distance in front, varying from 20 to 50 yards, an abattis or other obstruction should be placed parallel to the general contour of the works, and extending to the river on either side. This arrangement of the works would require 212 men to throw up the parapet ; the rest might be employed in making the abattis, in throwing down the parapet walls of the bridge, blocking up the roads, etc.
1857. If the force be very much smaller the works should be executed of an extent to correspond ; a good breastwork with an abattis before it might be made across the front of the bridge, a barricade in the middle, and another one in rear flanked by strong breastworks.
1858. Attack of Works.-Having considered the various meaus of putting positions in a state of defence, it is in order to consider the various methods of attacking and defending such posts. An attack should eithre be by surprise or by open force.
1859. Surprise.-In the first case the strictest secrecy should be observed as to the intent: the enemy should be deceived by false manœuvres, and the troops should be kept in ignorance of the movement until they are assembled for the attack. The most favorable moment for a surprise is about two hours before
daylight. The troops should be divided into a storming-party and reserve, and the storming-party should consist of an ad-vance-party and a snpport. Several columns of attack should be formed, some for false and some for real attack, but the coluinns formed for false attack should be strong enough to take advantage of any success.
1860. Pioneers should accompany each storming-party to remore obstacles, and they should be provided with bags of powder with fuses attached for blowing down gates, doors, or other obstructions. All operations should be carried on with despatch and in silence. The advance-party should be provided with ladders, planks, brush, or anything which would be serviceable in filling up ditches or crossing them, and the charges should generally be made in column through whatever force was formed for the defence of the parapet. A strong reserve should be kept ready to follow up any successful attack.
1861. Opein Attack.-The general arrangements for an open assault comprelend the operations to gain possession of the works, the measures for maintaining possession, and the precautions to be observed in case of repulse. The troops should be drawn up in a sheltered position out of range of the assailed, and a heavy fire opened from the howitzers in the most favorable positions to enfilade the faces and destroy all visible obstacles. When the fire of the works is silenced, the troops are thrown forward and demonstrations made on sereral points, to divert the attention of the assailed from the true point of attack, and to prevent him from concentrating his forces there.
1862. The disposition of the troops making an assault will depend very much on circmmstances; generally, the parties should be arranged as in the preceding case; the troops to support and, if necessary, to reinforce the storming-parties, should advance in one or tiwo lines, with the artillery on the flanks, disposed to repel sorties. When the assailed are driven from their main works the storming-party should press them closely: and endeavor to enter the interior works with them, learing to the troops which follow the duty of retaining possession of the works already gained. If the storming-party has to retreat, its retreat should be covered by a strong body of infantry and artillery.
1863. Defexce.--The essential point in defence is to have every part of the works guarded by a sufticient number of troops to resist an attack on all sides; this is of importance. not only in isolated works, but in continued lines. At least two ranks should be drawn up on the banquette throughout the entire extent of the line, with supports and a reserve propor-
tioned to the importance of the work. The strictest vigilance should be exerted to guard against a surprise; sentries should be posted on all the commanding points of the works, and on the outside patrols should be posted to watch the enemy's movements, and to give notice of his approach.
1864. At night the number of sentries should be increased, and redoubled vigilance should be used, especially after midnight. The reserve should be posted in the most convenient position to afford prompt assistance to any point in danger of being forced. If the enemy opens his attack by a warm cannonade, the men should not be exposed to it if they can be sheltered at the posts they are to occupy when the columns of attack approach. The men should be instructed to reserve their fire until the enemy arrives at certain points marked in front, which should not be more than 400 yards from the parapet. Should the enemy succeed in forcing his way in, the reserve should attack with the bayonet before he has time to form ; but the only well-grounded prospect that the assailed can have of repelling the assault, when the enemy has gained the top of the scarp, is to meet him offensively with bayonet on top of the parapet. Large stones, heavy round logs, and hand-grenades should be in readiness to roll over on the enemy when he is in the ditch.
1865. Sorties.-If it should seem desirable, and the garrison is sufficiently strong to make a sortie, it is essential that it should be well timed and vigorously executed, and be in sufficient force to make some impression, either as a diversion in favor of the defenders of the parapet, or to drive the assailauts back beyond the obstacles ther may have already surmounted. The party should be selected from the reserve, leaving the parapets fully manned. The men for the sortie should be drawn up at the point where they are to go out, and at the critical moment when the speed of the assailants has been checked by the opposition they have met with in front, a furious onset with the bayonet should be made on one or both flanks, and when the object is effected, the troops should immediately retire within the works. The firing from the defences should cease when they come out, and be resumed the moment the front is clear again.

Section VI.-The Retreat.

1866. Rear-guards.-After having accomplished the objects of the expedition, or if the forces have been defeated or repulsed, it becomes necessary to get them on board ship as
quickly as possible. If the forces are at a considerable distance from the boats, the retreat will be a matter requiring great care and judginent, particularly if the rear is closely pressed by the enemy in force. In this case, everything will depend on the rear-guard, which should be formed from the freshest men, and should number at least one-fifth or one-sixth of the whole force, including some howitzers.
1867. The great art of rear-guards is that of baing able constantly to force an enemy to deploy and to attack, and then to get away safely withont any serious fighting: its purpose is more fulfilled by threatening to fight than by fighting. If the pursuing enemy should become reckless and push on to attack with an insufficient force, it will then be for the rear-guard to pounce suddenly on him with all his available force, and having struck a severe blow, to at once resume the retreat.
1868. The officer commanding the main body should, from time to time, send to the comminder of the renr-guirl information as to the condition of the road, bridges, etc., to be passed, and every position suitable for the rear-guard to defend itself in should be especially noted.
1869. The distance that the rear-guard should be from the main body depends upon the nature of the country, its numbers, and the manner in which the pursuit is conducted. It slould not be more than a few hours' march, and under all circumstances communication should be kept up with the main body. The actual rear of the rear-guard should be a line of skirmishers.
1870. All villages on the line of retreat and all supplies of provision should be destroyed; everything, in fact, on which the pursuers might subsist. If the country is so enclosed that the pursuers must travel on the roads, every thing should be done to retard their progress; setting fire to houses or villages on the line of march, felling trees across the road, destroving bridges, should never be omitted when it can be done.
1871. Destruction of Bridges.-Bridges may be destroyed by burning, if there is time; if not, it would be sufficient to bore a hole in the main braces or lower chords of truss-bridges and put in a charge of powder with a fuze. To destroy a bridge of masonry, sink a shaft in the roadway near the centre arch, down to the haunch, with a short gallery ending in a chamber, so as to lodge the powder in the middle of the width of the bridge under the roadway. Five or six hours labor and a charge of from 50 to 100° lbs. will probably be sufficient. If there is not time to sink a deep shaft, a hole may be sunk across the crown of the arch, and a charge of 250 or 300 lbs . of pow-
der, placed over the crown and covered with stones, will answer the purpose.
1872. Passage of a Defile.-In case it becomes necessary for the retreating forces to pass through a defile, troops from the main body should be posted on the heights on either side and deployed as skirmishers while the main body is passing through. As soon as the rear-guard is in position and the enemy has deployed, the supports should enter the defile, and the rear-guard should fall back, maintaining a heavy fire along the line. The skirmish-line of the rear-guard should, if possible, retire along the heights as well as by the defile ; if that is not possible, they should dispute every inch of ground in the defile while the line of battle is being formed on the other side, howitzers being posted so as to enfilade the pass, and troops ready to attack the advance of the enemy as they emerge. After having given the enemy a serious check, the line of march should be resumed, the rear-guard resuming their original duties.
1873. The Embarkation.-On arriving at the boats, if there is no enemy present or near, the troops and howitzers might all be embarked at once, and return to their ships. But if the enemy is pressing closely, the breastworks which have been prepared by the otticer in charge of the boats should be manned, retaining some howitzers to keep the enemy at a distance. The main portion of the howitzers should be embarked, and the boats hauled into such a position that, by their cross-fire, they can sweep the approaches and cover the embarkation of the infantry, which should be proceeded with as expeditiously as possible, being careful to get all the howitzers embarked while there is still a large number of infantry on shore. The last who are on the beach should retire in skirmishing order, keeping up a vigorous fire until the last moment, when they should lose no time in getting to their boats, the howitzers, boats, and vessels keeping up a continuous fire to prevent the enemy from making a sudden rush and capturing them.

APPENDIX I.

TABLES.

I. COEFFICIENTS FOR THE CUBIC LAW OF RESISTANCE.

ELONGATED PROJECTILES WITH OGIVAL HEADS.

Reprinted from Professor Fravcis Basmportir's Motion of Projectiles.

v	K_{r}	$\frac{K_{V}}{g}$	Log $\frac{K_{V}}{g}$	V	K_{v}	$\frac{\mathrm{K}_{v}}{\mathrm{~g}}$	L Og $\frac{\mathrm{K}_{-0}}{\mathrm{~g}}$
$\begin{gathered} \text { f-s } \\ 900 \end{gathered}$	$6+4$	2.001	. 3012	$\begin{gathered} \text { f-s } \\ \text { I } 300 \end{gathered}$	107.9	$3 \cdot 352$. 5253
910	64.8	2.014	. 3041	I3IO	107.7	$3 \cdot 345$. $524+$
920	65.3	2.029	. 3073	I320	107.4	3.337	. 5234
930	65.9	2.047	. 3 III	I330	107. 5	3.328	. 5222
940	66.6	2.069	. 3158	I340	106.8	3.317	. 5207
950	67.4	2.094	. 3210	I350	106.4	3.305	. 5192
960	68.4	2.125	. 3274	I360	106.0	3.293	. 5176
970	69.6	2.162	- 3349	I370	IO5.6	3.280	- 5159
980	71.0	2.206	. 3436	I380	IO5. I	3.265	. 5139
990	72.8	2.262	. 3545	I 390	10.4. 6	3.249	. 5118
1000	75.0	2.330	. 3674	I400	IO-4.0	3.231	. 5093
1010	77.5	2.408	. 3817	I4IO	103.4	3.212	. 5068
1020	80.4	2.498	. 3976	I420	102.8	3. I93	. 5042
1030	83.9	2.606	. 4160	1430	IO2.2	3. 175	. 5017
1040	88.2	2.740	. 4378	1440	IOI. 6	3.155	. 4990
1050	92.8	2.883	. 4598	I 450	100.9	3.134	. 4961
1060	97.2	3.019	. 4799	I 460	IOO. 2	3.112	. 4930
1070	100.8	3.13I	. 4957	1470	99.4	3.089	. 4898
1080	103.4	3.212	. 5068	I480	98.7	3.065	. 4864
Iogo	IO5. I	3.265	. 5139	I 490	97.9	3.04 I	.4830
IIOO	106.0	3.293	. 5176	I500	97.2	3.018	. 4797
IIIO	106.6	3.312	. 520 I	I5 10	96.4	2.994	. 4763
1120	107. I	3.327	. 5221	1520	$95 \cdot 5$	2.968	. 4725
II30	107.5	3.339	. 5236	1530	94.7	2.942	.4686
1140	107.9	3.35I	. 5252	I540	93.8	2.915	. 4646
1150	108. 2	3.361	. 5265	I 550	93.0	2.889	. 4607
II60	108.5	3.371	. 5278	I560	92.2	2.864	.4570
II70	108.7	3.377	. 5285	1570	9 I .4	2.839	. 4532
1180	IO8 9	3.381	. 5290	I580	90.6	2.814	. 4493
II90	108.9	3.383	. 5293	I590	89.8	2.790	. 4456
1200	108.9	3.383	. 5293	1600	89.0	2.765	. 4417
1210	108.9	3.383	. 5293	I6IO	88.2	2.740	. 4378
1220	108.9	3.382	. 5292	I620	87.4	2.715	. 4338
1230	108.8	3.38I	. 5290	I630	86.7	2.693	. 4302
1240	108.8	3.380	. 5289	I640	86.0	2.672	. 4268
1250	108.7	3.378	. 5287	1650	85.4	2.654	. 4239
1260	IC8.6	3.375	. 5283	I660	85.0	2.640	. 4216
1270	IOS. 5	3.370	. 5276	I670	84.6	2.628	. 4196
1280	108. 3	3.364	. 5269	I680	84.3	2.619	. 4181
1290	IOS. I	$3.35{ }^{8}$. 5261	I690	8 ¢. 1	2.613	. 417 I
1300	107.9	3.352	. 5253	1700	83.9	2.606	. 4160

II. COEFFICIENTS FOR THE CUBIC LAW OF RESISTANCE.

SPHERICAL PROJECTILES.

v	K_{v}	$\frac{\mathrm{K}_{\mathrm{v}}}{\mathrm{g}}$	$\log \frac{\mathrm{K}_{\mathrm{v}}}{\mathrm{g}}$	V	\bar{K}_{V}	$\frac{\mathrm{K}_{\mathrm{v}}}{\mathrm{g}}$	$\log \frac{K^{v}}{g}$
f-s				f-s			
850	138.4	4.299	. 6334	1250	I5I.I	$4.69+$. 6715
860	138.3	4.296	. 633 I	1260	150.5	4.674	. 6697
870	138.3	4.294	. 6329	1270	149.8	$4.65+$.6678
880	138.2	4.293	. 6328	1280	149. 1	4.632	. 6659
890	138.2	4.293	. 6328	1290	I48.4	4.611	. 6638
900	138.2	4.294	. 6329	1300	147.8	4.591	.6619
910	138.3	4.296	. 633 I	1310	147.2	4.572	. 6601
920	I 38.4	4.299	. 6334	1320	146.5	4.552	. 6582
930	138.5	4.302	. 6337	1330	145.9	4.533	. 6564
940	138.6	$4 \cdot 306$. 6341	1340	I 45.3	4.514	. $65+6$
950	138.8	4.312	. 6347	I350	144.7	4.495	. 6527
960	I 39.1	4.322	. 6357	1360	14+. 1	4.475	. 6508
970	139.5	4.334	.6369	1370	I 43.4	$4 \cdot 455$. $6+89$
980	139.9	$4 \cdot 346$. 6381	I3So	142.7	$4 \cdot 433$. 6467
99°	140.4	$4 \cdot 362$. 6397	1390	I 42.0	$4 \cdot 710$. 6444
1000	I4I. I	4.383	. 6418	I400	IfI. 3	$4 \cdot 358$. 6423
IOIO	141.9	4.408	. $6+42$	1410	I 40.6	$4 \cdot 366$. 6401
1020	142.8	$4 \cdot 436$. 6470	I 420	I 39.8	$4 \cdot 343$. 6378
1030	143.8	4.467	. 6500	I 430	I39.I	4.320	. 6355
1040	144.9	4.501	. 6533	1440	I3 3.4	4.299	. 6334
1050	146.1	$4 \cdot 539$. 6570	I 450	137.7	4.277	. 63 II
1060	147.3	$4 \cdot 576$. 6605	I 460	137.0	4.254	. 6288
1070	145.5	4.613	. 6640	1470	I36.2	4.231	.626+
1080	149.6	4.647	. 6672	1480	135.5	+.209	. $62+2$
1090	150.6	4.677	. 6700	1490	134.5	4.185	. 6220
1100	151.4	4.703	. 6724	1500	I34.I	4.166	.6197
IIIO	152.1	4.725	. $67+4$	1510	133.5	4. 146	. 6176
1120	152.7	4.744	. 6762	1520	132.8	4.125	.6I54
1130	153.1	4.757	.6773	1530	132.1	4.105	.6133
1170	153.4	$4 \cdot 766$. 6782	1540	131.5	4.085	.6112
1150	153.6	4.772	. 6787	1550	130.8	4.064	. 6090
1160	153.7	4.774	.6789	1560	130.1	4.043	.6067
1170	153.7	4.775	. 6790	1570	129.5	4.023	. $60+6$
1180	153.7	4.774	. 6789	1580	128.8	4.003	. 6024
1190	153.6	4.771	. 6786	1590	128.2	3.953	. 6002
1200	I53.4	4.765	. 6751	1600	127.5	3.961	. 5978
1210	I53. I	4.756	. 6772	1610	126.8	$3 \cdot 940$	- 5955
1220	152.7	4.744	. 6762	1620	126.2	3.920	. 5933
1230	152.2	4.728	. 6747	1630	125.5	3.899	. 5910
12.40	151.7	4.712	. 6732	$16+0$	124.8	3.577	. 5885
11250	I5I.I	4.694	.6715	1650	124.1	3.856	. 5861

v	K_{∇}	$\frac{\mathrm{K}_{\mathrm{v}}}{\mathrm{g}}$	$\log \frac{K_{\nabla}}{g}$	V	K_{v}	$\frac{\mathrm{K}_{V}}{\mathrm{~g}}$	$\log \frac{K_{v}}{g}$
f-s				f-s			
1650	124. 1	3.356	. 586 I	1900	108.7	3.377	. 5285
1660	123.5	3.836	. 5839	IgIo	I08.2	$3 \cdot 361$. 5265
1670	122.8	3.815	. 5^{815}	I920	107.7	$3 \cdot 346$. 5245
1680	122.1	3.793	. 5790	1930	107.3	3.332	. 5227
1690	12I. 4	3.772	. 5766	I940	צ06.8	3.317	. 5208
1700	120.8	3.752	. 5743	I950	106.3	$3 \cdot 302$. 5188
1710	I20. 1	3.731	. 5718	1960	105.8	3.287	. 5168
1720	II9.4	3.710	. 5694	1970	105.3	3.272	. 5148
1730	118.8	3.689	. 5669	I980	IO 4.9	3.258	. 5130
1740	II8.I	3.669	. 5646	1990	IO4.4	$3.2+3$. 5110
1750	117.4	3.648	. 562 I	2000	103.9	3.228	. 5089
1760	II6. 8	3.628	. 5597	2010	103.4	3.212	. 5068
1770	II6.I	3.608	. 5573	2020	102.9	3.197	. 5047
1780	II5.5	3.588	. 5549	2030	102.5	3.183	. 5028
1790	II4.9	$3 \cdot 568$. 5524	2040	102.0	3.169	-5009
I800	114.2	3.548	. 5500	2050	IOI. 5	3.154	. 4989
ISIO	II3.6	3.529	- 5477	2060	IOI.I	3.140	.4969
I820	II3.0	3.511	. 5454	2070	100.6	3.125	-4949
1830	II2.5	3.494	. 5433	2080	100.1	3.110	. 4928
1840	III. 9	3.476	-54II	2090	99.7	3.096	. 4908
1850	III. 3	3.459	. 5390	2100	99.2	3.08 I	.4887
1860	110.3	3.442	. 5368	2110	98.7	3.066	. 4866
1870	110.3	3.425	- 5347	2120	98.3	3.053	. 48.47
1880	109.7	3.408	. 5325	2130	97.8	3.039	.4827
1890	109.2	$3 \cdot 392$	$.5305$		97.4	3.025	.4807
1900	103.7	$3 \cdot 377$.5285	2150	96.9	3.010	.4786

III. $\log \mathrm{P}_{\varphi}=\log \left(3 \tan \varphi+\tan ^{3} \varphi\right)$.

9	$\log \mathrm{P}_{\varphi}$	φ	$\underline{L o g} P_{\varphi}$	9	$\log \mathrm{P}_{\varphi}$	φ	$\log \mathrm{P}_{0}$
0		${ }^{0}$		0		0	
I	8.71909	16	9.94636	31	0.30525	46	0.62501
2	9.02038	17	9.97579	32	0.32605	47	0.64839
3	9.19691	18	0.00392	33	0.34676	48	0.67226
4	9.32247	I9	0.03093	34	0.36743	49	0.09666
5	$9 \cdot 42018$	20	0.05695	35	0.38809	50	0.72164
6	9.50034	2 I	0.08212	36	0.40877	51	0.74725
7	9.56844	22	0.10654	37	0.42952	52	0.77355
8	9.62777	23	0.13030	33	0.45037	53	0.80059
9	9.68045	24	-.15349	39	0.47135.	54	0.82344
10	9.72792	25	0.17618	40	0.49250	55	0.85717
II	9.77121	26	-. 19884	4 I	0.51385	56	0.88685
12	9.81109	27	0.22033	42	0.53545	57	0.91755
13	$9.848{ }^{1} 3$	28	0.24 IgI	43	0.55732	58	0.94937
14	9.88280	29	0.26322	44	0.57951	59	0.98239
15	9.91545	30	0.28432	45	0.60206	60	1.01671

IV. VALUES OF X, Y \& T FOR INTERVALS OF 0.2.

$\gamma=0.00$				$\gamma=0.01$			
φ	X	Y	T	9	X	Y	T
60.0	1.73205	1. 50000		0 60.0			
59.8	I.71818	I. 47606		59.8		II	
59.6	I. 70446	I. 45259	1. 70446	59.6	I. 74984	I. 50791	I. 72691
59.4	1.69091	I. 42959	1.6909I	59.4	1.73530	I. 48323	1.71288
59.2	I. 67752	1.40703	1.67752	59.2	I. 72096	1. 45906	1. 69902
59.0	1.66428	I. 38492	I. 66428	59.0	I. 70679	I. 43539	1. 68533
58.8	1.65120	1.36322	1.65120	58.8	1.6928 I	1.4122I	1.67180
58.6	1.63826	I.34195	1. 63826	58.6	1.67899	I. 38949	1. 65843
58.4	1.62548	1. 32109	I. 62548	58.4	I. 66535	I. 36723	I. 64523
58.2	1.61283	I. 30062	1.61283	58.2	1. 65188	I. 34542	I. 63218
58.0	1.60033	I. 28054	1.60033	58.0	1.63857	I. 32404	I. 6 I928
57.8	1.58797	I. 26083	I. 58797	57.8	I. 62543	1. 30308	I. 60653
57.6	1.57575	I. 24149	I. 57575	57.6	I. 61244	I. 28253	1. 39393
57.4	1.56366	I. 2225 I	I. 56366	57.4	I. 59960	I. 26233	I. 58147
57.2	I. 55170	1. 20388	1.55170	57.2	I. 5869 I	I. 24262	I. 56915
57.0	I. 53987	I. 18559	1. 53987	57.0	I. 57437	I. 22324	I. 55697
56.8	1.52816	1. 16764	I. 52816	56.8	1. 56198	I. 20.423	I. 51793
56.6	I. 51658	I. 15001	I. 51658	56.6	I. 54973	I. IS 558	I. 53302
56.4	1.50512	I. I3270	I. 50512	56.4	I. 53762	I. 16728	I. 52124
56.2	1. 49378	I.II569	1.49378	56.2	I. 52564	I. 14932	I.
56.0	I. 48256	1.09899	I. 48256	56.0	I. 51380	I. 13170	I. 49506
55.8	1.47146	1. 08259	1.47146	55.8	1. 50209	I. IIT $1+0$	I. 48665
55.6	1.460 .46	I. 06648	1. 46046	55.6	I. 4905 I	1.09742	1.47537
55.4	I. 44958	1. 05065	I. 44958	55.4	1. 47905	1.08075	I. 46420
55.2	I. 4388 I	1.03509	1.43881	55.2	1. 46772	1.06438	I. 45315
55.0	I.42SI5	1.01980	1.42815	55.0	I. 4565 I	I. 04831	I. 44222
54.8	I. 41759	1.00478	1.41759	54.8	I. 4454 I	I. 03253	I. 43140
54.6	I.407I4	- 99002	I.407I4	54.6	I. 43444	1.01703	I. 42068
$5+4$	I. 39679	. 97550	I. 39679	54.4	I. 42357	1.00180	1. 41008
54.2	I. 38653	. 96124	I. 38653	54.2	I. 41282	-95684	I. 39958
54.0	1. 37638	.94722	1. 37638	54.0	1. 40219	.97214	I. 38919
53.8	I. 36633	. 93343	I. 36633	53.8	I. 39165	. 95770	I. 37890
53.6	I. 35637	.91987	I. 35637	53.6	1.38123	. 9435 I	I. 368 - 1
53.4	I. 34650	. 90653	1. 34650	53.4	1.37091	- 92956	1. 35862
53.2	I. 33673	. 89342	1. 33673	53.2	I. 36069	. 91585	I. 34863
53.0	I. 32704	. 88052	I. 32704	. 0	I. 35058	. 90238	I. 33873
52.8	I. 31745	. 86783	I. 31745	52.8	I. 34056	.88914	I. 32 S9I
52.6	I. 30795	. 85536	I. 30795	52.6	I. 33064	.8-612	1.3I92I
52.4	I. 29853	. 84309	I. 29853	52.4	1.32071	. 86332	I. 30959
52.2	1.23919	. 83102	1.28919	52.2	1.31108	. 85073	1. 30007
52.0	1.27994	. 81913	1.27994	52.0	I. 3014	. 83534	1. 29006
51.8	1.27077	. 80743	I. 27077	51.8	1. 29189	. 82616	1. 28127
51.6	I. 26169	. 79592	1. 26169	51.6	1. 28243	. SI4IS	1. 27200
51.4	1. 25268	. 78460	I. 25268	51.4	I. 27306	. 80240	1. 26282
5 I. 2	I. 24375	. 77346	I. 24375	5 I .2	1. 26378	. 7908 I	I. 2537 I

$y=0.02$				$\gamma=0.03$			
9	X	Y	T	φ	X	Y	T
$\begin{gathered} 0 \\ 60.0 \end{gathered}$	1.83254	1. 62567	1.78117	$\begin{gathered} 0 \\ 60.0 \end{gathered}$	I. 89266	1.70264	I. So950
59.8	I. 81636	I. 59774	I. 76618	59.8	I. 87490	1.67200	I. 79380
59.6	I. 8004 T	I. 57045	I. 75139	59.6	I. 85743	I. 642 II	1. 77332
59.4	1. 78468	I. 54376	I. 73680	59.4	I. 84025	1. 61294	1. 76306
59.2	1.76919	I.51766	I. 72239	59.2	I. 82334	I. 58447	1. 74302
59.0	1.75391	I. 49213	1.70817	59.0	I. 80671	I. 55667	I. 7331
58.8	1. 73885	1.46716	1.69413	58.8	1.79033	I. 52952	1.71854
58.6	1. 72399	I. 44273	1.68027	58.6	I. 77421	I. 50301	1. 70410
58.4	1.70934	I. 41882	I. 66653	58.4	I. 75833	1.47710	1.68985
58.2	1. 69488	I. 3954 I	I. 65306	58.2	I. 74270	1. 45178	I. 67579
58.0	1.63062	I. 37250	1.63971	58.0	1. 72729	1.42703	I.66I9I
57.8	I. 66655	1.35007	I. 62652	57.8	1.71211	I. 40283	1. 64822
57.6	1. 65266	1.32810	1.61349	57.6	1.69716	1. 37917	I. 63469
57.4	I. 63896	I. 30653	1.60062	57.4	1.6824I	I. 35603	I. 62134
57.2	I. 62542	I. 28550	I. 58790	57.2	I. 66788	I. 33339	I.608I5
57.0	1.61206	I. 26485	I. 57533	57.0	I. 65355	I. 31123	I. 59513
56.8	I. 59887	I. 24.461	I. 56290	56.8	1.6394I	I. 28955	I. 58227
56.6	I. 58584	1. 22478	I. 55062	56.6	I. 62547	I. 26833	I. 56956
56.4	1. 6729^{8}	I. 20534	I. 53847	56.4	1.61172	I. 24755	I. 55701
56.2	I. 56027	I. I8623	I. 52647	56.2	I. 59815	I. 22721	I. 5446 I
56.0	I. 54771	I. 16759	I. 51460	56.0	I. 58476	I. 20723	I. 53235
55.8	I. 53530	1.14927	1. 50286	55.8	I. 57154	I. 18776	I. 52023
55.6	I. 52304	I.13130	1. 49135	55.6	I. 55850	I. 1686	I. 50826
55.4	I. 51093	I. II367	I. 47977	55.4	I. 54562	I. P4690	I. 49642
55.2	1. 49895	1.09638	1. 46841	55.2	1.5329I	I. 13154	1.48472
55.0	1.48712	I.0794I	1.45718	55.0	I. 52035	I. II354	1.47315
54.8	I. 47542	1.06276	I. 44607	54.3	I. 50795	I. 09539	I. 46171
54.6	1. 46385	I. 04642	1. 43507	54.6	1. 49570	1.07859	1. 45039
54.4	I. 4524 I	1.03033	1.42419	54.4	I. 48360	I.06I63	I. 43920
54.2	I. 44109	I. OI464	I. 41342	54.2	I. 47164	I. 04499	I. 42313
54.0	I. 42991	. 99918	I. 40276	54.0	1. 45983	I. 02867	1.41718
53.8	I. 41884	. 98.401	I. 39221	53.8	I. 44815	I. OI266	I. 40634
53.6	I. 40785	.9691I	1.38177	53.6	I. 4366 I	. 99694	I. 39562
53.4	1. 39706	. 95447	I.37143	53.4	I. 4252 I	. 98153	I. 33501
53.2	I. 38635	. 94010	I.36120	53.2	I. 41393	-96640	I. 37.52
53.0	I. 37575	. 92598	I. 35107	53.0	I. 40278	. 95155	I. 36.113
52.8	I. 36526	. 91211	1.34104	52.8	1. 39175	. 93697	I. 35385
52.6	I. 35488	. $39^{8} 4^{8}$	I.33III	52.6	1. 38085	. 92266	I. 34367
52.4	I. 34460	. 88509	I. 32127	52.4	1.37007	. 90860	I. 33359
52.2	I. 33442	. 87192	I.3II52	52.2	I. 35940	. 89480	I. 32361
52.0	I. $32+35$. 85898	I. 30187	52.0	I. 34885	. 88125	1. 31372
51.8	I. 31438	. 84627	I. 2923 I	51.8	I. 3384 I	. 86794	I. 30393
51.6	I. 3045 I	. 83378	I. 28284	51.6	I. 32803	. 85486	I. $29+24$
51.4	1. 29474	. 82149	1.27376	51.4	1.31786	. 84201	1. 23465
5 I .2	I. 28506	. 80941	I. 26416	51.2	I. 30774	. 82938	I. 27515
51.0	I. 27548	. 79753	I. 25494	51.0	I. 29773	. 81697	I. 26574
50.8	1. 26598	. 78585	1.245SI	50.8	I. 28782	. 80477	I. 25642
50.6	I. 25658	. 77436	1.23676	50.6	I. 27301	. 79278	I. 24718

$\gamma=0.04$				$\gamma=0.05$			
9	X	Y	T	9	X	Y	T
60			1.84116	$\begin{gathered} 0 \\ 60.0 \end{gathered}$			
59.8	I. 94216	1.75889	I. 82459	59.8	2.02112	I. 86297	I. 85951
59.6	1.92275	1.72568	I. 80823	59.6	1.99913	I. 82535	1.84215
59.4	1.90372	1. 69336	1. 79222	59.4	1.97764	1. 78886	1.82509
59.2	1.88503	1.66189	1. 77640	59.2	1.95662	I. 75346	1.80831
59.0	1.86669	1.63124	1.76082	59.0	I. 93605	1.71903	1.79181
58.8	1.84867	1.60138	1.74546	58.8	I.9159I	1.68569	1.77557
58.6	1.83097	1.57227	1.73033	58.6	1.89618	1. 65325	1.75960
58.4	1.81358	1. 54388	1.71542	58.4	1. 87685	1.62170	1. $7+388$
58.2	I. 79648	1.51620	1.70072	58.2	1.85790	1.59102	1.72S40
58.0	1.77967	1.48920	1.68623	5 S.0	1.83932	1.56116	1. 71316
57.8	1.76314	1.46284	1.67193	57.8	1.82108	I. 53210	1.69SIt
57.6	1. $7+688$	1.43712	1. 65783	57.6	1.70619	1.50379	1. 68336
57.4	1.73088	1.41201	1.64392	57.4	1. 78563	1.47622	1.6557S
57.2	I. 7 I 513	$1.3874{ }^{\text {S }}$	1.63020	57.2	1. 76838	I. 44935	1. $65+12$
57.0	1.69963	1.36351	I. 61666	57.0	1.75143	I. 42316	I. $6 \ddagger 026$
56.8	1.68+37	1.34010	1.60329	56.8	1.73475	1. 39762	I. 62630
56.6	1. 66933	1.31721	1.59010	56.6	1.718.42	I. 37270	I. 61253
56.4	1. $65+53$	1.29484	I. 57707	56.4	I. 70233	I. 34839	I. 59895
56.2	1.63994	1.27292	I. $56+21$	56.2	1.63650	I. 32466	I. 54556
56.0	1.62556	1.25157	I. 5515 I	56.0	1.67003	I. 30150	I. $5723+$
55.8	1.61139	1.23064	1. 53897	55.8	1.65562	1.27887	I. 55930
55.6	I. 59742	1.21017	I. 52657	55.6	1. 64054	I. 25677	I. $5+6+3$
55.4	1.58365	I. 19013	1.51433	55.4	1.62570	1.23517	1.53372
55.2	1. 57007	I. 1705 I	$1.5022+$	55.2	I. 61108	I. 21.107	I. 52117
55.0	I. 55667	I.15130	1. 49029	55.0	1.59669	I. $193+4$	I. 50878
54.8	1. 54346	I. 13250	1.478 .77	54.8	I. 58251	1.17326	I. +9655
54.6	1. 53042	I. IItoS	1.46680	54.6	I. $5685+$	I. I5353	1.43-4.46
54.4	1.51755	1.09604	I. 45526	54.4	I. $55+77$	1.13423	I. 47253
54.2	I. 50485	1.07837	1.443S5	54.2	$1.5+120$	I. 11534	1. 46073
54.0	I.4923I	1.06105	1.43256	54.0	1. 52782	I. 09686	1. 44908
53.8	I. 47994	1.04408	I.42I+1	53.8	I. 51463	1.07877	1.43756
53.6	1.46772	$1.0274+$	1. +1038	53.6	1.50162	1.06105	1.42617
53.4	I. 45565	1.OIII3	I. 39946	53.4	I. 488 -8	1.04370	1.41 .492
53.2	$1.4+373$. 99514	1.38867	53.2	I.47612	1.02671	1.403So
53.0	I.43195	$.979+5$	1.37799	53.0	I. 46362	1.01007	1.39250
52.8	1.42032	.96406	1.36743	52.8	1.45129	. 99376	1.38192
52.6	1.408S2	. $9+897$	I. 3569 S	52.6	I. +3911	. 97178	1.37116
52.4	I. 39746	. $93+17$	I. $3+664$	52.4	1.42709	. 96212	1.36052
52.2	I. 3 S624	. 91965	I. 33640	52.2	1.41522	-946-6	I. 34999
52.0	1.37514	. 90540	I. 32626	52.0	$1 .+035 \mathrm{I}$. 93171	I. 3395 -
51.8	1.36417	.8914I	I. 31623	5 I .8	r.39194	. 91695	I. 32925
51.6	1.35332	$.87768$	1. 30630	51.6	I. $3 \mathrm{SO}_{5} \mathrm{I}$	-90247	I. 31909
5 I .4	I. 34260	$.86+20$	1. $296+7$	5 I .4	1.36921	. SSS27 $^{\text {2 }}$	1. 30901
51.2	1.33199	.850,05	I. 28674	5 I .2	I. 35 SO	. $57+3+$	1. 29903
51.0	I. 32150		I. 27711	51.0	I. $3+701$. 86067	I. 2 S9It
50.8	I. 3 III2	. 82515	1.26757	50.8	1.33611	. S $_{4726}$	1.27935
50.6	1.30085	.81264	1.25812	50.6	I. 32533	. $83+10$	I. 26956

$\gamma=0.06$				$\gamma=0.07$			
9	X	Y	T	φ	X	Y	T
60	2.14308	2.03739	I.91913	0 60.0	2.27039	2.21597	
59.8	2.11669	1.99187	1.89999	59.8	2.23783	2.15980	I. 9485 I
59.6	2.09106	I. 94799	1.88124	59.6	2.20652	2.10621	I. 92779
59.4	$2.066{ }^{\prime}{ }^{\prime}$	I. 90568	1.86386	59.4	2.17634	2.05498	I. 90757
59.2	2.04187	1. 86482	I. $8+484$	59.2	2.14722	2.00594	1.38782
59.0	2.01825	1.82534	1. 82716	59.0	2.11908	1.95391	1. 86852
58.8	1. 99522	1.78717	I. 80980	58.8	2.09184	1.91376	I. 84964
58.6	1.97276	1.75023	1.79276	58.6	2.06545	1.87036	1.83117
58.4	I. 95084	1.71445	1.77601	58.4	2.03986	1.82859	1.81308
58.2	1. 92943	1.67979	I. 75956	58.2	2.01501	1. 78835	1.79535
58.0	I. 9085 I	1.64619	1.74339	58.0	I. 99085	I. 74955	1.77798
57.8	1.88806	1.61359	I. 72749	57.8	I. 96736	1.71209	1.76093
57.6	1. 86806	1.58194	1.71186	57.6	I. $9444{ }^{8}$	I. 67591	I. 7442 I
57.4	I. 8.4848	I.55121	I. 69647	57.4	1.92220	1.64092	1.72780
57.2	1.82931	I. 52135	I. 68133	57.2	I. 90046	1.60707	1.71167
57.0	I. 81053	1.49233	1. 66642	57.0	1. 87926	I. 57430	1.69584
56.8	1.79213	1. 46410	I. 65175	56.8	I. 85856	I. 54254	1.68027
56.6	1.77409	1.43663	I. 63729	56.6	1. 33833	I.51175	I. 66497
56.4	1. 75639	I. 40990	1.62306	56.4	I. 81857	I.48I88	I. 6499 I
56.2	1. 73903	1. 38386	1.60902	56.2	1. 79923	I. 45289	1.635II
56.0	1.72199	I. 35850	I. 59520	56.0	1.7803 I	I. 42473	I. 62054
55.8	1.70526	1.33379	I. 58156	55.8	1. 76179	1. 39738	I. 60620
55.6	1. 68883	I. 30970	I.56812	55.6	1. 74365	1.37078	I. 59207
55.4	I. 67268	I. 28621	I. 55487	$55 \cdot 4$	I. 72587	I. 34491	I. 57816
55.2	1. 65632	1.26330	1.54180	55.2	1.708.4.4	I. 31974	I. 564.46
55.0	1. 64122	1.24094	I. 52890	55.0	1.69135	I. 29524	1. 55096
54.8	1.62588	I.2I9II	I. 51617	54.8	1.6745^{8}	I. 2 II3 3	1.53766
54.6	1.61079	1.19780	1.50361	54.6	1.65812	I. 24.813	I. 52454
54.4	I. 59595	1.17699	I. 49122	54.4	1.64196	I. 22548	I.5116I
54.2	I. 5^{8134}	I. I5666	I. 47898	54.2	1.62609	I. 20339	I. 49885
54.0	1. 56696	1.13679	1.46690	54.0	I. 61049	I. 18185	1.48627
53.8	I. 55280	I. II738	I. 45496	53.8	I. 59517	I. 16083	I. 47386
53.6	I. 53885	I.09839	I. 443 I 8	53.6	1. 58010	I. 14032	I.46I6I
53.4	1.52512	1.07983	I. 43154	53.4	I. 56529	I. 12030	1. 44952
53.1	1.51158	1.05167	1. 42004	53.2	1.5507I	I. 10075	1. 43758
53.0	I. 49824	I. 04390	I. 40867	53.0	I. 53638	1.08165	I. 42580
52.8	I. 48509	1.02652	1. 39744	52.8	1. 52227	1.06299	1. 41417
52.6	1.47213	1.00950	I. 38634	52.6	1.50838	I. 0.4475	I. 40268
52.4	I. 45935	. 99284	I. 37537	52.4	I. 49470	I. 0269 I	1.39133
52.2	1. 44674	. 97653	I. 36452	52.2	r.48122	1.00948	1. 380 OII
52.0	I. 4343 I	. 96056	I. 35379	52.0	1.46794	. 99244	1. 36902
51.8	I. 42204	.9449I	I. 34318	5 I .8	I. 45486	-97577	1.35807
51.6	I. 40993	. 9295^{8}	1. 33269	51.6	1.44197	-95945	1. 34725
51.4	1. 39798	.91455	I. 32232	51.4	1. 42926	. 94348	I. 33655
5 I .2	1.38619	. 89983	1.31206	5 I .2	I. 41674	.92784	I. 32597
51.0	1. 37454	. 88510	1.30191	51.0	I. 40439	.91252	I. 31552
50.8	I. 36304	. 87125	1.29186	50.8	I. 39220	. 89752	1. 30519
50.6	I. 35168	. 85737	I.28192	50.6	1. 38018	. 88284	I. 29497

$\gamma=0.08$				$\gamma=0.09$			
9	X	Y	T	φ	X	Y	T
60.0	2.44854	2.47491	2.03488	$\stackrel{0}{0}$	2.43774	2.40308	1.98
59.8	2.40421	2.39343	2.01008	58.8	2.38974	2.3235 I	1. 9597
59.6	2.36247	2.32699	1.98615	58.6	2.34500	2.24992	I. 93565
59.4	2.32298	2.25995	1.96302	58.4	2.30304	2.ISI44	I. 91249
59.2	2.28550	2. 19682	1.94061	58.2	2.26349	2.11740	I.89013
59.0	2.24980	2.13716	1. 1887	58.0	2.22605	2.05726	I. 8685
58.8	2.21570	2.08063	I. 89775	57.8	2.19049	2.00056	53
58.6	2.18304	2.02693	1.87720	57.6	2.15659	1. 94694	1.827I8
58.4	2.15171	1.97579	1.86719	57.4	2.12420	1. 89609	I. So738
58.2	2.12158	1.92700	1. 83767	57.2	2.09316	1. 84775	1.78SI2
58.0	2.09255	I. 88037	1.81862	57.0	2.06336	1.80168	1.76934
57.8	2.06455	I. 83573	1.80002	8	2.03470	1.75770	1.75102
57.6	2.03749	1.79292	1.78183	56.6	2.00707	1.71564	I.73314
57.4	2.01131	I. 75182	1.76404	56.4	1.980.40	1. 67535	1.71566
57.2	1. 98594	1.71231	1.74662	56.2	1.95462	1.63670	1. 69856
57.0	1.96134	1. 67428	1. 72956	56.0	1.92967	1. 59956	1.68182
56.8	1.93745	1. 63764	1.712S4	55.8	I. 90518	$1.563 S_{4}$	1.6654
56.6	1.91424	1.60230	1. 69644	55	I. 88202	I. 52944	I. 64938
56.4	1.89166	I. 568 I 8	I. 68036	55.4	I. 85923	1.49628	1.63363
56.2	1.86968	1.53522	I. 66.457	55.2	1.83707	I. 46428	I.6I8IS
56.0	1.84826	I. 50334	1. 64906	55.0	I. 8155 I	I. 43338	1. 60302
55.8	1.82737	I. 47249	1. 63383	54.8	I. 7945 I	I. 40350	1. 585 S 3
55.6	1. 80699	I.4426I	1.61887	54.6	1.77405	I. 37.460	1.57350
55.4	1.78709	I. 41366	1.60415	54.4	I. 75409	I. 3466 I	1.55913
55	1. 76765	I. 38559	I. 58968	54	I. 73461	I. 31950	54500
55.0	1.74864	I. 35334	1.57545	54.0	1.71558	1.29321	I. 53110
54.8	1.73006	1.33189	I. 56144	53.	I. 69698	1.26-71	I. 51742
54.6	1.71187	1. 30620	1. 54765	53.6	1. 67880	1.24295	I. 50397
$5+1.4$	1. 69406	1.28I23	I. 53.407	53.4	i.66ioi	1.21891	1. 49072
54.2	1.67661	I. 25695	1. 52069	53.2	I. 64359	I. 19554	1. 47767
54.0	1.65951	1. 23333	1. 50752	53.0	1. 62653	1.172S3	I. $46+82$
53.8	1. 6.4275	1.2103t	I. 49454	52.8	1.609S2	1.15073	1.452I0
53.6	1.62630	1.18796	1.48174	52.6	I. $593+4$	1.12922	1. 43968
53.4	1.61017	1.16615	1.46912	52	1. 51737	1.10828	1.42738
53.2	1. 59433	I. 14491	1.4566S	52.2	1.56161	1.08789	1.41525
53.0	1. 57878	I. 12419	I. 44441	52.0	I. 54614	1.06802	I. 40328
52.8	I. 5635 I	I. 10399	I. 43230	51.8	1. 53095	1.04865	I. $39 \mathrm{I}+7$
52.6	I. 5.9350	1.03429	I. 42036	51.6	I. 51603	1.02970゙	1. 37082
. 4	I. 53375	1.06507	I. 408	51.4	I. 50137	I.OII 33	1.36834
52.2	1. 51924	1. 04630	1. 39694	51.2	1. 48696	. 99335	I. 35700
52.0	1. 50497	I. 02797	1. 38545	51.	1.47280	. 97579	I. $3+58 \mathrm{I}$
51.8	1.49094	I. 01007	1.37410	50.8	1.45887	. 95865	1.33476
51.6	1.47713	. 99258	1. 36290	50.6	1.44517	. 94191	I. 3235_{5}
51.4	1. 46354	. 97549	1.35183	50.4	1. 43169	.92556	1.31307
51.2	1.450, 5	. 95878	1. 34090	50.2	I.4I842	. 90957	1. 302.11
51.0	I. 4.3696	. 04244	I.33010	50.0	I. 40535	. 59393	I. $29 \mathrm{IS6}$
50.8	1.42397	. 926.6	I. 319.43	49.8	1. 39248	. 57565	1.20゙1 4
50.6	1.41118	.91083	I . 30885	49.6	1.37980	. 863 \%	1.2-115

$\gamma=0.10$				$\gamma=$ O.II			
9	X	Y	T	φ	X	Y	T
.				57.			
58.0	2.42326	2.32865	1.93480	57.0	2.40402	2.25049	I. 88501
57.8	2.37144	2.24604	1.90955	56.8	2.34841	2.15518	I. 85950
57.6	2.32368	2.17049	I. 88543	56.6	2.29779	2.08810	I. 83528
57.4	2.27931	2.10084	I. 86226	56.4	2.25119	2.01771	I. 81218
57.2	2.23780	2.03618	I. 83998	56.2	2.20795	I. 95286	1.79004
57.0	2.19876	I. 97583	I. 81849	56.0	2.16753	1.89271	1. 76874
56.8	2.16188	I.91925	1. 79772	55.8	2.12955	I. 83660	I. 74820
56.6	2.12689	1.86598	1.77758	55.6	2.09367	1.78402	1.72835
56.4	2.09358	1. 81566	1.75SO5	55.4	2.05966	I. 73453	r. 70911
56.2	2.06179	1.76799	1. 73906	55.2	2.02730	1. 68779	1.6904.4
56.0	2.03136	1.72270	1.72059	55.0	1. 99642	1. 64352	1.67229
55.8	2.00217	1. 67958	1. 70258	54.8	1.96687	1.60147	1.65463
55.6	1.97411	1.63844	1.68502	54.6	1.93852	I. 56144	1. 63742
55.4	I. 94708	1.59915	I. 66787	54.4	1.91128	1.52324	1.62062
55.2	1.92100	1.56146	I.65111	54.2	1.88504	I. 48673	I. 60422
55.0	I. 8958 I	I. 52534	1. 63472	54.0	I. 85974	1. 45177	I. 588 I9
54.8	1.87143	1. 49066	I. 61868	53.8	I. 83529	1.41824	I. 57252
54.6	1. 84782	I. 45730	I. 60297	53.6	1.81163	1. 38603	1.55717
54.4	I. 8249 I	I. 42519	I. 5^{8757}	53.4	1.78872	I. 35506	I. 54213
54.2	I. 80268	I. 39424	I. 57247	53.2	I. 76649	I. 32525	I. 52739
54.0	1.78106	I. 36438	I. 55766	53.0	I. 74491	I. 29650	1.51294
53.8	1.76003	I. 33555	I. 54312	52.8	1.72394	1.26877	I. 49875
53.6	1. 73956	I. 30763	I. 52884	52.6	1. 70353	I. $2+1199$	I. 48482
53.4	1.71961	1.28071	I. 5148 I	52.4	I. 68367	1.21609	1.47114
53.2	1.70015	I. 25461	1. 50102	52.2	r.66431	I. I9104	1.45770
53.0	1.68116	1.22932	1. 48746	52.0	1. 64.5-12	1.16679	1. 444.48
52.8	1.66262	1.20480	I. 47412	51.8	I. 62699	I. 14328	1.43149
52.6	r. 64450	I. 18101	1.46100	51.6	1.60900	I. 12050	1.41870
52.4	1.62678	I. 15792	I. 44808	51.4	I. 5914	1.09839	1.40011
52.2	I. 60945	I. 13550	I. 43536	51.2	1. 57422	1.07692	I. 39372
52.0	1. 59249	I.II371	I. 42283	51.0	I. 55739	1. 05607	1.38151
51.8	I. 57587	1.09252	I. $410+9$	50.8	1. 54092	1.03580	1. 36949
51.6	I. 5.5959	1.07191	I. 39832	50.6	I. 52479	I.cI610	I. 35765
51.4	I. 54363	I. 05185	r. 38633	50.4	I. 50898	. 99692	1. 34597
5 I .2	I. 52798	1.03232	r. 3745 I	50.2	I. 49349	. 97826	I. 33445
51.0	1. 51262	I.OI330	I. 36286	50.0	1.47829	.96008	1.32310
50.8	I. 49755	. 99476	I. 35136	49.8	1.46338	. 94238	I. 311 mo
50.6	1.48276	.97669	I. 34001	49.6	1. 44835	. 92512	1. 30085
50.4	I. 46823	. 95906	I. 32881	$49 \cdot 4$	I. 43438	-90829	I. 28994
50.2	I. 45396	.94186	I. 31776	49.2	I. 42026	. 89188	1.27917
50.0	I. 43993	. 92508	I. 30685	49.0	1. 40639	. 87587	I. 26855
49.8	1.42613	. 90870	I. 29608	48.8	I. 39275	. 86024	I. 25806
49.6	1. 41256	. 89270	I. 28544	48.6	I. 37934	. 84498	1.24770
49.4	I. 39921	. 87707	1.27493	$+8.4$	1.36616	. 83007	1. 23776
49.2	1.38607	. 86180	I. 26454	48.2	I. 35319	. 8155 I	I. 22734
49.0	1.37315	. 84687	1.25428	48.0	I. 34042	. 80128	1.21734
48.8	I. 36042	. 83227	1.24144	47.8	1. 32785	.78737	I . $207 \% 6$
48.6	I. 34788	. 81800	$1.23+12$	+7.6	I. 31547	. 77377	1. 19769

$y=0.12$				$y=0.13$			
φ	X	Y	T	φ	X	Y	T
0				0			
56.0	2.37888	2.16734	I. 83487	55.0	2.34664	2.07817	1. 78424
55.8	2.31979	2.08005	I. 80925	54.8	2.28474	I. 99009	I. 75868
55.6	2.26665	2.00215	I. 78508	54.6	2.22971	I. 91236	I. 73470
55.4	2.21820	I. 93166	I. 76213	54.4	2.17996	I. 84260	1.7120I
55.2	2.17357	I.86719	I. 74020	54.2	2. I344I	I. 77922	1.69040
55.0	2.13210	1.80775	I. 71917	54.0	2.09231	I. 72105	I. 66973
54.8	2.09331	I. 75256	I. 69894	53.8	2.05309	I. 66727	I. 64987
54.6	2.05683	1.70103	I. 67941	53.6	2.01633	I. 61722	I. 63074
$54 \cdot 4$	2.02237	1.65271	I. 66052	53.4	1.98169	I. 5704 I	I. 61225
54.2	1.98967	1.60720	1. 64221	53.2	1.94891	I. 52643	I. 59435
54.0	I. 95854	I. 56419	I. 62444	53.0	1.91777	I. 48495	I. 57699
53.8	I. 92882	I.523+4	1.60715	52.8	1.88809	I. 4457 I	I. 560 I
53.6	1.90037	I. 48471	1.59032	52.6	1. 85972	I. 40846	I. 54369
53.4	I. 57307	I. 44781	1.57390	52.4	1.83253	1. 37303	I. 52769
53.2	1. 84682	1.41260	I. 55789	52.2	I. 80642	I. 33925	I. 51208
53.0	I. 82153	I. 37892	I. 54224	52.0	1.78130	I. 30698	I. 49683
52.8	I. 79714	I. 34666	I. 52694	51.8	1.75708	1.27609	I. 4 SI93
52.6	1.77356	I. 31570	I. 51197	51.6	1.73370	I. 24648	I. 46735
52.4	1. 75074	I. 28596	I. 4973 I	5 I .4	1. 71108	1.21805	I. 45308
52.2	1.72862	I. 25735	I. 48294	51.2	I.63918	I. Igo 71	I. 43909
52.0	1.70717	I. 22979	I. 46886	51.0	I. 66795	I. 16439	I. 42538
51.8	I. 68634	I. 20322	I. 45504	50.8	1. $6+734$	I. I3903	I. 41194
51.6	I. 66608	I. 17757	1.44147	50.6	1.62731	I. II457	I. 39874
51.4	I. 64637	I. I5 579	I. 428 I 4	50.4	1.60783	1. 09094	I. 38577
5 I .2	1. 62717	I. 12383	I.4I505	50.	I. 58887	1.06810	1. 37304
51.0	1. 60846	I. 10564	I. 40218	50.0	1.57020	1.04600	I. 36052
50.8	I. 5902 I	I.08318	I. 38953	49.8	I. 55238	1.02460	I. 34821
50.6	1. 57239	I.06142	1. 37707	49.6	I. 53480	I. 00387	I. 33609
50.4	I. 55499	1.04030	I. 36482	49.4	I. 51763	. 98377	I. 324 I
50.2	I. 53798	I. OI9SI	I. 35276	49.2	I. 50085	. 96426	I. 31214
50.0	I. 52134	. 99992	I. 34058	49.0	I. 48.445	. 94533	I. 30088
49.8	I. 50506	. 98058	1.32917	48.8	I. 46840	. 92693	I. 28950
49.6	I.48912	.96179	I. 31764	48.6	I. 45269	-90905	I. 2
$49 \cdot 4$	I. 4735 I	. 9435 I	I. 30627	48.4	I. 43731	. 89166	I. 26722
49.2	I. 45820	. 9257 I	I. 29507	48.2	1.42223	. 87473	I. 2563 I
49.0	I. 44320	. 90839	I. 28401	48.0	I. 40745	. 85526	I. $2+5$
48.8	I. 42848	. 99152 $^{\text {2 }}$	1.27310	47.8	I. 39295	. 84222	I. 23495
48.6	I.41403	. 87508	I. 26234	47.6	1.37873	. 82659	I. 22448
48.4	I. 39985	. 85905	I. 25172	$47 \cdot 4$	I. 36477	. 81136	I.2I4I5
$4^{8.2}$	I. 38593	. 84342	1. 24124	47.2	I. 35106	.79650	I. 20395
48.0	I. 37225	. 82817	I. 23090	47.0	I. 33759	. 78200	I. 19357
47.8	I. 35880	. 81329	1.22069	46.8	I. 32435	. 76785	I. 15392
47.6	I. 34558	. 79576	I. 21060	46.6	I.3II34	. 75404	I. IT 709
47.4	I. 33258	. 78457	I. 20063	46.4	I. $29^{5} 55$. 74056	I. I643
47.2	1.31979	.77071	I. I9077	46.2	I. 28597	. 72739	I. 1547
47.0	1.30720	.75716	I. 18103	46.0	1. 27358	-71452	I. I4530
46.8	I. 2948 I	. 74392	I. I7I40	45.8	I. 26139	. 70194	I. I3593
46.6	I. 2826 I	. 73097	I. I6I88	45.6	I. 24939	. 68964	I. 12666

$y=0, \mathrm{I} 4$				$\gamma=0.15$			
φ	X	Y	T	φ	X	Y	T
,				53			
54.0	2.30632	1.98239	1.73297	53.0	2.25742	1.88017	1.68106
53.8	2.24268	I. 89511	1.70768	52.8	2.19343	I. 79555	I. 65629
53.6	2.18662	1.81878	1.68405	52.6	2.13738	I. 72197	1. 6332 I
53.4	2.13627	1.75073	1.66177	52.4	2.09724	1. 65662	I. 61148
53.2	2.09040	1.68919	1. 61059	52.2	2.04169	I. 59768	1.59086
53.0	2.04816	1.63293	1.62037	52.0	1.99983	1.5439 I	1.57118
52.8	2.00893	I. 58106	1.60097	51.8	1.96103	1. 49442	1. 55232
52.6	1.9722 .4	I. 53290	1. 58230	51.6	1.92480	I. 44854	1.53417
52.4	1.93775	1.48795	I. 56427	51.4	1.89076	I. 40575	I. 51667
52.2	1.90516	1. 44578	I. 54683	51.2	I. 85864	I. 36565	1. 49973
52.0	1.87425	1.40607	1. 52992	51.0	I. 82819	I. 32791	I. 48331
51.8	I. $8+482$	I. 36853	I. 51350	50.8	1.79922	I. 29226	I. 46737
51.6	1.81672.	I. 33295	1. 49752	50.6	1.77157	I. 25849	I. 45186
5 I .4	1.78982	1.29913	1.48195	50.4	1.74512	I. 22640	I. 43675
51.2	1. 76400	1.2669I	I. 46677	50.2	1.71975	I. I9584	I. 42202
51.0	1.73918	1.23615	1.45195	50.0	1. 69536	I. I6667	I. 40764
50.8	1.71527	1. 20672	1. 43746	49.8	1.67187	1.13877	I. $3935{ }^{8}$
50.6	1.69219	I. 17852	I. 42329	49.6	I. 64921	I. 11205	1. 37983
50.4	1. 66988	I. 15146	I. 40941	$+9.4$	1.62731	1.08641	I. 36636
50.2	1. $6+829$	I. 12545	I. 39582	49.2	1.60612	1.06177	1. 35317
50.0	1.62737	I. 10043	1.38250	49.0	I. 58558	1.03806	1. 34024
49.8	1.60706	1.07632	1. 36943	48.8	I. 56566	1. OI522	I. 32756
49.6	I. 58734	1.05306	1. 35660	48.6	I. 54631	. 99320	I. 31511
49.4	I. 568 I 6	1.03050	1.34.400	48.4	I. 52750	-9719+	I. 30288
49.2	I. 54950	1.00890	1.33163	48.2	1.50919	-95139	I. 29086
49.0	1.53132	. 99792	I. 31946	48.0	I. 49136	.9315I	1.27905
48.8	1.51359	.96760	I. 30749	47.8	I. 47397	.91228	I. 26743
48.6	I. +9630	.94791	1. 29572	47.6	1. 45702	. 8936	I. 25599
48.4	I. $479+1$. 92883	1.28414	47.4	I. 44046	. 87557	I. 24474
48.2	1.46292	.91031	1.27273	47.2	1.42. 228	. 85804	I. 23366
48.0	1. 4.4679	. 89233	1.26149	47.0	I. 40847	. 84102	I. 22275
$47.8{ }^{\circ}$	1.43101	. 87487	1.25042	46.8	1. 39300	. 82449	1.21199
47.6	I.41557	. 85790	1.23952	46.6	1. 37786	. $808+3$	1.20139
47.4	I. 40045	. $8+1140$	1.22876	46.4	1.36303	. 79280	I. IgO9 +
47.2	I. 38563	. 82534	1.21816	46.2	I. 3485 I	. 77760	I. 18064
47.0	I.37111	. 80971	1.20770	46.0	I. 33427	. 7628 I	I. 17047
46.8	I. 35688	. 79449	1. 19738	45.8	I. 32030	. 74839	I. 16044
46.6	1. 34292	. 77966	1.18719	45.6	I. 30660	. 73435	I. 15053
46.4	1. 32920	. 76520	1.17713	$45 \cdot 4$	I. 29315	. 72067	1. 14076
46.2	1.31572	. 75110	I. 16720	45.2	1. 27995	. 70732	1. J3110
46.0	1.30247	. 73736	1. 15741	45.0	I. 26697	. 69430	I. 12157
45.8	1. 28945	. 72394	I. 14774	44.8	1.25+21	. 68159	I.II216
45.6	1. 27666	. 71084	I. 13818	44.6	I. 24167	. 66918	I. 10286
$45 \cdot 4$	1.26 .409	. 69805	I. 12873	44.4	I. 22935	. 65707	1. 09366
45.2	1.25173	. 68556	I. II939	$+4.2$	1.21723	. 64524	I. 08457
45.0	1.23959	. 67336	I. IIOI5	44.0	I. 20531	. 63368	I. 07558
44.8	1. 22765	.66143	I. IOIO2	43.8	I. 19358	. 62238	1. 06669
$4+6$	1.21588	.64976	1.09200	43.6	1.18203	.61133	1. 05790

$y=0.16$				$\gamma=0.17$			
φ	X	Y	T	φ	X	Y	T
.				0			
52.0	2.20019	1.77260	1.	51.0	2.13564	5	1.57577
51	2.13736	I. 69247	I. 60460	50	2.07535	I. 53739	I. 5527%
51.6	2.0824 I	1.62287	I. 58225	50.6	2.02246	1. 52276	1.53132
51.4	2.03328	I. 56111	I. 56122	50.4	I. 97508	1.46529	I.5IIII
51.2	1.98869	I. 50545	I. 54127	50.2	I.9320I	I. 41340	I.49191
51.0	1.94773	I. 45469	I. 52223	50.0	I. 89240	I. 36603	I. +7358
50.8	1.90978	1. 40798	1. 50398	49.8	I. 85566	I. 32239	I. 45600
50.6	1.87434	I. 36468	1. 48642	49.6	I. 82133	I.28I9I	1.4390
50.4	1.84107	I. 32431	I. 469.47	49.4	1.78907	I. 24414	1.42274
50.2	1.80966	1. 28648	1. 45308	49.2	1.75860	I. 20872	I. 40692
50.0	1.77989	I. 25088	1.43719	49.0	I. 72971	I. I7536	I. 39 I59
49.8	I. 75158	I. 21725	1. 42176	48.8	1. 70222	I.I4385	1.37668
49.6	I. 72456	I. 18539	I. 40674	48.6	1. 67597	I. II 397	1. 36218
49:4	I.6987I	I.I5512	I. 3921 I	48.4	I. 65085	I. 08557	I. 34805
49.2	I. 67391	I. 12629	I. 37785	48.2	1. 62674	I. 05852	I. 33426
49.0	I. 65007	1.09878	I. 36392	48.0	I. 60356	I. 03268	I. 32079
48.8	1.62712	$1.072+6$	I. 35030	47.8	I. 58123	1.00797	I. 30762
48.6	I. 60497	1.04725	I. 33698	47.6	I. 55968	. 98428	I. 29473
48.4	I. 58356	1.02305	I. 32393	47.4	I. 53885	. 96155	I. 2821 I
48.2	I. 56285	. 9993 I	I.3III5	47.2	I. 51868	. 93970	I. 26974
48.0	I. 54278	. 97743	I. 29862	47.0	I. 499 I 4	-91866	I. 25760
47.3	I. 52331	. 95588	1. 28632	46.8	I. 48017	. 89830	I. $2+550$
47.6	I. 50439	. 93510	1.27424	46.6	I.46175	.8753+	1. 23.100
47.4	I. 48600	. 91503	1. 26238	46.4	I. 44383	. 85995	I. 2225 I
47.2	1.46810	. 89563	1.25073	46.2	1. 42639	. $8+17 \mathrm{I}$	I. 21122
47.0	I. 45067	. 87687	1.23927	46.0	I. 40939	. 82405	I. 20011
46.8	I. 43367	. 8587 I	1.22800	45.8	I. 39282	. 80695	I. ISgIS
46.6	1.41709	. 8411 I	1.21690	45.6	I. 37665	. 79035	I. I 7843
46.4	1.40090	. 82.105	I. 20598	$45 \cdot 4$	I. 36056	. 77431	I. 16-83
46.2	I. 38508	. 80749	I. I9523	45.2	I. $3+543$.75872	I . 15740
46.0	I. 36962	. 79142	I. $18+63$	45.0	1. 33034	. $7435{ }^{8}$	I. 1
45.8	I. 35449	. 77581	I.I7419	44.8	I. 3 I558	. 72887	I. 13698
45.6	I. 33968	.76064	I.I6389	+ +.6	I. 30113	. 71457	I. 12699
45.4	1.32518	. 74588	I.I537+	$4+4$	1.28698	.70060	I. IITIt
45.2	1.31097	. 73152	I. I +373	44.2	I. 27311	.68712	I. 107 +1
45.0	1.29703	.7I754	I.I3385	-	1. 25950	. 67394	1.09752
44.8	1.2S335	. 70392	I. I2 210	43.8	I . $2+616$.66110	1.08535
44.6	I. 26993	.69065	I.II447	$+3.6$	I. 23307	. 64858	1.07900
44.4	1. 25677	.67772	I. 10497	4	I. 22021	.63635	I. 06976
$4+.2$	1. 24386	. 665 II	I. 09559	43.2	I. 20758	. 62149	1. 0606
44.0	1.23118	. 65280	1.08632	43.0	I. 19518	. 61288	I. 05163
43.8	1.21872	.64079	1.07716	42.8	I. I8299	. 60155	I. 04272
43.6	1.20646	. 62907	I.068II	42.6	1.17100	-590.48	1.03392
43.4	I. 19.439	. 61763	I.05916	42.4	I. I5920	. 57968	1.02322
43.2	I.IS25I	. $606+4$	I.0503I	42.2	I. I 4760	. 56912	I.
43.0	I. 17082	-5955I	I. 04157	42.0	I. 13618	. 55880	I. 005 II
42.8	I. 15931	. 58483	I. 03292	41.8	I. I2494	. $5+872$. 99969
42.6	1. 14779^{8}	. $57+39$	I. $02+37$	41.6	I. 11387	. 53885	. 99136

$\gamma=0.18$				$y=0.19$			
φ	X	Y	T	9	X	Y	T
0				0			
50.0	2.06533	I. 54956	I. 52292	49.0	1.99 III	I. 43884	I. 47035
49.8	2.00860	I. 48218	1.50107	48.8	1. 93855	I. 37858	I. 44975
49.6	I. 95852	I. 42312	I. 48063	48.6	1. 89175	I. 32530	I. 43038
49.4	1.91346	I. 37036	I. 46132	48.4	1. 84937	1.27740	1.41203
49.2	1. 87235	I. 32256	I. 44295	48.2	I. 81053	1.23380	1. 39452
49.0	I. 83445	I. 27881	I. 42538	48.0	1. 77459	I. 19374	I. 37775
48.8	1. 79921	I. 2384 I	I. 4085 I	47.8	1.74107	I. 15665	1. 36162
48.6	1.76624	I. 20037	I. 39226	47.6	1.70963	I. I2209	I. 34605
48.4	1.73520	I. 16579	I. 37655	$47 \cdot 4$	1.67997	1.08972	I. 33099
48.2	I. 70586	I. 13285	1.36134	47.2	1. 65187	1. 05928	I. 31639
48.0	1.67800	I. 10181	I. 34657	47.0	1.62516	1.03053	I. 30220
47.8	1. 65146	1.07244	I. 3322 I	46.8	1.59969	1.00330	I. 28840
47.6	1.626II	1. 0.4457	1.31824	46.6	I. 5753 I	. 97744	I. 27495
47.4	1.60182	1.01806	I. 30461	46.4	I.55194	. 95281	I. 26183
47.2	1. 57850	. 99279	1.29130	46.2	I. 52948	. 92931	I. 2.4902
47.0	I. 55606	.96864	1.27830	46.0	I. 50785	. 90683	I. 23648
46.8	I. 53443	. 94553	I. 26559	45.8	I. 48698	. 88529	I. 22422
46.6	I. 51355	. 92337	I.253I4	45.6	1. 46682	. 86463	I. 2122 I
46.4	I. 49335	.90209	1. 24.8094	45.4	1.44730	. 84477	I. 20043
46.2	1.47379	. 88162	1.22898	45.2	I. 42839	. 82566	I. I8888
46.0	I. 45483	. 86191	1.21724	45.0	I.41005	. 80725	I.I7754
45.8	1.43642	. 84291	1. 20572	44.8	I. 39223	. 78949	I. I664I
45.6	1.41852	. 82457	I. I944I	44.6	1.37490	. 77235	I. 15547
$45 \cdot 4$	I.40112	. 80586	I. 18329	44.4	1. 35804	. 75577	I. 14471
45.2	1.33417	. 78973	I. 17235	44.2	1.34161	. 73974	1.13413
45.0	I. 36765	. 77315	I. 16160	44.0	I. 32559	- 72422	I. 12372
44.8	I.35153	. 75710	I.is IOI	43.8	1.30996	. 70918	I. II347
44.6	I. 3358 I	-74153	I. 14058	43.6	I. 29470	. 69459	I. 10337
44.4	I. 32044	. 72644	I. I3032	43.4	I. 27978	. $680+4$	I. 09342
44.2	I. 30543	. 71178	I. 12020	43.2	I. 26520	. 66670	1.08362
44.0	I. 29074	. 69755	I.IIO23	43.0	1. 25093	. 65335	1.07396
43.8	I. 27637	. 68372	I. IOO40	42.8	I. 23697	. 64037	I. 06442
43.6	I. 26230	. 67027	1.0907I	42.6	1. 22328	. 62774	I. 05502
43.4	I. 2485 I	. 65718	I. 08114	42.4	I. 20988	. 61546	I. 04574
43.2	1.23499	. 64445	1.07170	42.2	1. 19673	. 60350	I. 03658
43.0	1.22173	. 63204	I. 06239	42.0	I. 18384	. 59185	I. 02754
42.8	1.20872	. 61994	1.05320	41.8	I. 17 II8	. 58049	I. or 861
42.6	I. I9595	. 60815	1.04412	41.6	I. I5875	. 56942	I.00979
42.4	I.I8342	. 59666	I. 03515	41.4	I. I4655	. 55862	I. 00107
42.2	I.I7III	. 58547	I. 02628	41.2	I. 13456	. 54808	. 99246
42.0	I. I5901	. 57455	I. 01751	41.0	I. 12277	. 53780	. 98395
41.8	I.I47II	. 56388	I. 00885	40.8	I.IIII8	. 52776	. 97554
4 I .6	I.I354I	. 55346	1.00029	40.6	I. 09978	. 51796	. 96722
4 I .4	1.12390	. 54328	. 99183	40.4	1.08856	. 50838	. 95899
4 I .2	I.II258	. 53333	. 98346	40.2	1.07752	. 49901	. 95085
41.0	I. IOI43	. 52360	. 975 I8	40.0	I. 06665	. 48986	. 94279
40.8	I. 09045	. 51409	. 96699	39.8	1.05595	. 480 gI	-93482
40.6	1.07964	. 50479	.95889	39.6	I. 0454 I	. 47215	. 92693

