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. . . Page 130, line 19, for (— v») read (— o).

Page 55, line 15, for — Az read — mAz. > . 17

Page 56,line 17, for (7) read (6). Page 145, line 4, for o + § readz— & .

Page 57, lines 3, 12, 20, for (7) read (6). Page 145, prefiz ¢ to equation (314).
Page 57, line 17, for X8z rend Xdx. Page 146, equation (320) insert ¢ after x—1.
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Page 118, line 5 from bottom, for czy read c2v. Page 283, lines 10 and 17, for 537 read 557.
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The Pascal Hexagram.
By Miss CHRISTINE LaDD, Jokns Hopkins University.

1 wisH to propose a new notation for the lines and points connected with
the Pascal Hexagram, to give a brief account of the discoveries of Veronese
on the subject and to develop a few additional properties of the figure.

I.

The vertices of the hexagon inscribed in the conic, S, are 4, B, C, D, E, F;
the lines tangent to the conic at these vertices respectively are , b, ¢, d, ¢, f.
In general, a large letter will represent a point, a small letter a line. Lines
joining vertices of the inscribed hexagon are called fundamental lines; inter-
sections of sides of the circumscribed hexagon are called fundamental points.
The intersection of the two fundamental lines 4 B, DE is called P (4B . DE);
the line joining two fundamental points, ab, de, is called p’ (ab.de). It is
evident that p’ (ab.de) is the pole of P (AB.DE). There are 45 points P
and 45 lines p. The Pascal line obtained by taking the vertices of the
hexagon in the order A BCDEF is called h (ABCDEF). It passes through
the points P (4B.DE), P (BC.EF), P(CD.FA). Similarly, the intersec-
tion of the lines p'(ab.de), p' (bc.ef), p' (cd.fa) is the Brianchon point
H’ (abedef) of the hexagon abedef, the pole of & (ABCDEF).

The three Pascal lines which meet in a Steiner point are (Salmon’s Conic
Sections, 5th ed., note, p. 361) A (A BCFED), h (AFCDEB), h (ADCBEF). We
shall call the Steiner point in which they meet G (ACE. BFD). In this symbol,
the relative cyclic order of the letters in each group of three is all that it is
necessary to observe; for instance, G (4 EC. FBD) and G (ACE.BFD) are the
same as G (ACE. BFD). Given a (f point, the % lines through it are obtained
by taking one group of three in a fixed order for the odd letters and per-
muting cyclically the other group of three for the even letters. The Pascals
which pass through the conjugate G point are 4 (A.BCDEF), h (ADCFEB),
h (AFCBED), and the symbol of that G point is G (ACE. BDF); hence two

1

Vor. II—No. 1.
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2 Laop, The Pascal Hexagram.

G points whose notation differs in the particular that one group of three letters
has suffered a change not cyclic are conjugate with respect to the conic S.
There are ten ways in which six letters can be divided into two groups of
three each, hence there are ten pairs of points G.

Four G points which lie on one Steiner-Pliicker line are (Salmon,
p- 362,) G (BDA.ECF), G (EDF. BCA), G (BCF.EDA), G (BDF.ECA).
We shall call the Steiner-Pliicker line on which they lie < (BE.CD.AF).
In the notation of an ¢ line the division into groups of two is important, but
not the order of the letters in each group. The number of ways in which six
things can be separated into three different groups of two things each is
fifteen, hence there are fifteen lines 4. The G points on one ¢ line are obtained
by selecting one letter out of each group of two for the first group of three,
and taking the remaining three letters, in the same order, for the other
group of three. As this can be done in four different ways, there are four
points G on one line ¢. Through one point G pass three lines ¢; viz., through
G (ABC.DEF), pass i (AD.BE.CF), i (AE.BF.CD), i (AF.BD.CE).
In writing the symbols for the ¢ lines through one & point, it is necessary to
observe that the cyclic order of the first letters of the three duads must be the
same as that of the second letters; for instance, through G (4BC. DEF) does
not pass ¢ (4D.BF.CE).

The XKirkman point which corresponds to the Pascal % (ABCDEF)
is (Salmon, p. 363,) the intersection of the Pascal lines A (ACEBFD),
h (CEADBF), h (EACFDB). 'We shall call this the Kirkman point
H (ABCDEF). The Pascal lines through a Kirkman point are obtained by
taking the three odd letters in the order in which they stand, and then the
three even letters, inverting the order of the last two, for the first Pascal; and
then deriving the other two Pascals from this by a cyclic change of the first
three letters in one direction and of the last three in the other direction.
Similarly, the three Kirkman points on one Pascal, 2 (4CEBFD), are
H (AEFCDB), H(EFABCD), H(FAEDBC). If we wish to know whether
two given Pascals, as 2 (ABCDEF), h (AEDBCF), intersect in a Kirkman
point or not, we have to see if the same three letters stand together in each, in
two groups which have suffered opposite cyclic changes. The two lines just
written are A (BCDEFA), h (DBCFAE), and they meet in H (BECADF).

The three H points of one Cayley-Salmon line are (Salmon, p. 362,)
H (ABCFED), H(ADCBEF), H (AFCDEB). We shall call this Cayley-
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Lavop, The Pascal Hexagram. 3

Salmon line, the line ¢ (ACE .BFD). It passes through the point
G (ACE.BDF). Through the two conjugate points G (ACE. BDF),
G (ACE. BFD), pass respectively the lines ¢ (ACE.BFD), g (ACE. BDF).
These two ¢ lines we shall call, for the present, corresponding ¢ lines. They
are not conjugate with respect to the conic S. (Veronese, Nuovi Teoremi sul
Hexagrammum Mysticum, p. 26.) The H points on G (ACE. BDF) correspond
to the % lines through ¢ (ACE. BDF); hence we shall say that ¢ (4CE. BDF)
corresponds to G (ACE. BDF), while it passes through G (4CE. BFD).

The symbol for the Salmon point in which four ¢ lines intersect is
obtained in the same way as that of the Steiner-Pliicker line through four
G points. In fact, the lines ¢ (BDA . ECF), g (EDF.BCA), ¢ (BCF.EDA),
g (BDF.ECA), intersect in the Salmon point I (BE.CD.AF); and the
I points on ¢ (ACE.BDF), are I (AB.CD.EF), I (AD.CF.EB),
I (AF.CB.ED).

Professor Cayley (Quarterly Journal, Vol. IX,) gives a table to show in
what kind of a point each Pascal line meets every one of the 59 other Pascal
lines. By attending to the notation of Pascal lines such a table may be dis-
pensed with. His 90 points “m,” 360 points “r,”” 360 points “¢,”’ 360 points
“z,” and 90 points “w” are the intersections each of two Pascals whose sym-
bols can easily be derived one from another. For instance,

h (ABCDEF)_ , h (DEFARBC) h (ACEDBF)

“ ” ¥Rk
R (ABCFED)” ™ & (DEFBCA). " h(ABOZ)EF)> b
h (ACFBED) ., I (ACEBFD)
% (AFEDCB)” h (A BCDEF)

By producing the lines and points of the Brianchon hexagon, as we may
call the corresponding circumscribed hexagon, we should find occasion for the
same symbols, in small letters, for the H’, (#, I’ points, which are the poles
of the 4, g, ¢ lines, and for the %, ¢, ¢ lines, which are the poles of the H, G, I
points.

Tt was shown by Kirkman that the two Kirkman points

H (BFCEAD), H (BFDEAC),
are on a line through the point P (4B. FE). Ishall call this line v, (BF. EA)
(and it happens that my notation here coincides with that of Veronese, p. 43).

So the points
H (BFCAED), H (BFDAEC),

are on the line v, (BF. AE), which passes through P (EB.FA) and which
does not coincide with v, (BF. EA). Through each point P pass two vy, lines,
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4 Lavop, The Pascal Hexagram.

viz., through P (EB . FA) pass vy, (EF.AB) and v, (EA.FB). There is but
one P point-on each v, line. Through each H point pass three v, lines;
through H (BCDEFA) pass vy, (BC.EF), v, (CD.FA), vy, (DE. AB). There

are therefore 3%) or 90 v, lines in all. If we look for the corresponding

property of 4 lines, we find that

‘ h (BFCEAD), & (BFDEAC),
intersect in P (BF.EA), and that

h (BFCAED), k& (BFDAEC),

intersect in P (BF.AE), but that P(BF.AE) is the same point as
P (BF.EA). This is the intrinsic difference between H points and % lines.
The H points lie in fwos on 90 lines v, which pass by threes through the 60
H points. The % lines intersect in jfours in 45 points P, which lie in threes
on the 60 4 lines. To a P point, P (BF. AE), may be said to correspond the
pair of v, lines, v, (BF. AE), v, (BF.EA). In the Brianchon hexagon, on
the other hand, the H’ points lie in fours on the 45 p’ lines, and the # lines
intersect in twos in 90 points 77,, which lie in threes on % lines and in twos
on p' lines. Not even in a hexagon which can be inscribed in one conic and
circumscribed about another is there entire correspondence between Kirkman
points and Pascal lines.

To resume: :
To 60 Pascal lines % correspond 60 Kirkman points H.
“ 20 Cayley-Salmon ¢« ¢ “ 20 Steiner “ @

“ 15 Steiner-Plicker ¢ 4 “ 15 Salmon “ I
On each % line lie three H’s and one G-
“ « g ¢« lie three H's, three I's and one G.

“ o« g« lie four G’s.

Through each H point pass three %’s and one g¢.
“ “ G “ passthree %’s, three s and one g.
“ “ I ¢« passfour ¢s.

The whole arrangement can be diagrammatically represented by a sim-

ple figure:
IT1IT HH
K4 - "
97 4\
g kph

H

o~

G
H
H
H
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Lapp, The Pascal Hexagram. 5

On & (ABCDEF) lie H(ACEBFD), H(CEADBF), H(EACFDB);
and G (ACE.BDF).

“ g (ABC.DEF) % H(ADBECF), H(AFBDCE), H(AEBFCD);
I(AD.BE.CF), I(AE.BF.CD), I(AF.BD.CE);
and G (4BC.DFE).

“ {(AB.CD.EF)“ G (ACE.BDF), G (ACF.BDE), G (ADE.BCF),
G (ADF.BCE).

Through H (ABCDEF) pass h (ACEBFD), h(CEABDF), h(EACFDB);
and ¢ (ACE.BDY).

“ G (ABC.DEF)* h(ABDECF), h(AFBDCE), h(AEBFCD);
i(4D.BE.CF), i(AE.BF.CD),i(AF.BD.CE);
and ¢ (4BC. DFE).

“ I(AB.CD.EF)‘“ g(ACE.BDF), ¢g(ACF.BDE), g (ADE. BCF),

g (ADF.BCE).

II.

By the notation here given it is immediately evident what points are on
every line and what lines pass through every point, without referring to
tables, as Veronese is obliged to do. I shall make use of this notation, so
far as any notation is necessary, in describing Veronese’s additions to the
subject.

Pascal discovered the theorem which bears his name in 1640. The
reciprocal theorem of Brianchon remained unknown until 1806. From the
time, 1828, when Steiner showed that by taking the six points on the conic
in different orders, sixty Pascal lines may be obtained, the development of
the figure has been more rapid. Steiner himself showed that the 60 Pascal
lines meet in threes in the 20 Steiner points, and he believed that these points
were situated in fours on five lines meeting in one point. Pliicker showed
that they lie in reality on fifteen lines, three through each point. Hesse
observed that the 20 Steiner points consist of ten pairs of points harmoni-
cally conjugate with respect to the conic, and that the figure of the Steiner
points and the Steiner-Pliicker lines is identical with that formed by three
triangles in perspective. Kirkman showed that the Pascal lines pass by
threes through the sixty points called by his name, and that these points are

3
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6 Lapp, The Pascal Hexagram.

connected two and two by 90 lines v, which pass each through two points P.
Professor Cayley and Dr. Salmon discovered at the same time that the 60
Kirkman points lie in threes on 20 (Cayley-Salmon) lines ¢, and Dr. Salmon,
that the lines ¢ meet in threes in the 15 (Salmon) points 7. Hesse pointed
out the correspondence which exists between the lines and points of the
figure; but he was aware that the relation is not that of pole and polar, at
least not with respect to the original conic. (Crelle, Vol. 68, p. 193.)
Veronese has written a paper (Nuovi Teoremi sul Hexagrammum Mysticum,
Reale Accademia dei Lincei, 1876-1877,) which apparently leaves little work
for other investigators to do. His most important discovery is that the 60 4
lines may be divided into six groups of ten lines each, which intersect in the
ten corresponding H points and are their polars with respect to a conic .
There are six conics = in the whole figure, and any five of these groups of ten
lines and points determine the sixth. He has shown, moreover, that besides
the original system, [H,A], of 60 Pascal lines and Kirkman points, there is
an infinity of such systems, [H,4,], consisting each of six groups of ten lines
and points, and giving rise each to six conics. Five groups of any system
after the first suffice to determine one group of the preceding and one of the
succeeding system. The figure of the ¢ lines and of the & points is common
to all these systems; that is to say, the 60 H points of every system lie in
threes on the same 20 ¢ lines and the 60 %4 lines of every system pass by
threes through the same 20 G points. It follows that the 7 points and the ¢
lines are also common to all the systems. Veronese uses the symbol n for a
group of ten lines and points as well as for the conic with respect to which
they are poles and polars. He gives a table by consulting which one can see
to what figure = any % line belongs. But the % lines which go together to
form a figure = can be determined at once by observing the following rule:
Take any 4 line, the other six /% lines through the three A points on it, and
the three % lines through the A point which corresponds to it; these ten 4
lines constitute a figure =, to which belong also the ten I points of the same
notation. A symbol for a figure 7 thus obtained, from which symbol it can
be known immediately whether a given line or point belongs to the figure
which it represents or not, is a desideratum. Veronese calls his figures =
first, second, third, &c., and the connection between the first figure and its
lines and points is of course entirely arbitrary. No two % lines of one figure
7 pass through a common G point, hence to a figure = correspond ten differ-
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Lavp, The Pascal Hexagram. 7

ent G points. No two of them are conjugate G points. Any two figures =
have in common four G points which lie on one ¢ line, or to each ¢ line corre-
sponds one of the 15 possible combinations two by two of the six figures =;
and the four ¢ lines common to any two figures = pass through an I point.

The connecting link between the system [/,4,], and the system [H,A,], is
formed by the 90 lines vy, which fact is indicated by the suffix ,. We have
already seen that the v, lines which pass through H, (BCDEFA) are

v (BC.EF), v, (CD.FA4), v, (DE.AB).
Now three v, lines which pass through one H, point are (Veronese, p. 35)

vp (BC.FE), v, (CD.AF), w, (DE.BA).
That is, given three pairs of v, lines such that one member of each pair passes
through a common H, point, the remaining members pass through a com-
mon H, point. This correspondence between H, points and H, points I shall
indicate by giving two such points the same notation. It will then be
observed that the three v, lines of one H, point are obtained by taking its
opposite pairs of letters in the order in which they stand; but the three v,
lines of one H, point by taking opposite pairs of letters with an inversion of
one pair. On a v, line, v, (4B.CD), lie two H, points, H, (ABECDF),
H, (ABFCDE), and two H, points, H, (A BEDCF), H, (ABFDCE).

The three H, points which have the same notation as the three %, lines
of an M, point lie on an A, line (Veronese, p. 39). Through each H, point pass
three %, lines. There are 60 H, points and 60 4, lines.

Two lines %, of the same notation as the two H, points of one v, line meet
in a point V,;, through which pass two 7%; lines of the third system [HA].
These k; lines, 60 in number, determine by their intersections in threes the 60
H, points, which lie in threes on the %; lines. There are 45 pairs of points V;,
answering to the 45 points P of the system [H,4]; that is to say, after the
first system the intrinsic difference between H points and % lines drops out,
or 4 lines no longer meet by fours in 45 points, but by twos in 90 points.

In general, from the system [H,, _ %, _,] the system [H,,, &,] is derived
by means of lines v,,_,,,, the connectors of pairs of H,,_, points and also
of pairs of H, points. From the system [H,hk,,] we pass to the system
[, 1 15 1] by means of points V,, 4, ; 1, the intersections of pairs of A, lines
and also of pairs of &, , , lines. '

All the pairs of v lines of same notation but from different systems,
Vys (AB.bD), v (AB.DC); vy (AB.CD), vy (AB.DC); vy (AB.CD),
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8 Lavp, The Pascal Hexagram.

v (AB. DC), &c., meet in a single point ¥, through which passes also an
¢ line; and all the pairs of points of the same notation, Vi, Vs, Vi, &ec.,
together with the P point of the same notation, lie in a line g, through an I
point. There are 45 lines g, three through each I point, and 45 points ¥,
three on each ¢ line (p. 52).

The 90 points V3, Vi, &c., also lie in twos on 180 lines ny, n,, &c.,
respectively, which pass by fours through the 45 points ¥. A similar rela-
tion holds between the v lines (p. 60).

Veronese gives many relations of harmonicism and of involution, which
I omit. For instance, he shows that the pairs of points H,H,, H H;, HH,,
&ec., of same notation, which lie all on a common ¢ line, form a system of
points in involution, whose double points are the H point of same notation
and the I point of the ¢ line.

II1.

1. Since the point G (4 BC.DEF) is conjugate to the point G (4BC.DFE)
with respect to the conic S, and the pole of the line ¢ (abc. def’) with respect
to the same conie, it follows that the point G (ABC.DFE) is on the line
¢ (abc.def); it is also on the line g (4 BC. DEF), hence it is at their inter-
section. In general, ¢ lines and ¢ lines of the same notation intersect in &
points. Since in the Brianchon figure the ¢ lines consist of ten pairs of lines
conjugate with respect to §, it may be shown in the same way that G points
and G’ points of the same notation, as G (AFC. BED) and & (afc.bed), lie
on ¢ lines, as ¢ (afc . bde). ‘

2. Since ABCD is a quadrilateral inscribed in a conic, the intersections
of its diagonals, P (BC.AD), P (CD.AB), P (AC.BD), are the vertices of
a triangle self-conjugate to the conic and the line joining P (CD.AB) to
P (AC. BD) is the polarof P (BC.A4D); but p' (be.ad) is also the polar of
P (BC.AD), hence these two lines coincide. In'the same way it may he
shown that the point of intersection of ¢’ (¢d. ab) and p’ (ac.bd) coincides with
P (BC.AD), and, in general, that the triangle whose vertices are the P
points obtained from four of the six points on the conic coincides with the
triangle whose sides are the p’ lines obtained from the tangents at the same
four points. There are 15 combinations of four letters out of six, hence there
are 15 of these self-conjugate triangles. Since a self-conjugate triangle has
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Laop, The Pascal Hexagram. 9

always one vertex within the conic and two without, it follows that 15 P
points are always within the conic and 30 without, and that of the 45 p’ lines
30 cut the conic in two real and 15 in two imaginary points.

It now appears that the lines and points of the Brianchon figure can be
produced without considering the Brianchon hexagon. Since the points
P(AB.DE), P(BC.EF), P(CD.FA) are on a line, & (ABCDEF), their
poles, P (AD.EB) P (AE.DB), P(BE.FC) P (BF.CE), P(CF.AD)
P (CA.DF), meet in a point [the same as the point H’ (abedef’)], the pole
of # (ABCDEF). From the 60 points thus obtained may be produced all
the other lines and points of the figure.

3. If @, b, ¢ be the sides of a triangle and «, ¥, ¢, d the sides of a quad-
rilateral such that the triangles ¥cd, ¢da, daf’, ab’'¢ are homologous with abe,
their respective axes of homology being %,, %,, %,, %;, then the intersSections of
ko, @; Ky, U5k, ¢5 kg, & ave collinear, For, the equations of the axes may be
written £,) b+ ¢ =c+¥V=a+4+d =0, k)b+d=c+ad=a+¢=0,
k) b+d=c+d=a+0V=0, k) b+bV=c+c¢=a+ a =0, and we
shall then have for lines through their respective intersections with sides of
the quadrilateral

kna)b+c+a=c+bV+ad=a+d+a=0,
ey )b +d+b0=c+a+bV=a+ ¢+ =0,
ky)b+ad+cd=c+d+c¢=a+b+c¢ =0,
kn,d)b+bV+d=c+c+d=a+a+d=0,
which form all four one and the same line. The quadrilateral %,k,k.k, is also
such that its four triangles are each homologous with abe, and in fact in
such a way that k%, abc and abc have lines joining all three corre-
sponding vertices coincident. Take the triangles k%, and ‘b'c¢d; we have
k,—b=b—c=0—¢=0, —k—lbk=—a—b=—d+c¢=0,
ky+ ki=a+c=d —¥ =0, and the equations show that these three lines
meet in a point. Let us apply this property to the Pascal hexagram. We
shall say, with Veronese, (p. 27), that the triangle formed by joining oppo-
site vertices of a hexagon belongs to the Pascal obtained by taking the vertices
in the same order; for instance, the triangle whose sides are 4D, BE, CF,
belongs to the four Pascals i (AECDBF), h (AEFDBC), k (ABFDEC),
h (ABCDEF). The points
P (AB.DE), P (AD.BE) are on the line p' (bd.ae);
P (BC.EF), P (EB.FO) “ “o (e bf);
P (FD.AC), P (AD.FO0) ¢ “o p(af.de).
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10 Lapop, The Pascal Hexagram.

These three p’ lines meet in a point, namely, the Brianchon point A’ (aecdbf),
hence the two triangles formed by the vertical rows of P points are homo-
logous. The sides of the first are the Pascals 2 (A BFDEC), h (ABCDEF),
h (CAEFDREB), and the corresponding sides of the second are 4D, BE, CF,
hence these three pairs of sides intersect in a line which, as it is an axis of
homology corresponding to the centre of homology H' (aecdbf’), we shall call
the line £ (A ECDBF). In the same way it may be shown that the triangle
formed by any three of the four Pascals to which the triangle 4D, BE, CF
belongs are homologous therewith, therefore the intersections of the four axes
of homology, £ (AECDBF), k (AEFDBC), k(ABFDEC), k (ABCDEF) with
the four Pascal lines A (A ECDBF), h (AEFDBC), h (ABFDEC), h (ABCDEF)
respectively, are four points on one straight line. As this line is obtained by
means of the triangle 4D, BE, CF, we shall call it the line [ (4D . BE.CF).
To each triangle formed by three fundamental lines, no two of which pass
through the same point on the conic, corresponds a line [ of the same nota-
tion ; there are 15 such triangles, hence there are 15 lines . To each A point
corresponds a Z line, hence there are 60 lines %, divided into 15 groups of four
each, which intersect corresponding % lines on the 15 / lines.

4. The triangles 4 BC, abc, are homologous. Let us call their centre of
homology C (ABC.abc), their axis @ (ABC.abc). Let us say that the points
C (ABC.abe), C (ADC.adc) are joined by the line ¢ (ac.bd) and that the
lines a (4BC.abc), a (ADC.adc) intersect in' A (ac.bd), where the bar is
drawn over the letters that are repeated. I have shown (Educational Times,
Question 5698,) that ¢ (ac.bd), ¢ (ac.bd) intersect in P (AC.BD), and that
A (ac.bd), 4 (ac.bd) are connected by p’' (ac.bd). There are 20 points C
and 20 lines . Fach C point is joined to 9 other € points by ¢ lines, hence

there are—;— (9.20) = 90 lines ¢, which pass by twos through the 45 points

P, and 90 points 4 which lie in twos on the 45 lines p. The six ¢ lines
¢ (ac.bd) ¢ (eb.fa) ¢ (df. ce)
¢ (ac.bd)’ ¢ (eb.fa)’ ¢ (df. ce)
intersect in pairs in three points on one straight line, viz., the P points on
h (ACEBDF), hence they form the sides of a Pascal hexagon; and for a
similar reason the six A points of the same notation are the vertices of a
Brianchon hexagon.

5. The Brianchon hexagon formed by joining alternate vertices of
ABCDEF has for its sides 4C, BD, CE, DF, EA, FB. The conic inscribed
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Lavop, The Pascal Hexagram., 11

in this hexagon, 5, is the reciprocal of the conic § with respect to a third
conic; X;, twelve points of which may be obtained by taking on each side of
the Brianchon hexagon the two points which form. a harmonic range with
each of the two pairs of vertices on this side; for instance, on A4C the
two points which are harmonic at once with O, P (BD.AC), and with
A, P(BF.AC). The hexagon A BCDEF is the reciprocal with respect to
the conic X of the hexagon formed by joining its alternate vertices; the point
P (BD.AC) is the pole of the line BC, the point P (4AE . FD)is the pole of
of the line FE, hence the Pascal 2 (CAEBDF) is the polar of the point
P (BC.EF); P(BD,CE) is the pole of CD, P (FB.AE) is the pole of AF,
hence the Pascal % (4 ECFBD) is the polar of the point P (CD.AF). It
follows that the intersection of the Pascals A (CAEBDF), h (A ECFDB), which
is the Kirkman H (4 FEDCB), is the pole of the line joining P(CD.AF)
to P (BC.FE), which is the Pascal 2 (AFEDCB). But the six hexagouns,
ABCDEF, AFCBED, ADCFEB, ABCFED, ADCBEF, AFCDEBRB, form,
by connectors of alternate vertices, a Brianchon hexagon composed of the same
sides in different orders, and hence circumscribed to the same conie, therefore
the six Pascals 4 (ABCDEF), h (AFCBED), h (ADCFEB), h (ABCFED),
h(ABDCEF), h(AFCDEB), are the poles of the six Kirkmans H (A BCDEYF),
H(AFCBED), H(ADCFEB), H(ABCFED), H(ADCBEF), H(AFCDEB),
with respect to the same conic X;. Moreover, the points G (4CE. BDF) and
G (ACE.BFD) in which the first three and the second three Pascals inter-
sect are the poles respectively of the lines ¢ (ACE. BDF) and g (ACE . BFD)
which connect the first three and the second three Kirkmans. The two G
points in question are harmonic conjugates with respect to the conic S, hence
their polars with respect to .X;, the ¢ lines of the same notation, are harmonic
conjugates with respect to the reciprocal conic, ;. The triangle whose
vertices are two corresponding G points and the intersection of the ¢ lines
through them (or, what is the same thing, the triangle whose sides are two
corresponding ¢ lines and the line joining the & points-on them) is a triangle
self-conjugate with respect to the conic X;, two of its vertices being at the
same time conjugate with respect to S, and two of its sides with respect to 3,.
Since this conic, 3, is inscribed in the triangles ACE and BDF, we shall call
it the conic 3 (ACE.BDF), (where the order of the letters in each group of
three is of no consequence) and the conic with respect to which it is the
reciprocal of S we shall call X (ACE.BDF). There are ten conics 3, the
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12 Lavp, The Pascal Hexagram.

reciprocals of S with respect to ten conics X, Each pair of corresponding &
points and the six Pascals through them are reciprocal, with respect to one
conic X, to the two ¢ lines and the six A points of the same notation. The
60 H points and the 60 % lines are then divided into ten systems of six lines
and points each, reciprocal to each other with respect to the X conic of that
system.

These properties of the Pascal Hexagram can be summed up in the
following propositions:

(1). The 20 Steiner points G are the intersections of the 20 Cayley-Salmon
lines g with the 20 corresponding lines .  The 20 lines ¢ are the connectors of the
20 Steiner points G with the 20 corresponding points G

- (2). The 45 points P lie in twos on 45 lines p/, which meet by threes in 60
points H', the poles with respect to the original conic of the h lines. The H' points
lie in fours on the lines p/, in threes on 60 lines K and in threes on 20 lines ¢.
From them may be produced any number of systems of points and lnes, [H',%,]
having their ¢ and 7 lines and their G and I' points in common. But in this case
transition is made from a system of even index to one of odd by means of ' lines,
and from one of odd to one of even by means of V' poinis.

(8). Three Pascal lines which belong to a triangle formed of fundamental sides
intersect those sides in a k line. There are 60 lines k. Their intersections with
corresponding h lines lie in fours on 15 lines 1.

(4). Of the corresponding circumscribed and inscribed triangles of the conic,
the 20 cenires of homology, C, lie in twos on 90 lines ¢, whick pass by twos through
the 45 points P, and the 20 axes of homology, a, intersect in twos in 90 points A,
which lie in twos on the 45 lines p'.

(6). The H poinis and the k lines may be divided into ten groups of six lines
and points each. The lines and points of each group are poles and polars with
respect to one of ten auwxiliary conics X. To each group belong two corresponding
G points and two corresponding g lines. They form a triangle self-conjugate with
respect to the X comic of the group. The G points are at the same time conjugate
with respect to conic S, and the g lines are at the same time conjugate with respect
to the conic %, the X reciprocal of S.
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On the Theory of Flexure.

By WiLLiam H. BURR, Rensselaer Polytechnic Institute, Troy, N. Y.

It is not intended in this discussion to give the exact theory of flexure for
all materials and shapes of pieces subjected to bending, nor indeed for any
one kind of material. The present state of knowledge regarding the internal
molecular action developed in any piece of elastic material by the action of
external forces, is not such as to enable one to treat any problem of this kind
with mathematical rigor if the piece be of finite dimensions. The illustrious
Lamé, however, has remarked that the exact solutions of all problems in
natural science are usually obtained by successive approximations, and such
has certainly been the case in regard to the theory of flexure.

If the following investigation shall be found to constitute even a short
step in the direction of the correct theory, the object of the writer will have
been accomplished.

* An explanation, by the writer, in regard to his aim in this discussion, is very essential in order that the
results may not be misunderstood. It is not intended to cover any of the ground gone over so elegantly by St.
Venant, Clebsch and others. Their investigations leave nothing to be desired.

It is intended to poiut out considerations which, it is believed, will account for the great discrepancies
existing between the results of the ‘ common theory’’ and those of experiment. Those considerations apply
chiefly to the conditions of stress existing between the elastic limit and rupture, to which the investigations of
the authors mentioned above do not apply.

It may easily be shown that the logarithmic law found is not consistent with the equations of condition
(4), (8), (6) and (7) for a body of homogeneous elasticity, but those equations do not obtain beyond the elastic
limit, nor for bodies that are not homogeneous (and non-homogenity is characteristic of all bodies used by the
engineer), nor indeed are they stricily true for homogeneous bodies except for indefinitely small strains. Now
indefinitely small strains are by no means those which accompany the application of finite external forces or
the existence of finite internal stresses.

Again the researches of M. Tresca, in particular, but also those of Prof. Thurston and others * show that
molecules rearrange themselves, to a greater or less extent, when the material in which they exist is subjected
to stress for a finite length of time. It is not only possible, but highly probable, that this rearrangement enables
the molecules to take such positions as will give the material the greatest possible capacity of resistence.

1t is submitted, therefore, that, while it is altogether probable that that condition will exist just before
rupture, which, by the principle of least resistance, will subject the material to the least stress, the same law,
on the further investigation of strains in either homogeneous or non-homogeneous bodies, may be tound to
hold in the case of such bodies in equilibrium. For that reason some approximate values for the deflection are
found which may serve the purpose of (at least) a rough experimental test.

The importance of the bearing of these matters on elastic bodies, is enhanced by the fact that no law of
stress whatever can exist in such bodies in equilibrium which may not be supposed to exist in a rigid body.

The arbitrary functions of integration in «, » and w are not all found, for they are not needed for the pur-
poses of the investigation, and a search for them would cause the paper to reach far beyond its proper limits.

[* As, for instance, Eaton Hodgkinson, who, we believe, made accurate determinations in this subject many years before those
whose names are above mentioned, having turned his attention to it as early as 1824.—EDs.]
4 13
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14 BuRrRr, On the Theory of Flexure.

It is assumed, and assumed only in the “ Common Theory of Flexure”
put forth by Mariotte and Leibnitz, that the intensities of the normal internal
stresses parallel to the neutral surface vary directly as the first powers of the
normal distances from that neutral surface. This assumption gives results
corresponding to experimental ones, with degrees of approximation varying
according to the nature of the material and the shape of the piece subjected
to bending. Its chief merit, and a very great one, is that it leads to very
simple discussions of the cases which ordinarily occur in practice. It ignores,
however, the existence of any internal shearing stress, and the formulae
deduced for deflection do not involve the distortion which any piece of mate-
rial suffers when subjected to the action of external forces.

Nevertheless, the method of fixing the position of the neutral surface is
correct, since it is based on one of the first principles of statics, 7. e., that each
of the sums of the components of the internal stresses, taken along three
rectangular axes, must be equal to zero. The sum of the component forces of
each sign along any axis, and not the sum of the component moments, must’
be equal to each other when the external forces act in a direction normal to
the axis of the beam.

Navier first assumed the equality of the moments, but soon after aban-
doned the idea and pronounced it erroneous.

The principle just stated, first given by Parent, will be used in the fol-
lowing discussion in the determination of the position of the neutral surface.

Two assumptions will be made, the last only of which, however, as will
eventually be shown, tends to give the investigation an approximate character.

The one source of approximation which probably causes the discrepancy
between the results which follow and those of experiments is the neglect
of lateral contraction and expansion; and those phenomena will be noticed
further on.

It will first be assumed that the material has a non-crystalline structure.
This is not absolutely necessary, but it emphasizes the proof that the results
apply to material of any kind.

The second assumption is this, that the applied bending forces produce
no compression at their points of application. This really amounts to sup-
posing the bending to be produced by a single force acting at the proper
distance from the section under consideration, while the portion of the beam
on the other side of the section is held in position by the requisite forces.
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BURR, On the Theory of Flexure. 15

If this assumption were a cause of approximation in the results, those
results would not be essentially changed thereby in all ordinary cases of
engineering practice as the compression is very slight.

In the case of glass the experiments of the late Mr. Louis Nickerson,
C. E., of St. Louis, would seem to show that a high intensity of local pressure
at the point where the external force is applied causes the neutral surface to
move toward that point through an appreciable distance.

The general equations of equilibrium, however, do not indicate such a
result, and there are strong reasons for believing that his experiments may
have indicated something different.

The first assumption made renders it possible to make use of Lamé’s
general equations for homogeneous solids of constant elasticity. These are
found on page 65 of his “Lecons sur le théorie mathématique de Uelasticité
des corps solides,” and are the following. Let u, v and w be the actual dis-
placements of any molecule along any assumed three rectangular axes of x, y
and z; then N;, N, and N, represent the three normal intensities of stresses
along these axes respectively, and 7, 7, and 7 the intensities of tangen-
tial stresses producing moments around the same axes, 7. ¢. 7} around z,
T, around gy, and 7; around z. Let 2 and u represent empirical constants
depending on the nature of the material, and let § — Z—: + C—ZIE + g{? This quan-
tity 6 will be recognized as the dilitation per unit of volume. Using this nota-
tion, the general equation for a homogeneous solid are

d d: d:

N=m+2g, L=u(z+7)
d: d: d

N;:xe+2”§, 1;:#(3;-"+%) ¢ )
] d: d

M:%9+2u%:, Ti=u gg—k;,g)

No demonstration of these equations is given, for it is difficult to con-
ceive of one more elegant or more general than that given by Lamé.
Neglecting the effect of forces emanating from an exterior centre, the
conditions of equilibrium are involved in the following equations, also given
by Lamé dN,  dT, | dT,
J ’ wta tE= 0
dTy | dN,  dT,

dm+_@ +E:OI . . . . . . .,. (2)
dT,  dT, | dN, _
wtetE=0)
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16 BURR, On the Theory of Flexure.

These are the only equations of condition resulting from the considera-
tion of the principles of statics alone, and are, in general, insufficient to
determine the six unknown intensities which enter them.

In the following discussion the piece or beam subjected to bending will
be supposed to occupy a horizontal position; the bending forces (including
the redction) will be supposed to act in a direction normal to the axis of the
beam ; the beam will be supposed straight and uniform in normal section;
the axis of « will be taken to be parallel to the axis of the beam; the axis of
z will be vertical and the axis of # horizontal and perpendicular to that of .
The axes of z and y will thus be parallel to axes of symmetry of the section, if
that section be symmetrical and the beam be properly placed. No other
kind of section or position will be considered. In the generality of cases the
coefficients of elasticity for tension and compression will be considered equal.
In the one or two cases where they are not supposed to be equal, the axis
of x# will still be taken parallel to the axis of the beam, and not coincident
with it.

Now in the case of flexure, generally considered, on account of the dis-
tortion of the material subjected to stress, the six stresses ¥,, N,, N;, T}, T, T,
actually exist, but in some of the cases taken some of them are equal to zero;
in others, some of them are so small that they may be considered differential
quantities, 4. e., they owe their existence to the indefinitely small difference of
the intensities of stresses on two small portions of the material indefinitely
close together. The omission of these quantities will evidently produce no
essential error in the results, though it is true that it takes from the mathe-
matical exactness of the equations.

Beams whose sections, 4. ¢. normal sections, are symmetrical in respect
to the axis of y and 2 will first be considered, and it will be assumed that
N,=0, N;=0,and 7; = 0. It should be stated that the sections considered
will not only be symmetrical ones but such that they will not have re-entrant
contours.

The case of rectangular sections when ; is not equal to zero will be
taken up afterwards. It might be treated as existing in all beams if the
external forces were so applied that 7; is still zero, but that is an exceptional
case and will not be taken up. 7 may in reality exist as a very small quan-
tity, in some cases, on account of the variable value of 7, at the neutral
surface.
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BURR, On the Theory of Flexure. 17

The equations of condition for equilibrium in these cases, from equa-
tions 2, will be the three following:

L)
4h o, 3)
dT,_O
or (7““‘)( : d(ict;y dxdz) T (j::u_’—dy +dz‘ =0,
cf:—;‘fr:,—':’;z —0, b ... @
v () =0

Three other equations of condition result from the conditions that ,, &,
and 7, each equal zero. These give in connection with equations (1)

(dx+dy+dz)+ H_.-_o N )
dw (hv

dx+ +dz + ‘u- _0 e e e e e (6)
dv dw

u Ez__i_—t_lz; =0. . . . .. .

These equations, as it will afterwards be seen, aid in the determination
of the displacements u, v and w. The last two of equations (3) may be inte-
grated at once, and will give

=f(y,2) . . . . . . . . .. 8

Ih=F(y,z). . . . . . . . . .0
In which f and F signify any arbitrary functions of y and z whatever;

they correspond to the “constants’ of integration and must be written
because the intensities of the internal stresses are, in general, each functions
of z, y and z.

