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 Page 57, line 17, for XA& read XSx. Page 146, equation (320) insert k after x-'.
 Page 58, line 20, for SZ read SZ. Page 147, line 25, for k read x in two places.
 Page 60, line 4 from foot, before (ZY+ )') insert +. Page 147, note, line 3, for 2xX + a read 2xa + a2.
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 Page 116, equation 81, insert ( after-. Page 281, 2d foot-note, line 2, for above read the last named.
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 Page 118, line 2 from bottom, for )cx) read (cx). Page 284, 2d foot-note. For correction of error herein contained
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 The Pascal Hexagram,

 BY IMiss CHRISTINE LA DD, Johns Hopkins University.

 1 WISH to propose a new notation for the lines and points connected with

 the Pascal Hexagram, to oive a brief account of the discoveries of Veronese
 on the subject and to develop a few additional properties of the figoure.

 The vertices of the hexagon inscribed in the conic, S, are A, B, C, SD, E, F;
 the lines tangent to the conic at these vertices respectively are a, b, c, d, e,f.
 In general, a large letter will represent a point, a small letter a line. Lines
 joining vertices of the inscribed hexagon are called fundamental lines; inter-
 sections of sides of the circumscribed hexagon are called fundainental points.
 The intersection of the two fundamnental lines AB, DE is called P (AB. IDE);

 the line joiniing two fundamiiental points, ab, de, is called p' (ab . de). It is
 evident that p' (ab . de) is the pole of P (AB. -DE). There are 45 points -P
 and 45 lines p. The Pascal line obtained by taking the vertices of the
 hexagon in the order ABCI)EF is called h (ABCDBEP). It passes through

 the points P (AB. DB), P (BC. EF), P (C.D. PA). Similarly, the intersec-

 tion of the lines p'(ab. de), p' (bc. ef), p' (cd.fia) is the Brianchon point
 H' (abcdqf) of the hexagon abcdef, the pole of h (ABC-DEF).

 The three Pascal lines which meet in a Steiner point are (Salmon's Contc

 Sections, 5th ed., note, p. 361) h (ABCFEBD), Ii (AFCIDEB), h (A1DCBEF). We
 shall call the Steiner poinlt in which they meet G (ACE.BDFI). In this symbol,

 the relative cyclic order of the letters in each group of three is all that it is
 necessary to observe; for instance, G (AEC. FBID) and G (ACE. BFD) are the
 samie as G (AGCE. BFD). Given a U point, the h lines through it are obtained
 by taking one group of three in a fixed order for the odd letters and per-
 muting cyclically the other group of three for the even letters. The Pascals
 which pass through the conjugate G point are k (ABO-DEF), h (ADCFEBB),
 h (AFCBEBD), and the symbol of that G point is G (ACE. BDF); hence two

 VOL. 1I-No. 1. 1
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 2 LADD, Tie Pascal Hexagrarn.

 G points whose notation differs in the particular that one group of three letters
 has suffered a change not cyclic are conjugate with respect to the conic S.
 There are ten ways in which six letters can be divided into two groups of

 three each, hence there are ten pairs of points G.

 Four G points which lie on one Steiner-Pluicker line are (Salmon,

 p. 362,) G (BDA . ECF), G (EDF. BCA), G (BCF. EDA ), G (BDE. EGA).
 We shall call the Steiner-Pluicker line on which they lie i (BE. CD. AF).
 In the notation of an i line the division into groups of two is important, but

 not the order of the letters in each grouip. The number of ways in which six

 things can be separated into three differenit groups of two things each is
 fifteen, hence there are fifteen lines i. The G points on one i line are obtained
 by selecting one letter out of each group of two for the first group of three,

 and taking the remaining three letters, in the saine order, for the other
 group of three. As this can be done in four different ways, there are four
 points G on one line i. Through one point G pass three lines i; viz., through
 G (ABC. DEf), pass i (AD. BEE. CF), i (AE4. BF. CD), i (A F. B1). CE).
 In writing the symbols for the i lines through one G point, it is necessary to

 observe that the cyclic order of the first letters of the three duads must be the
 same as that of the second letters; for instance, through U (ABC. DEF) does

 not pass I(AD.BF.CE).

 The Kirkman point which corresponds to the Pascal A (ABCDEF)

 is (Salmon, p. 363,) the intersection of the Pascal linles A (AC-EBFD),
 h (CEADBF), h (EACFDB). We shall call this the Kirkman point
 H (ABODCE). The Pascal lines through a Kirkmian point are obtained by
 taking the three odd letters in the order in which they stand, and then the
 three even letters, inverting the order of the last two, for the first Pascal; and

 then deriving the other two Pascals fronm this by a cyclic clhange of the first
 three letters in one direction and of the last three in the other direction.
 Similarly, the tliree Kirkman points on one Pascal, h (ACEBFD), are

 H (AEECDB), H (EEABCD), H (FAEDBC). If we wish to know whether
 two given Pascals, as 4 (ABCDEF), A (AEDIBCF), intersect in a Kirkman
 point or not, we have to see if the same three letters stand together in each, in
 two groups which have suffered opposite cyclic changes. The two lines jtust
 written are h (BCDEFA), ht (DBCEA-E), and they meet in H (BECADF).

 The three II points of one Cayley-Salmon line are (Salmon, p. 362,)

 H (ABCFED) , H (ADCBEE), H (AFCD-EB). We shall call this Cayley-
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 LADD, The Pascal Hexagram. 3

 Salmon line, the line g (ACE . BFD). It passes through the point

 G (ACE. BDF). Through the two conjugate points G (ACE. BlDF),

 G (A CE. BFD), pass respectively the lines g (A CE . BE-D) , g (A CE. BDF).
 These two g lines we shall call, for the present, corresponding g lines. They
 are not conjugate with respect to the conic S. (Veronese, Nuovi Teoremni sul

 Hexagrammurnt lysticumt, p. 26.) The H points on G (ACE. B1DF) correspond
 to the h lines through g (A CE. BDF); hence we shall say that g (A CE. BDE)

 corresponds to G (ACE. BIDF), while it passes through G (A CE. BFD).

 The symbol for the Salmon point in which four g lines iintersect is

 obtained in the same way as that of the Steiner-Plicker line througrh four

 G points. In fact, the lines g (BlDA. ECF), g (EDF. BCA), g (BCF. EDA),
 g (BDF. EC-A), intersect in the Salmon point I (BE. CD . AF); and the

 I points on g (ACE. BDF), are I (AB. CD. EF), I (A.D. CF. EB)
 I(AF. CB.ED).

 Professor Cayley (Quarterly Journal, Vol. IX,) gives a table to show in

 what kind of a point each Pascal line ineets every one of the 59 other Pascal
 lines. By attending to the notation of Pascal lines such a table may be dis-

 pensed with. His 90 points "Im," 360 points "'r," 360 points "t," 360 points
 "z," and 90 points "lw" are the intersections each of two Pascals whose sym-
 bols can easily be derived one fromi another. For instance,

 h (ABCDE) > ,, l h (DEFABC) , h (ACEDBF) >
 h (ABCFED) k (D1EFBCA.) ? h (A3C-DEF)> '

 h (ACEBED)> "z," h (4ACEBFD)> "w,
 h (AFEDCB) k (ABCCDEF)
 By producino the lines and points of the Brianchon hexagon, as we may

 call the corresponding circumscribed hexagon, we should find occasion for the

 same symbols, in sinall letters, for the :I', ', I' points, which are the poles

 of the h, g, i lines, and for the h', g', i' lines; which are the poles of the H, G, I
 points.

 Jt was shown by Kirkman that the two Kirkman points
 H (BFCTEAD), H (BFDEA C),

 are on a line through the point P (AB. FE). I shall call this line v12 (BF. EA)
 (and it happens that mv notation here coincides with that of Veronese, p. 43).
 So the points

 H (BFCA ED), H (BE-DA EC),
 are on the line v12 (BF. AE), which passes throuoh P (EEB. FA) and which
 does not coincide with v12 (BF. EA). Through each point P pass two v12 lines,
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 4 LADD, The Pascal Hexagram.

 viz., throug,h P (EB . PA) pass v,2 (EP. AB) and v,2 (EA . FB). There is but
 one P point on each v12 line. Through each H point pass three v,2 lines;
 through H (BC-DEFA) pass v12 (BC. EF), v12 (C-D. PA), v12 (DE. AB). 'There

 are therefore 3. 60 or 190 v12 lines in all. If we look for the corresponding
 2 1

 property of h lines, we find that

 h (BFCE4 4D), h (BFDIEA C),

 intersect in P (BF. EA), and that

 h (BFCAED), h (BFDAEC),

 intersect in P (BF. AE), but that P (BF. AE) is the same point as

 P (BF. EA). This is the intrinsic difference between H points and h lines.

 The H points lie in twos on 90 lines v12 which pass by threes through the 60
 H points. The h lines intersect in fours in 45 points P, which lie in threes

 on the 60 h lines. To a P point, P (BE. AE), rnay be said to correspond the

 pair of v12 lines, V12 (BF. AE), V12 (BF. EA). In the Brianchon hexagon, on

 the other hand, the H' points lie in fours on the 45p' lines, and the h' lines
 initersect in twos in 90 points P12, which lie in threes on h' lines and in twos

 on p' lines. Not even in a hexagon which can be inscribed in one conic and
 circumscribed about another is there entire correspondence between Kirkman

 points and Pascal lines.

 To resume:

 To 60 Pascal lines h correspond 60 Kirkman points H.

 " 20 Cayley-Salmon " g " 20 Steiner " G.
 " 15 Steiner-Pluicker " i " 15 Salmon " I.

 On each h line lie three HI's and one G.

 " " g " lie three H's, three I's and one G.
 "4 "i " lie four G's.

 Through each H point pass three h's and one g.

 G " pass three h's, three i's and one g.

 " I " pass four g's.
 The whole arrangement can be diagrammatically represented by a sim-

 ple figure:

 I IHIHHX (~

 H9 H/D\? 1  i:i iii,
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 LADD, The Pascal Hexagram. 5

 On h (ABCDEF) lie H(ACEBFID), H(CEAIDBF), H(EACFDB);

 and G (ACE. BlDF).

 "g (ABC.DEF) " H(ADBECF), H(AFBDCE), H(AEBFCD);

 I(AID.BE. CF), I(AE.BP.CD), I (AF. BD. CE);
 and G (ABC.DFE).

 " i(AB.CD.EF)" G(ACE.B.DF), G'(ACE.BBDE), G (ADE. BCF),
 G (ADF. BCE).

 Throu,h H(ABCDEF)passh(ACEBE)D), h(CEABDF), h(EACFDB);

 and g (ACE. BDF).

 G (ABC.DEF)" h(ABDECF), h(AEBIDCE), h(AEBFCD);

 i(AD.BE.CF), i(AE.BF.CD),i(AF.BD.CE);
 and g (ABC. DFE).

 " I(AB.CD.EF)" g(ACE.B1DF), g (A CF.BDE), g (ADE.BCF)
 g (ADF.BCE).

 II.

 By the notation here given it is imimediately evident what points are on
 &very line and what lines pass throug,h every point, without referring to

 tables, as Veronese is obliged to do. I shall imiake use of this notation, so

 far as any notation is necessary, in describing Veronese's additions to the

 subject.

 Pascal discovered the theorem which bears his namne in 1640. The

 reciprocal theoretn of Brianchon remained unknown until 1806. From the

 time, 1828, when Steiner showed that by taking the six points on the conic

 in different orders, sixty Pascal lines may be obtainied, the development of

 the figure has been more rapid. Steiner himself showed that the 60 Pascal
 -lines meet in threes in the 20 Steiner points, and he believed that these points

 were situated in fours on five lines meeting in one point. Plicker showed

 that they lie in reality on fifteen lines, three through each point. Hesse

 observed that the 20 Steiner points consist of ten pairs of points harmoni-

 cally conjugate with respect to the conic, and that the figure of the Steiner
 points and the Steiner-Plucker lines is identical with that formed by three

 triangles in perspective. Kirkman showed that the Pascal lines pass by

 threes through the sixty points called by his name, and that these points are
 3

This content downloaded from 
������������199.242.209.35 on Mon, 13 Mar 2023 16:49:30 UTC������������� 

All use subject to https://about.jstor.org/terms



 6 LAIDD, The Pascal Hexagram.

 connected two and two by 90 lines v, which pass each through two points P.
 Professor Cayley and Dr. Salmon discovered at the same time that the 60

 Kirkman points lie in threes on 20 (Cayley-Salmon) lines g, and Dr. Salmon,
 that the lines g meet in threes in the 15 (Salmon) points 1. Hesse pointed

 out the correspondence which exists between the lines and points of the

 figure; but he was aware that the relation is not that of pole and polar, at

 least not with respect to the original conic. (Crelle, Vol. 68, p. 193.)

 Veronese has written a paper (Nuovi Teoremi sal HexagrammumJ Mysticum,

 Reale Accadernia dei Lincei, 1876-1877,) which apparently leaves little, work

 for other investigators to do. His most important discovery is that the 60 h

 lines may be divided into six groups of ten lines each, which intersect in the
 ten corresponding H points and are their polars with respect to a conic 7t.

 There are six conics t in the whole figure, and any five of these groups of ten

 lines and points determine the sixth. He has shown, mnoreover, that besides

 the original system, [H1k], of 60 Pascal lines and Kirkman points, there is

 an infinity of such systems, [HnAhJ consisting each of six groups of ten lines

 and points, and giving rise each to six conics. Five groups of any svstem

 after the first suffice to determine one group of the preceding and one of the

 succeeding system. The figure of the g lines and of the G points is comimon

 to all these systems; that is to say, the 60 H points of every system lie in
 threes on the same 20 g lines and the 60 h lines of every system pass by
 threes through the same 20 G points. It follows that the I points and the i
 lines are also comnmon to all the systemns. Veronese uses the symbol t for a

 group of ten lines and points as well as for the conic with respect to which

 they are poles anid polars. He gives a table by consulting which one can see

 to what figure 7t any h line belongs. But the k lines which go together to

 form a figure 7t can be determined at once by observing the following rule:

 Take any h line, the other six h lines through the three H points on it, an-d

 the three h lines through the II point which corresponds to it; these ten h

 lines constitute a figure 7t, to which belong also the ten H points of the same
 notation. A symbol for a figure t thus obtained, from which symbol it can,
 be known immediately whether a given line or point belongs to the figure

 which it represents or not, is a desideratum. Veronese calls his figures 7t
 first, second, third, &c., and the connection between the first figure and its
 lines and points is of course entirely arbitrary. No two h lines of one figure

 7i pass through a cominon G point, hence to a figure 7t correspond ten differ-
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 LADD, The Pascal lexagrain. 7

 ent G points. No two of them are conjugate G points. Any two figures 7t
 have in common four G points which lie on one i line, or to each i line corre-

 sponds one of -the 15 possible comnbiniations two by two of the six figures xt;

 and the four g lines common to any two figures 7t pass througlh an I point.

 The connecting link between the system [ff1h1], and the system [112h2], is
 formed by the 90 lines v12, which fact is indicated by the suffix t2 W We have

 already seen that the v12 lines which pass through H1 (BCIDEFA) are
 V12 (BC. EF), V12 (CD. FA), V12 (DE. AB).

 Now three v12 lines which pass through one "2 point are (Veronese, p. 35)
 V12 (BC. FE), V12 (CD. AF), V12 (DE. BA) .

 That is, given three pairs of v12 lines such that one member of each pair passes
 through a commion H1 point, the remaining mlembers pass throughl a com-
 mon '2 point. This correspondence between H1 points and H2 points I shall
 indicate by gilving two such points the same notation. It will then be
 observed that the three v12 lines of one H1 point are obtained by taking its

 opposite pairs of letters in the order in which they stand; but the three V12
 lines of one "2 point by taking opposite pairs of letters with an inversion of
 one pair. On a v12 line, V12 (AB. CD), lie two H1 points, H1 (ABECDF),
 H1 (ABFCDE), and two "2 points, 12 (ABEDCF), H2 (ABFD CE).

 The three "2 points whicli have the same notation as the thr'ee h, lines
 of an H1 point lie on an h2 line (Veronese, p. 39). Through each H2 point pass
 three h2 lines. There are 60 H2 points and 60 h2 lines.

 Two lines 14 of the same notation as the two H1 points of one v,2 line meet
 in a point V23, through which pass two h3 lines of the third system [I13h3].

 These k3 lines, 60 in number, determine by their intersections in threes the 60
 H3 points, which lie in threes on the h3 lines. There are 45 pairs of points V23,
 answering to the 45 points P of the system [11h1]; that is to say, after the
 first system the intrinsic difference between H points and A lines drops out,

 or h lines no longer meet by fours in 45 points, but by twos in 90 points.

 In general, from the system [H2. - A. -] the system [H2., h2f] is derived
 by means of lines v2ff1,X2n the connectors of pairs of H2n_ points and also

 of pairs of H2n points. From the system [H2.h2j] we pass to the systein

 [H2n + Jh2n + by means of points 2 n + 2 n the intersections of pairs of h2n lines
 and also of pairs of h2n+ 1 lines.

 All the pairs of v lines of same notation but froin different systems,

 V12 (AB.CD), V12 (AB. DC); v. (AB. CD), v. (AB. DC); V56 (AB. CD),
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 8 LADD, The Pascal Hexagram.

 v56 (AB. DC), &c., meet in a single point Y, througlh which passes also an
 i line; and all the pairs of points of the same notation, J23, V45, V67, &C.,
 together with the P point of the same notation, lie in a line y, through an I
 point. There are 45 lines y, three through each I point, and 45 points Y,
 three on each i line (p. 52).

 The 90 points V23, V45, &c., also lie in twos on 180 lines n23, n45, &c.,
 respectively, which pass by fours through the 45 points Y. A similar rela-

 tion holds between the v lines (p. 60).

 Veronese gives many relations of harmonicism and of involution, which

 I omit. For instance, he shows that the pairs of points H112f3, 14H5, H6H7,
 &c., of same notation, wlhich lie all on a common g line, form a system of

 points in involution, whose double points are the H point of same notation
 and the I point of the g line.

 III.

 1. Since the point G(ABC.DEF) is conjugate to the point G(ABC..DFE)
 with respect to the conic S, and the pole of the line g' (abc. def) with respect

 to the same conic, it follows that the point G (ABC. DEE) is on the line

 g' (abc. def); it is also on the line g (ABC. DEF), hence it is at their inter-

 section. In general, g lines and g' lines of the same notation intersect in G

 points. Since in the Brianchon figure the g' lines consist of ten pairs of lines
 conjugate with respect to S, it may be shown in the same way that G points
 and G' points of the same notation, as G (AFC. BED) and G' (afc. bed), lie

 on g' lines, as y' (afc . bde).
 2. Since ABC-D is a quadrilateral inscribed in a conic, the intersections

 of its diagonals, P (BC. A1D), P (CD. AB), P (AC. BID), are the vertices of

 a triangle self-conjugate to the conic and the line joining P (CID. AB) to
 P (AC. B1D) is the polar of P (BC. A-D); but p' (be. ad) is also the polar of
 P (BC. AD), hence these two lines coincide. In the same way it may be
 shown that the point of intersection of p' (ed. ab) and p' (ac. bd) coincides with
 P (BC. AD), and, in genieral, that the triangle whose vertices are the P
 points obtained from four of the six points on the conic coincides with the
 triangle whose sides are the p' lines obtained from the tangents at the samyle
 four points. There are 15 combinations of four letters out of six, hence there
 are 15 of these self-conjugate triangles. Since a self-conjugate triangle has
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 LADD, The Pascal Hexagranm. 9

 always one vertex within the conic and two without, it follows that 15 P

 points are always within the conic and 30 without, and that of the 45 p' lines

 30 cut the conic in two real and 15 in two imaginary points.
 It now appears that the lines and points of the Brianchon figure can be

 produced without considering the Brianchon hexagon. Since the points

 P (AB. -DE), P (BC. EF), P (CID. FA) are on a line, h (ABC1DEF), their

 poles, P (A-D. EB) P (AE. 1DB), P (BE. FC) P (BF. CE), P (CF. A-D)

 P (CA . DF), meet in a point [the same as the point II' (abcdef )], the pole
 of h (ABODEEF). From the 60 points thus obtained mnay be produced all
 the other lines and points of the figure.

 3. If a, b, c be the sides of a triangle and a', b', c', d' the sides of a quad-

 rilateral such that the triangles b'c'd', c'd'a', d'af', a'b'c' are homologous with abc,

 their respective axes of homiology being ka, lb, Ic ld, then the intersections of
 ka, a'; kb, b'; kcI, c'; kd, d' are collinear. For, the equations of the axes nmay be
 written ka) b + c'= c+ b'= a + d'= O, kb) b + d'= c + a'= a+ c'= O,
 kc,) b+a'=c+d'`a+b'=O, kd) b+b'=c+ a`+= a'-=0, and we
 shall then have for lines through their respective intersections with sides of

 the quadrilateral

 ka, a') 6 + c' +r a' ? c + 1' + a' = a + d' + a' 0 ,
 klCa ') b+d'+ba'=c+a'?b'=a+ c'+eb=0,
 kI, b') b + d* + b' c + a' + b' a + c' + b' 0,

 kd, d') b + b' + d'= c + c' + d' = a + a' + d' 0,

 which form all four one and the same line. The quadrilateral kakbkokd is also
 such that its four triangles are each homologous with abc, and in fact in
 such a way that kakkbC,X a'b'c' and abc have lines joinling all three corre-
 sponding vertices coincident. Take the triangles kkbkcd and'b'c'd'; we have

 kc-kb = b-c= b'-c'- 0 -kC-kd =-a-b =-d' + c'= ,
 k, + kd = a + c = d' - b' 0, and the equations show that these three lines
 ineet in a point. Let us apply this property to the Pascal hexagram. We

 shall say, with Veronese, (p. 27), that the triangle formed by joining oppo-
 site vertices of a hexagon belongs to the Pascal obtained by taking the vertices
 in the same order; for instance, the triangle whose sides are A-D, BE, OF,
 belongs to the four Pascals h (AECODBF), h (AEFIDBC), h (ABE)DEC),
 h (ABCOEEF). The points

 P (AB. DE), P (A-D.BE) are on the line p' (bd.ae);
 P (BC.EF), P (EB.FO) " p' (ce.b
 P (FD.A), P (A-D.EFO) " " p' (af.de).

 4
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 10 LADD, The Pascal Hexagram.

 These three p' lines meet in a point, namely, the Brianchon point R' (aecdbf),

 hence the two triangles formed by the vertical rows of P points are horno-

 logous. The sides of the first are the Pascals h (ABFDEC), h (ABODEF),
 h (CAEFPDB), and the corresponding sides of the second are AD, BE, CF,
 hence these three pairs of sidces intersect in a line which, as it is an axis of

 homology corresponding to the centre of homology H' (aecdbf), we shall call

 the line k (AECDBF). In the same way it may be shown that the triangle

 formiied by any tlhree of the four Pascals to which the triangle AD, BE, CF

 belongs are homologous therewith, therefore the intersections of the four axes

 of homology, k (AEC.DBF), k (AEFDBC), k (ABFDEC), k (ABC:DEF) with

 the four Pascal lines A (AEC'DBF), AI (AEEFIDBC), h (ABFDEC), A (ABODEF)
 respectively, are four points on one straight line. As this line is obtained by

 means of the triangle AD, BE, CF, we shall call it the line l (A.D. BE. CF).

 To each triangle formned by three fundamental lines, no two of which pass
 through the same point on the coniC, corresponds a line l of the same nota-
 tion; there are 15 such triangles, hence there are 15 lines 1. To each HI point
 corresponds a k line, hence there are 60 lines k, divided into 15 groups of lour
 each, which intersect corresponding I lines on the 15 1 lines.

 4. The triangles ABC, abc, are homologous. Let us call their centre of
 homology C (ABC. abc), their axis a (ABC. abc). Let us say that the points
 C (ABC. abc), C (A1DC. adc) are joined by the line c (ac . bd) and that the

 lines a (ABC. abc), a (A DC. adc) intersect in A (ac. bd), where the bar is
 drawn over the letters that are repeated. I have shown (Educational Times,

 Question 5698,) that c (ac . bd), c (ac . bd) intersect in P (A C. BD), and that

 A (ac. bd), A (ac. bd) are connected by p' (ac. bd). There are 20 points C
 and 20 lines a. ' Each C point is joined to 9 other C points by c lines, hence

 there are + (9. 20) = 90 lines c, which pass by twos through the 45 points

 P anid 90 points A which lie in twos on the 45 lines p'. The six c lines

 c (ac. bd) c (eb . fa) c (df . ce)
 c (ac . bd)' c (eb .fa) c (df. ce)

 intersect in pairs in three points on one straight line, viz., the P points on
 h (AC-EB-DF), hence they form the sides of a Pascal hexagon; and for a
 similar reason the six A points of the same notation are the vertices of a
 Brianchon hexagon.

 5. The Brianchon hexagon formed by joining alternate vertices of

 ABCDEF has for its sides AC, BD, CE, DF, EA, FB. The conic inscribed
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 LADD, The Pascal Ilexagram. 11

 in this hexagon, X, is the reciprocal of the conic S with respect to a third
 conic- Xl, twelve points of which may be obtained by taking on each side of

 the Brianchon hexagon the two points which form. a harmonic range with

 each of the two pairs of vertices on this side; *for instarnce; on AC the

 two points which are harmnonic at once with C, P (BD. AC), and with

 A, P (BF. AC). The hexag,on ABC_DEF is the reciprocal with respect to
 the conic X of the hexagon formed by joining its alternate vertices; the point

 P (BD. AC) is the pole of the line BC, the point P (AE . FD) is the pole of
 of the line FE, hence the Pascal h (CAEBIDF) is the polar of the point

 P (BC. EF); P (BD, CE) is the pole of C-D, P (PB. AE) is the pole of AF,
 hence the Pascal h (AECFOBD) is the polar of the point P (CI) . AF). It

 follows that the intersection of the Pascals h (CAEBDF), h (AECFDB), which
 is the Kirkman H (A FEDCB), is the pole of the line joining P (CD. A F)

 to P (BC. FE), which is the Pascal h (AFEDICB). But the six hexagons,
 ABCIDEF, AFCBED, ADCFEB, ABCFEID, ADCBEF, AFC)DEB, formn,
 by connectors of alternate vertices, a Brianchon hexagon composed of the same

 sides in different orders, and henice circumscribed to the same conic, therefore
 the six Pascals h (ABC-DEF), h (AFCBEID), h (ADGCFEB), h (ABCFED),
 h(ABDCCEF), h(AFCIDEB), are the poles of the six Kirkmans H(ABC-DEE),

 H(AFCBED), H (A)DCFEB), I(ABOCFED), HI(A)DCBEF), H(AFC-DEB),
 with respect to the samne conic X1. Moreover, the points G (A G0E. B1DF) and

 G (ACE. BFD) in which the first three and the second three Pascals inter-

 sect are the poles respectively of the lines g (ACE. BDF) and g (ACE . BF-D)
 which coninect the first three and the second three Kirkmans. The two G
 points in question are harmonic conjugates with respect to the conic 8, hence

 their polars with respect to X1, the g lines of the same lnotation, are harmonic
 conjugates with respect to the reciprocal conic, E. The triangle whose
 vertices are two corresponding G points and the intersection of the g lines

 through them (or, what is the same thing, the triangle whose sides are two
 corresponding g lines and the line joining the G points on them) is a triangle
 self-conjugate with respect to the conic X1, two of its vertices being at the

 same tirne conjugate with respect to 8, anid two of its sides with respect to 11.

 Sinice this conic, 21 is inscribed in the triangles ACE and BDF, we slhall call
 it the conic X (ACE. BDF), (where the order of the letters in each group of

 three is of no consequence) and the conic with respect to which it is the

 reciprocal of S we shall call X (A CE. BDF). There are ten conics X, the

This content downloaded from 
������������199.242.209.35 on Mon, 13 Mar 2023 16:49:30 UTC������������� 

All use subject to https://about.jstor.org/terms



 12 LADD, The Pascal Hexagramn.

 reciprocals of S with respect to ten conics X. Each pair of corresponding G
 point.s and the six Pascals through them are reciprocal, with respect to one
 conic X, to the two g lines and the six H points of the same notation. The

 60 H points andl the 60 h lines are then divided into ten systems of six lines
 and points each, reciprocal to each other with respect to the X conic of that
 system.

 These properties of the Pascal Hexagram can be summed up in the
 following propositions:

 (1). The 20 Steiner points G are the intersections qf the 20 Cayley-Salmon
 lines g with7 the 20 corresponding lines g'. The 20 lines g' are the connectors of the
 20 Steiner points G with the 20 corresponding points G'.

 (2). The 45 points P lie in twos on 45 lines p', which meet by threes in 60

 points f', the poles with respect to the original conic of the h lines. The H' points
 lie in fours on the lines p', in threes on 60 lines h' and in threes on 20 lines g'.

 From them may be produced any number qf systems of points and lines, [Hh'J,R]
 having their g' and i' lines and their G' and I' points in common. But in this case
 transition is made from a system of even, index to one of odd by means of v' lines,
 and from one of odd to one of even by means of V' poInts.

 (3). Three Pascal lines which belong to a triangle fornmed offundamental sides
 intersect those sides in a k line. There are 60 lines k. Their intersections with
 corresponding h lines lie in fours on 15 lines 1.

 (4). Qf the corresponding circumscribed and inscribed triangles of the conic,
 the 20 centres qf honmology, C, lie in twos on 90 lines c, whtch pass by twos through

 the 45 points P, and the 20 axes qf homology, a, intersect in twos in 90 points A,
 which lie in twos on the 45 lines p'.

 (5). The H points and the h lines may be divided into ten groups of six lines
 and points each. The lines and points of' each group are poles and polars with
 respect to one qf ten auxiliary conics X. To each group belon,q two corresponding

 G points and two corresponding g lines. Theyfjrm a triangle self-conjugate with
 respect to the X conic qf the group. The G points are at the same time conjugate
 with respect to conic S, and the g lines are at the same time conjugate with respect
 to the conic X,the X reciprocal qf S.
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 On the Thteory of Flexure.

 BY WILLIAM H. BURR, Rensselaer Polyteclinic Institute, Troy, N. Y.

 It is not intended in this discussion to give the exaet theory of flexure for

 all mnaterials and shapes of pieces subjected to bending, nor indeed for any

 one kind of material. The present state of knowledge regarding tlle internal

 mnolecular action developed in any piece of elastic material by the action of

 external forces, is not such as to enable one to treat any problem of this kind

 with mathemiatical rig,or if the piece be of finite dirnensions. The illustrious

 Lame, however, has remnarked that the exact solutions of all problems in

 natural science are usually obtained by successive approximations, and such

 has certainly been the case in reg,ard to the theory of flexure.

 If the followving investigation shall be found to constitute even a short

 step in the direction of the correct theory, the object of the writer will have

 been accomplished.

 *An explanation, by the writer, in regard to his aimn in this discussion, is very essential in order that the
 results may not be misunderstood. It is not intended to cover any of the ground gone over so elegantly by St.
 Venant, Clebsch and others. Their investigations leave nothing to be desired.

 It is intended to poiilt out considerations which, it is believed, will account for the great discrepancies
 existing between the results of the "common theory" and those of experiment. Those considerations apply
 chiefly to the conditions of stress existing between the elastic limit and rupture, to which the investigations of
 the authors mentioned above do not apply.

 It may easily be shown that the logarithmic law found is not consistent with the equations of condition
 (4), (5), (6) and (7) for a body of homogeneous elasticity, but those equations do not obtain beyond the elastic
 limit, nor for bodies that are not homogeneous (and non-homogenity is characteristic of all bodies used by the
 engineer), nor indeed are they strictly true for homogeneous bodies except for indefinitely snmall strains. Now
 indefinitely small strains are by no metans those which accompany the application of finite external forces or
 the existence of finite internal stresses.

 Again the researches of M. Tresca, in particular, but also those of Prof. Thurston and others * sbow that
 molecules rearrange themselves, to a greater or less extent, when the material in which they exist is subjected
 to stress for a finite length of time. It is not only possible, but highly probable, that this rearrangemenit enables
 the molecules to take such positions as will give the material the greatest possible capacity of resistence.

 It is submitted, therefore, that, while it is altogether probable that that condition will exist just before
 rupture, which, by the principle of least resistance, will subject the material to the least stress, the same law,
 on the further investigation of strains in either homogeneous or non-homogeneous bodies, may be found to
 hold in the case of such bodies in equilibrium. For that reason some approximate values for the deflection are
 found which may serve the purpose of (at least) a rough experimental test.

 The importance of the bearing of these matters orn elastic bodies, is enhanced by the fact that no law of
 stress whatever can exist in such bodies in equilibrium which may not be supposed to exist in a rigid body.

 The arbitrary fuLnetions of integration in u, v and w are not all found, for they are not needed for the pur-
 poses of the investigation, and a search for them would cause the paper to reach far beyond its proper limits.

 [*As, for instance, Eaton Hodgkinson, who, we believe, made accurate determinations in this subject many years before those
 whose names are above mentioned, having turned his attention to it as early as 1824.-EDS.]
 4 13
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 14 BURR, On the Thieory of Elexure.

 It is assumed, and assumed only in the "i Comnmon Theory of Flextlire"
 put forth by Mariotte and Leibnitz, that the intensities of the normnal internal

 stresses parallel to the neutral surface vary directly as the first powers of the

 normal distances from that neutral surface. This assumption gives results

 corresponding to experimen tal ones, with degrees of approxiination varying
 according to the nature of the material and the shape of the piece subjectedl
 to bending. Its chief merit, and a very great one, is that it leads to very

 simple discussions of the cases which ordinarily occur in practice. It ignores,
 however, the existence of any internal shearing stress, and the formulae

 deduced for deflection do not invrolve the distortion which any piece of mate-
 rial suffers when subjected to the action of external forces.

 Nevertheless, the method of fixing, the position of the neutral surface is
 correct, since it is based oni one of the first principles of statics, i. e., that each
 of the stums of the components of the internal stresses, taken along, three
 rectan gulalr axes, must be equal to zero. The sum of the component forces of

 each sign along any axis, and not the sum of the component nmoments, must
 be equal to each other when the external forces act in a direction normlal to
 the axis of the beam.

 Navier first assunmed the equality of the moments, but soon after aban-
 doned the idea and pronounced it erroneous.

 rfhe principle just stated, first given by Parent, will be used in the fol-

 lowling discussion in the determinationi of the position of the neutral surface.
 Two assumptions will be made, the last only of whlich, however, as will

 eventually be shown, tenids to give the investigpation an approximate cliaracter.
 The onie source of approximation which probably causes the discrepancy

 between the results which follow and those of experiments is the neglect
 of lateral contraction and expansion; and those plhenomena will be noticed
 further on.

 It wxill first be assumed that the material has a non-crystalline structure.
 This is not absolutely necessary, but it emphasizes the proof that the results
 apply to material of any kind.

 The second assumnption is this, that the applied bending forces produce
 no compression at their points of application. This really amounts to sup-
 posing the bending, to be produced by a single force acting at the proper
 distance frorn the section under consideration, while the portion of the bearm
 on the otlher side of the section is lheld in position by the requisite forces.
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 BURR, On the Theory of Flexure. 15

 If this assumption were a cause of approximation in the results, those

 resultg would not be essentially changed thereby in all ordiniary cases of
 eng,ineering practice as the compression is very slight.

 In the case of glass the experimnents of the late Mr. Louis Nickerson,
 C. E., of St. Louis, would seenm to show that a high intensity of local pressure
 at the point wlhere the external force is applied causes the neutral surface to
 move toward that point through an appreciable distance.

 The general equations of equilibrium, however, do not indicate such a

 result, and there are strong reasons for believing that his experimnents may
 have indicated somiething different.

 The first assumption made renders it possible to make use of Lame's
 general equations for homogeneous solids of constant elasticity. These are
 found on page 65 of his "Legons sur le the'orie mathednatique de Velasticiti
 des corps solides," and are the following. Let Mb, v and w be the actual dis-
 placements of any molecule along any assumed three rectangular axes of x, y
 and z; then N1, N2 and N3 represent the three normal intensities of stresses

 along these axes respectively, and T1,, T2 and TL3 the intensities of tangen-
 tial stresses producing moments around the same axes, i. e. T1 around x,

 T2 around y, and T3 around z. Let X and tt represent empirical constants
 du dv dw

 depending on the nature of the material, and let 0 = d +-+-. This quan-

 tity 0 will be recognized as the dilitation per unit of volume. Using this nota-
 tion, the general equation for a homogeneous solid are

 N,X1 + 2M t$ T, = t (-d + d-

 dvdw d

 N2 /% + 2y dy T2 =y (dx + dz) 1
 N XO + 2t di T, S= y(du+ dv (

 No demonstration of these equations is given, for it is difficult to con-
 ceive of one more elegant or more general than that given by Lame.

 Neglecting the effect of forces emanating from an exterior centre, the
 conditions of equilibriuml are involved in the following, equations, also given
 by Lame, dNj dT3 dT2

 dx3 dy + dz T
 dTdT + 2d + 0 .(2)

 dT2 dTt dN3 =
 ~ -+-7 ~+ dz~o
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 16 BURR, On the Theory of Flexture.

 These are the only equations of condition resulting from the considera-

 tion of the principles of statics alone, and are, in general, insufficient to
 determine the six unknown intensities which enter them.

 In the following discussion the piece or beam subjected to bending will

 be supposed to occupy a horizontal position; the bending forces (including

 the reaction) will be supposed to act in a direction normal to the axis of the

 beamn; the beam will be supposed straight and uniform in normal section;
 the axis of x will be taken to be parallel to the axis of the beam; the axis of

 z will be vertical and the axis of y horizontal and perpendicular to that of x.

 The axes of z and y will thus be parallel to axes of symmetry of the section, if
 that section be symmetrical and the beam be properly placed. No other

 kind of section or position will be considered. In the generality of cases the

 coefficients of elasticity for tension and compression will be considered equal.

 In the one or two cases where they are not supposed to be equal, the axis

 of x will still be taken parallel to the axis of the beam, and not coincident
 with it.

 Now in the case of flexure, generally considered, on account of the dis-

 tortion of the material subjected to stress, the six stresses Nl, N2, N3, T1, T2, T,
 actually exist, but in some of the cases taken some of them are equal to zero;

 in others, sorne of them are so small that they may be considered differential

 quantities, i. e., they owe their existence to the indefinitely small difference of

 the intensities of stresses on two small portions of the material indefinitely

 close together. The omission of these quantities will evidently produce no
 essential error in the results, though it is true that it takes froni the mathe-
 natical exactness of the equations.

 Beams whose sections, i. e. normal sections, are symmetrical in respect

 to the axis of y and z-will first be considered, and it will be assumed that
 N2 - 0, N3 - 0, and T - 0. It should be stated that the sections considered
 will not only be symnmetrical ones but such that they will not have re-entrant
 contours.

 The case of rectangular sections when N, is not equal to zero will be
 taken up afterwards. It might be treated as existing in all beams-if the
 external forces were so applied that T1 is still zero, but that is an exceptional

 case and will not be taken up. 11 may i-n reality exist as a very small quan-

 tity, in some cases, on account of the variable value of T2 at the neutral
 surface.
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 BURR, On the Thieory of JFlexure. 17

 The equations of condition for equilibrium in these cases, from equa-

 tions 2, will be the three following:

 dNX + dT3 dT2 _
 dix + y +dz - I

 dT3 0,.(3)

 dT2 0 J
 dx

 __ (PWU (PPu _ or (+) + + dz2)

 8 (dPdy + d-$2) = 0 u ](4)

 YX/2 + dxdz) 0.
 Three other equations of condition result from the conditions that YS, NY;,

 and T1 each equal zero. These give in connection with equations (1)
 /dudv dw dv

 x. Td +-.+0)+2ud =? 5 + v+ + 2u-= ...(5)
 \dxdy~dz/ dy

 /du dv IW (uy (-x? -+ iw + 2u.- =0.(6) \x dy dz/ d

 (dv1 dT \
 Ydz + 1y) O.(7)

 These equations, as it will afterwards be seen, aid in the determination

 of the displaceinents u, v and w. The last two of equations (3) may be inte-

 grated at once, and will give

 T3 =f (y, Z) (8)
 T, =F(y,z) .(9)

 In which f and F signify aIny arbitrary functions of y and z whatever;

 they correspond to the " constants " of integration and must be written

 because the intensities of the internal stresses are, in general, each functions

 of x, y and z.
 Denoting byf' (y, z) and Fz' (y, z) the partial derivatives of T, and T2,

 respectively, in respect to the variables indicated, the first of equations (3)

 may be integrated, and will give

 N1 = x [ z,'(y, z) + F' (y, z)] + Z (y, z) * * * * (10)
 The quantity al (y, z) is any arbitrary function of y and z, and it will

 now be shown that in general it is independent of y and z, as well as of x, anid

 tllat in many of the cases of pure flexure it may be put equal to zero.
 5
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 18 BURR, On the Thaeory o.f Flexure.

 The direction of action of the stress whose intensity is N1 is normal to its

 plane of action, which is a normal section of a fibre parallel to the axis of the
 beam. Now, since the applied bending forces are perpendicular in direction
 to the axis of the beam, no part of N1 can result directly from the forces;

 that is, they have no component parallel to the fibres subjected to the normal
 stress N1.

 The stress, whose intensity is NtT, exists only, therefore, in consequence of
 the shearing, or tangential, stresses called into action by the slipping over

 each other of the fibres parallel to the axis of the beam, or in consequence

 of T2 and T3. The expression for N1 cannot therefore have a part indepen-

 dent of the quantities T2 and T3, except in the case (not of pure flexure) where
 the beam is subjected to the action of an external force acting in the directioni

 of its own length. The function 4' (y, z) cannot, therefore, depend on the
 variables y and z unless they appear raised to the zero power; or, in other
 words, a5 (y, z) cannot exist except as a constant, since the integrating equation

 (10) was made in respect to x. But the case treated is that of pure flexure,
 in which no external force acts upon the beam in the direction of its own
 length, and in which, consequently, no part of N1 can be independent of the

 tangential stresses T2 and T3; hence T4 (y, z) = 0 or c, according as the origin
 of co-ordinates is at a section of no flexure or not.

 Again, differentiate equation (10) in respect to y, there results

 dArl F d)+,(F/'(y, Z))+ ?dTl(Y' z)
 dy d Lyy (y, z) + dy dy (1

 In this equation any value of z may be assuimed wliile y is considered the
 only va.riable. Let such a value for z be assumed that the equation will
 apply to the neutral surface. It will not destroy the force of the reasoning
 to suppose that surface plane, for if it is not plane the equation of its trace

 on the plane of normal section of the beamn will be z =f (y).

 Now, in the neutral surface N1 =0, T3 0 and F,' (y, z) O0 since Tj has

 there its maximumn value. Consequently d , =07 (Y, Z) =0,

 and dY' y)d=O. . . = . * (12)
 dy

 Next, differentiate equation (10) in respect to z, and there results

 d r (, (Y' Z))+ F" (v, z) + dT(y, z) (13) dNz z)] dz (3
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 BURR, Ont the Theory of Flexure. 19

 Since z is considered the only variable, such a value for y may be taken
 that the equation will refer to that portion of a normnal section of the beam

 which lies along the axis of symmetry of the section, for whichfi(i, z) = 0.

 Hence dN xF" (y, z) + d(y z) . . . (14)

 Now dNl is always a positive quantity, but the function zX (y, z) is per-

 fectly arbitrary, and it may be given such a value and sign, if it has real

 existence as a function of the two variables y and z, that the second member

 of equation (14) may have a sign contrary to that of its first member, whatever

 may be the value of -xF," (y, z).

 In order that equation (14) may be a true one, therefore dz( ) dz = - ;
 consequently

 )dy + d(y,') dz = O; or, t (y, z) -c, . . . (15)
 c being a constant quantity. In the case where the origin is taken at a sec-
 tion of no flexure c = 0. Otherwise, at the free ends of a beam, and at
 sections of contra flexure, there will exist normal stresses parallel to the axis,

 since a portion of the expression for N1 would then be independent of x.

 There is then established the important equation, when the origin is taken
 at a section of no bending,

 N. = - x [fy' (y, z) + Fz' (16)
 It is seen by this equation that N1 varies directly as x. But in this equation

 there is apparently 'involved the condition that one external force only is act-
 ing at the distance x from the section under consideration. This arises from

 the fact that the external forces are assumed to produce no compression at

 their points of application. It does not affect, however, the generality of the

 equation, for the last two of equations (3) show that whatever may be the

 bending moment, the above assumption simnply means, it is so produced that

 the total shearing in any section is equal to that in any other, since d and

 ?3 both equal zero.
 dx

 The magnitude of the external force then, is a matter of indifference,

 only it must be constant for the same beam with any given system of loading.

 The normal intensity N1 is, consequenztly, proportional to the variable lever arm
 x of any given constant force which may produce the bending monment to which the
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 20 BuRR, On the Theory of Flexure.

 beam is subjected at the section considered; or, in other words, it is simply propor-
 tional to the bending moment.

 This gives at once a miethod of expressing N, in terms of the bending
 moment of the external forces, and it will be sometimes convenient hereafter

 to use it.

 Hereafter, also, unless otherwise stated, X, instead of N1, will be written
 for the general value of the intensity of the normnal stress parallel to the

 axis.

 Let n and M1 represent the values of N and the external bending moment

 respectively for any given section, and 111 the general value of the external

 bending moment, then, by the priniciple just stated,

 N\T n.JI- * a * * * * * . . . (17)

 This is a perfectly general expression wlhatever may be the position of

 the origin of co-ordinates.

 It will now be necessary to return to the discussion of the general form

 of equation (16),

 :X =-x [etyt (y, z) + Fz' ty, z)] + c . . . . . (18)
 taken in connection with equations (8) and (9).

 The functions f (y, z) and F (y, z) are perfectly arbitrary; hence it is
 sufficient for equilibrium to assign any laws whatever for the variations of

 the intensities T, and T3, and when T2 and T3 are known N at once results
 from equation (18). There are not, therefore, a sufficient nunmber of equations
 founded on the principles of statics to insure a solution of the problem. The

 "'Principle of Least Resistance," however, furnishes the wanting condition.

 Now whatever may be the laws governing the quantities N, T2 and T3 there
 are two conditions which mnust be fulfilled, i. e. the moment of the internal

 stresses in any section must be equal to the moment of the external forces for

 the same section, and the total shearing stress in any normal section must

 equal the sum of the external forces acting on one side of that section. Btit

 the second of these conditions is really involved in the first, as will now be

 shown.

 Let f (z', ) = 0 be the equation of the perimeter of a normal section of

 the beam, and A f JfJ'dzdy its area. Then, remembering that the coefficient
 of elasticity for tension is assumed equal to that for compression, the equation
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 BURR, On thie Theory of Flexure. 21

 expressin,g, the equality between the moment of the internal stresses of any

 section, and that of the external bendirng forces will be

 2 fzifY Nz,dzdy=- 2x Y [f', ( y, z) + P ' (y, z)] z2dzdy

 + 2cfzlfY z2dzdy = - *l.(18)

 In this equation z2is written for convenience for (z- b), and z1 represents

 the maximnum value of z. Of course b is the -alu'e of z for the neutral sur-

 face, and a is the value of y for the vertical axis of symmetry.
 The lower limits a and b are taken so that the integration will cover one-

 fourth of the section, and the resulting mnoment in the second member will,

 therefore, be one-half the whole bendinig moment. Since the axis of z is par-

 allel to the axis of symmetry of section, and since the external forces act

 parallel to it, the integral JfT2dydz = P, the sum of the external forces

 which produce the bending, while ff T3d,ydz = 0; these integrals are suip-
 posed to cover the whole section.

 Now ffYlt' (y, z) z2dzdy f (T3)Y z2dz; but, considering, that part of
 the section on one side of that axis of symmiietry which is parallel to tlle axis

 of z, for every positive value of z between the limits of zl and b tlher-e
 is also a negative value on the other side of the neutral surface. Hence

 f(T3)a z2dz = 0, and the first term of the second member of equation (18) may

 be omitted. Again, applying the integrals to the whole surface, fZ2dzdy is
 simply the statical moment of the surface about an axis passing through its

 centre of gravity, consequently it is equal to zero, and the last term of the
 second member of equation (18) may be omitted. Hence

 2fblfYl Nz2dz4y = - 2xfg'f FP' (y, z) z2dydz = 2. . (19)
 fJ? '(y,z) z2dz=z2F(y,z)-fF(y,z) dz. When z=zi, F(y, z)=-0,

 and when z = b, Z2 =0. Consequently f7 ]z' (y, z) z2dz =F- F (y, z) dz

 and 2M= 2x z' F (y, z) dzdy.. (20)

 Equation (20) shows that, iffor any section the bending moment remains the

 same, the shearing force also will remain constant, which was to be proved.
 If equation (20) be differentiated in respect to x, there results

 dJl4fzI Jlby'F(z)dzdy . (21)
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 22 BuRR, On the Theory of Flexure.

 which shows that the first differential coefficienit of Mi in respect to x is equal

 to the total vertical shearing stress in the section, or the sum of all the exter-

 nal forces acting on one side of the section.

 This principle, consequently that involved in equation (20), might have

 been determiined frorn the fundamnental equations of statics.

 Now referring to equation (16), on account of the arbitrary character of

 the functions f (y, z) and F (y, z) the sum of all the internal stresses developed

 in any section may have any value whatever without effecting the equilibrium

 between the internal and external moments. But the principle of least resist-

 ance asserts that the sum of all the internal stresses developed in any section shall
 be the least possible consistent with the im,posed conditions of equilibrium.

 The only imposed conditions of equilibrium are the constanev of the total

 shearing or tangential stresses developed in any normal section, anid the

 bending moment of the normal internal stresses about an axis perpendicular

 to the direction of- those tangential stresses. But it has already been shown
 that the two condlitions are equivalent to each other whei all the external

 forces are vertical in direction, the axis of z being vertical also; and wlhen
 the shearing stresses T2 and moment about the axis of y are considered.

 The equations of condition for the shearing stresses T3 and moment about

 the axis of z will be ff T3dydz = 0 and ff Ny.dydz = 0. But these are simply

 special cases of the general equations ffT3dydz = E:P and ff Ny2dydz = M,

 consequently the reasoning applied to equation (18) will bear- out the same

 deductions in this case. The two conditions of equilibrium are therefore

 involved in the latter equation in both cases.

 The problemn which now presents itself, therefore, is to find the law gov-

 erning the intensity Nlso that there may be the two conditions-

 fb'fXNdydz minimum, .(22)

 4 ~fb; fY Nz2dydz = X. .(23)

 The moment 11 is, of course, constant for any section while N is a varia-
 ble function of y and z only, as x, like M, is constant for any section. The

 equations (22) and (23) may be considered typical since y2= y -a may be
 written for z2 in equation (23).

 If a and t denote two variable parameters, (:, p and 4 different ftunctions,
 there may be written generally

 N = (o t), yt) p (pa, t) and z _ A (a, t). (24)
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 BURR, On the Theory of Flexure. 23

 But in the case under consideration y and z are perfectly independent
 variables, hence the equations (24) reduce to

 N = D (a, t), y p (a) and z (25)

 Coonsequently the minimum value of the quantity f a1 fW Ndydz will be
 found by first considering one variable constant and then the other; or in

 other words by first considering N a function of y and then of z, or vice versa.

 The equatioiis (22) and (23) then become, when z is considered the only

 variable,

 N m = minimum, .(26)

 fzi Nz,dz = constant. (27)
 At the neutral surface N 0 and when z z1 let N N0V; then (26) may
 take the form

 X Ad =(- Nz, - N'zdz = minimnum, in which N' - d.
 Now finding the minimum value of Z Ndz is the same as finiding, the

 least value of No when Ndz is a constant quantity; the conditional equa-

 tion (27) holding in both cases. Hence, putting C= f'iNdz, the problem

 involved in (26) takes the form

 NO = + ?f N' z dz = iminimnum. . . . . . (28)

 Since 2 is a constant quantity, the last term of the second member of
 Z1

 the above equation is all that need be taken into consideration. If a' is a
 constant, then let S denote the integral of which the absolute minimum is to

 be found. This function S is obtained by the principles of the Calculus of
 Variations, by multiplying the conditional equation (27) by a' and adding the
 result to the variable part of equation (28). These operations give

 S = X + aN (z-b)] dz . . . . . (29)

 The methods of the Calculus of Variations must be applied to this definite
 integral in order to determine the character of the function N which will give
 it its least value. The following system of notation is that used in the work
 of J. A. Serret on the Calculus:

 _LVI z ~~dV_ N' V- AV' 5 + a'N (-zb), Z= d V + a'N,

 Y= -dV =a' (- zb), "dN' -
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 24 BURR, On the Theory of Flexure.

 The condition for a mwinimum is the following:
 dY'. dY'

 Y- = O or Y=-
 dz -dz

 Now, since dz = d (z - b), there results for the complete differential of V

 dV - Zd(z - b) + YdN + Y'dN'. (30)

 But if this equation be integrated, it is evident the deterininate part of

 the integral of the first term of the second member will be equal to that of
 the first member, hence

 f (YdN + Y'dNL') = c; or, from the conditions for a minimum,

 f (Y'd Y' + Y'dN') = c;

 Al Y' = c = constant. (31)

 Since Y = Z and =dN
 z, dz

 dN= Z1( 2. - N= z,c log z + c'. .(32)
 z

 Hence the curve representing the law of variation of N is a logarithmic
 one, and, since the value of z for the neutral surface is b, if b is taken equal

 to unity, c' will be zero for this case. The value for N, therefore, for a vertical

 plane passing throuigh the axis of the beam will be

 Ni = z1e log z. (33)
 The symbol "log" refers, of course, to Naperian logarithms. Now, for

 any part of the beam z. must be replaced by z', since f (z', y') = 0 is the equa-
 tion of the perimneter of the section. Equation (33), therefore, for any strip
 of elemients parallel to the axis of z and at any distance y from the origin,
 will take the form

 N = z'c log z. (34)

 Let NlVJ represent the value of N for any point of the perimeter of the

 section, except that one for which z = el; and for that point let N0V be written,
 it will represent the greatest intensity of stress in the section. When z =z',

 N0'
 N = NV0'; consequently, for equation (34), c - lg z",

 .. N= No' log z .(35)
 log z

 When z = z,, N = N, G= N0? for equation (33), and
 z1 log z.

 N1- No log z. (36)
 log zi
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 BURR, On the Theory of Flexure. 25

 From what has already been said, in regard to the general equationis of

 condition for momnents and shearing stresses in horizontal planes, betwreen

 equations (21) and (22), it is evrident that the same steps precisely would
 have to be taken in order to determine the law of variation of N with y, as

 were talken to determine the connection between N and z. In fact, since y
 and z are considered variable only in turn, y may be written for z in the gene-

 ral operations for determiniing, the least value of the definite integral S.
 Hence the typical equation for N may be written in terms of y,

 N = No log y. (37)

 The quantity y, denotes the half width of tlle beam added to a. But, as
 was done in the case of z, a is assumed to be equal to unity in determining,

 the constant ly
 log Y,

 Now, in writing the equation (37) there is virtually assumed to be a sur-

 face of no stress of the kind N at the distance (y, - 1) from the vertical axis

 of symmetry of thle section. In other words, referring to Fig,. 1, 0 is really
 the assumed origin and HK the supposed position of the axis of z, while the

 surface of no stress touches the beam at est. The greatest value of N, tlhere-

 fore, in any horizontal plane, is N, found in the vertical axis of symmnetry of
 the beam. The point 0 is at the distance unity on one side of, and below, the

 centre C of the section; and it is most convenient to take that point for the

 orig,in of co-ordinates. O'O is equal to (y, + 1) and O'F is the y of equation
 (37). This latter quantity in terms of OF, the new y, will be (y' + 1- OF)

 = (y, - y + 1). Consequently, equation (37) takes the form

 N7V= jl-log (yi-iy + l).(38)

 When y = B-D= y' then N N0',

 N'- = log (y,- +1). . . . . . . (39)
 log y,

 N, is determined by equation (36), but z' must be written for z in that
 equation, then

 N,- Olog z'.(40)
 Iog z,

 logz' N= log (y, - 1. . . . . . (41) *Y0 klog Zi logy-
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 26 BURR, On the Theory of Flexure.

 Substituting in equation (35), there results

 N1 1 ? lg log (y_-y' + 1).(42)
 log.Z1 log y1

 This gives the general value of N in terms of the greatest intensity No of

 the entire section. If z = z', then, by referring to equations (38) and (40) it

 is seen that N Y= If z = I the equation (42) refers to the neutral surface

 anid N= 0.

 If y = 1, then the vertical axis of symmetry is referred to, and

 N= N- = o log z.
 logZ z

 Before passing on farther in the analytical discussion of the problem, it

 will be well to consider the form of the double curved surface wbhicl repre-

 sents graphically the law of variation of the intensity NY.

 'The closed curve in Fig. 1 represents a normal section of the beam, 0

 being the origin of co-ordinates. Now if normal lines be drawn at each point

 of the section of Fig. 1 whose lengths represent intensities, N, at the different
 points, a double cttrved surface will enclose their extremities fromn which

 logarithmnic curves, represented by the equations already given, will be cut
 by vertical and horizontal planes. The shaded portion of Fig. 2 represents

 a section cut by a vertical plane passed through the axis of the beam, and
 equation (36) is the equation to its perimeter. The shaded portion of Fig. 3

 is a hiorizontal section nade by a plane passed through RS, Fig. 1; the gen-

 eral equation for which is equation (38). CD of Fig. 3 is equal to FHof

 Fig. 2. All vertical planes wvill cut sections simnilar to that in Fig,. 2; these
 sections will have for their equation, equation (35). All horizontal planes

 will cut sections sinmilar to that in Fig. 3 and equation (38) will be the general

 equation to their perimeters.
 The tangent of the angle made by the curve at C, Fig. 2, with BC is equal

 to -- =, NO since for that point z - 1. The general value for the tangent

 is dN1 - N0 1 Hence the curve becomes parallel to BC at an infinite dis-
 dz log z, z

 tance fromn the origin, and has a horizontal asymptote passing through the
 origin. The same reasoning applies to the curves of the other sections.

 _NA
 -- 2 log-Z,-2- ; hence the vertical curves are concave towards the axis of dz2 log z1 z
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 BuIJ, On the Theory of Flexure. 27

 z. For the same reason the horizontal curves are concave towards the axis

 of y. The whole surface therefore is concave towards the plane of section.

 Nothirng has been said in regard to the determiination of the position of

 the neutral surface, except the statement made in the beginning, which would

 make it a plane before flexure passing through the centre of gravity of a nor-

 inal section, on the supposition that the coefficients for tension and compres-

 sion are equal to each other. The true principle has so long been recognized

 that it is not necessary to speak farther of it here.

 Referring to equations (17) and (42), it is evidenlt that the general valtue

 for the intensity N will be

 Al No log z log (yi- y? + 1). (43)
 Mj log z1logy Y,

 It is also evident that equation (43) may be so written as to apply to a

 horizontal pl1ane at the distance z' from the origin; it will then take the form

 Al No0o flo y y +(44)
 Jllogz1 log og Y Y

 Although this is dedluced. immediately from equation (43), it may be
 denmonstrated in precisely the same manner as was that equation.

 The momenit of resistance of the beam may now be easily written, though

 the integration involved may yet be found impossible in some cases and intri-
 cate in all but rectangular beams.

 It is. well known that the tangential stresses existing on the sides of

 a small parallelopipedical portion of any material constitute a system of forces

 in equilibrium. Consequently, the mornent of resistance in any section will
 be the sum of the smnall moments Ndydz. (z - 1). The lever arin of each of
 the small forces Nd ydz is (z - 1), because the centre of mnomenits is taken in
 the neutral surface and the origin of co-ordinates is at the distance unity below

 that surface.

 Since the normal sections of all the beams considered are syvmmetrical
 and without re-entrant outlines, the followi-ng equation at once results:

 3-M- No ffZ /1
 4M log l log (y,- y' + 1) log z. (z -1) dzdy'. (45)

 NY,D is, of course,,the greatest intensity in the giveen section. Since y is an
 independent variable, dy may be taken equal to dy'.

 Now g(z-) . z=2Z ,_1 l2_-3
 Now,Jz1)oz.z(z'1oz-z z1 ogz' + z'-- and

This content downloaded from 199.242.209.35 on Mon, 13 Mar 2023 16:49:41 UTC
All use subject to https://about.jstor.org/terms



 28 BURR, On the Theory of Flexure.

 z' =Tf (y') is the equation to the perimeter of the section. Conseque-ntly

 - l No , (iiA (Y) logf, (y) - J ( j2 (Y) Io0f (y) 4 -log z1 log Yi02'

 +1/ (Yt) -4) log (y1- _? 1) dy. (46)
 This intricate expression. reduces to a iiuch simpler one for beams of

 rectangular section. Equation (45) might have been written in terms of z'

 and y, in which case, equation (46) would have been found in terms of z', but
 would not be in as convenient shape.

 The general values of the displacements U, v and w may now be approxi-
 mately determined. It must be remembered that these displacements will

 only exist when N2, N3 and T1 are each equal to zero. From the equation
 (5) and (6) there results the relation

 dv dw

 .~~~~~~~~(47)
 Then, from either equation (5) or equation (6),

 du _ 2(A+ J ) dw (48)
 dx (48)

 But, from equation (1),

 NT = x (dU + dv + d')+ 2t du8 - 2 d-'+(+2)d-*** (49)
 Substituting, from (48) in (49) , there results

 2(3 + 2 ) dw (50)
 From equation (50), in connection with equation (47), there at once
 result

 IV- 2pa (32 ? 21t) JNdz.,*000(51)

 V 2 (3A+2) dY . . . . . (52)
 21t (3A + 2/M) J

 Equation (50) gives also the relation

 2(A+p)dw (A+u) N-EN.
 A dz p (3A + 2? )

 Combining this with equation (48), there results

 u -= EfNdx.. . . . (53)

 The coefficient of elasticity E - A + 2-) is written as M. Lame uses

 it, i. e. so as to represent the strain for each unit of stress. For wrought iron

This content downloaded from 199.242.209.35 on Mon, 13 Mar 2023 16:49:41 UTC
All use subject to https://about.jstor.org/terms



 BURR, On thie Theory of Flexure. 29

 E would have an average value of, say, 260010000 . The relation between

 E, t and X will be found given in the work of M. Lame before mentioned.
 In finding the value for w, N is to be taken in terms of y and z, and in deter-

 mining v, it is to be taken in terms of z' and y. Substituting the values for

 N, there result the following expressions for u, v and w:

 w2 31 No log (y-y' + 1) (z log z-z) +f (x, y), -p( 2,3+ 2F) i1f log z, log y1

 V~ - 2/u(3& + 2,) -, log Z, log Y, log z' [(y1-y + 1)-(Y1-y + 1) log (Y-Y + '1)]
 +f (x, z) ,

 Ml log 1log (Yy-y' + 1) log z Midx +f (z y)
 The functions f ( ) must be added in each integration because w, v and u

 are each functions Qf the three independent variables x, y and z.
 Let A be the deflection of the upper surface of the beayn at any point;

 then when z - z', w - A. In the vertical plane of symmetry for the beam

 v = 0; hence when y = 1, v will equal zero.
 The termy f (z, y) in the expression for u will depend upon the configura-

 tion of that section of the beam in which the origin of co-ordinates is located,
 it expresses the displacement in the direction of x for that section. If that

 section remains plane and vertical after flexure f (z, y) will reduce to zero, or

 a constant, and it will always be equal to zero for the neutral surface if it be
 assuined that the section containing the origin suffers no movement, as a
 whole during flexure. For any other point not in the neutral surface its
 value will depend on the distribution of tangential stress in the section where
 the origin is found, and its value is not easy to determine. In all cases of
 ordirnary experience it is a very small quantity compared witlh tlle other parts
 of the deflection, and essentially no error will be committed by its omission;
 such an omission will be made in equation (56).

 By introducing the given conditions the values of w, v and u will be
 written as follows:

 W 2S (32 - 2Sa) 12dj log zi logyo log (y1-y'+ 1) (z'log z-z'-z log z+z)+A, . (54)
 2 31 AO

 V - 2, (32 + 21,.) M, log z, logy1log z' [y1 logy1 ? (1-y)
 - (,l y + 1) log (y -y+1)] .(55)
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 30 BURR, On the Tkeory of EFlexure.

 Now, equation (54) has been written involving A, the deflection of the

 upper surface of the beam, but it must be remembered that w in the values

 of N, T and T,3 represents simply the displacements in the given section, or
 that which is caused by the stresses acting and not by any bodily movernent of
 any portion of the beamn. In. writing the value of T2, therefore, in equation
 (57), A must be omitted in equation (54). Otherwise, it would be true, as a

 general principle, that the shearing stress in any section is dependent on the

 deflection A, which is evidently not true. In equation (56), x1 is the co-ordi-
 nate of the section under consideration, and x is the general value of the

 abscissa of the point of application of the force P; or, in other words,

 M =- :P (x, x).
 it is seen from the value of w immnediately preceding equation (54), that

 the deflection of the neutral surface at any point is independent of the

 variable z, and is a function of the independent variables x and y.. This

 result shows that the neutral surface is not a cylindrical one after flexure,
 although it is symmetrical in reference to a vertical plane of symmetry for
 the beam. The neutral surface, then, is a surface of double curvature for all

 beams except those with rectangular sections, for which it is cylindrical.

 Since A depends on x and y, and not on z, the deflection of the neutral
 surface may be determined if the maximum intensitv of direct stress JV is
 known for the given section, as will be seen hereafter.

 In equations (1) there are given general values for the intensities of the
 tangential stresses T2 and T3 in terms of u, v and w. Using equations (54-56),
 the two following equationis are deduced, remembering what has already been
 said in regard to equation (54):

 il l, Iog z, l og y, 2 (32 + 2,-t) E
 T2=f0lg (Yj1- y, o 1) 2 NA (z' log z'- zI z log z + z)P

 + ( I1X) No log(y1- '?i) ('P (xi-x) dx (57)
 + 2pa) 2W log z,log y, z

 23 ( 32- No) MNlolog y [yD logy1 + (1-y) - (Yi-Y+ 1) log (Y'-y+ fl)] EP

 2 + ? No log z' fP (xi-x) dx
 (3A + 2,) Ml log z1 1og y1 (Yi - y + 1).(58)

 It has been assumed that J (z, y) in the value of u is equal to zero for

 both equations (57) and (58). If this cannot be admitted, then tt df(Z' ) is to
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 BURR, On the Tkeory of Plexure. 31

 be added to the second member of equation (57), and It to that of dy hto
 equation (58).

 If the partial differential coefficients of T2 and T3 be taken in respect

 to z and y, the two following equations wvill result after having substituted
 fromn the general values of N:

 dT2 ___ (A + ) fffdx d2N 2 N .
 dz (3A + 21) i * dz2 2 (3A + 2? ) N (

 dTa _ (2 + MA) fMdx d2N 2 _PN.(60)

 dy (32 + 2ff) MA *dy 2 (32+ 2i) MI

 Now, from equation (16), it is seen that:

 d1 YP _ dT2 dT3)

 dz N - Irz. y(61)
 But equation (60) shows that equation (61) is only true when A -y or

 y =-A~; or when E - 0, since E = -+ i or when tlle miaterial is rigid
 p (32 + 21t

 so far as tensile ancd cormpressive stresses are concerned. Lateral displace-
 mnents due to shearing stresses, however, may be supposed to exist.

 Equations (1) give the general values of the intensities -N, T2 anld T3,
 but in order that equilibriumn may exist they must be subject to the condi-
 tions of equations (4), which are perfectly independent of the equations (1).

 In fact equations (4) are founded on the first principles of statics and are
 perfectly independent of the nature of the material in which stress may exist.

 This matter will be specially noticed farther on.

 The equations (59), (60) and (61) show that the distribution of the shear-
 ing, or tangential stresses in the beam subjected to flexure is independent of
 the quantities X and t, and is the same whether the beani be supposed rigid

 or elastic with a finite value of E. Making X - t therefore in equations (57)
 and (58), there results

 2 =No log (y1 -y' + 1) (z' log z- z'-z log z + z) EP.(62) 22M log z,log y,

 T= No log z'63
 T3-2M f1lgl z, y,ologyy+(1-y)-(y1-yl) log (y1-y+[)],P;. (63)

 These are the true values of the intensities of the tangential stresses, and

 it will hereafter be shown that 4 fY 'fT Tdzcdy = EP, as should be the case.
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 32 BURR, On the TZUeory of Flexure.

 dJi
 lt has already been shown that c- = P, consequently equations (62)

 dAl
 and (63) may be written in terms of - and it will sometimes be convenient

 to use them in that fornm hereafter.

 There is an apparent anomialy in the fact that equations (57) and (58)

 are the expression-s derived directly from the general values of T2 and T3 in

 equations (1), while equations (62) and (63) are the true values of these inten-

 sities. The explanation is found in what has already been said in regard

 to the intensities being the same as in a material for wh'ich E is equal to

 zero. Equations (62) and (63) also show that T2 and T, are independent
 of x, except in so far as that variable may enter the summation YP, which

 is consistent with one of the first general equations of condition.

 From equations (62) and (63) the following results flow: if z' = 1, TF3 = 0

 for all values of y; if z=z'= 1, T2. 0, and if z =z' only, T2 = 0 if
 y = 1, T3 = 0. These results are as they should be, and might have been
 anticipated.

 Another mnethod of deducing the displacement w, in which A will repre-
 sent the deflection of any point of the neutral surface, is the one which fol-

 lows. It is somewhat more convenient in the treatment of beamns with rectan-

 gular cross sections. Let A then represent the deflection of any point of

 the neutral surface. When z 1, in the value of w immediately preceding
 equation (54), w A, hence

 .f (X, Y) A 2- (3A +H 2) olo zl log y log (y, -y' + 1). . . (64)
 If A', therefore, represents the general value of the deflection, there vill

 result, instead of equation (54),

 2(32+ 2 lgy log (Y- + l) * (z log z+-l z + l) +,+ (6))
 Now, let A" represent the value of A' when z -z', then the quantity w,

 which is to be used in writing the value of T2, will be equal to A'- A".
 Hence

 = A _ __O_ 0log (y -sy+ 1) . (z' log z'-z'-z log z + z). (66)
 21i(3A + 2,i)Ahflog z, log y1
 Equation (66) is the same as equation (54) with A omitted from the lat.

 ter. The consequences indicated by equations (56) and (57) might be deduced

 more simnplv, perhaps, from equiations (65) and (66) than from equation (54)
 and the one preceding it.
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 BURR, On the Theory of Flexure. 33

 It is to be noticed here that the expressions for the intensities N and T2,

 as well as T3, are perfectly general, although the original equations-of con-
 dition were based on the supposition that the bending momnent should be
 produced by a single force or a couple. Their generality is due to two facts:

 a given amount of shearing stress will always be distributed over the same

 section in precisely the sanme way, whether that amount is made up of reac-
 tion at a point of support combined with external loads imposed between that

 point and the given section, or whether that amiount is equal to a single force

 P hung at the free end of a beam; and a bending moment A'f may be pro-

 duced by a single force P or by a number of forces whose combined effect

 produces the giiven moment, and the distribution of the direct stresses of

 tension and comnpression will be precisely the same in each case.

 By reference to equation (46) it is seen that the quantity No or No (the
 intensity and the moment must belong to the same section), is not altogether

 dependent on the form of the cross section, since the quantities log z1, log y1
 3

 and - enter the expression for M, but is a constant guantity for the same beam.

 N
 In like manner M is constant for the same beam, if N is always taken at a
 point whose co-ordinates y and z are the same in the different sections.

 It is evident that the maximum value of T2 will be found at the centre of

 any section; consequently its value will be deternlined by making z=z,
 y'=1 and z = 1 in equation (62). Denoting the nmaximum value of T, by Tm,
 there results

 TM 2M og (z1 log z1- z + 1) >P.(67)

 Let A be the area of the section of the beam to which equation (67)

 applies, then the mean shearing intensity in any section will be -. The

 ratio, therefore, between the maximum and mean intensities of shear in any

 section will be

 TA _No (z, log z1-zo +).(8 Tm -A 'Ig1_2 )A (68) 2P 2171 log z1
 This expression is not constant for the same form of cross section, but is con-
 stant for the same beam.

 When :P is equal to zero, both T2 and T3 reduce to nothing. This case
 exists wlhere a portion of a beam is bent by a couple and where evidently the

 10
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 34 BunZRn, On the Theory of Flexure.

 curve of flexure must be circular, since N-\ cannot vary if TX and T3 are both

 equal to zero, as equation (10) shows. This is one of the special cases in
 which 45 (y, z) is a constant.

 The expressions for T2 and T3 show how the shearing stress is supposed
 to be distributed at the free ends of beams and at sections of contraflexure,

 and furnishes the data for determining the quantity .f (z, y) in the value for
 the longitudinal displacernent u. As, however, it is of little practical value
 it will not be determnined. The reaction, therefore, at the free ends of beamns
 and external forces acting at sections of contraflexure are supposed to be so

 distributed over the sections of the beamn that ff T2dydz - EP.

 The deflection of the beam is next to be determined, and it has already
 been shown that that part of it, A, due to the bodily movement of a portion
 of the beamn is not a function of z, but is dependent only on x and y. It varies
 of course with the half depth of the b&am, or with what amounts to the same
 thing, the quantity z1.

 The movement of the molecules of the material, relatively to each other,
 in any given sectioni, is to be determnined by the value of w from equation (66)
 which was used in fixing the value of T2.

 Let A4 represent the deflection of any point of the upper surface of the
 beam. From what has already been said in regard to A, and, from the
 general conditions of the problem, it is clear that this depends only on
 the lengthening or slhortening of the exterior fibres in the upper surface of
 the -beamn.

 The upper sur1face of the beam is here mentionled, although " the lower
 surface" might have been written just as well.

 The rate-- of the longitudinal displacement at any point, is dae to the

 intensity N, or N.', if that point is in the exterior surface. Let u0 be the

 value of t6 for any point where N., exists, then dx - EN0'. The coefficient of
 elasticity E, of course, represents the rate of lengthening or shortening of a
 fibre at any point for each unit of N01. Now, if the beam be divided into
 indefinitely thin rectangular portions by vertical planes parallel to the axis
 of the beam, each portion may be supposed to be an actual rectangular beain
 subjected to such a moment that the greatest intensity of direct stress is equal
 to N0' at the given section. The sumn of all these elementary moments for
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 BURR, On the Theory of Ilexure. 35

 any section will be equal to the moment to which the original beam is sub-

 jected; anid the sum EP of all the external forces acting on all the elemen-
 tary beams for the same sections, will be equal to the sumn P. for the original
 beam at the same section. From this it follows that tlle deflections of differ-

 ent points in the exterior surface have different values; also, that the deflec-

 tion of any such point is precisely the same as that-which a rectangular beam

 would have if the circumstances of loading and length were the same in each

 case, and if the depth of the given beam at the given point were equal to the

 depth of the supposed rectangular beam; which conditions make NX' the

 same for each.

 These considerationis show that the deflection of that point in the exterior

 surface of a beam wh'ich is farthest from the neutral surface, is independent
 of the form of cross section, and is the same as that of a rectangular beamn

 in the same circumstances; which results also from the " common theory."

 In Figure 5, let AB be a portion of the line of intersection of a longitu-

 diinal plane with the neutral surface, and C, the centre of curvature of AB.BD

 du, is parallel to AC, then FD = AB = 1. Let AC= r, then will BE -?.
 dx'

 From similarity of triangles, since AF = BD = (z' - 1), in general

 du,
 dx_ 1 _ N0

 dz 1 h7No . . . (69)

 This gives the value of the reciprocal of the radius of curvature in a

 longitudinal plane at any point, and its general form and method of demon-

 stration is precisely that used in the commnon theory. If there be written

 that approximate value of - d2, which was introduced by Navier, and r - dx

 Nt' =f (k), there will result

 d2y Ef (M)
 d2 (z-0 (70)

 The y in equation (70) is not the one heretofore used, but represents the
 deflection due to the displacement ENO', and taken between the proper limits,
 is equal to A1.

 Before developing this matter of the deflection farther, it will be well,
 for the reasons already given, to find equations for beams of rectangular

 sections.
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 36 BURR, On the Theory of Flexure.

 In order to make the general value of N in equations (43) or (44) apply

 to rectangular beams, it is only necessary to put y or y' equal to unity and
 write z for z'. Performing these simple operations, there will result

 N No log z. (71)
 il1f log z1

 The sanme substitutions made iin equations (62) and (63) give

 No (Z 1lg z1-log z-z + )EP, . . . . . (72)

 T3, =. . (73)
 The result shown in equation (73) was to have been anticipated.

 Equations (71) and (72) might have been established directly by a course

 of reasoningo, precisely similar to that followed for a beam of anv symmetrical

 but soli(l section, in which case, in addition to equations (5), (6) and (7), there

 would have been the one indicating that T3 - 0.

 Let b be the breadth of 'the rectangular beam, then equation (45) will

 reduce to the formn

 X 2b N0 ('z (z -1) log z. dz
 log z1JI

 ~2b N0- Z1 log Z l-Z2 Iz109Z
 locr (z, 2 e Nog z1 2 5 ?: 4Z- log z I z] 3

 =2b - ? (4 Z2lg-zl log - - . .... (74)
 In equation (74) e is the base of the Naperian system of loga.rithms, and

 NV0 is the greatest intensity of direct stress in the given section. The quan-

 tity b is the bending moment for each unit of breadth, and it is seen from

 b~~~b0
 equation (74) that -M is a constant quantity for all rectangular beams of the

 samne depth.

 The sum of all the shearing stresses in the section ought to be equal to

 5P. IHence, from the general expression following equation (63),
 2bNo 1 2 z 3

 4bf1T2 dz Mz2gz ( Z byZ1 og 7 I J

 But by equation (74) the second mernber of this equation is equal to- - P;
 hence

 4b XlT2dz EP. ........(5

 It has already been stated that the assumnption N73 0 is no cause of

 error in the results for bearns of rectangular section; it will next be showni
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 BURR, Ont the Theory of Flexure. 37

 that such is the case. For rectangular beams the equations (2) reduce to the

 followinfg:
 dN1 +dT2=o

 cx d clz

 dT2 + dN3 0
 dx dz

 The three intensities N1, T2 and N3 are each functions of z and x only.

 The " principle of least resistance" determines N1 at once as given by equa-

 tion (71); T2 at once follows in equation (72). The second of the above equa-

 tions in connection with equation (72) gives

 dN3 _ dT2 _ No J (z, log z1 -z1) -(z log z -z) l d2P
 dz- dx - 2JIl logz1 f dx

 d_IP
 The quantity d- is the intensity of external vertical pressure at any

 point; denote it by -p. Then

 Nop g l{(Z o lZ' Z- 2 Z2 log z + 3 z2}+ (Z N3~?~jf~gzi {(z, log- Zi - Zi 2-~ + f (X)

 When z = z1, N3= -p, hence
 N0p (1I2 1,1

 2o zI--4-z1-z1oz1z1 2 zlog z-Tz2} . N3~ N0 2 AL I2 ogz og Zl_ ._ ,-(Z, log' Z,- Z) z + 2 z z }_
 These values of the intensities N1, 2 and N3 satisfy the two simulta-

 neous equations of condition given above.

 The assertion which immediately follows equation (63) may now be

 proved wvithout difficulty. Equation (62) may be put under the following form:

 21= 2 l og zl log(yz y'+l) (z' loglz'oz'zlog z+z)};
 or, by equation (41),

 22 - 2M (z' log z-z-z log z + z) }.(76)

 Now, the given beam is equivalent to an indefinite number of elementary

 beams of the constant or variable width 2dy (corresponding to b), and having

 the variable depth 2 (z'-1). Hence, the integral 4f T2dzdy may be put in

 the following forr:
 YP (-~N'

 4J d Td z Y = < i iogz' (zlog z'--z log z+z)} 2dy. . (77)
 13ut from the equa tions immediately precedingi equiation (75) it is evident

 that that part of the second member of equation (77) which follows the second
 11
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 38 BURR, On the Theory of Flexure.

 z is the general expression for the moment to which any elementary- rectan-
 gular beam is subjected; hence the sum of all those muoments denoted by z
 must be equal to (Mi). Hence

 4 Yz'fT2dydz = P.. (78)

 It is evident from the preceding that the expression, as a general one,

 is the same for all the elementary beams an(d the original beam itself. 2M,
 and .P belong, of course, to the same section.

 The subject of deflection can now be resumed. Let YK represent the
 definite integral in equation (46)., then from equation (41) there results

 lVt=log Z, log (y, _ y, + 1 ) M= ().** **(9
 NO,4J7 JII=f (31) .(79)

 Equation (79) gives the value of f (M) in equation (70) for the general
 case. As has already been shown, however, it may be only necessary to find
 the function for a rectang,ular sectioni in which b _ 1 and z= z'. To deter-
 mine, therefore, that part of the deflection which is denoted by A, find the
 value of No' from equation (79) and substitute it in equation (70), then, if Z,

 be put for log z' log (y - Y, + 1), that equation will give
 beputfor 4Y1 (z - 1)

 ,= =t-EZ1 fMdx2. (80)

 This is precisely the expression given by the " cominon theory" if + (I

 being the moment of inertia of the cross section) be written for Z1. The

 ordinary values for y may therefore be used in equation (80) by iniserting, in

 the formulh of the " common theory" Z1 for

 If NV' is known for any point, then by equation (74)

 2 logz'

 ? - 1og zf2 ' l 3 M= Z. * . . (81)
 - lo 4 -z, log- )

 That which is represented by Z is evidlent from the equation. There will
 then result as before

 yA EzffEfMdx2. (82)

 The remarks following equation (80) apply also, as is evident, to equa-
 tion (82).
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 BURR, On the Theory of Flexure. 39

 Equations (80) and (82) give that part of the deflection which -is due to

 the bodcily moment of a portion of the beam and which is ca-used by thle
 lon gituidinal displacement u. Another part is that due to the shearing stress

 T2 at the neutral surface, which causes layers, made by vertical planes normal

 to the axis of the beam, to slip by each other to a greater or less extent.

 It should be understood that when the "deflection of the beam" or

 "total deflection " is spoken of, the neutral surface is what is referred to.

 That portion of the total deflection which is due to T2, or the displace-
 ment (vertical) in any given section is given by equation (66) after making,

 X - I. Let M0 be the value of ML at the point from which the deflection is
 measured, and w1 represent this part of the total deflection, then

 .iJf-M No
 WI- 2MX,l l log(y-y'+?1)(z'logz'-z'-zlogz+z). . (83)
 In many cases MO belongs to the free end of a beam and is equal to zero.

 Equation (83) nmight have been determined by making use of T2 =y, g
 being the angle at any point made by the trace of a vertical longitudinal

 plane on the neutral surface with a lhorizontal line. When equations (81)

 and (83) refer to rectangular beams, z' becomes equal to z1. Since w and 2
 both take the value zero for z - z' it follows that the depth of the beam

 remains the same after flexure as before for bodies of the kind of mnaterial

 assumed. The lateral contractions and expansions of the material at any

 point are just equal to the displacements due to internal tanigential
 stresses.

 There is one other source of deflection which, however, is evidently so

 exceedingyly small in reference to the two already mentioned, that an expres-

 sion for it will not be sougiht, though the data given are sufficient for it.

 This is the curved formn- assurned by the free-endl section of the beam. If

 that section remains plane and normal to the axis of the beam after flexure, as

 has been assumed, then Al + w1 gives the total deflection. In reality, how-
 ever, each point of the end section is displaced longitudinally in consequence

 of the distribution of the reaction in the manner already givren by the general

 value of T2. This third part of the deflection is due to this displacenment

 being supposed uniformly distributed throughout the length of the beamn.

 Such an operation would produce deflection without causing any direct stress
 of the kind N. Sitnce, however, the reaction is probably never distributed in

 the manner indicated (the end sections therefore remaining essentially plane)
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 40 BURR, On the Tlheory of Flexure.

 and since this part is, at best, very small compared with the others, it will be

 disregarded.

 The total deflection of the neutral surface will then be
 A = Al + WI . . . . . . . . . (84)

 From equation (70), combined with equation (79) or (81), according to
 the shape of the cross section of the beam, there result the following equa-

 tions:

 - 1 d2y . (85)

 I d2yi Mr z = ..(86)
 It follows from these equations that all the results of the "commion

 theory" can be use(l in the application of the formulhe of this paper by sim-
 1 1

 ply writing7 or for I in those results. Consequently, the " Theorem of
 rThree Moments" will retain precisely the same form as before, the change
 above inidicated being only necessary.

 it is inuch to be regretted that the forin of Z is so complicated that

 in some cases the integration will probably be found to be impossible at

 present. The integration, however, will have to be perforrnedl but once for
 the same form of cross section. The quantity Z1 for rectangular cross sec-

 tions is of comparatively simple form, and, fortunately, by far of the greatest
 importance.

 The formn assumyied by a rectang,ular cross section, when the beam is sub-
 jected to flexure, mtiay easily be found in the usual manner, and requires no

 special attentiorn here.
 Althouglh not strictly a part of this discussion, yet it may be interestino7

 to notice unider whA tcondlitions the assumaed law for the intensity N, in the
 coinmon theory," is a true onie. A beam of rectangular cross section will

 be considered. Tllhe niotation will be the same as that used in the vicinity of

 equations (29-32.)

 T'he equation of condition, which shows that the moment of resistance is
 constant, is

 g1 N (z - a) dz - constant - C. (87)

 Now, let it be required to find what law for N will make the volume

 of revolution f27tN2 dz a minirmurmu, or give the followving equ2tion

 2tf N Y2dz ininimum.(88)
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 BURR, On the Theory of Flexure. 41

 Proceeding as before

 S=z 1(2tN2 ? a'N (z - a)) d:,
 .*. =27rX2 + a'N (z_ a) ; Z = d-V) a'2l; T7~~2N2I'N(\. z-~~ dV a

 Y=dV_4NX +a (z a); Y'-O; &c.
 Hence, from the calculus of variations,

 4,tN +a'(z-a)=O . .N a'(z _ <89-a)

 The quantity a' must be such that

 2 ,z-' (z-a)2 dz - M a 4 -z
 Equation (89) shows that the intensity N varies directly as the distance froM

 the neutral sutrface, which is the law assumed in the "common theory" of
 flexure.

 The law is, therefore, based on the erroneous equation (88); to be true,

 2xi should not appear in that equation, and N2 should be replaced by N. dN2
 is a positive constant, showing that equation (89) gives a value that will make

 Va minimum.

 These last operations show that in all ordinary cases the logarithmic

 curve will not be a very great departure from a straioht line.

 It has been assumed that the coefficients of elasticity for tension and

 compression are equal to each other; it is easy, however, to determine the

 position of the neutral surface when they are not, for beams with rectangular
 cross sections. In Figure 6 let ABFG represent the portion of a beam sub-
 jected to flexure, supposing the coefficients of elasticity to be e(qual to each
 other; the neutral surface 1DK will be half way between the exterior surfaces
 AB and GF. Now, let there be another beam GIICP whose neutral and

 lower surfaces are coincident with those of the former, and let 1IC represent

 the upper surface of this second beam. The normal distance z1 from DK to
 HC will bear such a relation to zo, the normal distance from 1DK to GF, that
 the stress of the kind N, developed in that part of the section zl, will be
 numerically equal (but of opposite sign) to that developed in the part z0.
 Let E represent the smallest coefficient of elasticity and Em the largest.

 From equation (71), making 111 = M, since any section mnay be taken, there
 results in general

 fNdz= l ? (z lo$ -+ I).

 12
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 42 BURR, On the Theory of Flexure.

 On account of the above assumuptions, EN on one side of the neutral

 surface must be equal to EmN at the same distance from.n it on the otlher.
 The equation, therefore, which shows that the algebraic total of all the normal

 stresses in any section is equal to zero, is

 E I ?z(z0 log e E- log (zi Z, log e+ 1)
 E (z0 log z0- Z + 1) Em (Z1 log z -z1 + 1) . (90)

 After substituting the values of E and Em, this transeenidental eqtuation

 can easily be solved by trial.