$\gamma=0.20$				$\gamma=0.3$			
φ	X	Y	T	φ	X	Y	T
\% 0	1. 91475	I. 33144	I. 41840	0 40.0			
47.8	I. 86658	1.27812	I. 39905	40.0 39.8			
47.6	I. 82326	1.2305 1	I. 38078	39.6	I.4133I	. 721330	I. 05691
$47 \cdot 4$	1. 78375	1.18740	I. 36340	39.4	I. 384 II	. 697262	1. 04383
47.2	1.74734	I. 14794	I. 34678	39.2	I. 35684	. 674936	I. 03122
47.0	1.71350	I.III5I	I.33031	39.0	1.33120	. 654103	I. 01903
46.8	I. 68182	1.07766	I. 31542	38.8	I. 30699	. 634565	I. 00722
46.6	1. 65202	1.04603	I. 30055	38.6	I. 28402	. 616164	. 99574
46.4	1.62383.	I.OI633	I. 28614	38.4	I. 26216	. 598772	- 98458
46.2	I. 59708	.988332	1.27215	38.2	I. 24127	. 582280	. 97370
46.0	I.57159	. 961847	I. 25855	38.0	I. 22128	. 566599	. 96308
45.8	I. 54724	. 936718	I. 24530	37.8	I. 20208	. 551653	. 95271
45.6	I.5239 1	. 912812	1. 23238	37.6	I. 18361	. 537377	. 94256
$45 \cdot 4$	I. 50151	. 890016	I. 21977	37.4	I.16580	. 523714	. 93262
45.2	1.47995	. 868234	I. 20743	37.2	I. 14861	. 510615	- 92239
45.0	1.45917	. 84738 I	I. 19537.	37.0	I.13I98	. 498037	-91333
44.8	I.43911	. 827384	I. 18355	36:8	I. II 587	. 485942	. 90396
44.6	I. 41970	. 808178	I. 17197	36.6	I. 10025	. 474297	. 89474
44.4	1.40090	. 789706	I. 16062	36.4	1. 08507	. 463071	. 58569
44.2	I. 38267	. 771917	I. I4947	36.2	1.07033	. 452236	. 87679
44.0	I. 36498	. 754766	I. 13853	36.0	I. 05597	. 441769	. 86303
43.8	1.34777	. 738212	1. 12777	35.8	I.04199	. 431647	. 85940
43.6	1.33104	. 722218	I. 11720	35.6	I. 02836	. 42185 I	. 85091
43.4	I. 31474	. 70675 I	I. 10680	35.4	I. OI 506	. 412363	. 84254
43.2	I. 29885	. 691780	I.09657	35.2	I. 00207	. 403166	. 83429
43.0	1. 28336	. 677277	I. 08650	35.0	. 98937	. 394244	. 82615
42.8	I. 26823	. 663218	1.07658	34.8	.97696	. 385584	. 81813
42.6	I. 25345	. 649579	1.06680	34.6	.9648i	. 377172	.81021
$42 \cdot 4$	I. 23900	. 636339	1.05717	34.4	.9529I	. 368996	. 80239
42.2	I 22486	. 623479	1.04767	34.2	-94126	. 361046	.79467
42.0	1.21103	.610979	1.03830	34.0	.92984	. 353312	.78704
41.8	I. 19748	. 598823	I. 02906	33.8	.91863	. 345784	.77951
41.6	I. 18420	. 586996	I.oI995	33.6	. 90764	. 338453	. 77206
41.4	I.I7II9	. 575483	I. 01095	33.4	. 89685	-3313II	.76470
41.2	I. I5843	. 564270	1.00206	33.2	. 88625	. 324350	. 75743
41.0	I. 14590	- 553344	. 99328	33.0	.87554	. 317563	.75023
40.8	1.1336I	. 542692	. 98462	32.8	.86561	. $3100 \div 2$	-743II
40.6	I.12153	. 532304	.97605	32.6	. 85555	. 30448 I	. 73607
40.4	I. Iog66	. 522170	.96759	32.4	. 84565	. 298174	. 72910
40.2	1.09800	. 512280	. 95922	32.2	. 83591	. 292015	.72220
40.0	1.08653	. 502625	. 95095	32.0	. 82632	. 286000	. 71537
39.8	1.07526	. 493196	. 94278	31.8	. S1688 $^{\text {c }}$. 280124	.7086I
39.6	I. 06416	. 483984	. 93469	31.6	. 80758	. 27438 I	. 70191
39.4	1.05324	. 474952	. 92668	31.4	. 79842	. 268767	. 69523
39.2	1.04249	. 466182	.91877	3 I .2	.78939	. 26327	.68871
39.0	1.03190	. 457578	. 91093	31.0	. 78049	. 257908	. 68220
38.8	1.02147	. 449162	. 90318	30.8	. 7717 I	. 252656	.67575
38.6	I.OIII9	:44092S	. S955I	30.6	.76305	. 247516	. 66936

$y=0.4$				$\gamma=0.5$			
9	X	Y	T	φ	X	Y	T
0				0			
34.2	1.24777	- 53608	-89410	29.6	1.06591	- 384606	. 75459
34.0	I. 21572	- 514384	. 88133	29.4	1.03607	-367783	. 74237
33.8	I. IS649	. 494743	. 86916	29.2	1.00900	. 352587	. 73172
33.6	I. I 5954	. 476774	. 85750	29.0	. 98413	. 338743	. 72106
33.4	I. I3449	. 460183	. 84629	23.8	.96107	. 326013	. 71031
33.2	1. 11103	. 444779	. 83546	23.6	-93953	. 314219	. 70093
33.0	I. 08894	. 430379	. 82498	28.4	. 91928	. 303226	. 69136
32.8	1.06805	. 416859	. 81481	28.2	.90015	. 292927	. 68208
32.6	1.048I9	. 404 II 4	. 80492	28.0	. 88201	. 283238	. 67306
32.4	1.02927	- 392057	. 79528	27.8	. 86473	. 274088	. 66427
32.2	I. OIII 7	. 380615	.78588	27.6	. 84822	. $265 \dot{1}^{121}$. 65570
32.0	. 99383	. 369734	. 77669	27.4	. 83240	. 257188	. 64732
31.8	. 97715	. 359357	. 76770	27.2	. 81722	. 249348	.63913
31.6	. 96110	. 349440	. 75391	27.0	. 80260	. 241866	. 63110
31.4	.9456I	- 339947	. 75028	26.8	. 78850	.234713	. 62323
31.2	. 93063	. 330844	. 74182	26.6	. 77488	. 227862	.61552
3 I .0	.91614	-322101	. 73351	26.4	. 76170	.221289	. 60794
30.8	.90209	- 313693	. 72535	26.2	. 74892	.214976	. 60049
30.6	. 88846	. 305596	. 71733	26.0	. 73653	. 208903	. 59316
30.4	. 87521	. 297791	. 70944	25.8	. 72448	. 203055	. 58595
30.2	. 86232	. 290258	. 70167	25.6	. 71277	. 197418	. 57886
30.0	. 84976	. 282981	. 69402	25.4	. 70136	. 191977	. 57187
29.8	. 83753	. 275945	. 68648	25.2	. 69025	. 186722	. 56498
29.6	. 82559	. 269136	. 67905	25.0	. 67940	.18I643	. 55818
29.4	. 81393	. 262542	. 67172	24.8	. 66882	. 176728	. 55148
29.2	. 80255	. 256152	. 66449	24.6	. 65847	.171970	. 54487
29.0	.79141	. 249954	. 65735	24.4	. 64836	. 167361	. 53834
28.8	. 78052	. 243939	.6503I	24.2	. 63846	. 162892	. 53189
23.6	. 76985	. 238098	. 64335	24.0	. 62877	. 158557	. 52552
28.4	. 75940	. 232424	. 63648	23.8	.61928	. 154350	. 51922
28.2	.74916	. 226908	. 62969	23.6	. 60997	. 150265	- 51300
28.0	. 73915	. 221543	. 62298	23.4	. 60084	. I46297	. 50684
27.8	. 72925	. 216323	. 61634	23.2	. 59189	. 142440	. 50075
27.6	. 71957	. 211242	. 60977	23.0	. 58309	. 138689	. 49473
27.4	.71007	. 206294	. 60328	22.8	. 57446	. 135040	. 48877
27.2	. 70073	. 201473	. 59686	22.6	. 56597	. 131490	. 48287
27.0	. 69155	. 196775	. 59050	22.4	. 55763	. 128034	. 47703
26.8	. 68252	. 192195	. 58420	22.2	. 54942	. 124668	. 47124
26.6	. 67364	. 187728	. 57797	22.0	. 54135	. 121190	. 46551
26.4	. 66489	. 183370	. 57180	21.8	. 5334 I	. 118396	. 45983
26.2	.65629	.179117	. 56568	21.6	. 52559	. 115083	. 45420
26.0	. 64781	. 174966	.55963	21.4	. 51788	. 112048	. 44862
25.8	. 63946	.170913	. 55363	21.2	. 51028	. 109088	- 44310
25.6	. 63124	. 166954	. 54768	21.0	. 50280	. 106200	. 43763
25.4	.62313	. 163086	. 54178	20.8	. 49542	. 103384	. 43220
25.2	.61514	. 159307	. 53594	20.6	. 48815	. 100636	. 42682
25.0	. 60726	. I55615	. 53015	20.4	. 48097	. 097954	. 42148
24.8	. 59948	. 152005	. 52440	20.2	. 47389	. 095336	. 41618

$y=0.6$				$\gamma=0.7$			
9	X	Y	T	φ	X	Y	T
${ }^{0}$				0			
26.0	. 93344	. 290751	. 65330	23.0	.81319	. 220114	-560こ2
25.8	. 90438	. 2766.40	.642II	22.8	. 78636	. 208580	. 558 JI
25.6	. 87825	. 264063	.63151	22.6	.76226	- I9S698	. 51977
25.4	. 85442	. 252696	.62I4I	22.4	. 74029	. I80507	. 53929
25.2	. 83245	. 242310	. 61172	22.2	. 72004	. 181290	. 53020
25.0	. 81202	. 232737	. 60239	22.0	.70121	. 173643	. 52145
24.8	. 79288	. 223854	. 59338	21.8	. 68358	. 166554	. 51300
24.6	. 77486	. 215563	. 58465	21.6	. 66697	. 159545	.50480
24.4	. 75780	. 207789	. 57617	21.4	. 65126	. 153754	. 4968.1
24.2	.74159	. 200470	. 56792	2 I .2	. 63632	. 147930	. 48909
24.0	. 72613	. 193554	. 55987	21.0	. 62208	. 142434	. 4 SI53
23.8	. 71134	. 187002	. 55201	20.8	. 60845	. 137231	. 47415
23.6	.697I6	.180776	. 54433	20.6	. 59539	. 132293	. 46693
23.4	. 68352	. 174848	. 5368 I	20.4	. 58232	. 127596	. 459 S6
23.2	. 67039	. 16919 I	. 52943	20.2	. 57072	.123118	. 45293
23.0	. 65771	.163786	. 52220	20.0	-55903	. 118842	. 47413
22.8	. 64545	. 158605	.51510	19.8	. 54774	. 114752	. $439+45$
22.6	. 63358	. 153639	. 50812	I9. 6	. 53679	. 110835	. 432 2?
22.4	. 62207	.148871	. 50126	I9.4	. 52618	. 107077	. 42643
22.2	.61089	. 144286	. 49451	19.2	. 51588	. $103+68$	-42cos
22.0	. 60003	. 139873	. 48786	19.0	.50586	. 099998	. 41382
21.8	.58945	. I35622	.4813I	18.8	. 496 II	.096659	. $40-65$
21.6	. 57915	. 131522	. 47486	18.6	. 48660	. 093443	. 40157
21.4	. 56910	. 127564	. 46849	18.4	.47733	. 090343	-30557
21.2	. 55929	. 123741	. 46221	IS. 2	. 46829	.087352	. 3 S966
21.0	. 54972	. 120045	. 45602	18.0	. 45945	.084464	$.3838_{1}$
20.8	. 54035	. 116470	. 44990	17.8	. 4508 I	.081674	-37804
20.6	.53119	. 113009	. 44385	17.6	. 44236	.078976	-3723+
20.4	. 52223	. 109657	. 43788	17.4	. 43409	.076368	- 36671
20.2	. 51345	. 106409	. 43198	17.2	. 42598	. 073843	. 36113
20.0	. 504884	. 103259	. 42614	17.0	. 41504	.071399	. 35562
I9. 8	. 49610	. 100204	. 42037	16.2	. 41025	.069031	. 35017
19.6	.48812	.097238	. 41466	16.6	. 40260	.06673s	-3+473
19.4	. 47999	. 094360	. 40901	16.4	. 39509	. 0645 I 4	. 3394
19.2	. 47201	. 091563	. 40342	16.2	. 38772	. 062358	. $33+16$
19.0	. 46416	. 0888.47	. 39788	16.0	. 38047	. 060267	. 32892
18.8	. 45645	. 086206	. 39239	I 5.8	. 37335	. 058237	. 32374
18.6	. 44887	. 083639	. 38696	15.6	. 36634	. 056263	. 3 IS60
18.4	.4414I	.08iti4	. 3 SI5 ${ }^{8}$	I5.4	. 35945	. $05+356$. 31351
18.2	. 43406	.078715	. 37625	15.2	. 35266	. 052500	. 30847
18.0	. 42683	. 076352	. 37096	15.0	. 34598	. 050697	- $303 \div 6$
17.8	. 41971	. 074053	.36572	If. 8	. 33940	. 0489.6	. 29550
17.6	. 41270	. 0718 IS	. 36053	14.6	-33292	. 047245	. 2935 S
17.4	. 40579	. 069636	. 35538	It. 4	. 32653	. 045592	. 28570
17.2	. 39897	. 067513	. 35027	If. 2	. 32023	. 0.43985	. 28386
17.0	- 39225	. 0654.44	. 34520	14.0	. 31401	. $0.42+2.4$. 27906
16.8	. 38562	. 063430	. 34017	13.8	. $30-88$.040907	. 27429
16.6	. 37 c 0 S	. 061468	. 33518	13.6	.30183	. $039+32$. 26956

$\gamma=0.8$				$\gamma=0.9$			
φ	X	Y	T	φ	X	Y	'T
20.6	. 72328	. 173439	. 50514	0 18.6	. 64747	. 133365	. $452+2$
20.4	. 69753	. 163809	. 49502	18.4	. 62289	. 130537	. 44265
20.2	. 6745 I	. 155295	.48546	18.2	. 60093	. 123395	. 43344
20.0	. 6536 I	. 147646	.47637	18.0	. 58 II 5	. II69II	. 42.469
19.8	. 63440	. I40692	. 46766	17.8	. 56295	. IIIO33	. 41631
19.6	. 61658	. 134310	. 45928	17.6	. 54609	. 105653	. 40326
19.4	. 59992	. 128411	. 45119	17.4	. 53035	. 100690	. 40049
19.2	. 58426	. 122924	. 44335	17.2	. 51556	. 096084	- 39297
19.0	. 56945	. 117797	. 43575	17.0	. 50159	. 091787	. 38566
18.8	. 55539	. 112984	. 42834	16.8	. 48834	.087761	. 37855
18.6	. 54200	. 103450	.42112	16.6	. 47573	. 033976	. 37162
18.4	. 52920	. 104167	.41407	16.4	. 46367	. 080405	. 36486
I8.2	. 51693	. Iooiog	. 40718	16.2	. 45212	. 077027	. 35824
18.0	. 50514	.096255	.40043	16.0	. 44103	. 073825	-35177
I7. 8	. 49378	. 092587	. 39382	15.8	. 43035	. 070782	- $3+542$
17.6	. 48283	.08gogr	.38733	15.6	. 42005	. 067886	-33919
17.4	. 47224	. 035752	.38095	15.4	.41009	. 055125	-33307
I7.2	.46199	:032559	. 37468	15.2	.40045	. 062488	- 32706
17.0	. 45205	. 079501	.36852	I5.0	-39III	. 059967	-32114
16.8	. 44240	. 076569	. 36246	14.3	. 38204	. 057554	-31532
I6.6	. 43302	. 073754	.35648	1.7 .6	. 37323	. 055242	. 30058
16.4	. 42389	. 071050	. 35060	14.4	. 36465	. 053024	-30393
16.2	. 41499	. 068450	. 34479	1.7. 2	. 35630	. 030394	. 29336
16.0	.40632	. 065947	. 33906	14.0	. 34815	. 0.43848	. 29286
I5.8	. 39736	. 063537	-3334I	13.3	-3.4020	.0.46881	.28743
15.6	.33960	. 061213	. 32783	I 3.6	. 33244	.0-44989	. 28208
15.4	. $33 \mathrm{I}_{5} 2$.058972	. 32232	13.4	-32485	. 043167	.27678
15.2	. 3736 I	. 056810	. 31638	13.2	-31743	.041412	. 27155
I5.0	.36587	. 054722	. 31149	13.0	. 31016	. 039721	. 26638
14.3	. 35829	. 052705	. 30617	12.8	. 30305	.038ogi	. 26127
14.6	. 35087	. 050756	-3009I	12.6	. 29607	. 036518	. 25621
14.4	. $3+358$. 048872	. 29570	I2.4	. 28923	. 035001	. 25120
14.2	. $336+3$. 047050	. 29054	12.2	. 2825 I	. 033537	. 2.4625
14.0	. $329+2$. 045287	. 28544	12.0	. 27592	.03212-4	. 24134
I 3.8	. 32252	.04358r	. 28039	II. 8	. 26945	. 030760	. 23648
r3.6	. 31575	. 041929	. 27538	11. 6	. 26308	. 029442	. 23167
13.4	. 30909	. 040330	. 27042	II. 4	. 25683	.028170	. 22690
I 3.2	. 30254	.038782	. 26551	II. 2	. 25068	. 026340	. 22218
13.0	. 29609	. 037282	. 26054	II. O	. 24462	. 025753	. 21749
12.8	. 28974	. 035829	. 25581	10.8	. 23866	. 024606	. 21285
12.6	. 28349	.03+42I	. 25102	10.6	. 23279	. 0234.97	. 20825
12.4	. 27734	. 033057	. 24627	10.4	. 22701	. 022426	. 20368
12.2	. 27128	.031735	. 24156	10.2	. 22132	.02I39I	. I99I4
12.0	. 26531	.030454	. 23690	10.0	. 21571	.020391	. 19464
Ir. 8	. 25942	.029213	. 23227	9.8	. 21018	. 019.425	. 19018
II. 6	. 25361	. 02 SOIO	. 22767	9.6	. 20472	. 018492	. 18575
11.4	. 24788	. 026844	. 22310	$9 \cdot 4$. 19934	. 017591	. 18135
II. 2	. 24222	.025713	. 21856	9.2	. 19403	. 016721	.17699

$\gamma=\mathrm{I} . \mathrm{O}$				$\gamma=\mathrm{I} . \mathrm{I}$			
φ	X	Y	T	9	X	Y	T
0				0			
17.0	. 59414	. 116140	. 41265	15.4	. 51899	.09024I	. $36-556$
16.8	. $5693+$. 108606	. 40293	15.2	. 49780	.08-445	. 35864
16.6	. 54752	. 102059	. 39382	15.0	. 47885	. 079331	. 35022
16.4	. 52792	.09625I	. 38519	I4. 8	. 46163	. 074748	-34219
16.2	. 51004	.091024	. 37696	14.6	. 417578	.070591	. 3345 I
16.0	. 49357	. 086268	.36907	14.4	. 43108	. 066788	. 327 II
15.8	. 47824	.081903	. 36×47	14.2	. 41732	. 063282	. 31996
15.6	. 46389	. 077869	. 35412	14.0	. 40438	. 060032	. 31302
15.4	. 45037	.074119	- 34699	13.8	. 39215	.057004	- 30629
15.2	. 43758	. 070618	. 34006	13.6	. 38053	. 054171	. 29974
15.0	4254 x	. 067336	-33331	13.4	- 36945	. 05×512	. 29334
14.8	. 41381	. 064249	. 32672	13.2	- 35886	. 049008	.28709
14.6	. 40271	.061337	- 32029	13.0	. 34871	. 046645	. 28093
14.4	. 39206	. 058582	. 31399	12.8	. 33805	. 014409	. $27+99$
14.2	. 38182	. 055972	. 30782	12.6	-32954	. $0+42291$. 26912
14.0	. 37195	. 053493	. 30177	12.4	. 32047	. 040279	. 26336
13.8	. 36242	.051134	. 29583	12.2	. 31169	. 038366	. 25769
13.6	. 35320	. 048887	. 28999	12.0	. 30320	. 036544	. 25212
I3.4	. 34427	. 046744	. 28425	11.8	. 29.406	. 034807	. 24664
13.2	. 3356 x	. 0.44696	. 27360	II. 6	. 286.95	. 033150	. 24124
13.0	. 32720	. 042738	.27303	II. +	. 27917	. 031567	. 23592
12.8	. 31902	. 040864	. 26755	IX. 2	. 27860	. 030053	. 2306 S
12.6	. 31105	. 039069	. 26214	II.O	. 26422	. 023605	. 22551
12.4	. 30329	. 037348	. 2568 I	IO. 8	. 25702	. 027219	. 22040
12.2	. 2957 I	.035696	. 25155	10.6	. 24999	. 025891	. 21536
12.0	. 23832	.034111	. 24635	10.4	. 24313	.0246IS	. 21039
11.8	. 23109	. 032588	. 24122	10.2	. $236+1$. $02339{ }^{8}$. 20547
11.6	. 27403	. 031125	. 23615	10.0	. 22985	. 022228	.20060
II. 4	. 26711	.0297IS	. 23113	9.8	. 22341	. 021105	. 19579
11.2	. 26034	. 028365	. 22618	9.6	. 217II	. 020028	- IgIC3
II. O	. 2537 x	. 027063	. 22127	$9 \cdot 4$. 21093	. 018094	.18632
10.8	. 24720	.02-SII	. 21642	9.2	. 20487	. or8001	. İI66
10.6	. 24082	. $02+605$. 21162	9.0	. 19 S92	. 017049	.17\%04
10.4	. 23456	. $023+44$. 20686	8.8	. 19308	. 016134	.17ニサ7
10.2	. 22341	. 022326	. 20215	8.6	. IS734	. 015255	. 16794
10.0	.22236	. 021249	. 19749	8.4	. 15170	- ort+12	. 16346
9.8	. 216.42	.020212	. 19286	3.2	. 177615	. 013603	. 15 COI
9.6	. 21053	. 019213	. 1852 S	8.0	.17069	. or2526	. 15×50
$9 \cdot 4$. 20483	.or8252	.18374	7.8	. 16532	. 012080	. 15023
9.2	. 19918	. 017325	. 17924	7.6	. 16003	. OII365	. 14589
9.0	.19361	.016433	. 17477	7.4	. $154{ }^{\text {S }}$. 010680	.14159
8.8	.18812	. O15574	. $1703+$	7.2	. 17969	. 010022	. 13733
8.6	. 1827 x	. 014747	. $1659+$	7.0	. 14463	. 009392	.13309
8.4	. x 7738	. 013951	.16158	6.8	. 13965	. 00575	. İŜ́S
8.2	. 17213	. 013185	. 15726	6.6	- $13+13$.008210	- 1247 I
8.0	. 16696	. $0124+7$. 15297	6.4	.129S8	.007657	. 12057
7.8	. 16185	. orim3S	. 14871	6.2	. 12509	. 007129	. IICH6
7.6	. 15631	. OrIO56	. $1+44^{8}$	6.0	. 12037	. 006625	. 11235

$\gamma=1.2$				$\gamma=\mathrm{I} .3$			
φ	X	Y	T	9	X	Y	T
－0				${ }_{13}{ }^{0}$			
14.6	－ 52776	． 089263	$\cdot 35707$	13.4	－+6065		－ 32266
14.4	． 49953	． 081960	－34683	13.2	． 44277	． 065561	－31329
14.2	． 47586	． 075927	． 33745	13.0	． 42223	．060781	－30459
14.0	． 45528	． 070755	． 32871	12.8	． 40407	． 05662 I	． 29643
13.8	． 43694	．0662I5	． 32047	12.6	． 3^{98770}	． 052932	． 28868
13.6	． 42031	． 062 I6ı	－31263	12.4	． 37274	． 049614	． 28123
13.4	．+10505	． 058497	． 30512	12．2	． 35892	． 046600	． $27+17$
13.2	．3909I	． 055153	． 29790	12.0	． 34604	． 043839	． 26731
13.0	－37770	． 052079	.29093	II． 8	． 33396	． 041294	． 26068
12.8	． 36528	． 049236	． $25+18$	II． 6	． 32258	． 038936	． 25424
12.6	． 35355	． 046592	． 27762	II． 4	． 31178	． 036740	． 24797
12.4	． $3+2+2$	． 044125	． 27123	11.2	． 30152	． $03+688$	． $2+187$
12.2	． 33182	． 041813	．26501	II． 0	.29172	． 032765	． 23591
12.0	． 32169	．03964I	． 25892	10.8	． 28233	．030958	． 23008
II． 8	． 31198	． 037595	． 25297	10.6	． 27333	． 029256	． 22.438
11.6	． 30265	． 035663	． 24715	10.4	． 26466	．027650	． 21878
II． 4	． 29367	． 033835	． $2+143$	10.2	． 25630	．02613I	． 21329
II． 2	． 28500	． 032103	． 23582	10.0	． 24823	． 024693	． 20790
II． 0	． 27662	． 030459	． 23031	9.8	． 24041	． 023329	．2cご5o
10.8	． 2685 I	． 028897	． 22.489	9.6	．23284	． 022034	． 19738
10． 6	． 26065	．0274II	． 21956	$9 \cdot 4$	． 22549	． 020804	． 19224
10.4	． 25301	． 025995	． 21431	9.2	． 21835	． 019635	．18718
10.2	． 24559	． $02+4646$	． 20913	9.0	．2II4I	．OI8522	．13220
10.0	． 23836	． 023359	． 20403	8.8	． 20464	．OI7462	．1ヶ728
9.8	．23132	． 022130	． 19900	8.6	． 19804	．OI6453	． 17242
9.6	． 22146	． 020957	． 19404	8.4	． 19160	．OI 549 I	． 16763
9.4	． 21776	． 019836	．18913	8.2	． 18532	．OI4573	． 16290
9.2	．2112I	．018764	．18429	8.0	－17917	． 013699	－ 15822
9.0	． 2043 I	． 017738	． 17950	7.8	． 17316	．OI2865	． 15359
8.8	． 19855	． 016758	． 17477	7.6	． 16728	．O12069	． 14902
8.6	． 19242	．OI58i9	． 17009	$7 \cdot 4$	．r615I	．OiI3Io	．IT449
8.4	． 1864 I	． 014922	． 16546	7.2	． 15536	．OIO536	． 14002
8.2	． 18052	．OI， 4062	． 16088	7.0	． 15032	． 009396	．I3558
8.0	． 17474	．or3240	． 15635	6.8	． 14489	． 000238	． 13120
7.8	． 16908	．OI2454	． 15186	6.6	． 13955	． 0086 II	． 12685
7.6	． 16351	． 011701	． $\mathrm{I}+74 \mathrm{I}$	6.4	． $13+30$	． 008013	． 12254
7.4	． 15804	． 010981	． 14300	6.2	． 12915	． 007444	． 11828
7.2	． 15267	． 010293	． 13864	6.0	． 12408	． 005903	． 11405
7.0	． 14738	． 009634	． 13431	5.8	． 11910	.006387	． 10935
6.8	． 14218	． 009005	． 13002	5.6	． 11419	．005898	． 10570
6.6	．13706	． 008404	． 12576	$5 \cdot 4$	． 10937	． 005433	．IOI57
6.4	． 13203	． 007830	． 12154	5.2	． 10461	． 004992	．09748
6.2	．12706	．007282	．11735	5.0	． 09993	． 004574	．09342
6.0	．12218	． 006760	． 11320	4.8	． 09532	．004178	． 08939
5.8	． 11736	． 006262	． 10908	4.6	． 09077	． 003804	03539
5.6	． 11261	． 005788	． 10499	4.4	．08628	． 00345 I	．08I42
$5 \cdot 4$	． 10793	． 005337	． 10093	4.2	．08185	．003118	． 07748
5.2	． 1033 I	． 004908	． 09689	4.0	．07748	． 002805	． 07357

$\gamma=1.4$				$\gamma=1.5$			
9	X	Y	T	9	X	Y	T
${ }_{12.2}$	． 40049	． 054244	． 28670	$\begin{gathered} 0 \\ \text { II. } 4 \end{gathered}$	． 37183	． 046879	
12.0	.38169	． 050213	． 27842	II． 2	． 35357	． 043229	． 25379
II． 8	． 36495	． 046685	． 27061	II． 0	． 33734	． 040076	． 25112
± 1.6	． 34979	． 043544	． 26318	10.8	． 32267	．037220	． $2733^{3} 4$
11.4	． 33538	．040714	． 25607	10.6	． 30923	． 034679	． 23087
11.2	． 32299	．038538	． 24923	10.4	． 29678	． 032373	． 23016
II． 0	－31095	． 035777	． 24262	10.2	． 28517	． 030263	． 22369
10.8	.29964	． 033599	． 23623	10.0	． 27427	． 028320	． 21743
10.6	． 28896	． 031580	． 23001	9.8	． 26398	． 026527	． $2113+$
10.4	． 27882	． 029701	． 22396	9.6	． 25421	． 0248855	． 2054
10.2	． 26917	． 027946	． 21506	$9 \cdot 4$	． 24492	． 023299	－Ig964
10.0	． 25994	． 026303	． 21230	9.2	． 23604	． 021845	－19＋ico
9.8	．25110	． 024760	． 20666	9.0	． 22753	． $\mathrm{C2O}_{4} \mathrm{~S} 2$	．ISSqS
9.6	． 2.4260	． 023307	． 20113	8.8	． 21936	． 019202	． 18308
$9 \cdot 4$	． 23442	． 021938	．I9572	8.6	． 21149	． 017998	．工57\％
9.2	． 22653	．020646	．190．70	8.4	． 20390	． 016564	．1725
9.0	． 21890	． 019424	．18517	8.2	．I9657	． 015794	． $267 \div 6$
8.8	． 21152	． 013267	．18003	8.0	． 18946	． 014783	． 16243
8.6	． 20435	．017エアI	．17497	7.8	． 18253	．O13S27	．1579
8.4	． 19740	．016131	． 16999	7.6	． 17590	． 012924	． 15260
8.2	． 19064	． 015145	． 16508	7.4	． 16940	． 012065	． 14780
8.0	． 18.405	．O14209	． 16024	7.2	．1630S	．OII253	． $1+306$
7.8	． 17764	． 013319	． 15546	7.0	．15692	． 010491	． 13039
7.6	．17139	． 012.774	． 15075	6.8	． 15091	． $0^{0} 9764$	． 13373
$7 \cdot 7$	．16529	．OII670	．14610	6.6	． 14505	． 009075	． 12022
7.2	． 15933	． 010906	． 14150	6.4	． 13932	． 00 S422	． 124%
7.0	． 15350	．OIOISo	． 13695	6.2	．13372	． $\mathrm{CO}-\mathrm{SO}_{3}$	． 12028
6.8	． 14779	． 0009489	． 13246	6.0	．12S24	．00－218	． 11588
6.6	． 1422 I	． 008833	．12SOI	5.8	． 12288	． 006663	．III53
6.4	． 13673	． 008209	． 12361	5.6	． 11762	． 006139	． 10722
6.2	． 13137	． 007617	． 11926	$5 \cdot 4$	． 11247	． 005642	． 10296
6.0	． 12610	． 007057	． 11495	5.2	．10741	． 005173	．09874
5.8	． 12094	． 006520	． 11068	5.0	． 10245	．004731	． $09+57$
5.6	．I1586	．006017	． 10645	4.8	． 09758	． 004313	． 09013
5.4	． 11088	． 005534	． 10226	4.6	． 09279	． 0003919	． 08633
5.2	． 10598	． 005080	．ogSro	$4 \cdot 7$	．oSSog	． 003549	． 08226
5.0	．IOII6	．004650	． 09399	4.2	．08347	． 003201	．0－823
4.8	．09672	． 00424	． 0 S990	4.0	． 07591	．002S75	． $07 \div 2$
$+.6$	．09176	． 003860	．0S5S5	3.8	． 07443	． 002569	．07027
4.4	． 08716	． 003499	．OSI87	3.6	．07002	．002284	．06634
4.2	．08264	． 003 ¢5	．07－85	$3 \cdot 4$	． 06568	． 002015	． C 524
4.0	．07818	．002539	． 07390	3.2	． 06139	． 00177 I	． 05856
3.8	． 07379	．002539	$.06997$	3.0	$.05717$	． 001543	．054，2
3.6	． 06946	． 002259	$.06607$	2.8	$.05301$	． 001322	． 0500
$3 \cdot 7$	．06519	． 001995	． 06220	2.6	． $0+801$	． 001135	． $0+7 /$ II
3.2	$.0609^{8}$	．OOI755	．05336	2.4	$.0+157$		
3.0	$.0568 \mathrm{I}$	$.001530$	． $05+455$	2.2	． 04088	．000SOI	．03，62
2.8	． 05270	．001322	．05076	2.0	． 03693	． 000657	． 0359 I

$y=1.6$				$\gamma=1.7$			
9	X	Y	T	9	X	Y	T
0				,			
I0. 6	- 35727	. 042866	. 25411	10.2	. 33774	. 03825 I	. 23987
10.6	. 33811	.039244	. 24577	10.0	. 31860	.03484I	. 23157
10.4	. 32135	. 036137	. 23799	9.8	. 30198	.031938	. 223 S 4
10.2	. 30635	.0334II	. 23064	9.6	. 25718	. 029407	. 21655
10.0	. 29272	. 030982	. 22363	9.4	. 27377	. 027162	. 20961
9.8	.2SoI8	. 028793	. 2169 I	9.2	. 26146	. 025147	. 20297
9.6	. 26853	. 026803	. 21045	9.0	. 25006	. 02332 I	. 19658
$9 \cdot 4$. 25764	. 024980	. 20419	8.8	. 23942	. 021653	. 19041
9.2	. 24740	. 023302	. I ¢ 13	8.6	. 22911	. 020122	. 18444
9.0	. 23770	.021749	. 19224	8.4	. 21996	. 018710	. $17 \mathrm{P}^{6} 3$
8.8	. 22850	. 020307	. 13650	8.2	. 21099	. 017401	. 17297
8.6	.21972	. 018964	. 1809 I	8.0	. 20245	.016185	. 16746
8.4	. 21133	. 017709	. 17543	7.8	. 19429	. 015052	. 16207
8.2	. 20328	. 016535	. 17008	7.6	. 18646	. OI3994	. 15679
8.0	. 19554	. or 5433	. 16483	$7 \cdot 4$. 17 S94	. $01300+$. 15163
7.8	. 18808	.014398	. 15968	7.2	.17170	. 01.2077	. $1+656$
7.6	. I8o88	. 013425	. 15462	7.0	. 16472	. 011206	. 14158
7.4	. 17392	. 012509	. 14965	6.8	. 15796	. 010389	. 13 C69
7.2	. 16718	. 011645	. 14475	6.6	. 15142	. 000962 L	. 13188
7.0	. 16064	. 010330	. I 3994	6.4	. 14508	. 005898	. 12715
6.8	. I_{5428}	. 010061	. I 35 I 9	6.2	. 13 S 92	. 0082 I 8	. 12248
6.6	. I 4 SII	. 009336	. 13052	6.0	. 13294	.007578	. 11788
6.4	. 14209	. 003650	. 12590	5.8	.12711	. 006976	. II335
6.2	. 13623	. 0008003	. 12135	5.6	. 12143	. 006409	. 10887
6.0	. 1305 I	. 007392	.11686	5.4	. II590	. 0005876	.104:6
5.8	. 12493	.006815	. 11242	5.2	. 11049	. 005374	. iooio
5.6	. 11947	. 006270	. 10803	5.0	. 10521	. 004903	. 09579
5.4	. 1141 I3	. 005756	. 10370	4.8	. 10004	.004.460	.ogi 5^{2}
5.2	. 1089 I	. 005271	.09941	4.6	. 09499	. 004044	.08731
5.0	. IO380	.004815	.095I7	$4 \cdot 4$. 09004	.003655	.0S3It
4.8	.09878	. 004385	.09097	4.2	.08519	. 003290	. 07901
4.6	. 09387	. 0039^{81}	. 08681	4.0	. 0 So +3	. 002949	.07493
4.4	.08904	.003601	.08270	3.8	. 07577	.002631	.07088
4.2	.0843I	. 003245	. 07862	3.6	.07119	. 002335	. 05687
4.0	. 07966	. 002912	. 07458	3.4	. 06669	. 002060	.06290
3.8	. 07509	. 002600	.07058	3.2	. 06227	. 001 So5	.05897
3.6	. 07060	. 002310	.0666I	3.0	. 05793	. 001570	. 05507
$3 \cdot 4$. 066 r 8	. 002039	. 06267	2.8	. 05366	. 001354	.05120
3.2	. 06183	. 001789	.05877	2.6	. $0+945$.001156	. 04737
3.0	. 05755	. 001557	. 05490	2.4	. 04532	.000975	. 04357
2.8	. 05333	. 0013 - 3	. 05106	2.2	.04124	. 000811	. 03979
2.6	.04918	.001147	. $0+7725$	2.0	. 03723	. 000664	.03605
2.4	. 04509	.000969	. $0+43+6$	I. 8	. 03327	. 000533	. 03233
2.2	. 04106	. 000807	. 03971	I. 6	. 02937	. 000417	.02864
2.0	. 03708	.000661	. 03598	I. 4	. 02553	. 000316	. 02497
1.8	. 03316	. 000530	. 03227	I. 2	. 02174	.000230	. 02133
I. 6	. 02929	. 000415	. 02859	1.0	. ol Soo	.000159	. 01772
1.4	. 02547	. 000315	. 02494	0.8	. OI43I	. 000101	. OL 413

$\gamma=\mathrm{I} .8$				$y=1.9$			
φ	X	Y	T	φ	X	Y	T
0				0			
9.6	． 31398	． 033273	． 22453	9.0	． 28737	． 028267	． 20836
$9 \cdot 4$	． 29579	． 030230	． 21645	8.8	． 27075	． 025664	． 20065
9.2	． 27994	． 027634	．20891	8.6	． 25612	． 023125	．I9342
9.0	． 26580	． 025369	． 20180	8.4	． 24299	． 021461	． 18658
8.8	． 25298	．023361	． 19503	8.2	． 23101	．019714	． 18004
8.6	． 24120	． 021558	． 18854	8.0	． 21997	． 018142	． 17377
8.4	． 23028	． 019926	． 18230	7.8	． 20969	． 016716	． 16773
8.2	． 22008	．O18437	．17627	7.6	． 20007	．OI5415	． 16183
8.0	． 21048	． 017071	．I7042	$7 \cdot 4$	． 19100	．OI422I	． 15620
7.8	．2014I	． 015813	． 16474	7.2	． 18242	．OI3I2I	． 15068
7.6	． 1928 I	．014649	． I 592 I	7.0	． 17426	． 012104	． 14531
7.4	． 18460	． 013569	． 15382	6.8	． 16647	．OIII62	．I4005
7.2	． 17676	． OL 2564	． 14854	6.6	． 15902	． 010287	．I3492
7.0	． 16925	． 011628	．I4338	6.4	．15187	． 0009472	． 12989
6.8	． 16202	． 010754	． 13832	6.2	．I4499	．008712	． 12496
6.6	． 15506	． 009936	． 13336	6.0	．13836	． 008003	． 12012
6.4	． 14834	．009171	． 12848	5.8	．13195	．007341	． 11537
6.2	． 14185	．008453	． 12369	5.6	． 12575	．006722	． 11069
6.0	． 13556	． 007781	． 11897	$5 \cdot 4$	． 11975	． 006144	． 10609
5.8	． 12946	． 007151	．II434	5.2	．II392	． 005603	． 10157
5.6	． 12354	． 006559	． 10977	5.0	． 10826	． 005098	．09710
$5 \cdot 4$	． 11778	． 006005	． 10526	4.8	． 10275	． 004625	． 09270
5.2	． 11217	． 005484	． 10082	4.6	． 09739	． 004184	．03836
5.0	． 10670	． 004997	．09643	$4 \cdot 4$	． 09216	． 003773	．08403
4.8	．10137	． 004540	．09210	4.2	．08706	． 003389	．07984
4.6	．09617	．004112	．08783	4.0	． 08207	． 003032	．07566
4.4	．09108	．003712	．08360	3.8	．07720	． 002700	．07153
4.2	．086II	． 003338	． 07942	3.6	． 07244	． 002391	．06744
4.0	．08125	． 002989	． 07529	$3 \cdot 4$	． 06777	． 002106	． $063+10$
3.8	．07648	．002664	． 07120	3.2	． 06320	． 001842	． 05940
3.6	．07181	． 002362	．06716	3.0	．05872	． 001600	． 05544
$3 \cdot 4$	． 06723	．002082	．06315	2.8	． 05433	．001377	．05152
$3 \cdot 2$	． 06274	． 001823	． 05918	2.6	． 05002	． 001174	． 04763
3.0	． 05833	．OOI585	． 05525	2.4	． 04578	． 000989	． 04379
2.8	． 05400	．001365	． 05136	2.2	．04162	． 000822	． 03997
2.6	． 04974	． 001164	． 04750	2.0	． 03753	． 000672	．03619
2.4	． 04555	． 000982	． 04368	1.8	． 03352	． 000538	．03245
2.2	．04I44	． 000816	． 03989	I． 6	． 02956	． 000421	．02873
2.0	． 03739	． 000668	． 03612	I． 4	． 02567	．000319	． 02504
I． 8	．033－40	． 000536	． 03239	I． 2	． 02184	． 000232	． 02139
1.6	． 02 ごッ 7	．000419	． 02869	I． 0	． 01807	． 000160	．017－6
1.4	． 02560	．000318	． 02501	0.8	． 01435	． 000102	． 01416
1.2	．O2I79	．00023I	．02136	0.6	． 01069	． 000057	． 0105
1.0	． 01803	． 000159	． 01774	0.4	． 00705	． 000025	．00703
0.8	．OI433	． 000101	． 01415	＋． 2	． 00352	． 000006	． 00350
0.6	． 01068	． 000056	． 01058	0.0	． 00000	． 000000	． 00000
0.4	．00708	． 000024	．00703	－． 2	.00347	． 000006	． 00348
0.2	． 003352	． 000006	． 00350	0.4	． 00689	． 000024	.00694

$\gamma=2.0$				$\gamma=2 . \mathrm{I}$			
9	X	Y	T	9	X	Y	'T
8.6	. 27661	. 026059		0			
8.4	. 25962	.023518	. 19182	8.0	. 24666	.021250	. 1824
8.2	. 24482	. 021358	. 18455	7.8	. 23203	. 0192 I 9	. 1752
8.0	. 23162	.019478	.17769	7.6	. 21901	. 017459	. 16842
7.8	. 21964	. 017816	.17117	$7 \cdot 4$. 20724	. 015908	. 16195
7.6	. 20864	. 016328	. 16491	7.2	. $\mathrm{I}_{96} \mathrm{Cl}_{4}$. 014525	. 15576
$7 \cdot 4$. 19843	. 014985	. 15889	7.0	. 18644	. 013279	. 14.95 t
7.2	. 18890	.013763	. I5308	6.8	. 17711	. 012149	. 1240 ${ }^{\text {d }}$
7.0	. 17994	. OI 2646	. 14744	6.6	. 16834	.OIIII9	. 1384.9
6.8	. 17146	. OII62I	.14196	6.4	. 16005	. 010175	. 13308
6.6	. 16342	.010676	. 13663	6.2	. 15220	. 009308	. 12781
6.4	. 15575	. 009802	. 13142	6.0	. 14471	. 008508	. 12267
6.2	. 14843	. 008993	. 12633	5.8	. 13756	. 007769	. 117764
6.0	. 14140	. 008242	. I2I 35	5.6	. 1307 I	. 007085	. 11273
5.8	. 13465	. 007544	. 11647	$5 \cdot 4$.12412	. 00645 I	. 1079 I
5.6	. 12815	. 006895	. 111168	5.2	. 11778	. 005862	.10319
5.4	. 12187	.006291	. 10698	5.0	. 11167	. 005316	.09855
5.2	. 11580	. 005727	. 10236	4.8	. 10575	.004809	. 09399
5.0	. 10992	. 005203	. 09781	4.6	. 10002	. 004338	. 08950
4.8	. 10422	.004714	. 09333	4.4	. 00447	. 003901	. 03503
4.6	.09868	.004259	. 04492	4.2	.08908	. 003496	. 08073
$4 \cdot 4$. 09329	. 003835	. 08457	4.0	. 08383	. 003120	.07645
4.2	. 08805	.00344I	. 08028	3.8	. 07573	. 002772	.07222
4.0	. 08294	. 003074	. 07605	3.6	. 07376	. 002450	. 06804
3.8	.07796	. 002734	. 07187	$3 \cdot 4$.06891	. 002153	. 06392
3.6	.07309	. 002420	. 06774	3.2	. 06418	. 001880	. 05985
$3 \cdot 4$. 06834	.002129	. 06366	3.0	. 05955	. 001630	. 05582
3.2	. 06369	. 001861	. 05962	2.8	. 05503	. 001400	. 05134
3.0	. 05914	. $\mathrm{COI6I5}$. 05563	2.6	. 05050	.001192	. 04791
2.8	. 05468	.001389	. 05168	2.4	. 04627	. 001003	. $0+4.402$
2.6	.05031	. 001183	. 0.4777	2.2	. 0.1202	. 000832	. 04016
2.4	. 04603	.000996	. 0.4390	2.0	. 03785	. 000679	. 03635
2.2	. O4IS2	. 000827	.04007	1.8	. 03377	. 000544	. 03257
2.0	. 03770	. 000675	. 03627	1.6	. 02976	. 000425	. 02883
1.8	. 03364	.000541	.0325I	I. 4	. 02582	. 000322	. 02512
1.6	. 02966	. 000423	. 02578	1.2	. 02194	. 000234	. 02144
I. 4	. 02575	. 000320	. 02508	1.0	.01814	. 000161	. 01779
I. 2	.02189	. 000233	.0214I	0.8	. 01440	.000102	. 01418
1.0	.OI8II	. 000160	. 01778	0.6	. 01071	. 000057	. 01059
0.8	.01438	. 000102	. 01417	0.4	. 00709	. 000025	. 00703
0.6	.01071	. 000057	. 01059	+. 2	. 00352	. 000006	. CO 350
0.4	.00709	. 000025	. 00704	0.0	. 00000	. 000000	. 00000
$+.2$. 00352	. 000006	. 00351	-. 2	. 00347	. 000006	. 00347
0.0	. 00000	. 000000	. 00000	0.4	. 00689	. 000024	. 00602
--. 2	.003.45	.000006	. 00348	0.6	. 01026	. 000053	. 01035
0.4	. 00686	. 000024	. 00694	0.8	. 013138	.000094	. 01376
0.6	. 01024	. 000053	. 01037	1.0	. 01685	.000145	. CI7 ${ }^{\text {5 }}$
0.8	. 01358	.000094	. 01378	1.2	. 02008	. 000207	. 0205 I

$\gamma=2.2$				$\gamma=2.3$			
9	X	Y	T	φ	X	Y	T
.				7			
8.0	. 26801	.023841	. 18851	7.6	. 25022	. 020996	. 17785
7.8	. 24848	.021130	.18019	$7 \cdot 4$. 23197	. 018592	. 16980
7.6	. 23217	.018925	. 17259	7.2	. 21660	. 016622	. 16241
7.4	. 21803	. 017062	. 16550	7.0	. 20318	. OI-7950	. I5552
7.2	. 20544	. 015449	. 15882	6.8	. 19120	. 013500	- I4, ${ }^{\text {coo }}$
7.0	. 19.404	.014029	. 15246	6.6	. 18032	. 012221	- 14280
6.8	. 18359	. 012764	. 14638	6.4	.17031	. OIIOSI	.13685
6.6	. 17390	. 011626	. 14053	6.2	.16104	. 010057	. 13113
6.4	. 16486	. 010596	. 13487	6.0	. 15236	.009129	. 12559
6.2	. 15637	. 009658	. 12940	5.8	. I4420	. 008286	. 12023
6.0	. 14 ¢ 34	. 003800	. 12407	5.6	. 13648	.007516	. 11501
5.8	. 14073	. 008013	.11889	$5 \cdot 4$. 12916	. 006810	. Iog93
5.6	. 13348	. 007289	. 11383	5.2	. 12217	. 006162	-10497
$5 \cdot 4$. 12654	. 006622	. 10889	5.0	. 11550	. 005566	. 10012
5.2	. 11990	. 006005	. 10405	4.8	. Iogon	. 005017	. 09538
5.0	. II 352	. 005436	. 09932	4.6	. 10294	.0045II	. 09073
4.8	. 10737	. 004989	. $09+67$	$4 \cdot 4$.09701	. 00.1044	.086I6
4.6	. IOI44	. 00442 I	.09010	4.2	. 09128	.0036I3	. 08168
$4 \cdot 4$. 09571	.003970	.0856I	4.0	.08575	. 003216	.07727
4.2	.09016	. 003552	.08120	3.8	.08038	. 002850	.05294
4.0	.08.477	. 003166	. 07685	3.6	.075IS	. 002514	. 06866
3.8	. 07957	.002810	.07257	$3 \cdot 4$.07013	. 002205	. 06.76
3.6	. $07+46$. 002781	. 06835	3.2	.0652I	. 001921	. 06031
$3 \cdot 4$. 0695 I	. 002178	.06719	3.0	. 06043	.001662	. 05622
3.2	. 06469	.001900	. 06008	2.8	. 05576	.001726	. 05218
3.0	. 05998	.001645	. 05602	2.6	. 05121	.OOIこI2	.04319
2.8	. 05539	. 001412	. 05201	2.4	. 04677	. 001018	. $0+44^{2}+$
2.6	.05090	. 001201	. 048803	2.2	. 04243	. 000843	. 0.4035
2.4	. $0+651$.001009	.0.4413	2.0	.03Si8	. 000687	.03679
2.2	.04222	. 000887	. 07026	1.8	. 03402	. 000550	. 03268
2.0	.03802	. 00068_{3}	.03672	1.6	. 02995	.000429	.02S91
1.8	. 03389	. 000546	. 03263	1.4	. 02596	. 000327	. 0251 I
I. 6	. 02985	. 000426	. 02887	1.	. 02205	. 000235	.02149
1.4	. 02589	.000322	.02515	1.0	. 01821	. 000162	. OI-82
1.2	. 02200	. 000234	. 02146	0.8	. 0144	. 000102	. CI 420
I. 0	.018I7	. 000161	. 017 SJ	0.6	. 01074	. 000057	. 01060
0.8	.OI442	. 000102	. OIfI9	0.4	.00710	. 000025	.00707
0.6	. 01072	. 000057	. 01060	+. 2	. 00352	. 000066	. 00351
0.4	. 60700	. 000025	.00704	0.0	. ccoco	. 000000	. 00000
$+.2$. 00352	. 000006	. 0035 I	-. 2	. 00376	. 000006	. 00378
0.0	. 00000	. 000000	. 00000	0.4	. 00687	. 000024	. 20693
$-.2$. 00347	. 000006	.00378	0.6	. 01023	. 000053	. 01035
	$.00689$.000024	$.00694$	0.8	.01354	. 000097	.01375
0.6	. 01026	. 000053	. 01037	1.0	. OICSo	. 000145	.01712
. 0.8	. 01357	.000097	. 01377	1.2	. 02002	. 000206	.02077
I. 0	. 01683	.000I +5	.017I4	1.4	. 02319		
1.2	. 02005	. 000207	. 020×9	I. 6	. 02632	. 000359	. 02711
1.4	. 02323	.0002So	. 02382	I. ${ }^{\text {S }}$.02970	. 00045 I	. 03039

$\gamma=2.4$				$\gamma=2.5$			
9	X	Y	T	φ	X	Y	T
0				0			
$7 \cdot 4$	． 25182	．020836	． 17534	7.0	． 23004	． 017756	． 16351
7.2	． 23130	． 013206	．16682	6.8	． 21205	． 015577	． 15563
7.0	． 21464	．016130	． 15914	6.6	． 19704	． 013813	． 14834
6.8	． 200.10	．or．405	． 15204	6.4	．I8402	．or2329	．I4 155
6.6	．IS785	． 012933	． 14533	6.2	． 17243	．or10－19	． 13515
6.4	． 17660	．ori6＋9	． 13906	6.0	．16I93	． 009927	． 12907
6.2	． 16632	． 010514	． 13304	5.3	． 1523 I	． 008933	． 12324
6.0	． 15685	． 009501	．12726	5.6	． 14340	． 008043	． 11764
5.8	． 14803	． 003590	． 12168	$5 \cdot 4$	． 13508	． 00724 I	． 11222
5.6	． 13977	． 007765	． 11628	5.2	． 12726	． 006516	． 10697
$5 \cdot 4$	． 13 Ig ${ }^{\text {a }}$	．007016	． 11104	5.0	．11987	． 0005856	． 10188
5.2	． 12461	． 006332	． 10595	4.8	． 11286	． 005255	． 09691
5.0	． 11700	． 005706	．10098	4.6	．10618	． 004705	． 09207
4.8	． 11091	． 005132	．09613	$4 \cdot 4$	． 09980	． 004204	． 08733
4.6	． 10451	． 004605	．0フエ39	4.2	． 09369	． 003744	．08270
$4 \cdot 4$	． 09836	． 004122	． 08674	4.0	．0878I	． 003322	．0－816
4.2	． $092+5$	．003677	．08こエ，	3.8	． 08215	． 002937	．07370
4.0	．03675	． 003269	．07772	3.6	．07669	． 002583	． 05933
3.8	．08I25	．002893	．07332	$3 \cdot 4$	．0714I	． 002260	． 06503
3.6	． 07592	． 002549	．06900	3.2	． 06630	．00I965	．06079
3.4	．07076	． 002232	． 06475	3.0	．06134	． 001696	． 05663
3.2	．06574	． 001943	． 06056	2.8	． 05652	． 001452	． 05252
3.0	． 05087	． 001680	． 05643	2.6	． 05184	．001232	． $0+48$
2.8	.05614	． 001439	． 05236	2.4	． $0+7728$	． 001032	． $0+1448$
2.6	．05152	． 001222	． 0.8834	2.2	． 04284	． 000854	． 04054
2.4	．04702	． 001025	． 0.4437	2.0	． 03851	． 000695	． 03665
2.2	． 0.4203	． $0008+9$	． $0+4045$	1.8	． 03428	． 000555	． 03281
2.0	． 03834	． 000692	． 03658	1.6	． 03015	．000．432	． 02901
1.8	． 03415	． 000553	． 03275	1.4	． 02611	． 000326	． 02525
1.6	． 03005	． $000+3 \mathrm{I}$	． 02897	1.2	． 02215	． 000237	． 02154
1.4	．02603	． 000325	． 02522	1.0	． 01828	． $\operatorname{C00162}$	．OI786
1.2	． 02210	． 000236	． 02152	0.8	． 01448	． 000102	．O1422
1.0	． 01824	． 000162	． 01785	0.6	．ото－6	． 000057	． 01062
0.8	．01446	．000102	． 01421	0.4	．00711	． 000025	． 00704
0.6	．01075	． 000057	． 01061	$+.2$	． 00352	． 000006	． 0035 I
0.4	． 00710	． 000025	． 00704	0.0	． 00000	．000000	． 00000
＋． 2	．00352	． 000006	．0035 1	－． 2	． 00346	． 000006	． 00348
0.0	． 00000	． 000000	．00000	0.4	． 00686	． 000024	． 00692
－． 2	． 00346	． 000006	． 00348	0.6	． 0102 I	． 000053	． 01034
0.4	． 00687	． 000024	． 00693	0.8	．OI350	．000093	． 01373
0.6	． 01022	． 000053	． 01035	1.0	． 01675	．000144	．OI7 70
0.8	．OI352	．000094	．OI374	1.2	．OI995	． 000205	． 02044
1.0	． 01677	．000145	．017II	1.4	．02310	． 000276	． 02376
1.2	． 01998	．000206	． 020.45	1.6	． 02620	． 000357	． 02705
1.4	． 02314	． 000277	． 02377	1.8	． 02925	． 000448	． 03031
1.6	． 02626	． 000338	． 02707	2.0	． 03225	． 000548	． 03355
1.8	． 02933	． 00014	． 03035	2.2	． 0352 I	． 000657	． 03677
2.0	． 03235	． 00055 I	．03360	2.4	．038I4	． 000775	． 03997

$\gamma=2.6$				$\hat{\gamma}=2.7$			
9	X	Y	T	\%	X	Y	T
$\begin{aligned} & \hline 0 \\ & 6.6 \\ & 6.4 \\ & 6.2 \end{aligned}$	$\begin{array}{r} 20876 \\ .19307 \\ .17964 \end{array}$	$\begin{aligned} & .014962 \\ & .013173 \\ & .011690 \end{aligned}$	$\begin{aligned} & .15189 \\ & .14445 \\ & .13756 \end{aligned}$	$\begin{aligned} & 00 \\ & 6.4 \\ & 6.2 \\ & 6.0 \end{aligned}$	$\begin{array}{r} .20465 \\ .18842 \\ .17470 \end{array}$	$\begin{aligned} & .01+23 \mathrm{I} \\ & .012+83 \\ & .01102 \mathrm{I} \end{aligned}$	$\begin{array}{r} \text {-I4702 } \\ . \mathrm{T} 1 \mathrm{O} 55 \\ .133399 \end{array}$
$\begin{aligned} & 6.0 \\ & 5.8 \\ & 5.6 \end{aligned}$	$\begin{aligned} & .16780 \\ & .15716 \\ & .147744 \end{aligned}$	$\begin{array}{r} .010425 \\ .009324 \end{array}$ $.008355$	$\begin{aligned} & \text {.13110 } \\ & . \mathrm{I} 2197 \\ & . \mathrm{II} 912 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 5.6 \\ & 5.4 \end{aligned}$	$\begin{aligned} & .16271 \\ & .15199 \\ & .14224 \end{aligned}$	$\begin{aligned} & .009782 \\ & .008711 \\ & .007773 \end{aligned}$	$\begin{aligned} & .12659 \\ & .12074 \\ & .11483 \end{aligned}$
$\begin{aligned} & 5.4 \\ & 5.2 \\ & 5.0 \end{aligned}$	$\begin{array}{r} 13848 \\ .13014 \\ .12232 \end{array}$	$\begin{aligned} & .007491 \\ & .006717 \\ & .006019 \end{aligned}$	$\begin{array}{r} \text {. II } 1350 \\ .10808 \\ .10233 \end{array}$	$\begin{aligned} & 5.2 \\ & 5.0 \\ & 4.8 \end{aligned}$	$\begin{array}{r} \text {. } \begin{array}{c} 3228 \\ .12496 \\ .11718 \end{array} \end{array}$	$\begin{aligned} & .0069+1 \\ & .006198 \\ & .005531 \end{aligned}$	$\begin{aligned} & \text {. } 10927 \\ & .10356 \\ & .109862 \end{aligned}$
$\begin{aligned} & 4.8 \\ & 4.6 \\ & 4.4 \end{aligned}$	$\begin{aligned} & \text {.11494 } \\ & . \text { 10796 } \\ & \text {. } 10132 \end{aligned}$	$\begin{aligned} & .005387 \\ & .0048 \mathrm{I} 3 \\ & .004290 \end{aligned}$	$\begin{aligned} & .09774 \\ & .09779 \\ & .08796 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 4.4 \\ & 4.2 \end{aligned}$	$\begin{array}{r} 10985 \\ .10293 \\ .10293 \\ .09635 \end{array}$	$\begin{aligned} & .004929 \\ & .004383 \\ & .003889 \end{aligned}$	$\begin{aligned} & .09355 \\ & .08862 \\ & .08381 \end{aligned}$
$\begin{aligned} & 4.2 \\ & 4.0 \\ & 3.8 \end{aligned}$	$\begin{aligned} & .09499 \\ & .08892 \\ & .08309 \end{aligned}$	$\begin{aligned} & .0038 \mathrm{I} 4 \\ & .003379 \\ & .002982 \end{aligned}$	$\begin{aligned} & .08324 \\ & .07863 \\ & .07411 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.8 \\ & 3.6 \end{aligned}$	$\begin{array}{r} .09007 \\ .08407 \\ .07832 \end{array}$	$\begin{array}{r} .003439 \\ .003030 \\ .002657 \end{array}$	$\begin{array}{r} .07912 \\ .07453 \\ .0707 \end{array}$
$\begin{aligned} & 3.6 \\ & 3.4 \\ & 3.2 \end{aligned}$	$\begin{array}{r} .07749 \\ .07209 \\ .06657 \end{array}$. 002620 . 002289 . 001938	$\begin{aligned} & .06968 \\ & .06533 \\ & .06105 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 3.2 \\ & 3.0 \end{aligned}$	$\begin{aligned} & .07278 \\ & .06745 \\ & .06230 \end{aligned}$	$\begin{aligned} & .002319 \\ & .002011 \\ & .001732 \end{aligned}$	$\begin{aligned} & .06564 \\ & .06132 \\ & .05707 \end{aligned}$
$\begin{aligned} & 3.0 \\ & 2.8 \\ & 2.6 \end{aligned}$	$\begin{array}{r} .06182 \\ .05692 \\ .05217 \end{array}$	$\begin{array}{r} .001714 \\ .001466 \\ .001242 \end{array}$.05685 .0527I . 04863	2.8 2.6	$\begin{array}{r} .05732 \\ .05250 \\ .04782 \end{array}$	$\begin{aligned} & .001480 \\ & .001253 \\ & .001048 \end{aligned}$	$\begin{aligned} & .05290 \\ & .0+59 \\ & .0+974 \end{aligned}$
$\begin{aligned} & 2.4 \\ & 2.2 \end{aligned}$	$\begin{aligned} & .04756 \\ & .04306 \\ & .03869 \end{aligned}$. 001010 . 000850 .000699	$\begin{array}{r} .04461 \\ .04065 \\ .03674 \end{array}$	$\begin{aligned} & 2.2 \\ & \text { 2.0 } \\ & \text { I. } \end{aligned}$	$\begin{aligned} & .04327 \\ & .03885 \\ & .03+55 \end{aligned}$	$\begin{aligned} & .000866 \\ & .000704 \\ & .00056 \mathrm{~F} \end{aligned}$	$\begin{aligned} & .04075 \\ & .03682 \\ & .03294 \end{aligned}$
$\begin{aligned} & 1.8 \\ & \text { 1. } 6 \\ & 1.4 \end{aligned}$	$\begin{aligned} & .03442 \\ & .03026 \\ & .02619 \end{aligned}$	$\begin{aligned} & .000558 \\ & .000434 \\ & .000328 \end{aligned}$	$\begin{aligned} & .03288 \\ & .02906 \\ & .02529 \end{aligned}$	$\begin{aligned} & \text { I. } 6 \\ & \text { I. } 4 \end{aligned}$	$\begin{aligned} & .03035 \\ & .02626 \\ & .02226 \end{aligned}$	$\begin{aligned} & .000+36 \\ & .000329 \\ & .000238 \end{aligned}$	$\begin{array}{r} .02911 \\ .02533 \\ .02159 \end{array}$
$\begin{aligned} & \text { I. } 2 \\ & \text { 1.O } \\ & 0.8 \end{aligned}$	$\begin{array}{r} .02221 \\ .01832 \\ .0145 \mathrm{I} \end{array}$.000237 .000163 .000103	$\begin{array}{r} .02156 \\ .01758 \\ .01423 \end{array}$	$\begin{aligned} & \text { I.O } \\ & 0.5 \end{aligned}$	$\begin{aligned} & .01835 \\ & .01453 \\ & .01078 \end{aligned}$. 000163 .000103 . 000057	$\begin{aligned} & .01790 \\ & .01424 \\ & .010143 \end{aligned}$
$\begin{array}{r} 0.6 \\ 0.4 \\ +.2 \end{array}$	$\begin{aligned} & .01077 \\ & .00711 \\ & .00352 \end{aligned}$.000057 . 000025 .000006	$\begin{array}{r} .01062 \\ .00705 \\ .00351 \end{array}$	$\begin{array}{r} 0.4 \\ +.2 \end{array}$	$\begin{aligned} & .00712 \\ & .00352 \\ & .00000 \end{aligned}$.000025 .000006 , 000000	$\begin{aligned} & .00705 \\ & .0035 I \\ & .00 c o 0 \end{aligned}$
$\begin{array}{r} 0.0 \\ -.2 \\ \hline 0.4 \end{array}$	$\begin{array}{r} .00000 \\ .0036 \\ \hline \end{array}$ $.00686$. 000000 . 000006 .000034	.00000 . 00348 .00692	$\begin{aligned} & -.2 \\ & 0.4 \\ & 0.6 \end{aligned}$	$\begin{aligned} & .00316 \\ & .00686 \\ & .01019 \end{aligned}$.000006 .000024 .000053	$\begin{aligned} & .00348 \\ & .00692 \\ & .01033 \end{aligned}$
$\begin{aligned} & 0.6 \\ & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & .01020 \\ & .01349 \\ & .01672 \end{aligned}$. 000053 .000093 . 000144	$\begin{aligned} & .01034 \\ & \text {.or372 } \\ & \text {.ox } 708 \end{aligned}$	0.8 1.0	$\begin{array}{r} .01347 \\ .01669 \\ .01986 \end{array}$	$\begin{aligned} & .000093 \\ & .000144 \\ & .060204 \end{aligned}$	$\begin{aligned} & .01371 \\ & .01707 \\ & .020+0 \end{aligned}$
$\begin{aligned} & \text { I.2 } \\ & \text { I.4 } \\ & \text { I.6 } \end{aligned}$	$\begin{array}{r} .01990 \\ .02303 \\ .02612 \end{array}$	$\begin{array}{r} .000205 \\ .000276 \end{array}$ $.000357$	$\begin{aligned} & .02042 \\ & .02373 \\ & .0270 \end{aligned}$	I. 4 1. 6	$\begin{aligned} & .02298 \\ & .02606 \\ & .02909 \end{aligned}$	$\begin{aligned} & .000274 \\ & .000354 \\ & .000444 \end{aligned}$	$\begin{aligned} & .02370 \\ & .0269 \\ & .03023 \end{aligned}$
$\begin{aligned} & 1.8 \\ & 2.0 \\ & 2.2 \end{aligned}$	$\begin{aligned} & .02916 \\ & .03216 \\ & .03512 \end{aligned}$. 000447 .000547 .000656	$\begin{aligned} & .03027 \\ & .03350 \\ & .03671 \end{aligned}$	2.0 2.2	$\begin{aligned} & .03207 \\ & .03501 \\ & .03791 \end{aligned}$	$\begin{aligned} & .0005+4 \\ & .000652 \\ & .000769 \end{aligned}$	$\begin{aligned} & .033+5 \\ & .03665 \\ & .03953 \end{aligned}$
$\begin{aligned} & 2.4 \\ & 2.6 \\ & 2.8 \end{aligned}$	$\begin{aligned} & .03804 \\ & .04092 \\ & .04376 \end{aligned}$. 000773 . ooosgs . 00103 I	$\begin{aligned} & .03990 \\ & .04307 \\ & .04622 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.8 \\ & 3.0 \end{aligned}$	$\begin{array}{r} .04077 \\ .04359 \\ .0+663 \end{array}$. 000894 .001027 .001167	$\begin{aligned} & .04299 \\ & .04614 \\ & .0 \div 927 \end{aligned}$