Denoting by £, (7, z) and F, (y, z) the partial derivatives of 7, and 73,
respectively, in respect to the variables indicated, the first of equations (3)
may be integrated, and will give

N=—z[f, @, )+ F(y,2]+% (2 . . . . (10)

The quantity ¥ (y, z) is any arbitrary function of y and z, and it will

now be shown that in general it is independent of y and 2, as well as of x, and

that in many of the cases of pure flexure it may be put equal to zero.
5
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18 BURR, On the Theory of Flexure.

The direction of action of the stress whose intensity is &, is normal to its
plané of action, which is a normal section of a fibre parallel to the axis of the
beam. Now, since the applied bending forces are perpendicular in direction
to the axis of the beam, no part of N, can result directly from the forces;
that is, they have no component parallel to the fibres subjected to the normal
stress ;.

The stress, whose intensity is &, exists only, therefore, in consequence of
the shearing, or tangential, stresses called into action by the slipping over
each other of the fibres parallel to the axis of the beam, or in consequence
of T, and 7;. The expression for X, cannot therefore have a part indepen-
dent of the quantities 7, and 7}, except in the case (not of pure flexure) where
the beam is subjected to the action of an external force acting in the direction
of its own length. The function ¥ (y, z) cannot, therefore, depend on the
variables # and z unless they appear raised to the zero power; or, in other
words, ¥ (y, z) cannot exist except as a constant, since the integrating equation
(10) was made in respect to 2. But the case treated is that of pure flexure,
in which no external force acts upon the beam in the direction of its own
length, and in which, consequently, no part of N, can be independent of the
tangential stresses 7, and 7j; hence ¥ (y, z) = O or ¢, according as the origin
of co-ordinates is at a section of no flexure or not.

Again, differentiate equation (10) in respect to y, there results
dAl d F ) dw y

In this equatlon any value of z may be assumed whlle y is considered the
only variable. Let such a value for z be assumed that the equation will
apply to the neutral surface. It will not destroy the force of the reasoning
to suppose that surface plane, for if it is not plane the equation of its trace
on the plane of normal section of the beam will be z = f (g).

Now, in the neutral surface ¥, =0, 7; =0 and F, (y, z) = 0 since 7, has

there its maximum value. Consequently idly!l =0, f/(y,2)=0

d¥(y, z)
and C(l;’ y=0. . . . . . . .. (12
Next, differentiate equation (10) in respect to z, and there results
dn, d(f, (v, 2 ) dW’(u, z)
Mo [(f 52 4 gy, D)+ L (13
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BURR, On the Theory of Flexure. 19

Since z is considered the only variable, such a value for y may be taken
that the equation will refer to that portion of a normal section of the beam
which lies along the axis of symmetry of the section, for which f"(y, z) = 0.

dM ” d¥?(y, z)
Hence - = xF (y, 2) + is (14)

Now ci[—lj‘ is always a positive quantity, but the function ¥ (y, z) is per-
fectly arbitrary, and it may be given such a value and sign, if it has real
existence as a function of the two variables y and z, that the second member
of equation (14) may have a sign contrary to that of its first member, whatever
may be the value of — 2 F,” (7, 2).

In order that equation (14) may be a true one, therefore dgﬁ%@ dz = 0;

consequently
a¥(y, =)

dy z)dz—O or, ¥ (y,2) =¢, . . . (15)
¢ being a constant quantity. In the case where the origin is taken at a sec-
tion of no flexure ¢ = 0. Otherwise, at the free ends of a beam, and at
sections of contra flexure, there will exist normal stresses parallel to the axis,
since a portion of the expression for N, would then be independent of .

There is then established the important equation, when the origin is taken

at a section of no bending,
N=—a[fy (g, )+ F (y,9]. . . . . . . (16)
1t is seen by this equation that N, varies directly as x. But in this equation
there is apparently involved the condition that one external force only is act-
ing at the distance x from the section under consideration. This arises from
the fact that the external forces are assumed to produce no compression at
their points of application. It does not affect, however, the generality of the
equation, for the last two of equations (3) show that whatever may be the
bending moment, the above assumption simply means, it is so produced that

z) dy + dw(y,

the total shearing in any section is equal to that in any other, since % and

dTy
G both equal zero.

The magnitude of the external force then, is a matter of indifference,
only it must be constant for the same beam with any given system of loading.

The normal intensity N, is, consequently, proportional to the variable lever arm
x of any given constant force which may produce the bending moment to which the
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20 BuURrRr, On the Theory of Flexure.

beam is subjected at the section considered ; or, in other words, it is simply propor-
“tional to the bending moment.

This gives at once a method of expressing %, in terms of the bending
moment of the external forces, and it will be sometimes convenient hereafter
to use it.

Hereafter, also, unless otherwise stated, &, instead of &,, will be written
for the general value of the intensity of the normal stress parallel to the
axis. ,

Let n and M, represent the values of NV and the external bending moment
respectively for any given section, and M the general value of the external
bending moment, then, by the principle just stated,

M

.N: n jil P . . PN o . (17)

This is a perfectly general expression whatever may be the position of
the origin of co-ordinates.

It will now be necessary to return to the discussion of the general form
of equation (16),

N=—a[fyg, 0+ E@a]+ec . . . . . (18
taken in connection with equations (8) and (9).

The functions f (y, z2) and F (y, z) are perfectly arbitrary; hence it is
sufficient for equilibrium to assign any laws whatever for the variations of
the intensities 7, and 7}, and when 7}, and 7, are known N at once results
from equation (18). There are not, therefore, a sufficient number of equations
founded on the principles of statics to insure a solution of the problem. The
“ Principle of Least Resistance,” however, furnishes the wanting condition.
Now whatever may be the laws governing the quantities ¥, 7, and 7} there
are two conditions which must be fulfilled, i. e. the moment of the internal
stresses in any section must be equal to the moment of the external forces for
the same section, and the total shearing stress in any normal section must
equal the sum of the external forces acting on one side of that section. But
the second of these conditions is really involved in the first, as will now be
shown. 7 7 _

Let (7, ) = O be the equation of the perimeter of a normal section of

the beam, and 4 = f f dzdy its area. Then, remembering that the coefficient

of elasticity for tension is assumed equal to that for compression, the equation
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Burr, On the Theory of Flexure. 21

expressing the equality between the moment of the internal stresses of any
section, and that of the external bending forces will be

2 [ [ Naudzty=—20 [ 7 LF, (3. 2) 4 B¢ (3, )] aaedy
o [tV ety =M. . . .. .. (18)

In this equation z,1s written for convenience for (z — b), and z, represents
the maximum value of z. Of course b is the value of z for the neutral sur-
face, and « is the value of y for the vertical axis of symmetry.

The lower limits ¢ and & are taken so that the integration will cover one-
fourth of the section, and the resulting moment in the second member will,
therefore, be one-half the whole bending moment. Since the axis of z is par-
allel to the axis of symmetry of section, and since the external forces act

parallel to it, the integral jf Tydydz = P, the sum of the external forces
which produce the bending, while f f Tidydz = O; these integrals are sup-
posed to cover the whole section.

Now f f Z‘j;,’ (9, 2) z,dzdy = f (73)Y 2,4z ; but, considering that part of
the section on one side of that axis of symmetry which is parallel to the axis

of z, for every positive value of z between the limits of 2, and & there
is also a negative value on the other side of the neutral surface. Hence

f (1)Y 2,dz = 0, and the first term of the second member of equation (18) may
be omitted. Again, applying the integrals to the whole surface, f f 2, dzdy is

simply the statical moment of the surface about an axis passing through its
centre of gravity, consequently it is equal to zero, and the last term of the
second member of equation (18) may be omitted. Hence

2" [ Nadety=—20 [* [V ! (3, 2) milpdz =2 . . . (19)

[P (9,2) mdz=2F (y,2)— [ F(y,2) dz. When z=2z,, F (3, 2) =0,
and when z =105, 2 =0. Consequently f:‘ F; (y, 2) 2,dz = —f:‘ F(y,2) dz
and sM=20 (" (TP dedy. . . . . . . . (20)
Equation (20) shows that, if for any section the bending moment remains the

same, the shearing force also will remain constant, which was to be proved.

If equation (20) be differentiated in respect to x, there results

(l}[ 2y vy .
d—x:4fijF(y,z)dzdy,. C e e e ..o (2D

This content downloaded from 199.242.209.35 on Mon, 13 Mar 2023 16:49:41 UTC
All use subject to https://about.jstor.org/terms



22 BuRrR, On the Theory of Flexure.

which shows that the first differential coefficient of M in respect to « is equal
to the total vertical shearing stress in the section, or the sum of all the exter-
nal forces acting on one side of the section.

This principle, consequently that involved in equation (20), might have
been determined from the fundamental equations of statics.

Now referring to equation (16), on account of the arbitrary character of
the functions f (¢, ) and F (y, z) the sum of all the internal stresses developed
in any section may have any value whatever without effecting the equilibrium
between the internal and external moments. But the principle of least resist-
ance asserts that the sum of all the internal stresses developed in any section shall
be the least possible consistent with the imposed conditions of equilibrium.

The only imposed conditions of equilibrium are the constancy of the total
shearing or tangential stresses developed in any normal section, and the
bending moment of the normal internal stresses about an axis perpendicular
to the direction of those tangential stresses. But it has already been shown
that the two conditions are equivalent to each other whén all the external
forces are vertical in direction, the axis of z being vertical also; and when
the shearing stresses 7; and moment about the axis of y are considered.

The equations of condition for the shearing stresses 7; and moment about

the axis of z will be ff Tidydz = 0 and ff Ny.dydz=0. But these are simply
special cases of the general equations f f Tydydz = 5P and f f Ny,dydz = M,

consequently the reasoning applied to equation (18) will bear out the same
deductions in this case. The two conditions of equilibrium are therefore
involved in the latter equation in both cases.

The problem which now presents itself, therefore, is to find the law gov-
erning the intensity &V so that there may be the two conditions-

7Y Ndydz = mivimum, . . . . . . (22)

b
4 (O (" Nedydz =M. . . . ... .. (23)

The moment M is, of course, constant for any section while & is a varia-
ble function of y and z only, as x, like M, is constant for any section. The
equations (22) and (23) may be considered typical since 7 — y — ¢ may be
written for z, in equation (23).

If @ and ¢ denote two variable parameters, @, ¢ and « different functions,
there may be written generally

N=® (8, y=¢(, )andz="4 (a,8). . . . . (24)
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BurR, On the Theory of Flexure. 23

But in the case under consideration y and z are perfectly independent
variables, hence the equations (24) reduce to
N=®(a,?), y=¢p (@) andz =+ (). . . . . (25
Consequently the minimum value of the quantity f :’ f Z Ndydz will be
found by first considering one variable constant and then the other; or in
other words by first considering & a function of y and then of 2, or vice versa.
The equations (22) and (23) then become, when z is considered the only
variable, :
(' Ndz = minimum,. . . . . . . . (26)

f:' Nzdz —constant. . . . . . . . . (27)
At the neutral surface &’ =0 and when z =2z let ¥ = N,; then (26) may
take the form
:‘ Ndz = Nozl—f:‘ N'zdz = minimum, in which N’ :‘%\T.

Now finding the ’I_ninimum value off:l Ndz is the same as finding the
least value of N, when f:l Ndz is a constant quantity; the conditional equa-
tion (27) holding in both cases. Hence, putting ¢'= f :‘ Ndz, the problem
involved in (26) takes the form

c % ar 2 e
No_z—l—l—be—z—ldz_mmlmum. e .. (28)

Since gis a constant quantity, the last term of the second member of
the above equation is all that need be taken into consideration. If &'is a
constant, then let S denote the integral of which the absolute minimum is to
be found. This function § is obtained by the principles of the Calculus of
Variations, by multiplying the conditional equation (27) by « and adding the
result to the variable part of equation (28). These operations give

S= {7 [zv; + a’N(z—b)] de. . . . . . (29)

The methods of the Calculus of Variations must be applied to this definite

integral in order to determine the character of the function N which will give

it its least value. The following system of notation is that used in the work
of J. A. Serret on the Calculus:

—_— Iz ’ _dV_A’I ’
[__N;l-+aN(—"Zb), Z_Z[;_—ZI'—I—Q_N-,
dv - ,__dV =z
r=0=e(—a), Y=i7==.
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24 Bugr, On the Theory of Flexure.

The condition for a minimum is the following:

ay’ dy’
Y——=0,0r Y= —-.
Now, since dz = d (z — b), there results for the complete differential of V'
AV = Zd(z—b) + YdN+ YdN'. . . . . . . (30)

But if this equation be integrated, it is evident the determinate part of
the integral of the first term of the second member will be equal to that of
the first member, hence

f (YdN + Y'dN') = ¢; or, from the conditions for a minimum,
f(N’dY’-{- YdN) = ¢;
.N'Y =c¢=constant. . . . . . . . (31)

Since Y = —and N _(g
AN =20 % .'.N:zlclogz—}—c’. L. (82

Hence the curve representing the law of variation of N is a logarithmie
one, and, since the value of z for the neutral surface is 4, if & is taken equal
to unity, ¢ will be zero for this case. The value for X, therefore, for a vertical
plane passing through the axis of the beam will be ‘

Ny==zclogz. . . . . . . . . . (33

The symbol “log” refers, of course, to Naperian logarithms. Now, for
any part of the beam z, must be replaced by z, since f (#, ) = O is the equa-
tion of the perimeter of the section. Equation (33), therefore, for any strip
of elements parallel to the axis of z and at any distance y from the origin,

will take the form
N=2zclogz. . . . . . . . . . (34

Let Ny represent the value of N for any point of the perimeter of the
section, except that one for which z = ¢,; and for that point let ¥, be written,
it will represent the greatest intensity of stress in the section. When z = 2,

— N : _ N
N = Ny; consequently, for equation (34), C= T Tog
N_ logz........(35)
Whenz=12, N,=N, ..c= ; log for equation (33), and
1
M= log 2 (36)
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BuURR, On the Theory of Flexure. 25

From what has already been said, in regard to the general equations of
condition for moments and shearing stresses in horizontal planes, between
equations (21) and (22), it is evident that the same steps precisely would
have to be taken in order to determine the law of variation of N with y, as
were taken to determine the connection between X and z. In fact, since y
and z are considered variable only in turn, ¥ may be written for z in the gene-
ral operations for determining the least value of the definite integral S.
Hence the typical equation for N may be written in terms of g,

N logy . . . . . ... @D

The quantity y, denotes the half width of the beam added to a. But, as

was donein the case of z, ¢ is assumed to be equal to unity in determining
/

log v, °

Now, in writing the equation (37) there is virtually assumed to be a sur-
face of no stress of the kind N at the distance (7, — 1) from the vertical axis
of symmetry of the section. In other words, referring to Fig. 1, ¢ is really
the assumed origin and HK the supposed position of the axis of z, while the
surface of no stress touches the beam at m. The greatest value of N, there-
fore, in any horizontal plane, is &, found in the vertical axis of symmetry of
the beam. The point O is at the distance unity on one side of, and below, the
centre C of the section; and it is most convenient to take that point for the
origin of co-ordinates. OO is equal to (y, + 1) and O'F is the y of equation
(37). This latter quantity in terms of OF, the new y, will be (y,+ 1 — OF)
=(pn—y+1). Consequently, equatlon (37) takes the form

the constant

1 gy log (y—y+1).. . . . . . . (38)
When y = BD =y then N = No',
— log " ~log (n—y+1. . . . . . . (39

N, is determined by equation (36), but # must be written for z in that
equation, then

Z\’;:ION"zllogz’,. R T

. __log2 N,
" logz logy,

g h—y+1). . . . . . (@4
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26 Burr, On the Theory of Flexure.

Substituting in equation (35), there results
A _—_]j?zl %g log (ji—y +1). - . . . . (42)

This gives the general value of ¥V in terms of the greatest intensity %, of
the entire section. If z = 2, then, by referring to equations (38) and (40) it
is seen that N = &,. If z =1 the equation (42) refers to the neutral surface
and & = 0.

If ¥ = 1, then the vertical axis of symmetry is referred to, and

N=N = ol
log 2,

Before passing on farther in the analytical discussion of the problem, it
will be well to consider the form of the double curved surface which repre-
sents graphically the law of variation of the intensity .

The closed curve in Fig. 1 represents a normal section of the beam, O
being the origin of co-ordinates. Now if normal lines be drawn at each point
of the section of Fig. 1 whose lengths represent intensities, %, at the different
points, a double curved surface will enclose their extremities from which
logarithmic curves, represented by the equations already given, will be cut
by vertical and horizontal planes. The shaded portion of Fig. 2 represents
a section cut by a vertical plane passed through the axis of the beam, and
equation (36) is the equation to its perimeter. The shaded portion of Fig. 3
is a horizontal section made by a plane passed through RS, Fig. 1; the gen-
eral equation for which is equation (38). CD of Fig. 3 is equal to FH of
Fig. 2. All vertical planes will cut sections similar to that in Fig. 2; these
sections will have for their equation, equation (35). All horizontal planes
will cut sections similar to that in Fig. 3 and equation (38) will be the general
equation to their perimeters.

The tangent of the angle made by the curve at C, Fig. 2, with BCis equal
% = l:)l—vgz— , since for that point 2 = 1. The general value for the tangent
g 2
dnN, Ny 1 s .
s == — . Hence the curve becomes parallel to BC at an infinite dis-
dz log 2z, = :
tance from the origin, and has a horizontal asymptote passing through the
origin. The same reasoning applies to the curves of the other sections.
d*N N, 1 ‘

dZ = logam 2

log z.

to

hence the vertical curves are concave towards the axis of
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BuURrRr, On the Theory of Flexure. 27

z. For the same reason the horizontal curves are concave towards the axis
of y. The whole surface therefore is concave towards the plane of section.

Nothing has been said in regard to the determination of the position of
the neutral surface, except the statement made in the beginning, which would
make it a plane before flexure passing through the centre of gravity of a nor-
mal section, on the supposition that the coefficients for tension and compres-
sion are equal to each other. The true principle has so long been recognized
that it is not necessary to speak farther of it here.

Referring to equations (17) and (42), it is evident that the general value
for the intensity N will be

__ M N, logz
N = M, log—zﬁ1 log v, lo

g(p—y+1.. . . . . (43)

It is also evident that equation (43) may be so written as to apply to a
horizontal plane at the distance 2’ from the origin; it will then take the form
!

— %Igz ;zg; log (i—y+1). . . . . . (44)

Although this is deduced. immediately from equation (43), it may be
demonstrated in precisely the same manner as was that equation.

The moment of resistance of the beam may now be easily written, though
the integration involved may yet be found impossible in some cases and intri-
cate in all but rectangular beams.

It is well known that the tangential stresses existing on the sides of
a small parallelopipedical portion of any material constitute a system of forces
in equilibrium. Consequently, the moment of resistance in any section will
be the sum of the small moments Ndydz.(z—1). The lever arm of each of
the small forces Ndydz is (z — 1), because the centre of moments is taken in
the neutral surface and the origin of co-ordinates is at the distance unity below
that surface.

Since the normal sections of all the beams considered are symmetrical
and without re-entrant outlines, the following equation at once results:

%M:I—(E%Vi’-og——%f?f:log (1—y+ 1 logz.(z—1) dedy. (45)

N, is, of course,.the greatest intensity in the given section. Since yis an

independent variable, dy may be taken equal to dy.

Va4 1 /2 , 1
Now,f1 (z—1) logz.dzzgz ]ogz——z

3
2'—2log 2 4 2 — 1 and
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28 BurR, On the Theory of Flexure.

# = f (y) is the equation to the perimeter of the section. Consequently

F = (W g f () — 1P —f () 1o £ ()
+f(3/)—z) log (n—y+1)dy. . . . . . (46)

This intricate expression reduces to a much simpler one for beams of
rectangular section. Equation (45) might have been written in terms of #
and y, in which case, equation (46) would have been found in terms of z, but
would not be in as convenient shape.

The general values of the displacements #, v and w may now be approxi-
mately determined. It must be remembered that these displacements will
only exist when N,, N; and 7; are each equal to zero. From the equation

(5) and (6) there results the relation
dv _ dw

dy PRI (4/)
Then, from either equation (5) or equation (6),
du_ _ 20+ p) do
=T g e . (48)
But, from equation (1),
dw
_Md+@+&)+ w49
Substituting from (48) in (49), there results
N=—Z@myo® . 0
From equation (50), in connection with equation (47), there at once
result
: 1 )
w=— mf]\’dz, e e e e e e (51)
A
e U 9
I f Ndy. (52)

Equation (50) gives also the relation

_20tAde_ 040y
VU 7 (84 + 2p) N=EN.
Combining this with equation (48) there results

w=EfNde. . . . . .. ... (53

A+ p
© (32 + 2p)
it, i. e. s0 as to represent the strain for each unit of stress. For wrought iron

The coefficient of elasticity £ = is written as M. Lamé uses
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BuURrRr, On the Theory of Flexure. 29

E would have an average value of, say, ?660“16660‘ The relation between

E, wand 2 will be found given in the work of M. Lamé before mentioned.
In finding the value for w, IV is to be taken in terms of # and z, and in deter-
mining v, it is to be taken in terms of # and y. Substituting the values for
N, there result the following expressions for », v and w:

A M N,

W= G112 L Toga logy, 08 (11— ¥ + 1) (zlog z2—2) + f(2, ),
» M N, ,
”:—2#(31_1_2#) M, log 2 log 4, logz [(5»—y+1)— (y—y +1) log (3. —y +1)]
+f (2 2),

w= JTIll—of:,Volmg—y[ log (1:—y + 1) log szdx + f(zy).

The functions () must be added in each integration because w, v and u
are each functions of the three independent variables , y and 2.

Let A be the deflection of the upper surface of the beam at any point;
then when 2 =12, w = A. In the vertical plane of symmetry for the beam
v = 0; hence when y = 1, v will equal zero.

The term f (2, y) in the expression for » will depend upon the configura-
tion of that section of the beam in which the origin of co-ordinates is located,
it expresses the displacement in the direction of 2 for that section. If that
section remains plane and vertical after flexure f (z, y) will reduce to zero, or
a constant, and it will always be equal to zero for the neutral surface if it be
assumed that the section containing the origin suffers no movement, as a
whole during flexure. For any other point not in the neutral surface its
value will depend on the distribution of tangential stress in the section where
the origin is found, and its value is not easy to determine. In all cases of
ordinary experience it is a very small quantity compared with the other parts
of the deflection, and essentially no error will be committed by its omission ;
such an omission will be made in equation (56).

By introducing the given conditions the values of w, v and » will be

written as follows:
A M N,

log (y—y+1) (zlog #—z—zlogz+2) + A, . (54)

1022/1(31—1—2;1)*—’?1—]1ng1 log 1
_ A M 0 o .
v—_2/1(3l—|—2/1)Tl[llogzllogyllogz[‘?/llog‘z/l_l_(l 9)
—(ph—y+Dlog (x—y+1D], . -« « .« o . . . (59)
\EN, ,
u= log (,—y + 1) longEP(xl—x) de. . . . . . (56)

M, logz logy,

9
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30 Burg, On the Theory of Flexure.

Now, equation (54) has been written involving A, the deflection of the
upper surface of the beam, but it must be remembered that w in the values
of N, T, and 7, represents simply the displacements in the given section, or
that which is caused by the stresses acting and not by any bodily movement of
any portion of the beam. In writing the value of 7}, therefore, in equation
(87), A must be omitted in equation (54). Otherwise, it would be true, as a
general principle, that the shearing stress in any section is dependent on the
deflection A, which is evidently not true. In equation (56), #, is the co-ordi-
nate of the section under consideration, and « is the general value of the
abscissa of the point of application of the force P; or, in other words,
M=32P (x,—x).

It is seen from the value of w immediately preceding equation (54), that
the deflection of the neutral surface at any point is independent of the
variable z, and is a function of the independent variables 2 and #.. This
result shows that the neutral surface is not a cylindrical one after flexure,
although it is symmetrical in reference to a vertical plane of symmetry for
the beam. The neutral surface, then, is a surface of double curvature for all
beams except those with rectangular sections, for which it is cylindrical.

Since A depends on « and y, and not on 2, the deflection of the neutral
surface may be determined if the maximum intensity of direct stress N, is
known for the given section, as will be seen hereafter.

In equations (1) there are given general values for the intensities of the
tangential stresses 7; and 7;in terms of », v and w. Using equations (54-56),
the two following equations are deduced, remembering what has already been
said in regard to equation (54):
7= M log z log y, 2 (32 + 2p)

log (—y"+1) 1N
A N, Io —y +1
+ (§/1 :If—— )21) M, logz:)logg/l 5 (2 zy = )sz (@& —w)de, . . . (57)

AN, log 2/ )
- 2(31 + 2/1) M,loggzl lOg@h [.% 10g,%+ (1_y) - (.’l/l—y'l"l) IOg (?/1—94‘1)] %P

ey N, log 2/ fZP(wl—w)dw
(82 +2p) My logz logyy (1 —y + 1)
It has been assumed that f' (2, y) in the value of w is equal to zero for

both equations (57) and (58). If this cannot be admitted, then K df—(;i/) is to
Z

(#log 2 —2—2zlogz+ 2) SP

T, =

(58)

This content downloaded from 199.242.209.35 on Mon, 13 Mar 2023 16:49:41 UTC
All use subject to https://about.jstor.org/terms



Burg, On the Theory of Flexure. 31

be added to the second member of equation (57), and ‘LLOUEI—Z;?/) to that of
equation (58).

If the partial differential coefficients of 7, and 7; be taken in respect
to z and g, the two following equations will result after having substituted
from the general values of N:

ih__ Gtp S ey xp 59)
dz T @A+ 2n) M " dF T 21842 M T
ar,_ g4p JUE ey A 2P (60)
dy T GBA+ 24 M Cdft 2(8A+2p) M T
Now, from equation (16), it is seen that:
dN, 3P . ¢dT, . dT,
= V=—(G+7%) (61)
But equation (60) shows that equation (61) is only true when A = — u or
At p

u=—=2; or when £ =0, since £ = ; or when the material is rigid

| (32 + 2p)’
so far as tensile and compressive stresses are concerned. Lateral displace-
ments due to shearing stresses, however, may be supposed to exist.

Equations (1) give the general values of the intensities &,, 7, and Tj,
but in order that equilibrium may exist they must be subject to the condi-
tions of equations (4), which are perfectly independent of the equations (1).
In fact equations (4) are founded on the first principles of statics and are
perfectly independent of the nature of the material in which stress may exist.
This matter will be specially noticed farther on.

The equations (59), (60) and (61) show that the distribution of the shear-
ing or tangential stresses in the beam subjected to flexure is independent of
the quantities 4 and u, and is the same whether the beam be supposed rigid
or elastic with a finite value of £. Making A = — u therefore in equations (57)
and (58), there results

N, 1 g (n—y +1 , , ,
=2 %&T’@ log#—7—zlogz+2)SP, . . . . . . (62
N, log? .
T,= [y:log g+ (1—y) — (y—y+1) log (.—y+1)]=P. . (63)

oM, fog z logy,
These are the true values of the intensities of the tangential stresses, and
it will hereafter be shown that 4]?‘1‘? Tydzdy = 3 P, as should be the case.
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32 Burr, On the Theory of Flexure.

It has already been shown that %I: 3 P, consequently equations (62)

and (63) may be written in terms of %’ and it will sometimes be convenient

to use them in that form hereafter.

There is an apparent anomaly in the fact that equations (57) and (58)
are the expressiorns derived directly from the general values of 7, and 7} in
equations (1), while equations (62) and (63) are the true values of these inten-
sities. The explanation is found in what has already been said in regard
to the intensities being the same as in a material for which £ is equal to
zero. Equations (62) and (63) also show that 7, and 7} are independent
of x, except in so far as that variable may enter the summation 3P, which

is consistent with one of the first general equations of condition.
' From equations (62) and (63) the following results flow: if z =1, 7, =0
for all values of y; if 2=#2#=1, 7, =0, and if z=2 only, 7, =0; if
y=1,T,=0. These results are as they should be, and might have been
antlupated

Another method of deducing the displacement w, in which A will repre-
sent the deflection of any point of the neutral surface, is the one which fol-
lows. It is somewhat more convenient in the treatment of beams with rectan-
gular cross sections. Let A then represent the deflection of any point of
the neutral surface. When z =1, in the value of w immediately preceding
equation (54), w = A, hence .

2 M N, ,
f(x7 .?/) - A_2/1 (34 + 2/1) j[—l 100‘21 ]Og?/ 100. (.%—9 +1)' . (64)

If A, therefore, represents the general value of the deﬂectlon there will
result, instead of equation (54),

A=— G u__%N log (s —y +1).(zlogz—2z+1) + A. (65)
2(32 + 2¢) M, log 2 log y, ! e o

Now, let A” represent the value of A’ when z = #, then the quantity w,
which is to be used in writing the value of 7, will be equal to A’— A"
Hence

w=g (3;+ o ;_fl iog z,Aloog m log (i—y+1) . (#1logz— 2z —zlog z 4 2). (66)

Equation (66) is the same as equation (54) with A omitted from the lat.
ter. The consequences indicated by equations (56) and (57) might be deduced
more simply, perhaps, from equations (65) and (66) than from equation (54)
and the one preceding it.
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It is to be noticed here that the expressions for the intensities ¥ and 73,
as well as 7}, are perfectly general, although the original equations.of con-
dition were based on the supposition that the bending moment should be
produced by a single force or a couple. Their generality is due to two facts:
a given amount of shearing stress will always be distributed over the same
section in precisely the same way, whether that amount is made up of reac-
tion at a point of support combined with external loads imposed between that
point and the given section, or whether that amount is equal to a single force
P hung at the free end of a beam; and a bending moment 3/ may be pro-
duced by a single force P or by a number of forces whose combined effect
produces the given moment, and the distribution of the direct stresses of
tension and compression will be precisely the same in each case.

By reference to equation (46) it is seen that the quantity %’ or ]—1‘;—” (the
1

intensity and the moment must belong to the same section), is not altogether
dependent on the form of the cross section, since the quantities log z,, log ¥

and % enter the expression for M, but is a constant quantity for the same beam.

In like manner iﬂ\[f is constant for the same beam, if NV is always taken at a

point whose co-ordinates y and z are the same in the different sections.

It is evident that the maximum value of 7, will be found at the centre of
any section; consequently its value will be determined by making # = z,,
y =1 and z =1 in equation (62). Denoting the maximum value of 7}, by 7,,,

there results

N, 1
T, = =51 iog %, (2, log 2y —2, +1)=P. . . . . . (67)

Let A be the area of the section of the beam to which equation (67)

applies, then the mean shearing intensity in any section will be f/ili The

ratio, therefore, between the maximum and mean intensities of shear in any

section will be
A _ N (alogz —z +1)
T, =3I Tog 7 4. . . o . . . (68)
This expression is not constant for the same form of cross section, but is con-
stant for the same beam.
When 3P is equal to zero, both 7, and 7} reduce to nothing. This case

exists where a portion of a beam is bent by a couple and where evidently the
10
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34 BuURrR, On the Theory of Flexure.

curve of flexure must be circular, since IV cannot vary if 7, and 7} are both
equal to zero, as equation (10) shows. This is one of the special cases in
which ¥ (y, 2) is a constant.

The expressions for 7, and 7} show how the shearing stress is supposed
to be distributed at the free ends of beams and at sections of contraflexure,
and furnishes the data for determining the quantity f'(z, ) in the value for
the longitudinal displacement w. As, however, it is of little practical value
it will not be determined. The reaction, therefore, at the free ends of beams
and external forces acting at sections of contraflexure are supposed to be so

distributed over the sections of the beam that f f Tydydz = 3 P.

The deflection of the beam is next to be determined, and it has already
been shown that that part of it, A, due to the bodily movement of a portion
of the beam is not a function of z, but is dependent only on 2 and y. It varies
of course with the half depth of the beam, or with what amounts to the same
thing, the quantity z,.

The movement of the molecules of the material, relatively to each other,
in any given section, is to be determined by the value of w fromn equation (66)
which was used in fixing the value of 7.

Let A, represent the deflection of any point of the wpper surface of the
beam. From what has already been said in regard to A, and, from the
general conditions of the problem, it is clear that this depends only on
the lengthening or shortening of the exterior fibres in the upper surface of
the beam.

The upper surface of the beam is here mentioned, although ¢ the lower
surface” might have been written just as well.

The rate :—g of the longitudinal displacement at any point, is due to the

intensity N, or Ny, if that point is in the exterior surface. Let w, be the

value of u for any point where N exists, then %’ = EN,. The coefficient of

elasticity Z, of course, represents the rate of lengthening or shortening of a
fibre at any point for each unit of ;. Now, if the beam be divided into
indefinitely thin rectangular portions by vertical planes parallel to the axis
of the beam, each portion may be supposed to be an actual rectangular beam
subjected to such a moment that the greatest intensity of direct stress is equal
to Ny at the given section. The sum of all these elementary moments for
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BURR, On the Theory of Flexure. 35

any section will be equal to the moment to which the original beam is sub-
jected’; and the sum 3P of all the external forces acting on all the elemen-
tary beams for the same sections, will be equal to the sum 3P for the original
beam at the same section. From this it follows that the deflections of differ-
ent points in the exterior surface have different values; also, that the deflec-
tion of any such point is precisely the same as that which a rectangular beam
would have if the circumstances of loading and length were the same in each
case, and if the depth of the given beam at the given point were equal to the
depth of the supposed rectangular beam; which conditions make XN, the
same for each.

These considerations show that the deflection of that point in the exterior
surface of a beam which is farthest from the neutral surface, is independent
of the form of cross section, and is the same as that of a rectangular beam
in the same circumstances; which results also from the “ common theory.”

In Figure 5, let 4 B be a portion of the line of intersection of a longitu-

dinal plane with the neutral surface, and C, the centre of curvature of 4 B.BD

is parallel to AC, then D = AB =1. Let AC=r, then will DE = %:_}o

From similarity of triangles, since 4¥ = BD = (# — 1), in general
duy
dz 1 _ BN/
Z—1" ¢ T —1"
This gives the value of the reciprocal of the radius of curvature in a
longitudinal plane at any point, and its general form and method of demon-
stration is precisely that used in the common theory. If there be written

N (1))

that approximate value of -:7 = Odl—x%, which was introduced by Navier, and
Ny = f (M), there will result
&y _ Ef (M) (
(1'.'1}2 —_— (ZI — 1) . . . . . . . . . .

The y in equation (70) is not the one heretofore used, but represents the
deflection due to the displacement ENy, and taken between the proper limits,
is equal to A, .

Before developing this matter of the deflection farther, it will be well,
for the reasons already given, to find equations for beams of rectangular
sections.
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36 Burr, On the Theory of Flexure. -

In order to make the general value of XV in equations (43) or (44) apply
to rectangular beams, it is only necessary to put y or y equal to unity and
write z for . Performing these simple operations, there will result

M
N_M,logz,logz B ()Y
The same substitutions made in equations (62) and (63) give
Ny (zlog 2 —zlog 2z —2 + 2)
T, = 501, Tog 2, SP,. . . ... . (72

T,=0, « « « « « v o v v e e (13
The result shown in equation (73) was to have been anticipated.

Equations (71) and (72) might have been established directly by a course
of reasoning precisely similar to that followed for a beam of any symmetrical
but solid section, in which case, in addition to equations (5), (6) and (7), there
would have been the one indicating that 73 = 0.

Let & be the breadth of the rectangular beam, then equation (45) will
reduce to the form

M=20 zf (z—1) log z. dz

1 2
:2blo“ [2 2, log z — 7% —zlogz—l—z]1

_25100 (4 ’100——z110g———— ) N (2

In equation (74) e is the base of the Naperian system of logarithms, and
N, is the greatest intensity of direct stress in the given section. The quan-

tity + M s the bending moment for each unit of breadth, and it is seen from

equation (74) that %2 M *is a constant quantity for all rectangular beams of the
same depth.

The sum of all the shearing stresses in the section ought to be equal to
SP. Hence, from the general expression followin«r equdt.ion (63),
. %N, , 3
40 () 1z = i Tog (4 1oc»—_z1 log 2t — —4-) sP.
But by equation (74) the second member of this equatlon is equal to — 3 P;
hence |

4bfj‘1;dz:zp. N )
It has already been stated that the assumption N; =0 is no cause of
error in the results for beams of rectangular section; it will next be shown
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BuURR, On the Theory of Flexure. 37

that such is the case. For rectangular beams the equations (2) reduce to the
following :

The three intensities &,, 7, and NV, are each functions of z and x only.
The ¢ principle of least resistance” determines &V, at once as given by equa-
tion (71); 7, at once follows in equation (72). The second of the above equa-
tions in connection with equation (72) gives

dN, _ dT; {(zl log 2, —2) — (2 logz—z)}d_f_lf’
21l[1

& dw log 2 de *

The quantity %if is the intensity of external vertical pressure at any

point; denote it by — p. Then
Ny=-+ _ Nop__ {(z1 log z, — 2,) z——l 2* log z + 3 z2} + f(x).
2M, log 2, ° 2 4

When z =2,, N, =—p, hence
N, =— 2—];1—\7‘]'—%;;1 { 5 zilog z,— l— 21— (2, log 2,—2,) 2z 4+ -;—zzlogz——z—zz}—p,

These values of the intensities N,, 7, and N, satisfy the two simulta-
neous equations of condition given above.

The assertion which immediately follows equation (63) may now be
proved without difficulty. Equation (62) may be put under the following form:
T, = 2%% { lol?z’ g = ]]::z(l%log " +1) (#log 2 —2—2zlogz+ z)} ;
or, by equation (41),

1‘2__;?;;{ N,(zlogz-—z-—zlogz—}—z)} . . . (76)
Now, the given beam is equivalent to an indefinite number of elementary
beams of the constant or variable width 2dy (corresponding to 0), and having
the variable depth 2 (#—1). Hence, the integral 4 f f T,dzdy may be put in
the following form :
Y 2 2P 4
4fj‘fl Tdedy = A p {fl log 2 ,(z logz — 2 —z log z—l—z)} 2dy. . . (717)
But from the equations immediately preceding equation (75) it is evident

that that part of the second member of equation (77) which follows the second
11
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38 Burr, On the Theory of Flexure.