 Sinice Em > E, z1 is of course smaller than z0 in all cases.

 This completes the strictly analytical part of the discussion, but there

 remains to be showvn that the results are perfectly general in their character.

 The general equations (2) of equilibriurn were established in a nmanner

 entirely independent of the nature of the material of which the body is com-

 posed. They are three linear differential relations between six functions of

 the three independent variables x, y and z onl,y, i. e., the differentiations are
 in respect to those variables only. The integ,rations will, therefore, be made
 in respect to the same variables, and, in order that they may be made, there
 must be given certain known conditions depending on the nmethod of applica-

 tion of the external forces and purely mechanical principles; these conditions

 are evidently entirely independent of the nature of the material. The inte-

 grations being made, the six intensities N1 and T will appear as functions of

 x, y and z only.
 Again, what are known as the equations of the " tetrahedron of stress,"

 which are simply equations (2) applied to the exterior surface of the bodiy,

 are the following:

 N1 cos p + T[ cos q + TY cos r -P cos 7x,

 T3 cos 1 + N2 cos + T, cos r - P cos x,

 2 cos p + T1 cos g + N3 cos r = P cos p,

 in which p, q and r are the angles rnade with the co-ordinate axes by a normal
 to the exterior surface at the point where the intensity P of the external

 force exists, and x, X and p are the angles made by the d'irection of P with
 the same axes. Now, if the intensities N and T, as determined by equations
 (2), are functions of the nature of the material, the intensity of the externally

 appliedl force, P, is also dependent, always, on the nature of the inaterial,
 which is evidently absurd. From- these considerations there is deduced the
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 BURR, On the Theory of Flexure. 43

 important principle, that all-problems of elastic equilibrium are completely deter-
 minate.

 It is supposed, of course, that the body has assumed its positicon of equi-

 librium; this in all ordinary cases is essentially the same as the position of

 no stress.

 It follows immediately from the principle just enunciated that the results

 of this discussion are applicable to all kinds of material, whether crystalline

 or not, and under all degrees of stress, even up to the break'ing point.

 The assumption, at the beginning, of a homogeneous material with

 deduced results entirely independent of the nature of the material (except

 for deflections), emphasizes, as has been remarked, the proof of the principle

 first stated.

 The writer regrets exceedingly being so situated that he has no appa-
 ratus at his commnand, otherwise the results of the preceding analysis would

 have been put to the test of experiment.

 Data from one of the many experiments of Kirkaldy will only, therefore,
 be used in the moment of resistance of a rectangular beam. The bar broken

 was of Swedish iron two inches square, placed on supports twenty-five inches
 apart. The weight placed at the centre which broke the bar was 14,000

 pounds. The breaking moment of the external forces at the middle section

 was therefore 87,500 inch pounds. The ultimate tensile resistance of the same

 iron was found to be about twenty-one tons (2000 pounds per ton). Conse-

 queritly in equation (74) No 21, b = 2 and z1 = 2. These values substi-
 tuted givte

 1 1 61100 inch-pounds.

 By the "common theory" the momnent of resistance would have been
 only about 56000 inch-pounds. Leaving out of consideration the effects of
 lateral contraction and expansion, therefore, the apparent intensity of stress at

 the point of rupture would be 87500 X 21 = 30 tons or 60000 pounds.
 61100

 It is seen from the preceding example that there is a wide discrepancy
 between the result of experiment and of the formule; of which more wvill be
 said farther on.

 Figure 7 gives the results of the example graplhically. Tan z3 is the
 tangent of the inclination of the curve to a vertical line at the extremity

 C_1~ ~ ~ ~ ~ ~ ~ ~~
 of the ordinate N. In general, as has already been shown, tan B o
 The depth of the beam is two inches.
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 44 BuRR, On the Tlkeory qf Flexure.

 z-1 inch N= 0 tan /=30.3 /3=88? 7'

 z - 1.25 inches IV = 6.76 tan /3 - 24.2 3 = 870 38'

 z 1.50 inches N = 12.29 tan /=20.2 = 887?10'

 z - 1.75 inches N= 16.96 tan / = 17.3 = 860 41'

 z = 2.00 inches N1= 21.00 tan = 15.15 3= 860 13'.

 The scale of the figure is full size for z and for N, onie twentieth of an

 inch for each ton, or twenty tons for each inch.

 The values for / suppose one ton to the inch. They serve to show

 the varying inclination of the curve, but of course are nlot found in the

 figure.

 The straight and dotted line shows the law of the "common theory" for'

 the same beam, and illustrates what has been said before, that it is a miode-
 rately close approximation to the actual state of stress in a bent beam.

 In regard to the discrepancy between the value of iL= 61100 inch-
 pounds and the actual value determined by experiment, 87500 inch-pounds,

 mytuch mnay be written; but the only way by which an explanation can possibly

 be arrived at, is that of experimnent.

 In the first place equation (74) could not possibly give a result coincident

 with that given bv Kirkaldy because in it the effect of the lateral distortion

 of the fibres on the value of lV, is neglected. The support which the fibres
 give each other in resisting, lateral contraction or expansion is believed by
 the writer to be the sole cause of the discrepancy between the result of the

 formula and that of experiment. This support could not be giv-en were the

 fibres strained uniformly; in flexure, however, only those fibres equi-distant
 from the neutral surface are strained the saine. It is known that the ultimate

 resistance of a bar of iron in tension is very much increased if, by any meanis,

 lateral contraction can be prevented, and the same is evidently true for com-

 pression.

 The exact effect of retaining the original area of cross sectioni can only be
 determined by the aid of experiments, and the writer believes that this

 branch of the resistance of materials offers a most fruitful and important

 field of experimental research, of which the limits have yet scarcely been

 passed.

 The curve showing the intensity of stress at any point in the actual case
 will then probablv be found to be that given in Fig. 6, but the co-ordinates

 representing N will have a considerable increase in length.
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 BURR, On [le Theory of Flexure. 45

 To illustrate the effect of resisting the lateral distortion of the fibres the

 following procedure may be employed. In equation (1), as is sometimes done,

 suppose dv dzdw = d and X = 2t; then there results du = 3 du If supose-dz - dx andxL; hnN~ ~~.I

 there is no lateral contraction then d- -d 0 and N1 = 4y du- giving an

 increase of - over the result obtained with lateral contraction.
 3

 It is not by any means an insignificant fact that the same increase in the

 exanmple taken would almost entirely make up the discrepancy observed.

 Now in regard to the method by which N was established in equation

 (32) and those following. The principles there applied are perfectly general
 not being restricted to any assumptions or kind of material; they may be

 applied in absolutely all cases.

 The restriction in the application lies in nmaking N a function of z and y

 only, for any given section, and in the present case, as has been shown, that
 does not affect the generality of the results.

 It is believed that the principle of least resistance has not heretofore been
 applied in the discussion of this problem.

 It is also believed that the determinateness of the problems of elastic

 equilibrium has not before been so generally stated. Clebsch in his admira-
 ble work on the theory of elasticity gives a demonstration of the principle,

 which, however, appears to the writer to be somewhat unsatisfactory.
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 Note on the First Entglish Euclid.

 BY GEORGE BRUCE HALSTED, Tutor in Princeton College, late Fellow of
 Johns ifopkins University.

 SOMiE interesting questions may llow be answered authoritatively, since it

 is discovered that Princeton possesses, and has possessed for nearly a cen-

 tury, perhaps longer, the identical volume from which the first translation
 of Euclid into English was made three hundred years ago by Sir Henry

 Billingsley.

 The first translation of Euclid into Latin was made from the Arabic by

 Adelard of Bath (1130). It is related that he travelled in the East and

 Spain, where he obtained MSS. From the fact that this version was spread

 abroad on the Continent with a commentary by Campanus of Novara, it soon

 began to be attributed to Campanus. It was published at Venice in 1482,
 and was the first printed edition of Euclid. From this or its reprints (1491

 and 1516) it has always been taught that the first version into our language

 wvas made; see for examt)le the Introduction to Pott's Euclid, Cambridge,

 1845, which states, "to Heniry Billingsley, a citizen of London, is due the
 merit of making the first Eniglish translation of Euclid's Elements of Geome-

 try. It was inade chiefly fromn the Latin of Campanus, and was published

 in 1570."

 There was some dispute as to the extent to which Greek was studied in

 England at that period, but De Morgan, by a comparison of the Greek of

 Gregory's Edition with the Latin of Adelard-Campanus and the English of

 Billingsley, arrived at the belief, in 1837, that this English translation was
 either mnade from the Greek or corrected by the Greek.

 As the preface was written by the celebrated Dr. John Dee, De Morgan

 supposed that perhaps lie might have furnished the requisite knowledge of
 Greek.

 There seems to be a tendency to doubt Sir Henry Billingsley's erudition,

 for no reason that I can discover except that he was wealthy and became

 Lord Alayor of London in 1591.
 46
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 HALSTED, xote on the First Einglish Euclid. 47

 But now for the new facts. The large folio volume above referred to,
 in the Library at Princeton, contains first a copy of the first printed edition
 of Euclid's Elements in Greek, published at Basle in 1533 by John Hervagius,
 edited by Sinmon Grynaeus. The text is that of Theon's Revision, and was
 for a century and three-quarters the only printed Greek text of all the books.

 Theon was the President of the Neo-Platonic School at Alexaindria at the

 close of the 4th Century. He was the father of the celebrated Hypatia, who
 succeeded hiim in the Presidency, and who was assassinated by the Christians
 in 415.

 Appended to this is a copy of the Commentary of Proclus on the First

 Book of Euclid, printed also at the press of Hervagius in 1533. The editor
 mentioned, Simiion Grynaeus, is the man accused by Anthony Wood of steal-
 ing, rare MSS. from Oxford. Says Wood, . . "he took some away, and
 conveyed them with him beyond the seas, as in an epistle by him-1 written to
 John, son of Thomas More, he confesseth."

 Bound together with these works in Greek, the volume also contains the

 two-fold Latin translation printed at Basle by Hervagius in 1558. One is
 the Adelard-Campanus version, from the Arabic; the other is the first trans-
 lation inlto Latin from the Greek, made by Zainberti from a MS. of Theon's
 Revision, and first published at Venice in 1505, twenty-eiglht years before the
 appearance of the Editio princeps in Greelk.

 At the head of this second part of the volume is an address to the
 reader by Philip Melancthon, dated "Wittenbergae, mense Augusto, M. D.
 XXXVII.,

 Now, all this forms a collectioni exceedingly rare and valuable in itself;
 but what gives to this volume its special archeologrical interest is the fact that
 it belonged to Billingsley, and was his equipment for the first English Euclid.

 On the title-page is the autograph signature "Henricus Billingsley," in a most
 beautiful antique hand. Throuohout the volumrle are very numnerous corree-
 tions additions and marginal notes, all in Billingsley's pecuiliar and beautiful
 writing. I dare hazard that no Lord Mayor, since his time, has ever written
 so charming a hand. By reading, what he has done, it immediately appears
 that though he had the Adelard-Campanus Latin before him, yet he gave hiis
 special wvork to a careful conmparison of Zamiberti's Translation with the
 orig,inal Greek, and the corrections he has actually made suffliciently prove
 hlis scholarship and render entirely unnecessary De MIorgan's suppositious aid
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 48 HALSTED, Note on the First Englishi Euclid.

 from Dr. Dee, while, on the other hand, they establislh the conclusion about
 the translation to which De Morgan's sagacity had led him, that " It was
 certainly made from the Greek, and not from any of the Arabico-Latin

 versions."

 To the one sentence of comiiparison in proof of this published by De

 Morgan, Billingsley's autograph indications would enable me to add as many

 as any one desired, but suffice it to say, that the definitions of the Eleventh
 Book are alone entirely decisive of the matter.

 PRINCETON, January 9, 1879.
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 On the Fundamnental Formulae of -Dynamnics.

 BY J. M/. GIBBS, NYew Haven, Conn.

 Formiation of a new Indeterminate Formucla of Motion by the Substitution of the

 Variations of the Components of Acceleration for the Variations
 of the Coordinates in the usual Formula.

 The laws of motion are frequenitly expressed by an equation of the form

 (1) z [(X-rnx) 6x + (Y-my) 6y + (Z-mz) 1z] - 0,
 in, which

 mn denotes the mnass of a particle of the system considered,

 x, y, z its rectangular coordinates,

 x, y, z thie second differential coefficients of the coordinates with respect to

 the tirne,

 X, Y, Z the components of the forces acting on the particle,

 Ax, 6y, 6z any arbitrary variations of the coordinates which are sinmultane-

 ously possible, and

 E a summation with respect to all the particles of the system.

 It is evident that we may substitute for Ax, Sy, 6z any other expressions
 which are capable of the same and only of the same sets of simultaneous

 values.

 Now if the nature of the system is such that certain functions A, B, etc.

 of the coordiniates must be constant, or given functions of the time, we have
 (dA dA dA

 .dx 6 A + y + dz S 0O
 (2) < X (dB a dB +dB - (2) 6~XmTN- v7 z) .0,

 L etc.

 These are the equations qf condition, to which the variations in the general
 equation of motion (1) are subject. But if A is constant or a determined

 function of the time, the sarne must be true of A and A. Now

 (AA- dA dA -
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 50 GIBBS, on the Fuandanzental Formnulae of Dynamnics.

 andc
 aiiid

 A x 'A* + dA * + A*- z + HI

 where H represents terms containing only the second differential coefficients

 of A with respect to the coordinates, and the first differential coefficients of

 the coordinates with respect to the timne. Therefore, if we conceive of a varia-

 tion affectinig the accelerations of the particles at the time considered, but not
 their positions or velocities, we have

 r * X (dA Sx dA + d- O
 I and, in like manner,

 1 SB =X ( d 6x + dy 6Y + d ~dx dy dz
 L etc.

 Comparing these equations with (2), we see that when the accelerations

 of the particles are regarded as subject to the variation denoted by A, but not

 their positions or velocities, the possible values of Sx, ys, Sz are subject to pre-
 cisely the same restrictions as the values of Ax, 6y, Sz, when the positions of

 the particles are reg,arded as variable. We inay, therefore, write for the
 general equation of motion

 (4) X, [ (X- 2nx) Ax+ ( Y- m7y) Ay + (Z - mtz) 6z] =O0,
 regarding the positions and velocities of the particles as unaffected by the

 variation denoted by A,-a condition which inay be expressed by the equations

 (x = O y = O, 6z =(

 -0 O, Ay (), ='z O.
 We have so far supposed that the conditions which restrict the possible

 nmotions of the systems may be expressed by equations between the coordinates

 alone or the coordinates and the time. To extend the formula of motion to

 cases in which the conditions are expressed by the characters < or >, we

 mnay write

 (6) [(X -mx) 6x + (Y-my) 6y + (Z-rnZ) Z] $o.
 The conditions which deternmine the possible values of &x, 6z, & will not,

 in such cases, be entirely simnilar to those which determine the possible values

 of &x, 6y, &z, when the coordinates are regarded as variable. Nevertheless,
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 GIBBS, On the Fundamental Formulae of Dlynamics. 51.

 the laws of iiotion are correctly expressed bv the formula (6), while the

 formrunla

 (7) X [(X.-mx) Sx + (Y-mmy) Ay + (Z-mzz) x] ?0

 does not, as niaturally interpreted, give so complete and accurate an expres-

 sionl of the laws of motion.

 This may be illustrated by a simple example.

 Let it be required to find the acceleration of a material point, which, at

 a given instant, is moving with given velocity on the frictionless surface of a

 body (which it cannot penetrate, but which it may leave), and is acted on by

 given forces. For simplicity, we may suppose that the normal to the surface,

 drawn outward from the moving point at the inoment considered, is parallel

 to the axis of X and in the positive direction. The only restriction on the
 values of Sx, Sy, 6z is that

 Ax > 0.
 Formula (7) will therefore give

 *. > X * y . z
 x-- y-- z=

 nI m m

 The condition that the point shall not penetrate the body gives another

 condition for the value of x. If the point remains upon the surface, xn must

 have a certain value N, determined by the form of the surface and the velocity
 of the point. If the value of x is less that this, the point mnust penetrate the

 body. Therefore,

 x> N.

 But this does not suffice to determine the acceleration of the point.

 Let us now apply formiula (6) to the same problemn. Since x cannot be

 less than N,

 if x = N Sz_0.

 This is the only restriction on the value of 3x, for if x > N, the value of Sx is

 entirely arbitrary. Formula (6), therefore, requires that

 if x= N, x> X

 butif x>N, x - X

 -that is, (since x caninot be less than N), that x shall be equal to the greater

 of the quantities N and , or to both, if they are equal,-and that
 m
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 52 GIBBS, On the Fundanental Formulae of Dlynamics.

 .. y Z
 Z .. _ .

 m in

 The values of x, y, z are therefore entirely determined by this formula in

 connection with the conditions afforded by the constraints of the system.*

 The following considerations will show that what is true in this case is

 also true in general, when the conditions to which the system is subject are

 such that certain functions of the coordinates cannot exceed certain limits,

 either constant or variable with the time. If certain values of Ax, Sy, 6z (with

 unvaried values of x, y, z, and x, y. z) are simultaneously possible at a given

 instant, equal or proportional values with the same signs, imust be possible for

 zx, Sy, 6z immediately after the instant considered, and must satisfy formula

 (1), and therefore (6), in coninection with the values of x, y, z, X, Y, Z immne-
 diately after that instant. The values of x, y, z, thus determined, are of

 course the very quantities which we wish to obtain, since the acceleration of

 a point at a given instant does not denote anything different from its accelera-

 tion immediately after that instant.

 For an exanmple of a somewhat different class of cases, we may suppose

 that in a system, otherwise free, x cannot have a negative value. Such a con-

 dition does not seetn to affect the possible values of Ax, as naturally inter-

 preted in a dynamical problem. Yet, if we should regard the value of &x in
 (7) as arbitrary, we should obtain

 x
 x = -,

 m

 which might be erroneous. But if we regard Ax as expressing a velocity of

 which the system, if at rest, would be capable, (which is not a natural signifi-

 cation of the expression,) we should have x >-0, which, with (7), gives
 .. > X
 x - -.

 m

 This is not incorrect, but it leaves the acceleration undetermined. If we

 should regard Ax as denoting such a variation of the velocity as is possible

 for the svstem when it has its giiven velocity (this also is not a natural

 *The failure of the formula (7) in this case is rather apparent than real; for, although the formula appa-
 x

 rently allows to x, at the instant considered, a value exceeding both N and m it does not allow this for any

 interval, however short. For if r < N, the point will immediately leave the surface, and then the formula

 requires that x =X
 n
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 GIBBS, On t[le Fundamental Formulae of Dynamics. 53

 signification of the expression), formiula (7) would give the correct value

 of x except when x = 0. In this case (which cannot be regarded as excep-

 tional in a problem of this kind), we should have Ax - , 0which will leave x
 undetermined, as before.

 The application of formula (6), in problems of this kind, presents no

 difficulty. From the condition

 we obtain, first, if x = 0, x 0,

 then, if x = 0 and x _0, A>O,
 which is the only limitation on the value of Ax. With this condition, we

 deduce from (6) that either

 x=,0 x=O, and x>--;

 * X~~~~~~~~~n x
 or =

 x ~~x
 That is, if b = -,0 x has the greater of the values X and 0; otherwise, x - m

 m

 In cases of this kind also, in which the function which cannot exceed a

 certain valuie involves the velocities (with or without the coordinates), one

 may easily convince himself that formula (6) is always valid, and always
 sufficient to determine the accelerations with the aid of the conditions afforded
 by the constraints of the system.

 But inistead of exanmining such cases in detail, we shall proceed to con-

 sider the subject from a more general point of view.

 Gomparison of t[le New Formunla with the Statical Principle of I7irtual Velocities.-
 Case of lDiscontinuous Changes of Velocity.

 Formula (1) has so far served as a point of departure. The general

 validity of this, the received form of the indeterminate equation of motion,
 being assumed, it has been shown that fornmula (6) will be valid and suffi-

 cient, even in cases in which both (1) and (7) fail. We now proceed to show
 that the statical principle of virtual velocities, when its real signification is
 carefully considered, leads directly to formula (6), or-to an analogous formula
 for the determination of the discontinuous changes of velocity, when such

 15
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 54 GIBBS, On the Fundamental Formntlae of -Dynamics.

 occur. This will be the case even if we start with the usual analytical expres-

 sion of the priniciple

 (8) E (X3x + Yny + Z&z) < 0,
 to which, at first sight, formula (6) appears less closely related than (7). For

 the variations of the coordinates in this formula must be regarded as relating

 to differences between the configuration which the system has at a certain

 time, and which it will continue to have in case of equilibrium, and some
 other configuration which the system might be supposed to have at some sub-

 sequent time. These temporal relations are not indicated explicitly in the

 notation, and should not be, since the statical problem does not inivolve the

 time in any quantitative manner. But in a dynamical problem, in which we

 take account of the tirme, it is hardly natural to use vx, Ay, &z in the same
 sense. In any problem in which x, y, z are regarded as functions of the time,

 Ax, Ay, &z are naturally understood to relate to differences between the con-
 figuration which the system has at a certain time, and some other configura-

 tion which it mig,ht (conceivably) have had at that time instead of that which

 it actually had.

 Now when we suppose a point to have a certain position, specified by

 X, y, z, at a certain time, its position at that time is no longer a subject of
 hypothesis or of question. It is its future positions which form the subject of

 inquiry. Its position in the immediate future is naturally specified by

 x + xdt Jr xdt2 + etc., y + ydt + - ydt2 + etc., z + zdt + zdt2 + etc.,

 and we may regard the variations of these expressions as corresponding to

 the Sx, e3y, Sz of the statical problem. It is evidently sufficient to take account

 of the first term of these expressions of which the variation is not zero. Now,

 x, y, z, as has already been said, are to be regarded as constant. With respect
 to the terms containing x, y, z, tvo cases are to be distinguished, according as

 there is, or is not, a finite change of velocity at the instant considered.
 Let us first consider the most important case, in which there is no discon-

 tinuous change of velocity. In this case, x, y, z are not to be regarded as

 variable (by S), and the variations of the above expressions are represented by

 2 dt2 M Sy dt2, - Sz dt2,
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 GIBBS, On fle Fandamential Formnulae of -Dynamics. 55

 which are, therefore, to be substituted for &e, Sy, &z in the general formula of
 equilibrium (8) to adapt it to the conditions of a dynamical problem. By

 this substitution (in which the common factor 1 dt2 may of course be omit-

 ted), and the addition of the terms expressing the reaction against accelera-
 tion, we obtain forinula (6).

 But if the circurnstances are such that there is (or may be) a discontinuity

 in the values of x, y, z at the instant considered, it is necessary to distinguish
 tlle values of these expressions before and after the abrupt change. For
 this purpose, we may apply x, y, z to the original values, and denote the

 changed values by x + Ax, y + 4y, z + Az. The value of x at a time
 very shortly subsequent to the instant considered, will be expressed by
 x + (x ? Ax) dt + etc., in which we may regard Ax as subject to the varia-
 tion denoted by A. The variation of the expression is therefore SAx dt. In-

 stead of - nx, which expresses the reaction against acceleration, we need in
 the present case - Ax to express the reaction against the abrupt change of
 velocity. A reaction against such a chanoe of velocity is, of course, to be
 regarded as infinite in intensity in comparison with reactions due to accelera-
 tion, and ordinary forces (such as cause acceleration) may be neglected in
 comparison. If, however, we conceive of the system as acted on by impulsive
 forces, (t. e. such as have no finite duration, but are capable of producing
 finite changes of velocity, and are measured niumerically by the discontinui-
 ties of velocity which they produce in the unit of mass,) these forces should
 be combined with the reactions due to the discontinuities of velocity in the
 general formula which determines these discontinuities. If the impulsive
 forces are specified by X, Y, Z, the formula will be

 (9) [(x - mAx) rZAx + (Y - mAy) &A/Y + (Z - nAz) 8Az]$ 0.
 The reader will remark the strict analogy between this formula and (6),

 which would perhaps be more clearly exhibited if we should write dx dy 'd

 for x, y, z in that fo1rmula.
 But these formulae mnay be established in a much more direct manner.

 For the formnula (8), althoug,h for many purposes the most convenient expres-
 sion of the principle of virtual velocities, is by no means the most convenient
 for our present purpose. As the usual name of the principle imnplies, it holds
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 56 GIBBS, On thte Fundamental Fornmtulae qf Dynamics.

 true of v-elocities as well as of displacements, and is perhaps more simiple and

 nmore evident when thus applied."9

 If we wish to apply the priniciple, thus understood, to a moving, systern

 so as to determine whether certain changes of velocity specified by Ax, Ay, Az

 are those which the systemi will really receive at a given instant, the veloci-

 ties to be mnultiplied into the forces and reactions in the most sinmple appli-

 cation of the principle are mnanifestly such as miay be imagined to be com-

 pounded with the assumied velocities, and are therefore properly specified by

 SAx, SAy, &Az. The formula (9) may therefore be regarded as the most direct
 application of the principle of virtual velocities to discontinuous changes of

 v%elocity in a moving system.
 In the case of a system-l in wlich there are no discontinuous changes of

 velocity, but which is subject to forces tending to produce accelerations, when

 we wish to determine whether certain accelerations, specified by x, y, z, are
 such as the system will really receive, it is evidently necessary to consider

 whether any possible variation of these accelerations is favored more than it
 is opposed by the forces and reactions of the system. The formula (7) ex-

 presses a criterion of this kind in the most simnple and direct mianner. If we

 regard a force as a tendency to increase a quantitv expressed by x, the pro-

 duct of the force by Ax is the lnatural mneasure of the extent to which this

 tendency is satisfied by an arbitrary variation of the accelerations. The prin-
 ciple expressed by the formula may not be very accurately designated by the

 words virtual velocities, but it certainly does not differ from the principle of

 virtual velocities (in the stricter sense of the term), mnore than this differs from

 that of virtual displacements,-a difference so slight that the distinction of the

 names is rarely inisisted upon, and that it is ofteni very diffi.ult to tell which

 *.Even in Statics, the principle of virtual velocities, as distinguished from that of virtual displacemenits, has
 a certain advantage in respect of its evidence. The demonstration of the principle in the first section of the
 M]canique Analytique, if velocities had been considered instead of displacements, would not have been exposed
 to an objection, which has been expressed bv M. Bertrand in the following words: ", On a objecte, avec raison,
 a cette assertion de Lagrnnge l'example d'un point pesant en equilibre au somnmet le pluis 6leve d'une courbe; il
 est 6vident qu'un deplacement infiniment petit le ferait descendre, et, pourtant, ce d6placement ne se produit
 pas." (AMicanique Anatytique, troisieme 6dition, tome 1, paige 22, note de M. Bertrand.) The value of z (the
 height of the point above a horizontal plane) can certainly be diminished by a displacemelnt of the point, but
 value of z is not affected by any velocity given to the point.

 The real difficulty in the consideration of displacements is that they are only possible at a time subsequent
 to that in which the system has the configuration to which the question of equilibrium relates. We, may make
 the interval of tiune infinitely short, but it will always be difficult, in the establishing of fundamental princi-
 ples, to treat a conception of this kind (relating to what is possible after an infinitesimal interval of time) with
 *the stame rigor as the idea of velocities or accelerations, which, in the cases to which (9) and (6) respectively
 relate, we may regard as communicated immediately to the system.
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 form of the principle is especially intended, even when the principle is enun-
 ciated-or discussed somewhat at length.

 But, altltough the formulae (7) and (9) differ so little from the ordinary

 formulae, they not only have a marked advantaoe in respect of precision anid

 accuracy, but also may be mnore satisfactory to the miind, in that the changes

 considered (to whichl a relates), are not so violently opposed to all the possi-
 bilities of the case as are those which are represented by the variations of the

 coordinates.* Moreover, as we shall see, they naturally lead to various

 important laws of motion.

 Transformation of the New Forinula.

 Let us now consider sorne of the transformations of which our general

 formula (7) is capable. If we separalte the terrns containing the masses of

 the particles from those which contain the forces, we have

 (10) X (XZx + Y8y + Z&) _ 2 m 8 (X2+y2 + z2)

 or, if we write u for the acceleration of a particle,

 (11) zi (X&rM + y6y + Z6z) - (- mu 2) $0.

 If, instead of terms of the form X3x, or in addition to such terms, equa-
 tion (1) had contained terms of the form ]jp, in which p denotes any quantity

 determined by the conifiguration of the system, it is evident that these would
 give terms of the form PRp in (7), (10) and (11). For the considerations

 wvhich justified the substitution of &v, Ay, 6z for Ax, Sy, Sz in the usual formula

 * It may have seemed to some readers ot the Mecanique Analytique-a work of which the unity of method
 is one of the most striking characteristics, and that to which its universally recognized artistic merit is in great
 measure due-that the treatment of dvnanmical problems in that work is not entirely analogous to the treatment
 of statical problems. The statical question, whether a system will remain in equilibrium in a given configura-

 tion, is determined by Lagrange by considering all possible motions of the system and inquiring whether there
 is any reason why the system should take any one of them. A similar method in dynamics would be based
 upon a comparison of a proposed motion with all other motions of which the system is capable without violating
 its kinematical conditions. Instead of this, Lagrange virtually reduces the dynamical problem to a statical

 one, and considers, not the possible variations of the proposed motion, but the motions which would be possible
 if the system were at rest. This reduction of a given problem to a simpler one, which has already been solved,
 is a method which has its advantages, but it is not the characteristic method of the Micanique Analytique. That
 which most distinguishes the plan of this treatise from the usual type is the direct application of the general
 principle to each particular case.

 The point is perhaps of small moment, and may be differently regarded by others, but it is mentioned here
 because it was a feeling of this kind (whether justified or not) and the desire to express the formula of motion
 by means of a maximum or mininmum condition, in which the conditions under which the maximum or mini-
 mum subsists should be such as the problem naturally affords, (Gauss's principle of least constraint being at- the

 time unknown to the present writer, and the conditions under which the minimum subsists in the principle of
 least action being such that that is hardly satisfactory as a fundamental principle,) which led to the formulae
 proposed in this paper.

 16
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 were in no respect dependent upon the fact that x, y, z denote rectangular

 coordinates, but would apply equally to any other quantities which are deter-

 mined by the configuration of the system.

 Hence, if the moments of all the forces of the system are represented

 by the sum I (Pdp),

 the general formula. of motion may be written

 (12) (P4p)-( mu2) $0.
 If the forces admit of a force-function V, we have

 or nS-^ ( } 9)-0,

 (13) MU E --m02]O
 But if the forces are determined in any way whatever by the configura-

 tion and velocities of the system, with or without the time, X, Y, Z and P

 will be unaffected by the variation denoted by A, and we may write the

 formula of motion in the form

 (14) X + YY + zZ - mu 2 < O
 or

 (15) [S(PP)-z (~~~~m 2 0v)-
 If the forces are determined by the configuration alone, or the configura-

 tion and the time, ZX-O, Y-=0 YZ=0, SP= O, and the general formula
 may be written

 (16) [ (X + Yy + Zz) ( n2 0 -
 or

 (17) dt (Pj)-5 ( mu2)] < O

 The quantity affected by S in any one of the last five formulae has not

 only a maximum value, but absolutely the greatest value consistent with the

 constraints of the system. This may be shown in reference to (15) by giving

 to p, x, y, z, contained explicitly or implicitly in the expression affected by S,
 any possible finite increments p', x', zj, z, and subtracting the original value

 of the expression from the value thus modified. Now,

 [P(p ?r')] - [1 m,{(x*+ )2+ (&'+y)2+(z + zi)2}] ff(Pp)+[2 [ (++ ]

 = ~(Pp')-5 [m(xx'+$yy?+zz!)1 - [-s_ m(x2+y;2+ 2)]

This content downloaded from 
������������199.242.209.35 on Mon, 13 Mar 2023 16:49:58 UTC������������� 

All use subject to https://about.jstor.org/terms



 GIBBS, On the Fundamental Formulae of Dynamics. 59

 But since p', y', y, z' are proportional to andl of the same sign with possible
 values of Zp, Zx, 8y, Zz, we have, by the general formTiula of miotiorn,

 ( p) [ (Xxl+ YY+ ZZ)]-0

 The second member of the preceding, equation is therefore negative. The
 first mnember is therefore negative, which proves the proposition with respect

 to (15). The demnonstration is precisely the same with respect to (13) and
 (14), which may be regarded as particular cases of (15).

 To show the same with regard to (16) and (17), we have only to observe
 that the quantities affected by 8 in these formulae differ from those affected
 by the same symbol in (14) and (15) only by the terms

 X (Xx + Yy + Zz) and c*(PP),
 which will not be affected by any change in the accelerations of the system.

 When the forces are determined by the configuration (with or without
 the time), the principle may be enunciated as follows: The accelerations in

 the system are always such that the acceleration of the rate of work done by
 tlhe forces diminished by one-half tlle sumn of the products of the masses of the

 particles by the squares of their accelerations has the greatest possible value.

 The formtula (17), although in appearance less simple than (15), not only
 is more easily enunciated in words, but has the advantage that the quantity

 d (Pp) is entirely determined by the system with its forces and motions,

 which is not the case with # (Py). The value of the latter expression depends
 upon the manner in which we choose to represent the forces. For example,
 if a mnaterial point is revolving in a circle under the influence of a central

 force, we may write either Xx T4- Yy + Zz or Rr for Pp, X and r denoting,
 respectively the force and radius vector. Now Xx + Yy + Zz is manifestly

 unequal to Rr. But Xx + Yy + Zz is equal to Rr, and dt (Xx + Yy + Zz)

 is equal to dt (Rr)
 It may not be without interest to see what shape our general formulae

 will take in one of the most important cases of forces dependent upon the

 velocities. If a body which can be treated as a point is moving in a medium
 which presenits a resistance expressed by any function of the velocity, the
 terms due to that resistance in the general formula of motion imay be expressed
 in the form

 s [q (v) $~- x ? (v)-(v) -' y
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 where v denotes the velocity and (p (v) the resistance. But
 xx +y zz dv

 v v v dt

 The terins due to the resistance reduce, therefore, to

 [cp (v) v],

 or, f (v)

 where f denotes the primitive of tlle function denoted by (p.
 -Discontinuous Changes of Velocity.-Formula (9), which relates to discon-

 tinuous changes of velocity, is capable of similar transformations. If we set

 2 Ax2 + Ay2 + 'z\z
 the forinula reduces to

 (18) A z XAx + Yy + Z/z- 2mw O

 where X, Y, Z are to be regarded as constant. If $ (Pdp) represents the sum
 of the moments of the impulsive forces, and we regard P as constant, we have

 (19) ^ [ (P4p)-E (- imw2)] 0.

 The expressions affected by 3 in these formulae have a greater value than
 they would receive from any other changes of velocity consistent with the

 constraints of the system.

 -Deduction of other Properties of Notion.

 The principles which have been established furnish a convenient point of

 departure for the demonstration of various properties of motion relating to
 maximna and mzinima. We mrlay obtain several such properties by considering

 how the accelerations of a system, at a given instant, will be modified by
 changes of the forces or of the constraints to which the system is subject.

 Let us suppose that the forces X, Y, Z of a system receive the increments

 X', Y', Z', in consequence of which, and of certain additional constraints,
 which do not produce any discontinuity in the velocities, the components of
 acceleration x, y, z receive the increnments x', y, z'. The expression

 (20) X (X+ X')(x + x')(Y+ Y) (y+y) + (Z+ Z) (z + Z,)

 2 + Xi)2 y(s+y?)2+ (z+z)2}]
 will be the greatest possible for any values of XI, y', z; consistent with the con-

 straints. But this expression may be divided into three parts,
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 (21) E [(X+X')x+ (Y+ Y)y +(Z+Z')Z- -_-Xl (x2?+f+Z2)]

 (22) N [X ' + Y' + Zz' - rn (x-' + yy' + zz')]
 anid

 (23) E Fx + Y/LZ+ z i2-(I2L>2Lz;2\l L~~~
 The first part is evidently constant with reference to variations of , y', z',

 and itiay, therefore. be neglected. 'With respect to the second part, we observe

 that by the general formula of inotion we have

 E [XSx + YBy + Z&z - m (X + + +iy ? z&)] = 0
 for all values of Ax, zy, & which are possible and reversible before the addi-

 tion of the new constraints. But values proportional to x', y;, zi, and of the

 same sign, are evidently consistent with the original constraints, and when

 the components of acceleration are altered to x + x', y + y', z + zv, variations
 of these quantities proportional to and of the same sign as -XI, - , - z' are

 evidently consistent with the original constraints. Now, if tllese latter varia-
 tions were not possible before the accelerations vere modified by the addition

 of the new forces and constraints, it must be that some constraint was then

 operative which afterwards ceased to be so. The expression (22) will, there-

 fore, be equal to zero, provided only that all the constraints which were ope-

 rative before the addition of the new forces and constraints, remain operative

 afterwards.* 'With this limitation, therefore, the expression (23) must have

 the greatest value consistent with the constraints. This principle may be ex-

 pressed without reference to rectangular coordinates. If we write tu' for the

 relative acceleration due to the additional forces and constraints, we have

 U2_2 + y2 + Z,2
 and expression (23) reduces to

 (24) E (X i + Y + Z - n )

 If the sum of the moinents of the additional forces which are considered

 is represented by f (Qdq), (the q representing quantities determined by the
 conifiguration of the system,) we have

 2(X'x+ Y'y+ Z')=N(QO)
 d2q

 We may distinguish the values of dt- immediately before and immediatelv

 *As an illustration of the significance of this limitation, we miiay consider the condition afforded by the
 impenetrability of two bodies in conttaet. Let us suppose that if subject only to the original forces and con-
 straints they would continue in contact, but that, under the influence of the additional forces and constraints,
 the contact will cease. The impenetrability of the bodies then ceases to be operative as a constraint. Such
 cases form an exception to the principle which is to be established. Btut there are no exceptions when all the

 original constraints are expressed by equations.
 17
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 after the applicatiorn of the additional forces and conistraints by the expres-

 sions , and + q'. With this understanding, we have, by differentiation of
 the preceding equiation,

 X [X'+ Pfy+Z'z+x' (x+x') + Y(y+y')+Z'(z+z')]

 ffi [Qq + Q (q + Q')];
 whence it appears that z (X'xf + Y'y + Z'lz) differs from , (Q') only by quan-
 tities which are independent of the relative accelerations due to the additional

 forces and restraints. It follows that these relative accelerations are such

 as to make

 (25) a (QQ') - (--mu)
 a imaximum.

 It will be observed that the condition wlhich determines these relative

 accelerations is of precisely the same form as that which determines absolute

 accelerations.

 An important case is that in which new constraints are added but no new

 forces. The relative accelerations are determined in this case by the condition

 tlhat E (4k- nu/2) is a minimum. In any case of motion, in which finite forces

 do not act at points, lines or surfaces, we miay first calculate the accelerations
 which would be produced if there were no constraints, and then determine

 the relative accelerations due to the constraints by the condition that E (- 2nu2)

 is a minirnum. This is Gauss's principle of least constraint.*

 Again, in any case of motion, we may suppose u to denote the accelera-
 tion which would be produced by the constraints alone, an(d ' the relative
 acceleration produced by the forces; we then have

 5[mi (a7a/yy' ? zz')] O,
 whence, if we write u" for the resultant or actual acceleration,

 (+ mu2) + ( 1 2= 1 - mu - - nt~~u
 Moreover, differentiating (25), we obtain

 f (QAq') -E~ [m (X'^x' ?+ Y'&y ? z'&)] -0 ,

 *This principle nmay be derived very directly from the-general formula (6), or vice versa, for I (- Mu2'N)

 may be put in the form

 t w te s) + iY dnia + t m o ()
 the variation of which, with the sign changed, is identical with the first member of (6).
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 whenJce, since Sq', AX', 'z' may liave values proportional to q', x', i, z',

 C* (QQ') =2 Y-,2 m62
 These relations are similar to those wvhich exist with respect to vis viva and

 impulsive forces.

 Particular Equations of Motion.

 From the general formnula (12), we may easilv obtain particular equations
 which wvill express the laws of motion in a very general form.

 Let dc1, dw2, etc., be infinitesimals (not necessarily complete differentials)
 the values of which are independent, and by means of which we can perfectly
 define any infinitesimal change in the configuration of the system; and let

 * d(ol * d(02
 c0l= t c2- dt X etc.,

 where do,, dco are to be determined by the change in the configuration in the
 interval of time dt; anid let

 dw1 d(02

 01 = dt t '2 dt X etc.
 Also let U (-2 mu')

 It -is evident that U can be expressed in terms of 1, W2, etc. , o, 02, etc.,

 and the quantities which express the configuration of the system, and that
 (since 6 is used to denote a variation which does not affect the configuration
 or the velocities), dU 8.. + dU 2 + etc.

 Moreover, since the quantities p in the general formula are entirely deter-
 mined by the configuration of the system

 S dp.l + dp* 2+ etc.,

 where d denotes the ratio of simriultaneous values of dp and do,, when dW2 dco1l

 etc., are equal to zero, and dp , etc., are to be interpreted on the saine prin-

 ciple. Multiplying by P, and taking the sum with respect to the several

 forces, we have
 (Pp) = 5A X + n262 + etc.,

 where ( j),) I 2 P dp(v), etc.
 If we differentiate with respect to t, and take the variation denoted by A,

 we obtain
 $ (P3p) = &N + i2&02 + etc.
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 64 GIBBS, On the Fundamental Formulae of -Dynamics.

 The general form1ula (12) is thus reduced to the form

 (26) Ll + (n2- ) &)2 + etc. 0 .
 If the forces have a potential V, we may write

 {dV dU\ dV dU\

 (27) d1 d 81J l + dw d62) 8X2 + etc.,
 where diVdenotes the ratio of dV and do, when d42, etc., have the value zero,
 and the anialogous expressions are to be interpreted oii the same principle.

 If the variations Li, &d)2, etc., are capable both of positive anti of nega-
 tive values, we must have

 (28) dU = Q ' dU - Q2, etc.,
 or,

 (29) d - d-' d - d V etc.

 To illustrate the use of these equations in a case in wvhich dc1, d(c)2, etc.,
 are inot exact differentials, we inay apply them to the problem of the rotation

 of a rigid body of which one point is fixed. If do1, d02, d,)3 denote infinitesi-
 inal rotations about ths principal axes which pass through the fixed point,
 ?1, ?I)K2 .?iK3 will denote the moments of the impressed forces about these axes,
 and the value of U will be given by the formula

 2U (a?b ? c) (+ C2 + C2)2 - 2 + ? 2 + c3) (ac) ? b2 +? c_ )

 + 2 (b-c) 020z1 r+ 2 (c -a) 030)10)2 + 2 (a -b) (01(o)23

 + (b + c) 0 2 + (c + a) (2 + (a + b) 2o,
 where a, b, and c are constants, a + b, b + c, c + a being the moments of
 inertia about the three axes. Hence,

 dU dU~d dh (b -c) (J2(03 + (b + c) ol X d = (ca) 0301 + (C + a) (1)21

 d= (a-b)u1c)2+ (a + b) ;1)3
 and the equations of motion are

 (c -b)l 02b3 + Ql
 Ct)l c + b

 (a -c) w03wl + Q2
 02~~ +c

 .. _ (b -a) 0b)2 +-Q3
 b + a
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 ficiency of the present statement of the Law of the Dissipation of Energy,

 shotuld space have curvature in a fourth dimnension and containi a finite num-

 ber of square miles.

 65. SCHMITZ-DUMONT.

 II. Die Bedeutung der Pangeometrie. Leipzig, 1877. 80, 47 pages.

 Schlmitz-Dumont is a Paradoxer.

 66. MUNRO, C. J.
 I. No. 134 (6 paoes.)

 II. Natare, vol. XV, No. 391. April 26,1877, p. 547.
 III. " Inside Out." Nature, vol. XVIII, No. 448. May 30,1878, p. 116.

 67. YOUNG, G. P.

 *The Relation which can be proved to subsist between the Area of a
 Plane Triangle and the Sum of the Angles, on the Hypothesis that Euclid's

 12th Axiom is False. Read before the Canadian Institute, 25th February,

 1860. Published in the Canadian Journal of Industry, Science and Art.

 New Series, vol. V, 1860, pp. 341-356. " I propose to prove in the present

 paper; that, if Euclid's 12th Axiom be supposed to fail in anv case, a relation
 subsists between the area of a plane triangle and the sumn -of the angles. Call

 the area A, and the sum of the angles s; a right angle being taken as the

 unit of measure. Then A = k (2- s); k being a constant finite quantity,

 that is, a finite quantity that remains the same for all triangles. This formnula
 may be considered as holding good even when Euclid's 12th Axiom is

 aissumed to be true; only k is, in that case, infinite." This paper was drawn

 up without the sligohtest knowledgre whatsoever that anything had ever before

This content downloaded from 199.242.209.35 on Mon, 13 Mar 2023 16:50:06 UTC
All use subject to https://about.jstor.org/terms



 HALSTED, Bibliography of Hyper-Space and Non-Ettclidean Geometry. 69

 been written or spoken on the. subject. Thus the name of Prof. G. P. Youno

 must be added to those of Lobatchewsky and Bolyai as an independent dis-

 coverer of the possibility of a pseudo-spherical geometry. The proof, which
 is in the style of Euclid, is thoroughly elementary, even more so perhaps than

 Bolyai's, and, like his, is applied to but two of the three geomietries of sur-

 faces of constant curvature; the assum-ption of Euclid's Sixth Postulate in
 the very first proposition, shutting, out spherical geometry. Omitting this
 proposition, the proof is easilv extended to pan-geometry. It is worthy of
 notice that the proof begins witlh the very proposition on which Legendre

 attempted, in the twelfth edition of his Elements de Geoinetrie, to found a

 demonstration of the theory of parallels.

 68. TAIT, P. G.

 I. Mientions Hyper-Space in his Address as Pres. of Math. Sect. of Brit.

 Assoc. at Edinburgh. Br. Asso. Rep., 1871, p. 3.

 II. Recent Advances in Physical Science. Second edition. Introduc.,

 pp. 5-6. London, 1876.

 Ill. Review of Z1llner. Nature, March 28, 1878, pp. 420-422.

 69. ENGEL, G.

 I. Der Idee des Raumes und der Riume. Berlin, 1868.

 70. LIEBMANN, 0.

 I. Zur Analysis der Wirklichkeit. Strassburg. 8. VI, 619 pp. 1876.

 71. GEISER.

 I. Sopra una quistione geometrica di inassimo e suo estensione ad uno

 spazio di n dimensioni. Milano, Inst. Lomb. Rendiconti I, 1868, pp. 778-
 783.

 72. FLEURY, H.

 I. La Geometrie affranchie diu Postulatum d'Euclide. Paris, 1869. A
 sad paradoxer, worthy of De Morgan's Budgret.

 73. LAND, J. P. N.

 I. Kant's Space and Modern Mathematics. Mind. II., No. 5, Jan., 1877,
 pp. 38-46.

 19
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 70 HALSTED, Bibliography of Hyper-Space (and Non-Euclidean Geomnetry.

 II. Critical Notice of Erdmann's " Die Axioilne der Geometrie." Mind.

 III, 1878, pp. 551-555.

 74. HOFFMANN, J. J. G.

 I. Das elfte Axiom der Elemente des Euclides. Halle, 1859.

 7O. DELBOEUF, J.

 *I. Prolegomenes plhilosophiques de la Geometrie et solutions des postu-
 lats. Lie;ge, 1860. An attempt to found the theory of parallels on the homo-

 geneity of space; see Preface, pp. vi and vii. Homogeneity, as defined in the

 preface and as usually understood, is found to be insufficienit (see pp. 144 and

 145); in fact by honogeneous M. Delboeuf means both homogeneous and
 homaloid. He is thus really at one with the new geometry. See also C.,

 pp. 75-84.

 76. RODWELL, G. F.

 *I. On Space of Four Dimensions. Nature, vol. VIII, pp. 8 and 9,

 1873. An attemrpt to realize (a) a condition of life in space of twvo diinen-

 sions, (3) by the addition of the element of diverse motions to our already
 known space, the condition of life in space of four dirnensions.

 7 7. WITTE, H. TH.

 *I. Parallentheorie. Wolfenbiittel, 1867.

 78. BOUNEL, F.

 *I. Sur les Definitions geometriques. Paris, 1871.

 79. KRAUSE, A.

 *I. Kant und Helmholtz iiber den Ursprung und die Bedeutung, der
 Raumanschauung, und der geornetrischen Axiome. Schlauenburg, 1878.

 80. SCHLEGEL, V.

 I. Ueber neuere geometrische Metlhoden und ihre Verwandtschaft mYit

 der Grassmann'schen Ausdelhnungslehre. Zeitsch. fuir Math. u. Phys., XXIV,

 pp. 83-95. Leipzig, 1879.
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 Calcutlation of the Mlinimum N. G. F. of the Binary
 Seventhic.

 BY PROFESSOR CAYLEY, Cambridge, Entyland.

 FOR the binary seventhic (a, . . . yX, ,)7 the number of the asyzvgetic
 covariants (a, . . . )0(x, y)*, or say of the degorder (O.y-) is given as the coeffi-
 cient of aOx* in the function

 -ax7. 1 ax5. 1- ax3. 1-ax. 1- ax-'.1-ax-3. I -ax5. 1-ax-7

 developed in ascending powers of a. See my Ninth Memoir on Quantics,
 Phil. Trans., t. CLXI (1871), pp. 17-50.

 This function is in fact

 A (x) -

 where, developing in ascending powers of a, the seconid term - 1A ()

 contains only negative powvers of x, and it may consequently be disregarded:

 the number of asyzygetic covariants of the degorder (0.y) is thus equal to
 the coefficient of a0'x in the function A (x), which function is for this reason
 called the Numerical Generating, Function (N. G. F.) of the binary seventhic;
 and the function A (x) expressed as a fraction in its least terms is said to be

 the ininimnumin N. G. F.

 Accordirio, to a theorem of Professor Sylvester's (Proc. Royal Soc. t.

 XXVIII, 1878, pp. 11-13), this minimum N. G. F. is of the formi
 Zo + aZ +2Z .. . + aZ36

 1 -ax. -aX3. 1- ax5. 1- ax7. 1- a4. 1- a6. 1-a8 1 a'. 1-a'2

 where Z,, Z1, . .. are rational and integral functions of x of degrees not
 exceeding, 14; and where, as will presently be seen, there is a symmnetry in

 reg,ard to the terms Z0, Z36; Z1, Z,,; &c., equidistant from the middle term

 Z18 such that the terms Z0,... Z18 being known, the remnaining terms Z19, ... Z36
 can be at once written down.

 Using only the foregoing properties, I obtained for the N. G. F. an ex-
 pression which I communicated to Professor Sylvester, and which is pub-

 lished, Comtptes 1Rendus, t. LXXXVII, 1878, p. 505, but with an erroneous
 value for the coefficient of a7 and for that of the corresponding, term a29.*
 The correct value is

 * The existence of these errors was pointed out to me by Professor Sylvester in a letter dated 13th Noven-
 ber, 1878.
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 72 CAYLEY, Calca6lation of thie Minimum N. G. F. of the Biniary Seventhic.

 Numerator of Minimum N. G;. F. is =
 1

 + a (x - x3- X5)

 + a2 (x2 + x4 + 2x6 + x8 + x10)

 + a3 (-x7 _-x9 - x11-x13)

 + -a4 (2x4 + x8 + x14)

 + a5 (x + 2x3- x9- xll)

 + a6 (- 1 + 2x2- x4- x8- x10 + x12)

 + a7 (4x + X3 + 3x5- x9 + xll)

 + a8 (2 -X2 - 3x6- 3X8 X10 x12)

 + a9 (x + 3x3 + x5 x7 + 2x9 + 2x13)
 + a10 (- 1 + 4x2- x6- 2X8 - 2x"?- x14)
 + a" (5x + 3x3 + 2x3- X7 - 2x9 - x11 + x13)
 + a2 (5 + x2 - 4x6 - 6x6 - 4x'0_ x12 + 2X14)
 + a13 (x- 4x5 - 4x7 - x9 + xll + 4X13)

 + a14 (2 + 5X2 + X4 + X6 - 2x8 + 3x12 - x14)
 + a"' (3x - x3- X5 - 7x7 - 5x9 - x11 -x 13)
 + a16 (6 + 3X2 + 3X4 - 4X6 - 3x8 - X12 + 5X14)

 + a17 (- x - 2x3 - 9X3 - 8X7 - 4x9 - 3x1 + 4x1)
 + a'8 (2 + 6x2 + X4 + 2X6 + 2X8 _ -x10 + 6x12 + 2xl4)
 + a'9 (4x - 3x' - 4x5 - 8X7 - 9x9 - 2x1' - x13)
 + a20 (5- X2 - 3X6 - 4X8 + 3x1 + ?3x12 + 6x14)
 + a2(- x - X3 5x5- 7X7 - x9 - x1 + 3x13)
 + a 22(-1 + 3x2 - 2x4 + x8 + x10 + 5X12 + 2x'4)

 + a23 (4x + x3- x5- 4x7 4x9 + x13)
 + a24 (2- x2 - 4X4 - 6X6- 4X8 + x10 + 5x14)
 + a25 (x - x3 - 2x5 - X7 + 2x9 + 3x' + 5X13)
 + a26 (- 1- 2X4 - 2X6 - X8 + 4x" - x14)
 + a27 (2x + 2x5 - X7 + x9 + 3x11 + x13)

 + a28 ( X2 X4- 3X6- 3x8- X'2 + 2x14)

 + a29 (X3 - X5 + 3x9 + xll + 4x'3)
 + a30 (x2- X4 x6 x10 + 2x12- x14)
 + a 31( x3- x5 + 2x 1 + x13)

 + a32 (1 4- x6 + 2x'O)
 + a33(- x X3 X5- X7)

 + a34 (X4 + X6 + 2X8 + X10 + x12)

 + a35 (- x9 -x11- x13)

 + a36 14
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 CAYLEY, Calculation of the Minimum N. G. F. of the Binary Seventhic. 73

 Denominator (as mentioned before) is

 =1 - ax. 1 ax3. 1- ax5. 1-aX7. 1-a4. 1-a6. 1-a8. 1-a1. 1-a12.

 The method of calculation is as followvs: write for a moment
 1_-2

 q (a x) 1-za. 1-ax5. 1-aX3. 1-ax. 1-ax-. i -ax-3. 1 -ax-. I -ax 7

 then p (a, x) developed in ascending powers of a, and rejecting from the
 result all negative powers of x, is

 Zo + aZ1 +...a3Z38
 1-ax. 1-aX3. ax5. I- ax7. 1-a4. - a'6. 1a8. 1 a1a. 1 -a2

 developed in like mnanner in ascending powers of a; for the determination of

 the Z's up to Z18 we require only the development of p (a, x) up to a18; and,
 assuming that each Z is at most of the degree 14 in x, we require the coeffi-

 cients of the different powers of a in q (a, x) only up to X14: assutiing
 then that q (a, x) developed in ascending powers of a, up to a'8, rejecting all
 negative powers of x, and all positive powers greater than X14, is

 =XO + aX1 + ...+ a18 Xl 8 T. ~ ~ -X + X? .
 We have

 o0 + aXl. ? a'*X+ = 17-ax. -(X3. -ax5. -ax'7. 1 -a4.1 -a6. 1-a8. 1 -al. 1 -a12
 or say

 Zo0+(Z+ Z ...a18Z8=1- a4. 1- a6. 1 a8. 1-al0. 1 -al2.
 1- ax. 1- ax3. 1- ax5.-a.(X aX . . . aX8)

 viz: developing here the right hand side as far as a", but in each term reject-
 ing the powers of x above x'4, the coefficients of the several powers a", al, . .. a18

 give the required values ZO, Zl I... Z18. We require, therefore, only to
 know the values of these functions XO, X1. . . X18.

 To make a break in the calhulation, it is convenient to write

 1-ax.1 ax3.1- ax5. 1-ax7.(XO+ aX1... +a 8N,8)= YO+aY1.. . +a18Y18;

 putting then

 1-ax. 1- ax3. 1-ax5 1- ax7 l- ap + a2q -a3r
 where (up to x14)

 p = X + XI + X5 + X7

 q = X4 + x6 + 2x8 + X'0 + X'2
 r = x9 + xl + x13,

 we have

 YO+ a Y,+ a2Y2 . .+ 18 Y8=(1-ap + a22r)(X+a +a22 ... + a 8)
 and the values of YO, Y1,,... Y,, then are

 20
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 74 CAYLEY, Calculation of the Minimum N. G. F. of the Binary Seventhic.

 YO Y1 Y2 Y3 Y18

 = xo Xi X2 X3 X18

 -pX0 -p* 1 -pAT2 P-pAT17

 +qXyo +?X1 + qXl6
 rXo - rXT5

 the values being taken to X'4 only; and we then have
 ZO[aZ?+a2Z. . 1+a'8Z8 1-a4. -a6. 1-a8. 1-al. 1 (Y+ a a8

 viz: the values of ZO, Z, .. .18 are

 zO zl Z2 Z3 Z4 45 Z6 Z7 Z8 Z9
 = YO YE1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9

 Y YO Yy Y2 yY3 yY4 Y
 YO - Y1, -Y2 -Y3

 zlO zil Z12 Zl3 Z14 Z15 Z16 Z17 Z18

 K10 y l Y12 13 J14 15 16 17 18
 -Y6 -Y7 -Y8 -Y9 -Yl0 YY1 --Y12 -Y13 Y14

 Y4 Y5 Y6 Y7 Y8 Y9 Y,0 y1 -Y12
 - Y2 -Y3 -Y4 -Y5 - Y6 -Y7 -Y8 -Y9 - 0I

 +2YO +21, +2Y2 +2Y3 +?2Y4
 +2YO +21, +2Y2

 + Yo.

 The rule of symmetry. before referred to, is that the coefficient Z36-, Of
 a*6-p is obtained froin the coefficient Z. of a" by changing each power xe into
 14l-q, the coefficients beino, unaltered; in particular Z18, the coefficient of a18,
 must remain unaltered when each power x' is changed into X14-q; and the
 verification thus obtained of the value

 Z8= 2 + 6X2 + x4 + 2x6 + 2X8 + XO + 6X12 + 2X14
 is in fact almost a complete verification of the whole work. Some other veri-
 fications, which present themselves in the course of the work, wvill be referred
 to further on.

 We have, therefore, to calculate the coefficients XA, AT,, . . . ATE; the
 function q) (a, x) reoarded as a function of a is at once decomposed into sim-
 ple fractions; viz: we lhave

 p (a, x) j77-ax'. 1-ax'. 1-ax'. 1-ax. 1 -ax-'. 1-ax-.1 -ax-'. 1ax7
 X54 1

 -x4. 1 _X6. 1 -X8. 1 -X10. 1 _X12. 1 -xI 4 1-ax7
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 CAYLEY, Calculation of thie MIinirnum N. G. F. of the Binary Seventhic. 75

 x40 1

 XI2. 1X4. 1-XI. X1- I. 1-X101- X12 1-aX5

 ,128

 +1 - x2. X).1 X6. 1 X8. 1 - 10 1 ax3
 x18 1

 X2. (1 X4)2. (1 I,)2. 1 8 ax~ .xl _

 1 2. (1 X4)2. (1 -X6)2. 1 x8 1 -'ax
 x4 1

 X2. (1 X4)2. X1 I6. 1-x. 1 1 a-a 3
 1 1

 ? 1 -aX2. 1-a,4. 1-I6. 1-X8. 1 10. 1 X12 1-ax-5
 a,-2 1 x- 2-

 1 X4. 1 X6. 1 X8. 1 X-IO. 1 -,'2 1, '14 1 a-a 7

 In order to obtain the expansion of cp (a, x) in the assumed form of an
 expansion in ascending powers of a, we miust of course expanid the simple

 fractions 1 - 7 T &c. in ascending powers of a, but it requires a little consid-
 eration to see that we must also expand the x-coefficients of these simple

 fractions in ascending powers of x. For instance, as regards the term inde-

 pendent of a, here developing, the several coefficients as far as X'8, the last five

 terms give (see post) x 8
 + x10 + ? 2 + 3x'4 + 5x16 + 9x'8

 X4- -6- 3X8 - 4x0 - 8x12 - IlX14 - 18X16 - 24x'8

 + x2 + 2x4 + 3X6 + 5X8 + 7x'0 + llx12 + 14x14 + 20w'6 + 26x'8
 - 2 X2 X- 22X6 -2-X8 -424x0- 4x12 6w'4- 7w'6 1Ow18

 --x-2+l --w2+1 ~~0 0 0 0 0 0 0 0 0

 viz: the sum is = 1 X-2 as it should be.*

 The expansion is required only as far as X14: the first four terms are

 therefore to be disregarded, and, writing for shortness

 E 1
 E 1 -2. (1 -X4)2 (1 X6)2. 1 8

 F 1
 1 2. (1 X4)2. 1-X6. 1-X. 1 x'0

 CT 1
 1 ,2. 1 -a,4. 1 -*6. 1 XI. 1 X . X12

 TI -1

 1 x. 1-x6. 1 X8. 1X'. 1 X12@ 1-14 '

 w v?E x4F G - 2 IT
 we bave (p (a) x) = 10 a- 1 X-3 + 1 ajX=a-7' - ax- -a' I1-ax' 1ax7

 * To give the last degree of perfection to the beautiful method of Professor Cayley it would seem desirable
 that a proof should be given of the principle illustrated by the example in the text, and the nature of the
 miiischief resulting from its neglect clearly pointed out.-EDS.
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 76 CAYLEY, Calculation of the Minimium N. G. F. of the Binary Secen 1/ic.

 which is - x10E (1 + ax-'+ a2x-2 +
 - x4F(1+a-aI3+a2aX-+6 +*)

 + G (1 + ax-5 + a2x-10 +.
 x-2I1(1+ax-7+a%X-14+

 where the several series are to be continued up to a13, and, after substi-

 tuting for E, F, G, H their expansions in ascending powers of x, we are to
 reject negative powers of x, and also powers higher than X14. The funietions
 E, F, G, if contain each of them only even powers of x, and it is easy to see
 that we require the expansions up to x22, X64 1X104 and X'42 respectively. For

 the sake of a verification, I in fact calculated E, F up to X64 and G, H up to

 X142, viz: we have (1- X6) E = (1- x10) 1, from the coefficients of E we have
 those of (I- X6) E, and in the process of calculating F we have at the last
 step but one the coefficients of (1 - x10) F, the agreemnent of the two sets
 being the verification; similarly, (1 _ X2) G (1- x14) H gives a verification.

 The process for the calculation of E,=1 X (I X,) (1_Z )2 1_X81 is as
 follows:

 Ind. x
 0 2 4 6 8 10 12 14 16 18 20 22

 (1-x2)-l 1 1 1 1 1 1 1 1 1 1 1 1

 1 1 2 2 3 3 4 4 5 5

 (1-X4)-1 1 1 2 2 3 3 4 4 5 5 6 6

 1 1 3 3 6 6 10 10 15 15

 (1-X4)-l 1 1 3 3 6 6 10 10 15 15 21 21

 1 1 3 4 7 9 14 17 24

 (1-x6)' 1 1 3 4 7 9 14 17 24 29 38 45

 1 1 3 5 8 12 19 25 36

 (1 -x6)1 1 1 3 5 8 12 19 25 36 48 63 81

 1 1 3 5 9 13 22 30

 E= (1-.v8j' | 1 1 3 5 9 13 22 30 45 61 85 111
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 CAYLEY, Calculation of the Minimum N. G. F. of the Binary Seventhic. 77

 the alternate lines giving the developments of the functions (1- x2)-1,
 (1- _2-1 (1 - x4 1, (1 - x2)-l (1 - x4)- . . . , which are the products of the
 x-functions down to any particular line. And in like manner we have the

 expansions of the other functions F, G, HI respectively. I give first the expan-
 sions of E, F, U, H1; next the calculation of the X's; then the calculation

 of the Y's: and fromn these the Z's up to Z18, or coefficients of the powers
 ao, al, . .. a"8 in the niumerator of the N. G. F. are at once found; and the
 coefficients of the remaining powers al9, . a'6 are then deduced, as already

 nmentioned.

 Writing in the formula x 0, we have, for the numerator of the N. G. F.
 of the invariants, the expression

 I - a6 + 2a8 - a" + 5a12 + 2a"4 + 6a16 + 2a'8 + 5a2? - a22 + 2a24 - a26 + a32
 agreeinu with a restult in miy second Memoir on Quantics, Phil. Trans., t.
 CXLVI, (1856), p. 117; this, then, was a known result, and it affords a veri-

 fic.tion, not only of the terins in x?, but also of those in x14. Thus, in calcu-

 latinio the foregoing expression of the numierator, we obtain Z4= (2x4J+ X8+ x14),
 viz: the terni is a4 (2x4 + x' + x"), anid we thence have the corresponding
 term a'2 (1 + x6 + 2x'0), which, when x = 0, becomes = a32, a term of the
 n-umerator foi the in variants: and the terni lx'4 of Z4 is thus verified, viz:

 so soon as, in the calculation, we arrive at this term, we know that it is

 rio-lht anfd the calculation up to this point is, to a considerable extent, verified.
 Anid siinilarly, in continuing the calculation, we arrive at other terms which
 are verified in the like miianner.

 EXPANSIONS OF THE FUNCTIONS E, F, G, H.

 Ind. PE F G d Ind. E F U H
 x x

 0 1 1 1 1 16 45 36 20 6

 2 1 1 1 0 18 61 47 26 7

 4 3 3 2 1 20 85 66 35 10

 6 5 4 3 1 22 111 84 44 11t

 8 9 8 5 2 24 113 58 16

 10 13 11 7 2 26 141 71 17

 12 22 18 11 4 28 183 90 23

 14 30 24 14 4 30 225 110 26
 21
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 Ind. F G H Ind. G F Inmd.

 32 284 136 33 70 2172 419 108 2265

 34 344 163 37 72 2432 472 110 2426

 36 425 199 47 74 2702 515 112 2623
 38 508 235 52 76 3009 576 114 2807
 40 617 282 64 78 3331 629 116 3026
 42 729 331 72 80 3692 699 118 3232

 44 872 391 86 82 4070 760 120 3479
 46 1090 454 96 84 4494 843 122 3708
 48 1205 532 115 86 4935 913 124 3981
 50 1397 612 127 88 5427 1007 126 4240
 52 1632 709 149 90 5942 1091 128 4541
 54 1877 811 166 92 6510 1197 130 4828

 56 2172 931 192 94 7104 1293 132 5164
 58 2480 1057 212 96 7760 1416 134 5481
 60 2846 1206 245 98 8442 1525 136 5850
 62 3228 1360 269 100 9192 1663 138 6204
 64 3677 1540 307 102 9975 1790 140 6609
 66 1729 338 104 10829 1945 142 6998
 68 1945 382 106 2088

 CALCULATION OF THE X'S.

 Ind. x even or odd according as suffix X is even or odd.

 01 23 45 67 89 1011 1213 14
 1 1 3

 -1 -1 -3 -4 -8 -11

 1 1 2 3 5 7 11 14

 -1 -1 -2 -2 -4 -4 -6

 XO1 0 0 0 0 0 0 0

 1 1 3

 -1 - -1 -3 -4 -8 -11 -18

 3 5 7 11 14 20 26
 --2 -4 -4 -6 -7 -10 -11

 X1- 0 0 0 + 1 0 0 0
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 01 23 45 67 89 1011 213 14

 1 1 3 5

 -1 - 3 -4 - 8 -1 - 18 --24 - 36

 7 11 14 20 26 35 44 58

 -6 -7 10 -11 - 16 - 17 -23 - 26

 -X2= 0 +1 0 +1 0 +1 0 + I

 1 1 3 5

 - 4 -8 -11 -18 -24 - 36 - 47

 20 26 35 44 58 71 90

 - 16 -17 -23 - 26 -83. - 37 -47

 X3 - 0 + 1 + 1 + 1 + 2 + I + 1

 1 1 3 5 9

 - 8 11 -18 -24 -36 - 47 -66 - 84

 30 44 58 71 90 110 136 163

 -26 33 37 -47 -5.2 -61 - 72 - 86

 X4= 1 0 +3 + 1 +3 +2 +3 +2

 1 1 3 5 9

 -18 -24 -36 -47 - 66 - 84 - 113

 71 90 110 136 163 199 235

 - 52 -64 -72 -86 -96 -115 -127

 X5 1 +2 +3 +4 +4 +5 +4

 1 1 3 5 9 13

 -24 36 -47 -66 - 84 113 -141 -183

 110 136 163 199 235 282 331 391

 - 86 96 115 -127 - 149 -166 -191 -212

 26 - 0 + 4 + 2 + 7 + 5 + 8 + 7 + 9

 1 1 3 5 9 13

 -47 X-66 -84 113 -141 183 -225

 199 235 282 -331 391 454 532

 -149 166 192 212 -245 -269 -307

 X7= 3 +4 +7 +9 +10 + 11 +13

 1l 1 3 5 9 13 22

 - 66 - 84 -113 141 - 183 - 220 - 284 344

 282 - 331 .391 454 532 612 709 811

 .212 -245 - 269 307 - 338 -382 -419 472

 X8 - 4 +3 +10 +9 + 16 +14 +19 +17
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 80 CAYLEY, Calculation of the Mininmum Y. G. F. of the Binary Seventhic.

 01 23 45 67 89 1011 12 1 14

 1 1 3 5 9 13 22a

 -113 - 141 - 183 - 225 -284 - 344 -425

 454 532 612 709 811 931 1057

 - 338 - 382 -419 - 472 515 -576 -629

 Xg= 4 + tO +13 +17 +21 +2- +25

 1 1 3 5 9 13 22 30

 -141 - 183 -225 -284 -344 -425 -508 -617

 612 709 811 931 1057 1206 1360 1540

 - 472 - 515 - 576 -629 - 699 - 760 - 843 - 913

 XIo 00 + 12 + ?3 + 23 + 23 + 34 + 31 + 40

 1 3 5 9 13 22 30

 -225 - 284 -344 - 425 - 508 -617 -729

 931 1057 1206 1360 1540 1729 1945

 - 699 -760 - 843 - 913 - 1007 - 1091 - 1197

 XIl 8 +16 +21 ?31 +38 +4 +?49

 1 3 5 9 13 22 30 45

 - 284 - 344 - 425 -508 - 617 - 729 - 872 - 1020

 1206 1360 1540 1729 1945 2172 2432 2702
 -913 -1007 -1091 -1197 -1293 -1416 - 1525 - 1663

 X12 10 + 12 + 29 + 33 + 48 ? 49 + 65 + 64

 3 5 9 13 22 30 45

 -425 -508 -617 -29 - 872 1020 1205
 1729 1945 2172 2432 2702 3009 3331

 -1293 -1416 -15252) 1663 -1790 -1945 2088

 A13 14 +26 +?39 +53 +62 + 74 +83

 3 5 9 13 22 30 45 61

 - 508 - 617 -729 - 872 -1020 - 1205 -1397 - 1632

 2172 2432 2702 3009 3331 3692 4070 4494

 -1663 - 1790 - 1945 - 2088 - 2265 - 2426 -2623 - 2807

 X14 4 +30 ?3s +62 +68 ?91 95 +116

 5 9 13 22 30 45 61

 - 729 - 87(2 -1020 1205 - 1397 - 1632 1877

 3009 3331 3692 407i 0 4494 4935 5427
 -2265 - 2426 -2623 -2807 - 3026 - 3232 -3479

 X215= 20 + 42 + 62 + 80 + 101 + 116 + 132
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 CAYLEY, Calculation of the Minimum N. G. P. of the Binaary Seventhic. 81

 01 23 45 67 89 0 11 1213 14

 5 9 13 22 30 45 61 85

 -872 -1020 - 1205 -1397 -1632 -1877 -2172 -2480

 3692 4070 4494 4935 5427 5942 6510 7104

 - 2807 -3026 - 3232 -3479 - 3708 -3981 -4240 4541

 X16 18 + 33 + 70 + 81 + 117 + 129 + 159 + 168

 9 13 22 30 45 61 85

 - 1205 1397 -1632 - 1877 2172 -2480 -2846

 4935 5427 5942 6510 7104 7760 8442

 -3708 -3981 -4240 - 4541 -4828 5164 -5481

 X17 31 +62 +92 +122 + 149 + 177 +200

 9 13 22 30 45 61 85 111

 - 1397 - 1632 - 1877 - 2172 2480 - 2846 - 3228 - 3677

 5942 6510 7104 7760 8442 9192 9975 10829

 -4541 -4828 -5164 -5481 -5850 -6204 -6609 - 6998

 X18 13 +63 +85 +137 + 157 +203 +223 +265

 CALCULATION OF THE Y'S.

 Ind. x even or odd as suffix X is even or odd.

 01 23 45 67 89 10l1 1213 14

 I~~~~~~~~~~~~~~~~~~~~~~~~~~~

 YO 1
 1

 -1 -1 -1 - 1

 Y1 1 -1 -1 0 0 0 0

 1 1 1 2 1 1

 -1. -1 -2 2 -2 2

 1 1

 -1 -1 -1

 Y3 O 0 0 -1 -1 -1 -1
 22
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 82 CAYLEY, Calculation of the Minimum N. G. F. of the Binary Seventhic.

 01 23 45 67 89 1011 1213 14

 1 0 3 1 3 2 3 2

 2 -3 -5 -5 5

 1 1 3 2 4

 Y4 1 0 +2 0 +1 0 0 +1

 1 2 3 4 4 5 4

 -1 -1 -4 -5 7 -9 -9

 1 2 4 6
 -1 -1

 Y5= 0 +1 -1 0 -1 -1 0

 4 2 7 6 8 7 9

 -1 -3 -6 -10 13 -16 -17

 1 1 5 5 11 10

 -1 -2

 Y6 0 +3 0 +2 0 0 +1 0

 3 4 7 9 10 11 13

 - 4 -6 -13 -18 -22 -27

 1 3 7 12 17

 - 1 -1 - 4

 Y7 3 0 +2 -1 -2 0 -1

 4 3 10 9 16 14 19 17

 -3 -7 -14 -23 30 -37 -43

 4 6 17 20 33

 - Il -3 -6

 Y8 4 0 +3 1 1 0 -1 +1

 4 10 13 17 21 24 25

 -4 -7 -17 -26 -38 -49 -58

 3 7 17 27 40

 -4 -6

 Y9= 0 +3 -1 -2 0 -2 +1

 12 13 23 23 34 31 40

 -4 -14 - 27 -44 - 61 -75 -87
 4 7 21 29 52 61

 -3 7 14

 Yo . 0 +8 +3 +3 0 -1 +1 0
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 CAYLEY, Calculation of tlte Minimnumn N. G. F. of the Binary Seventhic. 83

 01 23 45 67 89 1011 1213 14
 8 16 24 31 38 43 49

 -12 - 25 -43 -71 - 93 -111

 4 14 31 54 78

 - 4 -7 -17

 Yll 8 +4 + - 3 - 6 -3 - 1

 10 12 29 33 48 49 6.5 64

 -8 - 24 -48 - 79 -109 -136 -161

 12 25 60 84 128

 - 4 - 14 -27

 Y1 2 10 +4 +5 -3 -6 -4 -1 +4

 14 26 39 53 62 74 83

 -10 - 22 -51 -84 -122 159 -195

 8 24 56 95 141

 - 12 - 25

 Y13- 4 +4 - 4 - 7 - 4 - 2 +4

 4 30 37 62 68 91 95 116

 -14 -40 - 79 132 -180 228 -272

 10 22 61 96 161 204

 - 8 -24 -48

 Y14 - 4 + 16 +7 +5 - 3 - 1 +4 0

 20 42 62 80 101 116 132

 - 4 - 34 - 71 - 133 -197 258 -316

 14 40 93 158 233

 - 10 --22 - 51

 Y15- 16 +8 +5 -13 -13 -6 -2

 18 33 70 81 117 129 159 168

 - 20 - 62 - 124 - 204 -285 -359 -429

 4 34 75 163 238 350

 - 14 -40 - 79

 Y16 - 18 +13 +12 -9 - 12 -7 -2 +10

 31 62 92 122 149 177 200

 - 18 51 -121 -202 - 301 - 397 - 486

 20 62 144 246 367

 - 4 -34 - 71

 Y17- 13 + 11 - 9 -18 - 12 -8 + 10
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 84 CAYLEY Calculation of the Minimum N. G. F. of the Binary Seventtic.

 01 2 3 45 67 89 1011 1213 14
 13 63 85 137 157 203 223 265

 -31 -93 -185 -307 -425- -540 -648

 18 51 139 235 389 511

 -20 -62 -124

 Y18 13 +32 +10 +3 -11 7 +10 +4

 CAMBRIDGI, December 7ih, 1878.

 Remnark on the Preceding Paper.

 ON discovering the error in Professor Cayley's original statement of the

 N. G. F. for the seventhic, I caused it to be recalculated out of the grant of

 the British Association by a mnethod, which will be described in a future coin-
 nmunication, considerably shorter than my first method, but somewhat longer
 than that explained in the text above, perhaps in this instance about half as
 long again. The table of Grundformen obtained by tamisage fromn the cor-
 rected N. G. F. table has appeared in the Comptes Rendus. The representative

 form in that case is obtained by multiplying numerator and denominator of
 the N. G. F. fraction by

 (1 + a6) (1 + alo + aO + . . .) ax)( + ax) )( + ax)),
 the infinite multiplier being the peculiarity for the seventhic adverted to in
 the note oii the ninthic in this number of the Journal. The error in the
 N. G. F. becanme apparent from the fact that the sum of the numerical coeffi-
 cients in the numnerator was not equal to zero, a necessary condition, as may
 easily be proved from and after the case of the quintic. This last, however,

 only comes into effectual operation froin the seventhic, because, for tlle case of
 the quintic and the sextic, the coefficients consist of pairs of numbers with
 equal and opposite signs, whereas, for the seventhic and eighthic, the coeffi-
 cients consist of pairs of equal numbers with the samie sign; for the tenthic

 and eleventhic with opposite signs again and so on, the ratio of the numbers
 changing by double steps from plus to minus unity.

 J. J. S.

This content downloaded from 199.242.209.35 on Mon, 13 Mar 2023 16:50:14 UTC
All use subject to https://about.jstor.org/terms



 On the Lateral Deviation of Spherical Projectiles.

 By HENRY T. EDDY, Cincinnati, 0.

 IT may be premised that the phenomenon discussed in this paper is

 actually observed in pitching base ball; and though it has been often asserted

 by non-experts that it is impossible to pitch " a curved ball," nevertheless
 such is not the fact, as appears from careful experiment as well as fromn the

 following theoretical investigation. The base ball is selected for experiment

 in preference to other projectiles, because it is possible to gain more exact
 information with respect to its initial twist than can be gained as to round

 shot for example or other spherical projectile.

 Since the precise law of resistance which such a projectile experiences in

 its passage through the air is unknown, we shall be obliged to content our-

 selves with showing the direction of the deviation without being able a-t pres-

 ent to compute its numerical amnount.

 In the figure let c be the center of a spherical projectile whose radius
 is a, and let men be the great circle of the sphere which lies in a horizontal

 plane. Let us disregard the vertical component of the motion of the projec-
 tile; and let c have a horizontal motion of translation, at the instant under
 consideration, towards e. Also let the projectile have a motion of rotation
 about a vertical axis through c in a right-handed direction, i. e. from m to e.

 The motions of translation and rotation, whatever be their relative velocities,

 can be combined, as is well known, into a single motion of rotation about an
 instantaneous axis parallel to the vertical axis of rotation through c. This
 23 85
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 86 EDDY, On the Lateral -Deviation of Splherical Projectiles.

 instantaneous axis nmust intersect the diameter mn, which is perpendicular to
 the direction of translation ce, at some point, as o. Let the instantaneous axis
 through o be called the axis of z. Also, let the distance oc be designated by
 the letter b.

 Let r be the shortest (i. e. horizontal) distance of any element dS of the
 surface of the sphere from the axis z. Now pass any vertical plane through
 the axis of z, cutting the sphere in a circle whose horizontal projection is pp',

 and similarly pass a second plane qq', mnaking an infinitesimal angle dO = yog
 with pp'; draw cjg perpendicular to pp', and let S fcp, firo xop 0,

 .-. f -a cos o = b cos 0. (1)

 In the vertical circle pp' cut out by the first plane, and having fp for its
 radius, let (p be the angle between the radius fp and the radius drawn to any
 elemnent dS of the surface situated on the circumference of the vertical circle

 pp'. Then r, 0, qp are coordinates of dS, but since the surface is a sphere, we
 obtain the following relation between these coordinates and known quantities:

 r = b sin 0 + a sin o cos p. (2)
 Again, since z is the instantaneous axis, the motion of any element dS of

 the sphere is horizontal and perpendicular to the instantaneous radius r of
 that element, and, therefore, the relative velocities of different elements are
 proportional to their respective instantaneous radii r,

 v = cr, (3)

 in which v is the velocity of any element of the sphere andi c is a constant.
 Let dS be the quadrilateral element of the spherical surface included

 between the two planes pp', qq', making an anole dO with each other, and two
 meridian planes intersecting in the line cg and making an angle dcp with each
 other. Then is dS ultimately a rectangle, of which the length along the
 meridian circle is r cosec S dO, and the width along the vertical circle is
 a sin a dp;

 dS ardOd(p. (4)
 Disregarding friction, the resultant pressure dP oni the element dS, as it
 moves through the atmosphere, is towards c, and is proportional to vn (inl
 which the exponent n lies between 1 and 2, but its precise value is unknown),
 and is also proportional to the cross section cos S dS of the stream of air which
 dS meets in its motion. Then if c' is some constant

 dP = cvndS = ac'crn + I cos S dO dp. .(5)
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 EDDY, On the Lateral -Deviation of Spherical Projectiles. 87

 Now resolve dP into two rectangular components; the first, sin S dP act-

 ing in-the plane _pp towards f, the second, cos S dP acting perpendicular to
 the plane pp'.

 The first componenit sin S dP has a horizontal component of magnitude

 sin S cos qp dP, which has a component parallel to co and acting from c toward o,
 whose magnitude is sin S sin 0 cos (p dP. The second component cos S dP is
 horizontal, and has a component of magnitude - cos S cos 0 dP acting from

 c toward o. These are the only components of tlle normal pressure dP acting

 along co;
 . . dX (sin S sin 0 cos -cos S cos 0) dP = cos4 dP. . . (6)

 is the horizontal deviating force acting on the element dS, in which 4 is the

 arc of the great circle joining dS to n', a point so situated in the horizontal

 plane that the angle ncn'= 20. For, let dS be situated at one angle of a

 spherical triangle of which the remaining two are g and n'; then, since S and 0

 are two of its sides anid (p is the included angle, and 4 is the side opposite q,
 we hav-e

 cos4A = sin S sin 0 cos p-cos S cos , .(7)
 ..X = bc'cnrn+1 cos 0 cos A dO d+p. (8)

 It is readily shown that the deviating force, acting on any elementary ring of

 the forward half of the sphere included between pp' and qq', is from c toward o,
 for this deviating force is twice that obtained by integrating (8) with respect

 to p from 'p = 00 to 'p = 1800. And it is possible to show that the value of
 this integral is a positive quantity, without effecting the integration, by show'

 ing that the surn of the positive elements of the integral exceeds the sum of

 its negative elements. Now it is evident from (2) that, while 0 is constant, r

 decreases as 'p increases fronm 0? to 180?, but r never becomes negative in case
 the axis z lies witlhout the sphere, as, in practice, it does. Again, it appears

 fromn the interpretation given to 4 that cos 4 decreases as 'p increases from
 0? to 1800, but that, so long as 0 < 900, mnore than half the elements dS along

 this ring between pp' and qq' are within 900 of n', and hence the largest posi-
 tive value of cos 4 numerically exceeds its largest negative value.

 Therefore, in integrating (8) with respect to the independent variable 'p
 from 0? to 1800 (for any value of 0 up to 900), the positive elements of the

 integral are not onlv larger but more numnerous than its negative elements.
 And if we afterwards integrate with respect to the independent variable 0

 a
 from 0 = cos'I to 0 - 900 (which includes the hemnisphere now under
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 88 EDDY, On the Lateral -Deviation qf Spherical Projectiles.

 consideration), the total deviatinc, force X will act from c towards o, for each
 one of its elements will be positive. Furtlhermnore, let us consider the pres-

 sures acting upon the remaining hemisphere. These pressures are less than

 if the projectile stood still, there being a partial vacuum behind it. An

 experinmental comparison of the pressures on the front and back sides of mov-

 ing bodies shows that the reduction of pressure on the back side below the

 mean never exceeds about one-half of the increase of pressure on the front

 side above the mnean. Hence, by comiiparing the pressures on pairs of rings
 making equal angles with the vertical plane nin, it is seen that, although the
 deviatinig force caused by the pressures on the back hemisphere acts from

 o towards c, it does not numerically exceed about one-half of the deviating
 force caused by the pressures on the front hemisphere, and acting from c to o.

 Therefore the total deviating force caused by the norrnal pressures is from
 c toward o.

 The effect of friction between the air and projectile remains now to be
 considered. If the air exerted equal pressures at the opposite extremities of

 each diameter, the friction could diminish the rotary motion, but could cause
 no deviation. The pressures are not, however, thus distributed. We may

 state the case roughly thus: in the quarter of the sphere projected on the

 paper in mec the average pressures are greater than in either other quarter,
 the average pressures in ecn are next largest; andl, if el is the other extremity

 of a diameter through e, the average pressures in nec' are next largest, and
 those in 'cm are the smallest.

 The difference of the pressures in the opposite quarters nice, nee' causes a

 difference of frictions; the same differenice exists between the opposite quarters

 ecn, e'c; and these two effects do not differ greatly in maagnitude. Hence

 the total effect mig,ht be replaced by a friction at a point of the surface not
 far fromn e. It is evident that the effect of applying friction at such a point

 would be to cause the projectile to roll away from o, so that the component of

 the deviating force furnished by the friction is from o to c. Buit the amount
 of this force is inconsiderable compared with that caused by the differences

 of the normal pressures, being dependent, however, upon the roughness of
 the surface of the projectile. Rankine* states that Smeaton's experiments

 show that the coefficient of friction for the best sails of wind-mills is probably

 about 0.016.

 * Manual of the Steam Engine, etc. 7th ed. London, 1874, chap. VIII.
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 Note on Determinants and Duadic Disynthemes.

 BY J. J. SYLVESTER.

 A GENERAL algebraical determinant in its developed form (viewed in

 relation to any one arbitrarily selected term) may be likened to a rnixture of

 liquids seemingly homogeneous, but which being of differing boiling points,

 admit of being separated by the process of fractional distillation. Thus ex. gr.

 suppose a general determinant of the 6th order. The 720 terms which make

 it up will fall, in relation to the leading diagonal product. into as many classes

 (most of which comprise several similarly constituted famnilies) as there are
 unlimited partitions of 6. These, 11 in number, are

 6; 5, 1; 4, 2; 4, 1, 1; 3, 3; 3, 2, 1; 3, 1, 1, 1; 2, 2, 2; 2, 2, 1, 1; 2, 1, 1, 1, 1;
 1, 1, 1, 1, 1, 1.