$y=2.8$				$\gamma=2.9$			
φ	X	Y	T	φ	X	Y	T
0				${ }^{0}$			
6.2	. 19970	. OI 3534	. 14368	6.0	. 19388	. 012730	. 13921
6.0	. 18312	. ori76r	. 13603	5.8	. 17717	. OIIOO2	. 13154
5.8	. 16925	. oro328	. 12903	5.6	. 16330	. 009618	. 12455
5.6	. 15721	.009125	. 12252	5.4	. 15131	. 008463	. 11805
5.4	. 14649	.008092	.11637	5.2	. 14067	. 007475	. 11193
5.2	. 13678	.007191	. 11053	5.0	. 13105	. 006616	. Iobir
5.0	. 12786	.006395	. 10493	4.8	. 12223	.005861	. IOO54
4.8	. 11961	. 005637	. 09954	4.6	. 11408	.005190	. 09519
4.6	. IIIgo	. 005053	. 09433	$4 \cdot 4$. 10647	. 004591	. 09002
4.4	. 10465	. 004483	. 08929	4.2	. 09933	. 004054	. 0 S501
4.2	.09780	. 003968	. 08439	4.0	. 09258	. 003570	. 08015
4.0	.09130	. 003502	.07961	3.8	. 08618	.003I34	. 07541
3.8	.08511	. 003080	. 07495	3.6	.08009	. 002739	. 07079
3.6	.07919	.002697	.07040	$3 \cdot 4$. 07427	. 002383	. .06628
3.4	. 07352	. 002350	. 06594	3.2	. 05870	. 002062	.06I86
3.2	. 06807	.002036	.06157	3.0	. 06334	.001772	. 05753
3.0	. 06282	.OOI75I	. 05728	2.8	. 05818	. Oor 510	. 05328
2.8	. 05775	. OOI495	. .05307	2.6	. 05320	. 001275	. 04910
2.6	. 05285	. 0 Or264	. 04893	2.4	. 04839	.001065	. 04500
2.4	.048II	. 001056	.04486	2.2	. 04373	.000878	.04096
2.2	. $0+350$.000872	. 04085	2.0	. 03921	.000712	. 03699
2.0	. 03903	. 000708	.03689	I. 8	. 03483	. 000566	. 03307
1.8	. 03469	. 000054	. 03300	I. 6	. 03056	. 000440	. 0292 I
1.6	. 03046	. 000438	. 02915	I. 4	. 02641	.000331	. 02540
I.4.	. 02634	. 000330	. 02536	1.2	. 02237	.000239	. 02165
I. 2	. 02232	. 000238	. 22161	I.c	.OI842	.000164	. 01793
1.0	. OI839	. 000163	. Or 79 I	0.8	. 01457	.000103	. 01427
0.8	.OI455	. 000103	.OI425	0.6	. 0108 r	. 0000057	.oro64
0.6	. 01080	. 000057	. 01063	0.4	. 00713	. 000025	.00706
0.4	.00712	. 000025	. 00705	+.2	. 00353	. 000006	. 0035 I
+. 2	. 00353	. 000006	. 0035 I	0.0	. 00000	. 000000	. 00000
0.0	. 00000	. 000000	. 00000	. 2	. 00346	. 000006	. 00347
-. 2	. 00346	. 000006	. 00347	0.4	. 00685	. 000024	.00691
0.4	. 00685	.000024	. 00692	0.6	. 01017	. 000052	.oro32
0.6	.oror8	. 000053	. 01033	0.8	. 01343	.000092	. Or 369
0.8	.or345	. 000093	. 01371	1.0	. 01664	. ooor 43	. Or 704
I. 0	. 01667	. 000143	. 01706	1.2	. 01979	.000203	. 02036
1.2	.oI983	. 000203	. 02038	1.4	. 02289	. 000273	. 02364
1.4	.0229.t	. 000273	. 02368	1.6	. 02594	. 000353	. 02691
I. 6	. 02600	. 0000353	. 02695	1.8	. 02893	. 000442	. 03014
1.8	.02901	. 000443	. 03019	2.0	.03188	. 000540	. 03335
2.0	.03197	. 000542	. 03341	2.2	. 03479	. 000646	. 03654
2.2	. 03489	. 000649	. 03661	2.4	. 03766	. 000760	. 03970
2.4	. 03777	. 000765	. 03978	2.6	. 04048	.000883	. 04284
2.6	.04061	. 000889	. 04293	2.8	. 04326	. 001015	. 04596
2.8	. 04342	.001021	. 04606	3.0	.04600	.OOII55	. 04906
3.0	.04618	. 001161	. 04917	3.2	.04871	.OOI303	. 05214
3.2	.04890	. 001308	. 05226	3.4	.05I38	. oor 45^{8}	. 05520

$y=3.0$				$\gamma=3 . \mathrm{I}$			
φ	X	Y	T	φ	X	Y	T
0				0			
5.6	. 17062	. 010218	. 12684	5.6	. 17983	. 010990	. 12957
5.4	. 15690	. 008897	. 11989	5.4	. 16358	. 009425	. 12201
5.2	. 14506	. 007798	. II 344	5.2	. 15014	.008I77	. II5I3
5.0	. 13457	. 006862	. 10736	5.0	. 13855	.007143	. 10875
4.8	. 12510	. 006050	. IOI 59	4.8	. 12829	. 006262	. 10274
4.6	. 11644	. 005337	.09608	4.6	. 1 İgor	. 005499	.09703
$4 \cdot 4$. 10842	.00-706	. 09077	$4 \cdot 4$. 11053	.00483I	.09157
4.2	. 10044	. 00.4144	. 08565	4.2	. 10268	. 004241	.08632
4.0	. 09393	.00364I	. 08068	4.0	. 09536	.003716	.08I26
3.8	.0873I	. 003189	. 07586	3.8	. 08849	.003248	.07635
3.6	.08103	. 002783.	. 07117	3.6	. 08201	.002829	. 07158
3.4	. 07505	. 002417	.06660	$3 \cdot 4$. 07587	. 002453	. 06694
3.2	. 06934	.002088	. 06212	3.2	.07001	. 002115	. 06241
3.0	. 06387	.001791	. 05775	3.0	. 06442	.0018I2	. 05799
2.8	.0586I	. 001525	. 05346	2.8	.05907	. 00157 I	. 05366
2.6	. 05355	.001287	. 04925	2.6	. 05393	. 001298	. 04942
2.4	. 04867	.001074	. 04512	2.4	.04897	.001082	. 04526
2.2	.04396	.000884	.04106	2.2	. 04420	.000890	. 04117
2.0	. 03939	.000717	. 03707	2.0	. 03958	.000721	.03715
1.8	. 03497	. 000570	. 03313	1.8	.035II	. 000573	. 03320
I. 6	.03067	.000442	. 02926	1.6	.03078	. 000444	. 02931
1.4	. 02649	. 000332	. 02543	1.4	. 02657	. .00334	. 02548
1.2	. 02242	. 000240	. 02167	1.2	. 02248	. 000241	. 02170
I. 0	. OIS46	.000164	. 01795	I. 0	. 01850	. 000165	. 01797
0.8	.OI459	. 000103	. OI427	0.8	. 01462	. 000104	. OI429
0.6	. 01082	. 000057	. 01064	0.6	. 01083	. 000057	. 01065
0.4	.00713	. 000025	.00706	0.4	.00714	. 000025	.00-06
+. 2	. 00353	. 000006	. 00351	$+.2$. 00353	. 000006	. 00351
0.0	. 00000	. 000000	. 00000	0.0	. 00000	.000000	. 00000
-. 2	. 00346	.000006	. 00347	-. 2	. 00345	. 000006	. 00347
0.4	. 00684	.000024	.00691	0.4	. 00684	. 000024	. 0069 I
0.6	. 01016	. 000053	. 01032	0.6	. OIOI5	. 000052	. 01031
0.8	. 01342	. $00000{ }^{2}$. 01369	0.8	. OI340	. 000092	. 01368
1.0	.OI662	.000142	. 01703	1.0	. 01659	.000142	. O17OI
1.2	. 01976	. 000203	. 02034	1.2	. 01972	.000202	.02032
1.4	.02284	. 000273	. 02363	1.4	. 02279	. 000272	. 02360
I. 6	. 02587	. 000352	. 02688	I. 6	. 025 SI	. 00035 I	.026S4
1.8	. 02886	. 000044	. 03011	1.8	.028-8	. $000+39$. 03006
0.0	.03179	. 000538	. 03331	2.0	.03171	. 000536	. 03326
2.2	. 03468	. 000646	.03649	2.2	. 03458	. 000641	. 03643
2.4	. 03753	. 0000761	.03964	2.4	. 03741	. 000755	. 03957
2.6	. 04034	. 000883	. 04277	2.6	. 04019	. 000876	.04270
2.8	. 04310	. 001012	. 04588	2.8	. 04294	. 001006	.04579
3.0	. 04582	.001149	. 04897	3.0	. 04564	.001143	.04887
3.2	.04850	.001295	. 05204	3.2	. 04830	. 001288	. 05193
3.4	.05115	.001448	. 05509	3.4	. 05093	. 001440	. 05497
3.6	. 05377	. 001608	.05812	3.6	. 05353	. 001599	. 05799
3.8	. 05635	. 001775	.06113	3.8	. 05609	.001764	. 06098

$\gamma=3.2$				$y=3.3$			
9	X	Y	T	φ	X	Y	T
,				5.2			
5.2	. 15612	.00863I	. 11704	5.2	. 16339	.009192	- II926
5.0	. I4,409	. 007467	. 11027	5.0	. 14836	. 007850	. 11199
4.8	. 13183	. 006502	. 10398	4.8	. 13583	. 006775	. 10535
4.6	. 12184	. 005680	. 09805	4.6	. 12496	. 005 580	.09917
$4 \cdot 4$.1128I	. 004969	. 09242	$4 \cdot 4$. 11529	. 005119	. 09334
4.2	. 10454	. 004347	. 08703	4.2	. IO653	. 004460	. 08780
4.0	. 09689	. 003798	.08I85	4.0	. 09850	. 003885	. 08249
3.8	. 03975	.0033II	. 07685	3.8	.09107	. 003377	. 07738
3.6	. 08304	. 002878	. 07200	3.6	.08412	. 002928	. 07245
3.4	. 07671	. 002490	. 06729	$3 \cdot 4$.07760	. 002529	. 06766
3.2	.07071	. 002144	.0627I	3.2	.07143	.002174	. 06301
3.0	. 06400	.001835	.05824	3.0	. 06559	.001857	. 05849
2.8	. 05954	.OOI558	. 05387	2.8	. 06002	.OOI575	. 05407
2.6	.0543I	. $\mathrm{col}_{3} \mathrm{I}$. 04959	2.6	. 05469	. OOI323	. 04976
2.4	. 04928	. 001092	. 04539	2.4	. 04959	.OOIIOI	. 04553
2.2	. 0.4444	. 000897	.04128	2.2	. 04468	.000904	.04139
2.0	. 03977	. 000726	. 03724	2.0	. 03996	. 000730	. 03733
1.8	. 03526	. 000576	. 03327	1.8	. 03540	. 000579	. 03334
1.6	. 03089	. 000446	. 02936	I. 6	. 03100	. 000448	. 0294 I
1.4	. 02665	. 000335	. 0255 I	1.4	. 02673	. 000336	. 02555
1.2	. 02253	. 000242	. 02172	1.2	. 02259	. 000243	. 02175
1.0	. 01853	. 000165	.OI799	1.0	. 01857	. 000165	. OI800
0.8	. 01464	. 000104	. OI430	0.8	. OI466	.000104	. OI43I
0.6	. 01085	. 000058	. 01066	0.6	. 01086	. 000057	. 01066
0.4	.00714	. 000025	.00706	0.4	.00715	. 000025	. 00706
+.2	. 00353	. 000006	. 0035 I	$+.2$. 00353	. 000006	. 0035 I
0.0	. 00000	. 000000	.00000	0.0	. 00000	. 000000	. 00000
-. 2	. 00345	. 000006	. 00347	-. 2	. 00345	. 000006	. 00347
0.4	. 00683	. 000024	.00691	0.4	. 00683	. 000024	. 00690
0.6	. OIOI4	. 000053	. 01030	0.6	. OIOI3	.000052	. 01030
0.8	. 01338	.000092	. 01367	0.8	. 01337	.000092	. OI366
1.0	. 01656	. 000142	. O1700	I. 0	. 01654	.000142	. OI698
1.2	. 01968	. 000202	. 02030	I. 2	. 01965	. 000201	. 02028
1.4	. 02275	. 000272	. 02357	I. 4	. 02270	. 000271	. 02354
1.6	. 02575	. 000350	. 0268 I	I. 6	. 02569	. 000349	. 02678
1.8	. 0287 I	. 000438	.03003	I. 8	. 02864	. 000436	. 02999
2.0	.03162	. 000535	. 0332 I	2.0	.03153	. 000532	. 03317
2.2	. 03447	. 000639	. 03637	2.2	. 03437	. 000636	. 03632
2.4	. 03729	. 000752	. 0395 I	2.4	. 03717	. 000749	. 03945
2.6	. 044006	. 000873	. 04262	2.6	. 03992	. 000869	. 04255
2.8	. 04278	. OOIOOI	. 04571	2.8	. 04263	. 000997	. 0.4563
3.0	. 04547	.001137	. 04878	3.0	. 04530	. OOII32	. 04869
3.2	. 04812	. 001280	.05183	3.2	. 04793	. 001274	. 05173
3.4	. 05073	. OoI430	. 05486	3.4	. 05052	.001423	. 05474
3.6	. 0533 I	.001587	. 05786	3.6	. 05308	.001579	. 05773
3.8	. 05585	.OOI752	. 06084	3.8	. 05560	. 001742	. 06070
4.0	. 05835	. OOIg24	. 06380	4.0	. 05808	.001912	. 06365
4.2	.06082	. 002102	. 06675	4.2	. 06053	. 002088	. 06658

$\gamma=3.4$				$\gamma=3.5$			
9	X	Y	T	9	X	$\underline{ }$	T
0				0			
5.0	. 15467	.008315	. II392	4.8	. 14583	. 007473	. 10854
4.8	. 14042	. 007093	. 10685	4.6	. 1324 I	. 006369	. 10167
4.6	. 12845	. 006108	. 10036	4.4	. 12102	. 005473	. 09535
$4 \cdot 4$. 11801	. 005286	. 09430	4.2	. IIIO4	. $00+722$. 08943
4.2	. 10869	. 004585	. 08859	4.0	. 10210	. 0040808	. 08383
4.0	. 10023	. 003979	.083I4	3.8	. 09395	. 003525	. $078+9$
3.8	. 09246	. 003449	. 07792	3.6	. 08646	. 003040	. 07336
3.6	. 08525	. 002983	. 07289	3.4	. 07949	. 002614	. $068+2$
3.4	. 07852	. 002570	. 06803	3.2	. 07297	. 002238	. 06364
3.2	. 07218	. 002205	. 06332	3.0	. 06683	. 001905	. 05901
3.0	.06619	. 00188 I	. 05875	2.8	. 06102	. 001611	. 05450
2.8	.0605I	.001592	. 05428	2.6	. 05550	. 001350	. 05010
2.6	. 05508	. OOI337	. 04993	2.4	. 05023	. 001120	. 045^{81} I
2.4	. 04990	. Ooilio	. 04567	2.2	.04519	. 000918	. 0.4161
2.2	. $0+4493$.000910	.04150	2.0	.04036	. 000740	. 03750
2.0	. 04015	. 000735	. 03742	I. 8	.03571	. 000556	. 03347
I. 8	. 03555	. 000582	. 03340	1.6	.03122	. 0 CO453	. 02952
1.6	.03III	. 00045 I	. 02946	I. 4	. 02689	. $\mathrm{OCO} 3+5$. 02563
I. 4	. 0268 I	. 000338	. 02559	I. 2	. 02270	. $00024+$. 02 ISo
1.2	. 02265	. 000244	. 02178	I. 0	. OIS65	. 000166	. $\mathrm{OI} \mathrm{SO}_{4}$
I. 0	. OIS6I	. 000166	. 01802	0.8	. OI 471	. 000105	. OI433
0.8	. OI468	. 000104	. OI 432	0.6	. 01088	. 000058	. 01067
0.6	.oros 7	. 00005^{8}	. 01067	0.4	. 00716	. 000025	. 00707
0.4	. 00715	. 000025	.00707	+. 2	. 00354	. 000006	. 0035 I
$+.2$. 00353	. 000006	. 0035 I	0.0	.00000	. 000000	. 00000
0.0	. 00000	. 000000	. 00000	$-.2$. 00345	. 000006	. $003+7$
$-.2$. 00345	.000006	. 00347	0.4	. 00682	. 000024	. 00690
0.4	. 00682	. 000024	. 00690	0.6	. OIOII	. 000052	. 01029
0.6	. 01012	. 000052	. 01029	0.8	. 01333	. 000092	. 01365
0.8	.OI335	.000092	. 01365	I. 0	. 01649	. $0001+1$. 01696
1.0	. 01651	.00014I	. 01697	1.2	. 01958	. 000201	. 02025
1.2	. 01961	. 000201	. 02026	I. 4	. 02260	. 000269	. 02350
I. 7	. 02265	. 00027 I	. 02352	I. 6	. 02558	. $0003+7$. 02672
I. 6	. 02563	.000349	. 02675	I. 8	.02S49	. 000434	. 02991
1.8	. 02856	. .000436	. 02995	2.0	.03135	. 000529	. 03307
2.0	.03I 44	. 00053 I	.03312	2.2	. $03+17$. 000632	. 03621
2.2	. 03427	. 0000635	. 03626	2.4	. 03693	. 000743	. 03932
2.4	. 03705	. 000747	. 03938	2.6	. 03965	. 00086 I	. 04240
2.6	.03978	. 000866	. 04247	2.8	. 04233	. 000988	. $0+546$
2.8	. 04248	.000993	$.0455+$	3.0	$.04496$. OOII2I	. 04850
3.0	.04513	. 001127	. 04859	3.2	. $0+756$. 001261	. 05151
3.2	. 04774	.001268	. 05161	$3 \cdot 4$. 05012	. 001408	. $05+50$
		.001416	$.05+6 \mathrm{I}$	3.6	. 05264	. 001562	
3.6	. 05285	.001571	. 05759	3.8	. 055 II	. 001723	. 06042
3.8	. 05535	. 001733	. 06055	4.0	. 05755	. 001890	. 06335
4.0		. 001901		4.2	$.05996$. 002063	. 06626
4.2	.0602 4	. 002075	.066.1I	4.4	. 06234	. 002242	. 06915
4.4	.06264	. 002255	.0693I	4.6	.06469	. 002427	.07202

$y=3.6$				$\gamma=3.7$			
φ	X	Y	T	φ	X	Y	T
$\stackrel{0}{4.6}$. 13697	. 006674	.103I4	$\stackrel{0}{4.6}$. 14235	. 007040	. 10480
4.4	. 12439	. 005683	. 09650	4.4	. 12820	. 005925	. 09775
4.2	. 11361	. 004872	. 09035	4.2	. 11645	.00504I	. 09133
4.0	. 10410	.004190	. 08457	4.0	. 10627	. 004311	. 08536
3.8	. 09554	. 003606	. 07909	3.8	.09723	. 003695	. 07973
3.6	. 08772	.003101	. 07386	3.6	.08906	. 003166	. 07437
3.4	. 0 So50	. 002659	. 06883	$3 \cdot 4$. 08157	.002708	. 06925
3.2	. 07378	. 002272	. 06398	3.2	. 07463	. 002308	. $06+32$
3.0	. 06748	. 001931	. 05928	3.0	. 06816	. 001957	. 05256
2.8	.06I54	. 001630	. 05472	2.8	. 06208	. 001649	. 05495
2.6	. 05592	. 001364	. 05029	2.6	. 05635	.001378	. 05047
2.4	. 05056	. 001130	. 04596	2.4	.05090	. OOII40	.046II
2.2	. 04545	.000925	. 04173	2.2	. 04572	. 000032	. 04185
2.0	. 04056	. 000745	. 03760	2.0	.04076	. 000750	. 03769
1.8	. 03586	. 000590	. 03354	1.8	. 03602	. 000593	. 03362
I. 6	.03134	. 000455	. 02957	I. 6	.03145	. 000457	. 02962
1.4	. 02698	.00034I	. 02567	I. 4	. 02706	:000342	. 02571
1.2	. 02276	. 000245	. 02183	I. 2	. 02282	. 000246	. 02186
1.0	. OIS68	.000167	. 01806	1.0	. O1872	. 000167	. 01808
0.8	. 01473	. 000105	.01434	0.8	.or 476	. 000105	. OI435
0.6	. 01089	.000058	. 01068	0.6	.orogi	. 00005^{8}	. 01069
0.4	. 00716	. 000025	. 00707	0.4	. 00717	. 000025	. 00708
+. 2	. 00354	. 000006	. 00351	+. 2	. 00354	. 000006	. 0035 I
0.0	. 00000	. 000000	. 00000	0.0	. 00000	. 000000	. 00000
-. 2	. 00345	.000006	. 00347	-. 2	. 00345	. 000006	. 00347
0.4	. 00681	. 000024	.00690	0.4	. 00681	. 000024	.00690
0.6	. 0 Ioro	. 000052	. 01028	0.6	. 01009	. 000052	. 01028
0.8	.OI332	.000092	. 01363	0.8	.OI330	. 00000 I	. 01363
1.0	. 01646	.00014I	. 01695	1.0	. O1644	. 000140	. Or694
1.2	. 01954	.000200	. 02023	I. 2	. OI95I	. 000199	. 02021
I. 4	. 02256	.000269	. 02347	I. 4	. 02252	. 000258	. 02346
I. 6	. 02552	. 000346	. 02669	I. 6	. 0254.6	. 000375	. 02666
I. 8	. 02842	. 000432	. 02987	1.8	. 02835	. 00043 I	. 02984
2.0	. 03127	. 000527	. 03303	2.0	.03119	. 000525	. 03299
2.2	. 03407	. 000629	. 03615	2.	. 03397	. 000627	.036II
2.4	. 03682	. 000740	. 03925	2.4	. 03670	. 000737	. 03920
2.6	. 03952	. 0000858	. 04233	2.6	. 03939	. 0000854	. 04226
2.8	. 04218	. 000983	. 04538	2.8	. 04203	. 000978	. 04530
3.0	. 04479	. 001116	. 04840	3.0	. 04463	. 001110	. 04832
3.2	. 04737	. 001255	.05140	3.2	. 04719	. 001249	.05131
3.4	. 04991	. COI 401	. 05438	3.4	-.04971	. 001394	. 05428
3.5	. 05241	.001554	. 05734	3.6	. 052 I 9	. OOI 546	. 05723
3.8	. 05487	.001713	. 06028	3.8	. 05463	. 001704	. 06016
4.0	. 05729	. 001878	. 06320	4.0	. 05704	. 001868	. 06306
4.2	. 05968	. 002049	. 06610	4.2	. 0594 I	. 002038	. 06594
$4 \cdot 4$. 06204	. 002226	. 06898				. 0688 I
4.6	. 06437	. 002409	. 07184	4.6	. 06406	. 00239^{6}	. 07166
4.8	. 06667	. 002598	. 07468	4.8	. 06634	. 002583	. 07449

$\gamma=3.8$				$\gamma=3.9$			
9	X	Y	'T	9	X	Y	T
0				0			
$4 \cdot 4$. 13261	. 006209	. 09915	4.4	.13783	.006551	.10072
4.2	. 11962	. 005231	. 09240	4.2	. 12321	. 005449	. 09357
4.0	. 10864	. 004444	.08619	4.0	. III26	. 004592	.08709
3.8	. 09905	. 003790	. 08039	3.8	. IOIO2	. 003894	. 08110
3.6	. 09048	. 003235	. 0749 I	3.6	. O9199	. 003310	. 07543
$3 \cdot 4$. 08268	. 002758	. 06969	3.4	.08387	. 002813	. 0 jor 4
3.2	. 07552	. 002345	. 06468	3.2	. 07645	. 002385	. 06504
3.0	. 06886	. 001984	. 05985	3.0	.06960	. 002013	. 06015
2.8	. 06264	. 001669	. 05519	2.8	. 06322	.001690	. $0554{ }^{2}$
2.6	. 05679	. 001393	. 05066	2.6	. 05724	. 001408	. $050 \mathrm{O}_{5}$
2.4	.05125	. 001151	. $0+4626$	2.4	. 05160	. 001162	. 04641
2.2	. 04599	. 000939	.04197	2.2	. 04626	. 000947	. 04209
2.0	.04097	. 000755	. 03778	2.0	. 04118	. $000-61$. 03788
1.8	. 03617	. 000596	. 03369	1.8	. 03633	. 000600	. 03376
1.6	.03157	. $000+460$. 02968	1.6	. 03169	. 000462	. 02973
1.4	.027I +	. $0003+4$. $0257+$	1.4	. 02723	. $0003+5$. 02579
1.2	. 02288	. 00002.17	. 02189	1.2	. 02294	.0002 4^{8}	.02I91
1.0	. 01876	.000168	. 01809	I. 0	. 01880	. 000168	. OISII
0.8	.OI478	. 000105	. OI436	0.8	. $\mathrm{OI}+8 \mathrm{Co}$. 000105	. $01+338$
0.6	.olog 2	. 000058	. oro69	0.6	. 01093	. 000053	. 010%
0.4	.00718	. 000025	. 00708	0.4	. 00718	. 000025	. 00703
--. 2	. 00354	. 000006	. 0035 I	+.2	. 00354	. 000006	.00352
0.0	. 00000	. 000000	. 00000	0.0	. 00000	. 000000	. 00000
-. 2	. $\operatorname{co3} 45$. 000006	. 00347	-. 2	.003+4	. 000006	. $003+7$
0.4	.00681	. 000024	. 00689	0.4	. 00680	.000024	.00639
0.6	. or oo8	.000052	. 01028	0.6	. 01007	. 000052	. 01027
0.8	. OI329	.000092	. OI362	0.8	. O1327	. 000091	. 01361
1.0	. 01641	.00014 1	. or693	1.0	.or639	.000140	. 01691
1.2	. 01948	.000199	. 02020	1.2	. O19+4	.000198	. 02017
1.4	. 02247	. 000267	. 02343	1.4	. $022+2$. 000266	. 02340
I. 6	. 02541	. $0003+4$. 02663	1.6	. 02535	. 000342	. 02660
1.8	. 02828	. $000+30$. 02980	1.8	. 0282 I	. 000427	. 02976
2.0	. 03111	. 000523	. 03294	2.0	. 03102	.000521	. 03289
2.2	. 03388	. 000625	. 03605	2.2	. 03377	. 000622	. 03600
2.4	. 03660	. $000073+$. 03913	2.4	. 03648	.000730	. 03907
2.6	. 03927	. 000850	.042r9	2.6	.03913	. 000546	.04212
2.8	.04189	.000974	. 0.4522	2.8	. $0+175$. 0000969	. $0+5 \mathrm{I} 4$
3.0	. 04448	. OOIIO5	. $0+823$	3.0	. $0+131$. 001099	. 0.4 SIf
3.2	. 04702	.0012.42	.0512I	3.2	. $0+683$. 001235	. 05111
3.4	. 0.4952	.001386	. 05417	3.4	. $0+4931$. 001378	. $05+06$
3.6	. 05198	.oor 537	. 05711	3.6	. 05176	. 001528	. 05679
3.8	.05440	. 001694	. 06002	3.8	.05417	.001684	. 05989
4.0	.05678	. 001857	. 06291	4.0	. 05654	. OOIS46	. 06277
4.2	. 05913	. 002026	. 06578	4.2	. 05888	.002014	. 0656
$4 \cdot 4$. 06145	. 002200	. 06864	+.7	. 06118	.002187	. $063+7$
4.6	. 06374	. 002380	.07I+8	$+.6$. $063+5$. 002366	.07130
4.8	. 06600	. 002566	. $07+30$	4.8	. 06569	. 002550	. $07+11$
5.0	.06824	. 002757	.077ro	5.0	.06790	.002739	.07690

$\gamma=4.0$				$\gamma=4 . \mathrm{I}$			
9	X	Y	${ }^{r}$	φ	K	Y	T
0				0			
4.2	. 12735	. 005704	.09487	4.2	. 13224	.006010	. 09634
4.0	. I1417	. 004759	. 08807	4.0	. 11746	. 004949	.08914
3.8	. 10317	. 004008	. 08186	3.8	. IO552	.004135	. 08268
3.6	.09362	. 003390	.07608	3.6	. 09537	. 003478	.07671
3.4	. 08512	. 002870	. 17062	3.4	. 08645	.002932	. 07112
3.2	. 07743	. 002426	. 16543	3.2	. 07845	. 002470	. 06583
3.0	.07036	. 002044	.06046	3.0	. 07116	.002075	.06078
2.8	. 06382	.001712	. 15567	2.8	. 06444	. OOI735	. 05593
2.6	. 05771	.001424	. 15105	2.6	.05819	. OOI440	. 05125
2.4	. 05197	. OOII73	.1)4657	2.4	. 05235	. OOI I85	. 04673
2.2	. 04655	. 000955	. 24221	2.2	. 04684	. 000063	. 04234
2.0	. 04140	.000766	. 33797	2.0	. 04162	. 000772	. 03807
1.8	. 03650	. 000604	.03383	1.8	. 03666	. 000607	. 03391
1.6	.03I8I	. 000464	.029: 9	I. 6	.03193	. 000467	. 02984
1.4	. 02732	. 000347	. $025^{1} 2$	I. 4	. 02740	. 0000348	. 02587
1.2	. 02300	. 000249	. 02194	1.2	. 02306	. 000250	. 02197
1.0	. 01884	. 000169	. 01813	1.0	. 01888	. 000169	. 01815
0.8	.or483	. 000106	. 01439	0.8	. 01485	. 000106	. 01440
0.6	. 01095	. 000058	. 01071	0.6	. 01096	. 000058	. 01071
0.4	.007I9	. 000025	. 00708	0.4	.00719	. 000025	. 00709
+.2	. 00354	. 000006	. 00352	$+.2$. 00354	. 000006	. 00352
0.0	. 00000	. 000000	. 00000	0.0	. 00000	. 000000	. 00000
$-.2$. 00344	. 000006	. 00347	-. 2	. 00344	. 000006	. 00347
0.4	. 00680	. 000024	.00689	0.4	. 00679	. 000024	. 00689
0.6	. 01006	. 000052	. 01027	0.6	. 01006	.000052	. 01026
0.8	. 01325	. 00000 I	. 01360	0.8	. 01324	. 00009I	. O1360
1.0	. 01636	.000140	. 01690	1.0	. 01634	. 000139	. 01689
1.2	. OI94I	. 000198	. 02016	1.2	. 01937	. O00198	. 02014
I. 4	. 02238	. 000266	. 02338	1.4	. 02234	. 0000265	. 02336
1.6	. 02529	. 000342	. 02657	1.6	. 02523	.00034I	. 02654
I. 8	.02814	.000427	. 02972	1.8	. 02807	. 000425	. 02969
2.0	. 03094	. 0000519	. 03284	2.0	. 03085	. 0000517	.0328I
2.2	. 03368	. 000620	. 03594	2.2	. 03358	.000617	. 03590
2.4	. 03637	. 0000728	. 03901	2.4	. 03626	.000725	. 03896
2.6	.039Cr	. 0000843	. 04205	2.6	. 03888	. 000839	.04199
2.8	. 04160	. 000096	. 04506	2.8	.04146	. 000961	. 04499
3.0	.04415	. 001094	. 04805	3.0	. 04399	. 001089	. 04797
3.2	. 04666	. 001229	. 05101	3.2	. 04649	. 001224	. 05092
3.4	. 04913	.001371	. 05395	3.4	. 04893	. 001365	. 05385
3.6	. 05156	. OOI 520	. 05687	3.6	. 05134	. 001512	.05676
3.8	. 05395	. 001675	. 05976	3.8	. 05372	. 001666	. 05964
4.0	. 05629	. 001836	. 06263	4.0	. 05605	. 001825	. 06250
4.2	. 05860	. 002002	. 06548	4.2	. 05835	. 001990	. 06534
4.4	. 06088	. 002174	. 06831	$4 \cdot 4$. 06062	. 002160	.068ı6
4.6	.06313	. 00235 I	.07112	4.6	. 06286	. 002336	.07096
4.8	. 06536	. 002534	. 07392	4.8	. 06506	. 002517	. 07374
5.0	. 06756	. 002722	. 07670	5.0	. 06723	. 002704	. 07651
5.2	.06973	.002915	. 07946	5.2	. 06938	.002896	. 07926

$\gamma=4.2$				$\gamma=4.3$			
φ	X	Y	T	φ	X	Y	T
0				0			
4.0	. 12122	. 005169	. 09032	4.0	. I2 56I	. 005431	. 09165
3.8	. 108I3	. 004276	. 08355	3.8	. 11103	. 004435	. 08450
3.6	. 09726	. 003573	. 07738	3.6	. 09932	. 003677	.07810
3.4	. 08787	. 002998	. 07165	3.4	. 08938	. 003069	. 07220
3.2	. 07953	. 002517	. 06624	3.2	. 08067	. 002566	. 06667
3.0	. 07199	. 002 IO 9	.06ilo	3.0	. 07286	. 002143	. 06144
2.8	. 06509	. 001759	.05619	2.8	. 06575	. 001783	. 05646
2.6	. 05870	. 001457	. 05146	2.6	. 0592 I	.001474	.05167
2.4	. 05273	. 001197	. 04689	2.4	. 05312	. 001209	.04706
2.2	. 04713	. 000972	. 04247	2.2	. 04743	. 000980	. 04260
2.0	. 04185	. 000778	. 03817	2.0	. 04207	. 000783	. 03827
1.8	. 03683	. 000611	. 03398	1.8	. 03700	. 000615	. 03406
I. 6	. 03205	. 000469	. 02990	I. 6	. 03218	-. 000472	. 02996
I. 4	. 02749	. 0000350	.02591	I. 4	. 02758	. 00035 I	. 02595
I. 2	. 02312	. 000251	. 02200	1.2	. 02318	. 000251	. 02203
I. 0	. 01892	.000170	. 01817	1.0	.01896	.000170	. 01819
0.8	. 01487	.000106	. 01441	0.8	. 01490	.000106	. 01442
0.6	. 01097	. 000059	. 01072	0.6	. olog8	. 000059	. 01072
0.4	. 00720	. 000026	. 00709	0.4	. 00720	. 000025	. 00709
$+.2$. 00354	. 000006	. 00352	$+.2$. 00354	. 000006	. 00352
0.0	. 00000	.000000	. 00000	0.0	. 00000	. 000000	. 00000
-. 2	. 00344	. 000006	. 00347	-. 2	. 00344	. 000006	. 00347
0.4	. 00679	. 000024	. 00689	0.4	. 00678	. 000023	. 00658
0.6	. 01004	.000052	. 01026	0.6	. 01004	. 000052	. 01025
0.8	. 01322	. 000091	.0r359	0.8	. 01320	. 000090	. 01358
1.0	. 01631	.000139	. 01687	I. 0	. 01629	.000139	. 01686
1.2	.OI934	. 000197	. 02012	1.2	. OI930	. 000197	. 02010
1.4	. 02229	. 000264	. 02333	I. 4	. 02225	. 000263	. 02331
1.6	. 02518	. 000340	. 02651	I. 6	. 02512	. 000339	.02648
1.8	. 02800	.000424	. 02965	1.8	. 02794	. 000422	02961
2.0	. 03077	. 000516	. 03276	2.0	.03070	. 000514	.03271
2.2	. 03348	. 000615	. 03584	2.2	. 03339	.000612	. 03579
2.4	. 03614	.000722	. 03889	2.4	. 03604	.000719	. 03883
2.6	. 03875	. 0000836	.04I92	2.6	. 03863	. 000832	. 0.4184
2.8	. 041132	. 000957	. 04491	2.8	. 04118	. 000952	. 04483
3.0	. 04384	. 001085	.04788	3.0	. 04368	. 001079	.04759
3.2	. 0463 x	. OOI2I9	. 05082	3.2	.04614	. OOI212	. 05072
3.4	. 04874	. OOI359	. 05374	3.4	. 04856	. 00135 I	. 05363
3.6	.05114	.001505	. 05664	3.6	. 05094	. OOI497	. 05652
3.8	$.05349$.001658	$.0595 \text { I }$	3.8	. 05328	. 001648	
4.0	. 0558 I	.0018I6	. 06236	4.0	. 05558	. 001805	. 06222
4.2	. 05809	.ooI979	. 06519	4.2	. 05784	.001967	. 06504
$4 \cdot 4$. 002148	. 06800	4.4	. 06007		. 06784
4.6	. 06256	. 002322	. 07079	4.6	. 06227	. 002308	. 0706
4.8	. 06475	. 002502	. 07356	4.8	.06444	. 002486	. 0733
5.0	. 06691	.002687	. 07632	5.0	. 06658	.002670	.07612
5.2	. 06904	. 002877	. 07906	5.2	. 06869	. 002859	.0-885
$5 \cdot 4$.07II4	.003072	.08178	$5 \cdot 4$. 07077	. 003052	. 08156

$y=4.4$				$\gamma=4.5$			
φ	X	Y	T	φ	X	Y	I
0				.			
3.8	. II434	. 004621	. 08554	3.8	. 11816	. 004833	.08671
3.6	. 10159	. 003794	. 07886	3.6	. 10409	. 003923	. 07969
3.4	. 09102	.003I47	. 07278	$3 \cdot 4$.09278	. 003230	. 07340
3.2	. 08188	. 002620	. 06712	3.2	.08317	. 002676	.06760
3.0	. 07378	. 002180	. 06180	3.0	. 07474	. 002219	. 06216
2.8	. 06645	. 0001809	. 05673	2.8	. 06718	.001836	. 05702
2.6	. 05974	. 001493	. 05189	2.6	. 06030	. 0015 II	. 05212
2.4	. 05354	. 001222	. 04723	2.4	. 05396	. 001234	. 04741
2.2	. 04775	. 0000989	. 04273	2.2	. 04807	. 000098	. 04287
2.0	.0423I	. 000789	. 03837	2.0	. 04255	. 000795	. 03848
1.8	.03718	.000619	. 03414	1.8	. 03736	. 000623	. 03422
1.6	.03231	. 000474	. 03001	I. 6	. 03244	. 000477	. 03007
1.4	. 02767	. 000353	. 02599	I. 4	. 02777	. 000354	. 02603
1.2	. 02324	. 000252	. 02206	1.2	. 02331	. 000253	. 02209
1.0	. 01900	.000171	. 0182 I	1.0	. 01904	. 000171	. 01823
0.8	. 01492	.000107	.OI443	0.8	.OI495	. 000107	.OI445
0.6	. 01100	. 000059	. 01073	0.6	. OIIOI	. 000059	. 01074
0.4	. 0072 I	. 000025	.00709	0.4	. 00721	. 000026	. 00710
$+.2$. 00355	. 000006	. 00352	$+.2$. 00355	. 000006	. 00332
0.0	. 00000	. 000000	. 00000	0.0	. 00000	. 000000	. 00000
-. 2	. 00344	. 000006	. 00347	-. 2	. 00344	. 000006	. 00346
0.4	.00678	. 000024	. 00688	0.4	. 00678	. 000023	. 00688
0.6	. 01002	. 000052	. 01025	0.6	. 01002	. 000052	. 01024
0.8	. 01318	. 000090	. O1357	0.8	. O1317	. 000090	. OI356
1.0	. 01626	.000139	. 01685	1.0	. OI624	. 000138	. 01683
1.2	. 01927	. 000197	.02009	1.2	. or924	. 000196	. 02007
1.4	. 02220	. 000263	. 02329	1.4	. 02216	. 000262	. 02326
1.6	. 02507	. 000338	. 02645	1.6	. 02501	. 000337	. 02642
1.8	. 02787	. 00042 I	. 02958	1.8	. 02781	. 000420	. 02954
2.0	.0306I	. 0005 I 2	. 03268	2.0	. 03054	. 000510	. 03263
2.2	. 03330	. 000011	. 03574	2.2	. 0332 I	. 000608	. 03569
2.4	. 03593	. 000717	. 03878	2.4	. 03583	. 000713	.03872
2.6	. 0385 I	.000830	.04178	2.6	. 03839	. 0000825	.04171
2.8	.04105	. 000949	. 04476	2.8	.04091	. 000944	. 04468
3.0	. 04353	. 001075	. 04771	3.0	. 04338	. 001069	. 04762
3.2	. 04598	. 001207	. 05063	3.2	. 04581	. OOI2OI	. 05054
3.4	. 0.4838	. 001346	. 05353	3.4	. 04820	. 001338	. 05343
3.6	. 05074	. 001490	.05641	3.6	. 05054	. oor482	. 05630
3.8	. 05306	. 0001640	. 05926	3.8	. 05285	.00163I	. 05914
4.0	. 05535	. 001796	.06209	4.0	. 05512	. 001785	.06I96
4.2	. 05760	. 001957	. 06490	4.2	. 05735	. OoI945	. 06476
$4 \cdot 4$. 05982	. 002123	. 06769	4.4	. 05955	. 002110	. 06754
4.6	. 06200	. 002295	. 07046	4.6	.06I72	. 00228 r	. 07030
4.8	.06415	. 002472	. 07321	4.8	. 05386	. 002457	. 07304
5.0	. 06627	. 002654	. 07594	5.0	. 06596	. 002638	. 07576
5.2	. 06836	. 002840	. 07865	5.2	. 06804	. 002824	. 07846
$5 \cdot 4$. 07043	. 003031	.08134	5.4	.07009	. 003014	.08II4
5.6	. 07247	. 003227	. 08402	5.6	. 07211	. 003208	.08381

$y=4.6$				$y=4.7$			
9	X	Y	T	9	X	Y	T
0				0			
3.8	. 12268	. 005092	. 08803	3.6	. 11009	. 004240	. 08158
3.6	. 10690	. 00.4070	. 08060	3.4	.09679	. $003+25$.07476
$3 \cdot 4$. 09470	. 003323	. 07406	3.2	. 08601	. 002803	. 06862
3.2	. 08454	. 002737	.06810	3.0	. 07682	. 002304	. 06295
3.0	. 07575	. 002260	. 06255	2.8	.06873	. 001894	. 05763
2.8	. 06794	. 001864	. 05732	2.6	.061.46	. 001551	. 05258
2.6	. 06087	.001531	. 05235	2.4	. 05483	. 001262	.04777
2.4	. 05439	. 001248	. 04759	2.2	. 04872	. 001017	. 04315
2.2	. 04839	.001007	. $0+4301$	2.0	. 04304	. 000808	.03869
2.0	. 04280	. 000802	. 03858	1.8	. 03772	. 0000631	. $03+38$
1.8	. 03754	.000627	. $03+30$	1.6	. 03270	. 0000482	.03019
I. 6	. 03257	. 000480	. 03013	1.4	. 02795	. 000358	.026I2
1.4	. 02786	. 0000356	. 02607	1.2	. $023+3$. 000255	. 02215
1.2	. 02337	. 000254	. 02212	1.0	. 01912	.000172	. 01827
I. 0	. 01908	.000172	. 01825	0.8	. 01499	.00010S	. 01447
0.8	. OI497	. 000107	. 01446	0.6	. OIIO3	. 000059	.01075
0.6	. 01102	. 000059	. 01075	0.4	. 00722	. 000026	.00710
0.4	. 00722	. 000026	.00710	+.2	. 00355	. 000006	. 00352
$+.2$. 00355	. 000006	. 00352	0.0	. 00000	. 000000	. 00000
0.0	. 00000	. 000000	. 00000	-. 2	. 00344	. 000006	. $003+6$
-. 2	. 00344	. 000006	. 00346	0.4	. 00677	. 000023	. 00687
0.4	. 00677	. 000023	. 00688	0.6	. 01000	. 000052	. 01023
0.6	. 01001	. 0000052	. 01024	0.3	. 01314	. 000090	. 01354
0.8	. 01315	. 000090	. 01355	1.0	. 01619	. 000138	. 01651
1.0	. 01622	.000138	. 01682	1.2	. 01917	. 000195	. 02004
1.2	. OIg20	. 000196	. 02005	1.4	. 02207	. 000261	. 02322
J. 4	. 02212	. 000262	. 02324	1.6	. 02490	. 000335	. 02636
I. 6	. 02496	. 000336	. 02639	1.8	. 02767	. 000417	. 02947
1.8	. 02774	. 000419	. 02951	2.0	. 03038	. 000507	.03255
2.0	. 03046	. 000509	.03259	2.2	. 03303	. 000604	. 03559
2.2	. 03312	. 000606	. 03564	2.4	. 03562	.000708	. os560
2.4	. 03572	.000711	. 03866	2.6	. 03816	.000SI9	. 0.4158
2.6	. 03828	. 000S23	. 041164	2.8	. 0.4065	. 000936	. $0+453$
2.8	.04078	. 000941	. 04460	3.0	. 04309	. 001060	. 04745
3.0	. 0432.4	. 001065	. 04754	3.2	. $0+549$. 001189	. 05035
3.2	. 04565	.001196	. 05044	$3 \cdot 4$. 0.4784	. 001325	. 05322
3.4	. 04802	.001332	. 05332	3.6	. 05016	. 001467	. 05607
3.6	. 05035	. OOI 475	.05618	3.8	. 05243	.001614	.05890
3.8	.05264	. 001623	.05901	4.0	. $05+67$. 001766	. 061%
4.0	. 05490	.001777	. 06182	4.2	. 05687	. 001923	.064 4
4.2	. 05712	. 001936	.06461	$4 \cdot 4$. 05904	. 002086	.06724
$4 \cdot 4$. 05931	. 002100	. 06738	4.6	. 06117	. 002254	. 06995
4.6	.06146	.002269	.07013	4.8	. 06327	. 002427	.07270
4.8	. 06357	. $002+43$. 07286	5.0	. 06534	. 002606	.07539
5.0	. 06565	. 002621	. 07557	5.2	.06738	. 002789	.07507
5.2	. 0677	.002804	. 07826	5.4	. 06939	. 002976	. 08073
5.4	. 06974	. 002992	. 08093	5.6	.0713S	. 003167	. 05335
5.6	. 07174	.003185	.08359	5.8	. 07334	.003362	. 08601

$\gamma=4.8$				$\gamma=4.9$			
9	X	Y	T	φ	X	Y	T
0 3.6	. 11380	. 004438	. 08269	${ }_{3}{ }^{0} 6$. 11823	. 004679	. 08395
3.4	.099II	. 003539	. 07552	3.4	. IOI7 7	. 003667	. 07635
3.2	. 08760	. 002874	.06917	3.2	. 08932	. 00295 I	. 06977
3.0	. 07795	. 00235 I	. 06336	3.0	. 07915	. 002400	. 06380
2.8	. 06955	. 001925	. 05794	2.8	. 07043	. OOI958	. 05828
2.6	. 06207	. 001572	. 05282	2.6	. 06272	. 001595	. 05308
2.4	. 05529	.001276	. 04796	2.4	. 05577	. 001291	.048I6
2.2	. 04907	. 001026	. 04329	2.2	. 04942	.001036	. 04344
2.0	. 04330	. 000814	. 03880	2.0	. 04356	. 000082 I	. 03892
1.8	. 03791	.000635	. 03446	1.8	.03810	.000640	. 03455
1.6	. 03284	. 000485	. 03025	1.6	. 03297	. 000487	. 03032
1.4	. 02805	. 000359	. 02616	1.4	.02814	.000361	. 02621
1.2	. 02350	. 000256	. 02217	1.2	. 02356	. 000257	. O 222 I
1.0	. 01916	. 000173	. 01828	1.0	. 01921	. 000173	. 01831
0.8	. 01502	.000108	. 01448	0.8	. 01505	. 000108	. 01449
0.6	.OIIO5	. 000059	. 01076	0.6	.01106	. 000059	. 01076
0.4	. 00723	. 000026	.00710	0.4	.00724	. 000026	.007II
$+.2$. 00355	.000006	. 00352	$+.2$. 00355	. 000006	. 00352
0.0	. 00000	. 000000	. 00000	0.0	.00000	. 000000	. 00000
$-.2$. 00343	. 000006	. 00346	. 2	. 00343	. 000006	. 00346
0.4	. 00676	. 000023	. 00687	0.4	. 00676	.000023	. 00687
0.6	. 00999	. 00005 I	. 01023	0.6	. 00998	. 000051	. 01022
0.8	. 01312	. 000000	. OI353	0.8	.013II	.0000go	. OI353
1.0	. 01617	.000138	. O1679	1.0	. 01615	. 000137	. 01679
1.2	.or913	. 000195	. $\mathrm{O2} 00 \mathrm{I}$	1.2	. O1910	. 000194	. 02000
1.4	. 02203	. 000260	.02319	I. 4	.02199	. 000260	. 02317
1.6	. 02485	. 000334	. 02633	1.6	.02480	. 000333	. 02631
1.8	.02761	. 000416	. 02943	1.8	. 02754	.000415	. 02940
2.0	. 03030	. 000506	. 03250	2.0	. 03022	. 000504	. 03247
2.2	. 03293	. 000602	. 03554	2.2	. 03285	. 000600	. 03549
2.4	.0355 I	. 000706	. 03854	2.4	.0354I	. 000703	. 03849
2.6	. 03804	. 000816	. $0+415$	2.6	. 03792	. 000813	. $0+4145$
2.8	. 04052	. 000933	. $04+46$	2.8	. 04039	.000929	. 04439
3.0	. 04294	. 001056	. 04737	3.0	. 04280	.00105 I	. 04730
3.2	. 04533	. 001185	. 05026	3.2	. 04517	. 001179	. 05018
3.4	. 04767	.001320	. 05312	$3 \cdot 4$. 04749	.001313	. 05303
3.6	. 04997	. 001460	. 05596	3.6	. 04978	.001453	. 05586
3.8	. 05223	. 001607	. 05877	3.8	. 05202	. 001598	. 05867
4.0	. 05445	. OOI758	.06157	4.0	. 05423	. 001748	. 06145
4.2	. 05663	.001914	. 06434	4.2	. 05640	. 001903	. 0642 I
4.4	. 05878	. 002075	. 06709	4.4	. 05854	. 002063	. 06695
4.6	. 06090	. 002242	.06982	4.6	.06064	. 002228	.06967
4.8	. 06299	. $002+14$. 07253	4.8	. 06271	. 002399	. 07237
5.0	. 06504	. 002590	. 0752 I	5.0	. 06475	. 002575	. 07504
5.2	. 06707	. 002771	. 07788	5.2	. 06676	. 002755	. 07770
$5 \cdot 4$. 06907	. 002957	. 08053	5.4	. 06874	. 002939	. 08034
5.6	. 07104	.003I47	. 08316	5.6	. 07070	.003127	.08296
5.8	. 07298	.003341	. 08578	5.8	. 07263	.003319	. 08557

$y=5.0$				$\gamma=5.0$			
9	X	Y	T	φ	X	Y	T
${ }^{6}$				0			
$3 \cdot 4$. 10465	. 003815	. 07725	1.4	. 02194	. 000259	. 02315
3.2	. OgI 19	. 003038	. 07039	1.6	. 02474	. 000332	. 02623
3.0	. 08044	. 002455	. 06425	1.8	. 02748	. 000414	. 02937
2.8	. $0713+$.	. 001993	.05861	2.0	. 03015	. 000502	. 03242
2.6	. 06338	.001618	. 05334	2.2	. 03276	. 000593	. 03544
2.4	. 05626	. 001306	. $0+834$	2.4	. 03531	.000700	. 03843
2.2	. 04978	.001046	. 04359	2.6	.03781	. 000809	.0.4139
2.0	. 04383	. 000828	. 03902	2.8	. 04026	. 000925	. $0+4431$
1.8	. 03829	. 000644	. 03463	3.0	. 04266	. 0010.46	. 04721
I. 6	. 03311	. 000490	. 03037	3.2	. 04501	. 001174	. 05008
1.4	. 02824	. 000362	. 02625	3.4	. 04732	.001307	. 05293
1.2	. 02363	. 000258	. 02224	3.6	. 0.4959	. 001446	. 05575
1.0	. OI925	.000174	. 01832	3.8	. 05182	. 00159°	. 05854
0.8	. 01507	. 000108	. 01451	4.0	. 05401	. 001740	. 06131
0.6	. 015108	. 000059	. 01077	4.2	.05616	. 001895	. 06406
0.4	. 00724	. 000026	.00711	4.4	. 05828	. 002054	.06679
+. 2	. 00355	. 000006	. 00352	4.6	. 06037	. 002213	. 06950
0.0	.00000	.000000	. 00000	4.8	. $062+3$. 002387	.07219
-. 2	. 00343	. 000006	. 00346	5.0	. 06446	. 002560	. 07486
0.4	. 00675	.000023	. 00687	5.2	. 06646	. 002738	.0775
0.6	. 00997	. 000051	. 01022	5.4	. 06843	. 002920	. OSOI4
0.8	. O1309	.000089	. OI352	5.6	.07037	. 003107	. 08275
1.0	. 01612	.000137	. 01677	5.8	. 07228	. 003298	. 05535
1.2	. 01907	.000194	. 01998	6.0	.07416	. 003493	.08793

$$
\text { V. } P_{\varphi}=3 \tan \varphi+\tan ^{3} \varphi
$$

φ	. 0	. 2	. 4	. 6	. 8
0	. 000000	. 010472	`. 020945	.031 418	. 041893
1	. 052371	. 062850	. 073333	. $\mathrm{OS}_{3} \mathrm{~S}_{19}$. $09+310$
2	.104 So5	.115305	. 1258 II	. 136323	.146842
3	. 157367	. 167 901	. 178442	. 188993	. 199533
4	. 210122	. 220702	. 231293	. 241895	. 252509
5	. 263136	. 273775	. 28.428	.295095	. 305777
6	.316474	. 327186	. 337915	. 34866 r	. 359424
7	. 370205	. 381004	-391823	. 402661	. 413519
8	.424398	. 435299	. 446222	. +57167	. 468135
9	. +79 I26	. 490 I43	. 501184	. 51225 I	. 523344
10	. $53+463$. 545 610	. 556785	. 567989	. 579222
11	. 590485	.601 779	. 613 104	. 624461	. 635 S50
12	. 647273	. 658730	. 670221	. 681748	. 693310
13	. 704910	. 716547	. 728222	. 739936	. 75 I 690

$\mathrm{P}_{\varphi}=3 \tan \varphi+\tan ^{3} \varphi$.

9	. 0	. 2	. 4	. 6	. 8
14			.787196		811 078
14	. 823086	. 835138	. 847236	. 799115	. 871573
16	. 883 813	.896103	. 908442	. 920832	. 933275
17	.945769	. 958317	. 970 919	.983577	. 996291
18	1.009062	1.021 891	1.034779	1.047727	1.060736
19	1.073807	I. 086 941	I. 100139	I. II 3402	1.126731
20	I. 140127	1.153 592	1.167 126	1.180 730	I. 194407
2 I	I. 208115	I. 221978	1. 235875	1.249849	1. 263 901
22	1.278031	1.292241	1. 306532	1.320906	1.335363
23	I. 349906	I. 364535	1.379252	I. 394058	I. 408955
24	I. 423943	I. 439025	1.454202	1. 469476	I. 484847
25	I. 500318	1.515890	I.53I 565	1.547344	1.563229
26	I. 579 22I	1.595323	I.6II 535	1.62786 I	1.644301
27	I. 660857	'1.677 532	1. $69+327$	1.711 244	1.728284
28	I. 745450	I. 762745	I. 780169	1.797726	1.815417
29	I. 833244	I.85I 209	1.869315	1.887564	I.905 959
30	1.924501	1.943193	1.962038	1.981 038	2.000 I 95
31	2.019513	2.038993	2.058639	2.078452	2.098437
32	2.118596	2.138931	2.159446	2.180143	2.201026
33	2.222098	2.243 36I	2.264820	2.286477	2.308337
34	2.330 4OI	2.352674	2.375160	2.397862	$2.420 \quad 783$
35	2.443928	2.467300	2.490904	2.514743	2.538821
36	2.563143	2.587714	2.612536	2.637615	2.662957
37	2.688563	2.714441	2.740594	2.767029	2.793748
38	2.820759	2.848066	2.875675	2.903591	2.931820
39	2.960368	2.989240	3.018 444	3.047 .983	3.077866
40	3.108099	3.138688	3.169640	3.200962	3.232661
4 I	$3.26+745$	3.297220	3.330095	3.363377	3.397074
42	3.43 I 194	3.465746	3.500739	3.536180	3.572079
43	3.608446	3.645289	3.682618	3.720444	3.758776
44	3.797624	3.837000	3.876914	3.917378	3.958402
45	4.000000	4.042183	4.084962	4.128352	4.172 365
46	4.217 O14	4.262354	4.308277	4.354920	4.402257
47	4.450304	4.499074	4.548585	4.598854	4.649898
48	4.701734	4.754380	4.807854	4.862177	4.917366
49	4.973442	5.030427	5.088340	5.147206	5.207045
50	5.26788 I	5.329737	5.392639	5.456 6II	5.52I 68I
5 I	5.587874	5.655218	5.723742	5.793475	5.864448
52	5.936 691	6.010238	6.085117	6.161368	6.239026
53	6.318 124	6.398702	6.480797	6.564452	6.649706
54	6.736602	6.825183	6.915496 -	7.007588	7.101509
55	7.197304	7.295 031	7.394739	7.496488	7.600333
56	7.706333	7.814550	$7 \cdot 925047$	8.037894	8.153153
57	8.270898	8.391203	8.514 I 42	8.639795	8.768244
58	8.899574	9.033869	9.171 225	9.3 II 73 T	9.455492
59.	9.602605	9.753175	9.907314	10.065136	10.226756

VI. VALUES OF $X, Y \& T$ FOR INTERTALS OF 1°.

$\gamma=0.00$				$\gamma=0.00$			
φ	X	Y	T	9	X	Y	T
0 60	1. 73205	1. 50000	1.73205	${ }_{18}^{0}$. 32492	. 052786	. 32492
59	I. 66428	I. $3^{8}+192$	1. 66.428	17	. 30573	. 046736	. 30573
58	1.60033	I. 28054	1.60033	16	. 28675	.041112	. 28675
57	I. 53986	I. 18559	I. 53936	15	-.26795	.035898	. 26795
56	I. 48256	1.09899	1.48256	I4	. 24933	.031082	. 24933
55	I.42815	1.01980	I.42815	I3	.23087	. 026650	. 23087
54	1.37638	. 947215	1. 37638	12	. 21256	. 022590	. 21256
53	1.32704	. 880524	1.32704	II	. I943S	. 018892	. 19438
52	1.27994	. 819125	1.27994	10	. 17633	. OI5546	. 17633
51	1. 23490	. 762486	1.23490	9	. 15838	. 012543	. 15838
50	I. 19175	.710138	I. I9I75	8	. 14054	.009876	. 14054
49	I. 15037	. 661674	I. 15037	7	. 12279	. 007538	. 12279
48	I.IIO6I	. 616730	I. 11061	6	. 10510	. 005524	. 10510
47	1.07237	. 574987	1.07237	5	.08749	. 003 3827	.08749
46	1.03553	.536162	1.03553	4	. 06993	. 002445	. 06993
45	1.00000	. 500000	1.00000	3	.05241	. 001373	. 0524 I
44	. 96569	. 466278	. 96569	2	. $03+92$. 000610	. 03492
43	. 93252	. 434792	. 93252	+1	.01746	. 000152	. 01746
42	.90040	. 405363	. 90040	\bigcirc	00000	000000	00000
4 I	. 86929	. 377830	. 86929				
40	. 83910	. 352044	. 83910		γ	. OI	
39	. 80978	. 327875	. 80978		X	Y	1
38	.78129	. 305204	. 78129	9	X	1	1
37	. 75355	. 283922	. 75355	0			
36	. 72654	. 263932	. 72654	60	1. 77949	1. 55885	
35	. 70021	. 245145	$.70021$	59	1. 70679	I. 43539	1. 68533
34	. 67451	. 227481	. 67451	58	J. 63857	I. 32.404	I. 61923
33	. 64941	. 210865	.6494I	57	1.57437	1.22324	I. 55697
32	. 62487	. I9523I	. 62487	56	1.51380	1.13170	I. 49506
3 I	. 60086	. 180517	. 60086	55	I. 4565 T	1.04831	1.44222
30	. 57735	. 166667	. 57735	54	1.40219	.97214	I. 38919
29	. 5543 I	. 153629	. 5543 I	53	I. 3505 S	.90238	I. 33873
28	. 5317 I	. 14135^{8}	. 5317 I	52	1. 30144	. 83834	I. 29063
	. 50953	. 129808	. 50953	5 I	I. 25458	-7794I	1. 24.468
26	. 48773	. 118942	. 48773	50	1.20980	. 72503	I. 20073
25	. 4663 I	. 108721	. 46631	49	I. 16694	. 67458	I. 15861
24	.44523	. O99114	. 44523	48	I. 125^{85}	. 62843	I. IIS20
23	. 4244^{8}	.090090	. 42.448	47	1.086.40	. 58536	I. 07935
22	. 40403	.08ı619	. 40403	46	I.04847	. 54537	I. 041196
21	.38386		. 38386	45	1.OII92	. 50818	I. 00593
20	.36397	$.066237$. 36397	44	. 97669	. 47355	.97116
I9	- 34433	.05928I	. 34133	43	.94267	.4+127	. 93757

$\gamma=0.01$				$\gamma=0.01$			
φ	X	Y	T	φ	X	Y	T
0				0			
42	. 90978	. 4 III4	.90507	4	. 06988	. 002143	. 06990
41	. 87795	. 38297	. 87361	5	.08741	. 003823	. 08745
40	. 84710	. 35662	. 84309	6	. 10499	.005516	. 10505
39	. 81718	. 33195	. 81347	7	. 12264	. 007525	. 12271
38	$\because 78812$. 30883	. 78469	8	.14034	. 009857	. 14044
37	. 75986	. 28715	. 75670	9	. 15813	. OI25I6	. 15826
36	. 73237	. 26681	. 72944	10	. 17602	.OI5509	.17618
35	. 70559	. 24769	. 70290	II	. 19400	. OI8843	. 19420
34	. 67947	. 22974	. 67698	I2	.2121I	. 022526	. 21234
33	. 65393	. 21287	. 65169	13	. 23034	. 026568	. 23060
32	. 62908	. 19701	. 62697	14	. 24870	. 030978	. 24902
31	. 60473	. 18209	. 60279	15	. 26723	. 035769	. 26759
30	. 58091	. 168051	. 57913	16	. 28592	. 040952	. 28633
29	. 55758	. 154847	. 55594	17	. 30479	. 046543	. 30526
28	. 53470	. 142427	- 53320	18	. 32385	. 052554	- 32439
27	:51226	. 130745	. 51089	I9	- 34313	. 059005	- 34373
26	. 49023	. 119760	. 48898	20	- 36262	. 065909	- 36330
25	. 46859	. 109433	. 46744	21	. 38236	. 073290	-383Ir
24	.44729	. 099732	. 44626	22	.40236	. 081168	. 40319
23	. 42635	. 090623	. 42541	23	. 42263	. 089565	. 42355
22	. 40572	. 082077	. 40487	24	. 44320	.098508	. 44421
2 I	. 38539	. 074067	. 38462	25	.46407	. 108022	. 46519
20	. 36534	. 066569	. 36465	26	. 48523	. 118139	. 48650
19	- 34555	. 059561	. 34494	27	. 50684	. 128889	. 50818
18	. 32601	.05302I	. 32546	28	. 52878	.140309	. 53024
17	. 30669	.04693I	. 3062 I	29	. 55111	. I5 2437	. 55270
16	. 28758	.041272	. 28717	30	. 57387	. 165314	. 57560
15	. 26868	.036029	. 2683 I	31	. 59707	.178985	. 59896
14	. 24996	.031187	. 24964	32	. 62075	- 193499	. 62281
13	. 23141	. 026734	.23114	33	. 64494	. 2089II	. 64717
12	. 21302	. 022655	. 21279	34	. 66967	. 225279	. 67208
II	. 19476	. 018941	. 19457	35	. 69497	. 242668	. 69758
10	. 17664	. 015583	. 17649	36	. 72087	. 261147	. 72370
	. 15863	. 012570	. 15850	37	. 74742	. 280795	. 75048
8	. 14074	. 0008894	. 14064	38	. 77465	. 301694	. 77796
7	. 12294	. 007550	. 12286	39	. 80262	. 323939	. 80619
6	. 1052 I	. 005531	. 10516	40	. 83135	. 347631	. 83521
5	. 08757	. 003832	. 08752	4 I	. 86092	. 372884	. 86509
4	. 06993	. 002447	.06995	42	. 89136	. 399820	. 89586
3	. 05244	.001374	. 05242	43	. 92274	. 428576	. 92761
2	. 03493	. 000010	. 03493	44	. 95512	. 459307	. 96038
+r	. Or 746	.000152	. OI746	45	. 98856	. 492182	. 99426
	+	+		46	1.02315	. 527388	1.0293I
0	00000	000000	00000	47	1.05896	. 565132	I. 06564
0		00000		48	1.09608	. 605648	I. 1033
-	. 01745	+					
-1	.01745 .03490	.000152	. 0103495	49 50	1.13761 1.17464	. 696076	I. 183 I 5
3	. 05238	. 001373	. 05239	51	I. 21629	. 746612	I. 22554

$\gamma=0.02$				$\gamma=0.02$			
φ	X	Y	T	φ	X	Y	T
-				0			
52	I. 25968	. 801177	I. 26976	27	. 51505	. 131702	. 51227
53	I. 30496	. 860189	I. 31593	26	. 49277	. 120594	. 49024
57	I. 35226	. 924126	I. 36424	25	. 47090	. IIOI59	. 46859
55	1. 40176	. 993530	1.41486	24	. 44939	. 100361	. 44730
56	I. 45363	1.06goi 7	I. 46799	23	. 42825	.091165	. 42635
57	I. 50807	I. 151292	1.5238 .4	22	. 40743	. 082542	. 40572
58	I. 56531	I. 241166	1. 58267	2 I	. 38693	.071464	. 38539
59	1. 62559	I. 339565	1. 64776	20	. 36672	.066906	. 36534
60	1.68919	I. 447563	1. 71042	19	. 34678	. 059845	. 34555
$\gamma=0.02$				18	. 32710	. 053259	. 32600
				17	. 30765	. 047128	. 30669
				16	. 28843	.041434	$.26868$
φ	X	Y	T	14	. 26972	.036161 .031293 .026818	
					$\begin{aligned} & .25060 \\ & .23196 \end{aligned}$		$\begin{aligned} & .24996 \\ & .23141 \end{aligned}$
0		1. 62567	1.78117	$\begin{aligned} & \mathrm{I} 3 \\ & \mathrm{I} 2 \end{aligned}$			
60	r. 83254				$.21348$. 022720	. 21302
59	I. 7539 I	$\begin{aligned} & \mathrm{I} .492 \mathrm{I} 3 \\ & \mathrm{I} .37250 \end{aligned}$	1.70817	11	$\begin{aligned} & .19515 \\ & .1959 \\ & .17696 \end{aligned}$	$\begin{aligned} & .018991 \\ & .015620 \end{aligned}$	$\begin{aligned} & .19+76 \\ & \text {. } 17665 \end{aligned}$
58	1.68062		I.6397I	Io			
$\begin{aligned} & 57 \\ & 56 \\ & 55 \end{aligned}$	1.61206	$\begin{aligned} & \text { I. } 26485 \\ & \text { I. } 16759 \\ & \text { I. } 0794 \mathrm{I} \end{aligned}$	$\begin{aligned} & \text { I. } 57533 \\ & \text { I. } 5 \text { I } 460 \\ & \text { I. } 457 \text { I } 8 \end{aligned}$	98	. 15889	. 012597	. 15863
	I.54771				. I4094	.009913	. 14074
	I. 48712				. 12309	.007563	. 12294
545352	I. 42990	.99918	1.40276	$\begin{aligned} & 6 \\ & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & .10532 \\ & .08765 \\ & .07003 \end{aligned}$	$\begin{array}{r} .005539 \\ .003 S 36 \\ .002450 \end{array}$	$\begin{aligned} & .1052 I \\ & .05756 \\ & .06998 \end{aligned}$
	I. 37575	$\begin{array}{r} .92598 \\ .85898 \end{array}$	$\begin{array}{r} 1.35107 \\ 1.30187 \end{array}$				
	I. 32435						
5	I. 27548	. 79753	1.25494	32	.05247	.001376	. 05244
50	1.22890	$\begin{aligned} & .74101 \\ & .68892 \end{aligned}$	I. 21012		.03494$.017+6$+	.0006II	. 03493
49	I. $18+43$		$\text { I. } 1672 \mathrm{I}$	+1		$\begin{gathered} .000153 \\ + \end{gathered}$	$\begin{gathered} .01746 \\ + \end{gathered}$
48	I. 14188	. 64082	$\begin{array}{r} \text { I. } 12609 \\ \text { I. } 08660 \\ \text { I. } 04863 \end{array}$				
47	I. IOIII	$\begin{array}{r} .59632 \\ .55508 \end{array}$		0	00000	000000	00000
46	1.06198			-	-	-	
45	1.02436	. 51679	1.01207	-I	. 01745	.000152	. -I-74
44	. 98814	. 48119	. 97632	2	$\begin{array}{r} .03489 \\ .05235 \end{array}$	$.000610$	$\begin{array}{r} .03491 \\ .05238 \end{array}$
43	. 95322	. 44805	. 94278	3			
$\begin{aligned} & 42 \\ & 4 I \\ & 40 \end{aligned}$	$\begin{aligned} & .91950 \\ & .88692 \\ & .85537 \end{aligned}$	$\begin{aligned} & .41716 \\ & .38832 \\ & .36138 \end{aligned}$	$\begin{aligned} & .90988 \\ & .87804 \\ & .8+718 \end{aligned}$	4	. 06953	. 002440	.06958
				5	. 08734	.003818	.08741
				6	. 10488	. 005508	. 10499
333	. 82481	. 33618	$\begin{aligned} & .81725 \\ & .78818 \end{aligned}$	78	. 12249	. 007513	. 12264
	. 79516	. 31259			$\begin{aligned} & .14015 \\ & .1578 S \end{aligned}$	$\begin{array}{r} .009839 \\ .012490 \end{array}$	$\begin{array}{r} \mathrm{I} 4034 \\ \text { - } \mathrm{I} 58 \mathrm{I} 3 \end{array}$
	. 76636	. 29049	$\begin{aligned} & .78818 \\ & .75992 \end{aligned}$	9			
363534	$\begin{array}{r} 73836 \\ 7 \text { IIII } \\ 68+55 \end{array}$. 26977	. 7324 I	10	$\begin{array}{r} .17571 \\ .19362 \end{array}$. 015473	- 17602
		. 25032	$\begin{array}{r} 70563 \\ .67950 \end{array}$	11		$\begin{array}{r} .018794 \\ .022462 \end{array}$	$\begin{aligned} & .19401 \\ & .21211 \end{aligned}$
		. 23207		12	$\begin{array}{r} 19362 \\ 2 \mathrm{I} 66 \end{array}$		
	. 65866	. 21493	. 6540 I	13	. 22981	. 026486	$\begin{aligned} & .23037 \\ & .24871 \\ & .26723 \end{aligned}$
	. 63339	. I9883	. 62911	14	. 24808	. 030875	
31	. 60869	. 18370	. 60476	15	. 2665 I	.03564I	
302928	$\begin{aligned} & .58+354 \\ & .56091 \\ & .53775 \end{aligned}$	$\begin{array}{r} .169+69 \\ .156094 \\ .1+352 I \end{array}$. 5^{8093} . 55759 . 53471	$\begin{aligned} & 16 \\ & 17 \\ & 18 \end{aligned}$		$\begin{array}{r} .040795 \\ .046352 \\ .052324 \end{array}$	$\begin{aligned} & .28592 \\ & .30479 \\ & .32386 \end{aligned}$