% is the general expression for the moment to which any elementary rectan-
gular beam is subjected; hence the sum of all those moments denoted by S
must be equal to (). Hence

4f§'fjndydz:zp. N ()]
It is evident from the preceding that the expression, as a general one, —ZMI—D '
: 1

is the same for all the elementary beams and the original beam itself. M,
and 3P belong, of course, to the same section.

The subject of deflection can now be resumed. Let ¥; represent the
definite integral in equation (46), then from equation (41) there results

M;:1°gz'1°gi%n“~“"+”M:f(M). . (19

Equation (79) gives the value of f (M) in equation (70) for the general
case. As has already been shown, however, it may be only necessary to find
the function for a rectangular section in which 4 =1 and 2z, = z. 'To deter-
mine, therefore, that part of the deflection which is denoted by A,, find the
value of N/ from equation (79) and substitute it in equation (70), then, if Z,

log 2 log (31 — 3y’ + 1)
4Y, (2 —1)

be put for , that equation will give

y=A=EZ ((Miz. . . . . . . . (80)
This is precisely the expression given by the “common theory” if % (I
being the moment of inertia of the cross section) be written for Z,. The

ordinary values for y may therefore be used in equation (80} by inserting in

the formulze of the ¢ common theory” Z, for % .
If Ny is known for any point, then by equation (74)

% log 2/

1 Al 2 3
(Z 2" log — —2' log — _T)

" That which is represented by Z is evident from the equation. There will
then result as before

Ny = M=2ZzM. . . . (81

y:AI:EfoMdﬂ. N - 7)

The remarks following equation (80) apply also, as is evident, to equa-
tion (82).
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BURR, On the Theory of Flexure. 39

Equations (80) and (82) give that part of the deflection which is due to
the bodily moment of a portion of the beam and which is caused by the
longitudinal displacement . Another part is that due to the shearing stress
T, at the neutral surface, which causes layers, made by vertical planes normal
to the axis of the beam, to slip by each other to a greater or less extent.

It should be understood that when the ‘ deflection of the beam” or
“total deflection” is spoken of, the neutral surface is what is referred to.

That portion of the total deflection which is due to 73, or the displace-
ment (vertical) in any given section is given by equation (66) after making
A=—u. . Let M, be the value of M at the point from which the deflection is
measured, and w, represent this part of the total deflection, then
ng[,i[o logzll\lroog m log(gs—y+1)(zlogz—2z—zlogz+2). . (83)

In many cases M, belongs to the free end of a beam and is equal to zero.

Equation (83) might have been determined by making use of T,=gu, ¢
being the angle at any point made by the trace of a vertical longitudinal
plane on the neutral surface with a horizontal line. When equations (81)
and (83) refer to rectangular beams, 2’ becomes equal to z,. Since w and 7,
both take the value zero for z = 2’ it follows that the depth of the beam
remains the same after flexure as before for bodies of the kind of material
assumed. The lateral contractions and expansions of the material at any
point are just equal to the displacements due to "internal tangential
stresses.

There is one other source of deflection which, however, is evidently so
exceedingly small in reference to the two already mentioned, that an expres-
sion for it will not be sought, though the data given are sufficient for it.
This is the curved form assumed by the free-end section of the beam. If
that section remains plane and normal to the axis of the beam after flexure, as
has been assumed, then A, 4+ w, gives the total deflection. In reality, how-
ever, each point of the end section is displaced longitudinally in consequence
of the distribution of the reaction in the manner already given by the general
value of 7. This third part of the deflection is due to this displacement
being supposed uniformly distributed throughout the length of the beam.
Such an operation would produce deflection without causing any direct stress
of the kind &. Since, however, the reaction is probably never distributed in
the manner indicated (the end sections therefore remaining essentially plane)

w; =

This content downloaded from 199.242.209.35 on Mon, 13 Mar 2023 16:49:41 UTC
All use subject to https://about.jstor.org/terms



40 Burr, On the Theory of Flexure.

and since this part is, at best, very small compared with the others, it will be
disregarded.
The total deflection of the neutral surface will then be
A=Ar+w o o v oo (84
From equation (70), combined with equation (79) or (81), according to
the shape of the cross section of the beam, there result the following equa-

tions:
1 d%

1 d%
M= 7 ey (86)

It follows from these equations that all the results of the ‘“common
theory” can be used in the application of the formule of this paper by sim-

ply writing %— or le for I in those results. Consequently, the “ Theorem of
Three Moments” will retain precisely the same form as before, the change
above indicated being only necessary.

It is much to be regretted that the form of Z is so complicated that
in some cases the integration will probably be found to be impossible at
present. The integration, however, will have to be performed but once for
the same form of cross section. The quantity Z, for rectangular cross sec-
tions is of comparatively simple form, and, fortunately, by far of the greatest
importance.

The form assumed by a rectangular cross section, when the beam is sub-
jected to flexure, may easily be found in the usual manner, and requires no
special attention here.

Although not strictly a part of this discussion, yet it may be interesting
to notice under what conditions the assumed law for the intensity N, in the
“common theory,”.is a true one. A beam of rectangular cross section will
be considered. The notation will be the same as that used in the vicinity of
equations (29-32)

The equation of condition, which shows that the moment of resistance is
constant, is : .
f:‘N(z——a) dz=-constant=20. . . . . . . (87

Now, let it be required to find what law for N will make the volume
of revolution onN‘-’_dz a minimum, or give the following equation

27zf:‘N’2dz:minimum. I (o 12))
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Proceeding as before
S:fj 2aN? + aN (2 — a)) dz,
"V =2aN"+aN(z—a); Z= Tt alN;
Y—‘—— =4aN+a (z—a); Y'=0; &e.
Hence, from the calculus of variations,

4xN 4+ a (z—a) =0 .'.N:——af(i;a). e .. (89)

The quantity o' must be such that
N\
2 (- g =y,
Equation (89) shows that tke mtensztj N varies directly as the distance from
the neutral surface, which is the law assumed in the ‘“common theory’

flexure.

The law is, therefore, based on the erroneous equation (88); to be true,
av
N,
is a positive constant, showing that equation (89) gives a value that will make
V a minimum.

These last operations show that in all ordinary cases the logarithmic
curve will not be a very great departure from a straight line.

It has been assumed that the coefficients of elasticity for tension and
compression are equal to each other; it is easy, however, to determine the
position of the neutral surface when they are not, for beams with rectangular
cross sections. In Figure 6 let A BF( represent the portion of a beam sub-
jected to flexure, supposing the coefficients of elasticity to be equal to each
other; the neutral surface DK will be half way between the exterior surfaces
AB and GF. Now, let there be another beam GHCF whose neutral and
lower surfaces are coincident with those of the former, and let 7 represent
the upper surface of this second beam. The normal distance z, from DK to
HC will bear such a relation to z,, the normal distance from DK to GF, that
the stress of the kind &, developed in that part of the section z,, will be
numerically equal (but of opposite sign) to that developed in the part z,.
Let E represent the smallest coefficient of elasticity and FE, the largest.
From equation (71), making M = M, since any section may be taken, there

results in general
* Nz = 20 z
fll\dz_ fog % (zlog -+ 1) .
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42 BURR, On the Theory of Flexure.

On account of the above assumptions, EN on one side of the neutral
surface must be equal to E,N at the same distance from it on the other.
The equation, therefore, which shows that the algebraic total of all the normal
stresses in any section is equal to zero, is

-Zvo .zo \ — M) 2
E fog 2 (zo 10g7 4 1) =E, fog 7 (z1 log - -+ 1),
o E(zplogzg—z2,+1) =K, (z,logz,—2z +1). . . . . (90)

After substituting the values of E and E,, this transcendental equation
can easily be solved by trial. :

Since E, > FE, z, is of course smaller than z, in all cases.

This completes the strictly analytical part of the discussion, but there
remains to be shown that the results are perfectly general in their character.

The general equations (2) of equilibrium were established in a manner
entirely independent of the nature of the material of which the body is com-
posed. They are three linear differential relations between six functions of
the three independent variables x, y and z only, . e., the differentiations are
in respect to those variables only. The integrations will, therefore, be made
in respect to the same variables, and, in order that they may be made, there
must be given certain known conditions depending on the method of applica-
tion of the external forces and purely mechanical principles; these conditions
are evidently entirely independent of the nature of the material. The inte-
grations being made, the six intensities N and ‘7' will appear as functions of
x,y and z only.

Again, what are known as the equations of the ¢“tetrahedron of stress,”
which are simply equations (2) applied to the exterior surface of the body,
are the following:

N, cos p 4 T;cos g+ T, cos r = P cos =,

T; cos p + N, cos g + 1} cos r = P cos yx,

T, cos p 4 T cos g + N; cos 7 = P cos p,
in which p, ¢ and r are the angles made with the co-ordinate axes by a normal
to the exterior surface at the point where the intensity P of the external
force exists, and =, y and p are the angles made by the direction of P with
the same axes. Now, if the intensities ¥ and 7, as determined by equations
(2), are functions of the nature of the material, the intensity of the externally
applied force, P, is also dependent, always, on the nature of the material,
which is evidently absurd. From these considerations there is deduced the
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important principle, that all problems of elastic equilibrium are completely deter-
minate.

It is supposed, of course, that the body has assumed its position of equi-
librium ; this in all ordinary cases is essentially the same as the position of
no stress.

It follows immediately from the principle just enunciated that the results
of this discussion are applicable to all kinds of material, whether crystalline
or not, and under all degrees of stress, even up to the breaking point.

The assumption, at the beginning, of a homogeneous material with
deduced results entirely independent of the nature of the material (except
for deflections), emphasizes, as has been remarked, the proof of the principle
first stated.

The writer regrets exceedingly being so situated that he has no appa-
ratus at his command, otherwise the results of the preceding analysis would
have been put to the test of experiment.

Data from one of the many experiments of Kirkaldy will only, therefore,
be used in the moment of resistance of a rectangular beam. The bar broken
was of Swedish iron two inches square, placed on supports twenty-five inches
apart. The weight placed at the centre which broke the bar was 14,000
pounds. The breaking moment of the external forces at the middle section
was therefore 87,500 inch pounds. The ultimate tensile resistance of the same
iron was found to be about twenty-one tons (2000 pounds per ton). Conse-
quently in equation (74) N, = 21,5 =2 and z, = 2. These values substi-
tuted give

M = 61100 inch-pounds.

By the “common theory” the moment of resistance would have been
only about 56000 inch-pounds. Leaving out of consideration the effects of
lateral contraction and expansion, therefore, the apparent intensity of stress at

the point of rupture would be % X 21 = 30 tons or 60000 pounds.
It is seen from the preceding example that there is a wide discrepancy

between the result of experiment and of the formulz ; of which more will be
said farther on.
Figure 7 gives the results of the example graphically. Tan @ is the

tangent of the inclination of the curve to a vertical line at the extremity
N, 1

of the ordinate N. In general, as has already been shown, tan 8= lowz 7 °
> ~

The depth of the beam is two inches.
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z =1 inch N= 0 tan 3 = 30.3 B =288 T
z = 1.25 inches N= 676 tan 8 = 24.2 3 =87° 3%
z = 1.50 inches N =1229 tan 8 = 20.2 B =8i°1U
2z = 1.75 inches N =16.96 tan 3 = 17.3 B = 86° 4V
2z = 2.00 inches N = 21.00 tan 8 = 16.156 B = 86° 13.

The scale of the figure is full size for z and for %, one twentieth of an
inch for each ton, or twenty tons for each inch.

The values for 3 suppose one ton to the inch. They serve to show
the varying inclination of the curve, but of course are not found in the
figure. ‘

The straight and dotted line shows the law of the “common theory” for
the same beam, and illustrates what has been said before, that it is a mode-
rately close approximation to the actual state of stress in a bent beam.

In regard to the discrepancy between the value of M = 61100 inch-
pounds and the actual value determined by experiment, 87500 inch-pounds,
much may be written ; but the only way by which an explanation can possibly
be arrived at, is that of experiment.

In the first place equation (74) could not possibly give a result coincident
with that given by Kirkaldy because in it the effect of the lateral distortion
of the fibres on the value of &, is neglected. The support which the fibres
give each other in resisting lateral contraction or expansion is believed by
the writer to be the sole cause of the discrepancy between the result of the
formula and that of experiment. This support could not be given were the
fibres strained uniformly; in flexure, however, only those fibres equi-distant
from the neutral surface are strained the same. It is known that the ultimate
resistance of a bar of iron in tension is very much increased if, by any means,
lateral contraction can be prevented, and the same is evidently true for com-
pression.

The exact effect of retaining the original area of cross section can only be
determined by the aid of experiments, and the writer believes that this
branch of the resistance of materials offers a most fruitful and important
field of experimental research, of which the limits have yet scarcely been
passed.

The curve showing the intensity of stress at any point in the actual case
will then probably be found to be that given in Fig. 6, but the co-ordinates
representing N will have a considerable increase in length.
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To illustrate the effect of resisting the lateral distortion of the fibres the
following procedure may be employed. In equation (1), as is sometimes done,

dv dw 1 du du
suppose o = 0 =G Uy and 4 = 2u; then there results N, = 3u I If
. s dv __ dw du . .
there is no lateral contraction then i 0 and N, =4u 75 8iving an

increase of %— over the result obtained with lateral contraction.

It is not by any means an insignificant fact that the same increase in the
example taken would almost entirely make up the discrepancy observed.

Now in regard to the method by which IV was established in equation
(32) and those following. The principles there applied are perfectly general
not being restricted to any assumptions or kind of material; they may be
applied in absolutely all cases.

The restriction in the application lies in making & a function of z and y
only, for any given section, and in the present case, as has been shown, that
does not affect the generality of the results.

It is believed that the principle of least resistance has not heretofore been
applied in the discussion of this problem.

It is also believed that the determinateness of the problems of elastic
equilibrium has not before been so generally stated. Clebsch in his admira-
ble work on the theory of elasticity gives a demonstration of the principle,
which, however, appears to the writer to be somewhat unsatisfactory.
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Note on the First English Euclid.

By GroreE Bruck HarsTED, Tutor in Princeton College, late Fellow of
Jokms Hopkins University.

SoME interesting questions may now be answered authoritatively, since it
is discovered that Princeton possesses, and has possessed for nearly a cen-
tury, perhaps longer, the identical volume from which the first translation
of Euclid into English was made three hundred years ago by Sir Henry
Billingsley. ‘

The first translation of Euclid into Latin was made from the Arabic by
Adelard of Bath (1130). It is related that he travelled in the East and
Spain, where he obtained MSS. TFrom the fact that this version was spread
abroad on the Continent with a commentary by Campanus of Novara, it soon
began to be attributed to Campanus. It was published at Venice in 1482,
and was the first prinfed edition of Euclid. From this or its reprints (1491
and 1516) it has always been taught that the first version into our language
was made; see for example the Introduction to Pott’s Euclid, Cambridge,
1845, which states, “to Henry Billingsley, a citizen of London, is due the
merit of making the first English translation of Euclid’s Elements of Geome-
try. It was made chiefly from the Latin of Campanus, and was published
in 1570.” \ ‘

There was some dispute as to the extent to which Greek was studied in
England at that period, but De Morgan, by a comparison of the Greek of
Gregory’s Edition with the Latin of Adelard-Campanus and the English of
Billingsley, arrived at the belief, in 1837, that this Eunglish translation was
either made from the Greek or corrected by the Greek.

As the preface was written by the celebrated Dr. John Dee, De Morgan
supposed that perhaps he might have furnished the requisite knowledge of
Greek.

There seems to be a tendency to doubt Sir Henry Billingsley’s erudition,
for no reason that I can discover except that he was wealthy and became
Lord Mayor of London in 1591.

46
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But now for the new facts. The large folio volume above referred to,
in the Library at Princeton, contains first a copy of the first printed edition
of Euclid’s Elements in Greek, published at Basle in 1533 by John Hervagius,
edited by Simon Grynaeus. The text is that of Theon’s Revision, and was
for a century and three-quarters the only printed Greek text of all the books.
Theon was the President of the Neo-Platonic School at Alexandria at the
close of the 4th Century. IHe was the father of the celebrated Hypatia, who
succeeded him in the Presidency, and who was assassinated by the Christians
in 415.

Appended to this is a copy of the Commentary of Proclus on the First
Book of Euclid, printed also at the press of Hervagius in 15633. The editor
mentioned, Simon Grynaeus, is the man accused by Anthony Wood of steal-
ing rare MSS. from Oxford. Says Wood, . . . “he took some away, and
conveyed them with him beyond the seas, as in an epistle by him written to
John, son of Thomas More, he confesseth.”

Bound together with these works in Greek, the volume also contains the
two-fold Latin translation printed at Basle by Hervagius in 1558. One is
the Adelard-Campanus version, from the Arabic; the other is the first trans-
lation into Latin from the Greek, made by Zamberti from a MS. of Theon’s
Revision, and first published at Venice in 1505, twenty-eight years before the
appearance of the Editio princeps in Greek.

At the head of this second part of the volume is an address to the
reader by Philip Melancthon, dated ¢ Wittenbergze, mense Augusto, M. D.
XXXVIIL.”

Now, all this forms a collection exceedingly rare and valuable in itself;
but what gives to this volume its special archzeological interest is the fact that
it belonged to Billingsley, and was his equipment for the first English Euclid.
On the title-page is the autograph signature * Henricus Billingsley,” in a most
beautiful antique hand. Throughout the volume are very numerous correc-
tions, additions and marginal notes, all in Billingsley’s peculiar and beautiful
writing. I dare hazard that no Lord Mayor, since his time, has ever written
so charming a hand. By reading what he has done, it immediately appears
that though he had the Adelard-Campanus Latin before him, yet he gave his
special work to a careful comparison of Zamberti’s Translation with the
original Greek, and the corrections he has actually made sufficiently prove
his scholarship and render entirely unnecessary De Morgan’s suppositious aid
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48 HavsTED, Nofe on the First English Euclid.

from Dr. Dee, while, on the other hand, they establish the conclusion about
the translation to which De Morgan's sagacity had led him, that “It was
certainly made from the Greek, and not from any of the Arabico-Latin
versions.”

To the one sentence of comparison in proof of this published by De
Morgan, Billingsley’s autograph indications would enable me to add as many
as any one desired, but suffice it to say, that the definitions of the Eleventh
Book are alone entirely decisive of the matter.

PriNceToN, January 9, 1879.
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On the FPundamental Formulae of Dynanvics.

By J. W. GiBBs, New Haven, Conn.

Formation of a mew Indeterminate Formula of Motion by the Substitution of the
Variations of the Components of Acceleration for the Variations
of the Coordinates in the usual Formula.

The laws of motion are frequently expressed by an equation of the form
(1) S (X —mz) dx + (Y —my) 8y + (Z—mz) 8] = 0,
in which

m, denotes the mass of a particle of the system considered,
x, y, z its rectangular coordinates,
#, y, z the second differential coefficients of the coordinates with respect to
the time,
X, Y, Z the components of the forces acting on the particle,
dx, dy, 0z any arbitrary variations of the coordinates which are simultane-
ously possible, and
3 a summation with respect to all the particles of the system.

It is evident that we may substitute for dz, dy, dz any other expressions
which are capable of the same and only of the same sets of simultaneous
values.

Now if the nature of the system is such that certain functions 4, B, etec.
of the coordinates must be constant, or given functions of the time, we have

z(-—a +—a 4 4 5)—0

2) z(d3+ 3+d35)_0

——

These are the equations Qf conditz'on, to which the variations in the general
equation of motion (1) are subject. But if 4 is constant or a determined
function of the time, the same must be true of 4 and 4. Now

. d4 - d4 - dA -
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50 G1BBS, On the Fundamental Formulae of Dynamics.

and

i=3x (M2

+23) + 8,

uz

where H represents terms containing only the second differential coefficients
of A with respect to the coordinates, and the first differential coefficients of
the coordinates with respect to the time. Therefore, if we conceive of a varia-
tion affecting the accelerations of the particles at the time considered, but not

their positions or velocities, we have
. dA -~  dA -  dA -
0d =3 (S8 + @33/+-d;5z) =0,
and, in like manner,

dB

3) A
5B = 2(-5 +~—5 +—3 )_0

L ete.

Comparing these equations with (2), we see that when the accelerations
of the particles are regarded as subject to the variation denoted by 4, but not
their positions or velocities, the possible values of dz, 8, 8z are subject to pre-
cisely the same restrictions as the values of dx, Jy, 0z, when the positions of
the particles are regarded as variable. We may, therefore, write for the
general equation of motion '

(4) S[X —ma) do + (Y—my) 8y + (Z—mz) 82] =0,
regarding the positions and velocities of the particles as unaffected by the
variation denoted by ,—a condition which may be expressed by the equations
(5){ 5.?:0, By.:(), Bz.:(),
or =20, dy =0, 0z=20.
We have so far supposed that the conditions which restrict the possihle

motions of the systems may be expressed by equations between the coordinates
alone or the coordinates and the time. To extend the formula of motion to

cases in which the conditions are expressed by the characters << or >, we

may write
(6) z[(X—m;z%) S + (Y —my) &y + (Z —mz) 55] =o.

The conditions which determine the possible values of 8z, 8y, 8z will not,
in such cases, be entirely similar to those which determine the possible values
of dz, dy, 0z, when the coordinates are regarded as variable. Nevertheless,
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the laws of motion are correctly expressed by the formula (6), while the
formiila

) s [(X—mit) 8¢ + (Y—mj) by + (Z—m3) 3z]§0,

does not, as naturally interpreted, give so complete and accurate an expres-
sion of the laws of motion.

This may be illustrated by a simple example.

Let it be required to find the acceleration of a material point, which, at
a given instant, 1s moving with given velocity on the frictionless surface of a
body (which it cannot penetrate, but which it may leave), and is acted on by
given forces: For simplicity, we may suppose that the normal to the surface,
drawn outward from the moving point at the moment considered, is parallel
to the axis of X and in the positive dlrectlon The only restriction on the
values of dz, dy, 0z is that

dr = =
Formula (7) will therefore give
=X =X =2
m m m

The condition that the pomt shall not penetrate the body gives another
condition for the value of 2. If the point remains upon the surface, # must
have a certain value X, determined by the form of the surface and the velocity
of the point. If the value of & is less that this, the point must penetrate the
body. Therefore,
i Z N |

But this does not suffice to determine the acceleration of the point.

Let us now apply formula (6) to the same problem. Since # cannot be

less than N,

ifi=N, %20,

This is the only restriction on the value of z, for if 2 > XN, the value of dz is
entirely arbitrary. TFormula (6), therefore, requires that
=N, 22X,
m
but it #> N, &= %:
—that is, (since & cannot be less than ), that « shall be equal to the greater

of the quantities ¥ and %’ or to both, if they are equal,—and that
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. Y 1
Y= E 3 2= "7—; .

The values of x, 7, z are therefore entirely determined by this formula in

connection with the conditions afforded by the constraints of the system.*

The following considerations will show that what is true in this case is
also true in general, when the conditions to which the system is subject are
such that certain functions of the coordinates cannot exceed certain limits,
either constant or variable with the time. If certain values of 8.;, 8y, 8z (with
unvaried values of z, 7, 2, and z, y 2) are simultaneously possible at a given
instant, equal or proportional values with the same signs, must be possible for
dx, 8y, 0z immediately after the instant considered, and must satisfy formula
(1), and therefore (6), in connection with the values of , 9, 2, X, ¥, Z imme-
diately after that instant. The values of x, y, 2, thus determined, are of
course the very quantities which we wish to obtain, since the acceleration of
a point at a given instant does not denote anything different from its accelera-
tion immediately after that instant.

For an example of a somewhat different class of cases, we may suppose
that in a system, otherwise free, # cannot have a negative value. Such a con-
dition does not seem to affect the possible values of dz, as naturally inter-
preted in a dynamical problem. Yet, if we should regard the value of dx in
(7) as arbitrary, we should obtain

r=
which might be erroneous. But if we regard dz as expressing a velocity of
which the system, if at rest, would be capable, (which is not a natural signifi-

cation of the expression,) we should have dz = 0, which, with (7), gives
- > X
r=—=.
m
This is not incorrect, but it leaves the acceleration undetermined. If we
should regard dz as denoting such a variation of the velocity as is possible
for the system when it has its given velocity (this also is not a natural

* The failure of the formula (7) in this case is rather apparent than real; for, although the formula appa-

. X . .
rently allows to @, at the instant considered, a value exceeding both N and el does not allow this for any
interval, however short. For if z < N, the point will immediately leave the surface, and then the formula

requires that z = X .
m
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signification of the expression), formula (7) would give the correct value
of x éxcept when # = 0. In this case (which cannot be regarded as excep-

tional in a problem of this kind), we should have éz = 0, which will leave
undetermined, as before.

The application of formula (6), in problems of this kind, presents no
difficulty. From the condition

&= 0,
. a - >
we obtain, first, ife=0, 2=0,
then, ifa=0 and 5=0, o#=0,

which is the only limitation on the value of dx. With this condition, we

deduce from (6) that either

z=0, =0, and xi—{,

m
. X
or r=—.
, m

That is, if # =0, 2 has the greater of the values m)f and 0; otherwise, z — %X— .

In cases of this kind also, in which the function which cannot exceed a
certain value involves the velocities (with or without the coordinates), one
may easily convince himself that formula (6) is always valid, and always
sufficient to determine the accelerations with the aid of the conditions afforded
by the constraints of the system.

But instead of examining such cases in detail, we shall proceed to con-
sider the subject from a more general point of view.

Comparison of the New Formula with the Statical Principle of Virtual Velocities.—
Case of Discontinuous Changes of Velocity.

Formula (1) has so far served as a point of departure. The general
validity of this, the received form of the indeterminate equation of motion,
being assumed, it has been shown that formula (6) will be valid and suffi-
cient, even in cases in which both (1) and (7) fail. We now proceed to show
that the statical principle of wirtual velocities, when its real signification is
carefully considered, leads directly to formula (6), or to an analogous formula

for the determination of the discontinuous changes of velocity, when such
15
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54 G1BBS, On the Fundamental Formulae of Dynamics.

occur. This will be the case even if we start with the usual analytical expres-
sion of the principle

(8) S (Xov + Yoy + Z82) =0,

to which, at first sight, formula (6) appears less closely related than (7). For
the variations of the coordinates in this formula must be regarded as relating
to differences between the configuration which the system has at a certain
time, and which it will continue to have in case of equilibrium, and some
other configuration which the system might be supposed to have at some sub-
sequent time. These temporal relations are not indicated explicitly in the
notation, and should not be, since the statical problem does not involve the
time in any quantitative manner. But in a dynamical problem, in which we
take account of the time, it is hardly natural to use dz, dy, 0z in the same
sense. In any problem in which z, y, z are regarded as functions of the time,
dx, 8y, 0z are naturally understood to relate to differences between the con-
figuration which the system has at a certain time, and some other configura-
tion which it might (conceivably) have had at that time instead of that which
it actually had.

Now when we suppose a point to have a certain position, specified by
x, 9, 2, at a certain time, its position at that time is no longer a subject of
hypothesis or of question. It is its future positions which form the subject of
inquiry. Its position in the immediate future is naturally specified by

& + adt + % xdt® + ete., y -+ ydt—l— ydt® + ete., 2+ zdt + % zdf® + ete.,

and we may regard the variations of these expressions as corresponding to
the oz, dy, 0z of the statical problem. It is evidently sufficient to take account
of the first term of these expressions of which the variation is not zero. Now,
a, 9 2, as has already been said, are to be regarded as constant. 'With respect
to the terms containing #, 7, z, two cases are to be distinguished, according as
there is, or is not, a finite change of velocity at the instant considered.

Let us first consider the most important case, in which there is no discon-
tinuous change of velocity. In this case, #, 7, z are not to be regarded as
variable (by d), and the variations of the above expressions are represented by

1

- 1 .-
?Ba:dt, E—Bydt"’, ?Bzdﬁ,
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which are, therefore, to be substituted for dz, dy, dz in the general formula of
equilibrium (8) to adapt it to the conditions of a dynamical problem. By

this substitution (in which the common factor % dt* may of course be omit-

ted), and the addition of the terms expressing the reaction against accelera-
tion, we obtain formnula (6).

But if the circumstances are such that there is (or may be) a discontinuity
in the values of , g, z at the instant considered, it is necessary to distinguish
the values of these expressions before and after the abrupt change. For
this purpose, we may apply x, y, 2 to the omgmal values, and denote the
changed values by = + Ax, y+ Ay, z+ Az. The value of x at a time
very shortly subsequent to the instant considered, will be expressed by
2 + (z 4+ Ax) dt + ete., in which we may regard Az as subject to the varia-
tion denoted by 8. The variation of the expression is therefore SAz dt. In-
stead of —mx, which expresses the reaction against acceleration, we need in
the present case — Az to express the reaction against the abrupt change of
velocity. A reaction against such a change of velocity is, of course, to be
regarded as infinite in intensity in comparison with reactions due to accelera-
tion, and ordinary forces (such as cause acceleration) may be neglected in
comparison. If, however, we conceive of the system as acted on by impulsive
forces, (i. e. such as have no finite duration, but are capable of producing
finite changes of velocity, and are measured numerically by the discontinui-
ties of velocity which they produce in the unit of mass,) these forces should
be combined with the reactions due to the discontinuities of velocity in the
general formula which determines these discontinuities. If the impulsive
forces are specified by X, Y, Z, the formula will be

) [(X — mAz) $Az + (Y —mAy) Ay + (Z — mAz) aA'z] =y.

The reader will remark the strict analogy between this formula and (6),

which would perhaps be more clearly exhibited if we should write dg;, ‘Zg , ZZ
for &, 7, z in that formula.

But these formulae may be established in a much more direct manner.
For the formula (8), although for many purposes the most convenient expres-
sion of the principle of virtual velocities, is by no means the most convenient

for our present purpose. As the usual name of the principle implies, it holds

This content downloaded from
199.242.209.35 on Mon, 13 Mar 2023 16:49:58 UTC
All use subject to https://about.jstor.org/terms



56 G1BBs, On the Fundamental Formulae of Dynamics.

true of velocities as well as of displacements, and is perhaps more simple and
more evident when thus applied.*

If we wish to apply the principle, thus understood, to a moving system
so as to determine whether certain changes of velocity specified by Az, Ay, Az
are those which the system will really receive at a given instant, the veloci-
ties to be multiplied into the forces and reactions in the most simple appli-
cation of the principle are manifestly such as may be imagined to be com-
pounded with the assumed velocities, and are therefore properly specified by
SAz, 8Ag,:, 8Az. The formula (9) may therefore be regarded as the most direct
application of the principle of virtual velocities to discontinuous changes of
velocity in a moving system.

In the case of a system in which there are no discontinuous changes of
velocity, but which is subject to forces tending to produce accelerations, when
we wish to determine whether certain accelerations, specified by z, 7, z, are
such as the system will really receive, it is evidently necessary to consider
whether any possible variation of these accelerations is favored more than it
is opposed by the forces and rcactions of the system. The formula (7) ex-
presses a criterion of this kind in the most simple and direct manner. If we
regard a force as a tendency to increase a quantity expressed by z, the pro-
duct of the force by dx is the natural measure of the extent to which this
tendency is satisfied by an arbitrary variation of the accelerations. The prin-
ciple expressed by the formula may not be very accurately designated by the
words wirtual velocities, but it certainly does not differ from the principle of
virtual velocities (in the stricter sense of the term), more than this differs from
that of virtual displacements,—a difference so slight that the distinction of the
names is rarely insisted upon, and that it is often very difficult to tell which

* Even in Statics, the principle of virtual velocities, as distinguished from that of virtual displacements, has
a certain advantage in respect of its evidence. The demonstration of the principle in the first section of the
Mécanique Analytique, if velocities had been considered instead of displacements, would not have been exposed
to an objection, which has been expressed by M. Bertrand in the following words: ¢ On a objecté, avec raison,
a cette assertion de Lagrange I’example d’un point pesant en équilibre au sommet le plus élevé d’une courbe; il
est évident qu’un déplacement infiniment petit le ferait descendre, et, pourtant, ce déplacement ne se produit
pas.”  (Mécanique Analytique, troisiéme édition, tome 1, page 22, note de M. Bertrund.) The value of z (the
height of the point above a horizontal plane) can certainly be diminished by a displacement of the point, but
value of z is not affected by any velocity given to the point.

The real difficulty in the consideration of displacements is that they are only possible at a time subsequent
to that in which the system has the configuration to which the question of equilibrium relates. We may make
the interval of time infinitely short, but it will always be difficult, in the establishing of fundamental prineci-
ples, to treat a conception of this kind (relating to what is possible after an infinitesimal interval of time) with
‘the same rigor as the idea of velocities or accelerations, which, in the cases to which (9) and (6) respectively
relate, - we may regard as communicated immediately to the system.
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form of the principle is especially intended, even when the principle is enun-
ciated or discussed somewhat at length.

But, although the formulae (7) and (9) differ so little from the ordinary
formulae, they not only have a marked advantage in respect of precision and
aceuracy, but also may be more satisfactory to the mind, in that the changes
considered (to whick § relates), are not so violently opposed to all the possi-
bilities of the case as are those which are represented by the variations of the
coordinates.* Moreover, as we shall see, they naturally lead to various
important laws of motion.

Transformation of the New Formula.

Let us now consider some of the transformations of which our general
formula (7) is capable. If we separate the terms containing the masses of
the particles from those which contain the forces, we have

(10) S (Xox 4+ Y&y + Z82) —3 [é—mB(:z"?-l—f—}-%“‘)]éO,
or, if we write » for the acceleration of a particle,
(11) S (XoF + Yoy + Z82)— 83 (—12— mu2> =o.

If, instead of terms of the form X3z, or in addition to such terms, equa-
tion (1) had contained terms of the form Pdp, in which p denotes any quantity
determined by the configuration of the system, it is evident that these would
give terms of the form Pdp in (7), (10) and (11). For the considerations
which justified the substitution of 8z, 8y, 8z for dz, 8y, 8z in the usual formula

* It may have seemed to some readers ot the Mécanique Analytigue—a work of which the unity of method
is one of the most striking characteristics, and that to which its universally recognized artistic merit is in great
measure due—that the treatment of dynamical problems in that work is not entirely analogous to the treatment
of statical problems. The statical question, whether a system will remain in equilibrium in a given configura-
tion, is determined by Lagrange by considering all possible motions of the system and inquiring whether there
is any reason why the system should take any onc of them. A similar method in dynamics would be based
upon a comparison of a proposed motion with all other motions of which the system is capable without violating
its kinematical conditions. Instead of this, Lagrange virtually reduces the dynamical problem to a statical
one, and considers, not the possible variations of the proposed motion, but the motions which would be possible
if the system were at rest. This reduction of a given problem to a simpler one, which has already been solved,
is a method which has its advantages, but it is not the characteristic method of the Mécanique Analytique. That
which most distinguishes the plan of this treatise from the usual type is the direct appiication of the general
principle to each particular case.

The point is perhaps of small moment, and may be differently regarded by others, but it is mentioned here
because it was a feeling of this kind (whether justified or not) and the desire to express the formula of motion
by means of a maximum or minimum condition, in which the conditions under which the maximum or mini-
mum subsists should be such as the preblem naturally affords, (Gauss’s principle of least constraint being at the
time unknown to the present writer, and the conditions under which the minimum subsists in the principle of
least action being such that that is hardly satisfactory as a fundamental principle,) which led to the formulae
proposed in this paper.

16
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were in no respect dependent upon the fact that =, y, z denote rectangular
coordinates, but would apply equally to any other quantities which are deter-
mined by the configuration of the system.

Hence, if the moments of all the forces of the system are represented

by the sum $ (Pdp) ,
the general formula of motion may be written
(12) § (P3) — 3 (3 mad) =o.

If the forces admit of a force-function V, we have

SV—83 (-;—mug) éO,

or

(13) 3[V-—2 (—-mu)]-_<~0.

But if the forces are determined in any way whatever by the configura-
tion and velocities of the system, with or without the time, X, ¥, Z and P
will be unaffected by the variation denoted by J, and we may write the
formula of motion in the form

(14) 53 (Xir + Y5 + ZB-—% mar’) =o,
or
(15) s[5 —3 (5 me) ] =o.

If the forces are determined by the configuration alone, or the configura-
tion and the time, X =0, §¥ =0, §Z=0, §P =0, and the general formula
may be written

(16) S [ 53 (X + ¥y + Zi) 2(2mu)]—0
or
(17) s[5 8@F)—3 (5 ) | =0

The quantity affected by d in any one of the last five formulae has not
only a maximum value, but absolutely the greatest value consistent with the
constralnts of the system. This may be shown in reference to (15) by giving
to p, #, ¥, 2, contained exphcltly or lmphmtly in the expression affected by 9,
any possible finite increments p, #, 7, #, and subtracting the original value
of the expression from the value thus modified. Now,

SIP(p+P)] =[G m{@+ Y+ +G+2) |- D[ i)
= §(Pp)— 3 [n (5 + jy+39)] =3 [ 5 m @+ +#) |
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But since p/, 4/, ¥, 2 are proportional to and of the same sign with possible
values of 816, Sz, By , 8z, we have, by the general formula of motion,

$ (P =% [m @ 4y +20)] So.
The second member of the preceding equation is therefore negative. The
first member is therefore negative, which proves the proposition with respect
to (15). The demonstration is precisely the same with respect to (13) and
(14), which may be regarded as particular cases of (15).

To show the same with regard to (16) and (17), we have only to observe
that the quantities affected by § in these formulae differ from those affected
by the same symbol in (14) and (15) only by the terms

S (Xo+ Yy + Z2) and $(Pp),
which will not be affected by any change in the accelerations of the system.

When the forces are determined by the configuration (with or without
the time), the principle may be enunciated as follows: The accelerations in
the system are always such that the acceleration of the rate of work done by
the forces diminished by one-half the sum of the products of the masses of the
particles by the squares of their accelerations has the greatest possible value.