 Let the determinant be represented, in the umbral notation, by

 a b c d e f

 a b c d e f
 Let us, by way of illustration, consider the class corresponding to 6;

 this will consist of the 1. 2. 3. 4.5 (120) terms obtained by fornming the 120

 distinct circular arrangements that belong to a b c d ef. Thus:

 a G
 b e

 f d

 will signify ac X ce X ed X df X fb X ba, which will be one of the 120 in ques-
 tion. So, again, 3, 3 will denote, in the first place, the 10 sets of double triads of
 the general form abc: def, and, as each triad will give two cyclical orders, there
 will in all be 10 X 22, i. e. 40, terims of the form ab. be. ca. de. ef.,td. So,
 again, there will be 15.13, i. e. 15, corresponding to 2, 2, 2. So 3, 2, 1 will
 give 10 groupings of the form abc: de:f, and each of these will give rise to two

 The cyclical method of the text shows what was not previously apparent, that the umbral notation ab*. 1
 ab...Iab.. .l

 possesses an essential advantage over af. .. , even for unsymmetrical determinants. This mode of notation
 of course implies some ground of preference for one diagonal group over all others and thus virtually regards a
 general determinant as related to a lineo-linear as a symmetrical one is to a quadratic form. For instance the
 general determinant of the second -order is to be regarded as appurtenant to the lineo-linear form aaxxw + abxyl
 + bayxy' + bbyy'.
 24 89
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 90 SYLVESTER, Note on Determinants and Duadic Disynthemes.

 terms, viz: ab. bc. ca. de. ed.f, ac. cb. ba. de. ed. ff', the number of cycles

 corresponding to two elements de being 1, and to one element f also 1.

 This simlple theory affords us a direct means of calculating the number

 of distinct terms in a symmnetrical determinant, i. e. one in which i.j and ji.

 are identical. It enables us to see at once that the coefficient of every term

 is unity or a power of 2; the rLule being, that plus or minus terms* of the class

 corresponding to in1, in2, n3,2 . . . will take the coefficient 2v, v being the num-
 ber of the-quanitities n which are neither 1 nor 2, for, in every other case, the
 total number of cycles in each partial group will arrange themselves in pairs

 which give the same result, thus ex. gr.
 a a

 d b and b d
 c c

 will give the equal products ab . bc . ed. da and ad. de. cb. ba.

 As an examnple of the direct method of computation, take a symmetrical
 determinant of the 5th order. Write

 5 4.1 3.2 3.1 1 2.2.1 2 1.1.1 1.1.1.1.1.

 To these 7 classes there will belong respectively

 1 . 12 with the coefficient 2

 5.3 " " 2

 10.1 ' 2

 10.1 2

 1 "O S 1

 10 1

 1 1.

 Thus the number of distinct terms will be

 12+15 + 10 + 10 + 15 + 10 + 1= 73,

 and the sum of the coefficients

 24 + 30 + 20 + 20 + 15 + 10 + 1= 120,

 both of which are right.

 Again, if we have a skew determinant of an even order, it will easily be

 seen that any partition embracing one or more odd numbers will give rise to
 pairs of terms that mutually cancel, but whien all the parts into which the

 exponent of the order is divided a.re even, the coefficient will be giveni by the

 same rule as for symnietrical determinants, i. e. its arithmetical value will be
 2v, where v is the number of parts exceeding 2. Thus ex. gr. for a skew deter-
 ninant of the order 6 we have

 6 4.2 2.2.2.

 *The complete value of the coefficient is (- ) 2v, v being the nuimb r of elements in tho partitioni other
 than 1 or 2, and I the number of even elemrents.
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 SYLVIESTER, Note on JDetermninants and J9uadic bisynthernes. 91

 The nuLmber of termns correspon(ding to these partitions being 60 with coeffi-

 cieint 2, 15 X 3 also with coefficient 2, and 15 with coefficient 1, making 120
 distinict ternms in all, the sutm of the coefficients will be

 120+90+ 15= (1.3.5)2,

 which is right, because the result is the square of the sum of 15 synthemes of

 the form 1 .2>X 3.4 X5.6. It mav be observed that 120 is 216 , as it
 ouol'it to be, because, until we reaclh the order 8, the same double duadic ssn-

 thenme can only be made up in one way of two simnple ones, but this ceases to

 be the case fromn and after 8. Tlhus ex. gr. the pair of synthemes

 1.2 3.4 5.6 7.8 and 1.3 2.4 5.7 6.8

 combined will produce the same double syntheme as the pair

 1.2 3.4 5.. 6.8 and 1.3 2.4 5.6 7.8,

 and accordingly for 8 we hav,e the partitions

 8 6.2 4.4 4.2.2 2.2.2.2,

 givinig rise to 2520 with coefficient 2
 2:3.60 " ' 2
 35, 32 6 4
 210.3 " " 2
 10.5 " 1,

 mnating, in all 2520 + 1680J + 315 + 630 + 105, i. e. 5250, distinct terms,

 whereas, (I.3.5.7)2 +(1 .3. 5.7) = 55
 2=

 the ditference, 315, being due to the fact that there are that number of double

 synthemes which admnit of a twofold resolution into two single synthemes.

 I will not stop to prove, but any person conversant with the subject will

 see at once that this enethod gives an intuitive and direct proof of the theorem

 that a pure skew determinant for an even order is a perfect square.* Having
 only a limited space at my command, I will pass on at once to forming the

 equation in differences for the case of a symmetrical, a skew, and one or two

 other special forms of determninants.

 10. For a symnmetrical determninant, taking as a diagram, to fix the ideas,
 the matrix of the 6th order

 a b c d e f
 b gh k I m
 c h n p g r
 d k p s t u'
 6 I q t v w
 f m r u W c)

 * That a skew determinant of an odd order vanishes is apparent from the fact that an odd number cannot
 be made up of a set of even ones. 1 use the term skew determinant in its strict sense as referring to a matrix
 for which ij -ji and ii = 0.
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 92 SYLVESTER, Note on Determinants and Duadic Disynthemtes.

 calling urn the number of distiniet terms in a symmetrical matrix of the mtth
 order, and, resolving the entire determinant into a sum of determinants of

 the order (m - 1) multiplied by the letters in the top line, we shall obviously
 get umi- together with (m r 1) quantities, positive or negative (and we know,
 by what precedes, that there can be no canceling, so that the sign, for the
 object in view, nmay be entirely neglected) of the form

 b A k I qn

 c n _p q r
 bX d p s t U.

 e g t v w

 f r U w

 Among these (mn-i) quantities all the terms containiing be, bd, be, bf will occur
 twice over, buit those containing b2 do not recur. Hence, to find the number
 of distinct termis we may reckon each of such distinct termns as contain be, bd,

 be, bf worth only - X the others counting as 1. But if, instead of the column
 2'

 (which I write as a line) bedefj we had the column k/kln, the rule for cal-
 culating the number of distinct terms might be calculated by this very same
 rule, except that the terms multiplied by hc, kd, le, mf ought to count as units
 instead of halves. Hence obviously

 ,m+ (m-1)(m-2) U7, X i (r-1) Um-, =MUmr,,
 or

 (m1) (m 2)
 Ubm..=..inUm 2 um_ 3

 which is Mr. Cayley's equation, but obtained by a much more expeditious
 process (see Salmon's Higher Algebra, 3d edition, pp. 40-42); writing
 Urn = (1. 2 . .. mn) vm we obtain the equation in differences, linear in regard
 to the independent variable,

 nM Mv_ + Vn =?

 and this, treated by the general method applicable to all such, gives rise to
 a linear differential equation in which, on account of the particular initial

 values of u0, ul1, U2 the third term is wanting, and finally vr is found to be the
 coefficient of tn in

 +-4

 i%/1-t
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 SYLVESTER, Note on Determinants and -Duadic Disyntkemies. 93

 If we apply a sirmilar method to the case of a symmnetrical determinant

 in whiich the diagonal of symmetry is filled out with zeros (an invertebrate sym-

 metrical or symmetrical bialar deterininant, as we may call it) we shall easily

 obtain the equation in differences

 tbm = (m 1) [Um-l + Ub.4-2] ( 1) (m -2)
 and, making urn = 1.2.. m.nv,

 mVm- (rn-i) Vm_1- V.-2 + 2 =- o
 from which, calling y = vo + v1t + t+ .. . and having regard to the initial
 values v0, VI, v2, we obtain

 2 2- t2 dt
 y 1-t

 -2+

 and y 2 e

 By way of distinction, using ' and v' for this case, and it, v for the pre-

 ceding one, the slightest consideration shows that

 = u4, + mu,'n_1 + mn(r7l1) U + m (m -1)(rn-2)

 or

 Vm = Vfm + V'Mni + 1 2 + 1.2. 3
 Hence the generating function for v. ought to be that for urm multiplied by el,
 as we see is the case.

 So, in like manner, the generating function for vm, i. e.1 Urm in the

 case of a general determinant being _ that of vm for an invertebrate or

 zero-axial but otherwise general determinant we see must be e * i.e.

 * It mav easily be proved that the difference between the numbers of positive and negative combinations
 in the development of an invertebrate determinant of the mth order is (_ )m-l (mr-I) in favor of the former.

 n lber of positive terms in sueh determinant
 From this it is easy to prove that the generating function for num of pi tr in sh d is

 1. 2. 3... m

 or

 Whence it follows that the number of positive terms in a general invertebrate determinant of the mth

 order is m I times the total number of the terms in one of the (m - 2)th order. The equation of differ-
 2

 ences for Us,, the total number, is of course
 U.= _(m-l)(Ur-n.+ U.-2),

 and the successive values of
 Un for 1, 2, 3, 4, 5, 6, 7, 8.

 are 0, 1, 2, 9, 44, 265, 1854, 14833,.
 25
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 94 SYLVESTER, Note on Determinants and -Duadic Disyntkemes.

 Vm.-11? 1 1 1
 1fi + 1 .2 1 2 \3

 the well known value (ultimately equal to as it ought obviously to be,
 of the chance of two cards of the same name not coining together when olle
 pack of mn distinct cards is laid card for card under another precisely similar
 pack.

 Returning to the case of the invertebrate symmetrical determinant, it
 will readily be seen, by virtue of the prolegomena, that the number of terms
 (the um) for such a determinant of the mnth order is the same thing as the
 total number of duadic disynthemes that can be formned with m things,
 meaning by a duadic disyntherne any combinationi of duads with or with.
 out repetition, in which each element occurs twice and no oftener. Thus,
 when n-_ 6 1. 2 2.3 1.3 4.5 4.6 5.6 and 1.2 2.3 3.4 5.6 6.1
 and 1 .2 2.3 3.4 1.4 5.6 5.6 are all three of them disynthemes. But
 the two latter ones are each resoluble into single synthemes, whereas the first
 one is not. It is clear that, when a disyntheme is formed by means of cycles
 all of an even order, it will be resoluble into a pair of single synthemes, and
 in no other case. The problem, then, of finding the number of distinct dou-
 ble synthemes with m elements is- one and the same as that of finding the
 number of distinct terms in a proper (i. e. invertebrate) slew determinlant,
 which I proceed to consider.

 Following a method (not identical with but) analogous to that adopted
 for the symimetrical cases, we shall find, by a process which the terms below
 written will sufficiently suggest

 Um + 2 - Um-4 = (m-1) um-2 + (m-1) (m-2) tm2,

 or Uin = (- 1) Um2 2 )n-4m

 Of course, when m is odd ui = 0. From this it is readily seen that

 1 .3.5... 2m v say , is an integer; for we shall have

 (,n = (2mn - 1) om)_ (m - 1) Om_2 X
 also, (o = 1, X2C = 2 ,
 sothat 03 = 5.2 - 2.1 - 8

 04 = 7.8 -3.2 - 50

 @= 9.50 -4.8 = 418

 (6= 1 1. . 418- 5.50 4348

 and the conventional o = 3o, -o, = 1.
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 SYLVESTER, Note on -Determinants and IDuadic Disynthemes. 95

 By the above formula urn, can be calculated with prodigious rapidity.
 If, however, we wish to obtain a generating function for Urn, the differential
 equation obtained from the above equation in differences does not lead to a

 simple explicit integral, but if we make u2,-= (1 .2. 3 . . . 2m) vmw, as in the
 preceding cases, or, which is the same thing, _, = 2,n (1 . 2.. . mn) v,n, we get

 4mvm -. 4 (rn- 1) v _-2vrni_ vm2 =

 and, writing as before y =-vO + vlt + v2t' + . . .

 4 dtY- 4t dt 2y + ty dt dt

 will be found to be equal to zero. [This vanishing of the 3d termn in the dif-
 ferential equation being a feature common to all the cases we have considered,
 and due to the initial v'alues of the v series in each case.] We have thus

 4Y = 1t+1 el

 By way of verification, we may observe that
 1 1 1

 Vo 1,VI V2 =-- V3=6X***X

 Y ( + 4 +32 +384 + )(+4 +32 +384+ )
 and

 1 1 _1 1 1 5 _1 45 5 1 1 _1*
 4 +4 2 32 + 16 + 32 4 384+128 128 384 6

 We may now proceed to calculate the number of distinct terms in an

 improper or vertebrated skew-determinant, which is interesting on account of
 its connection, with the theory of ortlhogonal transformationls. Using V2m,
 instead of vm, the generating function for the case last considered becomes

 t2

 e_4 Let (1 .2.3... m) Vm = Ur in general be used to denote the num-

 ber of distinct terms in a vertebrate skew-determinant of the mth order.

 Then obviously
 rn - rn-1 m-2 m-3

 U2m = U2ff + m* 2 bU2m-2 + in* 2 * 3 4 4 +
 2 m2 3 4-

 or V2m = Vm + V21 2 + 1.2m - 4+

 Hence the generating fuLnction for V2m
 t21 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~2

 e 4 t2 t4 4~~~~~~~~e
 = 4 { 1. 2 +. 12.-3 4 +...} 2 (It) } .~~~~

 1 2 8 50 1 1 1 25
 *The valt2es of v,2.46 2.4.6.8 Ve 2 ' 4 '
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 96 SYLVESTER, Note on beterntinanits and Duadic -Disyntikemes.

 and in like manner, since

 U~m i~ru22?~m~ (m-1(m -2) Um?.* U2m - 1 = MU112m -2 + i( -2\(42+

 the generating funIction for T72mi will be

 e+4 -e t+

 2 _ 1 t2)w )
 Hence the number of distinct cross-products in the development of an ortho-
 gonal transformiation-matrix of the mth order is

 (1. 2. 3 ... n) X coefficient of tm in e
 (1 t2)T

 POSTSCRIPT.-Let us consider the case of 2m elemnents; call the number
 of ways in which any disynthemie composed with themn miiay be resolved into

 a pair of single synthemes one in each hand* its weiglht; furthermnore, call
 the aggregate of those which a.ppertain to an odd number of cycles the first
 class, aind the other the second class. The entire sum of the weights we

 know is 12. 22. 32. 2n- 12, but, furthermiore, I find that the excess of the

 total weight of the first class over that of the second is 12. 22.32... 2mn-32. 2m- I;
 or, in other words, the weights of tlle tivo classes are in the ratio of m to n- 1.

 The expressions for the sum and for the difference may, of course, bv

 the prolegornena be translated into two theoremns on the partition of numbers,
 neither of which, as far as I can see, is obvious upon the face of it.t

 * The two hands are introduced in order to double, by the effect of permutation, what the weight other-
 wise would be, except when the two conmponent synthemes are identical, in which case the weight remllains unity.

 t REMARK.-The equation in differences for the number of double duadic synthernes may be obtained wilth-
 out recourse to determiniants, as follows: Single out any element, 1; it may be paired in each of the component
 syniliemes with any one of the remnaining elements 2, 8, 4, . . . , and there are two cases to be distinguished,
 viz: 1 nmy be paired either with the same element (2) or with two different elements (2, 3), in the two syn-
 themes. Tlhe former may be done in (n- 1) ways, and, after having made our choice, we have still the choice
 of all the dotuble synthemes that can be formed from 3, 4, . . . m; 3, 4, . . . tn. The choice of two di'erent

 elements may be made in (m-l)tm-2) ways, and having chosen, we have still the choice of all the double
 2

 synthemes that can be formed from 3, 4, . . . m; 2, 4, . . m. Now it is plain that the number of these
 can be obtained from the number of double synthemes that can be formed from 3 4, . . . m; 3, 4, .. . m, by
 counting twice all except those in which 3 is paired twice with the same element; and is equal, therefore, from
 what precedes, to

 2U m - 2(m 3) u m-4.
 We have, therefore,

 UM = (rn-1) Urn-2+ ( l)(m 2) [2Um-2- (M 3)Um..-4]
 2

 (m - 1)2 Um_2 - (m-1)(m-2)(m-3) u
 F. FRANKLIN.
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 Desiderata and Sugjgestions.
 BY PROFESSOR CAYLEY, Cambridge, Einyland.

 No. 3.-THE NEWTON-FOURIER IMAGINARY PROBLEM.

 THE Newtonian method as completed by Fourier, or say the Newton-
 Fourier method, for the solution of a nunmerical equation by successive ap-
 proximations, relates to an equation f (x) - 0, with real coefficients, and
 to the determination of a certtain real root thereof a by means of an as-
 sumed approximate real value $ satisfying prescribed conditions: we then,

 fromi $, derive a nearer approximate value Et by the formula f $

 and thence, in like manner, $1, 02x $,3 . . . approximating more and more
 nearly to the required root a.

 In connexion herewith, throwing, aside the restrictions as to reality, we
 have what I call the Newton-Fourier Imaginary Problem, as follows.

 Take f ('), a given rational and integral function of 'a, with. real or ima-
 ginary coefficients; $, a given real or imaginary value, and from this derive

 it by the formula f = $ ) , and thence $', $2, $3,... each from the pre-

 ceding one by the like formula.
 A given imaoinary quantity x + iy may be represented by a point the

 coordinates of which are (x, y): the roots of the equation are thus repre-
 sented by given points A, B, C. . . , and the values i, $7, $2.. . by points
 P, P1, P2, .. . the first of which is assurned at pleasure, and the others each
 from the preceding one by the like given geometrical construction. The
 problemt is to determine the regions of the plane, such that P being taken at
 pleasure anywhere within one region we arrive ultimately at the point A;
 anywhere within another region at the point B; and so for the several points
 representing the roots of the equation.

 The solution is easy and elegant in the case of a quadric equation, but

 the next succeeding case of the cubic equation appears to present considerable
 difficulty.

 CAMBRIDGE, March 3d, 1879.

 26 97
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 On the Complete Systemt of the "Grundlormen" of the
 Bincary Quantic of the Ninth Order.

 By J. J. SYLVESTER.

 ENUMERATION OF THE IRREDUCIBLE INVARIANTS AND COVARIANTS OF THE
 BINARY QUANTIC OF THE NINTH ORDER.

 ORDER IN THE VARIABLES.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 21 22)

 1 2

 2 182 ----- _ _ 1_1_1

 4 2 2 2 8 2 2 2 1 1 1

 5 1 4 4 8 4 2 2

 E- 6 4 4 6 6 8 8

 7 4 7 5 7 5

 8 5 5 10 10 2

 o 9 9 14 10 2

 The~~ foeon -al ha-encluae, out of th-ud otdb h

 10 5 15 14'

 ~ 1 17 16

 12'14 28

 18 25

 14 17 9

 15 26

 16 21 - __ _ __________
 17 5

 The foregoing table has been calculated, out of the funds voted by the
 British Association, under my superintendence, by Mr. Franklin, Fellow of
 Johns Hopkins University. A statement of the method employed will be
 giveni in a future number of the Journal.

 The total number of irreducible forms will be seen fr-om the table to be
 415. The highest degree in the coefficients is 18, and the highest order in

 98
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 Extract of a Letter from Sig. A. de Gasparis to Mir. S.ylvester. 99

 the variables 22. The representative generating function in this case (as in all

 others which have been hitherto treated, with the sole exception of the sev-

 enthic) has afinite numerator.

 The total number of groundforms for tle 'orders 0, 2, 4, 6 respectively

 (counting, as one ought to do, the absolute constant as one of them) is

 1, 3, 6, 27, which becomes a regular series on increasing 6, which corresponds

 to a square index 4, in the proportion of 2: 3. In like inanner, for the orders

 1, 3, 5, 7, 9, the series is 2, 5, 24, 125, 416, which, on increasing, the last term
 corresponding to the square index 9 in the ratio 2: 3, forms an almost regular

 progression 2, 5, 24, 125, 624, hiighly suggestive of the geometrical series

 1, 5, 25, 125, 625. It seems then to be a not altogether improbable conjec-
 ture, that the numlber of groundforms for 10, which I hope very soon to get

 completely worked out, will be in the neighbourhood of a ratio of equality to

 243j@ and for 11, which there is not much prospect of calculating for soine

 time to come, a number not very far out from a ratio of equality to 31.25.

 In the next, or next but one, number of the Journal I hope to set out a

 synoptical table of the groundforms for all orders up to 10 inclusive, with

 their reduced and representative generating functions, as also for comnbina-
 tions of the orders: 2, 3; 2, 4; 3, 3; 3, 4; 4, 4; all the materials for which,

 with the exception of what pertains to the covariants proper of the tenthic,

 -are alreadv in existence.

 Extract of a Letter. from Sig. A. de Gasparis
 to Mr. Sylvester.

 J'ai trouve certaines series dans lesquelles les elernents tels que le

 rayoni vecteur, les anoinalies excentriques et vraies, etc., sont exprimes en fonc-

 tion de I'anomalie moyenne donnee en parties du rayon sans sinus ou cosinus.
 Comme essai, je vous comunique les suivantes dans lesquelles e = excen-

 tricite, v et 1 anomalie vraie et moyenne. En outre a = demigrand axe, i, q

 inclinaison et noend, 7 perihelie, A = 7- (p J'ai trouve

 |1 + e J11 M3 2e 31M 2e + 2ae2 M7 18e + 22e2- 900e3
 I- I e 6 (1-e)4+ 12') (1 -e)7 5040 (1 -e) 0

 et posant
 l 1 + I e M2 sin -Mi3 1Il+e Cos0b
 1 1 e 2 (1 e)2 6 1-e (1-e)3

 * The number of groundforms for the Octavic (I quote from memnory) is 70, not more inferior to 81 than
 might have been anticipated, when the composite form of the number 8 is taken into account. It seems likely
 that for 10, 243 is at all events a superior limit.
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 100 Extract qf a Letter from Sig. A. de Gasparis to 31r. Sylvester.

 K ( -21 e ) ) + (1 + 9e) n --

 4 (-1 e11-e0 2 (1-e)2 6 1- (1-e)3 MJ cos sb M5 81+ e M + e sin s

 l'on a pour la valeur des coordonnees heliocentriques z, x et y

 1 =sini.H; =cosP.K-sinpcosi.H; Y =sincp.K+cos'pcos. II. a a a

 L'on peut aussi developper, cornme j'ai fait jusqu' aux cubes de M, la
 valeur inverse du cube de la distance mutuelle des deux miasses, telle que se
 presente dans la theorie des perturbations. Dans ce cas figurent les deux

 variables M1 et 112. Par la relation lineaire qui existe entre le temps et
 l'anomalie mnoyenne il peut etre utile de considerer ces developpements dans
 le calcul des perturbations.

 J'ai publie' aussi dans les actes des academies des Lincei et de Naples, le
 coefficient du termie qui multiplie la 4'me puissance du teinps dans la serie

 qui donne la correction de la coordonnee x elliytiue pour avoir la valeur de
 la a' troublee dans le temnps T apres le te_ps t pour lequel on connait les x, y, z
 et leurs derivees x', y, z', 6tant m1 la masse troubl6e, et m2 la masse troublante.
 Ce coefficient, sauf un facteur colinu de l'ordre M2, est

 x1 x2 (Till + M2) (X2 -X1)( - m2)X2 mtlx6(l'2- X')p'12
 r3 3 3 6 r6 13r3 4 r1012 r32,32 P12 r2 q1 2 P12

 15 (X2 -X) pJ,22 6x'2r'2 3 (X2 -X)2 1 x2 (in + m2)(x2- )

 + + 4 3 3 3 P12 r 2 1 r3 r2 p12

 3 (X2 - XI)(Y2 - YI) Yi Y2 _ (Ml + M)(Y2 YI)
 5 - .3 3 32

 3(x2- x)(z.- z) Z1 Z2 (Ml + ?^nf)(Z2 Z,)

 p012 r3 r22
 3X2.fm(XI)(l +2) _ ___ M____ ____-+ r2 Pl1(X2 + M2) X2 +ntl} 32Y2{ll(Y2-Yl)?(l + M2) Y2 m1y1

 5~ ~~~ ~~~ - 3 _ 3 _ .- 3 _ 3 _ 3 + s3
 r52 pl32 r32 ?3 J r52 1 pl2 r23 I 13

 3x 2 {ml (z2-z) (1 + M2) Z2 + mZi} 8 (X2 X1){ (2 Xi )2+(Zy' _yl)2+ (zI _zt )2 }
 P12 712 ri 10~~~~~12

 + ml(X2-XI) _ 12x2r'2 3X2 (22 + 2 + Z' _2)

 N APLES, 15 M11ars, 1879.
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 D. VAN NOSTRAND,

 Publisher of Scieitific, Military aid Naval Books,
 23 lMlurray and 27 Warren Streets, New York.

 Our Stock comprises a Large and Complete List of Works pertaining to

 ARCHITECTURE, ASTRONOMY, NAVIGATION, BREWING, DISTILLING,

 CHEMISTRY, PHYSICS, CIVIL AND MECHANICAL ENGINEERING,

 ELECTRICITY, GEOLOGY, HYDRAULICS, SANITARY ENGI-

 NEERING, MATHEMATICS, and Works of Reference, etc.

 SW (lataZogues of the aeoye ,vitW be sent to any address upon appUeafion."%

 WE WOULD ALSO CALL PARTICULAR ATTENTION TO

 LA.RGE 8vo MONTHLY.

 Termts, $5.00 Per Annum, in Advance.
 Single Copies, 5 0 Cents.

 EsTABIJIS:IE:D IJM 1869.

 EIGHTEEN VOLUMES NOW COMPLETE.

 Notice to Vew Subscribef-s.-Persons commencing their subscriptions with the Nineteenth Volume
 (July, 1878), and who are desirous of possessing the work from its commencement, will be supplied with Volumes
 I to XVIII inclusive, iieatly bound in cloth, for $ 48. Half morocco, $ 74.50. Sent free by mail or express
 on receipt of price.

 Notice to Clubs.-An extra copy will be supplied, gratis, to every Club of five subscribers, at $ 5.00
 each, sent in one remittance.

 This M agazine has now begun the tenth year of its existence. Occupying a position among contemporary
 journals not claimed by any otlher periodical, it has proved by its steady growth during nine years that such a
 record of Engineering progress was from the first a recognized necessity.

 The leading aim of the Magazine is to present the best possible sunmmary of the progress of Engineering prin-
 ciples and practice throughout the world. To accomplish this end, a digest of the current history of works in pro-
 gress from home and foreign journals, and the origrinal essays of the best home3 writers. have jointly contributed.

 Two classes of minds are constantly aiding all scientific advaincemenit, each largrely dependent upon the other
 for success. The exclusively practical Ei:ngineer scorns the principles of the books and reaps undoubted success by
 empirical rules only. But to work beyond the field of his individual experience, guided by his rule of thumb, is
 to invite disaster. In any dilemma he needs the counsel of that class of his confreres whose labor has been in
 evolving the scientific principles of his profession. Only bv the aid of an Engineerin- journal can the results of
 both fields of labor be rendered serviceable. Progress in this department of science is at present so ratpid that,
 whether we regard the magnitude of the new projects, the originality of the designs, or the materials employed,
 we find the established precedents of but a few years ago of but little use as guides to the best success.

 To keep pace with this progress is a necessity to tall who would contribute to an advance of the profession in
 this country.

 That the foremost writers on Engineering subjects are alive to the importance of their own active labor the
 pages of the last two or three volumes of this NMagazine bear ample testimony.

 As heretofore, subjects relating to Civil Engineering proper receive the first attention. Progress in teehan-
 ical, Sanitary, Mining and Militarv Engineering and Arclhitecture is duly chronicled, especital care being observed
 to exclude all articles that seem in any way to be biased by the enthusiasm of the inventor or the self-interest of
 an owner.
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 A THIRD SERIES in MONTHLY numbers commenced January, 1871.

 Devoted to Clhemistry, Physics, Geology, Mineralogy, Natllral Hlistory, Astronomy, Meteorology, etc.

 Two Volumes, over 450 Pages eaclh, Published Annually.
 Editors: JAMES D. AND E. S. DANA, AND B. SILLIMAN.

 Associate Editors: PROFESSORS GRAY, GIBBS, AND COOKE, OF CAMBRIDGE; NEWTON, JOHNSON,
 BRUSH, AND VERRILL, OF YALE; AND BARKER, OF PHILADELPHIA.

 SSubscription price $6.00 a year, with 12 cents for prepaid postage; 53 cents a nunmber. A few corn-
 plete sets on sale of the First and Second Series. Address the Proprietors,

 JAMES D. & E. S. DANA, New Haven, Ct.

 THE JOURNAL OF SPECULATIVE PHILOSOPHY.
 Published Quarterly in St. Louis, Missouri.

 It is intended as a vehicle for such translations, commentaries, and oricinal articles, as will best
 promote the interests of Speculative Philosophy in all its departments.

 TE3RMS OF SUBSCRIPTION.
 Three dollars per volume; single number, 75 cents.
 Vols. I and II, bound in one volume in muslin, will be sent by mail for $5.00.
 Vol. III, Vol. IV, Vol. V, Vol. VI, Vol. VII, Vol. VIII, Vol. IX, Vol. X, Vol. XI, and

 Vol. XII, in muslin, $3.00 each.
 Back volumes (unbound) may be had at $2.00 per volume,
 To English subscribers the price is 16s. per volumne, 4s. per number.
 All foreigOn subscribers should order througrh Messrs. TRUBNER & CO., 57 liudgate Hill, London.
 All subscriptionis (within the United States) should be addressed to the Editor,

 WM. T. HARRIS, BOx 2398, St. Lotuis, Mo.

 THE JOURNAL OF THE FRANKLIN INSTITUTE,
 Devoted to Science and the Jjlechanic Arts.

 ESIT:BLITS =:D IST 1826

 The only Technological Journal published in the United States, without private pecuniary interest.

 Its object is to encourage original research, and disseminate useful knowledg,e inl all matters relat-
 ing, to the practical application of Science, but nore especially to Engineering and the Mechanic Arts.

 The JOURNAL is issued in monthly numbers, of seventy-two pages each, largely illustrated, forminig
 two volumes anniually. The number for June, 1878, completed the One Hundred anid Fifth volume.

 ST,T:BSCIMIPT'I O W:1 :PTIZTC-Q S.

 To Members, $3.00 per Year. Single Copies, 25 Cents.
 To Non-Members, 5.00 per Year. Single Copies, 50 Cents.

 :PA~T':I3S O:F1 A_:D'V-W ,:DTIST1Gr
 1 YEAR. 6 M(OmNTI-S. 3 MONTHS. 1 MONTH.

 One PA GE, $60.00 $32.00 $18.00 $10.00
 iHalf 6; 32.00 18.00 14.00 6.00
 Quarter c 18.00 14.00 10.00 4.00

 Communications for the JOURNAL and Business Letters should be Addressed to the Secretary of the Franklin Institute, Philadelphia, Pa.

This content downloaded from 
������������199.242.209.35 on Mon, 13 Mar 2023 16:58:55 UTC������������� 

All use subject to https://about.jstor.org/terms



 An Essay on the Calculus of Enlargement.

 BY EMORY MCCLINTOCK, F. I. A., Actuary of the Northwestern Mutual Life

 Insurance Company, Milwauhkee, Wisconsin.

 CONTENTS.
 PARAGRAPHS

 A. OUTLINE, - - * - - - - - 1- 7

 B. SUGGESTIONS IN DETAIL,

 I. Theory of Logarithms, - - - - - 8 - 20

 II. General Theory of Operations, - - - 21 - 34

 III. Theory of the Functions of E, - - 35 - 40

 IV. Analytical Theory of Differentiation, - - 41 - 59

 v. Explanatory Thteory of Differentiation, - 60 - 78
 vTI. Theory of Factorials, - - - - - 9-103

 VII. Theory of the Calculuts of 2ultiplication, - 104 - 114

 C. SUMMARY, - - - - - - - - - 115-117

 A. OUTLINE.

 1. The Calculus of Enlargement is, froin one point of view, an extension
 of the Calculus of Finite Differences; from another, an extension of the Cal-

 culus of Operations. It comprises, as its most important branch, the Differ-
 ential Calculus, included in which is the Calculus of Variations. The scope
 of this new science is, therefore, comprehensive. Its method, on the other

 hand, is simple. My present object is not to exhibit it in a methodical trea-
 tise, but merely to give a prelitninary sketch of it, and so to publish its dis-
 covery.

 2. The Calculus of Enlargement is, from one point of view, an extension

 of the Calculus of Finite Differences. It has for its basis the well-known

 operation E = 1 +? A, or rather, as I prefer to state it, the operation Eh, where
 EAX = x + h, (1)

 EhmP (x) = (. (x + h). (2)
 I call this operation Enlargement.*

 *The term is elliptical, since by the Enlargement of a fuLnction is meant that change which results from
 the enlargement of the variable. It would probably be hard, however, to find a more appropriate name. The
 word Enlargement has this further advantage, that its initial letter has been long in use as the symbol of this
 operation. It will, of course, sometimes be necessary to call that a negative enlargement which is in reality a
 dimlinution, just as the word increment sometimes denotes that which is arithmetically a decrement.

 'VOL. II-No. 2. 101

This content downloaded from 
������������199.242.209.35 on Mon, 13 Mar 2023 16:59:13 UTC������������� 

All use subject to https://about.jstor.org/terms



 102 MCCLINTOCK, An Essay on the Calculus of Enlargement.

 3. From another point of view, the Calculus of Enlargement is a mnodi-
 fication and extension of the Calculus of Operations, or doctrine of the Sepa-

 ration of Symbols. The symbolic inethod, as usually explained, concerns

 itself with the symbol of differentiation, d or D, and with the various func-

 tions of that symbol, considered apart from the subject of operation; and

 among these functions of D is E ED. The Calculus of Enlargement, on the

 other hiand, regards E as the fundamental symbol, and takes cognizance of
 other symbols only in case they are, and because they are, functions* of E.

 Among such, of course, is D = lOg E. If we conceive the symbolic method

 to be modified and defined in this manner, and to be ranked as a science by

 itself, instead of a mere auxiliary principle; and if we further conceive this

 science to be so extended as to include not only, as at present, the separate
 treatment of syrnbols of operation, but also a complete discussion of the

 operations denoted by such symbols, their definitions, uses and consequences,

 we shall have in mind the Calculus of Enlargyement.t
 4. The theory of differentiation, comprising the Differential and Integral

 Calculus and their applications, and including the Calculus of Variations, of

 which the fundamental operation is differentiation with respect to an imagined

 variable, forms the most important branch of the Calculus of Enlargement.

 The algebra of the functions of E iS subject to all the laws of ordinary alge-

 bra; and the theory f' differentiation is that part c,f the calculus which corresponds
 to the theory qf loyarithlns in algebra.

 5. In this manner is effected the orderly unification of those branches of

 science which I have mentioned. Writers on finite differences have said

 repeatedly that a differential is but a certain kind of difference, so that the

 differential calculus may be regarded as a part of the former science; but the

 connection thus indicated is so trivial, and its consequences are so insignifi-

 cant, that the claim excites no attenition. Nevertheless, it will be agreed that

 the boundary line between these two branches is but indistinct, and that their

 formal union, supposing it to be accomplished in a natural and siinple man-

 ner, is a result to be desired. The obvious connecting link is the equation

 *Bv "function" of x, throughout this essay, I mean a quantity which can be expressed by a series of
 terms, each of the form AX"a, where A and a are independent of x, and are not necessarily integral or positive.

 t" This branch of science [the Calculus of Operations] is yet in its infancy, but alreadv it bas been the
 instrument of greatly extending the domains of science, and we may reasonably look to it for the next great
 step in the direction of mathematical progress."-DAVIES & PECK, Mathematical Dictionary, p. 401.
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 MOCLINTOCK, An Essay on the Calculus of Enlargement. 103

 E = ED, or its converse, D = log E. The union must be effected, if at all, in

 one of two ways. On the one hand, we may begin by defining d or D, and

 then proceed to E _ ED and A = ED 1. This is the unnatural order hitherto

 tacitly followed, not only by those writers who have appended a chapter or

 two on finite differences to their treatises on the differential calculus, but also

 in works devoted to finite differences, all of which, in late years, assume a

 prior knowledge of differentiation. A student is first taught differentiation;

 later, he learns the doctrine of the separation of symbols, and finally, if suffi-

 ciently zealous, he tak-es up finite differences. In the latest book on this

 subject, that of Boole, the reader is referred, for the readiest proof that D, E, and

 A are mutually subject to algebraic discussion, to a passage in that author's

 work on differential equations. We miay, on the other hand, adopt the more
 natural order, defining' E first, and giving afterwards, as one of its functions,

 D = log E. (3)
 This well-known equation has not hitherto, I believe, been proposed as the

 definition of the svmbol, and therefore of the operation, of differentiation. To

 say that Differentiation is the logarithin of Enlargement would seem, and

 possibly be, a quasi-metaphysical absurdity; but we can and should say that

 Differentiation is that operation whose symbol is the logarithm of the symnbol

 of Enlargement. Of the two operations, the simpler should be defined the

 earlier. Now

 E( (X) = (p (X + 1) (4)
 is a-simpler statement than

 p (X) (x + h) -D (x) (

 These operations, E and D, are functions of each other, and whichever is de-

 fined last miust be expressed in terms of the other. That D shall be defined

 iii terms of E iS the most imnportant feature of the Calculus of Enlargement.

 6. The theory of differentiation, I have said, is that part of the calculus
 which corresponds to the theory of logarithms in algebra. This proposition

 leads directly to very importaint consequences. Since D is a function of E, all
 theorems which may be discovered concerning q (E) will be true of D, and

 also, more generallv, true of A (D), supposing qp (x) =A4 (log x). I shall show
 that in this manner the known theorems of the differential calculus can be

 proved, and novel truths discovered, by a method almost startling from its

 simplicity. Again, from every known or ascertainable proposition in the
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 theory of logarithms we shall derive at once a corresponding proposition in
 the theory of differentiation; while, conversely, additions will be made to the
 theory of logarithms analogous to known truths in that of differentiation.

 Finally, from every known or ascertainable equation representing log x in

 terms of x, or of any simple function of x, we shall derive a corresponding
 explanation, or practical definition, of the operation of differentiation; includ-

 ing not only the well-known explanation conveyed by (5), but also others in
 unlimited number, some of them very serviceable.

 7. An outline of the Calculus of Enlargement has now been presented.
 Its brevity places it under a certain disadvantage, yet to treat the subject
 properly would require the preparation of a complete digest of the Calculus.

 Not having immediate opportunity to elaborate a work covering so much
 ground, I am compelled to conilne mvself for the present to a statement of

 the general principles on which such a digest should be prepared. The
 remaindler of this essay will be devoted to the presentation of such new special
 theories as seem needed to complete the system.

 B. SUGGESTIONS IN DETAIL.

 I. Thieory of Logarithms.

 8. An obvious objection to the use of log E as the definition of D lies in
 the obscurity of the idea of the logarithm of an operative symbol; and to go

 further back, this obscurity is due to the difficulty of comprehending loga-
 rithms at all. It is said by De Morgan (CalculuIs, p. 126) that the only defini-
 tion of log x used in analysis is y, where ey x. When x and y are not

 numerical quantities, this is clearly unintelligible. It is certainly impossi-
 ble to understand the expression ?D, so frequently emnployed, if we suppose
 it to mean, as it must mean unless otherwise defined, the Dth power of the
 constant E. Even when x and y are numnbers, the definition is but indi-

 rect at the best. The alternative definitions which I have to suggest
 correspond identically with the explanations which will, further on, be
 given concerning D = log E. We may consider log x to be y, where

 x 1 . . .; or we may regard it as a vanishing frac- x=i+y+~2yy2+2.3 y+
 tion, or as an infinite series. The simplest series, and probably the most
 intelligible definition, is Mercator's well-known series,
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 MCCLINTOCK, An Essay on the Calculus of Enlargement. 105

 9. Whatever definition of log x be adopted, it will be desirable to lay

 dowvn the following definition of an antilogarithm. The series 1 + Y + -?- 2
 1~~~~~~~~~~~~~~~~~~~~~

 + 2 .3 Y + . . . is a function of y; let it be known as the antilogarithm of y,

 and let it be denoted by the functional symbol O'. We may proceed as fol-

 lows to investigate the properties of this symbol. By actual multiplication

 of the series, we shall find that ExEY = Et + Y where x and y may have any pos-
 sible meaning. By an obvious extension of the samie principle,

 e8)h=6h (7)
 h being any numerical quantity, positive or negative. Putting x = 1, we see
 that (81)h -h from whlich we see that eh is equal to a certain constant raised
 to a power denoted by h. It is usual to call this constant & When h is not

 a symbol of quantity, it will be safe to regard 'h as a symbol inerely, accord-
 ing to its definition. In shlort, for all meanings of x, we have the well-known

 exponential theorem,

 lux = 1 + + Z +-2 + 2 . w3 + . . . X(8)
 where, if x is a symbol of quantity, E is a constant, whose value miay be found
 by putting x-1:

 =1?++ 3 + + + * (9)

 Having established this understanding concerning the symnbol E we may

 define log x to be y, where x= , or where x=1 +y+ + 2+ . . .; and the

 various theorems concerning logarithms may- be developed in the usual
 mrlanner.

 10. Another and, when duly weighed, mnost satisfactory definition may
 be derived from any one of an unlimited number of vanishing fractions,
 special cases of the general form

 log x X h -ah (10) where h is infinitely reduced, that is to say, more briefly, where h - 0. Thlis
 fraction is doubtless novel, though one case of it, where a 0, is known.
 Even that case has not, I presume, been suggested heretofore as a definition.
 From (10) we have at once, substituting the equivalent series for eY,

 log CY= . (11)

 The various theorems pertaining to logarithmns may be derived with the
 28
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 utmost facility by the aid of these vanishing-fraction definitions. Thus, if

 a - 0 , we have, by expansion,

 log (E?CY) = h [h= O]X + y = log E 3 Y (12)

 lo (I + X) = h1 [h ?]= X- 2 x+3 x .. (13)
 11. Equation (6) furnishes, perhaps, the most intelligible definition of a

 logarithm. It is easy to form the idea of a function of the form x- - 2

 13
 and the conception is not rendered more difficult by adding a term - x, or a 4v ~~~3
 multitude of terms similar in form. The notion of the sum of a series of

 integral powers is simpler than that of a vanishing fraction, and is also sim-
 pler than the customary notion of a logarithm, which involves, in an obscure
 and inverted manner, a fractional, or rather incommensurable, power of a
 strange looking constant. For instance,

 3 1 1 1
 log -2 = - . - .=0.405+ (14)

 3 3
 is a more intelligible definition than log - =Y, where 2 ', where

 E=1+ 1 + +.. When x lies between 1 and -1, the series (6) is

 convergent, and the value of the logarithm may be obtained by approxima-
 tion. When x is algebraically greater than 1, the series is divergent, but it
 may readily be shown that its suni is finite. Assumning what will shortly be

 1 2+1 3_1 13 proved, that if y = x-2 x2 + X 3-.. . 2 X =y y2? + y3+
 one series being algebraically the reverse of the other, we observe that the

 latter series is essentially convergent, and that when y = 0, x = 0; when
 y , x = -o; and when y varies continuously from 0 to so, x does the same,
 having a positive finite value for every positive finite value of y. The converse
 proposition is, therefore, true, that y, or log (1 + x) , is positive anid finite for
 every positive finite value of x. The assumption just made is legitimate, for the
 proof of the reversion will certainly be accepted when x < 1, and the law of the
 coefficients of the reverse series cannot be different when x has any other value.

 12. The various theorenms relating to logarithms may easily be derived
 from this definition. Thus, by the binomial theorem, supposing 1 < a < 2,

 ax=(1+a-1)z=1+x(a-i)+xx2 (a-1) .. (15)
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 which may be written
 ax 1+ xc + X2c +..., (16)

 where c, = log a. Hence,
 a+y= aY(l +xc +x2c2+ .. .)1+(x+y) c?+ (x+y)2c2?+ (17)

 Placing the coefficients of x equal to each other; a proceeding, to which in this
 case no objection can be urged, we have

 But ayce lC + 2c2y + 3c3y2 + .. .. (18)
 aeC1 C1 + c1c1y + c02y2 + * * *; (19)

 hence c2 = 2 C2, c3 =- Cc2 2.3 c3, and so on, so that

 aY = 1 + y log a?+ I2 y2 (log a)2 + 2l3 (log a)3+.... (20)
 Since, by (7),

 (Sblog a)h - &hloga (21)
 we perceive, on comparison of (20) with (8), that, if n = log a,

 ,loga a (22)

 eny 1+n qZ+ 2 n2y2 +. . . (23) 2~~~~~~~~~(3
 The applicability of (22) is limited by the supposition that 1 < a < 2. This
 limitation may now be removed. Suppose m = a - 1, then n = log (1 + in),
 and if from the series log (1 + m) we seek by reversion to determine the value
 of m, we find it to be, howvever far the reversion may be carried,

 m =n+ 4 n2 2 + 3n3 + .... (24)

 We see by (22) that the law of this series is true for certain values of n, and
 the coefficients, independent of n, must be the same for all other values,
 so that (22) is universally true. Henice, for all meanings of x and y,

 "log (xy) - - = log XIlog y - >log x + logy (25)

 log (xy) = log x + log y; (26)
 and again, fromn (21), h being a symbol of quantity, and u havirng any assign-
 able meaning,

 -h hlogu (27)

 log uh= h log U. (28)
 13. That log x may be expressed in terms of x is well known. It is only

 necessary to write out the development of

 log x = log 1jj-, = log (1 + x) -log (1 + x 1). (29)
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 It is possible that the fact has not been noticed that an unlimited number of
 similar developments mnay be produced, the general form being

 log x = [log (1 + x ) -log (1 + x )], (30)

 n having any value, positive or negative.

 14. To explain the meaning of D = log E, we must employ such expres-
 sions as can be found equivalent to log, x, substituting E for x; and it is
 desirable, to ensure breadth of view, to find as many such expressions as

 possible. I shall now present a general logarithmic series, whiclh will be
 found to include as special cases not only two or three expressions already
 known, but also several important expressions hitherto unknown, besides an

 unlimited number of less 'useful variations. Let y - Xh( X-a) -ha;* then

 log x= (i + 2a-1y + 3a-1 3a-2 2 + (31)

 This series may be derived from (6) by writing, for (1 + x), xh = ? +yj?ha,
 and performing the necessary successive substitutions; but this process does
 not seein capable of furnishing a satisfactory algebraic demonstration. For
 the present, I must content myself with saying that the law of the series may
 be verified by reversion to any given extent, and that it may be demonstrated
 at once by Lagrange's theorem, as well as by another, and perhaps simpler,

 expansion theorem which will be- given further on. The more important
 special cases are separately susceptible of algebraic proof, so that the tempo-
 rary lack of a complete demonstration of the general series is not perceptibly
 detrimental, though certainly to be regretted.

 15. Since a and h may have any value, the number of logarithmic for-

 muL]e which inay be deduced from the general series is infinite. For h, how-
 ever, but two values, 1 and 0, can advantageously be taken, all other values
 giving, results substantially equivalent to those obtained when h = 1. Let
 us first consider the case where h = 0, and consequently y 0. In this case

 all terms vanish except the first, which we may call the general logarithmic
 vanishing fraction:

 - y (l-a)O -$Xa?O 032
 log,x Xh _-x (32)

 We interpret this, of course, to mean that log x is the limit of the ratio of
 (1 -a)h X-ah and h, when h is indefinitely reduced. I shall have frequent

 1~~~~~~~~~~~~~~~~~~~~~~

 *Formuloo more symmetrical, though less simple, may be obtained by writing (1- b) for a.
 2
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 occasion to use the symbol 0 to express a variable to which the value 0 is to

 be assigned, as in the present instance. Concerning vanishing fractions in
 general I shall have more to say later. A simple proof of (32) inay be had
 by expanding, in terms of h, the ratio mentioned, employing the exponential
 theorem, and afterwards making h = 0. In fact, a formiula still more general
 in form may thus be obtained. For, u being any function of x having a finite
 logarithm,

 u,X = 1 + h (log u + log x) + h2P, suappose; (33)

 Uh = 1 + h log u + h2Q. (34)
 Subtracting, dividing by h, and making h = 0, we have the general formula
 in question, which, like (32), is probably new,

 logx - = (35)
 1

 If, in (32), we put a - , a -, a= 1 a , respectively, we have

 $-1 (6
 logx= O (36)

 log = x (37)
 0 ~

 log x X2 -X (38)

 of which equations the first is known.

 16. Before making h = O, let a =-h-, where c is any arbitrary quan-

 tity, either positive or negative, so that -= - = log. Let -=-ay
 ey -~~~~~~~~~

 =ICY =Gx log x. Then, from (31),

 log x = --(z Z2+ z3-42 3Z4 + 23 4Z5-* ) (39)

 We may notice particularly two special cases. If c = 1,

 logx=zxlogx-(xlogX)2 + 3 (x logX3-...; (40)
 while if c --1

 log o $ l ( Ig :/C0) 2 x ) 3 (41)
 These interesting series appear to be new. The first of the three is not in
 reality more general than the others, since it may be derived from the second

 29
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 by writing x0, and from the third by writing x-8, for x. We may verify (40)
 to any desired extent by reversion of

 x log x = 'clogx log X = log x + (log x)2 + --(log x)3 + *** (2

 17. If h_ 1, we have the general series in the following simplified form,
 still probably novel,

 log, y +2a-1 y2I 3a-1 3a-28+
 log Xzy 2 -lY2 +3al3 2 ,(43)

 where y _xl-a_X-a. If a= 0, y= x-1, and

 log x=- (x- 1) 2 (x_1)2+ . ..,(44)
 asby (6). If a 1, y=1 -x- ,and

 log x (1 _ x l) + - (1 _ t _ 1)2 +. (45)

 which expression, due, I believe, to Lagrange, may be regarded as conjug,ate

 to the one preceding. If a , a proper fraction. the coefficients of yl, y2n-

 &c., disappear.

 18. If h - 1 and a =-, the resulting series is remarkable, since every

 alternate term disappears, and those terms which remain converge rapidly
 1 1 y _xz-x 27

 when xis not far from 1. Supposingt= 2- 2 , the series is as follows:

 g ( t3? 1 3 t 1 3 5 A +...).e (46)

 The law of the coefficients may be proved as follows. Let u = +1; then

 x + and log x = log (1 + u)-log (1- u). In the expansion of this

 expression let u be replaced by its equivalent t (1 + t2) 1, and let the several
 powers of the binomial 1 + t2 be developed. It will be found that the

 1
 coefficient of t", for eveni values of n, is 0; for odd values, let m = - ,  2

 and the coefficient of tn Will be composed of m + 1terms of the series

 *A special case of this formula, giving log E in terms of 2 * has for some years been known, and
 it is surprising that its generalized application to all' logarithms should not heretofore have been suggested.
 The formula for log E was first published, so far as I am aware, in a communication made in 1865 by Hansen to
 the Royal Society of Saxony; but he did not assign the law of the series, which was commuinicated by Mr.
 T. B. Sprague in 1871 to Mr. W. M. Makeham, and published in the Journal of the Institute of Actuaries. Mr.
 Sprague's proof was by the method of indeterminate coefficients, with differentiation.
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 rn-1 rn-1rn2 m-ii-n1w1nnT

 m (1-rn + m m2 m-m 2 3 + .+,,), the sum of which, by a, known
 algebraic formula, is (1 n (m _ where x(r - x (x + 1) (x + 2).. (x + r-1).

 Thus, if n I the coefficient is 1 =2; if n 3, it is (

 2 2

 or 2 (-- -4) and so on, as in (46).

 19. For substitution in (46), let z - 1 so that x Z + 1; also, let

 u = 4z (z + 1) = t-2. Making these substitutions, and multiplying both
 members by V/(z [z + 1]), we have

 (z [z +l])log z + 1- 1 1 1 3 1 1 3 5 1 + (47)
 IN/ ~z 2 3u +24 2 4 Y- 62 743?U3

 a formula which will be found useful in the computation of logarithms, and

 which may be compared with the known series,

 (: + 2 ) log + 1 = 1+ 1 + I + (48)

 where v = 4 (z + 1 In the one, we have, for determining log z + 1 to

 make use of V/(z [z + 1]), the geometrical mean between z and z + 1, while

 in the other we have to employ z + 2hX,the arithmetical mean. Suppose

 that log 3, and therefore log 9, are known, and that it is desired to calculate

 log 10. Employing the usual formula (48), we have a very convergent series,
 19 101 1

 2 log9 =1+1083+ 651605 (

 but by (47) we obtain a series still more highly convergent,
 10 ~1 1

 <90 log =--2160 1728000-. (50)

 20. I conclude these suggestions concerning the theory of logarithms by

 presenting two novel approximative expressions. First,

 log x = + 1 $+-1,nearly, (51)

 whenever x is not far from 1. By development in terms of x - 1, we find

 that this expression differs from log x by a quantity arithmetically less than

This content downloaded from 
������������199.242.209.35 on Mon, 13 Mar 2023 16:59:13 UTC������������� 

All use subject to https://about.jstor.org/terms



 112 MCCLINTOCK, An Essay on the Calculus of Enlargement.

 (x -1)5
 20 For example, if x = 0.99, log x =- 0.010050335858, niearly, a result

 too great by 4 in the 12th place of decimals. Again,

 log x = 2 1 ( +1 + v- ) , nearly, (52)
 I3 x + 1 x~ ~~~~~x

 whenever x is not far from 1, the error being arithmetically less than (32 0)5

 For example, log 0.99 = 1- - nearly, which is correct in the 12th
 597 495-

 place.

 ii. General Theory of Operations.

 21. Algebra takes any symbols subject to these three laws,

 x(y+z) =xy+xz, (53)
 the law of distribution;

 xy= Ayx, (54)
 the law of commutation, and

 xrn X' n + n (55)

 the law of indices, and proves that certain theorems concerning such symbols

 follow necessarily from the laws. The various theorems of algebra are as

 true of all operative symbols subject to the three laws in question as they are
 of common symbols of quantity. Any correct process of reasoning applied

 to such symbols of operation produces correct results, by precisely that kind
 of proof which it is necessary to employ regarding symbols of quantity.

 There is no novelty in these preliminary statements. At first, the symbolic

 method was used as an instrument of discovery only with the utmost caution,
 and its results were not fully accepted until otherwise verified. Its absolute

 trustworthiness has, however, been established by the clearest methods of

 demonstration, and no mathematician now doubts the algebraic truth of any
 intelligible symbolic result. If any doubt remains, it is when a divergent

 series appears.

 22. I would define a simple operation to be one which changes a function

 by alteration of the variable. For example, the change of px (it would be
 more forinal to write q [x], but I shall onmit the brackets where nio ambiguity

 can arise) into p4x is a simple operation. All simple operations are obviously

This content downloaded from 
������������199.242.209.35 on Mon, 13 Mar 2023 16:59:13 UTC������������� 

All use subject to https://about.jstor.org/terms



 MCCLINTOCK, An Essay on thte Calculus of Enlaryement. 113

 distributive, thoug,h some distributive operations are not simple. For exam-

 ple, Dmrm = 'nle- is not a simple operation.

 23. Let sh represent any operation such that

 S(px =4-1 (4X + h) . (56)

 Here s indicates the kind of operation, depending on the form of A, and h

 represents the deg'ree to which it is carried.

 snsf<px = Smq4-r (4x + n) = q4- (4- ' [4x + n] + mn)
 = S14-1 (4;X 4q n + n1) -sm +sn1px . (57)

 The operation sh is, therefore, subject to the law of indices, and it will simi-

 larly be seen that sm and sn are commutative with each other and with con-

 stants, that is to say,

 SmSCpX = C SnSm'pX. (58)

 For sl it will be sufficient to write s, without the index. The index 7i may, of

 course, have any value, whole or fractional, positive or negative, or it may
 even be a meaning,less symnbol; meaningless, that is, until some meaning is

 arbitrarily assigrned to it.

 24. Letfis be any function of s, the general form being

 f;s alSP' + a2S2 +a3sP3 +. . . X (59)
 where al, a2... ,pl, p . .P are independent of s, and have any assignable
 mseaning, so that

 fsqix = (a,sp ?.. .) px = aq4r-' (4x +#p) + ... (60)

 It will be seen, on examination, that all such functions are distributive and
 repetitive, and it is easy to show that they are also commutative. LetJ2s be
 another such function, say

 f2s - b,sq, + b2Sq + .,; (61)
 then

 ti;f2s(PX =f2s.ftSiX (62)
 The general term of fis is, let us say, amsPm, and that of fis, b,sq-n; then the

 general term of f;s'fs will be a,sPmb,,sqn X and that of f2sf,s will be b"sqna sP
 which. by (58), are seen to be equivalent expressions. It follows that all

 terms of the two expansions correspond, so that the operations denoted byfls
 and As, that is to say, all functions of s, including constants, are commuta-
 tive with eacch other. It follows that all functions of s mav be combined or

 transformed in any usual alg,ebraic manner, apart from the subject upon

 which they operate.
 30
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 25. The consideration of the functions of s, after the form of A, and tlhere-
 fore that of s, have been assigrned, constitutes, in the nomenclature of this
 essay, a Calculus. Since A, and therefore s, may have any form, there may
 be an infinite number of such branches of science called Calculus. The opera-

 tions comprised under one calculus will not usually be commutative with

 those of another, but two or more operations belonging to different systems
 may be treated separately from the subject on which they are performed, pro-
 vided care be taken not to change their order.

 26. In every calculus the most important branch is that which corre-

 sponds to the theory of logarithms in algebra. There are several important
 theorems which are thus, in a sense, common to all such systems, having

 their common origin in the theory of logarithms. Whatever be the meaning
 of s, let R - lot, s; then fromn paragraphs 13-18 we shall derive at once a nutim-
 ber of expressions giving R in terms of s or of simple functions of s, expressions
 which it is not necessary, for present purposes, to write out. As an illustra-
 tion, we have from (36)

 R_ O-. (63)

 Let x =- x, and let what s becomes under this supposition be denoted by
 ii; then

 n hx + + ,X (64)

 and the calculus composed of all functions of the symbol H may be called the

 Calculus of H. To show the use of (63), let qx = x8; then, if G loog H

 h (65)

 where h - 0, whence after developmnent, assuming the binomial theorem,
 .-GXn = nXn+t (66)

 Again,

 log x-log (1 + xh)-log$ (67) Gl10gx = hn(7
 where h- 0, whence

 GO log --- X. (68)

 27. The widest generalization of Taylor's theorem which I have been
 able to discover is that which gives Sh in terrns of hR. Since Sh =hR we have
 from (23)

 sh = 1 + hR + 1 h2R2 + h1 h3R3 + (69)
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 As a sing,le illustration of this theorem, let us, in the Calculus of H as before,

 expand Hh loo x = log x - log (1 + xh):
 log x - log (1 + x7) = log X + IkG log x + 2 k2G2 log x +...

 =logyx- A x +2712x2 _ I X3 + . , (70) zn + 2 3
 28. A connecting link between any calculus, say that of s, and any other,

 say that of s' may be found as followvs. From (56),

 Snpx _= qp4/2-(41x + +1 [4X ? n] -4x) = S/(S"-1)P'X(Px. (71)
 From (69), writing t and t' for series containing n2 as a factor, we derive this
 transformation of (71),

 (1+ nR + t)>px=(1 + [sn-l -'X.R'+t')x(1( +[nR+ t] ;4x.R'+ t) px; (72)
 whence, equatingo the coefficients of n,

 R(PX = ER'X.R'(PX. (73)
 Let px =4;x -4x; then R'= R, and

 R4X= RX. R#X, (74)

 whence, generally, 7
 For example, in the Calculus of H,

 GX-L (76)

 as by (66). We may, indeed, derive (75) directly fromr (63).
 29. If there is more than one inidependent variable, it is proper to write

 sx, sy, &c., the subscript letter denoting the variable with respect to which the
 operation is performed. Of two simple operations, s', Sn> performed succes-

 sively on cp (x, y), it is a mnatter of indifference which comes first, the result
 in either case being q (ir1 [4r + in] 4 [4,y + n]); and it mig,ht readily be
 proved that all functions of twvo such independent operations are commuta-
 tive.

 30. If the operation sys, be performed on a function of it and v, where u
 is a function of y and v a function of z, and if we then make y and z both

 equal to x, the result is the same as if we first make y and z equal to x, and

 then operate with sx. The same remark applies to all powers, and, therefore,
 to all functions, of sys, If, instead of y, we write x I tw which may be inter-
 preted "lx varying only in u", and instead of z, x v , "x varying only in v",

 the double operation sxl?sxl, is the same as sysz, and is equivalent to s,. The
 symbol s,, represents what may be called a partial operation, performed with
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 respect to x in u. If u -= , we shall have the symbol s Ix, which is need-
 lessly cumbrous in appearance, and mnay advantag,eously be replaced by the

 abbreviated form six. In general, X being any function,
 (Psxx (u,l v, w . . )= (sx I USX IVsx ,w ... ) X (u, v, 'W * . ($7

 Also,

 mbsx lUX (a6, V) = (p (sxsx Iv-) X (it, v) *(78)

 Substituting, p log for p,

 (PRXX (t6, V, WU... )= + (RX IU + RX IV + ]RX I + ...) X (U, V, MU . . . I,(9

 MRX IUX V) = (RX -Rx IV) X (U V)* (80)
 As special cases, among others,

 Rn X (it, V, W . . . x I It l+ RX I V + RX I W + X v, w V ) W ) (81)
 RxuV = VRxU + URxV. (82)

 31. If u is a function of x, any other function of x is of course a function

 of u, and mnay be operated upon by aniy function of s.; but functions of su and
 functionls 'of sx are not usually cornmutative. It mnay be shown that su is
 equivalent to s' , wlhere s' depends on 4', and where u, 4, and 4' are so related

 that, when two are given, the third is determined by the equation

 4ub = 4x. (83)
 Starting with this equation, we have, successively,

 X44- ' (;4u + n) =X'- 1 (4'x + n), (84)
 suX4U = S'X_t4x; (85)

 whence, since 4u = 4'x,
 SU=sX, (86)

 msu =Ps'x * (87)
 Thus, from. (73), writino v for px,

 RXV = RX4U. tV.* (88)
 32. The simplest Calculus is, of course, that in which 4x x, and

 spx = p (x + 1). Here the operation s is that which I have called Enlarg,e-
 ment, and is denoted by the symbol E. This calculus may, therefore, prop-
 erly be called the Calculus of Enlargement. The most important function of
 E is log E = D, which corresponds to R in the foregoing general discussion,
 whenever s is replaced by E.

 33. In (73), let 4x = x, and let us write 4 and R for 4' and R'; then put-

 ting v =- px,
 DV = D4X. RV, (89)
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 RV - D (90)

 RU - - - RV, (91)
 DbX DV

 where, if u = x,
 _ DX (92)

 Dobx
 Again, from (73),

 R+X = RX. DfkX. (93)
 34. It follows from (87) that all the processes of any calculus, say that

 of s', may be expressed in the language of any one given calculus, say that of

 s, by means of suitable artifices. It is therefore unnecessary to discuss in

 detail more than one of these systems; and the preference must naturally

 be given to the simplest of all, the Calculus of Enlargement. As a mnere
 matter of interest, however, I shall, before closing this essay, make some sug-

 gestions concerning another calculus, comprising those operations which are

 functions of M, where Ax = log x, and

 MhApX = p (XEA) (94)
 This system may, in want of a better term, be called the Calculus of Multi-
 plication.

 iii. Theory of the Functions of E.

 35. The symbol E has sometimes been defined as pD, sometimes as 1 + A,

 and sometimes as representing an operation such that E(Xp = p (x + 1) . It
 has also sometimes been used to denote the operation which changes qx into

 q (x + h) . We cannot now accept a definition in terms of A or D, for a sim-
 ple operation ought not to be defined in terms of one more comnplex, nor can

 we agree that E shall be dependent on any arbitrary quantity h; EqX must be

 p (x + 1) and nothing, else. Yet if EX = (p (x +.1) express the definition
 of E, it will require considerable labor to prove that in all cases Eh(px = c (x + h),
 and then only when h expresses some positive or negative quantity; and the
 argument will not be free from ainbiguity, since, for example, it might be

 hard to prove that El1x cannot be its own opposite, namely,- (- + 2 ).

 find it better to define E', like s% as a compound symbol representing that
 simple operation which changes *px into p (x + h), whatever be the meaning of
 h. In this light we must regard E, when without atn index, as an abbreviated

 a1
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 form of E'. Since CE'(PX - C(pX, we observe that CE? = c and E? 1, and hence
 that any constant may be regarded as a function of E of the form CE?.

 36. It would have been sufficient to define Eh as that special case of sh

 where Ax - x, and it may be said at once that all which has been shown to

 be true of s and its functions i* truie of E and its functions. If any one shall
 hereafter deemn it best, for teaclhing the rudiments of the Calculus of Enlarge-
 ment, to omit all mention of other possible systems, based on simple opera-

 tions other than E, he will find it sufficient to say concerning E what has been

 said above concerning s, substituting x for 4x. It is not now necessary to
 repeat concerning E what has been proved in regard to all repetitive simple

 operations, and I shall confine rny attention to certain properties pertaining

 to all functions of E as such. While nearly all of these properties are now

 no doubt first exhibited in this light, it will be seen that some of them are

 already known, more or less explicitly, as properties pertaining to algebraic

 functions of D. Such propositions will, however, be found to have been gene-
 ralized, the properties hitherto kniown concerning algebraic functions of D

 being now exhibited concerning all functions of E, and therefore concerning
 all functions of D. It will be remarked that the theorems about to be stated

 regarding functions of E are developed more easily than if they were to be

 proved as relating to functions of D; particularly when the comparative ease

 with which E and D may be defined is taken into consideration, such defini-
 tion being an essential element in either case.

 37. If the general term of qx is a.Xn, that of qEx; (x + y) is anE,'V (x + y)
 a.4D (x + i + y), supposing x and y to be independent, and this for the

 samne reason is also the general term of qE,4' (x + y), so that all terms cor-
 respond, and

 PEX; (X + Y) = (PEY; (X + Y) .(95)
 The same may be shown for any number of variables. Also,

 cPEx. (X-Y) =p (E ') A (XY). (96)
 38. If the general term of px is aXn , and that of Ax is bmxm, the general

 term of qEXCXY A~ (c?) is a?%EXCXYbmcxm2 anbmE nCx (y + m) =anbrnc(' + n)(y + ) Similarly,

 '4EyCXy p (CY) and CxY+ p (ceEx) A~ (cx) will be found to have this same general term,
 so that

 PExCxY (Cx) = 4AE Cx p (CY), (97)

 pE,CxY A (cx) = CY p (CyEx) A ) Cx), (98)
 IEy Cxy cp (CY) - CxY + (C Ex) 4 (Cx). (99)
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 In general, for any number of independent variables,

 mEX;Ey.. . ZEU.EvCzy . uvw g (,xy .*. UV)

 = mE'EyY... ZEUvEWcxY... uvw X (Cxy. .. UW)

 C-- ... UVW4;(ex ... uvWEy) . . . ~ (CxY .. UwEv) + (cx . uEv) cp (CY UVW) (100)

 where p, A, &c., are arbitrary functions. Again, similarly,
 cp (C&E$) (ex) 4 (CxEy) (CY). (101)

 Again, since EnC = Enx0 - c,
 fEXC =plc. (102)

 Here c represents anything indepenident of x.
 39. There are many special cases of the foregoing propositions which are

 themselves important general theorems. Some of these will now be men-

 tioned. If in (95) and (96) we make y = 0, we shall have

 (E AX =PEo4 (X + 0), (103)
 (PE AX = (Eo 1) (X - 0); (104)

 and from the former of these, observing (102),

 cpEX = Xp1 + ME00. (105)
 Again,

 FpE sin x = (PEo sin (x + 0) = sin XwEo cos 0 + cos x(pEo sin 0, (106)
 (PE COS X = COS XqE0 cos 0- sin X'EO sin 0. (107)

 It may be observed that since cos n = cos (- n), EO COS 0 = E COS 0, and in
 general,

 (PE0 COS 0 = (p (E0-1) COS 0. (108)
 If, in (97), we make y = 1,

 q)ECx4' (CT) ='A (E1) Cxlq (C') (109)
 and if ; (Cx) = 1,

 (PECX = &C . (110)
 If y=0,

 pE4' (Cm) = 'EoC0x%p (CO) (111)
 where, if (PE = 1,

 4' (CX) = 'EOCXO, (112)
 which may be regarded as one form of Herschel's theorem. If, in (98), we

 write 4x for A (Cx) , and put y = 1, we shall have

 (pECX';X CX(p (CE) AX'. (113)
 If, in (99), x = 1, we shall have, writing x for y,

 4'ECX(P (CX) = CX(P (CXE1) 4 (ct) . (114)
 Similarly, supposing x = 0 in (99), and writing x for y,

 4'Elp (Cx) = (p (CEo) 4' (CO). (115)
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 For example, let 4E = E; then

 q (cx +) = (CXE0) chO (116)
 If, in (101), we put y = 1,

 q (CEA) + (Cx) = + (C El) p (Ci), -(117)
 while if y -0

 cp (E") + (C ) = 1 (CxEO) p (C )* (118)
 In all these theorems, as well as in the more general ones from which they

 are derived, c nmay have any value. If we assign to it the value u, we shall
 produce another series of theorems, for the most part less general in charac-

 ter, which it is not now necessary to write out in full.

 40. If we have to do with two or more in(lependent variables, we are at

 liberty to regard them as being themselves functions of a single supposed

 variable, which let us call 1, the form of the functions being such that

 x - gl + g', y = kl + Id, &c., where g, g', &c., are arbitrary constants; for in-

 dependent variables may be viewed either as equicrescent quantities, in which

 case they must be functions, of the form mentioned, of some standard varia-

 ble, or as quantities to which arbitrary values may be assigned, in which case,

 again, there is no difficulty in accepting the foregoing statement.* Since

 ElpXq_ (I+g+'g') =p (X+g) =E9pX, (119)
 E, is a function of Ex, and all functions of El will be commutative with all
 functions of EX. For E, I shall hereafter use the symbol e, and for El I x, El I YE
 &c., the symbols ex, ey, &c.

 iv. Analytical Theory qf _IDfferentiation.

 41. LetD=log E, and d = log e. The former statement is new only as

 a definition, while the latter is, I suppose, novel in all respects.t Both D
 and d are functions of E, and have, therefore, all the properties which pertain

 to such functions in general. The operation denoted by D is Differentiation.

 That denoted by d = D, iS in reality the same operation, performed with
 * To quote language used by Lagrange on another subject, " quoique dans les fonctions de deux variables

 que nous considerons ici, les deux variables soient cens6es independantes, . . . rien n'empeche cependant qu'on
 ne puisse regarder ces variables elles-memes conmme des fonctions d'une autre variable quelconque, mais fonc-
 tions ind6termin6es et arbitraires." Calcul des Fonctions, ed. 1806, p. 334.

 f That is to say, taking e as it has just been defined, namely, as equivalent to E,, the symbol of enlarge-
 ment performed with respect to an assumed variable 1, where I is such that x =gl + g'. Nevertheless, on the
 one hand, it is already not unusual to say that a differential may be regarded as a differential coefficient taken
 with respect to an assumed variable; arid on the other hand, it has been noticed by Arbogast (Calcul des Deri-
 vations, p. 376) that, using our notation, d = log rv, where g is any arbitrary constant. The present statement
 connects these two ideas, and indicates the form of the relation between I and x.
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 respect to an imagined variable. If it be desired in any case to make a ver-

 bal distinction between D and d, the operation denoted by d may be called

 " taking the differential " ; but the word differentiation has been so long used

 in both senses, and the danger of misunderstanding is usually so slight, that

 such a verbal distinction will not often be required.

 42. The resultant of the operation D iS usually known by the term Differ-

 ential Coefficient, though it is also sometimes called Derived Function or

 Derivative, and that of the operation d is known as a Differential. The terlm

 Derivative cannot be permanently satisfactory unless the word Derivation be

 substituted for Differentiation, a proposal which would not be listened to. It

 is on. every account desirable that the operation and its resultant should have
 cognate names. The terms Derivative and Differential Coefficient are more

 or less objectionable, the one as recalling too strongly Lagrang,e's doctrine of

 Derived Functions, a theory not now in general use as an explanation of differ-
 entiation, the other as indicating a mere appendage to a differential; and the

 latter term is besides insufferably cumbrous. The word Differentiation, thouoh

 introduced only in the present century into the language, is now firmnly rooted.

 To express the resultant of this operation, and as a substitute for the phrase

 Differential Coefficient, I venture to coin the noun Differentiate. To this noun,

 as denoting that which has been differentiated, there seems to be no etymo-
 logical objection, since it follows the analogy of such words as graduate, asso-

 ciate, duplicate, postulate, delegate, &c.

 43. Just as a differential is in one sense a differentiate, since d = Dm, so
 also in another sense may a differentiate be regarded as a differential, since,
 if we put g - 1, we have D_ = lot Eg = log e = d. The differentiate is the

 simpler of the two, analytically, while the differential is frequently the more
 useful and intelligible for practical purposes. As both may be embraced in

 the same theory, there is no sufficient reason for excluding either from con-

 sideratioil. If the imagined variable I represents time, the differential is a

 differentiate with respect to time, and is known as a Fluxion. On the other

 hand, if, in x = gl + g', we have g infinitesimal, the differential will also be

 infinitesiinal, since d = log e = log Eg = gDx.
 44. From (69) we have Taylor's theorem,

 Eh = 1 + hD + 2 h2D2 + 2 3 P3D3 + . . ., (120)

 (p (x + h) - (PX + hD(PX + 2 h2D2mx + ...................(121)
 32
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 Applied to qpO, (120) becomes Maclaurin's theorem; to xm, the binomial theo-
 rem. The symkbolic form (120) is always true, and the theorenm itself (121) is
 therefore formally correct, though the resulting series is not always algebrai-

 cally intelligible, and, eveln when intelligible, cannot, unless convergent, be
 verified arithmetically.* The following mnodification, possibly novel, will
 sometimes be found useful:

 1p(X+ 1h- bX+ + 4 -) (i5D5+4X 2 )122) xZ+7h) =+x?7/D+PQx +4h)2 + 4. 2.3 42.23.45 + (
 This is found by subtracting the development of q - 2 h) from that of

 (Px + 2- A) and then writing x + 2 h for x; or, symbolically, fromn Ek - 1

 + (El"A - E4-l-) E'h. To extend Taylor's theorem to functions of two or more
 variables, we lhave onlv to develop EEY . . . 6 lD *.

 45. It was shown in paragraph 12 that when y = x - l2 + 3 X

 X Y + 2 Y2 + 2 y3 _T_ . . . . A more direct proof of this reversion, which is a

 step in the demonstration of Taylor's theorem, is as follows. Log [1 + a
 + b (1 + a)] is a certain series of powers of the expression a + b (1 + a).
 Expanding these poxA ers, wlich are all positive and integral, by the binomial
 theorem, and separatin(g the series forming the coefficient of bn (1 + a)n, then
 expanding (1 + )n and multiplying the result by the coefficient just sepa-
 rated, and finally separating, from the product the series forming the coeffi-
 cient of ambn, we find it to be, for all values of m and n greater than 0,

 +. . _)r /)(n +r-lm0. (-)m(n + ni-1)l-n] (123)
 where xk)= x (x- 1)... (x-k + 1). 'fhe series enclosed in brackets is, bv
 a theorern in finite differences, equal to 0; hence all term-s in ambn, that is to
 say, all ternms which contain both a and b, vanish. The terms remaining,
 which contain a alone and b alone, are respectively

 a -1 a2+ 1-a3. ..log (l+a), (124)
 1 1

 *The expansions of C-, 8 /F2 &c., apparently convergent and untrue, are really divergent and uinin-

 telligible, as may be seen on examination of those of E x + /4, &c., when x is very small. The coefficient of An in

 each of the former expansions contains a term of the form son , where v is infinite, a form which be-
 comes _2 when n = v.
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 b- 1 b2 + 13. . .log (1 + b). (125)
 Hence,

 log [l+a+b(l+a)]=log[(l?+a)(1+b)]=log(1+a)+log(1+b). (126)

 If y = log (1 ? x) = x- x2 +... , let us assume, as the reverted series,

 X = y + fl 3y + .............................(127)
 Similarly, if v = log (1 + u),

 u v + C2v2 C3V3 +.. . (128)
 Since, by (126), y + v log [(1 + x) (1 + t)],

 (1+X)(l +U) + 1+ (yV) +C2 (y+V)2+C3 (y?v)3?.... (129)
 But, from (127) and (128),

 (1 + X) (1 + "t) -=1 + Y + C2 y2 + . * .) + V + C2 V2 + * * *) * (130)
 Equating, the coefficients of v, and then comnparing those of y, #y2, etc., we find

 that 2c2 1, 3C3 = C2, 4c4, =C3, anid so on; whence c2 c ,and

 so on. Here, throughout, x and y are syrnbols devoid of meaning.

 46. Fromn (75),
 DX 1. (131)

 It follows that dx, which is equal to gDx, is equal to g; that y ,- i &c., show-
 ing that dx, dy, &c., are arbitrary constants when x, y, &c., are independent

 variables.

 47. From (79),

 ( D.,- (U67 V 7 W, ) (D,,, I1 + Dx I v + Dx I w + **. (U67 V, ,7 * ) (132)
 a general theorem which, though I do not rememiber having seeni it, may
 be already known. If PD.- D", we derive the following theorem, substan-
 tially due to Arbogast,

 Dx4 (U, v w * .) - 1 . v + * )4 v, w, * * ) , (133)
 of which the next, known as Leibnitz's theorem, is a special case:

 D'tGV - (Dx l a + Dx I v) uv* (134)
 If n=17

 DXUV = DX I Uuv + DX I vjGV = VDX'U + UDxV (135)
 48. From (80), similarly,

 from which ODx1I u4; (U, V) = q (Dx - Dx Iv) (u, V) , (136)
 DxI4V (U, V) = (Dx -D I v) f; (tG V) V (137)

 of which the following, ascribed by Price to Hargreave, is a special case:
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 124 MCCLINTOCK, An Essay on the Calculuts of Enlargement.

 49. From (88),
 DXV - DPU. D.V . (139)

 If v x,
 DXu. DX DX 1, (140)

 whence

 Dx = (141)

 Again, from (139) and (141),

 DXqt6 = - (142)
 D.V DvX

 If v -l, we have, since d = D1,

 x du (143) dx

 It follows that wherever Dz is written we may read d, and vice versa; and
 from (141) we see that this is true whether x is or is not an independent

 variable. Again, from (139),

 DX I =- DX. DI u (144)
 one of which expressions may always be replaced by the other.

 50. All results obtained in the language of differentiates may of course
 be expressed at once, mutatis mutandis, in that of differentials, and vice versa.
 In the case of partial differentiation, the student should be informed that he

 will frequently meet with a certain ambiguous form of expression, which may

 be illustrated by saying that he will find D I 2D I y? written dX2d3 Perhaps it

 would be well to avoid this ambiguity in future by writing, for example, d2d5u
 dX2dy'I

 where dx and dy must be regarded as abbreviations of D,x land D I Y.
 51. A large number of theorems relating to all functions of D may be

 derived at once from those already obtained concerning functions of E. Most
 of those which I now proceed to mention are known, though, as hitherto
 proved, they are known only for such forms of function as can be expressed
 in integral powers of D. In deriving these theorems from (95-102), it will be
 seen that changes are sometimes made in the form of expression, such as

 writing qp log for p, uk for c, &c.

 * If I were writing an elementary treatise, I should introduce, at this point and elsewhere, the usual proofs
 and illustrations, together with others to be hereafter suggested. I have, for present convenience, deferred the
 consideration of such explanations of D as are afforded by vanishing fractions and series, but wish it to be
 understood that my separationi of the " analytical" from the " explanatory theory of differentiation" is wholly
 arbitrary, and ought by no means to be imitated in any methodical treatise on the Calculus of Enlargement.
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 (PDX4 (X + y) (PDy4 (X + y), (145)
 (PDx (T -y) =p (- Dy) 4 (X- y), (146)
 pDXEkxy4 (kx) -4D,kxyp (kfy), (147)
 (PDxEmxX -mxp (M + DX) 4X, (148)
 (DJkxy4 (fry) - EkxY4 (ky + DX) p (kx), (149)
 (PD4Dyx.. XDu;DvE Y I d (kxy u. . uv)

 - (PDX4Dy 9. XDutDWEkxY .uVW ' (kxy . mv)

 - ekxy * uVw4 (kx.. . uvw + Dy) ... $ (kxy Uv + D,,) p (ky.. t.vw), (150)
 (p (ky + hDa,) 4 (krx) 4; (kx + hDy) p (kgy), (151)
 (pDXC - (POC. (152)

 In all of these the variables are supposed to be independent. From (103-118)
 we have the following, which, although mere special cases of those just given,
 are still of great importance as general theorems:

 (PDiX = (pDor (X + 0) , (153)
 (PD4X = p (- Do) 4 (X- 0) (154)
 (PDX = (POx + (PDO0, (155)
 cpD sin x = sin XPD COS 0 + COS X(P sin 0, (156)
 pD COS X = COS XPD cos 0- sin X(p sin 0, (157)
 (PD COS 0 p (- D) COS 0, (158)
 (PDEkx4 (kx) = D6 ,kxl(p (kl), (159)
 cpDEkx = Ekxp, (160)
 (pD4 (kx) = DoEkO(P (kO), (161)
 cpx= cDpxO, (162)
 (PD Ekx (kx) =kx4 (kx + D,) p (kl), (163)
 (D4in (kx) = 4 (kx + DO) cp (kO), (164)
 p (x + h) =p (x + DO) EhO7 (165)
 p (k +hD) 4 (kx) =4 (kx +?hD,) p (kl), (166)
 Cp (hD) 4 (kCx) =4 (kx + hDO) p (kO). (167)

 From these, putting k = 1,

 (PDEx4-X =AD,Ea(pl (168)
 (PD4X = D40p0, (169)
 (pDEx,4X= Ex,4 (X + Dj) (p1, (170)
 PDI;X =.4 (X + Do) (0P, (171)
 (p (1 + hD) 4X = 4 (X + hD1)) 1 (172)
 p (hD) 4x 4 (x + hDo) (PO. (173)

 08
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 126 MCCLINTOCK, An Essay on the Calculus of Enlargemnent.

 The possible difficulty of expressing (pD in terms of E cannot be urged as an
 objection to the foregoing deductions. We know that cpD can be expressed in
 terms of D; that each such power of D can be expressed in terms of A, and
 again that each such power of A can be expressed in terms of E. Inasmuch

 as we know that cPD can be expressed in terms of E, it is unnecessary to in-
 quire the exact form of the expression.

 52 From (152), where c is anything independent of x,

 D=C 0. (174)

 Inversely, operating on both sides of this equation by D 1,
 DX10- C. (175)

 Here is an operation which creates something out of nothing; and since we
 cannot tell what that something may be, the results of this operation, and of
 all other operations which have the same creative faculty, must be indetermi-
 nate. I presume that, in general, all functions of E which cannot be expressed
 in positive integral powers of A are productive of indeterminate results. If

 any such operation, sav B, is perforrned on qpx = qpx + 0, it produces, in addi-
 tion to what we may call the principal form of Bqfx, a complementary function
 of x, the coefficients of which may be assigned at will. In the case before us,
 we perceive that when the operation D-1, called Integration, and usually rep-
 resented by the sign f, is performed, we must introduce a complementary

 constant before we can venture to interpret the result. It is unnecessary to
 say much in this essay regarding integration. We shall have occasion to use

 the well-known definite integral Je-xxmdx = F (1 + n), of which the fuller

 formal description is D-'E-XExm[x - D_ ']1E_ xe[x=o ] The sign f, as com-
 monly used, may be considered as equivalent to Dn1, since

 Frm fxdx = Dw 'px = dx. DC '1pX = D_ l'pxdx. (176)
 53. From (160),

 -ExEkk (177)
 DESx EX. (178)

 If x = , D&X = - x the reciprocal of which is DxO, or
 DlOgx=x'1. (179)

 Hence,

 DXm . = DxO. DoXm X-1. MnEo = MX . (180)
 From (158),

 By Maclaurin's theorem,

 sin X = XD sin 0 + x2Q, suppose; (182)

This content downloaded from 
������������199.242.209.35 on Mon, 13 Mar 2023 16:59:13 UTC������������� 

All use subject to https://about.jstor.org/terms



 MCCLINTOCK, An Essay on the Calculus of Enlargement. 127

 whence, assuming D sin 0 finite, which can be proved from (157) when x is

 infiniitesimal,

 sin 0 D sin (183)

 and sinice, by trigonometry, 0 n 1

 ID sin 0)= 1. (184)

 Then, from (156) and (157),
 D sin x = cos x, (185)

 D COS X =-sin x. (186)

 54. The following series, the result of integration by parts, a metlhod

 deducible, as usual, from (135), are well known :*

 I (1 +rp) - xxPdx + fYxxPdx

 xxp 1 + ~~ + _+...+PX-I+p(p_J)X-2+... (187) = E X [1 +p + 1 +(p + 1)(p + 2) +***+X + p1 ] 17

 E = [1 ++ 1 + . . . + pX l + . . .] r(l , ) . (188)

 Let us write hD for x, and its antilogarithm Eh for Ex, and let us suppose the
 subject of operation to be qx. We shall then obtain the following extension

 of Taylor's thaeorenm:

 P. 1 .1.p. 2 q (x + h) = [1+l+ (PI; +2)?..+ + h-PD-P (189)

 +p (p - V) &- 21)-2 + . ]r(i + p, (P
 The original series terminates, in one direction, when p is an integer, so that
 in that case our extended theorem takes the usual formn of Taylor's theorem.
 It will be observed that p may be any quantity except a negative integer. If

 px = xm, we shall have, as a special case, the extended binomial theorem of
 Roberts.t If we write 0 for x and x for h, we shall derive the following ex-
 tension of Maclaurin's theorenm:

 ?)$ = [1 + + 1 +,* +.px- iDo- l + * (PO .] r(l +--) ?) * (190)

 *De Morgan, Calculus, p. 590; Roberts, Qaarterly Journal, viI, p. 207.

 t In this, as in (189), when p is an integer, there can be no powers of h with negative indices. Unaware
 of this limitation, Roberts obtained anomalous and perplexing results. How near he came to formulating the
 extension of Taylor's theorem may be seen from the following quotations: " Let 0 (x) be any function of x,

 then 1? ) coefricient of a development of 0 (x + h). .. [k'], according to powers of h to the base
 under n." -All that the equivalence [k] means is this: if f (x + h) can be developed according to powers of

 (x + h) ] r(1 x (x) [o (x) being similarly developed] will give the corresponding coefficient of hA in a

 development to the base index n."
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 128 MCCLINTOCK, An Essay on the Calculus of Enlargement.

 While there miiay not now appear any practical use to which these theorems

 for expansioii in fractional powers can be put, they will at least be found to

 throw somne light on the theory of the subject. Various interesting series,

 such as for sin x, cos x, and of course cx, miay be obtained by the use of (190),

 and xm can be treated by it, when m is fractional, whereas Maclaurin's theo-

 rem cannot be employed in that case; the result of such treatment being that

 all terms except x.. vanish.

 55. By employing (188) to expand 8X0 in (162), we have at once this

 extension of Herscheel's theoremn,

 (px= PD +__xO 1 _X1-1+xo = PDoLl??+p + I +p ?0? * r( (191)
 Here, as before, p cannot be a negative integer.

 56. I shall give mnore space to the consideration of the form of DnXm,
 where n is fractional, than would be necessary were it not for the fact that

 it has been the subject of a noted controversy. Messrs. Liouville, Kelland
 and others make

 DnXm = 1-)nr(-m + n) rn-n (192)
 while Peacock makes

 D F( + mr) - (193)

 De Morgan (Calcutlus, p. 599) conjectures that " neither system has any claim
 to be considered as giving thte form of DnXm, though either may be a form."