$y=0.02$				$\gamma=0.03$			
φ	X	Y	T	φ	X	Y	T
0 19				6	I. 89266	I. 70264	1.80950
19 20	. 36129	. 065586	.34314 .36263	59	1.80266	1.70264 1.55667	1.73318
21	. 38088	. 072911	. 38237	58	1.72729	I. 42703	1.66191
22	. 40072	. 080724	. 40237	57	I. 65355	1.31123	I. 59513
23	. 42082	.089050	. 42264	56	I. 58476	I. 2 C 728	I. 53235
24	.44119	. 097912	. $4+320$	55	I. 52035	I. II 354	I. 47315
25	. 46187	. 107336	. 46408	54	I. 45983	I. 02867	I.41718
26	. 48287	. 117351	. 48529	53	I. 40278	. 95155	I. 36413
27	. 50420	. 127989	. 50685	52	I. 34885	.88125	I. 31372
28	. 52590	. 139284	. 52879	5 I	I. 29773	. 81697	I. 26574
29	. 54797	. 15127 I	. 55113	50	I. 24916	. 75803	I. 21996
30	. 57045	. 163992	. 57389	49	I. 20291	. 70387	I. 17621
3 I	. 59336	. $177+89$. 59710	48	I. 15877	. 65397	I. $13+32$
32	. 61673	. 19 I8II	. 62078	47	I. II657	. 60792	I. 09.4 I
33	. 64058	. 207008	. 64497	46	1.07614	. 56532	I. 05555
34	. 66495	. 223138	.6697I	45	I. 0.3735	. 52585	I. OI 843
35	. 68986	. 2.40262	. 69501	44	I . 00008	. 4892 I	. 98267
36	. 71535	. 258446	. 72092	43	.96419	. 45514	-94817
37	. 74146	. 277765	. 74747	42	. 92960	. $423+4$. 9144^{4}
38	. 76822	. 298300	. 7747 I	41	. 89621	- 39389	. 88260
39	.79567	. 320137	. 80268	40	. 86393	. 36632	. 85139
40	. 82385	- $3+3375$. 83143	39	. 83269	-34057	. 82113
41	. 85282	. 368121	. 86100	38	. 80242	-316.48	. 79175
42	. 88262	. 394495	. $89 \mathrm{I}+5$	37	. 77305	. 29395	. 76321
43	-9133I	. 422624	. 92284	36	. 74452	. 27283	. 73545
44	. 94494	. 452645	. 95523	35	. 71678	. 25304	. $708+2$
45	. 97758	. $48+721$. 98870	34	. 68977	. $23+47$. 68203
46	1.01129	. 519028	1.02330	33	. 66346	. 21705	. 65638
47	I. 04614	. 555761	1.05914	32	. 63780	. 20070	. 63128
48	I. 08221	. 595136	1.09628	31	.61274	. 18535	. 60676
49	1. 11960	. 637396	1. 13+83	30	. 58825	. 170923	. 5^{8277}
50	I. 15838	. 682811	I. 17.489	29	. 56430	.157371	. 55927
5 I	I. 19866	. 731683	1.21658	28	. 54085	. 144639	. 53625
52	I. 24054	. $7^{8}+35 \mathrm{I}$	1. 26002	27	. 51788	. 132679	. 51367
53	I. 28415	.841196	I. 30534	26	. 49535	. 121445	. 49152
54	I. 32961	.9026.48	I. 35270	25	. 47324	. I 10898	.46976
55	1.37707	.969193	1. 40226	$2+$.45152	. 101000	. 44836
56	I. 42667	I. 041380	I. 4542 I	23	. 43017	.091716	. 42731
57	I. 47859	I.II983I	I. 50875	22	.40917	.083014	. 40659
58	I. 53299	I. 205257	I. 56611	2 I	. 38889	. 074867	. 38617
59	I.59010	1. 298469	I. 62654	0	. 368 II	. 067249	- 36603
60	1.65012	I. 400388	I. 69032	I9	. 34802	.060134	. 34617
				18	. 32820	. 053501	. 32655
				17	. 30863	. $0+77329$. 30717
				16	. 28928	. $0+1559$. 28801
				15	. 27 OI6	. 036295	. 26905
				14	. 25124	. 031401	. 25028
				13	. 2325 I	. 026903	. 23168

$\gamma=0.03$				$y=0.04$			
φ	X	Y	T	φ	X	Y	T
0				0			
12	. 21394	. 022786	. 21325	34	. 66035	. 22 IO54	. 66738
II	. 19553	.01904I	. 19496	35	. 68490	. 237922	. 69249
IO	. 17727	. 015657	. 17681	36	. 70999	. 255823	. 71820
9	. 15914	. 012624	. 15876	37	. 73567	. 274828	. 74454
8	.14II4	.009932	. 14084	38	. 76197	. 295012	. 77154
7	.12324	. 007575	. 12301	39	.78893	. 316461	. 79926
6	. 10543	. 005547	. I0527	40	. 81659	. 339267	. 82774
5	. 08772	. 003841	. 08760	41	. 84500	. 363530	. 85702
4	.07008	. 002452	. 07000	42	. 87419	. 389362	. 88716
3	. 05249	.001376	. 05245	43	. 90423	. 416885	. 91822
2	. 03496	.0006II	. 03494	4.	. 93515	. 446235	$.95024$
+I	. 01747	$.000152$. OI 746	45	.96702	. 477561	. 98331
	+	\dagger	+	46	. 99991	. 511027	I. 01749
\bigcirc	00000	000000	00000	47	1. 03386	. 546814	1.05286
0		+	-	48	1.06897	. 585125	1.08950
-I	. 01745	.000152	. 01745	49	I'. 10529	. 626186	I . 12750
2	. 03488	. 000609	. 03490	50	I. 14291	. 670247	I. 16696
3	. 05232	.001371	. 05237	5 I	I. 18193	. 717586	I 20799
	. 06978	. 002438	. 06985	52	1.22243	. 768515	1.25070
5	. 08726	.003814	. 08738	53	1. 26452	. 823382	I. 29523
6	. 10477	. 005501	. 10494	54	1.30832	. 882577	1.34171
	. 12233	. 007501	. 12256	55	I. 35393	. 946541	I. 3903 I
8	. 13995	$.009820$. 14025	56	I. 40150	1. 015767	I. 4.4113
9	. 15763	. 012463	. 15801	57	1.45116	1.090812	I. +9453
10	. I7540	. OI5437	.17587	58	1.50307	1.172306	
1 I	. 59325	.018746	. 19382	59	I. 55738	I. 260959	I. 60949
12	. 2112I	. 022399	. 211189	60	1.61429	I. 357583	1.67159
13	. 22928	. 026405		$y=0.04$			
I 4	. 24747	. 030773	. 24840				
15	. 26580	.035514	. 26687				
16	. 28428	$.040640$		0	X		
178	. $30292 \cdot$	$.046163$	$.30432$			Y	T
		.052098	. 32333			1.79302	1. 84116
19	. 34076	.05S462	- 34255	60	1.96194		
20	$.35998$	$.065267$	$.36197$	59	I. 86669	1.63124	1.76082
21	. 37942	. 072536	.38163	58	1.77967	I. 48920	1. 68623
22	-39910	.080287	. 40155	57	1.69963		1. 61666
23	. 41903	. 088543	. 42174	56	1. 62556	1.25157	I. 5515 I
24	. 43923	. 097325	. 44221	55	I. 55667	1.15130	I. 49029
25	. 4597 I	. 106662	$.46299$	54	1.49231	1.06105	I. 43256
26	. 48050	. I16579	$.48410$	53	1.43195	. $979+5$	I. 37799
27	. 50162	. 127107	. 50555	52	1.37514	. 90540	I. 32626
28	. 52308	. 138279	$.52737$	5 I	I. 32150	. 83795	I. 27711
29	$.54490$. 150130	$.5495^{8}$	50	1.27071	. 77632	I. 2303
30	. 56712	. 162699	. 57220	49	I. 22249	. 71985	I. 1556
31		. 176029		48	1.1-66I	. 66798	I. 1429
32	$.6128 \mathrm{I}$	-190164	. 61880	47	1.13285	. 62022	I. 1020
33	.63633	. 205154	. 64282	46	1.09102	. 57614	1.0627

$\gamma=0.04$				$\gamma=0.04$			
9	X	Y	T	φ	X	Y	T
${ }^{0}$							
45	1.05097	- 53538	1.02503	1	. 01745	. 000152	. 01745
$4+$	I. 01256	. 49762	. 98873	2	. 03487	.000609	. 03490
43	. 97564	. 46258	. 95373	3	.05230	. 001370	. 05235
42	. 94011	. 43002	. 91996	4	. 06973	. 002435	. 06983
4 I	.90587	. 39971	. 8873 I	5	.08719	.003809	.08734
40	. 87281	. 37147	. 85572	6	. 10467	. 005493	. 10488
39	. 84085	. 34513	. 82511	7	.12219	. 007489	. 12249
38	. 80992	. 32052	. 79542	8	. 13976	.009802	. 14015
37	.77995	. 29752	. 76659	9	. 15739	. $012+37$. 15788
36	. 75086	. 27599	. 73856	IO	. 17510	. O15401	. 17571
35	. 72261	. 25584	. 71128	II	. 19288	. 018698	. 19363
34	. 69513	. 23695	. 6847 I	I2	. 21076	.02233 ${ }^{\text {c }}$. 21166
33	. 66838	. 21924	. 65880	13	. 22875	. 026325	. 22981
32	. $6+231$. 20263	. 63350	14	. 24686	. 030671	. 24810
3 I	. 61688	. 18704	. 60879	I5	. 26509	. 035388	. 26652
30	. 59204	. 172413	. 58463	I6	. 28347	. 040486	. 28510
29	. 56777	. 158678	. 56098	I7	. 30200	. 045976	. 30386
28	. 54402	. I 45783	. 53782	18	. 32071	.05I874	. 3228 I
27	. 52077	. 133677	. 51510	19	. 33960	.058195	- 34196
26	. 49793	. 122314	. 49282	20	- 35868	.06+953	. 36131
25	.47563	. III652	.47094	2 I	. 37798	. 072167	. 38091
24	. 45369	. 10165 1	. 44943	22	. 39750	. 079857	. 40075
23	. 43213	.092276	. 42828	23	. 41726	.0880.44	. 42085
22	. 41093	.083494	. 40746	24	. 43728	. 096749	. 44123
2 I	- 39007	. 075276	. 38695	25	. 45758	. 105999	. 46191
20	. 36953	. 067596	. 36673	26	. 47817	. II 5820	. 48292
I9	. 34928	. 060427	- 34679	27	. 49907	. 12624 I	. 50426
18	. 32932	. 053746	. 32711	28	. 52030	. 137294	. 52596
17	. 30961	. 047532	. 30766	29	. 54188	. 149013	. 54 S05
16	. 29015	. 0417766	.2884+	30	. 56383	. 161436	. 57054
15	.27091	. 036430	. 26942	3 I	. 58618	. 174602	. 59346
14	. 25189	. 031509	. 25060	32	. 60895	. 188556	. 61684
13	. 23306	. 026988	.23195	33	. 63216	. 203346	. 6407 I
12	. 21441	. 022853	. 21348	34	. 65585	. 219024	. 66509
II	. 19592	. 019092	. 19515	35	. 68003	. 235647	. 69002
Io	. 17759	. 015695	. 17697	36	. 70474	. 253275	. 71553
9	-15940	. 012651	. 15889	37	. 73001	. 271977	. 74166
8	.14I34	. 009951	. 14094	38	. 75588	. 291827	. 76844
7	. 12340	. 007588	. 12309	39	. 78237	. 312903	. 79592
6	. 10555	. 005555	. 10532	40	. 80953	- 335295	.82.414
5	.08750	. 003845	.08764	41	. 83740	. 259099	.853I4
4	. 07012	. $002+54$. 07003	42	. 86602	. 384420	. 88298
3	.05252	.001377	. 05247	43	. 89543	. 411374	. 91371
2	.03497	.0006 11	. $03+94$	44	. 92568	. 4.40090	- $9+539$
+1	. 01747	.000152	. 01746	45	. 95683	. 470706	.97809
	1	-		46	.98894	. 503379	1.01I86
0	00000	000000	00000	47	1. 02205	. 538280	1.04679
					I. 05624	. 575598	1. 08295

$\gamma=0.05$				$\gamma=0.05$			
φ	X	Y	T	φ	X	Y	T
				0			
49	1.09158	. 615542	I. 12043	30	. 59593	. 173941	. 58653
50	I. 12813	. 658346	I. 15932	29	. 57131	. 160017	. 56272
5 I	I. 1659^{8}	. 704267	I. 19973	28	. 54726	. 146954	. 53941
52	I. 2052 I	. 753593	1.24176	27	. 52372	. 134698	. 51655
53	I. 24591	. 806644	I. 28555	26	. 50067	. 123201	. 49414
54	I. 28817	. 863779	1.33122	25	. 47806	. I12.420	. 47214
55	1. 33212	. 925397	1.37891	24	.45589	. 102314	. 45052
56	1. 37785	.991947	1.42879	23	. 43412	.092847	. 42926
57	I. $4^{25} 4^{8}$	1.063932	1.48104	22	. 41272	.083983	. 40834
58	1.47515	1.141917	1.53584	2 I	. 39168	. 075692	. 38774
59	1.52700	I. 226536	1.59342	20	. 37096	. 067948	. 3674
60	I.58116	1. 318507	1.65401	I9	. 35056	.060724	- 34742
$\gamma=0.05$				181716	$\begin{aligned} & .33045 \\ & .31061 \\ & .29103 \end{aligned}$	$\begin{array}{r} .053993 \\ .047737 \\ .041934 \end{array}$	$\begin{aligned} & .32767 \\ & .30815 \\ & .28887 \end{aligned}$
φ	X	Y	T	1514	$\begin{aligned} & .25254 \\ & .23362 \end{aligned}$	$\begin{aligned} & .036566 \\ & .031618 \\ & .027075 \end{aligned}$	$\begin{aligned} & .26980 \\ & .25093 \\ & .23223 \end{aligned}$
0		1.90178	1.87718	13			
60	2.04361			12	. 21488	. 022920	. 21372
59	1.93605	1.71908	1.79181	II	. I963I	.OI9I43	. I9535
58	1.83932	1.56116	1.71316	IO	.17791	. 015733	. 17713
575655	$\begin{aligned} & 1.75143 \\ & 1.67093 \\ & \text { I. } 59669 \end{aligned}$	1.42316	1.64026	9	. 15966	. 012678	. 15902
		I. 30150	I. 57234		. I4I54	.009970	. $\mathrm{I}+1 \mathrm{IO}_{4}$
		I. 19344	1. 50878	7	. 12355	.007600	. 12316
5353	$\begin{aligned} & \mathrm{I} .52782 \\ & \mathrm{I} .46362 \\ & \mathrm{I} .4035 \mathrm{I} \end{aligned}$	$\begin{array}{r} 1.09686 \\ 1.01007 \\ .93171 \end{array}$	$\begin{aligned} & \text { I. } 44908 \\ & \text { I. } 39280 \\ & \text { I. } 3395^{8} \end{aligned}$	654	$\begin{aligned} & .10566 \\ & .08788 \\ & .07017 \end{aligned}$	$\begin{aligned} & .005563 \\ & .003850 \\ & .002457 \end{aligned}$	10538 .08765 .07005
5 I	1.34701	. 86067	I. 28914	32	.05255.03498	.001378	. 05248
50	1.29373	$\begin{array}{r} .79602 \\ .73699 \end{array}$	I.24119			$\begin{gathered} .000612 \\ .000152 \\ + \end{gathered}$. 03495
49	1.24333		I. 19552	+1	$.01747$. 01747
48	I. I9551	. 68293	I. 15192	0	700000		00000
47	I. 15004	. 63329	I. 11022			T 000000	
46	I. 10669	. 58760	1.07025		-	$\frac{+}{.0001_{52}}$	-
45	$\begin{array}{r} \text { I.06527 } \\ \text { I.02563 } \\ .98759 \end{array}$		1.03189	-I	.OI 745		. OI 745
4.4			.99501	2	. 03486	. 000609	.03489
43			- 95949	3	. 05227	.001369	. 03234
42	.95106	. 43690	. 92524	456	.06968	. 002433	. 06980
41	$\begin{aligned} & .91591 \\ & .88202 \end{aligned}$	$\begin{array}{r} .40579 \\ .37684 \end{array}$	$\begin{aligned} & .89217 \\ & .86018 \end{aligned}$		$\begin{aligned} & .08711 \\ & .10456 \end{aligned}$.003805	$\begin{array}{r} .08730 \\ .10483 \end{array}$
40						. 005485	
39	$\begin{aligned} & .8493 \mathrm{I} \\ & .8 \mathrm{I} 768 \\ & .78707 \end{aligned}$	$\begin{array}{r} -349^{87} \\ \cdot 32471 \\ \cdot 30122 \end{array}$	$\begin{array}{r} .82921 \\ .79919 \\ .77006 \end{array}$	7	. 12204	. 007477	. 12241
38					. I3956	.009784	- I4005
37				9	. 15714	. OI24II	. 15776
36	$\begin{aligned} & .75740 \\ & .72561 \end{aligned}$. 27926	. 74175	10	. 17479	$\begin{aligned} & .015365 \\ & .018651 \end{aligned}$	$\begin{aligned} & .17556 \\ & .19345 \\ & .21144 \end{aligned}$
35		. 25873	. 7142 I	11	. 19251		
34	. 70064	. 23950	. 68740	12	. 21032	. 022273	
33	.67343 64694 . 62112	$\begin{array}{r} .22149 \\ .2046 \mathrm{I} \\ .18878 \end{array}$	$\begin{aligned} & .66127 \\ & .63577 \\ & .61087 \end{aligned}$	131415	$\begin{aligned} & .22823 \\ & .24625 \\ & .26439 \end{aligned}$	$\begin{aligned} & .0262 .45 \\ & .030571 \\ & .035263 \end{aligned}$	$\begin{aligned} & .22955 \\ & .24779 \\ & .26616 \end{aligned}$
32							
31							

$y=0.05$				$\gamma=0.06$			
φ	X	Y	T	φ	X	Y	T
16	. 28267	. 040334	. 28470	$\begin{gathered} 0 \\ 60 \end{gathered}$	2.14308	2.03739	1.91913
17	. 30110	-. 045792	. 30340	59	2.01825	1.82534	1.82716
18	. 31969	.05I653	-32229	58	I. 90851	1.64619	I. 74339
19	. 33845	. 057932	. 34138	57	1.81053	I. 49233	1. 66642
20	. 35740	. 064643	. 36067	56	1.72199	I. 35850	1.59520
21	. 37655	.071804	. 38018	55	1.64122	I. 24094	1.52890
22	. 39592	. 079434	- 39995	54	1. 56696	1. 13679	1. 46690
23	. 41552	. 087553	. 41996	53	I. 49824	1.04390	I. 40867
24	. 43537	. 096183	. 44026	52	I.4343I	.96056	I. 35379
25	. 45548	. 105349	. 46085	51	I. 37454	. 88540	1.30191
26	. 47587	. 115076	. 48175	50	I. 31844	. 81732	1.25271
27	. 49656	. 125393	. 50299	49	I. 26558	. 75542	1.20594
28	.51757	. I36330	. 52457	48	I.2156I	. 69894	I. 16137
29	. 53891	. I47920	. 54654	47	I. 16824	. 64723	I. 1188 I
30	. 56061	. 160200	. 56890	46	1.12322	. 59977	I.07808
31	. 58269	. I73208	. 59168	45	1.08031	. 55610	1.03903
32	. 60518	. 186988	. 61492	44	1.03933	. 51582	I. 00153
33	. 62809	. 201584	. 63863	43	1.00010	. 47860	. 96546
34	. 65145	. 217048	. 66284	42	. 96249	.444I2	.93071
35	. 67529	. 233433	. 68759	4 I	. 92636	. 41215	. 89718
36	. 69963	. 250799	. 71291	40	.89I58	. 38245	. 86478
37	. 72451	. 269211	. 73884	39	. 85807	. 3548 I	. 83343
38	. 74996	. 288738	. 76540	38	. 82571	. 32907	. 80307
39	. 77600	. 309458	. 79264	37	. 79443	. 30506	. 77361
40	. 80268	.33I455	. 82061	36	. 76415	. 28265	. 74501
4 I	. 83004	. 354821	. 84935	35	. 73479	. 26171	. 71721
42	.858II	. 379656	. 87890	34	.70631	. 24213	. 69015
43	. 88693	. 406069	.90932	33	. 67862	. 22380	. 66379
44	. 91655	. 434183	. 94067	32	. 65169	. 20665	. 63808
45	. 94702	.464131	. 97300	31	. 62547	. 19057	.61299
46	. 97839	. 496058	1.00639	30	- 59990	. 175509	. 58847
47	I.01071	. 530125	I.04089	29	. 57494	. 161389	. 56449
48	I. 04405	. 566510	I. 07660	28	. 55057	. 14815 I	.54102
49	1.07846	.605410	I. II358	27	. 52673	. 135741	. 51803
50	I.II401	. 647042	I.I5I94	26	. 50340	. 124107	. 49548
51	I.I5077	. 691646	I. 19176	25	. 48054	. 113204	. 47335
52	I. 18882	. 739489	I. 23316	24	. 458 I 3	. 102991	. 45162
53	1.22824	. 790867	1.27625	23	. 43614	. 093428	. 43025
54	I.269II	.846III	1.32116	22	.4I454	.084480	. 40923
	I.3II53	. $9055^{89} 9$	I. 36802	2 I	-3933I	.076116	. 38854
56	I. 35559	. 969709	1. 41698	20	. 37242	. 068306	. 36816
57	I. 40139	1.038928	1.4682I	I9	-35186	.061024	-34806
58	I. 44905	I.II3758	1.52190	18	. 33160	. 054244	. 32823
59	I. 49869	I. 194772	1.57823	17	. 31162	. 047945	. 3086
60	I. 5504 I	I. 282610	1.63744	16	.29191	. 042104	. 2893 I
				15	. 27244	.036704	. 27018
				14	. 25320	.031728	. 25125
					. 23418	.027162	. 2325 I

$y=0.07$				$\gamma=0.07$			
φ	X	Y	T	φ	X	Y	T
0				$\stackrel{0}{-1}$			
45	1.09615	. 56741	I.00832		.01744	. 000152	. 01745
44 43	1.05372 I.OI320	. 52571	1.00832 .97165	2 3	.03483 .05222	. .000608	. 034838
42	. 97443	.45171	. 93637	4	:06959	. 002428	. 06975
4 I	. 93724	. 41882	. 90236	5	.08696	. 003796	.08722
40	. 90153	. 38830	. 86952	6	. 10434	. 005470	.10472
39	. 86716	. 35996	. 83777	7	. 12174	. 007453	. 12226
38	. 83402	. 33360	. 80705	8	. 13918	.009748	. 13986
37	. 80203	. 30905	. 77726	9	. 15666	. O12360	. 15752
36	. 77110	. 28616	. 74836	10	. 17419	. 015294	. 17526
35	. 74116	. 26480	. 72028	11	. 19178	. 018556	. 19308
34	. 71215	. 24485	. 69296	12	. 20945	.022151	. 21100
33	. 68395	. 22619	. 66637	13	. 22721	. 026088	. 22903
32	. 65656	. 20874	. 64044	14	. 24506	. 030373	. 24719
31	. 62992	. 19241	. 61515	15	. 26301	. 035018	. 26546
30	. 60396	. 177118	. 59044	16	.28iro	. 040034	. 28390
29	. 57864	. 162794	. 56629	17	. 29931	. 045430	. 30250
28	. 55394	. 149377	. 54266	18	. 31767	.0512I9	. 32127
27	. 52980	. 136807	. 51952	19	. 33620	. 057416	- 34023
26	. 50618	. 125032	. 49684	20	. 35488	. 064035	- 35939
25	. 48306	. 114005	. 4745^{8}	2 I	. 37376	. 071092	. 37877
24	. 4604 I	. 103681	. 45273	22	. 39283	. 078605	. 39837
23	. 43820	. 094020	. 43125	23	.41211	. 086593	. 41823
22	. 41639	. 084986	.41014	24	. 43162	. 095078	. 43835
2 I	. 39496	. 076546	. 38935	25	. 45138	. 104080	. 45876
20	. 37390	. 068670	. 36889	26	.47139	. II 3626	. 47946
I9	. 35317	.061330	. 34871	27	.49168	. 123742	-50049
18	. 33276	. 054498	. 32880	28	. 51226	. 134455	. 52186
17	.31264	.048154	. 30915	29	. 53315	. 145799	- $5+359$
16	. 29280	. 042276	. 28975	30	. 55436	. 157805	. 56570
15	. 2732 I	. 036843	. 27056	31	. 57593	. 170511	. 58822
14	. 25386	. 031840	. 25158	32	. 59787	. 183957	.61117
13	. 23475	. 027250	. 23279	33	. 62020	. 1988184	. 63457
12	. 21583	. 023056	. 21419	34	. 64295	.213240	. 65847
II	. I9710	. OI9246	. 19574	35	.66613	. 229175	. 68288
IO	. 17856	. 015809	. 17745	36	. 68978	. 246045	. 70783
9	. 16018	. 012734	. 15928	37	. 71391	. 263907	. 73337
8	. 14195	. 010008	. 14124	38	. 73857	. 282829	. 7595 I
7	. 12386	. 007626	. 12332	39	. 76377	- 302880	. 78631
6	. 10588	. 005579	. 10550	40	. 78956	. $32+136$. 81381
5	. 08802	. 003859	. 08776	4 I	. 81595	. 346683	. $8+203$
4	. 07027	.002461	.07010	42	. 84300	. 370611	. 87104
3	. 05260	.001380	.0525I	43	. 87072	. 396021	. 90088
2 +5	. 03500	. 000612	. 03496	44	. 89917	. 423022	. 93160
$+\mathrm{I}$. OI748	.000153	. or 747	45	. 92839	. 451733	. 96326
	+	+	+	46	.9584I	. 482286	. 99592
0	00000	000000	00000	47	. 98928	. 514825	1.02965
					1.02106	. 549509	I. 0645 I

$\gamma=0.08$				$\gamma=0.09$			
φ	X	Y	T	φ	X	Y	T
0 16	. 28032	. 039887	. 2835 I	0	$+$	$+$	
17	. 29843	. 04525 I	. 30205	59	2.43774	2.40308	1.98477
18	. 31668	. 051006	. 32077	58	2.22605	2.05726	1.86850
19	- 33509	. 057164	. 33967	57	2.06336	1. 80168	1. 76934
20	. 35365	. 063737	. 35876	56	I. 92967	1. 59956	1.68182
21	- 37238	. 070744	. 37807	55	1.81551	1.43338	1.60302
22	.29131	. 078200	. 39760	54	1.71558	I. 2932 I	1.53110
23	. 41044	.086125	. 41738	53	1.62653	I. 17283	1. 46482
24	. 42979	. 094538	. 43742	52	1.54614	1.06802	1.40328
25	. 44937	. 103462	. 45773	51	1.47280	- 97579	1.34581
26	. 46920	. 112920	. 47834	50	1.40535	. 89393	I. 29186
27	.48929	. 122939	. 49927	49	1.34287	. 82076	1.24101
28	. 50967	. 133545	. 52053	48	1. 28467	. 75496	r. I 929 I
29	. 53034	. 144770	. 54214	47	1.23020	. 69549	1.14727
30	. 55132	. 156645	. 56413	46	I. 17897	-.64151	I. 10383
31	. 57265	. 169207	. 58652	45	1.13065	. 59231	1.06239
32	. 59432	. 182492	. 60933	44	1.08488	. 54733	1.02276
33	. 61638	. 1g6544	. 63260	43	1.04141	. 50607	. 98479
34	. 63883	. 211406	. 65634	42	1.00002	. 46813	. 94833
35	. 66170	. 227128	. 68058	4^{1}	. 96050	. 43316	. 91326
36	. 68502	. 243762	. 70536	40	. 92268	. 40086	. 87947
37	. 70881	. 261365	. 73071	39	. 88642	. 37096	. 84687
38	. 73309	. 280001	. 75666	38	. 85159	. 34324	.81536
39	. 75790	. 299737	. 78325	37	.81805	-35751	. 78487
40	. 78326	. 320646	. 81052	36	.78572	. 29358	-75532
41	. 80921	. 342809	. 83850	35	. 75450	. 27131	. 72664
42	. 83577	. 366314	. 86725	34	. 72430	. 25055	. 69878
43	. 86299	. 391257	. 89682	33	. 69506	. 23119	.67169
44	. 89090	.417741	. 92724	32	. 66669	. 21313	. 64531
45	. 91953	.44588I	. 95859	31	. 63914	. 19624	. 61959
46	. 94893	. 475801	. 99091	30	. 61237	. 180466	. 59450
47	. 97914	. 507638	1.02427	29	. 58630	. 165714	. 56999
48	1.01020	. 541543	1.05873	28	. 56089	. 151918	. 54603
49	1.04217	. 577681	1. 09438	27	. 53610	. 139014	. 52258
50	1.07509	. 616232	1.13129	26	. 51190	. 126944	. 49961
51	I . rogor	. 657393	I. 16955	25	. 48823	. 115655	. 47710
52	I. 14400	. 701385	1. 20925	24	. 46508	. 105100	. 45500
53	I. 18011	. 748448	1.25049	23	. 44239	. 095236	. 43330
54	1.21740	. 798848	I. 29338	22	. 42015	. 086024	. 41198
55	1.25593	. 852879	1.33804	2 I	. 39833	. 077427	. 39100
56	1.29577	. 910864	1.38461	20	. 37690	.069413	. 37036
57	1. 33700	.973161	I. 4332 I	I9	. 35583	. 061952	-35002
58	1. 37968	1.040167	I. 4840 I	18	.3351I	.055016	. 32996
59	1.42389	1.112321	1.53718	17	. 31470	. 048581	. 31017
60	1.46970	I.Igoill	I. 59290	16	. 29460	. 042625	. 29063
				15	. 27478	. 037126	.27133
				14	. 2552 I	. 032066	. 25224
				I3	. 23589	. 027428	. 23336

$y=0.09$				$y=0.10$			
φ	X	Y	'T	0	X	Y	T
0				0			
12	. 21679	. 023194	. 21466	34	. 63480	. 209616	. $65+25$
11	. 19790	. OI935I	. 19613	35	. 65738	. 225131	. 67333
10	. 17922	. 015887	. 17777	36	. 68037	. 241538	. 70294
9	. 16070	. 012790	. I5954	37	. 70382	. 25889 T	. 22811
8	. 14236	. 010047	. 14145	38	. 72775	. 277251	. 75357
7	. 12417	. 007652	. 12347	39	. 75218	. 296654	. 75025
6	. 10611	. 005595	. 1056I	40	.77713	. 317260	. $80-30$
5	.088I9	. 003868	.08784	4 I	. 80265	. 339056	. 83506
4	. 07037	. 002466	.07015	42	. 82876	- 362156	. 86356
3	: 05266	.001382	. 05254	43	. 85549	. 386652	. 89286
2	. 03503	.000612	. 03497	44	. 88287	. $4126+3$.92300
+1	. 01749	.000153	$.01747$	45	. 91095	. 440239	. 95404
	+	$+$	$+$	46	$.93976$. 469558	.95603
0	00000	000000	00000	47	. 96934	. 500731	1.01904
		+	-	48	. 99972	. 533901	I. 05313
-1	. Or743	.000152	. OI 745	49	1.03097	. 569223	1.08537
2	.0348I	.000607	. 03487	50	1.06311	. 606567	I. 12485
3	. 05217	.001365	. 05228	51	1.00621	. 647021	I. 16263
4	. $069+9$. 002424	. 06970	52	1. 13031	. 689892	I. 20152
5	$.0868 \mathrm{I}$. 003787	. 08715	53	I. 16546	. 735708	I. 2425 I
6	. 10413	. $005+55$. 1046 I	54	I. 20172	. 784717	I. 2545 I
	$.12145$. 007429	.12211	55	I.23914	. 837193	$\text { 1. } 32882$
8	$.13880$. 009713	. 13967	56	1.27779	. $893+40$	$\text { I. } 37+65$
9	.15617	. 012309	. 15727	57	1.31773	. 953792	I. 42252
10	. 17359	. O15224	.17495	5^{8}	1.35902		
II	. 19106	. 18 S462	. 19271	59	I. 40173	1.088323	I. 52475
12	. 20859	. 022029	. 21057	60	I. 44592	I. 163360	1. 57947
13	. 22619	. 025932	. 22852				
14	. 24388	.030179	. 24654				
15	. 26166	.034779	. 26478				
16	. 27955	.0397+1	$.28312$				
17	. 29756	. $0+5075$	$.30161$			0.10	
18	. 31570	. 050795	. 32027		X	Y	T
19	- 33399	.056914	. 33911	9			
20	. 35242	.063+43	. 35814	0			
21	. 37103	.070400	. 37737	58	2.42326	2.32565	1.934 ${ }^{\text {30 }}$
22	. 3 S98r	. 077800	. 39684	57	2. 19876	1.97583	I. $\mathrm{SIS}_{5}+9$
23	$.40879$. 085663	$.41654$	56	2.03136	1. 72270	1. 72059
24	. 42795	.094007	. 43649	55	I. S 958 I	I. 52534	1. $63+72$
	. 44740	. 102S54	. 45672	54	1.78106	I. 36438	
26	$.46704$. 112227	$.47724$	53	I. 68 ir 6	1.22932	1. 45746
27	. 48695	. 122151	. 49807	52	I. 59248	I. II3 3 I	1. 42283
28	. 50712	. 132653	. 51922	5 I	1. 51262	1.01330	1. 36286
29	. 52758	. 143761	. 54072	50	1. 43993	$.925075$	1. 30655
30	. 54834	. 155509	. 56259	49	1.37315	. 846363	1.2542S
31	. 56942			48			
32	$.59085$	$.18106 \mathrm{r}$	$.60754$	47	1.25357	. $71+25 \mathrm{I}$	I. 15753
33	. 61263	. 194942	. 63066	46	1.20007	. 657546	1.11331

$\gamma=0.10$				$\gamma=0.10$			
φ	X	Y	T	φ	X	Y	T
45				-			
45	1.14951 I. 10182	. 5500087	1.07093 1.03047	-1	.01743 .03480	.000152	.01744
43	1.05666	. 516347	. 99177	3	. 05214	. OOI364	. 05227
42	1.01378	. 477046	. 95466	4	. 06944	. 002422	. 06968
4 I	. 97295	.440911	.91902	5	. 08673	. 003783	.08711
40	. 93396	. 407608	.8847I	6	. 10402	. 005447	. 10456
39	. 89665	. 376850	. 85164	7	. 12130	. 007417	. 12204
38	. 86088	.348387	.8r97I	8	. 13861	. 009695	. 13957
37	. 82650	. 322004	. 78884	9	. 15593	. 012284	. $\mathrm{I}_{571} 5$
36	. 7934I	. 297513	. 75894	10	. 17329	. Oi5190	. 17480
35	. 76149	. 274747	- 72995	II	. 19070	.OI8416	. 19253
34	. 73067	. 253559	. 70180	12	. 20816	.021969	. 21035
33	. 70085	. 233820	. 67445	13	. 22569	. 025856	. 22826
32	. 67196	. 215416	.64782	14	. 24330	.030083	. 24629
3 I	. 64394	. 198242	. 62188	I5	. 26099	. 034660	. 26444
30	. 61673	. 182208	. 59659	16	. 27879	. 039596	. 28273
29	. 59026	. 167230	. 57189	17	. 29670	. 044901	. 30117
28	. 56448	. 153234	. 54776	18	. 31473	.050587	. 31977
27	. 53936	. I40154	. 52415	19	. 33290	. 056667	. 33855
26	. 51484	. 127928	. 50103	20	.35121	.063I53	. 35752
25	. 49089	. 116503	. 47838	2 I	.36969	.07006I	. 37669
24	. 46747	. 105828	. 45616	22	. 38834	. 077406	. 39608
23	. 44454	. 095858	. 43435	23	. 40717	. 085208	. 41570
22	. 42208	. 086553	.41292	24	. 42620	. 093484	. 43558
21	. 40005	. 077875	. 39184	25	. 44545	. 102256	. 45572
20	. 37843	. 069790	. 37110	26	. 46492	- I I I 545	. 47614
19	. 35719	. 062268	. 35068	27	. 48464	. 121376	. 49687
18	. 33630	. 055279	- 33054	28	. 5046 I	. 131776	. 51793
17	.31575	. 048799	. 31069	29	. 52487	. 142772	. 53932
16	- 2955 I	. 042803	. 29108	30	- 5454 I	. 154396	. 56108
15	. 27557	. 037270	. 27172	3 I	. 56626	. 166680	. 58322
14	. 25589	.032181	. 25258	32	. 58744	. 179660	. 60577
13	. 23647	. 027518	. 23364	33	. 60897	. 193376	. 62875
12	. 21728	. 023264	. 21490	34	. 63086	. 207868	. 65219
II	. 19831	. 019404	. 19633	35	. 65314	. 223183	. 67612
10	. 17955	. 015926	. 17793	36	. 67583	. 239370	. 70057
8	. 16097	. 012818	. 15967	37	. 69896	. 256482	. 72556
8	. 14257	. 010067	.14155	38	. 72254	. 274577	. 75113
7	. 12433	. 007665	. 12355	39	. 74660	. 293718	. 77732
6	. 10623	. 005603	. 10567	40	. 77117	. 313973	. 80415
5	. 08827	. 003873	.08788	4 I	. 79627	-335417	. 83168
4	. 07042	. 002468	. 07017	42	. 82194	-358129	. 85994
3	. 05269	. 001383	. 05255	43	. 84820	. 382198	. 88898
2	. 03504	.0006I 3	. 03498	44	. 87510	.407719	. 91885
+I	. O1749	.000153	. 01747	45	. 90265	. 434796	. 94960
	+	$+$	+	46	. 93089	. 463544	. $9^{81} 28$
\bigcirc	00000	000000	00000	47	. 95987	. 494086	I. 01395
					. 98962	. 526557	1.04768

$\gamma=0 . \mathrm{II}$				$y=0.11$				
φ	X	Y	T	9	X	Y	T	
0				0				
49	1.02018	. 561106	I. 08254	27	. 54268	. 141327	. 52575	
50	1.05160	. 597895	I. 11860	26	. 51784	. 128940	. 50248	
51	I. 08391	. 637102	I. 15593	25	. 49360	. 117373	. 47969	
52	1.11717	. 678923	I. 19464	24	. 46991	. 106575	. 45734	
53	I. I5I43	. 723571	I. 2348 I	23	. 44673	. 096497	. 4354 I	
54	I. 18672	. 771281	1.27654	22	. 42404	.087096	. 41387	
55	1.22312	. 822311	1.31994	2 I	. 40180	. 078334	. 39269	
56	I. 26066	. 876946	I. 36514	20	. 37998	.070177	. 37186	
57	1.29941	. 93549^{8}	1.41226	19	. 35856	.062591	. 35135	
58	I. 33942	. 998312	I.46145	18	.3375I	. 055547	. 33 II4	
59	I. 38075	1. 065767	I. 51286	17	. 31682	. 049020	. 3112 I	
60	I. 42345	I. 138282	I. 56665	16	. 29644	. 042983	. 29154	
$\gamma=$ O.II				1514I 3		. 037416	. 27211	
				. 032297		. 25292		
				. 027609		. 23393		
φ	X	Y	T		10	$\begin{aligned} & .21777 \\ & .19872 \\ & .17989 \end{aligned}$	$\begin{aligned} & .023335 \\ & .019457 \\ & .015965 \end{aligned}$. 21514 . Ig653 .17809
0 \|								
57	2.40402	2.25049	1.88501	9	.16124	. O12845	. 15980	
56	2.16753	1.89271	1.76874	8	. 14278	. 010086	. I4 465	
55	1.99642	I. 6.4352	1.67229	7	. 12449	. $00-678$. 12363	
54	1.85974	1.45177	I. 58819	6	. 10635	.0056II	.10573	
53	1.74491	1.29650	1.51294	5	. 08835	. 003878	.08792	
52	1.64542	I. 16679	1.44448	4	. 070.47	. 002470	.07020	
5 I	1.55739	I. 05607	I. 3^{8151}	3	. 05271	. 00138.4	. 05256	
50	1.47829	. 96008	1.32310	2	. 03505	. 000613	. 03499	
49	1.40639	. 87587	I. 26855	+I	. 01749	.000153	. 01748	
48	1.34042	. 80128	1.21734		+	+	$+$	
47	1.27944	. 7347 I	1. 16905	0	00000	000000	00000	
46	1.22271	. 6749 I	I. 12334		-	+		
45	I. 16965	.62091	1.07992	-I	. OI743	. 000152	. 0174	
44	I. 1 Ig 81	. $571 \mathrm{IG2}$	1.03857	2	. 03478	. 000607	.03485	
43	1.07279	. 52730	. 99907	3	. 05211	. 001363	. 05225	
42	1.02827	. 48651	. 96127	4	. 06939	. 002418	. 06965	
41	. 98601	. 44910	. 92501	5	. 08666	. 003779	. 08707	
40	. 94576	. 41471	. 89015	6	. 10391	. 00544°	. 1045 I	
39	. 90733	. 38304	. 85658	7	. 12116	. 007405	. 12197	
38	. 87055	. 35377	. 82.420	8	. 13842	. 009677	. 139.48	
37	. 83528	. 32669	. 79293	9	. 15569	. 012259	. 15703	
36	. 80137	. 30160	. 76267	Io	. 17300	. OI5I56	. 17465	
35	. 76873	. 27832	. 73335	II	. 19034	. 018370	. 19235	
34	. 73724	. 25668	. 7049°	12	. 20774	. 021910	. 21014	
33	. 70682	. 23654	. 67727	13	. 22519	. 025780	. 22801	
32	. 67739	. 21779	. 65039	I4	. 2.4272	. 029988	. 24600	
31	. 64887	. 20030	. 62422	15	. 26033	. 034543	. 2641 I	
30	. 62120	. 184005	. 59872	16	. 27804	039453	. 28234	
29	. 5943 I	. 165790	. 57383	17	. 29585	. $0+4728$	-30073	
28	. 56815	. 154589	. 54952	18	. 31377	. 0503 SI	. 31925	

$\gamma=0 . \mathrm{II}$				$\gamma=0.12$			
9	X	Y	T	φ	X	Y	T
19	. 33182		. 33800	0 56	2.37888		
19 20	. 33182	. .052866	. 338601	5	2.37888 2.13210	I. 80737	1.83487 I. 71017
2 I	. 356836	. .069726	. 356 l	55	2.13210	1.80775	1.71917
21	. 3683	. 069726		54	I. 95854	I. 56419	I. 62444
22	.38688	. 077018	. 39533	53	I. 82 I 53	I. 37892	1. 54224
23	. 40556	. 084760	. 41488	52	1.70717	I. 22979	1. 46886
24	. 42444	.092970	. 43467	5 I	I. 60846	I. 10564	I. 40218
25	. 44353	. IoI668	. 45473	50	I. 52134	. 99992	I. 34088
26	. 46283	. 110875	. 47506	49	I. 44320	. 90839	I. 28401
27	. 48237	. 120616	. 49570	48	1.37225	. 82817	1. 23090
28	. 50215	. I30916	. 51665	47	1.30720	. 75716	I. 18103
29	. 52220	. 141803	. 53793	46	1.24710	. 69382	I. $1339{ }^{8}$
30	. 54253	. 153305	. 55958	45	I.I9I22	. 63693	1.08942
3 I	. 56315	. 165456	. 58160	44	1.13897	. 58557	I. 04708
32	. 58410	. 178290	. 60402	43	I.08989	. 53899	1.00672
33	. 60537	- 191845	. 62687	42	I. 04359	. 49655	.968I7
34	. 62700	. 206161	. 65017	4 I	. 99976	. 45777	. 93124
35	. 64900	. 221282	. 67394	40	.95814	. 4222 I	. 89579
36	.67139	. 237256	. 69823	39	.91850	. 38953	. 86170
37	. 69420	. 254 I 35	. 72305	38	. 88064	- 3594 I	. 82885
38	. 71744	. 271974	. 74844	37	. 84440	. 33160	. 79715
39	-74115	. 290835	. 77443	36	. 80963	. 30587	. 76651
40	.76535	. 310781	. 80106	35	. 77622	. 28203	. 73684
4 I	. 79006	. 331886	. 82837	34	. 74403	. 2599 I	. 70808
42	. 81530	. 354226	. 85640	33	. 71298	. 23935	.68016
43	. 84112	. 377886	. 88520	32	. 68298	. 22023	. 65303
44	. 86754	. 402958	.91480	3 I	. 65394	. 20243	. 62662
45	. 89459	. 42954 I	. 94526	30	. 62579	. 185852	. 60090
46	. 92230	. 457744	. 97664	29	. 59847	. 170393	-57581
47	.9507I	. 487685	I. 00899	28	-57192	. 155976	.55131
48	.97985	. 5I9494	1.04237	27	. 54608	. I42525	-52737
49	I.00977	. 5533 II	1.07686	26	. 52091	. 129973	. 50395
50	I.04049	. 589292	I. 11252	25	. 49636	. 118261	. 48102
5 I	1.0720%	. 627606	I. 14943	24	. 47239	. 107335	. 45854
52	I. 10455	. 668438	I. 18768	23	. 44896	. 097145	. 43648
53	I. 13796	. 711989	1.22735	22	. 42603	.087647	. 41483
54	I. 17236	. 758483	I. 26854	2 I	. 40358	. 078800	- 39355
55	I. 20779	. 808164	1.31137	20	. 38156	. 070569	. 37263
56	I. 24130	. 861298	I. 35594	I9	. 35996	.062919	. 35203
57	I.28194	.918179	I. 40239	18	. 33875	. 055820	. 33174
58	1.32076	.979130	I. 45084	17	. 31790	. 049244	. 31173
59	I. 36082	I. 044507	1.50145	I6	. 29738	. 043166	. 29200
60	I. 40216	I. II4701	I. 55438	I5	. 27718	. 037563	. 2725 I
				I4	. 25727	.032414	. 25326
				I3	. 23765	. 027701	. 23422
				12	. 21827	. 023406	. 21539
				II	. 19917	. 019511	$.19673$
				10	. 18022	.016005	. 17826

$\gamma=0.12$				$\gamma=0.13$			
φ	X	Y	T	9	X	Y	T
0				0			
9	. 16151	. 012374	. 15993	37	. 68955	. 2518.48	. 72059
8	. 14299	. 010106	. 14176	38	. 71248	. 269440	. 74580
7	. 12465	.007691	. 12371	39	. 73584	. 288029	.77161
6	. 10647	.005619	. 10579	40	. 75968	. 307679	. 79804
5	. 08843	. 003882	. 08796	4 I	. 78400	- 328458	. 82514
4	. 07052	. 002473	. 07022	42	. 80885	- 350442	. 85294
3	. 05274	. 001385	. 05258	43	. 83424	- 373710	. 85150
2	. 03507	.0006I3	. 03499	44	. 86020	. 39835 I	-91084
+I	. 21750	.000153	. 01748	45	. 88677	-42.446I	-94104
	+	+	+	46	.91397	. 452144	.97212
0	00000	000000	00000	47	.94184	. 481513	I. 00416
	-	$+$	-	48	. 97040	. 512692	1.03722
-I	. OI742	. 000152	. OI 744	49	. 99970	. 545816	1.07135
2	. 03477	.000606	. 03485	50	1.02978	. 581032	I. 10663
3	. 05208	.001361	. 05224	51	I. 06066	. 618502	I. I43I3
4	. 06935	. 002417	. 06963	52	1.09239	. 658401	I. 18094
5	. 08658	. 003774	.08703	53	1.12501	. 700922	I. 22014
6	. 10380	. 005432	. 10445	54	I. 15857	. 746275	1. 26052
7	. 12101	. 007394	. 12190	55	1.19310	. 79469 I	I. 30310
8	.13823	. 0009660	. 13938	56	1.22864	. 846423	1. 34708
9	. 15546	. 012234	. 1569 I	57	I. 26526	. 901747	I. 39288
10	. 17271	. O1512I	. 17450	58	1. 30298	. 960068	I. 44.4062
II	.18999	.OIS325	. 19217	59	1. 34185	1. $02+421$	I. 49050
12	. 20732	. 021851	. 20993	60	I. 38193	1.092474	1. 54262
13	. 22470	. 025705	. 22777				
I4	. 24215	. 029894	. 24571				
15	.25967	. 034427	. 26377				
16	. 27729	. 039311	. 28 x96	$\gamma=0.13$			
17	. 29500	. 044558	.30030				
18	. 31282	.051178	. 31879	φ	X	Y	T
19	. 33076	.056182	. 33745 .35630 . 37534				
20	. 34884	. 062583		${ }_{5}$	$2 \cdot 34664$	2.07817	1. 78424
2 I	. 36706	. 069396		55			
22	. 38543	. 076635	- 39459	5.4	2.09231	1.72105	1.66973
23	. $4039{ }^{\text {8 }}$. 054318	. 41406	53	1.91777	$\begin{aligned} & \text { I. } 48.495 \\ & 1.30698 \end{aligned}$	$\begin{aligned} & \text { I. } 57699 \\ & \text { I. } 49683 \end{aligned}$
24	. 4227 I	.092463	. 43377	52	1.78130		
25	.44164	. 101089	. 45375	5 I	1. 66795	I. 16439	I. 42538
26	. 46077	. 110216	. 47400	50	$\begin{aligned} & \text { I. } 57040 \\ & \text { I. } 43+45 \end{aligned}$	$\begin{array}{r} 1.04600 \\ .94533 \end{array}$	I. 36052 I. 30088
27	. 48013	. 119869	. 49454	49			
28	. 49973	. 130072	-51539	45	I. 40745	. 85826	I. 24556
29	. 51958	. 140851	. 53657	4746	I. 33759I. 27355	.75200.71452	$\begin{aligned} & \text { I. I93 } \\ & \text { I.I I } 4530 \end{aligned}$
30	. 53970	. 152236	. 55810				
31	. 56011	. 164257	. 58000	$\begin{aligned} & 45 \\ & 44 \\ & 43 \end{aligned}$	I. 21445	. 65434	1.09246
32	. 58082	. 176949	. 60230		I. I 59.48	. 60030	1.05604
33	. 60185	. $1903+7$. 62502		I. IOSO9	. 55152	I.OI474
34	. 62322	. 204492	. 6.48 I 7	42	1. 05981	.50727.46697.43013	$\begin{aligned} & .97537 \\ & .93773 \\ & .90163 \end{aligned}$
35	. 64494	. 219426	. 67180	4 I	I. OI 426		
36	.66705	. 235 I94	. 69593	40	0.97114		

$\gamma=0.13$				$\gamma=0.13$			
9	X	Y	T	φ	X	Y	T
0				0			
39	. 93019	. 39636	. 86700	7	. 12087	. 007382	. 12182
38	. 89117	. 36533	. 83365	8	. 13804	. 009642	. 13928
37	. 8539 I	. 33673	. 80150	9	-15522	. 012209	. 15679
36	. 8182 I	. 31032	. 77046	10	. 17242	. 015088	. 17436
35	. 78398	.28589	. 74043	II	. 18964	. 018280	. 19199
34	. 75106	. 26326	. 71134	12	. 20690	. 021792	. 20971
33	. 71934	. 24226	. 68312	13	. 2242 I	.025630	. 22751
32	. 68874	. 22276	. 65572	14	. 24158	. 029801	. 24542
3 I	. 65915	. 20462	. 62907	15	. 25902	. 034312	. 26344
30	. 63050	. 187754	. 60312	16	. 27655	.039171	. 28158
29	. 60273	. 172040	. 57783	17	. 29417	. $0+44389$. 29957
28	. 57577	. 157400	. 55314	18	-31188	. 049977	. 31831
27	. 54956	. 143753	. 52902	19	-32971	. 055944	. 33691
26	. 52405	. 131030	. 50544	20	$\cdot 34767$. 062304	- 35570
25	. 49918	. 119169	. 48236	21	. 36576	.069070	- 37467
24	. 47492	. 108111	. 45975	22	. 38401	. 076258	. 39385
23	. 45123	. 097806	. 43757	23	. 40242	. 083883	. 41325
22	. 4^{2806}	.088208	. 41580	24	. 42100	.091964	. 43289
2 I	. 40538	. 079274	-39443	25	. 43977	. 100518	. 45278
20	. 38316	.070968	. 37340	26	. 45874	- 109568	. 47294
19	. 36138	.063252	- 35272	27	. 47793	.119134	. 49339
18	-34000	.056096	-33234	28	. 49734	. 129242	-51414
17	. 31899	. 04947 I	- 31226	29	. 51700	. 139917	. 53522
16	. 29833	. 043350	. 29246	30	. 53692	.151186	. 55664
15	. 27800	.037712	. 27291	31	. 5571 II	. 163082	. 57843
14	. 25797	. 032532	. 2536 I	32	. 57759	. 175635	. 60061
13	. 23824	. 027794	. 2345 I	33	. 59538	. 188882	. 62319
12	. 21877	. 023478	. 21563	34	. 61950	. 202861	. 64622
II	. 19955	. 019566	. 19694	35	. 64096	. 217613	. 66970
10	. 18056	. 016045	. 17842	36	. 66279	. 233182	. 69368
9	.16178	. O12903	. 16007	37	. 68500	. 2.49618	. 71817
8	. 14320	. OIOI26	. 14186	38	. 70761	. 266971	. 74321
7	. 1248 I	. 007704	. 12378	39	. 73065	. 285299	. 76883
6	. 10658	. 005627	. 10584	40	. 75414	. 304663	- 79507
5	. 0885 I	. 003887	. 08800	41	. 77810	. 325129	. 82197
4	.07058	. 002475	. 07025	42	. 80256	-346769	. 84956
	. 05277	. 001386	. 05259	43	. 82754	. 369661	. 87788
2	. 03508	.0006'5	. 03500	44	. 85307	. 393890	. 90698
+r	. 01750	.000153	. 01748	45	. 87917	. 419547	. 93691
	+	-	-	46	. 90589	. 446733	. 96772
0	00000	000000	00000	47	. 93324	. 475557	. 99946
		+		48	.96125	. 506137	1.03219
-I	. 01742	. 000152	. 01744	49	. 98997	. 538603	1.06598
2	. 03476	. 000606	. 03484	50	1.01943	. 573094	1. 10089
3	. 05206	-.001361	.05223	51	1.04965	. 609765	1.1370
4	. 06930	.0024I5	.0696I	52	1.08068	. 648783	I. 1743
5	. 08651	. 003770	.08700	53	I.II256	. 69033 I	I. 2131
6	. 10370	. 005425	. 10440	54	1.14532	$.73+609$	I. 2533

$\gamma=0.14$				$\gamma=0.14$			
φ	X	Y	T	φ	X	Y	T
0				0			
55	1. 17900	.781837	1. 29510	18	. 34126	. 056376	- 33295
56	I. 21364	. 832254	I. 33852	17	. 32009	. 049700	. 31280
57	1.24929	. 886123	I. 38371	16	. 29929	. 043537	. 29293
58	I. 28598	. 943732	I. 43082	15	. 27883	. 037862	. 27332
59	I. 32376	I . 005397	I. 47997	I4	. 25868	. 032652	. 25395
60	I. 36267	I. 071464	I. 53132	I3	. 23884	. 027888	. 23480
$\gamma=0.14$				12IIIO	. 21927 . 1999^{6} .18090	. 023550 . OI962I .016086	$\begin{aligned} & .21588 \\ & .19714 \\ & .17859 \end{aligned}$
φ	X	Y	T	9	$\begin{aligned} & .16205 \\ & .1434 \mathrm{I} \end{aligned}$	$\begin{aligned} & .012932 \\ & .010146 \end{aligned}$	$\begin{aligned} & .16020 \\ & .14197 \end{aligned}$
0		1.98239	1.73297	7	. 12497	. 007717	. 12386
54	2.30632			6	. 10670	. 005635	. 10590
53	2.04816	1. 63293	I. 62037	5	. 08859	. 003892	. 08504
52	1.87425	I. 40607	I. 52992	4	.07062	. 002478	. 07027
51	1.73918	1.23615	I.45I95	3	. 05280	. 001387	. 0526 I
50	1.62737	I. 10043	I. 38250	2	. 03509	. 000614	. 03501
49	I.53132	. 98792	I. 31946	+r	. 01750	. 000153	. OI 748
48	I. 44679	. 89233	I. 26149		+	+	
47	1.37111	. 80971	1.20770	0	00000	000000	00000
46	I. 30247	. 73736	1.15741			+	
45	I. 23959	. 67336	I. IIOI5	-1	. 01742	.000152	. 01744
44	I.18152	. 61627	I. 06551	2	. 03475	. 000606	. 03484
43	I. 12752	. 56502	1.02319	3	. 05203	. OOI360	. 05222
42	1.07703	. 51874	. 98292	4	. 06925	. 002413	. 06958
41	1. 02959	. 47676	. 94450	5	. 0 ¢́b 43	. 003766	. 08696
40	. 98483	. 43853	. 90775	5	. 10358	. 005417	. $10+34$
39	-94245	. 40358	. 87250		. 12072	. 007370	. 12175
38	. 90218	. 37155	. 83862	7	. 13787	. 009625	. 13919
37	. 86381	. 34210	. 80600	9	. 15499	. 012185	. 15667
36	. 82714	. 31496	. 77453	10	. 17213	. 015054	. 17421
35	. 79203	. 28991	. 74412	11	. 18929	. 018235	. 19 I 8 I
34	. 75833	. 26674	. 71469	12	. 20649	. 021734	. 20950
33	.72591	. 24528	. 68616	13	. 22372	. 025556	. 22726
32	. 69467	. 22538	. 65848	14	. 24102	. 029708	. 24513
31	.66.45 I	. 20689	. 63157	15	. 258388	.034198	. 26311
30	. 63535	. 189715	. 60538	16	. 2758 r	. 039032	. 28120
29	. 60711	. 173734	. 57988	17	. 29334	. 044222	. 29944
28	. 57972	. 158861	. 55500	18	. 31095	. 0497978	. 31783
27	. 55312	. 145012	. 53071	I9	. 32867	.055709	. 33637
26	. 52725	. 122113	. 50696	20	. 3465 I	. 062028	. 35510
25	. 50206	. 120097	. 48373	2 I	. 36449	. 068749	. 37401
2.4	. 47750	. 108904	. 46098	22	. 38260	. 075886	. 39312
23	. 45354	.09848I	. 43868	23	. 40087	. 083454	. 41245
22	. 43012	.088780	. 41679	24	. 41931	.091472	. 43201
21	. 40722	. 079757	. 39531		. 43793	. 099958	. 45182
20	. 38479	. 071373	- 37418	26	. 45674	. 10893 I	. 47190
I9	. 36282	. 063590	. 3534 T	27	. 47576	. IIS+I3	. 49225

$\gamma=0.15$				$\gamma=0.15$			
9	X	Y	T	φ	X	Y	T
28		. 128427	. 51291	5	r. 266	. 60430	I. 12 I 57
29	. 51446	. 139000	. 53389	44	1.20531	. 63368	1.12157
30	. 53418	. 150158	. 55520	43	1.14836	. 57963	1.03212
31	. 55416	. 161930	. 57688	42	1.09539	. 53107	. 99087
32	. 57443	. 174349	. 59893	41	1.04585	. 48723	. 95160
33	. 59499	. 187449	. 62139	40	. 99928	. 44746	.91412
34	.6I586	. 201266	. 64428	39	. 95534	. 41122	. 87822
35	. 63707	. 215841	. 66763	38	.91371	. 37810	. 84378
36	. 65862	.231218	. 69145	37	. 87414	. 34774	. 81066
37	. 68055	. 247442	. 71579	36	. 83643	. 31982	. 77874
38	. 70286	. 264565	. 74066	35	-. 80038	. 29411	. 74793
39	. 72558	. 282641	. 766 II	34	. 76585	. 27037	. 71814
40	. 74873	. 301729	. 79216	33	. 73269	. 24842	. 68929
4 I	. 77234	. 321893	. 81886	32	. 70078	. 22809	.66131
42	. 79643	. 343203	. 84623	31	. 67003	. 20923	.634I3
43	. 82 IOI	. 365734	. 87433	30	. 64032	. 191738	. 60770
44	. 84612	. 389568	. 90319.	29	. 61160	. 175479	. 58198
45	. 87179	. 414793	. 93287	28	. 58376	. 160365	. 55690
46	. 89803	. 441504	.96341	27	. 55675	. 146306	. 53242
47	. 92489	. 469807	. 99486	26	. 53051	. 133222	. 50851
48	. 95238	. 4998 I6	1.02729	25	. 50499	. 121046	. 48512
49	. 98055	. 531655	1.06075	24	. 48013	. 109714	. 46223
50	1.00941	. 565458	I. 09531	23	. 45588	. 099169	. 43980
51	1.03901	.601371	1.13105	22	.43221	. 089363	. 41779
52	1.06938	. 639555	r, 16803	21	. 40908	.080249	. 39620
53	I. 10055	. 680185	1.20635	20	. 38644	. 071785	- 37497
54	1.13256	. 723452	1.24609	I9	.36427	. 063933	. 35411
55	I. 16545	. 769562	1. 28735	18	. 34254	. 056659	. 33357
56	I. 19924	. 818746	1.33023	17	. 32121	. 049933	. 31334
57	1.23399	. 871253	1. 37485	16	. 30026	. 043726	. 29340
58	1. 26973	. 927355	1.42134	r 5	. 27967	. 038014	. 27372
59	r. 30648	. 987352	1.46982	14	. 25940	. 032773	. 25430
60	1.34430	I. 05157 I	1. 52045	13	. 23945	. 027983	. 23510
				12	. 21978	. 023623	. 21613
$\gamma=0.15$				II	. 20038	.019676	. 19735
				10	. 18124	. O16126	. 17875
					. 16232 . I4362 . 12513	. 012961 . 010166	. 16034
φ	X	Y	T				. 14207
						. 007730	. 12394
0535	2.25742	1.88017	1.68106	6	. 1068 I	. 005643	. 10596
				5	. 08867	$.003896$	$.08808$
	1.99983	1.5439	I.57118	4	. 07067	. 002480	
5549	1.82819	1.32791	1.48331	3	. 05283	. 001388	. 05262
	1.69536	1.16667	1.40764	2	. 03511	.000614	. 03502
49	1.5855^{8}	1.03806	1. 34024	+r	.OI75I	. 000153	. 01749
48	I. 49136I. 40847I. 33427	.9315I .84102 .76281	1.279051.222751.17047		+	+	+
				-	00000	000000	00000
46							

$\gamma=0.15$				$\gamma=0.16$			
φ	X	Y	T	9	X	Y	T
0				0			
－I	． 01741	． 000152	． 01744	49	．97143	． 524947	1． 05566
2	．03474	．000605	．03483	50	． 99973	． 558094	1.08989
3	． 05200	． 001359	． 05220	5 I	1.02874	． 593287	1．12526
4	． 06920	． 002412	． 06956	52	I． 05848	． 630680	I． 16186
5	． 08636	． 003762	． 08692	53	1.08898	． 670440	I． 19977
6	． 10349	． 005410	． 10429	54	1． 12028	． 712750	1.23907
7	． 12059	． 007358	． 12168	55	I． 15242	． 757 So8	1． 27985
8	． 13767	． 009608	． 13910	56	I． 18542	． 805832	I． 32223
9	． 15475	． 012160	． 15655	57	I． 21932	． 857060	I． 36630
10	． 17184	． 015021	． 17406	58	1.25415	．911751	1． 41220
II	． 18895	．oi8I9I	． 19164	59	1.28996	． 970188	1． 46005
12	． 20608	．021676	． 20929	60	1.32676	1.032683	1． 50999
13	． 22324	． 025483	． 22701				
14	． 24046	． 029616	． 2.4484				
I5	． 25774	.034085	． 26278				
16	． 27509	． 038895	． 28083	$y=0.16$			
$\begin{aligned} & 17 \\ & 18 \end{aligned}$	． 29252	． 044057	． 29902				
	． 31003	． 049581	$\begin{aligned} & \cdot 31735 \\ & .33584 \end{aligned}$	9	X	Y	T
19	． 32764	． 055476					
20	． 34537	． 061755	－3545	0	2.20019	1.77260	I． 62859
21	． 36322	．06843I	． 37336	52			
22	． 3812 I	． 075518	． 39240	5 I	1．94773	1． $45+69$	1． 52223
23	． 39935	．083032	． 41156	50	1.77989	1． 25088	1．43719
24	． 41765	．ogog88	． 43115	49	1． 65007	1．09578	I． 36392
25	． 43612	． 099405	． 45085	48	1．5427S	－975＋3	I． 29862
26	． 45477	． 108303	． 47087	47	1.45067	． 57637	1.23927
27	． 47362	． 117703	．49113	46	I． 36962	． 79142	I ．IS． 463
28	． 49268	． 127627	－51170	45	1． 29703	． 71754	1． $133 S_{5}$
29	． 51197	． 138100	． 53258	44	1.23115	． 65280	1．08632
30	． 53149	． 149148	． 55379	43	1．17082	． 5955 I	1.04157
31	． 55128	．160801	． 57535	42	I．II504	． 54438	－ 99925
32	． 57133	． 173088	． 59729	4 I	1.06314	． 49845	． 95906
33	． 59166	． 186045	． 61963	40	I．OI45S	． 45697	． $920-8$
34	．61230	．199705	． 64239	39	． 96893	－ 41933	． 88419
35	． 63325	． $21+109$	． 66560	． 38	． 92582	． $3^{5} 503$	．S49I4
36	． 65455	． 229298	． 68928	37	． 88496	． 35367	． 81545
37	．67619	． 245318	． 71346	36	． 84612	－ 32492	.78309
38	． 69822	． 262218	． 73817	35	． 80907	． 29850	． 75156
39	． 72063	． 280050	． 76345	34	.77366	． 27415	.72169
40	． $7+3.46$	． 298871	． 78932	33	． 73971	． 25168	． 69249
41	． 76673	． 315745	． 81582	32	． 70710	． 23090	． 66421
42	． 79045	． 339737	． 84299	3 I	． 67571	． 21166	． 636,6
43	． 81466	． 361920	． 87087	30	． $645+4$	．193S26	．61007
44	． 83937	． 355373	． 89950	29	． 61620	．1アプ－8	． $58+12$
45	． 86461	． 410182	． 92893	25	． 58790	．161911	． 55353
46	． 89041	． 436439	． 9592 I	27	． 56047	． 147632	． 53416
47	．91680	． 464244	． 99038	26	． 53385	． 134358	． 51008
48	． 94379	． 493707	I． 0225 I	25	.50798	． 122017	． 48653

$y=0.16$				$\gamma=0.16$			
φ	X	Y	T	9	X	Y	T
0				0 22			
24	. 4828 I	. 110541	. 46350	22	- 37984	. 075156	-39169
23	. 45827	. 099872	. 44093	23	-39784	.0826I5	. 41057
22	. 43434	. 089958	. 4188 I	24	. 41600	.0905 I I	. 43029
21	. 41097	. 080750	. 39710	25	. $43+33$. 098862	. 44994
20	. 383 II	.072204	. 37578	26	. 45283	. 107686	. 46985
I9	. 36574	.064281	-3548I	27	-47151	. 117005	- 49003
I3	.34383	. $0569+7$. 33419	28	. 49041	. 126840	. 51050
17	. 32234	.050169	. 31388	29	. 50951	. 137215	. 53128
16	. 30124	.0439I8	. 29387	30	. 52885	. 148157	-55239
15	.28051	.038168	. 27413	31	. 54844	. 159693	. 57385
14	. 26012	.032895	. 25465	32	. 56828	. 171853	. 59567
13	. 24006	.028078	. 23539	33	. 58839	. 184670	. 61789
12	. 22029	.023696	. 21638	34	. 60880	. 198178	. 64052
11	. 2008I	. 019731	. 19756	35	. 62952	. 212416	. 66359
Io	.18159	. 016167	. 17892	36	. 65055	. 227423	. 68713
9	. 16260	. 012990	. 16047	37	. 67193	. 243245	. 71116
8	. 14384	. 010186	. 14218	38	. 69367	. 259928	. 73572
7	. 12529	. 007744	. 12402	39	. 71579	. 277525	. 76082
6	. 10693	.005652	. 10602	40	.73831	. 296098	. 78652
5	. 08875	. 003901	. 08812	4 I	. 76125	. 315682	. 81283
4	.07073	. 002482	. 07033	42	. 78463	. 336368	. 83950
3	. 05286	. 001389	. 05263	43	. 80847	. 358217	. 86747
2	. 03512	.000614	. 03502	44	. 83280	. 381306	. 89588
+1	.0175I	.000153	. or 749	45	. 85763	. 405716	. 92507
	+	十		46	. 88301	. 431537	-95510
0	00000	000000	00000	47	. 90894	. 458566	. 98600
	-	$+$	-	48	-93545	. 487808	I. 01785
-r	. OI74I	.000152	. 01743	49	. 96259	. 518477	1. 05069
2	. 03473	. 000605	.03482	50	. 99036	. 550998	r. 08459
3	. 05198	. 00135^{8}	.05219	51	1.01880	. 585506	I. I I962
4	.06916	. 002409	. 06954	52	1. 04794	. 622148	I. 15585
5	. 08629	. 003757	. 08688	53	1.07782	. 661084	r. I9336
6	. 10338	. 005403	. 10424	54	I. 10845	.702489	1. 23224
7	. 12044	. 007347	. 1216 r	55	1. 139^{87}	. 746553	r. 27257
8	. 13749	. 009591	. r 3901	56	1.17212	. 793483	I. 31446
9	. 15452	. 012136	. 15644	57	1. 20523	. 843506	1.35801
10	. 17156	. 014987	. r 7392	58	1. 23922	. 896870	1.40335
II	. 18860	.018146	. 19146	59	I. $27+12$. 953845	1.45060
12	. 20567	.0216I9	. 20908	60	r. 30998	1.014728	r. 49989
13	. 22276	.025410	. 22677			,	
14	. 23991	. 029525	. 24456				
I_{5}	. 25710	. 033973	. 26246				
16	. 27436	. 038759	. 28046				
17	. 29170	. 043894	. 29860				
18	. 30911	. 049386	. 31688				
19	. 32662	. 055246	- 33531				
20	- $3+424$.06I486	. 35392				
21	.36197	.068118	. 37271				