The formula (17), although in appearance less simple than (15), not only

is more easily enunciated in words, but has the advantage that the quantity
d

dt
which is not the case with § (Pp). The value of the latter expression depends
upon the manner in which we choose to represent the forces. For example,
if a material point is revolving in a circle under the influence of a central

§ (Pp) is entirely determined by the system with its forces and motions,

force, we may write either Xz 4- ¥y 4+ Zz or Rr for Pp, R and r denoting
respectively the force and radius vector. Now Xz + Yy 4 Zz is manifestly

unequal to Br. But Xz 4+ Yy + Zz is equal to Rr, and % (Xz + Yy + Zz)

is equal to % (Br).

It may not be without interest to see what shape our general formulae
will take in one of the most important cases of forces dependent upon the
velocities. If a body which can be treated as a point is moving in a medium
which presents a resistance expressed by any function of the velocity, the
terms due to that resistance in the general formula of motion may be expressed
in the form

Sfe Zitom Litom =:],
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where v denotes the velocity and gb (v) the resistance. But

2% dv .
——l— +— Pl

The terms due to the resistance reduce, therefore, to
d[¢ (v) ],

or, ) %f (v),
where f denotes the primitive of the function denoted by ¢.

Discontinuous Changes of Velocity.—Formula (9), which relates to discon-
tinuous changes of velocity, is capable of similar transformations. If we set

| W= Aa* 4 Ay + AZ,
the formula reduces to
. . S <

(18) 53 (Xaw+ YAy + Zaz — 5 mu?)= 0,
where X, Y, Z are to be regarded as constant. If $ (Pdp) represents the sum
of the moments of the impulsive forces, and we regard P as constant, we have

. <
(19) 5 [gs (PAp) —S (% mw2>] =o.
The expressions affected by & in these formulae have a greater value than

they would receive from any other changes of velocity consistent with the
constraints of the system.

Deduction of other Properties of Motion.

The principles which have been established furnish a convenient point of
departure for the demonstration of various properties of motion relating to
maximae and minima. We may obtain several such properties by considering
how the accelerations of a system, at a given instant, will be modified by
changes of the forces or of the constraints to which the system is subject.
Let us suppose that the forces X, ¥, Z of a system receive the increments
X', Y, Z', in consequence of which, and of certain additional constraints,
which do not produce any discontinuity i in the Ve]ocmes the components of
acceleration &, y, z receive the increments #, y, #. The expression

@) =[(X+X)@+ T+ V) G+ + 4+ 2)E+2)

—5m{@+ 2P+ G+ + @+ Z’)‘}]
will be the greatest possible for any values of &, 7, # consistent with the con-
straints. But this expression may be divided into three parts,
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@) S[X+X) i+ T+ 1) j+ Z+2)i—m@E+5+5)],

(22) S [Xo+ Yy + Zz —m (20 +yy + 22)],
and
(23) > [X’éé’ + Yy + 27— é— m (2?4 y° + 5’2)] )

The first part is evidently constant with reference to variations of %, ¥/, 2,
and may, therefore, be neglected. With respect to the second part, we observe
that by the general formula of motion we have

S [ X8z + Yoy + Z8z—m (xda + ydy + 202)] =0
for all values of 8z, 8y, 8z which are possible and reversible before the addi-
tion of the new constraints. But values proportional to &, #, #, and of the
same sign, are evidently consistent with the original constraints, and when
the components of acceleration are altered to & 4 y+7, 2+, variations
of these quantities proportional to and of the same sign as — &/, —#, — 2’ are
evidently consistent with the original constraints. Now, if these latter varia-
tions were not possible before the accelerations were modified by the addition
of the new forces and constraints, it must be that some constraint was then
operative which afterwards ceased to be so. The expression (22) will, there-
fore, be equal to zero, provided only that all the constraints which were ope-
rative before the addition of the new forces and constraints, remain operative
afterwards.® With this limitation, therefore, the expression (23) must have
the greatest value consistent with the constraints. This principle may be ex-
pressed without reference to rectangular coordinates. If we write « for the
relative acceleration due to the additional forces and constraints, we have

W= 2"+ o + 22,

and expression (23) reduces to
(24) h3 (X:iJ + Yy + Zz — —;— mu’z) .

If the sum of the mowments of the additional forces which are considered
is represented by $(Qdg), (the ¢ representing quantities determined by the
configuration of the system,) we have

S (Xw+ Yy+ Z2)=$ (Q) -

We may distinguish the values of %? immediately before and immediately

*As an illustration of the significance of this limitation, we may consider the condition afforded by the
impenetrability of two bodies in contact. Let us suppose that if subject only to the original forces and con-
straints they would continue in contact, but that, under the influence of the additional forces and constraints,
the contact will cease. The impenetrability of the bodies then ceases to be operative as a constraint. Such
cases form an exception to the principle which is to be established. But there are no exceptions when all the
original constraints are expressed by equations.

17
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after the application of the additional forces and constraints by the expres-
sions ¢, and ¢ + ¢. With this understanding, we have, by differentiation of
the preceding equation,
S[Xe+Yy+ 224X @+2)+ Y (g+9)+ 2 (24 2)]
=3[+ Qg+ DI;
whence it appears that 3 (X2’ 4 Y7y 4 Z'7) differs from $ (Qg) only by quan-
tities which are independent of the relative accelerations due to the additional
forces and restraints. It follows that these relative accelerations are such
as to make
" 1
(25) $(Qy)—= (—2— mu"")
a maximum.

It will be observed that the condition which determines these relative
accelerations is of precisely the same form as that which determines absolute
accelerations.

An important case is that in which new constraints are added but no new
forces. The relative accelerations are determined in this case by the condition

that X <? mu”) is a minimum. In any case of motion, in which finite forces

do not act at points, lines or surfaces, we may first calculate the accelerations
which would be produced if there were no constraints, and then determine

the relative accelerations due to the constraints by the condition that S (% mu’2)
is a minimum. This is Gauss’s principle of least constraint.®
Again, in any case of motion, we may suppose » to denote the accelera-
tion which would be produced by the constraints alone, and « the relative
acceleration produced by the forces; we then have
S[m (@2 + yy + 22)] =0,
whence, if we write «” for the resultant or actual acceleration,

> (% muz) +3 (% mu’z) =3 (% mu”") .

Moreover, differentiating (25), we obtain
$ (Qd¢) — 3 [m (¥d2 + ydy + 292)] =0,
*This principle may be derived very directly from the general formula (6), or vice versa, for = (% mu’z)

(5 {G-2) (- 2+ (=2)'},

the variation of which, with the sign changed, is identical with the first member of (6).

may be put in the form
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whenge, since 8¢, 87/, 8, 82 may have values proportional to ¢, &, 7/, 2,

s @) =2 (4 mar) .
These relations are similar to those which exist with respect to vis viva and
impulsive forces.

Particular Equations of Motion.

From the general formula (12), we may easily obtain particular equations
which will express the laws of motion in a very general form.

Let do, , dw,, etec., be infinitesimals (not necessarily complete differentials)
the values of which are independent, and by means of which we can perfectly

define any infinitesimal change in the configuration of the system ; and let
__do, . da)2
— dt’
where do, , do, are to be determined by the change in the configuration in the

interval of time d¢; and let

ete.,

do - dow.
0 = Zfl y @y = dt2 , ete.
Also let U=s (5 mu?)

It is evident that U can be expressed in terms of Oy (,32, ete., oy, o, ete.,
and the quantities which express the configuration of the system, and that
(since § is used to denote a variation which does not affect the configuration

or the velocities), SU — i{f Sir, + o, 8(,)2 + ete.

Moreover, since the quantltles p in the general formula are entirely deter-
mined by the configuration of the system

. dp .
r= do, 1—|———w2+etc,
where %— denotes the ratio of simultaneous values of dp and do,, when do,
1
etc., are equal to zero, and p , ete., are to be interpreted on the same prin-
ciple. Multiplying by P, and taking the sum with respect to the several
forces, we have ) . .
(Pj’) = Qoy, + Quo, + ete.,
/)

where Q=8 (P d , Q,=8 (P do.) ! ete.

If we differentiate with respect to ¢, and take the variation denoted by 4,

we obtain . . .
S (Pdp) = Q,00; + Qyd0, + ete.
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The general formula (12) is thus reduced to the form

dUN\ - dU\ - >
(26) (Qi_ —&a 3(,\)1 -+ (Qg_ (1—(02) 86)2 + ete. = 0.
If the forces have a potential V, we may write
dUN dv
5 _ :
(.47) (0.1 d_(.l)l 8&01 + de d(l)z) 50)2 + etc. )

where ((I](—If denotes the ratio of dV and do, when do,, ete., have the value zero,
1

and the analogous expressions are to be interpreted on the same principle.
If the variations do,, dw,, etc., are capable both of positive and of nega-
tive values, we must have

(28) dU dU

('I—C'D‘l' — Ql’ = Qz, etC.,
or,

i

dU _ dV dU 4V
(29) do. = do doy = doy ete.

To illustrate the use of these equations in a case in which do,, do,, etc.,
are not exact differentials, we may apply them to the problem of the rotation
of a rigid body of which one point is fixed. If do,, dw,, do; denote infinitesi-
mal rotations about the principal axes which pass through the fixed point,
Q,, Q,,.Q, will denote the moments of the impressed forces about these axes,
and the value of U will be given by the formula

=(a+ b+ o) (6} + o} + 0})* — (o} + o} + f) (a0} + b6} + ca})
+ 2 (b—¢) 0000, + 2 (¢— @) 50,0, + 2 (@ — b) 0,005
+ (b+¢) ot + (¢ + a) o} + (2 + b) o,
where a, b, and ¢ are constants, @ + b, b + ¢, ¢ + a being the moments of

inertia about the three axes. Hence,
dU .. . dU - .
&= (b—¢) ww; + (b + ¢) oy, B = (¢ — @) w0, + (¢ + @) o,
dU _
din = (a—b/w1w2+ (a + ) os;

and the equations of motion are
(¢ —b) wpiry + £,

W =

c+ b !
 (a—c) v, + 2,
Wy = L
a4+ ¢
IS __(b—a) agw, + !23
8 b+ a
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56. ErpMANN, BENNO.
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ficiency of the present statement of the Law of the Dissipation of Energy,
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66. Munro, C. J.
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II. Nature, vol. XV, No. 391. April 26, 1877, p. 547.
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67. Youna, G. P.

*The Relation which can be proved to subsist between the Area of a
Plane Triangle and the Sum of the Angles, on the Hypothesis that Euclid’s
12th Axiom is False. Read before the Canadian Institute, 25th February,
1860. Published in the Canadian Journal of Industry, Science and Art.
New Series, vol. V, 1860, pp. 341-356. “I propose to prove in the present
paper, that, if Euclid’s 12th Axiom be supposed to fail in any case, a relation
subsists between the area of a plane triangle and the sum of the angles. Call
the area 4, and the sum of the angles s; a right angle being taken as the
unit of measure. Then 4 = % (2—s); £ being a constant finite quantity,
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HALsTED, Bibliography of Hyper-Space and Non-Euclidean Geometry. 69

been written or spoken on the subject. Thus the name of Prof. G. P. Young
must be added to those of Lobatchewsky and Bolyai as an independent dis-
coverer of the possibility of a pseudo-spherical geometry. The proof, which
is in the style of Euclid, is thoroughly elementary, even more so perhaps than
Bolyai’s, and, like his, is applied to but two of the three geometries of sur-
faces of constant curvature; the assumption of Euclid's Sixth Postulate in
the very first proposition, shutting out spherical geometry. Omitting this
proposition, the proof is easily extended to pan-geometry. It is worthy of
notice that the proof begins with the very proposition on which Legendre
attempted, in the twelfth edition of his Eléments de Géométrie, to found a
demonstration of the theory of parallels.

68. Tarr, P. G.

I. Mentions Hyper-Space in his Address as Pres. of Math. Sect. of Brit.

Assoc. at Edinburgh. DBr. Asso. Rep., 1871, p: 3. ,
- II. Recent Advances in Physical Science. Second edition. Introduc.,

pp. 5-6. London, 1876.
III. Review of Zollner. Nature, March 28, 1878, pp. 420-422.

69. ENGEL, G.
I. Der Idee des Raumes und der Raume. Berlin, 1868.

70. LieBmMANN, O.
I. Zur Analysis der Wirklichkeit. ~Strassburg. 8°. VI, 619 pp. 1876.

71. GEISER.
I. Sopra una quistione geometrica di massimo e suo estensione ad uno
spazio di » dimensioni. Milano, Inst. Lomb. Rendiconti I, 1868, pp. 778-

783.
72. FLrury, H.

I. La Géométrie affranchie du Postulatum d’'Euclide. Paris, 1869. A
sad paradoxer, worthy of De Morgan’s Budget.

73. Lav~p, J. P. N.
I. Kant’s Space and Modern Mathematics. Mind. IL., No. 5, Jan., 1877,
pp. 38-46.

19
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70  HaxstED, Bibliography of Hyper-Space and Non-Euclidean Geometry.

II. Critical Notice of Erdmann’s ¢ Die Axiome der Geometrie.” Mind.
ITI, 1878, pp. 551-555.
74. HorrmaNnNw, J. J. G.
I. Das elfte Axiom der Elemente des Euclides. Halle, 1859.

75. DELBOEUF, J.

*I. Prolégomenes philosophiques de la Géométrie et solutions des postu-
lats. Liége, 1860. An attempt to found the theory of parallels on the homo-
geneity of space; see Preface, pp. vi and vii. Homogeneity, as defined in the
preface and as usually understood, is found to be insufficient (see pp. 144 and
145); in fact by homogeneous M. Delboeuf means both homogeneous and
homaloid. He is thus really at one with the new geometry. See also C.,
pp. 75-84.

76. RopweLL, G. F.

*I. On Space of Four Dimensions. Nature, vol. VIII, pp. 8 and 9,
1873. An attempt to reaiize (a) a condition of life in space of two dimen-
sions, (8) by the addition of the element of diverse motions to our already
known space, the condition of life in space of four dimensions.

77. Wrrre, H. TH.
*1. Parallentheorie. Wolfenbiittel, 1867.

78. Bou~EL, F.
*I. Sur les Definitions géométriques. Paris, 1871.

79. KRAUSE, A.

*I. Kant und Helmholtz iiber den Ursprung und die Bedeutung der
Raumanschauung und der geometrischen Axiome. Schauenburg, 1878.

80. SCHLEGEL, V.

I. Ueber neuere geometrische Methoden und ihre Verwandtschaft mit
der Grassmann’schen Ausdehnungslehre. Zeitsch, fiir Math. u. Phys., XXI1V,
pp- 83-95. Leipzig, 1879.
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Calculation of the Minimum N. G. F. of the Binary
Seventhic.

By Proressor CAYLEY, Cambridge, England.

For the binary seventhic (a, ... Jx, »)" the number of the asyzygetic
covariants (a, ... )%, y)*, or say of the degorder (f.u) is given as the coeffi-
cient of a’2* in the function :

1—2—2
l—a2.1—a2’.1—az®1l—azx.l—azx~'.1—azx=%1—ar=5%1—azx~7
developed in ascending powers of a. See my Ninth Memoir on Quantics,

Phil. Trans., t. CLXI (1871), pp. 17-50.

This function is in fact
1 1
— [/ — o
=A@ — 54 (w)

. . . 1 1
where, developing in ascending powers of @, the second term — = A (»97)

contains only negative powers of #, and it may consequently be disregarded :
the number of asyzygetic covariants of the degorder (f.x) is thus equal to
the coefficient of a’2* in the function 4 (), which function is for this reason
called the Numerical Generating Function (N. G. F.) of the binary seventhic;
and the function 4 (x) expressed as a fraction in its least terms is said to be
the minimum N. G. F. ‘

According to a theorem of Professor Sylvester’s (Proc. Royal Soc. t.
XXVIII, 1878, pp. 11-13), this minimum N. G. F. is of the form

L+ aZi+ &2y ..+ a¥Z
l—az.l1—az’1—az’. 1—a2’.1—a* 1—a%1—d%1—a"1—a*’
where Z,, Z,, ... Z; are rational and integral functions of x of degrees not
exceeding 14 ; and where, as will presently be seen, there is a symmetry in
regard to the terms Z,, Z,; Z,, Z;; &c., equidistant from the middle term
Zys, such that the terms Z,, ... Z;; being known, the remaining terms Z,,, . .. Z
can be at once written down.

Using only the foregoing properties, I obtained for the N. G. F. an ex-
pression which I communicated to Professor Sylvester, and which is pub-
lished, Comptes Rendus, t. LXXXVII, 1878, p. 505, but with an erroneous
value for the coefficient of &’ and for that of the corresponding term ao®*
The correct value is

*The existence of these errors was pointed out to me by Professor Sylvester in a letter dated 18th Novem-
ber, 1878. '
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72 CAYLEY, Calculation of the Minimum N. G. F. of the Binary Seventhic.

Numerator of Minimum N. G. F. is =
1
+a (—x—2°—2°)
+a* (2 + 2t + 25 + a® + J’.w)
4@ (—a"—a — " — 2
+at (20 + a® + ™)
+ & (¢ + 22° — a2’ — a")
+at (—1+ 20 — ot — o — 2 + a'?)
+d (4x + 2® 4+ 32° —2° + 2")
+d (2—a2*—32°— 32 — 2" — &)
+ @& (x4 32® + &% — 2" + 22° + 22%)
+ a" (— 1 + 42° — 2® — 2% — 22" — ")
+ a" (bx + 32° 4 22" — 2" — 22° — 2™ 4 2®%)
+ a®? (5 + a* — 4a® — 62® — 42" — 2 + 22")
+ a® (x — 42° — 42" — 2° + 2" + 4a®)
+ a* (2 4+ 5a® + a* + 2° — 22° + 32 — o)
+ a® (3r —a® — a® — 72" — 52’ — 2! — 2"®)
+ a" (6 + 32* 4 3a* — 4a° — 32® — 2" + ba™)
+ a" (— & — 22° — 92° — 82" — 4a° — 32" + 42)
+ a® (2 4 62* 4 a* + 2a° + 24° 4 2™ + 62" 4 22M)
+ " (4o — 32° — 44" — 82" — 92° — 22" — &)
+ a® (5 — 2® — 3a® — 42® + 32" 4 32 - 62)
+ o (—x—a*— 52— Ta" — 2’ — a" 4 327)
+ a® (—1 4 32— 22* + 2° + 2" + 52 + 22)
+ a® (4x + 2* — 2® — 42" — 42° + 2®)
+ @ (2 — a® — 4a* — 62° — 42° + 2 + H2)
+ ¥ (x — a® — 22" — 2" + 22° + 32" 4 52°)
+ ® (— 1 — 2a* — 22° — 2® + 42" — &™)
+ o (22 + 24° — 2" + 2° + 32" + 2°)
+ a® (— 2 — a* — 32° — 32 — 2" 4 22")
4 a® (xs_ 2+ 32° + 2 + 4;76‘13)
+ aSO (xZ_ x4_ xﬁ . xlO _|_ 2x12 _ xl4)
+ ot (_ 2 — 2 4 2aM xw)
+ a® (1 428 4 QxIO)
td® (—a— 2P —a®—a)
_I_a34 (.ZA + xG + 2«278 + x1o + le)
+ o® (_ 20—t — wlS)
4@, gt
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CaYLEY, Calculation of the Minimum N. G. I. of the Binary Seventhic. 73

Denominator (as mentioned before) is
=l—ax.1—ar®*.1—ar’. 1—ar".1—0a" 1—a"1—0a’ 1—a" 1—a".
The method of calculation is as follows: write for a moment
¢ (@, x) = . 1—a”
l1—ad.1—az®.1—az®1—av.l—az~"1—ar % 1—az= %1 —az™"’
then ¢ (e, «) developed in ascending' powers of a, and rejecting from the
result all negative powers of z, is
_ Zy+aZy + ... a7
T l—az.l—ar*.1—ar’.1—a2’.1—a' 1—a%1—a%1—a".1—a"
developed in like manner in ascending powers of «; for the determination of
the Z’s up to Z; we require only the development of ¢ (a, ) up to ¢**; and,
assuming that each Z is at most of the degree 14 in x, we require the coeffi-
cients of the different powers of « in ¢ (¢, ) only up to #": assuming
then that ¢ (a, ) developed in ascending powers of a, up to «®*, rejecting all
negative powers of x, and all positive powers greater than a2, is

:Xo“l—aXl“l—...‘{"als 18 -«

We have
Zy+aZy ...+ a7
18 _ 0 1 18
Xo+aki...4+a"Xy = l—az.l—uz’.1—aa®.1 —ad’.1 —at.1—ab1—at1—a1—a?’
or say

ZytaZi+...a%Zg=1—a*.1—a’*. 1—a*. 1— a". 1—a®.

l—ar.1—ar’. 1—as®. 1—ax’. (X, + X, . . . + a"®Xy);
viz: developing here the right hand side as far as ¢, but in each term reject-
ing the powers of 2 above «, the coefficients of the several powers «’, o, ... a'"
give the required values Z,, Z,,...Z,;. We require, therefore, only to
know the values of these functions X,, X, ... Xj. '

To make a break in the calculation, it is convenient to write
l—ar.1—aer®.1—ar’. 1—ar” (X, +aX, ...+ a®Xy)=Yo+aY, ... +a®Yy;
putting then

l—ar.1—as®. 1—a2®. 1— as’ = 1—ap + o’¢— a’r,

where (up to ') .

p=x+a2*+ 2"+ a2’

q = at+ 25 + 2a° + 2 + 2

r:x"—l—x“—l—xw,
we have
Vit a¥it @ T, 4 a* Y= 1—ap+ dg— )Xo+ aXi+ X, .. .+ a"X,),
and the values of Y, Y;,... Y then are '

20
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74 CaYLEY, Calculation of the Minimum N. G. F. of the Binary Seventhic.

Y, Y, Y, Y, . . .. Yy
=X, X, X, X, Xis
—pX, —pXi —pd, —pXy

+q¢X, 49X, + ¢ X5

—rX, —rX;

the values being taken to 2 only, and we then have
LyfaZi+-a’Z, . +aZy=1—0a"1—ad’. 1—a’.1—a". 1—a®* (Y, +a¥;..+a"®T})
viz: the values of Z,, Z,,...Z; are

Z, A Z, yA Zy Zs Zs Z; Zy - Z,
= Y, Y Y. Y Y, Y, Y, e e Y,

-Y, —-Y. =Y, —-Y, =Y, Y
—-Y, —-Y, =Y, —YX
—-Y, Y

Zy Zy Zy, Zyg Ziy Zis Ziyg Zy Zss

= Y, Y, Y Y, Yy Y5 Y Yy, Y
—Ks —'E “‘Ifs —‘Iff) ""Ko _Kl "‘le —Kg "'K4
—K —E _Ifs _177 _Ifs “‘Ifg _Ko _1711 _—Ym
-Y, =Y, =Y, =Y, —Y, —Y, —Y, —Y, —Y,

+2Y, +2Y, 4+2Y, +2Y, +27,
+2Y, +2Y, +27,
+ X,.

The rule of symmetry, before referred to,is that the coefficient Zigs_, of
a® 7 i3 obtained from the coefficient Z, of a? by changing each power a7 1nt0
= 9 the coefficients being unaltered ; in particular Z;, the coefficient of a'®,
must remain unaltered when each power 27is changed into 2'*~7; and the
verification thus obtained of the value

Zyy =2+ 62 + a* + 22° 4 22° 4 20 | 622} 22

is in fact almost a complete verification of the whole work. Some other veri-

fications, which present themselves in the course of the work, will be referred

to further on. A

We have, therefore, to calculate the coefficients X;, X,, ... Xy; the
function ¢ (@, #) regarded as a function of ¢ is at once decomposed into sim-
ple fractions ; viz: we have

¢ (a, ) =

1—a—2
l—a2’.1—az*.1—a2’.1—azx.l—ax~'.1—az=3. 1—az~>%. 1 —aqz—"'
_ % 1
T l—2t1—2%1—2f. 1 —a". 1 —2%.1—a% 1—aa
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2" 1
Tl 12 1. l—a. 1—a". 1 —2® 1—a’
z* 1
+1—:c2.(1—x‘)2.1—w6.1—~x8.1—-a:‘° 1—ax?
' 2 1
-_l—xz.(1——:1:‘)2.(1—;1:“)2.l—ar;8 1-—ax
' 1
+ ) 2 6\2 1 _ 8 —1
1—2% (1—22 (1 -2 1—2" 1—ax
xt 1
1—a®(1—aY.1—2a%1—2a%1—2" 1—aa?®
+ 1 1
1—221—a'1—2%1—2%1—2"1—2a% 1—ax?
x~? 1

T l—at1l—af 1 -2 1—2a"1—a%1—2* 1—az 7"

75

In order to obtain the expansion of ¢ (g, #) in the assumed form of an
expansion in ascending powers of @, we must of course expand the simple

fractions %, &c. in ascending powers of a, but it requires a little consid-
1 —az!

eration to see that we must also expand the z-coefficients of these simple
fractions in ascending powers of x. For instance, as regards the term inde-
pendent of @, here developing the several coefficients as far as 2%, the last five

terms give (see post) —

+ xlO + x12 + 3x14 + 5x16 _I_ 9x18
— at— 25— 3a° — 42— 82”—11a™ — 182" — 242"
14 2 -+ 22 4 3a° 4 5% + 72" + 112" + 142" + 202" + 262

— a2 — 2t — 2t — 2% — 208 — 420 — 422 — 62— T — 102

18

=—ua 241 O 0 0 0 0 0 0 0 0
viz: the sum is = 1 — 2~ 2% as it should be.*

The expansion is required only as far as 2': the first four terms are

therefore to be disregarded, and, writing for shortness

1
k= 1—2% (1 —a*)? (1 —af)? 1 —ab
1
F= 1—2%(1—a'Y1—2a%1—2a%1—a®
G — 1
T 1l—2t1—2t1—2%1—2a%1—2"%1—2"

1

H= 1—atl—af1l—a%1—a2%1—g%1—a"’
K ol O G x*H
we have ¢ (2, 2) = l—az~' 1 —az? + 1—ar=% 1—ax"’

*To give the last degree of perfection to the beautiful method of Professor Cayley it would seem desirable
that a proof should be given of the principle illustrated by the example in the text, and the nature of the

mischief resulting from its neglect clearly pointed out.—EDSs.
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76 CAYLEY, Calculation of the Minimum N. G. I. of the Binary Seventhic.

which is = "EQ+4art4ad2?+..)

— a*F(l4ax>+ada®+..))

-+ G(1+ax"5+ax“‘°—[— )

— 2 *H(Ql4ax "+ da "4 .. ),
where the several series are to be continued up to als, and, after substi-
tuting for E, F, &, H their expansions in ascending powers of x, we are to
reject negative powers of , and also powers higher than 2'. The functions
E, F, G, H contain each of them only even powers of 2, and it is easy to see
that we require the expansions up to 2%, 2%, 2’ and &' respectively. For
the sake of a verification, I in fact calculated E, I'up to 2% and G, H up. to
2, viz: we have (1—2°) £= (1 —2a") F, from the coefficients of £ we have
those of (1—2a®) E, and in the process of calculating I we have at the last
step but one the coefficients of (1 — ") I, the agreement of the two sets
being the verification ; similarly, (1 —2*) G = (1 — ™) H gives a verification.

1

1—z.(l—2)P(l—a).1—a’

The process for the caleculation of E,= is as

follows :
Ind. z

0O 2 4 6 8 10 12 14 16 18 20 22

l—2)—'|1 1 1 1 1 1 1 1 1 1 1 1
1 1 2 2 3 3 4 4 5 5

(7]
(=2}
(=2}

l—as)'|1 1 2 2 3 3 4 4 5
1 1 3 3 6 6 10 10 15 15

l=—2H*/1 1 3 3 6 6 10 10 15 15 21 21
1 1 3 4 7 9 14 17 24

A—a-t|1 1 3 4 7 9 14 17 24 29 38 45
1 1 3 5 8 12 19 25 36

l—2Hh*11 1 3 5 8 12 19 25 36 48 63 81

=@1—2»*11 1 3 &6 9 13 22 30 45 61 85 111
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the alternate lines giving the developments of the functions (1—a*)~*,
I—2a)""(Ll—ay" " 1—2a”)""(1—a")"?% ..., which are the products of the
a-functions down to any particular line. And in like manner we have the
expansions of the other functions F, &, H respectively. I give first the expan-
sions of E, F, G, I; next the calculation of the X’s; then the calculation
of the ¥’s: and from.these the Z’s up to Zj, or coefficients of the powers
&, @', ...a®in the numerator of the N. G. F. are at once found; and the
coefficients of the remaining powers ¢, ... a* are then deduced, as already
mentioned.

Writing in the formula 2 = 0, we have, for the numerator of the N. G. F.
of the invariants, the expression

1 —d® + 268 — @ + 5a" + 20" -+ 6a'° 4~ 2 - 5a® — a2 4 2a% — a® 4 o,

agreeing with a result in my second Memoir on Quantics, Phil. Trans., t.
CXLVI, (1856), p. 117; this, then, was a known result, and it affords a veri-
fication, not only of the terins in 4° but also of those in 2. Thus, in calcu-
lating the foregoing expression of the numerator, we obtain Z, = (2a*4 2°4- ),
viz: the term is o' (22* 4 2* 4+ 2™), and we thence have the corresponding
term o” (1 + 2° + 22'), which, when & = 0, becomes = ¥, a term of the
numerator for the invariants: and the term 12" of Z, is thus verified, viz:
so soon as, in the calculation, we arrive at this term, we know that it is
right, and the calculation up to this point is, to a considerable extent, verified.
And similarly, in continuing the calculation, we arrive at other terms which
are verified in the like manner.

Exransions or THE Funcrions E, F, G, H.

d— 'z ¢ o |™M p g ¢ I
0 1 1 1 1 | 16 4 36 2 6

2 1 1 1 0 | 18 61 47 26 7

4 3 3 2 1| 2 8 6 35 10

6 5 4 3 1 | 22 111 84 44 1L

8 9 8 5 2 | o 113 58 16
10 13 11 7 2 | 2 41 71 17
12 2 18 11 4 | 28 183 90 93
14 30 24 14 4 | 30 225 110 26

21
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78  CaYLEY, Calculation of the Minimum N. G. F. of the Binary Seventhic.

Ind.

x
32
34
36
38
40
42
44
46
48
50
52
654
56
58
60
62

64

66
68

F G " Ind. G g | g
284 136 33 70 2172 419 108 2265
344 163 37 72 2432 472 110 2426
425 199 47 74 2702 515 112 2623
508 235 52 76 3009 576 114 2807
617 282 64 78 3331 629 116 3026
729 331 72 80 3692 699 118 3232
872 391 86 82 4070 760 120 3479
1020 454 96 84 4494 843 122 3708
1205 = 532 115 86 4935 913 124 3981
1397 612 127 88 5427 1007 126 4240
1632 709 149 90 5942 1091 128 4541
1877 811 166 92 6510 1197 130 4828
2172 931 192 94 7104 1293 132 5164
2480 10567 212 96 7760 1416 134 5481
2846 1206 245 98 8442 1525 136 5850
3228 1360 269 100 9192 1663 138 6204
3677 1540 307 102 9975 1790 140 6609
1729 338 104 10829 1945 142 6998
1945 382 106 2088
CALCULATION OF THE X's.
Ind. x even or odd according as suffix X is even or odd.
1 45 67 89 1011 1213 14
1 1 3
—1 —1 —3 —4 — 8 —11
1 2 3 5 7 11 14
—1 —2 —2 —4 —14 —6
X, = 0 0 0 0 0 0
: 1 1 3
—3 —4 —8 —11 —18
3 7 11 14 20 26
-2 —4 —6 —7 —10 —11
X, = 0 +1 0 0 0
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0, 2, 4z 6. 84 10,4 124 14
1 1 3 5
-1 ~3 —4 —8 —11 —18 —2¢4 —36
7 11 14 20 26 35 44 58
—6 -7  —10 -1l —16 —17 —23 —26
X, = 0 +1 0 +1 0 +1 0 +1
1 1 3 5
—4 —8 —11 —18 —24 —36 —47
20 26 35 44 58 71 90
—16 —17 —923  —92 —33  —37 —47
X, = 0 +1 +1 +1 +2 41 +1
1 1 3 5 9
—8 11 —18 —24 —36 —47 —066 —84
35 44 58 71 90 110 136 163
—2  —33 —37  —47 —52 —6+ —72  —86
X, = 1 0 +3 +1 +3 +2 +3 42
1 1 3 5 9
—18 —24 —36 —47 —66 —84 —113
71 90 110 136 163 199 235
—52 —64 —72 —86 —96 —115 —127
X, = 1 + 2 +3 + 4 + 4 +5 + 4
1 1 3 5 9 13
—2¢4 -3 —47 —66 —8f —113 —141 —183
110 136 163 199 235 282 331 391
—86 —96 —115 —127 —149 —166 —191 —212
X, = 0 +4 + 2 47 +5 +8 7 +9
1 1 3 5 9 13
—47  —66 —84 113 —141 —183 —225
199 235 282 331 391 454 532
—149 —166 —192 —212 —2458 —269 —307
X, = 3 +4 + 7 +9 410 411 13
‘ 1 1 3 5 9 13 22
—66 —84 —113 —141 —183 —225 —284% —344
282 - 331 391 454 532 612 709 811
—212 —245 —269 —307 —338 —382 —419 —472
X, = 4 +3 410 +9 416 414 +19 + 17
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80 CAYLEY, Calculation of the Minimum N. G. F. of the Binary Seventhic.

Xo_

aXlz_

Xy

Xy

)(15_

01 23 45 67 89 1011 12]3 14
1 1 3 5 9 13 22
— 113 —141 —183 —9295 —284 —344 —495
454 532 612 709 811 931 1057
— 838 —382 —419 —472 —515 —576 — 629
4 +10 413 417 +2l +2t 425
1 1 3 5 9 13 22 30
—141 —183 —225 —928% 844 425 508 —617
612 709 811 931 1057 1206 1360 1540
— 472 —515 —576 —629 —699 —760 —843 —913
0 +12 413 +23 4123 +34 431 +40
1 3 5 9 13 92 30
—9225 —981 —341 —425 —508 —617 —1729
931 1057 1206 1860 1510 1729 1945
—699 —760 —843 —913 —1007 —1091 —1197
8 +16 424 +31 38 43 49
1 3 5 9 13 22 30 45
984 —344 —495 —508 —617 —729 —8712 —1020
1206 1360 1540 1729 1945 2172 2432 2702
—913 —1007 —1091 —1197 —1293 —1416 —1525 —1663
10 4+12  +29 438 +48 149 +656 64
3 5 9 13 22 30 45
— 425 —508 —617 —%29 —872 —1020 — 1205
1729 1945 2172 2432 2702 3009 3331
1293 —1416 —1525 —1663 —1790 — 1945 — 2088
14 126 139 153 162 74 83
3 5 9 13 22 30 45 61
— 508 —617 —T729 — 872 —1020 —1205 —1397 —1632
2172 2432 2702 3009 3331 3692 4070 4494
— 1663 —1790 — 1945 — 2088 — 2265 — 2426 — 2623 — 2807
4 30 437 +62 68 91 95 116
5 9 13 22 30 45 61
—729 —872 —1020 —1205 —1397 —1632 —1877
3009 3331 3692 4070 4494 4935 5427
— 2965 —2426 —2623 —2807 —3026 —3232 — 3479
20 442 162 8 101 116 132
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'Ol 23 45 67 89 1011 1213 ) 14
5 9 13 22 30 45 61 85
—872 —1020 —1205 —1397 —1632 —1877 —2172 —2480
3692 4070 4494 4935 5127 5942 6510 7104
— 2807 —3026 — 3232 — 3479 — 37()8 — 3981 —4240 —45141
X = 18 -+ 33 -+ 70 +81 +117 +129 4159 168
9 13 22 30 45 61 85
—12056 —1397 —1632 —1877 —2172 —2480 — 2846
4935 5427 5942 6510 7104 7760 8442
—3708 —3981 —4240 —4641 —4828 —5164 —5481
Xy = 31 -+ 62 +92 4122 4149 4177 -+ 200
9 13 22 30 45 6l 85 111
—1397 —1632 —1877 —2172 —2480 —2846 — 3228 -—3677
5942 6510 7104 7760 8442 9192 9975 10829
—4541 —4828 —b5164 — 5481 —5850 —6204 —6609 — 6998
Xig = 13 -4 63 + 85 137 ' + 157 4203 4223 265
CALCULATION OF THE Y'’S.
Ind. 2 even or odd as suffix X is even or odd.
O1 23 45 67 89 1()11 1213 14
1
Y= 1
1
—1 —1 —1 —1
V,= —1 -1 —1 0 0 0
1 1 1 2 1 1
-1 -1 —2 —2 -2 —2
1 1
—1 —1 —1
Y, = 0 0 0 -1 -1 —1 —1

22
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82 CaYLEY, Calculation of the Minimum N. G. F. of the Binary Seventhic.

0y 2 4, 6, 8 10;, 12, 14
1 0 3 1 3 2 3 2
-1 -9 —3 —5 -5 -5
1 1 3 2 4
Y, — 1 0 ) +1 0 0 +1
1 2 3 4 4 5 4
_ -1 —4 —5 —7 —9 —9
1 2 4 6
—1 -1
Y, — 0 F1 1 0 ~1 1 0
4 2 7 5 8 7 9
—1 -3 —6 —10 —13 —16 —17
1 1 5 5 11 10
—1 2
Y, — +3 0 +2 0 0 +1 0
4 7 9 10 11 13
—4 -6 —13 —18 —22 —27
1 3 7 12 17
-1 —1 —4
Y, = 0 +2 —1 . 0 1
4 3 10 9 16 14 19 17
—3 -7 —14 —923 —30 —87 —43
4 6 17 20 33
-1 -3 —6
Y, — 0 ¥3 1 ~1 0 1 +1
4 10 13 17 21 24 25
—4 7 17 —92 —38 —49 b8
3 7 17 27 40
—4 —6
Y, = 0 ¥3 ~1 2 0 —9 F1
12 13 23 23 34 31 40
—4 —14 —27 —44 —61 —75 —87
4 7 21 29 52 61
—3 -7 —14
Y, = 0 +8 +3 +3 0 -1 +1 0
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0, 2, 45 6, 8, 10, 124 E
8 16 24 31 38 43 49
—12 —925 —48 —71 —93 —111
4 14 31 54 78
—4 -7 —17
Y,—= 8 14 +3 —3 —6 —3 —1
10 12 29 33 48 49 65 64
—8 —924 —48 —79 —109 —136 —161
12 25 60 84 128
—4  —14 —27
Y, = 10 +a +5 —3 —6 —4 1 +4
14 26 39 53 62 74 83
—10 —22 —51 —8f —122 —159 —195
8 24 56 95 141
—12  —9
Y= + 4 —4 —17 —4 —2 44
30 37 62 68 91 95 116
—14 —40 —79 —182 —180 —228 —272
10 22 61 96 161 204
—8 —24 —48
Yy = 4 16 47 +5 —3 —1 +4 0
20 42 62 80 101 116 132
—4 —84 —71 —133 —197 —258 —316
14 40 93 158 233
—10 —22 —51
Y, = 16 +8 +5 —13 —13 —6 —
18 33 70 81 117 129 159 168
—90 —62 —124 —204 —9285 —359 —429
4 34 75 163 238 350
—14 —40 —179
Y, = 18 413 12 —9 —12 —7 —2 410
31 62 92 122 149 177 200
—18 —51 —121 —202 —301 —397 —486
20 62 144 246 367
—4 -3¢ -7
Y, = 13 +11 —9 18 —12 —8 410
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84 CAYLEY, Calculation of the Minimum N. G. F. of the Binary Seventhic.