 Later, Roberts shows, by strong arguments of analogy, that Peacock's form
 is tenable, while he adnmits the force of the arguments adduced in favor of

 that of Liouville. The reader cannot probably find in existence a more com-

 plete illustration of the difficulty with which such a subject is handled, under

 the indirect theory of differentiation heretofore followed, than that furnished

 by Roberts' argument. It is not too mrruch to say that under that theory the

 meaning of Dn, where n is fractional, can only be guessed at. That indirect
 tlheory gives us D, the special case, and permnits us to divine, if we can, by
 induction, analogy, or conjecture, the meaning of Dn, the general form. This

 is in every science the natural order of things so long as the general law,
 which shall furnish direct deductive proof, is unknown. The method now
 presented enables us to treat this case, like all others, with confidence and
 certainty. It makes us aicquainted withD n as one of many functions of E, and
 enables us to, discuss, if we please, the general form D n before the special form
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 D. If, in pursuance of the direct method, we arrive in any case at results
 which are not intelligible, we can only seek further for such expressions as we
 can understand, knowing that when found we can depend upon their accuracy,

 provided due allowance be made for possible complementary functions. I

 shall now try not only to show that Peacock's form is the principal form of

 DnXm, but also to indicate the precise nature of the error miade by his antago-
 nists.

 57. If, in (189), px = xP, we derive a development of (x + h)P in powvers
 of h which, when p is a fraction, extends to infinity in both directions. If
 DPXP is a constant, the coefficients of hlP +J 1k p + 2, &c., which are derived from

 WDPxP by differentiation, will vanish. That DPXP is a constant may be slhown
 fronm (173), which gives, writing z for hI,

 DPXP = z-P (x + ZD) POP (194)

 wherein putting, z = x eliminates x. Omitting the vanishing terms of the

 development of (x + h)P, and conmparing the coefficient of hP in the remnainder

 of the developmient, namely, -(1 + _ with that of hP in the known develop-

 ment of (x + h)P by the binomial theorem, namely, 1, we have

 Dpxp= ('? +P). (19.5)
 This equationi is thus shown to be true for all cases except when p is a nega-

 tive integer. That it is formally true in that case also may be seen upon

 repeated initetgration, resultintg in a term containing D-tX-I= log x = 0 -
 the latter fraction being the complementary conistant. Therefore, in all cases

 DmXmn JFrm -nXm - n

 F(i + m) - r(i + mr n) (1)
 Operating on both sides with Dn-m, and multiplying, by r (1 + in) , we have,
 for all values of n, Peacock's formula,

 In ( + Mnn)m (197)
 It may readily be shown that in this case there are no complementary terms
 in Xm-n-l, xmm-n-2 &c., such as might be created from 0 by the operation

 Dn-m. For, by (189), the coefficient of hP in (x + l)m is while we 7 r~~~~~~~~~~~~(1 -[ n)'1
 know, by the common expansion of (x + h)n(x + h)m-n = (lin ?.. .) (Xm-'n +..
 that this coefficient contains no other power of x than Xm-n.

 34
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 130 MCCLINTOCK, An Essay on the Calculus of Enlargentent.

 58. The arouments by which it has been proved that Liouville's form of

 DknXm is correct have never been impuoned, nor do I now impugn them, though
 I hold that it is not the principal forin. If the performance of an ambiguous

 operation (see paragraph 52) such as Df, where n1, is fractional, produces in one

 way a real result and in another an imaginary result differing from the real by

 a complementary function which Dn produces from 0, and which the inverse

 operation r-n will reduce to 0, we are bound to accept the real result as the

 principal fornm. The proof of Liouville's formula depends on this equation,

 derived from (160),
 - DnG_ xv( v)nG- xv. (198)

 When n is fractional, this expression is imaginary. It is, however, formally

 correct, and no one seems to have suspected that another and real expression

 can be found. Even Roberts explicitly lays down in&ax = an8ax, without limita-

 tion, as if it were the principal, or indeed the only possible, forin. I shall

 now show that (198) is not the principal form of D . Since e_x' = x0v- xv
 x2v2

 + 2 -. * , we have, by (197),
 DnGXV- xv ___ _____ ___ ('199)

 r(1-1n) F(2-n) r(3-n)

 a series not only not imaginary, but also essentially convergent, and. there-

 fore, eminently acceptable. If, on the other hand, we expand (- Vn)e-xv by
 (188), writing - xv for x, and - n for p, we shall have the same series, with

 ,zn- 1 1 -n 2 2- 2.

 these additional terms, - ?(n) + (1) -. .. Now the additional

 terms become ultimately all of the same sign, forming a series infinite in

 value, as mighlt have been expected from the imaginary character of the func-

 tion developed; but it is especially to be remarked that they all vanish when

 operated upon by D , showing that they constitute a complementary func-

 tion, and are not necessarily part of the principal form of D"EXV. Here then

 are two forms of Dnt-xv, (198) and (199), one imaginary, the other real, the

 former being conposed of the real form plus a complementary function. The
 real fornm is therefore the principal one. It is, however, only by employing
 the imag,inary form that the expression given for Dnxm by Liouville can be
 proved.

 59. A good illustration of the ease with which secondary forms of such

 expressions as D"Xm miay be obtained consists in the application of (171) to
 D?Xm, wvhence

 DnX = (x + D) On. (200)

This content downloaded from 
������������199.242.209.35 on Mon, 13 Mar 2023 16:59:13 UTC������������� 

All use subject to https://about.jstor.org/terms



 MCCLINTOCK, An Essay on the Calculus of Enlargemnent. 131

 Now this binomial miay be so expanded by Roberts' theorem as to produce a

 result- cliffering frorn (197) by only a complementary function; but if on the
 other hancd it is expanded in the usual way, in positive integral powers of Do,

 it prodluces an expression, probably new,

 DnXm = (XM + mxm lDo+.. .)0n (201)

 which, although formally correct, can have no claim to be considered the

 principal form of Dpne. It does, however, give correct real results when n is

 a positive integer, and in every case satisfies, as does Liouville's expression,

 the requirement of interpolation of form. For example,

 1 01 + 1 -2 0 D3x= X0-3-0 3X, (202)
 3

 and repeating,

 1 1 2 0-1 0,23 D3D3X =X03- + 3 T-X? (203)
 I ~~~3

 D3DDX =D= D - xO + - 0%x0 = 1. (204)

 v. Explanatory Theory of -DiffePentiation.

 60. Although the various theorems of the Differential and Integral Cal-
 culus may readily be derived from the propositions already laid down, we

 have really taken but a narrow view of the subject. We have not done

 much more than to exhibit Taylor's theorem, and to ascribe to D as a function

 of E certain properties pertaining to such functions in general. We have now
 to examine more closely into the nature of the operation of differentiation, as

 disclosed by its symbolic definition, D = log E.*

 61. The coefficient of h in the expansion of cp (x + A) by Taylor's theorem
 is DcPX. If, therefore, we know the development of any function of x + 7h in
 positive integral powers of h, we know at once the differentiate of the samne
 function of x. Thus, from the binomiial theorem, we have DXnm M X 1; from

 the exponential theoremn, DW = u; from the logarithmic series, D log X = X-1;
 and frorn the trigonometrical series, D sin x = cos x and D cos x = -sin x.

 This method of determining Drpx rests on surer grounds than the somewhat

 * I must again observe that the order in which, for present convenience, these several matters are discussed
 is not that which should be followed in a methodical treatise on the Calculus of Enlargement. In such a
 work, the elementary explanations which we have now to consider should be introduced as soon as practicable
 after the first mention of differentiation, and be followed up at every convenient point by suitable illustrations.
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 132 MCCLINTOCK, An Essay on thte Calculus of Enlargement.

 similar principle underlying the calcul des Fonctions of Lagrange, for we have
 what he had riot, a symbolic demonstration of Taylor's theorem; and, not to
 dwell too long upon it, we may pass it by with the remark that in all proba-
 bility no insuperable objection can be made to it.

 62. Perhaps it has not been noticed hitherto that a simple variation of
 Taylor's theorem,

 A = D + 1 D2 + 1 D3 + * *, (205)

 is remarkably susceptible of geometric illustration. K
 For example, let AD = x, and let the space ABCD, C

 included between the straight line AD, the curve
 BCK, and the two perpendiculars AB and DC, be

 called (px. Take DE = 1, and draw the lines EF A D
 perpendicular, and CG parallel, respectively, to AE; also CH tangent to the
 curve. Then,

 D(PX = DEGC, (206)

 D 2D2X = CGoH, (207)

 D3PX? .= CHF, (208)

 A+X = CDEF= Dq + 2D2X + 3DX+... D (209)

 63. It is desirable to find as miany expressions as possible for log x in
 terms either of x or of simple functions of x, and in themi to write E for x, in
 order to arrive at the clearest understanding of the operation D = log' E by
 attentive observation of its various algebraic equivalents. For this purpose
 the two general series (30, 31) presented in the foregoing Theory of Loga-
 rithms afford ample means.

 64. From (30),

 11 1 2 1+2i& __ D= 1 E"_ E21 E_- E-r_ (210)

 where n may have any value. If n - 1,
 1 2+1 2 D = E --2 E+..._E-l+_ E-2_ (211)

 Applied to qpx,

 D =PX n [p (x+ n)- p (x-n)]-2- [p(x+ 2n)-p (x-2n)] + ..., (212) n 2
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 x+* = [p (X + 1)-p (x-1)1--2 [(p (x + 2)-p (x-2)] +... (213)
 These series, which are probably new, will, owilng to their symmnetry of form,

 be readily borne in mind. To illustrate their use, let px = a", and we have

 D [?ax - (a2n-a2,n) +...1 =a log a. (214)

 Let px = xm, then
 Dxm [(x + 1)m-(x-1)m- 2[(x + 2)m-(x 2)rn]+ **. (215)

 Here all terms in xm, Xm-2, Xm-4, &c., obviously vanish. The terms in -m 3

 X9w-5 &c., contain, in the coefficient of each such power, a factor of the form
 1- 2r + 3r . . w, where r is an even positi've integer, so that, by a known

 theorem in finite differences, these terms likewise vanish. There remain the
 ter.ns in x - 1, wlhose coefficients are 2m 2m + 2m - . = rn, so that,
 finally

 uxm mxrn (216)
 Again, putting n = 2-

 Dsin x -[sin

 =-(2 3 + ; - . .) cos x= cos X. (217)
 It is needless, however, to multiply illustrations which wvill readily occur to
 the reader.

 65. Let the symbol represent the operation of obtainino the ratio of the
 most general form of difference of a functioli to the corresponding difference
 of its variable; that is to say, let

 E-ha + h - E7 ha
 a3 1* h (218)

 ap o (x -ha + h) - o(x -ha)
 hA (219)

 The constants a and h may have aiiy value, so that there will be an unliinited
 number of special cases, some of which will, from their greater importance,
 require distinct syinbols. Thus, wlhen h 1 and a - , a E -1 ;
 when h =1 anid a 1 3= 1-E-, which is sometimes denoted by ',A;

 when h=1 and a= 2 X a=E'-E- which let us represent by A; and

 * Results more symmetrical, though less simple, can be got by writing . (1 -b) for a.
 35
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 when h = 0 ancd a= - , a D. It will shortly be shown that we need not
 restrict D to the case where a = 0, but that a = D when h = 0, whatever be
 the (finite) value of a.

 66. We now derive at once from (31) the following general differentiate-

 expression:

 2a-1 2 +3a-1 3a-2 4a-1 4a-2 4a-3 h3&4 +
 D= a 2 h +2 3 2 3 4 m 20

 Of all special cases of this theorem, those are particularly important in which

 k0 = or h = 1. When h = 0, there are four chief cases, where a -= 0 a = I I

 a =-, and a = , respectively; and when h= 1, there are three chief
 2~~~~~~~~~~~

 cases, where a = 0 a = 1, and a = -2X respectively. I shall discuss these
 in order.

 67. Let h = 0. In this case the general theorem is reduced to a vanish-
 ing fraction. Concerning vanishing fractions in general, it may be said that

 0~ they are rendered needlessly obscure by presentation in the form 0 .Wheni
 ever we have to wvrite 0 as the denominator of a fraction we ought, I think, if
 convenient, to express the numerator as a function of the denominator, or,
 in other words, as a function of 0, that symbol, when employed in the nume-

 rator, representing the denominator and nothing else. So expressed, it is

 impossible for a vanishing fraction to be ambiguous in meaning, supposing it
 possible to expand the numerator in positive integral powers of 0. It mat-

 ters little whether such fractions are philosophically explained by the doctrine
 of infinitesinmals or by that of limits. All that is necessary to their accep-

 x

 tance is to persuade ourselvres in some way that = 1 wvhen x =0O.
 68. When h = 0, we have, therefore,

 E (1 - a)O _- E aO

 O , (221)

 an expression whicth may be instantly verified by expansion. It may, indeed,
 be shown that

 D= P ?-) (222)
 0

 where P is any function of E. Of this (221) is a special case. In practice,
 we may apply (221) thus,

 - PX (x - ha + h) - (x - ha) = 1 (223) ik~XA [hO3. 223
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 The differentiate of any function, therefore, is equal to an infinitely.small dif-
 ference of the function divided by the corresponding difference of the varia-

 ble; or, in other words, to the limit of the ratio of differences indefinitely
 reduced. In this statemnent it will be observeed that the word Difference can-

 not be replaced by the word Increment without obscuring the truth which is

 conveyed. To illustrate (223), let a - -4; then

 DX3 (X + 5h) -(x + 4h)3 M (224)
 h [h =O ]-3 (24

 x + 5h + 4h

 Ex + _ [hh OJ = ] * (225)
 d

 69. Since D = -c where dx is an arbitrary constant, let dx - h; then,

 when h is infinitesirnal,
 d= E(1-a)O_E-ao. (226)

 This is to be interpreted as an order to perform the operation E (1 -a)" _ E- ah

 to make h = - , and to represent the 0 in question by the symbol dx. Applied
 to px, it becomes

 d(px = p (x - adx + dx)-q (x-adx) . (227)
 WThen, again, instead of being infinitesimal, dx is taken to have some tan-
 gible finite value, dx and dcpx have nevertheless the sanme ratio as if both
 were infinitely small, so that when dx is assigned, and the ratio ascertained,

 the value of dpx is known. The doctrine of fluxions is a case in point.
 70. If, in (221), a-0,

 0?-1 (228)

 This is the sym-nbolic embodirment, possibly not new, of the usual expression

 DXx= - [o=h]- (229)
 If a =1,

 D = ,EX (230) 0

 vp -( (x - h) Dhpx= - - ( [h 0], (231)
 1

 the latter again being a known form. If a - 2
 0 0

 D = O_ - t- (232)
 0

 mpx +(?~ h) h A~ 23
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 both of whiclh expressions are probably new. The three forms thus derived
 I

 by making a = 0 a = 1, and a = -2X may be called the upper, lower, and

 central vanishing fractions respectivelv. Correspondingly, fromn (226) and
 (227),

 d = E?- 1, (234)

 d(px = cp (x + dx)- cp; (235)
 d 1- E-0 (236)

 dpx =px - cp (x- dx); (237)
 0

 d= ES- E 2, (238)

 -dqxp (+- -d- dv) - (- { dx). (239)
 Of these, (235) and (237) are lknown forms.

 71. Of the three chief vanishing, fractions, with the expressions corre-

 sponding to them just given, the upper fraction will no doubt in most cases
 be found the mnost useful in practice, as being, on the whole, the simplest.
 Nevertheless, the central fraction (233) and the corresponding differential
 expression (239) will be found well worthy of attention on account of their
 syminetrical form. It cannot be doubted that cases will arise in which this
 quality of symmetry will prove an important aid to the analyst. To illus-
 trate another advantag,e possessed by the central formulav, let it be required
 to find d (x3). By the usual method,

 d (x3) = 3x'dx + 3x (dx)2 + (dX)3, (240)
 and by the central method,

 d (x3) =3x2dx +1 (dx)3. (241)

 Here there is obviously less to be disregarded, and so far there is an advan-
 tage, even though it be only in appearance. Apart from all practical advan-
 tages, hlowever, the consideration of the central formulax cannot but be useful
 in affording a broader view of the subject than that usually taken. The same
 remark applies, of course, with still greater force to the general formule of
 paragraphs 68 and 69, not to speak of others still to be presented.

 72. In the special cases thus far examined of the general differentiate-

 expression (220), we have supposed = 0, with a finite. Let us now con-

 sider the case in wlhich Ii = 0 and a is infinite. Let a =--h -,so that

 =E h=O = DE", where c has any finite value other than 0. Then

 aha =-CDE6, and we have the following series,
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 D = DE CD22 + 2D3E3- 42 C31E4" Ce + 63 D E (2424 ~~~~~~~ 2.3 +2.3.4
 DDX D (X + C)- CD2(p (X + 2c) + - c2D3p (x + 3c) ... (243)

 As special cases,

 DOX = D( (X + 1) - D2( + 2) + 2~ D3(P (X + 3)-..' (244)

 DPX = Dp (X-1) + D2p (X-2) + D3p (x-3)+.... (245)

 If we divide both members of (242) by DEc, and, putting hi -c, operate on
 (px, also on (p0, we shall have

 (p (X + h) = (PX + hD( (x-h) + 3 72D2 (x-2h)+..., (246)

 (Ph = (P+ hq(-h) + . . ., (247)
 wlhere q'X = DPX. Though interesting, and probably new, these various series
 are comparatively unimportant.

 73. Much more worthy of attention are those series, expressing the dif-
 ferentiate in terms of finite differences, wlhich are derived from the general
 differentiate-expression (220) by giving to ht some value other than 0. The

 principal value which h may assume is 1, and the formulae derived for that
 value can be made to yield, by a suitable alteration of the variable, all tlle

 results obtainable by assigning to ht any other value. When h - 1, we have
 the following general theorem for expressing a differentiate in termns of dif-
 ferences:

 a + 2a-1 a2+3a-1 3a-2 a3 + (248)
 2 + 2 3 +..(28

 Here a = Ela - -a, and aDqx = (p (x - a + 1) -(p (x - a). For example,
 a= Cx (c' - a C- a) = CxZ supose (249)

 a2cx = cXZ2, (250)

 De \Z( + 2a-1 z2 + 23a- 3a-2 z3 + e= clog c, (251)
 by (43).

 74. In this case again, as with the generial vanishing fraction (221), we
 1

 find three principal values for a, namely, a - O, a = 1 , and a = 2 . Sub-
 stituting these values respectively, we obtain three series, all more or less
 well known, expressing, a differentiate in terms of wlhat we may call upper,
 lower, and central differences. These are,

 A2 +1'A3

 X =A 1 a2 + \3_ (252)
 136
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 D ='A + 1 \\A2 F 1 '/\3+ , , (253)

 P3 3 5 3. 5 A7 3. 5. 7 AI
 8.3 +2 82.5 2.383.7 +2. 3. 4 84.9 (254)

 There is also a known series expressing D in terms of inean central differ-

 ences, which may be derived as follows from (254). Let I= - (ry + E-2

 then I = (1 + A 2), and, by expansion,

 r A 3 ~ / A2 A3 A5
 DI-1= A -A+ . . . 6(1- 8 + (255)

 and

 A= iA- T+ ?0_ 140?+? (256)
 75. The principal use to which these series have hitherto been put is to

 determine the value of a differentiate from given values of the function dif-
 ferentiated. The simplest possible illustration is probably as follows. Let
 us first construct a table of the values of x2, and of their differences, from
 x= 1 to x = 3.

 x X2 O'2 a2e a3X2

 3 9 2
 5 0

 2 4 [4] 2 [0]
 3 0

 1 1 2
 1 0

 0 0 2
 - 1 0

 -1 1 2

 We see that A( 1)2 =-1, A2 (1)2 =2, A3(-1)2=0; that 'A32-=5

 'A232= 2 'A 332 = 0 that A ( ) 3 A3()=0; and that iA224= 4

 iA322 = 0. Then applying the four series in question, respectively, we find

 D(-1)2= 1- 2 =- 2, (257)
 2

 D32 = 5+ 2 =6 (2-58) 3 2 -

 (- - (259)
 D22 = 4. (260)
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 This use of differences is especially important when, for any reason, it is

 desired to find the differentiate of a function of which certain arithmetical

 values are ascertained, but of which the law is unknown.

 76. Besides such customary uses, these series, and particularly those

 expressed in terms of A anid 'A, will, I think, be found of great value towards

 the elementary explanation of D = log, E. No student, informed that a dif-

 ferentiate is a series of differences, can fail to understand the statement. It

 is requisite to introduce the idea of infinity in some form, and these series

 will be found at least as intellig,ible as the vanishing fractions, and worthy of

 a place beside themn in explanatory statements; essentially necessary, indeed,
 to comnplete a comprehensive view of the subject. It is certainly as easy to

 1 2as (x +h)2- x2
 uncderstand DX9= Ax2- -A>2x2 = 2x as Me- LI, = O= 2x. I would 2h

 call attention to the fact thiat (253) supplies a verbal definition of a differentiate

 which may readily be borne in mind, namely, the sumn of divided lower differ-

 ences.*

 77. The application of these series to given forms of function will afford

 useful exercise to the student. To ax, for example, any of them may at once

 be applied in the manner already exliibited. As another example, let q*x = xm.

 By the binomnial theorem,

 Do (X + ODO= DXt + nxm + Dh02M Xm +.. . . (261) 2

 Now A0 (x + O)n = (X + 1)n x = Axn, and similarly for second and higher
 differences; hence

 Do (x + 0)m =(O- 2- /A2 (X .)O'= DXn4. (262)

 Also, x(A0 ...)xm O, and DOO = (A,. . .) O = 1 . As regardsn0O2,
 Dn03 &c., we have it proved algebraically (De MXorg;an, Calcealus, p. 2.55) that

 kJ. =Ak-1Or-1 + AkOr-I; and hence, when r > 1, we find by successive sub-
 k

 stitution that

 DOO. {AO 1A2 +. O r = c 263

 *De MIorgan gives, in the article Differential Calculus of the Penny Cyclopcedia, certain comparative illus-
 trations of the current derliiitions of D.V3, according to the systems of Infinitesimals, Prime and Ultimate

 Ratios, Fluxion-, and Limits, and the Residual Anatlysis of Landen. Each of these definitions requires seve-
 ral lines of print, the nearest approach to an equation being

 Dc3--- _8 X 2
 .S-X
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 140 MCCLINTOCK, An Essay on tke Calculus of Enlargement.

 Substituting these several results in (261), we have, finally,

 DX m = zXS_ 1 (264)

 78. We have now passed in review the more important equivalents for

 D= lOg E which may be deduced from the general differentiate-expression
 (220). We have seen how that theorem includes not only the known series

 in terms of A, 'A, and A, but also series in terms of an infinite number of
 other kinds of differences, besides the series in terms of DEe; and how, in

 addition to such series, it comprehends an unlimited number of symbolic

 vanishing fractions, equivalents of D, one of which fractions exhibits, when

 applied in practice, the hitherto customary process of differentiation. Wide

 as that expression is, we shall shortly see that it is but a special case of a

 more comprehensive formula for the transformation of Dn; and, still further,

 we shall find that this latter formula is itself merely one case of a broader

 proposition regarding an, which again is but a special case of a general theo-
 rem relating to all functions of E. For the due presentation of this zeneral
 theorem I find it necessary to lay down a new theory of factorials.

 vi. T1ieory of Factorials.
 79. Let

 XEm] = -lIx r(xh' + am) (265)
 F(xh1' + am-rn +1)(25

 where a and h have the same value as in a, the difference-ratio symbol.*
 Whenever it is necessary to consider at the same time expressions involving

 more than one value of a or h, I shall add accents. Thus, while a and x[rn]

 are functions of a and h, a' and xEm]' will be the same functions of a' and Ite,
 and a" and x[m]" those of a" and h", where a' and It', a" and lh, may or may not be

 the same as a and h. Let us call (265) the general form of Primary Facto-

 rials; X[3], for example, being the general form of the pritnary factorial of the
 tlhird degree.

 80. By performing, the operation, we find that

 axEm ]= mxEm-i]. (266)
 81. Let us, except when otherwise expressly stated, consider only those

 cases in which rn is neither negative nor fractional. We find that x[" 1

 that xa1 = x, and that for all values of m greater than 1 ,
 a[m]=x (x + amnh-h ) (x + amh -2) . (x + [a- 1] mlh + ), (267)

 * Here also (see note to paragraph 65) more symmetrical expressions can be had by writing 2 (1 b) for a.
 2
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 where a and h may have any value, positive or negative, whole or fractional.

 For example, let a = 17 and h - then

 X[41=x (x-22 - ) (x-22) (x-21 2 ) (268)

 When a - O, we have as a special cage those functions to which, for positive

 indices, the name factorial has heretofore been confined.

 82. When h = 0, and a is finite, we have from (267)
 X[m] = - . (269)

 When h=0 anda=- h where c is a finite quantity other than 0, we
 derive a remarkable function,

 X[M X (x - c)m-1. (270)

 When h is any quantity except 0 and 1, the expression x[m] may be reduced,
 by a suitable alteration of the variable, to a factorial form in which h = 1. I
 shall, therefore, for brevity, omit the consideration of such values of h. The

 chief special cases when h = 1 are those where a = 0 a- 1, and a= 2
 respectively,

 x[m] =x (x 1)(x-2).. (x-m+ 1), (271)

 X[m]=X(x+m-1)(x+m-2) .(x+1). (272)

 x[m] = x (x+ m 1) (x + n2) (x m+1) (273)

 The last form is no doubt novel. We nmay call these three varieties of facto-
 rials upper, lower, and central, respectively, to correspond with the analogous
 difference operations, A, 'A, and A; and I would suggest for them the special
 symbols xm), x(m, and x(m), respectively. It is scarcely necessary to say that
 whatever may be proved true in general of a and x[m] will hold good of D and
 x"0 A and xm), 'A and x(m, A and x(m), Dni and x (x- cmn)'-1, as well as all other
 possible special cases.

 83. By repetition of (266),

 anxrn = m)x[m] = F(i + mn) x[ ] (274)
 Operating on both sides by a-, dividing by 9n) and writing m + n for miz, we
 have

 a- nXrn r(1l+n) X[m+n] (275)

 showing that (274) is true, as a principal form, when n is negative. If x -0,

 and n <in, ano[m] - 0 (276)
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 142 MCCLINTOCK, An Essay on the Calculus of Enlargement.

 and when n = m,
 amoi[] ir (1 + i) (277)

 Operating on this with an- m, supposing n > m , we have
 ano"- 0 (278)

 because a (constant) = 0. When, therefore, n is either greater or less than

 m, both being integral,
 anOm1 = 0. (279)

 If qpx can be expressed in positive integral powers, one of the termis being amxe,

 A nao[ m = ama_n0[ . = a_F (1 + m) = a,,a lm] = (pa'0o:1. (280)
 Again,

 cp (Ca) 0[m = cama_Oml] = crmpaO[ml - crmpa'O[ml'. (281)
 84. Any factorial x[m] may be expressed in factorials of any other form,

 such as x[mlf; for x[m] is by definition, let us say, xm + cmxm-r + . . . , and xC[m]

 is similarly xm + cm'xm-1 + .. ., wherefore x[m], an algebraic expression of the
 nth degree, mnay be replaced by x[Eml, also of the mth degree, plus factorials of
 lower degrees, the coefficients of which may be determined from the data,

 which are sufficient for that purpose. In general, therefore, when n> m,

 a'nO[m] = an (O[m] + ) 0 (282)
 and when n = m,

 almo[m = almo[0m]i = r (1 + i) (283)
 85. Again,

 qaO[mn = a,,am0[r] = ama_r - aom[m=] = Emam rn0[-11 = qVao[m -1] (284)
 and by repetition,

 cpao[rn] - (pnao[mn n] - (pna0[[m_-n]t (285)
 where (px = DnqX. For example,

 a0 [rn] = hrn^a0[o] = hm (1 + 71a + .. .) 0? h (286)
 It follows from (285) and (152) that, when pa can be expressed in positive
 integral powers of a,

 pao[rni] - cprDOo = cpmO = DrnpO (287)
 86. Suppose

 pE a=ao + a1a + a2a2 + .... (288)
 By Herschel's theorem (162),

 Aa = IADOO + ADO *a3 + 2 'AD0 32 + * *,(289)
 and by Maclaurin's theorem (120),

 a = D00 + D4O . a + D240.a2 + (290)
 From (288) we have at once, since pEO[r] = a_0fn0[rn] 2. 3.4 . man, and

 therefore am 2.3.4... m cpEO[],
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 (PE = (PE001 + (PE0[1 . a + 1 (pEO[2]. a2 + 23 (pE03. a + .... (291)

 The same result may be had from (289) or (290), observing respectively (280)
 or (287). This is the general theorem referred to in paragraph 78. It may
 fitly be named the factorial theoremn. It includes as special cases a very
 laroe number of known propositions of the Differential Calculus and Calculus
 of Finiite Difrerences, and affords a ready instrument for the discovery of
 relations hitherto unnoticed. It should be laid down among the earliest propo-
 sitions in any formal treatise on the Calculus. Recurring to the line of thought

 pursued in paragraph 52, we may reinark that this theorem applies in all

 cases where (PE produces determinate results, since it holds good, as proved,
 for all functions of E which can be expressed in positive integral powers of a.

 The following is a variation which results from (281):

 A (ea) = oo[o] + 4aooL]'. ca + 4 o 4ao2]'. c2a2 +a (292)
 Here-a' and x[ml] may or may not be the same as a and P11, aind c may have
 any value. Of course, (PE0[0] = (pt1 , and (pao0io = (p.

 87. An important case of the factorial theorem is that where (PE = E*.
 Applying it to 4x, we have the following generalization of Taylor's theorem:

 ( x0 + k) = v + ka x + 2 k ia, + (293)
 If Ax = x[ml, we obtain a generalization of the binomial th6eorem, true for all values
 of n, including negative and fractional values,

 (x + k)[?fl]1 = x[m]' + k1caxm]i + - k[2]a2X[nhl, + (294)

 This enables us to expand any binomial factorial in factorials of any other

 desired forin. For example, to expand (x + k)[m] in factorials of k, we have
 this minor generalization of the binomnial theorem,

 (x + k)[m] - x[m] + mxl[ml-]k + m m-1 x[m -2]k[21 +?. (295)

 good for all values of m; or, to expand (x + k)m in general primary factorials,

 (x + k)m = xm + kaxtm + 1 k[2a2m ?X.+ (296)
 If x= 0, we have fromn (294), for the expansion of a factorial in factorials
 of any other kind, whether m be positive or negative, whole or fractional,

 k[ml3 - ka0omt + - 2a208m?' + .. (297)
 2

 If, in (293), x = 0, we have a generalization of Maclaurin's theorem,

 4k = 40 + kao + - k[2ia0 + (298)
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 These various theorems for factorial expansion will be found capable of many

 useful and interesting applications. For example, in (298) let 4'k = el, and
 let us write x for k; then

 cx= 1 + xa0o?+ ?1 x[2ma8co ..., (299)
 a generalization of the exponential thieorem. An expression for the value of log

 (1 + x) may similarly be derived, of which one case is this known series,

 log (1 + x) = log 2. x + 2 log . x (x-1)+.... (300)
 If, in (299), we write E for c and kD for x, we have this result,

 Ek = 1 + aeos. kD + . . *, (301)

 (p (x* + k) = px + a0oo. kDpx? + 2 a2EO (kD)[21pX +*. * (302)

 88. A certain variation of (299) is so renmarkable as to be worthy of

 extended notice. Let g be such that agx = gX, that is to say, that
 x +(1 - a)h x -ah

 g h =gX; (303)
 then

 (1-a)h g-ah g9 = 1, (304)

 whence
 h = hah (305)

 The solution of one of these equations will give the value of g. If more than

 one solution presents itself, that only can be accepted which agrees with the

 condition agx = g. -- When h = 0, equation (304) becomes log g 1, or g = e.
 From (299) we have at once the series in question,

 gx=1++ x + [2 213 x[3]+. * (306)
 of which the exponential theorem (23) is a special case. If h = 1 and a = 0,
 we have a series verifiable by expanding (1 + 1)x,

 2z = 1 + x + 2 X2) + . (307)

 If h=1 anda=y,

 (32+ T/5)X = 1 + X + 2 X(2) + . * * * (308)

 If h=2 anda= 2

 (1 + ,/2)z = 1 + x + x1 [23 + . . , (309)
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 whereX[2]. X2, X[3]=X(X+1)(X-1) x[41=x(X+2)X(x-2), x'5-=x(x+3)

 (x + 1) (x -1) (x - 3) , and so on. If h = - and a = 0
 2

 (9)_ +x+-X[2] (310)

 where x[21=x(+ 2 2 (x-1) and soon. If h= 1 and
 a= 1, similarly,

 4x=-l +x+ 1 X2] +. (311)
 2

 where xP = x (x + 4 ) X[3] = X + 4-) (x + 1), and so on. It is needless

 to multiply these illustrations, which show that E is but a type of an infinite

 number of constants, and that the exponential theorem is but tlle correspond-

 ing type of an infinite number of factorial series of the same general form.

 The series above given imay be verified, of course, by arithmetical approxima-

 tion. It may be shown further that e itself is capable of an unlimited num-

 ber of factorial expansions, all having the same coefficients as the exponential

 theorem. In general,

 {-1 + X +1 X,[2] + [3] 32 +X+ + x +. ~~~~~~(312)

 where a= h-1 log h Thus, if h-= l a = log (e-1), and X[2]=x (x+2a-1),

 X[3] = x (x + 3a- 1) (x + 3a-2), and so on; if h =log (1 + h) = 0. 01

 nearly, a =0, and X[2] X (x - h) X[3] X (x- h) (x-2h), and so on;.
 and if h-log (1 + he) 1. 75 nearly, a = &-h, and x[2] - x (x + 2-h),
 x[3] - X (x + 3 -h) (x + 3 -2h), and so on.

 (- a)h _- X alh

 89. Let z be that function of x which a is of E, namely, - so
 1~~~~~~~~~~~~~

 that x = (1 + hzxa) h). Since qpoxo = px X, xo = Ze. Applying the factorial
 theorein to x?, 'we obtain a generalization of Herschel's theoremz,

 fX = fE0O + ZqEO + Z2E0r21 +(PE (313)
 If px = Az, cpE =,;a. If h= 0, z = log x, x = W = 0", and we have,
 as a special case, Herschel's theorem. If h = 1 and a = 0, x = l + z, and

 (1 + Z) = pEO' + ZpEO + _1 Z2pE2)+p ; (314)

 while if h = 1 and a- 1, x = 1 and

 + 1 00 = EOO + ZEO + 1 z2+EO?(2 + (315)
 38
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 To illustrate these apparently novel expansion-theorems, take

 (1 + Z)" = E"00 + ZE"O + - Z2E 02) +

 = 1 + zn + 1 z2q 2) + (316)

 ( ' )'f 1?n + z-2n2 + . . ., (317)
 as by the binorial theorein. By putting h zx, we easily derive from (314)

 anid (315) two variations of Taylor's theoremn:

 p (X + h) q (xE)0? + hXr' (XE)0 + -M- 2 p2q (XE)02) + (318)

 (P (x + h) =x +-0?-h~*-Pi _ o + _ h2S-- 20 Z 0(2 _(319)
 These formulas are particularly worthy of attention. In them, we have Tay-

 lor's theorein demonstrated, and the coefficients expressed, without any refer-

 ence whatever to the operation of differentiation; a result, the possibility of

 which would have seemed incredible. We obtain by this means expressions

 equivalent to DcLX which may be added, with advantage, to the list of those

 already considered; the chief advantage being that they are neither vanish-

 ing fractions nor infinite series, and cannot, indeed, be looked upon as in any

 respect transcendental. They are,

 D+X = X71 (XE) 0, (320)

 DcpX =-X='(p X 0. (321)
 E

 For example,

 D X = X-X +xA 0 = x-'Ex (1 + xA+ *.) 0= &, (322)

 D log x -xl7 (log x + log [1 +,A]) 0 =X-t (_ 2+ ) l=. x-1 (323)

 DXe = X_ 1XeE?n0 = Mxm 1. (324)

 These expressions for DIkX may be proved indepenidently of Taylor's theorem.

 Thus, if a,,xm be the general term of qpx, that of D(PX will be a,meml, which
 is also that of x- '+ (XE) 0 , or x- la.XmEm0. In general, similarly,

 D'n(PX = X-n#9 (XE) on), (325)
 D'n4 = ( I)nx- np F $On (326)

 For example, n being a positive integer,

 Dn log x = x-n (log x + log [I + A]) On) = x-n 1 - 1 (237)

 *Since this was written, I have found other forms of D'nx, and therefore of Taylor's theorem. By (110),
 fEocO =foc; hence, 0 (x + AO)(1 + h)O= (x + h), and

 #(x +h) =x+h/(x +A)0?+ 2h2(x +A)02)+.
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 MCCLINTOCK, An Essay on the Calculus of Enlargement. 147

 90. If, in (313), we write q log for p, we have a logarithbnic formula of
 extraordinary generality, which mnay properly be called the loyaritlhmic theorent:

 p log x = (PD0 + zD0 + ?1 Z2+D0[2] +(328)

 An obviously important case is that where p log x (log x)n, and of this,
 again, the most common and most useful special case is

 log x z ? 4- Z2D&12] + 2 Z3D0[3] + (329)

 We have thus, though in a different and more perspicuous shape, the general

 logarithmic series (31). To reduce it to the algebraic form of (31), we have

 only to put y = hz, and to observe that

 DO[2] = DoO (O + 2ah-h) = 2ah-h, (330)
 and so on, the general rule being

 D0'] = D0O0 - ODqO + (PODO = (PO. (331)
 91. Of the various functions of E which may be expressed by the aid of

 the factorial theorem in terms of a, the most important are those other differ-

 ence-ratios, of whatever degree, collectively represented by the symbol a"'.

 When (PE - a', all terms of the expansion prior to that containing a'"oU-
 vanish, as may be seen from (282), and we have rernaining the following

 difference-ratio transfornzation formula :

 in =a Ln aIn Orn + 1] a'no[n + 2]
 a ''P( +2) a + (n ++) an+ J 2 +. . . (332)

 Of this formula one or two special cases are already known, as where a and a'

 are respectively D and A, and vice versa; though it does riot appear to, be

 admnitted, in the discussion of those cases, that any negative value can be
 assigned to n.* I shall now show that the general formula., including, of
 course, tlhe cases just referred to, holds good when n is negative. That

 aP[0= - OPf-1= - xE-' follows fromn (274). If it be doubted, we may, for

 present purposes, define Fo to be rl ax1 , F (-1) to be - and so on, so that

 (274) inay hold good for all possible integral values of m and n. The quan-
 tities so defined are imagrinary, indeed, but if their use enables us to reach

 Here DnbX = 0 (X + A) 0'). Similarly, 0 (x + 'A 0)(1 h)- 0 _ + (x + h), and Dn"0X == (X + 'A) O(n. In general,

 DnWox =p (x + ao) O"n' , and, still more generally, hnin),n (kx) = knp (kx + hao) O'] ; an expression readily de.

 rived from (167) and (280). If n = 1, we have DnX 0 (x + ao) 0. For example, DE$ + a 0
 x2 C2

 -E (1 + 2xa -0 =E 2x.
 *C(ompare Boole, Finite Differences, 2d ed., p. 24.
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 148 MCCLINTOCK, An Essay on thie Calculus of Enlargement.

 finite results, no valid objection can be made to it. We finid by the factorial
 theorein, n being supposed negative, that

 (~~~~~~~~ .)" a -o Oi + -2 0)0[] a2 .. (333)
 From (274),

 (-at) -O[m] = a [ (0[m +J n] l + rn) (334)
 19(1 +rn + n')

 Making, the proper substitutions, and multiplying both sides of (333) by a&,
 we have (332) true wheni n is negative. That the coefficients are in that case

 finite mnay be seen, for

 ( a )- OE = a-na nOa,n] (335) and since OEm] may be-expressed in factorials of the 'form Om]t, neither the ope-
 ration a'n nor the subsequent operation a-n can destroy its finite character.

 92. The coefficient of a + rin (332) is 1). This class of coeffi- 0 F~~~~~~~~~~(r& + r -+1
 cients is likely to become so important that it will be desirable to assign to it

 a special symbol, by way of abbreviation. Let the general symbol be [r]iaqn,
 and let the same device be employed in all special cases, so that, for example,

 P' (n + ri) (r)Dn (336)

 Anon +r?)An (337) F(n + r + 1

 and so on. We may, therefore, wherever we see -an index prefixed to a dif-
 ference-ratio syinbol, understand that it indicates a constant coefficient.

 93. Using these symbols, we may thus write the difference-ratio transfor-

 mation formula (332):

 at n - anz -+r [1at]8n. an 'r I + [2]af n. an + 2 + (338)
 If a'=D,

 Dn = an + ['JDn. an + 1 + [2]D n. an + 2 + (339)
 where, if n - 1

 D =-a + []D1.a2 + [2]D1. a3+. . ., (340)
 which is merely a cPoncise way of writing the general differentiate- expression

 (220). The interpretation of [m]Dl has been illustrated in paragraph 90, in
 discussing the corresponding logarithmic series.

 94. Perhaps the next most important special case of the transformnation

 formula (332, 338) is that where n =- - 1,
 -1 - + m]ai'-1. a0 + [2]a-a..** (341)
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 MCCLINTOCK, An Essay on the Calculus of Enlargement. 149

 a most comprehensive summation formula, which includes as many special

 cases as there are ways of comibining the special fornms of a, such as D, 'A,, A,

 &c., including, as we shall shortly see, those miean central differences whose
 symbol is TA n. Among these special cases, which, having been thus distinctly

 indicated, it is needless to write out at present, are several known formulae;

 known, that is to say, in substance, thouglh the correct form of their coeffi-

 cients is probably a novelty. One of these is the celebrated series of Mac-

 laurin and Euler, namely, in our notation,
 ,A-' = D-?1 + A-1. D? +2A-D +2. . ., (342)

 the coefficients of which are factors of the formerly inexplicable Numbers of

 Bernoulli.* We may write (341) in this form,

 8'-' = (1 + []8at-1. a + [2]-I1. 82 +.. ) 8 (
 whence

 t- la= + [1]ai- 1 .a + [2]at- 1 . a2 + . . . .(344)

 Various special cases of these two formulhe will be found useful in practice.

 When 8 = A and 8'= D , we derive from- (344) the well-known formula of
 Laplace customarily employed for mechanical quadrature.

 95. The coefficients required in the more important applications of the

 factorial theorem ought to be tabulated. This is particularly true of those

 coefficients, represented by [r18an, which are needed in applying the differenice-
 ratio transformation forinula (338), a theorem of which man-v cases will
 become increasingly important in the future. As a specimen of what should

 be done in the tabulation of coefficients, I give now a table of rAn and r)Df,
 computed with due care, which will be found uiseful in applying these two
 formulae,

 'An = D n + lAn .Dn +I + 2Xn . Dn+2 + ...D(345)
 and

 Dn=_ An + 1)Dn .'An + 1+ 2)Dn 'An + 2 + (346)

 These formulae are deduced from (338) by putting a = XD and 8' = A, and vice
 versa. Thev are well known for positive values of n, though the coefficients

 do not seem to have been tabulated; and are true, as already shown, for nega-

 tive values. The table contains, of course, the coefficients of Xn + rin (x -l)%
 and [log, (1+ x)]n. When r < 0, rAn = r)Dn 0. [See Note, pp. 150 and 151.]

 * These numbers are l A- t = 22. 2 A- I = 2A- 10 2.3.4. 4A- 103 0 . 2.3.4.5.6.6-

 6A - 105 = and so on.

 39
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 150 MCCLINTOCK, An Essay on the Caletclus of Enlargement.

 As a mere object of curiosity, this table is very remarkable. An unlimited number of general formula
 exhibiting relations between the tabular numbers may be devised. Some fifty which I have noticed, including
 a smiiall number derived from kniown expressions by dividing by r (n + r + 1), are appended. Negative values
 may be assigned to c.

 EQUIVALENTS OF rdn
 r)D -n-r-1 r-I Jln+lI

 n+ r% 1 rJn+lr-lJn+1
 n+i1

 -n r-l1n+1 2) n .-2Ja+2 . ,

 n 1J-n-lr-lJn+I n 2J-n-2 r-2Jn+2
 n-j n 1ir n. I_ -2

 r - r-An +1 n-1 r-2An+2 n-1 n-2 r-3An+3

 2-r 1 2 +n2 22 +n2 13 23 r?
 rAn + 1 r-lAn + 2 r-2An+3

 (n + r + 1)( - nA+2 + n+3 J
 rJn+c ? l)De r-lJn+c+l + 2JDc.r-2J3 +c+2 +...

 rjn+c + c J-c-1 r-lJ+c+1 r _-- 2J-2-2 r-2Jn+c+2 ? c+ c+

 - l)Dn+r-1 r-IJn_2)nn+r-2 r-2Jn

 n +r-i n -pr-2 n . ,. lJ-n-r r-IJn- 2J-n-r r-.jn r - 2
 n-+r n+r

 n r (a-+r-n-+ -2An -1

 rJd+c + IJ-c r -1lJ+c + 2J-c r-2Jn+c +j*

 rJ'.+c + C l)Cc-l r-1J.+ . 2)Dc-2.r-2Jn+c +

 c n -i rn2- +(C-)r rnt + c r-1 rn1+ (r r 2 rjn-2e +

 n n 2

 +- / r-1).2-n-r r-2)D3-n-r r
 n+rtn+r-1 Jr n+r-2 +(n+r-8)1.2 +
 C ('l n r r) 1D1-n-r + 2C-n r r-2)D 2- n - r +...

 c-n c-n

 c-n r)DID + c-n- 1 r r - r - n-r r - -+ 2 - * * r

 c- nr rn-l+ 2 c-n+

 r - _n )nr r r )r2c nr -n
 c-n-r 2 2c-n--r

 - )Dcn (1J-n -)D-r ? 2a-n-2 r-2)-2Der ? . . .)
 +n-Hr

 _+1l)Dn.r-l)D--r_ n+ 22)Dn r2)D-n-r -_* n3-i- .

 n + r 2r_1( 2 * I)-- 2 +2 2 1 2-)-- +3 2- 3-
 r)D- K.-r-I r-1)D-n-r-1 + r-2)D-n-r-1

 c n t)Dc-n -r+ c-n- - il)D-O- +
 c-n-r c-n-r

 O - n c --I 2c-n 2cn-r

 0c-n-r +n 1 c1 r)D + .
 c n + r + r-

 c-n-* c -n-r c-'+
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 EQUIVALENTS OF r)Dn:

 rj- i - r - + r-l3-nX-r

 n+ r+ r)Dn+l + I r-l)Dn+I
 n +-1 + n n+1 ...
 ljn r- 1)D n + I _ 2 in. rJ22Dn + 2 _

 n+ n+

 I n+r_1__ _ n+r-2 n+r+l +n+r-8 n+r+l n+r+2
 2r- 1 ( 2+ -r )Dnn+22 2 D 23 2 3 ) -) .

 (r)Dn+l r-l)Dn+2 r-2)Dn+3

 (n + r + 1) n+ + n+2 + (n + 3) 1.2
 r)Dn+c + lJc r-l)Dn+c+l + 2Jc.r-2)Dn+c+2 +

 r)Dn + c + l 1)D - c -l1 r- l)Dn + c + I+ 2)- c-2r-2) n+ + + 2

 lAjn+r-I r l)n_2An+r-2 r - 2)n_

 - n + r 1 1)D-n-r r-l)Dn_ +r 2 -n-r r-2 n

 n +r r- nI - n+r n (r)Dn - )D - 1 + ) -l)Dnl )
 n + 7'
 r)Dn+c + l)D- O r-l)Dn+c + 2)D-c r-2)Dn+c +

 )Dn+c + C_ 1 r + r- 2J-2 r-2)n+e +

 r.r)Dn+c r-1 r)Dn+ 2c? + ( jc)r

 - lJn+r-lr-lJl-n-r n 2Jn+r-2 r-2D2-n-e
 n+r 1 n+r 2

 - (1)D - n - r - -lJl-n-r + 2)+-n-r r-2D2_n-r r .

 rDn + r ) +2

 n-i TrA1- n - r r-1A2-n-r r-2A3-nn 2

 n + r -n+r1 n + r +
 c-n-r rcl-n - -r+ C 1)D r . n-r +
 n -n A --rc r I2n -g rr+l 3- -

 c n rjn +n-r - Cn n C 1J-c_1 r-lrc-n-r+1 4
 c -nr c n-r+1 cn 1 rcnrAc - n r 2 r2Ac-n-r *3 + I

 n~~~~~~~~~~~'D +

 c--n r -1-r 2I-

 _n +(1 l-n r-lArn-n-r 4+ 2) flI2 r-2J-n-r-rI1 .

 n+r n+

 :1Kn- cJrl~ - n -r21Jnr21 n

 n - n Ar-n-r +r 1 r-2A2- n - r n + r + 1 n + r + 2 r-3A3-n-r
 _r-1 2 22 + 2 8 3

 r - n - r- 1
 rJ-n_ r-l + r-lJ-n-r--l + 1. 2 +***

 c-n- n rc-Ir + C-n-r 1D-c r-lcj-n-r
 n n-r Djc-ni r
 c n + rJ ln- n r + 2 n, r - I - r

 c-n r c-n-r c-1
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 152 MCCLINTOCK, An Essay on the Calculus of Enlargement.

 TABLE OF AND OF r)Dr - r 1)' ACCOMPANYING
 PARAGRAPH 95.

 r r- 6 r-5 rA-4 r-3 T-2 rA-1 rAO rAl rA2 rA3 rA4 r65 rAG r

 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

 5 3 1 ~ ~ ~ ~ ~~~~~~~~~~~1 35
 , -_3 _62 -2 -32 1-1 0 1 - 2 62 3 21

 2 17 35 11 1 1 1 7 5 13 10 19 2
 4 Y2 6 12 12 6 12 4 6 8 4

 15 25 3 1 1 1 3 5 25 21

 3 -4 12 - 8 12 ?24 4 4 3 8 4
 137 251 19 1 - I 1 31 43 81 331 1087
 4 1 0 4~~~~~~ 2 ~ ~ 4 60 720 240 240 720 ? 120 360 120 80 144 240

 -95 3 -1 1 1 1 23 37 45 259
 5 0 0 - ~ -- S 5 l -~~288 40 160 720 ? ? 720 40 1ff0 72 82 80-

 19087 863 221 -1 -1 1 1 127 605 6821 2243 30083
 6 ~~~~0 - -- 6 60480 12098 30240 745 6048 30240 5040 20160 12096 30240 3024 16120

 -275 -95 11 1 -1 0 1 17 311 265 1045 97 7
 7 4032 12096 15120 4032 30240 4020 12096 20160 3024 3024 90

 9829 - 47 - 199 19 1 1 1 73 2591 55591 7501 63373
 - - - - 0 - - - - - - - - 8 8 1209600 103680 725760 1209600 172800 1209600 362880 259200 604800 1814400 51840 120960

 19 79 1 - 1 1 0 0 1 31 437 253 2669 6671
 9 80640 290304 604800 115200 1209600 3628800 604800 403200 25920 48984 28800 0

 r u 1- 6 )D)D- 5 r)D-4 r)DD-3 r 2 r)D- I )D0 r)Dl r)D2 r)D3 r)D4 r) D5 ')D6 r

 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

 1 3 ~ 5 2 3 I 1 01 1 3 2 5 1 3 -2- 2 2 ~ 1 - 0 -- -1 -23 -2 -53 1
 2 2 ~ ~~~2 2 21 2

 13 25 7 1 1 1 1 11 7 17 25 23 2
 4 12j 6 2 12 12 3 12 4 6 6 4
 3 5 1 1 1 5 15 7 35
 2 8 6 0 4 26

 4 31 1 - 1 - 19 1 137 29 967 1069 3013
 120 24 720 240 240 720 6 180 15 240 144 2401

 I - 1 1 3 1 7 469 89 285 781

 | 120 0 0 480 240 160 ? -6 -10 -240 -20 - - 8- 5

 1 -1 1 1 - 221 -863 0 1 363 29531 4523 81063 242537
 6 30240 6048 304 945 60480 60480 0 560 15120 945 3024 12096 6

 1 - 1 - 11 19 275 1 - 761 1303 7645 139381 48035

 12096 3024 20160 6048 24192 8 1260 672 151212096 016
 1 -19 199 47 -9829 -33953 1 7129 16103 341747 1148963 1666393

 57600 725760 725760 172800 3628800 3628800 9 12600 8400 64800 90720 60480

 1 -1 -79 - 19 407 8183 0 1 -671 190553 412009 355277 22463 9
 I 57600 483840 362880 161280 172800 1036800 10 1260 100800 75600 -25920 720
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 MCCLINTOCK, An Essay on the Calculus of Enlargement. 153

 96. The factorial theorem may be applied in many cases not contem-

 plated"in the foregoing analysis, cases the discussion of which requires the
 consideration of a class of functions much wider than that already widened

 class to which I have extended the. name of factorial. The chief mark of a

 factorial, as I have defined it, is the property (266), ax[m] - mxEm-. That
 this is not the only mark, however, is readily to be seen, since any function
 of x anid m might be made the starting point of a series of functions possessed
 of that property, to be developed by performing the operation a or a-,, it
 being understood that m-acp (x, m) must be called q (x, m r 1). The form

 of the function, however, would, in most cases, be liable to perpetual altera-
 tion, and it is only such functions as retain their form after being operated
 upon by a that can to advantage be classed together under the same name.

 97. I call x[m] a primary factorial because it is the sinmplest form of func-

 tion of which we may say aqp (x, m) = mcp (x, n - 1). If we make xP? = I
 which is clearly its simnplest form, we find that

 x__]- - xEo3 = x. (347)
 The possible complementary constant is, for simplicity, disregarded. Simi-
 larly,

 x2] = 22a-'x = x(x + 2ah -h); (348)

 and by repeated operation we find that (267) is the sitnplest general form of
 function to which the property acp (x, m) = m(p (x, mt - 1) can be ascribed.

 98. Let Q be any function of E; then, whatever value be assigned to m,
 aQx [rm - Qax[m] = Qmx[m 1] - mQx[m -]. (349)

 Let QX[m] be represented by xlAm; then
 axlm' -mx 1. (350)

 In xjm we have, I think, the most general form of function to which the term
 factorial can conveniently be applied.

 99. We can now extend widely the applicability of the factorial theorein.
 Let G = Q 1, where Q is any function of E to which that theorem applies.
 Then, writing qEQ for (E in (291),

 (PEGt- = EQ = fEQ0O3] + pEQ0rl. a+. . . . (351)
 MWriting Olml for QOfm], and mnultiplying both sides by G, we have the factorial
 theorem in this more general form,

 (PE = mEO}?O. G + (pol, . Ga +2 mE01'?.Ga2+ . (352)
 From this may be drawn deductions similar, mutatis mutandis, to those already
 made from the factorial theorem.

 40
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 154 MCCLINTOCK, An Essay on the Calculus of Enlargemtent.

 100. Of the forms which G can assume, one of the most important is
 G = aE-ah + (1 - a) E(1-a)h. (353)

 In this case, let what xHm; becomes be denoted by xJmE, enmploying reversed
 brackets. Then, for all values of m,

 X)nz[ - X$[- 1X[ +1], (354)
 as may be shown by performing the operation G on both sides, resulting in the

 normal equation GXIm[ - x[m]. In general, therefore,

 ]'[= htM F(xh' 1 + a [m + 1]) (355)
 11'(xhJI+ a [m + flr)'(35

 and when mn is positive and integral,

 X]m[= (x+a [E +1] h- h)(x+ a [m+l ] A-2h) ... (x+ [a-1] [m +1] +h) . (356)
 Let us call all functions of this form Secondary Factorials. Just as we have

 distinguished certain functions as primary factorials, because they are the

 simplest functions complying with the conditions ap (x, m) = mq(x, mr-1) and
 (p (x, 0) x?, so we may remark in this case that the class of secondary facto-
 rials comprises those which comply with the conditions &p (x, m) = mnp (x, m-1)
 and (p (x,- 1) = x-1.

 101. The investigation of negative factorials is not required in connection

 witlh the object for which I have embraced the theory of factorials in this

 essay, namely, the development and illustration of the factorial theorem. I

 shall, therefore, dismiss that branch of the subject with but transient consid-

 eration. When rn is a negative integer, we have, as the general form of

 primary factorials,

 (x + amh)(x + amh--h).. (x + [a-1] mh)' (37)
 and, when m is any negative integer (except -1, when x] -1[ - x-1),

 WIn - (358)
 (x + a [m + 1] h)(x + a [m + 1] h-h). (x + [a-1] [m + 1] h)

 as the general form of secondary factorials. By repeated operation,

 anxi - anxl l = l)n r(i + n,) X] -n-t (359)
 But, by (338),

 anx]-l[# - (ain + litan'. a'n + 1 + .) xg 'L
 = (- 1) p(1 + n) (x] ni[i- [n + 1] l'an xn X] -n-2[t ) (360)

 Comparing these two expressions, and writing n- 1 for n, we have this gene.

 ral theorem for the transformation of one form of negative integral secondary

 factorial into another,
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 M1ACCLINTOCK, An Essay on the Calculus of Enlargement. 155

 Since x-n =- rxxl--1[, wve obtain also the following general theorem for the
 transformation of negative integral primary factorials,

 X[-]=- x[-n]' _(n + 1) [lI/an x-n-*1]+ (n + 1) (n + 2) .2ilan. X[-n-2]t . . . (362)
 102. We may distinguish the principal special cases of secondary, and

 also negative, factorials in a maniner similar to that employed for the distinc-

 tion of the corresponding special cases of positive prinmary factorials. The

 following table, showing the chief special formis of XL3] and X[ -,3] X]3[ and X]-,3[
 will afford a sufficient illustration of the use of the various special symbols

 which represent the most important varieties of factorials.
 h a PRIMARY. SECONDARY.

 Positive: Power 0 x3 = XX 3 = xxx

 Upper 1 0 x3)_x(x-1)(x-2) X3( =(x- 1)(x -2)(x - 8)
 Lower 1 1 X(3 x (x+ 2)(x + 1) X)3 (x + 3)(x + 2)(x + 1)

 Central 1 2 X =+_ I - 1 X)3( (x + 1) X(X-1)

 Negative: Power 0 x-3 =- x-3-=

 Upper 1 0 X- 3) = 1X ( (x + 1)(x + 2)(x + 3) x (x+ 1)(x+ 2)

 Lower 1 1 X(1 _ 3)--3 - 1
 (- 3)(x--2)(x 1) (x--2)(x-1) x

 Central 1 2 X(-3) = X) a ( 1_2 21 (x-)(x+)xDx+ (X- l) x(X+1)
 Exclusive of xm, the most imnportant forms of x1t"] are xt', x(rn), and x)m(, corres-
 ponding respectively to the three most important forms of difference, A, A and

 iA. Lower differences and lower factorials are conmparatively unimportant,

 since (p',A4x - p (- A) 4 (- y), where y -x, a slight transformation thus
 enabling us to use A instead of 'A.

 103. For expansion in terms of mean central differences, we may, in
 (352), write i for G and 0)n( for OtmH, when the factorial theorem assumes this
 shape:

 -PE = (PE0)( 0I + (pEO)'(. iA + + (PE012. ImA2 +..A (363)
 To illustrate this formula, let (PE E?, and we have at once the well known
 forinula for interpolation, due to Gauss, and now assuming the following

 symmetrical form:
 O)2( 04 E?=I+ 2 IA2+ 234A4+.. .. (364)

 Again, let E =D; then

 D - IA + 23 IA3 + -345 IA5 +.... (365)
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 156 MCCLINTOCK, An Essay on the Calculus of Enlargement.

 Thus is disclosed, in the neatest possible form, the law of the known series

 (256). Another special case of (363) is the following important, and proba-

 bly new, sumnmnation form)-ula:

 1 _1 1 iA+1 1Y I 36 1 +E - IA ?4 42 1A 43 1A+... (366)
 This formula, which is otherwise easily demonstrable, since 1 + E 2 4-4-+A A2

 may be interpreted as follows. If . .. a-,, aO, a1, .. . be any series,

 aO-al+ a2- aO iao+ 2 -i3a-.... (367) 2 a0 4~ A0---

 This theorem will doubtless be found at least equal in usefulness to the cor-

 responding formula in upper differences, and superior to Hutton's method of

 summing quantities alternately positive and negative. It is almost needless

 to say that iA' may be written in (332) for am, or, if O)m( is also written for OEm],
 for An, according as it is desired to transform mean central differences, positive
 or negative, into other forms of difference-ratio, or vice versa. It does not

 seenm necessary, for present purposes, to enter into a recital of the proof of

 this statemeent. The coefficients represented by riAn and )r(Dn are of considera-

 ble importance, and should be tabulated.

 viI. T'heory of the Calculus of Multiplication.

 104. The Calculus of Enlargeinent is, as we have seen, based on that

 operation which changes px into q (x + It) by adding to the variable. If we
 seek the most simple repetitive operation which shall have the effect of multi-

 plying x, instead of adding to it, we shall find that it consists in chaniging
 qx into q (xEh). Let us deniote this operation, as in paragraph 34, by the
 symxlbol M, so that

 MhqpX -p (Xh) (368)
 The operation Eh, the basis of the Calculus of Enlargement, changes x in

 arithmetical ratio, so to speak, while the operation Mh, the basis of what we
 nay call the Calculus of Alultiplication, changes it in geometrical ratio.

 105. We have seen that in this case M - s where 4x = log x, and that
 all the results derivable fromn a possible Calculus of Multiplication can be

 obtained at once from the Calculus of Enlargement by expressing functions

 of x as functions of u -- log x, and observing that Mx = EN . It is, therefore,
 unnecessary for any practical purpose to discuss that possible calculus,
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 MCCLINTOCK, An Essay on the Calculus of Enlargement. 157

 Nevertheless such a discussion will not now be useless, for it will serve to

 illustrate anid impress upon the mind the truth that the Calculus of Enlarge-
 ment is not the only possible calculus, but is rather to be regarded as the
 simplest of rnany possible systems.

 106. Let log M be represented by. L; then, by (69),

 xMhA = 1 +hL+ 2L2 +. (369)

 (p (Xuh) = (PX + hI4X ? 42L2(x 2+?*. (370)

 Putting x = 1, and afterwards writing (p log for (p, we have

 (p (h) = (P1 + hLP1 + + k2L2(pl + (371)
 12

 (ph = 0? + h log 1 + I42 qA(pog 1 +... (372)
 These three theorems are respectively analogous to those of Taylor, Herschel,
 and Maclaurin. Assuming, what will be proved, that

 (pL4 log 1 = 4Lp log 1, (373)
 we have also

 (p (E^h) = (pl + k7pM log 1 +2 pM+ (log 1)2 + .374,

 (ph = (PO + hL log 1 + 2h2qL (log 1)2+.... (375)

 107. From (75),
 L log x =1. (376)

 From (77) and (78),

 (mMx, (ul V7 'W * ) (Mx ItMxIvm$Iw ** (U, v, w **) (377)

 (pMX I W (U, V) = q (M.mx I )4)( (, v w ) (378)
 From (88),

 L,V =-Lx logg U. LuV. (379)
 108. By comparison of the general terms of the expansions of the two

 menmbers in each case, respectively, we find that

 (pM$4 (xy) = oMy, (xy), (380)
 (p (yM$) AX 4 (XMy) (py, (381)
 (PMxm, _ XM( (EmM) g>X (382)
 + (Mxmy .) S = S(6m ) X4x (383)

 where s is a quantic of the nth degree, say s = hyk.., where h + k+.. .= n;
 also

 (> (Mxmy . )S; (X , . . S(P (,C1MXMv * (X, Y . (384)
 If, in (381), y =1, (pM4x4(xM1)(p13

 414X =; (XM1) ttl X (385)
 41
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 158 MCCLINTOCK, An Essay on the Calculus of Enlargement.

 (PMXm xmMm n,1 = xmrp (0) (386)
 4MMc = cpl, (387)

 G being anything independent of x.

 109. Writing, in the foregoing formuloe, (p log for p, we have these
 general theorems,

 (PLx, (U, V W, . ) (LX I u + Lx I V + Lx I W + * ) A (UI V, WI. * * ), (388)

 PLx( I u,; (,P V) = P (Lx$- Lx I V) ( (w, V), (389)
 (PLx$P (XY) = OLy, (XY) 7(390)
 (p (log y + Lx) PX = (XMY) (p log y, (391)
 cpLXmXAX = Xnlp (M + L) AX, (392)
 (p (L$ + LY + . . .) S = S(n, (393)
 (p (Lx + Ly + * * ) 5 (X;y **. =s(p (n +L$x+Ly + .. .) (X, y .), (394)
 pL,4X =A (XMj) p log 1, (395)
 (PLXmn = xmcPM, (396)

 (PLC = C(PO. (397)

 From (395), writing 4 log for A, and putting x = 1, we have (373). As spe-
 cial cases of some of these general theorems, we obtain

 Vxc- (US, V, . . .) = (Lx I uf + Lx I V + * *); (U V * * ) (398)
 LXUV = ULXV + VLXU, (399)
 LX IX% (U4, V) = (L$ - L I v) nf; (U, V), (400)
 L mxm x,n (401)

 LX M = mxm, (402)
 Lc= 0. (403)

 110. From (379), since LuU = U,

 LX?U = uLX log u, (404)
 Le-X = EoxL4XI (405)

 To illustrate (404),La = cxLkx = xkx (406)
 LX m = xmLqM log X = mxM, (407)

 L log u LxU (408)

 log x -= 1. (409)
 x

 111. If, we know the development of (p (xeh) in positive initegral powers
 of h, we can 'tell from it the value of L(pX, which, by (370), is the coefficient
 of h in such development. Thus, since xtmhm = xm (1 + hm + . . .), we have
 LXm = MXtm, and since log (xeh) = log x + h, we have L log x = 1. Again, the
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 MCCLINTOCK, An Essay on the Calculus of Enlargemnent. 159

 various special cases of the general logarithmic series (31) will afford equiva-
 lents for L in ternms of M or of simple functions of M, by means of which we

 may ascertain DPX. It is needless to recite these cases. As illustrations,
 0- ~~~MO

 LX"' = M 1 Xwl = Xm 6- 1 = mxm (410)

 L log x = log (zs0)-log x 1 (411)

 LX'n = (Mx-i) Xm - 'M-)XIn + X* *.=X([E? -]. . X 42

 112. It follows froma (403) that, when the inverse operation L-1 iS per-

 formed, a complementary constant must be introduced. Performing that
 operation on (399) we have

 LX 1ULXV - UV- Lv- I VL U. (413)
 For example,

 1 IXx Xx - 1-IX2 x L7 X$e = Xe - L-Xex
 1 1

 EX- 2x xEx + L-1 3E 2 Xe

 1 2 1+ 3 x = xe- 1 w2eX x _l3 x3sx- . . . + c . (414)
 Xe X2e ?2 3XC,.--C

 But L-IxEx = E. Substituting this in (414), dividing througlhout by Ex, and
 writing - x for x, we have

 CE = 1 + S + 2 x + . . ., (415)

 wherein putting x = 0 shows that c = 1.

 113. If qx is algebraically less than qp (xeh) for all values of h lying be-
 tween some positive quantity and som-ne other negative quantity, exclusive of
 the value h- ,0 it is a minimumn, and if greater than q) (xeh) for all such
 values, a maximum. If, in

 cp (XEh) = (PX + hLpx + 2 h2i2px +m. .., (416)

 LfpX does not vanish, px is neither a maximum nor a minimum, unless, indeed,
 L(PX iS infinite, a case which we need not now consider; for, by making h small
 enough to cause hLtpX to exceed the sumi of all succeeding terms, p (xeh) -X
 and p (xe-h) - px will have different signs. If hL-X 0,

 p (Xeh) -x ? { h2L2pX +..., (417)

 and when h is small enough to cause + h2L2qpX to exceed the sum of all suc-

 ceeding terms, p (Xeh) - qpx and p (Xe-h) - (x will have the same sign, and q)x
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 160 MCCLINTOCK, An Essay on the Calculus of Enlargement.

 will be a nmaximum or a minimum, provided L2+px does not vanish, in which
 case the matter is still in doubt. If L2pX is negative, px is a maximumn, and
 vice versa. It may in this manner be shown that for (px to be a mnaximum or
 minimum an odd number of powers of h must vanish, in which case the coef-

 ficient of the next succeeding power will, by its sign, determine whether qx is
 a maximnum or a minimum. For example, let qx = '- x + ,x -'+ 2 cos (x - 1).
 In this case it will be found that, when X = 1, LAX, L2(X and L3Px all vanish,
 and L4pX = 4, showing that (px is a minimuml.

 114. Since the processes of any calculus may be expressed in the lan-
 guage of any other calculus, those of the Calculus of Enlargement may be
 expressed in the language of the Calculus of Alultiplication. For example,
 let us in (370) write qp log for q and x for log x; then, if u=Ex,

 p (x + h) = (PX + hL,PX + 2 h2L2+ X+. . .,(418)

 a form of Taylor's theorem. Since by (379) L. = X- Lx,

 cp (x + h) = 4px + hkx-rL,PX + 1 h2 (X-1Lx)2+X + (419)
 The results of the Calculus of Enlargement may thus, in general, be obtained
 by the processes of the Calculus of Multiplication; though the former method
 must, of course, be preferred on the ground of simplicity. For expressing
 the results of the Calculus of Multiplication in the language of the Calculus
 of Enlargetnent we have, from (93),

 LX = LXX. DX = xDx. (420)

 C. SUMMARY.

 115. The Calculus of Enlargernent relates to the theory and practice of
 certain operations, embracing in its field the Calculus of Finite Differences,
 the Differential and Integral Calculus, and the Calculus of Variations. The
 operations comprised by it are those whose symbols are functions of E, the

 syinbol of Enlargement, the operation by which px becomes q (x + 1). It
 would be possible to form any number of systems, each a calculus comprising
 operations whose symnbols are functions of some simple symbol other than E,
 but the results so obtainable cail be got from the Calculus of Enilargement,
 and the elaboration of suchi other systems would, therefore, be superfluous.

 116. All functions of E may be treated separately from the subject of
 operation, by any algebraic rules applicable to symbols in general, the theory
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 MCCLINTOCK, An Essay on the Calculus of Enlargenment. 161

 of the functions of E forming an Algebra of which the theory of Differentia-

 tion is that part corresponding to the theory of Logarithms in ordinary Alge-

 bra. The symbol of Differentiation, D, is the logarithm of E, the symbol of
 Enlargement. Whatever theorems may be proved regarding functions of E,
 as such, are true of D as one such function. It is worth remarking that at

 first the theory of logarithms was treated in a far-fetched and comparatively

 obscure manner, in coninection with the properties of the hyperbola; nmany
 years passing before it was reduced to a simpler form as a branch of algebra.
 It is not without historical analogy, therefore, that the doctrine of differentia-
 tion has hitherto failed to find its true place as the logarithinic branch of that
 wider algebra, the doctrine of the functions of E, or Calculus of Enlargement.*

 117. For the direct interpretation of D it is necessary to write E for x

 in expressions giving log x in terms of x or of simple functions of x. The

 two general logarithmic theorems (30) and (31) embrace, as special cases;
 many such expressions. For the better uinderstanding of logarithms, it is
 best to refrain, in the definition of a logarithm, from describing it as an expo-
 nent. To explain differentials, we have the definition d = log e, where e rep-
 resents enlargement with respect to a hypothetical variable; anti also, for
 infinitesimal differentials, the equation d =E(-a)o - E-1a0. The most iinpor-

 tant expressions equivalent to D are three principal vanishing fractions and

 three corresponding series. The symbolic vanishing fractions appear to be
 novel, though the practical application of one or two of them is familiar;
 while, on the other hand, the series are well known in their symbolic form,
 though their practical use as definitions of D does not seem to have been pre-
 viously suggested. These fractions and series are special cases of a single
 differentiate-expression (220), which is itself a special case of the factorial
 theorem. Taken all together, and in connection with other equivalents of D,

 they convey a broad and comprehensive idea of the meaning of the operation
 of differentiation; the notion afforded by the vanishing fractions being at
 once the hardest to grasp and the most satisfactory when clearly understood.

 *' In fact, the arrangement of the truths of analytical science, such as history gives it, is very different
 from their logical and natural arrangement; and as, in the infancy of analysis, mathematicians were more
 solicitous to advance it, than to advance it by just and natural means, they frequently deviated into indirect and
 foreign demonstrations. . . . The evil attending on this mode of procedure has been, ... that the principles of a
 general method have been sought for in some particular method, properly (that is, according to the logical and
 natural order of ideas) to be comprehended under the general one." Woodhouse, Analytical Calculations, p. 40.
 This was written relative to the history of log x, but applies equally well to that of log E.

 42
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 The Mlotion of a Solid in a Fluid.

 BY THOMAS CRAIG; Fellow of Johns Hopkins University.

 IN the following paper I have given a brief account of some of the most
 important woik that has been done upon this problem, together with some
 additions to the theory which I believe to be new. The method that I have

 given of transformation by means of elliptic coordinates seems to me to be
 very simple and practical, depending, as it does, upon the most elementary

 properties of the coefficients in a certain systein of linear equations.
 Th~e fluid under consideration is assumed to be perfect, incompressible

 and extending to infinity in all directions; and furthber, the space occupied by
 the fluid is supposed simply-connected and consequently the velocity potential
 single-valued. A velocity potential will exist; as we assume that the fluid is
 originally at rest, and that the entire motion of the system is due to the
 motion of the solid, and in consequence there will be no rotational motion
 generated among the fluid particles.

 Designate by u, v, w the component velocities of translation of a point
 in the body with respect to a set of rectangular axes x, y, z fixed in the body,

 and by p, q, r the component angular velocities of the body around these axes.
 Now, letting n denote the outer normal to the surface of the body, we have for

 the determination of the velocity potential p the equation

 1. O= (t + zq--yr) cos (n, x) + (v + xr-zp) cos (n, y) + (w + yp-xq) cos (n, z).
 Since the fluid is to be at rest at infinitv, the first derivatives of p with respect
 to x, y and z will vanish for infinitely great values of these variables; and

 since 2cP =: 0 throughout the entire space, and p with its derivatives is single-
 valued and continuous, we can write

 2. P = U(1 + V+2 + P3 + PP4 +qp5 + rP6
 a linear equation in the six quantities u, v, &c. The six functions qP, 02, &C.,
 satisfy the equation A2(p = 0, and, at the surface of the body, the relations

 anp =cos (n, x) -a-- =yIcos (n, z)-z cos n),

 3. aS2 cos (n, y), a-5 =z cos (n, x)-x cos (n, z),

 cos (n, z), X os (n, y)- y cos (n, x),
 162
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 CRAIG, The Motion of a Solid in a Fluid. 163

 The entire motion being due to the motion of the solid, we know that the
 energy of the system will be a quadratic function of the six quantities
 u, v, w, p, q, r. Denote the energy by T and we have,

 2 1 = a11tu2 + a22v2 + a33w2 + 2a,2uv + 2a13uw + 2a23vw

 + a44p2 + a55q2 + a66r2 ? 2a45pq + 2a46pr ? 2a56qr
 4. + 2p [a714u + a24V + a34W]

 + 2q [a(15u + a25V + a35W]

 + 2r [ar16u a26V + a36W]

 the coefficients ad being constants depending upon the shape of the body and
 the distribution of mass in its interior. If we divide the energy Tinto two
 parts, T' and T", the former may denote that portion of the entire energy due

 to the fluid-the latter, that to the body; then the coefficients -aj are also
 dividled into two parts and we may write ay = a',1 + ?a". Kirchlhoff has shown
 that

 a =- pfdsq-, jdsp D .

 Of course i aid j have values from 1 to 6 inclusive. The values of the coeffi-
 cients a"?; are easily obtained from the expression for the energy of the solid, or

 2T dm { (u2 + V2 + W2) + (.2 + Z2) p2 + (X2 + Z2) f2 + (X2 + y2) r2

 + 2x ('vr- w) + 2y (wp u,r) + 2z (uq vp)
 - 2yzqr - 2zxrp - 2xypq}.

 We will now take up the Kirchhoffian equations of the motion of the
 solid, and for brevity write

 U~ ar ap 3T
 5aVT, Q aT

 .aT R~ T W a-, 1 a-.
 These equations are then

 dU rV gW, dP w V v-vW+ rQ -qR dt d

 6. dt =p W-r U, dtQ u W w U+?pR-rP,
 d W ~ dR~~qp

 dt q U _p V, d -- v U- t V+ 67-P }Q
 Concerning the forces that act upon the body, we know that, whatever be the
 motion at any instant, we can conceive it generated instantaneously frorn
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 164 CRAIG, The Motion of a Solid in a Fluid.

 rest by a properly chosen impulse applied to the body; this impulse, accord-

 ing to the method of Poinsot, consisting of a force and a couple, whose axis

 is in. the direction of the force. The quantities U, V7 &c., are then the com-
 ponents with respect to the axes x, y, z of this force and couple; and the

 above equations show that these quantities vary only with the motion of the

 axes to which they are referred. Kirchhoff has observed that a particular

 solution of the above equations is obtained by supposing u, v, w constant and

 p - q = r =0 , provided we have
 7 U V W

 7. ~~~~~u- V W qt v w

 or,
 I allu + a12v + aj3w a21u + a22v + a23w a31u + a32v + a33w

 u V w

 (of course aijj= ),that is, provided the velocity, of which u, v, w are the rec-
 tangular components, be parallel to one of the principal axes of the ellipsoid,

 8. a11X2 + a22y2 + a33z2 + 2a12xY + 2a13xz + 2a23yz - const.
 Calling x the common value of the above quantities, we have for the determi-

 nation of X the cubic,
 a(11-, a12, a13,

 9. a2l, a22 -, a23, =0.
 a3l, a32, a33

 The eliminant of the equations of motion is

 0, 0, 0, O,-W, V,I

 0, 0, 0, W, , -U,
 0, 0, 0, -T V U, 0,
 0, - W, V, 0, -1? Q,
 W, 0, -U, R, 0, - P,

 -V U, 0, -Q, P, 0,
 which is obvliously equal to zero, showing that there are only five independent

 relations to be satisfied in our equations, viz: the ratios u: v: wp p: q: r .
 Reverting now to our value for 7T, we obtain for U, V, &c., the follow-

 ing values:
 U= ailu + a12v + a13w + a14p + a15q + a16r,
 V = (t21U + a22v + a23w + a24p + a25q + a26r,
 T W= a31u + a32V + a33w + a34p + a35q + a36r,

 10. P = a41I + a42v + a43w + a44p + a45q + a46r ,

 Q = a51u + a.2v + a53w + a54p + a55q + a36r ,

 R1 a61u + a6,V + a63w + a641p + a65q + a66r -
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 CRAIG, The Motion of a Solid in a Fluid. 165

 Dernote by V the determiniant

 a11 a12 a13 a14 a,5 a16

 a2l a22 a23 a24 a25 a26
 a31 a32 a33 a34 a35 a36
 a41 a42 a43 a44 a45 a(46
 a51 a52 a53 a54 a55 a56

 a6l a62 a63 a64 a65 a66

 According to the well-known conditions that must be satisfied in order that T

 may be positive, we nmust have

 a, a,, a6[
 7 aai3( aal1aa22 aal ... aa66

 all positive and different from zero, a point of great importance.
 Now from the last equations we can determine the velocities in terms of

 the forces, and for this determination we have

 IV7 [ + D V+ aD, W+ __ p+aDQ f_R
 3a,, 3a12 Daa, Daa4 Daa5 aa,6

 =v- L aru + ar V+aI? W+aP+8rQ +aB

 t = V-1[ U+ a(tU a+ (t23 a+ a24 P+aa25 a a26

 W = V-t[ D + D + DW+ D_ p+ _aD Q + R] aa3l Daa2 3a33 (a3 aa35 aa36

 aFu+a a f f Q+ ?6 . S V S~~~~~a4l +aa42V+ Da43 + -aa4 P+ aa4'5Q + aZ46]

 2 V S~~~a5i aa+,, aaF aa3+a4+aa55 +aa5R]

 a-a- U+ W+a r p a+ Q+ a R3 061 @62 063 aa64 06 aa66

 For equations 6, it is easy to see that we have the three integrals
 2T=L,

 12. U2 + V2 + W2

 UP+ VQ+ W-R N
 L, MHand N denoting arbitrary constants. Tllese are the general integrals
 given by Kirchhoff. If we introduce a set of axes i, , fixed in the fluid, we

 of course have, a, 3, y, a, .. . 3 being functions of the titne,
 a a+aix + jy + IzX

 13. + +a2X+ 2,y+ )2Z
 = 7+ a3X + /3,Y + 2/3Z,

 43
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 166 CRAIG, The Aiotion of a Solid in a Fluid.

 the quantities u, v, w, p, q, r being connected with the quantities a, , . . . by
 the known relations

 q-Valdt r dt + ldt

 14. &c., &c.
 14. ~~~~~p =a2 dt3 + P2-dt + r2 dtr3

 &c., &c.
 and also

 dt =a3q-ca2r = {33q-32r d-t Y3q -2r.

 These last nine equations are of the form (as remarked by Clebsch),

 dA1 A3q -A2r,
 dt

 cA2
 dA2 Ar -A3p,

 ciA3

 from which we have immediately the integral
 A +A2+A2=const.,

 the const. being for our case = 1. Multiply now equations 6 by A,, A, A3
 respectively, and add, observing the above relations, anld we have

 dt (Al U+ 2 V+ A3 WV 0
 which gives us the three Kirchhoffian integrals

 a,U+oa2V+a 3W- Li,
 15. I U+ /2 V+ 3 W- ,

 l U+ 72V+ 73 V= N.
 To these integrals for determining the position of the body we can add three
 more, viz:

 ajP + a, Q +a,R I +l flN _yZ
 16. /1P + /2Q + /31R =m?+ L'- aZY',

 )11P + 2Q + )3R n + aMs-'-L',
 the following relations obviously connecting the constants:

 17 L'2 + _[f2 + N't2 =X
 17. L'l+M'm+N'n=lN.

 The particular case where the body has its mass distributed symmetrically
 with respect to three mutually perpendicular planes, i. e. where Ttakes the form

 allu2 + a22v2 + a33W2 + a44p2 + a55q2 + 66r2,
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 CRAIG, The Motion of a Solid in a Fluid. 167

 has been discussed in a very elegant manner by Weber in a recent number of
 the Mathematische Annalen. The investigation is made in the first place to
 depend upon a remarkable property of the a-functions of two variables, and
 secondly, the author proceeds to the direct integration of the differential
 equations by means of hyperelliptic integrals.

 For the particular case where the body is an ellipsoid, the values of aY),
 determined by the formule

 a,j - pfdi a
 can be readily seen to depend upon elliptic functions, the integration extend-
 ing over the entire surface of the ellipsoid of which ds is an element. The
 case where the body possesses a surface of revolution and a symmetrical dis-
 tribution of mass, has been very fully discussed by Kirchhoff (in Vol. 71 of
 Crelle's Journal) who makes the solution of the problem depend upon elliptic
 functions. The form of T for this case is given by

 2T1 a1u62 + a22 (V2 + w2) + a44p2 + a55 (92 + r2),
 the constants reducing to only four. In Vol. 12 of the Mathematische An-
 nalen, Kdpcke has discussed the same problem by aid of the a-functions,
 obtaining results which are very convenient for numerical computation.

 Steady Motion.

 The method eniployed in the following brief examination of the steady
 motion of a solid in a fluid was suggested to me by reading Routh's Essay
 "On the Stability of a Given State of Motion." I believe the results stated
 to be new, though I would not venture to make any positive assertion to that
 effect. I can simnply say that the investigation is original and the results
 obtained seem of interest. "A steady motioni is such that the same change of
 motion follows from the same initial disturbance at whatever instant the dis-
 turbance is communicated to the system." The conditions for steady motion
 of the solid are given by the relations

 dU dV dW

 a dt dt ~~~~~~~~~~~dt
 dP dQ dR

 (3. dt ~~~ ~~~dt di
 The conditions a are satisfied by making,

 18. U V -V
 p q r
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 168 CRAIG, The ]otion of a Solid in a Fluid.

 or,
 18'. ct11 +u + a12V+ a3w a2,u + a22v + a23w a3l?b -- a32v + a33w
 18.

 P q r
 The equations f give now

 P-Au Q--Av_ R- Aw 19. _-
 p q =

 These last equations can evidently be replaced by

 20. UP + VQ + WR-A(uU+ vV+ wW)
 pU+ qV+ rW

 or

 (Xu + 5p) U+ (Xv + Ff) V+ (Xw + ur) W= const.,
 wvhich is identical with the known relation

 UP+VQ+fWRB const.
 Fro n the expressions for X and y we see that it is possible for the body to
 have an infiinite numiber of steady mnotions, without making any restrictions
 as to the form of the body or the distribution of mass in its interior. These

 steady nmotions being each produced by a certain impulse, will consist in gene-
 ral of a translation in the direction of, and a rotation round, the axis of the

 cornponent couple. The locus of the systemn of axes is a ruled surface, whose
 position with respect to the body is of course invariable. The comnponent
 velocities of the body with reference to the axes x, y, z fixed in the body are

 u + zq-yr
 v + xr - zp,
 w +yp-.%q,

 or, as these may be written

 + [P- p -j+ X (zq- yr)],

 A[Q -- ttg + % (xtr -zp)],

 -,[R - pr + X (yp -xq)]

 Substituting for U V, &c., their values in the equations giving X and u, we
 obtain the system. of linear equations

 al1u + a12v + a13W + (a14 - It) p + a15q + a16r -0
 a2lu + a22v + a23w + a24p + (a25- X) q + a26r - 0,

 21. a31u + a32V + a33W + a34p + a35Q + (a36 -X)r-O,
 (a41-X) U+ a42v + a43w + (a44 -)p+ a45q+ a46r-0,
 a51u + (as52 - v + r53W + a54P + (a55 - 1) q + a56r = 0,
 a61U + a62V + (a63 X) w + a64p + a6,q + (a66-t) r = 0.
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 CRAIG, The Motion of a Solid in a Fluid. 169

 Eliminating the ratios U: v: &c., we have for the relation connecting the quan-

 tities k and It
 a11, a112 a13, a14- C , a15 , a16
 a21 , a22 , a23 a 24 a a25-, a26

 2, a31, a32, a33 , a34, a35 , a36-2
 22. VA~~ a41- a a42, a43 7 -44 a45 a 46

 a51, a52- 2X a53 , a54, a55-, a56

 a6l , a62 a 63-, a64, a65, a66

 This equation affords us the means of determining either X or a, provided we

 assume a determinate value for one of these quantities. Assume for X some

 arbitrary value, then the equation V., = 0 is of the third degree in Y, and we
 have thus, for any one value of A, three corresponding values of y. We
 have now, -for the complete specification of the motion,

 23. U: V w:jp q: r-

 arxg arx, @arx arAg aD^g 0Arx
 @a a12 aa,3 -a14 aa15 aat6

 substituting in the minors aDx the assumed value of X and the determined
 @a16

 value of y.

 If we give y a determinate value, we have v7, = 0, an equation of the
 sixth degree for finding the corresponding values of X. If we make t- O, 0it
 is known that the roots of VA = 0 will all be real, three positive and three

 negative, and the nmotion in this case will be completely determined.
 For simplicity we may assume the axes of x, y, z parallel to- the three

 directions of permanent translation, which is equivalent to making

 a12= a13 = a23 0?;

 we have then from the first three of equations 16,

 (a,4 - )p + a,5q + aw6,'
 a11

 24. a24p + (a265-)q + a26r
 a22

 w a34p + a35q + (a36-A) r
 a33

 44
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 170 CRAIG, The Motion of a Solid in a Fluid.