$\gamma=0.17$				$\gamma=0.17$			
φ	X	Y	T	φ	X	Y	T
${ }^{0}$				0			
51	2. 13564	1.66158	1. 57577	3	. 05288	. 001390	. 05265
50	1.89240	1. 36603	1.47358	2	. 03513	. 000615	. 03503
49	1.72971	I. 17536	I. 39159	+I	. 01751	. 000153	.01749
48	1.60356	1.03268	1.32079		+	$+$	+
47	1.49914	.91866	1.25760	-	00000	000000	00000
46	1.40939	. 82405	I. 20011		-	+	-
45	1.33034	. 74358	1. 14712	I	. 01741	. 000152	. OI743
44	I. 25950	. 67394	1.09782	2	. 03472	. 000605	. 03482
43	I. 19518	.61288	1.05163	3	. 05195	.001357	. 05218
42	I. 13618	. 55880	I.008II	4	.0691I	. 002406	. 06952
4 I	1.08162	. 51053	. 96690	5	.0862I	. 003752	. 08685
40	1.03083	. 46714	. 92775	6	. 10328	. 005395	- 10419
39	. 98329	. 42795	. 89042	7	. 1203I	. 007335	. 12154
38	. 93856	. 39236	. 85471	8	. 13731	.009574	. 13591
37	. 89630	. 35992	. 82048	9	. 15429	. 012112	. 15632
36	. 8562.4	. 33028	. 78759	Io	. 17127	. OI495 +	. 17377
35	.81813	. 30309	. 75591	II	. 18826	.018102	. 19129
34	. 78177	. 27809	.72534	12	. 20526	. 021562	. 20887
33	. 74698	. 25506	. 69579	13	. 22229	. 025333	. 22652
32	.71363	. 23381	. 66718	If	. 23936	. 029435	. 24428
31	.68157	. 21417	. 63947	15	. 25647	. 033562	. 26213
30	. 65071	. $19598{ }^{81}$. 61250	I6	. 27364	. 038624	. $2 \mathrm{So0} 9$
29	. 62093	. 179130	. 58631	I7	. 29089	. $0+4732$. 29SIS
28	. 59215	. 163500	. 56080	I8	. 3052 I	. $0 .+9193$. 31641
27	. 56.428	. 143994	. 53594	I9	. 32561	.055019	. 33479
26	. 53727	. 135523	. 51167	20	. 37312	. 061220	- 35334
25	. 51104	. 123011	. 48797	2 I	. 36074	.067-50S	. 37206
2.4	. 48554	. 111386	. 46479	22	. 37348	.074798	. 39095
23	. 46072	. 100590	. 44208	23	. 39636	. 052204	. 41010
22	. +3651	.090564	.41984	24	. 41438	.0900.71	. 42944
21	.41239	. OSI259	. 39801	25	. 43256	.095326	. 44901
20	. 38951	. 072629	. 37659	26	. 45091	. 107078	. 46884
I9	. 3672.4	. $06 .+63.4$. 35553	27	. $+69+4$. 116315	. $4^{\text {S593 }}$
18	-34514	. 057238	. 33482	28	- 4 SSI 7	. 126066	. 50931
17	. 32348	. 050407	. 3144	29	. 50710	. $1363+7$. 53000
16	. 30224	. $0+4112$. $29+35$	30	. 52625	. 14718	. 55101
15	. 28137	.035324	. $27+54$	3 I	. 54564	. 158606	. 57236
14	. 26085	.033019	. 25500	32	. 56528	. 170642	. 59407
13	. 24067	. 028175	. 23569	33	. $5^{\text {S }} 518$. IS3323	.61617
12	. 2208I	. 023770	. 21663	34	. 60537	. 196653	. 63568
II	. 20123	. 019783	. 19777	35	. 625 S 4	. 210759	. 66162
10	. 18193	. 016208	. 17909	36	. 64663	. 225591	. 68502
	. 16287	.013019	. 1606I	37	. 66776	. 241220	. 70890
8	. 14405	. 010206	. $1+223$	38	.6S922	. 257694	. 73330
7	. 12545	. 007757	. 12.410	39	. 71106	. 275062	. 75825
6	. 10704	. 005660	. 10608	40	.73327	. 293378	. 78377
5	. os883	. 003906	.oSSi6	4 I	. 75559	. 312700	. So990
4	. 07078	. $002+85$. 07035	42	. 77 S94	. 333091	. 53668

$\gamma=0.17$				$\gamma=0.18$				
9	X	Y	T	φ	X	Y	T	
43	. 80243			0	. 568 I9			
43	. 802439	- 354618	. 88234	27	$\cdot 56819$. 150393	- 53775	
44	. 82639	- 377356	. 89233	26	. 54077	. 136718	. 51330	
45	. 85083	. 401384	. 92130	25	. 51417	. 124028	. $489+3$	
46	. 87579	. +26787	.95108	24	. 48833	. 11225 I	. 46609	
47	. 90129	. 453660	.93172	23	. 46320	. IOI322	. 44325	
48	. 92735	. 482104	I. OI329	22	.43872	.091182	. 42088	
49	.95400	. 512229	I. $0+484$	21	. 41485	.081777	. 39894	
50	.98127	. $5+4154$	I. 07943	20	- 39154	. 073061	- 37741	
51	1.00917	. 578010	I. II 413	19	. 36876	. 064992	. 35626	
52	1.03774	.6I3937	I. 15001	18	- 34647	. 057533	. 33546	
53	1.06702	. 652090	I. 18714	17	- 32.46	. 050649	-31499	
54	1.09701	. 692636	I.2256I	16	. 30324	. $0+4308$. 29483	
55	I. 12777	. 735758	I. 26551	15	. 28223	.033482	. 27496	
56	I. I593I	. 781655	I. 30693	14	. 26158	.033I44	. 25536	
57	I. 19166	. 830542	I. 34999	13	. 24129	. 028272	. 23599	
58	1. 22485	. 832656	I. 39479	12	. 22133	. 023845	. 21688	
59	I. 25892	. 938257	I.44146	II	. 20166	. 019844	. 19798	
60	I. 29388	. 997630	I. 49014	10	. 18228	. 016250	. 17926	
$\gamma=0.18$				987	. 16315	. 013049	. 16074	
				. 14427	. 010227	. 14239		
				. 12561	. 007771	. 12419		
				6	$\begin{aligned} & .10716 \\ & .08891 \\ & .07083 \end{aligned}$.005669 .0039II $.0024^{87}$	$\begin{aligned} & .10613 \\ & .08820 \\ & .07038 \end{aligned}$	
φ	X	Y	T					5
								4
0	2.06533	I. 54956	1.52292	32	.05291	.001391	. 05266	
50					. 03514	. 000615	. 03504	
49	1.83445	1.27881	I. 42538	+1	$.01751$.000153	$\begin{gathered} .01749 \\ + \end{gathered}$	
4^{3}	1.678001.55606	I. 1018 I	1. 34657	0		T.		
47		.96864	1.27830		+		00000	
46	1.45483	.86191	I.21724		$. \overline{01740}$	$\underset{.000152}{+}$	$. \overline{01743}$	
45	I. 36765	. 77315	I. 16160	-I				
44	1.29074	. 69755	I. 11023	2	. 03470	. 000604	.0348I	
43	1.22173	. 63204	1.06239	3	. 05192	.001356	. 05216	
42	I. 15901	$\begin{array}{r} .57455 \\ .52360 \\ .47807 \end{array}$	I.O175I	456	.06906 .086I4 . IO3I7	. 002405	. 06949 .0868I . IO4I3	
41	I. IOI43		.97518			. 003749		
40	1.0.4814		. 93508			. 005388		
39	.99850 .95199 . 90821	.43714 . 40014 .36653	.89693 .86052 . 82568	7	. 12016	. 007324	. 12146	
38					. 13712	. 009557	. 13882	
37					. 15406	. 012038	. 15620	
36	. 86683	-33591	. 79224	Io	. 17099	. 014921	. 17363	
35	$\begin{aligned} & .82757 \\ & .79020 \end{aligned}$	$\begin{array}{r} .30789 \\ .28221 \end{array}$	$\begin{aligned} & .76009 \\ & .72910 \end{aligned}$	II	. 18792	. 018058	$\begin{array}{r} .19 \text { III } \\ .20866 \end{array}$	
34				12	. 20486	. 021506		
33	$\begin{aligned} & .75452 \\ & .7209 \mathrm{~S} \\ & .68763 \end{aligned}$. 25859	. 69918	13	. 22182	. 025266	. 22628	
32		. 23684	. 67023	14	. 2388 I	. 029345	. 24400	
31		. 21676	. 64219	15	. 25584	. 033752	. 26181	
30	.65614	. 198209	. 6149^{8}	16	. 27293	.038491	. 27972	
29	.625So	.181040.165136	$\begin{array}{r} .58854 \\ .5628 \mathrm{I} \end{array}$	1718	$\begin{aligned} & .29009 \\ & .3073 \mathrm{I} \end{aligned}$	$\begin{array}{r} .0+357^{2} \\ .0+9003 \end{array}$	$\begin{aligned} & .29777 \\ & .3 I 595 \end{aligned}$	
28	. 59651							

$\gamma=$ O.I 8				$\gamma=0.19$			
φ	X	Y	T	φ	X	Y	T
0				0			
19	. 32461	. 054794	- $33+28$	49	I.991II	I. 43884	1. +77035
20	-34201	. 060957	. 35277	48	1.77459	I. 19374	1. 37775
21	. 35952	. 067503	. 37143	47	1. 62516	1.03053	$\text { 1. } 30220$
22	. 37714	. $07+445$. 39028	46	I. 50785	. 90683	1.23648
23	-39489	. 081798	.40933	45			
24	.41278	. 089577	. 42860	44	I. 32559	.80725 .72422	1.17754 1.12372
25	. 43082	. 097798	. 44810	43	I. 25093	. 65335	1.07396
26	. 44902	. 106480	. 46784				
27	.46740	. 115643	. 48785	42	1.18384 I. 12277	.59185 .53780	1.02754 .98395
28	. 48596	. 125306	. 50814	40	I. 06665	. 48986	. 94279
29	. 50472	. 135494	-52874		I. 01466	. 44698	
30	. 52369	. 146230	.54964	39 38	1.01466 .96619	. 440841	$\begin{aligned} & .90370 \\ & .86659 \end{aligned}$
31	. 54289	. 157541	. 57089	37	. 92074	. 37353	. 83109
32	. 56233	. 169455	- 59249	36	. 87792	- 34184	
33	. 58203	. 182004	. 61448	35	. 83742	$\begin{array}{r} .34184 \\ .31293 \end{array}$. 76442
34	. 60200	. 195220	. 63687	34	. 79897	. 28650	. 73298
35	. 62225	. 209139	. 65968	33	. 76235	. 26227	. 70267
36	$.6+280$. 223799	. 68294	33 32	. 72737	. 23999	. 67337
37	. 66367	. 239242	. 70668	31	. 69388	. 21945	. 64501
38	. 68487	. 255514	. 73093	30	.66173	. 200513	. $61 \% 52$
39	. 70642	. 272661	. 75572	29	. 63080	. 183011	. 59082
40	. 72835	. 290737	. 78107	28	. 600098	. 166821	. 56457
41	. 75066	- 309797	. 80702	27	-57219	. 151832	. 53960
42	. 77339	. 329903	. 83361	26	. 54434	. 137944	. 51496
43	. 79654	. 351120	. 86088	25	.51736	. 1250\%0	. 49092
44	. 82014	-373521	. 88886	24	.49117	. II3I35	. 46742
45	. 8442 I	- 397179	.91760	23	. 46572	. 102069	$.41114$
46	. 86878	. 422181	. 94714	22	. 44096	.ogISII	. +2194
47	. 89386	. 448617	. 97754	2 I	. 41683	. 082304	. 39988
48	-91949	. 476583	I. 0088 +	20	. 39329	. 073501	. 3852
49	. 94567	, 506186	I. 04111	19	. 37029	. 065357	. 35699
50	.97245	. 537542		18			. 33610
5 I	. 99984	. 570776	I. 10878	17	. 32581	. 050895	- 31555
52	1.02788	. 606023	1. 14431	16	-30425	. 0.44507	. 29532
53	I. 05658	. 64343 I	I. 18108	15	. 28310	. 038641	. 27533
54	1.08597	. 683162	1.21916	14	. 26233	.033270	. 25572
55	1.11609	. 725390	1.25864	13	. 24192	.02837I	. 23630
56	I. I 4695	. 770306	I. 29962	12	. 22185	. 02392 I	.21713
57	I. 17859	.818118	1.3422	II	. 20209	. OI9901	. 19819
58	1.21104	. 869053	I. 38650	10	. 18263	. 016292	. 17943
59	I. 2.443 I	. 923360	1.43162				. 16088
60	I. 27844	.981309	1.48072	8	$\begin{aligned} & 103+3 \\ & .1+44^{8} \end{aligned}$. .010247	.14249
				7	. 12577	. 007784	. 12427
				6	. 10728	. 005676	. 10619
				5	. 08899	.003915	. 05824
				4	. 07088	. 002490	.0,040

$\gamma=0.19$				$\gamma=0.20$			
9	X	Y	T	φ	X	Y	T
0				0			
3	. 05294	. 001392	. 05268	43	-79078	- 347714	. 85768
2	.03516	. 000615	. 03504	44	. 81.104	. 369788	. 88546
+1	. O1752	.000153	. 01749	45	. 83776	-393092	-9I398
	+			46	.86194	.417708	-94329
0	00000	000000	00000	47	. 88663	. 443723°	. 97345
	-	+	-	48	. 91183	. 471231	1.00449
-r	.01740	.000152	. O1743	49	. 93758	. 500335	r. 03649
2	. 03470	. 000604	.0348I	50	.96389	. 531146	1.069.49
3	. 05190	. 001356	. 05215	5 I	. 99079	. 563785	I. 10355
4	. 06902	. 002402	. 06947	52	1.01831.	. 5988384	1. 13876
5	. 08607	. 003745	.08678	53	1.04646	. 635083	1.17518
6	.10307	. 005381	. 10408	54	I. 07528	. 674038	1. 21289
7	. 12002	. 0007312	. 12139	55	I. 10479	. $715+18$	1.25197
8	. 13694	. 009539	. 13872	56	I. 13502	. 759406	I. 29253
9	. 15383	.012064	. 15608	57	I.I6599	. 806203	I. 33466
10	.17071	. 014889	. 17348	58	I. 19773	. 856028	I. 37846
Ir	. 18758	. 018016	. 19094	59	I. 23025	.909118	1. 42.107
12	. 20446	. 021450	. 20846	60	I. 26359	. 965730	I. 47160
13	. 22135	. 025195	. 22604	$\gamma=0.20$			
14	. 23827	. 029257	. 24372				
15	. 25522	. 033643	. 26149				
16	. 27223	. 038359	.27936				
17	. 28930	. 043413	.29736	φ	X	Y	I
	. 30642	. 048814	- 3 I549	0 (
19	. 32362	. 054572	. 33377	48	I. 91475	1.33144	1.41840
20	. 34092	. 060697	. 35220	47	1.71350	I. 11151	I. 33081
21	. 35831	.067201	. 37080	46	r.57159	. 961847	I. 25855
22	. 37581	. 074097	.38958	45	1.45917	. 847381	I. 19537
23	. 39344	.081398	. 40857	44	I. 36498	. 754766	I. 13853
24	.41120	.089120	. 42776	43	I. 28336	. 677277	1.08650
25	. 42910	. 097278	. 447 I9	42	1.21103	. 610979	1.03830
26	.44715	. 105S91	. 46636	4 I	I. 14590	. 553344	. 99328
27	. 46538	. II4977	. 48679	40	1.08653	. 502625	. 95095
28	. 48378	. 124558	. 50699	39	1.03190	. 45757^{8}	. 91093
29	. 50237	. $13+654$. 52749	38	. 98123	. 417263	. 87294
30	. 52117	. 14529 I	. 54830	37	. 93394	.380962	. 83673
31	. 54019	. 156493	. $569+5$	36	. 88956	. 348113	. 80210
32	. 55943	. 168290	. 59094	35	. 84771	. 318258	. 7689 I
33	. 57893	.180709	.6128I	34	. 80810	. 291027	.73700
34	. 59868	. 193785	. 63508	33	. 77047	. 266113	.70627
35	.61871	. 207551	. 05777	32	. 73460	. 243260	. 67660
36	. 63903	. $2220+5$. 68090	31	. 70032	. 222250	. 6479 I
37	. 65965	. 237308	. 70450	30	. 66748	202899	. 62012
38	. 68060	. 253382	. 72860	29	. 63593	. 1850.48	. 59316
39	. 70181	. 270315	. 75323	28	. 60557	. 168559	. 56697
40	. 72353	. 288158	. 77842	27	. 57628	. 153312	. 54148
41	. $7+555$. 306965	. $80+20$	26	. 54799	. 139203	. 51665
42	. 76796	. 326796	. 83061	25	. 52061	. 126139	- +9243

$\gamma=0.2$				$\gamma=0.3$			
9	X	Y	T	9	X	Y	T
0				0			
24	. 49406	. II 4040	. 46877	22	. 37450	. 073753	. 38890
23	. 46829	. 102832	. 44564	23	. 39201	.081003	. 40782
22	. 44323	. 09245 I	.42301	24	.40963	. 088669	. 4269.4
2 I	. 41884	. 082840	. 40083	25	. 42740	.096766	. 44629
20	. 39506	. 073948	. 37908	26	. 44531	. 105311	. 46589
19	. 37185	. 065728	. 35773	27	. 46339	. 114323	. 48573
18	-34917	.058139	. 33675	28	. 48163	. 123822	. 50585
17	. 32698	.051144	. 31612	29	. 50006	.133830	. 52626
16	. 30526	. 0.44708	. 2958 I	30	. 51869	. 144370	- 54698
15	. 28397	. 038802	. 27580	31	. 53753	. 155466	. 56802
14	. 26307	. 033397	. 25608	32	. 55659	. 1671.47	. 589.41
13	. 24255	. 028470	. 2366 I	33	- 57589	. 179441	. 61117
12	. 22238	. 023997	. 21739	34	. 59543	. 192380	.63332
1 I	. 20253	. 019958	. I9840	35	. 61524	. 205997	. 65589
10	. 18298	. 016334	. 17961	36	. 63534	. 220330	.67889
	.16371	. 013109	.16102	37	. 65572	. 235417	. 70236
8	. 14470	. 010268	. 14260	38	$.77642$.251300	. 72631
7	. 12594	. 007798	. 12435	39	. 69745	. 268026	.75079
6	. 10740	. 005685	. 10625	40	. 71582	. 285644	. 77582
5	. 08907	. 003920	. 08828	4 I	. 74055	- $30+206$. 80143
4	. 07093	. 002492	.070.43	42	. 76266	. 323771	. 82766
3	. 05297	. 001393	. 05269	43	.78517	- 344399	. 85455
${ }^{2}$. 03517	. 000615	. 03505	44	. 80810	-366I59	. 88213
+I	$.01752$.000153	. 01749	45	. 83146	-38912I	. 91044
	$+$	$+$	+	46	. 85528	. 813365	- 93953
-	. 00000	. 000800	. 00000	47	$.87959$	$.438974$	$.96945$
		+	-	48	. 90439	. 4660.41	I. 00025
-I	. OI740	. 000152	. OI 743	49	. 92971	. 49.4666	I. 03198
2	. 03468	. 000604 .	. 03480	50	. 95557	- 52.4955	I. 06469
3	. 05187	.OOI355	. 05214	51	. 98201	. 55702.4	I. 0988
4	. 06897	. 002400	. 06945	52	1.00903	. 591001	I. I3335
5	. 08600	. 003741	. 08674	53	I. 03667	. 62702.4	I. $169+3$
6	. 10297	. 005374	. 10.403	54	I.0649.4	. 6652.41	I. 206\%
	$\text { . } 11988$. 007301	.12132	55	1.09388		
8	$.13676$. 009523	. 13863	56	I. 12350	. 778922	1. 28563
9	. 15360	. 0120.40	. 15597	57	I. 15383	. 794754	I. 32732
10	. 17042	. 014856	. 17334	58	I. IS.489		I. 37066
II	. 18724	. 017972	. 19076	59	I. 2167 I	. $895+52$	I. 41576
12	. 20.406	.021394	. 20825	60	I. 24931	. 950797	I. 46276
13	. 22088	. 025124	$.22580$				
14	. 23773	. 029169	$.24344$		γ	0.3	
I5	. 25.461	. 033535	. 26117		X	Y	T
16	. 27153	. 038228	. 27900	\%			
17	. 28851	. 043256	. 29695	0			
18	- 3055	.048628	. 31503	40	1.47905	.776117	1.08479
19	. 32264	.054352			1.33120		1. 01903
20	. 33983	. 0604.40	$.35163$	38	1.22128	. 565599	. 96308
2 I	. 35712	. 066903	.37017	37	1.13198	. 198037	. 91333

$y=0.3$				$\gamma=0.3$			
φ	X	Y	T	φ	X	Y	'T
0				0			
36	I. 05597	. 441769	. 86803	10	. 16770	. Or 4542	. 17194
35	. 98937	. 394244	. 82615	II	. 18398	. 017557	. 18908
34	. 92984	-353312	. 78704	12	. 20020	. 020858	. 20826
33	. 87584	. 317563	. 75023	13	. 21639	. 024448	. 22347
32	. 82632	. 286000	. 71537	I4	. 23256	. 028329	. 24075
3 I	. 78049	. 257908	. 68220	15	. 24871	. 032506	. 25809
30	. 73777	. 232740	. 65051	16	. 26485	. 036984	. 27551
29	. 69772	. 210072	. 62013	17	. 28100	. 041768	. 29302
28	.65996	. 189569	. 59092	18	. 29717	. 046866	. 31064
27	. $62+22$. 170959	. 56276	19	. 31336	. 052284	. 32836
26	. 59026	. 154020	. 53556	20	-32958	. 058029	. 34622
25	. 55787	. 138568	. 50922	21	-34585	.064112	. 36421
24	. 52689	. 124448	. 48366	22	. 36218	. 070542	. 38235
23	. 49718	. III527	. 45883	23	. 37856	. 077330	. 40065
22	. 46862	. 099695	. 43466	24	-39502	.084486	. 41914
2 I	. 44110	. 088852	.4IIII	25	. 41156	. 092025	. 4378 I
20	.41453	. 078915	. 388 II	26	.42819	. 099959	. 45669
19	. 38882	.069810	. 36564	27	. 44493	. 108304	. 47579
18	. 36390	.061472	. 34365	28	. 46178	. 117075	. 49512
17	. 33972	. 053845	. 32211	29	. 47875	. 126290	. 51470
16	.31620	. 046879	. 30098	30	. 49585	. 135967	- 53455
I5	. 29331	. 040529	. 28024	31	-51310	. 146127	- 55469
14	. 27099	. 034755	. 25985	32	. 53050	. 156791	- 57513
13	. 24920	. 029523	. 23980	33	. 54807	. 167983	. 59589
I2	. 22790	. 024800	. 22005	34	. 5658 I	. 179727	. 61699
II	. 20706	. 020559	. 20058	35	. 58374	. 192050	. 63846
10	. 18663	. 016773	.18138	36	. 60187	. 204982	. 66031
	. 16661	. 013421	. 16243	37	. 62020	. 218553	. 68257
8	. 14694	. 010482	. 14370	38	. 63876	. 232796	. 70525
7	. 12762	. 007937	.12517	39	. 65756	. 247748	. 72840
6	.1086I	. 005771	. 10684	40	. 67660	. 263447	. 75203
5	.08989	. 003968	. 08868	4 I	. 69590	. 279935	. 77616
4	. 07145	. 002516	. 07068	42	. 71548	. 297255	. 80085
3	. 05326	. 001403	. 05283	43	. 73534	-315457	
2	. 03529	. 000618	. 03511	44	. 75550	. 334591	. 85196
+I	. 01755	.000153	. 01750	45	. 77597	. 354713	. 87847
	$+$	+		46	. 79678	.375883	. 90565
0	. 00000	. 000000	. 00000	47	. 81792	. 398164	. 93356
		$+$	-	48	. 83942	. 421628	- 96224
-I	. Or736	. 0000151	. 01741	49	. 86129	. 446352	. 99172
2	. 03456	. 000601	. 03474	50	. 88355	. 472413	1. 02207
3	.05161	. 001345	. 05200	51	. 90620	. 499900	I. 05334
	. 0685 I	. 002379	. 06921	52	. 92928	. 528908	1.08557
5	. 08529	. 003699	. 08638	53	. 95278	. 559539	1.11885
6	. 10195	. 005304	. 10351	54	. 97672	. 591904	1.15322
		.007191	. 12062		I. 00113		I. 18876
8	. 13498	. 009359	. 13772	56	I. 02601	. 662329	I. 22556
9	.15138	. 011809	. 15483	57	I.05137	. 700659	I. 26368

$\gamma=0.4$				$\gamma=0.5$			
0	X	Y	T	9	X	Y	T
0	8668			0			
52	. 86087	. 431950	1.04647	-I	. 01731	. 000151	.OI738
53	. 88747	- 508840	I. 07765	2	. 03433	.000596	. 03462
54	-90844	. 537178	I. 10981	3	. 05109	. 001328	
55	. 92975	. 567061	I. 14302	4	.06761	. 002338	. 06876
56	. 95142	. 598594	I. 17736	5	. 08392	. 003621	. 08568
57	. 97346	.631891	1.2129°	6	. 10001	. 005170	. 10252
58	. 99587	. 667075	I. 24971	7	. 11592	. 006982	11929
59	1.01866	. 704281	1.28789	8	. 13166	. 009054	. 13600
60	I. 04185	.743656	I. 32753	9	. 14724	. OII382	. 15268
				10	. 16267	. 013965	. 16932
				II	. 17798	. 016801	. 18594
				12	. 19316	. 019891	. 20255
				13	. 20824	. 023234	21917
			T	14	. 22323	. 026332	. 23580
φ	X	Y	1	I5	.23813	.030687	. 25246
02928	$\begin{array}{r} 0.98413 \\ .88201 \end{array}$	$\begin{aligned} & .338743 \\ & .233238 \end{aligned}$	$\begin{aligned} & .72106 \\ & .67306 \end{aligned}$	16	. 25297	. 034800	. 26916
				17	. 26774	. 039175	. 28590
				18	. 28245	. 043816	. 30271
27	. 80260	. 241866	. 63110	I9	. 29713	. 048726	. 31959
26	. 73635	. 208903	$\begin{aligned} & .59316 \\ & .55318 \end{aligned}$	20	. 31178	.053912	$\begin{aligned} & .33655 \\ & .35360 \end{aligned}$
25	. 67940	. 181643		21	. 32640	. 059379	
2	. 62877	. 158557	. 52552	22	-34101	. 0651.34	- 37077
	. 58309	. I38689	. 49473	23	. 35561	.071183	. 38805
	. 54135	. 121390	. 4655 I	24	. 37022	. 077535	. 40546
2 I	.50280 . 46691 . 43328	. 106200	. 43763	25	. 38484	.084199	. 42301
20		.092779 .080866	$\begin{aligned} & .41092 \\ & .38521 \end{aligned}$	26	$\begin{array}{r} .39949 \\ .4 \mathrm{I} 4 \mathrm{I} 6 \end{array}$.091184	$\begin{array}{r} .44073 \\ .4586 I \end{array}$
19				27		. 098500	
18	. 40158	. 070258	. 36041	28	. 42887	. 106160	. 47668
17	. 37157	. 060791	. 33641	29	. 44363	. 114174	. $49+94$
16	. 34303	. 052335	-31314	30	. 45845	. 122557	. 51342
15	$\begin{aligned} & .31579 \\ & .2897 \mathrm{I} \\ & .26466 \end{aligned}$. 044778	. 29051	3 I	. 47333	.131323	. 53212
		.03803I .032017	$\begin{array}{r} .26847 \\ .24697 \end{array}$	32	. 48828	. 112488	$\begin{array}{r} .55107 \\ .57028 \end{array}$
13				33	. 50332	. 150067	
1	. 24055	. 026670	. 22596	34	. 51844	. 160078	.58976 .60954 .62963
	. 21728	. 021935	. 20539	35	. 53367	. 170541	
10	. 19478	. 017764	. 18524	36	. 54900	. 181477	
	$\begin{array}{r} 17298 \\ .15181 \\ .13123 \end{array}$	$\begin{aligned} & .014114 \\ & .010950 \\ & .008240 \end{aligned}$. 16546 .14603 .12691	$\begin{aligned} & 37 \\ & 38 \\ & 39 \end{aligned}$.56444 . 58001 . 59572	. 192907	.65006 .67084 . 69199
8						. 204354	
7						. 217346	
6	. 11118	. 005955	. 10808	40	. 61156	. 230407	$\begin{aligned} & .71355 \\ & .73552 \\ & .75794 \end{aligned}$
5	. 09163	.004071	. 08953	4 I	. 62755	. 244069	
4	. 07253	. 002567	. 07121	42	. 64371	. 258361	
3	.05385 .03555 .OI76I	$\begin{aligned} & .001424 \\ & .000625 \end{aligned}$	$\begin{aligned} & .05312 \\ & .03523 \end{aligned}$	43	$\begin{aligned} & .66003 \\ & .67653 \end{aligned}$	$\begin{aligned} & .273319 \\ & .283977 \end{aligned}$.78083 .80423 .82815
2				44			
+I		$\begin{gathered} .000154 \\ + \end{gathered}$. 01753	45	. 69322	. 305375	
	$\begin{gathered} .0176 I \\ + \end{gathered}$		十	464748	$\begin{aligned} & .71010 \\ & .72718 \\ & .74448 \end{aligned}$	$\begin{array}{r} \cdot 322553 \\ \cdot 340558 \\ .359438 \end{array}$.85204 . 87773 -90345
0	. 00000	. 000000	. 00000				

$\gamma=0.5$				$\gamma=0.6$			
φ	X	Y	T	φ	X	Y	T
0				0			
49	. 76200	. 379244	. 92984	-I	. 01728	. 000150	. 01736
50	. 77975	.40003I	. 95695	2	. 0342 I	. 000593	. 03456
51	. 79775	. 421860	.98481	3	. 05084	.0013I9	. 05162
52	. 81599	. 444796	1.01348	4	. 06718	. 002318	. 06854
53	. 83449	.468910	1.04300	5	. 08326	. 003583	. 08534
54	. 85326	. 494277	1.07343	6	. 09909	. 005107	. 10204
55	. 87230	. 520978	1.10482	7	. 11469	. 006885	. 11865
56	.89163	. 549103	1.13725	8	. 13009	.0089II	. 13518
57	.91124	. 578748	1.17078	9	. I4530	. OIII84	. 15166
58	. 93116	.610016	I. 20548	10	. 16033	. 013699	. 16808
59	. 95139	. 643023	I. 24144	II	. 17520	. OI6456	. 18446
60	. 9719^{2}	.677892	I. 27875	12	. 18993	. 019452	. 20083
$\gamma=0.6$				I 3	. 20452	. 022687	. 21717
				14	. 21899	.02616I	. 23352
				15	. 23336	. 029876	. 24987
				16	.24763 .26I8I . 27592	$\begin{array}{r} .033833 \\ .038034 \\ .042483 \end{array}$	$\begin{aligned} & .26625 \\ & .28266 \\ & .2991 I \end{aligned}$
φ	X	Y	T	178			
0	$\begin{array}{r} .93344 \\ .8 \mathrm{I} 202 \end{array}$. 290751	. 65330	19	. 28996	. 047181	- 31562
26				20	. 30395	. 052135	-332 19
25		. 232737	. 60239	2 I	. 31789	. 057348	. 34885
24 -	. 72613	. 193554	. 55987	22	. 33180	. 062826	. 36559
23	.65771.60003	$\begin{array}{r} 163783 \\ .139873 \end{array}$	$\begin{aligned} & .52220 \\ & .48786 \end{aligned}$	23	$\begin{aligned} & .34568 \\ & .35954 \end{aligned}$	$\begin{aligned} & .068575 \\ & .074602 \end{aligned}$	$\begin{aligned} & .38244 \\ & .39940 \end{aligned}$
22				24			
2 I	.54972 .50484 .46416	. 120045	. 45602	25	- 37339	.080915	. 41649
20		$\begin{array}{r} \text {. IO } 3259 \\ .088847 \end{array}$	$\begin{array}{r} .42614 \\ .39788 \end{array}$	26	$\begin{aligned} & .38724 \\ & .40110 \end{aligned}$	$\begin{aligned} & .087522 \\ & .094432 \end{aligned}$	$\begin{aligned} & .43372 \\ & .45109 \end{aligned}$
19				27			
18	. 42683	. 076352	. 37096	28	. 41498	. IOI655	. 46864
17	$\begin{aligned} & .39225 \\ & .35997 \end{aligned}$	$\begin{aligned} & .065+44 \\ & .055877 \end{aligned}$	$\begin{array}{r} .34520 \\ .32044 \end{array}$	29	$\begin{array}{r} .42887 \\ .44280 \end{array}$	$\begin{aligned} & .109202 \\ & .117084 \end{aligned}$	$\begin{aligned} & .48636 \\ & .50428 \end{aligned}$
16				30			
15	.32963 .30098 .27378	. 047462	. 29657	3 I	. 45677	. 125314	. 522.40
14		. 040049	. 27347	32	$\begin{aligned} & .47079 \\ & .48487 \end{aligned}$	$\begin{array}{r} .133905 \\ .142872 \end{array}$	$\begin{array}{r} .54075 \\ .55933 \end{array}$
13		.033518	. 25 IOI	33			
12	. 24787	. 027773	. 22928	34	. 49901	. 152230	$\begin{array}{r} .57817 \\ .59723 \\ .61668 \end{array}$
II	. 22310	. 022731	. 20806	35	. 51322	. 161997	
Io	. 19934	. 018327	. 18735	36	. 52751	. 172191	
9		.OI4502 . OII208 .008403	. 16711 . 14728 . 12783	$\begin{aligned} & 37 \\ & 38 \\ & 39 \end{aligned}$. 54188 55635 57093	$\begin{aligned} & .182830 \\ & .193936 \\ & .205531 \end{aligned}$	$\begin{aligned} & .63638 \\ & .65642 \\ & .67680 \end{aligned}$
6	. 11255	. 006053	.10874	40	. 58562	. 217 -638	.69755 .71869 .74024
5	. 09254	. 004125	. 08997	41	. 60042	.230284	
4	. 07309	. 002594	.07148	42	. 61535	. 243495	
3	.05415	. 001435	. 05327	43	. 63042	. 257303	$\begin{aligned} & .76224 \\ & .78470 \\ & .80766 \end{aligned}$
2	$\begin{aligned} & .03568 \\ & .01764 \end{aligned}$. 000628	. 03530	44	$\begin{aligned} & .64563 \\ & .66099 \end{aligned}$	$\begin{aligned} & .271737 \\ & .286833 \end{aligned}$	
+10		. 000155	. 01755	45			
	+	+	+	464748	. 67651 .692 I9 .70805	$\begin{aligned} & .302626 \\ & .319156 \\ & .336+65 \end{aligned}$. S $_{3}$ II4 . 85518 . 879 II
	. 00000	. 000000	. 00000				

$y=0.6$				$y=0.7$			
φ	X	Y	T	φ	X	Y	T
0				0			
49	. 72409	. 354598	. 90506	4	. 06676	. 002299	. 06832
50	. 74032	. 373604	. 93098	5	. 08262	. 003546	. 08500
5I	. 75675	. 393535	. 95760	6	.09819	. 005045	. 10157
52	. 77339	. 414449	. 98497	7	. 11351	. 006790	. 11802
53	. 79023	. 436408	I.OI314	8	. 12859	.008775	. 13439
54	. 80730	. 459477	I. 0.4216	9	. 14344	. 010996	. 15067
55	. 82460	. 483727	1.07208	10	. 15810	. 013448	. 16688
56	. 84213	. 509237	I. 10297	II	. 17257	.OI6129	. 18305
57	. 85990	. 536090	I. 13488	12	. 18687	.019038	. 19917
58	. 87792	. 564378	1. 16789	13	. 20101	. 022174	. 21526
59	. 89619	. 594199	1.20207	14	. 21501	. 025535	. 23134
60	. 91472	. 625663	I. 2375 I	I5	. 22888	. 029123	. 24741
$y=0.7$				161718	. 24264	. 032938	. 26349
				. 25629	.036981	. 27959	
				. 26985	.041255	. 29572	
				1920	$\begin{aligned} & .28332 \\ & .29672 \end{aligned}$	$\begin{array}{r} .045763 \\ .050509 \end{array}$	$\begin{array}{r} .31189 \\ .328 \mathrm{II} \end{array}$
	X		T				
φ	X		I	21	- 31006	. 055495	. 34440
0				22	. 32334	. 060728	. 36076
23	.8I319	. 220114	. 56922	23	. 33658	. 066211	. 37722
22	.70121	. 173643	. 52145	24	. 34978	.071952	- 39377
21	. 62208	. 142434	.48153	25	. 36296	. 077958	. 41044
20	. 55903	. 118842	. 44613		. 37612	. 084234	. 42723
I9	. 50586	. 099998	. 41382	27	. 38927	. 090790	. 44415
18	. 45945	. 084464	. 38381	28	. 4024 I	. 097634	. 46123
17	. 41804	.071399	. 35562	29	. 41557	. 104776	$\begin{aligned} & .47847 \\ & .49589 \end{aligned}$
16	. 38047	. 060267	. 32892	30	. 42873	. 112225	
15	. 34598	. 050697	. 30346	3 I	. 44192	. 119994	$\begin{array}{r} .51350 \\ .53131 \\ .54935 \end{array}$
14	. 31401	. 042424	. 27906	32	. 45514	. 128094	
I3	. 28414	. 035250	. 25558	33	. 46839	. 136539	
I2	. 25606	. 029022	. 2329 I	34	. 48169	. 145341	$\begin{array}{r} .56762 \\ .58614 \\ .60494 \end{array}$
II	. 22951	. 023619	. 21094	35	. 49504	. 154518	
Io	. 20430	. OIS945	. 18961	36	. 50845	. 164083	
9	. 18027	. OI492I	. 16885	37	. 52193	. 174056	. 62401
8	. 15728	. OII483	. 14859	38	. 53548	. 184453	$\begin{aligned} & .64340 \\ & .663 \mathrm{II} \end{aligned}$
7	. 13521	. 008577	. 12880	39	. 54911	-195297	
6	. I1397	.006I56	. 10942	40	.56283	. 206607	. 68316
5	. 09348	. 004182	. 09042	4 I	. 57664	. 218407	$\begin{aligned} & .70359 \\ & .72440 \end{aligned}$
4	. 07366	. 00262 I	.07176	42	. 59056	. 230721	
3	. 05446	.001446	. 05342	43	. 60459	. 243577	
2	.03581	. 00063 I	. 03536	44	. 61874	. 257001	
+I	. 01767	. 000155	. 01756	45	. 63301	. 271025	
0	$\begin{gathered} +\underset{+}{.00000} \end{gathered}$	$\begin{gathered} + \\ .000000 \\ + \end{gathered}$	$\frac{+}{.00000}$	$\begin{aligned} & 46 \\ & 47 \\ & 48 \end{aligned}$. 64741 .66195 .67663	$\begin{array}{r} .285682 \\ .301005 \\ .317034 \end{array}$. 81203 .83517 .85887
- I	. 01725	. 000150	.OI735	49	. 69147	. 333809	.88316 .90807 . 93365
2	. 03410	. 00059 I	.0345	50	. 70647	. 351373	
3	. 05059	-001310	. 05149	5 I	.72164	. 369773	

$\gamma=0.7$				$\gamma=0.8$			
φ	X	Y	T	9	X	Y	T
0				0			
52	.73698	- 389060	. 95994	10	. 15596	. 013207	. 16573
53	. 75250	. 409288	. 98698	II	. 17005	.OI5819	. 18168
54	. 76821	. 430517	I. 01481	12	. 18395	. 018647	- I9758
55	. 7841 II	.452812	$1.0+350$	13	. 19768	. 021690	. 21343
56	. 80021	. 476241	I.07310	14	. 21125	. 024947	. 22926
57	. 81651	. 500878	I. 10366	15	. 22467	. 028418	. 24507
58	. 83303	. 526806	I. 13527	I6	. 23795	.032103	. 26087
59	. 84976	. 554113	I. 16797	17	. 25112	. 036002	. 27668
60	. 86671	.582897	1.20187	18	. 26418	.O40119	. 2925 I
$\gamma=0.8$				19	. 27713	. 044454	. 30836
				20	. 29000	. 049012	- 32426
				21	. 30280	. 053795	-34022
				222324	$\begin{aligned} & \text {. } 31552 \\ & .328 I 9 \\ & .3408 I \end{aligned}$. 05 SSo8 .064055 .06954 I	$\begin{aligned} & \cdot 35624 \\ & .37233 \\ & \cdot 3885 I \end{aligned}$
φ	X	Y	T				
				2526			. 40480
0 20	. 65361	. 147646	.47637		.35339 .36593	.075274	
19	. 56945	. 117797	. 43575	27	- 37846	.087501	. 43771
18	. 505I4	.096255	. 40043	28	. 39096	.094012	. 45437
17	. 45205	. 079501	. 36852	29	. 40346	. 100799	$\begin{aligned} & .47118 \\ & .48815 \end{aligned}$
16	. 40632	. 065947	. 33906	30	. 41596	. 107871	
15	. 36587	. 054722	-3II49	3 I	. 42847	. 115233	$\begin{aligned} & .50530 \\ & .52263 \\ & .54018 \end{aligned}$
14	. 32942	. 045287	. 28544	32	. 44099	. 122912	
13	. 29609	. 037282	. 26064	33	. 45353	.130904	
12	. 2653 I	. 030454	. 23690	34	. 46611	. 139227	$\begin{array}{r} .55794 \\ .57594 \\ .59420 \end{array}$
II	. 23663	. 024617	. 21407	35	.47572	. I47894	
IO	. 20973	. OI9628	. 19203	36	. 49137	. 156920	
	. 18435	. 015379	. I7069	37	. 50.408	. 16632 I	61272 .63I54 .65065
8	. 16028	. 011780	. I4997	38	.51684.52967	$\begin{aligned} & .176 I I I_{4} \\ & .1863 I 7 \end{aligned}$	
7	. 13737	.00876I	. I29So	39			
6	. 11546	. 006264	. 11012	$\begin{aligned} & 40 \\ & 4 I \\ & 42 \end{aligned}$. 54256	. 196950	.67010 . 68989 .71005
5	. 09446	. 00.4240	. 09088		. 55554	. 205032	
4	. 07426	. 002649	. 07205		. 56860	. 219588	
3	. $0547{ }^{\text {S }}$.001457	. 05357	43	. 58175	. 231640	$\begin{aligned} & .73060 \\ & .75156 \end{aligned}$
2	. 03595	. 000634	. 03543	44	$\begin{array}{r} .59500 \\ .60536 \end{array}$	$\begin{aligned} & .2+4215 \\ & .257340 \end{aligned}$	
+I	. 01771	. 000155	. 01758				$\begin{array}{r} .75156 \\ .77297 \end{array}$
	+		+	$\begin{aligned} & 46 \\ & 47 \\ & 48 \end{aligned}$	$\begin{aligned} & .62 I 82 \\ & .635+1 \\ & .64911 \end{aligned}$	$\begin{aligned} & .271045 \\ & .255361 \\ & .300323 \end{aligned}$	79484 . 8172 I . 8.4011
0	.00000	.000000	. 00000				
	. 0000						
-I	. 01722	+ .000150	.OI734	49	. 66295	. 315968	
-1	. 03399	. 000588	. 03445	50	. .69105	$\begin{array}{r} .332335 \\ \cdot 349466 \end{array}$	
3	. 05035	. 001302	. 05137	5 I			
4	.06634	. 002279	. 06810	$\begin{aligned} & 52 \\ & 53 \\ & 54 \end{aligned}$	$\begin{array}{r} .70532 \\ .71975 \\ .73434 \end{array}$		
5	. 0 SI99	. 003510	. 08.468				
6	. 09732	. 004986	. IOIII				
	. II236	. 006699	. II742	$\begin{aligned} & 55 \\ & 56 \\ & 57 \end{aligned}$	$\begin{array}{r} .74903 \\ .76402 \\ .77913 \end{array}$	$\begin{aligned} & .426617 \\ & .48342 \\ & .471771 \end{aligned}$	I. OISIS I. 04668 1.076II
8	. 12713	.008644	. 13361				
9	. 14166	.OIOSI5	. 14971				

$\gamma=\mathrm{I} . \mathrm{O}$				$\gamma=1.0$			
φ	X	Y	T	φ	X	Y	T
0				0			
17	. 59414	. II6I40	.41265	28	. 37080	. 087740	. 44199
16	. 49357	. 086268	. 36907	29	. 38220	. 093933	. 45805
15	.4254I	. 067336	. 3333 I	30	- 39359	. 100375	. 47425
14	. 37195	. 053493	. 30177	31	. 40496	. 107075	. 49060
13	. 32720	. 042738	. 27303	32	.41633	. II4043	. 50712
12	. 28832	.03411 ${ }^{-1}$. 24635	33	. 42770	. 121287	. 52383
II	. 25371	. 027063	. 22127	34	. 43908	. 128820	. 54073
Io	. 22236	. 021249	. 19749	35	. 45048	. I36652	. 55784
9	. 1936I	. O16433	. 17477	36	.46190	. 144797	. 57518
8	. 16696	. 012447	. 15297	37	. 47334	. 153267	. 59276
7	. 14206	. 009167	. 13194	38	. 48482	. I62077	.6I06I
6	. 11865	. 006498	. 11160	39	. 49635	.171242	.62873
5	. 09652	. 004365	. 09185	40	.50791	. 180780	. 67714
4	. 07549	. 002708	. 07263	41	. 51954	. 190708	$.66588$
3	. 05543	. 001480	. 05388	42	. 53122	. 201044	. 68494
2	. 03622	. 000640	. 03556	43	. 54297	.211810	. 70436
+I	$.01777$.000I56	$.01761$	44	$.55479$. 223027	. 72.417
	$+$	+	$+$	45	$.56669$. 234719	. 74437
0	. 00000	. 000000	. 00000	46	. 57867		
				47	. 59074	$.25963 \mathrm{I}$	$.78609$
	-	$+$		48	. 60290	. 272908	. 80766
-I	. 01716	.000149	. 01731	49	.61517	. 256772	. 82974
2	. 03377	. 000583	. 03434	50	. 62754	. 301258	. 85236
3	. 04988	. 001286	. 05112	51	. 64002	. 316402	. 87557
	. 06554	. 002243	. 06768	52	. 65262	. 332243	. 89939
5	. 08078	. 003442	. 08405	53	. 65534	. 348823	$.92387$
6	. 09565	. 004873	. 10023	54	.67819	. 366188	- 94905
	. 11017	. 006527	. II625		.69117	. 384389	
8	. 12438	. 008397	. 13214	56	. 70429	. $403+79$	1.00169
9	. 13830	. 010477	. 14790	57	. 71755	. 423515	I. 02926
IO	. 15195	. 012762	. 16355	58	. 73095		
II	. 16536	. 015246	. 17910	59	. 7445 I	. 466686	I. 08717
12	. 17854	. 017928	. 19458	60	. 75822	. 489965	1.11765
13	.19152	. 020805	. 21000				
14	. 20431	. 023876	. 22537				
I5	. 21693	.027138	. 24069		γ	I. I	
16	. 22938	. 030593	. 25600			Y	T
17	. 24170	. $03+240$. 27129	9	X	Y	1
18	. 25388	.03808I	. 28657	0			
19	. 26594	. 042117	. 30187	15	.47885	. 07933 I	- 35022
20	. 27789	. 046349	. 31720	14	. 40438	. 060032	- 31302
21	. 28975	. 050781	. 33255	13	. 34571	. 046645	. 28098
22	. 30151			12			
23	. 31320	$.060258$	$.36342$	11	. 26422	. 028605	$.2255 \mathrm{I}$
24	. 32482	.06531 I	- 37 S95	10	. 22955	. 022228	. 20060
25	. 33639	.070580		9			$.17,04$
26	. 37790	$.076070$	$.41026$	8	$.17069$. 012826	- I5460
27	. 35936	.08178S	.42607	7	.14463	. 009392	. 13309

$\gamma=1.4$				$\gamma=1.5$			
φ	X	Y	T	φ	X	Y	T
0				0			
12	.38109 .31095	. .050213	. 272462	34 35	. 396074	. .113034	.51259 .52834
10	. 25994	. 026303	. 21230	36	.41610	. 126558	. 54429
9	. 21890	. 019424	. 18517	37	. 42576	. 133707	. 56044
8	.18405	. 014209	. 16024	38	. 43543	. 1411129	. 57682
7	. 15350	. 010180	. 13695	39	.445 II	. 148835	. 59344
6	. 12610	. 007054	. 11495	40	. $45+82$. 156838	.6IO3I
5	. 10116	. 004650	. 09399	4 I	. 46456	.165154	. 62745
4	. 07818	. 002839	. 07390	42	. 47433	. 173796	. 64489
3	.0568I	. 001530	. 05455	43	. 48413	. 182782	. 66263
2	. 03678	. 000654	. 03584	44	. 49398	.192127	. 68070
+1	. OI 790	.000158	.01768	45	.50387	. 201853	. 69913
\bigcirc	. 00000	. 000000	. 00000				
	-	$\frac{1}{1}$	-		$\gamma=$	I. 5	
-I	. 01705	. 000148	. 01725				
2	. 03334	. 000573	. 03412		X	Y	T
3	. 04897	. 001255	. 05065	9	X	Y	1
4	.06401	. 002174	. 06689	0			
5	. 07853	. 003316	.08285	II	- 33734	. 040046	. 25112
6	. 09257	. 004667	.09857	10	. 27427	. 028320	. 21743
	. 10618	. 006217	. 11409	9	. 22753	. 020482	. 18848
8	. II940	. 007958	. 1294 I	8	. 18946	.OI4783	. 16243
9	. 13227	. 00988 I	. 14457	7	. 15692	. 010491	. 13839
10	. 14482	. 011981	. 15957	6	. 12824	. 007218	. 11588
II	. 15708	. 014252	. 17445	5	. 10245	. 004731	. 09457
12	. 16907	. 016692	. 18921	4	.07891	. 002875	. 07423
13	. 18082	. 019296	. 20388	3	. 05717	. 001543	. 05472
14	. 19234	. 022062	. 21846	2	. 03693	. 000657	. 03591
15	. 20366	. 0249^{89}	$.2329^{8}$	+1	. 01793	.000158	. 01769
16	. 21479	. 028075	. 24745				
17	. 22575	.031321	. 26187	\bigcirc	. 00000	. 000000	. 00000
18	. 23655	. 034726	.27627		-	+	-
19	. 2472 I	.038292	. 29065	- 1	. 01702	. 000147	. 01723
20	. 25774	.042019	. 30503	2	. 03324	. 000571	. 03406
21	. 26814	. 045909	. 31941	3	. 04875	. 001248	. 05054
22	. 27844	. 049965	. 33382	4	. 06365	. 002158	. 06669
23	. 28864	. $05+190$. 34826	5	. 07799	. 003286	. 08256
24	. 29874	. 058585	. 36275	6	. O9I84	. 004619	.09818
25	. 30877	.063I56	. 37729	7	. 10525	.006r46	. 11358
26	. 31873	. 067907	. 39190	8	. 11825	. 007857	. 12877
27	. 32863	. 072841	. 40658	9	. 13089	. 009746	. $1+379$
28	. 33847	. 077965	. 42136	10	. 14320	. OII805	. 15865
29	. 34827	. 083283	. 43624	1 I	. 1552 I	. 014030	. 17338
30	. 35802	. 088803	. 45123	12	. 16694	. 016417	. 18798
31	. 36775	. 094530	. 46635	13	. 17842	. 018962	. 20248
32	. 37744	. 100472	. 48161	I4	. 18968	. 021664	. 21689
33	. 38712	. 106637	. 49701	15	. 20072	. 024520	. 23123

$\gamma=1.6$				$\gamma=1.6$			
φ	X	Y	T	φ	X	Y	T
0				0			
16	. 21157	. 027529	. 2455 I	\bigcirc	. 00000	. 000000	. 00000
17	. 22225	.030690	. 25975				
18	. 23276	.034005	. 27396		-	$+$	
19	. 24312	. 037474	.28814	-I	.or699	.000147	. 01722
20	. 25336	.041097	. 30232	2	. 03313	. 000569	. 03401
2 I	. 26346	. 044876	. 31650	3	. 04854	. 001240	. 05042
22	. 27346	.048813	. 33069	4	. 06330	. 002142	. 06650
23	. 28336	. 052912	. 34492	5	. 07748	. 003257	. 08228
24	. 29316	. 057175	. 35918	6	. .09114	. 004572	. 09780
25	. 30288	.06I605	- 37350	7	. 10435	. 006076	. 11308
26	. 31253	. 066207	. 38787	8	. 11714	. 007760	. 12815
27	. 32211	.070985	. 40232	9	. 12956	. 0009615	. 14304
28	. 33154	. 075944	. 41686	10	. 14164	. 011636	. 15776
29	. 34111	.081089	. 43149	11	. 15341	. 013817	. 17234
30	. 35054	.086426	. 44624	12	. 16490	. 016154	. 18679
3 I	. 35994	.091961	. 46110	13	. 17613	. 018644	. 20113
32	. 36931	. 097702	. 47610	14	.18713	. 021285	. 21538
33	. 37865	. 103655	. 49124	15	. 19791	. 024073	. 22955
34	. 38798	. 109830	. 50654	16	. 20850	. 027010	. 24366
35	. 39730	. 116235	. 52201	17	. 21891	. 030093	. 25772
36	. 40662	. 122878	. 53768	18	. 22915	. 033323	. 27174
37	. 41593	. 129772	. 55354	I9	. 23925	. 036700	. 28573
38	. 42525	. 136925	. 56962	20	. 2492 I	. 040226	. 29972
39	. 43459	. 144350	. 58593	21	. 25904	. 043902	. 31370
40	. 44394	. 152059	. 60248	22	. 26876	. 047730	-32770
41	. 4533 I	. 160066	. 61931	23	. 27837	. 051712	- 34172
42	. 4627 I	. 168385	. 63641	24	. 28789	. 05585 I	. 35578
43	. 47215	. 177032	. 65382	25	. 29733	. 06015 I	. 36988
44	. 48162	. 186022	. 67154	26	. 30669	. 064616	. 38404
45	. 49114	. 195375	.6896I	27	. 31598	. 069249	- 39827
I				28	-32522	. 074055	. 41258
				29	- 33440	. 079040	. 42699
				30	- 34353	. 084209	. 44150
				31	$\begin{array}{r} .35263 \\ .36169 \\ .37073 \end{array}$	$\begin{aligned} & .089568 \\ & .095123 \\ & .100883 \end{aligned}$	$\begin{aligned} & .45612 \\ & .47088 \\ & .48577 \end{aligned}$
φ	X	Y	T	32 33			
				33			
0	. 29272	.030982	. 22363	34	. 37976	. 106854	$\begin{array}{r} .500 \$ 2 \\ .5 \div 603 \\ .53142 \end{array}$
IO				35	. 38876	. 113046	
	. 23770	. 021749	. 19224	36	. 39777	. 119466	
	.19554.16064	. Or 5433	. 16483	37	. 40676	. 126125	$\begin{array}{r} .54702 \\ .56282 \\ .57884 \end{array}$
7		. 010830	. 13994	38	. 41577	$\begin{array}{r} 133033 \\ .140201 \end{array}$	
6	. 13051	. 007392	. 11686	39	. 42478		
6	.10380.07966	.004815	. 09517	40	. 43380	.147642	. 595 II .61163 .62843
4		. 002912	. 0745^{8}	4 I	. 44285	. 155368	
		. 01557	. 05490	42	.45192	.163392	
2	. 03708	. 000661	. 03598	43	.46102	. 171730	. 64552
$+\mathrm{I}$		$.000158$. 01771	44	. 47015	$\text { I } 80397$	$.66293$
	$+$	$+$	+	45	. 47932	. I89410	$.68067$

$\gamma=1.7$				$\gamma=1.8$			
9	X	Y	T	φ	X	Y	T
0				0			
10	. 31860	.03484I	. 23157	37	- 39815	. 122733	. 54082
9	. 35006	. 023321	. 19658	38	. 40580	. 129416	. 55636
8	. 20245	. 016185	. 16746	39	. 41558	. 136349	. 57212
7	. 16472	. 011206	. 14158	40	. 42430	. I43543	. 58812
6	. 13294	. 007578	. 11788	41	. 43305	. 151011	. 60436
5	. 10521	. 004.903	. 09579	42	. 4418 I	. 158766	. 62088
4	. 08043	. 002949	. 07493	43	. 45061	. 16682 I	.63768
3	. 05793	. 001570	. 05507	44	. 45943	. 175192	. 65478
2	. 03723	.000664	. 03605	45	. 46828	. 183895	. 67222
+1	$\begin{gathered} .01800 \\ + \end{gathered}$	$\begin{gathered} .000159 \\ + \end{gathered}$	$.01772$				
0	. 00000	. 000000	00000	$\gamma=1.8$			
	-	+					
-I	. 01696	. 000147	. 01721		X	Y	T
2	.03303	. 000566	. 03396	φ	X	Y	1
3	. 04833	$.002 \mathrm{I} 26$	$.06632$	0	$0{ }^{0}$. 025369	. 20180
456	. 06295			9	. 26580		
	. 07697	.003229	.08201	8	. 21048	. 017071	. 17042
	.09046	. 004527	. 09742	7	. 16925	. OII628	. 14338
9	. 10347 . 11606 . 12827	.006009	. 11259	- 6	. 13556	. 007781	. 11897
		. 007666	. 12754	54	. 10670	. 004997	.09643
		. 00949°	. 14230		.08125	. 002989	. 07529
10	. 14012	. OII474	. 15689	3	. 05833	. OOI585	. 05525
11	.15167	. 013613	. 17132	2	. 03739	. 000668	.03612
12	. 16292	. 015903	. 18563	+1	. 01803	. OOOI59	. 01774
13	$\begin{array}{r} .17392 \\ .18468 \end{array}$. 018340	. 19982	0	. 00000	. 000000	. 00000
14		. 020923	. 21391				
15	. 19521	. 023648	. 22792		$. \overline{01693}$	$\frac{+}{.000146}$	-
16	. 20556	. 026516	. 24186	-I			. 01719
17	. 21571	. 029525	. 25575	2	. 03293	. 000564	. 03391
I8	. 22571	. 032675	. 26960	3	.04812	. 001226	. 05020
19	. 23555	. 035968	. 28342	456	. 06260	. 002111	.06613
20	. 24525	$\begin{array}{r} .039403 \\ .042982 \end{array}$	$\begin{aligned} & .29722 \\ & .31102 \end{aligned}$		$\begin{aligned} & .07647 \\ & .08979 \end{aligned}$	$\begin{aligned} & .003201 \\ & .004483 \end{aligned}$	$\begin{aligned} & .08174 \\ & .09705 \end{aligned}$
21	. 25482						
22	$\begin{array}{r} .26128 \\ .27363 \\ .28289 \end{array}$. 046707	. 32483	78	. 10262	. 0005944	$\begin{array}{r} .11211 \\ .12695 \\ .14158 \end{array}$
23		.050581	. 33866		. 11501	. 007575	
24		. 054605	. 35252	9	. 12701	. 009368	
25	.29206 .30115 . 31018	$\begin{aligned} & .058784 \\ & .063121 \\ & .067620 \end{aligned}$	$\begin{aligned} & .36642 \\ & .38038 \\ & .39440 \end{aligned}$	Io	. 13866	. 011317	. 15604
26				11	. 14999	. O134I6	. 17034
27				12	. 16102	. OI566I	. 18450
28	.31914	. 072285	. 40850	13	. 17180	. 018049	. 19855
29	$\begin{aligned} & .32805 \\ & .33691 \end{aligned}$	$\begin{aligned} & .077122 \\ & .082135 \end{aligned}$	$\begin{aligned} & .42269 \\ & .43697 \end{aligned}$	14	. 18233	. 020577	$\begin{array}{r} .21249 \\ .22634 \end{array}$
30				15	. 19263	. 023242	
3 I	- 34573 -3545I . 36327	$\begin{aligned} & .087330 \\ & .092715 \\ & .098295 \end{aligned}$		16	. 20274	. 026045	. 24013
32				17	. 21267	.028985	. 25385
33				18	. 22242	. 032060	. 26753
34	. 37201 .38073 .38944	$\begin{aligned} & \text {. } 104079 \\ & \text {. } 110074 \\ & \text {. } 116289 \end{aligned}$		192021	$\begin{aligned} & .23202 \\ & .24148 \\ & .25082 \end{aligned}$	$\begin{aligned} & .035272 \\ & .038622 \\ & .042111 \end{aligned}$.281I8 .29482 - $308+4$
35							
36							

$\gamma=1.9$				$y=1.9$						
φ	X	Y	T	φ	X	Y	T			
0				0						
22	. 26003	. 045740	. 32207	7	. 10179	. 005881	. 111165			
23	.26914	. 049512	. 33572	8	. 11399	. 007487	. 12637			
24	. 27815	. 053430	. 34939	9	. 12580	. 0002251	. 14088			
25	. 28707	. 057496	. 36310	10	.13725	. OIII66	. 1552 I			
26	. 29592	. 061714	. 37687	II	. 14837	. 013227	. 16933			
27	-30469	. 066088	. 39069	12	. 15919	. 015429	. 18341			
28	-31340	. 076622	. 40459	13	. 16975	. 017770	. 19732			
29	. 32205	. 075320	. 41858	14	. 18007	. 020245	. 21111			
30	. 33066	.080189	. 43266	I5	. 19016	. 022855	. 22482			
31	. 33922	. 085234	. 44685	I6	. 20005	. 025596	. 2388			
32	. 34775	. 090460	. 46116	17	. 20975	. 028470	. 25202			
33	. 35625	. 095875	. 47560	18	. 21928	. 031475	. 26555			
34	. 36473	. 101485	. 49018	19	. 22865	. $03+612$. 27904			
35	. 37319	. 107298	. 50493	20	. 23789	.037881	. 2925 I			
36	. 38163	. II 3323	. 51984	21	. 24699	.04I2S5	. 30596			
37	. 39007	. 119569	. 53494	22	. 25598	. 044825	-31942			
38	. 3985 I	. 126044	. 55024	23	. 26.486	. 048502	. 33290			
39	. 40695	. 132760	. 56575	24	. 27364	.052319	- 34640			
40	.4154I	. 139727	. 58149	25	. 28233	. 056280	- 35992			
4 I	. 42387	. 146957	. 59747	26	. 29094	. 060387	. 37351			
42	. 43236	. 154464	.61372	27	. 29948	.0646.44	. 38716			
43	. 44087	. 162259	. 63024	28	. 30795	. 069055	. 40087			
44	. 44940	. 170359	. 64707	29	. 31637	. 073626	. 41466			
45	. 45797	. 178778	. 6642 I	30	. 32474	. 078361	. 42854			
$\gamma=1.9$				31	. 33307	.083264	. 44253			
				32	. 34135	. 088343	. 45664			
				33	. 34961	. 093604	.47057			
9	X	Y	T	343536	.35784.36606.37426	$\begin{array}{r} .099053 \\ .0104699 \\ .110548 \end{array}$				
9										
	. 28737	. 028267	. 20836	37	. 38245	. 116609	. 52935			
8	. 21997	. OL 8142	. 17377	35	. 39064	. 122892	- 51442			
7	. 17426	. OI 2104	. I 453 I	39	. 39883	. 129407	. 55969			
6	.13836	.008003	.12012	40	. 40703	. 136164	. 57519			
5	. 10826	.005098	. 09710	4 I	. 41524	. 143175	. 59093			
4	. 05207	. 003032	. 07566	42	. 42346	. 150452	. 60693			
3	. 05872	. 001600	. 05544	43	. 43170	. 158008	. 62320			
2	. 03753	. 000672	.03619	44	. 43997	. 165857	. 63976			
+1	. 01807	. 000160	.01776	45	. 44527	. 174013	. 65664			
	+	$+$	+							
0	. 00000	. 000000	. 00000	$\gamma=2.0$						
	-	+	-							
-I	. 0169 I	.000146	. 01718							
2	. 03283	. 000562	. 03335	9	X	Y	T			
3	. 0479 I	. 001219	. 05009							
4	. 06227	.002096	. 06595	0						
5	$.07598$.003174	.08147	8	$.23162$	$.019+78$	$.17769$			
6	.08913	. $00+44{ }^{\circ}$.09669	7	. 17994	. or 2646	. 1474			

$\gamma=2.0$				$\gamma=2 . \mathrm{I}$			
φ	X	Y	T	φ	X	Y	T
6		. 008242		O		. I 32828	. 56918
5	. 10992	. .005203	. 09781	4 I	. 49707	. 139635	. .58469
4	.08294	. 003074	. 07605	42	. 41506	. I46700	. 60045
3	. 05914	. 001615	. 05563	43	. 42306	. 154033	. 61649
2	. 03770	. 000675	. 03627	44	. 43109	. 161650	. 63280
+I	.OI8II	.000160	.01778 +	45	. 439 I 4	. 169564	. 64942
0	. 00000	.000000	. 00000				
	-	+	-	$\gamma=2.1$			
-I	. 01688	.000146	. 01716				
2	. 03273	. 000559	.03380		X	Y	T
3	.0477I	.001212	. 04999	φ	X	Y	1
4	.06193	.00208I	. 06577	0			
5	. 07550	.003148	.08I2I	8	.24666	. 021250	. 18243
6	. 08849	. 004398	.09632	7	. 18644	.OI3279	. 14981
7	. 10097	.005819	. 11118	6	. I447I	. 008508	. 12267
8	. 11300	. 007402	. 12579	5	. 11167	. 005316	. 09855
9	. 12461	.009138	. 14019	4	.08383	. 003120	. 07645
10	. 13587	. OIIO2I	. 15440	3	. 05955	. 001630	. 05582
II	. 14679	. O13045	. 16844	2	. 03785	. 000679	. 03635
12	. 15742	. 015207	. 18234	十I	.OI8I4	.00016I	. 01779
13	.16777	. 017502	. Ig6il				
14	. 17788	. OI9928	. 20977	\bigcirc	. 00000	. 000000	. 00000
15	.18776	. 022484	. 22333		-	+	-
16	. 19744	. 025168	. 23682	-I	. OI685	.000145	. 01715
17	. 20693	. 027979	. 25024	2	. 03263	. 000557	. 03375
I8	. 21625	.030917	. 26362	3	. 04775	. 001205	. 04988
19	. 22542	. 033983	. 27695	4	.0616I	.002067	. 06560
20	. 23444	.037177	. 29026	5	. 07503	.003122	. 08095
21	. 24333	.040501	. 30356	6	. 08787	. 004357	. 09599
22	. 25210	. 043955	. 31686	7	. 10018	. 0005760	. 11074
23	. 26076	. 047543	. 33017	8	. 11203	. 007319	. 12525
24	. 26932	. 051266	. 34350	9	. 12347	. 009028	. 13953
25	. 27780	.055128	. 35687	IO	. 13454	. 010880	. 15363
26	. 28619	.05913I	. 37028	II	. 14528	. 012870	. 16755
27	. 29451	. 063279	. $3^{8} 374$	I2	. 1557 I	. OI4992	. 18132
28	. 30276	. 067577	. 39728	13	. 16587	.OI7244	. 19496
29	.31096	.072027	. 41089	14	. 17579	. OI9624	. 20849
30	.31911	.076636	. 42459	I5	. 18547	.022I29	. 22I92
3 I	-32721	.081409	. 43839	16	. 19496	. 024758	. 23527
32	. 33527	. 08635 I	. 45230	17	. 20425	.027510	. 24855
33	. 3433 I	.091468	. 46634	18	. 21337	. 030385	. 26178
34	. 3513 I	.096767	. 48052	19	. 22233	. 033384	. 27497
35	. 35930	. IO2256	. 49484	20	. 23115	. 036507	. 28813
36	. 36727	. 10794 I	. 50933	21	. 23984	. 039755	. 30127
37	. 37523	. 113832	. 52400	22	.24841	. 043129	-31442
38	. 38319	. II9937	. 53885	23	. 25687	. $0+46633$. 32757
39	. 39114	. 126265	. 55390	24	. 26523	. 050268	- 34074