0, 2 4, 6, 8 10, 12, 14

13 63 85 137 157 203 223 265

—381 —93 —185 —307 —425 540 — 648

18 51 139 235 389 511

—920  —62 —124

Y= 13 +32 410 +3 —11 -7 410 +4

CAMBRIDGE, December 7th, 1878,

Remark on the Preceding Paper.

On discovering the error in Professor Cayley’s original statement of the
N. G. F. for the seventhic, I caused it to be recalculated out of the grant of
the British Association by a method, which will be described in a future com-
munication, considerably shorter than my first method, but somewhat longer
than that explained in the text above, perhaps in this instance about half as
long again, The table of Grundformen obtained by ftamisage from the cor-
rected N. G. F. table has appeared in the Comptes Rendus. The representative
form in that case is obtained by multiplying numerator and denominator of
the N. G. F. fraction by

14+aHA+e"+a4+..)A + ax)(1 + a2®)(1 + ax’),

the infinite multiplier being the peculiarity for the seventhic adverted to in
the note on the ninthic in this number of the Jowrnal. The error in the
N. G. F. became apparent from the fact that the sum of the numerical coeffi-
cients in the numerator was not equal to zero, a necessary condition, as may
easily be proved from and after the case of the quintic. This last, however,
only comes into effectual operation from the seventhic, because, for the case of
the quintic and the sextic, the coefficients consist of pairs of numbers with
equal and opposite signs, whereas, for the seventhic and eighthic, the coeffi-
cients consist of pairs of equal numbers with the same sign; for the tenthic
and eleventhic with opposite signs again and so on, the ratio of the numbers
changing by double steps from plus to minus unity.

J. J. S
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On the Lateral Deviation of Spherical Projectiles.
By Hexry T. Ebpy, Cincinnati, O.

IT may be premised that the phenomenon discussed in this paper is
actually observed in pitching base ball; and though it has been often asserted
by non-experts that it is impossible to pitch *“a curved ball,” nevertheless
such is not the fact, as appears from careful experiment as well as from the
following theoretical investigation. The base ball is selected for experiment
in preference to other projectiles, because it is possible to gain more exact
information with respect to its initial twist than can be gained as to round
shot for example or other spherical projectile.

Since the precise law of resistance which such a projectile experiences in
its passage through the air is unknown, we shall be obliged to content our-
selves with showing the direction of the deviation without being able at pres-
ent to compute its numerical amount.

z 7 /'. ~o
> N X
/’ N\
v , N
2, ! N\
i flr I \
! \
A ! 8, 8 \
-- J0- \
- < Vid %\_,-\9
I' // / RN &7 ¢ \\
. [ Y / /
' Y \w i ’ \
! \ ~Qf1
| & '
7 c 72 a

In the figure let ¢ be the center of a spherical projectile whose radius
is @, and let men be the great circle of the sphere which lies in a horizontal
plane. Let us disregard the vertical component of the motion of the projec-
tile; and let ¢ have a horizontal motion of translation, at the instant under
consideration, towards ¢. Also let the projectile have a motion of rotation
about a vertical axis through ¢ in a right-handed direction, 4. e. from m to e.
The motions of translation and rotation, whatever be their relative velocities,
can be combined, as is well known, into a single motion of rotation about an

instantaneous axis parallel to the vertical axis of rotation through ¢. This

23 85
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86 EvpY, On the Lateral Deviation of Spherical Projectiles.

instantaneous axis must intersect the diameter mn, which is perpendicular to
the direction of translation ce, at some point, as 0. Let the instantaneous axis
through o be called the axis of z. Also, let the distance oc be designated by
the letter .

Let r be the shortest (i. e. horizontal) distance of any element dS of the
surface of the sphere from the axis z. Now pass any vertical plane through
the axis of z, cutting the sphere in a circle whose horizontal projection is pp,
and similarly pass a second plane g¢, making an infinitesimal angle d6 = pog
with pp'; draw cfg perpendicular to pp/, and let § = fep, feco = xop =9,

‘.¢f=acosd=0becosO. . . . . . . . (1)

In the vertical circle pp’ cut out by the first plane, and having fp for its
radius, let ¢ be the angle between the radius fp and the radius drawn to any
element dS of the surface situated on the circumference of the vertical circle
pp. Then r, 0, ¢ are coordinates of dS, but since the surface is a sphere, we
obtain the following relation between these coordinates and known quantities :

r=="0sinf+asindcosp. . . . . . . . (2

Again, since z is the instantaneous axis, the motion of any element dS of
the sphere is horizontal and perpendicular to the instantaneous radius r of
that element, and, therefore, the relative velocities of different elements are
proportional to their respective instantaneous radii r,

Lv=o¢r, . . e 3)

in which v is the velocity of any element of the sphere and ¢ is a constant.
Let dS be the quadrilateral element of the spherical surface included
between the two planes pp’, g7, making an angle df with each other, and two
meridian planes intersecting in the line ¢ and making an angle d¢ with each
other. Then is dS ultimately a rectangle, of which the length along the
meridian circle is 7 cosecd df, and the width along the vertical circle is

a sin d do;
dS=ardbdp. . . . . . . . . (4

Disregarding friction, the resultant pressure dP on the element dS, as it
moves through the atmosphere, is towards ¢, and is proportional to v* (in
which the exponent n lies between 1 and 2, but its precise value is unknown),
and is also proportional to the cross section cos § dS of the stream of air which
dS meets in its motion. Then if ¢ is some constant

dP = cv'dS = accr" ' cosddidp. . . . . . . (B)
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Eppy, On the Lateral Deviation of Spherical Projectiles. 87

Now resolve dP into two rectangular components; the first, sin § 4P act-
ing in‘the plane pp' towards f, the second, cos § dP acting perpendicular to
the plane pp'. ‘

The first component sin § dP has a horizontal component of magnitude
sin § cos ¢ dP, which has a component parallel to co and acting from ¢ toward o,
whose magnitude is sin § sin 6 cos ¢ dP. The second component cos § dP is
horizontal, and has a component of magnitude —cos § cos § dP acting from
¢ toward 0. These are the only components of the normal pressure dP acting

along co;
. dX = (sind sin 6 cos ¢ —cos § cos 0) dP =cos dP. . . (6)

is the horizontal deviating force acting on the element dS, in which + is the
arc of the great circle joining dS to #, a point so situated in the horizontal
plane that the angle new = 20. For, let dS be situated at one angle of a
spherical triangle of which the remaining two are g and »'; then, since § and 0
are two of its sides and ¢ is the included angle, and « is the side opposite ¢,

we have
cosy =sind sinf cosp—cosdcosgp, . . . . . (7)

codX =becrrtttcosfeosydidep. . . . . . (8)
It is readily shown that the deviating force, acting on any elementary ring of
the forward half of the sphere included between pp’ and g¢¢, is from ¢ toward o,
for this deviating force is twice that obtained by integrating (8) with respect
to ¢ from ¢ = 0° to = 180°. And it is possible to show that the value of
this integral is a positive quantity, without effecting the integration, by show-
ing that the sum of the positive elements of the integral exceeds the sum of
its negative elements. Now it is evident from (2) that, while 6§ is constant, »
decreases as ¢ increases from 0° to 180°, but » never becomes negative in case
the axis z lies without the sphere, as, in practice, it does. Again, it appears
from the interpretation given to 4 that cos decreases as ¢ increases from
0° to 180°, but that, so long as § << 90°, more than half the elements d§ along
this ring between pp’ and ¢g¢ are within 90° of #, and hence the largest posi-
tive value of cos« numerically exceeds its largest negative value.
Therefore, in integrating (8) with respect to the independent variable ¢
from 0° to 180° (for any value of 6 up to 90°), the positive elements of the
integral are not only larger but more numerous than its negative elements.

And if we afterwards integrate with respect to the independent variable 6
a

from 6 — cos ! A

to 6 = 90° (which includes the hemisphere now under
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88 Epvy, On the Lateral Deviation of Spherical Projectiles.

consideration), the total deviating force X will act from ¢ towards o, for each
one of its elements will be positive. Furthermore, let us consider the pres-
sures acting upon the remaining hemisphere. These pressures are less than
if the projectile stood still, there being a partial vacuum behind it. An
experimental comparison of the pressures on the front and back sides of mov-
ing bodies shows that the reduction of pressure on the back side below the
mean never exceeds about one-half of the increase of pressure on the [ront
side above the mean. Hence, by comparing the pressures on pairs of rings
making equal angles with the vertical plane mn, it is seen that, although the
deviating force caused by the pressures on the back hemisphere acts from
o towards ¢, it does not numerically exceed about one-half of the deviating
force caused by the pressures on the front hemisphere, and acting from ¢ to o.
Therefore the total deviating force caused by the normal pressures is from
¢ toward o.

The effect of friction between the air and projectile remains now to be
considered. If the air exerted equal pressures at the opposite extremities of
each diameter, the friction could diminish the rotary motion, but could cause
no deviation. The pressures are not, however, thus distributed. We may
state the case roughly thus: in the quarter of the sphere projected on the
paper in mec the average pressures are greater than in either other quarter,
the average pressures in ecn are next largest; and, if ¢ is the other extremity
of a diameter through ¢, the average pressures in nce are next largest, and
those in ¢cm are the smallest. '

The difference of the pressures in the opposite quarters mce, nce causes a
difference of frictions; the same difference exists between the opposite quarters
ecn, ¢cm; and these two effects do not differ greatly in magnitude. Hence
the total effect might be replaced by a friction at a point of the surface not
far from ¢. It is evident that the effect of applying friction at such a point
would be to cause the projectile to roll away from o, so that the component of
the deviating force furnished by the friction is from o to ¢. But the amount
of this force is inconsiderable compared with that caused by the differences
of the normal pressures, being dependent, however, upon the roughness of
the surface of the projectile. Rankine* states that Smeaton’s experiments
show that the coefficient of friction for the best sails of wind-mills is probably
about 0.016.

* Manual of the Steam Engine, etec. 7th ed. London, 1874, chap. VIIIL.
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Note on Determinants and Duadic Disynthemes.
By J. J. SYLVESTER.

A GENERAL algebraical determinant in its developed form (viewed in
relation to any one arbitrarily selected term) may be likened to a mixture of
liquids seemingly homogeneous, but which being of differing boiling points,
admit of being separated by the process of fractional distillation. Thus ez. gr.
suppose a general determinant of the 6th order. The 720 terms which make
it up will fall, in relation to the leading diagonal product, into as many classes
(most of which comprise several similarly constituted families) as there are
unlimited partitions of 6. These, 11 in number, are
6; 5,1; 4,2;4,1,1; 3,3; 3,2,1; 3,1,1,1; 2,2,2; 2,2,1,1; 2,1,1,1, 1;

1,1,1,1,1, 1.
Let the determinant be represented, in the umbral notation, by
a b o d e f
a b ¢ d e f

Let us, by way of illustration, consider the class corresponding to 6;
this will consist of the 1.2.3.4.5 (120) terms obtained by forming the 120
distinct circular arrangements that belong to a b ¢ d ¢ . Thus:

will signify ac X ce X ed X df X fb X ba, which will be one of the 120 in ques-
tion. So, again, 3, 3 will denote, in the first place, the 10 sets of double triads of
the general form abe: def, and, as each triad will give two cyclical orders, there
will in all be 10 X 27 4. e. 40, terms of the form ab.bc.ca.de.ef. fd. So,
again, there will be 15.1% 4. e. 15, corresponding to 2,2, 2. So 3, 2, 1 will
give 10 groupings of the form abc: de: f, and each of these will give rise to two

* The cyclical method of the text shows what was not previously apparent, that the umbral notation az ;
B/ .o
possesses an essential advantage over aﬁ . 3 even for unsymmetrical determinants. This mode of notation

of course implies some ground of preference for one diagonal group over all others and thus virtually regards a
general determinant as related to a lineo-linear as a symmetrical one is to a quadratic form. For instance the
general determinant of the second order is to be regarded as appurtenant to the lineo-linear form aaxz’ + abzy’
+ bayx’ - bbyy’.

24 89
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90 SYLVESTER, Nofe on Determinants and Duadic Disynthemes.

terms, viz: ab.bc.ca.de.ed. ff, ac.cb.ba.de.ed.ff, the number of cycles
corresponding to two elements de being 1, and to one element f also 1.

This simple theory affords us a direct means of calculating the number
of distinct terms in a symmetrical determinant, ¢. e. one in which ¢.j and j.¢
are identical. It enables us to see at once that the coefficient of every term
is unity or a power of 2; the rule being that plus or minus terms* of the class
corresponding to m,, m,, ms, . .. will take the coefficient 2", » being the num-
ber of the quantities m which are neither 1 nor 2, for, in every other case, the
total number of cycles in each partial group will arrange themselves in pairs

which give the same result, thus ex. gr.
a a
d b and b d
¢ ¢
will give the equal products ab.bc.cd.da and ad.dc.cb.ba.

As an example of the direct method of computation, take a symmetrical
determinant of the 6th order. Write
5 4.1 3.2 3.11 2.2.1 21.1.1 1.1.1.1.1.
To these 7 classes there will belong respectively
1.12 with the coefficient 2

5 . 3 [ “ 2
10.1 “ “ 2
10.1 “ “ 2

15 13 113 1
10 13 13 1
1 113 11 1.

Thus the number of distinct terms will be

124154104+ 104+154+10+1 =173,
and the sum of the coeflicients

24 + 30420+ 20 + 15 + 10 4+ 1 = 120,
both of which are right.

Again, if we have a skew determinant of an even order, it will easily be
seen that any partition embracing one or more odd numbers will give rise to
pairs of terms that mutually cancel, but when all the parts into which the
exponent of the order is divided are even, the coefficient will be given by the
same rule as for symmetrical determinants, 4. e. its arithmetical value will be
2, where » is the number of parts exceeding 2. Thus ex. gr. for a skew deter-

minant of the order 6 we have
6 4.2 2.2.2.

*The complete value of the coefficient is (— )* 2", » being the numb. r of elements in the partition other
than 1 or 2, and x the number of even elements.
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The number of terms corresponding to these partitions being 60 with coeffi-
cient 2; 15 X 3 also with coefficient 2, and 15 with coefficient 1, making 120
distinct terms in all, the sum of the coefficients will be

120 4+ 90 4 15 = (1.3.5)?,
which is right, because the result is the square of the sum of 15 synthemes of

the form 1.2X 3.4X5.6. It may be observed that 120 is 15'216, as it
ought to be, because, until we reach the order 8, the same double duadic syn-
theme can only be made up in one way of two simple ones, but this ceases to
be the case from and after 8. Thus ex. gr. the pair of synthemes

1.2 3.4 5.6 7.8 and 1.3 2.4 5.7 6.8
combined will produce the same double syntheme as the pair

1.2 3.4 5.7 6.8 and 1.3 2.4 5.6 7.8,
and accordingly for 8 we have the partitions

8 6.2 4.4 4.2.2 2.2.2.2,

giving rise to 2520 with coefficient 2
23.60 ¢ o 2
35.8 ¢ “ 4
210.3 « “ 2
105« “ 1,

making in all 2520 4 1680 + 315 4 630 + 105, ¢. e. 5250, distinct terms,

2
(1.3.5.7) —2|—(1 .3.5.7) — 5565,
the ditference, 315, being due to the fact that there are that number of double

synthemes which admit of a twofold resolution into two single synthemes.

I will not stop to prove, but any person conversant with the subject will
see at once that this method gives an intuitive and direct proof of the theorem
that a pure skew determinant for an even order is a perfect square.* Having
only a limited space at my command, I will pass on at once to forming the
equation in differences for the case of a symmetrical, a skew, and one or two
other special forms of determinants.

1°. For a symmetrical determinant, taking as a diagram, to fix the ideas,
the matrix of the 6th order

whereas,

a b ¢ d e f
b g h k I m
¢c kb n p q. 7
d kt p s t u’
e L ¢ t v w
fm r uw w o

% That a skew determinant of an odd order vanishes is apparent from the fact that an odd number cannot
be made up of a set of even ones. I use the term skew determinant in its strict sense as referring to a matrix
for which 4j=—ji and it = 0.
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92 SYLVESTER, Note on Determinants and Duadic Disynthemes.

calling u,, the number of distinet terms in a symmetrical matrix of the mth
order, and, resolving the entire determinant into a sum of determinants of
the order (m — 1) multiplied by the letters in the top line, we shall obviously
get u,,__, together with (m — 1) quantities, positive or negative (and we know,
by what precedes, that there can be no canceling, so that the sign, for the
object in view, may be entirely neglected) of the form

b h kI m
c n p q r
bXd p s t wu.
e ¢ t v w
fr u w o

Among these (m—1) quantities all the terms containing be, bd, be, bf will occur
twice over, but those containing 4* do not recur. Hence, to find the number
of distinct terms we may reckon each of such distinct terms as contain b¢, bd,

be, bf worth only %, the others counting as 1. But if, instead of the column

(which I write as a line) bedef, we had the column bk%lm, the rule for cal-
culating the number of distinct terms might be calculated by this very same
rule, except that the terms multiplied by e, kd, le, mf ought to count as units
instead of Aalves. Hence obviously

Uy + (m—1) (m—2) u,_; X % = U1+ (m—1) thy_y = mug,, 4,

or
_(m—1m—2)

U, = MUy, 1 D) 'm—389

which is Mr. Cayley’s equation, but obtained by a much more expeditious
process (see Salmon’s Higher Algebra, 3d edition, pp. 40-42); writing
upn=(1.2...m) v, we obtain the equation in differences, linear in regard
to the independent variable,

U —3
m,, — MV, _; -+ —5 = 0,

and this, treated by the general method applicable to all such, gives rise to
a linear differential equation in which, on account of the particular initial
values of u,, u, u,, the third term is wanting, and finally v,, is found to be the
coefficient of ¢™ in
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SYLVESTER, Note on Determinants and Duadic Disynthemes. 93

If we apply a similar method to the case of a symmetrical determinant
in which the diagonal of symmetry is filled out with zeros (an invertebrate sym-
metrical or symmetrical bialar determinant, as we may call it) we shall easily
obtain the equation in differences

—1 —2
WUy, = (m—l) [um_.1 + um-—z] - (m—)ﬁ(m—_) Uy 34
and, making », =1.2" .. my,,
MYy — (M—1) v,y — v, —* — (),

from which, calling y = v, + v,¢ + v,£> 4+ . . . and having regard to the initial
values vy, vy, v,, We obtain

dy  2t—¢8
2—y~_ T dt,
s
and Y= e
Ni—t

By way of distinction, using « and v for this case, and u, v for the pre-
ceding one, the slightest consideration shows that

m (m m(m—1)(m — 2
um—um_l—mum—l '—‘(—2 ) —~2+ ( 2.; ) m—-3+"')

or

) ; v,m——Z v,m—S +
—vnz+vm—1+lc+m ceee
Hence the generating function for v, ought to be that for u, multiplied by ¢,
as we see is the case.
So, in like manner, the generating function for v,,, i. e. 1_2ul—;z’ in the

1 .
case of a general determinant being T that of v, for an invertebrate or

—t %

i_;_t’ 7. e.

zero-axial but otherwise general determinant we see must be

* It may easily be proved that the difference between the numbers of positive and negative combinations
in the development of an invertebrate determinant of the mth order is ( —)™~!(m—1) in favor of the former.
number of positive terms in such determmant

is

1.2.3.

From this it is easy to prove that the generating function for
1 (et ’ te—t
Sy S | —t LA
2{1—t (+t)e }’ °r2(1—t)

‘Whence it follows that the number of positive terms in a general invertebrate determinant of the mth

—! times the total number of the terms in one of the (m —2)th order. The equation of differ-

order is m —
ences for U,,, the total number, is of course
Up = (m—1)(Un_r + Un_s),

U,for 1, 2, 8, 4, 5, 6, 7, 8, ..
are 0, 1, 2, 9, 44, 265, 1854, 14833, . .

and the successive values of
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ez SYLVESTER, Note on Determinants and Duadic Disynthemes.

1 1 1
U =1—1t =53+ E13

m

the well known value (ultimate]y equal to %), as it ought obviously to be,

of the chance of two cards of the same name not coming together when one
pack of m distinet cards is laid card for card under another precisely similar
pack.

Returning to the case of the invertebrate symmetrical determinant, it
will readily be seen, by virtue of the prolegomena, that the number of terms
(the w,) for such a determinant of the mth order is the same thing as the
total number of duadic disynthemes that can be formed with m things,
meaning by a duadic disyntheme any combination of duads with or with-
out repetition, in which each element occurs twice and no oftener. Thus,
when m =6, 1.2 2.3 1.3 4.5 4.6 5.6 and 1.2 2.3 3.4 5.6 6.1
and 1.2 2.3 3.4 1.4 5.6 5.6 are all three of them disynthemes. But
the two latter ones are each resoluble into single synthemes, whereas the first
one is not. It is clear that, when a disyntheme is formed by means of cycles
all of an even order, it will be resoluble into a pair of single synthemes, and
in no other case. The problem, then, of finding the number of distinct dou-
ble synthemes with m elements is' one and the same as that of finding the
number of distinct terms in a proper (i. e. invertebrate) skew determinant,
which I proceed to consider.

Following a method (not identical with but) analogous to that adopted

for the symmetrical cases, we shall find, by a process which the terms below
written will sufficiently suggest
(m —1)(m — 2)(m — 3) u

U, + 5 m—a= (M—1) 4,y + (m—1)(Mm—2) w,_,,
or Uy, = (m—1)? um~2_(m—1)(m2—2)(m-3) e -
Of course, when m is odd w,=0. From this it is readily seen that

S — , 8ay ©,, is an integer; for we shall have
1.8.5...2,_,

0 =02m—1) 0,_1—(m—1) 0,_,,

also, o=1, 0=2,

so that 0=.56.2 —2,1 = 8,
o= 7.8 —3.2 = 50,
o;= 9.50 —4.8 = 418,

0p = 11.418 —5.50 = 4348,
and the conventional o0y = 30, —0, = 1.

This content downloaded from
199.242.209.35 on Mon, 13 Mar 2023 16:50:31 UTC
All use subject to https://about.jstor.org/terms



SYLVESTER, Note on Determinants and Duadic Disynthemes. 95

By the above formula u, can be calculated with prodigious rapidity.
If, however, we wish to obtain a generating function for u,, the differential
equation obtained from the above equation in differences does not lead to a
simple explicit integral, but if we make w,, = (1.2.3 ... 2m) v,, as in the
preceding cases, or, which is the same thing, 0, =2, (1.2...m)v,, we get

4mv, —4 (m— v, _1—2v, 1+ v,_,=0,
and, writing as before y=ov, + v+ v+ ...,
4%-#%~%+@

will be found to be equal to zero. [This vanishing of the 3d term in the dif-
ferential equation being a feature common to all the cases we have considered,
and due to the initial values of the v series in each case.] We have thus

9" 1 _ et
y Timath =T
By way of verification, we may observe that
v, =1 v:—l— v:—l— v:—l— ..
’ 1 9 7. 2 4 3 6" ’

e R (R R -
and

1 1 5 1 45 | 5 1*

1 1 1 1 1

TtTT e mT TR T miTs T T T 6

‘We may now proceed to calculate the number of distinct terms in an
improper or vertebrated skew-determinant, which is interesting on account of
its connection with the theory of orthogonal transformations. TUsing v,,,
instead of v, , the generating function for the case last considered becomes

2

é/eT - . Let (1.2.3...m)V, = U, in general be used to denote the num-
1-—¢ .

ber of distinct terms in a vertebrate skew-determinant of the mth order.
Then obviously

T om—1 m—1 m—2 m—3
U2m:’l&2m+m'Tu2m—2+7n' 2 * 73 T4 u2m—4+""
_ Ugm —2 Vom — 4
or Vn=vm+ 15 1934 -

Hence the generating function for 7,,

_ e Lot f }__1 {J+%—+e”+%
T —ep Tiztigsat T2 (1—p)t ’

* The values of vy, v,, v ... are
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96 SYLVESTER, Note on Determinants and Duadic Disynthemes.

and in like manner, since
m (m —1Y(m — 2)

Usp— 1 = My, 5 + —1.9.3 Upm—s o v vy
the generating function for V,, _, will be
£ &
B AT
2 a—of J°

Hence the number of distinet cross-products in the development of an ortho-
gonal transformation-matrix of the mth order is
ol
(1.2.3...m) X coefficient of ¢™ in LA
) (1 — tz)%

PostscripT.—Let us consider the case of 2m elements; call the number
of ways in which any disyntheme composed with them may be resolved into
a pair of single synthemes one in each hand* its weight; furthermore, call
the aggregate of those which appertain to an odd number of cycles the first
class, and the other the second class. The entire sum of the weights we
know is 12.2%2. 3% .. Q_mTf, but, furthermore, I find that the excess of the
total weight of the first class over that of the second is 1222, 3% .. 2m—3". 2m—1;
or, in other words, the weights of the two classes are in the ratio of m tom —1.

The expressions for the sum and for the difference may, of course, by
the prolegomena be translated into two theorems on the partition of numbers,
neither of which, as far as I can see, is obvious upon the face of it.}

# The two hands are introduced in order to double, by the effect of permutation, what the weight other-
wise would be, except when the two component synthemes are identical, in which case the weight remains unity.

+ Remark.—The equation in differences for the number of double duadic synthemes may be obtained with-
out recourse to determinants, as follows: Single out any element, 1; it may be paired in each of the component
synthemes with any one of the remaining elements 2,3, 4,..., and there are two cases to be distinguished,
viz: 1 may be paired either with the same element (2) or with two different elements (2, 8), in the two syn-
themes, 7The former may be done in (m— 1) ways, and, after having made our choice, we have still the choice
of all the double synthemes that can be formed from 8,4,...m; 3,4,...m. The choice of two different
(m—1)(m —2)

2
synthemes that can be formed from 8, 4,...m; 2,4,...m. Now it is plain that the number of these
can be obtained from the number of double synthemes that can be formed from 8, 4,...m; 8,4,...m, by
counting twice all except those in which 8 is paired twice with the same element; and is equal, therefore, from
what precedes, to

elements may be made in ways, and having chosen, we have still the choice of all the double

2um—g—(M—38)Um_4.
‘We have, therefore,

Up = (m—1)um—2+ M;(m_—z) [2um—g—(m—38) %m—4]
= (m-——l)Z "m—-z—-(m—l)(mzz)(‘m-& v

F. FRANKLIN.
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Desiderata and Suggestions.
By ProrEessor CAYLEY, Cambridge, England.

No. 3.—THE NEWTON-FOURIER IMAGINARY PROBLEM.

Tue Newtonian method as completed by Fourier, or say the Newton-
Fourier method, for the solution of a numerical equation by successive ap-
proximations, relates to an equation f(z) =0, with real coefficients, and
to the determination of a certain real root thereof ¢ by means of an as-
sumed approximate real value £ satisfying prescribed conditions: we then,

from £, derive a nearer approximate value &, by the formula &, = E—_{’%;
and thence, in like manner, £, &, &, . . . approximating more and more
nearly to the required root a.

In connexion herewith, throwing aside the restrictions as to reality, we
have what I call the Newton-Fourier Imaginary Problem, as follows.

Take f (u), a given rational and integral function of u, with real or ima-
ginary coefficients ; £, a given real or imaginary value, and from this derive
¢, by the formula £ =£ —J‘;,%), and thence &, &, &, . . . each from the pre-
ceding one by the like formula.

A given imaginary quantity x + iy may be represented by a point the
coordinates of which are (z, #): the roots of the equation are thus repre-
sented by given points 4, B, C..., and the values £, &, & ... by points
P, P, P,, ... the first of which is assumed at pleasure, and the others each
from the preceding one by the like given geometrical construction. The
problem is to determine the regions of the plane, such that P being taken at
pleasure anywhere within one region we arrive ultimately at the point 4 ;
anywhere within another region at the point B; and so for the several points
representing the roots of the equation.

The solution is easy and elegant in the case of a quadric equation, but
the next succeeding case of the cubic equation appears to present considerable

difficulty.

CAMBRIDGE, March 3d, 1879.

26 97
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On the Complete System of the “ Grundformen” of the
Binary Quantic of the Ninth Order.

By J. J. SYLVESTER.

ENUMERATION OF THE IRREDUCIBLE INVARIANTS AND COVARIANTS OF THE
BiNaARY QUANTIC OF THE NINTH ORDER.

ORDER IN THE VARIABLES.
01 2 8 4 6 6 7 8 91011 12 138 14 15 16 17 18 21 22

1 1

e | Py [ A A

S I R Y U Y R Y O Y O e A Y A 1 |1

PAEY I I Y B Y A Y A Y B Y B 1 R

s| |1 | 8| |4 |4 |8 | & |2 [« [
& 6| | |4 |4 6 8 (3 & ||
Sor e sl s
§E s/ 5 |8 |10 |10 |2 ~ T
S 9| |9 |14 |10 |2 T R
205 (1| | |
g 11 17 16
oaepe| el | T
P Wl T N O O O I _

1417 9

s (26 | | | | |

wlaal | | | T

| | s | T T

1825 | | T rrrrrr

The foregoing table has been calculated, out of the funds voted by the
British Association, under my superintendence, by Mr. Franklin, Fellow of
Johns Hopkins University. A statement of the method employed will be
given in a future number of the Journal.

The total number of irreducible forms will be seen from the table to be
415. The highest degree in the coefficients is 18, and the highest order in

98
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Ezxtract of a Letter from Sig. A. de Gasparis to Mr. Sylvester. 99

the variables 22. The representative generating function in this case (as in all
others'which have been hitherto treated, with the sole exception of the sev-
enthic) has a finite numerator.

The total number of groundforms for the orders 0, 2, 4, 6 respectively
(counting, as one ought to do, the absolute constant as one of them) is
1, 3, 6, 27, which becomes a regular series on increasing 6, which corresponds
to a square index 4, in the proportion of 2:3. In like manner, for the orders
1, 3,5,7,9, the series is 2, 5, 24, 125, 416, which, on increasing the last term
corresponding to the square index 9 in the ratio 2: 3, forms an almost regular
progression 2, 5, 24, 125, 624, highly suggestive of the geometrical series
1, 5, 25, 125, 625. 1t seems then to be a not altogether improbable conjec-
ture, that the number of groundforms for 10, which I hope very soon to get
completely worked out, will be in the neighbourhood of a ratio of equality to
243,* and for 11, which there is not much prospect of calculating for some
time to come, a number not very far out from a ratio of equality to 3125.
In the next, or next but one, number of the Journal I hope to set out a
synoptical table of the groundforms for all orders up to 10 inclusive, with
their reduced and representative generating functions, as also for combina-
tions of the orders: 2, 3; 2,4; 3, 3; 3,4; 4, 4; all the materials for which,
with the exception of what pertains to the covariants proper of the tenthic,
are already in existence.

Extract of a Letter from Sig. A. de Gasparis
to Mr. Sylvester.

... J%al trouvé certaines séries dans lesquelles les éléments tels que le
rayon vecteur, les anomalies excentriques et vraies, etc., sont exprimés en fonc-
tion de 1’anomalie moyenne donnée en parties du rayon sans sinus ou cosinus.
Comme essai, je vous comunique les suivantes dans lesquelles ¢ = excen-
tricité, v et M anomalie vraie et moyenne. En outre ¢ = demigrand axe, ¢, ¢
inclinaison et noend, = perihelie, v = nw—¢. J’ai trouvé
v_\/ﬂ‘;{_M__gnj 2e | M 2 2ad M 184 2249008 }

T Vl—e|l—e 6 (1—¢* " 120 (1—e) 5040 (L —e)® B
et posant ‘

. M T+e - M sing - M® |14+ e cos¢
H:(l—e)sm«l«—l——l—\/l_ecom,b—Tm——(;— e I—ef

#* The number of groundforms for the Octavic (1 quote from memory) is 70, not more inferior to 81 than
might have been anticipated, when the composite form of the number 8 is taken into account. It seems likely
that for 10, 243 is at all events a superior limit,
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100 Extract of a Letter from Sig. A. de Gasparis to Mr. Sylvester.

sin V M* 1 1+e cos ¢
1(1+3)( Frimo VT, A+9%) 5 ,
l . MZ S 3 1 _I_
et e T G U
cos ¢ M° 1 1 +e sin ¢
24: (1+3)(1 )5 120 (1+9)( e)ﬁ ey
I’on a pour la valeur des coordonnées hehocentrlques z, x ety

% = sin¢. H; %:cos¢.K—sin¢cosi.H; —g—:sin¢.K+cos¢cosi.II.

L’on peut aussi développer, comme j’ai fait jusqu' aux cubes de M/, la
valeur inverse du cube de la distance mutuelle des deux masses, telle que se
présente dans la théorie des perturbations. Dans ce cas figurent les deux
variables M, et M,. Par la relation linéaire qui existe entre le temps et
I’anomalie moyenne il peut etre utile de considerer ces developpements dans
le calcul des perturbations.

J’ai publié aussi dans les actes des academies des Lincei et de Naples, le
coefficient du terme qui multiplie la 4**° puissance du temps dans la série
qui donne la correction de la coordonnée x elliptique pour avoir la valeur de
la & troublée dans le temps T aprés le temps ¢ pour lequel on connait les «, ¢, 2
et leurs derivées #, ¥, z, étant m, la masse troublée, et m, la masse troublante.
Ce coeﬂicient, sauf un facteur connu de 'ordre m,, est
@ (A mo) (2 — ) +( + mz) z,  ma  6(@—a)ps

+ 7'?;012 7':3;(’132 ,0162 s 7?"2 ,0142
+ 15 (m, — =) p'% + 62’/ . 3 (acz—xl)z{_ @ (my + my)(, —wl)}
ot T3 otz oo otz
o B (e — )y “?/1){& _ Yy (m A my)(y, —?/1)}
2n o el
3@ —a)(m—a) {__ _m (A m)(z —zl)}
012 r ry Plz

3a3 (my (e, —-’131) (1 + my) @ m, 33’72?/2 ny (yz ?/1 (1 -+ mz) Yo | "ul
U e

Bxz(m (2, —2 1+ my)z,  mz 8(x,—2 , e
_ __5_{ 1( 23 l)+( 2) 2+ 131} ( l){(x; )2+(y2_y1)2+(z2_z1)..}

ry P12 72 1 12

my ( — @ 12z = 8.

+ ‘(,;3 )_ 2y S (@i +yit+ai—r).
2012 3

NAPLES, 15 Mars, 1879.
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D. VAN NOSTRAND,
Publisher of Scientific, Military and Naval Books,

23 Murray and 27 Warren Streets, New York.

Our Stock comprises a Large and Complete List of Works pertaining to

ARCHITECTURE, ASTRONOMY, NAVIGATION, BREWING, DISTILLING,
CHEMISTRY, PHYSICS, CIVIL axp MECHANICAL ENGINEERING,
ELECTRICITY, GEOLOGY, HYDRAULICS, SANITARY ENGI-
NEERING, MATHEMATICS, and Works of Reference, ete.

8 Calalogues of ile above will be sent lo any address wpor applicaiion. s

>t @

WE WOULD ALSO CALL PARTICULAR ATTENTION TO

Van Nogtrand's Hingineering Maganine.

LARGE 8vo MONTHLY.

Terms, $5.00 Per Annum, in Advance.

Single Copies, 50 Cents.

ESTABLISEHED IIN 1869.

EIGHTEEN VOLUMES NOW COMPLETE.

Notice to New Subscribels.—Persons commencing their subscriptions with the Nineteenth Volume
(July, 1878), and who are desirous of possessing the work from its commencement, will be supplied with Volumes
I to XVIII inclusive, neatly bound in cloth, for § 48, Half morocco, § 74£.50. Sent free by mail or express
on receipt of price.

Notice to Clubs.—An extra copy will be supplied, gratis, to every Club of five subscribers, at $ 5.00
each, sent in one remittance.

This Magazine has now begun the tenth year of its existence. Occupying a position among contemporary
journals not claimed by any other periodical, it has proved by its steady growth during nine years that such a
record ,of Engineering progress was from the first a recognized necessity.

The leading aim of the Magazine is to present the best possible summary of the progress of Engineering prin-
ciples and practice throughout the world. To accomplish this end, a digest of the current history of works in pro-
gress from home and foreign journals, and the original essays of the best home writers have jointly contributed.

Two classes of minds are constantly aiding all scientific advancement, each largely dependent upon the other
for success. The exclusively practical Engineer scorns the principles of the books and reaps undoubted success by
empirical rules only. But to work beyond the field of his individual experience, guided by his rule of thumb, is
to invite disaster. In any dilemma he needs the counsel of that class of his confreres whose labor has been in
evolving the scientific principles of his profession. Only by the aid of an Engineering journal can the results of
both fields of labor be rendered serviceable. Progress in this department of science is at present so rapid that,
whether we regard the magnitude of the new projects, the originality of the designs, or the materials employed,
we find the established precedents of but a few years ago of but little use as guides to the best success.

b To keep pace with this progress is a necessity to all who would contribute to an advance of the profession in
this country.