 Substituting these values in the last three of equations 16, we have
 [ )2 2 2 ia-4 24 -a (a4 _ a24 +a34+ ]+ - ) al,5 + a24 (a25-2) a34a35 +
 (a4 a2 a3 a+ j +74 P+ +a4sJ a11 a22 a33 j a11 a22 a33

 + [(a14 -) a16 + a24a26 + a34 (a362) 2 a

 [ a -+ a+ a + a46j r+ap (0,4-2) ~~all + P L a33 a5

 [a -011 ail5+a24 (a2.5 - )+aa a2 1 +(25 2)2 ~

 + [i5016 + (a23 i)a22 + 3a5 Fa7 2 ?a] r = 2

 [ (a14 2) a,6 +a24a2 a34 aJ 2) +r46ap+ 5a,6 ? a35 ) 2 (036-2) 6]
 + 6 33 + a3 5 j + 1 (a2 + a + a5

 + 5 026+ a25 + (03a6 - 2)2 a6 ~

 Ep+ G'q+ :F'r rp,
 25. G'p+F~+E'r= st,

 F'p+ E' + Gr= +r .

 Thee have then for sy the cubic

 E- +, G', F'
 26. G', F- e, E' = .

 F', E', G y

 Thus the directions of the three axes corresponding to an assumed value of Z

 are at right angles to each other, but need not intersect; and, in general, no

 two values of y will coincide with each other. Taking then a series of values
 of 2u and finiding the corresponding values of t, we will have, as the locus of
 the axes, a ruled surface of three distinct nappes.

 Assume, in equations 6, that the only.force wlhich acts uponl the body is

 the couple whose components are P, Q and R, i. e. make

 U V .W_0;
 the equations are then satisfied by writing

 27. p Q R
 P q r

 each of these ratios being, the value of y for X 0. Calling l 2, Y3 the
 three corresponlding values of a, write

 28. Q =
 R yr.
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 CRAIG, The lotion of a SQlid in a Fluid. 171

 These, substituted in equations 6, give us
 dpt

 Mt1 dt- y ) -

 29. M1 dq (13- 1) rp
 dr

 dr3 - = - j2)pQ;

 these three equations are identical in form with Euler's equations for the rota-

 tion of a rigid body, and their solution can, consequently, be regarded as

 known. The coefficients yl', (2, 1L3 depend, in our case, not only upon the
 body but upon the density of the fluid; -if this latter was supposed equal to

 zero, the problem would coincide with that of the rotation of a free rigid body.

 Assume that the body possesses three planes of symnmetry, or, to fix the

 idea, assume the body to be an ellipsoid. The expression for the energy be-

 comes in this case

 2T = a11u2 + a2v2+ + 33w 2 + a + a55q2 + a66r2,
 the other terms all vanishing, since the sign of T must remain unchanged if
 we change u into - u, v into - v, &c. We have now

 U= aJ1u, P =a"p
 30. V a22vX Q a55 ,

 T a33w, R = a66rX

 giving, of course, for steady motion,
 du dv dw 0

 dt dt dt

 dp dq dr= O

 dt dt dt =

 or the axes of steady motion are the axes of the ellipsoid.

 Motion of the Fluid.

 The equations giving the motions of the fluid particles relatively to the
 body are

 dx aD -z+r
 dt + yr,

 31. = - v - xr + zp,
 dt D,y
 dz atp
 dt az

 p denoting the velocity potential.
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 172 CRAIG, The Motion of a Solid in a Fluid.

 In the investigation of the motion of the fluid particles due to the mo-
 tion of a body of given form, it is often desirable to transform the equations
 of motion from rectangular to curvilinear coordinates, and to this transforma-
 tion we will now turn our attention. Taking the quantities 2l , %22, 23 as the
 variable parameters in a certain system of curvilinear coordinates, let us sup-
 pose that we have the relations

 , = F, (x, y, z) , X ~ fl (-%l 21 /3)
 32. %2 = F2 (X7 Y, Z) , and 33. y S,f2 (21, %2, 23),

 X3 = F. (x, y, z) , Z _f3 (Xl 7 X2 7 /%3)

 The known conditions that the surfaces 2, = const., 2q = const., 3 = const.,
 should be orthogonal are

 3a41 a2 +a21 &2 a2i1 aR2 0 &c
 ax a y y z

 and

 35. ax ax a0y ay- a@z a0z = ? &C. 7 ,a22 a2 -2 a2 j~3 22 ,&.
 We have further,

 dx af1 daf + dX2+ afA3 I

 36. dy - af2 l + af2 dX2 + tf2 d3

 dz -- d2f + aA dX2 + a f3 dA3.

 These give, as is well known,

 _22 ax ay~ az E2d2A1 AAI- dx + dy + dz
 &J~~~~a

 2 d a2xd + a d + az dz

 G2d/-t3 ax dx + ay dy + az dz

 whence

 (A)+ (DA1 + AI'
 F2_ .2 ay,\ 2 az 2

 E2 =()+
 37. F2 \02 ah
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 CRAIG, The Motion of a Solid in a Fluid. 173

 and
 1 (al) 2 + a21) 2+ 3a21 2

 1 ~a22 2 a22 92
 38. 1F () 2 (+ 2) + +

 = (a))2 (a2 (N)2

 The F entering here has, of course, no connection with the F in the above
 functional expressionls. Our equations for the motion of a fluid particle now
 give, by very easy reductions,

 dE2d-l a ( a + y+ az az
 Edt a2l a\,jta+T vaA+ & a

 39. F2 d = + + w - (
 dt a22 2

 G 2dA3 a 9-( ax + v aA3 + w Das)( aA3

 where p a , r

 40. (PYa)= x y, z
 a ax ay, a
 A2~ ~ a2i

 Suppose we have now a system of orthog,onal surfaces of the second order

 given by the equations 2 *2 y2 2
 ..__ _ _ . - 1

 a2+ 22+ b2 + 22 ?2+ 22 x2 2 2

 a2 + A3 ob2+ A3 ??2+ A3

 where, for 24 = 0 the first equation becomes the equation of the surface of the
 body it this is an ellipsoid.

 The values of x, y and z, derivable from these equations, are, of course,
 well known, but the following direct transformation, which I believe to be
 new, is so brief, and depends upon such elementary properties of a system of
 linear equations, that I give it before proceeding further with the problem in
 hand. Consider the group of n linear equations:

 x1 X2 x3 x
 __ + '-2+ 1 +*** 'X
 a1 a62 a3

 42. Xi?+X2?+X3+ X. l
 p1 ,2 x3 PI
 * . * * V* *

 Pt+ o2+ - + * 0 . -
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 174 CRAIG, The Motion of a Solid in a Fluid.

 havino the following relations among the quantities a, i3, &c.:

 a, a2 d l 2 7)1 ;K2 = P . P2

 43. a-aj=,-3j= yl1yj -..i. -i I

 a,- a. g3 -1n ^)/ Yi n .P . . tn t
 and

 a, -3l = a2- &2-a3-F3 =,, -
 &c.,7 &c., )&c.

 Designate by V the eliminanit of our set of equations-that is,
 |a7', ar', a3' 1 .

 a-1 a-1 a-1 a-1
 1 X 62 7 3 X 6 n

 V1 1 V2 1 V- 1 V- 1

 Then we have for the values of xl, x2, &c.,

 1 aF aF aF.
 Xi=V LaC- + aLJ + V I *

 1 + 1+ ' 1

 .~ ~~1 .121 .1~' . .... . vy.

 2X V 1_ + 0S1 + a. - . P 7

 For agineb subtraetering tono thesfrtclunfo euachitiof wrthe othe ltrs, .nti

 1, a1 a2-1 a1-a3 __.__.al,

 a2 a a3 aaF
 1, P2 ' a3 P2Pn

 1 iB1 A2 31 s~~~~i3 i i
 V ~ all-lyl v-l X l92S si3X&C.
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 CRAIG, The Motion of a Solid in a Fluid. 175

 This becomnes, by virtue of the assumed relations existing between the differ-
 ences of the quantities, a, ...v

 -a 1 a- 1 a-1

 (al-a2)(al-a3) .. (at -an) 1, 1X-, 1 a-
 1 -- -1 -1

 V2 V, 3 , v?L

 The principal minors of this determinant, with reference to the elements in
 the first column, are the same as the corresponding principal ininors of our
 original determinant; therefore, we have

 45. (f1-ea)(a4- 3) (al -an) [a, a + +tl

 from which follows

 46. = a1P1r1 ...
 . 1 ~ (al-a2)(al - a3) . . . (al-an)

 and in general

 (0-'i al)(a-i Q a2) . * U ( A)

 These are of the same form as the expressions obtained by Jacobi and given
 on page 202 of the " Vorlesungen iiber I)ynamik." Let a and M denote any two of

 the constants oa, ty, ' . . . v; then we have, by subtracting the equation whose

 coefficients are -from that having, the coefficients 1,

 Xl (o1 -r) + X2 (O-2 r2)+ X. (. r.) 0
 T171 'r272f Irnan

 or, since t1 - = = - r2 = &c.,
 X1 X2 ___
 $- + +. _ - 0
 z1r1 272a2

 which is the same as equation (4) of the " Vorlesungen." We have now the
 series of equations

 XI X2 Xn
 - + + .. . - 0

 Xi X2 X,
 4 + + ..

 47. 0,-lrl~~aiT a2r2 ar
 X1 X2 X

 alvl a2v2 anulb

 Define the quantity _T by the equation
 X1 X2 X3 + n

 PT 2 2 +3
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 176 CRAIG, The Notion of a Solid in a Fluid.

 and in particular

 pa al + eT2- + a2 a.1 a2a

 Multiply this last b a_, and the equations 47 by a a, &c., re-
 spectively, and add the products; we have then

 a,7 XI 1 aF W?aF I aFl
 aap'l pa a al aaTlI+ IapT- . + jJ1T1J

 all the other terms vanishing by virtue of the well-known properties of deter-
 minants, that is

 aa1 XI pa-PI - a V

 and, sitiilarly, we obtain

 .Pa aa-1 a2V

 --12

 Adding these, we have, since

 X1 x2 n

 al1 a2 an

 3D+_ + _ #
 aal a2 *** as-

 Now, by merely changing rows into columns, and conversely, in the determi-
 nant V, we readily see that we mlust have, by virtue of equation 45,

 (a,-P,(a, - r,). (1) a,7 ___ a,1
 V (al)aaaa'* * ( a [aa-I + a-1 + a^-

 this reduces the above value of _pa to

 48. a __ (a,w-P,)(a,-r1) . . .(a - vi)
 a1a2a3. . .an

 and gives, for the general value p,

 49.- P -Ta)Qr, - P') ... (r, t-v)
 711'J3 . * I Tn

 All of the other relations existing, between the quantities xi, x2, &c., and
 a, (3, ... v can be readily obtained, but it would be out of place to continue
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 CRAIG, The lotion of a Solid itn a Fluid. 177

 the investigation any further in this paper. The values of x2, y2 and z2

 obtailned from equation 41, by application of the formnulae of 46, are now

 2 (a2 + 21)(a2 + 22)(a2 + 23)
 = (a2-b2)(a2_ C2)

 2 (b2 + 21)(b2 + 22)(b2 + A3)
 Y (b 2 ' c2)(b2-_ a2)
 2 (c2 + 21)(c2 + 22)(e2 + 23)

 (c2 a2)(G2-b2)

 and also for E, F and G we have

 2 1 (21-22)(21-23)
 4 (a2 + 21)(b2 + 21)(c2 + 21) '

 F2 = 1 (A2 - 23)(22 - 21)
 4 (a2 + 22Xb2 + 22)(c2 + 22)

 G2 = 1 (23-21)(23-22)
 4 (a2 + 23)(b2 + 23)(c2 + 23)

 The equation of continuity v2(p 0 also takes the well-known form

 (X24-3) 2 + (X3 -1) + (Xl - %2) 2 - ? X

 where
 a2,

 J 2(a2 + )(b + 21)(e2 + 2,)'
 ?2 and 6)3 containing 2 and 34, respectively, instead of At. We are now in
 the position to examine the case of the motion of an ellipsoid in the fluid,
 and the resulting motion of the fluid particles, subjects which will be treated

 fully in a subsequent paper. The transformed equations of motion, as I have

 given them here, differ in form from those given by Clebsch, and have been
 obtained by a slightly different process, but will of course lead to the same

 results -as do those of Clebsch. The investigation of the form of p for this
 case is given in a very eleganit manner by Kirchhoff in his Physik.

 BALTIMORE, March 28th, 1879.

 46
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 Sur I'Analyse indeterm,inee du troisieme degre.-Demon-
 stration de plusieurs theorermes de M. Sylvester.

 PAR EDOUARD LUCAS.

 SECTION 1.

 L'ARITHME'TIQUE DE DIOPHANTE renferme le premier exemple connu
 d'Analyse indeterminee du troiseine degre; l'irnmortel auteur y pose, en effet,
 le probleme de trouxrer deux nombres entiers ou fractionnaires, dont la somnme
 ou la diff6rence de leurs cubes soit egale a la somme ou a la diffrence des
 cubes de deux nombres donnes.

 FERMAT a indique, le premier, un procede qui permet de deduire, d'une

 solution initiale, une serie indefinie de solutions nouvelles. Pour resoudre, en
 noiibres entiers ou fractionnaires, l'equation

 x3 +,V3 = a3 + b3
 dans laquelle a et b sont donnes, il suffit de poser

 x=a+zu, y=b+u,
 et de disposer de z, de maniere a faire disparaitre, apres la substitution, la
 premiere puissance de u. On trouve alors une relation de la forine

 AU3 + Bu2 =0,

 qui permnet de determiner u par une equation du premier degre; PERMAT
 calcule ainsi x et y, et fait servir ces valeurs a la recherche de nouvelles solu-
 tions, en nombre indefini.

 Nous remplacerons, dans ce qui suit, les inconnues rationnelles, par des
 inconnues entiZeres. Designons par (x, y, z) une premiere solution, en nom-
 bres, entiers, de l'equation

 (1) X3 + y3 = Az3,
 nous obtiendrons une autre solution, par le procede indique plus haut, au
 inoyenl des formules

 (2) X = x(x3+ 2yl), Y=-y(y+ 2x3) , Z- (x3 - y3).
 178
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 LUCAS, Sur 1'Analyse indeterminee du troisieme degre. 179

 On trouve ainsi, successivement, pour A = 9,

 {,l 2, x2= 20, x3- 188479, x4 1243617733990094836481,
 y,-1, y2 -17, y3=-36520, y4- 4 87267 17171 43523 36560,
 zl 1 ; Z2 7; z- + 90391; z4 6 09623 83567 61372 97449;

 et, pour A -28

 {x,-3, x2 = 87, x3= 632 84705, x4 189207122047020109717690323 50335,
 y i= 1, 2 2 -55, y3- 283 40511, y4 15 01104 22682 05492 03687 05693 29391,
 Z1= 1; Z2= 26; Z3= 214 46828; z4= 4 94756 15518 27392 93262 16777 53432.

 On observera que ces solutions croissent tres-rapidement, et contiennent a peu

 pres quatre fois plus de chifgres, que la solution precedente.

 On peut encore remplacer les formnules (2) par les suivantes, qui n' en

 diff6rent que par la forme. Designons par (x, y, z) des nombres entiers qui

 verifient l'equation
 x3 + Y9 = Az,

 nous obtiendrons des nombres entiers (X, Y, Z), tels que l'on ait

 X3 + Y3 3 + y3 A
 z3 - z3

 par les formules
 x Y Z

 + I + 0=0, XX2+ YY2= AZz2.

 SECTION 2.

 LAGRANGE et CAUCHY ont etendu la niethode que nous venons d'indiquer,

 a des equations di troisietme degre beaucoup plus generales. Soit l'equation

 (3) Ax'+ By3 + Cz3 + 3Dxyz = 0;
 on deduit d'une premiere solution (x, y, z), en nombres entiers, une autre
 solution (X, Y, Z), par les formules

 fX = x (By3 Cz3)
 (4) Y= y (Cz3 -Ax3),

 Z = z (AX3_ By3),
 Ainsi l'equation

 x' + 2y9 + 3z3 = 6xyz,
 qui a pour solution immediate

 xO= yO= z0 = 1 ,
 donne ensuite les solutions

 i xi= 1, X2= 19, X3 = 2 82473, . .
 y =-2, y2= 4, Y3 =- 86392,). .
 z1= 1; z2=-17; z3= 114427;...
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 180 LUCAS, Sur l'Analyse inde'terminee du troisie'me degre.

 Nous observerons que les formules (4) peuvent etre remplacees par celles-ci

 (5) X + Y + Z 0 AXx2 + BYy + CZz2 =0
 et conduisent a l'identite

 X3(x 2By3)3 + By3 (By3 + 2Ax3)3 ? 27A2B2x6y6 [A2X6 ? 7ABx3y3 + B2y6]2.

 Cette identite fournit ainsi une serie indefinie de solutions de l'equation inde-

 terminee
 Au3 + Bv3 + A2B2w3 = t2

 On doit encore a CAucHY, l'indication suivante :* Si (x0, y0, z0) et (xi, y1, Z1)
 designent deux solutions distinctes de l'equation (3), on obtient une solution

 nouvelle au moyen des formiules

 X = By0yl (xoyl - x1yo) + Czozl (xozl - zoxl) + D (X0yz1 -1
 -= 0zoz (yOzi - ylzo) + Axox1 (yox1 - x0y1) + D (y2z1x1 y-ZOXO)
 Z _ A0xox (Zox1 - z1x0) + By0yl (zoyl - y0zl) + D (Z2Xy1 -Z2X0y0).

 On peut remplacer ces foTmules par celles-ci:

 x, Y, Z,

 (6) X0, Yo, zO, 0, AXxOxl + BYyOyl + CZZOZ1O.
 x1, Y zi,

 Ainsi, par exemple, les solutions (x0, y0, z0) et (x2, y2, z) de l'equation nu-

 merique, que nous venons de considerer, donnent

 X= 143, Y= 113. Z= 71

 SECTION 3.

 Les resultats precedents sont des cas particuliers de ceux que nous

 allons indiquer. Soit l'equation du troisierne degre

 (7) (x, y, z) = 0,
 d'une courbe en coordonnees rectilignes et homnogenes; designons par nl un
 point dont les coordonnees (xi, yi, z,) sont rationnelles, et qu'il est facile de
 rendre entieres; on a ainsi une premiere solution, en nombres entiers, de

 l'equation proposee. On obtient de nouvelles solutions, par l'un des trois
 proced's suivants:

 10. Si l'on mene la tangente a la cubique en mi, cette droite rencontre la
 courbe en un autre point m dont les coordonnees sont rationnelles; par

 *CAUCHY.-Sur la resolution de quelques equations indeterrninees-en nombres entiers.-Exercices de M ath6-
 matiques, 1826, t. I, pag. 2.56.
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 LUCAS, Sur l'Analyse inde'terminee du troisierme degre. 181

 consequent, d'une premiere solution de l'equation (7) on deduit, en general,

 une autre solution, par les formules

 f (x,y,Z)O, d f +Yy + dfz
 Cependant, lorsque la tangente est parallele a l'une des asymptotes de la

 cubique, ou lorsque la tangente est m'enee par un point d'inflexion, on n'obti-

 ent pas de solutions nouvelles.

 20. Si Ml et m2 designent deux points de la cubique dont les coordonnees
 (xi), , z1) et (X2, Y2 I Z2) sont entieres, on obtient, en general, une nouvelle
 solution de l'equation (7), en prenant l'intersection de la courbe avec la

 secante qrn1n2; on a donc a resoudre les deux equations

 x, y, z,

 ff(X, y, z) = 0, xi, yi z1, = 0,
 X2) Y2 Z2,

 en tenant compte des relations

 f(xi, Yl I Zi) =?0 f(2, (X2) Z2) =0.
 30. Lorsque l'on connait cinq solutions de l'equation (7), on obtient, en

 general, une sixieme solution, en prenant le point d'intersection avec la.

 cubique, de la conique passant par les cinq points qui correspondent aux solu-

 tions donnees. D'ailleurs, on peut supposer plusieurs de ces points reu'nis

 en un seul, et en particulier tous les cinq reunis en un seul, a la condition

 d'etablir entre les deux courbes le contact correspondant.

 Nous observerons que les metbodes de FERMAT, LAGRANGE, et CAUCHY

 reviennent aux deux premiers procedes.

 SECTION 4.

 Nous considererons, plus particulierement, dans ce qui suit l'equation (1).

 EULER et LEGENDRE ont de6montre que l'equation

 (1) x3 + y3-= Az3,

 est impossible, lorsque A est egal a 1, 2, 3, 4 ou 5; mais LEGENDRE s'est

 trompe, pour le cas de A = 6', ainsi que nous le montrerons plus loin.
 M. SYLVESTER est venu ajouter une importante contribution a la theorie de

 cette equation, en donnant un certain nombre de formes generales de A pour

 lesquelle, l'equation (1) est impossible. Les divers theoretmes indiques par

 M. SYLVESTER sont renfermes dans l'enonce suivant:
 47
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 182 LUCAS, Sutr l'Analyse inde'termine'e du troisierne degre.

 Si p et q d4ignent des nombres premiers des for?nes respectives 18n + 5 et
 18n + 11, il est impossible de decoinposer en deux cubes, soit entiers, soit fraction-

 naires, aucun des nombres A suivants:

 p, 2p, 4p2; q 22q, 4q.

 PREMIER CAS.-En effet, soit d'abord a resoudre l'equation indeterminee

 (1) x3 +y3 Az3

 dans laquelle A d'sigrie un nombre premnier p de la forme 18n + 5, ou le

 carre q2 d'un nombre premier de la forme 18nt + 11; nous pouvons supposer
 les entiers x, y, z, premiers entre eux. Mais le cube d'un nombre entier

 divise par 9 donne pour reste 0, ou + 1 ou -1; donc, pour que l'equation (1)

 soit possible, il faut que Z3 soit divisible par 9; par suite z 3z,, et z, est
 entier. Cela pose, nous ferons deux hypotheses, selon que z est impair ou

 pair.

 1?. Supposons z inpair. Alors x - y et x + y sont impairs; on a

 x3 +y3 = (X +y)(X2- X +?y2) = (X +y) M,
 et

 4M= (x +y)2 +3X _x y)2.

 par consequent, puisque x + y est divisible par 3, M est aussi divisible par 3,
 mais non par une puissance superieure; par consequent, en designant par

 a et b des nombres impairs, preimiers entre eux, on doit poser

 zl=ab, x+Y=32Aa3, M= 3b3,
 et, par suite

 4b- (x_ y)2+3(X Y)2

 D'ailleurs, b, diviseur de ill, doit etre de la forme fl2 + 3Tg, f et g etant pre-

 miers entre eux; on a ainsi

 b =f2+32, b3=F2+3G2 4b3(F- 3G)2+ 3(F+ G)2;