$\gamma=2.2$				$\gamma=2.3$			
φ	X	Y	T	φ	X	Y	T
0				0			
25	. 27350	. 054036	. 35395	10	. 13325	. 010741	. 15286
26	. 23168	. 057942	. 36719	II	.143So	. 012700	. 16666
27	. 28980	.061987	. 38049	12	. 15405	. 014785	. 18031
28	. 29785	.066177	. 39385	13	. 16403	. 016997	. 19383
29	. $305^{8} 4$.070516	. 40729	I4	. 17376	. O19332	. 20723
30	. 31377	. 075007	. 4208 I	I5	. 18326	. 021788	. 22053
31	. 32167	. 079657	. 43444	I6	. I9255	. 024364	. 23374
32	. 32952	.08447I	. 44817	17	. 20165	.027061	. 24689
33	. 33734	. 089454	. 46202	18	. 21058	.029576	. 2599 S
34	-34514	. 094613	. 47601	19	. 21935	.032SII	. 27303
35	. 35291	. 099955	. 49014	20	. 22798	. 035867	. 28605
36	. 36067	. 105488	. 50443	2 I	. 23648	. 039043	. 29905
37	. 3684 I	. 111220	. 51889	22	. 24486	. 042343	. 31204
38	. 37615	. 117158	. 53354	23	. 25312	. 0.45767	. 32505
39	.38389	.123313	. 54839	24	. 26129	. 0493 I9	. 33 So7
40	. 39163	. 129694	. 56346	25	. 26937	. 052999	. 35 III
41	. 39938	.136313	. 57875	26	. 27736	.056SI3	. 36420
42	. 40714	. 143179	. 59429	27	. 2 S 529	.060-62	. 37734
43	. 41492	. 150306	.61009	28	. 29314	. 06.645	. 39054
44	. 42272	. 157707	. 62618	29	. 30094	. 069084	. 40381
45	. 43054	. 165395	. 64256	30	. 30568	. 073465	. 41717
- 2.2				3233		$\begin{aligned} & .077999 \\ & .082692 \\ & .087550 \end{aligned}$	
				$\begin{aligned} & 34 \\ & 35 \\ & 36 \end{aligned}$	$\begin{aligned} & .33925 \\ & .34683 \\ & .35438 \end{aligned}$	$\begin{aligned} & .092573 \\ & .0977 S 3 \\ & .103 I 73 \end{aligned}$	
φ	X	Y	T				
0				3735	$\begin{aligned} & \cdot 36 \text { I } 93 \\ & .36946 \end{aligned}$. 108755	. 51.00
8	. 26801	.023841	. ISS51			. II4539	. 52846
7	. I9404	. OI4029	. 15246	39	. 37700	.120531	. 543 II
6	. 14834	. 008800	. 12407	40	. $3^{8} 453$. 126743	. 55798
5	. I1352	. 005436	. 09932	4 I	.39208.39963	. 133155	$\begin{aligned} & .57306 \\ & .58839 \end{aligned}$
4	. 08477	. 003166	. 07685	42		. 139567	
3	.0599 ${ }^{\text {S }}$. 001645	. 05602	43	. 40720	. It6Sor	.60395 .619S .63600
2	.03So2	. 000683	. 03642	44	. 41478	. 154001	
+1	.01817	.00016I	.0178I	45	. 42239	. 161479	
0-1	. 00000	. 000000	. 00000	$\gamma=2.3$			
		+	-	9	X	Y	T
	. 01683	. 000145	$\begin{aligned} & .017 I 4 \\ & .03370 \end{aligned}$				
2	$.03254$. 000555		$\cdots 11$. I5552
3	.06129	. 001199	. 04977	7	.20318.15236	. 014950	
4		. 002053	. 06542			. 009129	. 12559
5	. 07457	. 003097	. 08069	5	.11550$.0 S 575$. 005566	$\begin{aligned} & .10012 \\ & .07727 \end{aligned}$
6	.08725	. 004318	. 09564				
	.0994I	. 005702	. 11030	32+1		.001662 .000687 .000162	.05622 .03649 .OI-S2
	. IIIIO9	.007239	. 12470				
	. 12236	.008922	. I3SSS				

$y=2.3$				$\gamma=2.4$			
9	1 X	Y	T	φ	X	Y	T
0				7			
0	. 00000	. 000000	. 00000	7	. 21464	. O16r30	. 15914
				6	. 15685	. 009501	. 12726
		+		5	. 11760	. 005706	. 10098
-I	. OI680	. 000145	. OI7 72	4	. 08675	. 003269	. 07772
2	. 03214	. 000553	. 03365	3	. 06087	. 001680	. 05643
3	.04712	.001191	. 04967	2	. 03834	. 000692	. 03653
4	.06097	. 002038	. 06525	+I	. 01824	. 000162	. 01785
5	.07112	. 003072	. 08045		.00000		$\stackrel{+}{+}$
6	. 08666	. 004278	. 09530	0	. 00000	. 000000	. 00000
7	. 09865	. 0005645	. 10987	-I	. 01677	.000145	. 01711
8	. 1 Ior 8	. 007161	. 12417	2	. 03235	. 00055 I	. 03360
9	. 12127	. 008819	. 13824	3	. 04693	. 001186	. 04957
IO	. 13200	. 010513	. I52II	4	. 06066	. 002025	. 06508
II	. 14238	. 012537	. 16580	5	. 07368	. 003048	. 08020
12	. 15245	. 014586	. 17934	6	. 08607	. 004241	. 09498
13	. 16225	. 016758	. 19273	7	. 09792	. 005590	- IO945
If	. 17180	. 019050	.20601	8	. 10928	. 007085	. 12365
I5	. 18112	. 021460	. 21918	9	. 12022	.008719	. 13762
16	. 19023	. 023987	. 23227	10	. 13078	. 010485	. 15139
17	. 19916	. 026631	. 24529	11	. 14099	.012378	. 16497
18	. 20791	. 029389	. 25824	12	. 15090	. 014394	. 17839
19	. 21650	. 032264	. 27116	I3	. 16053	. 016528	. 19167
20	. 22495	. 035256	. 28404	14	. 16991	. 018779	. 20.482
21	. 23326	. 038365	. 29690	15	. 17906	. 021145	. 21787
22	. 24146	. 041593	-30975	16	. 18800	. 023625	. 23084
23	. 24955	. 044943	. 32261	17	. 19675	. 026217	. 24373
24	. 25753	.048415	. 33549	18	. 20533	. 028922	. 25656
25	. 26543	. 052013	. 34839	19	. 21375	.035740	. 26934
26	. 27324	. 055740	. 36133	20	. 22203	. 034670	. 28209
27	. 280098	. 059599	. $37+3 \mathrm{I}$	2 I	. 23018	. 037716	. 29482
28	. 28866	. 063593	. 38736	22	. 23820	.040876	- 30754
29	. 29627	. 067726	. 40048	23	. 24612	.04455	. 32027
30	. 30383	. 072004	. 41367	24	. 25393	. 047553	. 33300
31	-31134	.076430	. 42697	25	. 26165	. 051073	. 34546
32	. 31881	.03ioro	. 44036	26	. 26930	. 054718	. 35356
33	. 32625	. 085749	. 45337	27	. 27686	.058491	. 37140
34	. 33366	. 090654	. 46751	28	. 28436	. 062395	. 38430
35	. 34105	. 095731	. 48128	29	. 29180	. 066435	. 39726
36	. 34842	. 100988	. 4952 I	30	. 29919	. 070615	. 41031
37	. 35577	. 106430	. 50931	3 I	. 30653	. 074939	. 42345
38	. 30312	. 112067	. 52358	32	. 31383	.079412	. 43669
39	. 37046	. 117908	. 53805	33	. 32109	.084041	. 45004
40	. 37781	. 123961	. 55272	34	. 32833	. 088830	. 46352
4 I	. 38516	. 130237	. 56761	35	. 33554	. 093786	. 47713
42	. 3925 I	. 136747	. 58274	36	- 34273	. 098916	. 49089
43	. 39988	. I43501	. 59813	37	. 34991	. 10,4227	. 5048 I
44	. +0727	. 150513	. 61378	38	. 35703	. 109727	. 51891
45	. 41468	. 157795	. 62973	39	. 36424	. 115425	. 53320

$\gamma=2.5$				$\gamma=2.6$						
9	X	Y	T	φ	X	Y	T			
+0	. 37140	. 121330	. 54769	28	. 28025	. 067254				
4 I	. 37857	. 12745 I	. $562+0$	29	. 28752	. 066254	. 38134			
42	. 38575	. 133799	. 57734	30	. 29475	.0659293	. $.49+17$			
43	. 39293	. 140384	. 59253	31	. 30192	. 073520	. 42006			
44	-40013	. 147220	. 60799	32	. 30906	. 077893	. 43315			
45	.40736	. 154318	. 62373	33	. 31616	.082+16	. 44635			
$\gamma=2.5$				3435	$\begin{aligned} & .32323 \\ & .33028 \\ & .33730 \end{aligned}$.087096 . 091939 .096950	$\begin{array}{r} .45967 \\ .47312 \\ .48672 \end{array}$			
φ	X	Y	T							
0				373839	$\begin{array}{r} 34431 \\ .35131 \\ .35830 \end{array}$. 102138	. 50049			
7	. 23004	. 017756	.1636I			.113073.118838	. 52854			
6	. 16193	. 005856	.10188	40	. 36530		. $5+286$			
5	. 11987				. 37229	$\begin{aligned} & .1248 \mathrm{I} 3 \\ & .131008 \end{aligned}$	$\begin{array}{r} .55739 \\ .57215 \end{array}$			
4	.08781	. 003322	. 07816	42	. 37930					
3	.06I34	. 001696	. 05663	43	. 3863 I	. 137435	. 58715			
${ }^{2}$.03851	. 000695	.03665		$\begin{aligned} & .39334 \\ & .40038 \end{aligned}$. 144105	. $602+2$			
+1	. 01828	$\begin{gathered} .000162 \\ + \\ .000000 \end{gathered}$	$\begin{gathered} 01786 \\ + \end{gathered}$	45		. 15 IO30	. 61797			
-	. 00000		. 00000	$\gamma=2.6$						
		. 000000								
-I	$\begin{aligned} & .01675 \\ & .0325 \\ & .04673 \end{aligned}$	$\begin{aligned} & .000144 \\ & .000548 \\ & .001179 \end{aligned}$	$\begin{aligned} & .01710 \\ & .03355 \\ & .04946 \end{aligned}$	\bigcirc	X	Y	T			
3										
4	. 06035	.002011	. 06491	6	-16-80		. 13110			
5	. 07324	. 003025	. 07996	5	. 12232	.006019	. 10283			
6	. 08549	. 00.4204	. 09465	4	.08392	. 003379	. 07863			
7	.09719	. 005536 .007012 . oos623	$\begin{aligned} & \text {-10903 } \\ & .12314 \\ & .13701 \end{aligned}$	32+1	.06182	. 001714	. 05685			
8	. 10841				.03869	. 000699	. 03674			
9	. 11919				$\stackrel{.01832}{+}$.000163	.01788			
ıо	. 12959	$\begin{aligned} & .010362 \\ & .1012226 \\ & .014208 \end{aligned}$	$\begin{array}{r} .15067 \\ .16+15 \\ .17746 \end{array}$	\bigcirc	. 00000	.000000				
11	. 13964						.00000			
I2	- $1+939$. $\overline{016} 72$	$\underset{.000 I_{44}}{+}$	-			
13	. 15886	$\begin{aligned} & .016307 \\ & .018519 \end{aligned}$	$\begin{array}{r} 19062 \\ .20367 \end{array}$	-I			.01708.03350.04936			
14	. 16808			3	$\begin{array}{r} .03216 \\ .04655 \end{array}$	$\begin{aligned} & .0005+7 \\ & .001173 \end{aligned}$				
15	. 17706	$\begin{aligned} & .020843 \\ & .023277 \end{aligned}$. 21660							
16	$\begin{aligned} & .18584 \\ & .19443 \\ & .20285 \end{aligned}$		$\begin{aligned} & .22945 \\ & .24222 \\ & .25493 \end{aligned}$	456	$\begin{aligned} & .06005 \\ & .07282 \\ & .08493 \end{aligned}$. 001999 .003002 .004168	$\begin{aligned} & .06+75 \\ & .07972 \\ & .09433 \end{aligned}$			
17		$\begin{aligned} & .023277 \\ & .025821 \\ & .028475 \end{aligned}$								
18										
19	$\begin{aligned} & .21110 \\ & .21922 \\ & .22720 \end{aligned}$.031238 .034III .037095	$\begin{aligned} & .26759 \\ & .2802 \mathrm{I} \\ & .2928 \mathrm{I} \end{aligned}$	78	$\begin{aligned} & .09649 \\ & .10756 \\ & .15819 \end{aligned}$	$.005+84$. 006940 .008529	$\begin{aligned} & . \mathrm{IO} 62 \\ & . \mathrm{I} 2264 \\ & . \mathrm{I} 36+2 \end{aligned}$			
20										
21				9						
22	$\begin{array}{r} .23506 \\ .2+281 \\ .25047 \end{array}$	$\begin{aligned} & .0+0192 \\ & .043+03 \\ & .046730 \end{aligned}$	$\begin{array}{r} .30540 \\ .31799 \\ .33060 \end{array}$	10	$\begin{aligned} & .12344 \\ & .1383+ \\ & .14793 \end{aligned}$	$\begin{aligned} & .010243 \\ & .012078 \\ & .014029 \end{aligned}$	$\begin{aligned} & .1+998 \\ & .16335 \\ & .17655 \end{aligned}$			
23										
24				12						
25	$\begin{aligned} & .25803 \\ & .26550 \\ & .27291 \end{aligned}$	$\begin{aligned} & .050176 \\ & .0537+3 \\ & .057+35 \end{aligned}$	$\begin{aligned} & .34322 \\ & .35588 \\ & .36558 \end{aligned}$	13141415	$\begin{aligned} & .15724 \\ & .16630 \\ & .17514 \end{aligned}$	$\begin{aligned} & .016093 \\ & .018268 \\ & .020552 \end{aligned}$	$\begin{aligned} & .18961 \\ & .2025+ \\ & .21536 \end{aligned}$			
26										
27										

$\gamma=2.6$				$\gamma=2.7$			
φ	X	Y	T	φ	X	Y	T
0				0			
16	.18376	. 022943	. 22810	4	. 05976	. 001985	. 06459
17	. 19219	. 025441	. 24075	5	. 07240	. 002979	. 07948
18	. 20045	. 028045	. 25334	6	. 08439	.004132	. 09401
I9	. 20855	. 030756	. 26588	7	. 0958 I	. 005432	. 10822
20	. 21651	. 033574	. 27838	8	. 10673	. 006870	. 12215
2 I	. 22434	. 036501	. 29086	9	. 11722	.003437	. 13583
22	. 23205	. 039537	. 30333	Io	. 12732	. OIOI27	. 14929
23	. 23965	. 0.42684	. 31579	II	. 13708	. OII934	. 16256
24	. 24714	. 045944	. 32827	12	. 14652	. 013855	. 17567
25	. 25455	.0493I9	. 34076	13	. 15569	. 015286	. 18862
26	. 26188	.052313	. 35329	I4	. 16460	. 018025	. 20144
27	. 26913	. 056428	. 36586	15	.17328	. 020270	. 21416
28	. 2763 I	.060167	. 37848	I6	.18475	. 022620	. 22678
29	. 28343	.064035	. 39 II7	17	. I9004	. 025074	. 23932
30	. 29050	. 068034	. 40393	18	. 19815	.02763I	. 25180
31	. 29752	.072171	. 41678	19	. 20610	. 030293	. 26422
32	. 30450	.076449	. 42973	20	. 21392	. 033059	. 27661
33	. 31145	. 080873	. 44278	21	. 22160	. 035930	. 28897
34	.31836	. 085450	. 45595	22	. 22916	. 038907	- 30131
35	. 32525	.090184	. 46926	23	. 2366 I	. 04151993	-31366
36	. 33212	. 095084	. 48271	24	. 24396	. 045190	. 32601
37	. 33897	. IOOI55	. 4963 I	25	. 25122	. 048498	. 33838
38	. 34582	. 105405	. 51009	26	. 25840	. 051922	-35078
39	. 35265	. 110842	. 52405	27	. 26550	.055464	. 36323
40	. 35948	. 116475	. 53820	28	. 27254	.059127	- 37572
4 I	. 36632	. 122312	. 55256	29	. 27952	.062915	. 38828
42	-373I6	. 128365	. 56715	30	. 28644	. 066832	. 40091
43	. 38001	. 134642	. 58 I 98	31	. 2933 I	. 070883	. 41362
44	. 38687	.141156	. 59707	32	. 30015	. 075070	. 42643
45	. 39376	. 147919	. 61244	33	. 30695	. 079401	. 43935
				$\begin{aligned} & 34 \\ & 35 \\ & 36 \end{aligned}$	$\begin{aligned} & .31371 \\ & .32045 \\ & .32717 \end{aligned}$	$\begin{aligned} & .083880 \\ & .088513 \\ & .093307 \end{aligned}$.45238 .46554 . 47884
φ	X	Y	T	37 38	. 33388 . 34057 - 34725	$\begin{array}{r} .098267 \\ .103402 \\ .108720 \end{array}$.49230 . 50592 -5I972
				39			
6	. 17470	. 011021	. I3339	40	- 35394	. 114228	. 53372
5	. 12496	. 006198	. 10386	4 I	. 36062	. II9935	. 54792
4	.09007	.003439	. 07912	42	. 3673 I	. 125852	. 56235
3	. 06230	. 001732	. 05707	43	. 37401	. 131989	. 577 OI
2	. 03885	. 000704	. 03682	44	. 38071	. 138356	. 59193
+1	$.01835$	$.000163$.OI790	45	. 38744	. 144965	. 60712
0-1	.00000	.000000	. 00000				
	-	-	-				
	. 01669	.000144	. 01707				
2	. 03207	. 000544	. 03345				
3	. 04636	.001167	. 04927				

$\gamma=2.8$				$\gamma=2.9$			
φ	X	Y	T	φ	X	Y	T
6	.18312	. O1I76I	. I3603	0 40	. 34861	. 112089	. 52940
5	. 12786	. 006395	. IO493	41	. 35515	. 117674	. 54345
4	. O9I30	. 003502	.07961	42	. 36170	. 123463	. 55772
3	. 0 ¢282	. 001751	. 05728	43	. 36825	. 129466	. 57222
2	. 03903	.000708	.03689	44	. 3748 I	. 135694	. 58698
+1	. 01839	.000163	. 01791	45	. 38139	. 112158	. 60200
0	. 00000	.000000	. 00000				
-I	. -1667	$\underset{.000143}{+}$.01706		$\gamma=$	2.9	
2	. 03197	.000542	.03341				
3	.04618	.OOII6I	.04917	0	X	Y	T
4	. 05947	.OOI973	. 06442	9	X		
5	.07199	.002957	. 07925	6			
6	. 08385	.004098	. 09370	6	$.19388$. 012730	$\text { . I } 3921$
7	. 09513	.005383	$.10783$	4	.13105 .09258	.006616	$.106 \text { II }$
8	. 10592	. 006802	$.12167$	4	.O925	.003570	. 05015
9	. 11627	.008348	. 13526	3	. 06334	. COI 772	. 05753
10	. 12623	. 010014	. 14863	2 +1	.03921 .01842	.000712	.03699
II	. $135^{8} 4$.OII795	. 16180	+1	. 01842	. 0.00164	. 01793
12	.14514	. 013687	. 17480	0	. 00000	. 000000	. 00000
13	. 15416	. 015687	. 18765	-I	. 01664	.OCOI 43	. 01704
14	. 16293	. 017791	. 20037	2	. 03188	. 000540	. 033335
15	. 17147	. OI9999	. 21298	3	. 0.4600	. COII55	. $0+906$
16	. 17980	. 022309	. 22550	4	. 05918	. 001960	. 06426
17	. 18794	. 024721	. 23793	5	. 07158	. 002935	.07902
18	. 1959I	. 027234	. 25030	6	.08332	.004064	. 09339
19	. 20373	. 029848	. 2626 I	7	.09448	. 005335	. 10744
20	. 21140	. 032563	. 27489	8	. 10513	. 006737	. I2119
21	.21894	. 035382	. 28713	9	. 11534	. 008263	. 13469
22	. 22636	. 038304	. 29936	10	. 12517	. 009906	$.14797$
23	. 23367	.041332	. 31159	II	. 13464	. OII601	$.16104$
24	. 2.4088	. $04+468$. 32382	12	. 14380	. 013525	. 17395
	. 2.4800	. 047713	. 33608	13	. $15 \sim 69$. 015494	$. I S 670$
26	. 25504	. 051070	. 34836	If	.16132	. OI7566	$\text { . } 19933$
27	. 26201	. 054543	. 36068	15	.16972	. 019738	. 21183
28	. 26891	.058133		16		$.022010$	
29	. 27574	.061846	$.38548$	17	. 18592	. $023+381$. 23657
30	. 28253	. 065684	- 39798	18	. 19375	. 026551	. 24853
31		. 069652	$.41057$	19	. 20143	. 029420	. 26104
32	$.29596$	$.073755$	$.42325$	20	. 20897	.032088	. 27320
33	. 30262	. 077996	. 43603	21	. 21637	. 034856	.28534
34	. 30924			22	. 22366	$.03 \pi, 26$	$.29746$
35	. 31584	.086919	$.46195$	23	.23083	. 040698	$.30958$
36	-32242	. 091612	. 475 II	24	. 23791	. $0+53-76$. 32170
	- 32808	. 096469				.046960	
38		. IOI495	$.50190$	26	$.25 I I_{1}$.050254	-3+600
39	- $3+208$. 106699	. 51555	27	.25864	. 053660	-358=0

$y=2.9$				$\gamma=3.1$						
9	X	Y	T	φ	X	Y	T			
				0						
28	. 26541	. 057182	. 37045	16	. 17608	. 021720	. 22303			
29	. 2721 I	. 060822	. 38276	17	. 18396	. 024053	. 23526			
30	.27876	.064585	. 39514	18	. 19166	.026481	. 24742			
31	. 28537	. $068+75$.40761	19	. 1992 I	. 029007	. 25952			
32	. 29193	. 072496	. 42016	20	. 20661	.031629	. 27158			
33	. 29845	. 076653	. 4328 I	2 I	. 21389	. 034349	. 28361			
34	- 30495	. 080951	. 44558	22	. 22104	. 037168	. 29563			
35	. 31141	. 085396	. 45847	23	. 22810	. 040088	. 30763			
36	. 31786	.089994	.47150	24	. 23505	. 043110	. 31965			
37	. 32429	.094751	. 48467	25	-24191	. 046236	. 33167			
38	. 33070	. 099674	.49801	26	. 24869	. 049470	- 34372			
39	. 33711	. 10.4771	. 51153	27	. 25539	. 052813	. 3558 r			
40	-3435	. 110049	. 52523	28	. 26203	. 056269	. 36794			
4 I	. 34992	. 115517	. 53913	29	. 2686I	.05984I	. 38014			
42	. 35632	.121185	. 55325	30	. 27513	. 063533	. 39240			
43	. 36274	. 127062	. 56759	31	. 28161	. 067348	. 40474			
44	. 36916	. 133158	. 58219	32	. 28805	. 071292	. +1717			
+5	. 37560	. 139485	. 59705	33	. 29444	. 075368	. 42970			
$\gamma=3.0$				3536	$\begin{array}{r} .30081 \\ .30715 \\ .313+7 \end{array}$	$\begin{aligned} & .0795^{8} 3 \\ & .0839+1 \\ & .088+\frac{1}{4} 8 \end{aligned}$	$\begin{array}{r} .44234 \\ .45510 \\ .+6800 \end{array}$			
				373839	$\begin{aligned} & .31977 \\ & .32606 \\ & .33234 \end{aligned}$.093110 .097936 . 102930	. 48105 . $49+26$.50-63			
9	X	Y	T							
		Y								
0	$\begin{aligned} & .13457 \\ & .09393 \end{aligned}$. 10736	40	. 3386 I	. 108102	. 52119			
5		. 006862		45	$.344^{8} 9$.35116	$\begin{array}{r} \text {. II } 13+60 \\ \text {. IIgoi2 } \end{array}$	$\begin{array}{r} \cdot 53195 \\ \cdot 5+893 \end{array}$			
4		.00364I	. 07068	42						
3	. 06387	. 001791	. 05775	$\begin{aligned} & 43 \\ & 44 \\ & 45 \end{aligned}$		$\begin{aligned} & .12+769 \\ & .130741 \\ & .136938 \end{aligned}$	$\begin{aligned} & .56313 \\ & .57758 \\ & .59229 \end{aligned}$			
2	$\begin{aligned} & .03939 \\ & .01846 \end{aligned}$.000717	. 03707							
+I		$\begin{gathered} .000164 \\ + \end{gathered}$	$.01795$							
	$+$									
\bigcirc	. 00000	. 000000	. 00000	$\gamma=3.1$						
- I	$. \overline{01662}$	$\underset{.000142}{+}$	$\stackrel{-01703}{ }$							
2	.03179	. 0000538	$\begin{aligned} & .0333 \mathrm{I} \\ & .04897 \end{aligned}$	9	X	Y	T			
3	. 0.4582	. 001149								
4	.05890	. 001948	.064II	0		.007143	. 10875			
5	$\begin{aligned} & .07119 \\ & .08280 \end{aligned}$	$\begin{aligned} & .002914 \\ & .00403 \mathrm{I} \end{aligned}$	$\begin{aligned} & .07880 \\ & .09310 \end{aligned}$	54	$\begin{aligned} & .13855 \\ & .09536 \end{aligned}$					
6						. 003716	. 08126			
7	. 09383	. 005287	. 10706	32	. 06.442	.001812	. 05799			
8	.10436$.1144+4$	$\begin{aligned} & .006672 \\ & .008178 \end{aligned}$	$\begin{aligned} & .12074 \\ & .13+15 \end{aligned}$		$.03958$.000721	. 03715			
9				+r	. 01850	$\begin{gathered} .000165 \\ + \\ .000000 \end{gathered}$	$\begin{gathered} .01797 \\ + \end{gathered}$			
10	. 12413	. 009799	. I4733	\bigcirc	$\begin{gathered} + \\ .00000 \end{gathered}$					
II	$\begin{aligned} & .13347 \\ & .14250 \end{aligned}$	$\begin{array}{r} .011530 \\ .013367 \end{array}$	$\begin{aligned} & .16032 \\ & .17313 \end{aligned}$. 00000			
12					-	+	. -1701			
13	. 15 I 25	. 015307	$\begin{aligned} & .18579 \\ & .19831 \\ & .21072 \end{aligned}$	-I	. 01659	.0001. 42				
14	$\begin{aligned} & .15975 \\ & .16802 \end{aligned}$	$\begin{aligned} & .0173+6 \\ & .019485 \end{aligned}$		23	$\begin{aligned} & .03171 \\ & .04564 \end{aligned}$	$\begin{aligned} & .000536 \\ & .001143 \end{aligned}$	$\begin{aligned} & .03326 \\ & .04887 \end{aligned}$			
15										

$\gamma=3.3$				$\gamma=3.4$						
φ	X	Y	T	φ	X	Y	T			
40	. 32939	. 104460	. 51352	0 28 28	. 25262	. 053742	. 36083			
4 I	. 33543	. 109613	. 52702	29	. 25885	. 057126	. 37270			
42	. 34146	. II 495 I	. 54072	30	. 26503	. 060623	. 38464			
43	. 34750	. 120486	. 55464	3 I	. 27117	. 064236	. 39665			
44	. 35355	. 126225	. 5688 I	32	. 27726	. 067968	. 40874			
45	. 35961	. 132181	. 58323	33	. 28331	.071825	. 42093			
$\gamma=3.3$				343536	.28933 .29533 . 30130	$\begin{aligned} & .075810 \\ & .079930 \\ & .084190 \end{aligned}$	$\begin{aligned} & .43322 \\ & .44564 \\ & .45818 \end{aligned}$			
				373839	$\begin{aligned} & .30725 \\ & .3 \mathrm{I} 320 \\ & .3 \mathrm{I} 9 \mathrm{I} 3 \end{aligned}$	$\begin{aligned} & .088596 \\ & .093 I 54 \\ & .09787 \mathrm{I} \end{aligned}$.47086.48369 .48369.49669			
φ	X	Y	T							
0				40	. 32505	. 102754	. 50987			
5	. 14836	. 007850	. 11199		$\begin{array}{r} .33097 \\ .33689 \end{array}$	$\begin{aligned} & .1078 \mathrm{II} \\ & .11305 \mathrm{I} \end{aligned}$	$\begin{aligned} & .52324 \\ & .53681 \end{aligned}$			
4	. 09850	.003885	. 08249							
3	. 06559	. 001857	. 05849	434445	.34282 .34875 . 35470	$\begin{aligned} & .118482 \\ & .124114 \\ & .129957 \end{aligned}$	$\begin{aligned} & .55061 \\ & .56+64 \\ & .57892 \end{aligned}$			
2	. 03996	. 000730	. 03733							
+I	. 01857	.000165	. 01800							
	$+$	$+$	+	$\gamma=3.4$						
0	. 00000	.000000	. 00000							
	-	$+$	-							
-I	.OI654	. 000142	. O1698							
2	.03153	.000532	. 03317	φ	X	Y	T			
3	. 04530	.OOII32	. 04869							
4	. 05808	. OOI912	.06365	0						
5	. 07004	. 002852	.07814	4	$\begin{array}{r} .15467 \\ .10023 \end{array}$	$\begin{array}{r} .008315 \\ .003979 \end{array}$				
6	.08130	. .003936	. 09223				$.083 I 4$			
7	.09198	. 00515 I	. 10596	32	.06619	. 00188 I	. 05875			
8	. 10214	.006488	. II940		. 04015		$.03742$			
9	. 11185	. 007940	. 13256	+1	.01861 +	$\begin{gathered} .000166 \\ + \end{gathered}$	$\begin{gathered} .01802 \\ + \end{gathered}$			
10	.121I7	. 009499	. I4549	0	$.00000$.000000				
II	. 13014	. OiIIGI	. 15822				. 00000			
12	. 13880	.OI2922	. 17076		. 01651	$\stackrel{+}{.00014 \mathrm{I}}$	-			
13	.14718	.OI4779	.I83I5	-I			$\begin{array}{r} .03312 \\ .04859 \end{array}$			
14	. 1553 I	.01673I	. 19540	23	$\begin{aligned} & .03 \mathrm{I} 44 \\ & .045 \mathrm{I} 3 \end{aligned}$	$\begin{array}{r} .00053 \mathrm{I} \\ .001127 \end{array}$				
15	. 16321	. 018774	. 20753							
16	. 17091	.020909	. 21956	456	.05781 . 06967 .08082	.OOIGOI . 002833 .003906	.06349 .07792 .09I94			
17	. 17842	.023I34	. 23150							
18	. 18576	. 025449	. 24337							
19	. 19295	. 027854	. 25518	7	.09138	.005108	. 10560			
20	. 20000	. 030350	. 26694		. IOI43	. 007864	$\begin{aligned} & .118 g^{6} \\ & .13205 \end{aligned}$			
2 I	. 20692	. 032937	. 27868	9	. 11103					
22	. 21372	.035617	. 29039	10	. 12023	. 009404	. 14490			
23	. 22042	.038391	. 30210	II	. 12908	. OI IO44	$\begin{aligned} & .15754 \\ & .17000 \end{aligned}$			
24	. 22702	.0.4126I	. 31380	I2	. 13763	. 012782				
25	. 23353	. 044229	. 32551	13	.14589	$\begin{aligned} & .014614 \\ & .016538 \\ & .018552 \end{aligned}$				
26	. 23997	. 047296	. 33725	14	.15391		$\begin{array}{r} 19446 \\ .20651 \end{array}$			
27	. 24633	.050466	. 34902	I5	. 16170					

$\gamma=3.5$				$\gamma=3.6$			
9	X	Y	T	φ	X	Y	T
0				0			
16	. 16928	. 020655	. 21845	7	.09080	. 005066	. 10525
17	. 17668	. 022847	. 23030	8	. 10074	.006374	. II854
18	. 18391	. 025127	. 24208	9	. 11022	.007791	. 13155
19	. 19099	. 027496	. 25380	10	.II93I	.0093II	. 14432
20	. 19793	. 029953	. 26548	II	. I2806	. 010031	. 15688
21	. 20474	. $032+99$. 27712	I2	. 13649	. O12646	. 16926
22	. 21144	. 035136	. 28873	I3	. 14464	. OI4453	. 18148
23	. 21803	. 037866	. 30035	14	. 15255	. 016351	. 19356
2.4	. 22452	. 040689	. 31196	I5	. 16023	. 018337	. 20552
25	. 23093	. 043608	-32357	16	.16770	. 020410	. 21737
26	. 23725	. 046625	. 33522	17	. 17500	. 022570	. 22914
27	. 2435 I	. 049742	. $3+689$	18	. 18212	. 024816	. 24083
28	. 24969	.052963	. 35860	19	. 18910	. 027149	. 25246
29	. 25582	.056290	. 37037	20	. 19593	. 029569	. 26405
30	.26190	. 059727	. 38220	21	. 20264	. 032076	. 27560
31	. 26792	. 063277	. 3941 I	22	. 20923	. 034672	. 29713
32	. 27391	. 066945	. 40609	23	. 21571	. 037359	. 29864
33	. 27986	. 070735	. 41818	24	. 22210	. 040137	. 31016
34	. 28577	. 074652	. 43036.	25	. 2281 I	. 043009	. 32169
35	. 29166	.078700	. 44267	26	. 23463	. 045973	. 33323
36	. 29753	. 082885	. 45510	27	. 24078	. $0+49045$. $34+8$ I
37	. 30338	. 087213	. 46766	28	.24687	.052213	. 35643
38	. 30921	. 091690	. 48038	29	. 25289	. 055485	. 36810
39	. 31503	.096322	. 49327	30	. 25887	. 058865	. 37983
40	. 32085	. IOIII7	. 50632	3 I	. 26479	. 062356	. 39164
4	. 32667	. 106083	. 51957	32	. 27068	. 065962	. 40352
42	. 33248	. 1111228	. 53302	33	.27652	. 066688	. 41550
43	. 33830	. 116560	. 54669	34	. $2823+$. 073538	. +2759
44	-34412	. 122089	. 56060	35	. 2 SSI3	. 077517	. +3975
45	. 34996	. 127826	. 57475	36	. 29389	.08163I	. 45811
				373839	.29964 30537 . 31110	$\begin{aligned} & .085884 \\ & .090283 \\ & .094835 \end{aligned}$	
φ	X	Y	T	404142	$\begin{aligned} & .3 I 68 \mathrm{I} \\ & .32252 \\ & .32823 \end{aligned}$	$\begin{array}{r} .0995+6 \\ .104+25 \\ .109478 \end{array}$	$\begin{aligned} & .50280 \\ & .51602 \\ & .52935 \end{aligned}$
0			. 08383				
4	. 10210	. 004080		42	$\begin{array}{r} \cdot 33395 \\ \cdot 33967 \\ \cdot 3+540 \end{array}$	$\begin{aligned} & .114716 \\ & .120147 \\ & .1257 S 1 \end{aligned}$	$\begin{aligned} & .5429 \\ & .55668 \\ & .57070 \end{aligned}$
3	. 06683	. 001905	. 05901	43 44			
$\stackrel{2}{1}$. 04036	. 000740	. 03750	45			
+r	. 18185	.000166	. 01804	45			
0	. 00000	. 000000	. 00000	$y=3.6$			
				9	X	Y	T
-I	. OI649	. 000141	. 01696				
2	. 03135	. 0000529	.03307	4			
3	. 04496	. 001121	. $0+880$	4 3	. .06748	.001931	$\begin{aligned} & .05+5 \\ & .05928 \end{aligned}$
4	. 05755	. 001890	. 06335	2	. 04056	. 000745	. 03760
5	. 06930	. 002813	.07771	+1	. 01868	. 000167	. 01806
6	. 08035	. 003876	.09166		+	+	+

$y=3.6$				$\gamma=3.7$			
0	X	Y	T	φ	X	Y	T
0				0			
-	. 00000	. 000000	. 00000	4	. 10527	.0043II	.08536
				3	.06816	. 001957	. 05956
		$+$		2	. $0+4076$. 000750	. 03769
-I	. OI6 46	.000141	. 01695	+I	. 01872	.000167	. OI 80S
2	.03127	. 000527	. 03303		+		+
3	. $0+479$. 001116	. 04840	-	. 00000	.000000 +	.00000
4	. 05729	. 001878	. 06320	-I	.016+4	.000140	. 01694
5	.06894	. 002794	. 07750	2	.03119	.000525	. 03299
6	. 07989	. 003847	.09139	3	. $0+463$. 001110	.04832
7	. 09023	. 005025	. 10491	4	.05704	. 001868	. 06306
8	. 10005	. 0063 I 8	. 11812	5	.06859	. 002776	. 07730
9	. 10943	.007719	. 13105	6	. 07943	. 003 SI9	.09II2
IO	. 11841	. 0009221	. 14375	7	.08967	. $00498+$. $10+58$
I I	. 12705	. 010821	. 15623	8	. 09939	.006264	. 11771
12	. 13537	. 012514	. 16853	9	. IoS66	.007648	. 13058
13	- $143+2$. 014298	. IS067	10	. II754	.009133	. I4320
I 4	- I5I22	. 016169	. 19267	I I	. 12607	.010713	. I5560
I5	. 15879	. OISI23	. 20454	12	. 13429	. 012385	. 16782
16	. 16616	. 020172	. 21631	13	. I 4223	. 014146	. 17988
I7	. 17335	.022301	. 22800	14	. 14993	. 015993	. I9180
IS	. 18037	. 024515	. 23960	15	. 15740	. 017925	. 20360
19	. 18724	.026813	. 25115	16	. 16467	. 019794	. 21529
20	. 19397	. 029197	. 26265	17	. 17176	. 0220.40	. 22689
21	. 20053	. 031667	.27411	IS	. 17568	. 024223	.23841
22	. 20707	. $03+224$. 28555	19	. 18545	.026488	. 24988
23	. 21346	. 036869	. 29698	20	. 19209	. 023837	. 26129
24	. 21975	. 039604	- 30840	2 I	. 19859	.03127I	. 27267
25	. 22595	. $0+42432$. 31984	22	. 20499	. 033790	. 28402
26	. 23208	. 045353	-33130	23	. 21128	.036396	. 29537
27	. 23 SI3	. 048371	. 34278	24	. 21748	. 039090	. 30671
$2 S$. 21412	.051488	-3543I	25	. 22359	. 041874	. 31805
29	. 25005	.054708	. 36588	26	. 22962	. $0+7751$	- $329+2$
30	. 25592	. 058033	. 37752	27	. 23558	. 047722	- 34082
3 T	. 26175	.06I467	. 38923	23	. 24147	. 050791	-35225
32	. 26754	.065014	. 40101	29	. 2.4731	. 053960	. 36374
33	. 27329	. 068679	-4I289	30	. 25309	. 057232	. 37528
34	. 27901	. $072+65$. 42488	3 I	. 25883	. 060612	. 38690
35	. 28.47 I	.076378	. 43697	32	. 26453	. 064103	. 39859
36	. 29038	. $\mathrm{C8} 0+22$.449I9	33	. 27019	. 067703	. 41037
37	. 29603	.084604	. 46155	34	. 2758 I	.07I433	. 42226
33	. 30166	.088928	. 47405	35	.2SIf I	. 075282	- +3.426
39	. 30729	. 093403	.4867I	36	. 28699	.07926I	-4+638
40	-31291	. 0988034	-49954	37	. 29255	. 083374	. 45863
4	. 31852	. 102829	. 51256	38	. 29809	.087627	. 47103
+2	. 32413	. 107796	. 52578	39	. 30363	. 092027	. 48358
43	- 32975	. II2944	-5392I	40	. 30915	. 0.096582	. 49631
44	. 33537	.1182SI	. 55287	41	.31467	. 101297	. 5092 I
45	. $3+101$.123817	. 56677		. 32019	. 106181	. 52232

$\gamma=3.7$				$\gamma=3.8$			
φ	X	Y	T	φ	X	Y	T
0				. 0			
43	-32572	. 111242	. 53564	34	. 27271	.070436	. 41971
44	. 33125	. 116489	. 54918	35	. 27822	. 074224	. 43161
45	. 33678	. 121932	. 56296	36	. 28371	.078139	. 44363
$y=3.8$				373839		$\begin{aligned} & .082186 \\ & .086371 \\ & .090701 \end{aligned}$	$\begin{aligned} & .45578 \\ & .46808 \\ & .48053 \end{aligned}$
	X						
φ		Y	T	40	. 30551	.095181	. 49316
0	. 10864	. 004444	.086I9	$\begin{aligned} & 41 \\ & 42 \end{aligned}$	$\begin{array}{r} .31094 \\ .31637 \end{array}$	$\begin{aligned} & .099820 \\ & .104624 \end{aligned}$	$\begin{array}{r} .50596 \\ .51896 \end{array}$
4							
3	. 06886	. 001984	. 05985	43	. 32180	. 109602	. 53217
2	. 04097	. 000755	. 03778	44	$\begin{array}{r} .32723 \\ .33268 \end{array}$	$\begin{aligned} & .114763 \\ & \text { I } 20116 \end{aligned}$	$\begin{aligned} & .54560 \\ & .55927 \end{aligned}$
+I	.01876 +	.000168 +	.01809 +	45			
0	. 00000	. 000000	. 00000	$\gamma=3.9$			
	-01641	+	-16	0	X	Y	T
-1	. 01641	. 000141	. 01693	9			
3	. 03111	. 000523	294	0			
3	. 04448	. 001105	-3	4	. 11126	.00.4592	.08709
4	. 05678	. 001857	. 06291	3	. 06960	. 002013	. 06015
5	. 06824	. 002757	. 07710	2	.04118	. 000761	.03-88
6	. 07898	. 003791	. 09085	+1	. 01880	. 000168	. 01811
7	.08912	. 004945	. 10424		+	+	
8	. 09874	. 006210	. 11731	\bigcirc	. 00000	.000000	. 00000
9	. 10791	. 007580	. 13010		-	+	-
10	. 11668	. 009048	. 14264	- I	. 01639	. 000140	. 0169
11	. 12511	. 010609	. 15198	2	.03102	. 000521	. 0328
12	. 13322	. 012260	. 16712	3	. 04431	.001099	. 0481
13	. 14107	. 013998	. I791I	4	. 05654	. 001846	. 06277
14	. 14866	. 015821	. 19095	5	. 06790	. 002739	.07690
15	. 15604	. 017728	. 20266	6	.07854	. 003763	. 09059
16	. 16321	.019717	. $21+28$	7	. 0.08558	. 004906	. 10392
17	. 17020	. 021787	. 22580	8	. ogSio	. 006159	. II691
18	. 17703	. 023940	. 23724	9	-10717	. 007513	. 12963
19	. 18370	. 026173	-. 2.4862	10	. 11584	. 00 Sg6t	. If 211
20	. 19024	.028489	. 25996	II	. $12+17$. 010507	. I5 437
21	. I9666	. 030888	. 27125	12	. 13219	. 012138	. 1664
22	. 20296	. 033370	. 25253	13	. 13993	. 013 S55	. 17 S 35
23	. 20916	. 035938	. 29373	14	. 14743	. 015655	. IgOII
24	. 21527	. 038592	. 30504	15	. 15471	. 017537	. 20176
25	. 22128	.041334	. 31630	16	. 16179	. 019-499	. 21329
26	. 22722	. 044168	. 32758	17	. 16869	. 021542	. 22473
27	. 23309	. 047094	. 33 SS9	18	. 1754^{2}	. 023665	. 23610
28	. 23890	. 050116	. 35024	19	. IS300	. 025568	. 24740
29	. 24165	. 053236	. 36164	20	. I8S45	. 025152	. 25566
30	. 25034	. 056458	. 37310	21	. 19.478	.030517	. 26957
31	. 25599	. 059785	. 3 S462	22	. 20099	.032964	. 28107
32	. 26160	. 063221	. 39622	23	. 20710	. 035494	. 29224
33	. 26717	. 0667%	. 40792	27	. 21312	.03Silo	. 30312

$\gamma=3.9$				$\gamma=4.1$			
φ	X	Y	T	φ	X	Y	'
0				0			
25	. 21905	. 0.40813	. 31460	16	. 16040	. 019288	. 21232
26	. 22490	. $0+43604$. 325 So	17	. 16721	. 021304	. 22369
27	. 23068	. $0.46+87$	-33703	18	. 17385	. 023399	. 23498
28	. 23640	. 049464	. 34829	19	. 18035	. 025572	. 2462 I
29	. 24206	. 052537	. 35960	20	. I867I	.027824	. 25739
30	. 24767	.0557II	-37097	21	. I9295	. 030156	. 26853
31	. 25323	.058987	. 38241	22	. 19907	. 032569	.27964
32	. 25875	.062371	- 39392	23	. 20510	. 035065	. 29074
33	. 26424	. 065865	. 40552	24	. 21103	. 037643	. 30183
$3+$. 26969	.069474	. 41722	25	. 21688	. 040307	. 31293
35	. 27512	. 073204	.42903	26	. 22264	. 043059	. 32405
36	. 2 So52	. 077057	. +4096	27	. 28834	. 045900	. 33520
37	. 28590	. 081041	. 45302	28	. 23398	. 048833	. 34638
38	. 29127	. $0 \mathrm{O}_{5} \mathrm{I} 6 \mathrm{I}$. 46522	29	. 23955	. 051862	-35761
39	. 29663	.089422	. 47758	30	. $2+508$. 054988	- 36889
40	. 30198	. 093832	. 49010	31	. 25056	.0582I6	. 38024
4 I	. 30732	. 098396	. 50280	32	. 25600	. 061549	. 39167
42	. 31266	. 103124	. 51570	33	. 26140	. 06499 I	. 40318
43	. 31801	. IoSo23	. 52880	34	. 26677	. 068546	. 41479
4	. 32336	. II3IOI	. 54212	35	. 27212	. 072219	. 42651
45	. 32872	. 118367	. 55568	36	. $277+4$.076014	- +3835
$y=4.0$				$\begin{aligned} & 37 \\ & 38 \\ & 39 \end{aligned}$	$\begin{aligned} & .28274 \\ & .28802 \\ & . \mathrm{I}_{93} 90 \end{aligned}$	$\begin{aligned} & .079937 \\ & .033993 \\ & .088189 \end{aligned}$	$\begin{aligned} & .45032 \\ & .46242 \\ & .47469 \end{aligned}$
9	X	Y	T				
				4041	.29856.30382	.092530	.46711
							$\begin{aligned} & .49971 \\ & .51251 \end{aligned}$
0		. 004759	. 08807	42	. 30908	. 101678	
4	. 07070					. 106500	$\begin{array}{r} .52551 \\ .53 S 72 \\ .55218 \end{array}$
2	.04140	. 0000766	. 03797	$\begin{aligned} & 44 \\ & 45 \end{aligned}$	$\begin{array}{r} .31435 \\ .3196 I \\ .32+89 \end{array}$	$\begin{aligned} & .111498 \\ & .116682 \end{aligned}$	
+	. 01884	. 000169	.OI8I3				
	$+$	$+$	+				
I	. 00000	.000000	. 00000	$\gamma=4.1$			
	-	$+$					T
-I	. 01636	. 000140	. 01690	9	X	Y	T
2	. 03094	. 0005 I9	. 03285				
3	. 04415	. 001094	. 04805	4	. II	. 00.4949	8914
4	. 05629	. 001836	. 06263	3	. 07116	:002075	.06078
5	. 06756	. 002722	. 07670	2	. 041162	.000772	.03So7
6	.078II	. 003737	. 09033	+1	. 01888	.000169	.OI8I5
	.oSSo5	. 004868	.10359		+		
8	. 09747	. 006108	. 11652	-	. 00000	. 000000	. 00000
9	. $1064+$. 00744^{8}	. 12917			$+$	
10	. 11502	. 008883	. I415S	-I	. 01634	.000139	. OI689
II	. 12325	. 010408	. 15377	2	. 03085	. 000517	.0328I
12	. 13117	. 012019	. 16577	3	. 04399	. oolos9	. 04797
13	. 13882	.013715	. 17760	4	. 05605	. 001825	. 06250
It.	. 14623	. 015493	. 18929	5	. 06723	. 002704	. 07651
I_{5}	. $153+2$. OI735I	. 20086	6	. 07769	.003710	. 09008

$\gamma=4.1$				$y=4.2$			
φ	X	Y	T	φ	X	Y	T
0				0			
7	. 08753	.00483I	. 10328	0	. 00000	. 000000	. 00000
8	. 09686	. 006058	. 11615				
9	. 10573	. 007383	. 12873				
Io	. 1142 I	. 008802	.14107	-I	. 01631	.000139	. 01687
II	. 12235	. 010310	.15319	2	.03077	. 000516	.03276
12	.13018	. OII9O3	. 16512	3	. 04.438	. 001085	.04788
13	. 13774	. O13578	. 17688	4	. 0558 I	. 0018 I 6	. 06236
14	. 14506	. 015334	. 18850	5	.06691	. 002687	.07632
15	. 15215	. 017169	. 20000	6	. 07727	.003684	. 08983
16	. 15905	. O19082	. 21138	7	.08703	. 004795	. 10296
17	. 16577	.021072	. 22268	8	.09626	. 006009	. 11576
18	.17233	.023139	. 23389	9	. 10504	. 007321	. 12828
19	.17874	. 025283	. 24505	10	. 11343	.008725	. I4055
20	.18501	. 027505	. 25615	11	. 12148	. 010216	. 15260
21	.19117	. 029806	. 26722	12	. 12922	. OII790	. 16446
22	.19721	. 032186	. 27826	13	. 13669	. 013446	. 17616
23	. 20315	. 034647	. 28928	14	. I 4392	. OI5ISI	. IS771
24	. 20900	. 037190	. 30030	15	. 15092	. 016993	. I 99 I 3
25	. 21477	. 039817	-3II32	16	. 15774	. 018882	. 21045
26	. 22045	.042529	. 32236	17	. $16+37$.020847	. 22167
27	. 22607	. 045330	. 33342	18	. 17084	. 022888	. 23282
28	. 23163	. 048222	- $3+452$	19	.17717	.025004	. 24390
29	. 23712	. 051207	. 35567	20	.IS337	. 027197	. 25493
30	. 24257	. 054288	. 36687	21	. $1894+$. 029468	. 26592
31	. 24797	. 057469	. 37814	22	. 19540	.031816	. 27688
32	. 25333	. 060754	- 38948	23	. 20126	. 034243	.25733
33	. 25 S65	.064I45	.40091	24	. 20703	.036752	. 2987
34	. 26395	.06764S	. $4^{12}+4$	25	. 21272	. 039342	$.30972$
35	. 26921	. 071266	. 42407	26	. 21833	.042013	$.32068$
36	. 27445	. 075005	. 43582	27	$.223 \mathrm{~S}_{7}$. 0447 So	.33167
	. 27967	.078870	. 44770	28	. 22934	. 047631	. 34269
38	. 28, 88	.082S65	. +5971	29	. 23476	.050574	. 35376
39	. 29008	.08699S	. 47188	30	. 2.4013	. 053612	. 36488
40	. 29526	.091273	. 4^{8+21}	31	. 24546	. 056748	
4 I	. 30044	. 095699	. 49672	32	. 25074	. 059985	. 38733
42	. 30562	. 100282	. 5094 I	33	. 25599	. 063328	. 39568
43	. 31080	.105031	-5223I	34			. 41012
44	. 31599	. 109953	. 53543	35	. 26639	.070346	. 4216
45	. 32118	. 115057	. 54578	36	. 27155	. 074031	. 43333
$\gamma=4.2$				$\begin{aligned} & 37 \\ & 38 \\ & 39 \end{aligned}$	$\begin{aligned} & .27670 \\ & .28 \text { IS3 } \\ & .28695 \end{aligned}$	$\begin{aligned} & .077839 \\ & .081775 \\ & .085847 \end{aligned}$. 44512 . 45 ,05 .46913
	X	Y	T				
		Y		40	$.29206$.090060	. 48137
			.09032	$\begin{aligned} & 41 \\ & 42 \end{aligned}$	$\begin{aligned} & .29717 \\ & .30227 \end{aligned}$	$\begin{aligned} & .09+420 \\ & .095935 \end{aligned}$	$\begin{aligned} & .49378 \\ & .50638 \end{aligned}$
4	.12122 .07199	.005169 .002109					
2	.04185	. 000077	. 03 SI 7	43	$\cdot 30737$. 103612	.51919
+1		$.000170$. OISI7	44	- 31248	$10 S_{4} 60$	$.53221$
		$+$	+	45	. 31760	. 113488	. $5+5+5$

$\gamma=4.3$				$y=4.4$			
9	X	Y	T	φ	X	Y	T
0				0			
4	.12561	. 00543 I	. 09165	43	- 30403	. 102241	. 51614
3	. 07286	. $002 \mathrm{I}+3$.06144	44	. 20907	- IO-OI8	. 52906
2	. 04207	. 000783	. 03827	45	. 3 I 411	. 111972	. 54222
+1	.01896	. 000170	. 01819				
	+	+	+	$y=4.4$			
\bigcirc	. 00000	. 000000	. 00000				
	-	+					
-I	. 01629	.000139	. 01686	9	X	Y	T
2	. 03070	. 0005 I 4	.0327I				
3	. $0+368$. 001079	. 04779	0	. 07378	.002180	. 06180
4	. 05558	. 001805	. 06222	3			
5	. 06658	. 002670	. 07612	2	. $0+4231$.000789	.03837
6	. 07686	. 003659	.0S953	+1	. orgoo	.000171	. OIS2I
7	. 08652	. $00+759$. 10265	\bigcirc			
8	. 06566	. 005962	. 11539		. 00000	. 000000	. 00000
9	. 10436	. 007260	. 12784		-	$\underset{.000139}{+}$	$. \overline{-0} 685$
10	. 11266	. 008649	. 14004	-I	. 01626		
II	. I206I	. 010123	. 15203	2	. 03061	. 000512	. 03268
12	. 12827	. 011680	. 16383	3	. $0+4353$. 001075	. $0+777$
13	. 13565	. 013317	. 17545	5	. 05535 . 06627 .07646	. 001796	.06209 . 07594 . 08933
14	. 14279	. 015031	. I8693			. 002654	
15	. 14972	. 016821	. 19829			.003634	
16	. 15644	. 018687	. 20953	789	. 08603	. 004724	. 10235 . II 502 . 12741
17	. 16300	. 020623	. 22069		. 09508	. 005915	
18	. I6939	. 022643	. 23176		. 10369	.007200	
19	. 17563	. 024733	. 24277	IO	. itigo	. 008574	$\begin{array}{r} 13955 \\ .15147 \\ .16320 \end{array}$
20	.18175	.026898	. 25373	1 I	. 11977	. 010033	
21	. 18774	. 029138	. $26+65$	12	. 12734	. OII572	
22	. 19363	.031456	. 27554	13	. 13464	. or3190	. 17476 . IS6I8 . 19747
23	. 1994	. 033851	. 28642	14	- I4170	.OI4884	
24	. 20510	. 036326	. 29729	I5	. 14854	. 016654	
25	. 21071	. 038888	. 30816	16	. 15519	. OI8+97	. 20865
26	. 21525	. 0.41521	. 3 IgO5	I_{7}	. 16166	.020414	$\begin{aligned} & .21973 \\ & .2307+ \end{aligned}$
27	. 2217 I	. $0+4246$. 32996	18	. 1679^{8}	. 022404	
28	. 22711	. 047058	.34091	19	. 17414	. $02+468$. 24168
29	. 23246	. 049960	. 35190	20	.18018	. 026505	$\begin{aligned} & .25257 \\ & .26342 \end{aligned}$
30	. 23775	. 052956	. 36295	2 I	. 18610	. 028817	
3 I	. 24300	. 056048	. 37406	22	.19191	.031105	. 27424 . 28504 . 2958
32	. 24821	. $0592+0$. 38524	23.	. 19762	.033469,	
33	. 2533 S	. 062536	. 39651	24	. 20323	.035912	
34	. 25352	. 065940	. 40787	25	. 20877	.038434	
35	. 26364	. $069+55$. 41933	27	. 21423	.041038.043727	
36	. 26873	. 073087	. 43091		. 21962		
37	. 27380	.0753+0	. 44262	28	. 22495	. 046501	$\begin{aligned} & .33917 \\ & .35009 \\ & .361176 \end{aligned}$
38	. 27886	. 080721	$.45+46$	29	. 23022	$\begin{array}{r} .049364 \\ .052319 \end{array}$	
39	. 2839 I	.084733	. 46645	30	. $235+5$		
40	. 28894	. 088885	. 47860	3 I	. 24062	. 055370	. 37209
4 I	. 29397	. 093182	. 49093	32	.24576.25086	$\begin{aligned} & .053518 \\ & .061768 \end{aligned}$	$\begin{array}{r} .38320 \\ .39+39 \end{array}$
42	. 29900	.09763I	. $503+3$	33			

$\gamma=4.5$				$y=4.6$			
φ	X	Y	T	φ	X	Y	T
0				0			
34	. 25593	. 065125	. 40567	25	. 20687	. 038001	. 30516
35	. 26098	. 068592	. 41705	26	. 21226	. 040572	. 31590
36	. 26600	.072173	. 42855	27	. 21758	. 043224	. 32667
37	. 27100	. 075874	. 44017	28	. 22284	. 045962	. 33747
38	. 27599	. 079700	. 45 I93	29	. 22805	. 048783	-3483I
39	. 28096	. 083656	. 46384	30	. 23320	. 051704	-35921
40	. 28593	. 087749	. 47590	3 I	. 23831	.054713	. 37017
4 I	. 29089	.091985	. 48814	32	. 24338	.057819	-38120
42	. 29584	.09637I	. 50056	33	. 2484 I	.061026	. 39232
43	. 30080	.100914	. 51317	34	. 25341	. 064337	. 40352
44	. 30576	. IO5623	. 52600	35	. 25839	. 067756	. $414{ }^{\text {S }} 3$
45	. 31073	. 110505	. 53906	36	. 26334	.0712S9	. 42625
$\gamma=4.5$				373839	$\begin{aligned} & .26828 \\ & .27319 \\ & .27810 \end{aligned}$	$\begin{aligned} & .074939 \\ & .078712 \\ & .082614 \end{aligned}$.43-80 .44947 .46130
				$\begin{aligned} & 40 \\ & 4 \mathrm{I} \\ & 42 \end{aligned}$	$\begin{aligned} & .28300 \\ & .28789 \\ & .29277 \end{aligned}$	$\begin{aligned} & .086650 \\ & .090828 \\ & .095153 \end{aligned}$	
	X	Y	T				
φ	X	Y	1				
0				$\begin{aligned} & 43 \\ & 44 \\ & 45 \end{aligned}$.29766 . 30256 .30745	$\begin{array}{r} .099633 \\ .104275 \\ . \text { Iogos9 } \end{array}$	
3	. 07474	.002219	. 06216				
2	. 04255	. 000795.	. 03848				
+1	$.0190+$ +	$.000171^{\circ}$ +	$\begin{gathered} .01523 \\ + \end{gathered}$				
\bigcirc	. 00000	. 000000	. 00000	$\gamma=4.6$			
-I	. 01624	. 000138	. 01683	9	X	Y	T
2	.03054	. 000510	.03263				
3	. 04338	. 001069	. 04762	0			
4	. 05512	. 001785	.06I96	3	. 07575	. 002260	06255
5	. 06596	. 002638	. 07576	2	. 04250	.000802	. 03858
6	.07606	. 003609	.08910	+I	. 01908	.000172	. 01525
7	. 08555	.004690	. 10205	\bigcirc	$.00000$. 000000	
8	. 09452	. 005870	. II 467				. 00000
9	. 10303	.007142	. 12700		-	$\stackrel{+}{.000138}$	$. \overline{01682}$
IO	. IIII6	.008502	. 13907	-I	. 01622		
II	. 11895	. 009945	. 15093	2	. 03046	. 000509	. 03259
12	. 12644	. O11468	. 16259	3	. 04324	.001065	. 04754
13	. 13366	. O1 3067	-17409	456	.05490 . 06565 .07566	. 001777	. 06152
14	. 14063	. 014742	. 18544			. 002621	. 07557
15	. 14740	. OI649I	. 19666			. $0035^{\text {S }} 5$. OSSS5
16	. 15397	. O1S3I3	. 20778	7	. 08507	. 004656	. 10175
17	. 16036	. 020207	. 21579		. 109395	. .007085	$\begin{aligned} & .11430 \\ & .12657 \end{aligned}$
18	. 16660	. 022173	. 22973	9			
19	. 17269	. 024212	. 24061	10	. I IO43	.00843I	. $13{ }_{3}{ }_{5}$
20	. 17865	. 026323	. 25 I 43	II	. IISI4	$\begin{aligned} & .009 S 59 \\ & .011365 \end{aligned}$	$\begin{aligned} & .15038 \\ & .1619^{3} \end{aligned}$
2 I	. 18449	. 025507	. 2622 I	12	. 12555		
22	. 19023	. 030756	. 27296	I3	. 13268	. 012947	. 17342
23	. 1955	. 033100	. 25370	I4	.13958	$\begin{array}{r} .014603 \\ .016332 \end{array}$	$\begin{aligned} & .1 \mathrm{~S}_{4} \% 0 \\ & .19556 \end{aligned}$
2.4	. 20141	.0355II	. 29442	15	. 14627		

$\gamma=4.8$				$\gamma=4.9$			
φ	X	Y	T	9	X	Y	T
0				0			
-	. 00000	. 000000	. 00000	3	.07915	. 002400	. 06380
				2	. 04356	. 00082 I	. 03892
		\dagger	-	+1	. orgar	.000173	.OI83I
-I	. OI6I7	. 000138	.01679				+
2	. 03030	. 000506	. 03250	\bigcirc	. 00000	.000000	. 00000
3	. 04294	. 001056	. 04737		-	+	
4	. $05+45$. 00175^{8}	.06157	-I	. O1615	.000137	. 01679
5	. 06504	. 002590	. 0752 I	2	. 03022	. 000504	. 03247
6	.07490	. 0003539	. 08833	3	. 04280	.00105I	. 0.4730
7	.08414	. 004591	. 10116	4	. 05423	.001748	.06145
8	.09286	.005738	. 11361	5	. 06475	. 002575	. 0750.4
9	. 10114	.00697t	. 12576	6	. 07453	. 003516	.08Si6
10	.10go2	. 008294	. 13765	7	. 08369	. 004559	. IOOS9
II	. 11657	. 009692	$\text { . } 1+933$	8	. 09233	. 005696	$.1 I 328$
12	. 12382	. OIII67	.1608I	9	. 10053	.006920	. 12537
13	. 13081	. 012715	.17212	10	. 10834	. 008227	. 137 i 21
14	. 13756	. 014336	. 18328	11	. I15SI	. 009611	. 14883
15	. 14410	. 016026	. 1943I	12	. 12299	. Oifo7I	. 16025
16	. 15044	. 017787	. 20524	13	. 12990	. OI 2603	. I7150
17	. 15662	. 019616	. 21606	If	. 13658	$.014206$. IS260
18	. 16264	.021514	. 2268 I	15	. 1.4305	. Oi 5578	. 19358
19	. 16852	. 02348 I	.23749	16	. I4933	. oif6i9	. 20444
20	. 17427	. 025517	. 24812	17	. $155+3$. $019+28$. 21521
21	. 17991	. 027624	. 25871	I8	.16139	. 021305	.22589
22	. 18544	.029801	. 26927	19	. 16720	. 023249	. 23652
23	. Igos7	.032051	. 27981	20	. 17288	. 025262	. $2+7$ O8
24	. 1962 I	.03+374	. 29034	2 I	. $17 \mathrm{~S}_{4}$. 027374	. 25761
	. 20147	. 036773	. 30087	22	. 1 S392	. $029+96$. 26511
26	. 20666	. 0392.48	. 311 +1	23	. 18928	.031719	. 27858
27	. 21178	. 0.42502	. 32198	24	$.19+56$. $03+1015$	$2 \mathrm{S905}$
28	. 21685	. 044437	. 33258	25	. 19976	. 036354	. 29952
29	. 22185	. $0+7756$. $3+321$	26	. 20.489	.038829	. 31000
30	. 22681	. 049962	. 35390	27	. 20995	. 0411352	. 32050
31	. 23173	. 052857	. $36+65$	25	. 21495	. $0+3955$	
32	. 23660	.055S+4	. $375+7$	29	. 21990	$0.466+1$	$.3+160$
33	.24144	.058927	. 35637	30	. 22.480	. 0.49 .412	- 35222
$3+$. 24625	.062III	. 39736	31	. 22965	.052271	. 36291
35	.2510 .4	. $06539{ }^{\text {S }}$. $408+5$	32	. $23+46$. 055222	-37366
36	. 25580	. 065793	.41964	33	. 23924	. 058267	. $3^{3}+49$
	$.26054$. 072301	. +3096	34	. $2+399$.061410	-395.1
38	$.26526$. 075927	$.4+2+0$	35	. 24872	. $06+656$. $+06+2$
39	.26997	. 079675	. 45399	36	. $253+2$. 068008	. 41755
40	. 27 ' 468	. 083553	. 46573	37	. 25 Sio	.071472	. 42579
4 I	. 27938	. 087565	. 4776	38	. 26276	. 075051	. +4016
42	.28407	.og1719	. 48973	39	. $267+1$. 075752	. +5168
43	$.2 S 577$. 096021	. 50201	40	. 27206	. 0 S2580	. 46334
44	. 293.46	. 100479	. $51+49$	41	. 27669	. $0865+1$	- +7517
45	. 29 SI7	. 105100	. 52719	42	. 28133	. $0906+1$. 48718

VII. TABLE OF VALUES OF $\mathrm{h}=\frac{1}{2} \mathrm{gt}^{2}=193.1447 \mathrm{t}^{2}$ INCHES.

t	h	t	h	t	h	t	h
	Inches.		Inches.		Inches.		Inches.
0.10	I.9314	0.21	8.5177	0.32	19.778	0.43	35.713
. II	2.3371	. 22	$9.3+82$. 33	$21.03+$. 44	37.393
. 12	2.7813	. 23	10.217	. 34	22.328	- +5	39.112
. 13	$3.26+1$. 24	II. 125	. 35	23.660	. 46	40.869
. 14	3.7856	. 25	[2.072	. 36	25.032	. +7	$+2.666$
. 15	$4 \cdot 3+5^{8}$. 26	13.057	. 37	26.442	. 4^{8}	44.501
. 16	$4 \cdot 9+45$. 27	It. 080	. 38	27.890	. 49	$46.37+$
. 17	5.5819	. 28	I5. I +3	. 39	29.377	. 50	+8.286
. 18	6.2579	. 29	16.214	. 40	30.903	. 51	50.237
. 19	6.9725	. 30	17.333	. 41	32.468	. 52	52.226
. 20	$7 \cdot 7258$. 31	I8.561	.42	$3+.07 \mathrm{I}$. 53	54.254

VIII. A GENERAL TABLE OF VALUES OF $\frac{\mathrm{c}^{2}}{\mathrm{w}} \mathrm{s}$ FOR OGIVAL-HEADED SHOT.

V	0	1	2	3	4	5	6	7	8	9
F-s.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	F
54	I 7303	7250	7197	7144	7092	7039	6987	6935	6883	6832
55	I 6780	6729	6678	6627	6577	6526	6476	6426	6376	6326
56	I 6276	6227	6178	6129	6080	6031	5982	5934	5886	5838
57	I 5790	5742	5695	5647	5600	5553	5506	5459	5413	5366
58	I 5320	5274	5228	5182	5137	5091	50.46	5001	4956	49 II
59	I 4866	4822	4777	4733	4689	4645	4601	455^{8}	$45 \mathrm{I}+$	447 I
60	I 4428	4385	4342	4299	4256	4214	4171	4129	4087	4045
61	I 4003	3962	3920	3879	3838	3796	3755	3714	3674	3633
62	I 3593	3552	3512	3472	3432	3392	3353	3313	3274	3234
63	I 3195	3156	3117	3079	3040	3001	2963	2925	2586	2848
6	I 2810	2772	2735	2697	2660	2622	2585	2548	2511	2474
65	I 2437	2400	2364	2327	2291	2255	2218	2182	2146	2111
66	I 2075	2039	2004	1969	1933	1898	1863	1828	I 793	1758
67	11724	1639	1655	1620	1586	1552	I5IS	1484	I 450	1417
68	I 1383	1349	1316	1283	1250	1216	IIS_{3}	II50	III8	1085
69	I 1052	IOI9	0987	0955	0922	oSgo	0858	0826	0794	0762
70	I 073I	0699	0667	0636	0605	0573	0542	0511	0480	$0+49$
71	I 0418	0387	0357	0326	0296	0265	0235	0205	OI74	0144
72	I OII4	oo84	0055	0025	9995	9966	9936	9907	9577	$9^{84} 48$
73	9819	9790	9761	9732	9703	9674	9646	9617	9588	9560
74	9531	9503	9475	9447	9419	9391	9363	9335	9307	9279
75	9252	9224	9197	9169	9142	$9 \mathrm{II5}$	9087	9060	9033	9006
76	8979	8952	8926	8899	8872	8846	8819	8793	8,66	8740
77	8714	8688	8662	8636	8610	8584	S55S	8532	8507	$\mathrm{S}_{4} 81$
78	8455	8430	S404	8354	8379	8329	8303	8278	S253	8228
79	8203	8179	8154	SI29	8104	SoSo	So55	So3I	8006	7982
80	7958	7934	7909	7885	7861	7837	7813	7789	7-66	7742
8 I	7718	7694	7671	7647	7624	7600	7577	7554	7531	7507
82	7484	7461	$7+38$	7415	7392	7369	$73+7$	7324	7301	7279
83	7256	7234	7211	7189	7166	7144	7122	7100	7078	7055
84	7033	7011	699°	6968	6946	6924	6902	6831	6859	6837
85	6816	6794	6773	6752	6730	6709	6688	6667	$66+6$	6625
86	6604	6583	6562	654 I	6520	6499	6475	645^{8}	6437	6417
87	6396	6375	6355	6335	6314	6294	6274	6254	6233	6213
88	6193	6 I 73	6153	6133	6II3	6093	6074	6054	6034	6014
89	5995	5975	5956	5936	5917	5897	5878	5559	5839	5820
90	5801	5782	5763	574	5725	5706	5687	5668	5649	5631
9 I	5612	5593	5575	5556	5538	5519	5501	5483	5464	$5+46$
92	5428	5410	5392	5374	5356	5338	5321	5303	5285	5268
93	5250	5232	5215	5198	5180	5163	5146	5129	5 III	5094
94	5077	5060	5044	5027	5010	4993	4976	4960	4943	+927
95	4910	4894	$4^{8}+7$	486 I	$48+5$	4829	4812	4796	4780	4764
96	4749	4733	4717	47 OI	4686	4670	$465+$	4639	4624	4608
97	4593	4578	$+562$	+547	4532	4517	4502	4457	4773	$4+58$
98	$4+43$	4429	+414	4399	4385	4371	4356	$43+2$	4328	43I4

V.	0	1	2	3	4	5	6	7	8	9
$\begin{aligned} & \text { F-s. } \\ & 99 \end{aligned}$	Feet. 4300	Feet 4285	$\begin{aligned} & \text { Feet. } \\ & 427 \mathrm{I} \end{aligned}$	Feet. 4258	Feet. 4244	Feet. 4230	Feet. $42 \text { I6 }$	Feet. 4203	$\begin{aligned} & \text { Feet. } \\ & 4 \mathrm{I} 89 \end{aligned}$	$\begin{aligned} & \text { Feet. } \\ & 4176 \end{aligned}$
100	4162	4149	4136	4123	4110	4097	4084	4071	4058	4045
IOI	4033	4020	4008	3995	3983	3970	3958	3946	3934	3921
102	3910	3898	3886	3874	3863	3851	3840	3829	3817	3806
103	3795	3784	3773	3762	3751	3740	3730	3719	3708	3698
104	3687	3677	3666	3656	3646	3636	3626	3616	3606	3596
105	3586	3576	3567	3557	3547	3538	3528	3519	3510	3501
106	3491	3482	3473	3464	3455	3446	3438	$3+29$	3420	3411
107	3402	3394	33 S	3377	3368	3360	3351	3343	3334	3326
108	3318	3310	3301	3293	3285	3277	3269	3261	3252	3244
109	3236	3228	3220	3213	3205	3 I 97	3189	3 I I	3173	3165
IIO	3158	3150	3142	3134	3127	3I19	3111	3 IO 3	3096	3088
III	3080	3073	3065	3058	3050	3043	3035	3028	3020	3013
112	3005	2998	2990	2983	2976	2968	2961	2953	2946	2939
113	2931	2924	2917	2910	2902	2895	2888	2881	2874	2867
II4	2859	2852	2845	2833	2831	2824	2817	2810	2803	2796
115	2789	2782	2775	2768	2761	2754	2747	$274{ }^{\circ}$	2733	2727
116	2720	2713	2706	2699	2692	2686	2679	2672	2665	2659
117	2652	2645	2638	2632	2625	2618	2612	2605	2598	2592
118	2585	2579	2572	2566	2559.	2552	2546	2539	2533	2526
119	2520	2513	2507	2500	2494	2488	2481	2475	2.468	2462
120	2456	2449	2443	2436	2430	2424	2417	2411	2.405	2399
121	2392	2386	2380	2374	2367	2361	2355	$23+9$	2342	2336
122	2330	2324	2318	2312	2306	2299	2293	2287	2281	2275
123	2269	2263	2257	2251	2245	2239	2233	2227	2221	2215
124	2209	2203	2197	2191	2185	2179	2173	2167	2161	2155
125	2149	2143	2138	2132	2126	2120	2114	2108	2102	2097
126	2091	2085	2079	2073	2068	2062	2056	2050	2045	2039
127	2033	2028	2022	2016	2011	2005	1999	1994	1983	1982
128	1977	1971	1,965	1960	1954	1948	1943	1937	1932	1926
129	I92I	1915	1909	1904	1898	I 893	1887	1832	1876	1871
130	1865	I 860	1854	IS49	1844	1838	1833	1827	1822	1816
131	1811	1806	I 800	1795	1789	I784	1779	1773	1768	1762
132	1757	1752	1746	1741	1736	1730	1725	1720	1715	1709
133	1704	1699	1693	I683	1683	1678	1672	I667	1662	1657
134	1651	1646	1645	1636	1631	1625	1620	I615	1610	1605
135	1599	1594	1589	1584	1579	1574	1569	1564	1558	I553
I36	1548	1543	1538	1533	1523	1523	1518	1513	1508	1503
137	149	1493	I488	1483	1477	1472	I467	1462	1457	1452
138	1447	I 442	1437	1432	1427	1422	1418	I413	1408	1403
139	1398	1393	1388	1383	1378	1373	1368	1363	1358	${ }^{5} 353$
140	I 348	1344	1339	$\mathrm{r}_{3} 34$	1329	I324	1319	1314	1309	1304
14 I	1300	1295	1290	1285	1230	1275	1270	1266	1261	1256
142	1251	1246	1242	1237	1232	1227	1222	1217	1213	1208
143	1203	II98	1193	1189	1184	1179	1174	1170	I 165	I 160
144	1155	II5I	II 46	II4 1	1136	II32	I 127	1122	III8	1113
145	1108	IIO3	1099	1094	1089	1085	1080	1075	1070	1066
$1+6$	1061	IO56	1052	1047	1042	1038	1033	1028	1024	IOI9
147	IOI4	IOIO	1005	IOOI	99^{6}	991	987	982	977	973
148	968	963	959	954	950	945	940	936	931	927
149	922	917	913	908	904	899	894	890	885	88 I

V.	0	1	2	3	4	5	6	7	8	9
F-s.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
150	876	871	867	862	858	853	849	$8+4$	840	835
151	830	826	821	817	812	808	803	799	794	790
152	785	781	776	771	767	762	758	753	749	747
153	740	735	731	726	722	717	713	708	704	699
154	695	690	686	681	676	672	668	663	659	654
I 55	650	645	641	637	632	628	623	619	614	610
I 56	605	601	596	592	588	5^{83}	579	574	570	565
157	561	556	552	548	543	539	534	530	525	52 I
I58	5 I 6	5 I 2	508	503	499	494	49°	486	481	477
159	472	468	46.4	459	455	450	446	442	$+37$	433
160	428	42.	420	415	411	406	402	39^{8}	393	3 39
161	385	380	376	371	367	363	35^{8}	354	350	345
162	341	337	332	328	324	319	315	310	306	302
163	297	293	289	284	280	276	271	267	263	258
164	254	250	2.45	24 I	237	232	228	224	220	215
165	2 II	207	202	198	194	189	185	181	177	172
166	168	164	± 60	155	15 I	147	$\mathrm{I}_{4} 2$	138	134	130
167	I26	121	117	113	109	104	100	96	92	S8
168	83	79	75	71	67	62	58	54	50	46
169	4 I	37	33	29	25	2 I	17	12	8	4

IX. A GENERAL TABLE OF TALUES OF $\frac{c^{2}}{\mathrm{w}}$ t FOR OGIVAL-IIEADED SHOT.

Stars (*) indicate that the unit figure is to be taken from the line next below.