That the foremost writers on Engineering subjects are alive to the importance of their own active labor the
peges of the last two or three volumes of this Magazine bear ample testimony.

As heretofore, subjects relating to Civil Engineering proper receive the first attention. Progress in Mechan-
ical, Sanitary, Mining and Military Engineering and Architecture is duly chronicled, especial care being observed
to exclude all articles that seem in any way to be biased by the enthusiasm of the inventor or the self-interest of
an owner.
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A. OUTLINE.

1. The Calculus of Enlargement is, from one point of view, an extension
of the Calculus of Finite Differences; from another, an extension of the Cal-
culus of Operations. It comprises, as its most important branch, the Differ-
ential Calculus, included in which is the Calculus of Variations. The scope
of this new science is, therefore, comprehensive. Its method, on the other
hand, is simple. My present object is not to exhibit it in a methodical trea-
tise, but merely to give a preliminary sketch of it, and so to publish its dis-
covery.

2. The Calculus of Enlargement is, from one point of view, an extension
of the Calculus of Finite Differences. It has for its basis the well-known
operation E=1 -+ A, or rather, as I prefer to state it, the operation ", where

Er=a+h, 1)
B9 (2) = (2 + ). @)
I call this operation Enlargement.*

*The term is elliptical, since by the Enlargement of a function is meant that change which results from
the enlargement of the variable. It would probably be hard, however, to find a more appropriate name. The
word Enlargement has this further advantage, that its initial letter has been long in use as the symbol of this
operation, It will, of course, sometimes be necessary to call that a negative enlargement which is in reality a
diminution, just as the word increment sometimes denotes that which is arithmetically a decrement.
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This content downloaded from
199.242.209.35 on Mon, 13 Mar 2023 16:59:13 UTC
All use subject to https://about.jstor.org/terms



102 McCriNToCK, An Essey on the Calculus of Enlargement.

3. From another point of view, the Calculus of Enlargement is a modi-
fication and extension of the Calculus of Operations, or doctrine of the Sepa-
ration of Symbols. The symbolic method, as usually explained, concerns

itself with the symbol of differentiation, % or p, and with the various func-

tions of that symbol, considered apart from the subject of operation; and
among these functions of »is E = ¢". The Calculus of Enlargement, on the
other hand, regards  as the fundamental symbol, and takes cognizance of
other symbols only in case they are, and because they are, functions* of E.
Among such, of course, is p=1log E. If we conceive the symbolic method
to be modified and defined in this manner, and to be ranked as a science by
itself, instead of a mere auxiliary principle; and if we further conceive this
science to be so extended as to include not only, as at present, the separate
treatment of symbols of operation, but also a complete discussion of the
operations denoted by such symbols, their definitions, uses and consequences,
we shall have in mind the Calculus of Enlargement.}

4. The theory of differentiation, comprising the Differential and Integral
Calculus and their applications, and including the Calculus of Variations, of
which the fundamental operation is differentiation with respect to an imagined
variable, forms the most important branch of the Calculus of Enlargement.
The algebra of the functions of Eis subject to all the laws of ordinary alge-
bra; and the theory of differentiation is that part of the calculus which corresponds
to the theory of logarithms in algebra.

5. In this manner is effected the orderly unification of those branches of
science which I have mentioned. Writers on finite differences have said
repeatedly that a differential is but a certain kind of difference, so that the
differential calculus may be regarded as a part of the former science; but the
connection thus indicated is so trivial, and its consequences are so insignifi-
cant, that the claim excites no attention. Nevertheless, it will be agreed that
the boundary line between these two branches is but indistinct, and that their
formal union, supposing it to be accomplished in a natural and simple man-
ner, is a result to be desired. The obvious connecting link is the equation

* By ¢ function” of z, throughout this essay, I mean a quantity which can be expressed by a series of
terms, each of the form Az, where A and « are independent of @, and are not necessarily integral or positive,

+¢This branch of science [the Calculus of Operations] is yet in its infancy, but already it has been the
instrument of greatly extending the domains of science, and we may reasonably look to it for the next great
step in the direction of mathematical progress.”—DaAviEs & PECK, Mathematical Dictionary, p. 401.
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E=¢", or its converse, D =log E. The union must be effected, if at all, in
. . d
one of two ways. On the one hand, we may begin by defining 75 0T D and

then proceed to E=¢” and A =¢"—1. This is the unnatural order hitherto
tacitly followed, not only by those writers who have appended a chapter or
two on finite differences to their treatises on the differential calculus, but also
in works devoted to finite differences, all of which, in late years, assume a
prior knowledge of differentiation. A student is first taught differentiation ;
later, he learns the doctrine of the separation of symbols, and finally, if suffi-
ciently zealous, he takes up finite differences. In the latest book on this
subject, that of Boole, the reader is referred, for the readiest proof that o, &, and
A are mutually subject to algebraic discussion, to a passage in that author’s
work on differential equations. We may, on the other hand, adopt the more
natural order, defining E first, and giving afterwards, as one of its functions,
D = log E. 3)
This well-known equation has not hitherto, I believe, been proposed as the
definition of the symbol, and therefore of the operation, of differentiation. To
say that Differentiation is the logarithm of FEnlargement would seem, and
possibly be, a quasi-metaphysical absurdity; but we can and should say that
Differentiation is that operation whose symbol is the logarithm of the symbol
of Enlargement. Of the two operations, the simpler should be defined the
earlier. Now
Ep (#) =9 (¢ +1) (4)

is a.simpler statement than
h) —
P () = ‘f’_(w_Jr__’z__L’(w) _— (5)

These operations, E and D, are functions of each other, and whichever is de-
fined last must be expressed in terms of the other. That » shall be defined
in terms of E is the most important feature of the Calculus of Enlargement.

6. The theory of differentiation, I have said, is that part of the calculus
which corresponds to the theory of logarithms in algebra. This proposition
leads directly to very important consequences. Since D is a function of E, all
theorems which may be discovered concerning ¢ (E) will be true of b, and
also, more generally, true of + (D), supposing ¢ (¢) =+ (log #). I shall show
that in this manner the known theorems of the differential calculus can be
proved, and novel truths discovered, by a method almost startling from its
simplicity. Again, from every known or ascertainable proposition in the
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104 McCrinTock, An Essay on the Calculus of Enlargement.

theory of logarithms we shall derive at once a corresponding proposition in
the theory of differentiation; while, conversely, additions will be made to the
theory of logarithms analogous to known truths in that of differentiation.
Finally, from every known or ascertainable equation representing log # in
terms of #, or of any simple function of 2, we shall derive a corresponding
explanation, or practical definition, of the operation of differentiation ; includ-
ing not only the well-known explanation conveyed by (5), but also others in
unlimited number, some of them very serviceable.

7. An outline of the Calculus of Enlargement has now been presented.
Its brevity places it under a certain disadvantage, yet to treat the subject
properly would require the preparation of a complete digest of the Calculus.
Not having immediate opportunity to elaborate a work covering so much
ground, I am compelled to confine myself for the present to a statement of
the general principles on which such a digest should be prepared. The
remainder of this essay will be devoted to the presentation of such new special
theories as seem needed to complete the system.

B. SucaESsTIONS IN DETAIL.

1. Theory of Logarithms.

8. An obvious objection to the use of log E as the definition of » lies in
the obscurity of the idea of the logarithm of an operative symbol; and to go
further back, this obscurity is due to the difficulty of comprehending loga-
rithms at all. It is said by De Morgan (Calculus, p. 126) that the only defini-
tion of log # used in analysis is y, where ¢ =a. When x and y are not
numerical quantities, this is clearly unintelligible. It is certainly impossi-
ble to understand the expression &, so frequently employed, if we suppose
it to mean, as it must mean unless otherwise defined, the nth power of the
constant ¢. Even when 2 and y are numbers, the definition is but indi-
rect at the best. The alternative definitions which I have to suggest
correspond identically with the explanations which will, further on, be
given concerning D =1log E. We may consider log « to be y, where

r=14y+ —;— ¥+ él—g ¥+ ...; or we may regard it as a vanishing frac-

tion, or as an infinite series. The simplest series, and probably the most
intelligible definition, is Mercator’s well-known series,

log(1+x):x——é—x2+%x3——.... (6)
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9. Whatever definition of log # be adopted, it will be desirable to lay
down the following definition of an antilogarithm. The series 1 + y -;— s

+ Ez_lg’yg + .. .1is a function of y; let it be known as the antilogarithm of ,

and let it be denoted by the functional symbol . We may proceed as fol-
lows to investigate the properties of this symbol. By actual multiplication
of the series, we shall find that &Y — ¢ ¥, where # and y may have any pos-
sible meaning. By an obvious extension of the same principle,

()" =&, )
k being any numerical quantity, positive or negative. Putting 2 = 1, we see
that (¢')* = ¢, from which we see that ¢* is equal to a certain constant raised
to a power denoted by 4. It is usual to call this constant e&. When 4 is not
a symbol of quantity, it will be safe to regard ¢ as a symbol merely, accord-
ing to its definition. In short, for all meanings of #, we have the well-known
exponential theorem,

1 1
8’”:1+x—|——2—x2—|—ﬂx3+..., (8)
where, if « is a symbol of quantity, ¢ is a constant, whose value may be found
by putting = 1:

1 1
E:1+1+"—2'+§§+.... (9)
Having established this understanding concerning the symbol ¢, we may
define log « to be y, where x = ¢, or where s =1+ 4 %yz—l— .. .; and the

various theorems concerning logarithms may be developed in the usual
manner.

10. Another and, when duly weighed, most satisfactory definition may
be derived from any one of an unlimited number of vanishing fractions,

special cases of the general form
@ (1—a) _m—ah

A ) (10)
where % is infinitely reduced, that is to say, more briefly, where #=0. This
fraction is doubtless novel, though one case of it, where ¢« =0, is known.
Even that case has not, I presume, been suggested heretofore as a definition.
From (10) we have at once, substituting the equivalent series for ¢,

log & =y. (11)

The various theorems pertaining to logarithms may be derived with the
28

log v =
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106 McCrintock, An Essay on the Calculus of Enlargement.

utmost facility by the aid of these vanishing-fraction definitions. Thus, if
@ = 0, we have, by expansion,
xay\o
log (&°¢) :(se)h l[hzo]::x—l-y:log &ery, (12)

1 1 1 1
log(1—|—x):(—+m’-i)~———[h=0]:$——é—$2+-é—$3—.... (13)

11. Equation (6) furnishes, perhaps, the most intelligible definition of a

logarithm. It is easy to form the idea of a function of the form a:—-—!?z—:ﬁ,

and the conception is not rendered more difficult by adding a term % 2% or a

multitude of terms similar in form. The notion of the sum of a series of
integral powers is simpler than that of a vanishing fraction, and is also sim-
pler than the customary notion of a logarithm, which involves, in an obscure
and inverted manner, a fractional, or rather incommensurable, power of a
strange looking constant. TFor instance,

3 1 1 1
is a more intelligible definition than log % —y, where % = ¢, where

e=1-4+1+4 % +.... When 2 lies between 1 and —1, the series (6) is

convergent, and the value of the logarithm may be obtained by approxima-
tion. When 2 is algebraically greater than 1, the series is divergent, but it
may readily be shown that its sum is finite. Assuming what will shortly be
proved, that ify:x——%xz—l— —El,’—x3—. ey x:y—{-—;—g/z—l—gjl—?;f—l—. cey
one series being algebraically the reverse of the other, we observe that the
latter series is essentially convergent, and that when y =0, # = 0; when
y =, &=0oo; and when y varies continuously from O to o, & does the same,
having a positive finite value for every positive finite value of y. The converse
proposition is, therefore, true, that y, or log (1 4 ), is positive and finite for
every positive finite value of . The assumption just made is legitimate, for the
proof of the reversion will certainly be accepted when # <1, and the law of the
coefficients of the reverse series cannot be different when 2 has any other value.

12. The various theorems relating to logarithms may easily be derived
from this definition. Thus, by the binomial theorem, supposing 1 <a << 2,

w__

e=14a—1y=14a@—1)+2 57 (a—1)+..., (15)
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which may be written
&=14 xe; + 2%, + . . ., (16)
where ¢, = log . Hence,
atV=a (142, + 2%+ ... ) =14+ @+ e+ (@+9)e+.... (A7)
Placing the coefficients of 2 equal to each other; a proceeding to which in this
case no objection can be urged, we have

a'c; = ¢+ 20,y + ey + . . .. (18)
But
a'c,=c¢ + oyt ey + ... (19)
hence ¢, = % A, c—= ~:13— €10y = —2—1§ ¢}, and so on, so that
1 1
al':1+gloga+—2wy2(loga)z-]—ﬂf(loga)s—i—.... (20)
Since, by (7)
’ (slog a)h — ekloga’ (2] )
we perceive, on comparison of (20) with (8), that, if » = log «,
&% = q, (22)
e”yzl—}-ny—l———;—nzyz—l—.... (23)

The applicability of (22) is limited by the supposition that 1 <<a < 2. This
limitation may now be removed. Suppose m =a —1, then n =1log (1 4 m),
and if from the series log (1 4 m) we seek by reversion to determine the value
of m, we find it to be, however far the reversion may be carried,

m:n-l——%—nz—{-z%ns—i-.... (24)

We see by (22) that the law of this series is true for certain values of #, and

the coefficients, independent of n, must be the same for all other values,
so that (22) is universally true. Hence, for all meanings of 2 and g,

Slog (zy) — xy — elogmelogy — Slogx—!—logy’ (25)

log (xy) =log « + log v; (26)

and again, from (21), % being a symbol of quantity, and » having any assign-

able meaning,
ut = s, (27)

log w* = % log u. (28)
13. That log # may be expressed in terms of & is well known. It is only
necessary to write out the development of

log = log T% =log 1+ 2)—log (1 + 2. (29)

This content downloaded from
199.242.209.35 on Mon, 13 Mar 2023 16:59:13 UTC
All use subject to https://about.jstor.org/terms
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It is possible that the fact has not been noticed that an unlimited number of
similar developments may be produced, the general form being

log = [log (1 + ") —log (1 + 4], (30)
n having any value, positive or negative.

14. To explain the meaning of D =log E, we must employ such expres-
sions as can be found equivalent to log «, substituting E for #; and it is
desirable, to ensure breadth of view, to find as many such expressions as
possible. I shall now present a general logarithmic series, which will be
found to include as special cases not only two or three expressions already
known, hut also several important expressions hitherto unknown, besides an
unlimited number of less useful variations. Let y—x"“_“) a~" ;% then

loga=Y (142 y 4 22302y ), (31)

This series may be derlved from (6) by writing, for (1 + ), 2* =1 + ya’,
and performing the necessary successive substitutions; but this process does
not seem capable of furnishing a satisfactory algebraic demonstration. For
the present, I must content myself with saying that the law of the series may
be verified by reversion to any given extent, and that it may be demonstrated
at once by Lagrange’s theorem, as well as by another, and perhaps simpler,
expansion theorem which will be given further on. The more important
special cases are separately susceptible of algebraic proof, so that the tempo-
rary lack of a complete demonstration of the general series is not perceptibly
detrimental, though certainly to be regretted.

15. Since @ and % may have any value, the number of logarithmic for-
mulae which may be deduced from the general series is infinite. For 4, how-
ever, but two values, 1 and 0, can advantageously be taken, all other values
giving results substantially equivalent to those obtained when 2 =1. Let
us first consider the case where 2 =0, and consequently y = 0. In this case
all terms vanish except the first, which we may call the general logarithmic
vanishing fraction :

) Yy _ m(l—a)o_w-—ao_ 0
logx:—h—__————O——_F. (32)
We interpret this, of course, to mean that log « is the limit of the ratio of

x@—9 _p= and h, when % is indefinitely reduced. I shall have frequent

* Formul® more symmetrical, though less simple, may be obtained by writing % (1—20) for a.
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occasion to use the symbol O to express a variable to which the value O is to
be assigned, as in the present instance. Concerning vanishing fractions in
general I shall have more to say later. A simple proof of (32) may be had
by expanding, in terms of %, the ratio mentioned, employing the exponential
theorem, and afterwards making 2=0. In fact, a formula still more general
in form may thus be obtained. For, » being any function of # having a finite
logarithm, '
wa" =1+ (log w+ log x) + P, suppose; (33)

w* =1+ hlog u+ FQ. (34)
Subtracting, dividing by %, and makihg h=0, we have the general formula
in question, which, like (32), is probably new,

0,0 .0
logxz“"’o <. (35)

If, in (32), we put a =0, a=1, a= —;— , respectively, we have

0__ .
logo =221, (36)
=0
log z = Oa: ) (37)
l x‘% —_a %‘
0g & ="—5—, (38)
of which equations the first is known.
16. Before making 2 =0, let a =— —Z—, where ¢ is any arbitrary quan-
tity, either positive or negative, so that —Z— = whh- L loga. Letz—=—ay

= E«’/h_ = ca° log . Then, from (31),
17 .. 3 4? 5
loga::—c—(z—z2+§z3—2—'—3z4+2.3.4z5—...). (39)

We may notice particularly two special cases. If ¢ =1,

logw:aclogw——(xlogw)2+%('a:logx)3—.--; (40)
while if c=—1, ,
log 2 log 2\2 . 8 /lo 8
log & = 52 4 (B2 +5(ED 4. (41)

These interesting series appear to be new. The first of the three is not in

reality more general than the others, since it may be derived from the second
29
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by writing 2°, and from the third by writing 2~°, for 2. We may verify (40)
to any desired extent by reversion of
z log # = ¢'¢* log # = log « + (log x)*+ —;— (log )’ +.... (42)
17. If A=1, we have the general series in the following simplified form,
still probably novel,

logo=y4+ 0ty 2182y (43)
where y = a'=*— g~ Ifa:O, y=a—1,and
logo=(r—1) — 5 @—1)+..., (44)
as by 6). Ifa=1, y=1—2a~* and
logo=(1—a"") 45 L—a~F+..., (45)

which expression, due, I believe, to Lagrange, may be regarded as conjugate

to the one preceding. If @ = —, a proper fraction, the coefficients of 4, ™,
&ec., disappear.

18. If A=1 and a = %-
alternate term disappears, and those terms which remain converge rapidly

the resulting series is remarkable, since every

y bz}

= T’ the series is as follows :

when  is not far from 1. Supposing ¢=

2
1 & 1 3 ¢ 1
logx:2(t——2—-3—+-2—~——5 —e-«——-+ ) (46)
The law of the coefficients may be proved as follows. Let u = + 1, then
1 +

&= and log & = log (1 + w) —log (1—w). In the expansion of this

expressmn let « be replaced by its equivalent ¢ (1 4 #*)~%, and let the several
powers of the binomial 1 - # be developed. It will be found that the

coefficient of ¢, for even values of n, is O; for odd values, let m :% n,

and the coefficient of ¢ will be composed of m —;— terms of the series

S
*A special case of this formula, giving log & in terms of PTE

, has for some years been known, and

it is surprising that its generalized application to all logamthms should not heretofore have been suggested.
The formula for log E was first published, so far as I am aware, in a communication made in 1865 by Hansen to
the Royal Socwty of Saxony; but he did not assign the law of the series, which was communicated by Mr.
T. B. Sprague in 1871 to Mr. W. M. Makeham, and published in the Journal of the Institute of Actuaries. Mr.
Sprague’s proof was by the method of indeterminate coefficients, with differentiation.
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%(I—m—{—m"};—l—m—;!m 2-[— ) the sum of which, by a known
(1—m) =%

el , where 2 =2 (2 +1)(2+2) ... (¢ +r—1).

(—~)‘° (-3)

algebraic formula, is

Thus, if n =1, the coefficient is —2;if n=3,itis _-3—-“:_-%-
1(0 _ 1(1
2
or 2 (—-— %—;—), and so on, as in (46).
19. For substitution in (46), let z = m—l_—l, so that v = z_l;l; also, let

w=42(2+1) = ¢~2 Making these substitutions, and multiplying both
members by 4/(z[z + 1]), we have

1 11 1 3 1 1 3 5 -
VeI I =l gt Y ey T @)

a formula which W111 be found useful in the computation of logarithms, and
which may be compared with the known series,

(z-l—%)logztlzl—k—%)—-[-g]—vz—l-..., (48)

2
where v =4 (z + %) . In the one, we have, for determining log.zjz—1 , to

make use of o/(z [z + 1]), the geometrical mean between z and z 4 1, while

in the other we have to employ z 4 -%—, the arithmetical mean. Suppose

that log 3, and therefore log 9, are known, and that it is desired to calculate
log 10. Employing the usual formula (48), we have a very convergent series,

19 10 1

g gy =1+ 1083 + Gs1605 T+ (49)
but by (47) we obtain a series still more highly convergent,
10 1
V90 log -5 =1 — 5765 + 1738000 — " * (50)

20. I conclude these suggestions concerning the theory of logarithms by
presenting two novel approximative expressions. First,
x+1 22—1
log 2 = R E nearly, (81)
whenever « is not far from 1. By development in terms of # — 1, we find
that this expression differs from log # by a quantity arithmetically less than
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(2—2_—0-1)? . For example, if 2 =0.99, log 2 = — 0.010050335858, nearly, a result

too great by 4 in the 12th place of decimals. Again,

: -1 1 1
loge=2 xT (m + V;) , nearly, (62)
1y
whenever z is not far from 1, the error being arithmetically less than (:v3 23 r
For example, log 0.99 = — 53—7—%, nearly, which is correct in the 12th

place.

11. General Theory of Operations.

21. Algebra takes any symbols subject to these three laws,

2 (y+2) =ay+az, (53)
the law of distribution;
Ty =yx, (54)
the law of commutation, and
gt =™t (59)
the law of indices, and proves that certain theorems concerning such symbols
follow necessarily from the laws. The various theorems of algebra are as
true of all operative symbols subject to the three laws in question as they are
of common symbols of quantity. Any correct process of reasoning applied
to such symbols of operation produces correct results, by precisely that kind
of proof which it is necessary to employ regarding symbols of quantity.
There is no novelty in these preliminary statements. At first, the symbolic
method was used as an instrument of discovery only with the utmost caution,
and its results were not fully accepted until otherwise verified. Its absolute
trustworthiness has, however, been established by the clearest methods of
demonstration, and no mathematician now doubts the algebraic truth of any
intelligible symbolic result. If any doubt remains, it is when a divergent
series appears.

22. I would define a simple operation to be one which changes a function
by alteration of the variable. For example, the change of ¢z (it would be
more formal to write ¢ [«], but I shall omit the brackets where no ambiguity
can arise) into ¢ is a simple operation. All simple operations are obviously
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distributive, though some distributive operations are not simple. For exam-
ple, Da™ = ma™~! is not a simple operation.
23. Let s* represent any operation such that

s'pr = ¢l (Yo + ) . (66)
Here s indicates the kind of operation, depending on the form of +, and %
represents the degree to which it is carried.

s"s"pr = s"py ! (Yo 4 n) = ¢t (W [ + n] + m)
=y (Yo +m 4 n) =s" T rpa. (57
The operation s” is, therefore, subject to the law of indices, and it will simi-
larly be seen that s™ and s” are commutative with each other and with con-
stants, that is to say,
S"S"cPpr = cS"S"Px . (58)
For s it will be sufficient to write s, without the index. The index % may, of
course, have any value, whole or fractional, positive or negative, or it may
even be a meaningless symbol ; meaningless, that is, until some meaning is
arbitrarily assigned to it.
24. Let fis be any function of s, the general form being
fs=as + a8’ Fasts 4. .., (59)
where a;, @ ..., p;5 Py ..., are independent of s, and have any assignable
meaning, so that
fspr=(as"+..)pr=apy " (x4 p)+.... (60)
It will be seen, on examination, that all such functions are distributive and
repetitive, and it is easy to show that they are also commutative. Let f;s be
another such function, say

fS=0b8% + b8t .. (61)
Jisfspr = fsfispe. (62)

The general term of f£is is, let us say, «,s?", and that of f;s, b,8%; then the
general term of fsf;s will be a,s7b,s%, and that of f;sfis will be b,s*a,s"»,
which, by (58), are seen to be equivalent expressions. It follows that all
terms of the two expansions correspond, so that the operations denoted by f£s
and f;8, that is to say, all functions of s, including constants, are commuta-
tive with each other. It follows that all functions of s may be combined or
transformed in any usual algebraic manner, apart from the subject upon
which they operate,

30

then
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114 McCrintock, An Essay on the Calculus of Enlargement.

25. The consideration of the functions of s, after the form of +, and there-
fore that of s, have been assigned, constitutes, in the nomenclature of this
essay, a Calculus. Since 4, and therefore s, may have any form, there may
be an infinite number of such branches of science called Calculus. The opera-
tions comprised under one calculus will not usually be commutative with
those of another, but two or more operations belonging to different systems
may be treated separately from the subject on which they are performed, pro-
vided care be taken not to change their order.

26. In every calculus the most important branch is that which corre-
sponds to the theory of logarithms in algebra. There are several important
theorems which are thus, in a sense, common to all such systems, having
their common origin in the theory of logarithms. Whatever be the meaning
of s,let R =log s; then from paragraphs 13-18 we shall derive at once a num-
ber of expressions giving R in terms of s or of simple functions of s, expressions
which it is not necessary, for present purposes, to write out. As an illustra-
tion, we have from (36) )

r=""1, 63)

Let 4o = 27", and let what s becomes under this supposition be denoted by
H; then
(64)

H'or = ¢ ——
1+ xh’

and the calculus composed of all functions of the symbol i may be called the
Calculus of H. To show the use of (63), let po = a"; then, if ¢ = log H,

oar =TI (65)
where 2 = 0, whence after development, assuming the binomial theorem,
Ga" = —na"*tt. (66)
~Again,
¢ log & = log z —log (1h—|— zh) —log , 67)
where # = 0, whence
Glogor=—ua. (68)

27. The widest generalization of Taylor’s theorem which I have been
able to discover is that which gives s* in terms of AR. Since s* = &%, we have
from (23)

S =14 IR+ 5 PR 4 g R L (69)
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As a single illustration of this theorem, let us, in the Calculus of H as before,
expand H" log x =log 2 — log (1 4 24) :
log # —log (1 4 ak) =log & + k& log & + —;— e*loga + . ..

:loga:«——lzx—}—%kzxz——-;-nx?’-{—.... (70)

28. A connecting link between any calculus, say that of s, and any other,
say that of &', may be found as follows. From (56),
§"pr = oY (W + YT [ F 0] — Yr) =0V gp, (71)
Frdém (69), writing ¢ and # for series containing #* as a factor, we derive this
transformation of (71),
A+nmr+Opr =1+ [s"—1]Ve.R+t)pr =1 +[nr+]Ve. R+ ¢)pz; (72)

whence, equating the coefficients of »,

R)Z = RY2.R'Pa. (73)
Let ¢px =+ = J/x; then R =R, and
RYx = RYx. R, (74)
whence, generally,
rRyr =1. (75)

For example, in the Calculus of =,
gx—'=1, (76)
as by (66). We may, indeed, derive (75) directly from (63).

29. If there is more than one independent variable, it is proper to write
S, 8,y &c., the subscript letter denoting the variable with respect to which the
operation is performed. Of two simple operations, s7, sy, performed succes-
sively on ¢ (z, %), it is a matter of indifference which comes first, the result
in either case being ¢ (Y= [4w +m], 4! [y + 2]) ; and it might readily be
proved that all functions of two such independent operations are commuta-
tive.

30. If the operation s,s, be performed on a function of » and v, where u
is a function of y and v a function of z, and if we then make y and z both
equal to z, the result is the same as if we first make y and z equal to #, and
then operate with s,. The same remark applies to all powers, and, therefore,
to all functions, of s;s,. If, instead of gy, we write x|u, which may be inter-
preted “x varying only in »”, and instead of z, x|v, “a varying only in ¢”,
the double operation s,,,8,,, is the same as s,8,, and is equivalent to s,. The
symbol s, , represents what may be called a partial operation, performed with
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116 McCrinTtock, An Essay on the Calculus of Enlargement.

respect to # in . If w=w«, we shall have the symbol s, ,, which is need-
lessly cumbrous in appearance, and may advantageously be replaced by the
abbreviated form s,,. In general, y being any function,

@87 (U, 0, W .. ) =P (S8 150w - - ) X (W0, WL L) "7

S0 (1, 0) = 9 (88,71 2 (1, ).« (78)
Substituting ¢ log for ¢,
PR Uy v, W .o .) =P RyjuF Ropy+ Bt )xwo,w...), (79)
PR, (4, 0) = @ (Ro— Rapa) X (%) 0). (80)
As special cases, among others,
Ry (U, 0, W .. ) =Ryt Ropo+ Rojut.o.)" x@v,w...), (81)
R, UV = VR, U -+ URW . (82)
31. If u is a function of &, any other function of # is of course a function
of u, and may be operated upon by any function of s,; but functions of s, and
functions of s, are not usually commutative. It may be shown that s, is
equivalent to s',, where s’ depends on +/, and where w, 4, and 4’ are so related
that, when two are given, the third is determined by the equation

Also,

Ju=r. (83)
Starting with this equation, we have, successively,
2T () = g (Y ), (84)
Soxdu = iy ; (85)
whence, since Ju = {'z,
Sy = 87, (86)
¢S, = ¢S, . (87)
Thus, from (73), writing v for ¢z,
RV = Rlu.RD. (88)

32. The simplest Calculus is, of course, that in which 4o =2z, and
spr =¢ (r 4+ 1). Here the operation s is that which I have called Enlarge-
ment, and is denoled by the symbol E. This caleculus may, therefore, prop-
erly be called the Calculus of Enlargement. The most important function of
E is log E =D, which corresponds to ® in the foregoing general discussion,
whenever s is replaced by E.

33. In (73), let Y& = x, and let us write 4 and ®r for ¢/ and ®’; then put-
ting v = ¢z,

Dv = Dy& . Rv, (89)
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Dv

DU Dy
Ru_l—)—@_aR?J’ (91)
where, if v =,
. Dz
Ry = ]%. (92)
Again, from (73),
R)L = RZ . DY . (93)

34. It follows from (87) that all the processes of any calculus, say that
of ¢, may be expressed in the language of any one given calculus, say that of
s, by means of suitable artifices. It is therefore unnecessary to discuss in
detail more than one of these systems; and the preference must naturally
be given to the simplest of all, the Calculus of Enlargement. As a mere
matter of interest, however, I shall, before closing this essay, make some sug-
gestions concerning another calculus, comprising those operations which are
functions of M, where o =log «, and

M'pr = ¢ (x&") . (94)
This system may, in want of a better term, be called the Calculus of Multi-
plication.

111, Theory of the Functions of E.

35. The symbol E has sometimes been defined as ¢°, sometimes as 1 4+ A,
and sometimes as representing an operation such that Epz =¢ (2 4+1). It
has also sometimes been used to denote the operation which changes ¢« into
¢ (x+ %) . We cannot now accept a definition in terms of A or D, for a sim-
ple operation ought not to be defined in terms of one more complex, nor can
we agree that E shall be dependent on any arbitrary quantity 4; E¢px must be
¢ (z + 1) and nothing else. Yet if E¢x = ¢ (# 4+ 1) express the definition
of g, it will require considerable labor to prove that in all cases E*¢pax = ¢ (x4 %),
and then only when % expresses some positive or negative quantity; and the
argument will not be free from ambiguity, since, for example, it might be

hard to prove that E*px cannot be its own opposite, namely, — ¢ (x + -;—) I

find it better to define E*, like s, as a compound symbol representing that
simple operation which changes ¢« into ¢ (¢ + %), whatever be the meaning of

k. In this light we must regard E, when without an index, as an abbreviated
31
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118 McCrintock, An Essay on the Calculus of Enlargement.

form of E'. Since ¢E’px = cpx, we observe that cE® = ¢ and 8° =1, and hence
that any constant may be regarded as a function of E of the form ¢g°.

36. It would have been sufficient to define E* as that special case of "
where Y& = «, and it may be said at once that all which has been shown to
be true of s and its functions is true of E and its functions. If any one shall
hereafter deem it best, for teaching the rudiments of the Calculus of Enlarge-
ment, to omit all mention of other possible systems, based on simple opera-
tions other than E, he will find it sufficient to say concerning E what has been
said above concerning s, substituting & for . It is not now necessary to
repeat concerning E what has been proved in regard to all repetitive simple
operations, and I shall confine my attention to certain properties pertaining
to all functions of E as such. While nearly all of these properties are now
no doubt first exhibited in this light, it will be seen that some of them are
already known, more or less explicitly, as properties pertaining to algebraic
functions of ». Such propositions will, however, be found to have been gene-
ralized, the properties hitherto known concerning algebraic functions of »
being now exhibited concerning all functions of E, and therefore concerning
all functions of ». It will be remarked that the theorems about to be stated
regarding functions of E are developed more easily than if they were to be
proved as relating to functions of p; particularly when the comparative ease
with which E and » may be defined is taken into consideration, such defini-
tion being an essential element in either case.

37. If the general term of ¢z is @,2", that of ¢EA (2 4 ») is a,EW (2 4 2)
=ay (x+n-+y), supposing « and y to be independent, and this for the
same reason is also the general term of ¢E (2 4 ), so that all terms cor-
respond, and

PEA (¢ +9) =9EN (£+9). (95)
The same may be shown for any number of variables. Also,
PEA (@ —9) =9 (&) ¥ (v —9) - (96)

38. If the general term of ¢« is @2, and that of Y« is §,4™, the general
term of ¢E,c¥y(¢”) is @,E;¢?D, ™ = a,b,E;c"Y ™ = a,b,c*TPvT™,  Similarly,
VE,C,, ¢ () and ¢? ¢ (¢E,) 4 (¢*) will be found to have this same general term,
so that

PELY Y (¢°) = YE,7 ¢ (¢¥), 97)
PE,CY L (¢) = ¢ ¢ (VE,) })F), (98)
8,67 (%) = o ¢ (¢8,) 4 (). (99)
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In general, for any number of independent variables,
PEAE, . . . xELELY " L (¢V ™)
= QEAE, . . . gELE,CY 0 (¢ )
— ny...uvw“L(Gx...uvwa) L. ;(ny...quv) E(ny...quw) (P(cy...mw)’ (100)
where ¢, i, &c., are arbitrary functions. Again, similarly,
9 () () =4 (0E) 9 (@), (101)
Again, since E}¢ = El2% = ¢,
PE,c = ¢le. (102)
Here ¢ represents anything independent of z.
39. There are many special cases of the foregoing propositions which are
themselves important general theorems. Some of these will now be men-
tioned. Ifin (95) and (96) we make y = 0, we shall have

QE Vo = ¢E, ¢ (¢ + 0), (103)
9 da = (5) ¥ (2 —0); (104)

and from the former of these, observing (102),
¢Ex = 29l + PEQ. (105)

Again,
@E sin & = ¢E, sin (¢ + 0) = sin 29E, cos O + cos 2¢E, sin 0,  (106)
PE COS & = cOS XPE, cos 0 — sin 4¢E, sin 0, (107)
It may be observed that since cosn = cos (—n), E} cos 0 = E; " cos 0, and in
general,

@E, cos 0 =¢ (B, ') cos 0. (108)
If, in (97), we makey =1,
, R () = (8) 9 (@), (109)
and if ¢ (¢®) =1,
QEC" = "¢ . (110)
If y=0,
. PEY (¢7) = LE™P (), (111)
where, if gE=1,
b (%) = e, (112)

which may be regarded as one form of Herschel’s theorem. If, in (98), we
write 4« for 4 (¢"), and put y =1, we shall have

PECT = ¢*p (CE) Y . (113)
If, in (99), £ =1, we shall have, writing x for Y,
VECD (¢°) = ¢ ("B, ¢ (¢Y). (114)
Similarly, supposing 2 = 0 in (99), and writing « for g,
VB () = ¢ () ¥ (). (115)
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For example, let Y& = E*; then

¢ () = ¢ (¢'Ry) . (116)
If, in (101), we puty =1,
. ¢ (&) ¥ (¢) =4 (¢E) ¢ (), (117)
while if y =0,
¢ ()% () =¥ (B) ¢ (&) . (118)

In all these theorems, as well as in the more general ones from which they
are derived, ¢ may have any value. If we assign to it the value ¢, we shall
produce another series of theorems, for the most part less general in charac-
ter, which it is not now necessary to write out in full.

40. If we have to do with two or more independent variables, we are at
liberty to regard them as being themselves functions of a single supposed
variable, which let us call /, the form of the functions being such that
e=gl+¢, y=~Fkl+¥, &c., where g, ¢, &c., are arbitrary constants; for in-
dependent variables may be viewed either as equicrescent quantities, in which
case they must be functions, of the form mentioned, of some standard varia-
ble, or as quantities to which arbitrary values may be assigned, in which case,
again, there is no difficulty in accepting the foregoing statement.* Since

Epr=¢ (9l+9+7¢) =¢ (v +9) =Elpr, (119)
E, is a function of E,, and all functions of E, will be commutative with all
functions of E,. For g, I shall hereafter use the symbol ¢, and for g, ,, E,,,
&c., the symbols ¢,, ¢,, &c.

1v. Analytical Theory of Differentiation.

41. Let p=1log E, and d = log ¢. The former statement is new only as
a definition, while the latter is, I suppose, novel in all respects.t Both b
and d are functions of E, and have, therefore, all the properties which pertain
to such functions in general. The operation denoted by » is Differentiation.
That denoted by d = », is in reality the same operation, performed with

*To quote language used by Lagrange on another subject, * quoique dans les fonctions de deux variables
que nous considérons ici, les deux variables soient censées indépendantes, . . . rien n’empéche cependant qu’on
ne puisse regarder ces variables elles-mémes comme des fonctions d’une autre variable quelconque, mais fonc-
tions indéterminées et arbitraires.” Calcul des Fonctions, ed. 1806, p. 834.

1 That is to say, taking e as it has just been defined, namely, us equivalent to E,, the symbol of enlarge-
ment performed with respect to an assumed variable I, where ! is such that x =gl 4 g/. Nevertheless, on the
one hand, it is already not unusual to say that a differential may be regarded as a differential coefficient taken
with respect to an assumed variable; and on the other hand, it has been noticed by Arbogast (Calcul des Déri-
vations, p. 876) that, using our notation, d =log ®¢, where g is any arbitrary constant. The present statement
connects these two ideas, and indicates the form of the relation between I and .
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respect to an imagined variable. If it be desired in any case to make a ver-
bal distinction between D and d, the operation denoted by d may be called
“taking the differential”; but the word differentiation has been so long used
in both senses, and the danger of misunderstanding is usually so slight, that
such a verbal distinction will not often be required.