 et en identifiant les deux expressions de 4b3,

 F+ G X+-=3A3

 Mais le developpement du cube de f+ g V/-3 donne

 * ~~~F=3 (fl-9y2) ,G 3q (f 2 _2
 par suite

 f (f2 -92) +3g (f 2 g2) =3Aa3;
 doncf serait divisible par 3, par suite b, et aussi x et y, que nous avons sup-

 poses premiers entre eux. Par cons6equent, z ne peut etre impair.
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 LUCAS, Sur l'Analyse inditerinien du troisi'me degr6. 183

 20. Supposons z pair; on aurait

 1= (xY)2 +3 (x )2

 et, puisque x et y sont imlpairs, il en est de miene de M. On doit done poser
 z 2ab, x + y = 32. 23. Aa3, =- 3b3,

 et, par suite

 2(2 + 3 6 =)2 b3
 Soient encore

 b=f2+ 3g2, b3 F2+3G2;
 on en deduira

 x +6 ou g(f2-g2) =4Aa3.
 D'ailleurs P + 3g2 et f2 + 3g2 - 4g2 =f2 - g2 sont impairs; done g est pair, et
 en de'signant par ao, /, y trois nombres impairs et premiiers entre eux dont le
 produit egale a, on doit poser

 g=4A&l, f+g=/33 f-g=r3;
 ou

 g=4 3, f+g=A133, f-_ g= 3.
 On deduit de ces deux decomnpositions

 33-3= A (2a)3, ou y3 + (2a)3 = A43
 ces deux equations sont semblables a e'6quation (1); on raniene done 1'e6qua-

 tioIn proposee, dans laquelle l'une des inconnues contient le facteur 3W, a une
 autre semblable, dans laquelle l'une des inconnues ne contient plus que le

 facteur 3'-1; en continuant de meme, on ramenera l'equation proposee a une

 autre de mreme forme dans laquelle une des inconnues ne sera pas divisi-

 ble par 3. Done l'equation proposee est imiipossible lorsque A est egal a un

 nombre premier p = 18n + 5; ou au carre q2 d'un nombre premnier q = 18n + 11.
 SECOND CAS. Considerons maintenant l'equation

 $3' + y = 2TAz3,
 dans laquelle A etant impair, le coefficient 2nA represente l'un des quatre

 nombres 2p, 2q2, 4p2, 4q. Nous supposerons x, y, z entiers et premiers entre
 eux; x et y etant impairs. De plus, nous ferons deux hypotheses suivant que

 z est ou n'est pas divisible par 3.

 1?. Supposons z non divisible_par 3. On arrive facilement a 1'equation
 f(f2-9g2) = 2'-'Aao;

 Maisf2- 9g2 est impair, en mleme tempts que b fJ2+3q2, et l'on a
 f = 22-'A 3, f + 3g = 3, f-3g = 3;
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 ou bien

 f=2~n- 3, f +3g = i33, f-3g = 3
 Ces deux decomposition conduisent aux deux equations

 /3 + 73 = 2nSA3 ou A.J3 + y3 = 2na,3;
 celles-ci sont impossibles suivant le module q, puisque, pour la preiniere, les
 indeterminees a, / et y ne sont pas divisible par 3.

 20. Supposouzs z divisible par 3. En posant z = 3ab, on arrive, connue plus

 haut, a l'equation

 g (f2-_ g2) = 2n - a3
 et, puisque f'2 _ g2 est impair, a l'une des decompositions

 g=2n-1Aoa3, f'g=3, f'g:= 3;
 ou bien

 g 2n- ', f'+g=A/3, f-g r3.

 La seconde decomposition conduit a une equation deja reconnue impossible;

 la premiere conduit 'a l'equation

 /33 = 2nAa3.
 Celle-ci est de menme forme que la proposee; mais l'indeterminee du second
 membre contiendra un facteur 3 en moins. On conclura, connue precedem-
 ment, que l'equation proposee est impossible a resoudre en nombres entiers.

 SECTION 5.

 Les six valeurs generales de A donnees par M. SYLVESTER sont, jusqu'a
 present, les seules valeurs connues qui rendent insoluble l'equation donnee,
 en ajoutant toutefois les valeurs

 A =- 1 2 3 4 18 36,

 donnees par FERMAT, EULER et LEGENDRE. On a encore le theoreme sui-
 vant:

 Pour que l'e'quation
 X3+ .Y3= AZ3,

 soit verifiee par des valeurs entieres de X, Y, Z, A, il faut et il suffit que A
 appartienne a laforrne

 xy (x + y)
 prtlabiement de'barassee des facteurs cubiques qtuelle peut contenir.

 En effet, on a l'identite

 [x3 y3 + 6x5y + 3xy2]3 + [y3 - X3 + 6y2x + 3yzx2]3
 =xy (x+y) .33[x2+xy+?y2]3,
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 LUCAS, Sur l'Analyse indeterminee du troisie'me degre'. 185

 et l'on resout l'equation proposee, par les valeurs

 Cx= - 9+ 6x2y + 3xy,
 I Y= Y3-x3+ 69x + 3ye',
 Z= 3 (42+xy +Y2)
 -A= xy (x + Y).

 Reciproquemnent, si l'equation est verifiee pour les valeurs x0, y., z0 des varia-
 bles, et si l'on pose

 XX3 y= n 3 3

 on a

 ay (x + y) = A (xoyOzo)3 .

 C'est ce qu'il fallait demobtrer. II re'sulte encore de l'identite precedente que

 toute solution de l'equation proposee conduit a une serie indefinie d'autres

 solutions, en supposant A constant. II faut excepter le cas de x = ? y.
 EXEMPLE: Pour x = 1, y = 2, on a la solution

 173+ 373= 6.213;

 de laquelle on deduit une serie indefinie d'autres solutions. Ainsi l'equation

 x3 + y3= 6Z
 est resoluble en nombres entiers, et d'une infinite de manieres, bien que
 LEGENDRE ait affirmre le contraire.

 PARIS, Mai, 1879.

 48
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 Desiderata and Suggestions.

 BY PROFESSOR CAYLEY, Cambridge, England.

 No. 4.-MECHANICAL CONSTRUCTION OF CONFORMABLE FIGURES.

 Is it possible to devise an apparatus for the mechanical construction of

 conformable figures; that is, figures which are similar as regards correspond-

 ing infinitesimal areas ? The problem is to connect inechanically two points

 P1, P2 in such wise that P1 (1) shall have two degrees of freedom (or be capa-

 ble of moving over a plane area) its position always determining that of P2:

 (2) that if P1, P2 describe the infinitesimal lengths P1Q,, P2Q2, then the ratio
 of these lengths, and their mutual inclination, shall depend upon the position

 of P1, but be independent of the direction of P1Q,: or what is the same thing,
 that if P1 describe uniformly an indefinitely small circle, then P2 shall also

 describe uniformly an indefinitely small circle, the ratio of the radii, and the

 relative position of the starting points in the two circles respectively, depend-

 ing on the position of P1.

 Of course a pentagraph is a solution, but the two figures are in this case

 similar; and this is not what is wanted. Any unadjustable apparatus would

 give one solution only: the complete solution would be by an apparatus con-

 taining, suppose, a flexible lanlina, so that P1 moviiig in a given right line, the

 path of P2 could be made to be any given curve whatever.

 CAMBRIDGE, July 9th, 1879.

 186

This content downloaded from 
������������199.242.209.35 on Mon, 13 Mar 2023 16:59:38 UTC������������� 

All use subject to https://about.jstor.org/terms



 Notes.

 I.

 Note on Partitions.

 BY F. FRANKLIN, Fellow of the Johns Hopkins University.

 IN a paper published in the Messenger of Mathematics (May, 1878),
 Prof. Sylvester has given a rule for abbreviating the calculation of
 (w:i,j) - (w -1:i,j) ; where, to fix the ideas, let (x:i,j) be regarded as
 the number of modes of coinposino x with j of the numbers 0, 1, 2, . . .
 The abbreviation consists in rejectino from the partitionis of w-all partitions
 whose highest number is not repeated and rejecting from the partitions of
 w -1. all partitions which do not contain i; the number of partitions thus
 rejected being shown to be the same in the two cases.

 This becomes even more obvious if we convert the above (i, j) partitions

 into (j, i) partitions: that is, replace each of the above partitions by a cor-
 responding one consisting, of i of the numbers 0, 1., . ..j. This, as is well
 known, can be done by decomposing each number into a column of l's and
 then recomposing by rows. Now, if we do this, it is plain that those parti-
 tions whose highest number was not repeated become partitions containing,r 1;
 and that those partitions which did not contain i become partitions having
 less than the full number of parts, or, in other words, partitions containing 0.
 So that Prof. Sylvester's abbreviation is equivalent to rejecting from the par-
 titions of w those partitions which contain 1, and from the partitions of w - 1
 those which contain 0. And it is plain that the number of partitions of w
 which contain 1 is equal to the number of partitions of w - 1 which con-
 tain 0; for the two sets of partitions are interchanged by the interchange of
 0 and 1.

 Obviously, instead of rejecting the partitions of w which contain 1 andi
 those of w -1 which contain 0, we may reject the partitions of w which con-
 tain m (where qn is any one of the numbers 1, 2, . i (or j)) and those of
 w -1 which contain m- 1; the reason being the same as above.

 187
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 188 Notes.

 It imay also be observed thiat the theorem in this form is easily obtained
 from the generating function. For (w: i, j) - (w - 1: i, j) is the coefficient
 of awxj in the development of

 1-a

 (1 - x)(1 -ax)( -a2 *x). (1- (eix)

 the numerator of' which fraction may be written

 1 a .. x -a (1- eq- lx),

 so that (w: i, j ) (v -1 i, j) is the difference between the coefficient of awxj
 in the development of

 1 - amx*

 (1 -x)(1 -ax) . .-.-(1 -aix)X

 and the coefficient of al'-'xi in the development of

 1-ama'-'x

 (1-x) (1 -ax) . . . (\1-aZx)'

 and obviously if nz is one of the numbers 1, 2, . . . i, these coefficients are,

 respectively, the number of the (i, j) partitions of w which do not contain m,
 and the number of the (i, j) partitions of w -1 which do not contain n -1:

 wherefore, the partitions of w which do contain m and those of w -1 which

 do contain m- 1 may be simultaneously rejected.

 II.

 Some General Formulw for Integrals of Irrational Functions.

 BY W. I. STRINGHAM, Fellow of the Johns Hopkins University.

 LET Sh z _a +? Cli z= a+ a Since Ch2 z-Sh2z =1, therefore
 b2- c2 W 2-G

 aX + C = Va2X2 + 2acx + b2

 Let =hi,and b2 =e2. Then

 f(X+h)m(X+h)ndx=em+n+lf'shm z Chnaz.dZ .
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 -Notes. 189

 If the exponent of (x + h) is an odd integer, writing (Ch2 z - 1), Sh z for
 Sh2m ?1 z and developing by the binomial theorem, we find at once

 (1) f(x + h)2m + 1 (X + h)2n-1 dX

 ________ m (X +h)2n+ 2p+ I
 = E{ ( e2)q8 -p! (m-p)! * 2n? + 2p +

 0

 If the exponent of (x + h) is an even integer, by means of the usual reduction
 formulae for Sh2m z Ch2m, z, it will be found that

 (2) f(X + h)2m (X? h)2n1 dx

 (n-_I n-1

 2( +n) e?P (r( + np-l)! (X +71)2m+1 (X+h)2n_ p-I
 02

 ( 1 T <t,_1 )t /m-1
 2 __________(m)re2n+2r (m-r-l)! h(x?)2m-2r-1(X+h) (rnt+n)! Q2)! _ o _-

 Hm ( em+2n - + h + Shyn _
 2

 Let x + h - = x + 2 . Then, by the binomial theorem,

 m

 (X + %)' (X + h)n = e+Ph (-)P M! ) m+zn-p Shm-PZ Chl z.
 AOr p! (m_p)!e

 0

 If the exponent of (x + X) is an even integer,

 (3) (X + 2,)2m (X + h)2,, - 1dX

 (2m)! 2____1_)_
 #(2p) ! (2n - 2p) ! (m-p + n)!

 0

 (m-p+ n-q-1)! e2 (x + k)2(m-P)+l (X+ h)2(n-q)+l

 ? (n
 49
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 + (+)! [4,~( m -p -r 1 r ! e2(n+r) (X + h)2(mr-p-r)-l (X+ h)

 2n rn-p-i  + ()) e2(m -p + n) Sh-1+hA

 V' l)(2rn)!/2p-) V'( q- q(rn-p-i-)! (Xk2(n+q8)+1
 o 0~~~~~~~~+h

 If the exponent of (x ? A) is an odd integer,

 (4) f(x?+)2ih+1 (X+2 )2ff) dx

 XI' (2mr + 1)! 2P E (-em (m-p)! (X+h)2(X+)+
 = (2p)! (2mn-2p +-1)! e ) q!( n-p- q)! 2(n2+q)+1

 rn (2rn?1)!ii2P+' (n___2-)

 (2p-+-1)!t (i2m-- 2p) ! (rn -p-+-n) !

 0~~~~~~~~~~~

 4 ( + )2,rn- + _ X- q- 1)! e (xl + h)2(m-P)+1 (X+ h)2(n-)+l

 + (m m j)! j - r p) e2(f+r) (x+ h)2(nP-r>q(X?h)

 ? (e-) e2(np+n)Sh1+ p1)

 When a = k, y vanishes, while forjp = 0, ? 1, and the integrals (3) and (4)
 reduce to (2) a+d (1) respectively.

 FE3BRUARY 1st, 1879.
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 III.

 Note to the Article "On the Theory oJ Flexure," atpage 13 (Vol. II) of this
 Tournital.

 By WILLIAM H. BURR, Rensselaer Polytechnic Institute.

 FROM the somewhat speculative nature of the article on the Theory of
 Flexure, resulting from the absence of experimental data on the " viscosity"
 of materials, it may be permissible to consider constant the intensity of stress

 in any section of a bent beam along a line parallel to the neutral axis of that

 section. Various considerations seem to indicate suclh a condition of stress.

 It is evident that that condition would accompany the greatest imaginable

 resistance which the beam could offer to external bending forces.

 In order to represent this case for any beanm not rectangular in section, it
 will only be necessary to put, in equation (74) of the article in question, con-

 sistently with the notation used in equation (46), f(y) for each z, found in the
 parenthesis, and 2dy' for b. The general value for the bending imoment then
 becomes

 X=4. lo - f (Yt)2 log/( ,f (Yt) log f(t dy

 The value, for a rectangular section, will not be chang,ed.

 TRoy, N. Y., 18 Julty, 1879.

 IV.

 Generalization of Leibnitz's Theorem in Statics.

 Extract of a Letter from PROFESSOR CROFTON, Royal Mfilitary Academy, Wool-
 wich, to PROFESSOR SYLVESTER.

 ..... A small remark occurred to me the other day, whicll, it seems to

 me, can hardly have escaped notice, but no one that I know has met it. It is
 an extension of Leibnitz's Theorem in Statics: "If any number of forces
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 192 NYotes.

 balance at a point, that poinlt is the center of gravity of a system of equal
 particles at the extremities of the forces." Mine is, if any system of forces

 are in equilibrium, the center of gravity of the points of application (t, b, c, d, e

 coincides with the center of gravity of the extremities of the forces A, B, C, -D, E.
 This is an obvious consequence of Leibnitz's theorem.

 A B

 d b

 D
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 ERRATA IN No. 2.

 Page 113, line 7, for n] +rm, read m] + n.

 " 115, " 4, " hX3, read h3x3.
 116, e(quation 81, insert ( after

 118, line 5 from bottom, for cx,>, read crL.
 "4 118 it 2 it It " )cx), " (c )
 " 119, " 6, for cx, read C.r.

 123, "17, " y=k, read dy =k.

 6" 130, " 19, " (-va), read (- v)n.

 145, " 4 " x-- read x -
 + -21~~~

 145, prefix 0 to equation (314).

 146, equation (320), insert 0 after x1.
 147, line 25, for 0, read x in two places.
 147, note, line 3, for 2xa + a, read 2xa + a2.
 154, equations (357) and (358), for - h, read + h.

 " 154, " " " " " [a - 1], read [a + 1].
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 D. VAN NOSTRIAND,

 Publisher of Scientific, Military aid Naval Books,
 23 Jlutrra?y and 2'7 Warren Streets, New York.

 Our Stock comprises a Large and Complete List of Works pertaining to

 A.R(CHITECTURE, ASTRONOMY, NAVIGATION, BREWING, DISTILLING
 CHEMISTRY, PHYSICS, CIVIL AND MECHANICAL ENGINEERING,

 ELECTRICITY, GEOLOGY, HYDRAULICS, SANITARY ENGI-

 NEERING, MATHEMNIATICS, and Works of Reference, etc.
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 WE WOULD ALSO CALL PARTICULAR ATTENTION TO

 LAR GE 8vo MONTISLY.

 Terzmts, $5.00 Per Annum, in Advanlce.
 Single Copies, 5 0 Cents.

 ESr&TA S HTS D IT)T 1869

 EIGHTEEN VOLUMES NOW COMPLETE.

 Notice to New Stbscribers.-Persons commencing their subscriptions with the Nineteenth Volume
 (July, 1878), and who are desirous of possessing the work from its commencement, will be stupplied with Volumes
 I to XVIII inc!usive, jeatly bound in cloth, for $48. Half morocco, $ ?4. '0. Sentfrce by nmail or express
 on receipt of price.

 Notice to Clubs.-An extra copy will be supplied, gratis, to every Club of five subscribers, at $5.00
 each, sent in one remittance.

 This Magazine has now begun the tenth year of its existence. Occupying a position among contemporary
 journals not claimed by any otlher periodical, it has proved by its steady growth during nine years that such a
 record of Engineering progress was frorm the first a recognized necessity.

 The leading aim of the MaLgazine is to present the best possible summary of the progress of Encineering prin-
 ciples and practice throughouit the world. To accomplish this end, a digest of the current history of works in pro-
 gress from home and foreign journals, and the original essays of the best home writers have jointly contributed.

 Two classes of minds are constanitly aiding all scientific advalnceinent, each largely dependent uipon the otlher
 for success. The exclusive> - practical Engineer scorns the principles of the books and reaps unidoubted success by
 empirical rules only. But to work beyond the field of his individual experience, guided by his rtule of thumb, is
 to invite disaster. In any dilenmnma hie needs the counsel of that class of his corfreres wihose labor has been in
 evolving the scientific principles of his profession. Only bv the aid of an Engineeringr journal can the results of
 both fields of labor be rendered serviceable. Progress in this department of science is at present so rapid that,
 whether we regard the magnitude of the new projects, tlhe originality of the designs, or the miattterials employed,
 we find the established precedents of but a few years ago of but little use as guides to the best success.

 To keep pace with this progress is a necessity to all who would contribute to an advance of the profession in
 this country.

 That the foremiost writers on Engineering subjects are alive to the importance of their own active labor the
 pages of the last two or three volumes of this Magazine bear anmple testimony.

 As heretofore, subjects relating to Civil Engineering proper receive the first attention. Pro(rress in Meehan-
 ical, Sanitary, Mining and Military Engineerinig and Architecture is duly chronicled, especial care beinig observed
 to exclude all articles that seem in any way to be biased by the enthusiasmn of the inventor or the self-interest of
 an owner.
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 On the Geographical Problemii of the Four Colours.

 BY A. B. KEMPE, B. A., London, England.

 IF we examine any ordinary map, we shall find in general a number of

 lines dividing it into districts, and a number of others denoting rivers, roads,
 etc. It frequently happens that the multiplicity of the latter lines renders it

 extreinely difficult to distinguish the boundary lines fromn thenm. In cases

 where it is important that the distinction should be clearly marked, the arti-

 fice has been adopted by miap-makers of painting the districts in different

 colours, so that the boundaries are clearly defined as the places where one

 colour ends and another beginis; thus rendering it possible to ornit the boun-
 dary lines altogether. If this clearness of definition be the sole object in

 view, it is obviously unnecessary that non-adjacent districts should be painted
 different colours; and fturther, none of the clearness will be lost, and the

 boundary lines can equally well be omitted, if districts which merely Imeet at

 one or two points be painted the same colour. (See Fig, 1.)

 This method of definition may of course be applied to the case of aniy
 surface which is divided into districts. I shall, however, confine my invTesti-

 gations primarily to the case of what are known as simiply or singly connected
 surfaces, i. e. surfaces such as a plane or splhere, which are divided into twvo
 parts by a circuit, only referring incidentally to other cases.

 If, then, we take a simply connected surface divided in any miianner into

 districts, and proceed to colour these districts so that no two acljacent districts

 shall be of the same colour, and if we go to work at random, first colouring

 as many districts as we can with one colour and then proceeding to another
 colour, we shall find that we require a good mnany different colours; but, by

 the use of a little care, the nunmber may be reduced. Now, it has been stated

 somewhere by Professor De Morgan that it has long been knowin to mlap-
 makers as a inatter of experience-an experience however probably confirned

 to comparatively simple cases-that fJbtr colours will suffice in any ca se.
 That four colours may be necessary will be at once obvious on consideratioll

 of the case of one district surrounded by three others, (see Fig. 2), but that four

 colours will suffice in all cases is a fact which is by no means obvious, and has
 VOL. II-No. 3. 193
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 194L iKEMrPE, On the Geographical Problem of the Four Coloutrs.

 rested hitherto, as far as I know, on the experience I have mentioned, and oIn the
 statement of Professor IDe Morgan, that the fact was no doubt true. Whether

 that statement was one mnerely of belief, or wvhether Professor De Morgan, or
 any one else, ever gave a proof of it, or a way of colouring any given map, is,

 I believe, unknown; at all events, no answver has been given to the query to

 that effect put by Professor Cayley to the London Mathematical Society on

 June 13th, 1878, and stubsequenrtly, in a short comtmunication to the Proceedl
 ings of the Royal Geographical Society, Vol. I, p. 259, Professor Cayley,

 while indicating wherein the difficulty of the question consisted, states that

 he had not then obtained a soltution. Some inkling of the nature of the diffi-

 culty of the question, unless its weak point be discovered and attacked, may

 be derived from the fact that a very small alteration in one part of a map

 may render it necessary to recolour it throughout. After a somewhat ardu-
 ous search, I have succeeded, suddenly, as might be expected, in hitting upon

 the weak point, which proved an easy one to attack. The result is, that the

 experience of the map-miakers has not deceived themn, the maps they had to

 deal with, viz: those drawn on simnply connected surfaces, can, in every case,

 be painted with four colours. How this can be done I will endeavour-at the

 request of the Editor-in-Chief-to explain.

 Suppose that we have the surface divided into districts in anry way which

 admits of the districts being coloured with four colours, viz: blue, yellow,
 red, and green; and suppose that the districts are so coloured. Now if we

 direct our attention to those districts which are coloured red and greeni, we

 shall find tllat they form one or more detached regions, i. e. regions which

 havTe no boundary in coinmon, thoug,h possibly they may myeet at a point or

 points. These regions will be surrounlded by and surround other regions

 composed ol blue and yellowv districts, the twvo sets of regions making up the
 whole surface. It will readily be seen that we can interchange the colours of

 the districts in one or miore of the red and green regions without doing so in
 any others, and the map will still be properly coloured. The same remarks

 apply to the regions composed of districts of any other pair of colours. Now

 if a reg,ion comuposedl of districts of any pair of colours, say red and green as

 before, be of either of the forms shown in Figures 3 and 4, it will separate the

 surface into twvo parts, so that we inay be quite certain that no yellow or blue

 districts in one part can belong, to the same yellow and blue region as any
 yellow or blue district in the other part. Thus any specified blue district, for

 example, in one part can, by an initerchange of the colours in the yellow and
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 KEMPE, On the Geographical Proble heof theFoItr Colours. 195

 blue region to which it belongs, be converted into a yellow district, whlilst any
 specified yellow district in the other part renmains yellow.

 Now let us consider the state of things at a point where three or more

 boundaries and districts meet. It will be convenient to term such a poinit a

 point of concourse. If three districts ineet at the point, they must be coloured
 with three different colours. If four, they may be coloured with two or three

 colours only in some cases, but on the other hand they may be coloured with

 four, as in Fig. 5. If the districts a and c in this case belong to different red
 and green regions, we can interchange the colours of the districts in one of

 these regions, and the result will be that the districts a and c will be of tlle
 same colour, both red or botll green. If a and c belong to the same red and

 green regioni, that region wvill form a ring as in Fig. 4, and b will be in one of
 the parts into which it divides the surface and d in the other, so that tlhe

 yellow and blue region to which b belongs, will be different from that to

 which d belongs; if, therefore, we interchange the colours in either of these

 regions, b and d will be of the same colour, both yellow or both blue. Thus

 we can always reduce the number of celours which meet at the point of con-

 course of four boundaries to three.

 The same thing, may be shown in the case of points of concourse where

 five bounLdaries miieet. T'he districts meeting at the point mnay happen to

 be coloured with only three colours, but they may happen to be coloured
 with four. Fig. 6 shows the only form which the colouring can take in that
 case, one colotur of course occurring twice. If a and c belong to different yel-

 low and red regions, interchang,ing the colours in either, a and c becomne both

 yellow or both red. If a and c belong to the saine yellow and red region,

 see if a and d belong to different green and red regions; if they de, inter-

 changing the colours in either region, a and d become both green or both red.

 If a and c belong to the same yellow and red region, anid a and d belong to

 the same green and red region, the two regions cut off b from e, so that the
 blue and green reg,ion to which b belongs is different from that to which d

 and e belong, and the blue and yellow region to which e belongs is different
 from that to which b and c belong. rThus, interchanging the colours in the

 blue and green region to which b belongs, and in the blue and yellow region
 to which e belongs, b becoimes green and e yellow, ab, c and d remaining

 unchanged. In each of the tlhree cases the number of colours at the point of

 concourse is reduced to three.

 It will be unnecessary for my purpose to take the case of a larger num-

 ber of boundaries. Later on, we shall see that we can arrange the colours so
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 196 KEMPE, On tke Geographical Problenm of the Four Coloturs.

 that not only will three colours only meet at any given point of concourse,

 however many boundaries meet there, but also at no point of concourse in the

 map will four colours appear. It is, however, at present, enough, (anid I have
 proved no more), that if less than six bounidaries meet at a point we can

 always rearranige the colours of the districts so that the number of colours at
 that point shall onlv be tlhree.

 Before leaving this part of the investigation, I may point out that it does

 not apply to the case of other surfaces. A glance at Fiig 7, which represents
 an anchor ring, will show that a ring-shaped district, a a, if it clasps the sur-

 face, does not divide it into two parts, so that the foregoing proof fails. In

 fact, six colours may be required to colour an aAehor ring. For, if two clasp-
 ingg boundaries be described so as to divide the ringo, inlto two bent cylindrical
 portions, and if each portion be divided into tlhree parts by longitudinal

 boundaries, a, b, c being the three parts on one anid d, e,f being those o01 the
 other, so that a abuts on d and e at one end, and on e and / at the other;

 b abuts on e and fat one end, and on/and d at the other; c abuts on f and d
 at one end, and on d and e at the other, then ca, b, c, d, e, f must all be of
 different colours.

 Returning so the case of the simply connected surface, and putting aside
 for the moinent the question of colouring, let us considler some points as to
 the structure of the nmap on its surface. This inap can have in it island-
 districts having one boundary (Fig,. 8); and islanid-regionts (Fig. 9) composed
 of a number of districts; also, peninsula-districts, having one boundary and

 one point of concourse (Fig. 10); and p1eninsitla-reyioiis (Fig. 11) ; conplex-
 districts, which lave islands and peninsulas in themn; and simple-districts which

 have none, and have as many boundaries as points of concourse (Fig. 12).
 It should also be inoticed that, witlh the exception of those boundaries which
 are endless, such as that in Fig. 8, and those which have one point of con-

 course suLch as that in Fig. 10, every boundary ends in two points of con-
 course; and further, that evTery boundary belongs to two clistricts.

 Now, take a piece of paper anid cut it out to the same shape as any sim-
 ple- island- or peninsula-district, but rather larger, so as just to overlap the
 boundaries when laid on the district. Fasten this patch (as I shall term it) to
 the surface and produce all the boundaries which mueet the patch, (if there be
 any, which will always happen except in the case of an islanid), to meet at a
 point, (a point of concourse) within the patch. If only two boundaries meet
 the patch, which will happen if the district be a peninsula, join them across
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 KEMPE, On the Geographical Problem, of the Foutr Colours. 197

 the patch, no point of concourse being necessary. The map will then have

 one district less, and the numbers of boundaries will also be reduced. Fig. 13

 shows the district before the patch is put on, the place where it is going to be,

 being indicated by the dotted linie, and Fig. 14 shows what is seen after the
 patch (again denoted by the dotted line) has been put on, and the boundaries

 have been produced to meet in a point on it. This patching process can be

 repeated as long as there is a simple district left to operate upon, the patches

 being in some cases stuck partially over others. If we confine our operations
 to an island or peninsula, we shall at length get rid of the island or penin-

 sula, and doing this in the case of all the islands and peninsulas, complex-

 districts will be reduced to simple ones, and can be got rid of by the same

 process. We can thus, by continually patching, at length get rid of every

 district on the surface, which will be reduced to a single district devoid of
 boundaries or points of concourse. The whole map is patched out.

 Now, reverse the process, and strip off the patches in the reverse order,

 taking off first that which was put on last, as each patch is stripped off it

 discloses a new district, and the inap is developed by degrees.

 Suppose that at any stage of this development, when we have stripped off

 a number of patches, there are on the surface

 D districts

 B boundaries

 P points of concourse,

 and suppose that after the next patch is stripped off there are

 b' districts

 B' boundaries

 P' points of concourse.

 If the patch has no point of concourse on it or line, i. e., if when it is stripped

 off an island is disclosed,
 P= P

 D'D = + 1

 B' = B + 1.

 If the patch has no point of concourse but only a single line, so that when it

 is stripped off a peninsula is disclosed,
 Pt= P+ 1
 - D + 1

 B' = B + 2.
 51

This content downloaded from 
�������������89.187.177.72 on Mon, 13 Mar 2023 21:18:07 UTC������������� 

All use subject to https://about.jstor.org/terms



 198 KEMPE, On thte Geographtical Problem of the Four Coloturs.

 If the patch has a point of concourse on it where a boundaries meet

 P= P+ a -I
 1) - D + 1

 B' _ B+ +.
 In each case therefore

 P' + I)-B - I = P + _ - B- 1,

 i. e., at every stage of the development
 P+ D -B- 1

 has the same value. But at the first stage

 P=O

 9D= 1

 B = O.
 Therefore we always have

 P+ D-XB-1 O.(1)

 That is in every miap drawn on a simply connected surface the number of points
 of conicourse and nuttmeber of districts are together one greater than the niumber of
 boundariest.

 Let d,, d2, d,3 etc., denote the number of districts at any stage, which
 have one, two, three, etc., boundaries, so that

 I) d, +42l + d3 +***,
 and let p3, p4, etc., denote the number of points of concourse, at the same
 stage of the developmnent, at *yhich three, four, etc., boundaries meet, so that

 P __p3+_p4 +.
 Then, since every boundary belong,s to two districts,

 2B - d1 + 2d + 3d3+ ...

 and since every boundary ends in two points of concourse, except in the case
 of continiuous boundaries which have no points of concourse, of which let
 there be 0, and boundaries round peninsula districts which have one point

 of concourse, of which let there be (1, therefore,
 2B -2o+ +3P3 + 41p4 +

 Thus, since (1) may be written

 (6I) - 2B) + (6P-4B) -6 0,

 we liave 5d1 + 4dIc2+ 3d3+ 2d4+ d5- etc. -o
 the first five terms b)eing the only positive ones. At least one, therefore, of
 the quantities dl. d2. d73. d4 . d5 must not vanish, i. e. every miap drawn on a
 simitply connected surface mast have a district withi less than six botutndaries.

 * The formula (1) wvas first stated as connectinig the numl-ber of angular points, faces, and edges of a poly-
 bedron by Cauchy. t See note following this paper.

This content downloaded from 
�������������89.187.177.72 on Mon, 13 Mar 2023 21:18:07 UTC������������� 

All use subject to https://about.jstor.org/terms



 IKEMPE, On the Geographical Problem of the Pour Colours. 199

 It may readily be seen that this proof applies equally well to an island-

 region or peninsula-region as to the whole map. The result is, that we can
 patch out any simply-connected inap, never putting a patch on a district with
 nmore than five boundaries. Consequently, if we develop a inap so patchecl

 out, since each patch, when taken off, discloses a dlistrict with less thani six

 boundaries, not more than five boundaries mneet at the point of concourse on
 the patch*. Of course districts which, when first disclosed, have only five

 boundaries may ultimately have thousands.

 Returninig to the question of colour, if the mnap at any stage of its devel-

 opment, can be coloured with four colours, we can arrange the colours so that,

 at the point of concourse on the patch next to be taken off, where less than

 six boundaries meet, only three colours shall appear, and, therefore, when
 the patch is stripped of, onily three colours surround the disclosed district,
 which can. therefore, be coloured with the fourth colour, i. e. the map can be

 coloured at the next stage. But, at the first stag,e, one colour suffices, there-
 fore, four suffice at all stages, and therefore, at the last. This proves the
 theorem and shows how the map may be coloured.

 I stated early in the article that I should show that the colours could be

 so arranged that only tlhree should appear at every point of concourse. This
 may readily be shown thus: Stick a small circular patch, with a boundary

 drawn round its edge, on evemy point of concourse, forming new districts.
 Colour this map. Only three colours can surround any district, and there.

 fore the circular patches. Take off the patches and colour the uncovered

 parts the sarmie colour as the rest of their districts. Ornly three colours sur-

 rounded the patches, and therefore only three will meet at the points of con-

 course they covered.

 A practical way of colouring any map is this, which requires no patches.

 Number the districts in succession, always numbering a district which lhas
 less than six boundaries, not including those boundaries wlhich have a district

 already numbered on the other side of them. When the whole mnap is nuni-

 bered, beginning from the highest number, letter the districts in succession
 with four letters, a. b . c. d, rearranging the letters whenever a district has

 four round it, so that it imay have only three, leaving one to letter the district
 with. When the whole map is lettered, colour the districts, using different

 colours for districts lettered differently.

 *See note following this paper.
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 200 KEMPE, On thte Geograplbical Problem of the Foutr Colours.

 Two special cases should be noticed.

 (1). If, excluding island and peninisula districts from the computation,

 every district is in contact with an even number of others along every circuit

 formed by its boundaries, three colours will suffice to colour the map.

 (2). If an even number of boundaries meet at every point of concourse,

 two colours will suffice. This species of map is that which is made by draw-

 ing any number of continuous lines crossing each other and themselves any

 number of times.

 If we lay a sheet of tracing paper over a map and mark a point on it

 over each district and connect the points corresponding to districts which

 have a comnmon boundary, we have on the tracing paper a diagram of a

 " linkage," and we have as the exact analogue of the question we have been

 considering, that of lettering the points in the linkage with as few letters as

 possible, so that no two directly connected points shall be lettered with the

 same letter. Following this up, we may ask what are the linkages whlich can
 be similarly lettered with not less than n letters ?

 The classification of linkages according to the value of qn is one of con-

 siderable importance. I shall not, however, enter here upon this question,
 as it is one which I propose to consider as a part of an investigation upon

 which I am engaged as to the general theory of linkages. It is for this reason

 also that I have preferred to treat the question discussed in this paper in the

 manner I have done, instead of dealing with the analogous linkage.

 I will conclude with a theorem which can readily be obtained as a corol-

 lary to the preceding results. It is one of which I long endeavoured to

 obtain an independent proof, as a means of solving the four-colour problem.

 The polyhedra mentioned are to be understood to be simply connected ones.
 The theorem is this:

 "Polyhedra can be added to the faces of any polyhedron so that in the resulting

 polyhedron (1) the faces are all triangiles, (2) the number of edlyes meeting at every
 angutlar point is a multiple of thiree.

 JUNE 23d, 1879.
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 Note on the Preceding Paper.

 BY WILLIAM E. STORY.

 IN the foregoing valuable paper on the "Geographical Problentof [lte

 Fotur Colours," Alr. Kempe has substantially proved the fundamiiental theoremn,
 which has been so long a desideratumu, by a very ingenious nmethod; but it
 seems desirable, to make the proof absolutely rigorous, that certain cases

 which are liable to occur, and whose occurrence will render a clhange in the
 formulae, as well as some inodification of the method of proof, necessary,

 should be considered separately, and I have endeavoured to do this in the

 followving note.

 1. In the notation used on page 197, if, at any stage of the development,

 the patch next to be stripped off has no point of concourse or line on it, when
 it is stripped off an island will be disclosed, and

 P' P, -D'= -D+ l, I B'= B +1.
 If the patch lhas no point of concourse but only a single line, when it is
 stripped off either a peninsula or a district with two boundaries (as in Fig.
 15) will be disclosed; in the first case we have

 PI P+ 1, -I9 = - + 1, it=B + 2,
 and in time second case

 P'-P+.2, D'=D1, B' BJ+3.

 These formulae hold only if the boundaries joined by the line on the patch
 counted as two (and not one, as in Figs. 16 and 1) before the patch was put

 on. If the patch have a point of concourse in which a boundaries meet, and

 if the district disclosed when the patch is stripped off have / boundaries, we
 have

 Pl- P+ - 1, D'- D + 1 B' -B +

 These equations are identical with those at the top of page 198, i. e. ,( a,
 only when three and no more boundaries meet in each point of concourse

 about the distriet patchecl out, for a is evidently the nunmber of boundaries

 ineeting the boundaries of this district, each of the former counting for one or

 two according as it ineets the latter in onie or two different points.

 52 201
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 202 STORY, Note on the Preceding Paper.

 In either of the above cases

 P. + D- BII . P + 1) B -1. ...(a)

 But if the patch has no poinlt of concourse but only a single line fjrming part
 of the boundary of an island-district on the patchebed map, so that when the patch
 is stripped off one of the forms of Figs. 16 and 1 is disclosed, we have for
 the former

 P'=P+2, )'=D1+1, B'=B+2,

 and for the latter (if the point in which the two boundaries meet be called a
 point of concourse)

 PI= P+ 1 1)' =1)D+1, B'= B +1;
 and hence for either of these cases

 P'+'- B'- 1=P+D- B. (1)
 instead of (a).

 We will define a contour as an aggregate of boundaries such that, while
 any two of them are mutually connected, either directly or by nmeans of other
 boundaries of the same contour, they are not connected with any other boun-
 daries in the map. Such a contour will be simple or complex according as it
 consists of one or mizore than one boundary. Each contour nmay be considered
 as forming a map by itself, which inay be coloured accordingly. In the pro-
 cess of patching out by Mr. Kempe's method the inap formned by any complex-
 contotur, we nmust arrive sooner or later at one of the forms of Figs. 16 and 1,
 next at an island, and then this disappears. In the reverse process we have
 at thie first stage

 P= 0 D= 1 B=O0
 m. e.

 P + D- _B -1= 0;
 at the second stage, by (a),

 P+9- B-=1=0; ........(1)
 at the third stage, by (b),

 and at every subsequent stage, by (a),
 P+1)-B-1=1. (2)

 Of course, in the case of a map formed by a simple-contour only the first and
 second stages exist, and for such a map equation (1) holds. If then z of the
 contours formed by the boundaries of any map are complex, for that map

 P+ D-B-1=z. (3)

 That is in every map drawn on a siniply connected sumfrce the number qf points
 of conicoturse and nuttmber of' districts are together one greater than the numtber of
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 boundaries and mouber of cornplex-contours together. This takes the place of
 the theorem at the middle of page 198.

 It is possible, as we have seen, that two lboundaries of tlhemselves fornm a

 point of concourse, as in Fig 1. Hence to the series p3, p,, . . . should be
 prefixed p2, the number of points of concourse at the given stage of the devel-
 opment at which two boundaries rneet.* Then

 P=p2 +_P3 +P4 +**
 and

 2B= 2i3 + /3 + 2P2 + 3p3 + 4P4 +
 Thus, since (3) may be written

 (6D- 2B) + (6P-4B) - 6 (x + 1) O,
 wve have

 5d1 + 4d2+ 3d3+ 2d4?+ d`5- . -
 as at the bottom of page 198.

 2. At the top of page 199 tlhe statement is made: " if we develop a mnap so
 patcbed oztt, since each patch, wheni taken off, discloses a district with less tMan six
 bounzdaries, not more thzant five botundaries meet at the point of concouorse oni the

 atch." ANow, as we have noticed above, the number of boundaries meeting
 in the point of concourse oni a patch is equal to the numaber of boundaries of
 the district covered by the patcli only when the number of boundaries meet-
 ing in each point of concourse about the district does not exceed three, and
 the statement quoted is therefore true only in this case. This difficulty imay
 be obviated as follows:

 Any poinlt of concourse in which more than three boundaries meet may
 be removTed, or replaced by a number of points of concourse in which only
 three boundaries meet, by sticking on it a small circular patch with a line
 drawn round it, of which those portions have been erased, whiclh fornm the
 boundaries between the patch and any one of the districts bordering on it.
 Such a patch we will designate an auxiliary-patch. The nunmber of districts
 in any map is not altered by an auxiliary-patcli, since this forms only an
 extension of one of its districts over a point of concourse.

 Having first mnodfijed the map by sticking an auxiliary-patch on each
 point of concourse in which inore than three boundaries nmeet, we proceed to
 patch out the modified miiap as above, always putting a patch on a district
 with less than six boundaries, and sticking an auxiliary-patch on every point

 * A point of concourse in which two boundaries meet couilts for one ill P2 and also for ttl;o in 3 .
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 204 STORY, Note on the Preceding Paper.

 of concourse in which four or five boundaries meet, as it is produced (in this

 process a point of concourse in which mnore than five boundaries meet is never

 produced, nor are two auxiliary patches ever put on in immediate succession

 after the first district has been patched out). We thus finally arrive at a

 inap containing one district and no boundary, which we colour with either

 one of four colours. Then, developing the map by stripping off the patches

 (including auxiliary patches) in the order iniverse to that in which they were
 put on, we colour each district as it is disclosed. We will suppose that at a
 stage of the develoapm-ent, in wlich a certain district was disclosed, the map
 has been coloured with the four colours. The patch next to be stripped off

 will be either an ordinary patch witlh no line, or with one line and no point

 of concourse, or with a point of concourse in which niot more than three

 boundaries meet; or it will be an auxiliary-patch. If it is an ordinarv patch,
 wvhen it is stripped off a district will be disclosed, on wlich border not more

 than three other districts, and at least one of the four colours will thus be

 at our disposal for the new district. If it is an auxiliary-patch, when it is

 stripped off a point of concourse will be disclosed, in which four or five boun-

 daries, and not mnore than five districts, meet. The colours of these districts

 are to be extended over their uncovered portions, and the number of colours

 at the point of concourse reduced to not nmore than three by the method of

 page 195. The next patch (tlhat on which is the point of concourse lately cov-

 ered by the auxiliary-patch) will thus disclose, when stripped off, a district
 with four or five boundaries, surrounded by not more than five districts of

 not more than three different colours, and for which therefore at least one of

 the four colours will be at our disposal. Thus the mnap will be coloured with
 the four colours.

 It is evidently unnecessary to extend the colours of the acljacent districts

 up to the point of concourse disclosed by an auxiliary-patch until we have

 disclosed the whole map as first nmodified, for a point of concourse appear-
 ing at an earlier stage will lie on a patch which has to be stripped off at the
 next stage.

 BALTIMORE, Azugust 22d, 1S79.
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 The Qttaterrnion Formtdlae for Qtantification of Curves,
 Surfaces and Solids, and for BJarycentres.

 BY W. I. STRINGHAM, Fellow of the *lohns flop iis University.

 IN order to avoid a clumsy circumlocution, I have ventured to use the

 word quantification to denote in general that class of operations expressed in

 the several special cases by the terms, rectification, quadrature and cubature.

 Some of the quaternion formulae for quantification were given in a paper
 entitled "Investigations in Quaternions," communicated to the American

 Academy of Arts and Sciences, 9th January, 1878. They are here reproduced

 in a more general form together withi the formnulae for barycentres.

 Quanti/cation.

 Let di represent in general the element of arc, surface, or volume. Then
 if p - 4 (t) be the vector equation of any curve in space, where t is a scalar
 variable,

 dAi l=ds - Tp'.dt, (1)

 where p' =Dp - the tangent to the curve at the point p. The formula for

 rectification, therefore, is

 s- f Tp. dt. (2)

 The clouble area of the triangle, two of whose sides are p and p', is TVpp', ancd
 the element of area swept by p is

 dMl dA= -2 TVpp'.dlt. (3)

 Hence for quadrature of plane areas

 A- f TVpp'. dt. (4)

 This formtula is sufficient to determine the area of a sector whose vertex is at

 the origin. In order to determiine the area of any other sector (the surface
 being, plane) whose vertex is A, it is only necessary to write 7 p - S insteal
 of p, S being the vector of the new origin with reference to the old. Thus, to
 55 205
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 206 STRINGHAM, The Quaternion Formulae for Qutan ti/cation.

 deterrmine an area limited by a given chord, make 6 the vector of one ex-
 tremity of the chord and deterinine the limits of integration by assuming

 p = ( and p - A + n, where n is the chord in question.
 A. surface in general is represented by the vector equation p =XZ (t, tu),

 where t, u, are independent scalar variables. If at any instant i remain con-

 stant and t vary, p will describe a determinate arc upon the surface; if t
 remain constant and u vary, p will describe another arc cutting the former at

 the point p. Hence

 will represent two tangents to the surface intersecting at their common point
 of contact. Therefore,

 dM = dS = TVp' '2 dtd u (6)

 will represent an elemnentary parallelogramn uponl the surface. Hence, for

 quadratures in general,

 Sf= Vp'i p'2 . dt, it, (7)

 where dt, u means didut. The equation p= - (t,(t), for the special case of
 plane stirfaces, may be written p = u4 (t) = wt, the origin being on the sur-
 face. The formula last written then becomes

 S 1 [ut2]jTVr'.dt, (8)

 where ' = D{tr. This formula is a more general expression for (4) wherein

 the limits for it were 0 ancl 1. It is evident that the choice of any other limits

 for u would determine an area lying between two similar curves.

 If, in the equation of a plaine curve, p 4 (t) , (p be the angle of revolu-
 tion, and the curve be revolved about an axis a, (witlh the condition Ta = 1),

 then the element of area of the surface of revolution will be

 dM = dS TVap. dq. Tp'. dt, (9)

 whence 8 = [cPPIjTp'Vap. dt, (10)
 where p' -D, as before.

 Let now co = zp, where p u%(t, u) and z, t, tu are independent scalar
 variables. When z varies between 0 and 1, the extremity of o generates the

 solid enclosed by the surface whose vector generator is p. Since S&'10'2(,)'3 is
 the volume of the pirallelopiped three of whose edges are o1,G 0'2, (O'3, then if

 Dt,) =-(,', D - 1 =(6'2) D =03

 an elementary parallelopiped within the solid will be represented by

This content downloaded from 
�������������89.187.177.72 on Mon, 13 Mar 2023 21:18:24 UTC������������� 

All use subject to https://about.jstor.org/terms



 STRINGHAM, The Qataternion Formiulcae for Qttantiflcation. 207

 Hence, for cubatures in general,

 4V ffX(S)I' J2 )'3.dt, , z, (12)

 and since (A/i = zp'1, (A)'2 zp'2, )3 = p,

 .1. V=-I [z J2jSppYip'i.dt,U) (13)

 where p'1 - D1p, p2 _ D,p. This formiiula enables us to determine the coIn-
 tents of sectors, or cones whose v ertices are at the origini. For the cubature
 of a portion of the solid limnited by a plane, instead of p write p - (S, where (S
 is the vector of somiie point in the given plane, and determine the limits of

 integration by making p satisfy the equation of the plane in question.
 The equation, p 4 ic; (t), of a plane surface, with the condition that the

 surface be revolx-ed about an axis a, will be sufficient to determiine all points

 of a space enclosed by a surface of revolution. If Ta - 1 and qp be the angle
 of revolution, Vap is the projection of p on the normal to the plane of ap anid

 Vap . dp) is identical with what p(2da becomles in this case, tnat is, it is the tan-
 gent to a parallel of latitude. Thlen

 dX E d V= Spp'Vap. z2dtdzdP, (14)
 -'= Dip. Hence, for solids of revolution,

 1 [z3p] I [I (+peS'Vap. dt. (15)
 The order of substitution of limits is 1, z, afterwards qp, 0. This may also
 be written

 Z3p]1 I(fTVYpp`Vap.cd; (16)
 for Spp'oVp- SVpp'Vap, andl V (Vpp'Vap) 0 O; therefore,

 S2Ypp'Vap - T2Vpp'Vap, or Spp'Vap - +4 TVpp'oVp.
 In the formulae for cubatures, the limits 0 and 1 for z give the contents of

 the space swept by the generating vector of the surface; any other limits
 woulcl determine the contenits of a space lying between two similar surfaces,
 i. e. of a shell.

 Bazrycentres.

 In Hamilton's equation*
 2mr (e. - e) - 0, or m - 0, (17)

 wherein the e and e,. are symbols of position in space, the ,. are vectors to the
 poin1ts e,. from e, and the mA,. are scalar quantities, or weights, with which the

 * Elements of Quaterniions, p. 89.
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 208 STRINGHAM, The Qualernion Formtulae for Q6aati/ication.

 points e. may be regarded as being, loaded,-the point e is defined as the bary-
 centre of the systemn.

 Of the systemn represented by this equation the barycentre is evidently at
 the origin- of vectors. A chanige of origin, referred to wvhich y is the vector
 to the barycentre, gives

 n}r (E,. Y) 0
 that is,

 YM m er(18)
 For a continuous, honmogeneous rnass, this equation assuimes the formii

 y = fp . dAl. fdJJ, (19)

 where d'il is the element of mass. It remnains to substitute in this formula
 the values already obtained for dllM in the several cases above considered.

 For arcs di/i - Tp'. dt, (3), and

 rfpp'. dt + fTp'. dt. (20)
 For surfaces in general di - TVp'1p,2 . dt, i, (6), and

 y~ ffX) pTVp'lp'2. dt, it + jjTYpip'2. dt, d . (21)

 TVor plane surfaces (8) this becomes

 7 = -E- [i3t 6ErTV+t'.Vdt +- 2- [62]1 JTYY. dt, (22)
 - p- T' - Dt. For suirfaces of revolution di is (9), and

 y fPTp'VOC. dt + fTp'Vap . (It, (23)

 a axis of revolution, Ta - 1. For solids in general dill is (11), and

 - = 0S'1s3'20'3* d3, d , Z . fSO 1' 9o'3. (dt, It, z

 1 4]1 t 1 3 t.o
 - 4- [z4] JJpSpp'1p'2. dt,n .- [z3] JJCSpp'1p'2 dt,n, (24)

 D- Dp, P'2 = Dp. For solids of revolution dill is (14), and

 y { --4 [z4jt fpSpp'Vap. dt +- - [zj]t fSpp'Vap . dt, (25)

 p' D,p. This last formula [see (16)] may also be written

 y = 4 [z4 fZpTVppTcVap. dt + V [zj] fTYpp'Vap. (It. (26)

 It is to be noticed that the formulae (24), (25), (26) give the barycentres
 of the entire solids, or of shells, according as the limnits assumed for z are 0

This content downloaded from 
�������������89.187.177.72 on Mon, 13 Mar 2023 21:18:24 UTC������������� 

All use subject to https://about.jstor.org/terms



 STRINGHAM, The Qua lernion Formulae Jor Quacntjficafion. 209

 and 1, or some other. Suppose the lim-its to be z anid z + E, where E is infini-

 tesimal. If the terrms containing the seconcd and hiigher powers of E be
 neglected, there will be in the numnerator the factor (z + t)4 z= 4z3E, and

 iii the denominator, (z + )3_ z- = 3Z2t; and (24) will reduce to

 z pSpp',p'2 * dIt, u . Spp'ip'2 . dt,u, (27)
 the barycentric vTector to an infinitely thin shell. The relative thickness of the

 shell, as slhown by the factor z in the equation, zX (t,u), of the shell, Avill
 be determDined by the position of the origin of the generating, v7ector.

 Applicat(ions.

 The ellipsoid will afford a convenient illustration of the application of tlle

 abovTe methods. Its equation is

 p - a cos x + a sin x,
 where a= cosy + sin y,

 ancd a, , y are the three principal senviaxes. By differentiatioin and reduction

 TVp',p'2 - as sin x <1- sin2w cos2u,
 where a = Ta b = T13, cT= T, s= Ta', and sin2w=1- 2_21,or cosw.=. as28 as
 Hence by (7)

 S= bcf in x/1i csin2 w coS x. dx,y .
 cos w

 Let sin v = sinw cosX, Cos v 1 sin w cos2 x. Then

 w2be t v.d v2 y be [2v - sin 2v]d
 Jsin 2w ~,cs 2 sin 2w2] .d.(8

 When the surface is one of revolution, say the prolate ellipsoid, then b c = s,
 -a2 _ b2

 Sin2 W 2 a and the expression (28) reduces to

 a2 1~ ~ 4y& oS a2,bg [y (2,v + sin 2v)] |y.

 The order of substitution of limits is v, 0, afterwvards y, 0.

 By easv transforinations it wi ill be found that Vpp', = Vaac, Vag'= - 13yv
 and therefore

 SPP'1P'2 = abc sin x.
 Hence, for the ellipsoidal shell [see (13)],

 abe abe 3 [z ]jfsin x.x,yd y CE3Y COS X]1 I'

 The order of substitution of lirnits is x, 0; y, 0; 1 , z
 54
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 210 STRINGHAM, Thke Quaternion ornmulae fJr Qita/Jifcation.

 The value of pSp'1p'2 is abc (a sin x cos x + a sin2 x), and its complete in-

 tegral is

 a4 [2ay sin2x+ (/ siny- y cos l)(2x- sin2x)]xI .
 Hence the barycentric vector of the ellipsoidal shell is

 -3[Z4 { 2 ag SiI12 X + (3 sin y -r cos ,?1) (2xr - sin 2x)} I ]x 1 1

 7 G16 [z3y cos x]xl1 z
 The order of substitution of limnits is important; it is as above in tlle expres-
 sioIn for TK If the shell be infinitely tlhin, in this case an ellipsoidal Chasle-

 sian shell, the application of formula (27) gives

 - z[2,ay sin2x + (V? siny r cosy)(2x -sin 2x)]} lo
 4 [y cos x]xI 0

 For the ellipsoidal solid y is the expression last written multiplied
 I)

 by . The barycentric vector to the half solid, bounded by the plane
 4z '

 of aJ, will easily be found to have the value 8 > and that of one-eighth

 of the solid, bounded by the planes a3, /3k, ya, to have the value 3(a- ++ 8

 It is wvorth while to observe, in this place, that from the equation
 p - w, (where p is the generating vector to a family of surfaces, and w is
 a scalar paranmeter), which Tait* has assigned as the equation of a volame,
 wvould be deduced substantially the same results as the foregoing. Let Tq
 represent the length of the radius vector to the surface which bounds the

 solid, and let q be written as a function of t, i, 0; tlhen if 1, it be taken as

 the variables which definie the surface, Tq and UVY will be functions of t, it
 exclusivelv, and 0 will turn out to be the angle of q. Thtus the equation of
 the soli(d ma- be written

 (ti Itt,I,0) ,
 or

 V= X (t, it) sin 0.

 This vector equation will be satisfied for every point within the solid; and it
 has the sanme form as the equation p - zz (t, tb), m-lade use of in the foregoing
 cliscussion.

 *Treatise on Quaternions, p. 61.

 APRIL 15th, 1879.
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 On, the Dynamnics of a "Cur'ved Ball."

 By ORMOND STONE, Cincinnati, 0.

 IN his paper "On the Lateral Deviation of Spherical Projectiles,": Pro-

 fessor Eddy has mnade a mistake which destroys the force of his argrument.

 In the equation (7)

 cos - sin S sin 0 cos - cos A cos 0,
 ; is the arc of a great circle joining, dS to mt and not that joining it to n'. The
 cosine of the arc joining dS to ' is

 sin S sin 0 cos p + cos S cos 0.
 If a plane be passed through dS, }I and o, it is manifest that the pressure dP

 will lie in this plane, and that the component acting from c toward o will be

 proportional to the cosine of the angle at c subtended by the arc joining,

 dS to m.

 "Augain," says Professor Eddy, "it appears from the interpretation given
 to , . . . that, so long as 0 < 900, mnore than half the elements dS along,

 this ring, between pp' and qq' are within 900 of n', and hence the largest positive
 value of cos A numerically exceeds its largest negative value." Now, if p be
 between e and g, all the elements dS along the ring are within 900 of n', although
 the pressure upon eaclh of these elements in the direction co is negative.

 Equation (8) is somewhat complicated, but can be readily integrated for

 special cases. The following solution of the problemn is sugoested as prefera-

 ble. Professor Eddy's nomenclature, etc., are retained as far as practicable.

 ,, :/

 * 'his Journal, Vol. II, pp. 85-88.
 211
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 212 STONE, On the -Dynamics of aC "Cutrved Ball."

 " In the figure let c be the center of a spherical projectile whlose radius

 is ca, and let men be" one-half of " the great circle of the sphere which lies in

 a horizontal plane. Let us disregard the vertical component of the motion of

 the projectile; and let c have a horizontal motionl of translation, at the in-

 stant under consideration, towards e. Also, let the projectile have a motion

 of rotation about a vertical axis through c in a right-handed direction, i. e.
 from mn to e. The motions of translation and rotation, whatever be their rela-

 tive velocities can be combined, as is wvell known, into a single rnotion of

 rotation about an instantaneous axis parallel to the vertical axis of rotation

 through c. This instantaneous axis must intersect the diameter mmXI, which is
 perpendicular to the direction of translation ce at somne point, as o. Let the

 instantaneous axis through o be called the axis of z. Also, let the distance oc

 be designated by the letter b."
 Let r be the distance of any elernent dS of the surface of the sphere fronm

 the axis of z. Pass a vertical plane through c, cutting the hemisphere nen in

 a semicircle whose projection is pc, anid similarly pass a second plane qc,
 making an infinitesimal angle 1yt = pcq with pc, and let S =fcp, fco dpoo 0t
 eep= y, cpo= acosv;

 -. cf a cosv cos b cos 0

 dpo = a cos v cos - r cos 0;
 b

 e* COS-o A =-Cos .
 r

 Since z is the instantaneous axis of rotation,

 v = er ,

 where v is the velocity of any element of the surface of the sphere and c is a

 constant.

 Let dS be the quadrilateral element of the spherical surface included

 between the semicircles pc and qc, making an antgle d{it with one another, and
 two small circles parallel with the horizon having a difference in altitude of d(v

 nmeasured in arc on the surface of the sphere. Let p0 be the projection of dS

 on the horizontal plane; then dS is ultimately a rectangle the length of whose
 sides are adv and a cos v dt;

 dS= a2 cos v dtdv .

 If we assume tllat the pressure dP on dS is toward c and proportional to Vn,
 where n is a constant > 1, and to cos S dS the cross section of the streami of
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 STONE) Ont the y4namins of a "(Cutrede Ball." 213

 air which dS meets in its nmotion, we have

 dpo-s oVn COS Jcosv d =tr"- 1 COS yz COS V dv,
 where c' and nt are constants and gn - a2bc?zc.

 The component dX of dP, acting in the direction co, is sin y cos v dP;
 dX rT-dQ

 where dQ - 2n sin 2y cos2 v dat dv.

 Also, if r' be the distance fromn the axis of z of an element of the surface

 dS' having an azimuth -y ecl' and altitude v, the component of the pres-
 sure dP' in the direction co is

 dX'- r,n-'dQ;

 d (X+ X') - (rn-1 r'n-1) dQ.

 Hence, since r is greater than r', d(X+,Y') is positive, i. e. the deviating
 pressure acting uponi- the two elements dS and dS' is from c towards o.

 The normal pressures acting upon dS and dS' are evidently greater than
 the average pressure of the atnmosphere. On the other lhand, the motion of
 the ball causes a diminution of pressure upon the elements dS" and dS"' whose

 altitude is the same as that of dS and dS', but whose azimuths are 1800 -

 and 180( + y. Since the velocity of dS" is greater than that of dS"', the dimi-
 nution of the pressure upon dS" is greater than that upon dS8". Nevertheless,

 the increase of pressure in front, caused by an increase in velocity of a body
 moving through a homogeneous elastic fluid is always greater than the cor-

 responding decrease behind;

 .-. dP -dP' > dP"-dP"';

 consequently, since d (X + X) is positive, d (X + X' + XI' + X"') is also posi-
 tive; or, in other words, the total lateral pressure upon the four points in

 question, and hence by integration the total lateral pressure upon the projec-
 tile is from c toward o.

 55
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 Note on Deter miants wad Duadic Sgntthemes.

 BY J. J. SYLVESTER.

 (Continuation. See pp. 89-96 of this Voltume.)

 THE properties of the o series 1, 1, 2, 8, 50, . . . (see p. 94) present some
 features of interest. These are the numbers of distinct termns in pure skew
 determiinaints of the order 2n divided by the product of the odd integ,ers
 inferior to 2n. Such numbers themselves may be termed the denumerants,
 and the quotients, when they are so divided, the reduced denurnerants of the

 corresponding determinants; or for greater brevity we may provisionally call
 these reduced denumerants skew numbers. We have found, in what precedes,
 that

 eT 2t

 0, =@ + (I)l 2 + 02 2.4+ 2 .4 . 6 4'i. --t o+O1-?2 2. 4+O2

 From this we may easily obtain
 Fx

 x(x ) - --

 where E=1 + 1. x + 1.5 $ ( 1) )+1.5 .9(x- 1 2(x 2) ...
 + 1 . 5. 9 ... (4x - 3), which shows that Tx, for all values of x, contains

 2x as a factor, and that if we take x greater than unity, 2x+1 will be a factor

 of Ex. In general, it follows from the fundamnental equation ox= (2x- 1) &Ox-
 - (x - 1) Gx-2 that if two consecutive skew numbers (Oc Ic-1 have a comiuon

 factor, all those of superior orders, and consequently 2x vfor all values of x

 from c upwards, will contain such factor. It becomes then a matter of interest
 to assign, if possible, a general expression for the greatest common measure

 of (o) ~Ox+1
 In the first place I say these can have no common odd factor otlher than

 unity.
 214
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 SYLVESTER, Note on beterminants and Duadic Syntkemes. 215

 Lemmnna. It is well known that, in the development of (1 + a)x, all tlhe
 coefficients except the first and last will contain x when it is a prime number.

 More generally it may easily be shown (and the mode of proof* is too obvious
 to need setting out) that whatever x mnay be, any prime number contained in
 it must either divide any number r, or else the coefficient of arin the bino-
 miial expression above referred to. Hence we rnay prove that (ax and x cannot
 have a common odd factor other than unity. For if possible, let x - qp, where p
 is a prime nuinber contained in ox Let the qp terms in Fx subsequeent to the

 first term be di'vided into q groups, each containing p terms. Each of the
 terms in any one group (except the last) contains a binolDial coefficient, whicb,

 by virtue of the lemma, will contain p. Moreover, the last term in the kth
 group will contain the factor 1 . 5 . 9. .. (4kp - 1).

 If p is of the form 4n - 3, the nth term of the series 1, 5, 9,. . . will
 be p, and if it is of the form 4n - 1, the (3n)th term will be 3p; and as

 P + and 3 p + 1 are each not greater than p (and a fortiori not greater
 4, 4

 than kp) when p is greater than 1, it follows that the last coefficient, as well
 as all the others in any group, contains p. Hence Fx =pP + 1, and there-

 fore o, i. e. Fx, cannot contain p. Hence the greatest common measure of x

 and ox+ is a power of 2.
 It will presently be shown by induction (waiting a strict proof) t that

 W4^z_2 ' b9?2zz-i X 24 -2 are all of them integers, and the first third and

 fourthi, odd integers; from this it will easily be seen that the greatest comnmon

 measure of x, o.+ is 2( ), where, in general, 0(y) means the integer

 *Some of the prolixity of the more obvious mode of proof of this lemmiia may be avoided by the substitu-
 tion of the following method:

 Call (1 + t)n -1+Altt+ A2t2 +A2 +A3t3+. . ., so that
 n (1 + t)n A + 2A2t+ 3A3t2 + ...

 ==Bo +Bt+B2t2+. . . . tt.

 Suppose n = qp: then designating the qth roots of unitv by p1, p2 .. . pq, we have

 _P -p k 0 (pt) = BSktk + Bk +r qtk +r q + Bk + 29 tk,+ 2q +, + Bk +(p-1)q tk + (P- ) q,

 and the left hand side of the equation i. obviously a multiple of p. Hence, putting t successivelv equal to
 01, 2, 3, .. . (p- 1), we obtain, by a well-known theorem of determinants,

 ABk ,iqEO [mod p]
 where A, being the product of the differences of 0, 1, 2, ... (p - 1), cannot contain r. Hence Bk - A 0 [mod p],
 and consequently giving k all values fromy 0 to (q-1), and X all values fronm 0 to (p--1), we see that all the Bs,
 from Bo to Bpq. l, must contain p as a factor as was to be proved.

 t Since the above was set up in print, I hatve found an easy proof, for which see Postscript.
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 216 SYLVESTER, NVote ont -Determinacnts and Duadic Syint1iemtes.

 nearest to yt. Let us call the above fractions q4x - 2 q4x-1, q4.c, q4x l, to
 which we may give the namie of simplified skew numbers. In the subjoined
 table I have calculated the values of the residues of these numbers by a regu-
 lar algorithm in respect to moduli beginning with 223 and regularlv decreasing
 accordinig to the descending powers of 2. R stands for the words residue of

 ModuluLs. |4x ||q4,. - |1
 8,388,608 0 1 1
 4,194,304 1 1 4 25 209

 2,097,152 2 1,087 13,504 194,951 1,088,983

 1,048,576 3 929,451 442,068 992,179 576,715

 524,288 4 287,913 118,168 393,089 71,201

 262,144 5 201,913 14,228 126,417 179,945

 131,072 6 51,071 56,656 46,407 127,767

 65,536 7 56,531 24,452 15,131 46,739

 32,768 8 12,521 29,928 22,753 29,729

 16,384 9 14,289 5,412 15,209 14,305

 8,192 10 1,119 2,784 4,063 4,751

 4,096 11 3,283 3,156 2,331 3,059

 2,048 12 1,721 1,632 425 1,801

 1,024 13 913 84 1,001 385

 512 14 215 240 479 239

 256 15 91 132 99 219

 128 16 81 8 9 9

 64 17 41 36 1 57

 32 18 23 0 31 15

 16 19 3 4 11 3

 8 20 1 0 1 1

 4 21 1 0 1 1

 2 22 1 0 1 I

 From this table it appears that q,8-, is 4 times an odd number, and that
 is 8 times a number which may be odd or even; thus we know the exact

This content downloaded from 
�������������89.187.177.72 on Mon, 13 Mar 2023 21:18:42 UTC������������� 

All use subject to https://about.jstor.org/terms



 SYLVESTER, Xote oit Determinants andl Daacdic Synthiemes. 217

 number of times that 2 wvill divide out all the skew numbers other than those

 whlose orders are of the form 8i -1, and an inferior lirnit to that number for
 that case.

 It will further be noticed that, when x is of the forin 4i, or 4i + 1, the
 simplified skew numbers q4x, -q2 , xq4x+ are all of the form 8X2+ 1, that
 when x is of the form 4i + 2 the above named simplified skew numbers are

 of the formi 8X + 7, and when x is of the form 4i + 3, they are of the form
 8X + 3.

 Before quitting this subject, I tlhink it desirable briefly to refer to other
 series of integers closely connected with those which I have called skew num-
 bers. To this end we may write, in general,

 t (I 41i - 1 t t2 t3
 e(1-t) 4 =1+6-- - + 02,2 4+()33 - 24 + v

 yi being any positive or negative integer, so that ox, 0 is the same as I have

 called hitherto ox. It may then easily be shown that ox,,,, 2co4 + 1 z
 4i + 1

 tlhat ox, 1, - = 2xo__ 1, , and that the equation in differences for ()x,,
 for yi constant, becomes

 o, 1= (2x + 2y -1 ) (1)x - 1 (X Ox) - 2, x
 with the initial conditions coo, = 1, ol,, = 2y + 1. Also, it is clear fromti the
 definition, that the explicit value of ox, 1, in a series becomes

 1 + (4 + 1) x + (4y + 1) (4y + 5) ; 2
 2x 2~~~~~~~~~-

 + (4y + 1) (4y + 5) (4y + 9) x x- - 2--8 +***}'
 which is easily seen to verify the equation

 2coZ j c)z =(4y + 1) oxg1j

 We mioght call the (, series skew nurnbers of the yth degree, and, as for the
 case of y 0, so it may be shown in general that two consecutive skew nuin-
 bers of the samne degree can have no common odd factor. Also, it remnains true

 that the greatest common factor of any two consecutive skew numnbers of the

 same degree and the orders x, x + 1, is 2 8 ) 42O4x-1,1 (4, ?4x 1,1x
 being all divisible by 2x, and the resulting, quotients being, the first, third

 *And of course, in general, the equation

 t6x", Ur1y + y?-lG-1, i -y0-I+
 with the condition that it0 yis constant, has for its integral

 __ __1 I-x-2 ) 56x, y- 1-0yX+0y0(y+J)X -1 oyo (y+ J) 0 (y-+ 2J) x x 2 --3 - + }
 56
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 218 SYLVESTER, Ivote on -Determinants an9d -Dutadic Syptlwemes.

 and fourth of them, alwvays odd integers, and the second divisible by 4 or
 some higher power of 2 when t is even, but only by the first power of 2 when

 y is odd. But it wouldl carry me too far away from the original object of

 this note, and from other investig,ations of mnore pressing momient to nmyself,

 to pursue further the tlheory of general skew nutmbers, wvhich, however, seenms

 to me to be well worthy of the study of arithnieticians.

 I will only stop to point out that the rule for the greatest common

 measure of (ox and cox+, serves to prove the rule for the general case of (,) x,,
 and 6 ?+1 ,/1 Thus suppose yt to be positive. Then since 2w,,+1-
 and (1)4-2 = 2k (22 + 1), ('4k- = 2` + 1r, =)4 2' (2v + 1), (JQ 1, 2' (27t + 1),
 (1)4+ = 22k+1 (2p + 1); it follows that

 ('4k-2,1 = 2k(22' + 1), 04k-1, 1- 2J1 1rp4k, 1 =20(2v'+ ), and4; + 1o 1_ 21(27t'+ 1).
 It is obvious furtlher that, r being even, r' is odd. So again fromn these

 results we may, in like manner, deduce ()4k - 2, = 210 (2W' + 1), ()41-1, 2= 2k ?- lTt
 04.2- 2 (2v" + 1), (4k+1,2 =2k (27t + 1), subject also to the remark that, r'
 being odd, T" is even. and so on continually, r being alternately even and odd.
 Again if t is negative, we may, in like manner, by means of the formula

 01,; - - 2kc ,),, pass successively from the case of Ok. to that of
 1,- - 1 ,-2 . . . (k,-p and establish precisely the same conclusion in regard
 to powers of 2 as for the case of yt positive, and it will be remembered that I

 have already shown how to establish that and 6)k+1,,1 have no comimon

 odd factor.

 In the first note on this subject (Vol. IT, No. 1, of the Journal) I showed how

 a general determinant could be completely represented by means of systemis of
 cycles and that accordingly the terrns in the total developnment would split

 up into families, as many in number as there are indefinite partitions of the

 inidex of the order of the determinant-the particular mode of aggregation

 depending upon the term chosen to represent the product of the elements in

 the principal diagonal, so that for the order n there would be 1. 2. 3 . .. in

 distinct modes of distribution into families. This gives rise to a theory of

 transformation of cycles, corresponding to a transposition of the rows or

 columns of the matrix. Thus ex. gr. suppose the mntbrae to be 1, 2, 3, . . . n:

 r, s signifying the element in the rth row and sth column. Then if we inter-
 change the nith and ntli columnis, this will have the effect of changing pm into

 pi and pn into pm.
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 SYLVESTER, Note on Determninants and Duadic Synthemens. 219

 Suppose now that a term of the developed determinant is expressed by a

 system of cycles such that nz arid n lie in two distinct cycles, say Xm and n.Y,
 where X, Y7 are each of them single elements, or aggregates of single ele-

 ments; then the effect of the interchange will be to bring these cycles into
 the single cycle XnYin. If Xm, nY were both odd ordered or both even

 ordered cycles, their sum will be even ordered, and the numnber of even

 cycles will be increased or diminished by unity; so if one was of odd and

 the othier of even order, their sum will be of odd order, and the nurnber of

 even cycles will be diminished by unity. In, either case, therefore, the sign,

 which depends on the parity of the number of even cycles, is reversed.

 Again, suppose m and n to lie in the samie cycle mXnY. Then the effect

 of the interchange will be to break this up into two cycles miX, nY, and for
 tlhe same reason as above the sign will be reversed. Thus the sign of every
 term in the development will, we see, be reversed, as we know a priori ought

 to be the case.

 -Fx
 I shall conclude with applying the formula = 2 to determininig the

 asymptotic mean value of the coefficients in a skew determinant of the order
 2x, i. e. the function of x to which the mean value of the coefficients converges

 when x is taken indefinitely great. We know that all the coefficients, both

 in this case and in that of a symmetrical determinant, are different powers

 of 2; to find the mean of the indices of these powers would be seemingly an

 investigation of considerable difficulty, but there will be little or none in
 finding the ultimate expression for the mean of the coefficients tllemselves,

 or, which is the same thing, the first term in the function which expresses this

 mean in terms of descending powers of x. We shall find that, for symmetri-

 cal determinants, this is a certain rnultiple of the square root and, for skew

 determinants, of the fourth root of x, as I proceed to show.
 Frorn the equation

 2x, = 1 + x + 5x 2~ + . . . + (1 . 5 ..w (4x- 3)),

 we have, when x = ,

 2O-.5.9.....x.3 .4-3 2%~ ~~~~~~~4 - 1.5.9...4 3{1+4D3 +2 (4x -3)(4x -7) }
 =e4 . 1.5.9 . .. 4x-3.

 The number of terms in the Pfaffian (the square root of the determinant taken

 with suitable algebraical sign) being 1 .3.5 ... 2x -1 and-as follows from
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 220 SYLVESTER, Note on Deter)ninaants and Duadic Synthemnes.

 what was shown in the first note-cancelling being, out of the question, the
 sum of the coefficients all taken positively in the determinant itself will be

 (1. 3.5 ... 2x - 1)2. Hence the meani value required is (1. 3. 5 . . . 2x - 1)2
 divided by 1 . 3. 5 . . . 2x - 1 c, to express which quotient in exact terms we
 may make use of the formula

 rb
 a(a + 4)(a + 20') ... (a + x8) F a b
 b(b?+)(b +209) ... (b +x) pa

 For the mean value is

 1 1.3.5 ... (2.v-1) 4.8.12. *(4x) _I1 1 1 xi= 4 Xi
 ei * 2.4.6... (2x) *1.5.9 .(4x-3) el r 1 4

 2

 If we wvrite this under the form Qxi, we have

 r1
 4

 ear i
 2

 3 1 l( log Q?=io r + lo, 2 -logr --t 1 n 4 zn ~2 4og

 = 9.9573211 + .3010300 - 9.9475449 -.1085736

 = .2022326,

 or Q = 1.59306.

 This result as may easily be seen remains unaffected when, instead of a
 pure skew determinant, one is taken in which the diagonal terms retain
 g,eneral values. Tlhe effect of this change will be to increase the numerator
 and denominator of the fraction which expresses the mean value, in the pro-

 ofe2 + 1
 portion of e to 1.

 Finally, as regards the ultimnate mean value of the coefficients of sym-
 metrical determinants. This, for one of the order x, by virtue of Professor
 Cayley's formula previously given, will be the reciprocal of the coefficient of

 t + g

 tx in __--. It mnay readily be shown in general that, qt beino any series

 of integer powers of t, the coefficient of tt (when x becomes infinite) in
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 SYLVESTER, Note ogn Determinants and Duadic Synthemes. 221

 e(Pl)t
 is in a ratio of equality to the coefficient of tZ in , - , so that in the present

 case this coefficient is the same as the coefficient of tx in Z. e. in

 I + ~tf13 t2 +1 3 5. 2x1)t+
 ( 2 t 2.4t * 2. 4.6. ..2x /

 X(+4 +(4 )2 + +(4 )1 . 2 . . . z
 .0 . . 3.3 5.. (2x -1)

 which is obviously, when xis infinite, equal to 214. ...( 2x el. Hence

 the ultimate mean value of the coefficients is 1 2 or 4 6 .2.
 el 1. 3. 5. .. (2x -1)' orlx

 For a symmetrical determinant in which all the diag,onal terms are

 wanting, the numerator of the fraction giving the mnean value becomes
 e-1 (1.2.3. .. x) and the denominator is (1 .2.3 ... x) into the coefficient of tz

 in __ which is the same as in _ ---. The result then is - N /x,
 IN1- t N/ 1 te

 or -tV/x as before. It may perhaps be just worth while to notice that the

 skew nutmbers (the o's of the text) may be put under the form of a determi-

 nant, the nature of which is sufficiently indicated by the annexed diagram.

 1 1 0 0 0 0 0

 1 3 2 0 0 0 0

 0 1 5 3 0 O l

 0 0 1 7 4 0 0

 O 0 0 1 9 5 0

 0 0 0 0 1 11 6

 0 0 0 0 0 1 13

 The successive principal minors in this matrix represent the successive skew
 numbers of all orders from 1 to 6 inclusive.
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 222 SYLVESTER, Note on -Determinants and JDiadic Syntiemes.

 Postscript.

 Since ox + (2x + 1) cox xox -1 , we have
 Ox + 2 (4X2 + 7x + 2) cx- (2x2 + 3x) (Qx-I,

 (Ox + 3 - (8x3 + 32X2 + 34x + 8) ox - (4x3 + 15x2 + I 3x) cot-i,
 Ox + 4 (16x4 + 116x3 + 273X2 + 231x + 50) ox - (8x3 + 56x3 + 122X2 + 82x) ox -.

 Suppose now that, for a given value of i, q4i-2= 2 =2X+ 1, q4i-1= 2 =41t,

 24! = 24i = 2v + 1 and 41 =042+ I=2p+ 1. Call (Orx+ 4 = EA)x - P'xGx -1.
 (0J4i -3

 Then wlhen x + 2, FP 4 [mod 8], and therefore, assuming that q4i-3= 21-1

 is odd, F- 2 (' -4i is odd. Also, E4-2 462 + 50 _ 0 [mod 4L], and conse-

 quently E4X-2+4i-2 is even; henice q4, +2 = (f04i +2 is integer and odd. Again when 2+ 1I vn 2i+1

 x 4i-1, E, 1- 3+50--0 [mod 4], and x-122- 82=0 [mod 8];

 hence q44+3 = (-i2,-'+il3 is an integer divisible by 4. Again, when x = 4i E4- 2 hencq4i 3 -2i+1 ~

 and F4j-0 [mod 4]; hence q 4+4 (04?4 is integer and odd; and when

 x=4i+1, E4i1--2 and F4j?1 O0[mod4]; henceq4i+5= 2++1 is integer
 and odd.

 Thtus it has been shown that if it be true up to 2 = i that 4 2'4X1 2A&,
 2K4~ 2 + 21 2X4

 A4+' 1are all integer, and the first, third and fourth odd integers, the same

 proposition can be affirmed for all superior values of i, and being true for

 00 I O6 ), O3, the quotients corresponding to which are 1, 1, 1, 1, the theorem
 is true universally. It is inconceivable that it could have occurred to any
 humnan being to lay down so singular a train of induction as the one above

 employed, unless previously pronmpted to do so by an dpyriori pereeption of
 the law to be established, acquired throuigh a preliminary study and direct
 inspection of the earlier terms in the series of numbers to which it applies.

 Here then we have a salient example (if any were needed) of the imlportance

 of the part played by the faculty qJ observation in the discovery and establisli-
 nent of pure mathemnatical laws.
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 Tables of the Generating Functions atd Groundformns
 for the Binary Quantics of the First Ten Orders.

 BY J. J. SYLVESTER, assisted by F. FRANKLIN,

 Of the Johns HIopk1ins Utiversity.

 In what follows, "' G. F." stands for the worcls Generating Function. In
 the Generating Functionis, the exponents of the letter a refer to degree in the
 coefficients, and the exponents of the letter x to order in the variables. The

 Generating Functions for differentiants take account only of degree in the
 coefficients, without regard to the order in the variables of the covariant of
 which the differentiant is the " soatrce." In the tabttlated numerators of the

 Generating Functions, the miinus sign is placed over instead of to the left of
 the number which it affects.

 QUADRIC.

 G. F. for differentiants, (1_X1=).

 G. F. fbr covariants, 1
 (1 -a 2)(I- aX2)

 Groun(?formns: 1 of deg. 1, ord. 2; 1 of deg. 2, ord. 0.

 CUBIC.

 __ _ a 3

 U. F. ffbr di ferentiants, (1 -a)( -a2)( -a 4)
 1-ax + a x2

 G. F. fbr covariants) redttced forn, (1-a) (1-a) (1-
 (I -a ax) 1 -H ax')

 G. F. for covariants, representative fbrn, (1 - a 3) (1-aX2)(1 -

 Grourndf6rmes: I of cleg. 1, ord. 3; 1. of deg. 2, ord. 2; 1 of deg. 3, ord. 3; 1 of
 deg. 4, ord. 0.

 QUARTIC.
 1 a 3

 G. F. for differentiants,(1 a)(1 a2)(1- a

 G. F. Jbr covar iants, reducteed fJori, 1 - a. 2 + a2X4

 1 +a3X6 ____

 G. F. for covariants, representativeforn, (1- a2)(1_ a3) (1-a2X)(1 -

 Groutndforns: 1 of deg. 1, ord. 4; 1 of deg. 2, ord. 0; 1 of deg. 2, ord. 4;
 1 of deg. 3, ord. 0; 1 of deg. 3, ord. 6.

 223
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 224 SYLVESTER, Tables of tlhe Generating Functions and Groundforms

 QUINTIC.
 G. F. for differentiants,

 1 + a2 + 3a3 + 3a4 + H a5 + 4a6 + 6a7 + 6a8 + 4a9 + 5a10 + 3a" + 3a12 + a13 + a15
 (1 a) (1 -a2) (-a4) (a) ( -a8)

 G. F. for covariants, reduced Jbrm,
 Denominator: (1 - a4) (1- a6) (1 - a8) ( -ax) (1 ax3) ( 1- ax5).

 Numerator: 1 + a (x-_X3) + a2 (x/2+ x4 + x6) -a3x7 + a4x4+ a5 (x + x'-x5)
 + a6 (- 1-X4) + a7 (2x+ x5+x5) + a8 ( x2 X4-2X6)
 + a9(X3+ x7) + a"0 (x 2 x4-x6)- a11x3+ a12+ a13( 7-x-3_ x5)
 + a 14 (X4 + x6) - a'5X7.

 U. F. for covariants, representative form,
 Denominator: (1- a4) (1 - a8) (1- a12) (I - a2X2) (1 - a2x6) (1 - ax5).

 Numerator: 1 + a3 (X3 + X5 + X9) + a4 (X4 + x) + a5 ( + X3 + X7 X11)

 + a6 (X2+ X4) + a7(x + x5- x9) + a8 (X2+ x4) + a9 (X3+ x5- x7)
 + al0 (X2 + x4 - x?1) + a11 (x + x3 - x9) + a12 (x2 x8 x10)
 + a13 (X -X7 - X9) + a14 (x4 x6 _ x8) + a15 (-X7- X9)

 +a"16 (X2 x6 -x10) + a17 (-x7 x9) +a18 (1 -x4 x8 -1x0) + a 19 ( X5- X7) + a'? (_ X2 -x6-x8) -a23x11.

 Table of Groundforms.

 ORDER IN THE VARIABLES.

 0 1 2 3 4 5 6 7 9

 2 1 1

 qj 4-l --?__?-1-------t-

 4 11 1

 HI 611
 0

 7

 z81

 12 1

 18 1
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 for the Binary Quantics of the First Ten Orders. 225

 SEXTIC.

 G* F* f dffrei 1 + a + 3a'3 + 4a- + 4a'5 + 4a6 + 3a7 + a" + a"'
 G. F. f ('r differentiatnts, (I a) la') (-1 a'3) ( 1 a') (1 -a')
 G. F. for covariants, reduced* form,

 Denominator: (1 - a2)2(1 - a3) (1 - a4) (1 - a5) (1 - aX2) (1 _ ax4) (1 - aXl).
 Numerator: 1 +a (_X2_X4) + 2 (-1 +x4+ x6+ X) + a3(- 1+2x2+x4-x0)

 + a4 (X2-x x'6- x) + a6 (_ -x6 - x8 + x"o) + a6 (1 x2_ X8 + x10)

 + a7(1-X2-x4)+ a8(-X2- X4+ X8)+ a9(-1-+ X6+ 2x8-x10)
 + a 10(X + X4 + x6- 10) + all (-x6 - 8) + a12x10

 G. F..for covariants, representative form,

 Denominator: (1-a2) (1 a4) ( - aG) (1-a'0) (1- a2x4) (1- a2X) (1 - ax) .
 Numerator: 1 +a' (2 +6+ + x+2)+a4 (x4+x6+x'0) + a1 (x2+x4+x8-x'6)

 + a6 (X4+ 2x6) + a7 (X2+X4 + x8 -x12) + a8 (x2+ X4+ x6- _14)

 + a9 (X4 + x6 - x10 - x12) + a'0 (x2 + x4 _ x12 - x14) + all (x4
 -x 6- x 10- x12) +ja'2(X2- -X _X12_X14) +a-13 (x 4x8-x12_-x14)

 + 1-4( 2x'0- X12) +-a15 X(1- - x12 - x14) + al6 (-G x-0- x 12)
 + a17 (X4 8_XS_X10 X14) _20X,16

 Table Qf Groundforws.

 ORDER IN TILE VARIABLES.

 0 2 4 6 8 10 12

 21 1

 2 1 1 1

 8 1 1 11

 74 1

 5 1 11

 10

 Q 61 22

 7151

 *Tllis is not strictly the ininliimum form, its numecrator and denomintator being divisible by 1 - a; it is, how-
 evTer, the lowest form to wliceh the fraction can be reduced wben the fttetors of the denomninator atre all of the
 forms; 1 - ar}1 - arv. The samle remark applies to the "1 reduced form " in the case of the deciiiiic.

 58
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 226 SYLVESTER, Tables of the Generating Functions azd Groundforms

 SEPTIMIC.
 G. F. for di7ferentiants,

 Denominator: (1 -a)(1-a2)(j-a4) (1-a6) (1 -a8) (- a") (1- a2).

 Numerator: 1 + 2a2 + Ca3 + 1Oa4 + 19a5 + 28ad + 44a7 + 61a8 + 79a9
 + 102a10 + 129a1 + 156a'2 + 173a13 + 196a14 + 215a'5
 + 230a16 + 231a17 + 231a18 + 230a"9 + 215a20 + 196a21
 + 173a22 + 156a23 + 129a24 + 102a25 + 79a26 + 61a27 + 44a28
 + 28aU29 + 19a30 + 10a3" + 6a32 *+ 2a33 + a35.

 G. F. for covariants, reducedform,

 Denominator: (1 - a4) (1- a6) (1 a8) (1 - a10) (1 - a12) (1 ax) (1 aX3)

 (1 -ax)(1 ax').
 Numerator:

 0 1 x2 '3 x4 x5 x6 x7 x8 '9 10 x11 12 x13 14

 ao X

 a22

 a3 __ _1111

 4

 a 2 1 1

 a6 i 2 1 1

 a 1 2 13 1 1

 a9 1 3 1 1 2 2

 a 1 4 1 2 2 I

 a11 3 2 1 2 1 1

 a1 5 1 4 6 4 1 2

 a1 1 4 4 1 1 4

 a4 2 5 1 1 23

 a15 3 1 1 7 5 1 1

 a 6 ~3 3 4 3 1 5

 17 19 8 4 3 4__-
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 for the Binary Quantics of the First Ten Orders. 227

 Numerator- (Continued.)

 0 1 2 3 4 5 x6 x7 x8 9 x10 x11 x12 x13 14

 a18

 19------

 a 4 3 4 8 9 2 1

 a20-- a2 05 10 _ 3 4 3 3 6
 a21 a 1 1 5 7 1 1 3

 a22- a 1 3 2 1 1 5 2

 a23- - -

 a2 2 1 6 45

 a25 1 1 1 2 3 5

 26 - - -
 a i2 2 1 4 1

 a2 2 2 1 1 3 1

 a2 1 1 3 3 1 2

 a29 1 1 3 1 4

 a30 1 1 1 1 2 1

 32
 a 2 1

 a32 1 12

 a34 1 1 2 1 1

 a351 1 1

 a 3 6 _ _ _ _ _ _ _ _ _ _ __

 Owino to the non-existence of an irreducible invariant whose degree is

 10, or any multiple of 10, no representative generating function with a finite
 numerator can be obtained for the septimic; the factor 1 - al0 in the denomui-

 nator has to be got rid of by dividing numerator and denominiator by it, or,

 in other words, by striking it out of tlhe denominator and multiplying the

 nuimerator by the infinite series 1 + a10 + a20 + .... We thus obtain:

 G. F. for covariants, representative forn, (with infinite nunerator),
 Denominator: (1-a4)(1- a8)(1 a12)2(1 -a2x2)(1 - a2'6) (1- a2X10) (1- aX7).
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 228 SYLVESTER, Tables of the Generating Puntcztions and Groundfbrmns

 Numierator: (Given to the term-s containing the 45th power of a, inclu-
 sive; after which, each column can be continued by repeat-
 ing thte last five coefficients occurring, in it, ad inf.)

 0 3 1 3 4 5 6 7 8 9 10 11 39 12 43 3 4 15 16 17 18 19 20 21 4 22 23

 a' 4

 a ~ ~~~~~ ~ ~ ~~~~~~2 1 2 11

 a3 1 2 2 2 211

 6

 a 3 2 3 3 ~ ~~ ~~~~~~~~~~21 1
 7
 a 3 2 4 4 1 _21

 at 2 3 4 6 1 3 1 21

 a 3 15 7 1 4 2 1 21
 10
 a 5 6 4 1 43 1

 a 5 5 5~~~ ~ ~~~~~~~~~~~~~~~ 4 4 1
 12

 a 9 9 12 4 1 3 5 61 1

 13
 a 9 9 12 6 1 3 5 9 3 1 1

 a 14 9 13 I1I 1 3 9 10 7 2 8

 a 15 9 12 16 3 2 10 1 5 3 3 2

 (16 5 14 1 5 12 1 5 16 9 9 1 8 3

 a 17 12 15 16 6 3 17 13 15 5 2 3

 a'I Q 9 14 1 5 1 4 3 1 3 20 1 5 1 5 2 2 5

 a'19 15 1 6 18 5 18 20 19 3 3 5 4

 a0 7 14 15 12 10 16 25 19 12 2 5 9

 a 2' 14 17 19 1 8 27 25 16 2 4 5 4

 a 22 9 17 19 11 5 15 31 17 15 6 9 9

 a23 17 19 18 3 13 31 25 21 4 9 9 5

 al24 8 17 17 10 12 27 32 22 16 9 9 12

 a7 2 15 17 19 6 17 31 28 22 3 10 12 9

 a 26 9 15 15 8 1 1 7 2.3 34 21 10 t0 14 15
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 for the Binary Quantics of the First Ten Orders. 229

 Numerator-( Continued.)

 70 ^71 x2 73 X4 X'5 X6 x7 Xs x 9 7tO x11 x 12 x13 14 x 15 716 417 18 19 20 21 722 ,2

 27-----

 a2 t 17 1 17 1 19 9 16 86 29 19 3 1S3 14 1 7

 a- 1 8 17 18 9 16 26 38 18 138 14 15 14,__
 9 9 - _ _ _ _ - _ _ _ _ _

 a- 18 19 17 8 16 86 25 21 o( 16 16 9

 a30 19 _ 18 18 10 18 27 35 19 1 1 16 15 17

 a3 1 17, 17 17 8 19 3_ 229 19 8 15 17 ; 8

 a32 9 18 18 8 18 26 j 85 19 IO 17 17 _18

 a33 | 18 18 18 9 18 3_ 84 26 17 8 18 18 ,9

 cl 34 8 17 17 9 17 328 36 18 8 1 17 17 17

 a30 1 18 17 18 9 17 385 27 18j 9 18 17! 8

 a36 9 19 18 9 18 25 34 17 91 17 19 181

 a37 17 17 18 9 18 371 26 18 9 17 17 9

 a38 91 17 17 9 18 26 37 18 9_ 18 17 17

 a39 18 19 17 9 17 34: 25 18 9 18 19 9

 a40 9i 17 18 9 18 27 35 17 9 18 17 18'

 a 4 17 17 17 8 _ 18 1 36 28 __1I7 _ 9 17 1 7 8

 C42 a | 91_1 18 18 8 17 26 34 18 9 18 18 18

 a43 1 18 18 18 9 18 34I 26 _ 17 8 18 18 9

 a44 8 17 17 9 __ 17 _ 28 36 18 8 17 _ 17 17 __

 45 ii9 a4? 18 17 18 9 |17j 35; 27 18 9 18 17 7 9

 etc. etc. etc.

 59
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 230 SYLVESTER, Tables of the Generating Functions ancd Groundfornns

 Table of Grotundjbrns.

 ORDER IN THE VARIABLES.

 0 1 2 3 4 5 6 7 8 9 10 11 14 15

 1 1_I__!_ _I -1--
 2 1 1

 3 1 1-i- 1-- i> A____i.1_____

 4 1 2 1-2

 5 1 2 2 2 2

 6 3 2 2 2

 ] 7 3 2 4 2

 8 3 3 3 3

 ? ? ? ? ? ?- 1- _1_____ __ __- ? --_1

 i 9 3 5 2

 H 10 4 3

 Deointr 11 -a (1 3 221(391a) la)(-

 N 12 6 6

 ~+13 7

 14 4

 15 3

 16 2

 17 2

 18 9

 22 1

 OCTAVIC.

 G. F. tbr dliff~ereniticants,

 Deinominiator: (I-c, 1-a I t) 4 ,) a)
 Numerator: I + 2a2-j- 6a' + 12t4 + 19a5+ 25a6+ 31a7 + 36a8+ 38a9+ 36a10

 + 31a'1 + 25a 12 + 19a13 +f 12a 14 ? Ga'15 + 2a16 + a13.
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 for thte Binary Quantics of the Pirst Ten Orders. 231

 G. . for covaria,its, reduced form,

 Denominator: (1 -a2) (1-al) (1 a4) (1-_a5) (1-a6) (1-a7)
 (1- aX2) (1 - ax4) (-aX6) (1 ax8).

 Numerator:

 ,0 ,2 .4 G6 8 x10 x12 14 16 18

 a 1 1

 a4 2 _i -i_

 5--
 a 1 211

 6 - -

 a 2 12 1 2 1

 a 1 2 2 2 2 1

 10 - - .
 a 1 1 2 2 11

 12 - -
 a 1 _ 1 2 2 1

 13 - - --

 a 1 1 1 2 2 2 2

 a 12 21 2 2

 15~~~~~~

 a ~~~~11 __ 2
 18

 a 1 _ 2

 a19- - - -

 a20

 a22
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 232 SYLVESTER, Tables of tke Generating Functions and Ground/ornis

 G. F. for covariants, representative formi,

 Denominator: (1 - a2) (1 a3) (1 4) (1 - a') (1 - a6) (1 - a7) (1 -a2X)
 (1 - a2'x) (1 a2X12) (1 ax)

 Numnerator:

 x0 x2 X4 X6 x8 xlO x12 x14 x16 xi s20 X22 x24 2628 x30

 a0

 a? 1 -l 1 1 1 1

 a4 2 1 3 2 1

 a 1 2 3 2 2 1 1 1

 a, 2 2 3 2 2 1 2 1

 8
 al 1 2 2 3 3 1 1 1 1 3 1

 9
 a 1 3 1 3 2 1 1 3 2 4 1 1 1

 t o' a 1 2 1 2 1 2 2 5 4 4 2 1 1

 a 2 1 1 1 4 2 6 4 4 3 2

 a 1 1 1 1 4 2 6 6 2 3 2 1

 a 1 2 3 2 6 6 2 4 1 1 1 1

 :14
 az 2 3 4 4 6 2 4 1 1 1 2

 a 1 1 2 4 4 5 2 2 1 2 1 2

 a16 4 2 3 1 1 2 3 1 3

 a7 1 3 1 1 1 1 3 3 2 2

 a, 1 1 -2 1 2 2 3 2 2

 a'9 -- -~~~ 1 1 1 2 2 3 2 1 -
 20- - -

 a 1 1 1 1 3 1 2 2 1
 a2' 1 1 ~~~~1 2 1 1 2

 a221 1 1

 a25 11
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 for tIe Binary Quantics of the first Tent Orders. 233

 Table of Groundfbrms.

 ORDER IN TIlE VARIA13LES.

 0 2 4 6 8 10 12 14 18

 21

 4 1 1 i 2 I 1 I
 2 12 1 13

 : 1 1 2 2 3 1 I
 6 1 1 2 311

 7 2 2 2 8~~~~~

 9 1 3 1

 1 0 1 2~

 NONIC.

 G(. P for dcifferentiants,

 Denoniinator: (1 -a) (1 - a2) (1 - a4) (1-a6') (1 a8) ( I-atl) (1 -al2)
 (1-a14) (-a16)).

 Numnerator: 1 + 3al + 10a3 + 23a' + 49a5 + 93a' + 172a7 + 289a + 457T'
 + 701a'0 + 1036at' + 1477a"2 + 2023a1' + 2720a'14 4 3568a'5
 + 4573a'6+ 5702al7+ 7013a" + 846c3a9 + 10043a2'4+ 11672a2'
 + 13400a22 + 15155a23 + 16880a24 + 18487a25 + 20013a26
 + 21392a27 + 22539a28 + 23398a29 + 24013a'0 + 24355a"

 + 24355a32 + 24013a"3 + 23398a"4 + 22539a$ + 21392a$
 + 20013a'7 + 18487a"8 + 16880m29 + 15155a41) + 13400a41
 + 11672a42 +10043a43 + 8466a44 + 7013a4 + 5702a46 + 4573a47
 + 3568a48 + 2720a,4 + 2023$' + 1477a$ + 1036$'2 + 701a'3

 + 457a54 + 289$'5 + 172a$ + 93a$7 -+- 49a$ + 23a$ + 10$a
 + 3'4 + a

 Ue R7 for covariants, reduced form,

 Denominator: (1 - a4) (1 - a6) (1 a8) (1 - a0) (1 - al2) (1 - a'4) (1 - a'l)
 (1 - ax) (1 ax') ax')(1- aX7 aX').

 Numerator:
 60
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 234 SYLVESTER, Tables of'the Genteriatingy Functions andI Groundforms

 0 1 x2x 4 x Gx 8x 10 11t 12 x13 14 x15 16 17 18 x19 x20 X21 22 x23

 a0

 a

 a 1 1 2 2 2 1 1

 a31 1 1 2 2 2 1 1

 a" 2 1 21 1 1 111

 a5 2 12 1 2 1 11

 a6 1 4 I 31 1 1

 a7 5 s 5 1 1 3 ~~ ~~~~2 21

 It8 5 - 3 4 2 - 3 7 5 21
 9
 a 5 8 2 1 4 2 1 3 3 2 1 1

 a0 3 5 5 3 7 7 2 1 1 1 2

 a" 17 1 9 2 10 16 5 8 2 4 1 1

 12- ---- a 18 14 15 2 11 24 14 3 3 8 3 1

 131-- - a17 17 2 12 27 21 6! 3 11 9 3 5
 14
 15 39 21 6 13 26 13 2 13 10 8 7

 42 24 10 28 45 52 17 5 13 11 5 3

 16 - - -
 a 44 41 31 15 33 59 26 8 28 31 13 2

 a1 44, 28 -14, 52 78 63 9 15 34 18 1 -18,
 18 - -- -
 a 43 7 33 5 315 63 11 28 51 34 20 20

 19 - - - - - - -

 a 79 32 6 82 113 108 20 3 36 19 17 __15

 20 - - -
 82 _.76 __4j 39 70 109 22 48 80 69 29 13

 21- ---

 a 76 37 43 121 159 117 36 70 29 10 44
 22- --

 a 76 122 41 35 __75 112 6 83 118 76 38 45

 (13 120 37 41 163 201 165 '1 31 75 33 43 --
 24 - - - a 122 112- 37 86 121 161 2 120 160 123 40 40
 25 - - - -

 a 109 31 - 92 205 242 154 39 83 120 37 40! 82
 It 107 151 25. 82 116 147 52 166 203. 117 39 82

 148 25 85 239 267 190 44 79 11 33. 84 76

 28 1471 125 13 136 161 188 50 206 237 158 37, 74

 (19 121 14 137 265 286 152 107 135 157 35 77 122

 ct0 119i 153 1 123 141 151 Ill11 243 263 137 28 124

 a" 149 1 123 281 286 165 108 123 138! 271 127 107
 32 - -20 20Ii~
 a 1471 112 151 167 16 27010980 166j 13 0
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 for the -Binaryi Quantics of tke Fyirst Ten Orders. 235

 x0 x1 2 x3 x4 5 6 7 x8 9 10 x11 12 13 14 15 16 17 18 19 20 21x 22 23

 a 108 18 166 280 270 109 164 169 167 15 1,12 147

 34 - - - -
 a 107 127 27 138 123 108 165 286 281 123 1 149

 a35- - - - - a124 28 137 263 243 111 151 141 123 1 153 119

 36 - - -

 a 122 77 35 157 135 107 152 286 265 137 14 121

 a37 - - - - - - -

 a4 37 158 237 206 50 188 161 136 13 125 147
 38 - - - -

 a 76 84 33 113 79 44 190 267i 239 85 25 148
 39 - - - - - - - -

 a 82 39 117 203 166 52 147 116 82 25 151 107

 40 - - -
 a 82 40 37 120 83 39 154 242 205 92 31 109

 41 - - - - - - - -

 a 40 40 123 160 120 2 161 121 86 37 112 122

 a42 - - a 43 43 33 75 31 5 165 201 163 41 37 120
 43 - - - - - - - at 45 38 76 118 83 6 112 75 35 41 122 76

 44 - - -
 a 44 10 29 70 36 117 159 121 43 37 76

 46 13 2 69 80 48 22 109 70 39 43 76 82
 a 15 17 19 36 3 20 108 113 82 6 32 79

 a4 20 20 34 51 28 11 63 35 5 33 77 43
 a48 - - -
 a 18 1 18 34 15 9 63 78 52 14 28 44

 49- -- -

 a 2 13 31 28 8 26 59 33 15 31 41 44

 50 - -
 a 3 5 11 13 5 17 52 45 28 10 24 42

 a 7 8 10 13 2 13 __ 261 13 6 21 39 15
 52- - -
 a 5 9 11 3 6 21 27 12 2 17 17

 a 53 1 3 8 3 3 14 24 11 2 15 14 18

 a 54 1 1 4 2 3 5 16 10 2 9 1U 17

 a 55; 2 1 1 1 2 7 7 3 5 5 15 3

 a(t56 i 1 2 3 3 1 2 4 1 2 8 5

 a 57 1 2 1 3 5 7 3 2 4 3 5

 a 581 2 2 3 1 1 5 5 5

 a5 113 1 41

 a 60 I 1 1 2 1 2 1 2

 611

 a 1 1 1 1 ~ ~ ~ ~~~~~~~~~~1 1 _1 2 1 21

 a 62 1 1 2 2 2 1 1

 a 63 _ _ _ _ _ _ _ _1 1 2 2 2 1 1

 a 6 4 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _I111

 a 6 15 _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ __ _ _ _ _ _ _

This content downloaded from 
�������������89.187.177.72 on Mon, 13 Mar 2023 21:18:49 UTC������������� 

All use subject to https://about.jstor.org/terms



 236 SYLVESTER, Tables of the Generating Functions anid Gromndforms

 G. F. for covariants, representative.forn,

 Denomninator: (1 - a') (I1- a') (1 -a"0) (1 - a12)2( -a14) ( a16)( - a2x6)
 (1 - a2X10) (1.- a2x'4) (1 - ax')

 Numerator:

 0 1 x2 3 X4 X5 6 7 x8 9 x10 1it 12 x13 x14 315 x16 x17 .is x19

 a 3
 1 ~ ~ ~ ~ ~ ~~

 a 4
 1 ~~2 2 3 2 2 2 11

 a 5

 4 4 7 7 5 6 1 2 _

 a7 ~4 8 9 1 11 7 6 2

 a8 8 13 16 16 14 7 6 11

 a10 1 7 20 22 1 9 1 5 7 1 3 7

 4 20 25 30 33 20 13 2 3 10

 a12 1 32 4 1 43 40 20 1 1 4 14 1 3

 a 17 35 50 60 57 3 7 1 6 1 8 25

 a39 57 7. 71 57 28 6 29 3 4 4 1

 a4 20 64 86 90 92 44 13 31 46 59

 67 94 121 108 96 23 11 63 73 79

 16
 a 47 103 135 143 135 57 7 65 91 117

 17
 a 108 142 181 154 116 3 45 139 136 148

 18
 a 61 152 195 191 181 37 43 149 176 198

 19
 a 157 201 257 199 149 38 104 239 221 222

 20
 a 97 211 270 260 225 21 107 252 271 302

 21
 a 215 273 339 239 157 108 200 391 330 338

 22
 a 120 281 848 308 262 42 206 412 410 434

 23 _ 4
 a 284, 348, 4181 269, 1591 215, 327 562 462 40
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 for the Binary Quantics of the First Ten Orders. 237

 920 x21 "22 923 924 x95 926 x27 x28 929 x30 x31 x32 x33 x34 353 36 x37 x38 x39

 ao

 a3

 _a4

 2 a 1 a

 6

 3 4 1 2 1 a2

 -9

 4 6 3 1 1 1

 - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~10
 11 9 7 2 1 1 a

 16 11 6 2 2 3 a

 _ -5 : - 17_25.57._8_5_396_8i4a

 23 24 9 4 1 3 5 7 2 a

 - - ~~~~~~~~~~~~~~~~~~- 13
 36 29 9 4 7 2 2 CZ

 55 46 20 4 7 9 1 1 4 1 7 a4

 65 40 9 8 20 15 12 4 a

 89 78 20 27 24 23 9 1 4 a'

 102 74 5 25 38 30 17 7 4 a

 147 121 23 19 57 41 45 13 1 a'a

 150 __ 87 25 57 83 55 39 6 8 4

 - - ~ ~~~~~~~~~~~~- - 20
 202 164 9 50 112 83 74 16 3 21 a,

 - ~ ~ ~ ~ ~ ~ ~ - -21
 1914 113 63 109 137 86 48 6 19 17 ct

 - - ~ ~ ~ ~~~~~~~~~~- - 22
 276 202 43 107 194 121 112 16 11 3 a,

 230 102 149 194 232 126 81 2 34 20 a3
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 238 SYLVESTER, Tables of the Generating Functions anad Grounoforins

 x 0 x1 x2 x 3 x 4 x 5 x 6 7 8 x9 x10 x 11 .,12 , 13 14 15 16 17 18 19 X X X XX X XX XX X X X

 a 165 353 419 366 278 122 338 586 555 569i
 25 - a 6 353 417 490 275 115 356 481 777 593 551

 26 _
 a 189 415 484 886 269 247 496 800 716 692

 27 _ _ a 413 478 544 254 68 519 652 976 708 622

 28
 a 223 471 529 403 235 374 669 996 839 794

 29
 a 464 521 570 211 22 694 821 1181 7915 671

 30
 a 241 506 551 375 171 530 840 1186 959 844

 31
 a 499 538 568 139 120 859 978 1326 832 649

 32
 a 254 521 541 302 87 669 988 1327 998 839

 a33 510 529 534 49 224 1007 1088 1420 809 584

 a 34 254 508 508 260 5 792 1098 1401 991 773

 a35 499 492 474 42 322 1104 1144 14392 729 459

 a36 241 475 449 183 101 877 1143 1406 915 650

 a 37 ! - - - i- -t - -1l - a37 1 1 40464 435 399 132 398 1144 1137 1376 593 297

 a38 1 223 419 380 97 184 905 1133 1335 788 _ 483
 39 -- - 1 -t t - t -
 a 413 367 311 205 446 11122 1076 1240 4231 3 128

 40 - a 1 189 357 297 16 240 891 1062 1203 619 306

 a41 a4t | 1 353 288 222 251 456 1049 956 1051 250 47

 42 - - -
 a 165 284 2171 40 272 825 940 1011 441 1121
 43 - I - - -
 a 284 210 147 274 446 923 801 844 80T 191
 44 - l - - - -
 a 120 213 147 88 278 728 780 818 264 34
 45 --- -
 cl 215 146 85 270 386 769 630 619 65 297

 Ca 97 152 91 101 0256 588 615 1 599, _ 107 145
 47 - -- a | | 157 94 36 242 333 604 465 427 1581 338
 48 - - - -I - - a8 1 6l61 102 46 112 219 468 452 422 7 215

 a49 108 52 5 203 255 446 317I 253 209, 359

 I - 5i 0 I 1 -I
 a50 471 62 17 91 175 333 309 258 76 1243

 a L1 67, 25 10 158 1921 307 196 136 224. 3211
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 fbr the Binary Qutantics of thie First Ten Orders. 239

 20 x 21 22 923 x24 x25 26 27 x28 X 29 X30 31 32 33 34 3 36 37 38 39

 - - ~~~~~~24

 321 224 136 196 307 192 158 10 25 67 a2
 - - ~~~~~~- - 25

 243 76 258 309 333 175 91 17 62 47 a
 - - ~ ~ ~ ~ ~ ~ ~ ~~ - - - 26

 359 209 253 317 446 255 203 5 52 108 a

 - ~ ~ ~ ~ ~ ~ ~ - -- 27
 215 7 422 452 468 219 112 46 102 61 a

 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~28
 338 158 427 465 604 333 242 36 94 157 a

 145 107 599 615 _ 588 256 101 91 152 97 a

 297 65 619 630 769 386 270 85 146 215 a

 34 264 818 780 728 278 88 147 213 120 a

 191 80 844 801 923 446 274 147 210 284 a32

 121 441 1011 940 825 272 40 217 284 165 a33

 47 250 1051 956 1049 456 251 222 288 353 a34

 306 619 1203 1062 891 240 16 297 357 189 a35

 128 423 1240 1076 1122 446 205 311 367 413 a36

 483 788 1335 1133 905 184 97 380 419 223 a37

 297 593 1376 1137 1144 398 132 399 435 464 a38

 650 915 1406 1143 877 101 183 449 475 241 a39

 459 729 1432 1144 1104 322 42 474 492 499 a40

 773 991 1401 11098 792 5 260 508 508 254 a 41

 t 584 809 1420 1088 1007 224 49 534 529 510 a 42

 839 998 1327 988 669 87 332 541 521 254 a

 649 832 1326 978 859 120 139 568 538 499 a44

 844 959 1186 840 530 1 71 3765 551 506 241 U45

 671 795 1181 821 694 22 211 570 521 464 a

 794 839 996 669 374 235 403 529 471 223 a47

 - - - - ~~~~~~~~~~~~~a48
 622 708 976 652 519' 68 254 544 4781 413 a

 692 716 800 496 247 269 386 484 415 189 a4

 551 593 7771 481 356 115 275 490 417 3531 a

 569, ; 555 586 338 122 278 3661 419. 353 165 a5'
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 240 SYLVESTER, Tables of the Generating Functions and Groundforms

 0 1 2 3 X 4 X5 ,6 7 x8 9 X10 X11 12 13 14 15 x16 17 18 X19
 52 - ---

 a 20 34 2 81 126 232 194 149 102 230
 53 --_ f __-
 a 39 11 16 112 121 194 107 43 202 276

 54 - - - - = -
 a 17 19 6 48 86 137 109 63 113 194

 55 - _ _ - _ -
 a 21 3 16 74 83 112 50 9 164 202

 56 - _ _-__
 a 4 8 6 39 55 83 57 25 87 160

 a57 a o10 131 45 41 57 19 23 121 147

 58 - -- - - -
 a 5 4 7 17 ___ 30 38 25 5 74 102

 59 -- --

 a 4 1 9 23 24 27 20 78 89

 a I6I 4j r 12 15 20 8 9 40 65

 a 3 1 1 4 11 9 7 4 20 46 55

 a2 1 2 2 7 4 9 29 36

 aa638 ] X 12 5 3 1 4 9 24 23

 a64 3 2 2 6 11 16

 a70 1 1 2 7 9

 66
 a 1 1 1 3 6 4

 a 1671 4

 a68-
 a 1619

 t 702

 a 71__1

 a 72

 a j7 5_ _ _ _ _ _ _ _ - _ _ _
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 for the Binary Qitantics of the First Ten Orders. 241

 20 ,21 22 923 924 .25x 26 x97 &28 929 x30 x31 x32 x33 x34 x35 x36 s37 x38 x39

 - - I - - ~~~~~~~~~~~52

 440 462 562 327 215 159 269 418 348 284 a

 434 410 412 206 42 262 308 348 281 120 a

 338 330 391 200 108 1'57 _ 239 339 273 215 a

 302 271i 252 107 21 225 260 270 211 9

 222 221 239 104 38 149 199 257 201 15 a

 198 176 149 43 37 181 191 195 152 61 a

 148 136 139 455 3 1 16; 154 181 142 108 a

 117 91 65 7 57 135 143 135 103 a

 79 73 63 11 23 9 18 12;1 a466

 _ 59 46 31 13 44 92 90 86 64 20 a

 - - -- - - C62

 41 34 29 6 28 57 71 75 57 a

 - - - - - ~~ ~~~~~~~~~~- a63
 251-1 18 16 37 57 60 50 35 17

 - - - - ~~ ~~~- - - 4
 13 14 4 11 20 40 43 41 32 21 a

 10 3 2 13 20 33 30 25 20 4 a

 - - - - - - - - ~~~~~~~~~~~~66
 7 3 1 7 15 19 22 20 17 10 a

 - - - - - - ~~~- - a67
 1 1 6 7 14 16 16 13 8 a

 _- - l _ | 1 |- - T a68 2 6 7 1 1 __ 0 -8 a

 2 1 6 5 7 7 4 4a9

 - - - - - - - ~~~~ ~ ~~~- - 71

 1 ] 1 1 2 2 2 3 2 2

 __ _i_ N N N_ |-|-| - a72
 a75
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 242 SYLVESTER, Tables of the Generating Futnctions and Groundforms

 Table of Groundforms.

 ORDER IN THE VARIABLES.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 21 22

 1 -_ __ I __ __ 1 1_ _ 1 |1 _ __
 2 2 1 1 1 1

 3 - iT- 1 2 1~ 1 1 -Y_ 1-2 (__1_ __1_ _-
 4 2 2 2 3 2 2 2 1 1 1

 5 1 3 4 4 3 4 2 2

 6 _LL? 6 6 _
 7 4 - 7 8
 8 5 8 10 10 2

 > 91 9' 14 10 2

 1 10 1 15 14 - _ --
 I 11 1 7 16

 P 12 14 23 _

 13 25

 14 17 9

 15 26

 16 21

 17 5

 18 25H-

 DECIMIC.

 G. P. for diffierentiants,

 Denominator: (1-a) (1- a2)2 (1 - a3) (1 - a4) (- a5) (1 - a) (1 a7)

 (1- a8) (1 -a9) .

 Nutmerator: 1 + 3a2 + Ia3 + 27a4 + 58a5+ 112a0 + 193a7 + 318ca8 + 485a9
 + 699a10 + 951a' + 1245a12 + 1541a13 + 1842a14 + 2108a15
 + 2321a6 + 2451a7 4- 2506a18 + 2451a"9 + 2321a20 + 2108a21
 + 1842a22 + 1541a23 + 1245a24 + 951a25 + 699a2G + 485a27
 + 31828 + 193a?9 + 112a30 + 58a3" + 27a32 + Ila + 3
 +a3.
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 for the Binary Quantics qf the First Ten O(rders. 243

 G. TF. for covariants, reduced* formn,

 Denominator: (1 - a2)2 (1 -a3) ( a4) ( - a5) ( - a6) ( - a7) (1 - a8)

 (1 - a9) (1 ax2) (1 ax4) (t-ax6) (1 ax8) (1 ax")).
 Numerator:

 0O X2 X4 6 8 X 10 X 12 X1t4 X16 18 29 22 24 26 28

 a0

 2

 a 1 1 2 2 2 1 1

 a3-
 al4 1 2 1 2 1 1 1 2 2 2 1 1

 4l - 4 - _ - 0 1 1

 al8 4 1 2 2 2 1 1 1 1 1 1 1

 a2 2 1 2 1 1 1 1 1

 a 34 1 1 1 1 2 2 1 1 1 1

 a7 - - -- -
 a 1 ~~1 3 2 1 1 1 1 111

 a8-
 a 8 8 8 2 3 4 2 1 29 2 1 2

 a Nue 2 5 1 2 6 7 7 3 2
 10- -

 a 4 3 3 4 6 63 45 42 1

 a 4 2 3 6 7 7 4 2 2 51 1 1 3

 12-- -

 a, 6 54 1 256 7 2 254 3 1 2
 13---
 a 1 3 1 5 1117 12 9 2 6 3 1 1 2

 14 -

 a 1 4 7 1 3 6 5 5 10 14 11 - 4

 a 5 1 4 9 17 12 6 3 3 5,1 4 5 4

 16- - - -

 a 3 1 2 5 1111 6 3 10 17 13j8 2

 17 -
 a 4 1 3 9 10 10 2 4 16 13 8 1 4 6 6

 (t 4 1 1 1 2 313 1314 4 1 6 8 1

 19- -
 a 3 5 8 8 8 7 1 2 4 4 1 3 9 3 1

 a 3 1 4 14 13 ,16 13I14 I

 *Numerator and denominator divisible by 1 - a; see foot-note to reduced form for sextic.

This content downloaded from 
�������������89.187.177.72 on Mon, 13 Mar 2023 21:18:49 UTC������������� 

All use subject to https://about.jstor.org/terms



 244 SYLVESTER, Tables of tle Generating Functions and Groacndforms

 N umerator- Con tinnied.

 X0 X2 X X6 XI x10 x12 x14 x16 x18 x20 x22 X24 X26 628

 a21 1 3 I 3 1 4 4 2 1 81 8 8 6 3

 a22 11 8 6 1 4 14 13 8 13 3 12 1 1 1 4
 23 - -~I -

 a 6 6 4 1 8 13 15 4 2 10 10 9 3 1 4

 a24 1 | 2 8 13 17 10 34 6 11 1 I 5 2 1 3

 d25 ---I
 a 4 4 1 6 3 3 6 1217 _91 4 1 6
 a26-f l....- ____

 12 13 4 7 11 14 10 5 5 6 3 1 7 4 1

 a27 - 1' -- 1 11151 a2 211 1 3 6 2 _ 9 12 __17 11 6 8 1

 a2 45 22 1 3 4 6 2 7 6 52 1 4 r5 6

 a29 3 1 1 1 2 4 7 7 6| 3 21 4

 a0 ' I1 2 4 51 4 3 6 6 4 3 3 4

 a31- -- a l l l 2 1 3 17 7 6 2 1 5 2

 i! _ 121_ 1 12 2 1 2 4 3 2
 33 l - i -I

 a36 1 - __ _ 1|1 1 112 8 1

 a34 I -
 a35 71 1 ~~ ii ~2 2 I 221

 a36

 I 1 - ~ ~~~ 1 I

 a37 '-| t 1 1 2 !K2 2| | | 2 1 I 1 2 1 2 1

 a38 : ' g z j_1 1 2 2 2 1 j 1

 a39 - _ ___1 ! _

 40 __ _ __

 G. F. for covariants, representative form,

 Denominator: (1 - a2) (1-a4) (1 _ a6)2 (I al) (1- a9) (1 all) (1-a14)
 (1 - a2X4) (1- a2X8) (1 - a219) (1 a2X'0) (1 -IXa10)

This content downloaded from 
�������������89.187.177.72 on Mon, 13 Mar 2023 21:18:49 UTC������������� 

All use subject to https://about.jstor.org/terms



 fior thte Binary Quantics of the First Ten Orders. 245

 Numnerator:

 x0 2 4 6I 8I 50o 12 14 16 18 x20 x 22 24 26 28 30 32 34 36 38 40 42 44 46 48

 0

 a 1

 a1 2 1 1 2 1 1 1 1 1

 a ~~~~~~3 1 3 3 2 3 1 2 1 1 1

 a5 3 3 4 5 45 2 4 1 1 2 1 1

 a6 2 2 6 8 8 9 6 72 4 2 1 1

 a 7 10 111311 11 7 6 1 4 21 1 1

 a 4 814 1820 22 1211 4 22 4 36 1 31

 a9 415 21 273024 2312 7 1 8 6 9 5 5 1 1 2 1 1
 10
 a 7 2031 3739 3922 15 2 8 1118 14 15 5 4 2 1 2 1

 a 8 28 41 50 56 46 31 12 2 17 28 25 26 18 13 5 1 2 5 1 2 1

 12
 a 15 38 54 67 69 60 33 11 12 33 41 45 36 31 12 3 2 7 6 7 2 1 1

 13
 a 15 49 72 84 90 70 37 3 2~3 54 66 62 56 39 21 2 8 12 14 7 4 1 1

 a' 20 6187 104106 8 2399488869593937355202014201420181623 3

 a 27 75 108127128 9232 26 76120 1341119 10 066 25 112732 32 189 2 2 2
 16 - a 29 90 129 147 146 10022 49110165 1725 2157127 71826 4152 443829 1 6 7
 17 - - - a 3.5105 148 168 164 103 5 81153 218 227195 150 881544 6770 633`7 14 9 84
 18-? - - - a 40 119 168 191 179 105 11 115 201 272 274 232 169 94 1 71 93 101 82 5 1 13 6 13 15 4

 19
 a 44 132 189 204 192 101 36 154 254 330 330 267 190 88 '24 108 132 133 112 62 17 7 20 21)0 7

 a 20 47 147 202 221 200 94 64 202 305 395 379 303 203 85 48 1.50 1 72 171 13.3 74 14 16 30 28 8

 a 21 55 154 216 232 203 83 98 241 365 447 4131 327 208 70 92 196 222 208 166 85 11 26 41 38 15

 a 22 52 164 226 236 202 63 127 292 413 506' 4710 346 210 42 130 257 272 255 194 93 7 37 53 49 15

 a 23 .5 166 229 237 194 50 168 333 465 550 502 359 193 17 186 310 327 296 220 103 4 52 73 61 20

 a4 56 172 228 236 187 22 191 372 499 585 527' 353 176 28 238 375 380 336 247 104 13 71 88 75 27

 a 57 166 227 225 168 7 229 401 536 610 529 347 143 66 298 433 4380 376 266 105 31 89 109 90 2.9

 26- - - - - a 52 164 217 211 155 24 249 431 551 624 536 323 114 119 346 487 474 403 281 98 46 111 131 105 35

 27
 a 55 154 203 1M 130 38 273 442 562 620 512 296 65 160 407 537 512 430 286 93 68 134 150 119 40

 a8 47 147 190 176 112 64 281 448 556 603 490 252 26 216 448 578 541 443 296 76 87 155 169 132 44

 63
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 246 SYLVESTERR, Tables of the Generating Functions and Groundforms

 Numerator-Continued.

 0 2 X4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 V46 48 x xxx x x x xx x x x xx x xx x xx x xx x

 29 .

 a 44 132 169 155 87 76 296 443 541 578 448 216 26 252 490 603 556 448 281 64 112 176 190 147 47

 30 - 198 2031545
 a3l 40 119 150 134 68 93 286 430 512 537 407 160 65 296 512 620 562 442 273 38 130 198 203 154 55_
 a,31 - a32 5 35 105 131 1ll 46 98 281 403 474 487 346 119 114 323 536 624 551 431 249 24 155 211 217 164 52

 a32 a33 129 90 109 89 31 105 266 376 430 433 298 66 143 347 529 610 536 401 229 7 168 225 227 166 57'
 33

 a34 | 27 75 88 71 13 104 247 336 380 375 238 28 176 353 527 585 499 372 191 22 187 236 228 172 56
 34

 a 20 61 73 52 4 103 220 296 327 310 186 17 193 359 502 550 465 333 168 50 194 237 229 166 57

 a 15 49 53 37 7 93 194 255 272 257 130 42 210 346 470 506 413 292 127 63 202 236 226 164 52

 36

 a 15 38 41 26 11 85 166 208 222 196 92 70 208 327 431 447, 365 241 98 83 203 232 216 154 55

 a37
 a3g 1 8 28 30 16 14 74 133 171 172 150 48 85 203 303 379 395l 305 202 64 94 200 221 202 147' 47
 a38 a3 i 7l 20 20 7 17 62 112 133 132 108 24 88 190 267 330 330 254 154 36 101 192 204 189 132 44

 39 - - - - - - -

 a 1 41 15 13 6 13 51 82) 101 93 71 1 94 169 232 274 272 201 115 11 105 179 191 168 119 40

 a40 - - - - - - -

 a4 4 8 9_ 14 37 63 70 67 44 15 88 150 195 227 218 153 81 51C3 164 168 148 105 35

 42a [_ 77 6 1 9 32 44 52 41 26 18 77 120 157 172 165 110 49 22 100 146 147 129 90 29
 42 - - - - - -

 a 1 2 22 2 9 18 32 32 271 1 22 5 66 100 19 134 120 76 26 32 92128 127 108 75 27
 43 - - - - - -- - - - - -

 a4 | 1 3 3 2 5 16 18 20 14 2 20 55 73 93 95 86 48 9 32 82 106 104 87 61 20

 a4s t_ \ 1 1 4 7 14 12 8 2 21 39 56 62 66 54 26 3 37 70 90 84 72 49 15
 a43 - - - -

 a46 t 1 1 2 7 6 7 2 3 12 31 36 45 41 33 12 11 33 60 69 67 54 38 15

 a47 y 1 11 2 1 5 '2 1 5 13 18 26 25 28 17 2 12 31 46 56 50 41 28 8

 a43 j _3_6 1 2 1 2 4 5 15 14 1811 8 2 15 22 39 39 37 31 20 7

 a48- - a4 ] ; 1 2 1 1 5 5 9 6 8 1 712 23 24 30 27 21 15 4

 a4 1 3 1 6 3 4 21 2 4 11 12 22 20 18 14 8 4
 50 - - -

 a] 1 1 1 2 41_ 1 6 711 1 13 1 10 7

 a31 I 3 | N | 1 1 1 2 4 ' 7 6 9 8 8 6 2 2

 a32 I 1 2 1 1 42 45433

 53_ ___ 1 1- -2 1 13 2 3 3 1~ 3

 _ _ _ _ . 1 _ _ _ _ _ _ _ _ _ _ _ _ _ ~ _ _ _ _21
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 for the Binary Quanties of the First Ten Orders. 247

 Table of Groundforms.

 ORDER IN THE VARIABLES.

 0 2 4 6 8 10 12 14 16 18 20 22 24 26

 1 1

 2 1 1 1 1

 3 1 2 1 1 2 1 1 1 1 1

 4 1 3 1 3 3 2 3 1 2 1 1 1

 5 3 3 4 5 4 5 24 1

 6 4 2 5 8 6 8 2 3

 t 7 7 10 8 12 2 3

 W 8 5 8 11 15 4 5

 I 9 5 13 19 8 4
 10 8 20 1 2 10

 11 8 18 21

 R 12 12 30

 13 1 5 16

 14 13 17

 15 19

 16 5

 17 3 1 1 1 1 1r_

 The totatl number of irreducible invariants and covariants for the first
 10 orders (counting in the absolute constant and the quantic itself), it appears
 from what precedes, is as follows:

 Order of Quantic: O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

 Number of Groundforms: 1, 2, 3, 5, 6, 24, 27, 125, 70, 416) 476.

 For the benefit of those new to the subject, it may be well to recall the
 immediate algebraical meaning of either form of the generating function to

 a binary quantic (x, y)n.
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 248 SYLVESTER, Tables of the Generating FTunctions anid Groundfornms

 Suppose n an odd number, say 5, then if

 1 _ -2

 (1 -a ) (1-ax-3) (1-ax-')(1 -ax) ( ax'3) ax'5)

 is expanded in a bivergent series, (i. e., one going, as regards the powers of x,

 in two directions towards infinity,) either generating function of the tables for

 the quintic is the sum of the terms which contain no negative powers of x.

 So if n be an even number, say 6,
 1 X-2

 ( a- 6)(1 ax4) (1-ax- 2)( -a) (1-aX2) (1 ax4) ( a1X6)

 being similarly expanded, either generating function of the tables for the
 sextic is, as before, the suin of the terms which contain only positive or zero

 powers of x. And so in general, for (x, y)fl, the numnerator of the so-called
 crude generating function, being always 1 - x-2 and its denominator a pro-
 duct of factors of the form 1 - axn-2 (where i takes all values from nought

 up to n inclusive.) Either generating function of the tables for the nic is the
 algebraic equivalent of the positive branch of the corresponding bivergent

 series, (that in which only positive powers of x appear,) plus the neutral
 branch or term. viz., that which contains neither positive nor negative powers

 of x, or, which is the same thing, is a function only of a.

 I subjoin a few reflexions which appear to me to be desirable on the
 foregoing tables.

 It is scarcely necessary to state, that, in the development of the gener-

 ating, function, whether reduced or representative, the coefficient of amnx is the
 total number of linearly independent covariants of the degree m1 in the coeffi-
 cients and the order yt in the variables.

 Mr. Franklin will probably, in a future number of the Journal, draw up

 a statement of the mode in which the tables have been calculated and the
 precautions taken to insure accuracy; as regards the reduced form, three
 methods have been employed in calculating it, viz., Mr. Sylvester's first
 method, Professor Cayley's method, ftully explained in a preceding number

 of the Journal by its eminent author, and Mr. Sylvester's second method,

 *In especial I wislh to single out an ingenious device of Mlr. Franklin to check the operation of tamisage
 by introducing a common superfluous factor into the nuimerator and denomintator of the representative gener-
 ating function so selected as that the auLgmented deniominator shalll not cease to be representative; the eflfect of
 this will be to cause the groundforms obtained by tamisage of the atugmented numllerator to be the same as
 before, except that the groundform represented by the additional fa2tor will not be found among them.

 J. J. S.
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 fbr the Btnary Qutantics of the First Ten Orders. 249

 much briefer than his other, but, in general, not so brief as Professor Cay-

 ley's, wvhich last, however, involves a delicate point in the expansion of series,

 the assumed principle of which, although its validity on moral grounds of
 evidence is unquestionable, cannot be regarded as a priori self-evident.*

 The theory of the generating fuLnction, alike for single and simnultaneous
 forms, depends on the law for determnining the number of linearly indepen-

 dent in- and co-variants of given order and degree or degrees belonging to a
 given quantic or system of quantics, a proof of which will be found at the end

 of a memoir by Mr. Sylvester in Borchardt's Journal, and also in the London
 anid Edinburgh Philosophical Magazine, that leaves nothing to be desired as
 regards rigor of demonstration. The law itself for the case of a single
 quiantic was first stated by Professor Cayley whilst the theory was still in
 its infancy.

 But besides this fLindamental theorem, in order to deduce the tables of

 groundformns, a fundamnental postulate still awaiting demnonstration is neces-
 sary, which is, that no more linear relations between in- or co-variants are

 to be supposed to exist than are necessary in order to satisfy the fitnda-
 miental theoremt. The application of this principle,in such a nmode as to substi-
 tute a finite for an infinite process, leads to the use of representative generatinlg
 functions and the simnplified metlhod of tarnisage. The vTalidity of the funda-

 mental-postulate which is in accord with the law of parcimzony is verified by its

 conducting to results which have been proved to be accurate for single binary
 quantics up to the sixth order inclusive, for pairs of binary quantics up to

 the fourth order inclusive, and also for systemns of an indefinite number of
 linear and quadratic binary formis.t-

 The application of this principle discloses the remarkable singularity
 that for the quantic of the seventh order, there exists no finite representative
 generating function as shown in what follows.

 *In Prof, Cayley's method the crude generating function is regtarded as a function of a; in ilmy two
 methods as a function of x.

 -If thefundamental postulate were called into question, this (it may be proved) would not affect the fact
 of the existence of the groundforms obtained by its aid, but only the possibility of the existence of other
 groundformiis over andc above those so obtained. Thus my tables of groundforms could only err (were that pos-
 sible, which I do not believe it to be) in defect; and as those found by the Gernman method can only err in
 excess, it follows that, whenever the tables coincide, both must be correct. The tables of groundforms here
 given, up to the sixth order, inclu-ive, and all those that follow, coincide exactly with those obtained by Clebsch,
 Gordan and Gundelfinger, when these latter are rectified by the onmission of certain supposed groundfornms
 whiclh, in the Comptes Rendus, I have conclusively proved to be composite.

 64
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 250 SYLVESTER, Ta1bles of the Generating Functions and Groundforms

 The invariantive part of the numerator of the reduced form for the

 seventhic is

 1 - a' + 2a'- a" + 5(a12 + 2a14 + 6a16 + 2a'8 + 5a2 - a22 + 2a24 a26 + a32

 and the invariantive part of the denomninator is (1 - a4) (1- a6)(1 -al(1- a'0).

 Multiplving numnerator and deenominator by (1 + a6), their invariantive por-
 tions* becorne, respectively,

 1 + 2a8- ac10 + 4a12 + 4a14 +5a16 + 7a18 +7a20+ 5t22 + 4a02 + 4a26- a28 + 2a + a38
 and (1 -a 4) (1 - a8) (1- a10)(1 -a12).

 The factors of the denominator are now, with the exception of -a10,

 representative factors; -a10 is not such, as a'0 occurs in the numerator with

 the coefficient - 1 . If we multiply numerator and denominator by 1 + a1l,
 the factor I - a20 will take the place of 1 - a30 in the denominator, and the

 numnerator will becomne

 1 + 2x8 + 4a12 + 4a 14 +5a16 + 9ctl + 6a2 ? .
 Here the coefficient of a20 is not negative, but it is less than the nunmber (8)

 obtained by composition froin the termns 2a8 and 4a12; hence, by the funda-

 inental postulate there is no irreducible invariant of the degree 20. If,

 instead of multiplying numerator and denomninator by 1 + a10, we multiply
 them by the infinite series 1 + al0 + a20 + . . . , the denominator becomes rep-
 resentative and the invariantive part of the numerator becomies the recurrent

 series given in the table (p. 228), in which the coefficient of a10, a40 and, in

 general, all powers of a vhose exponents are multiples of and greater than

 20, is 9; but 9 is less than the numnber obtained in the composition of a10, a40

 (and a fJrtiori of a50, a`0, . . .) out of the preceding terms; therefore, by the
 futndamental postulate, there is no irreducible invariant whose degree is any

 multiple of 10. It is a remarkable and significant fact that in this case tlle

 erroneous assumption of 1 - a10 being a representative factor in the denomi-

 nator of the complete generating function will be found to lead to no subse-

 quent further error in the deternmination of the other groundforins of the

 seventhic.

 A chorographical law obtains in the numerical tables of the numerators
 of the represenitative forms, which plays a considerable part in the comlplete

 theory of tamisag,e, anid is too important to be passed over without notice, viz:
 it Will be seen that all these tables consist of a small number of irregular but

 *The factors in the denominator whiich involve x never offer aniy difficulty, as they represent the given
 quantic along with the complete system of covariants of the second degree, the several orders of which follow
 a well known rule.
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 fior tlhe Binary Qutantics of tlhe First Ten Orders. 251

 continuous bands or blocks of alternately positive and negative coefficients

 which can be drawn asunder without tearing or leaving any hole in the

 paper.* For the first four orders there is but one such block, for the quintic

 and the sextic two, for the seventhic five, for the octavic three, and for the 9'c

 and ltVC four. A sinmilar law obtains for systems of quantics, as for instance
 in the case of two simultaneous quantics, the corresponding tables consist of

 detachable solid blocks, alternately positive and negative, and small in nurn-
 ber in comparison with the nunmber of terms which they contain, as will be

 seen in the tables to appear in the next number of the Journal which will

 contain a complete set of them for all the systemns that can be formed of twvo
 binary quantics of orders, ni, n where neither in nor n exceeds 4.

 It is my duty to state that the expense of calculating the tables for quan-

 tics of the 7tlh, 8th, 9th and 10th orders, has been defrayed out of a grant made
 by the British Association for the Advancement of Science, and I have pleasure
 in returning my thanks to that distinguished body for this act of aid in enabling
 me to bring to a successftul issue an undertaking of such unusual magnitude

 and of such pith and mnoment to the progress of Algebraical Theory.

 I ln the operation of tamisage on the numerator of the representative groundforms the terms of the nega-
 tive blocks are disregarded. In every case treated in these tables, anid those to follow in the next nuLmber of
 the Journal, the only surviving terms will be founed to be comprised in the first block. Had it turned out other-
 wise it would have been necessary to ascertain whether the surviving termiis belonginig to the ofher odd-
 nunmbered blocks would survive the operation of tamisage performed on the inifinite aggregate of terms obtained
 by the development of the generating function; if not, they would have to be rejected. This is what I have
 found actually happens in a system of quadratic or linear forms when a sufficient iiiinuber of stuch fornms is
 employed. In that case, terms not confined to the first block emerge from the tamisage of the nutnerator of the
 representative groundforms, but disappear when the tamisage is performed on the infinite aggregate of terms of
 which the grouindfornm is the suim. Such aggregate, it may be inoticed, (I have proved elsewhere,) consists exclu-
 sively of positive terms, the coefficients corresponiding to non-existing types being always zero and never nega-
 tive. It is very likely to be found true hereafter tllat in no calse need any, except the first block of terms in the
 numerator of the representative groundforms, be subm--itted to tanlisage in order to obtain the groundforms Inot-
 represented in the denominator, and so in like manner that, in order to obtain the ground-syzygies of the first kind,
 i. e. those that concern the groundforms, only the fir st positive and the first negative block need be considered, and(
 so on for syzygies of the higher orders each time a new block being talken into account until all are exhausted
 it being qtuite conceivable that the number of blocks may designate the highest order of syzygy that occurs in
 any case, subject in the case of a linear or quadratic forin (for whiclh the block reduces to a sinigle term, viz
 unity) to the obvious exception that, for them, the syzvgies become aboitive.

 To explain what is meant by syzygies of successive orders, suppose Z to be a rational and integral function
 of groundform-ls which, regarded as a function of the coefficients, is iderntically zero, then Z 0 O is a syzygy and
 Z may be termed a syzygant of the first order and, if incapable of being resolved into a sum of produicts of
 syzygants rnultiplied respectively by rational algebraic functiorns of the groundforms, will be an irreducible or
 ground-syzygy of the first order. In like mannier, if Z' is a function of groLunid syzygants which, regarded as
 a function of the groundforms, vanishes identically Z' = 0 is a syzygy and Z' is a counter-syzygant or a svzy-
 gant of the second order, and, if incapable of representation as a sum of products of other syzygants of the
 second order muLltiplied respectively by rational integral functions of syzygants of the first order, is a ground-

 s3 zygant of the second order; and so on indefinitely.
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 Note on the Projection of the General Locus of space of

 four dimensions into space of three dimiensions.

 BY THOMAS CRAIG, Fellow of the Johnts Hopkins University.

 IN the first number of this Journal, Professor Neveomb has given a proof
 of a certain property of a closed surface, viz: that suich a surface, il placed in

 space of four dimensions, could be turned inside out without stretching or

 tearing it. Of course this is but one out of the many new degrees of freedom

 which material objects would possess if placed in four-dimensional space;

 but it is not the object of this brief paper to study the new properties of

 natural objects placed in space of four dimnensions, but rather to determine

 the representations in space of tlhree dcimensions of the loci which can only

 exist in four-diinensional space. The general locus which characterizes space
 of four dimensions mnay be represented by an equation between the four rec-

 tangular coordinates x, y, z, t. This locus is, in fact, tle geerccl locuts of three

 dimiensions. A strface in four-dimnensional space requires for its determination
 twvo equations between the variables, and, if the surface is one which may

 exist in Euclidean space, one of these equations must be linear or of the form

 oax?+3y+vz +t+ e-O,
 whiclh denotes the infinite plane Euclidean space. There are of course ani

 infinite number of these Euclidean spaces in four-dimnensional space which

 are determined by assigning different values to the constants oa, ~, &c.
 The two equations which taken together denote a surface in four-diinen-

 sional space sustain to this surface the same relation that two equations in

 Euclidean space sustain to the c urve which is the intersectioni of surfaces
 corresponding to each of these equations. A surface in four-dimensional

 space is then given by F(x, y, z, t) O,
 PD (x, y, z, t) -0,

 and F= 0 arid P _- 0 each denotes the general three-dimnensional locUs char-

 acteristic of space of four dimeensions, just as the surface F (x, y, z) - 0 is the
 general two-dimensional locus characteristic of space of three climensions.

 I obtain in the following paper merely the general differential equations

 which are necessary to obtain the representation in Etielidean space of the
 252
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 CRAIG, Note on the Projection of the General Locus of Space. 253

 locus F (x, y, z, t) - 0. A transformation to three independent variable para-
 mleters would probably have the effect of simplifying the results, as in Eucli-

 dean space the whole theory of surfaces, or more exactly of the curvature of

 surfaces, is more conveniently and elegantly studied by using two independent

 varialble parameters instead of the three dependent rectanigular coordinates of

 any point.

 The locus in three-dimensional space F (x, y, z) - 0 is projected into two-

 dimensional space, say the plane z' = 0, by simply finding the values of xi, Y,
 the rectangular coordinates of the point in the plane corresponding to the

 point x, y, z of the surface.

 Of course the process of findling, these values is dependent upoln the con-

 ditions which are to be fulfilled in making the projection. The condition of

 projection that we shall here emrploy is that of the sinmilarity of the elemenits

 of the given locus with the representation of these elements in three-dimen-

 sional space. The conditions to be fulfilled then are, the preservation of

 angles in their true size, and thle preservation of the ratio between any two

 elemients of the given locus in the projection of these elements.

 The equation of the general four-dimensional locus is

 F(x, y, z, t) =0.

 Let i, , denote the rectangular coordinates in space of three dimnensions;

 it is required to find i, , < in terms of x, y, z, t, so that the above conditions
 shall be fulfilled. Since i, v, <are functions of x, y, z, t, we have

 = d-x + -` dy + a: dz + -- dt,

 dax ay z at
 d; - a' dxG+at + a' a: + + tdt,

 and also aF aF aF aF
 0 - dx + -dy + - dz + a dt.

 Dx ay Dz at
 Write for brevity

 aF _ aFF a aF
 aX-a - /- 7, I at =
 as a>* az at __ a _r- h &a -
 ax ay g az at

 a6 a5 - b' a, I

 at = a a<t bto It = C, a<_ I."
 65
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 254 CRAIG, 3ote on the Projection of the General Locus of Space.

 then the preceding equations become

 adlx + 3dy+7dz+Ecdt =- ,
 adx + bdy + cdz + edt - <
 a'dx + b1dy + c'dz + e'dt =d
 a"dx + b"/dy + c"dz + e"dt= d;.

 We will define here V as the determinant of the above equations when

 < I dr I d; = 0 that is,

 a, b, c, e

 V a, b', c', e'
 a", b", c", e"

 The minors of V corresponding to ca, Z, y, E are

 K, L, iX, N
 corresponding to a, b, c, e,

 k, 1, m, n

 and similarly those corresponding to a', b', &c., a", b", &c., are

 Ic", 1", in", n".
 If we suppose, now, that in tlhreefold space; is the only quantity which
 varies, we must have d dry 0, and

 adx + Cdy + ydz + Edt = 0,
 adlx + bdy + cdz + edt O, 0
 a'dx + b1dy + c'dz + e'dt_= 0

 from these follow
 dx dy dz d-

 Write

 k2 + 12 + m2+ n2

 V=k2+ ? l2 +mIt'2 ?+ 12,

 -t ,/Ic"2 + lt 24+ niit 2+ nt 2,

 then we have for the "direction cosines" of the line o1 FP- 0 corresponding
 to d;

 k 1,, m n

 In like manner if v1 alone vary we have, for the "direction cosines" of the

 line on F corresponding to dn,
 k' It ml1 nm
 p _ pi _ _ _ pi
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 CRAIG, Note on the Projection of the General Locus of Space. 255

 and, finally, for $ the onily varying quantity
 k 1 m n
 Q p2X

 The conditions for orthogonality are now

 kk' +? i' + nm' + n' -0,
 k'k" + Il'" -+ m'" +- n'u" - 0,
 k1k + I"l + rn"m? + n"n =0.

 The ratio of the elemnent (d$ to the corresponding element on F is
 d;

 VdX2 + dy2 ? 2 d 2A~
 or,

 adx + bdy + cdz -+ edt
 V dX2+ dy2 + dZ2 +dt2'

 or finally,
 ak - bl + cm - en

 2 l

 Equating this to the ratio of dn to its corresponding element on F,

 T (ak/-bl + cmn-en) = (a'k'-bl' + c'm'-e'n').
 The quantities in the parentheses are respectively -V and - V, so that this
 equation becomes simply

 1 1=o
 --0

 or,
 ?1' - -l0

 and in like manner

 .Q"-Q.' =0,
 -fl ?- =0.

 These equations, written out in full, constitute, with the previously given
 equations of orthogonality, the entire system of equations of condition from
 which we mnust endeavor to determine the differential equations affording the
 solution of the problemn. For convenience I give the entire set of equations
 here; they are:

 1.) kk' + 11' + mi' + nn' - 0

 2.) c' - l'l" m'm"+ -nee + n'n" - 0
 3.) k"k + I'll + m"'m- + n"n - 0
 4.) k +2 +l + M2 +n'2 (2 +12 + m2 +n2) = 0,
 5) P2 +1 j"2 + Mr + n"2 (k,2 +. l2 rn'2 - n2) = 0,
 6.) k2 + 12 + -m2 4. -2 (kPt2 + ti2 + rn"2 + n"2) = 0.
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 256 CRAIG, Note ont the Projection of the General Locus of Space.

 Multiply the first, second and third of these equations by 2i and add and

 substract the results frorn 4, 5 and 6 respectively.

 7. (A j ik)2 + (1' ] il)2 + (in' i2un) 2 + in)2 0,
 8. (k1 l ik/')2 + (1" ] il')2 (1n in] n')2 + (n" + in')2 - 0
 9. (k 4 ik")2 + (I + il")2 + (in ? urn")2 + (n ] in")2 0.
 The formation of these expressions fromn the determinant V is not difficult
 though a little tedious, so I merely give the results in which, however, for

 brevitv, I have written

 t61= + in, VI + ? 1 + d
 Ub2=g - i, V2=n - i;, W2= ;-t

 and also used the symbols U1,2, V1,2, W1,2, when no confusion could arise, to
 denote that the expressions are the samne in form for u2 as for u1, &c. Equa-
 tion 7 becomes now

 aF aF aF 2 aF aF aF 2
 ay' z' at az at' x
 alU, 2 au,2 aU1, 2 au1, 2 au1, 2 aU1, 2

 ay,' az' at + az at' a
 as- as as as as as
 ay' az' at az at' ax

 aF aF aF 2 aF aF aF 2
 atX x ay Ux' y' z

 a1t1, 2 aul,2 aUI, 2 attl, 2 au1, 2 aU1, 2 O
 + <~r' Ua ' a11 ? ax' a' az

 as ac as as as a:
 at' ax' ay ax ay' az

 The expanded forms of 8 and 9 are obtained from this by merely changing

 u into v and w successively. Denoting by 01, 02, 03, 04 any four quantities
 whatever and writing,

 01 , 02 , 03 , 04

 aF aF aF aF
 ax' ay ' az' at

 au1, 2 au1, 2 au1, 2 au1,2 = Ul,2
 ax' ay1 az' at
 a: a: a: ag
 ax a y ' X at

 we can place the last equation in the form
 (auf2) 2 (aQg 28 (auL7) 2 au, 20
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 CRAIG, Xote on the Projectionof the General Locuts of Space. 257

 or, for convenience, making
 a2 (2 2 (a 2 a 2 2 0

 (observe that (D) is not 2 .

 DU1,2-0 -DV1,2 0, DW1,2-0
 V and W beinig quantities of the same kind as U.

 au, 2