V.	0	1	2	3	4	5			8	9
F-s.	Seconds.	Secs.	$\begin{array}{r} \text { Secs. } \\ * \$ 882 \end{array}$	$\begin{aligned} & \text { Secs. } \\ & * .781 \end{aligned}$	$\begin{aligned} & \text { Secs. } \\ & : .688 \end{aligned}$					$\begin{aligned} & \text { Secs. } \\ & * 212 \end{aligned}$
54	$\xrightarrow{22.078} 21.118$	\%.980 .025	$* .882$ $* .933$	$\begin{array}{r} * .787 \\ * .8+1 \end{array}$	$\begin{array}{r} 6.688 \\ \hline .7+9 \end{array}$	$\begin{aligned} & * .592 \\ & +.658 \end{aligned}$	$\begin{aligned} & * .96 \\ & * .567 \end{aligned}$	$\% \cdot+10$	$\begin{aligned} & * \cdot 306 \\ & * \cdot 388 \end{aligned}$	$\begin{aligned} & * .212 \\ & * .299 \end{aligned}$
55 56	$\stackrel{21.118}{20.210}$.025 .122	*.933	*.841	*.749	$* .658$ $* .774$	$* .567$ $* .658$	$* .477$ $* .603$	$* .358$ $* .518$	$* .299$ $*$ +
56	20.210	. 122	. 034	*. 947	*. 860	*.774	*. 658	*. 603	*. 518	*. +33
57	19.349	. 265	. 182	. 099	. 017	*. 935	*. $55+$	*. 773	*. 692	*.612
58	18.532	. 453	. $37+$. 295	. 217	. 139	. 062	*. 985	*. 908	*.832
59	17.756	I	66	- 531	. 457	. 383	. 309	. 236	. 163	.091
60	17.019	*. 947	*. 876	*. 805	*. 734	*.664	*.594	*.524	*.455	*.356
61	16.318	. $2+9$. 182	. 114	. 047	*.980	*.913	*.847	*. 7 - ${ }^{\text {SI }}$	*. 715
62	15.650	. 585	. 520	. 45^{6}	- 392	. 328	. 265	. 201	. 139	.076
63	15.014	*.952	*.890	*. 829	*. 768	*. 707	*. 647	*. 586	*. 526	*. 467
64	14.407	. 34^{8}	. 290	. 231	. 173	. 115	. 057	*. 999	*. 942	*.885
65	13.829	. 772	. 716	. 660	. 605	. 549	- 494	- 439	. 385	. 330
66	13.276	. 222	. 168	. 115	. 062	. 009	*. 956	*. 904	*. 8_{5}	*. 500
67	12.748	. 696	. $6+5$. 594	. $5+3$. 493	. 442	. 392	. 342	. 292
68	12.243	. 194	. 145	. 096	. 047	*. 999	*.950	*. 903	*. 855	*. So7
69	11.760	. 713	. 666	. 619	. 572	. 526	. 480	. 434	. 358	. $3+3$
70	11.297	. 252	. 207	. 162	.118	. 073	. 029	*.985	*.941	*. g^{5}
	10. 854	. 811	. 768	. 725	. 682	. 639	- 597	. 555	. 513	$\cdot 471$

V.	0	1	2	3	4	5	6	7	8	9
$\begin{aligned} & \text { F-s. } \\ & 72 \end{aligned}$	$\begin{aligned} & \text { Seconds. } \\ & 10.429 \end{aligned}$	$\begin{gathered} \text { Secs. } \\ .388 \end{gathered}$	Secs. $.346$	Secs. $.305$	Secs. .264	Secs. .223	Secs. .183	Secs. . I42	Secs. . IO2	$\begin{aligned} & \text { Secs. } \\ & .062 \end{aligned}$
73	10.022	\%. 982	*. 942	*. 903	*. 863	*.824	*. 785	*. 746	*. 708	*. 669
74	9.631	. 592	. 554	.516	.478	.44I	. 403	.366	. 329	. 292
75	9.255	. 218	. 182	. I45	. 109	. 073	. 037	. 001	*. 965	*. 930
76	8.894	. 859	. 824	. 789	. 754	. 719	. 684	. 650	. 616	. 581
77	8.547	. 513	.480	. 446	. 412	. 379	. 346	. 312	. 279	. 246
78	8.214	. 181	. 148	. 116	.084	. 052	. 020	*. 988	*. 956	*. 924
79	7.893	. 861	. 830	. 799	. 768	. 737	. 706	. 675	. 645	.614
80	$7 \cdot 5^{8} 4$. 553	. 523	. 493	. 463	. 453	. 404	. 374	. 345	. 315
81	7.286	. 257	. 228	. 199	. 170	. 141	. 113	.084	. 056	. 027
82	6.999	.971	. $9+3$.915	. 887	. 859	. 832	. 804	. 777	. 750
83	6.722	. 695	. 668	. 641	. 615	. 588	. 561	. 535	. 508	. 482
84	6.456	. 430	. 404	. 378	. 352	. 326	. 300	. 275	. 249	. 224
85	6.198	. 173	. 148	. 123	. 098	. 073	. 048	. 024	*. 999	*. 974
86	5.950	. 926	.901	. 877	. 853	. 329	. 805	. 781	. 757	. 734
87	5.710	. 686	. 663	. 640	. 616	. 593	- 570	. 547	. 524	501
88	5.478	. 455	. 433	. 410	. 388	. 365	. 343	. 32 I	. 298	. 276
89	5.254	. 232	. 210	. 188	. 167	. 145	. 123	. 102	. 080	. 059
90	5.038	. 016	*. 995	*.974	\%. 953	*. 932	*.91I	*.890	*.870	*. 849
91	4.829	. 808	. 788	. 768	. 747	. 727	. 707	. 657	. 667	. 648
92	4.628	. 608	. 589	. 569	. 550	-531	. 511	. 492	. 473	. 454
93	4.435	. 417	. 398	. 379	. 361	. 342	. 324	. 305	. 257	. 269
94	4.25 I	. 233	. 215	. 197	. 779	. 161	. 144	. 126	. 109	. 091
95	4.074	. 057	. 039	. 022	. 005	*. 988	*.971	*. 955	*.938	*.921
96	3.905	. 888	. 872	. 856	. 839	. 823	. 807	. 791	. 775	. 759
97	$3 \cdot 743$. 728	. 712	. 697	.681	. 666	. 650	. 635	. 620	. 605
98	3.590	. 575	. 560	. 546	. 531	.516	. 502	. 4^{57}	. 473	. 459
99	3.444	. 430	. 416	-402	.389	-375	. 361	- 347	. 334	-320
100	3.307	. 294	. 281	. 267	. 254	. 241	. 229	. 216	. 203	. 190
IOI	3.178	. 165	. 153	. 141	. 128	. I I 6	. 104	. 092	. oso	. 069
102	3.057	. 045	. 034	. 022	. OII	*. 999	*. 988	*.977	*.966	*. 955
103	2.944	. 933	. 922	.91I	. 90I	. 890	. 880	. 869	. 859	. 849
104	2.839	. 829	.819	. 809	. 799	. 789	. 780	. 770	. 761	. 751
105	2.742	. 733	. 724	. 714	. 705	. 696	. 687	. 679	. 670	.661
106	2.652	. 644	. 635	. 627	. 618	. 610	. 602	. 593	. 585	- 577
107	2.569	. 561	. 553	. 545	. 537	. 529	. 521	. 513	. 505	. 498
108	490	. 482	. 475	. 467	. 459	. 452	. 444	. 437	. 430	. 422
Iog	2.415	. 407	. 400	. 393	. 386	. 378	. 371	. 364	. 357	. 350
IIO	2.343	.336	. 329	. 32 I	. 314	. 307	. 301	. 294	. 287	. 280
III	2.273	. 266	. 259	. 252	. 246	. 239	. 232	. 225	. 219	. 212
112	2.205	. 199	. 192	. 186	. 179	. 172	. 166	. 159	. 153	. 146
113	2.140	. 134	. 127	. 121	. 114	. 108	. 102	. 095	. 089	. 083
114	2.076	. 070	. 064	. 058	. 052	. 045	. 039	. 033	. 027	. 021
115	2.015	. 009	. 003	*. 997	*.991	*.985	*. 979	*. 973	*.967	*.961
116	1.955	. 949	. 943	. 937	. 931	. 926	. 920	.914	. 908	. 902
117	1.897	. 891	. 885	. 880	. 874	. 868	. 863	. 857	. 851	. 846
II8	$\underline{1.840}$. 834	. 829	. 823	. 818	. 812	. 807	. 801	. 796	. 790
II9	1.78	. 779	. 774	. 768	.763	. 758	. 752	. 747	.742	.736

V	0	1	2	3	4	5			8	9
F-s.	Seconds.	Secs.	Secs.	Secs.	Secs.	Secs.	Secs.		Secs.	Secs.
120	1.731	. 726	. 720	. 715	. 710	. 705	. 699	. 694	. 689	. 684
121	1.678	. 673	. 668	. 663	. 658	. 653	. 648	. 642	. 637	. 632
122	1.627	. 622	. 617	. 612	. 607	. 602	. 597	. 592	. 587	. 582
123	1.577	- 572	. 568	. 563	. 558	. 553	. 548	. 543	. 538	. 533
124	1.529	. 524	. 519	. 514	. 509	. 505	. 500	. 495	. 490	. 486
125	I. 48 I	.476	. 471	. 467	. 462	. 457	. 453	. 448	. 444	. 439
126	I. 434	. 430	. 425	. 420	. 416	. 411	. 407	. 402	. 398	. 393
127	1.389	.384	. 380	. 375	-371	.366	. 302	. 357	. 353	- 349
128	1.344	. 340	. 335	. 331	. 327	. 322	. 318	. 314	. 309	. 305
129	1.301	.296	. 292	. 288	. 284	. 279	. 275	. 271	. 267	. 262
130	I. 258	. 254	. 250	. 245	. 24.4	. 237	. 233	. 229	. 225	. 220
131	1.216	. 212	. 208	. 204	. 200	. 196	. 192	. 188	. 184	. 179
132	I. I 75	. 171	. 167	. 163	. 159	. 155	. 151	. 147	. 143	I39
133	I. 135	. 131	. 127	. 123	. 120	. 116	. 112	. 108	. 104	. 100
134	1.096	. 092	. 088	. 084	.08I	. 077	. 073	. 069	. 065	. 061
135	1.058	. 054	. 050	.046	. 042	. 039	. 035	. 031	. 027	. 023
136	1.020	. 016	. 012	. 008	. 005	. 001	*. 997	* 994	*. 990	*. 986
137	0.982	. 979	-975	. 971	.968	. 964	. 961	. 957	. 953	. 950
138	. 946	-942	. 939	. 935	. 932	. 928	. 924	.92I	. 917	-9I4
139	.910	. 907	. 903	. 899	. 896	. 892	. 839	. 885	. 882	. 878
140	. 875	.871	. 868	. 864	. 861	. 857	. 85	. 850	. 847	. 843
I4I	. 840	. 836	. 833	. 830	. 826	. 823	. Si9	. 816	. 813	. 809
142	. 806	. 802	. 799	. 796	. 792	. 789	. 785	. 782	. 779	. 775
143	.772	. 769	. 765	. 762	. 759	. 755	. 752	. 749	. 745	. 742
144	. 739	. 736	. 732		. 726	. 722		. 716	. 713	. 709
145	. 706	. 703	. 700	. 696	. 693	. 690	. 687	. 683	. 680	. 677
146	. 674	. 671	. 667	. 664	. 661	. 658	. 655	. 65 I	. 645	. 645
147	. 642	. 639	. 636	. 632	. 629	. 626	. 623	. 620	. 617	. 614
148	. 610	. 607	. 604	. 601	. 598	- 595	. 592	. 589	. 586	. 583
149	. 579	.576	. 573	:570	. 567	. 564	. 56 I	. 55^{8}	. 555	. 552
150	. 549	. 546	- 543	. 540	. 537	. 534	. 53 I	. 528	. 524	. 521
15 I	. 518	. 515	. 512	. 509	. 506	. 503	. 500	. 497	. 494	- 491
152	. 488	. 485	. 482	. 480	. 477	. 474	. 47 I	. 468	. 465	. 462
153	. 459	. 456	. 453	. 450	. 447	. 444	.44I	. 438	-435	. 432
154	. 429	. 427	. 424	. 421	. 418	. 415	. 412	. 409	. 406	. 403
155	.400	. 398	. 395	. 392	.389	. 386	.383	. 380	. 377	. 375
156	. 372	. 369	. 366	. 363	. 360	. 358	. 355	-352	349	. 346
157	. 343	. 34 I	. 338	. 335	. 332	. 329	. 326	. 324	. 321	. 313
158	. 315	. 312	. 310	. 307	. 304	. 301	. 298	. 296	. 293	. 290
159	. 287	.285	. 282	. 279	. 276	. 274	. 27 I	. 268	. 265	. 263
160	. 260	.257	. 254	. 252	. 249	. 246	. 243	. 241	. 235	. 235
161	.232	. 230	. 227	. 224	. 222	. 219	. 216	. 214	. 211	. 208
162	. 205	. 203	. 200	. 197	. 195	. 192	. 189	. 187	. 184	. I 8 I
163	. 179	. 176	. 173	. 171	. 168	. 165	. 163	. 160	. 157	. 155
164	. 152	. 150	. 147	. I44	. 142	. 139	. 136	. 134	. I3 I	. 129
165	. 126	. 123	. 12 I	. 118	. 116	. 113	. 110	. 103	. 105	. IO3
166	. 100	. 097	. 095	. 092	. 090	. 087	. 085	. 082	. oso	. 077
167	. 075	. 072	. 070	. 067	. 064	. 062	. 059	. 057	. 054	. 052
168	. 049	. 047	. 044	. $04{ }^{2}$. 039	. 037			. 029	. 027
169	. 024	. 022	. 020	. 017	. 015	: OI2	. 010	. 007	. 005	. 0

X. A GENERAL TABLE OF VALUES OF $\frac{\mathrm{c}^{2}}{\mathrm{w}} \mathrm{s}$ FOR SPHERICAL SHOT.

V.	0	1	2	3	4	5	6	7	8	9
F-s.	Feet.	Feet.	Feet.	Feet.			Feet.	Feet.	Feet.	Feet.
50	10649	0620	0592	0563	0535	0506	0478	O450	O+22	0394
51	10366.	0338	0310	0283	0255	0228	O2OI	OI74	OI47	OI20
52	10093	0066	0040	0013	*9987	9961	9935	9909	9883	9857
53	9831	9805	9779	9754	9729	9703	9678	9653	9628	9603
54	9578	9553	9529	9504	9480	9455	9431	$9+07$	9383	9359
55	9335	9311	9287	9263	$92+0$	9216	9193	9169	$9 \mathrm{I}+6$	9123
56	oroo	9077	9054	9031	9008	8986	8963	8941	8918	8896
57	8873	8851	8829	8807	8785	8763	8741	8719	8698	8676
58	8655	8633	8612	8591	8569	8548	8527	8506	$8+85$	8464
59	8443	8423	$8 \not 802$	8381	8361	8340	8320	8300	8279	8259
60	8239	8219	8199	8179	8159	8139	8120	8100	8081	8061
61	8041	8022	8003	7983	7964	$79+5$	7926	7907	7888	7869
62	7850	7832	7813	7794	7776	7757	7739	7720	7702	7683
63	7665	7647	7629	7611	7593	7575	7557	7539	7521	7504
6	7486	7468	745 I	7433	7416	7398	7381	7364	$73+6$	7329
65	7312	7295	7278	7261	7244	7227	7210	7194	7177	7160
66	7144	7127	7110	7094	7078	7061	$70+5$	7029	7012	6996
67	6980	6964	6948	6932	6916	6900	6884	6868	6853	6837
68	6821	6806	6790	6775	6759	6744	6728	6713	6698	6682
69	6667	6652	6637	6622	6607	6592	6577	6562	6547	6532
70	6517	6503	6488	6473	6459	6444	6430	$6+15$	6401	6386
7 I	6372	6358	6343	6329	6315	6301	6287	6273	6259	6245
72	6231	6217	6203	6 I 89	6175	6161	6 I 48	6134	6120	6107
73	6093	6079	6066	6052	6039	6026	6012	5999	59^{86}	5972
$7+$	5959	5946	5933	5920	5907	5894	5881	5868	$5^{8} 55$	$5^{8}+2$
75	5829	5816	5803	5790	5778	5765	5752	5740	5727	5714
76	5702	5689	5677	5665	5652	5640	5627	5615	5603	5591
77	5578	5566	5554	5542	5530	5518	5506	5494	$5+82$	5470
78	5458	544^{6}	5434	5423	54 II	5399	5387	5376	5364	5352
79	534 I	5329	5318	5306	5295	5283	5272	5260	52+9	5238
80	5226	5215	5204	5193	5181	5170	5159	5148	5137	5126
81	5115	5104	5093	5082	5071	5000	5049	5038	5027	5017
82	5006	4995	4984	4974	4963	4952	$49+2$	4931	4921	4910
83	4900	4889	4879	4868	4858	4847	4837	4827	4817	4806
84	4796	4786	4776	4765	4755	4745	4735	4725	4715	$+705$
85	4695	$+685$	4675	4665	$+655$	4645	4635	4625	4615	4605
86	4596	4586	4576	4566	4557	4547	4537	4528	4518	4509
87	4499	$4+90$	$4+80$	$4+7 \mathrm{I}$	+46I	$4+52$	$4+42$	$4+33$	4423	+414
88	4405	4395	4386	4377	4367	4358	$43+9$	$43+0$	433 I	$+321$
89	4312	4303	$429+$	4285	4276	4267	4258	4249	4240	4231
90	4222	4213	$420+$	4195	4186	4177	4169	4160	415	4142
9 I	4134	4125	4116	4107	4099	4090	4081	4073	4064	4056

V.	0	1	2	3	4	5	6	7	8	9
s.	Feet.	Feot.	Feet.	Feet.	Feet.	Feet.	Feet.		Fect.	Feet.
92	4047	4039	4030	4022	4013	4005	3996	3988	3980	3971
93	3963	3954	3946	3938	3930	3921	3913	3905	3897	3888
94	3880	3872	3864	3856	3848	3840	3832	3823	3815	3807
95	3799	3791	3784	3776	3768	3760	3752	3744	3736	3728
96	3721	3713	3705	3697	3689	3682	3674	3666	3659	3651
97	3643	3636	3628	3621	3613	3606	3598	3591	3583	3576
98	3568	3561	3553	3546	3539	3531	3524	3516	3509	3502
99	3495	3.487	3480	3473	3466	3458	3451	$3+44$	3437	$3+30$
100	3423	3416	3.409	3402	3395	3388	3381	3374	3367	3360
101	3353	$33+6$	3339	3332	3325	3319	3312	3305	3298	3291
102	3285	3278	3271	3265	3258	3251	3245	3238	3231	3225
103	3218	3212	3205	3199	3192	3186	3 I 79	3173	3166	3160
104	3154	3147	3 I 4 I	3135	3128	3122	3116	3109	3103	3097
105	3091	3084.	3078	3072	3066	3060	3054	3048	3041	3035
106	3029	3023	3017	3011	3005	2999	2993	2987	2982	2976
107	2970	2964	2958	2952	2946	2941	2935	2929	2923	2918
108	2912	2906	2900	2895	2889	2883	2878	2872	2866	2861
109	2855	2850	2844	2838	2833	2827	2822	2816	2811	2805
IIO	2800	2794	2-89	2784	2778	2773	2767	2762	2757	2751
III	2746	2741	2735	2730	2725	2719	2714	2709	2704	2698
112	2693	2688	2683	2678	2672	2667	2662	2657	2652	$26+6$
II3	26.4	2636	2631	2626	2621	2616	2611	2606	2601	2596
II4	2591	2586	2581	2576	2571	2566	2561	2556	2551	2547
115	2541	2536	2531	2526	2522	2517	2512	2507	2502	2497
II 6	$2+92$	2487	2483	2478	$2+73$	2.468	2464	2459	2454	24.49
117	2444	$2+40$	2435	2430	2426	2421	2416	2411	2407	2.402
118	2397	2393	2388	2383	2379	2374	2369	2365	2360	2356
119	2351	2346	2342	2337	2333	2328	2323	2319	2314	2310
120	2305	2301	2296	2292	2287	2283	22-8	2274	2269	2265
I2 I	2260	2256	2252	2247	2243	2238	223t	2229	2225	2220
122	2216	2212	2207	2203	2199	2194	2190	2 IS 5	2181	2177
123	2172	2168	2164	2159	2155	2151	2146	2142	2138	2134
124	2129	2125	2121	2116	2112	2108	2104	2099	2095	2091
125	2087	2052	2078	2074	2070	2066	2061	2057	2053	2049
126	2045	2040	2036	2032	2028	2024	2020	2015	2011	2007
127	2003	1999	1995	1991	I9S6	1982	1978	1974	1970	Ig66
128	I962	1958	1954	1949	I945	194 I	1937	1933	1929	1925
129	I92 1	1917	1913	1909	1905	Igoi	1897	I 893	1889	1885
130	1881	1877	1873	1869	1865	IS6I	IS57	1853	I849	1845
I3I	I 841	1837	1833	I829	IS25	I82I	1817	I813	1809	1806
132	1802	1798	1794	1790	1786	1782	17/8	1774	1770	1;66
I 33	1763	1759	1755	1751	1747	1743	1739	1736	1732	1728
134	1724	1720	1716	1713	1709	1705	I701	1697	1694	1690
135	1686	1682	1678	1675	1671	1667	1663	1660	1656	1652
136	1648	1645	$16+1$	1637	1633	1630	1626	1622	1618	1615
137	1611	1607	1603	1600	1596	I592	1589	I585	158I	15, S
138	1574	1570	1567	1563	1559	I 556	I 552	I 548	${ }^{1} 545$	I54I
139	1537	1534	1530	1526	1523	I519	1516	1512	$150 S$	1505
140	1501	I. 497	I $49+$	1490	1487	I4 ${ }^{\text {S }} 3$	1479	1476	1472	I. 469
141	1465	I 461	I 458	I454	145 I	1447	1444	I 440	1437	I 433

V.	0	1	2	3	4	5	-	7	8	9
F-s.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
I +2	I+29	I426	I 422	I 419	I4 15	1412	1408	1405	1401	1398
$1+3$	$139+$	1391	1387	I384	1380	1377	1373	1370	1366	1363
I44	1359	I356	1352	1349	I345	$13+2$	1338	1335	I33I	1323
145	1324	I32I	1318	I3I4	I3II	1307	1304	1300	1297	1293
I 46	1290	1287	1283	1280	1276	1273	1270	I266	1263	1259
147	1256	1253	1249	$12+6$	1242	1239	1236	1232	1229	1225
148	1222	I219	1215	1212	1209	1205	1202	1199	195	I 192
149	1189	I 185	1182	II\%	II75	1772	1169	1165	I 162	II59
150	1155	1152	II49	I 145	II 42	139	II35	II32	1129	I 126
151	1122	II I9	II 16	III2	1109	1106	1103	1099	1096	1093
152	1090	1086	1083	IOSo	1077	1073	1070	1067	1064	1060
153	1057	1053	1051	1047	$10+4$	1041	1038	1034	1031	1028
154	1025	1022	1018	IOI5	1012	1009	1006	1002	999	996
155	993	990	987	$9{ }^{\text {S }} 3$	930	977	974	971	968	964
156	961	958	955	952	949	$9+5$	$9+2$	939	936	933
157	930	927	924	920	917	914	911	908	905	902
I 58	899	895	892	889	886	883	880	877	874	871
159	868	864	861	858	855	852	849	$8+6$	$8+3$	840
160	837	$83+$	831	828	825	822	818	815	812	809
161	805	803	800	797	794	791	788	785	782	779
162	776	773	770	767	764	761	758	755	752	749
163	746	743	740	737	734	731	728	725	722	719
16.	716	713	710	707	704	701	693	695	692	689
165	686	683	680	677	674	672	669	666	663	660
166	657	654	651	648	645	642	639	636	633	630
167	628	625	622	619	616	613	610	607	604	601
168	598	596	593	590	587	$5_{5}{ }_{4}$	5^{81}	578	575	572
169	569	567	56.4	561	558	555	552	549	546	547
170	541	538	535	532	529	526	524	521	518	515
171	512	509	506	504	501	49^{8}	495	492	489	487
172	$48+$	48 I	4,8	475	472	470	467	464	461	458
173	456	453	450	447	444	442	439	436	433	430
$17+$	428	425	422	419	416	414	411	408	405	402
175	400	397	394	391	389	386	383	380	$3: 7$	375
176	372	369	366	364	361	358	355	353	350	347
177	3+4	342	339	336	333	33 I	328	325	322	320
178	317	314	311	309	306	303	301	298	295	292
179	290	287	28.	282	279	276	273	271	268	265
180	263	260	257	255	252	249	246	244	241	233
181	236	233	230	228	225	222	220	217	$2 \mathrm{I}_{4}$	212
182	209	206	204	201	I98	I96	193	190	188	185
183	182	180	177	174	172	169	166	164	161	158
184	156	153	150	148	I 45	143	140	137	135	132
185	129	127	124	122	II9	I 16	II4	III	108	106
186	103	IOI	98	95	93	90	85	85	82	80
187	77	75	72	69	67	64	62	59	57	54
188	51	$+9$	46	44	41	39	36	33	31	28
189	26	23	2 I	18	15	13	10	7	5	3

XI. A GENERAL TABLE OF VALUES OF $\frac{\mathrm{c}^{2}}{\mathrm{w}} \mathrm{t}$ FOR SPHERICAL SHOT.

Stars (*) indicate that the unit figure is to be taken from the line next below.

V	0	1	2	3	4	5	6	7	8	9
F-s.	Seconds.	Secs.	Secs.	Secs.	Secs.	Secs.	Secs.	Secs.		Secs.
50	13.414	. 356	. 299	. 242	. 185	. 129	. 073	. OI7	*. 962	. 907
5 I	12.852	. 798	. 744	. 690	. 637	. 584	. 531	. 478	. 426	- 374
52	12.323	. 272	. 221	. 170	. 19	. 069	. 020	. 970	*. 921	. 872
53	11. 823	. 775	. 726	. 679	. 631	. 584	. 537	. 490	. 443	. 397
54	II. 35 I	. 305	. 259	. 214	. 169	. 124	. 080	. 036	*.991	*. 948
55	10.904	. 861	. 818	. 775	.732	. 690	. 647	. 605	. 564	. 522
56	10.48 I	. 440	- 399	- 358	. 318	. 278	. 238	. 198	. 158	. II9
57	10.080	. 041	. 002	*. 964	*. 926	*. 887	*. 849	*812	. 774	*. 737
58	9.700	. 663	. 626	. 589	. 553	. 517	. 481	. 445	. 409	. 374
59	9.338	. 303	. 268	. 234	- 199	. 165	. 130	. 0.096	. 062	. 029
60	8.995	. 962	. 929	. 895	. 863	. 830	. 797	. 765	. 733	. 700
61	8.669	.637	. 605	. 574	: 542	. 511	. 480	. 449	. +19	. 388
62	8.358	. 327	. 297	. 267	. 237	. 208	. 178	- 149	. 120	. 090
63	8.061	. 033	. 004	*. 975	. 947	*.919	*. 890	*. 862	*. 834	*. 807
64	7.779	. 752	.724	. 697	. 670	. 643	. 616	. 589	. 562	. 536
65	$7 \cdot 510$.483	. 457	. 431	.405	- 379	- 354	. 328	. 303	. 277
66	7.252	. 227	. 202	. 177	. I5 3	. 128	. 103	. 079	. 055	. 030
67	7.006	. 982	. 958	*. 935	.91I	*.887	*. 864	*.84I	*.817	*. 794
68	6.771	. 74^{8}	. 725	. 703	. 680	. 657	. 635	.613	- 590	568
69	6.546	. 524	. 502	. 481	. 459	. 437	. 416	. 394	.373	. 352
70	6.331	- 310	. 289	. 268	. 247	. 227	. 206	. 185	. 165	. 145
71	6.124	. 104	.084	. 064	. 044	. 025	. 005	*.985	*. 966	*. 946
72	5.927	. 907	. 888	. 869	. 850	. 831	. 812	. 793	. 774	. 756
73	$5 \cdot 737$. 718	. 700	. 68 I	. 663	. 645	. 627	. 609	. 591	. 573
$7+$	$5 \cdot 555$. 537	. 519	. 502	. 484	. 466		$\cdot+32$. 414	-397
75	$5 \cdot 380$. 363	. 346	. 320	. 312	. 295	. 278	. 261	. $2+5$. 228
76	5.212	. 195	. 179	. 163	. 146	. 130	. II 4	.098	. 082	. 066
77	5.050	. 034	. 019	. 003	. 987	*.972	*.956	*.94I	*. 926	*. 910
78	4.895	. 880	. 865	. 849	. 834	. SI9	. 805	. 790	. 775	. 760
79	$4 \cdot 745$. 731	. 716	. 702	. 687	. 673	. 659	. 644	. 630	. 616
80	4.602	. 587	. 573	- 559	. 545	. 532	-518	. 504	. 490	.476
81	4.463	. 449	- 436	. 422	. 409	. 395	. 3 S2	. 369	. 356	- 342
82	4.329	. 316	. 303	. 290	. 277	. 264	. 251	. 239	. 226	. 213
83	4.200	. I88	. 175	. 163	. 150	. 138	. 125	. II3	IOI	. 088
84	4.076	. 064	. 052	. 040	-	. or6	. 004	*. 992	*.980	*. 968
85	3.957	. 945	. 933	. 921	.910	. 898	. 887	1. 575	. 864	. 852
86	3.841	. 829	. 818	. 807	. 796	. 784	. 773	. 762	. 751	740
87	3.729	. 718	. 707	. 696	. 685	. 675	. 664	.653	.642	.632
88	3.621	.6II	. 600	. 590	.579	. 569	. 558	. 548	. 537	. 527
89	3.517	-507	- 496	. 486	. 476	.466	. 456	. 446	. 436	- 426
90	3.416	. 406	.396	. 386	. 377	. 367	. 357	- 347	. 338	- 325
91	3.318	.309	. 299	. 290	. 280	.271	. 261	. 252	. 243	. 233

V.	0	1	2	3	4	5			8	9
F-s.	Seconds.	Secs.	Sec	Secs.	Secs.	Secs.	Secs.	cs.	Secs.	Secs.
92	3.224	. 215	. 20	. 196	. 187	. 178	. 169	. 160	. 151	. 142
93	3.133	. 124	. 115	. 106	. 097	. 088	. 079	. 071	. 062	. 053
94	3.044	. 036	. 027	. 019	. O 0	. 001	*. 993	.984	*. 976	*.967
95	2.959	. 95 I	. 942	. 934	. 926	. 919	. 909	. 901	. 893	885
96	2.876	. 868	. 860	. 852	. 844	. 836	. 828	. 820	. 812	. 804
97	2.797	. 789	.781	. 773	. 765	. 758	. 750	. 742	. 734	. 727
98	2.719	-712	. 704	. 697	. 689	. 682	. 674	. 667	. 659	. 652
99	2.645	. 637	. 630	. 623	. 616	. 608	. 601	. 594	. 587	. 580
100	2.572	.565	. 558	. 551	. 544	. 537	. 530	. 523	. 517	. 510
roi	2.503	- 496	. 489	. 482	. 476	. 469	. 462	. 456	. 449	. 442
102	2.436	. 429	. 423	. 416	. 409	. 403	. 397	. 390	. 384	. 377
103	2.37	.365	. 358	- 352	. 346	. 339	- 333	. 327	-321	. 315
104	2.308	. 302	. 296	. 290	. 284	. 278	. 272	. 266	. 260	. 254
105	2.248	. 242	. 236	. 231	. 225	. 219	. 213	. 207	. 202	. 196
106	2.190	. 184	. 179	. 173	. 167	. 162	. 156	. 151	. 145	. 140
107	2.134	. 129	. 123	. 118	2	. 107	. IO2	.096	.09I	o85
108	2.080	. 075	.070	. 064	. 059	. 054	. 049	. 043	. 038	. 033
109	2.028	. 023	. 018	. 013	. 008	. 003	*. 998	. 993	*. 988	*. 983
1	I. 97	. 973	. 968	. 963	. 958	. 953	.948	. 943	. 938	. 933
III	1.929	. 924	. 919	. 914	.910	. 905	. 900	. 895	. 891	. 886
112	I.88I	. 877	. 872	. 867	. 863	. 858	. 854	. 849	. 845	. 840
113	1.835	. 83 I	. 826	. 822	. 817	. 813	808	. 804	. 800	795
II4	1. 791	. 786	. 782	. 778	. 773	. 769	. 765	. 760	.756	. 752
II5	1.747	. 743	. 739	. 735	. 730	. 726	. 722	. 718	. 714	. 709
116	1.705	. 701	. 697	. 693	. 689	. 684	. 680	. 676	. 672	. 668
117	1.664	. 660	. 656	. 652	. 648	. 644	. 640	. 636	. 632	. 628
118	1.624	. 620	. 616	. 612	. 608	. 604	. 600	. 596	. 593	. 589
119	1.585	. 581	- 577	- 573	. 569	. 566	. 562	. 55^{8}	- 554	. 550
120	1.547	. 543	. 539	. 535	. 532	. 528	. 524	. 520	. 517	. 513
121	1.509	. 506	. 502	. 498	. 495	. 491	. 487	. 484	. 480	. 476
122	I. 473	.469	. 466	. 462	. 459	-455	. 45 I	. 448	-444	. 441
123	1.437	. 434	. 430	. 427	. 423	. 420	. 416	. 413	. 409	. 406
124	1.402	. 399	. 395	. 39^{2}	. 388	. 385	. 382	. 378	. 375	. 371
125	1. 368	. 365	. 361	- 358	- 355	-35I	. 348	- 344	. 341	. 338
126	1.334	. 331	. 328	. 325	. 32 I	. 318	. 315	. 311	. 308	. 305
127	1.302	. 298	. 295	. 292	. 289	. 285	. 282	. 279	. 276	. 272
128	1.269	. 266	. 263	. 260	. 257	. 253	. 250	. 247	. 244	. 241
129	I. 238	. 234	. 23 I	. 228	. 225	. 222	. 219	. 216	. 213	. 210
130	1.206	. 203	. 200	. 197	. 194	. 19 I	. 188	. 185	. 182	. 179
I3I	1.176	. 173	. 170	. 167	. 164	. 161	. 158	. 155	. 152	. 149
132	1.146	. 143	. 140	. 137	.134	. I3I	. 128	. 125	122	. 120
133	1.157	. II4	. III	. 108	. 105	. 102	. 099	.096	. 093	. 09 I
134	1.088	.085	. 082	. 079	. 076	. 073	. 071	. 068	. 065	. 062
135	I. 059	.054	. 054	. 051	. 048	. 045	. 043	. 040	. 037	. 034
136	1.032	. 029	. 026	. 023	. 020	. 018	. 015	. 012	. 0 Io	. 007
137	1.004	. 001	*. 999	*. 996	. 993	*. 991	*.988	.985	*.983	*. 980
138	0.977	. 975	. 972	. 969	. 967	. 964	. 961	. 959	. 956	. 954
139	0.95 I	.948	. 946	- 943	. 940	-938	. 935	. 933	. 930	. 927
140	0.925	. 922	. 920	-917	.915	-912	. 909	. 907	. 904	. 902
141	0.899	. 897	. 894	. 892	. 889	. 887	. 884	. 882	. 879	. 877

V.	0	1	2	9	4	5	6	7	8	9
F-s.	Seconds.	Secs.	Secs.	Secs.	Secs.	Secs.	Secs.	ecs.		
$1+2$	0.874	. 872	. 869	. 867	. 86	$.862$. 859	. 857	$.854$	$.852$
I+3	0.849	. $8+7$. 8.44	. $8+2$. 839	. 837	. 835	. 832	. 830	. 827
144	0.825	. 822	. 820	.818	. 815	. 813	. 810	. 808	. 806	. 803
145	0.801	. 798	. 796	. 794	. 791	.789	. 787	. $78+$. 782	. 780
146	0.777	. 775	. 773	. 770	. 768	. 766	. 763	. 761	. 759	. 756
147	0.754	. 752	. 749	-7+7	. 745	. 742	. 740	. 733	. 736	. 733
148	0.731	. 729	. 727	. 724	. 722	. 720	. 717	. 715	713	711
149	0.708	. 706	. $70+$. 702	. 700	. 697	. 695	. 693	. 691	. 683
150	0.686	. 68.4	. 682	. 680	. 677	. 675	. 673	. 671	. 669	. 666
151	0.664	662	. 660	. 658	. 656	. 653	. 651	. 649	. 647	. 6.45
152	0.643	. $6+1$. 638	. 636	. $63+$. 632	. 630	. 628	. 626	. 623
153	0.621	. 619	. 617	. 615	. 613	.6II	. 609	. 607	. 605	. 602
154	0.600	. 598	. 596	- 594	. 592	. 590	. 588	. 586	. 58.4	. $5^{8} 2$
155	0.580	. 578	. 576	. 574	. 572	. 570	. 568	. 565	.563	. 561
156	0.559	. 557	. 555	- 553	. 55 I	- 549	- 547	- $5+5$. 543	. 541
157	0.539	. 537	. 535	. 533	. 531	. 529	. 527	. 525	. 523	. 521
158	0.519	. 517	. 515	. 513	. 511	. 510	. 508	. 506	. 50.4	. 502
159	0.500	- 498	. 496	- +9.4	. 492	. 490	. 488	. 486	. 484	. 482
160	0.48 I	. 479	. 477	. 475	. 473	. 471	. 469	.467	.465	. +63
161	0.462	. +60	- +58	. +56	. 454	. +52	. 450	. $4+8$. 446	. 445
162	$0.4+3$. +41	. +39	$\cdot+37$. 435	. 433	. 432	- +30	. 428	. 426
163	0.424	. 422	. 42 I	. +19	. 417	. 415	- 413	. 411	. +10	. 408
164	0.406	. +04	. +02	. + OI	. 399	. 397	. 395	. 393	. 392	. 390
165	0.388	. 386	.384	.333	. 381	. 379	. 377	. 375	. 374	. 372
166	0.370	. 368	.367	. 365	. 363	. 361	. 360	. 35^{8}	. 356	-354
167	0.353	. 351	. 349	. 347	- $3+6$	-344	. 342	- 340	. 339	. 337
168	0.335	. 333	. 332	. 330	. 328	. 327	. 325	. 323	. 32 I	. 320
169	0.318	. 316	. 315	. 313	. 3 II	. 309	. 308	. 306	. 304	. 303
170	0.301	. 299	. 298	. 296	. 294	. 293	. 291	. 289	. 288	. 286
171	0.28 +	. 283	. 281	. 279	. 278	. 276	. $27+$. 273	. 271	. 269
172	0.268	. 266	. 264	. 263	. 261	. 260	. 258	. 256	. 255	. 253
173	0.25 I	. 250	. 248	. 2.47	. 245	. $2+3$. 2.42	. 240	.238	. 237
174	0.235	. 234	.232	. 230	. 229	. 227	. 226	. 224	. 222	. 221
175	0.219	. 218	. 216	. 215	. 213	. 211	. 210	. 208	. 207	. 205
176	0.203	. 202	. 200	. 199	. 197	. 196	. 194	. 192	. 19 I	. IS9
177	0.188	. 186	. 185	. 183	. 182	. 180	. 178	. 177	. 175	. 174
178	0.172	. 171	. 169	. 168	. 166	. 165	. 163	. 162	. 160	. 159
179	-. 157	. 156	. 154	. 152	. 151	. 149	. 148	. 1.46	. I 45	. 143
180	0.142	. 140	. 139	. 137	. 136	. 134	. 133	. 131	. 130	. 129
181	0.127	. 126	. 124	. 123	. 12 I	. 120	. 118	. 117	. II 5	. 114
182	0.112	. 111	. 109	. 103	. 107	. 105	. 104	. 102	. 101	. 099
183	0.098	.096	. 095	. 093	. 092	. 090	. 089	. 088	. 086	. 085
184	0.083	. 082	. 080	. 079	. 078	.076	. 075	. 073	. 072	.070
185	0.069	. 068	. 066	. 065	. 063	. 062	. 061	. 059	. 058	. 056
186	0.055	. 054	. 052	. 05 I	. 649	. 048	. 047	. 045	. $0+4$. 0.42
187	0.04 I	. 0.40	. 038	. 037	. 035	.034	. 033	. 031	. 030	. 029
188	0.027	. 026	. 024	. 023	. 022	. 020	. 019	. 018	. O \% 6	. 015
189	o.OI 4	. O 2	. OII	. 000	. 008	. 007	. 005	. 004	. 003	. OI

XII. TABLE OF VALUES OF

$\mathrm{h}=\frac{1}{2} \mathrm{gt}^{2}=16.0954 \mathrm{t}^{2}$ FEET.

t	0		2			5		7	8	9
	Feet.									
1.0	16.10	16.42	16.75	17.08	17.41	17.75			18.77	19
1.1	19.48	19.83	20.19	20.55	20.92	21.29	21.66	22.03	22.41	22
1.2	23.18	23.57	23.96	24.35	24.75	25.15	25.55	25.96	26.37	26
1.3	27.20	27.62	28.04	28.47	28.90	29.33	29.77	30.21	30.65	31.10
1.4	31.55	32.0	32.45	32.91	33.38	33.84	34.31	34.78	35.26	35
1.5	36.21	36.	37.19	37.68	38.17	38.67	39.17	39.67	40.18	4
1.6	41.20	41.72	42.24	42.76	43.29	43.82	$4+35$	44.89	45.43	
1.7	46.52	47.06	47.62	48.17	48.73	49.29	49.86	50.43	51.00	51.5
1.8	52.15	52.7	53.31	53.90	54.49	55.09	55.68	56.28	56.89	4
,	58.10	58.72	59.33	59.95	60.58	61.20		62.46		63
2.0	64.38	65.03	65.68	66.33	66.98	67.64	68.30	68.97	69.64	3
2.1	70.98	71.66	72.34	73.02	73.71	74.40	75.09 .	75.79	76.49	2
2.2	77.90	78.61	79.32	80.04	80.76	8 I .48	82.21	82.94	83.67	84.41
2.3	85.14	85.89	86.63	87.38	88.13	88.89	89.64	90.4I	91.17	91.9
2.4	92.71	93.48	94.2	95.04	95.83	96.61	97.40	98.20	98.99	
2.5			102.2		103.8	104.7	105.5	106.3	107.2	108.0
2.6	108	109	II	III. 3	112.2	113.0	113.9	114.	115.6	116.
2.7	117.3	118.2	119	120.0	120.8	121.7	122.	123.5	124.4	
2.8	12	127	12	128.9	129.8	130.7	131.6	I 32.6	133.5	
. 9	135	136.	137.	138.2	139.1	140.1	141.	142.	142.9	143.
3.0	144.9	145	146.8	147.8	148.8	149.7	150	151.7	152.7	.
3.1	154.	155.	156.7	157.7	158.7	159.7	160.7	161.7	162.8	163.8
3.2	164.8	165.	166.9	167.9	169.0	170.0	171.1	172.1	173.2	I74.
$3 \cdot 3$	175.3			178.5	179.6	180.		182.8	183.9	
4	186.	187	188.3		190.5		2.7	193.8		196.1
3.5	197.2	I98.3	199.4	200.6	201.7	20	204.01	205.1	206.3	.
3.6	208.6	209.7	210.9	212.1	213.3	214			218.0	9.
,	220.3	221.5	22	223.91	225	226.3	227.5	228.8	230.0	
8	232.4	233.6	23	236.1	237.3	238.6	239.8	241.0	242.3	,
3.9	244.8	2.46	$247 \cdot 3$		249.9	251.1		253.	255.0	
4.0	257.5	258.8	260. I		262.7	26		266.6	267.9	269.
4.	270.6	271.9	273.2	274.51	275.9	277.2	278.5	279.9	281. 2	282.
4.2	283.9	285.3	28		289.3	290.7		293.5	294.8	
3	297.6	299.0	300.	301.8	303.2	30.4	30.	307.4	308.8	310.
$4 \cdot 4$	311.6	313.0	314.4	315.9	317.3	318.7	320.	321.6	323.0	324.
$4 \cdot 5$	325.9	327.4	328.8	330.3	331.8	333.2		336.2	337.6	
4.6	340.6	342 . I	343.5	$345 . \mathrm{Cf}$	346.5	348.0	349.5	351.0	352.5	354.
4.7	355.6	357.1	$35^{8.6}$	360.1	361.6	363.2	$364 \cdot 7$	366.2	367.8	369.
4.8	370.8	372.4	373.9	$375 \cdot 5$	377.1	378.6	380.	381.7	383.3	38.4
4.9	386.5	388.0	389.6	391. 2	392.8	394.4	396.9	397.6	399.2	400.8
5.0	402.4	404.0	405.6	407.2	408.8	410.5	412.1	413.7	$415 \cdot 3$	416.

t	0	1	2	3	4	5	6	7	8	9
	Feet	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet	Feet.	Feet.
5.1	418.6	420.3	421.9	423.6	425.2	426.9	428.5	430.2	431.9	433.5
5.2	435.2	436.9	438.6	440.3	+42.0	443.6	$445 \cdot 3$	447:0	443.7	450.4
$5 \cdot 3$	452.1	453.8	455.5	$457 \cdot 3$	$45^{8.9}$	+60.7	462.4	464.1	465.9	467.6
5.4	469.3	47 I . I	472.8	474.6	476.3	478.1	479.8	481.6	483.4	485.1
$5 \cdot 5$	486.9	488.6	490.4	492.2	494.0	495.8	497.6	499.4	501.2	503.0
5.6	504.8	506.6	508.4	510.2	512.0	513.8	5I5.6	517.5	519.3	521.1
5.7	522.9	52.4 .8	526.6	528.5	530.4	532.2	534.0	535.8	537.7	539.6
5.8	541.4	$5+3.3$	545.2	547. 1	549.0	550.8	552.7	554.6	556.5	558.4
5.9	560.3	562.2	564. 1		567.9	569.8	571.7	573.7	575.6	577.5
6.0	579.4	58 I .4	583.3	585.2	587.2	589.1	591.I	593.0	595.0	597.0
6.1	593.9	600.9	602.9	60.4 .8	606.8	608.8	610.7	612.7	614.7	616.7
6.2	618.7	620.7	622.7	624.7	626.7	628.7	630.7	632.8	$63+.8$	636.8
6.3	638.8	640.9	$6+2.9$	644.9	647.0	649.0	$65 \mathrm{I} . \mathrm{I}$	653. I	655.2	657.2
6.4	659.3	661.3	663.4	665.5	667.5	669.6	671.7	673.8	675.9	677.9
6.5	680.0	682.1	$68+.2$	686.3	688.4	690.5	692.6	$69+.8$	696.9	699.0
6.	701.1	$703 \cdot 3$	705.4	707.5	709.7	711.8	713.91	716.1	713.2	720.4
6.7	722.5	724.7	726.8	729.0	731.2	733.4	$735 \cdot 5$	737.7	739.9	7+2. I
6.8	744.3	746.4	748.6	750.8	753.0	755.2	757.5	759.7	761.9	764.1
6.9	766.3	768.5	770.8	773.0	775.2	$777 \cdot 4$	779.7	781.9	$75+2$	756.4
7.0	788.7	790.9	793.2	$795 \cdot 4$	797.7	800.0	802.3	80.4 .5	806. 8	809. I
7.1	8 II .4	813.7	816.0	818.2	820.5	822.8	825.1	827.5	829.8	S32.I
7.2	$83+.4$	836.7	839.0	8.1.3	$8+3.7$	$8+6.0$	8.48 .4	850.7	S53.0	855.4
7.3	857.7	860.1	862.4	864.8	867.1	869.5	871.9	874.3	876.6	879.0
7.4	881.4	883.8	886.2	883.5	890.9	$893 \cdot 3$	$895 \cdot 7$	S9S.I	900.6	903.0
7.5	905	907.8	910.2	912.6	$9^{15} 5.1$	917.5	919.9	922.4	$92+$. ${ }^{\text {¢ }}$	927.2
7.6	929.7	932.1	934.6	937.0	$939 \cdot 5$	9+1.9	$94+4$	$9+6.9$	$9 \cdot 49 \cdot 3$	951.8
7.7	954.3	956.8	959.3	961.8	$96+.2$	966.7	969.2	971.7	974.2	976.7
7.8	979.2	981.8	$9^{3}+\cdot 3$	$9^{86} .5$.	$9^{\text {S9. }} 3$	991.S	99+.4	996.9	$999 \cdot 4$	1002
7.9	1005	1007	1009	IOI2	1015	1017	1020	1023	1025	IO2 ${ }^{\text {S }}$
8.0	1030	1033	1035	1038	10.4	1043	10.46	1048	1051	1053
	105	1059	06I		1066	1069	1072	1074	1077	Ioso
8.2	1082	1085	1088	1090	1093	1095	Iog 8	IIOI	IIO_{4}	106
8.3	1109	1112	IIIt	III7	I 120	1122	1125	II2 ${ }^{\text {S }}$	1130	I 133
8.7	1136	1138	1	IIt+	1147	II49	II52	II 55	1157.	1160
8.5	1163	1166	1158	1171	1174	1177	1179	IIS2	IIS5,	II88
8.6	1190	1193	1196	1199	1202	1204	1207	121	1213	1216
8.7	1218	1221	122.4	1227	1230	1232	1235	1238	1241	12.4
8.8	1246	1249	1252	1255	1258	1261	1264	1266	1269	1272
8.9	1275	1278	1281	1284	1286	12S9	1292	1295	1298	1301
9.0	1304	1307	1310	1312	1315	I3IS	1321	1324	1327	1330
9.1	1333	1336	1339	$13+2$	1345	1348	1350	1353	1356	I 359
9.2	1362	I 365	1368	1371	1374	1377	1350	1383	1386	1389
$9 \cdot 3$	1392	I395	1398	I 401	1404	1407	1410	1413	1416	1419
$9 \cdot 4$	1422	1.425	1428	$1+3 \mathrm{I}$	1434	1437	$14+10$	I $4+4$	1 +17	1450
9.5	1453	1456	I 459	1462	I. 465	1468	$147{ }^{\circ}$	1474	1475	I 480
9.6	I483	1486	1490	1493	1496	I 499	1502	1505	1508	15 II
9.7	1514	$\mathrm{I}_{5} 18$	1521	1524	1527	1530	1533	1536	1540	1543
9.8	1546	1549	1552	1555	1558	1562	1565	1568	1571	1574
9.9	1575	158 I	I584	1587	1590	I 593	I597	I600	1603	1606

APPENDIX II.

TABLE I.

Densities corresponding to different values of $\mathrm{W}-\mathrm{W}^{\prime}+w$, in grammes.

Numbers.	0	1	2	3	4	5	6	7	8	9	Diff,
700.	1.93579	551	523	496	468	+41	413	385	358	330	27.6
701	303	275	247	220	192	165	137	109	082	054	27.6
702	027	$\stackrel{7}{97}$	$\overline{9} 72$	$\stackrel{\rightharpoonup}{9}+4$	917	890	862	\bar{s}_{35}	¢07	780	27.4
703	I. 92753	725	698	670	643	616	588	561	533	506	27.4
70	479	+5I	$+2+$	396	369	342	314	287	259	232	27.4
70	205	177	150	123	o96	069	O+I	OI	$\overline{9} 7$	960	27.2
706	I.91933	905	S73	85 I	82.4	797	770	$7+3$	716	689	27.1
70	662	634	607	5 So	553	526	499	472	+45	$+18$	27.1
708	39 I	364	337	310	283	256	229	202	175	148	27.0
709	12 I	094	067	- $\downarrow 0$	OI3	$\overline{9} 86$	$\overline{9} 9$	$\overline{932}$	$\overline{9} 05$	878	26.9
710	1.90852	S25	798	771	$7+4$	718	69I	664	637	610	26.8
	584	557	530	503	476	450	423	396	369	$3+2$	26.8
	316	289	262	235	209	182	155	129	102	075	26.7
	049	22	995	$\overline{9} 69$	$9+2$	$\overline{9} 16$	$\overline{8} 89$	$\overline{8} 62$	$\overline{8} 36$	$\overline{8} 09$	26.6
	I. 89783	756	730	703	677	651	$62+$	597.	571	$5+4$	26.5
715.	518	49 I	465	438	412	385	359	332	306	279	26.5
716	253	226	200	173	147	I2I	$09+$	068	O+I	OI5	26.4
71	1.88989	962	936	910	883	857	831	SO4	778	75	26.3
71	726	699	673	6.77	620	594	568	5+1	515	489	26.3
719.	463	436	410	$3{ }^{3} 4$	358	332	306	280	254	228	26.1
72	202	175	149	123	097	071	$0+5$	OI9	993	$\overline{9} 67$	26. 1
721	1.8794 I	914	888	862	836	810	784	758	732	706	26. I
722	680	654	628	602	576	550	52.	49^{8}	472	44^{6}	25.9
72	42 I	395	369	$3+3$	317	291	265	239	213	187	25.9
	62	136	0	08 +	O5S	033	007	$\overline{9} 81$	$\overline{9} 5$	$\overline{9} 29$	25.8
725	1.86904	878	S52	826	Soo	775	749	723	697	671	25.8
72	646	620	59+	568	543	517	491	466	440	4	25.7
727.	389	363	337	311	286	260	$23+$	209	183	157	25.7
728.	33	107	082	056	031	005	$\overline{9}$ So		929	¢ 93	25.6
729.	1.85878	852	827	8OI	776	750	725	699	674	648	25.5
730.	623	598	573	547	522	495	471	446	420	395	25.4

Table I.--Continued.

Numbers.	0	1	2	3	1	5	6	7	8	9	Diff.
73 I .	1. 55369	344	318	293	267	243	217	192	167	r_{4}	25.2
732	116	O9I	066	0.41	OI 5	$\overline{9} 8_{9}$	973	939	$9 \mathrm{I}+$	890	$2+\cdot 9$
733.	1. $8+863$	839	813	786	762	737	7 I 4	687	653	637	25.7
73	612	587	562	536	5 II	4^{86}	$+61$	436	+II	389	25.0
735	361	336	311	286	260	235	210	185	150	135	25.0
736	110	085	060	035	OIO	$9^{5} 5$	$\overline{9} 60$	935	910	$\overline{8} 85$	25.0
737	1.83860	835	8II	786	761	736	7 II	685	661	636	25.0
738.	6 I 2	586	560	536	510	487	461	$+37$	+12	388	25.0
739	362	338	313	288	264	239	214	IS9	165	1.40	25.0
740	II 4	ogo	06.	O+I	oi6	$\overline{991}$	967	$\overline{9}+2$	917	S 93	25.0
741	I. 82868	$8+3$	819	$79+$	769	745	720,	695	670	6.45	2.4 .6
74	62 I	596	572	547	523	$+9^{8}$	474	$+49$	$+25$	400	$2+.5$
74	376	35 I	326	302	277	253	228	203	179	$15+$	24.6
	130	105	081	056	032	oos	$\overline{9} 8_{3}$	959	934	910	$2+.6$
745	I. 8 I 886	S6I	S37	812	788	$76+$	739	715	691	666	24.4
746	$6+2$	617	593	569	$5+4$	520	+96	471	+47	123	$2+.3$
$7+$	399	374	350	326	302	278	253	229	205	ISI	$2+.2$
74	I 57	132	108	oS_{4}	060	036	OII	957	$\overline{9} 63$	939	$2+.2$
74	I. 80015	890	S66	S 42	815	79.4	770	$7+6$	722	698	24.1
	674	649	625	601	577	553	529	505	+8I	457	24.1
	433	409	355	36 I	337	313	289	265	241	217	24.0
75	193	169	${ }^{1}+5$	12 I	097	073	0.49	025	001	977	$2+.0$
753	I. 79953	929	905	SSI	S57	833	Sog	785	761	737	23.9
	714	690	66	6.42	619	595	571	$5+^{8}$	$52+$	500	23.7
	$+77$	$+53$	429	405	3^{82}	35^{8}	334	311	257	263	23.7
756.	240	216	I92	168	I +5	121	097	074	050	026	23.7
	003	779	$\overline{9} 5$	$\overline{931}$	$\overline{9} 08$	S® 4	$\overline{\$} 60$	\bar{s}_{37}	¢13	789	23.7
75	I. 75766	$7+2$	719	695	672	$6+8$	625	601	57^{8}	$55+$	23.5
759	531	507	$4^{5}+$	$+60$	$+37$	+13	390	366	$3+3$	319	23.5
760.	296	272	249	225	202	179	155	132	IOS	os5	23.4
761	062	039	OI 5	992	$\overline{9} 65$	$9+5$	921	$\overline{5} 98$	874	85 I	23.4
762.	1.77528	SO_{4}	781	758	734	711	688	66_{4}	6.1	618	23.4
763.	595	571	548	525	502	479	$+55$	432	+09	386	23.2
$76+$.	363	339	316	293	270	$2+7$	223	200	177	154	23.2
765	131	107	ost	061	038	OI5	992	$\overline{9} 69$	$\overline{9}+6$	923	23.1
766.	1. 76900	S-6	S_{53}	S30	SO_{7}	$7^{8}+$	761	738	7×5	692	23.1

Tible I.-Continued.

Numbers.	0	1	2	3	4	5	6	7	8	9	Diff.
767.	I. 76669	646	623	600	577	554	53 I	508	485	$+62$	23.0
768	$+39$	416	393	370	$3+7$	32.4	301	27^{8}	255	232	22.9
769	10	187	164	I4I	II8	095	072	049	026	003	22.9
770	I. 7598 I	95^{8}	935	912	S89	866	$8+3$	820	797	774	22.9
77	752	729	706	683	661	638	61_{5}	593	570	547	22.7
77	525	502	479	456	+34	+II	388	366	$3+3$	320	22.7
773	298	275	252	227	207	184	I6I	139	116	093	22.7
77	07 I	0.48	025	003	$\overline{9} 80$	958	935	912	$\overline{8} 90$	¢ 67	22.6
77	1. $74^{8}+5$	822	Soo	777	755	732	710	687	665	642	22.5
77	620	597	575	552	530	507	485	463	+40	418	22.5
777.	395	372	350	327	305	283	260	238	215	193	22.4
778	I7I	I+8	126	$10+$	081	059	037	OI 4	99^{2}	970	22.3
779	1.73948	925	903	88I	858	836	$8 \mathrm{I}+$	791	769	747	22.3
78	725	702	680	658	635	613	591	568	546	524	22.3
78	502	$+79$	457	435	413	39^{1}	368	$3+6$	324	302	22.2
782	280	257	235	213	I9I'	169	147	125	103	08I	22.1
78	059	036	OIt	992	970	$\overline{9}+8$	$\overline{9} 26$	$\overline{9}{ }^{4} 4$	$\overline{8} 82$	$\overline{8} 60$	22.1
784	1. 72838	815	793	771	749	729	705	683	66 I	639	22.1
785	617	595	573	55 I	529	507	485	463	4+I	+19	21.9
78	398	376	354	332	310	288	266	$2+4$	222	200	21.9
78	179	157	135	II3	O9I	070	048	026	OO4	982	21.8
788.	1.71961	939	917	895	873	852	830	SoS	786	764	21.8
78	743	721	699	677	656	$63+$	61	591	569	547	21.7
79	526	50.4	482	460	439	417	395	37t	352	330	21.7
791.	309	257	265	$2+3$	222	200	I78	157	135	113	21.7
792.	092	070	0.49	027	006	$\overline{9} 8+$	$\overline{9} 63$	$9+1$	920	895	21.5
	1.70887	S55	833	812	790	769	$7+7$	725	704	682	21.6
	661	639	618	596	575	$55+$	532	5II	489	$+68$	21.4
795	447	$+25$	404	382	361	3.40	318	297	275	254	2I. 4
796	233	211	190	168	I+7	126	104	083	061	O+0	21.4
	019	$\overline{997}$	976	954	933	912	$\overline{8} 90$	$\overline{8} 69$	$\overline{8}+7$	$\overline{8} 26$	2 I .3
798	1.69806	784	763	74^{2}	721	700	679	658	639	6 I 6	2I.I
799.	595	573	552	53 I	509	488	$+67$	$+45$	424	403	21.2
800.	382	360	339	318	297	276	254	233	212	I9I	21.1
80	170	I49	128	107	086	065	0.4	023	00	$\overline{9}$ SI	21.0
$\mathrm{SO} 2^{2}$	1.68959	938	917	896	S75	854	833	812	791	770	21.0

Table I.-Continued.

Numbers.	0	1	2	3	4	5	6	7	8	$!$	Diff.
803.	1.68749	728	707	686	665	644	623	602	$5^{\text {SI }}$	560	21. 0
804	539	518	497	476	455	+34	413	392	371	350	21.0
805	329	308	287	266	2.45	224	203	182	161	I. 40	20.9
806.	120	099	078	057	036	OI 5	$99+$	973	952	932	20.9
807	1.67912	891	870	849	828	808	787	766	745	724	20.8
808.	704	683	662	6.1	62 I	600	579	559	538	517	20.7
809.	497	476	455	+34	414	393	372	352	331	310	20.7
810	290	269	248	228	207	187	166	I45	125	10.4	20.6
8II	084	063	0.42	022	001	$\overline{9} 81$	$\overline{9} 60$	939	919	$\overline{\mathrm{S}} 8$	20.6
812	1. 66878	857	837	816	796	775	755	734	714	693	20.5
81	673	652	632	611	591	570	550	529	509	488	20.5
814	468	$+47$	427	406	386	366	$3+5$	325	304	23.	20.4
815	264	243	223	203	182	162	I4I	12I	IOI	0 Oo	20.4
816	060	039	019	999	$\overline{9} 78$	958	$\overline{938}$	917	$\overline{8} 97$	$\overline{8} 77$	20.3
817	1. 65857	836	816	796	775	755	735	714	$69+$	674	20.3
818	654	633	613	593	573	553	533	512	492	472	20.2
819	452	431	411	391	371	351	330	310	290	270	20.2
820.	250	229	209	189	169	149	129	109	089	069	20.1
821	049	028	008	$\overline{9} 88$	$\overline{9} 68$	$\overline{9}+8$	$\overline{9} 28$	- 08	$\overline{8} 88$	$\overline{8} 68$	20.1
822	1. 6.4848	828	808	788	768	$7+8$	728	708	688	668	20.0
82	648	628	608	588	568	548	528	508	488	468	20.0
8	44^{8}	428	408	388	368	348	328	308	288	268	19.9
825.	249	229	209	189	169	I49	I29	109	os9	069	19.9
826	050	030	OIO	$\overline{9} 90$	$\overline{970}$	$\overline{9} 0$	$\overline{9} 30$	910	$\overline{8} 90$	8-0	19.9
827	1.63851	831	8II	791	771	752	732	712	692	672	19.5
823.	653	633	613	593	574	554	534	515	495	475	19.7
82	456	$+36$	+16	396	377	357	337	318	298	278	19.7
830	259	239	219	200	180	161	I 41	12I	102	OS2	19.6
8	063	$0+3$	023	004	$\overline{9} 8+$	$\overline{9} 65$	$9+5$	925	$\overline{9} 06$	$\overline{\$} 56$	19.6
83	1.62867	$8+7$	827	So8	788	769	749	729	710	690	19.6
833	671	651	632	612	593	573	$55+$	534	515	495	19.5
83	476	456	437	417	39^{8}	379	359	340	320	301	19.4
835	23_{2}	262	243	223	20.4	154	165	145	126	106	19.5
836	o87	067	048	029	009	$\overline{9} 90$	971	$\overline{951}$	932	913	19.3
837	1.61894	874	855	836	SI6	797	778	758	739	720	19.3
838	701	681	662		623	604	585	565	546	527	19.3

118

Table I.-Continued.