42. The resultant of the operation p is usually known by the term Differ-
ential Coefficient, though it is also sometimes called Derived Function or
Derivative, and that of the operation d is known as a Differential. The term
Derivative cannot be permanently satisfactory unless the word Derivation be
substituted for Differentiation, a proposal which would not be listened to. It
is on every account desirable that the operation and its resultant should have
cognate names. The terms Derivative and Differential Coefficient are more
or less objectionable, the one as recalling too strongly Lagrange’s doctrine of
Derived Functions, a theory not now in general use as an explanation of differ-
entiation, the other as indicating a mere appendage to a differential; and the
latter term is besides insufferably cumbrous. The word Differentiation, though
introduced only in the present century into the language, is now firmly rooted.
To express the resultant of this operation, and as a substitute for the phrase
Differential Coefficient, I venture to coin the noun Differentiate. To this noun,
as denoting that which has been differentiated, there seems to be no etymo-
logical objection, since it follows the analogy of such words as graduate, asso-
ciate, duplicate, postulate, delegate, &ec.

43. Just as a differential is in one sense a differentiate, since d = p,, so
also in another sense may a differentiate be regarded as a differential, since,
if we put ¢y=1, we have p, =log B, =log ¢=d. The differentiate is the
simpler of the two, analytically, while the differential is frequently the more
useful and intelligible for practical purposes. As both may be embraced in
the same theory, there is no sufficient reason for excluding either from con-
sideration. If the imagined variable / represents time, the differential is a
differentiate with respect to time, and is known as a Fluxion. On the other
hand, if, in # = ¢l + ¢, we have ¢ infinitesimal, the differential will also be
infinitesimal, since d = log ¢ =log EJ =¢D, .

44. ¥rom (69) we have Taylor’s theorem,

B = 1D 5 B0 g B L (120)
¢ (@4 1) = po+ hnpa + - Frgr 4. . .. (121)

32

This content downloaded from
199.242.209.35 on Mon, 13 Mar 2023 16:59:13 UTC
All use subject to https://about.jstor.org/terms



122 McCLiNTOCK, An Essay on the Caloulus of Enlargement.

Applied to ¢0, (120) becomes Maclaurin’s theorem ; to 2™, the binomial theo-
rem. The symbolic form (120) is always true, and the theorem itself (121) is
therefore formally correct, though the resulting series is not always algebrai-
cally intelligible, and, even when intelligible, cannot, unless convergent, be
verified arithmetically.* The following modification, possibly novel, will
sometimes be found useful:
1 e (x4 —;—h) Kp’p (w -+ % h)

¢@+m:m+m@x+§w)+ st gt (122)

This is found by subtracting the development of ¢ (x—— %Iz from that of
P (x -+ —%— ]z) and then writing « + —;— h for x; or, symbolically, from E*=1

+ (¥ — e~ it To extend Taylor’s theorem to functions of two or more

variables, we have only to develop EIEE... = ¢+t -
45. It was shown in paragraph 12 that when y =2 — -;— x4+ % »— ...,
1 . . . ey .
r=y+ % 7+ 53 ¥’ 4-.... A more direct proof of this reversion, which is a

step in the demonstration of Taylor’s theorem, is as follows. Log [1+a
+ 6 (1 + a)] is a certain series of powers of the expression a + b (1 + «).
Expanding these powers, which are all positive and integral, by the binomial
theorem, and separating the series forming the coefficient of " (1 4+ )", then
expanding (1 «)" and multiplying the result by the coefficient just sepa-
rated, and finally separating from the product the series forming the coeffi-
cient of ™0, we find it to be, for all values of m and = greater than 0,

P AT

”)
o () S =10 (=D (b m—1)" Y], (123)
where 4" = (#—1)... (x—%41). The series enclosed in brackets is, by
a theorem in finite differences, equal to O; hence all terms in @™0", that is to

say, all terms which contain both ¢ and 4, vanish. The terms remaining,
which contain ¢ alone and b alone, are respectively

1 1
a———2—a2+—3—a3—-...:log(1+a), (124)

1 1
*The expansions of ¢~ 4", & 7, &c., apparently convergent and untrue, are really divergent and unin-
1
telligible, as may be seen on examination of those of & 2% &c., when = is very small. The coefficient of /n in
g—-—wvn

)
cee

each of the former expansions contains a term of the form oo , where v is infinite, a form which be-
n

comes »* when n=wv.
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b— 5 B B — . =log (140). (125)
Hence,
log [1+a+b (1+a)]=log [(1+a)(1 +5)]=log (1 +a) +log (1+7). (126)
If y=log(1+4+2) =a— -;— 2+ ..., let us assume, as the reverted series,
r=ytoy+ey+.... (127)
Similarly, if v =log (1 + w),
w=v4c*F+c*+ ..., (128)

Since, by (126), y +v=1og [(1 + 2) (1 + )],
L+l +u)=1+@G+)+a@+o+a@+o'+....  (129)
But, from (127) and (128),
I4+2)04+uv)=A4+y+ear+.. )A+v+e®+...). (130)
Equating the coefficients of v, and then comparing those of y, ¢% etc., we find
that 2¢,=1, 3¢;=c¢,, 4¢,=¢;, and so on; whence ¢, = —;—, ¢ = 2~1—3, and

so on. Here, throughout, # and y are symbols devoid of meaning.

46. From (75),
pr=1. (131)

It follows that dx, which is equal to gpw, is equal to ¢; that y =%, &ec., show-
ing that dz, dy, &c., are arbitrary constants when x, y, &c., are independent
variables.
47. From (79),

¢ (U, v, W, . ..) =P Dpyu+ Do+ Doyt - )b (w0, w,...), (132)
a general theorem which, though I do not remember having seen it, may
be already known. If ¢p,—= D%, we derive the following theorem, substan-
tially due to Arbogast,

ol (u, v, wy o) = Doju+ Dot - )" (u, 0, w, .. .), (133)
of which the next, known as Leibnitz’s theorem, is a special case :
DIy = (D Dy o) U0 . 134
N (Dzju+ De o) (134)
D,uv = D, |, UV + D, |, U0 = VD, - uDV . (135)
48. From (80), similarly,
. Dy Y (4, ¥) =P (De— Dy o) ¥ (4, 0) (136)
from which
Dw[un'\L (u) /U) = (Dx - Dw]v)n’q/ (u’ /U) ’ (137)
of which the following, ascribed by Price to Hargreave, is a special case:
Dy w0 = (Dy — Dy ) "uv . (138)
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49. From (88),

D,V = Du.Dw .* (139)
Ifv=u2,
pu.Dx=Dr=1, (140)
whence
D= . (141)
D&
Again, from (139) and (141),
D = o = DY (142)
DY D
If v=1, we have, since d = ,,
du
Dy = . (143)

. . d .
It follows that wherever D, is written we may read T and vice versa; and

from (141) we see that this is true whether 2 is or is not an independent
variable. Again, from (139), '

Dy |y =D%.D |y, (144)
one of which expressions may always be replaced by the other.

50. All results obtained in the language of differentiates may of course
be expressed at once, mutatis mutandis, in that of differentials, and vice versa.
In the case of partial differentiation, the student should be informed that he
will frequently meet with a certain ambiguous form of expression, which may

3,
be illustrated by saying that he will find »,2p|,u written E;Z-%?/ . Perhaps it
would be well to avoid this ambiguity in future by writing, for example, % ,

where d, and d, must be regarded as abbreviations of »,,, and D, , .

51. A large number of theorems relating to all functions of p may be
derived at once from those already obtained concerning functions of . Most
of those which I now proceed to mention are known, though, as hitherto
proved, they are known only for such forms of function as can be expressed
in integral powers of ». In deriving these theorems from (95-102), it will be
seen that changes are sometimes made in the form of expression, such as
writing ¢ log for ¢, & for ¢, &ec.

*If I were writing an elementary treatise, I should introduce, at this point and elsewhere, the usual proofs
and illustrations, together with others to be hereafter suggested. I have, for present convenience, deferred the
consideration of such explanations of D as are afforded by vanishing fractions and series, but wish it to be
understood that my separation of the “analytical’’ from the ¢ explanatory theory of differentiation’” is wholly
arbitrary, and ought by no means to be imitated in any methodical treatise on the Calculus of Enlargement.
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oo (2 +y) = ¢pp (x4 7),
o0 (2—y) = (—1,) ¥ (1 —7),
0. (k) = 4D, (ky),
@D ™ x = P (m + D,) Y,
DY (ky) = & (ky + 0,) ¢ (ka),
GDAD, . . . DLDENY W (kay . . . ww)
= @DAD, . . . xDEDE Y L (kxy . . . uw)

:g’“”y'--“”wmp(/m...uvw—l—Dy) . .E (kxy_.,uv—i—-])w) P (]t'y.. .’l(z@’l,l}),

¢ (ky + ho,) & (ka) = (kx + b)) ¢ (ky),

¢Dc = ¢0c.

125

(145)
(146)
(147)
(148)
(149)

(150)
(151)
(152)

In all of these the variables are supposed to be independent. From (103-118)
we have the following, which, although mere special cases of those just given,
are still of great importance as general theorems:

o0a = o) (2 + 0)

ooz =@ (— D) ¥ (¢ —0) ,

¢v2 = ¢0x + ¢D,0,

@D sin & = sin #¢D cos 0 4 cos #¢D sin O,
@D cos & = cos xpD cos 0 —sin a¢D sin O,
¢D cos 0 = ¢ (— D) cos O,

¢y (kr) = 4n,e*'p (k1),

¢De” = ok,

¢y (kx) = D9 (£0),

P& = PDE™,

o™y (k) = & (kx + D,) ¢ (1),

DY (k) = (ko + D) ¢ (40),

¢ (@48 =9 (a+Dy) M,

¢ (k+ o) 4 (kx) =+ (kx + hpy) ¢ (K1),
¢ (hp) 4 (kx) = (kx + kDy) ¢ (%O) .

From these, putting 2 =1,

PDex = D¢l ,

D = YDye“9p0 ,

¢Dexr = e (¢ + Dy) 91,

¢oyx = (2 + D) ¢0,

¢ (14 kp) Yo =+ (2 + Ap,) 1,
¢ (hv) o = (z + /D,) 0.
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(153)
(154)
(155)
(156)
(157)
(158)
(159)
(160)
(161)
(162)
(163)
(164)
(165)
(166)
(167)

(168)
(169)
(170)
(171)
(172)
(173)
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The possible difficulty of expressing ¢p in terms of E cannot be urged as an
objection to the foregoing deductions. We know that ¢D can be expressed in
terms of D; that each such power of D can be expressed in terms of A, and
again that each such power of A can be expressed in terms of E. Inasmuch
as we know that ¢p can be expressed in terms of E, it is unnecessary to in-
quire the exact form of the expression.

52 From (152), where ¢ is anything independent of «,

p.c=0. (174)
Inversely, operating on both sides of this equation by p;,
p;'0=c. (175)

Here is an operation which creates something out of nothing; and since we
cannot tell what that something may be, the results of this operation, and of
all other operations which have the same creative faculty, must be indetermi-
nate. I presume that, in general, all functions of E which cannot be expressed
in positive integral powers of A are productive of indeterminate results. If
any such operation, say B, is performed on ¢& = ¢« + 0, it produces, in addi-
tion to what we may call the principal form of By, a complementary function
of x, the coefficients of which may be assigned at will. In the case before us,
we perceive that when the operation =% called Integration, and usually rep-
resented by the sign f , is performed, we must introduce a complementary
constant before we can venture to interpret the result. It is unnecessary to
say much in this essay regarding integration. We shall have occasion to use
the well-known definite integral f :e“”w’”dx =T (1 + m), of which the fuller

formal description is D' "™, .. —D e "a™,_q. The sign f , as com-
monly used, may be considered as equivalent to "', since
f ¢rdx = D~ *¢px = dx . D] '¢x = D; 'padx . (176)
53. From (160),

D = %, (177)
De” = ¢ (178)
If 1 =¢°, Der =&’ =, the reciprocal of which is D0, or
Dlog x =a~ " (179)
Hence,
D2™ = D0 . Dpx™ = &~ 1. me™ = ma™ . (180)
From (158),
Dcos 0=—Dcos 0=0. (181)
By Maclaurin’s theorem,
sin & = #p sin 0 4 a2, suppose; (182)
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whence, assuming D sin O finite, which can be proved from (157) when z is
infinitesimal,

s‘_‘z)_‘?:psino, (183)
and since, by trigonometry, sin0 _ 1,
Dsin 0 = 1. (184)
Then, from (156) and (157),
D sin # = cos , (185)
Dcos x =—sin . (186)

54. The following series, the result of integration by parts, a method
deducible, as usual, from (135), are well known :*

T (1+p)= [ e arde+ | e arde

_ x z? —1 . —2 .
xp[l+p+1+(p+l)(p+2)+...+px +pp—1a —l—...], (187)
x z — z?
& = P 1 1+]m (188)

Let us write 2D for #, and its antilogarithm ®* for &%, and let us suppose the
subject of operation to be p2. We shall then obtain the following extension

of Taylor’s theorem :

p@+n=[1+"7 M ph D

(P +1(p+2) .

P )’P 14
+p (p—])k D 4. . ] Ta1p) +p)¢x.
The original series terminates, in one direction, when p is an integer, so that
in that case our extended theorem takes the usual form of Taylor’s theorem.
It will be observed that p may be any quantity except a negative integer. If
& = 2™, we shall have, as a special case, the extended binomial theorem of

Roberts.} If we write O for # and « for %, we shall derive the following ex-
tension of Maclaurin’s theorem :
' D,

¢x:[1+p+l

* De Morgan, Calculus, p. 590; Roberts, Quarterly Journal, vir, p. 207,

+In this, as in (189), when p is an integer, there can be no powers of 4 with negative indices. Unaware
of this limitation, Roberts obtained anomalous and perplexing results. How near he came to formulating the
extension of Taylor’s theorem may be seen from the following quotations: ¢ Let ¢ () be any function of =,

(189)

"D

+oob e | i, 90 (190)

then ————— l 1 + ¢ (z) = coefficient of a development of ¢ (x4 A) ... [%’], according to powers of A to the base
under n.” “AII that the equivalence [%/] means is this : if ¢ (4 %) can be developed according to powers of
(x4 h), I__‘(ijl-—n)q)(w) [¢ («) being similarly developed] will give the corresponding coefficient of A" in a

development to the base index n.”
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While there may not now appear any practical use to which these theorems
for expansion in fractional powers can be put, they will at least be found to
throw some light on the theory of the subject. Various interesting series,
such as for sin &, cos x, and of course ¢, may be obtained by the use of (190),
and 2™ can be treated by it, when m is fractional, whereas Maclaurin’s theo-
rem cannot be employed in that case; the result of such treatment being that
all terms except 4™ vanish.

55. By employing (188) to expand ¢«°in (162), we have at once this
extension of Herschel's tlworem,

QT = 9D, p+1 o pa Ot ]F(l—]— PR (191)

Here, as before, p cannot be a negative integer.
56. I shall give more space to the consideration of the form of p"z™,
where » is fractional, than would be necessary were it not for the fact that

it has been the subject of a noted controversy. Messrs. Liouville, Kelland
and others make

pron = (=1 SR s, (192)
while Peacock makes
n I'(1 + m) I
D ]'ﬂ(_l‘_?m__n) X . (193)

De Morgan (Calculus, p. 599) conjectures that ¢ neither system has any claim
to be considered as giving the form of p"a™, though either may be @ form.”
Later, Roberts shows, by strong arguments of analogy, that Peacock’s form
is tenable, while he admits the force of the arguments adduced in favor of
that of Liouville. The reader cannot probably find in existence a more com-
plete illustration of the difficulty with which such a subject is handled, under
the indirect theory of differentiation heretofore followed, than that furnished
by Roberts’ argument. It is not too much to say that under that theory the
meaning of D", where n is fractional, can only be guessed at. That indirect
theory gives us D, the special case, and permits us to divine, if we can, by
induction, analogy, or conjecture, the meaning of »”, the general form. This
is in every science the natural order of things so long as the general law,

which shall furnish direct deductive proof, is unknown. The method now
presented enables us to treat this case, like all others, with confidence and
certainty. It makes us acquainted with p” as one of many functions of E, and
enables us to discuss, if we please, the general form D" before the special form
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p. If, in pursuance of the direct method, we arrive in any case at results
which are not intelligible, we can only seek further for such expressions as we
can understand, knowing that when found we can depend upon their accuracy,
provided due allowance be made for possible complementary functions. I
shall now try not only to show that Peacock’s form is the principal form of
p"z™, but also to indicate the precise nature of the error made by his antago-
nists.

57. If, in (189), ¢x = «?, we derive a development of (x + A)? in powers
of % which, when p is a fraction, extends to infinity in both directions. If
D?x? is a constant, the coefficients of A?*+! A?+?% &c., which are derived from
v?z? by differentiation, will vanish. That Dp?2? is a constant may be shown
from (173), which gives, writing z for 4,

DPa? = 22 (2 + 2D,)*0?, (194)
wherein putting z =« eliminates #. Omitting the vanishing terms of the
development of (z + %)?, and comparing the coefficient of 4? in the remainder

of the development, namely, %, with that of 4? in the known develop-
ment of (« + %)? by the binomial theorem, namely, 1, we have
p?x? =1 (14 p). (195)

This equation is thus shown to be true for all cases except when p is a nega-
tive integer. That it is formally true in that case also may be seen upon

. . . . . . "’ 1
repeated integration, resulting in a term containing p~'2=* =log & = % —
the latter fraction being the complementary constant. Therefore, in all cases

Dm‘ m Dm-—n' m-—n
° ° (196)

TA+m)— I'(l+m—n)
Operating on both sides with p”"~", and multiplying by I (1 4 m) , we have,
for all values of n, Peacock’s formula,

VLT J— F(l +m) m — n
It may readily be shown that in this case there are no complementary terms
in gm—"—1 gm—"~? &ec., such as might be created from O by the operation

p"—™, For, by (189), the coefficient of #*in (2 4+ A)™ is ]Tll)%’ while we

know, by the common expansion of (x 4 A)"(x+A)" "= (" +...)(@" 7" +...),
that this coefficient contains no other power of « than &™—".
34
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58. The arguments by which it has been proved that Liouville’s form of
D"z™ is correct have never been impugned, nor do I now impugn them, though
I hold that it is not the principal form. If the performance of an ambiguous
operation (see paragraph 52) such as p*, where »n is fractional, produces in one
way a real result and in another an imaginary result differing from the real by
a complementary function which p” produces from O, and which the inverse
operation p—" will reduce to O, we are bound to accept the real result as the
principal form. The proof of Liouville’s formula depends on this equation,
derived from (160),

D * = (— )" ™. (198)
When # is fractional, this expression is imaginary. It is, however, formally
correct, and no one seems to have suspected that another and real expression
can be found. Even Roberts explicitly lays down " = @"¢*, without limita-
tion, as if it were the principal, or indeed the only possible, form. I shall

now show that (198) is not the principal form of p%~=. Since ¢~ * = 4%’ — av
2,92

-|—952—v~~—. .., we have, by (197),
"2y x—" {1}1 ) wZ—n,UZ .
Dre —F(1_‘n)_r(2—n)+r(3—n)"“ T (199)
a series not only not imaginary, but also essentially convergent, and, there-
fore, eminently acceptable. If, on the other hand, we expand (—v")e~* by
(188), writing — av for x, and —n for p, we shall have the same series, with

o Now the additional

v—l w—n—Zv—Z.
['(—n) + [(—n—1)" """°
terms become ultimately all of the same sign, forming a series infinite in
value, as might have been expected from the imaginary character of the func-
tion developed ; but it is especially to be remarked that they all vanish when
operated upon by p~", showing that they constitute a complementary func-
tion, and are not necessarily part of the principal form of p"=*. Here then
are two forms of D%, (198) and (199), one imaginary, the other real, the
former being composed of the real form plus a complementary function. The
real form is therefore the principal one. It is, however, only by employing
the imaginary form that the expression given for p"2™ by Liouville can be
proved.

59. A good illustration of the ease with which secondary forms of such
expressions as D"2™ may be obtained consists in the application of (171) to
p"a™, whence

these additional terms, —

p"a™ = (2 + D)™ 0", (200)
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Now this binomial may be so expanded by Roberts’ theorem as to produce a
result differing from (197) by only a complementary function; but if on the
other hand it is expanded in the usual way, in positive integral powers of D,,
it produces an expression, probably new,

p'a™ = (2™ 4 ma™ ~'p,+ .. .) 0% (201)
which, although formally correct, can have mno claim to be considered the
principal form of p"a™. It does, however, give correct real results when = is
a positive integer, and in every case satisfies, as does Liouville’s expression,
the requirement of interpolation of form. For example,

pla = 20t + _;— 022, (202)

and repeating,
Dinke = 201 4 = 0k, (203)
Dipinty = pir= a0 4 o 0 =1. (204)

v. Explanatory Theory of Differentiation.

60. Although the various theorems of the Differential and Integral Cal-
culus may readily be derived from the propositions already laid down, we
have really taken but a narrow view of the subject. We have not done
much more than to exhibit Taylor’s theorem, and to ascribe to D as a function
of E certain properties pertaining to such functions in general. We have now
to examine more closely into the nature of the operation of differentiation, as
disclosed by its symbolic definition, p = log E.*

61. The coefficient of % in the expansion of ¢ (2 + %) by Taylor’s theorem
is ppa. If, therefore, we know the development of any function of x4 % in
positive integral powers of 4, we know at once the differentiate of the same
function of £. Thus, from the binomial theorem, we have pa™ = ma™~!; from
the exponential theorem, De” = ¢*; from the logarithmic series, » log # =a~';
and from the trigonometrical series, 0 sin # = cos # and D cos £ =—sin .
This method of determining ppx rests on surer grounds than the somewhat

* I must again observe that the order in which, for present convenience, these several matters are discussed
is not that which should be followed in a methodical treatise on the Calculus of Enlargement. In such a
work, the elementary explanations which we have now to consider should be introduced as soon as practicable
after the first mention of differentiation, and be followed up at every convenient point by suitable illustrations,
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132 McCriNtock, An Essay on the Calculus of Enlargement.

similar principle underlying the Calcul des Fonctions of Lagrange, for we have
what he had not, a symbolic demonstration of Taylor’s theorem ; and, not to
dwell too long upon it, we may pass it by with the remark that in all proba-
bility no insuperable objection can be made to it.

62. Perhaps it has not been noticed hitherto that a simple variation of
Taylor’s theorem,

A:D—]—-—é—D“—}-%éDs—l—..., (205)
is remarkably susceptible of geometric illustration. ¥
For example, let Ap=a, and let the space ABcD, . /;{/
included between the straight line Ap, the curve P ¢
BCcK, and the two perpendiculars AB and Dc, be
called p#. Take pE =1, and draw the lines EF 4 ] E

perpendicular, and ca parallel, respectively, to AE; also cH tangent to the
curve. Then,

D& = DEGC, (206)
—;— D’px = CGH, (207)
2_1% D'pa + . . . = CHF, (208)
Aqua*:CDEF:Dq)x—]—%D?x—l-g%D%—}-. cee (209)

63. It is desirable to find as many expressions as possible for log # in
terms either of x or of simple functions of #, and in them to write E for «, in
order to arrive at the clearest understanding of the operation p = log E by
attentive observation of its various algebraic equivalents. For this purpose
the two general series (30, 31) presented in the foregoing Theory of Loga-
rithms afford ample means.

64. From (30),

—_— 1 n 1 2n _]_'~ —n _1_ — 2n
D._?E—%E +...'—n +2nE ey (210)
where » may have any value. If n=1,
1 _ 1
D:E—.—2—E2+...—E ‘—]——2~E P— (211)

Applied to ¢z,
pr == [¢p @+ n)—¢ @—n)]— 5 [p(@+20) —¢ @—20)]+..., (212)
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1

ppr=[p@x+1)—9@—D]—5[p@@+2)—9¢@—2]+.... (213)
These series, which are probably new, will, owing to their symmetry of form,

be readily borne in mind. To illustrate their use, let $2 = a*, and we have

1 1 on .
Da* = a* [—n- (@ —a) — o (@ =) + .. ] —aloga  (214)
Let o = 2™, then
1

pr"=[(z+1)"— (z—1)"]— ?[(x +2)"—(x—2"]+.... (215)
Here all terms in 2™, 2™~2%, 2™~* &c., obviously vanish. The terms in 2™~3,
™5, &c., contain, in the coefficient of each such power, a factor of the form
1—24+3—...,where r is an even positive integer, so that, by a known
theorem in finite differences, these terms likewise vanish. There remain the

terms in 2™—!, whose coefficients are 2m—2m 4 2m— . . . =m,.so that,
finally,
D™ = ma™ = (216)
Again, putting » = —;r—,
. 271. s . T
DsSIn & = ;—[sm (w—f— —2-) — sin (x—;)— . ]

:%(2——?;~+—Z——...>cosx:cosw. (217)

It is needless, however, to multiply illustrations which will readily occur to
the reader.

65. Let the symbol 0 represent the operation of obtaining the ratio of the

most general form of difference of a function to the corresponding difference

of its variable; that is to say, let
E ha+h __ om ha
0= —h——’* (218)

gﬁ(w—lza—}-hh?—go(w—ha). (219)

The constants @ and 2 may have any value, so that there will be an unlimited
number of special cases, some of which will, from their greater importance,
require distinct symbols. Thus, when 2 =1 and e =0, 0 =E—1=A;
when 2=1 and e =1, 0 =1—E""!, which is sometimes denoted by ‘A;

opr =

when 2=1 and a:—é—, d==rf—E"* which let us represent by A; and

* Results more symmetrical, though less simple, can be got by writing -1— (1—20) for a.
85
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when 2=0 and ¢=0, d=>». It will shortly be shown that we need not
restrict D to the case where ¢« = 0, but that 0 = p when 2 =0, whatever be
the (finite) value of a.

66. We now derive at once from (31) the following general differentiate-
expression :

20 —1 ?a—} 3a—2]lzas+4a—~1 4a — 2 4a —

. 3

2 3734
3 hd* + 5 3 3 3 1 Fot+4.. .. (220)
Of all special cases of this theorem, those are particularly important in which
h=0orh=1. When A=0, there are four chief cases, where a =0, a =1,

D=0+

a:—gl—, and a =, respectively; and when ~2=1, there are three chief

cases, where a=0, ¢a=1, and a= é—, respectively. I shall discuss these

in order.
67. Let A=0. In this case the general theorem is reduced to a vanish-
ing fraction. Concerning vanishing fractions in general, it may be said that

they are rendered needlessly obscure by presentation in the form % . When-

ever we have to write O as the denominator of a fraction we ought, I think, if
convenient, to express the numerator as a function of the denominator, or,
in other words, as a function of 0, that symbol, when employed in the nume-
rator, representing the denominator and nothing else. So expressed, it is
impossible for a vanishing fraction to be ambiguous in meaning, supposing it
possible to expand the numerator in positive integral powers of 0. It mat-
ters little whether such fractions are philosophically explained by the doctrine
of infinitesimals or by that of limits. All that is necessary to their accep-

tance is to persuade ourselves in some way that —"Z— =1 when 2 =0.
68. When 2 =0, we have, therefore,

(1 —a)0__ p—ad
p=F——", (221)
an expression which may be instantly verified by expansion. It may, indeed,

be shown that
(B —1
=T, (222)
where P is any function of E. Of this (221) is a special case. In practice,
we may apply (221) thus,

I By — -
pe—tatDopeh) (223)

Dpxr =
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The differentiate of any function, therefore, is equal to an infinitely. small dif-
ference of the function divided by the corresponding difference of the varia-
ble; or, in other words, to the limit of the ratio of differences indefinitely
reduced. In this statement it will be observed that the word Difference can-
not be replaced by the word Increment without obscuring the truth which is
conveyed. To illustrate (223), let e =—4; then

3 3
ppr = E Xl A A g, (224)

o+ h__ gtk

D" = —“-—}‘l—"—"' [h=0] — &, (225)

69. Since p = Eda_:’ where dz is an arbitrary constant, let dv=~7%; then,

when 7% is infinitesimal,
d=g4— P —E"°, (226)
This is to be interpreted as an order to perform the operation E®—®* — g=,
to make A =0, and to represeant the 0 in question by the symbol dz. Applied
to ¢z, it becomes
dpx = ¢ (¢ — adx + dx) — ¢ (v — adz) . (227)
‘When, again, instead of being infinitesimal, dz is taken to have some tan-
gible finite value, dx and dex have nevertheless the same ratio as if both
were infinitely small, so that when dz is assigned, and the ratio ascertained,

the value of dpx is known. The doctrine of fluxions is a case in point.
70. If, in (221), e =0,

-1

D="1 (228)
This is the symbolic embodiment, possibly not new, of the usual expression
h) —
Dpx = Sﬁ“—l——h‘)_?f h=0] - (229)
If e=1,
— g0
D="—F—, (230)
—o@—h
ppo =N, (231)
the latter again being a known form. If ¢= % ,
E! % .
=", (232)
1 1
Dpa = . - (233)
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both of which expressions are probably new. The three forms thus derived
by making ¢=0, =1, and ¢ = %, may be called the upper, lower, and

central vanishing fractions respectively. Correspondingly, from (226) and

(227),
d=r—1, (234)
dpx = ¢ (¢ + dz)— ¢a; (235)
d=1—x" (236)
dpr = 9z — ¢ (x — dx) ; (237)
d=rf— 5 ¥ (238)
dpr=9 (v + + i) —¢ (2 — s OF (239)

Of these, (235) and (237) are known forms.
71. Of the three chief vanishing fractions, with the expressions corre-

sponding to them just given, the upper fraction will no doubt in most cases
be found the most useful in practice, as being, on the whole, the simplest.
Nevertheless, the central fraction (233) and the corresponding differential
expression (239) will be found well worthy of attention on account of their
symmetrical form. It cannot be doubted that cases will arise in which this
quality of symmetry will prove an important aid to the analyst. To illus-
trate another advantage possessed by the central formuls, let it be required
to find d (2°). By the usual method,
d (2°) = 32°dx + 3z (dz)* + (dz)?, (240)
and by the central method,
1 (o) = 3ede +  (doy” (241)

Here there is obviously less to be disregarded, and so far there is an advan-
tage, even though it be only in appearance. Apart from all practical advan-
tages, however, the consideration of the central formulse cannot but be useful
in affording a broader view of the subject than that usually taken. The same
remark applies, of course, with still greater force to the general formulz of
paragraphs 68 and 69, not to speak of others still to be presented.

72. In the special cases thus far examined of the general differentiate-
expression (220), we have supposed 2 =0, with « finite. Let us now con-

sider the case in which 2 =0 and @ is infinite. Let a:——z-, so that

ho__
d=rZ h 1[,,:0] — DE’, where ¢ has any finite value other than 0. Then

ahd = — ¢pE’, and we have the following series,
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D = DE°— ¢D’E* —2— ’D’E* — 242 3¢ *D*E" 4 ?2_321 ¢DEF— ..., (242)
Dpxr = D¢ (4 ¢)— eD’p (x + 2¢) + —- 62D3<j> (x 4 3¢) — (243)

As special cases,
qu,":Dq)(x+1)—D2¢(x+2)+—g~D3¢(x+3)-—..., (244)
Dpr=1p (@—1) + 0% (1 —2) + > D'p(@—3)+....  (245)

If we divide both members of (242) by vE’, and, putting 2= — ¢, operate on
¢x, also on ¢0, we shall have
9@+ =go+ g (@—1) 4+ o B0 (0—20) +...,  (246)
Ph=¢0+ A’ (—h)+. .., (247)
where ¢’ = ppax. Though interesting, and probably new, these various series
are comparatively unimportant.

73. Much more worthy of attention are those series, expressing the dif-
ferentiate in terms of finite differences, which are derived from the general
differentiate-expression (220) by giving to 2 some value other than 0. The
principal value which 2 may assume is 1, and the formulee derived for that
value can be made to yield, by a suitable alteration of the variable, all the
results obtainable by assigning to % any other value. When 2 =1, we have
the following general theorem for expressing a differentiate in terms of dif-

ferences :
—1 3a

D= oh + T 2 + . (248)
Here 0 =E'~*— x4 and aqxv =¢(@r—a+ 1) — ¢ (x —a). Tor example,
9" = ¢ (¢' ~*— ¢~ %) = "z, suppose, (249)
620 =, (250)
Dc":c"(z—]—za_ R e I )=cloge, (251)

by (43).

74. In this case again, as with the general vanishing fraction (221), we
find three principal values for @, namely, a=0, ¢=1, and ¢= % . Sub-

stituting these values respectively, we obtain three series, all more or less

well known, expressing a differentiate in terms of what we may call upper,
lower, and central differences. These are,
1 1

D:A——?A2+—§-A3—-..., (252)

36
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) 1.

D:\A—{——;— AR OA L (253)
A3 3 & 3.5 4 3.5.7 A
53T 2 @5 2,387 2.3.48.9 (254)
There is also a known series expressing D in terms of mean central differ-

D=A—

ences, which may be derived as follows from (254). Let 1= %—(E%—{— E"1);
then 1= (1 + —1— A*)%, and, by expansion,
pr—t=(A— —-|- )(1—_ +. ) A—-————I— s (265)

and o

I I I .

s T30 120" (256)
75. The principal use to which these series have hitherto been put is to

determine the value of a differentiate from given values of the function dif-

ferentiated. The simplest possible illustration is probably as follows. Let

us first construct a table of the values of 2% and of their differences, from

s=—1toxr=3.

D—=IA—

x a’ ox? o? 3z’
3 9 2
5 0
2 4 [4] 2 [0]
3 0
1 1 2
1 0
0 0 2
—1 0
—1 1 2

We see that A (—1P=—1, A®(—1)?*=2, A'(—1F=0; that 'A3'=5,
AP =2, ‘AB=0; that A(——) -3, A3(—3—) =0; and that 1A2' =4,

1A°2*=0. Then applying the four series in question, respectively, we find

D(—1)2:_1—?:_2, (257)
=54~ =6, (258)
(—) =3, (259)

P2 = (260)

This content downloaded from
199.242.209.35 on Mon, 13 Mar 2023 16:59:13 UTC
All use subject to https://about.jstor.org/terms



McCriNtock, An Essay on the Calculus of Enlargement. 139

This use of differences is especially important when, for any reason, it is
desired to find the differentiate of a function of which certain arithmetical
values are ascertained, but of which the law is unknown.

76. Besides such customary uses, these series, and particularly those
expressed in terms of A and "A, will, I think, be found of great value towards
the elementary explanation of p =1log E. No student, informed that a dif-
ferentiate is a series of differences, can fail to understand the statement. It
is requisite to introduce the idea of infinity in some form, and these series
will be found at least as intelligible as the vanishing fractions, and worthy of
a place beside them in explanatory statements; essentially necessary, indeed,
to complete a comprehensive view of the subject. It is certainly as easy to
(@ + h)?— a?

h
call attention to the fact that (253) supplies a verbal definition of a differentiate
which may readily be borne in mind, namely, the sum of divided lower differ-
ences.’* '

77. The application of these series to given forms of function will afford
useful exercise to the student. To @, for example, any of them may at once
be applied in the manner already exhibited. As another example, let ¢pa = a™.
By the binomial theorem,

D, (2 + 0)" = Dyz™ 4+ D Oma™~ ' + D, "’mm—;—l x’f'—2+. ce (261)

Now A, (¢ + 0)" = (z + 1)" — 2™ = Aa™, and similarly for second and higher
differences; hence

Dy (a4 0)"= (A — 5 A3+ ) @+ 0= (A Lag, )ar=var. (262)

2 2
Also, Dz™ = (Ay—...)a"=0,and D0 =(A,—...)0=1. Asregards p,0?
p,0% &c., we have it proved algebraically (De Morgan, Calculus, p. 255) that
40"
k

stitution that

’ 1
understand pa*= Aa"— 5 A%* = 2¢ as D2*= m—o=2r. I would

= A*=10"—! 4 A*—'; and hence, when » > 1, we find by successive sub-

D ":(AO—%Aﬁ—l—...)O’:O. (263)

* De Morgan gives, in the article Differential Calculus of the Penny Cyclopeedia, certain comparative illus-
traticns of the current definitions of D3, according to the systems of Infinitesimals, Prime and Ultimate
Ratios, Fluxions, and Limits, and the Residual Analysis of Landen. Each of these definitions requires seve-
ral lines of print, the ncarest approach to an equation being
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140 McCrinTocK, An Essay on the Calculus of Enlargement.