 The calculation of the quantities ( 2) is quite simple, since each of

 them is a symmetrical determinant. If we expand these expressions so that

 ) Ul, 2 shall appear in the form
 Aa2+ 32+ Cy2+ D2 -2Ea- 2FPy, &c. -0,

 a, 3, y, being as before the derivatives of F with respect to x, y, z, t, we
 shall find A, B, C, Z giveni as sums of squares of three determinants of the

 second order-or, consequently, as one symmetrical determinant of that order;

 E, F) &c. as sums of products of determinants of the second order. But the

 most conivenient forin in which to hav-re the equation is that of one symmetri-
 cal determinant of the third order, and by a known theorem we can write it

 at once as

 a2?+ 2+y2?+2, ala+?blf+?cl/+eiE, a2a+6b2+?c27+e2eI
 tUI,2= ala+ bl~ + cly + e1c, a'+ bl+c2+ el, a1a2? b1b2?c1c2?e1e2 -0

 a2a+ b2f + c2Y + e2E, a1a22+ b1b2 + c1c2+ e1e2, a 2+ b2 + C2 + e2
 where a1, bi, c1, e1 are the derivatives of U1,2 2with respect to x, y, z, t respec-
 tively, a2, b2, c2, e2 are the same derivatives of ;. There are two other equations

 of this form for v1,2 and W1,2 in which a, 3, y', E have the same significance as
 in -DU1,2 = 0, at, b,, c1, e1 are the derivatives however of v1, 2 and w1, 2, respec-
 tively, and a2, b2, c2, e2 denote in DFl 2 = 0 the derivatives of $ and in
 - Wl, 2 = 0 the derivatives of n with respect to x, y, z and t.

 If we had started to project the surface F (x, y, z) = 0 in Euclidean
 space upon the plane w,e, wewould lhave found as the equations of the
 problem

 a 2 + 2+ 72, ala + bOS + clyl
 Iala + bil + clyx alt b + b 12 1-

 the a, b, having the same meaning, as before, and a1, b1, c1 to take the
 values

 an, aul au,
 ax ay az'
 aU2 aN2 aU2

 66 ax - ay az-
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 258 CRAIG, Note on the Projection of the General Locus of Space.

 suceessively. These are the equations for the orthomorplhic projection of a
 surface upon a plane.

 If we hlave n variables x1, x2, x. , connected by the relation

 F (xl,,X21. . . Xn) - 0
 the general locus of n-dirnensional space, and n I variables 01 42 . ., n -
 denoting the coordinates in space of n - 1 dinmensions, then for the projection

 of F 0 O into the n - 1-dimlensional space, we shall have ( 1)(n -2) groups of
 2

 equations of the form

 A.S (lih2)2+ (DL2)22 (aU+2) 2 o
 (V2)+ (a V 2)2+ (aVl2)20

 the quantities 0 being anything whatever, aid the derivatives
 au av

 ias' ao
 being the first minors of the determinants

 o1 02 XX Oil
 aF aF aF

 ax, ax, ax.

 IaDu, 2 aut,2 a?j,2
 axr, a-V2 axn

 a;,3 a3 a-3 =vl

 ax,l aX2 axn

 . . . . . . . . . . . . .

 ' an at

 axn, D1x ai DX1 Dxr1 X
 and

 69l 7 02 7 * o * 6n
 aF aF aF

 ax, aX2 ...ax
 avI, 2 aV1, 2 aV,, 2

 aDX ax2 aDx
 a3 as3 0s3 =  -i K2
 ax1 ax2 ' ax,

 ..................

 ax,: ax.?b - Jt/
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 CRAIG, iYOte oni the Projectioni of the General Locus of Sp)ace. 259

 where

 1b, 2= 1 I2 C, 3 = 2 + iC3, * 7 ,g--1=f + +C

 ( -, 2 = i3 2 I V), 3 2 Vi, i ]- =i i - i + I

 The remaining n (n2 3) groups of equations simiilar to A are of course formed

 fronm this group by chang,ing the qt, 2 into u1'2, 3 It,4 , &C., and V1, 2 into v.,., V,,.,,
 &c., and also changingw thle : by advancing successively all the subscripts
 1 .. .n-1.

 By a theorem of determinants (which was unlknown to me until kindly
 communicated by Mr. Stringham) each of equations A inay be put in the

 following form:

 a(DF)2 aFDaU,2 DaF a,3 xaFi n

 Dx, ax, axi axi -a-xi axi axi
 aFDu,, 2 a_ 2 au, 2lalfi, 3a,n-;

 aDFD,3 ~Du12D%2 3 n (-L
 ax, ax Daxi axix xii D* aDx a

 DaFaD4 XDau1,2D4 a a-34 a, (Dt4V DD__ a,-,, =0
 ax, Dx, ax xi aaxDx xxxj '** x aDx ~~~~~~. . . . . . . . . . . . . . . . . . . . . . . ..
 X aF-n 1, a I,.n n- qn- I2

 Dx2i Dx i Dxi Dx. ..x,

 the summations to be taken from i = 1 to i = n. The equation for V being

 similar to this, there is no necessity for writing it.

 WASHINGTON, Sept. 4, 1879.
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 On the Motion of at Ellipsoid in, a Fluid.

 BY THOMAS CRAIG, Fellow of the Johns Ilopicns University.

 LET U-S suppose a solid body of the form of an ellipsoid whose mass is so
 dist,ributed as to be symnmetrical with respect to the three principal planes
 of the body; that this body be immersed in an infinite nmass of frictionless

 inconmpressible fluid, the wvnole system being originally at rest, and that the

 solid be acted upon by any set of impulsive forces-or by any im,pulse-and

 the system then left to itself; to determine the resultino ngotion of the solid

 body and of the fluid. Concerning the mlotion of the fluid we can say that it

 will be subject to a velocity potential, since the entire motion of the fluid

 being due to that of the solid-or to the motion of a portion of the bounding

 surface of the fluid-tlhere can be no rotation in any part of the mass.

 We will noxv proceed to the determriination of the velocity potential +

 satisfying the equation

 v21p =-,

 2as usual standing for the operation
 a2 a2 _2

 Dx Dy2?az2

 As we limit ourselv es to a simply connected space, the function qp will be sin-
 ole valued.

 Let noxv w, , denote the coordinates of a point wvith respect to a set of
 rectangular axes fixed in space, and also let x, y, z denote the coordinates of a
 point with respect to a simnilar set of axes fixed in the body, we have then

 d a + al + a9y + ax8Z,

 K+ S1X +21/+ S3Zt

 '; +?;76X+2Y +73Z,
 the twelve quantities a, A3, y being functions of the time and position of the
 body whose geometric meaniing, is well known.

 If we denote by u, v, wv the translation velocities of the origin of x, Y, Z
 in these respective directions and by p, q, r the components of angular velo-

 260
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 CRAIG, On the Motion ofan -Ellipsoid ini a Fluid. 261

 city around these same axes, we have for the velocity of the fluid particles

 relatively to the body

 dt =ax z +yr
 dy -~ 1. cly = - --xr + zp v,

 1. ~~~~~dt ay
 dz -

 dte az /p4-Xq=W.
 If we denote by (nix), (niy), (nz) the angles which the outer normal to the

 surface of the body makes with the axes of x, y, z respectively, we have

 (t6 + zq - yr) cos (nx) + (v + xr - zp) cos (ny) + (wv + yp - xq) cos (nz). an
 As the fluid is to be at rest at an infinite distance from the body, the first

 derivatives of q) with respect to x, y, z vanish at infinitv; and since v21p - 0

 throughout the space filled by the fluid, and the quantities a a, a-D are (n ~~~~~~~~~~~ax,a az
 continuous throughout the same, we have (Kirchhoff, pg. 225) for q) the

 expression

 P= tUtP + V1)2 + W19)3 + p)4 + qO5 + +P6

 The six functions qp, 2 X . . .p satisfying the equation v2p = 0 and also giv-
 ing at the surface of the body

 an - COS (nx), s- = (tZ) - z Cos (iy) v

 2. 3a, cos (ny) ' a= z cos (tux) - x cos (nz),
 a( 3 Cos (nz), a= x Cos (t,y) - y Cos (nx)),

 From these equations we see that the functions p, 02, depend siinply on
 the form of the surface of the bodv, and not at all on its motion, p being a
 linear furnetion of the quantities it, v, . . . r.

 We shall resume now the exanmination of the function qp, observing that,
 in addition to the equations already given to be satisfied at the surface of

 the body and throughout the space filled by the fluid, it inust also satisfy

 for AI -- the equation

 3. [ 19 t) + 1F2 (a22 ) + (.2)]

 Denoting by Q the potential of the ellipsoid upon any point x, y, z, we lhav-e
 for a point at the surface of the body

 Q= const. -X_ (Ax2 + P!/2 + C 2)
 67
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 262 CRAIG, On the Motion of an Ellipsoid in a Fltuid.

 (Kirchlhoff, pg. 130), where

 4. A = abf(a2 d= B ab C= b 2
 aH 2 ~) N' -'_)2N_N
 NV = V/ (2 + /1) (b 2+2J) (C2 +2j),

 and for the derivatives of Q (ib. pg. 22)5.)

 a2 2 csn)
 ---- = 27t (2 - A) COS (nTx) anax~~(A

 5a 27 (2-1B) cos (nY)

 - 27 (2 -C) cos (nz) anaz

 Comparing these expressions with the values previously obtained for a, C.,
 we have

 1 a 1 aQ 1 a_Q

 6.~ ~~ 2'j=2(2 - A) Ix '272 (2 -B) ay' '327r(2-c) az
 All the condlitions that (P6 must satisfy with the exception of

 - = x Cos (ny) -y cos (nx)
 an

 will be satisfied if we write

 7. (P6 = N3 (x a+2 - a Q)

 when N3 is an arbitrary constant; Kirchhoff shows that this condition will

 also be satisfied by a proper determination of N3; the value which he obtains

 in a very simple manner is

 8. ~~~~~~~~~~a2-_b2 &
 8.3 27r[2 (a2- b2)? (A -B)(a2 + b2)] &

 If instead of N1, N2, -N3 equal to the values here given we write 27tN1, &c., it
 will be a little more convenient, and we now have for q

 Au, Bv Cw

 9. A--2 B-2 C-2

 + N1 (B- C) yzp + N2 (C- A) zxq + N3 (A -B) xyr.
 The quantities A, B, C are given by the expressions

 A - - bc aw,
 aa

 B = - ca a(
 C ~~b 79

 C= - ab awO,
 ae
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 CRAIG, On the Xiotion of an Elblsoid in a Fluid. 263

 where co = (a (+ ) ?
 (2 + iL)( + I(j 1

 and for convenience of future reference

 r ~~~~d)'
 6)2 = f v 2 + 2 +2) +- 2

 (1 V (a2S + 23) (b' + 23) (C2 + A3)

 We can arrive at the final form of p in a slightly different manner, which
 will bring in evidence some interesting properties of the quantities that we
 are dealing with. For sim-iplicity, suppose that the ellipsoid mnoves with a
 constant velocity uf in the direction of x, then, as before,

 - = tuP,,
 witlh the prescribed con(litions for qp, will satisfy all the conditioins of the
 motion, and will give again

 1 as2
 (PI = 2-,(2 -A) a.7:

 Write Al1IB,IC, A B C \5!rite A1, B1, 61 = ~~abo abe 'abc9

 Now A + B + C= ab { fa 2 ( d)21
 2+ 1) (b2 + 2,) (6' + 2,)

 ecd3 dA, ~~d', dA',
 __ r dil + r di____ ___ __ J n(b2 + 2 2) V (2c --)(b2-4- )(- ? ) O (e' + 2 +) 7 (a2 - 2 ,)(b' 4 i2)(c-1- 2,) +

 c (12, r(Ub2 + ')(2,) + (2 + -1)(e2 + 2,) + (a2 + 1)(b2+2,)1
 J oV,(a2 -4 2,)(b4 + i2,)(e' ? 2,) [ ,)e (a' --1 2,)(b' + 2)X)(c2 + 2,) -~

 __ 2.abc
 ab

 ntow 10. + 2 2 2 Cl) d

 10. /(a 2;r (2 Ax - (2-0 JxV(a' - 2,y(b' ? 2,)(c' + 2,)

 where X is the positive root of

 a' + % ?6 + X+ + c = 1;

 substituting for A its value, wve have again

 = x'*/a' + 2N;$b' + 2,)(&' +H 2,) 2 Bm 4-Q )3b 2)d'-- ,

 1 f(Pi + )A( ? -4- aI) Xab+ +

 2J O /((2 + -Ai)(6 A)ax + 2 -l A) 2
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 264 CRAIG, On the Motion of an Ellipsoid in a Fluid.

 and consequently
 1.u xdA,

 B1 + OIJ x /a2 + ),)3(b2 + 21)(c2 ? h)

 From this value of (p we can readily find for u, v, w the values

 u B, O { dA, x 2x_
 B, + C1 t z} X 7(a2+)Xb2 + A)(&2 - X)3(b + xl)(c Xi) a 2+ X

 12. X [(a2 ? /)2 + (b2 + Z)2 + (c + XAI I}
 ff x 2z - ,2 y2 z2 -

 V ' - __ _ -- 1

 B1 + j2 XZ3(h2-t x)(&? x) 2z + {(a2 +Z)2 (b12 X (c2 +2

 B ? 2y r 2 y2 z22z
 31 + t 42+ Z)3(b2 + Z)(Cl _+ )' 2 + (2 + Z)2 +(2+-) + (2+ z)2j

 2x x~~2 2 z2
 since + + J &C., &c.

 If we suppose now that

 (P = P' + V(P ? W3,

 i. e. that the body move in any direction with the component velocities tu, v, IV,

 we see that all we have to do is to determine seprarately (P2 and (p, and, substi-
 tuting, in this expression for (p, have the mnotioni completely determined.

 Obviously the functions P2 and qp are given by
 (P2 - 1 yd),

 A, + C, JxV(a2 + )1)(b2 ? 2i)3(e2 ? 2)'
 1 -p zd),

 A + B1 J xVa2 +,Xb2 ? 2f)(c2 ? i)-3

 and thus for a simple motion of tranislation we have
 u pd d, + v rm yd2

 (P + 14.t B1+ -j 2 x,2 21)(b2+) +2 ,) O+ -HA1 x V(a2[2)(b2- )3(c2- )
 + w B fza1

 Al + B, J3x s/(( + i,)(b ? i)(c ? 2,)

 Similarly in the case where there is rotation we find the values

 __T 1 1 2 Co 2 d -I '2 *(aicA -(b + cs)))
 15. 22 ( ~~~~2 _b '2 + a2)) j (Cb + 2s1) B1

 15. 1 1 _ _ d2_ I

 __ - 1 1 (2( 12(11.
 27,atO (t2 +h2))0 fJ(b - ,) Al'
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 CRAIG, Ont tlhe Motion of an Elbpsoid iz a Fluid. 265

 So that finally we can write for the genieral value of p the following

 B rO H xd)1 + v H-O ydA1
 r B1 + 01 t x +/(a+)3(b2 ? 2 ))(c2 +- A,) Al + C} x V/(a2 + A,)(b' + 2i)3(cl + 21)

 + w zd <1>
 Al + fB Jx/(a2 + Z(1,+ )(c + A1)3

 (b2 _ c2) p 2 yzdhl
 16. (1b + c2) A2- 2 x ab (a + 2)(b2 + j ))3(e2 + ),I)

 +6 (b (-a2) z xdA
 (el + a2) B2 - b x f /Va2 + 2 ? +)(c2 + A1)3

 abc

 (a2-2 -b2)r xyd)'
 + (a2 + b2) 02 - abc x(a22 + A,)3(b2 + 21)3(c2 + Aj)

 The approximate values of the quantities A, B), C can be obtained by expand-

 ing &,), in an infinite series and then performing the indicated differentiations,
 which is the method einployed by Clebsch for determining their values; we
 can also obtain them directly as elliptic functions capable all of being reduced

 to depend upon the s-function. If we take XI, X2, X3 as the amplitudes of
 three elliptic initeg,rals

 17. 01 dz, 02 CdZ2 ,03 d7 17. f) = Jo _/d/@~(, Z) 62=J,(k, Z2) ' 3< 3
 we slhall be able to give A, B, C as elliptic funetions of any one of these three
 quantities 01, 02, 03 and could determine p as a function of all three, i. e.

 supposing the proper relations to exist between these quantities and the
 parameters XI, 2, XI; these relations imust evidently be such as to determine
 01, 02, 03 as the so-called Lame or ellipsoidal coordinates. First to determine
 A, B and C, write

 7 2 2
 18. 1 = c22 when2- a -
 x havino all values between zero and infinity. This gives us

 a2 + 2K (a2 C2) x2 H
 x

 19. )b2 + X- (b2-c2)x2 + (a2 2c2)
 a2 _ 2

 c2 + x 2_ 8

 (7X1 2 (a dx.
 68
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 266 CRAIG, On the ]Jotion of an Ellipsoid in a Fluid.

 AssumIe 2 -2 - k2 and, consequently, for the complementary modulus

 -2 e2 2...2abc
 a-2 2= - ic2; making these substitutions and, for brevity, writing 1= a c ~~~~~~~~~~~~~~~~~~~~(a2 c~2j ~
 we have

 x2dX

 -J (Z2+1)2 + k'2

 20. B~ CO x2dX
 Jo(i + k'2X2) (x2+ 1)(t+k'2z2'

 x2d.V
 ? N/(x2 + 1)(I + k' Y )

 Again, writing x - tan X, where X lies between 0 and we have x ~~~~2'
 readily

 A-If n2- X X= IC 2 sn2 01d01, A 0f J (k,1Z1) - J

 21. B = f2 -(k')-1) 2 0A dO =-1) dO1,
 -f k . TO7 __k _ Z0-JSkfl) 0 11

 Jo cos2Zx Jz(k,X Z) o cn2 0 ol
 Now we know (Cayley, Elliptic Func., p. 15) tlhat

 k2f sn2 OdO1 (1-K) 01-- Z01'
 and so we have readily for A1

 22. I 1 K 1 E
 I ko, aE+ 01(01)
 k2 tK ak + a(0,)

 and also by nlot difficult reductions

 B 4- { (I J - 1) 01+ 1/2 Z (01 + K) }

 22. I{ Ol a log D K? 1 0 (01 + K) }
 _ . ~~~~~k2 k ak k12 0 (01 + K)J'

 - {a log (O, + K) - E 0}
 The expression for C could be given as depending upon the s-function by the
 formula

 H (01 + K) - 4 (I-2i9) 0 (01 + K)

 but nothing would be gained thereby. We may just notice the formis which
 immediately present themselves for the constants A2, B2 and C2, but will not
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 CRAIG, On tke li1otion of 'an Ellipsoid in a cFltid. 267

 2
 integrate the equations. For brevity, we xvill here denote --2 by I', anid

 we have by the samne transform-ations emiployeed in redueing the quantities
 A, B and C,

 A2 2 J31+ (fx2V2 JV( -t 1)(1 + k k2X2) CoS ZJ(k,/i)

 23. B2 '(ii1)(2i( 4 -si4 y1dl
 fi 2tt}- + 1 )NI(Xz,, + 1 )(1 + /- 12x2j Os 2I J (k, Z')'

 C-I r tt~~ ~ ~ ~~~4., - .IX Si 114 Zj(jZX
 2- ? (z2 + k'%l - t/2,z-)vqX2 + 1)(I +- f12 X) ( Z

 and these, by virtue of the equation X, -- amO1 becom-e

 24 A ~~~c Sn201, sn201 __ Isn2 snO21 2 fso1 sn 201d 24. A4= ,J I-20 Snzo dOl B2 ts2l -<0'(Ol , Jll0 l L0 -3dn 203 en 20, d1 , B2 - en 2 (01, dn 20,

 The values of x, y, and z can, of course, be expressed by means of the func-
 tions 01, 02 , 03. -The values of X2, yf and z2, expressed in terms of the para-

 meters l, K 2, 3, are (see equations 50. in article on "the Mfotion of a Solidl in a
 Flitid ;" this Journal, Vol. II, No. 2.)

 t2.... (a2 + 2l)(a2 ) 2i)(a2 ? 2,3)
 - (a2 _-b2X(a2 el) 7

 y2 (t2 + 2) (b2 + 22)(b2 + 2
 25. ~~~~~~~~~~~~~~~~~~~~~~ (62 c2)(b2 a2)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(2_o)(2 2

 (C2 + 1)(C2 4 2'2) (C2 + )
 (a2- c2)(t2- c2)

 performing here operations similar to those thlat have alreadly been employed

 in transformning to 011, w0e have, since 02 and 0;1 sustain thle same ktind of
 a relation to 2~2 andi 23 that 01 does to (1,

 25.( 2 2) dn202 sn203 b =Vaa2-c2 dnO2 s+03

 26. y2 = (a2 - c2) dn20, cn 02 cn203 = 7a2 -z 1 c nO,O2 CnO3

 2 9,22 en2Oi sn2O2!dn2O3 - ,~ 201ll n2 l3
 Z' - / sn1(G C sn - ZC2

 MTithl these values of x,' y, z, A, B, C, A.,, B2, (C,, we could now
 transform i so theat it should ble given as a function of elliltic fuenctions, but

 nothing of interest could coe fron that oper,tion in the general came wkiere
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 268 CRAIG, On the Motion of an Ellipsoid in a Fluid.

 none of the velocities vanish, so we will not attempt it. For the case of k = 0,
 or an oblate ellipsoid we have readily

 27. A = B=R 2 (01-sin 01 cos 01)

 C= 1 (tan 0 (- 0)
 Suppose k = 1, i. e. a prolate ellipsoid, then we have

 X1 = gdO0
 and A (k, X1) = cos X1 = cg01, &c. We have in this case, as is well known,

 01= log tan ( itj + 1 X)= log tan ({' + { gdoi),

 and, passing to exponentials and reducing,

 ol} ego,
 -1Sgo

 and thence
 Eo1 E_-81

 sg01 = + Eel = tanh 0,

 cgo1= 0 ? _ 01 sech 01.

 Substituting in the general values for A, B and C and we have

 28. A = If sg2O do1 - If(l cg20l) d1,

 or,
 A = I (01 - sgO1) = 1 (01 - tanh 01);

 and similarly,

 28'. B =_ C = I1f cgg20ol df1 = I1f 9citan dOb dcg O, 13sech201

 = Iifsinh20i dO = j { 201 + (1-201)
 I1 being what I becomes for b - c.

 The motion of the fluid particles relatively to the body is given in recti-

 linear rectangular coordinates by equations 1., but, as for the problem under
 consideration it is more convenient to use elliptic coordinates, we will con-
 sider equations 39. of the article on " the Motion of a Solid in a Fluid" above
 cited.

 We will first assume the case where the ellipsoid has merely a motion of
 translation in the direction of one of its axes-the axis of x for example; for
 this case we have

 v = W = = q = r = 0 ,
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 CRAIG, On the Motion of an Ellipsoid in a Fluid. 269

 and the resulting equations of motion,

 E2aAl_ ao -u UA at aA, 0

 29. F i2 _ ax at aAh aA2

 U2 __ ( ax at aA3 aA3

 These are the equations given and discussed by Clebsch. We have also for q
 A Ax aa

 q)A-2 -= 2a
 and

 ax _ _ ax _ i ax 1 ___ __

 Dal 2 a2 + ' 22a2 2' aA3 2 a2 + A3'
 tlhese can clearly be expressed simply in terms of the elliptic functions-but
 niothing, would be gained by it, as the resulting equations of motion will give
 rise to inteorals of a higher order than elliptic. Making these substitu-
 tions in the differential equations of motion and they become after simple
 reductions

 (A1-A2) (A1-A3) aAl 2x 2 { 2
 (a2+ A1) (b2+ A1) (c2+ A) a -a a2 2+1* A-2 (2(a2a +l)(b2 +Al)(cZ +21))

 30. (22 - A3)(A2 - A) a22 2x 2
 (a2+ 22) (62 A2) (G2+ A2) aa a2+A2 A -2'

 (A3-A1) (23-A2) aA3 2x 2
 (a2+ A3)(b2+ A3)(02+ A3) aa a2 +A3 A-2

 Making
 4x dad

 A--27 * (A1-A2) (A2-A3)(A3-Al)

 we can write these equations in the simpler form

 (%2-3) d = (b2 + A) ((A2 + Al) 12
 (A +2),)(a- + A2)(b2 + Ai)(62 + A1)

 31. (3 - 1) dP = (b2 - l )(c2 + 22)'

 (;., ;1 2) d4 -- A
 - 2 (b2 + A3)(Q2 + A3)'

 Multiply these equations respectively by
 c2 + Xl C2 + 2, 2 + 3 7

 and again by 2 2 2
 b +, Ib +9 2 b + ,

 69
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 270 CRAIG, On the Motion of an Ellipsoid in a Fluid.

 and add each of the sets thus obtained, observing, that the quantity
 1

 1--_ 2
 (A - 2)V(a2 + h)(2 2i)(e2 +A2 )

 can be written

 1- (A - 2)V(a2+ 21)(b2 'I) (c2 + ?2)
 2

 andl we. have for the equations of the motion of the fluid particle relatively to

 the body

 2dy dI __
 b?+ 1-- 2(A- 2)S/V(a 2 'I)(b2 + )2i)-(& -+i)

 32. dz d- A 1

 2 ?2+ 1 1 1 (A - 2)V/(s/2 +4(b2+ A1)(c2 + )
 since 2 dy - d2_ dA dA &

 y 62 + A+ b2 + A+b2+
 From these we see that the path of the particle lies always in a plane passing

 through the axis of x; by taking- values of X, so large that the fourtlh powers

 of the ratios Y \ ' can be neglected, Clebsch shewed that the path
 A1 1 1

 of particles very rapidly approached straight lines. By subtracting the

 second of these equations from the first and integrating we have

 33. log Y _(b2 - c2) di2
 z (bl Y= h2)cc) + 212A2 ) { 1- +(A-2;v(& ? 21)(b2+ +i)(?24

 This can be expressed in terms of the elliptic functions, for we have
 dAl 1 dO1_

 J <(a2s +A-b2 ? A )(2 + A) 2 2 '
 d 1 dO, sn301

 2 nla2 - cnO,1d

 (b2 + a1) (C2 + 2j) (a2_ C2)2 _n20i_dn_20

 {k2(a2Ce2I( K) o1-zoj-i}.
 MIaking these substitutions, we have

 k,2

 34. log (?)(ac2Y 1 -2 isn7O, do,

 30 (n3) b2( )3 cn 0 dn 1

 L, k (a2_23 0 L t3o
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 CRAIG, On tke liotiorn of an Ellipsoid in cz Flatid. 271

 a non-integrable expression. Nothing of interest could be obtained by a fur-

 ther examnination of this case, and so we shall leave it, calling attention, how-

 ever, to the fact that the coordinates of any fluid particle are expressed as

 functions of the parameter of the confocal ellipsoid upon which it lies. The

 same is also true in the case of a siinmple rotation around one axis-as the axis
 of x; the resulting integral equation of the path of the particle conlles in this
 case also in a forumi that is too comnplicated to adcmit of any discussion. The

 motion of the particles, vrery near the surface of the body, would be, in an

 ordinary liquid. a very inmportant point to determine-but, as in that case, the

 equations will present still greater difficulties than they do in the case of a
 perfect fluid, it does not seem as if that problemn is susceptible of solution.

 MTe shall now take up the second and more interesting part of the gene-

 ral problem and investigate the inotion of the solid body. As there are nio

 external forces acting upon either the body or the fluid, the motion of tlle

 svstem is entirely due to that of the body, aind, in consequence, the total
 energy of the motion is a homog,eneous quadratic function of the quantities

 t, v, w, p, q, r with constant coefficients. On account of the assumned syni-
 inetry of figure ancd distribution of mass of the body, i. e. with respect to

 thiree inutually perpendicular planes, the expression for the energy of the

 systenm will contain only the squares of it, v, &c., anid mlay be written

 2 T -a11u + a92v2 + a';'V2 + a44) + a5 q2 + (,66r2v
 where the constant coefficients asi depend upoIn the density of the flLi d, the
 form of the surface of the body, and the moments of inertia about the axes.

 Wirite for brevity

 -= Ul . . . . -T_ XB

 The IKirchhoffian equations for the motion of the body are niow

 at at
 a _ a Q -

 35. T, rU-p IV, ) at =wU- it JV+ -P-pR,
 at 1)at- Dil=tv DRju a 8v -

 Fromi these equations we have the well knowni integrals
 2T- const.,

 36. U2+ V2+ W-= const. - L

 UP + VQ + WJJ = colnst. = 1KJ
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 272 CRAIG, On the Motion of an Ellipsoid in a Flutid.

 For the assumed case the equations of motion become

 a - a33w u-a22vr, a4 aPt (a33 - a22) Vw + (a66 - as.) jr
 av a

 37. a22 -at alur -(a33wp, a65 a- (all - a33) wit + (a44 - a66) pr,
 aw ar.
 a33 a~t= a22VP - alltq, a66 at - (a22 - a11) tv + (at5 - a44) pq.

 Before going, on to the integration of these equations for special cases, it

 will be desirable to determine the values of the constants a,,. These quanti-
 ties are made up of two parts depending,, as they do, upon the energies of the

 solid and the fluid; that part of all which depends upon the solid merely is
 M, or the mass of the solid; ancl the same is true for a22 and a33: the parts

 of a44, a,, a66 depending upon the body are

 2 (+ c2) m (c2+a2) m (a2j+ b2)

 For the parts depending, upon the energy of the fluid we have, denoting, any
 one of them by a',

 ,5j pj L Yt da

 (see article above cited, or Kirchboff's lla[th. P1qys.); the integration is of
 course to be extended over the entire surface of the ellipsoid.

 The values of these constants have been already obtained by several
 writers, and I will merely write them down-they are:

 0 A

 a',1-q> po B + C'

 38. a 222m 0 C ?lA' po denoting the density of the solid.
 p 0C

 ct3 n100 A -H B*

 m (b2+ C2) f J Bp B C~
 5 { oB-C+ c(A + B + C)J

 399 I m a2 IL+ C- A 39 3 m (c2 + a2) POC A+ c2 a-2 (A+ B + C){X
 a 2 ? a2

 at m (2 2 A-B
 a66- Po(aa+2-b__
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 CRAIG, On t11e JIotion of an Ellipsoid in a Fltid. 273

 The first three of these are the same in form as the values deduced by Mr. Fer-

 rers in a recent number of the Quart. Jour.; the last three may be obtained

 from his values or from the values already given for N1, N2, N3.
 The values of these constants are thus seen to depend upon elliptic func-

 tions, and they can be readily determined from the previously given values
 of 112, B2 , 02 , or they may be reduced to depend miierely upon A, _B, C. Con-
 sider for a moment the last three, Ariz: (a44, a,(55, i a66; they are the moments of
 inertia of the ellipsoid, with respect to its axes, increased by certain quanti-

 ties depending upon the density of the fluid and also upon the density and

 ellipsoidal shape of the immr-ersed body. ConceivTe another ellipsoid whose

 semi-axes are a1, b,, c1 ancl of mass m; the maagnitucle of the axes to be
 determined from the conditions

 m bl + c2) - o

 40. 2 (C 2 + a2-) = 55 I

 2 (a1 + b-2) =

 Denote for brevity the fractional quantities in the expressions for a44, a55, a66

 by 4, 7 2, $ then we have for the determination of a2, b2h c' the equations

 b2 + C2 (b2 +C2) (I + 1)

 41. C2 + a2 (C1 + a2) (1 + 2)
 a2 + b2h (a2 + b2) (1 + 43);

 these give readily

 a2, = a2 + (a2 + 62)+ _ (b2 + C2)_

 42 b~2 42 + (a2 t b%-(2 a2')2 + (42 + C 42 + 2
 2

 -G2 + b2) g3+(c2 + 2) C2 + (b2 + C2) 1c+ 3

 - + V(a 2+: 3)ab2 +--2
 If the ellipsoid is oblate

 a( 2 + 4C2 = a2 + 4 C 2
 if it is prolate,

 2i + C2 42 + C2.
 ,o
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 274 CRAIG, On thte Alotion of an Ellipsoid in a Fluid.

 A further study of the properties of this ellipsoid would undoubtedly prove
 of interest, as it seems to possess, as will be seen shortly, properties some-
 what analogous to " Poinsot's ellipsoid " in rigid dynamnics.

 The transformation to Lagrangian, or generalised coordinates, gives rise
 to several interesting results, and before going, further with the discussion in
 Eulerian coordinates it will be desirable to make this transformation. I will

 write down at once the values of u, v, , p, , r in terms of the generalised
 coordinates x, y, z, 0, (p, 40, q, 4, as they are obtained in Tlhomson & Tait's

 Nat. Phil., (new edition), and also in "The Application of Generalised coordi-
 nates to the Kinetics of a Material Systemi," by Watson and Burbury; they
 are

 ut = (cos 0 cos os 4 - sin 0 sin 4) x

 + (cos 0 cos p sin 4 + sin p cos 4) y - sin 0 cos fza
 a. v =-(cos 0 sin q cos4 + cos P sin 4) x

 + (cos O sin p sin4l - cos os4) y + sin O sin z
 w -_ sin 0 cos ,4 + sin 0 sin 4y + cos Oz,

 and for the rotations the well known values

 p - sin p -sin 0 cos qp,
 t3. qz=cos (p + sin O sinq4,

 r - q + cos 04.
 The Lagrangian equations of motion are also, no external forces acting,

 a aT a aT_ a aT
 - - 0 1 0, -. ----0

 at axz at aj, at az-
 a aT aT a aT aT a aT aT

 at ao ao at aZ- 7 a , a
 these equiations can be found in either of the above mentioned books, or in
 Routh's Rigid Dynamics, and are too well known to need any explanationi.
 rlThe values of x, y, z couldl be obtained by dlirect solutions of equations a, but
 that would be a long process, andl it is obvious from their forms that the
 lesired quantities can be otherwise obtained. Multiply u by cos 0 cos q), v by

 cos 0 sin p, w by sin 0; and again multiplv tt by sin 1, v by cos p; and finally
 it by - sin 0 cos p, v by sin 0 cos p, and w by cos 0 and in each case add the
 results; we have then

 x cos 4 + y sin 4 it cos 0 cos - v cos 0 sin p + w sini 0
 - x sin 4 + y cos 4-u sin 'p + v cosp,

 z _ - sin 0 cos P + v sin 0 cos p + w cos 0
 (v - u) sin 0 cos qp + w Cos 0,
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 CRAIG, On Ike i/Lotion of an Ellipsoid in a FlPid. 275

 the values of x, y and z obtained from these equations are readily found to be

 x (cos 0 cos (p cos -sin p sin 4) tu
 -(cos 0 sin (p cos 4 + cos (p sin;4) v + sin 0 cos 4w,

 44. y (cos 0 cos q, sin + sin (p cos 4) it
 -(cos 0 sin (p Sin 4 - COS ( cos ) v + sin 0 sin 4w,

 z - sin 0 cos (p + v sin 0 cos (p + w cos 0.

 Having thus determined x, y, z as functions of 0, (p, 4, if we can now, from
 equations 3, determine these latter quantities as functions of 0, (, A, we shall be
 in condition to integrate these differential equations anid so determine the path
 described by any poinlt of the body during its motion through the fluid. We
 know that whatever motion the body may have at any time that we can

 conceive the motion as due to a properly applied impulse at the beginning of
 the motion. It will simuplify the work to assume the axis of the impulse as
 coinciding with one of the axes of reference, as the axis of z; then calling L,

 see equations 36, the total momentum of the impulse we will have froin equa-

 tions a-the cornponents of momentumn in the directions of x an i y being zero,

 aT aT aTL
 45. -= O, - O, . L, (a constant).

 ax a3y az

 We have further, Thomson & Tait, ? 221, for the Eulerian componenits of
 momentumin a11u, a22v, a33w

 a1u cos (p -a22V sin (p -L sin 0,
 46. at1m sin (p + a22V cos (p 0,

 a33W - 7cos 0;
 fromn these follow

 ailit - L sin 0 cos (p,
 47. a22v= LsinOsin(p,

 a3,-tv L cos 0.

 From these we have, for the first three termns in the expression for the energ,y,

 am2 + a22v2 + a3W2-

 48. L2 [sin2O(CoS:j + s +n Y) + ] ]-
 a,, a22 a33

 For the last three terms containing the squares of the angular velocities,

 49. Ca44 (0 sin (p- sin 0 cos (2p+ a2 5 (0 cos (p +4 sin 0 sin (p)2 + a6, ( cos 0 + (P)2;
 this quantity is identical with the expression for the energy of a free rigid

 body rotating about its center of inertia (Thomnson & Tait, p. 314), the
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 276 CRAIG, On the Motion of an Ellipsoid in a Fluid.

 moments of inertia being a44, a55, a66. We have for the total kinetic energy,

 50. 2T= G + a44 (O sinp -A sin 0 cos p)2 + a5 (COS p + sin 0 sin p)2
 + aG6 (cos 0 + p);

 from this it is clear that the motion of the ellipsoid in the fluid is identical

 with the motion of another ellipsoid of semi-axes al, b,, cl rotating about its
 center under a potential G, or, the entire kinetic energy of the system of

 fluid and ellipsoid is equal to the entire energy of an ellipsoid of semi-axes

 al, b, cl and density p'o rotating about its center under a potential G.
 If the ellipsoid be of revolution around the axis of z the expressions for

 x, y, z become much simplified; we have in that case

 a11 = a22, a44 = a55,

 and, as we have already seen,

 a66s = (2 + b2)
 The values of x, y, z are now

 x=-L sin0coscos4 (I 1),

 51. y = L sin 0 = cos O sinD (3-)

 z= L sin20 ( 1 )+ L
 all a33 a33

 [A very interesting problem is solved by Thomson & Tait, viz: to find

 the motion of a solid of revolution in a fluid which so moves that the axis of

 revolution shall always be in one plane-the body has a motion of transla-
 tion in the directioni of the axis of x and an angular motion around this axis--

 and it is found that the resulting equation of motioni is the same in form as

 that of the common pendulum, the mass, moment of inertia and length of the

 pendulum depending upon the mass and figure of the body and the density
 of the liquid.]

 The substitution of the relations all - a22 and a,= a55 in the expression
 for 2Tcause this quantity to become

 52. 2T= L2 si2 0 ( _ ) + - + a44 (02 + sin2 O;2) + a66 (q + COS O;)

 containing, neither p nor A, and, consequently, cause the fifth and sixth of
 equations y/ to become

 a a'_ at aT
 or, aT AT - const. . const.;

 aD a
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 CRAIG, On t7Ie Jotion of an Ellipsoid in a Fluid. 277

 equating then to constants these derivatives of T and we have

 53 qp+cos0Cos 1,
 a44 sin2 O4 + a6,a1 COS 0 = Y2 1

 y, denoting the angular velocity around the axis of z and (2 the component
 angular miomentum about the same axis. The equation

 a aT aT

 niow merely expresses what we already know, that T, the kinetic energy, is
 constant.

 The expression for the energy may now be written

 2 Sin21( + L (02 + sin2 0+2) + a6612 . L sin2O a44 +t6
 a, a33/' a33

 The steady motion of the solid is easily obtained fromn the original expres-
 sion for the energy, together with the values already given for u, v, w p, , r

 aT
 and for x, and z. We mnust have 0 - 0 and consequently - 0; since ao-

 aTand aT are identically zero, they of course do not come into the question,

 we must also have A - const., say .

 aT aT au aT ar

 a a ao at. ao
 aT aT

 a ' ap 4 since a22 - a33
 aT aT and a.5 = a6G
 -v aq 5q
 aT aT_
 aw 33W ar a66;

 =-(sin 0 cos P cos ;x + sin 0 cos p sin 4y + cos 0 cos pz),

 av (sin 0 sin p cos + sin 0 sin p siny + cos 0 sin qPz),

 a?v
 ao (cos 0 cos PX + cos 0 sin y=sin0z),
 ao a-g_7- cos 0 cos qp,

 ao _-
 a7-

 --sin 0+,1
 71
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 278 CRAIG, On the Jotion of an Ellipsoid in a Fluid.

 Substituting all these values in -, andl also giving p and q their values in

 the generalized coordinates, and this becomes

 aT a ? sin + co
 =o =-a1 (it cos p - v sin q)) (sin 0 cos ? s + Oz)

 + a33w (,u cos qp - v sin qp)

 - a, (sin p0 - sin 0 cos +p) cos 0 cos +p
 + a44 (cos cp0 in sin 0 sin q4p) cos 0 sill q4;

 + a66r sin 04,
 since

 tu cos -v sin q = x cos 4 cos 0+ sin 4 cos 0- z sin 0

 = (C33 - all) (u cos p - v sin qp) w
 + a,4 sin2 042 _a66r cos 04

 =L2 sin 0 cos 0 y-1 -) + a44 sin 0 cos 042 a66r sin 04.
 a33 all

 Calling now the integral of 0'= , 0 = 0', then cos 0 - cos 0', we had A =

 therefore, cos A = cos qt, &c. The equation - = 0, becomes now

 2 L2 ~~~~1 \
 54. a44 cos 0SO2 - a_ r + L2 (i _ cos0'=O.
 which gives

 L -1 cos0'
 55. r = a33 _ali +-a44 cos 0n,

 a66rj a66
 the value of the angular velocity necessary to the inaintaining of steady
 motion when the body is projected in the direction of its axis. The equa-
 tions for x, y, z now give after integration

 x = - ---- sin 0 cos 0' sin t,
 am all

 56. ~~~L /1 1 \ 56. y = ----) sin ' cos ' cos t,
 j\a33a,,/

 z L (2 0+ sin2 Ot,

 or

 57 -=tan rt
 z=Lcos2O' v. 1-) t + Lt,

This content downloaded from 
�������������89.187.177.72 on Mon, 13 Mar 2023 21:19:06 UTC������������� 

All use subject to https://about.jstor.org/terms



 CRAIG, On tkle Jiiotion of an Ellipsoidl in a Fluiid. 279

 the equations of a helix whose projection on the plane of vty is the circle

 58. T2+ y 2Q 1) sin 2 0 cos2 0'.
 7~a a,1

 This is in accordance with what was proved in the paper already referred
 to, viz: that a body moving in a fluiid has an infinite number of possible
 steady motions, each of which consists of a twist about a certain screw.

 The problem of the motion of a solid of revolution in a fluid hias been

 very fully solved by Kirchhoff in Borchardt's Journal, Bcl. 71, and by otlhers
 since that time. I append a list of the more important articles on this sub-
 ject:

 Clebsch: Die Beweg,ung eines Ellipsoids in einer Fliissigkeit. Crelle's Jouir-
 nal, Bd. 52 and 53.

 Kirchhoff: Ueber die Bewegang eines Rotations K6rpers in einer Fliissigkeit.
 Borchardt's Journal, Bd. 71.

 Ferrers: The motion of an infinite mass of water about a moving Ellipsoid,
 Quart. Jour., No. 52. 1875.

 Kdpcke: Zur Discussion der Bewegrungy eines Rotations K6Irpers in einer
 Fliissigkeit. Math. Annalen., Vol. 12, p. 387.

 Weber: Anwendung der Th-etafunctionen zweier Veriinderlichen auf die
 Theorie der Bewegung, eines festen Kdrpers in einer Fliissigkeit.
 Math. Annalen., Vol. 14, p. 173.

 The motion of a sphere in a fluid wvas treated by Dirichlet, and was

 the first article of note which treated of the motion in a fluid of a body of
 given form.

 WASHINGITON, Jucly 5, 1S,9.
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 Ont Certain Ternariy Cubic-Fornt Equations.

 BY J. J. SYLVESTER.

 CHAPTER I. On the Resolution of Numbers into tke sunms or differences

 of Two Cubes.

 SECTION 1.

 M. LUCAS has written to inform ime that in some one or more of a series
 of memoirs comnmencing with 1870, or elsewhere, the Reverend Father Pepin

 has made considerable additioins to my published theorems on the classes of
 numbers irresoluble into the sunm or difference:B of two rational cubes.

 Using p, q to denote primes of the forms 18n + 5, 18n + 11, besides the
 6 forms published by Ine, M. Pe6pin has found 10 other genieral classes of

 irresoluble numbers, the total number (as I understand from M. Lucas)
 knovxn to the Reverend Father being as follows:

 p q2, 2, q, 21J , 2q2, 4p2, 4q,
 9p 9f2' 9p2 9q, 25p, 25q, 52p, 5q,

 but the last four of these classes are special cases oinly, of three out of the four

 more general irresoluble classes pq, p222e p q12, where Pi, P2 are any
 two numbers of the p class and q, q, any two of the q class. On making
 p 5 in the first two of these, aind p1 =a, p2 = p, or p2 =5, pi= _p, in the
 third, Father Pepin's last four classes result. It is also true that the numbers

 in my four additional general classes respectively multiplied by 9 are still irre-
 soluble. Hence the nuinber of known classes of numbers (depeniding on p and
 q) irresoluble into the sum or difference of cubes may be arranged as follows:

 p, 2v S t 2 , 2 p2p2 2

 9p, 9~, 9_p2 92, 9p1qX 9p22X 9plp2X 9q1, ,
 2p, 4q, 4p2, 2q2.

 Moreover, I ha re ascertained the truth of the following two theorems of
 a somewhat different character:

 10. Let p, ;, p denote prime numbers respectively of the forms 18n + 1,
 18n + 7, 18n + 13 and suppose p, 4, p to be not of the form f2 + 27g2 and

 *It is well to understand that a number resoluble into the sum is necessarily also resoluble into the differ-
 ence of two positive cubes and vice vers6t.

 280
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 SYLVESTER, On Certain Ternary Cubic-Form Equations. 281

 consequently not to possess the cubic residue 2, then I say that all the num-

 bers comprised in any one of the eight classes

 2p, 4p, 2p2, 4p2, 24,, 44;2, 4cp, 2&(p2
 are irresoluble into the sum of two cubes.*

 20. Provided 3 is not a cubic residue to vt [where v, any 6n + 1 prime,

 is the same as p, cp, A taken collectively], 3v and 3V2 are similarly irre-
 soluble.

 With the aid of these theorems and certain special cases of irresolubility

 noticed by Father Pepin, communicated to me by M. Lucas, supplemented by

 calculations of M. Lucas an(d my own as regards the non-excluded numbers,

 it follows (mirabile dicta) that of the first 100 of the natural order of numbers,

 there is only a single one, viz. 66, of which it cannot at present be affirmed
 with certitude either that it is or is not resoluble into the sumn of two cubes,

 and of which, in the forrmier case, the resolution caninot be exbibited.

 The proof of these statements, and the resolutions into cubes in their

 lowest terms, when they exist, will be given in the next number of the Journal.

 For the present I limit myself to noticing (what I much regret not to

 have done before the paper was printed) a statemnent of M. Lucas which

 is capable of being mlisunderstood and might give rise to an erroneous

 conception.

 It is where this distinguished contributor to our Journal speaks of

 deriving fromi one rational point on a cubic curve (defined by a cubic equa-

 tion with integer coefficients) another by means of its intersections with a

 conic drawn through fire consecutive points situated at the given rational

 one; but, in fact, it follows from mv theory of residitation that this point is

 * The excelusion of 2 as a cubic residte blocks out the possibility of the " distribution of the amplitude;" the
 form p2 + 27q2 blocks out the possibility of a solution in wllich X2 _ Xy + y2 hais a common ftactor with the
 amplitude. and thereby imiiposes upon the equation containing x, y, z (were it soluble in integers) tlle necessity
 of repeating itself perpetually in with smaller numbers, which of course is imlpossible. But the two conditions
 thus separately stated are in fact mutually implicative, every number of the form f 2 + 27g2 having 2 for a cubic
 residue and vice versd every number of the form 6nz + 1 to which 2 is a cubic residue being of the form f2 + 27g2.
 The sole condition, theretlore, in order that a number comingb under anly of the eight categories in the text shall
 be known at sight to be irresoluble into the sum of two cubes, is that its variable part shall not be of the form
 p2 + 27q2, i. e. shall not be 31, 43, 91, 109, 127, 157, 223, 229, 247, etc.

 t If I am not mistaken this is tarntamount to the proviso that v shall not be of the formf 2 + 9fg + 8lg2.
 (9gg Zf)3 +(1 8g?+f)3

 It is worth noticing that the above quantity mn ultiplied by 3, say 3N, is equal to ( _ __ + , so that
 27g

 when g is a cube number N is immedliately resoluble. The initial values of N will be found to be 61, 67, 73,
 103, 151, 193, 271, 367, 547, etc., for each of which, up to 367 inclusive, g 1 or g -1, so thalt their products
 by 3 tare immediately resoluble.

 72
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 282 SYLVESTER, On C'ertain Ternary Cubic-Form Ejuation2s.

 collinear with the given point and its second tangential: just as a ninth point
 in which the cubic would be met by any other cubic passing through eight
 consecuLtive points situated at the given point wouldl be the third tangential
 to the latter.*

 Hence M. Lucas' third method amounts only to a combination of the

 other two; and in fact there is but one single scale of rational derivatives from
 any given point in a general cubic, the stuecessive terms of which expressed in
 terms of the coordinates of the primitive are of the orders 1, 4, 16, 25, 49,
 the squares of the natural numbers with the mnultiples of 3 omitted.t

 Scholium.

 I term lmnn the amplitude of the equation lx3+ my3+ nz3 = 0, and if A can-
 not be broken up in any way into factors 1, M, n, such Lhat 1x*3+ m93+ nz3 0
 shall be soluble in integers, I call the amplitude A of the equation
 XI3 + y3 + Az3 = O undistributable.

 When A is of the form i =-U '" + 3 -, the equation xZ + ? Az3 = 0 is oz3

 always soluble, and when this equation is soluble, then, provided that its
 amplitude is u-ndistributable and contains no primne factor of the form 6i + 1,
 the equation C- 34y + y = 3Az> must be soluble in integers, which cannot
 be the case when A contains any factor other than 3, or of the form 18i 4 1,
 inasmuch as thie cubic frrM x3- 3x ? I contains nio factors other t.han 3 or of
 te fbrmn 18i A 1

 This last theorem is a particular case of the following: If k be any

 integer and F (x y), the product of factors of the form (x-2 cos k Y), where

 *I make the important additional renmark that at those speciail points of the cubic where this ninth point
 (sometimes elegantly called the stibosculatrix) coincides with the point osculated, the scheme of rational deriva-
 tives returns upon itself, and instead of an infinite nunmber there will be only two rational derivatives to such
 point. That is to say the infinite scheme b"comes a system of 3 continually recurring points. The general
 theory of the special points which have only a finite nunmber of rational derivatives will be giveni in the next
 number of the Journal.

 tWhen the cubic is of the form Ax3 + Ay3 + Cz3 + Mxyz = 0, where A, C, M are integers, then a rational
 point of inflection x = 1, y =-1, z =0 is known and, in that case, from a ny other rational point besides the o0di-
 nary ones derivative rational points of the missing orders 9, 36, 81 can be found, but no others, anid so universally
 if in the general cubic a rational point of inflection and a rational poinIt (a, b, c) are given the scale of rational
 derivatives will be of the orders 1, 4, 9, 16, . . . in a, b, c. This scale will of course be duplex, consisting of a
 series of points and a second series in which the radii drawn through the poinits of the first series and the point
 of inflection again meet the cubic.
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 X is every number prime to k up to k2I then Fx contains no prime factors

 excepting such as are contained in k or else are of the form kIi A 1.*

 If it could be shown, in analogy with what holds for the quadratic

 forms Fx which result from making k 8, 10, 12, that the cubic form

 I- 3Xy2 _ l which. results from mnaking k =18 may always be made to
 represent any prime number of the form 18n 4 1 itself, or else its treble (and
 for our purpose rational numbers would be as efficient as integers), we should

 then be able to affirm that any prime 18n == 1 or else its nonuple could
 be resolved into the sumn of two cubes. As a matter of fact I have ascer-

 tained that every prime number 18n j=- 1 as far as 537 inclusive (and
 have no groundl for supposing that the law fails at that point) can be repre-

 sented by x3 - 3xy2 y3 or else by its third part with integer values of x, y.
 Moreover, I find that the same tlhing is true of 172, 17 . 19, 1 9', 17 . 37, 19 . 37,

 372, 17 .53, 19 ..53, 37 . 53, i. e. in fact for all the binary combinations of the

 natural progression of "r, p" numbers 17, 19, 37, 53, 71, 73, 89 (21 in all), as

 also 172, 192, 372t The number of consecutive r, p primes for wlhich the law
 has been verified, i. e. the numnber of those not exceeding 537 will be found to

 be 39, viz: 17, 19, 37, 53, 71, 73, 89, 107, 109, 127, 163, 179, 181, 197, 199, 233,
 251, 269, 271, 307, 323, 341, 359, 361, 377, 379, 397, 413, 431, 433, 449, 451,
 467, 469, 487, 503, 521, 523, 541, which according to the usual canons of induc-
 tion would, I presume, be considered almost sufficient to establish the theorem
 for the case of k = 9.

 The table of "special cases" of irresoluble numbers found by Father

 Pepin (according to the information most kindlv communicated to me by

 * Thus, by making k = 8 we learn that X2 - 2 contains no factors except 2 and 8i ? 1 and by making
 k = 16, that y4 - 4y2 + 2, none except 2 or 16i + 1, by making k = 9 that x3-8x + l, by making k = 18,
 that X3 - 3X- 1 contain no other factors but 3, or numbers of the form 18n -4-1. The theorem, I am aware,
 is well known for the case where k is a prime number and possibly is so for the general case. The proof of the
 irresolubility into two cubes of the 20 classes of numbers involving p's and q's, given at page 280, is an instan-
 taneous consequence of the theorem for the case of k =- 9, for which case also there is no shadow of doubt of the
 theorem being true.

 t 532 has not yet made its appearance. All the primes of that form themselves occurring in the first six
 hundred numbers have already occurred in my calculations except 557 and 593. I have worked with the for-
 mula X3 _ 3Xy2 4- y3 [x and y relative primes], giving to x and to y allt the values possible from 1 to :36, and
 intend to extend the table to the limit of 50 or 100. The longer a moderate-sized number is in making its appear-
 ance, the longer it is likely to be before it appears, inastnuch as the large numbers of which it is the residuum or
 balance are becoming continually greater. It may very well then happen that the missing numbers alluded to
 may transcend all practicable limits of calculation to find them just as would be the case, for certain values of
 A, with finding values of x, y to satisfy the Pellian equation x2 _Ay2 =1 , were there not a theoretical
 method of arriving at them.
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 284 SYLVESTER, On Certain Ternary Cubic-Form Eqtuations.

 M. Lucas) comprises the numbers

 14, 21, 31, 38, 39, 52, 57, 60, 67, 76, 77, 93, 95,7
 all of which I have verified as irresoluble except the numnber 60, which I

 accept as such on the erudite and sagacious Father's authority.

 Reverting, to F, it is hardly necessary to recall that F (x2 + y2, xy) is the

 primitive factor of xk yk, and that it is capable of very easy demonstration
 that this primitive facetor contains no prime factors except such as are divisors
 of k or of the form ki + 1, the linear divisor ri - 1 being here excluded.

 It seenms to be very probable that for k - 9, F (x, y) or else 3F (x, y) does

 represent any primne of the forrn 18n ? 1, and consequently that every such
 form of prime or else 9 times the same is the sum of two rational cubes.t

 This last conjectural thleorem, it will be noticed, is not in any real analogy

 to the theorem that every prodluct of primes of the forin 4n + 1, and also the

 double thereof, is the sum of two integer squares; the real analogy is between the
 fact, of which this theorem is a consequence, that x3- 3xy2+ y3 or its tlhird part

 represents every number which is a product of primes of the form 18n + 1,
 and each one of the facts that X2 2 y2, X2 - 5y2 represent all numbers of the
 form 8i + 1, 10iGi 1 respectively, and that X2 -32 or its third part repre-
 sents all numbers of the form 12i ? 1. On account of its importance to this

 theory it seems desirable to give a name to the law which governs the prime
 factors of F(x, y), and I take advantage of the circumstance that F (x2 + y2, Xy)

 contains prime factors of the formf ki + 1, but not of the form ki - 1, whilst
 F(x, y) contains primne factors of either of these forms indifferently, to charac-
 terize it as the Law of Twin Prime Factors. Let us suppose the circum-

 ference of a circle divided by points into k equal parts, and agree to designate
 the shorter arc between any two of the points a primnitive division of the circle
 in respect to k, provided that no number less than k would be adequate to

 cive rise to an equal length of arc, so that - , when 2x is prime to k and less In ~~~~~~~~~~~k
 k

 than -' will serve to represent any such division. The assumed Law of
 Twin Factors (well klnown, I repeat, for the case of k a prime number and
 possibly in its extended formi likewise) inay then be enunciated as follows:

 * Of these numnbers all except 60, 31, 67, 77, 95 belong to some onie or other of the general classes of irresoli-
 ble nunmbers given in the text.

 t It may bo and probably is true also that x3 - 3,Xy2 +y3 will represent the product or else three timiies
 the product of any two primnes each of which is of the form 7' or p, anid possibly the square or else three tinmes
 the squtare of any r or p; it cannot possibly represent three timiies any cube, for if it did we ishould be able to
 infer that a cube was resoluble into two cubes, which we know is not true.
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 Thfzat ftutnction of x wvhose first coefficient is unity and w7kose roots are thte
 cloutbled cosines of all thte prinitive divisions of tke circle in respect to k contains no

 jrinte factors except sitc? as are divisors of, or else wvhen increased or diminished by

 uwtity, are divisible by k. This may be called again the Exciusional or Negative
 Tlheorent of Twin Factors; and on the other hand the more extraordinary

 theorem which asserts (on evidence not yet conclusive) that the function of x

 above defined, when made homogeneous in x, y, wvill represent (at all events

 for the case of k - 9) every prinme number of the forii ki 4= 1, or else certain
 specific multiples of any such nuinber, may be called the Inclusional or Repre-

 sentational Theorem of Twiin Factors.

 A Netw Proof of the Theorem of Reciprocity,.

 BY DR. JULIUS PETERSEN, of Copenhagen, -Denmark.

 LET a and b be two odd prine niumbers, a < b; form the equation

 (2it + 1) a -2))ib = r . . . . . . . . (1)

 for all the odd numbers 2n + 1 up to p- 2, and choose m so that r, which
 will be termned a remainder, shall lie between - b and + b. The absolute

 numerical values of these reinainders will be all different, and therefore they
 must be the odd numbers 1, 3, . . . , (b - 2), of which, lhowever, some may

 be negative. According as the number of these negative values is even or

 odd we will write

 or

 From among the equations (1) we will take out those in whichl the remainders

 lie betweeni - a and + a; there is one sucll equation for every value of 2in
 up to a - 1; these equations mriay be written under the form

 (a- 2i) b -(b- 2n -1) a=r, . . . . a (2)

 which are evidently the equations for the determination of the sign of (k).

 Therefore (-2-) and (1) will have the same or opposite signS, according as

 the numnber of the remiiainders between - b and -, a is even or odd. For suich

 renainders
 -b < (2n + 1) a- 2inb < -a,

 73
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 286 PETERSEN, A New Proof of the Thteorem of ReciprocitBy.

 or,puttingm=n-k, a=b-2a,

 2n+2> (k + 1)b>2 .
 a

 Therefore there is a negative remainder between - a and - b for every term

 in the series
 b 2b 3b (a-1)b
 a .a a a

 in which the greatest contained integer is odd; now any two terms in the above

 series at equal distances from its extremities have the sum b, and therefore the

 integer parts of such two (their sum being b - 1) are both even or both odd;

 for a odd the number of terms is even, and the number of negative remain-

 ders between - a and - b therefore even; for a even the nuryiber depends

 upon the mean term 2 b; it is even if b = 4i + 1, odd if b - 4i + 3; hence

 we shall always have
 a b 1~~-I -

 2 2

 By multiplying the equations (1) by c we obtain

 (ac> (a~)Wc)
 and, remarking that, b being a prime num-flber, the nmultiplication* of the equa-

 (a)

 tions (1) shows that --- is in accord with Legendre's notation, we have the
 proof of the extended (erweitert) theorem.

 * Viz: multiplying together the equations (1) in the form
 l.a _r1 (niod. 2b)
 3.a--r2 ( )

 5.at-r3 ( "4 )
 a r3

 (b -2).a_ _ ( a

 2~~~~~~~~~~~~~~~~~~~2 and noticing; that r, r2 r3 . ' * r 1 =(b )1 . 3 . 5 . b - .rb2), we bave

 a 2 - (a) (mod. 2b),

 and thus (-) = + 1 or - is the criterion that a shall be a quadratic residuc or non-residue of b.
 .
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 On a New Action of the JIa19flet onz Electric Currents.

 BY E. H. HALL, Fellow of the Johns Hopkins University.

 SOMETIME during the last University year, wlhile I was reading Max-
 well's Electricity and Magnetism in connection with Professor Rowland's

 lectures, my attention was particularly attracted by the following passage in

 Vol. II, p. 144:

 "It must be carefully remembered, that the mechanical force which

 urges a conductor carrying a current across the lines of magnetic force, acts,
 not on the electric current, but on the conductor whiclh carries it. If the

 conductor be a rotating disk or a fluid it will move in obedience to this force,

 and this motion miiay or may not be accompanied wvith a change of position
 of the electric current which it carries. But if the current itself be free to

 choose any path through a fixed solid coniductor or a network of wires, theil,

 when a constant magnetic force is made to act on the system, the path of the
 current through the conductors is not permanently altered, but after certain

 transienit phenomenia, called induction currents, have sulsided, the distribu-

 tion of the current will be found to be the same as if no magnetic force were

 in action. The only force which acts on electric currents is electromotive
 force, which must be disting,uished froml the mechanical force which is the

 subject of this chapter."

 This staternent seemed to mne to be contrary to the most natural supposi-

 tion in the case considered, taking into account the fact tlhat a wire not bearing

 a current is in general not affected by a mag,net and that a wire bearing a

 current is affected exactly in proportion to the strengrth of the current, while
 the size and, in general, the material of the wire are matters of indifference.

 Moreover in explaining the phenomena of statical electricity it is customriary
 to say that charged bodies are attracted towvardl each other or the contrary
 solely by the attraction or repulsion of the clharges for each otlher.

 Soon after reading the abovTe statement in Maxwell I read an article

 by Prof. Edlund, entitled " Unijpolar ]IdnCtion" (Phil. Mag., Oct., 1878, or
 Aninales de Chemie et de Physique, Jan., 1879), in which the author evi-

 287
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 288 HALL, On a New Action of the MIJiagnet on Electric Cturrents.

 dently assumes that a magnet acts upon a current in a fixed condluctor just as

 it acts upon the conductor itself when free to move.
 Finding these two authorities at variance, I brought the question to Prof.

 Rowland. He toldl me he doubted the truth of Maxwell's statemeiit and had

 sonmetime before miiade a hasty experiment for the purpose of detecting, if
 possible, some action of the magnet on tlhe current itself, though without suc-
 cess. Being very busy with other mnatters however, he had no immediate
 initention of carrying the investigation further.

 I now began to give the matter more attention and hit upon a method

 that seemed to promiise a solution of the problem. I laid my plan before

 Prof. Rowland and asked whether he had any objection to my mnaking the

 experiment. He approved of my method in the inain, though suggesting

 some very important changes in the proposed form ancd arrangement of the
 apparatus. The experiment proposed was suggeste(d by the following reflec-
 tion :

 If the current of electrieity in a fixed conductor is itself attracted by a

 nagnet, the current should be drawn to one side of the wire, and therefore
 the resistance experienced should be increased.

 To test this theory, a flat spiral of German silver wire was inclosed

 between two thin disks of hard rubber and the whole placed between the
 poles of an electromagnet in suclh a position that the lines of magnetic force
 would pass through the spiral at right ang,les to the current of electricity.

 The wire of the spiral was about i mrn. in diaineter, and the resistance

 of the spiral was about two ohms.

 The nmagnet was worked by a battery of twenty Bunsen cells joined four
 in series and five abreast. The strength of the magnetic field in which the

 coil was placed was probably fifteen or twenty thousand times II, the hori-

 zontal intensity of the earth's magnetism.

 Making the spiral one arm of a Wheatstone's bridge and using a low

 resistance Th-omson galvanometer, so delicately adjusted as to betray a change
 of about one part in a million in the resistance of the spiral, I made, from

 October 7th to October 11th inclusive, thirteen series of observations, each of

 forty readings. A reading would first be made with the magnet active in a

 certain direction, then a reading with the magnet inactive, then one with the

 magnet active in the direction opposite to the first, then with the magnet
 inactive, and so on till the series of forty readings was completed.
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 HALL, On a New Action of t[le Mliagnet on Electric Currents. 289

 Some of the series seemed to show a sligoht increase of resistance due to

 the action of the inagnet, some a slight decrease, the greatest chang,e indi-
 cated by any complete series being a decrease of about one part in a hundred

 and fifty thousand. Nearly all the other series indicated a very much smaller
 change, the average change shown by the thirteen series being, a decrease
 of about one part in five millions.

 Apparently, then, the mnag,net's action caused no change in the resistance
 of the coil.

 But thotugh concltusive, apparently, in respect to any change of resist-

 ance, the above experimnents are not sufficient to prove that a magnet cannot
 affect an electric current. If electricity is assumed to be an incompressible

 fluid, as some suspect it to be, we mnay conceive that the current of electricity

 flowing in a wire cannot be forced into one side of the wire or made to flow

 in any but a symmetrical manner. The magnet may tend to deflect the cur-

 rent without being able to do so. It is evident, however, that in this case

 there would exist a state of stress in the conductor, the electricity pressing,
 as it were, toward one side of the wire. Reasoning thnus, I thought it neces-

 sary, in order to make a thoroug,h investigation of the matter, to test for a

 difference of potential between points on opposite sides of the conductor.
 This could be done by repeating the experiment formnerly made by Prof.

 Rowland, anid wvhich was the following:
 A disk or strip of inetal, formiing part of an electric circuit, was placed

 between the poles of an electro-magnet, the disk cutting across the lines of
 force. The two poles of a sensitive galvanometer were then placed in con-

 nection with different parts of the disk, througlh which an electric current was

 passing, until two nearly equipotential points were found. The mag,net cur-

 rent was then turned on and the galvanometer was observed, in order to
 detect any indication of a change in the relative potential of the tNvo poles.

 Owing probably to the fact that the metal disk used had considerable
 thickness, the experimrlent at that tiine failed to give any positive result. Prof.

 Rowlanid now advised me, in repeating this experiment, to use gold leaf
 mounted on a plate of glass as my mnetal strip. I did so, and, experimentiing
 as indicated above, succeeded on the 28th of October in obtainingy, as the
 effect of the inagnet's action, a decided deflection of the galvanomneter needle.

 This deflection was mnuch too large to be attributed to the direct action
 of the magnet on the galvanomieter needle, or to any sinmilar cause. It was,

 74
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 290 HALL, On a New Action of the Mlagnet on Electric C(trre'uts.

 moreover, a permnanent deflection, and therefore not to be accounted for by
 induction.

 The effect was reversed when the magnet was reversed. It was not re-
 versed by transferring the poles of the galvanometer froml one end of the strip
 to the other. In short, the phenomena observed were just such as we should

 expect to see if the electric current were pressed, but not mioved, toward one
 side of the conductor.

 In regard to the direction of this pressure or tendency as dependent on
 the direction of the current in the gold leaf and the direction of the lines of
 magnetic force the following stateinent may be made:

 If we reg,ard an electric current as a single stream flowing from the posi-
 tive to the negative pole, i. e. from the carbon pole of the battery through the
 circuit to tlhe zinc pole, in this case the phenomena observed indicate that two
 currents, parallel and in the same direction, tend to repel each other.

 If, on the other hand, we regard the electric current as a stream flowing
 from the negtive to the positive pole, in this case the phenomena observed
 indicate that two currents parallel and in the same direction tend to attract
 each other.

 It is of course perfectly well known that two condtctors, bearing currents
 parallel and in the same direction, are drawn toward each other. Wlhether
 this fact, taken in connection witlh what has been said above, hias any bearing
 upon the question of the absolute direction of the electric current, it is per-
 haps too early to decide.

 In order to make soine rough quantitative experiments, a new plate was
 prepared consisting of a strip of gold leaf about 2 crn. wide and 9 cm.
 long mounted on plate glass. Good contact was insured by pressing firnmly
 dlown on each encd of the strip of gold leaf a thick piece of brass polished on
 the under side. To these pieces of brass the wires from a single Bunsen cell
 were soldered. The portion of the gold leaf strip not covered by the pieces
 of brass was about 52 cm. in length and had a resistance of atbout
 2 ohm-s. The poles of a high resistance Thomilson galvanometer were placed
 in connection with points opposite each other on the edges of the strip of
 gold leaf and midway between the pieces of brass. The glass plate bearing
 the gold leaf was fastened, as the first one liad been, by a soft cement to the flat
 end of one pole of the magnet, the otlier pole of the magnet being brought to
 within about 6 min. of the strip of gold leaf.
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 HALL, On a New Action of th7e Magnet on Electric COrrents. 291

 The apparatus being arranged as above described, on the 12th of Novem-
 ber a series of observations was made for the purpose of determining the

 variations of the observed effect with known variations of the magnetic force
 and the strength of current through the gold leaf.

 The experiments were hastily and roughly made, but are sufficiently
 accurate, it is thought, to determine the law of variation above mentioned as

 well as the order of maognitude of the current through the Thomson galva-

 nometer conmpared with the current through the gold leaf and the intensity

 of the magnetic field.

 The results obtained are as follows:

 Current through Strength of Current through C X A2
 Gold Leaf Strip. Magnetic Field. Thomson Galvanometer. c

 C. 11. c.

 .0616 11420 H .00000000232 303000000000.

 .0249 11240 " , .085 329

 .0389 11060 " 135..... O...135 . 31 9

 .0598 7670" ......147 312.

 .0595 51700 " ....... .104 326 .

 f is the horizontal intensitv of the earth's magnetism -=.19 approxi-

 mately.

 Though the greatest difference in the last columni above amnounlts to

 about 8 per cent. of the mean quotient, yet it seeins safe to conclude that with

 a given form and arrangement of apparatus the action oni the Thomson

 galvanoineter is proportional to the product of the magnetic force by the
 current through the gold leaf. This is not the samte as saying that the effect
 on the Thomson galvanomneter is under all circumstances proportional to

 the current whiclh is passing between the poles of the magnet. If a strip of
 copper of the samne length and breadth as the gold leaf but 4- mm. in thick-
 ness is substituted for the latter, the galvanomieter fails to detect any current

 arising from the action of the magnet, except an induction current at the
 momrent of making or breaking the Tnagnet circuit.

 It has been stated above that in the experimnents thus far tried the cur-

 rent apparently tends to move, without actually nmoving, toward the side of

 the conductor. I have in m1ind a form of apparatus whiclh will, I think,

 allow the current to follow this tendency and move across the lines of

 magnetic force. If this experiment succeeds, one or two others immwlediately
 suggest themselves.
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 292 HALL, On a New Action of the Magnet on Electric Currents.

 To make a more complete and accurate study of the phenomenon

 described in the preceding pages, availing, myself of the advice and assist-

 ance of Prof. Rowland, will probably occupy me for some months to conie.

 BALTIMORE, Nov. 19th, 1879.

 It is perhaps allowable to speak of the action of the magnet as setting
 up in the strip of gold leaf a new electromotive force at right angles to the
 primary electromaotive force.

 This new electromotive force cannot, under ordinary conditions, mnanifest
 itself, the circuit in which it might work being incomplete. When the circuit
 is completed by-means of the Thomson galvanometer, a current flows.

 The actual current through this galvanometer depends of course upon
 the resistance of the galvanometer and its connections, as well as upoIn the
 distance between the two points of the gold leaf at which the ends of the wires
 from the galvanometer are applied. We cannot therefore take the ratio of C
 and c above as the ratio of the primary and the transverse electromotive
 forces just mentioned.

 If we represent by E' the difference of potential of two points a centi-
 meter apart on the transverse diameter of the strip of gold leaf. and by E the
 the difference of potential of two points a centimeter apart on the longitu-
 dinal diameter of the same, a rough and hasty calculation for the experiments

 already made shows the ratio E to have varied from about 3000 to about 6500.

 The transverse electrormotive force E' seemns to be, under ordinary circumn-
 stances, proportional to Xv, where 111 is the intensity of the magnetic field and
 v is the velocity of the electricity in the gold leaf. Writing for v the equivalent

 c
 expression - where C is the primary current through a strip of the gold leaf

 1 cm. wide, and s is the area of section of the same, we have E'oc- .

 November 22d, 1879.
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 Tables of the Generatizg Functions and Groundforrns
 Jor Simultaneous Binary Quantics of the First

 Four Orders, taken, two and two together.

 BY J. J. SYLVESTER, assisted by F. FRANKLIN,

 Of the Johns Hopkins University.

 IN the Generating Functions given below, the exponents of the letters
 a, b, e, d, refer to degree in the coefficients of the quantics of the 1st, 2nd, 3rd
 and 4th orders respectively; the exponents of the letter x to order in the

 variables. Where the systenm consists of two quantics of the same order,
 the Latin letter and the corresponding Greek letter have been used. In the
 tabulated numerators, the minus sign has been placed over the number which
 it affects.

 In each of the systems considered in this paper, with the exception of
 that consisting of a cubic and a quartic, it is found that there is never more

 than one groundform of any given type (i. e. of a given order in the variables

 and given degrees in the coefficients of the quantics); where, therefore, in
 the enumeration of the groundforms, the type alone is given, the number of

 groundforms of the type is to be understood to be 1. The symbol (%, y) is
 used to indicate a form of the degrees x and yt in the coefficients of the two
 quantics, the number placed first always relating to the quantic of lower
 order, when the orders are different. In the last three cases, the numbers,
 as well as the types, of the groundforms are given in tables, which require
 no explanation.

 SYSTEM OF Two LINEARS.@

 G. F. fbr diferentiants,__ 1 V ~ ~ ~ 1a(1a(-aa)'

 G. F. for covariants, (1 --aa)(1 x
 (I- a)(1- ax)(1 -zx)'

 Groundtbrms:

 Of order 0.(1, 1).

 " i 1 . . . . . . . . . . . . . . . (0, 1), (1,0 ).

 * I Linear " is here used as a noun, in conformity with the use of the words quadric, cubic, &c.
 VOL. II-No. 4. 293

This content downloaded from 
�������������89.187.177.72 on Mon, 13 Mar 2023 21:25:03 UTC������������� 

All use subject to https://about.jstor.org/terms



 294 SYLVESTER, Tables of the Generating Functions and Groundf ornms

 SYSTEM OF LINEAR AND QUADRIC.

 1 + ab
 G. F. for differeintiants, (1-a) -6)(1-62) (1

 G. F. fbr covariants, (1 - b2)(1 1 + abx1ax)(1 - bx2)
 ( -bl)1 -a 2b)(1 - ax( -bX2

 Groundformzs:

 Of order 0. (0, 2), (2, 1).
 " " 1 .(1,0 ), (1, 1).
 " " 2 .(0, 1).

 SYSTEM OF LINEAR AND CUBIC.

 1 + a2c + (a - a3) e2 + (1 a2) C3 - ac4 a a3C5
 G. F. for di/ferentianats, (-1 a)(l - c)(1- _C2)(1- - ac)(1 - a3c)
 G. F. for covariants, reduced form,

 Denominator: (1-c4) (1 ac) (1 a3c) (1 ax) (1 cx)(1 cx3).

 Numerator: 1 -aC + a2c2+ {(-1 + a2) c + (2a a3- C2-a2c3} x
 + {ac+ (1 -2a) c2+ (-a+a 3) c3} X2+ { ac2+a2C3- a3c4} x3.

 G. F for covarianits, representative form,

 Denominator: (1-c4) (1 a3c)(1 - a2c2) (l ax) (- c2x2) ( CX3).
 Numerator: 1 + a3c3 + {a2c + ac2 + (a2-a4) C3} X + {ac + (a a3) c3 a 3c5 }x2

 + { (1 a2) c3 a3c4 a2c5} x3+ {- ac3 a4c6} x4.
 Ground/orms:

 Of order 0 . . . ..(0, 4), (2, 2), (3, 1), (3, 3).

 "6 " 1 . . . . . . . . . . (1,I O), (1, 2), (2, 1), (2, 3).
 "6 " 2 . . . . . . . . . . (O, 2), (1, 1), (1, 3).
 '1 " 3 .(0, 1), (0, 3).

 SYSTEM OF LINEAR AND QUARTIC.

 1 + (a + a3)d +(a + a2- a5) d2+ (1-a3-a4) d3+ (- a2- a4) d -a5d
 GU. P. for diferentiants, ( 1-a)(1 - d)(1 - d2)2(1 -d3)(I _a2d)(I - a4d)
 G. F. for covariants, reduced form,

 Denoininator: (1- d2)(1- d 3) (1- a2d) (1- a4d) (1- ax) (1- dx2) (1- dx4).
 Numerator: 1 a2d+ a4d2+ {a3d + (a3- a5) d'} x + {( + a) d

 + (2a2- a4) d2- a4d3} x2+ {ad+ (a-2a3) d2+ (-a3+a5) d3} x3
 + {(1_a2) d 2-a2d3}x4 + { ad2+ a3d3 a5d4} x5.
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 for Simultaneous Binary Quantics of the First Four Orders, &c. 295

 G. F. for covariants, representative form,

 Denominator: (1- d2) (1- d3) (1- a4d) (1- a4d2)(1 - ax) (1- dx4) (1 d2x4).

 Numerator: 1+ad3+ {a3d+a3d2+(a5 a7)d3} x+ {a2d+a2d2+ (a4 a6)d d3} X2
 + {ad+ ad2 + (a3 a5) d3} x3 + { (a2 -a4) d3- a6d'- a6d5} x4
 + { (a -a3) d3 a5d4 a5d5} x' + { (1 a2) d3- a4d4 a4d3 x6

 + ad3- a7d6} x7.
 Groundforms:

 Of order 0. (0, 2), (0, 3), (4, 1), (4, 2), (6, 3).

 " 1 .(1, 0), (3, 1), (3, 2), (5, 3).

 " " 2 (2, 1), (2, 2), (4, 3).

 " " 3 ........(1, 1), (1, 2), (3, 3).

 4 .(0, 1), (0, 2), (2, 3).
 5 .(1, 3).

 6 .(0, 3).

 SYSTEM OF Two QUADRICS.

 G. F. for differentiants, 1 - b)

 G. F. fbr covariants, (1+b2)( 1 + bj'x2 _X2 _ )

 Groundfornms:

 Of order 0 . (0, 2), (1, 1), (2, 0).

 2 . (0, 1), (1, 0), (1, 1).

 SYSTEM OF QUADRIC AND CUBIC.

 G. F. for differentiants,
 1 + (26 + b2) e + (b + b2 + b3) e2 + 3 -b4e4 + (- bb2 -b3) C5 + (-b2 -2b3) e6 b4l7l.

 (1-b)(I _b2)(1-c)(1 - 2)(1 c4)(1-bc2)(1-b3c2)
 G. F. for covariants, reduced form,

 Denominator: (1 -b 2) (1 - c4) (1 - bc2)(1 - b3c2)(1 - bx2) (1 - cx) (1 - cx3).

 Numerator: 1 + b3c4 + {(- 1 + b + b2 ) c + (b + b2 ) c3 - b3c5} x

 + {(1 + b3) C2 + (- b - b4) c4} X2 + {bC + (- b2- b3) C3
 + (- b2 b3+ b4) c5} x3 + { bc2- b4c6} X4.

 U. F. for covariants, representative fbrrn,
 Denominator: (1- b2) (1 c4) (1- bc2) (1- b3c2) (1 - bx2) (1- c2x2) (1- cx3).
 Numerator: 1 + b3c44+ {(b + b2) c + (b + b2) c3} x + {(b + b2 + b3) C2

 + (62 b4) c4- b3c6} x22+ {c -+ (1-b2) c3+ (_ b b2 _b3)c5}x3
 + { ( b62- b3) c4 + (- b2- b3) c6} x4 + {- bc3 - b4c7} x5.
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 296 SYLVESTER, Tables of the Generating Functions and Groundforms

 Ground/brrns:

 Of order 0. (0, 4), (1, 2), (2, 0), (3, 2), (3, 4)
 "4i 1.(1, 1), (1, 3), (2, 1), (2, 3).

 " 2.. (0, 2), (1, 0), (1, 2).

 " 3. (0, 1), (0, 3), (1, 1).

 SYSTEM OF QUADRIC AND QUARTIC.

 G. F. for d;fferentiants, 1 + (b + b2)d+ (2b _3) d2 + (1 - 2b2) d3 (-b -b2) d4-b3d5
 (1 - b)(1 - b2) (1 - d) (1 - d)2(1 - d3) (1-bd) (1 - b2d)

 G. F. for covariants, reduced fornm,

 Denominator: (1 - b2) (1- d2) (1 - d3) (1 - bd) (1 - b2d) (1 - bx2) (1 - dx2)
 (1 - dx4).

 Numerator: 1- bd + b2d2 + {(-1 + b + b2) d + (2b -b3) d2_- b2d3 t'

 + {bd + (1- 2b2) d2 + (- b- b2 + b3) d3} X4 + - bd2
 + b2d3- b3d4} X6

 G. F. for covariants, representative form,

 Denominator: (1 - b2) (1 - d2) (1 - d3) (1 - b2d) (1 - b2d2) (1 - bX2) (1 - dx )
 (1 - d2X4).

 Niumerator: 1 + b3d3+ { (b + b2) d + (b + b2) (12 + (b2- b4) d3} X2+ {bd + b(12
 + (b - b3) d3 b3d4- b3d5} x4+ {(1 -b2) d+ ( b2- b3) 14
 + ( b2 b3) d5} X6 + {- bd3- b4d6} xI.

 Groundforms:

 Of order 0. . (0, 2), (0, 3), (2, 0), (2, 1), (2, 2), (3, 3).

 2 .(1, 0), (1, 1), (1, 2), (2, 1), (2, 2), (2, 3).
 " " 4 . (O,I 1),I (O, 2), (1, 1),7 (1, 2), (1, 3).

 6. . (0, 3).

 SYSTEM OF Two CUBICS.

 G. F. for differenticfts,

 Denominator: (I-c) (I c2) (1 C4) (I )/2) (I y4) (I CX)
 (1 - c37) (1- c'3).

 Nuierator: 1 +c3 + (2c+2c2 c5 c6)y+ (2c+ 2c2 C4 C5 6 -c7) 2
 + (1 + 2c3 - C4 - 2c5 C6 - c7) /3 + (- c22- c3 - C5 - c6) 24
 + (- c-e2-2c3- c4+2c' +cs) 4 + (- c- c3-c4+2c6+ 2c7) ;
 + ( c2 c + 2c6 + 2c7) 7 + (c5 + C8) y8.
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 for Simultaneous Binary Quantics of the First Four Orders, &c. 297

 G. F. for covariants, reduced form,

 Denominator: (1- C4) (1 y4) (1 Cy) (1- Coy) (1 cyl) (1 CX) (1- _CX3)
 (1-7x) (1-yx3)

 Numerator:

 7O 1 72 73 74 75 76 1 72 73 74 6 77

 C0 1 0 .3C.

 o_ 1 6C
 x x~~~ 0

 C6~ ~~ Ct 7tYzy 5y

 C0 1 0

 1 1 (10 1

 C2 1C 3
 4 3~~~~~~~~X

 766

 06 7

 01 2 7~~~~~ 202y y

 1~~~~~~~~~~~~~~
 5 - 6 -~~

 0 1 0 1 2~~C

 06 1~~~~~C

 (1 y2X2) y1 1
 76 ~ ~ 2
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 298 SYLVESTER, Tables of the Generating Futnctions and Groundforms

 Numerator:

 0 1 2 3 4 5 6 7 1 2 /3 4 5 6 7 8

 3~~~~~~~~~~~~~~~~~~~~~

 c ~~1c4

 c2 c51
 xlx
 c36

 c4 c7

 o3 c41

 x x~~10

 c4 5~~~~~~~~~~~~~~~~~~
 6~~~~~

 20 1 1~~~~~~~~~~~~~~~~~~~~

 4 5

 1 02~~~~~~~~~~~~

 3 3 -3
 o 2 1 c2
 2 46

 XC 1 ~~~2 1

 O 1 2 C~~~~~ 34

 ~~ 73 747~~~y5 y6 7

 2- -

 c1 2 1

 a4 4~Y
 1 2 1

 6 - -

 c7 -
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 for Simultaneous Binary Quantics of the First Four Orders, &c. 299

 Table of Groundforms.*

 Order in Deg. in Deg. in coeff's of Order in Deg. in Deg. in coeff's of
 the coeff's of 1st cubic. the coeff's of I1t cubic.

 Variables. 2d cubic. 0 1 2 8 4 Variables, 2d cubic. 0 1 2 3

 (1- 14d (1 123 11 143

 0 2 1 21 1

 41 0 1 1

 1 1C7 1 3~~~~~~

 2 1 12 2C 1c-c+728293l+cl3l+c3d

 3 1 c+47+58 c l l 31l -31 l)d

 4 141 1

 SYSTEM OF CUBIC AND QUARTIC.

 G. F. for differentiants,

 Denominator: (1- c) (1 - c2) (1 -c4) ( 1-d) (- ) 2(1 - ( d3) (1- c4d)
 (1-C4d) (1 -c2d) (1 _ (4d3)

 Numerator: 1 +oc'+ (3o?+2o2+2c1+o4-2c1-c6-c7) d
 + (3c ? 5o2 + 2o3 + 2 C4 - 3o - 4 C6 - 2o' - 208 + oc) d 2
 + (1 + 30 + 3o + C4 - - 6o06 - 5ol - 408 ? 2010) d3
 + (02+014-205 50C6 -60 308_ 9 + 3010+ 2011 + 012) d4
 + (-2 C2c2 3o- 3o- 3o5-206- 2O7_C8 +2O1+ 4011+3012+ 011) d'
 + (_02 -303 404201+07? 2c5+ 2c9+ 3010+ 3c11+3C'2+ 2c')d6
 + (-o32o4-3o1+oc6?3C7 +6 C8? 5c9 +2o10+ 01l 0 12 +013 ) d 7
 + (-2c' + 4C7 + 5o8 + 6o9 + c10 - cl1 - 3012 - 3o13 - 015) d 8
 + ( 6 + 2c7 + 2c + 4o + 3c10 - 2o" - 2C12 - 5C13 - 3014 ) d9
 + (58+c9~+ 2010- c11-2o2 - 2o3- 3c4) d' + (-C o1-'5) dll.

 G. P.fior covariants, reduced Jbrm,
 Denominator: (1 - c")(I - d 2) (1-dC) (I -ced) (1- ced) (1- c2d3) (1- c4d3)

 (1-_ cx)(1 - cx3) (1 - dx2) (1 - dx4).

 *The forms of ord. 1, deg. 3, 4 and of ord. 1, deg. 4, 3 given by Clebsch and Gordan, do not appear in
 this table, and it has been proved by the author that no fundamental forms of either of these types exist.
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 300 SYLVESTER., Tables of the Generating Functions and Grounzdforms

 Numerator:

 do d' d 2d3d4 d5d6 d7 d8d9 d1 d2 d 3d4d5 d 6d7 d8 d9d'dO

 0 c2

 2 - 4-

 c 4 ~~~~~~~~~~~~~~~~~~~6 2 2 2 1 C2 2 2 1

 0 6 - 8 8- -
 x c6 x c1 1 1

 8 ~ ~ - -10 - -
 C 1 2 2 2 0 2 2 2

 c 10 c~~~1 12

 C' I ct

 C, c~~~~~~~~~~~~~~~~~3 8 2 1 I 2 1

 1 2 1 1 1 102 1 1 1

 1 7 - --7 07-
 XC 2 1 1 1 1 xc 1 2

 0 1 1 1 ~~~2 1 1 1 1 2

 C 1 2 6 1 2 8

 13 131

 2 1 1 3 2 1 0 2 1 1

 I 1 2 2 1 2 1 1 1
 2 6 - - - -

 x c ~1 1 12 2 1 1

 6 1 1 ~~~~2 1 2 8

 c 12 ~ ~ ~~~~ 1 1 c14

 2 C 1. 1

 C - C 2 ~~~~~~~~~~~1 2 1 1

 o 1 2 1 1 1 I8
 73- - - - X5 C7 - X C 1 1 2 1 1 1 1 2 1 1

 1 1 C 1 1 ~~~~~~1 2

 6 ~~~1 1 2 1 2 C
 C13 -13
 c c ~~~~~~112
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 for Simultaneous Binary Quantics of the First Four Orders, &c. 301

 Numerator-Continued:

 _ d d2 _3 d4 4_ d0 _7 4_
 00

 C2 cy ii _ I

 0 2 2 1

 o 1 2 1 1 (1 CO 1 C) Y1 2 1
 6 1 2 2 1

 _12 1 1 1 1

 614

 U. F. for covariants, representative form,

 Denominator: ( - c') (1-d )(1-)(1- cd )(1- c d )(1- c(1 - ed3)
 (1-_ cX3)(1 _ C2X2)(1 -_dX4)(l - d2x4).

 Numerator:

 40 d 41 d 30 d4 45 40d,(1 40 4 d 041041 41 414 3 44 40W d 47 40( d0 41041d142

 o1ll 2 0 __1 2 2 1 1 2 2 1

 77o 1 8 2 1

 c ~~~~1 2 8 11 2 8

 1 2 2 1 1 2 2

 014 y 17- -

 6 c 01

 09 2 3 2 1 2 8 2 1

 el 12 32 11 to;10 1 2 821 1F
 12821 ~~~~~~~~C1112 2

 0 ~ ~~ 1 2 8 2 IC 1 2 8 2

 1 1 8 10 2 -
 77
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 302 SYLVESTER, Tables of the Generating Functions and Groundforms

 Numerator-Continued:

 - doIdl d12 d' t4& d~ 6i d7 d8 d9'O 0d"I ? F d 2 ds d 4 d5 d6ld7 d8 d9 dtodlld 12
 C 2 8 2 1C

 C 2 4 5 1 2, 2 1 1
 C8 C ~8 2 12 8 2 1

 X2 X9 8 8 8 2 _

 - - - - - T 2 3 ~~~~~~~~~~~~~1 2 8 8 8
 C0 1 2 8 22__3__2

 12

 C 1~~6 1 22 1 1 8 5

 o 1 2 - -2
 07 - - - - - 0 8 ~~~~~~~~~~1 1 1

 C 1 1 8 5 81 C 1 2

 XI - 6

 C7 C 1 82 4,84 2

 cI I ~ ~ ~ ~ ~ -12 - - -
 1 1 1 i i 1 0 ~~~~~~~2 8 2

 13 ~~~~~~~~~~~-14 C 1 I 2 1 5 8

 C1' 1 111

 1 2 8 1 C i 1 2 8 2 1

 4el- - C 1 ~~2 1 1 2 1 U2 4 4 8

 C I 2 4 4 4 8 1C1 1 1 1 1

 X4 C 1 8 ~5 5 2 1 2 IfX 1 2 1 2 5 5 8

 C'0 1 1 1 1 1 ~~~~~~~~~~ 1~ 8 4 4 4 2

 1 8 4 4 2 ~ "1 2 1 1 2

 C'4 ~~~~1 2 8 2 1 1 1 C11 8 2

 C' 8 5 4 8 2 2 1 1 4 4 4 8 1

 2 4 5 4 2 2 1 C8 2 4 5 4 2 2 1

 XI el1 1 1 2 2 1 2T W2 1 1 1

 C" ~~~1 2 2 4 5 4 2 C01 2 2 4 5 4 2

 C" ~~~~1 8 4 4 4 1 C1 2 2 8 4 5 8

 C'2 14 "

 17 11 C
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 for Simultaneous Binary Quantics of the First Four Orders, &c. 303

 Table of Groundforms.*

 Order in Deg. in - D in in coeff's of Order in Deg. in | Deg. in coeff's of
 the coeff's of quartic. the coeff's of quartic.

 Variables. cubic. 0 1 2 8 4 6 Variables. cubic. O 1 2 3

 0 1 1 2 1 2 2 1
 2

 2, 4 2 2

 0~~~( dT 771

 4 1 1 2 8 2 1 3

 6 1 3 2 1 + - - -

 (1 1 1x)ld4( 4x)l- X)

 1 ~~~~3 2 3 2 1 51

 6 1 2 2 63 01

 S9YSTEM OF TrWO QUJARTLOS.

 G. F. for differentiants,
 Denomiinator: (1- d)(1-d d2)(1- d3) (1 - 8)(1 (I _61/(l- 6) (1- d(3)(1- dTh)

 (1-_dY2).

 Numerator: 1+ d+(34+?3d2- d4- d5) (3?(3d + 4d2- X- 3d4- 2d5~- d' )M~
 + (1 -d 2-2d'-3d,5-d2) 63+ (-d-3d2- 2d3 - d' +d 7) (4
 + (- d - 2&P- 3d3- d4+ 4d,5+ 3d6) 'Y+ (- d2- d3+ 3d+ 3d6-)f
 + (dt+ dD7Y6.

 U. F. for covariants, reduced form,
 Denominator: (1 - d 2) (I -d3) (1-_3S) (1 -46) (1 -.-d) (1 - d 23) (I -dY)

 (1-_ dX2(1- _dx4) ( ~(1 - - 4)

 * The form of ord. 1, deg. 5, 4, and the two forms of ord. 2, deg. 4, 3, given by Gundelfinger, do not
 appear in this table, and it has been proved by the author that no fundamental forms of either of these types
 exist.
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 304 SYLVESTER, Tables of the Generating Functions and Groundforms

 Numerator:

 x0 d2 1xl0d4

 d4 1d61

 d ' d2 _ _ _ _ _ _

 1d1 d31 1

 x2 x~~~~~~~~~~~
 d3 d4 -

 7d1 d5 1 1 2
 d5 1 1d6 1

 4 1 (1-d)(- 2 6)1 2-
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 for Simiultaneous Binary Quantics of the First Four Orders, &c. 305

 Numerator:

 60 61 6 3 4d 1 2 1 6 5 6 6

 xo d21 x14 d51

 1d141d 17

 x2 d2 1 1 1x12 d51 1 1

 11 d2 d-

 d3 1d _1 d31
 X4 _ - - 1 a 1

 d4 ~ 1 1d 41 1
 d5 1d5

 d6 1d6 ~-

 do1 77d 22

 ________ 1 2 1 d4 7 7 7 7~~~~~~ 2 x6 d2 1 1 ____2 ___ _ x8 1 3 1

 d3 - - -d
 d31 77~32 1 d5 7 2
 d4 d6 7

 1 2 -2 1
 d5 777 _ d 7

 78
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 306 SYLVESTER, Tables of the Generating Functions anid Groundformiis, &c.

 Table of Groundforms./

 Order in Deg. in Deg. in coeff's of Order in Deg. in Deg. in coeff's of
 the coeff's of 1st quartic. the coeff's of 1st quLartic.

 Variables. 2d quartic. 0 1 2 3 Vahriables. 2d qiartic. 0 1 2 3

 0 1 10 1 1

 0
 21 2 1 1

 3 1 01

 t tL 6~1 1 1 1 1 1 6
 2 2 1 1 1 2 1

 3 1 13 1

 The following table exhibits the total numbers of groundforms; the
 quantics themselves and the absolute constant are included in the numbers.t

 I Order of Quantic.

 2 3 4

 1 4 6 114 21

 2 ~~7 16 19

 3 27 62

 4 29

 * The fornms of ord. 4, deg. 2, 2, and of ord. 6, deg. 2, 2, given by Gordan, do not appear in this table, and
 have been proved by the author to be compound forms.

 f Some remarks on the preceding tables (to save delay in going to plress) have been made the subject of a
 separate article in this number.
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 A New General Method of Interpolation.

 BY EMORY MCCLINTOCK.

 A GENERAL method of interpolation will be described below, which is
 apparently both easier to prove and easier to work than the general methods

 now in use. By general method, I mean a process applicable to all cases,

 including those in which the given values of the variable do not form an

 arithmetical progression. Before stating, it, it will be well to recall briefly

 the two methods hitherto prevailing.

 The first method, as we may call it for the sake of distinction, is known

 as that of Lagrange, tlhough the credit of it has also been claimed for Euler.

 If we suppose that px,, qJx2, fX3, . . . pqx, are given, where x1, x2, . .. xk are
 any numbers, Lagrange's formula for determining px, where x is any other
 number, is

 px = X1PX1 + X2PX2 + X3+X3 +... + XkJXk,
 where

 X- (X -X2) (x -x3) . . (x- x'i)
 (XI -X2) (XI - X3) ... (X- Xk)

 X2 -x (-X) (X -X3) ... (X Xi)
 2 (X2 XI) (X2 -X3) ***(X2 XI,)

 ($ XI) (X - X2) ... (X Xk-1)

 k Xk- X1) (XI, X2) . . . (X$ - 1-1)

 The law by which the coefficients are formed is obvious, and the proof of the
 formula is not difficult.

 The second method, that of Newton, is as follows, using the same nota-

 tion as before. Let

 X2 - X-

 'xl - ;X2

 and so on, the general form being,
 - '~x - '~n

 (Plxn xn 0 X -Xn-3

 307
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 308 MCCLINTOCK, A NeXw General fethiod of Interpolation.

 The most convenient way of recording these divided differences is to set

 down, first, a column containing the numerical values of xl, x2, &c.; next, a

 column containing, opposite these numbers respectively, the values of px1,
 (JX21 &c.; aind thirdly, a column containing ?)1X2 opposite X21 c1X3 opposite x3,
 and so on. Adjoining this column of differences, maay be recorded a second

 series of differences, +P2x3, q2x4, &c., calculated by the formula

 xfl- xl - Xnl Xn-2

 then a third series,

 (P3Xn = 502X. - 52Xn= 1
 X21 Xn-3

 and so on, the general rule being

 ?Jnm + 1X1 = tD n - 1nXn -1
 Xn- Xnm-I

 Thus, if four terms have been given, we shall have this scheme,

 X1 (PXfn ___n_ P2Xfn P3Xfn

 X1pX1

 X2 (PX2 (P1X2

 X3 (PX3 0P1X3 +P2X3
 X4 (PX4 (P1X4 (P2X4 P;3X4

 To find px, we have now to use this formula:

 (P- = (X1+(x -x1) (1PX2 + (X X1) (X-X2) <)2X3 + (X- X1) (X X2) (X X3) P3X4+.
 The complete proof of this formula is laborious.*

 Concerning the relative merits of these two methods, it may be said that

 if more than one term is to be interpolated the second is by far the best. If
 only one term is wanted, the matter is doubtful. Some writers give both

 methods; Boole, in doing so (Finite Diffs., 2d ed.), shows a preference for the
 first method, Grunert for the second. Some writers, possibly to save space,
 iention only one of the two; Hymers gives the first, De Morgan the second.

 The first formula hias often been coummended for its elegance, exhibited both

 in the symmetry of its fornm and in the simplicity of its proof. The second,
 on the other hand, seems to be, on the whole, the easier to work in practice.

 After due examination, nmy conclusion is that, if all the multiplications and

 See, for three different demonstrations, De Morgan, Calcatlas, pp. 550-552; GrnLniert, Supplemtent to
 Kliigel's Wbrlerbuch, vol. II, pp. 43-46; Botcharlat, Calcatl, 7th ed., pp. 417-420.
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 MCCLINTOCK, A New General Method of Interpolation. 309

 divisions are performed by logarithms, the first method can, adopting one or
 two obvious labor-saving devices, be worked with somewhat fewer references

 to the table of logarithins than the second, but that, on the otlher hand, it
 requires a more frequent use of some of the logarithms when found, and
 imposes a greater strain of attention; in short, that the second mnethod is, for
 practical purposes, at least equal to the first. This, of course, is a nmatter
 which any one interested will examine and decide for himself.

 The alternative method which I have to present resembles, and may be
 regarded, perhaps, as a substitute for, the second method. The forrnula is
 the same, the difference lyingf in the manner of obtaining the quantities
 qlx2, +2x3, &c. I forni the several orders of divided differences accordinu to
 this formula,

 0,111 + lxn= '" .^+
 Xn - X2n + 1

 In applying this formula, p0 is to be considered equivalent to +, the given
 terms being pxl or qpxj, qx2 or q0X2, anid so on. The computation of divided
 differences by this formula is simpler than by the second method, inasmuch
 as the denontinator, in all the orders, corresponds to the numerator. The amount
 of labor required in both cases is the same, but the strain on the attention is
 lessened by employing a more symmetrical formula. The work done is more
 mechanical, and therefore easier. This statement mayT readily be tested.

 The demonstration of the new method is so siinple that the process might
 be said to prove itself. Since, from the equation last given,

 1pm-rnn = PrnXnm + 1 + (Xn Xm -t 1) Om + +lxn

 we have successively, for n = -, 0n - 1, &c.,
 -pox q = IOX + (X - X1) q1lx?, v

 - LXn = qP1X2 + (Xn - X2) qP2Xn v

 (J2Xn = (/2X3 + (Xtl - X3) (3t}?IX

 and so on. Hence, by successive substitution,

 Xn q0X -PX + (Xt - X1) q1X2 + (X? - Xl) (Xn - X2) (P2X'3 + (Xtt - X1) (xV - 9))

 (X -X3) P3X4 + . . . (k terms) .

 This general law is true, as proved, for all the given values of x,,, namely,
 xl, x2, ... xk. Assuming the samne law to be true of values not given, it
 becomes a convenient forinula for interpolation. This assumnption is the
 same in substance with those underlying the first and second metlhods, andt

 79
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 310 MCCLINTOCK, A New General lliethod of Interpolation.

 the values determlined in any given case by the three methods are identical.

 If we write x for xn, and q) for qp, the formula becomes

 qx - qx1 -I+ (X - X1) (PlX2 + (x - X1) (X - X2) 0p2X3 +-**

 It may also be written in this form:

 PX = pX1 + (X-X1) [PlX2 + (X-X2) {+2X3 + (X-X3) [P3X4 +..
 If, for example, four ternms are given, we may calculate successively

 434 = (X - X3) 1J3A4,

 4'2X3 = (X - X2) (q.2X3 + 4'3X4)

 '1A- (X - X1) (p1X2 + 42X3),

 and the general formula is reduced to this,

 (JX - (PX1 + 412*

 Similarly, if five terms are given, we may begin by calculating,

 44X5= (X-X4) 14XA5
 then

 43X4 = (X X3) ((p3X4 + 44X5)A

 and the rest as before. The same mnanner of lessening the labor may be
 followed for six or more given terms.

 The results obtained by this method are neither more nor less accurate

 than those obtained by the preceding mnethods, being, as already stated, the
 same. In the following example, where seven values of a function of the

 sixth degree are given, the result is exactly correct.

 t?1 POXn (PlXn (P2Xn q,-xA P4Wn qP5X? 1%Xn

 x1 0 5

 x2* 1 1 4

 X3 4 1 1 1

 X4_Y 5 3 5 l -10

 X5 = 6 5 0 4 1 0

 x, 8 111 1 _1 XG= 12 2 8 120 240
 3 1 l

 x7- 11 6 -1 - - 0 0 720
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 MCCLINTOCK, A Newv General Methodl of Interpolation. 311

 Each difference is derived fromii the one adjoining on the left, by subtracting
 fronm the latter the number at the top of the saine column, and dividing the
 remainder by the corresponding difference taken from the first column. Loet
 us suppose that x 2; then, following the forinulie last indicated, we have,
 successively,

 12 12 4Q6x7= (2-8) 720 120'

 ;5x6 (2 6) (240 120) 20'
 44X5 =(2 -5) (o + 1 -3

 43x4=(2-4)( 10 20 2

 4~2x3 =(2 - 1) (1 + 2 1 23

 'xA -=(2 - ?) (- 4 + 3
 2

 px 5 - 0.

 Note on t[le Deemonstration of certain Forinule for Inteipolation.

 When the given values of the variable are in arithmetical progression,
 interpolation is best performed by one of two well known formulae, the choice
 between the two depending upon the circumstances of the case in hand.
 These formuhle are,

 21 p (x +kk)p = x-+4k x + 2 k (k 1) A 2pX +. .. A

 + (x +k)= x + k[A p (xi +2) + 9 (kAF1) A2px] +21_ k)8 [AS3P (x?4-1)

 + (k T 2) A4P] +?....

 The notation here used is that employed in rny " Essay on the Calculus of
 Enlargement" (Ainer. Journal, II, 101), namely,

 kf)3( (k+1) k(k- 1),

 k)5(= (k +2) (k+ 1) k (k - l) (k- 2),
 and so on; also,

 EE- 1,

 A= E Ei,
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 312 MCCLINTOCK, A New General Method of Interpolation.

 where E is the symbol of Enlargement, Eh being an operation such that
 EhpX -= p (x + h), whence

 Azpx=p (x+1) - X,

 Apx=A (x+?Q) - Aq x

 Af2+ A- x + A-2 )-& x 2
 and so on. The class of differences denoted by Anpx are called central differ-
 ences. Of the two fornule above stated, the first is a simple and obvious
 case of the Factorial Theorem given in the Essay referred to, p. 143. The
 second may be derived from the same theorem, as follows.

 From the factorial theorem we have directly

 1 (21 2+1 (PE = (Pt + (PEO -A + - (PEO) A2 +- (tEO(3) Al + (A)

 where x(2)- xx X X (X + 2 ) (X-+) x(4) = x (x ? 1) x (x-1), X)

 =x (X+ 3) (X+32 ) (X - 2) (X- 2 )X and so on, the general form being

 X(m) = X (X + 2 m-1) (x + ,M-2 i-2) (x-- I+ 1)
 Also, in terms of mean central differences,

 FE ( P. I + EO. iA + (PE iA + 3EO)(. IA+ ... (B)
 Here,

 I = 2 (El + E ),

 iA'nqpx - (Ainp [x + 1 + Ancp [x- -2 );
 also,

 X)MC = (X + 2 m- 2 x + 2 m - 2 ) . *. (--m + 2

 Hence,

 A = A . IA+ _ Q)2(. 12 + I 0)3( 13- A =AG. iA + 2~ AO iA 2K + AO3. iA +.

 Since A&x)(r mx)ml(, as was shown in the Essay referred to,

 AK =JA!L +0)1(.IA2 + I 0)2(. A3+4 +--3O0(A4[ +
 2 ~~~2.3
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 MCCLINTOCK, A New General Method of Interpolation. 313

 But 0)(=O - 0)3( = 0, and so for all odd exponents; so that

 A-= IAt + 2 0)2(. IA3+ 1 ?)4(
 2 ?2.3.40 KA+

 and niultiplying this by An-1

 n= IAn + 1 0)2(. An + 2 1 0)4(. IAn+4+

 It follows that any even or odd central difference, or any expression com-
 posed of even or odd central differences, can be expressed, respectively, in
 even or odd mean central differences. Let

 (P'E ~ (P 1(EO(2 . A2 + 2 34 EO(4) A4 +
 +E1 10(3) 3 + (P2 +PE - A+ P ~E~~ A2?

 so that, observing equation (A), p1E + 22E = fpE. Then

 =PE aoI + a2iA2 + a4iA4 + ..
 P2E 1IA + 3A3 +...

 where a0, a2, &c., al, a3, &c., are undetermined coefficients, and

 (E = aoi + aliA + a2IA2 +....

 But, by (B),
 PE = 01. I + PEO. IA + 2 PEO"2(. iA2 +...

 This determines the values of the coefficients, and it follows that the even or
 odd terms of (A) may be replaced, respectively, by the even or odd terms of
 (B). We derive in this way the following novel and important theorems in

 the Calculus of Enlargement, expressing (E in alternate central and mean
 central differences:

 fE = 01 + fE . IA + 2 2 2E0(2).32 +1 3 I4). 4 +

 _ . -r+ . A y +2E0)2(. A2 + 23 E0(3). 3+ 234 E0)4(. 1A4+.

 These general theorems can, among other uses, be applied directly to the

 matter niow in hiand, interpolation. Let (PE - E*, and let Ax be the subject of
 operation ; then

 1 21X+1 P 3~ (x + k) =-x + k iAx + 2- k2(2)AN +2 3 k3(iA34X+.

 4 (x + k) = i'x + kA4x + -1 k 2 3 )A +....
 so
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 314 MCCLINTOCK, A New General Method of Interpolation.

 These formulve are usually ascribed to Stirling, who published them in 1730.
 I have, however, seen the f rst and nmore important of the two quoted from
 Newton, 1711. They remained unidemonstrated, it is said, until the discovery
 of the method of generating functions. The proof by that method, which

 may be found in Lacroix, is tedious and indirect, yet it is the only one I have
 met with, though other indirect demonstrations are certainly possible.*

 Since I = EI: F -F A, 2

 iAX = A X - T Ann +?x

 Making this substitution in the first formula just demonstrated, and observ-

 ing that k(n) - k . frn1(, we derive the duplex formula which we set out to
 prove,

 4(x+k)=$x+k[A<kxAj-) +2+ (kF1)A2Ax]

 +2.3 k3([A3( ) + ) (k T 2) A4]+

 * The difficulty does not lie in exhibiting the first few coefficients, but in proving their law. The first of
 these formulae is said by Boole to have been discussed for Smith's Prize in 1860.
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 A Certaiin Class of Cubic Surfaces treated by Quatertions.

 BY A. B. CHACE, Valley Falls, P. I.

 THE general scalar equation of the third degree in an unknown vector p

 may be written in the form

 Il + SCa1pb1 + Sapbpc + Si'pmpnp 0 ,
 where Ii is a known scalar quantity and a1, bI, a , b, &c., are known quater-
 nions. But we have

 1st. Salpbl -S (al + Va1) p (Sb1 + Vb1) - 5a1 Sp Vbl + Sb, . Sp Va1 + S. p Vb1 Va1.
 This may evidently be written in the forn SSp, where 6 is a known vector.

 2d. Sapbpc =Scapbp - Sa'pbp - (28a'8b - Sa'b) p2 + 2a'pSbpb.

 This nmay be written PpE + 2SpSS3p, where E is a known scalar quantity and

 a and S known vectors.

 3d. Sl'pwtpnpp = SpI'pmpnp - Slpm pnp = Slpmp (Svp + pSn + Vrp)
 2p2p [2 (SmSrS)t - S) ? 5 (SniSi - SA) + v (515; --S2K) - S. 14

 1Si. 1yv S- 8. Vvl%] + 4XS.pSpSvp,

 where 2, y and v are respectively equal to VI, VEm and Vn.
 This quantity may be wvritten in the form +p2ASyp + 4S.pSIpSvp, whlere

 F 2 (SnSn - S,ua) + yt (SnSi - Sv2.) + v (SiS - S&,u)
 -S81. V v-Sm. Vv2-P Sn .. T No. 1.

 Hence the general equation of the third degree may be written

 HE+ SMp + Ep2 ? 2S8apS,3p + Fp2Slip + 4S2.pSypSvp - 0.

 If now we assume such relations of the constants and such an origin that

 the termns containing the first and second powers of p disappear for all values

 of p, though I have as yet been unable to discover any general mnethod of

 classification, the above equation becomes

 ID + &p'Sip + 4S.pSinpSvp - 0, No. 2.

 in which it must be remembered that n is a vector dependent upon the other
 constants. It may however be written in terms of the three known vectors

 , t and v in which case we have

 D + Ap'2SXp + Bp2Slp + Cp2Svp + 4SXVpSyVpSp - 0. No. 3.
 315
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 316 CHACE, A Certain Class of Cubic Surfaces treated by Quaternions.

 This is the general equation of a class of surfaces of the third degree,

 which from analogy I call Central Cubics, whose peculiarities I propose to

 discuss somewhat briefly in the following, pages.

 Let us now define (ppJ as a vector function of p of the second degree.

 In case we have S2%ppJ Sp2pfp = Spcpfq where X is any vector, we nmay say
 that the function is self-conjugate. If however we have SXupfp equal to
 Sp2pfj, but not to Sxpp.fl we may say that the functioni is semi-self-conjugate.
 Having premised so much, let us assuine a semi-self-conjugate vector function

 of p of the second degree

 qpfp AVpS2p + BpSup + C + 4 [AS,upSvp ? ,uSrpS2p + v&pS,up],

 we may now write equation No. 3, Spcppfp - b, changing for convenience the
 sign of D. If -D becomes equal to zero, we have

 Sxppfp = 0, No. 4.

 which is the equation of a cubical cone, and will be considered hereafter.

 In case -D is not zero, we may divide the constants in the above equation

 so that we may write

 spopfi =1 No. 5.
 as the general equation of central surfaces of the third degree excluding cones.

 If we differentiate No, 5 we have

 Sdpcppfp + Spq dpfp + Spqfdp = 0,

 or, as the function is seini-self-conjugate, we may write

 2Sdpcppfp + Spqipfdp = 0.

 But dp is in the direction of the variation of p at any instant. It is then in
 the direction of the tangent at the extremity of p. Now, if we consider p

 fixed and allow dp to vary, we may write (o - V), for dp and the equation
 becomes, after reducing, 2Swq,pfp + SpfppJ 3. This is the equation of the
 tangent plane.

 If this plane pass through the point a, whose vector is a, we have

 2Swppfp +F Spqpfia - 3. This is the equation of the surface of the second
 flegree, made by the contact of all possible tangent planes that pass through
 the point a, and may be called the polar quadric of the given point.

 If we write the equation of the central cubic in the cyclic form we have

 A2S2p + Bp2AS'up + Cp2Srp + 4SXpSypSvp - 1,

This content downloaded from 
�������������89.187.177.72 on Mon, 13 Mar 2023 21:25:17 UTC������������� 

All use subject to https://about.jstor.org/terms



 CHACE, A Certain Class of Cubic Surfaces treated by Quaternions. 317

 where the vectors 2, y and v imay be any vectors not inconsistent with the
 original supposition, by which I got rid of the first and second powers of p.

 It is, however, probable that these vectors are not restricted by this supposi-

 tion, and in the rest of this discussion I have assumed them thus unrestricted.

 Of course such assumption is not warranted by strict mathematical logic, but
 the results seem so interesting and so consistent with other known mnathe-
 matical truths, that I have felt inyself warranted in my assumption, while

 waiting for the solution of what is apparently a very difficult problem, viz:
 the complete determiniation of p in the general vector function of the second

 degree. The very form of the equation proves to us the existence of three

 cyclic planes perpendicular to the three vectors A, y and v.

 To find the Radius of Curvature of any Normal Section of the Surface.

 Differentiating, equation No. 6, we have, assuming s as the independent

 ariable,

 S~ (2ApSp + Ap22 + 2BpVSp + Bp2l + 2CpSvp + Cp2v + 42SypSvp + 4ySvpSXp
 + 4vSpSycp) p'= ,

 where P' is the first differential coefficient of p with reference to s, its tensor,
 which can be any quantity, being assumed to be one.

 Taking the second differential, we have

 2A[2APS2P + 2A%,Sodp + 2BdoS1lio + 2BSpISdp t+ 2Od,oSy + 2COS,odo + 4ySVdpoS)2o

 + 4,p&[)S2d4o + 4vS2dpS1,o + 4vSd,oS,udo + 4ASlidpSvp + 425pS1)do f 0

 wlhere /3 is put for convenience for the normal vector. But p" is perpendicu-
 lar to , hence we have, after some reduction, the following equation to deter-

 minie the radius of curvature-

 TV1, 1 [2 AdpS,o + 2A2 Sodo + 2BdoSpp + 2B,aS,odp + 2 CdpSvp + 2 CSodao + 4)S,a.dpoSo

 + 4,SypoSvdo + 4y&SdpS)2,o + 4p,aSoS2dp +4vS2doSl,o + 4vAS,,o%tid1o
 dp

 where Tp" is the reciprocal of the radius of absolute curvature. But we know

 that dlp is a vector in the tangent plane, and because the above expression is
 independent of Tdp, we can assume any vector t, whose tensor is equal to

 81
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 318 CITACE, A Certain Class of Cubic Surfaces treated by Quaterntions.

 one that lies in the tangent plane, to be equal to dp. Substituting this, we
 have

 Tp" --3Sp [2A2 + 2AtSt + 2By + 2BtSt + 2Cv + 2CtSvt + 81S2tSvt

 + 8vS2dS1yt + 82%8ytSvt],

 which is the reciprocal of the radius of absolute curvature of any normal
 section in the direction of t.

 If the right hand side of the equation reduces to zero for any given
 value of p, there is either a point of double inflexion, or the tensor of p
 becoming infinite, the point is at infinity, where the asymptotic line is tangent
 to the curve.

 If now we assume t to be a vector in a plane passing through the origin
 perpendicular to A, p will also be a vector in that plane; and the right hand
 nemnber of the above equation becornes

 - > Sp (2By + 2BtSit + 2Cv + 2CtSvt).

 In order that this quantity may be equal to zero, p must be perpendicular to
 the vector

 2By + 2Cv + t (2BSyt + 2OSvt),

 and then represents probably the point of double inflation of the curvature
 of the section. Or we may suppose t to be an asymptotic line; in this case,
 p and t become parallel to each other, when, if S (y2B + v2C) p = 0, then
 S1 (y2B + v2C) t -- 0, and the whole quantity becomes equal to zero. Hence,
 at that point, as befere, the radius of curvature is infinite. These properties
 of the curve will be studied more in detail hereafter, and are only referred to
 at present as illustrations of the use of quaternions in studying the radius
 of curvature.

 If, in equation No. 6, the constant term disappears, the equation repre-
 sents a cubical cone, as the tensor of p may be any quantity. If now we
 suppose this surface to be cut by the sphere of p2 - _ 1 , we have, as the
 equation of the Spherical Conic of the third degree,

 4S2upSapSvp = AS2p + BSyp + CGvp,

 in which Tp = 1. Hence to construct a spherical conic we have the following
 rule: Assuming any three points on a sphere not in the same plane, then if
 the continued product of the cosines of the angles which these points make
 with the variable point, is equal to the sum of the cosines of the ang,les that
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 CHACE, A Certain Class of Cubic Surfaces treated by Quaternions. 319

 tle ,variable point makes with the three given points each multiplied by

 some constant quantity, then the locus of the variable point is a spherical
 cubic eonic.

 If the general surface is cut by one of the cyclic planes, as for examnple

 Sxp = 0, we have a cubic curve whose equation may be written

 p2S(Byc+ Cv) p=1.

 This curve may be called by analory a cubical circle. It has for an asynmp-

 totic line, a vector perpendicular to By + Cvv.
 If we cut the surface by the plane S (By + Cv) p 0, we have

 Ap2S2p + 4S2pStpSvp 1,

 a curve which has for an asymptotic line a vector perpendicular to A. This

 equation represents a curve, that may be called a cubical ellipse.

 If we cut the surface by the plane S (AS + By + Cv) p = 0, we have
 &VpSypSvp = 1, omitting the 4 for convenience. This is a curve wlhich has
 asymptotic lines in three directions perpendictular respectively to A, y and v,
 and may be called the cubical hyperbola.

 Thus far we havTe considered the central surface only under its most

 general form. If now we consider certain relations to exist between the given

 constants, several families of surfaces readilv suggest themselves.
 First. If in equation No. 6 we make A, y and v parallel to each other, the

 equation may be written

 Dp2SXp + S3Xp C, No. 7.

 where 2. is a unit vector. This surface has as its limliit the plane S2p = -;
 anid as its central asymptotic line the vector - X prolonged, in either of which

 directions Tp so.

 If we cut this surface bv any plane S2p - b, we have Tp = - b
 the equation of a circle. Equation No. 7 represents a surface of revolution

 around the vector %, and may perhaps be called a cubic cylinder.
 To find that transverse plane which shall so cut the surface as to render

 Tp a minitnum we have, considlering, b the independent variable and taking
 the first differential,

 d7T, 2Db3 -DC b 6)
 db 2--D) X
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 320 CHACE, A Certain Class of Ctibic Surfaces treated by Quaternions.

 In order that Tp slhould be a mininmum, the equation mnust be equal to zero,
 which gives, as the condition required,

 b ;-2-
 2

 If, in equation No. 7, we suppose 1) to become equal to one, its relation to an
 ordinary circular cylinder becomnes at once apparent. We lhave then

 p25Xp + S3Ap = C.

 This mnay be changed, according to a well-known formula of quaternions,
 into / -S2Sp. TVp =</ C, and its relation to the circular cylinder becomes
 at once apparent, the equation of the latter being TVTp = A .

 Second. If, in equation No. 1, we make S1, Sini and Sn equal to zero,
 and v a vector parallel to 1TZy, the general equation reduces to the compara-
 tively simple form

 Ap2Svp + S2pSYpSvp = C.

 This equation inay be written Sp(pSvp = C, where qp is a self-conjugate

 linear and vector function of p equal to Ap + < (XSyip + YS2p). This equa-

 tion represents a family of surfaces of the tlhird degree very closely related to
 the quadric surfaces. If C becomes zero, the equation is satisfied by any
 vector in the plane Svp - 0, and in the cone Spfpp = 0. Hence it degenerates
 into a quadric cone and a plane at the apex. If C is not zero, we may divide
 the constants, so as to write the equation

 SpfpSvp = 1, No. 8.

 which is the general equation of ellipsoids and hyperboloids of this family of
 surfaces. Writing this equation in what Hainilton calls the rectangular formi
 we have cS2ipSjp + c153jp + c1S2IkpSjp 1 l, which is either an ellipsoid or hy-

 perboloid according as c, c1 and c1l are all of the same sign, or part positive
 and part negative. It ought perhaps to be noticed that in case the signis of
 all the terms are negative, the surface does not become imaginary as in the
 case of the corresponding quadric, but is a real surface inasmuclh as the cube
 root of a negative quantity is a real quantity.

 If we assume the order of inequality c < c1 < c1i and make c1 equal to
 zero, the equation becomles

 CS2ipSjp + C11S2lpSjp = 1, No. 9.

 the equation of a hyperbolic cubic cylinder, as c is necessarily a negative
 quantity. This surface is cut by any plane Sjp = b in an ordiniary hyperbola.
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 CHACE, A Certain Class of Cubic Surfaces treated by Quaternions. 321

 Now, it can be easily shown that the assumption that cl equals zero in

 this family of surfaces, obliges X and ~t, if real vectors, to be at right angles

 to each other. This being the case, if we wish to change equation No. 9 to

 the cyclic form, we may write the very simiple equation 2Xp1yp&'p = 1 as tlhat
 of a particular kind of a cubic hyperbolic cylinder in which A, 1 and v are

 mutually perpendicular. If we wish to express this surface in Cartesian

 co-ordinates we may assunme, as the axes of x, y and z, lines parallel respec-

 tively to A, y and v and write the very simple fornm xyz = 1.
 This surface is only a particular case of the general cubic hyperbolic

 cylinder, in which the directions of 2, y and v are unlimiiited, the derivation
 of which will be shown hereafter.

 Third. The fact that this famnily of surfaces may be expressed in terms
 of a variable subsidiary quadric and variable parallel planes, sug,gests that a

 similar principle may be applied to the general central cubic surface. Thus
 we may write the latter as follows:

 (A p2 + -- SpSvp) SXp + _BV2+ 4 S s p) S + Cp2 + 4 SSp) Svp -1.

 If we put, for the quantities in parenthesis, Sppp, SpXp and 8p4lp, where Pp,
 XP and 4p are three mutually connected linear and vector self-conjugate func-
 tions of p, the equation becoines

 SplpSXp + SpxpSp+SppSvp-1,

 and the dependence of the general cubic surface on three connected subsidiary
 quadrics becomes at once apparent. If now we assumne three sets of rectan-

 gular vectors, i, J, k; i,, j1, ki, and i1ll ji, kll, we nmay write the equation

 (aS2ip + a1S2jp + a11S2kp) Sp + (bS2ilp + blS2j}p + b1182k1p) Slp
 + (c82i1lp + c1S2j11p + c1l82/2k,p) Svp - 1. No. 10.

 In this equation we have the following equalities:

 i - U((Tv -v Ty) il - U (2Tv -vTX) ill = U(2Ty- y T2,
 j UTyv, jl U EXv, jill UV2Y,
 k U (LaTV +v? TY), k, U(2Tv + VT2), k1il U (2Ty + YT2),
 a -(A + Syv)--Tyv, b =-(B + 8v)- T2v, c =-(C+8Xy)-TXy,
 a1 (A + Suv) + Syv, b1i-(B+ SXv) +-S2v, cl=-(C+S2y)+S2y,
 all (A + 8y-v) + Ty -, bil = (B + SX-v) + TXv, c, _ (C+ 8xy) + 17xy,
 where we assume a < a1 <a1,, b < b1 < b11 and c < c1 < c1l1.

 82
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 322 CHACE, A Certain Class of Cubic Sturfaces treated by Quaternions.

 This surface may be considered as one, two or threefold ellipsoidal, or

 one, two or threefold hivperboloidal, according as the signs of each term in
 one, two or all of the subsidiary quadrics are the samie or different.

 At this point it becomes necessary to express A, B and C of equation

 No. 3 in terms of Si, Sm, Sn and S2y, Syv and Sv2 of the general equation.
 We have as before

 F- 2 (SinSn - Syv) + y (SnSI Sr-8) + v (SiS8n - S2y)
 - Sl . Vyv -Sm . Frvt Sn.- Vy

 = x [?+ nSn- SUV + Sn (S2Sp5pv - 1l2SP2) + Sm (SpvS&D - v2Sp,)) + St (1A2 2-S /1. ]

 + yi [SnSI - SX + S7n (SV2S/v - 2Sp'U) + Sm (L2 A S ASw) + S1 (SUSvSv2 -

 + v [SI&n 5 + Sn (A2p2 _ S24"U) + Sm (S'aUSVi-A 2Sp )-Sl (SipSpl -,u2SA)]

 Here the quantities in brackets are respectively equal to A, B and Cof equa-
 tion No. 3. Now it is evident that whatever are the vectors A, i, v we can
 assume such a value of Sin as will render A equal to zero. In this case a1 in
 equation iNo. 10 becomes zero, and the suLrface is a onefold cubic hyperbolic

 cylinder. In the cyclical fornm its equation would be

 Bp2S'p + (7p2vYVp + 4S?pSiypSvp = 1. No. 11.
 Again having, assumed such a value of Snm as will render A equal to zero, we
 can easily determine a value of Sn which will render B also equal to zero.

 In this case a1 and b1 botlh become zero, and the surface is a twofold hyper-
 bolic cubic cylinder and its equation in the cyclic forin would be

 Cp2Svp + 4SApStipSvp = 1. No. 12.
 Lastly, if wve can discover real values for Si, Sm and Sn such that A, B and C
 all become equial to zero, al, b, and cl are all zero and the equation represents
 a threefold hyperbolic cubic cvlinder. To do this let us put for conveniience

 S2y =-a, S2iyv=-d T2 = C, Sn=z,
 Sav=-b, TX2 = A, Si =x,

 Spx -c T1I2 - B, S =ny.
 We now have the following equations in which to determnine x, y and z.

 -bd- (yz + zab-zBc +ybc-yCa -xb2 + xBC-0,
 c(1 -dzx+zbc- zAb-yc2+yCA+xbc -xCa=0,
 ad - dxy - za2 + zAB+ybc-yAb + xab-xBc = 0.
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 CHACE, A Certain Class of Cubic Surfaces treated by Quaternions. 323

 Combining these three equations, we discover single definite values for
 x, y and z. Hence we have single definite values of Si, Siin and Sn, which
 will render A, B and C of equation No. 3 equal to zero, and the problem is

 solved. The cyclic equation of this surface may be written S2ySypSvp = 1,
 where A, yt and v may be any non-parallel vectors.

 In the preceding pages I have attempted to classify very briefly some of
 the various families of the central cubic surface, and have suggested only just
 enough of their properties to enable one partially to conceive of their several
 shapes, using only the more simple of the quaternion methods. If I continue
 the subject, I will endeavor, in another paper, to examine more carefully a
 few of the surfaces here enumerated.

 NOTE.-In naming the surfaces described in the preceding pages, it has seemed best to me to follow their
 algebraical, rather than their geometrical, analogies with the quadric surfaces.

 December 22, 1879.
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 Remarks on the Tables for Binary Quantics in a
 preceding article.

 BY J. J. SYLVESTER.

 THE valuable idea of using different roman letters, a, b, c, d, to corres-
 pond to the coefficients of quantics of different orders, is (lue to Mr. Franklin.
 Had it occurred previously I should have employed it in the tables of the
 generating functions and groundforins of single quantics. The nlth letter
 of the alphabet, say 0, will in this way symbolize the (n + 1) coefficients

 00, Ol, 02, . .. On and so x regarded as a new point of departure in the alphabet
 will symbolize xo, x1.

 I pass on to a remnark of greater importance referring to the separation
 of the Parallelopiped which may be imag,ined to represent the complete tabu-
 lation of the representative G. F. to a system of two simnultaneous quantics,
 and its use in simplifying the process of tamisage.

 To fix the ideas, let us take the case of a Cubic and Quartic. Then, to

 represent the collected signification of the rectangles at pp. 301, 302,* we
 may suppose a parallelopiped 12 inches in length, 17 in breadth, and 11 in
 depth, 12, 17, 11 being the highest exponents which appear in such rectan-
 gles of d, c, x, respectively, and confine our attention to the sign proper to
 each of the 120 17 -11 cubical spaces (inch cubes) which may be either +
 or - or vacancy, if sign that may be called where sign is none. We nmay, if
 we please, imagine these cubes or cells to be filled with positive, negative or
 neutral electricity.

 According to the chorographical law, (foot-note, p. 251, this Journal,
 Vol. 2), it ought to and would be found that the occupied portions of this
 parallelopiped would separate into a certain number of distinct blocks of
 positive and negative signs. Let us limit our attention to the first of these
 blocks.t The tamisaoe, according to the principle laid down in the remarks

 * The vacant lines and columns suppressed in the rectangular tables referred to, are supposed to be supplied.

 t Planes passing through that angle of the parallelopiped at which is situated the absolute constant, may
 be termed the planes of reference.

 In order to determine whether or not a given space or cell (as we may term it) belongs to the first block,
 the following is the rule to be observed: 1st. If its sign is negative, it is to be rejected. 2d. If three lines be

 324
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 SYLVESTER, Remarks on the Tables for Binary Quantics, &c. 325

 at the end of the preceding paper, may be linited to this block, although,
 as a matter of fact (and for greater assurance) in deducing the tables of

 groundforms, it was actually applied to all the positive terms in the 11

 rectangles.

 An inspection of the rectangle affected with x7 and x8, p. 302, will

 show that they may be ornitted as forming no part of the first positive

 block. In the rectangle affected with x9, it will be found that the only

 terms subject to examination, i. e. the only terms with positivTe coefficients

 which are not preceded vertically or horizontally by termns with negative

 coefficients, are
 2c5d4x9 2c5d5X9

 2c7d4x9 3c7d5x9 2c7d6x9

 c9d5x9 2c9d6x9.

 Calling any one of these terms kccd"x9, it will be found, on examining the
 preceding rectangles, that cAdS will be found in one or more of them affected

 with a negative numerical coefficient. Consequently, these terins do not

 drawn through its centre parallel to the edges of the parallelopiped towards the planes of reference, and any of
 these passes through a negative cell, it is to be rejected. 3d. In every other case, the cell (or term which
 occupies it) forms a part of the primary block. So to obtain the second block required for deternmining the
 syzygants of the first species, (and notice that under a general point of view groundforms may be regarded as
 syzygants of species zero or on the other hand and preferably syzygants of the ith imlay be regarded as grotnd-
 forms of the (i + l)th species) we may take any negative cell such that the three lines drawn through it parallel
 to the edges and towards the plane of reference shall not pass through any positive one. The eebsemble of such
 constitute the second block. Then for the third block we may take the ensemetble of positive cells not included in
 the first block and such that the lines through any one of them drawn as before shall not pass through a nega-
 tive cell, and so on until all the cells are distributed into their respective blocks.

 lt may not be out of place to observe here that groundforms and syzygants may be regarded as existences and
 privations of existence, and the Fundamental Postulate so often previously quoted (oIn which, the legitimacy of
 tamisage depends) is analogous to the assertion that free eleetricities of the two kinds ecannot coexist at the same
 time at the same point of a body. Are there not some phenomena in electricity (certain visible effects at the
 poles of an electrical machine or at the extremnities of the electric arc) which seem to indicate that the two
 electricities, although mutually quelling, are not absolutely antithetical in the sense that they miglht be reversed
 throughout an environment without any change of effect of any kind resulting ? Unless this is true the analogy
 of the relation of Groundforms and Syzygants to Positive and Negative Electricity halts on one foot. But if it
 be truie we may perhaps see foreshadowed in the constitution of the generating function, the possibility of
 physical research hereafter brirnging to liglht residual phenomena in whiclh freer (and rarer kinds of positive
 and negative electricity in succession will make their appearance.

 Their supposed possible prototypes as yet, play no part in any developed algebraical theory, and indeed the
 consciousness of only a few algebraists is as yet fully awakened to a sense of their existence. If to any oIIe the
 idea of physical being foreshadowed in algebraical laws should appear extravagant and visionary, let him reflect
 on the certain fact that the conception of chemical units as molecules composed of atomns and of the new theory
 of atomicity or valence in each essential particular might have been safely inferred as a possible hypothesis^,
 from the ascertained laws of the constittution and mutual actions upon one anotlher of invariantive forms. If
 we only allow that the so-called laws of natuLre have their origin in reason and are not merely arbitrary or fat
 laws, we can very well understand how an unfailing parallelism slhould exist between the phenomena of the
 outer world and those phenomena of the pure intelligence with which algebraical science is concerned.

 83
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 326 SYLVESTER, Remnarks on the Tables for Binary Quantics, &c.

 belong to tlle primary block, and, in like manner, it will be found that the

 rectangles subsequent to x9 form no part of it.

 The tamisage may therefore be confined to the rectangles belonging to
 x0, x1, x2, x3, x4, x5, x6 and the only terms to be retained will be seen to be

 those exhibited in the following table:
 c4d2 2C4d3 2c4d4 c4d5
 c6d2 3c613 2c6d4 c6d5

 cdx cd2x

 2c3dx 3c3d2x 2c3d3x c3d4x

 c5dx 2c5d2x 3c5d3x 2c5d4x c5d5x c5d6x

 2C22dx2 3C2d2X2 2c2d3X2 c2d4x2

 2c4dx2 4C4d2X2 5C4d3X2 3c4d4x2 c5d5x2

 cdx3 cd2x3 cd3x

 cex3 c3dx3 3c2d2x3 5c3d3x3 3c3d4x3 c3d5x3
 2dX4 3C2d3X4 c2d4x4 c d 24d232d2x
 cdx5 cd2x5

 d3x6

 Thus, it is evident at a glance that the highest order in the variables,
 the higlhest degrees in the cubic and quartic coefficients respectively, of any
 groundform, are 6, 4 and 5 respectively. Prior to all tamisage, 6, 4, 5 are
 seen to be superior limits to such order and degrees, because no powers of
 x, d, c figure among the above terins hig,her than 6, 4, 5, and a slight exam-
 ination shows that somne terms, containino x6, d4, C5 survive the operation of
 the tamisage.

 The numnber of types submiiitted to tamisage, it will be seen, is 45, as pre-
 viously stated.

 The number of forms contained under these types is 83.

 The numlber of types absolutely abolished by the operation is 10, bring.
 ing down the number to 35; and the reduction in the total number of forms
 is 33, bringing down the nuinber to 50.*

 These remarks have reference solely to the groundJbrms represented by the
 numerator of the Generating Function. The denominator yields 11 ground-

 *There is every reason to believe that a calculating machine might be constructed without difficulty for
 performing mechanically the process of t(omisage whether simple (involving only a single variable) as for inva-
 riants of single forms or compound (involving several variables) as for covariants or invariants of systems,
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 forms, thus raising the total number to 61, which is the right number
 when the absolute constant is n1ot counted in as the representative of an

 in variant.*

 Possibly, when I may be again able to secure the services of Mr. Franklin,

 without whose intelligent cooperation I believe it would have been impracti-

 cable for me to have calculated the tables contained in this and the preceding

 number of the Journal, I shall be able to extend the limit to the order of the

 combined quantics. At all events, the labor of forming the tables of the com-

 binations of 1, 2, 3 4, 5, 6 with 6, would probably not exceed the amount which

 has been incurred in calculating the groundforms of a sinule quantic of the

 9th order. The references to the Coimzptes 1Rendus made in the foot notes are to

 Vol. 88, lier seinestre for 1877, p. 1285, for the disproof of the existence of the
 two forms given in the accepted tables belonging to a systenm of two binary

 quartics; to Vol. 87, 2me semestre for 1878, p. 445, and again p. 471, for the
 disproof of the existence of the thiree accepted superfluous forms for a system

 of a binary cubic and quartic, and to Vol. 89, 2m" semestre for 1879, p. 828, for
 the disproof of the existence of the two superfluous accepted forms belonging

 to the system of two binary cubics. The proof of the Fundamental Thieoremn

 is given as a Postscriptum in a paper in Borchardt's Journal " Sur les actions

 mutuelles des formes invariantives," 1878, and in a paper entitled on a Proof

 of the hitherto undemnonstrated fundanmental theorem for Invariants, in the

 Philosophical Magazine for the same year, 1878.

 The termn Reduced Generating Ftanction being apt to lead to the erroneous

 impression that it is obtained by reducing the representative one, whereas

 the representative is in fact obtained from the reduced G. F. by multiplica-
 tion of its numierator and denominator by a common factor, it may be well

 to explain that I use the appellation reduced with reference to the crude

 form of the generating function, the former representino that branch, or the
 totality of those branches, in the development of the crude form which con-

 tain no negative powers of x.

 *It should be noticed that some of the entries in the Table of Groundforms, p. 303, are made up partly
 from the numerator and partly fr,)m the denominator as ex. gr. the number 3 in the column headed 3 and in the

 line marked 4 for the order 0, is made up partly of the 2 in the surviving term 2(13c4 of the numerator and
 partly of a unit taken frorn the term I - d3c4 *f the numerator. It is an erroneous and misleading expression
 into which invariantists (myself included) have fallen of speaking of a definite number, say v, of groundforms
 of a certain type. The true idea is that of a unique form of that type with v parameters. It is, so to say, a
 single form of the v'h degree of plasticitv or deformability or of v dimensions in the sense in which we speak of
 the dimensions of space. I mean that an elastic string, an india-rubber disk and an india-rubber ball mav be
 remardtod as svmbols of a oroundform with one. two or three parameters respectively.
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 I add a few words respecting differentiants which are simply such sym-
 metrical functionis of the roots as are coimplete functions of the differences of
 the roots of the form or system of forms to which the several tables refer.

 In the G. F. for differentiants for a single quantic, the coefficient of ai

 represents the total number of linearly independent differentiants of the
 degree j belonging to a quantic of the order i; i. e. the total nuinber of cova-

 riants of the degree j in the coefficients and of all orders in the variables,

 beloniging to that quantic. The G. F. for differentiants can therefore be
 obtained from the G. F. for covariants (although not in its simplest form) by

 puttinog x = 1 in the latter. In like manner, for a systemn of quantics, the
 G. F. for differetitiants (or to speak more precisely, its algebraical equivalent)
 can be obtained from the G. F. for covariants by putting x = 1.

 To obtain the G. F. for differentiants for a single form without previously
 having the G. F. for covariants, we may make use of the fact that the sum of
 the quantities

 (W: i, j) (w - l: , j)t

 for all admissible values of w is equal to the value of (w: i, j) for the highest
 admissible value of w. Now the order corresponding to the highest weight
 is 0 or It; hence the number of differentiants of the degree j belonging to a

 quantic of the order i is the coefficient ajx0 or of aix' (according as ij is even or
 odd) in the development of

 (1-ax') ( -ax'2) . .. a(1x-"ai+2) (1 ax-')

 The generating function for differentiants is therefore the sum of the multi-
 pliers of xo and x' in the development of the above fraction. (When the

 quantic is of even order, x' does not appear in the development, and the
 G. F. for differentiants is simply the part independent of x in the develop-
 ment.)

 In like manner, for a system of two quantics, the G. F. for differentiants
 is the sum of the nmultipliers of x? aiid xi in the development of

 1

 *Uw is the weight of any covariant, j its degree in the coefficients and i the order of the quantic in the varia-
 bles; and (w: i,j) denotes the number of modes of composing w with j of the elements 0, 1, 2, 3, . . . i or vice
 versd with i of the elements 0, 1, 2, 3, . . . j each any number of times repeated.

 t If e is the order of the covariant in the variables 2w = ij - e.
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 And we may proceed in an analogous manner when a system of forms is in

 question. I need hardly add that a differentiant in respect to either variable,
 say x, is only another name for any rational integral function of the coeffi-

 cients of a quantic whichl, when the coefficient of the highest power of the

 selected variable (x) in the quantic is made equal to unity, becomes a func-

 tion of the differences of its x roots. Gordan's and Jordan's results concern-
 y

 ing symbolical determinants are correlative and coextensive with theorems

 concerning root-differences, so that the method of differentiants when fully

 developed would lead to the substitution of actual differences or determinants
 for syinbolical determinants in the Gordan theory, it being borne in mind
 that to determine the ground-covariants of a quantic or quantic system is the

 same question as that of determining its ground-differentiants, inasinuch as to

 every covariant corresponds a single differentiant, and vice versa.

 ERRATA

 Relating to the paper entitled " Tables of the Generating Functions and Groundformsfor the Binary Quanities

 of the First Ten Orders " in the preceding number of this Journal, pp. 223-251.

 Page 249, line 3 from foot, for all those that follow read all those that are to follow in the next number of
 the Journal.

 Page 250, line 13 from foot,for multiple of and read multiple of 10 and.

 If no one else will undertake the task, I propose, at no distant date, to write out the scheme of operations
 which will furnish the system of 69 groundforms of the Binary Quantics of the 8th Order (one of the 70 stated

 at p. 147 being the absolute constant) and to verify the completeness of the system by the application of the
 Gordan test.

This content downloaded from 89.187.177.72 on Mon, 13 Mar 2023 21:25:24 UTC
All use subject to https://about.jstor.org/terms



 On the Ghosts in Rut herfurd's Diffraction -Spectra.

 BY C. S. PEIRCE.

 [Published by the authority of the Superintendent of the United States Coast and Geodetic Survey.]

 LET there be a periodical irregularity in the ruling of a diffraction plate,

 so that the side of the rth slit nearest a fixed line of reference parallel to the

 ruling shall be distant fronm that line by

 (r---) w+esin (rO--O)

 vhile the side of the same opening furthest from the line of reference is dis-
 tant from it by

 (r+?-a) w+esin (rO+?2).

 This is supposing the opaque lines to have a constant breadth, (1 - X) w.

 Suppose the collimator an (d telescope of the spectrometer to be focused

 for parallel rays, and neglect the angular aperture of the slit. Let the angle

 of incidence be i, and the angle of einergence j. Write

 = sin i - sin j.

 Then the ray which strikes the gitter at a distance x from the line of reference

 is longer than that which passes through the line of reference by vx. Con-

 sequently, the resultant oscillation from the rth slit will be
 (r + la) w + e sin (r0 + 0)

 C ~~Vt-v
 jdx. sin 2 Vt_>z

 (r-la) w + e sin (rO-0-0)

 where t is the time, V the velocity of lig:ht, and X the wave-length. (In this

 paper 7t will be written for the ratio of the circumference to the diameter,

 e for the natural base, and t for the imaginary unit.) If then we suin this for
 all integral values of r, we obtain an expression for the resultant oscillation

 from the whole gitter.

 Performing the integration relatively to x, indicating the summation

 relative to r, and using the abbreviations

 02 7 2 7t r = 2---7,
 830
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 we obtain the following expression for the resultant oscillation from the
 whole grating:

 w Cos [m sin (r+! 0+2)] . cos (cr- ' o - r

 ? sin sin (ro+-2) ] .sin (c - {a. - r2)

 -cos [a) sin (rO - 2 O) ] .cos ( a + 2- r )

 -sin [asin (r 0-{ )] .sin (T-+ -a.-ro) }.

 W e nowv need a formnula for developing sines and cosines of sines. For

 this purpose take y =ett. Then wve have

 1 ~~~~~~1

 cos (a. sin ) + sin ( sin x) . C -s e-a(<Y+)

 By the usual dlevelopment of an exponential function, this is

 -iao i i~- 0- - 0 Si.flao r 2 Vyl ~2 2.

 e EP --t 2P ( 2 (y

 and by the binomial theorem, this is,

 e2< - (i 8()q P q)! yP-2q
 e~~~~~~~~~

 The pith term is )q ayp-
 21)q! (p -q

 Put m -p 2q and this becomes
 ( 1 I ) q - ~ ''2q

 2n *4 q! (m + q)!

 In regard to the limits of the sum-mation, q rnay have any vTalue from zero to
 positive inifinity, and, for every value of q, p may have any value from q to

 positive infinity; hence, mn miay have any value from - q to positive infinity,
 and we have

 Cos(a asnX)+sin (asillx). L(-I)742 ( -- " ) (cos rnx+sin )x.

 If m has a positive value, q maly have any positive value; but if mn has a
 negrative value, q can only have any positive value greater thani -rn. Hence,
 wve may take the term-is for wlhieh m is not zero in pairs, embracing in each

 pair a term for whiclh m has a positive value, Jll, and q has a value, Q, and
 also a term forv which m --1l aid q - 111+ QO The sum of two terms corn-

 posinog the pair is, then,

 (- 1) 2 as (cos J3TV + siII JIx . C) __2Q
 + ),( 4QQ! (3J1+ Q)!

 + ( 1) d Q /-"(COS .KX- sill 1aS . C) 62 1/+ 2Q-

 2-m 4-)I+ (2,31 +QO! Q?!
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 332 PEIRCE, On the Ghosts in Rutherfurd's Diffraction-Spectra.

 If Mi is even, the value of this is

 ama 02Q
 ( 1)Q 2J'-1 4QQ!(M tcos Mx;

 and if Mi is odd, its value is

 ( )Q 1 a sinAfx. t.
 (1-2-M- 1 4Q Q ! (AT + Q) ! snX

 We have then