Numbers.	0	1	2	3	4	5	6	7	8	9	Diff.
839.	1.61508	488	469	450	431	412	392	373	354	335	19.2
840	316	296	277	258	239	220	200	181	162	143	19.2
84 I	12.4	$1 \mathrm{IO}_{4}$	085	066	047	O28	009	$\overline{9} 9$	971	$\overline{952}$	19. 1
842	1. 60933	913	894	875	856	837	817	798	779	760	19.2
$8+3$	741	722	703	684	665	$6+5$	627	608	589	570	19.0
84	55 I	532	513	494	475	456	437	418	399	380	I9.0
845	361	$3+2$	323	304	285	266	247	228	209	190	18.9
846	172	153	134	II5	og6	077	058	039	020	OOI	19.0
847	1.59982	963	944	925	906	888	869	850	83 I	812	18.8
848	794	775	756	737	718	700	681	662	643	624	18.8
849.	606	$5^{8} 7$	568	$5+9$	530	512	493	+74	455	436	18.8
850	418	399	380	361	34^{2}	324	305	286	267	248	18.8
85	230	2 II	192	174	155	137	118	099	081	062	18.6
852	044	025	006	${ }^{9} 87$	$\overline{9} 69$	$\overline{9} 5$	$\overline{931}$	913	$\overline{8} 94$	875	18.7
853	1.58857	838	820	SoI	783	76	746	727	709	690	I8. 5
854	672	653	634	615	597	57^{8}	559	54 I	522	503	18.7
855	485	466	44^{8}	429	4 II	392	374	356	337	319	I8.5
85	300	281	263	$2+4$	226	208	189	171	I52	I3+	I8. 4
857	II6	097	079	060	O42	023	005	$\overline{9} 86$	$\overline{9} 68$	$\overline{9}+9$	18.5
858	I. 57931	912	894	875	857	839	820	802	783	765	18.4
859	747	728	710	692	673	655	637	618	600	582	I8.3
860	56	545	527	509	490	472	454	435	417	399	18.3
86	381	362	344	326	307	289	271	252	234	216	18.3
862	198	179	16 I	I 43	125	107	088	070	052	034	18.2
863	016	$\overline{9} 97$	$\overline{9} 79$	$\overline{9} 61$	$\overline{9}+3$	$\overline{9} 25$	$\overline{9} 07$	$\overline{8} 89$	$\overline{8} 71$	853	18.1
86	I. 56835	816	798	780	762	$74+$	725	707	689	671	18.2
86	653	$63+$	616	598	580	562	544	526	508	49°	18.1
866	472	$45+$	436	418	400	382	364	346	328	310	18.0
867	292	273	255	237	219	201	183	165	147	129	18.1
868	III	093	075	057	039	021	003	$\overline{9} 85$	$\overline{9} 67$	$\overline{9} 49$	I7.9
869	I. 55932	914	896	878	860	8.42	824	806	788	770	17.9
87	753	735	717	699	681	663	645	627	609	591	17.9
87	574	556	538	520	502	485	467	449	431	413	17.8
87	396	378		342	324	307	289	271	253	235	17.8
873	218	200	182	164	146	129	III	093	075	05 I	I7.8
87	040	022	004	986	$\overline{9} 69$	951	$\overline{9} 33$	$\overline{9} 16$	$\overline{8} 98$	880	I7.7

Table I.-Continued.

Numbers.	0	1	2	3	4	5	6	7	8	9	Diff.
875.	I . 54863	$8+5$	827	809	792	774	756	739	72 I	703	17.7
876.	686	668	650	633	6 I 5	598	580	562	545	527	17.6
877	510	492	474	457	$+39$	422	40.4	386	369	351	17.6
878	334	316	298	281	263	246	228	210	193	175	17.6
879	158	140	123	105	083	070	052	$03+$	OI7	$\overline{9} 9$	17.6
880.	1. $5399^{\text {S } 2}$	96.	$9+7$	929	912	S95	877	860	$8+2$	S25	17.4
881	808	790	773	755	738	721	703	686	668	65 I	17.4
882	$63+$	616	599	581	564	547	529	512	494	477	$17 \cdot 4$
883	460	44^{2}	425	407	390	373	355	338	320	303	17.4
88.	286	268	25 I	234	216	199	I82	164	147	I30	17.3
8	113	095	078	06 I	0.43	026	009	$\overline{9} 91$	974	957	17.3
886.	1.529+0	922	905	SSS	871	S54	836	SI_{9}	802	785	17.2
887	768	750	733	716	699	682	$66+$	6.77	630	613	17. 2
S88	596	578	561	$5+4$	527	510	492	475	458	HI	17.2
889	42.	406	389	372	355	338	321	30.4	287	270	17.I
890	253	235	218	201	IS 4	167	150	133	I 16	099	17. 1
891	082	064	0.47	030	OI3	$\overline{9} 6$	979	$\overline{9} 62$	945	$\overline{9} 28$	I\%. 1
89	1.519 II	S94	877	860	S+3	S26	Sog	792	775	758	17.0
S93	741	724	707	690	673	656	639	622	605	588	16.9
89.	572	555	538	52 I	50.4	487	470	453	436	419	17.0
8	402	385	368	35 I	$33+$	317	300	283	266	249	16.9
896	233	216	199	182	165	I49	132	115	098	OSI	16.8
89	065	O+ 4	O3I	OIt	$\overline{997}$	$\overline{9} 81$	964	$9+7$	930	${ }_{9} \mathrm{I} 3$	16.8
S93.	I. 50897	SSo	S63	S. 6	829	813	796	779	762	$7+5$	16.8
899	729	712	695	678	661	6.45	628	6II	594	577	16.8
900	56 I	$5+4$	527	510	+94	47%	460	H	427	+10	16.7
90	394	377	360	$3+3$	327	310	293	377	260	243	16.7
902	227	210	193	177	160	It+	127	IIO	09.4	075	16.6
90	06I	0.4	027	OII	99.	$9_{7} 7^{8}$	$\overline{9} 61$	9H	$\overline{9} 23$	91I	16.6
90	I. 49895	878	S62	S +5	S29	812	796	779	763	746	16.5
90	730	713	696	680	663	$6+7$	630	613	597	580	I6.6
906	564	547	531	514	49^{8}	481	465	44^{8}	432	415	16.5
907.	399	382	366	$3+9$	333	317	300	284	267	25 I	16.4
908.	235	218	202	185	169	152	136	119	103	086	16.5
909..	070	053	037	021	004	$\overline{9}$ SS	972	$\overline{9} 5$	939	923	16.3
910......	1.48907	S90	874	857	S+I	825	809	792	776	-60	16.7

TABLE II.

Table for the reduction of grammes and tenths of grammes to grains.

[From 700 grammes to 910 grammes.]

Numbers.	0	1	2	3	4	5	6	7	8	9
700.	10801.00	02. 5	O+. 1	05.6	07.2	208.7	IO. 3	II. 8	13.4	I+. 9
701.	16.43	17.9	I9. 5	21.0	22.6	24.I	25.7	27.2	28.8	30.3
702	31.9	33.4	35.0	36.5	38.1	39.6	+1.2	+2.7	++	+5.8
703.	47.3	+8.8	50.4	51.9	$53 \cdot 5$	55.0	56.6	58.I	59.7	61.3
704.	62.7	$6+2$	65.8	67.3	68.9	70	72.0	73.5	75.1	76.6
705	78.2	79.7	SI. 3	82.8	S+.4	+85.9	87.5	89.0	90	92.1
706	93.6	95. 1	96.7	98.2	99.8	01.3	02.9	O+. 4	06.0	$07 \cdot 5$
707	Iogog. 0	10.5	12.1	13.6	15.2	16. 7	18.3	19.8	21.4	22.9
708	24.4	25.9	27.5	29.0	306	32.1	33.7	35.2	36.8	38.3
709.	39.9	+1. +	+3.0	++.5	$+6.1$	$+7.6$	+9.2	50.7	52.3	53.8
710	$55 \cdot 3$	56.8	58.4	59.9	61.5	63.0	$6+.6$	66.1	67.7	69.2
711	70.7	72.2	73.8	$75 \cdot 3$	76.9	78.4	So.0	SI. 5	83.1	84.6
712	86.2	87.7	89.3	90.8	$92 .+$	93.9	95.5	97.0	98.6	OO. I
713	IfOOI. 6	03.1	0.4. 7	06.2	07.8	09.3	Io. 9	12.4	I+. O	I5.5
714.	17.0	18.5	20.1	21.6	23.2	$2+.7$	26.3	27.8	29.	30.9
715	32.5	$3+.0$	35.6	37. I	38.7	40.2	41.8	$43 \cdot 3$		46.7
716	47.9	$+9 \cdot+$	-	52.5	5+. 1	55.6	57.2	58.7	6	51.8
717.	63.3	64.8	66.4	7.9	69.5	71.0	72.6	74. 1		77.2
718.	78.7	80.2	81.8	83.3	84.9	86.4	88.0	89.5	91	92.6
719	$9+.2$	95.7	97.3	98.8	$00 .+$	-1. 9	03.5	05.0	o6	08.I
72	IIIO9. 6	II. 1	12.7	I+. 2	15.8	17.3	18.9	20.	2.	23.5
72	25.0	26.5	28. 1	29.6	31.2	32.7	$34 \cdot 3$	35.8	37.4	38.9
722	40.5	42.	43.6	+5. I	$+6.7$	+8.	+9.9		53.0	5+. 5
723	55.9		. 0	60.5	62.1	63.6	65.2	66.7	68.	69.8
	71.3	72.8	$7+4$	75.9	77.5	79.0	80.6	82.1	83.7	5.3
	86.8	88.3	89.9	$91 .+$	93.0	9+. 5	96.1	97.6	99.2	00.7
726	11202.2	03.7	05.3	06.8	oS. 4	09.9	11.5	13.0	14.6	16. 1
72	17.6	19.1	20.7	22.3	23.8	$25 \cdot 3$.		30.0	3 I .5
72	33.0	34.5	36.1	37.6	39.2	40.7	+2.3	43.8	5	$+6.9$
729	48.5	50.05	51.6	53.15	5+.7	56.2	57.8	59.3	60.9	$2 .+$
730	63.9	65.4	67.0	68.57	70.1	71.6	73.2	$7+.7$	76.3	77.8

Table II.-Continued.

Table II.-Continued.

Numbers.	0	1	2	3		5	6	7	8	9
767.	II834.8	36.3	37.9	39.4	41.0	$42 \cdot 5$	44.1	45.6	47.	8.7
768.	50.2	51.7	53.3	54.85	56.4	$57 \cdot 95$	59.5	61.0	6	64.1
769	65.7	67.2	68.8	70.37	71.9	$73 \cdot 4$	75.0	76.5	78	9.6
7\%0.	81.1	82.6	84.2	85.7	87.3	88.8	90.4	91.9	93.	
771	96.5	98.0	99.6	OI.I	02.7	O4. 2	05.8	07.3	O8	10. 4
772.	1191.9	13.4	15.0	. 5	18.1	19.6	21.2	7	+	25.8
773	27.4	28.9	30.5	320	33.6	35.1	36.7	38.2	39.8	I. 3
774	42.8	44.3	45.9	47.4	49.0	'50.5 5	52.1	53.6	55.2	56.7
775	58.25	59.8	61.	62.96	64.5	66.0	67.6	69.1	70	72.2
776	73.68	75.2	76.8	78.37	79.9	81.4	83.0	84.5	86.1	87.6
777.	89.1	90.6	92.	. 7	95.3	96.8	98.	$\cdot 9$	O	. 0
778.	12004.5	06.0	07.6	O9. 1	10.7	I	13.7	15.3		. 4
779	19.9	2 I .4	23.0	24.5	26.1	27.6	29.	30.7	32.3	33.8
780.	35.4	36.9	38.5	40.0	41.6	43.1	4	46.2	47.8	$49 \cdot 3$
781	50.8	52.3	53.9	55.45	57.0	58.5	60.1	61.6	63.2	64.7
782	66.3	67.8	69.	70.97	72.5	74.0	75.6	77.1	78.7	80. 2
783	8 I .7	83.2	84.8	86.3	87.9	89.4	91.0	92.5	94. I	95.6
784	97.1	98.6	00.2	O1. 70	03.3	O4.8		07.9	O9. 5	II.O
785	12112.6	14.I	15.7	17.21	18.8	- 3	2I. 9	23.4	25.0	26.5
786.	28.0	29.5	31.1	32.63	34.2	$35 \cdot 7$	37.3	38.8		. 9
787	43.4	4	46.5	48.0	49.6	.1	5	54.2	5	$57 \cdot 3$
788.	58.8	60.3				66.5	68. I	69.6	71.2	72.7
789.	74.3	75.8	77.4	8		82.0	83.6	85.I	86.	. 2
790	89.7	9 I.	. 8	94.395	95.9	97.4	9	00.5		03.6
79	12205.1	06.	08.2	09.7	3	1		15.9	17.5	. 0
79	20.6	22.1	23.7	25.2		28.3	29.	31.4	3	4.
793	36.0	$37 \cdot 5$	39.1	40.6	42.2	43.7	$45 \cdot 3$	4		
79	51.4	52.9	54.5	56.05	57.65	59.1	60.7	62.2	63.	65.3
795	66.9	68.4	70.0	71.5	. 1	74.6	76.	77.9	$79 \cdot 3$	-. 8
796	82.3	83.8	85.4	86	88.5	90.0	91	93.1		. 2
79	97.7	99.2	-0. 8	-2. 3 -		05.4	07.0	OS. 5	10.	11.6
$79^{8 .}$	12313.1	I4. 6	16.2	17.71	I9. 3	20.8	22.4	23.9	25.5	27.0
	28.6	30.1	31.7	33.23	. 8	36.3	37.9			2.5
800	44.0	+5.5	. 1	48.65	50.25	51.7	53.3	54.8		$7 \cdot 9$
8 I .	59.4	60.9	62.5	6	65.66	67.1	68.7	70.2	71.8	3.3
802.	74.9	76.4	78.0	79.58	8 I .1	82.6	84.2	85.7	87.3	88.8

Tabre II--Continced.

Numbers.	0	1.2	3	4	5	6	7	8	9
803.	12390.3	91.893 .4	34.9	96.5	$9^{8.0}$	99	I.	.	4.2
804	12405.7	07.208 .8	IO. 3	9				8.1	I9.6
805.	21.2	22.724 .3	25.8	27.4	28.9			33	35
806	36.6	38.139	41.2	42.8	44.		47	49	50.5
807	52.0	53.555		58.2	59		62.8	6	5.9
808.	67.4	68.970 .5	72.0	73.	75.		78.	79.5	3
809	82.9	84.480	87.5	S9.I	90.6		3.	95.	6.8
810	$9^{8 .} 3$	99.80	O2	O+. 5			9. I	10	12.2
811	12513.7	15.216 .8	18.3	19.9			24.5	26	27.6
8	-29.2	30.732 .3	33.8	$35 \cdot+$	36.9		40.	1 I	3. 1
813.	+4.6	+6.1 +7		5	52.	53.	55.	57.0	8.5
814	60.0	61.563			67.7	69.	\%o.	72.	73.9
815	75.5	77.088 .6	S	8	83.2	84.	6.	7.	9.4
6	90.9	92.49	95	97. I	95.		I	O3.	- + . 8
817	12606.3	07.5.09.4	10.9	. 5	It.	15	I万	18	20.2
818.	21.7	23.22	26.3	27.9	29.	31	32	+	35.6
819	37.2	3^{5}						49.	I. I
820	52.6	5	57.2	58.8	60.		63.1	65.	66.5
821	68.0	69.571	72.6		75	77	78.8	So.	81.9
822	83.5	85.0		S9.7	91	92	$9+.3$	95.0	7.4
823	98.9	00.402	O3. 5	I	- 6.	OS.	9.	II	12.8
824	12714.3	15.817	18.0	20.5	22.0	23	25.	26	28.2
825	29.7	31.23	3	35.9	37.	39	40	42	43.6
826.	45.2	4			5^{2}	5		57	59.I
827.	60.6	.			,	69.	71.	73.	74.5
828	76.0	77.579 .1		. 2	83.7	S5	66	SS	9.9
8	91.5	93.09	96.1	97.7	99	$\overline{0}$	-2	- ${ }^{\text {\% }} 3$.	05.4
830.	12806.9	08. 4 İ.	II .5	13.1		16.	17.	19.	20.8
831.	22.3	23		28.5		3 I .	33.	134	36.2
8	37.8	$39 \cdot 3$			+5.	47.	48	50.	51.7
833	53.2	54.756	S	59.4	60.	62	64.	65.	67.1
834	68.6	70.1	73.2	74.8	76. 3	77.	79.	+SI.	S2.5
835	84.1	85.6		90	91.8	93.	94.	96.	98.0
836.	99.5	OI	+4. I	05	07.	08	IO.	II.	13.4
837.	129It.9	$16 .+18.0$	19.5	21.1	122.6	24	25.	27.	2S.8
838.	30.3	$31.833 \cdot+$	3+.9	36.5	38.0	39.	+1.	+2.	74. 4

Table II.-Continued.

Numbers.	0	1	2	3	4	5	6	7	S	9
839	129+5.8	+7.3	48.95	50.4	52.05	$53 \cdot 5$	55.1	6.6	58.2	9.7
8 ¢о.	6 r .2	62.7	$6+36$	65.86	67.4	+68.97	70.5	72.	73.	5.I
8_{41}	76.6	78.1	79.78	8 r .2	82.88	$8+38$	85.9	87.4	S9.	O. 5
842 .	92.1	93.6	95.29	$9^{6} .7$	98.3	399.8	ōr. 4	. 9	-4.5	5.0
$8+3$	13007.5	09.0	10.6	12. I I	13.7	15.21	16.8	18.31	19.9	. 4
$8+$	22.9	$2+4$	26.0	27.5	29.1	I 30.6	32	33.7	35.3	36.8
$8+5$.	38.4	39.9	41.5	+3.04	+4.6	46.1 4	47.	49.25	50.8	52.3
$8+6$.	53.8	55.3	56.95	58.4	60.0	61. 56	6	+ 6	6.2	67.7
847.	69.2	70.7	72.37	73.8	75	76.97	78	So. 0	I. 6	83.1
848.	$8+6$	86.1	87.	89.29	8	92.39	93	95.4	97.	8. 5
849.	13100.I	ог. 6	03	7		\%7.8	O	10.9	5	14.0
850.	15.5	17.0	18.6	2	21:7	2	2	26.3	$27 \cdot 9$	29.4
851.	30.9	32.4	$3+.0$	35.5	37.1	38.6	+0.	+1.7	+3.3	+4.8
852	+6. +	47.9	49.55	51.05	52.6	54.15	55.	57.2	8	60.3
853.	61.8	63.3	$6+.96$	66.4	68.0	69.57	71	72.6	7+.2	75.7
$85+$	77.2	78.7	80.38	S		93	36.5	88.08	89.6	91.1
855.	92.7	9+. 2	95.8	97.3	9	${ }^{+}$	-	3.5		6.6
856.	13208. 1	og. 6	11.2	12.71	It. 3	81	17.			
857.	23.5	25.0	26.6	28.1	29.7	31.2	32	3		$37 \cdot 4$
858.	38.9	40.4	42.0	43.	+5	46.6	+8.2			2.8
859.	54.4	55.9	57.55	59.06	60.6	62.16	63	65.2	66.8	68.3
860.	69.8	71.3	2.97			$77 \cdot 5$	79	80.6	82	83.7
86 r .	85.2	86.	88.3			+92.		96.0		9. 1
862.	13300.7	02.				-8.t		II. 5	13.1	I. 4.6
863	16.1	17.6	19.2			23.8	25.		28.5	30.0
86	31.5	33.0	. 6	36.		$2+$	¢0. 8	12.3		45.4
865.	46.9	+8.4	50.05	51.55	53	54. 65	56	57	59.3	60.8
866.	62.4	63.9	65.56	67.06	68	70.17	71	73	7+.8	76.3
867.	77.8	79.3	80.98	82		85.58	87	38		1. 7
868.	93.2	9+7	96.3	97.8		00.90	02.			7. I
869.	13408.7	10. 2	1.8	13.31		$16 .+1$	18.0	19.		. 6
870.	24.1	25.6	27.2	28.73	30.3	33	33		36.5	38.0
87 r .	39.5	4 t .	+2.	4.	45.	+7.2 4	48	0.		53.4
	55.0	56.5	58.15	59.66	6I. 26	62.76	6	65.8	6	68.9
	70.4	71.9	73.5	75.		17	79		82.8	+ +3
874.	85.8	87.4	89.0	90.5		93.69	95.2	96.7	95.3	99.8

Table II.-Continued.

Numbers.	0	1	2	3	4	5	6	7	8	9
875.	13501. 2	02.70	O. 3	5.8	07.4	08.9	.		$[3.6$	I5
876.	16.7	18.2	19.8	21		$2+$	6.0			30.6
877.	32.1	33.6	35.2	36.7	38.3	39.8	41.4		+4. 5	46.0
878.	+7.5	49.05	50.6	52.1	53.7	55.2	56.8	58.3	59.9	6I. 4
879	63.0	$6+5$	66.	67.66	69.2	70.7	72.37	73.	$75 \cdot 4$	76.9
880.	78.4	79.98	81. 5	83.0 S	S. 4.6	86.1	87.789	9.2	0. 8	92.3
881.	93.8	$95 \cdot 3$	96.9	$9^{8.4}$	00.0	OI. 5	O3. 1	O4.	2	07.7
882.	13609.3	10.8	I2. 4	13.9	I5	17.0	18.6		I	23.2
883.	2. +7	26.2	27.8	29.3	30.9	32.4	3	35.5	37.	38.6
884	40.1	41.6	43.2	44.	46.3	47	49.4	9	52.5	54.0
885	55.6	57.1	$5^{8.7}$	60.	8	63.3	64.9	66.	68.0	69.5
886.	71.0	72.5	74.1	75.6	7.2	78.7	So. 3	SI. S	83.4	84.9
887.	S6.4	87.9	89.5	9 I .0	92.6	9+. 1	95.	7.2	$9^{8.8}$	-0. 3
888.	13701. 8	03.3	0.4.9	$06 .+$	08.0	09.5		12.6	It.	15.7
889	17.3	I8.S	20.4	2	23.5	25.0	26.6	. I	29.	31.2
890.	32.7	$3+.2$	35.8	37.3	3	40.4	42.0	$43 \cdot 5$	45.1	46.6
891	$+8.1$	49.6	51.2	52.7	$5+$	55.8	57	8.9	60.5	62.0
892.	63.6	65.1	66.7	S. 2	69.8	71.3	7	74.4	76.0	77.5
893	79.0	So. 5	82. 1	S3.6	S5.2	86	85.3	S	9 I	92.9
894	$9+4$	95.9	9	99.0	00.6	02.I	03.7	05.	- 6.	-S. 3
895.	13809.9	II.	I3	I4. 5	16.I	17.6	19	20.	22	23.8
896.	$25 \cdot 3$	26.8	2	29.9	3I. 5	33.0	37	36.1	37	39.2
897	40.7	42.2	43	$45 \cdot 3$	46.9	+S.4	+	5 I .5	53	5+.6
S9S	56.1	57.6	59.	60.7	62.3	63	65.4	66.9	6S.	70.0
899.	71.6	73.1	74.7	76.2	77.8	79.3	So. 9		St.	S5.5
900.	87.0	SS. 5	90.I	91. 6		94	6.		99	-0.9
901.	13902.4	03.9	05.5	07.0	os. 6	Io		13	It	16.3
902.	17.9	19.4	+2 I .	22.5	24	25	27.2		30	31.8
903.	33.3	34.8	, 36	$+37.9$					45	47.2
904.	48.7	50.2	251.8	53.3	54.9	56.4	45.	59	61	. 6
905.	64.2	65.7	767.3	68.S		71.	73	75.	-6.	6-3.1
906.	79.6	8I. I	I 82.7	84. 2	S5.8	S7.3	3 SS	O	92	O93.5
907.	95.0	96.5	59^{8}	199	OI.	02.7			0	. 9
908.	Ifoio. 4	II. 9	I3.5	515.0	16.6	6 IS. I	I 19.	21	22	524.3
909..	25.9	27.7	$+29$	30.5	532.1	I 33.6	635.2	36.	35.3	339.8
910.	+1. 3	$+2.8$	+4.4	$+45.9$	+7.5	549.0	. 50.6	652.1	I 53.7	755.2

TABLE III.

Density of meroury at different temperatures. (Centigrade.)

Temperature.	Density.	Temperature.	Density.	Temperature.	Density.
o.	13.59600	142 $\frac{1}{2}$	13.56148	23.	13.54095
1.	13.59355	15.	13.56025	23 $\frac{1}{2}$	13.53952
	13.59110	$15 \frac{1}{2}$	13.55903		13.53830
3	13.58865	16	13.55780	$24 \frac{1}{2}$.	13.53707
	13.58620	$16 \frac{1}{2}$.	13.55658		13.53585
5	13.58375	17.	13.55536	251	13.53463
6.	13.58130	$17 \frac{1}{2}$	13.55413		13.5334°
	13.57885	18	13.5529°	$26 \frac{1}{2}$	13.53217
8	13.57640	$18 \frac{1}{2}$	13.55178	27.	13.53095
9	13.57395	19	I3.55055	$27 \frac{1}{2}$	13.52973
10.	13.57150	$19 \frac{1}{2}$	13.54933		13.52850
II	13.56905	20.	13.54810	$28 \frac{1}{2}$	13.52728
12	13.56760	$20 \frac{1}{2}$	13.54688		13.52606
$12 \frac{1}{2}$	13.56638		13.54565	29	13.52483
	13.56515	21	13.54443	30.........	13.52361
1321.........	13.56393		13.54320		
14............	13.56270	2212........	13.54197		

127

TABLE IV.

Reduction of Fahrenheit to Centigrade scale.

Fahrenheit.	Centigrade.	Fahrenheit.	$\begin{aligned} & \text { Centi- } \\ & \text { grade. } \end{aligned}$	Fahrenheit.	Centigrade.	Fahrenheit.	Centigrade.
2...	0	$49 . .$	$9+-10$	66..	$189-10$	$83 .$.	$283-10$
	5-10	50.	10	67	19 4-10	$8+$	28 9-ro
34	I I-IO	51	10 5-10	68	20		$29+-10$
35	I 6-10	52	I I I-IO		$205-10$		30
36.	2 2-10	53.	II 6-Io	70	21 I-IO		$305-10$
3	$27-10$	54	$122-10$		21 6-10	88	31 I-IO
38.	3 3-10	55	127 -10	72	22 2-10		31 6-10
39.	3 9-10		13 3-10	73	22 7 -10	90.	32 2-10
40.	44^{-10}	57.	13 9-10	74	23 3-10	91	$327-10$
4 I	5	5	If 4-10		23 9-10		33 3-10
4	5 5-10		15		$2+4-10$		33 9-10
43.	6 I-IO		15 5-10		25		$3+4-10$
	6 6-10		I6 I-Io		25 5-10	95	35
45	7 2-10		16 6-10		26 I-IO		$355-15$
46.	7 7-10	63.	17 2-10	80	26 6-10	97.	36 I-10
47.	$83-10$	6	17 7-10		27 2-10	95.	36 6-10
48.	$89-10$	65.	$183-10$	82	27 7-10	99	37 2-10

'To reduce centigrade to Fahrenheit $;-$ Fahr. $=$ Cen $\times 1.8+32^{\circ}$.

INDEX.

Accuracy of fire, to determine the Arts 1640
the mean range 1641
mean difference of range 1642
mean deflection 1643
mean reduced deflection 1644
definitiou of the accuracy of a grun. 1646
rectangle method. 1647
of small arms. 1648
absolute mean deviation 1649
mean deviation. 1650
mean horizontal and mean vertical error 1651
the absolute mean error 1652
radius of a circle coutaining a frac- tion of the balls 1653
the per cent 1654
comparison of different methods 1655
the inclination of the target 16556
record of target practice at sea 165%
Angle of fire 1.583
Angle of sight 1583
Armament of ships of war 261
relation of weight of battery to tonnage. 262
how to dispose of weight of battcry to best advantage 263, 266
relation of battery to speed of ressel... " 26\%, 270
kind of gun adspted to ships of war. 271, 274
Armor, experiments against 866
plates and backing 867
laminated 867
dificulty of bolting 867
plates, resistance offered to penetration 869
Armstrong system, principles of 646, 647
gun, description of. 648
number of parts 649
barrel of 650
breech piece of. 6.1
cascabel of 65 2
shrinking on the coils 653
coils and tubes of 654
trunnion ring of. 655
Ailoys used in the fabrication of cannon 141
guns constructed of homogeneous. 143
one of great density 144
experiments with, for cannon making 145
Alloys, advantages of those of iron Art. 146
Backing for armor 868
Ballistic machines, the ballistic pendulum 12:2
the gun pendulum 12?
applicavion of electricity to 12:34
Bar-iron 85
Blakely gun. 9.0
Blast Furnace 15
the stack 16
the boshes 17
the hearth 18
the tymp 18
lining of 19
twyer arches 20
twyers 21
twyer holes. 22
fire hearth 23
cinder notch 24
tap hole 25
tymp-stopping. 26
throat cap and cone 28
details of the top of the 2π
charging the 30
draft of, how maintained 31
pressure of blast 82
temperature of blast, how determined 20
fusibility of metals, table of 34
hot blast 35
hot blast, effects of $3 i$
heat of furnace 34
hot blast, adrantages of 83
warm blast 39
heating the blast 41
starting the 4:
working the 44
chemical action in the 4.5
tapping the $4 i$
to preserve uniformity of blast in the 340,341
Roat howitzers 231
Breech loading. $\% 0$
advantages of ~T1
disadvantages of 7ก2
Buitish naval gums. 64.5
Broadwell ring 680
Bronze for cannon 133
the copper 134
the tin 105
mana, $e m e n t ~ o f ~$ 136
uniformity of the alloy: 132
cffect of remeltiag, on the constitution of the allor 13 S
difficulty of making sound castings from often remelted alloys 139
upon what the parfection of the alloy depends 140
qualities of 17
strength of 188
objections to rilled guns of 179
comparative value of, as a cannon metal 1S4. 185
Blooming 83
Fnilt-rp guns Art. 616
ubject of 117
initial tension, principles of the system. 634
defects of the system 625
methods of application of the system. 626
varying elasticity, principles of the system 629
defects of the system 630
longitudinal strength of $6: 31$
length of hoops. 632
number of hoops 633
want of continuity 684
vibration in 63.5
conclusions with regaril to 6:16
Cannon construction, upon what depends the necessity for strength in 186
Cannon metals, qualities necessary in 147
properties 149
density 150
hardnces. 1.51
brittleness. 152
tenacity 153
tensile strength. 154
porosity 15.5
elasticity 156,157
permanent set. 158
elasticity of torsion 159
malleability 160
ductility 161
difficulty of selecting snitable matcrial 148
varions qualities of 347
qualities upon which their fitness depend 180
Canister shot 800
ritle 801
Galibre. 203
Case-shot 7.95
Cast-iron, composition of 50
varieties 51
converting gray into white 52
white into gray 53
gray 55
white 56
different kinds of white 57
mottled. 58
Cast-iron, classification of 59
variation in composition of 60
difficulties attending the analysis of 61
silicia in. 62
manganese in. 63
phosphorns in 64
sulphur in. (65
wart of uniformity of 165
difference in strength of. 16.5
chemical identity does not involre uniformity in mechani- cal properties 166
cost of 167
comparative value of, as a canmon metal 181,185
qualities of $16!$
comparative strength of, as a material for cannon con- struction. 164
Cast-iron, tensile strength of Art. 194
the etrongest, does not make the most enduring 114
variation of density and tenacity 850
how improved 35
effect of different treatment :34.
Castings, improvement in 373
construction of 86.)
rate of cooling. 364
time required for cooling 367
effects of irregular cooling. 368-370
high iron 351
practical treatment of iron in fusion 352
proof-bars 35.5-354
molecular constitution of cannon metals 358
crystallization 3.9
development of crystals. 359
chilled. $300-201$
effect of crystallization on strength 362
size of crystals. $36: 3$
effect of sudden change of form in 366
effect of age on endurance 372
standard of quality in 374
comparison with standard 375
means of comparing 877
Charcoal 1082
woods used for 1083
conversion of wood into 108.
cffect of temperature employed in conversion 1059
qualities of. 1090
how prepared as an ingredient of gumpowder 1099
danger of spontaneous combustion in fresh ground 1100
64
Cold-short iron 212-213
Chamber
8.53
$1: 40$
Crusher gauge
$16: 39$
Dangerous space
3ऽソ
3ऽソ
Densimeter
Densimeter
390, :391
390, :391
adjustments of
adjustments of
$39 \cdot 2,39 t$
$39 \cdot 2,39 t$
use of
use of
3s3
3s3
Determining density of gua iron. 334, 335
Detonation, explosion by 1042
explosives capable of 1043
how produced 1044
nature of 1045
illustration of explosion by 1046
Deviation of projectiles 82
effect of wind on S2:3
effect of variable projectile force on 8.4
effect of rotation of the earth on 825
effect of faulty disposition of the line of sight on 825
influence of the state of the air on 827
of spherical projectiles 828
effect of windage on 829
effect of eccentricity on 830
of elongated projectiles ci?
of conoidal-headed projeetiles. 839
of flat-headed projeetiles. $8+1$
Drift Art. 842
Dimensions of naval ordnance. 226
Descriptive list of guns. (609
Devices on cannon 20.5
Dynamite. 1397
Distances, determining 1628
correcting by previous rounds 1629
judging of. 1629
determining by angle subtended by the mast of the enemy 1630
horizontal angle taken at bow and stern. 1631
using ship's own mast as the given height 1632
observing the augular distance from horizon 1633
the velocity of sound 1634
three point problem. 1635
Boulengè's Telemeter 1636
plane tables 1687
Eastman's breech closing system. 690
Elevating screws 1660
Elongated projectiles, origin of 714,715
advantages of. 726
disadvantages of 727
English experimental guns 675
Endurance of guns in service 605
Electro-ballistic machines. 1231
the Navez-Leurs chronoscope 1273
the pendulum. 1238
the disjunctor 1242
the electric currents...." 1243
arrangement of targets.. 1244
operation ofthe instru-ment......."1245
Benton's thread velocimetcr. 1247
the pendulummachine. :1248
the compres- sors......... 1250
the cannon targets..... 1252
the small-arm targets.....
to determine the time... 1253
(eata 1259
............ . Le Boulengé's chronographthe clectro-magnets. " 1259
the
junctor..theory of
the in-
strument. 1267
method ofadjust-ment...."1271
Electro-ballistic machines, Le Boulengés chronograph, method of taking velocities...Art. $12 \% 9$ metbod of correcting ureg-

ularities.. 120
Schultz's chromoscope 1257
the cylinder. 124.8
the vibrating fork. 1234
the interrupter 1200
the Ruhmkorff coil. $1!91$
the pendulum. 1292
the micrometer. $129:$
the batteries. 1294
the targets. 1205
principles of the machine......... " 1296
to use the chrono- scope. 12.97
Bashforth's chronograph 1298
description $12!99$
the targets 1300
arrangement of screens 1301
Noble's chronoscope, description. $1: 302$
rate of the discs $130: 3$
to obtain the elec-
trical records. 1305
connection with the bore of gun. 1306
Le Boulengé's electric clepsydra 13 ũ
descrip-tion.... " 1308
basis ofcalcula-tion oftimes. " 1312
experi-mentaldeter-mina-tion oftimes.. " 1316
use of the
instru-ment. .1321
Force of grarity as an element in bal- listics. 1398
Explosive agents. 1631
Explosives, definition of. 10:1
Explosive effect. 1. 2
compounds 11\%: :3
mixtures. 10) 4
different classes of 10:. 5
nitrate mixtures. 10.5
chlorate 10\%
Explosion, iatensity of 10.3
Explosion, means of causing 1040
method of producing. 1041
Explosive compounds, general considcration of 1375
gun cotton. $13: 6$
manufacture of 13π
purification of the cotton $13: 8$
treatment with acid $13: 9$
to remore the acid 1380
Abel's method 1380
pulping. 1382
compressing: $138:$
general properties 1384
forms in which used. 13.3.
uses. $188 i$
mode of firing. 188 i1385
1:90
method of manufacture.
1391
1391
general properties
general properties
139:
139:
mode of firing
mode of firing 139:'
stability and permanence 1394
uses 159.)
compounds of nitro-glycerine. 139 i
dynamite 139:
lithofracteur. 1398
dualine $1: 399$
Fxterior form of guns 218, 311
Extreme proof of trial guns 601
Fabrication of Cast-iron Guns. 4.5
contract witl gun founder 378
preparing stccli for a blast of gun-iron 339
piling pigs, to obtain identity in quality of metal 342.348
furnaces for melting gun-iror 445, 447
charging the furnaces 449
first and second fusion iron 450
charge used 45:
distribution of metal 20:\%
molding $45: 3$
molding composition 454,45
models $4 . \pi$
flasks 458, 459
process of molding 460,465
core barrel in hollow casting 466
preparing the core 495. 469
casting pit 40
placing the flask 21
cranes 4%
adjusting the core 17:
melting down the charge 4%. 4π
tapping the furnace 479
heating the pit 481
cooling heavy castings 452
withdrawing core-barrel 484
remoring heary castings from pit 487
condition of rough casting. 488
heading lathe for heavy gims 489
Fabrication of Cast-iron Guns, boring lathe, adjustment in. Art 490, 494
measuring gun-castings. 49.3
turning down gun-castings 496
removing the sinking-head 498
cutting out specimen 499
boring lathe 500
adjustment in 502
boring 503, 505
trunnion lathe 506, 508
planing machine. 509
cutting hole for elevating screw. 511, 513
drilling the vent 514
Bronze Howitzers 516
pattern 517, 519
flask 520
molding 521
runner 522
drying oven 523
drying the mold 524
pit for mold 525
placing flask 526
charging the furnace 527
treatment of the melted metal 528
melting down the charge 529. 531
made-up charges 532
casting 533
runner-boxfor casting 534
tapping the furnace $5: 36$
Firing means of 1438
by elcetricity 145 S
different kinds of 1693
direct. $169 \pm$
ricochet 1695
curved. 1701
plunging. 1702
solid-shot 1203
shell 1704
shrapnel. 1708
grape and canister. 1711
horizontal 1714
vertical 1715
small arm 1 T23
Fraser system of gun construction. 656, 658
Form of gun, experiments to determine the 221
French naval guns 678
castings of 680
the tubes of. 681
building up the 682
the hoops of 683
breech screw of 689
safety-catch for 694, 697
to open the breech of. 695
loading the 696
Field fortifications 1806
definitions. 180 :
plans. 18.1
profiles 1830
artillery in field works. 1842
Field defence of walls. 1845
building 1847
village 1851
bridge 185:3
attack of works 18.5
surprise 1859
open attacks 1861
defence $186:$
sorties 1865
Fulminates 1400
of mercury 1401
silver. 1402
Fuzes. 1460
The time fuze 1461
requirements of. 1462
The navy time fuze. 1463
safety-plug for 1464,1467
composition for 1465
paper case for 1466
driving the composition, machine for. 1470
driving the composition 1473
water-cap for. 1474
safety-cap-for 14%
fuze-stock for $14 \% 9$
time of barning 1478
varietics. 1477
general working fuze 1477
to shortien the. 1478
testing 1479
Time fuzes for rifle projectiles $1477,1+80$
Time fuzes, imperfection of 1481
Time fuzcs, premature explosion of. 1482
'Iheir action and result to be reported 1484
The Dormann fuze 1485
operation of 1487
advantages of 1489
Percussion and concussion 1490
Concussion 1491
The Splingard fuze 149:3
The Bacon and McIntyre fuze $14!4$
Percussion 1195
advantages of 1496
Schenkle fuze. 1497
Parrott fuze 1.200
German fuze 1501
Mortar. 1.503
Kuming, for mines and blasting 1505
Detonating 1507
Fulminate exploder 1508
Electric exploders. 1509
Electric, 1509
Platinum-wire 1514
advantages of 1515
The dynamo-elcotric igniter. 1.516
The dynamo-electric 1517
Removing, from loaded shell 8.0
For 15 -in shell 1570
Gas-check for breech loaders. 685
Gatling gun, description of Art. 233
revolving gear of 24
hopper of 235
earrier of 2:37
loek eylinder of. 2:38
loeks of 2.1
breeeh cusing of 210
traversing gear of 242
elevating gear of. 24:3
removing the loeks of 24
feed drum of 247. 252
working the Alts. 245, 250, 253, 254, 2.5.5
eomparison with howitzers. 2.35
preservation of 29)
direetions for taking apart 2.9
putting together 260
German naval guns F(1)1
features of the manafacture 702
old Krupp eonstruetion 70:3
new \% 0.4
the eentral tube 705
the breeeh plug. T07
the gas cheek. 708
the vent tube 709
Gomer ehamber. 214
Grape shot 799
Gun eotton 1376
Gun, general form of 189
construction, theory of 203
making, improvements in 224
interior form of a 201
Gums, how distinguished. 188
east iron, deteetion of eoming fraeture of. 1.0
Gunpowder. 1015
ingredients of 1048
purity of ingredients neeessary to security of manufac- ture $10 \leq 9$
proportions of ingredients 1002
preparing and mixing the ingredients 16.95
mixing machine 1101
ineorporation of the ingredients, importance of the proeess. 1103
time required for.. " $1104,111 \pm$the effeet of imper-
fee'. 1105
mill used for". 1106
the operation 1111
eapacity of a faetory for making 1115
mill-cake 1116
danger of incorporation 1118
drenehing apparatus, to prevent explosion in faciory. $11 \geqslant 1$
preasing the mill-eake. 112.
description of press. 112 \%
diffieulty of obtaining uniformity of results in pressing. $11: 3$.
Gunpowder, method of obtaining powder of uniform density 1139
graining $113{ }^{\circ}$
granulating machiue $113:$
method of granulating powder. 1140
INDEX 11
Gunpowder, danger attending granulation Art. 1143
dusting and glazing 1144
the dusting reel 1149
the glazing barrel. $115:$
drying 1158
special powders 1159
terms applied to different kinds of powder 1162
mammoth 1163
prismatic 1164
hexagonal. 1165
waile 1166
pebble 1167
pcllet 1168
rille-large-grain 1169
machine for making special powder $11 \% 0$
explosion of. 1173
ignition of 1174
inflammation of 1177
combustiou of 1187
velocity of combustion 1193
explosive force of 1198
products of combustion 1204
inspcction of 1209
general qualities of 1210
examination of, by hant 1211
by flashing 1212
size of grain 1213
gravimetric density of 1214
specific gravity of 1215
the mercury densimeter 1216
process of taking the density 1224
initial velocity of 12:30
analysis of 1:36
straiu upon the gun. 1:329
pressure gauges 1331
curves 1344
bygrometric qualities of. 1345
inspection report 1847
marks on the barrels 1\%48
preservation and storage 1852
storage on shore 135. 4
preservation of, in shore magazines 1356
classification of 's 1355
issue of, from shore magazines. 1360
magazine ledger 13.59
transportation of 1373
reception of, on board ship 1374
storing, on board ship 1367
tanks. 1368
system of marking 1369
restoriug unserviceable 1349
condemued 13.50
purchasing abroad 1351
Gun carriages of United States Navy 882
general considerations 882
steam power for working 885

* requircinents of mechanical 857
disappearing systems 888
Gun carriages,Marsilly broadside, nomenclature 890
dimensions. 891
the brackets. 8.11
the breech piece 842
the socket plate. 89.3
the roller handspike 894
the truck axle 895
the trucks 895
the saucer 897
resistance to recoil. 898
manœuvering the carriage 899
elevation obtainable 000
preservatiou of. 901
taekles îor. 902
metallic gun-tackle, blocks for. . " 903
breechings for 003
wrought iron carriages for 8 -in. gun, nomenclature 904
dimensions. 904
the brackets. 90\%
the transoms ' 906
the truck axle 907
elevating gear 908
side and train-
ing bolts. 909
the breast
piece.... " 910
cap square 911
the recoil 912
adrantages of wrought-iron. 913
mounting Parrott rifles in broadside. 914
pivot carriages 915
Wooden 11-in. Pivot. 916
the carriage 917
the brackets. 918
the transoms 919
the journal plates 920
the compressor. 921
the slide.. 92:
the compressor battens. 92:3
the hurters 924
the metal tracks 925
the bossed sockets. 926
the eccentrics. 927
the recoil 928
the breeching 929
shipping the levers. 930
transporting. 931
prorenter breeching 932
Iron 11-in. Pivot.
nomenclature. 933
dimensions 933
the slide 934
the transoms 935
the hurters. 036
coincidence of pirot holes, how secured 937
form of rail 938
transporting. 939
INDEX. 13
Gun carriages, Iron 11-in. Pivot, the carriage. 940
the brackets. 941
the bed-plates 942
the journal-plates 943
form of eccentric axle. 944
the compressor 945
recoil 946
necessity of eccentric rollers in slide. 947
20-Pdr. Rifle Pivot 948
15-in. Turret.
nomenclature 949
the slide 900
the carriage 9.51
the in-and-out gear. 952
the carriage rollers. 953
the compressor gear 954
the compressor plates 955
action of compressor gear. 956
elevator rest 957
the hurters 958
elevation 959
the port stopper 960
loading appliances 961
the rammer and sponge 962
pointing the turret 963
turret sights. 964
the turret 965
pilot house 966
Mortar,
nomenclature 967
dimensions. 967
the carriage 968
the brackets 969
the transoms 970
running in and out 971
the mortar circle 972
cceentric rollers 973
the deck supports 974
Howitzer, boat (wood),
nomenclature 975
the slide 976
the compressor 977
eleration 978
the boat carriage 979
pirots. 980
pivoting. 981
Howitzer, boat (iron),
nomenclature 983
dimensions 983
the slide 98.4
the bed-plate 985
the bed 986
recoil 987
the sides 988
Howitzer, field,
nomenclature 989
the carriage 990
Gun carriages, Howitzer, feld, the trail 991
the carriage ashore 992
the carriage in the boat 99:3
skids for landing 39t
implements 99.5
English Naval 996
Scott's Broadside (English),
nomenclature 936
the carriage. 997
the slide. 998
deck tracks. 999
the pivot. 1000
the dimensions. 1001
self-acting commressor. 1110
elevating gear 100%
eccentric sear. 10) $\frac{1}{4}$
in and out gear. 1005
training gear 1006
adrantages of mechan- ical carriages 1007
bow compressor 1008
training gear 1009
high and low carriages. 1010
depression carriages. 1011
English Turret the slide 1019
compound rertical piroting gear. 1012
elevation 1013
the carriage 1014
recoil 1015
the turnet 1016
in-and-out gear 1017
elastic bufiers 101\%
pointing 1018
turret indicator 1019
night firing 1021
Moncrieff System, (English) description 102? 102:
Hydraulic Appliances (English 102 大. 1025running in and out.1026
loading: 1025
sponging $10: 9$
adrautages 1030
Gun Implements 122t
stares 122t
sponges $1: 25$
rammers. $1: 29$
ladles 1731
worms 1739
sectional stares 173:
Hand grenades 801
Howitzers 299
Hydrometer 884
Hot blast iron 41386. 35.
Hart's elevating screw 166
Impact, force of 8s0
Incendiary preparations. 1563
carcass 1564
incendiary match 1565
Incendiary preparations, hot-shot 1566
Injuries to guns from the projectile 608
powder- 603
Inspection of projectiles 812
grape and canister 81.$)$
guns at termination of cruise 611
vents. 613
new guns 539
Inspecting instruments for guns 5 ± 9
mirror 541
searcher 5 ± 2
cylinder gauge 544
measuring staff 546
chamber guage 5.4
star gauge 5.50
head of 5.31
measuring points 553
sliding rod for 554
handle for 555
adjustment of. 556
muzzle rest for 5.57
disk 5.5
use of 562
Fent guide 564
verifying interior positions of vents 508
rent gauges 571
vent searcher 573
profile boards 5%
beam calliper 577
cascabel block 578
trumnion guage 5.9
trunnion square 550
trumion rule 583
templates 586
impression takcr for vents 591
gutta-percha impressions 593
Laboratory materials, classification of 1407
nitic 1408
chlorate of potasse 1409
charcoal 1 ± 10
sulphur 1411
antimony 1412
sulphuret of antimony 1 ± 13
gumpowder 1414
lampblack 1415
coloring materials. 1416
substances which give color to flames 141%
substances which produce sparks 1118
turpentine 1419
rosin. 1421
tar 1422
pitch 142:3
alcohol 142.5
gum-arabic 1426
beeswax 1427
for preparing cartridges 1428
Laboratory buildings $140 \pm$
furnare 1405
Laboratory operations 1406
compositions 1429
Landing a naval force. $17 \% 1$
the base $17(0: 3$
preparations. 1764
details 17(i8
the boats. 175
the landing $17 \% 3$
on the march 1717
advance guards $17 \% 8$
rear guards 1*2
bivouac 1783
grand guard 175:
engaging. 13,
the attack 178?
the skirmishers. 175%
the infantry 1796
the artillery 1.97
the refence 1800
field fortification 1806
the retreat 1869
destruction of̃ bridges 1871
passage of a defile $18: 2$
the embarkation 1873
Length of bore 203
Limit of thickness of cannon (i21
Line of sight
Line of fire. $158:$
Line of metal 1587
Lithofracteur 1398
Loading. 1.56
rapidity of 157 S
Loading small arms. 1.581
mortars 15:0
Loaded, keeping guns $15: 3$
Magazines on shove 13.53
service of 13.5\%
on board ship. 1361
construction of 1362
flooding 136.5
lighting 1363
service of. 1370
screens for 137
dampness of 1371
ventilation of 1271
Marking samples of gun iron 380
Marking guns 515
Marvin's estimator 133 ع
Metallurgy of iron 1
Mortars, definition of 29:
construction of 225
Motion of projectiles, the equation of the path of a projectile in non-resisting medium 1734
co-ordinates of the vertex 1735
maximum range $1: 35$
time of flight on a horizontal plane. 1336
eleration necessary to cause a projectile to pass through a given point. 1737
Motion of projectiles, envelop of the trajectories 1737
velocity of a projectile at any point of its path. 1738
direction of the path at any point 1739
co-ordinates of the point where a projectilewill strike an inclined plane passing throughthe point of projection, the range and timeof tlight on the inclined plane1740
Remarks on the utility of the formulas ob- tained when the resistance of the air is not considered " 1741,1742
Examples $1: 42$
Motion of a projectile in air 1743
integrals for the determination of x, y, and t, deduced. 1744
computation and use of the tables for finding x, Y, and T 1745
determination of x, y, and t, and the range on a horizontal planc by means of the tables. 1746
determination of y 1748
examples Arts. $1719,1750,1751$motion of a projectile when the cffectof gravity is not considered1753,1754
computation of tables VIII, IX, X and XI 1756
examples of the use of tables riII, IX, X and XI. 1757
Naval operations on shore 1760
Naval howitzers 230
Nitro-crlycerine 1388
Nomenclature of guns. 190
breech 191
cylinder 192
curve. 193
chase 194
muzzle 195
trunnions 196
rim bases 200
Ordnance, definitions of the term 18%
Palliscr system of conversion. 671
theory of 672
method of construction 673
Parson's system of conversion 674
Parrot gun 639
barrel of 640
the hoops (541
placing the reinforce 642
Percussion locks for naral ordnance 232
Point blank 1584
Powder proof 598
Picric powder 1403
Plane of fire 1583
sight 158%
P'osphorus bronze 142
Puuching and racking. 876, 879
Pyrotechny 1404
Piro-leds 48
Piling pigs 49
Pigs，difference in quality of Art． 314
Penetration of projectiles 845
effect of elasticity in the resistance to 847
penetration of spherical projectiles． 848
elongated projectiles 849
formulid for the perforation of iron plates． 850
influence of the form of head of a pro－ jectile on 8.51
effect of oblique impact on，with reference to form of head 852
effect of increasing the relocity of pro－ jectiles S（in）
best material to resist 807
effects on wood 8．3
earth 8.4
mascnry $8 .$.
the law of 17.18
formula for the amount of penetration deduced 12.99
Pivot carriages 80.2
Port fire 14.$) 6$
substitute for 145%
Puinting． Arts．1582，1684
instruction in $16: 2$
guns and howitzers 166
under ordinary angles 1607
upon what accuracy of aim depends 1665
when the axis of trunnions is inclined 160
small arms 16.4
mortars 1679
bearing of the enemy 16s？
the＂director＂ 16ヶ3
concentrated fire． 165
the directing battens 1686
the converging line 1697
to calculate the angles for concentration 16心か
to mark the beams for concentratcd fire 1690
the elevation 1691
to mark the heel of the ship 1692
Preparing ammunition 15等
making cartridge bags 1529
cartridge bags for saluting 1537
inspecting cartridge bags 1538
preservation of cartridge bags 1539
filling cartridge bags． 1．540
marking cartridge bags 1541
service charges 1542
cartridges for mortars． 1．）43
cartridges for hot shot 154
strapping shell 1545
filling shell 154
charges of powder for shell 1548
lursting charges for shell 1．） 49
loading and fuzing shell 15.50
packing shell 1552
wads． 105：
crommet wad 1包 4
junk wad 1505
Preparing ammunition, boat ammunition 15.56
fixed ammunition 15.56
stand of ammunition. 1557
packing boat ammunition 1.5 S
fitting cartridges for boat ammunition $155:$
metallic cartridges 1560
dummy cartridges for small arms 1.561
blank cartridges for small arms 1562
Preparation of iron ores $\stackrel{\rightharpoonup}{2}$
dressing 3
weathcring 4
breaking 5
roasting 6
Preponderance 199,318
to determine the Arts. $319,320,321$
example to compute the of a $1 . \overline{-}$-in. gun Aits. 322,333
effect on the, of a change in the position of the trunnions. 326
Pressure gauges 1332
Primers, percussion. 1439
fabrication of 1440
packing. 14.5
tcsting $14+6$
returned from ships $1+46$
friction 144:
composition for $1+48$
when and how nsed 1449
allowance of 1451
stowage of 1450
spur tubes for 1152
how used $145: 3$
electric 1459
Projectiles, fabrication of 802
pattern for 80 ;
moiding of $804,80.5$
bouching of 806
chnlled $80 \%, 86$.
Palliser. 80s. s09
steel 810, 865, $8: 0$
Whitworth's steel 811
inspection of 812
solid. S13
hollow 814
smooth bore, table of gauges for 815
preservation of 856
piling: 817
lacquering 818
to find the number of balls in a pile 821
deriations of 823
elongated. deviations of $88:$
line of tlight of elongated 837
elongated, positions of axes during flight 839,810
effects of 84:
impact of 844
different effects produce by the impact of 8.5
concussion produced by impact of $8.5: 3$
armor piercing 8.5
spherical, for use against armor $8 . \%$
Projectiles, armor piercing, effect of shape on their power $\times .56$
effect of filat-ended form for armor-piercing. 865
advantage of rille projectiles for punching armor 8.5
elongated, for use against armor 8515
effects of conical-ended form for armor-piercing 850
the ogival, the best form of head for armor-piercing 851
effect of hardening. 862
advantage of steel over chilied 85.5
classification ot 754
spherical 7\%
elongated 740
length of วิ
form of heads 778
ogival heads 729
form of body which would experience the least resi-t- ance in passing through a tluid 780
form of body which would experience the least resist- ance from the air T81
elongated, studded 782
system of studding 「)
elongated, expanding 755
Parrott's 785
Dahlgren's rifle 785
Shenkle's 58
Hotchkiss TS8
lead coated T89
solid 791
hollow 792
punching effects of, how compared 851
withdrawing a 1371
Puddling furnace. if
process 75
furnace, charging the 46
tools \%
substitutes for mannal TS
manipulation of the molten iron in 79
white iron. 80
gray iron. 81
balls 82
Q'oins. 1660
Quick match 145.5
Range 1.50 .5
at level 1586
Rammer, marks on 1568
Reftye gun 698
cartridge 609
Red short iron 6.5
Running out cannou $15 \% 4$
Rifie, difficulty of loading the 316
Rille cannon, introduction of 71%
difficulties of perfecting 221
progress of construction of 22?
designing is.
early experiments with $22 t$
calibre of 730
form of groove in 101
having projectiles of hard metal, fitting the pecu:iar form of the bore mechanically 3.54
Rifle camnon, with projectiles having soft metal studs, or ribs, to fit the grooves . Art. 760
with projectiles having a soft metal envelope or cup. which is expanded by the gas in the bore. 734
with projectiles having a soft metai coating, larger in diameter than the bore, but which is compressed by the gas into the form of the bore 76
Rifling, definition of :10
origin of Arts. 711, 712, 71:
difficulty of application to great guns Arts. $718-719$
object of. 7.5
method of 7.28
lands 799
twist. 7%
uniform twist $7: 3$
uniformly increasing twist 735
increasing twist, advantages of the 736
objections to the $7: 37$
uniform twist, advantages of the 738
character of grooves in 75
the loading and driving edge T 48
advantages of radial bearing in 749
rounded angles in Ti5)
cutting the grooves 3.51
a system of. 752
different systems of, classified Ti.)
definition of centring 65
Whitworth's system of 705
Yavasseur's system of 7.56
Scott's system of 597
Lancaster's system of \%58
comparative advantages of systems of the first class 759
the Woolwich system of 61
the Shunt system of. 762
comparative advantages of the systems of the second class. 663
the Parrott system of 765
comparative advantages of the systems of the third class. 766
Krupp's method of. 765
the German system of 768
comparative advantages of the systems of the fourth class 769
Rifle projectile, to find the initial velocity of rotation of a 739
upon what its vclocity of rotation depends $i=10$
effect of its initial velocity on the velocity of rota- tion 741
cffect of its form on the velocity of rotation 742
effect of its density upon its relocity of rotation
effect of the distribution of its material, upon its velocity of rotation 744
effect of the position of ite centre of gravity, upon its velocity of rotation 745
objections to high velocity of rotation 716
velocity of rotation required in a itt
S.altpetre, refining of 1051
description of the process. 1022
filtering of, in refining $10.5 ;$
crys'callization of. in refining. 10.9
washing, testing, etc., in refining. 1050
testing for impurities 1061
Saltpetre，drying for storage or transport． Art． 1003
extraction of，from damaged powder． 1064
how prepared as an ingredient of gunpowder 1096
Sulphur，where obtained 1065
value as an ingredient of gunpowder 1081
soluble and insoluble form of 1069
flower of 1069
apparatus for refining 1070
process of refining 10 24
testing 1080
how prepared as an ingredient of gumpowder 1008
Shell． 79
Crane＇s 795
Pevey＇s 7！！
mortar． 794
loaded，examination of 819
armor piercing 8.5
care in the use of $15 \tilde{\sim}_{2}^{2}$
Smelting of iron． 9，：3：\％
thuxes used in 10
difficulties of obtaining pure metal 11
of iron，composition of fluxes． 12
slag． 13
cinder． 13
fuel used 14
Strength of a gum，how to increase the ． （i19
Sinking head $3: 1$
Sample gun $: 3 \%$
Samples from gnu castings 379
Standard specimens of̈ gun iron 382
Shingling 8
machines． $8 t$
Scoring 607
Spongers and loaders． 15%
Seat of the charge 211
slow match 14．） 4
Sighting cannon 1．うご
Sight，dispart． 1588
tangent． 1590
brass tangent 1591
wooden tangent 1591
Sights，pivot gnn 1．） 22
for rifled guns 190．
advantage of long radins between． 159t
adjustment of 109.
breech，adjustment of 1599
reinforce，arljustment of 1608
side，adjustment of 1614
marking tangent 1620
using． 1624
graduation for degiees 162.5
trumnion 10.5 .0
spirit－level quadrant
gumner＇s quadrant 1（5－）：
Sigmals 1．）
signal rockets 1.51 ？
the case 1．う0）
composition 1521
Signal rockets, driving Art. 1522
head 1523
decorations 152t
stick 1025
motive power. 1525
packing 1527
firing 1528
Signals, Costeu's lights 1529
compositions for $153:$
storage of 1534
Shrapnel T95
to prepare 797
rifle T98
Steel, its peculiarities 101
its distinguishing properties. 103
various kinds 102,106
high and low 104
how obtained 10.5
puddled 107
cemented 108
converting furnace fur. 109
cementation process. 110, 111
effect on physical properties of the iron 112
blister 113
spring 114
tilted. 114
shear 11.5
cast. 116
process of manufacture 117
ingots 118
hammering, or drawing down the ingots. 119
Bessemer process 120,128
to produce Bessemer steel
Bessemer converter for. 122
charging the Bessemer convertes 123
chemical action in Besscmer process. 125
admission of blust to Bessemer converter. 124
casting the ingots, in Bessemer process. 126
hammering the ingots in Bessemer process 127
Whitworth metal 129
annealing 130
tempering 131
tempering in oil $1: 3$
qualities of. 173
liigh, its distinguishing properties $1 \% 3$
low, distinguishing properties 174
advantages 17.5
strength of 176
low, comparative value of as a cannon metal 183, 180
276
Strain. kinds of, to which a gun is subjected in firing.
220
220
the two principal strains, to which a gun is subjected
the two principal strains, to which a gun is subjected 277.2;8
to find the whole resistance of the gun cylinder. to the. 273,284
to find the whole force exerted by an explosion in a cylinder rend it longitudinally: 28.5
longitudinal, tendency of 236
longitudinal rupturing effort, to fiad the 287
Strain, longitudinal mpturing effort, to find the resistance of the
gun to the Art. $288,2 \leqslant 9$
crushing force. $2!10$
to find an expression for the effect of a 291.2!2
transverse. 360
tendencies to rupture 305
bursting tendency $8(6!)$
nature of the force to be restrained in cannon 618
metbod of equalizing the, in cannon (20)
Testing machines 2.16
'l'esting machine, Rodman's. 39%
power exerted $3!18$
explanation of 309
main lever of. 400
small lever of 401
combination of levers. 402
capacity of. 403
cog wheel, gearing of 404
multiplication of power 40.5
torsion leser 406
pedestals for transverse strain 407
adjustments of. 408
sample holders. 409
obtaining tensile strain of specimen with 410
table containing areas and logs. of ra- riations of diameter in tensile sam- ples 411
determining transverse strain with. . . $412,41:, 414$
torsional strain with. $416,41 \%, 415,419$
test of compression with $120.421,4 \geqslant ?$
to determine the indenting force with $423,424.42 .5$
errors of 426
modifications of. $4 \div 7$
indicator for 420.420
Riehlé's. 409
the levers of 440
recording the strain. 441
application of power 442
adjustment $44: 3$
the differential lerer. $44 t$
Testing specimens-elongation, examples of $4 ゙ っ$
effect of 4\%:;
repeated breaking of same specimen $4: 3.5$
proposed shape of specimens 406
adrantage of long specimens 433
value of tests ; 31
'l'ests of iron while in fusion 3.13
Trables of fire. 102:
Tangent firing 1.54?
Trunnions, size of $1: 1 \%$
Vavasseur gun. 198.:3i $\frac{1}{2}$ 6.1
Vent, definition of 21.5
piece $\because 16$
position of 21%
enlargement of 602,604 602,604
Vent, impression of Arts. 596, 597,610
closing the 1.) 5
clearing the $15 \% 6$
Wrought iron. 66
peculiarities of 67,91
how produced 68,70
conversion of crude into malleable iron. 69
chemical reactions during the conversion. 71
kind of iron most suitable for conversion T2
refining process. 73
rolling mills 86
reheating in rolling mills 87
forge cinder 87,100
mill cinder 87
piling puddled bars 88
rolling bars, details of manipulation. s9
crop-ends 89
rolled armor plates 90
effect of rolling. 92
effect of powerful ribrations 93
judging its quality by character of fracture. 94
variations in quality 95
welding 96
poiter-bars. 97
upsetting 98
scarting 99
welding large pieces 100
qualities of 168
strength of. 168
uniformity of 169
comparative value of, as a cannon metal 182.18 .5
Wrought iron guns, detection of weakness in 170
inability to resist compression and wear. 171
want of homogeniety 172
Woolwich gun 661
details of 662
the Λ tube 663
the B tube 664
the breech coil 665
the cascabel 666
building up. 667
nomenclature of $6{ }^{6} 0$
Whitworth gun. 675
Windage Arts. 206,210
Water-proof 599
 D00746210K

[^0]: * Bauerman.

[^1]: * Estimates of temperature above the fusing-point of zinc cannot be regarded as cxact, on account of the difficulty of ascertaining them.

[^2]: * Bell's Chemical Phenomenon of Iron-smelting.

[^3]: * Bloxam.

[^4]: * Riley.

[^5]: * Bauerman.

[^6]: * Bloxam.

[^7]: * Essay on the use of various Alloys, especiaily of Phosphorus Bronze, for the Founding of C'nnon. By C. Montefiore-Lery, and C. Kunkel. Brussels, 1870. Translated by John D. Brandt, Nary Dapartment, Ordnance Bureau. Washington : Government Printing Office, 18i~.

[^8]: * Barlow's Strength of Materials.
 \dagger Holley.

[^9]: * Experiments on Metals for Cannon, etc., 1861.

[^10]: * Extracts from a paper on "The Armament of our" Ships of War"," by Captain W. N. Jeffers, U. S. N., in "The Record of the United States Naval Institute," Vol. I. , 18 \%4.

[^11]: * Compiled by Lieutenant-Commander C. F. Goodrich, United States

[^12]: *Rodman.

[^13]: * Reports of Experiments on Metals for Cannon.-U. S. Ordnance Dept.

[^14]: * Reports of Experiments on Metals for Cannon : 1856.

[^15]: * Mallet.

[^16]: * Inspection and Proof of Cannon-U. S. Nary.

[^17]: * King.

[^18]: * See a description of Kirkaldy's machines in the London Mechanics' Magazine of the 9 th March, 1866.
 \dagger Commdr. R. F. Bradford, U. S. Navy.-Navy Ordnance Papers, No. 3.

[^19]: Weight of rough casting, including sinking-
 head, etc.................................... $66,000 \mathrm{lbs}$.
 Weight of rough gun. 61,000"
 Weight of finished gun......................... 43,000"
 488. Condition of the Castivg. -This mode of casting, by

[^20]: * Ordnance Instructions.

[^21]: * Text-book of Rifled Ordnance.

[^22]: * Compiled by Lieutenant J. C. Soley, U. S. Navy.

[^23]: * U. S. Naval Ordnance Notes, 1873.-The Reffye Gun.

[^24]: * Iu some experiments made in England by Capt. Noble upon the force of fired gunpowder, he succeeded in effectually closing the vent, as follows: The stoppage of the vent was effected by an apparatus consisting of a steel plug screwed into the body of the gun, immediately over the copper vent. This remained a fixture, but was capable of easy removal in case it should be desirable to fire by the ordinary process. The interior of the plug was bored out and screwed, so that another plug could be fitted inside of it. The inner plug had half the thread cut away as in the screw of the French breech-loading gun, so that it went in at once and by a quarter of a turn was rendered fast. Inside of the inner plug a little plunger worked in a cylindrical chamber, into which a primer representing the common friction-tube was dropped. In the centre of the plunger, there was a pin to fire the primes by detonation, and surrounding it a steel gas-check, which, when the powder was exploded, expanded so as to stop the escape of gas. The charge was fired by striking the external head of the plunger. The recoil of the plunger was stopped by a shoulder.

[^25]: * Bashforth.

[^26]: * For a general discussion of this subject, see an Article by Prof. Wm. Ferrel in The Mathematical MIonthly for August, 1860.

[^27]: * "Report on various experiments carried out under the direction of the Ordnance Select Committee, relative to the penetration of iron-armor plates by steel shot." By Capt. W. H. Noble, R. A. London: 1866.

[^28]: * Mallet.

[^29]: * Compiled by Lieut. Commander G. IV. Coffin, U. S. Nary.

[^30]: * Extracts from Lecturcs of Prof. W. N. Hill, U. S. Torpedo Station.

[^31]: * Smith.

[^32]: * Glazing barrels are now fitted with ventilating bungs which open at each revolution, and allow the hcated air, surcharged with moisturc, to cscapc; thus preventing "sweating."

[^33]: * Naval Ord. Papers, No. 1. Lieut. Commander J. D. Marvin, U. S. Navy.

[^34]: * The rulc, bcing a proportional scalc, can be used for any distance between ecrecns. At the U. S. Naval Experimental Battery the intcrial is a hundred feet, and the reverse facc of the rulc is graduated to inches and decimals, and tables corresponding are used.

[^35]: * Naval Ordnance Papers, No. 4. Translated by Lieutenant-Commander J. D. Marvin, U. S. Navy.

[^36]: * Eivements of Natural Philosophy, by Professor Sir W. Thompson and P. G. Tait. Oxford: 1873.

[^37]: * Designed by Comdr. J. D. Marvin, U. S. Nary.

[^38]: * If finely divided, it may be exploded when frozen; but this fact is practically of littie value.

[^39]: * Benton's Ordnance and Gunnery.

[^40]: * By Lieutenant C. H. West, U. S. Nary.

[^41]: * At the temperature of 33° the mean relocity of sound is 1092.5 feet in a second. It is increased or diminished half a foot for each degree of temperature above or below 33°.

[^42]: * Dimensions and Weights of Gun Implements. Bureau of Ordnance, $18 i 4$.

[^43]: * By Professor J. M. Rice, United States Nary.

[^44]: * A Mathematical Treatise on the Motion of Projectiles, founded chiefly on the Results of Experiments made with the Author's Chronograph, By Francis Bashforth, B.D. Asher \& Co., London, $18: 3$.

[^45]: * For an example of this method, see Professor Bashforth's Treatise.

[^46]: * Bashforth On the Motion of Projectiles, London, 1873, p. 74.
 \dagger Didion, Traité, pp. 301, 302, and 304.

[^47]: * Compiled by Lieutenant J. C. Soley, United States Navy.