Substituting these several results in (261), we have, finally,
D™ = ma™ . (264)
78. We have now passed in review the more important equivalents for
p=1log E which may be deduced from the general differentiate-expression
(220). We have seen how that theorem includes not only the known series
in terms of A, ‘A, and A, but also series in terms of an infinite number of
other kinds of differences, besides the series in terms of DE’; and how, in
addition to such series, it comprehends an unlimited number of symbolic
vanishing fractions, equivalents of D, one of which fractions exhibits, when
applied in practice, the hitherto customary process of differentiation. Wide
as that expression is, we shall shortly see that it is but a special case of a
more comprehensive formula for the transformation of »”; and, still further,
we shall find that this latter formula is itself merely one case of a broader
proposition regarding 97, which again is but a special case of a general theo-
rem relating to all functions of E. For the due presentation of this general
theorem I find it necessary to lay down a new theory of factorials.

vi. Theory of Factorials.
79. Let Pt 4 om)
Th am
Ieh~! + am—m + 1)’ (265)
where a and % have the same value as in 0, the difference-ratio symbol.*
Whenever it is necessary to consider at the same time expressions involving
more than one value of @ or %, I shall add accents. Thus, while 9 and 2™
are functions of ¢ and A, & and 2™ will be the same functions of o and ¥,
and &’ and 2™ those of @ and #’, where & and ¥, ¢’ and ¥, may or may not be
the same as @ and 2. Let us call (265) the general form of Primary Facto-
rials; ), for example, being the general form of the primary factorial of the
third degree.
80. By performing the operation, we find that
0x™ = matm =1, (266)
81. Let us, except when otherwise expressly stated, consider only those
cases in which m is neither negative nor fractional. We find that =1,
that 2 = a, and that for all values of m greater than 1,

oM =x (x4 amh— k) (x4 amh—2k) ... (x+[a—1]mh 4+ k), (267)

oM = Jr—1g

* Here also (see note to paragraph 65) more symmetrical expressions can be had by writing —:1? (1—20) for a.
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where @ and % may have any value, positive or negative, whole or fractional.
For example, let ¢ =17 and 2 =— —;—; then

=0 (2—223) (e—22) (s—21 —g-) . (268)

When ¢ =0, we have as a special case those functions to which, for positive
indices, the name factorial has heretofore been confined.
82. When 2 =0, and « is finite, we have from (267)

™ = g™, (269)

‘When 2=0, and a:—%, where ¢ is a finite quantity other than 0, we
derive a remarkable function,

admM =z (x —cm)"". (270)

When 7% is any quantity except O and 1, the expression 2™ may be reduced,
by a suitable alteration of the variable, to a factorial form in which 2=1. I
shall, therefore, for brevity, omit the consideration of such values of 4. The

chief special cases when 2 =1 are those where a =0, a=1, and a:%,

respectively,
M=z (z—1)(r—2)...(t—m+1), (271)
M=z (@x4+m—1)(x+m—2)...(x+1), (272)

am = g (x—l——;—m—l) (x—l——;—m—.?) e (x— —;— m+1>. (273)
The last form is no doubt novel. We may call these three varieties of facto-
rials upper, lower, and central, respectively, to correspond with the analogous
difference operations, A, ‘A, and A; and I would suggest for them the special
symbols 2™, 2™, and 2, respectively. It is scarcely necessary to say that
whatever may be proved true in general of 0 and «™ will hold good of » and
2™, Aand 2™, A and 2™, A and 2™, DE° and & (x —cm)™ ', as well as all other
possible special cases.

83. By repetition of (266),

n [m ) pa[ M — 0] — F(1+m) m—n '

Operating on both sides by 0—", dividing by m”, and writing m 4 n for m, we

have

— 1M e F(l_l_m) [m + n]

o~ "x =Titmtn? ol (275)
showing that (274) is true, as a principal form, when » is negative. Ifx =0,
and n <<m, M =0 (276)

This content downloaded from
199.242.209.35 on Mon, 13 Mar 2023 16:59:13 UTC
All use subject to https://about.jstor.org/terms



142 McCrinToCK, An Essay on the Calculus of Enlargement.

and when n =m,

"0 =T (1+m). (277)
Operating on this with 0"—™, supposing » > m, we have
a0 =0, (278)

because 0 (constant) =0. When, therefore, n is either greater or less than
m, both being integral,

a"0™=0. (279)
If & can be expressed in positive integral powers, one of the terms being @,2™,
$o0™ = @,,0"0™ = @, ' (1 + m) = @, ™0™ = $a0". (280)

Again,
¢ (¢0) 0™ = ¢"a,,0"0™ = ¢"pA0™ = ¢"pI 0™, (281)
84. Any factorial 2™ may be expressed in factorials of any other form,
such as #™"; for 2™ is by definition, let us say, 2™ 4+ ¢,2a™~* 4+ ..., and 2™
‘is similarly a™ + ¢,/Ja™ '+ .. ., wherefore 2!, an algebraic expression of the

mth degree, may be replaced by 2™, also of the mth degree, plus factorials of
lower degrees, the coefficients of which may be determined from the data,
which are sufficient for that purpose. In general, therefore, when n> m,

om0 = g™ (0 .. \) =0, (282)
and when n = m,
om0 = 0™ =T (1 + m). (283)

85. Again,
q)ao[m] = ,0"0"™ = @,0" 100" = ¢, mo™—10"—1 — q)/aO[m—l]’ (284)
and by repetition,

o0 = @0 —"1 — Qi —"¥, (285)
where ¢"2 = p"px. For example,
0 = P00 =k (1 + ko 4 .. . ) O = A", (286)

It follows from (285) and (152) that, when ¢0 can be expressed in positive
integral powers of 0,

00" = ¢™p0° = ¢"0 = p"¢0. (287)
86. Suppose
PE=40=@a,+ a0+ ad*+.... (288)
By Herschel’s theorem (162),
4o =00 +400.9 4 5 4003 4 .. ., (289)
and by Maclaurin’s theorem (120),
4O =DW0 + 040.9 4+ 5 D08 4 . . .. (290)
From (288) we have at once, since ¢pr0™ = ¢,0"0™=2.3.4...ma,, and
1 m.
therefore a,, = T3 A m PEO™,

This content downloaded from
199.242.209.35 on Mon, 13 Mar 2023 16:59:13 UTC
All use subject to https://about.jstor.org/terms



McCrinTock, An Essay on the Calculus of Enlargement. 143

¢E = ¢EO™ 4 ¢pEO™M .0 4 —;— PEO™ . O0* 2—1§ QEO®.* 4. ... (291)

The same result may be had from (289) or (290), observing respectively (280)
or (287). This is the general theorem referred to in paragraph 78. It may
fitly be named the factorial theorem. It includes as special cases a very
large number of known propositions of the Differential Calculus and Calculus
of Finite Difterences, and affords a ready instrument for the discovery of
relations hitherto unnoticed. It should be laid down among the earliest propo-
sitions in any formal treatise on the Calculus. Recurring to the line of thought
pursued in paragraph 52, we may remark that this theorem applies in all
cases where ¢E produces determinate results, since it holds good, as proved,
for all functions of E which can be expressed in positive integral powers of 0.
The following is a variation which results from (281):

Y (¢0) = o0 + OO, ¢0 4 — @8’0[23’ ¢+ . (292)
Here @ and 2™ may or may not be the same as Jd and x["'J aud ¢ may have
any value. Of course, EO™ = ¢1, and 90 = ¢0.
87. An important case of the factorial theorem is that where ¢E = E".
Applying it to 4a, we have the following generalization of Taylor's theorem :

(@4 E) = o+ Bode + o BN+ . .. (293)
If Yo = a™™, we obtain a generalization of the binomial theorem, true for all values
of m, including negative and fractional values,

(@ + B = o 4 Kot o B . . (294)

This enables us to expand any binomial factorial in factorials of any other
desired form. For example, to expand (x4 %)™ in factorials of %, we have
this minor generalization of the binomial theorem,

—1

(x 4+ &) = gt 4 matm =1k m T gim IR (295)
good for all values of m; or, to expand (x + k)™ in general primary factorials,
(x+ &)™ = a™ + koa™ + 5 L pgegm + . (296)

If =0, we have from (294), for the etpansmn of a factorial in factorials
of any other kind, whether m be positive or negative, whole or fractional,

B = 1007 - o B0 (297)
If, in (293), + =0, we have a genemlization of Maclaurin’s theorem,
Wk =0+ kY0 4 — /.:mamo +. (298)
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These various theorems for factorial expansion will be found capable of many
useful and interesting applications. For example, in (298) let i = ¢, and
let us write & for £ ; then

=140+ 5 R+ . . ., (299)

a generalization of the exponential theorem. An expression for the value of log
(1 + ) may similarly be derived, of which one case is this known series,

log (1+a)=log 2.2+ 3 log > .a(@—1)+.... (300)

If, in (299), we write ¢ for ¢ and %D for #, we have this result,
EE=1+40. kD +..., (301)
¢ @+ B) =g+ 0. kngu + 5 3. (k)% + . . .. (302)

88. A certain variation of (299) is so remarkable as to be worthy of

extended notice. Let ¢ be such that d¢g* = ¢7, that is to say, that
gav +(1—-u)h_gm—-ah

= (303)
then . .
L—h—g— =1, (304)
whence
g —1=hg™. (305)

The solution of one of these equations will give the value of g. If more than
one solution presents itself, that only can be accepted which agrees with the
condition d¢* =¢*. - When 2 =0, equation (304) becomes log g =1, or g —e.
From (299) we have at once the series in question,

g“_l—i-w—{— x[2]+ x[3]+..., (306)

of which the exponential theorem (23) is a specml case. If A=1and a=0,
we have a series verifiable by expanding (1 + 1),

r=ltotgdt.... (307)
If =1 anda:-;—,
3 5\ # 1
CH) =14a+ e+, ... (308)
It h=2and a= 5,
A4 w2 =l4at5 a4, (309)
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where 2™ =2’ a¥Fl=2 (z+1)(z—1), s¥=x (2 +2) 2 (2—2), 2P'=x (x4 3)

(+1)(x—1)(x—3), and so on. If h=1 and a=0,

2
(D) =1+e+5a+..., (310)
where 2% = z (:v+-%—), Pl=y (x——;—) (x—1), and so on. If k:% and
a =1, similarly,
C=litodgat.. ., (311)

where 2 = (x + —;—) , ¥l =g (fc + —é—) (#+1), and so on. It is needless

to multiply these illustrations, which show that ¢ is but a type of an infinite
number of constants, and that the exponential theorem is but the correspond-
ing type of an infinite number of factorial series of the same general form.
The series above given may be verified, of course, by arithmetical approxima-
tion. It may be shown further that ¢ itself is capable of an unlimited num-
ber of factorial expansions, all having the same coefficients as the exponential
theorem. In general,

F=ldatgaP4 a4, (312)
“=1 Thus, i h=1, a=1log (e—1), and o= (¢ 20—1),
¥ 1=x (x4 3a—1) (¢ +3¢—2), and so on; if 2 =log (1 4+ %) =0.01
nearly, e =0, and s® =2 (r — %), a®¥ ==« (x — %) (xr — 2k), and so on;
and if A =1log (14 k) =1.75 nearly, e =/%", and 2®¥ =2 (v + 2—7),
2=z (x+3—"7) (#+ 3—2k), and so on.

89. Let z be that function of # which 0 is of E, namely,

where e =%~ 'log

pl— @k _ p—ah
——
that # = (1 + Izzx"”)’l‘. Since ¢pE2’ =z, Jja’ =2". Applying the factorial
theorem to 2% we obtain a generalization of Herschel's theorem,

9 = RO’ 4 2980 + 5 2ROV 4. . .. (313)
If pr=+z, pe=+d. If A=0, z=loga, 2=¢, 0™ =0 and we have,
as a special case, Herschel’s theorem. If A=1and =0, 2=1+42, and

, SO

(1+2) = @80 4 2pB0 + 5 2RO +. . . ; (314)
while if A=l anda=1, s=_, and
¢ (. = B0 4 290 + 5 2PEO° 4. ... (315)

38
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To illustrate these apparently novel expansion-theorems, take
(14 2)" = 50 4 280 4 o 2207 4. ..
=14t 5+, (316)

1 \"__ : 1 5 e
(1:)_1—]—272—]—?2% +..., (317)
as by the binomial theorem. By putting % = zz, we easily derive from (314)
and (315) two variations of Taylor’s theorem :

p(@+1k) =9 (2r)0° 4 ke 'p (rE)O + % Ka—?¢p (xE)0P 4. .., (318)

P+ =902 0—Tap L 04 5 gL 00— (319)
These formulee are particularly worthy of attention. In them, we have Tay-
lor’s theorem demonstrated, and the coefficients expressed, without any refer-
ence whatever to the operation of differentiation; a result, the possibility of
which would have seemed incredible. We obtain by this means expressions
equivalent to ppax which may be added, with advantage, to the list of those
already considered ; the chief advantage being that they are neither vanish-
ing fractions nor infinite series, and cannot, indeed, be looked upon as in any
respect transcendental. They are,

ppr =o' (2E)O, (320)
ppr =—2"'p— 0. (321)
For example,
pF=a @t 0= (1+2A+...)0=¢, (322)
plog =27 (logz+log[14+A]) 0= x_1<A—— %Az + .. ) O0=2a"" (323)
pa™ = &~ 'a™E"0 = ma™ 1. (324)

These expressions for ppx may be proved independently of Taylor’s theorem.
Thus, if a,2™ be the general termr of ¢z, that of pgpa will be a,ma™—*, which
is also that of #~'¢ (2E) 0, or #~'¢,2"E"0. In general, similarly,
D"px = 2~ ") (2E) 07, (325)
0pa = (—1)"a~"¢ — O (326)
For example, n being a positive integer,
1" log o = a~" (log & + log [1 4 A]) 0 = o~ (— 1)"=1 L A0"%  (237)

* Since this was written, I have found other forms of D¢z , and therefore of Taylor’s theorem. By (110),
¢Ec® = ¢c; hence, ¢ (z | A,)(1 + A)°=¢ (z 4 A), and
1
$(@+h) =gzt hp (24 8) 0+ 5 A% (x4 4) 0D ...
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90. If, in (313), we write ¢ log for ¢, we have a logarithmic formula of
extraordinary generality, which may properly be called ¢he logarithmic theorem :

¢ log & = 00" 4 2910 + 5 24007 4. . .. (328)

An obviously important case is that where ¢ log # = (log )", and of this,
again, the most common and most useful special case is

log 2= 2+ zpomr S P00 4. - (329)

We have thus, though in a .dlfferent and more perspicuous shape, the general
logarithmie series (31). To reduce it to the algebraic form of (31), we have
only to put y = %z, and to observe that

p0® = p0 (0 4 20k — k) = 2ah— 1, (330)
and so on, the general rule being
p0™ = D030 = 0p30 + $0p0 = ¢0. (331)

91. Of the various functions of E which may be expressed by the aid of
the factorial theorem in terms of J, the most important are those other differ-
ence-ratios, of whatever degree, collectively represented by the symbol o™
When ¢E=0", all terms of the expansion prior to that containing o"0™
vanish, as may be seen from (282), and we have remaining the following
difference-ratio transformation formula :
=g IO g T Gy (332)

I'(n+42) I'(n+3)
Of this formula one or two special cases are already known, as where 0 and o'
are respectively D and A, and wice versa; though it does not appear to. be
admitted, in the discussion of those cases, that any negative value can be
assigned to n»* I shall now show that the general formula, including, of
course, the cases just referred to, holds good when = is negative. That

09 = 0t~ ”—%x[_” follows from (27‘4) If it be doubted, we may, for -

present purposes, define 'O to be rZ_— r (—1) to be :[%, and so on, so that

a )
(274) may hold good for all possible integral values of m and ». The quan-
tities so defined are imaginary, indeed, but if their use enables us to reach

Here p¢w == ¢ (x -+ A) 0. Similarly, ¢ (¢ 4 A,)(1 —A)~ 0 = ¢ (z -+ 4), and D"¢pz = ¢ (= -} ‘A) 0(». In general,
Dugz = ¢ (@ 4 9,) 0", and, still more generally, Arpug (kz) = krg (ke - hay) 0™ an expression readxly de-
nved from (167) and (280) If n=1, we have Dz = ¢ (z 4+ 9,) 0. For example, D&" = &" Eha + a()
=g (1+2ma—}— )0_8 290

* Compare Boole, Finite Differences, 2d ed., p. 24.
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finite results, no valid objection can be made to it. We find by the factorial
theorem, n being supposed negative, that

3 =() v+ () 0ard () s o
From (274),

_a_ - [m] — 2 n)m + n] F(l +m) A
a') 07 = g+ o I (334)

Making the proper substitutions, and multiplying both sides of (333) by 0",
we have (332) true when n is negative. That the ccefficients are in that case
finite may be seen, for

(5) o =a-ramom, (335)

and since 0™ may be expressed in factorials of the form 0™, neither the ope-
ration 0" nor the subsequent operation 0—" can destroy its finite character.

s oo+
92. The coefficient of 9"+" in (332) is Tatrii) This class of coeffi-

cients is likely to become so important that it will be desirable to assign to it
a special symbol, by way of abbreviation. Let the general symbol be o,
and let the same device be employed in all special cases, so that, for example,

DwO(n +1)
— (7
I'm+r+1)" D% (336)
AnOn +r . Am .

and so on. We may, therefore, wherever we see .an index prefixed to a dif-
ference-ratio symbol, understand that it indicates a constant coefficient.

93. Using these symbols, we may thus write the difference-ratio transfor-
mation formula (332) :

Ir=0o WMo, ottt Blgr gr L, L (338)
If 9=,

pr=0o JWpr.on+t14-Blpr gnt2 4L, (339)
where, if n =1, :

D=0+Up.+Fp.PF+. .., (340)

which is merely a concise way of writing the general differentiate-expression
(220). The interpretation of ™p' has been illustrated in paragraph 90, in
discussing the corresponding logarithmic series.

94, Perhaps the next most important special case of the transformation
formula (332, 338) is that where n =—1,

O~t= O 4L P Y 0. . ., (341)
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a most comprehensive summation formula, which includes as many special
cases as there are ways of combining the special forms of 9, such as p, A'A, A,
&c., including, as we shall shortly see, those mean central differences whose
symbol is TA". Among these special cases, which, having been thus distinctly
indicated, it is needless to write out at present, are several known formulz ;
known, that is to say, in substance, though the correct form of their coeffi-
cients is probably a novelty. One of these is the celebrated series of Mac-
laurin and Euler, namely, in our notation,

AT'=p '+ AL D+ A" D+ . ., (342)
the coefficients of which are factors of the formerly inexplicable Numbers of
Bernoulli* We may write (341) in this form,

O l= (1 WY1 g4 B P . ), (343)
IO =1y gL L R (344)

Various special cases of these two formulee will be found useful in practice.
When 0=Aand & =p, we derive from" (344) the well-known formula of
Laplace customarily employed for mechanical quadrature.

95. The coefficients required in the more important applications of the
factorial theorem ought to be tabulated. This is particularly true of those
coefficients, represented by 70", which are needed in applying the difference-
ratio transformation formula (338), a theorem of which many cases will
become increasingly important in the future. As a specimen of what should
be done in the tabulation of coefficients, I give now a table of "A" and ”p",
computed with due care, which will be found useful in applying these two
formulee,

whence

. A= D" 4 IAR prtl AR DRt (345)
an '
D'=A"4 VD" ATt AR (346)
These formulse are deduced from (338) by putting 0 =p and & = A, and vice
versa. They are well known for positive values of a, though the coefficients
do not seem to have been tabulated ; and are true, as already shown, for nega-
tive values. The table contains, of course, the coefficients of 2" *+” in (&—1)"
and [log (1+2)]*. When r <0,"A*="0p"=0. [See Note, pp. 150 and 151.]

* These numbers are, 1A= 1 =— 711—, 2.2A-1=2A-10 =—é—, 2.8.4.4A—1 =4A-103 =-—%. 2.8.4.5.6.64—1

= B6A—105 =%, and so on.

39
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As a mere object of curiosity, this table is very remarkable. An unlimited number of general formule
exhibiting relations between the tabular numbers may be devised. Some fifty which I have noticed, including
a small number derived from known expressions by dividing by T' (» 4~ -+ 1), are appended. Negative values

may be assigned to ¢.
X . EquivaLenTts or "4":
—n—r—1 —1
r)D n—r _r Ar-l- ,

n4r41 L =gt
’

n-4 1
1 -1 1 2 —2 2
)Dn‘r A1 )Dn.r An+ —iey
n n
_ Ag-n—1 =1+l __ " 2f-n—2 r—2at2__
nt1 w42 ) e
1 r—1An+41 n—1r—2An+2 n—1n-—27r—3An+3
(n —+n n .o .),
2r —1 2 22 2 3 23

rAn+1 r—lAn+2 r—2An+3
(n+r + 1)( o +n+3-...),
rAn+c+I)Dr.r—IAn+c+1 __’_Z)Dc.r—ZAu+c+2+...,
[
rAn+c .IA—c—I.r—lAn+c+l 24—0—2 r—2An+c+2 e
+c+1 + c+2 + ?
__I)Dn+r—l r—ldn Z)Dn+r—2 r—ZAn

_’)’fir——-l lA—n—r r—lAn_ -|—-1'-—2

ntr ) n+r
r An—1 r—1An—1 —ZAn—
n+r<A + 4 + + )
rAu-{-c_l_lA—c.r—lA +c+24—c.r—24n+c+...,
r An o % Dpoe—1 r—1nte ¢ ®pe—2 r—2fate
4 —I—c_l.D STt PR et ...,

c—

—1 ”
')'.’A"‘”—rt—z—.*d"‘“ 4o+ (%) ,
n

*
2f4—n—r r—2 qn
R LY

_ n Dpndr—1 r—Dpl—n—r__ Hprtr—2 r—dpt_n—r__
ndr—1"° notr—2° bk
ld—n—r r—l)Dl—n—r 2A—n—r r—2n2—n—r C e
n_{_r( + D +eeds
n—1  Mpl—n—r r—1p2—n—r r—2)p3—n—r
n -+ - + )’
nt+r\n+4r—1 n-4r—2 (n4r—38)1.2

c—n r)Dc—n—r+ c—n .lAc.r—l)Dc—n—-r-}-l_I__...’

c—n—r" c—n—r+41
c—n HRe—n—7 c—n ¢ Dpy—¢—1 r—ne—n—r+41
. D . D Y
c—n—r b +c——n—r—|—-1 c+1° + ’
c—mn r—1 2c—n c\"
r —_.r) C—n—=T _p ____.r 2c—n—1r .o (_)
c—n—7 b 2 2—mn —7r b + + 2/’
1 —n—1 r——l)D n—r 2A——n—-2 r——Z)D n—r v
n_}_r( + + )’
__n—l_l.l)Dn r—l)D—n—r n+2 2 D r—Z)D—n—r____...
n+r1 ) ntr’ ’ +3 Ln—s
7 n-41 et n—|—2 n— n n—1n— _
—1) n—7r r—2) —n—7 . .r—S)D—-n r ...
ntoror— ( DT A o P + 2 3 o)

r)D—n—r—l r—I)D—n—r—1+r—2)D n—r—l_'..,

c—n .r)Dc—ﬁ—r_]_c—n—l Hp—e r—l)Dc—n—r_i_.'.,

C—n—7 c—n—r7r
c—n . c—n—1 ¢
.1)Dc—n—r__|_ .IAc—I.r—l)Dc—n—r+....
c—n—r c—n—7pr c—1
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EQUIVALENIS OF )D H
r f—n—r—1 r—1 f—n—1r
A " + A n )
I e+ 1 I r—pnrn+1
)D —_—, )D

nd+1 ° n—+41
__IAn r—l)Dn+l_ZAn r—2)Dn+2_
. . ey
% h—n—1 r—Dpntl Hr—n—2 r—2rat2
—_ . ’'D . D —_ D . D — e
n41 n—+ 2 ’
—1 n—|—r-——1.r_])Dn_n—|—r—2 n+r+l.r~2)Dn +n—|—r—3 ntr4-1 n—|—r+2.r_3)D”_. ) .>
or—1 2 22 2 28 2 3 ¢
1 r)pn+1 r—1pn+2 r—2)pn+3
(n+r+1) w it T a2 (n+3)1.2+"')’

r)Dn+c+IAc.r—-l)Dn+c+l__|_2Ac.r—2)Dn+c+2+...,
c [

-+ e

D —I—c 1

c+ 2
_IAn+r—1.r—l)Dn_2An+r—2.r—2)Dn .

“ e ey

2)D—c—2 r—2)Dn+c+2 +

I)D—c—-l .r—l)Dn+c+1 +

ceey

n4r—1 Hp—n—r r—-l)Dn_”+r—2 fp—n—r r—2pn__
n-4r n-+4r :
(r)D'n—l_r—l)Dn—l "l_ r—Z)Dn—l_ .. .),

o0y

n

n-4r
r)Dn-I-c _|_ I)D—o . r—-l)Dn+o _I_ 2)D—c . r—2)Dn+c + ceey

c
r)nn+c .IAc—l.r—I)Dn+c .2Ac—2 r—2)pn+e¢
e 4 + JTAprte oL,

c—2
_I.T)Dn-'-%—l— cee (i)r,
2

n

r.r)Dn+c_rr

n Indr—1 r=1ll—n—r__
. .

. .24n+r—2.r—242—-n—-r__
n+r—1 n4r—2

e ey

% Myp—n—r r—1 flen—r | p—n—r r—2 f2—n—r
— D T4 D "4 ce
n—|—r( + + ),
n—1 rAl—n—r r—I1A2—n—r r—2A3—n—r
nn—|—r(n+r-——l—n+r—2 n—|—r—3_°'.)’
c—n rAc—n—r ce—n e r—1 fe—n—r+41
PR +c—n—r+1’ D°. 714 + ...,
c—n r fe—n—7r c—n ¢ IA-—c—l r—1 ge—n—r+1
c—-n—r'A +c—n——r+l c41° 4 LRRRY
c—n r fo—n—r r—1 2c—n A% ( c)?‘
—_—, —r — " ces ——
rc——-n—r 2 2—n—r7r + + 2/
” Hp—n—1 r—1 f—a—r NHn—n—2 r—2 f—n—r
— D . D 2 oo
n—|—r( _I_ + )’
_n+1 IAn r-—lA—n—r_n+2 ZAn 7'—24—"—-7'_
n—|—r' . "t . ceey
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r—2A—n—7r—1
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T An0n+r ) Dn0n+r)
ABLE OF "A"= 5+ —————— AND OF "D" = —————, ACCOMPANYING
I'(n+r-+41) I'in +r+1)
PAaragraPH 95.

P rA—G TA—5 rA—4 rA—?; /rA——2 rA—l TAO 'rAl rA2 rAS rA4 rAﬁ rAG r
o 1 11 1 1 1 11 1 1 1 1 1 o
5 3 1 1 3 5

: b 1 13 1 19
o T % 1 5 1 4, 1 T 5 13 1o P
4 12 6 12 12 6 12 4 6 3 4
15 25 ] 1 1 1 3 5 25 21
3l=7 ! ¢ ° °® % 7T T 3 % 7 |3
187 ; 251 19 1 ~1 1 31 43 81 331 1087 |,
41 B0 7% 240 240 720 120 360 120 80 144 240
, =% 3 —1 1 o 0 1 1 23 87 45 269 |
5/ =% 28 TH 10 720 70 10 160 72 2 0
19087 863 221 @ —1 —1 1 0 1 197 605 6821 2243 80083 |
6| 0480 12096 80240 945 6048 30240 5040 20160 12096 80240 8024 15120
—275 —9 11 1 —1 0 0 1 17 311 265 1045 97 .
7| 4032 12006 15120 4032 50240 40320 12096 20160 8024 3024 90
9829 —47 —199 19 1 -1 1 73 2591 55591 7501 63373
8 | 1209600 103680 725760 1209600 172800 1209600 369880 950200 (04800 1814400 51840 120960 | °
19 79 1 —1 1 0 0 1 81 437 253 2669 6671
9| 80640 290301 604800 115200 1209600 3628800 604800 408200 25020  4B5gd 28800 | °
r r)D—S 7-)D——5 ) D—4 r)D—S r)D—Z r)D—l r)DO r)Dl r)DZ r)DS r)D4 r)DS v)DG r
0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
5 3 1 1 8 5
1 3 - 2 - 1 z 0 -5 -1 —5 =2 3 —3 |1
18 25 7 1 1 1 1 11 K 17 25 28 |,
27T 2 v T 12 12 3 21 6 0 T
3 5 1 1 1 5 15 7 35
3 v 0§ % 0 5 0 -3 —g-% —7 ~—F 98
81 1 =1 1 -1 =19 1 187 29 967 1069 8013 |,
4 3 3% T30 240 240 790 5 10 1 %0 14 20
1 0 o =1 1 3 1 T 469 89 285 1|
51 280 240 160 6 0 "2 "™ —®w TE
1 —1 1 1 —221 — 863 1 363 29531 4523 81063 242537 6
6| 3020 T 3024 U85  GU4B0 60480 T %60 15120 945 8024 12096
0 1 —1 —u 19 25 1 —761 1308 7645 139381 48035 |,
7 12096 3024 20160 6048 24192 T8 1260 ~ 672 1513 12096 _ 2016
—1 —19 199 47 —9829 —388958 1 7129 16103 341747 1148963 1666393
8| 7600 725760 725760 172800 3628800 3628800 9 12600 8400 64800 90720 60480
1 —1 —79 —19 407 8183 0 1 —671 190553 412009 8552717 22463 |,
9| 37600 183820 362880 161280 172800 1036800 710 1260 ~ 100800 75600 25920 720
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96. The factorial theorem may be applied in many cases not contem-
plated in the foregoing analysis, cases the discussion of which requires the
consideration of a class of functions much wider than that already widened
class to which I have extended the name of factorial. The chief mark of a
factorial, as I have defined it, is the property (266), da™ = mat™—1. That
this is not the only mark, however, is readily to be seen, since any function
of x and m might be made the starting point of a series of functions possessed
of that property, to be developed by performing the operation 0 or =%, it
being understood that m='0¢p (z, m) must be called ¢ (x, m —1). The form
of the function, however, would, in most cases, be liable to perpetual altera-
tion, and it is only such functions as retain their form after being operated
upon by 0 that can to advantage be classed together under the same name.

97. I call 2™ a primary factorial because it is the simplest form of func-
tion of which we may say 0d¢ (2, m) =m¢ (¢, m—1). If we make 4 =1,
which is clearly its simnplest form, we find that

=0 "2 =g (347)
The possible complementary constant is, for simplicity, disregarded. Simi-

larly,
=207 =2 (v + 2ah—1) (348)

and by repeated operation we find that (267) is the simplest general form of
function to which the property d¢ (x, m) = m¢ (x, m —1) can be ascribed.
98. Let @ be any function of E; then, whatever value be assigned to m,

0Qa™ = Qdat™ = Qmat™ 1 = mQat™— 1. (349)
Let Q™ be represented by #i"$; then
oat™ = maim 11, (350)

In 1™ we have, I think, the most general form of function to which the term
factorial can conveniently be applied.

99. We can now extend widely the applicability of the factorial theorem.

Let ¢ =q ', where @ is any function of E to which that theorem applies.
Then, writing ¢EQ for ¢E in (291),

PEG ' = $EQ = ¢EQO™ 4 ¢pEQO™M. 0 + . . .. (351)

Writing 01"} for Q0™], and multiplying both sides by @, we have the factorial
theorem in this more general form,

QE = q)EOW. & + o0t} 6o + —12— eI 62 . . .. (352)

From this may be drawn deductions similar, mutatis mutandis, to those already

made from the factorial theorem.
40
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154 McCLINTOCK, An Essay on the Calculus of Enlargement.

100. Of the forms which ¢ can assume, one of the most important is
G=aE" "+ (1—a) B~ 9", (353)
In this case, let what #{™! becomes be denoted by a4, employing reversed
brackets. Then, for all values of m,

&Il = g g (354)
as may be shown by performing the operation @ on both sides, resulting in the
normal equation &’ = a™™, In general, therefore,

g — I'(xh=' + a[m + 1])

I'zh='+ a [m + 1] —m)’
and when m is positive and integral, :
M= (z+a[m+1]h—b)(x+a[m+1]2—20) ... (x4 [e—1][m+1] h+F). (356)
Let us call all functions of this form Secondary Factorials. Just as we have
distinguished certain functions as primary factorials, because they are the
simplest functions complying with the conditions d¢ (¢, m) = m¢(x, m — 1) and
¢ (#, 0) = 2% so we may remark in this case that the class of secondary facto-
rials comprises those which comply with the conditions d¢ («, m) = m¢ (2, m—1)
and ¢ (z,—1) =a—".

101. The investigation of negative factorials is not required in connection
with the object for which I have embraced the theory of factorials in this
essay, namely, the development and illustration of the factorial theorem. I
shall, therefore, dismiss that branch of the subject with but transient consid-
eration. When m is a negative integer, we have, as the general form of
primary factorials,

(355)

X

(] — é .

VU= @ amh)w - amh—h). . . (@ + [a— 1]mh)’ (357)

and, when m is any negative integer (except —1, when 2~ 1=2a"1),

1
m[ —

R ey gy ) Y e e P R v g iy ) M)

as the general form of secondary factorials. By repeated operation,
ol V=0l l=(—1)"T (L +n) 2?1, (359)

But, by (338),
o= (" ++Mor.o" T 4. . )l
=(=D"rA+n)@ " Y—[n+1] Mo 2= ). (360)
Comparing these two expressions, and writing »—1 for n, we have this gene-
ral theorem for the transformation of one form of negative integral secondary
factorial into another,
=gl —p Wt gl o (4 1) O gl — L (361)
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Since 2" = 21~ "~ we obtain also the following general theorem for the
transformation of negative integral primary factorials,
=== — (n+1) W 2"~V (n+ 1) (n+2) .o 2l —T'— ... (362)
102. We may distinguish the principal special cases of secondary, and
also negative, factorials in a manner similar to that employed for the distine-
tion of the corresponding special cases of positive primary factorials. The
following table, showing the chief special forms of 2™ and 21—*, &™ and 21—,
will afford a sufficient illustration of the use of the various special symbols
which represent the most important varieties of factorials.

h a

Positive: Power 0
Upper 1 0
Lower 1 1

PRIMARY.
23 = xax
) =z (z—1)(z —2)
28 =z (242)(x+41)

SECONDARY.

@8 = xxw
2 = (z—1)(x —2)(z—38)
2 = (z+3)(@+2)(@+1)

-

D =(x+1)z(xz—1)

1

1 1
— 3) =— — -
Central 1 3 2®) a:(:v—]— 3 )(:v 5
1
Negative: Power 0 ' 2= 3= — =3 — —

T xxxe
1 ] 1
Upper 1 0 o= = e 0w+ 9) N T DT D
1 1
Lower 1 1 o= = o) @—1) SO P Ty
Central 1 #=H= -

—3) — i J S —
P DD T
Exclusive of 4™, the most important forms of 2™ are 2™, 2™, and 2™, corres-
ponding respectively to the three most important forms of difference, A, A and
1A. Lower differences and lower factorials are comparatively unimportant,
since ¢'AYx = ¢ (— A) 4 (—y), where y =—x, a slight transformation thus
enabling us to use A instead of ‘A.

103. For expansion in terms of mean central differences, we may, in
(352), write 1 for @ and 0" for 01"}, when the factorial theorem assumes this.
shape:

9 = ROX. I+ QEO™. 1A + 5 QRO IA 4. .. . (363)

To illustrate this formula, let $E = E°, and we have at once the well known
formula for interpolation, due to Gauss, and now assuming the following
symmetrical form :

o 0X A2 N Al
E_I+—2—I +2.3.4I G (364)
Again, let £ =D ; then
DO DO
D:IA+§‘”§IA3+2—-——3——4——51A5+.... (365)
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Thus is disclosed, in the neatest possible form, the law of the known series
(256). Another special case of (363) is the following important, and proba-
bly new, summation formula:

1 l s 1 5
iTs— IA—[——-—IA—- s AP ... (366)
1 14
This formula, which is otherw1se easily demonstrable, since —— I e2= 9 i1 p
may be interpreted as follows. If ...a_,, @, @, ... be any series,
ao—al‘fl—az—-..:—;‘ao—%“ I-A.do‘l"zlz‘ I.A-Sa()“‘"..-. (367)

This theorem will doubtless be found at least equal in usefulness to the cor-
responding formula in upper differences, and superior to Hutton’s method of
summing quantities alternately positive and negative. It is almost needless
to say that TA" may be written in (332) for 9", or, if 0™ is also written for 0™,
for 0", according as it is desired to transform mean central differences, positive
or negative, into other forms of difference-ratio, or wice versa. It does not
seem necessary, for present purposes, to enter into a recital of the proof of
this statement. The coefficients represented by "1A” and "»" are of considera~
ble importance, and should be tabulated.

vii. Theory of the Calculus of Multiplication.

104. The Calculus of Enlargement is, as we have seen, based on that
operation which changes ¢x into ¢ (v + %) by adding to the variable. If we
seek the most simple repetitive operation which shall have the effect of multi-
plying z, instead of adding to it, we shall find that it consists in changing
¢z into ¢ (z¢*). Let us denote this operation, as in paragraph 34, by the
symbol M, so that

M'¢pr = ¢ (xc") . (368)
The operation E’, the basis of the Calculus of Enlargement, changes x in
arithmetical ratio, so to speak, while the operation m*, the basis of what we
may call the Calculus of Multiplication, changes it in geometrical ratio.

105. We have seen that in this case M =s where Ja = log #, and that
all the results derivable from a possible Calculus of Multiplication can be
obtained at once from the Calculus of Enlargement by expressing functions
of x as functions of w=1log z#, and observing that Mm,=E,. It is, therefore,
unnecessary for any practical purpose to discuss that possible calculus,
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Nevertheless such a discussion will not now be useless, for it will serve to
illustrate and impress upon the mind the truth that the Calculus of Enlarge-
ment is not the only possible calculus, but is rather to be regarded as the
simplest of many possible systems.

106. Let log M be represented by.L; then, by (69),

M =14 L+ —;— BPL4. .., (369)
¢ (") = ¢px + hLpe + —12— Pi¢x+.... (370)

Putting # =1, and afterwards writing ¢ log for ¢, we have
¢ (&) = o1 + kgl + 5 ol +. .., (371)
oh=q0+hiplog 14 5 Friglog14.. .. (372)

These three theorems are respectively analogous to those of Taylor, Herschel,
and Maclaurin. Assuming, what will be proved, that

oLy log 1 =19 log 1, (373)
we have also
¢ () = 1 + hgar log 1 4 o Tt (log 1) +. . ., (374)
h =0+ hpr log 1+ 5 Fgr (log 17 +. . .. (375)
107. From (75),
Llogz=1. (376)

From (77) and (78),
M (0, U, Wy 0 0 2) =P (M My My - - ) ¥ (0, 0, W, .. L), (377)
M. (U, ) = @ (MM, ™) Y (, 0). (378)
From (88),
LY=L, log u.1,0. (379)
108. By comparison of the general terms of the expansions of the two
members in each case, respectively, we find that

PMA (29) = PMY (27) (380)
P (ym,) do = 4 (am,) 9y, (381)
PMa™px = a"P (¢"M) Yz , (382)
¢ (MM, .. .) s=sp ("), (383)

where s is a quantic of the nth degree, say s=a"%*..., where A+ £k +...=mn;

also
dMM, . .)sY(2y .. )=sp (MM, .. )b (2,9 ...). (384)

If, in (381),y =1,
oMy = (M) 91, (385)

41
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