 ~~~~~~ ~~~~~a 2qA a m cos (a sin x) + sinn (a sin x) . 1)q(cos x + sin xL. )m;

 where

 Am zq ( l ) q n . 2q

 Performing the numerical calculations, we have

 cos(asinx) -/ 1 1 1 1 1 etc.) cos (a sin x) = (1 - 64 2304 a6 + 147456 14745600 ? +

 + 1_ 1 2+ a 4_ a + 1 8

 + - (1 2 a a-2? a90 a.6o+setc) cos 4

 + 23040 6 ( - a2 + 1792a - etc.) cos 6x

 1 8 1 etc.) 28 ? aI609a0+etc? cos 8 5160960 36

 + 1 a1O (1 - etc.) cos lOx

 + etc.

 sin (axsin x) =a(1-~ 1a2+ j{ a49 1a6c+ a37 8_0- a&o+ etc) sin x ( 8 f 92-2 a9-216X6 737280a 8847360()0

 1 __1 1 1 6 _ 16 640 46080 15160960

 +12 a5 (l- 21 a2+ 14 a4 - 122 a6 +ec)sn5

 + 322560 (i a- + 2304 a etc.) sin 7x

 + 92897280 a (1 - a2+ etc.) sin 9x 1 92

 + 40874803200 ( - etc.) sin llx

 + etc.
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 Making use of these series, the expression for the resultant oscillation

 from the gitter becomes

 Go cm(omn-i sI~ ~ 1 sn1
 W c (even mr) An siin (rG)- - . cos --inO. sin -aO (eve m) rn! 2 n2 2c2

 2 2
 + sin rnrO . cos (rt - -r) . sin - m-O . cos ao)

 -W 5 (odd in) Amm! 2m - 2 ' \. 2 2

 + sin mrO . cos (ro ) . cos m-nO . sin 2 a).

 Thle sumnmation relatively to r may be effected by means of the formula,

 24 sin (hx + a) . sin (kx + 6) =

 -sin (hx+a- ). cos(kxv+b-2I k). cos h. sin 2 k+cos(hx+a- h) . sin (ksx+b-I k). sin 2 h. cos 1 k.

 cos h - cos k

 For a modern gitter, it would be quite as satisfactory to consider r as

 infinite, and to use, in place of the above, an infinitesimal formula, which

 will be found in Hirsch's Integral Tables. Applying, however, the formula

 of finite integration, we have, as an integrated expression for the resultant

 oscillation from the whole gitter,

 __-- ?-cos (ro -r- - (/ Lcos -1- (t- )-Cos 2 ((o + w)]

 E () m I

 2 ) evensm) cosm 0 -c --si 7 (r-2 - . sin (r)-.-2 -9 .(sin m . sin 2!(&o-aoA

 + W I'(ddm Am {csinm r7'(--0 CSi (ro-r--() .si n mO3.sin 2 ((t-00)

 2even_m2 cos MO scos mo 2 2 /

 +cos m (rO-- o). Cos (rw -, - w) [cos rmO . cos -(w - aw) - Cos -(w + aw)] }

 This expression may be simnplifiedl by writing

 x 222 2+ m),

 17 (&- mm);
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 334 PEIRCE, On the Ghosts in Butherfurd's Jiffraction-Spectra.

 so that

 sin [r--1 ) n0 . sin [ (-> -]=-2cos r(2r -1)Y-,r]-2 cos[F(2r-1) x-]

 Cos 2) ] Cosr -2)-Ir= -cosE(2r -1),y -r] + cos E(2r-)1 e]
 We have also to observe that

 =F sin MnO . sin I (o - ao) + cos mO . cos ( -ao) - cos - ( + aox))

 - cos [2 (o-ao) + mOjj-cos 2 (o + au) = +2 sin 2 ((@ + MO) sin 2 (ac T nO).
 Thus, the quantity in parenthesis, under the suin for even values of mn, re-
 duces to

 cos E[(2r -1) y -,] . s'ix 2 ( + nio) . sin I (a(o - m)

 + cos [(2r-1)x-r] .sin +(I nO).sin 4 (axo O),
 and the corresponding quantity for odd values of m, to

 -cos [(2r -1) y - j] . sin 2- (o + mO). sin 1 (ao - MO)

 + cos [(2r -1) x -] . sin 2 (o - mO) . sin 2 (ao + mitO).

 The integral is to be taken between litniting values of r, say r1 and r2.
 Let the whole number of openings in time gitter be R, so that

 ? =r2- ri.

 Then, a second equation to determine r1 and r2 may be assumed arbitrarily
 without affecting the result. Let this equation be

 r2 + r1 =1.
 Then

 (2r2 - 1) - (2r, - 1) - R.
 Now r occurs only in the factors

 cos [(2r 1) y-,r] =zcos (2r -1) Z.costr+ sin (2r -1)y.sin r
 and

 cos [(2r 1) x - z] = cos (2r - 1) x. cos r + sin (2r - 1) x. sin r.

 Taken between these limuits, these factors will be respectively,

 2 sin Ry]. sinr,
 2 sin Rx. sin t .

 Applying these reductions, and also rememnbering that
 cos mO - cos c = 2 sin x sin y,
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 PEIRCE, On the Ghosts in IRutherfurd's -Diffraction-Spectra. 335

 the expression for the resultant oscillation from the whole gitter reduces to

 + coo m m-1 sin -- R (to + mO) 1
 sin .wEm A - ! 2 sin (ax + nO),

 m coo m! 2~ sin 2 (to + mO)

 where, in summing for negative values of in, positive values are to be taken
 in the coefficients, and where terms arising from odd negative values of nm in
 the parenthesis are to have the opposite sign, and where the term in m 0 is
 to have only half the above value.

 We have now to study the principal maxima of the amplitude of this

 oscillation, for varying o. Taking each term of the series separately, we

 observe that one factor of it, namely,

 sin - R (to + Mi0)
 2

 1
 sin -2 (w + iMn)

 2

 reaches a maximumn when
 X +mn =2AT7t

 and this maximum value is R. Now R is a number amounting to several
 thousand, while ao is less than unitv. Hence, the miaximum of the whole
 terin will be very nearly at the same place, and one of the maxima of the

 sum of all the terms will also be nearly in that place.

 To ascertain the precise position of the maxinmum of anv one term, put
 o=2XNt-mO + ).

 Then, neglecting the cube of x, in comiparison with unity, we have

 sin 2 R (o + m0) =J sin 2 fflo fl = F:2RA 41 R3 (60) 3 22 2 i8
 1 1 1 3 sin2 ( qnO) =A sin - =F ()

 sin I RJ((O + in0) sin ROw 2______2 +Bl13B(o2
 =1~~=-+ + -gR -4(-R3 --R)(8)

 sin 1 ((o + in0) .sn I 8(o2 2i 2

 As for sin 2 (ax + (- 1)mmn0), it may have any value whatever from -1 to

 + 1, according to the magnitude of a. But it is when it vanishes that the
 maximum is at the greatest value of &o. Let us then suppose

 sin ? (ao + (- 1y)mn0=) =i 1 =F T a3 (8X)3.

This content downloaded from 
�������������89.187.177.72 on Mon, 13 Mar 2023 21:25:31 UTC������������� 

All use subject to https://about.jstor.org/terms



 336 PEIRCE, On the Ghosts in Ratherfjird's Diffraction-Spectra.

 Finally, there is the factor rnm-i. Dividing this by (2N7t-mO)")-', we have

 (2N-mI) = + (in-1) (2Nst-mO)-' 2 2(2N7t -m O) -2 () 2(
 finally, inultiplying together the quantities thus obtained, we find as that
 factor of the nath term wlhich contains (L)

 Ax + (m - 1) (2N7t - mO)-' 02

 + {(m-1)(m-2) (2N7t -nO)-2- 12_2 1 (_R21)} (&O)3.

 Differentiating, we find as the equiation for determnining the value of A at the
 maximum of the mth term

 1 + 2 (m - 1) (2X7t N-mO)- 1 L

 ,9(m -1) (m - 2),' ~2 2 1(2-] ~ +3g(- m 2) (2X7 - MO) - 2-2 U2-2 2R1tS =
 2 1 7IIJ 24X 24 ~~~

 If we neglect 1 the solution of this equation is
 8 (m-1 )

 R2 (2Nr- m-0)

 It will be seen that &L is zero when m 1, and that for the principal spec-

 truin, for which m = 0 if 1 =1000, - is altogether inappreciable, but if

 R = 100,- about 1 for the first order, which displaces the spectrum (0 50000

 by about J_- part of the distance between the two D lines.

 We have now to consider how far the maxima of the sum of the series
 representing the oscillation may differ from those of the single terrms. A
 term will have the nmost influence in displacing a maximum when it is itself
 nearly zero, or more accurately when its differential coefficient relatively to 0
 is at a maximum. As o increases by 2a so as to pass from one principal
 maximum of oscillation to another, Rx passes 1R times through 27t, so that
 the term passes through as many maxima and minima. Then the differential
 coefficient relative to X of the sum of all the terms will be the greatest for a
 value of o such that

 o ? OO = 2N7tX

 (inO being a given value of in), when, in addition to the above equation, we
 have

 RO=4N7 .
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 In this case, the differential coefficient of the mth term of the expression for

 the oscillation xvill be
 1? ! t(EW\2 1

 wO 2,sn( O (o t 2 ) Sill - ((O TII?)
 2

 It will be sufficiently accurate to put

 sIn 1 (-mo)O. sin 2- (G) + mot) -2(m 2) .
 22

 Then it is plain that, were the term for nt 0 of thle samiie value as the otlhers,

 the total differential coefficient wvouhld be

 R (eo)
 -- 10e 2
 (d

 Owing, however, to the term for in 0 haviing o(nly- half the value given by

 the formula, the value is

 () 2

 In consequence of the differential coefficient having this value, the mnaximumn
 will not occur exactly at the value of a lor which

 ,) + 00 - 2Axr,

 but will be shifted alono, to the point wlhere the differential coefficient of tle

 rn0th ternm is equal to the negative of the differential coefficient just found. If

 &G is the amount of the shifting, the m0toth termi of the oscillation (I? being,
 very large) is

 SiD, .- ON

 O(v

 The differential coefficient of this is

 1 sin . R . oN - RON

 4 (0b9)'2 - X

 and the equation to determine Sc is
 1 sin. RO - RON (i e@\
 4 (oXo)2 (0 -

 In the worst case, this becomes
 24 (eW ).

 It thus appears that the position of the principal spectrum will not be dis-

 turbed by the circumustance here considlered, and that the dlistanice between

 the successive ghosts will be very slightly altered.

 It is to be remarked that, when two spectral lines fall very near together,

 they will be attracted to one another in consequence of the m-ilixture of lighlit
 86
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 338 PEIRCE, On the Ghosts in Ruttherfird's kiffraction Spectra.

 bv a sensible aamount. This will especially affect the position of a faint line

 near a very intense one.

 The Phenomnena.

 Mr. Rutherfurd's diffraction-plates are ruled with a nmachine which is

 described by Professor A. M. Mayer in the article " Spectrumn," in the second

 edition of Appleton's Cyclopwdia. In consequence of the periodic error of the
 screw, a periodic inequality is produced in the ruling. This is shewn by put-
 ting a gitter into the spectrometer, illuminating it with homogeneous light, and
 observing it witlhout the eye-piece, when it appears striped. If the eye-piece

 is replaced and a real solar spectrum is thrown on the slit-plate, of such purity
 that the light admr-itted into the slit varies only by a few ten-thousandths of a

 nmicron in wave-length, the maxima of light which have been investigated

 above appear as repetitions of the principal spectrum, in which even the fine

 lines due to the solar atmosphere are distinctly visible.

 The positions of sonme of these "ghosts," or repetitions of the principal

 spectrum, have been carefully measured in order to test the theory.

 Measutres of the Positions of the Ghosts.

 To determnine whether the screw of the filar micrometer had the same

 pitch thro6uohout its length, the distance between D) and D, was ineasured on
 different places on the screw. Gitter: speculumi metal 681 lines to the milli-
 meter. Second order, principal spectruin. Readings given are mneans of five

 pointings each. Date: 1879, July 3.

 Place on the Screw First End. Second End. Second End. First End(l.

 Line of Spectrunm D D2 D1 1) A D1 D2 DI
 Alicrometer reading 7" 109 7".947 12'.108 12".943 12'.937 12.102 7r.925 7.(.089
 Distance of Linies 0?.838 0r.835 0r.835 0'.836

 The following, were made with a speculum-nmetal gitter of 3402' teeth to
 the millimneter. Each reading given is the mean of five pointings. Date: 1879,
 July 3. To pass from one spectrun1 to another the gitter alone was turned.

 Order of Spectrum Order IV.

 Number of Ghost Ghost, 1. Ghost, 0. Ghost, + 1. Means.

 Line of Spectrum ID2 D D2 D1 D2 D1
 Alicrometer reading 8'.241 9r.330 9'.723 10'.800 11L.187 12r.272
 D)istance (D1 - D2) 1.1'089 1.077 1".08G 1.084
 Distance of suic- f D2 P11.482 1".464 1 .473
 cessive G hosts D1 1 .470 1 .472 1 .471

 AMean 1 .476 1 .468 1 .472
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 Order of Spectrum Order V.
 Number of Ghost Ghost, - 1. Ghost, 0. Ghost, + 1. Meanis.
 Line of Spectrum A D1 ID D1 D2 D
 Micrometer reading 7r.847 9".337 9r.466 10r.962 117.090 12'.575
 Distance (D1 - D2) Vr.490 1'.496 1r485 lr.490
 Distance of suc- { DA 1 i 6 t 9 1.624 1 .621
 cessive Ghosts D, 1 .625 1 .613 1 .619

 Mean 1 .622 1 .618 1 .620

 Order of Spectrumni Order VI.

 Numiiber of Ghost Ghost, - 1. Ghost, 0. Ghost, + 1. Means.
 Line of Spectrum D2 DI D2 D D2 D
 Micrometer readitng 7".378 9r.421 9r.265 1I".304 llr.152 13r.173
 Distance (D1 - D2) 2".043 2'.039 2'.021 2r.034
 Distance of sue- (ID2 V1.887 1V.887 1 .887
 cessive Ghostsl D 1 .883 1 .869 1 .876

 Mean 1 .885 1 .878 1 .881

 Order of Spectrum I Order VII.
 Nuinber of Ghost Ghost, - 1. Ghost, 0. Ghost, + 1. Means.
 Line of Spectrum D2 DI AD D, A2 DI
 Micrometer reading 6r.637 9r.595 8r.955 1 .876 11.262 14".191
 Distance (D1 - D2) 2r 958 2r 921 2r929 2r.936
 Distanice of suc- A D2 2r.318 2r .307 2 .312
 cessive Ghosts D, 2 .281 2.315 2 .298

 Mean 2 .299 2 .311 2.305

 Order of Spectrum I Order VIII.
 Number of Ghost Ghost, - 1. Ghost, 0. Ghost, +- 1. Means.
 Line of Spectrum D2 DI D2 D1 D2 D
 Microrneter reading 4r 737 9r.467 8".002 12".680 11.256 15r.885
 Distance (D1 D2) 4r 730 4r.678 4r.629 4r.679
 Distanee of suc- (A2 3r.265 3r.254 3 .261
 cessive Ghosts]D, 3.213 3.205 3.209

 Mean 3.239 3.229 3.234

 Oi-der of Spectrum Order IX.
 Nu-mber of Glhost Ghost, 1. Ghost, 0. Ghost, + 1. Means.
 Line of Spectrum ,)2 D2 D D2 D
 Mlicrometer reading r.s865* 9r.403 4".281 16r.977 12".075 24r.435
 Distaince (DI - D2) 12r.5;38 12".696 12 .360 12r.532
 Distaince of suc- D2 7r.416 7ir794 7 .605
 cessive Glhosts D, 7.574 7.458 7.516

 Meani 7 .495 7 .626 1 7 .560
 * Read 5r.865. Either this is an erroneous reading, or a wrong line was measured.
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 340 PEIRCE, On the Ghosts in Rutherffurd's Diffraction-Spectra.

 The following measures were made with a metal gitter of 681 lines to
 the millimeter. Dates: 1879, June 20 and July 2.

 Order of Spectrum Order I.

 Number of Ghost Ghost, -2. Ghost, - 1. Ghost, 0. Ghost, + 1. Ghost, + 2. Means.
 Line of Spectrum D2 D1 D2 D1 D2 D1 D2 D1 D2 D1
 Micrometer reading 7r.286 7r.799 8r.632 9r.112 9r.925 10r.383 11r.196 11.664 13r.496 12r.928
 Di-D2 | Or.513 Or.480 Or.458 Or.468 Or. 432 Or.470
 Distance of suc- JD2 1r.346 lr.293 1 .271 1r.300 1 .302
 cessive Ghosts D1 1 .313 1 .271 1 .281 1 .264 1 .282

 Mean 1. 330 1.282 1 .276 1 .282 1 .292

 Order of Spectruim Order II.
 Number of Ghost Ghost, - 2. Ghost, - 1. Ghost, 0. Ghost, + 1. Ghost, + 2. Means.
 Line of Spectrum D2 D1 D2 D1 D2 D1 D2 D1 D2 D1
 Micrometer reading 5r.312 2r.482 6r.907 8r.C59 81.477 9r.627 lOr.067 11r.191 11r.632 12r.752
 Di-D2 lr,170 lr.152 lr.150 lr.124 Ir.120 11.143
 Distance of suc- { D2 lr.595 V.570 lr.590 V.565 1 .580
 cessive GhostsID, 1 .577 1 .568 1 .564 1 .561 1 .568

 Mean 1 .686 1 .569 1 .57 7 1 .563 1 .574

 Order of Spectrum Order III.

 Number of Ghost Ghost, -2, Ghost, - 1. Ghost, 0. Ghost, + 1. Glhost, + 2. Means.
 Lilne of Spectrum D2 D1 D2 D1 D2 D1 D2 D1 D2 D1
 Micrometer reading 4r.593 6r.896 6r.713 9r.053 8r.876 llr.205 lOr.989 13r.280 13.057 15r.308
 D- 2r. 303 2r.340 2r. 329 2r.291 2r 251 2r. 303
 Distanceofstic- D2 2t.120 2r.163 2r.113 2r.068 2.116
 cessive Ghosts ID1 2 .157 2 .152 2 .075 2 .028 2 .103

 Mean 2.138 2.158 2.094 2.048 2 .110
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 342 PEIRCE Oii the Ghosts in Rutherfurd's Diffraction-Spectra.
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 PEIRCE, On the Ghosts in Ruatherfitrd's DDiractiow-Spectra. 343

 The following measures were made upon C, with the mrletal gitter of 681
 lines per mm. The distance of the fine line X - 6567.91 (A.) from C was
 measured in the principal spectrum to determine the dispersion. Date: 1879,

 July 1.

 Order I.

 Glhost, - 1. Ghost, 0. Ghost, + 1. Fine line. C.

 8 r.241 9r.792 1Vr.289 9r.255 9r.801

 1r.551 1r.497 0r.546

 Order II.

 Ghost,- 1. Ghost, 0. Ghost, + 1. I F ine line C.
 8r.054 9r.941 11 .774 8".629 9?.960

 1V.887 1r.833 IrV.331

 Order III.

 Ghost, - 1. Ghost, 0. Ghost, + 1. Fine line.

 7r .15 10r.010 12 r.734 7r.054

 21.895 2r . 724 2.956

 The following measure was rm-ade upon F, with the same gitter. The

 mean of lines 4870.47 and 4871.29 was pointed on to determine the disper-

 sion. Date : 1879, July 1,

 Order II.

 Dotuble. F .

 Ghost, 0. Ghost, 0. Ghost, + 1.

 8r.617 1or.484 1 r.683

 1r.867 1r. 190

 The above measures satisfy the theory moderately well. Thus, accord-

 ing to theory, the product of the ratio of the distance of suiecessive ghosts to
 the distance between the D line by the order of the spectrum should be con-

 stant, and should be twice as great for the gitter of 3402 lines to the milli-

 ineter as for that of 681 lines to the mnillimeter. Now this product is as

 follows:

 Metal Gitter of 340k lines to the mm.

 Order IV. 5.43 = 2 X 2.72

 cc V. 5.44 2 x 2.72
 " VI. 5.55 2 X 2.77

 " VII. 5.50 = 2 X 2.75
 " VilI. 5.53= 2 X 2.76
 " IX. 5.46 2 X 2.73
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 344 PEIRCE, On the Ghosts in Rutherfurd's Difaction-Spectra.

 Metal Gitter of 681 lines to the mnm.

 Order I. 2.75

 " II. 2.70

 " III. 2.75

 Silvered-glass Gitter of 681 lines to thle mmin.

 Order I. 2.68

 " II. 2.74

 " ill. 2.74

 " IV. 2.74

 It is. evident that the value which best satisfies the observations lies
 between 2.74 and 2.75. This ratio multiplied by the ratio of the difference of
 wave-length of the D lines to their mnean wave-lengrth, should give the numii-
 ber of lines of the finer gitters to a period of the inequality. I'his, from the
 construction of the ruling-machine, is known to be nearly, but not exactly,
 360. Mr. Clhapman, who works with the machine, has mnade certain observa-
 tions, from which it would appear that the period differs about 1 per cent.
 from 360. The product of the ratios just miientioned (taking, 2.746 for the
 first) is 357. This is therefore a happy confirmation of the theory.

 Next, using the value 2.746, I calculate by least squares the best values
 of the distance of the D lines and the distance of consecutive ghosts in each
 order. In this way, we shall be able to judge whether the discrepancies of
 the observations from theory are, or are not, greater than their probable
 errors. The results are as follows:

 Metal Gitter of 340k linies to the mnmi.

 Distance D1 - D2- Distance of successive Ghosts.
 Order. Obs. Calc. 0. - C. Obs. Calc. 0.- (-.

 IV. 1P.084 lr.076 + 0'.008 1 .472 11'.477 -

 V. 1.490 1 .481 + 0.009 1.620 1.626 ---0.006
 VI. 2.034 2.045 - 0.011 1.881 1.872 --0.009
 VII. 2.936 2.936 0.000 2.305 2.305 0.000
 VIII. 4.679 4.691 - 0.012 3.234 3.221 + 0.013
 IX. 12.532 12.485 + 0.047 7.560 7.618 - 0.058
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 PEIRCE, On the Ghosts in Rutheifurd's -Diffraction-Spectra. 34

 Metal Gitter of 681 lines to the mnm.

 Distance Di - D2. Distance of successive Ghosts.
 Order. Obs. Calc. 0. - C. Obs. Calc. 0. - (.

 I. 0r.470 0r.470 0r.000 Vr.292 Vr.292 Or.000
 II. 1.143 1 .147 - 0.004 1 .574 1.573 + 0.001

 III. 2.303 2.304 -0.001 2.110 2 .109 + 0.001

 Silvered-glass Gitter of 681 lines per nmm.

 Distance D1 -D2 Distance of successive Ghosts.
 Order. Obs. Calc. 0. -0. Obs. Calc. 0. -0.

 I. Or.481 Or.470 + Or.011 r.291 Vr.292 - Or.OOl
 II. 1 .062 1.063 - 0.001 1 .457 1 .457 0 .000

 III. 2.017 2.021 -0.004 1.840 1.838 + 0.002
 IV. 4.542 4.544 -0.002 3.115 3.113 + 0.002

 The discrepancies between observation and calculation are, in the case of
 the observations with the coarse-ruled plate in the 4th to the 7th orders,
 inclusive, pretty well accounted for by the attractions of neighboring lines.
 This is shown by the subjoitned table. In other cases, there are large discrep-
 ancies amounting to 7", or even more, whlich cannot be so accounted for, and
 which vastly exceed the errors of observation. Thus, it will almost invaria-

 bly be found that the ghosts of D, are closer together than those of D2, and
 that the distances decrease as m increases algebraically. The measures of
 the ghosts of C and F indicate a inuch loniger period in the inequality. Some
 attempts have been made to measure the brilliancy of the ghosts. These only
 roughly agree with the theory.

 DETAILED COMPARISON OF CALCULATION AND OBSERVATION.

 Metal Gitter of 340i lines per mnmn.

 Order IV.

 Obs. Calc. 0. - C.

 G - 1, ID2 8r.241 8-.244 -.003

 G- 1, D1 9 .330 9 .320 +.010 Carried toward G0, D2.
 GO,D2 9.723 9.721 +.002

 GO, DI 10.800 10.797 +.003

 G+ 1, A 11 .187 11.198 - .011 Carried toward Go, D,.
 G + 1, D 12.272 12.274 -.002

 88
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 346 PEIRCE, On tIke Ghosts in Rutkerfurd's DJiffraction-Spectra.

 Order V.

 G - 1, D2 7r.847 7r.846 +.001

 G- 1, D1 9 .337 9 .327 +.010 Carried toward GO, D2.
 GO, D2 9 .466 9 .472 -.006 Carried toward G - 1, D1.

 GO, D1 10.962 10.953 +.009 Carried toward G + I, D2.

 G + 1, D2 11 .090 11 .098 -.008 Carried toward GO), Di.
 G + ], D1 12.575 12.579 -.004

 Order VI.

 G - 1, D2 7r.387 7r.388 .001

 G0, D2 9 .265 9 .260 +.005 Carried a little toward G - 1, Di.
 G- 1, D1 9 .421 9 .433 - .012 Carried toward G 0, D2.

 G + 1, D2 11 .152 11 .132 +.020 Carried toward G 0, D1.

 GO, Di 11 .304 11 .305 -.001 Carried a little toward G + I, D2.
 G + 1, Di 13.173 13.177 -.004

 Order VII.

 G -1 D2 6r.637 6?.646 _.009 { Single pointings discordant. Rejecting worst
 - 2 ~ obs. =: 6,-.643.

 G 0, D2 8 .955 8 .951 +.005 Carried toward G 1, D2.

 G - 1, D1 9 .595 9.582 +.013 Should be carried toward GO, D2.

 G + 1, D2 11 .262 11 .256 +.006 Carried toward GO, D1.

 G O, D1 11 .876 11 .887 -.011 Carried toward G + I, D2.
 G + 1, D1 14.191 14.192 -.001

 Order VIII.

 G - 1, D2 4r'737 4r.771 -.034 l

 GO, D2 8 .002 7 .992 +.010

 G - 1, D1 9 .467 9 .462 +.0051

 G + 1, D2 11 .256 11 .213 +.043 No distinct attractions.

 G 0, D1 12.680 12.683 -.003

 G + 1, D1 15.885 15.904 -.019 J

 Order IX.

 G - 1, D2 6r.865 6r'812 +.053

 GO ,D2 4.281 4.430 -.149

 G-1, D1 9.403 9.297 +.106

 G + 1, D2 12.075 12 .048 +.027

 G0, D1 16 .977 16.915 +.062

 G + 1 D1 24.435 24.533 -.098
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 PEIRCE, Ot the Ghosts in JRutherfurd's -D)ffrac1ion-Spectra. 347

 Metal Gitter 681 linies per mmoez.

 0. - C.
 Order 1. -.012

 G 2) D2 7286 71-.32.3 .037 _.049 {Noted at the time of obs. extremely ~, D2 7r.286 7r.323 .037 .0 uncertain.
 G - 2, D1 7 .799 7 .793 +V.006 -.006

 G - 1, D2 8 .632 8 .615 +.017 +.005

 G 1, D1 9.112 9.085 +.027 +.015

 G 0, D2 9 .925 9 .907 +.018 +.006 General attraction toward the
 G 0, D1 10.383 10 .377 +.006 -.006 M middle.
 G + 1, D2 11.196 11.199 -.003 -.015

 G + 1, Di 11.664 11.669 -.005 -.017
 G + 2, D 12 .496 12.491 +.005 -.007

 G + 2, DI 12.928 12.961 -.033 -.045 J

 0.-c.
 Order II. - .004

 G -2, D2 5r.312 5r.331 -.019 -.023

 G - 2, Di 6 .482 6 .478 +.004 -.000
 G - 1, D2 6 .907 6 .904 +.003 -.001

 G - 1, D1 8 .059 8 .051 +.008 +.004

 G O, D2 8.477 8.477 .000 -.004

 GO, D1 9 .627 9 .624 +.003 -.001

 G + 1, D2 10 .067 10.050 +.017 +.013

 Jr 1 D1 11 .191 11 .197 -.006 -.010

 G + 2, D2 11 .632 11 .623 +.009 +.005

 G + 2, D1 12 .752 12 .770 -.018 -.022

 Order III.

 G - 2, D2 4r'593 4'.627 - .034

 G- 1 D2 6.713 6.736 -.023

 G - 2 D1 6 .896 6 .931 -.035

 GO, D2 8.876 8 .845 +.031

 G - 1, DI 9.053 9.040 +.013
 G + 1 D2 10.989 10.954 +.035

 GO D1 11 .205 11 .149 +.056

 G + 2 D2 13.057 13.063 -.006

 G + 1, D1 13.280 13 .258 +.022

 G + 2 D1 15.308 15.367 -.059

This content downloaded from 
�������������89.187.177.72 on Mon, 13 Mar 2023 21:25:31 UTC������������� 

All use subject to https://about.jstor.org/terms



 On a Theorem for Expanding Functions of Ftunctions.

 BY EMORY MCCLINTOCK, lilwaukee, Wisconsin.

 To expand any function of fr, say pft, where

 fx=a+ bx+ x+ - dx + . . .

 it is customary to employ the method of derivation devisecl by Arbogast.

 By this method,

 pfx = cpa + xdqpa + 2 x2d2pa + ...

 where, after the differentiations indicated are performed, the differentials
 da, d2a, d3a, . . , are to be replaced by b, c, d, . . . A more direct solution of

 the problem will, I think, be derived, as a special case, from the following
 general theoremn, which would seem to be new:

 p (x,f'x,fj"X . . .) = (1+XD+ 2-X2D2 _jX8DS? . . .) q (a, b, c ...). (1)
 Here

 d d d D = b d+ c db+ d -d- _+ ***
 da?Cdb$+dec

 Dn represents i successive performances of the operation D, and

 fx dfxh b+cx+ 1 dx2+2_1ex3+ ...

 fx =c + dx + ex2 +2fr3 + . . .

 and so on. To prove this theorem, which is a simple consequence of that of
 Maclaurin, it is only necessary to write

 q) (f x, fxMc f"x . . .)=( + x dO+ 2x d2 -+- * *) ( (.fo2 .t ?O fo ? *

 and to observe that, as regards any function offO, f'O . . , say ;,

 dO =O df0 +f df' +*

 * The letter d is here used in two senses, neither of which is likely to be mistunderstood. The same may be
 said of the letterf.

 348
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 MCCLINTOCK, On a Theorent for Expanding Functions of Functions. 349

 d
 whence, since fO, f'O, &c., are respectively a, b . . .,the symbol n may be

 dO
 replaced by D.

 A inore detailed demonstration miay be derived from Taylor's theorem.
 Thus, if z represent p (ft, J''z, f"z . . . )

 dlz 1 d 2z
 J [f (z + x), f' (z + x), ... z + x - + - 2d2 + . . (2)

 d dz, d2z
 The operation - is to be performned successively on z, d . d . a . , all func-

 tions of fz, t'z . . ., and may therefore be decomnposed, on the principle of
 partial differentiation, into

 d .1d +.lt-dI
 dz c1z +fdf'z+*

 d
 Let z = O, and let - be represented by D; then, since fO =a, fO= b.

 d d

 and (2) becomes

 (ft, J x. ..= + XD + 2 X?D + p. (a) b .. .)
 1

 The "remainder after n terms" is, of course, ,- x! XDnp (fxI, fix1.. . .), where

 x = fOx, 0 being some proper fraction.

 The most imnportant special case of the general theoremi is this,

 1 2 21 3 -( Pfx Dpa + XDa + x2D2pa + 2 X3D3a + .... (3)
 Here, of course, as before,

 Jx=za+bx+ 4 cx2+2.3dx3+.
 d d

 D- 6da ?Cdb+
 This formula will be found, I think, superior in directness to Arbogast's
 method, while yielding the same results for the sanme expenditure of
 labor.

 If, in (3), we put b - 1, and c - d .. - , we have remaining, as a
 special case, Taylor's theorem.

 89

This content downloaded from 89.187.177.72 on Mon, 13 Mar 2023 21:25:37 UTC
All use subject to https://about.jstor.org/terms



 350 MCCLINTOCK, On a Theoremt for Expanding Functions of Functions.

 Both (1) and (3) may be modified as follows. For a, write a; for b, Z3; for

 c, 2y; for d, 2. 3n; and so on. Then

 fx - a + 3x +vyx2?+ X3x+.
 f'x - + 2yx + 36x2 + 4ex3+ +
 J"x -2y +2.3nzSx+3.4ex2+4.5'x3+...,
 f -x=2. 36 +2.3. 4ex + 3.4. 5-x2 +...

 and so on, and d d d d
 D -- +2)/ - +3c - + 4,,-6+

 Let

 where (. (fX, fX,f2X. . .) - (fx, f'x,f"x. . .)
 fx - a + $3x + rx2 + 6x3 +
 f;x =f'x - + 2ylx + 36X2+...

 2 = 2 fjx =y+ 3&x + 6ex2 +.

 f3x 23f"'"x=S+4ex+10,xx2+...

 and so on. The law of the nurnerical coefficients is obvious. Each inay be
 found by adding the one above to the one on the left hand. Then (1) assumes
 this forin,

 (Jx (fX ,ti f2X * *.= + XD + 2 x 2D2 + . ) a5(a , j ,y.. (4)
 and (3) becomes

 a,lfx - Aa + XD4X + 2 X2D24a + 2 -3X3D34 +.**. (5)

 In these theorems, as has just been stated,

 D- 3 d + 2 d + 3 d +.

 Occasions may arise when these modifications may be found more convenient

 in use than the forms first given.

 The forrnulie thus far considered hold good, not only when fx is an alge-
 braic function, but also in cases where fx is an infinite series. Let us now
 assume thatfx contains no power of xc greater than Xn; in other words, let

 .fx = a + bx + ... + jx n -1+ _; kXn 1 1!

 Having thus restricted the meaning of Jfx, let a be replaced by a; b
 by n{3; c by ni2); d by n3'); and so on, where n") represents the factorial
 t(n -1)(n-2)...(i -r+1). Then
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 MCCLINTOCK, On a 7Theorem) for Expaniding Functions of Functions. 351

 jx = a + n3x3 + 2 x2 +. + xxt

 J'x = 3 + 12) yx + 2 X n%S2 + + nxxml-

 f"X - n2+7 + n +.x . + n) - 2

 J(nl- 1)x It f1)t + n) xx,

 j (n)x n x.
 Let

 (Jfx, f1x, . . . fn - 1x, fiX) = cp (Afx f'x ... f(l-1x f ()
 where

 fx - a + n(3X + 4- f2)yX2 + xX,,

 f'lx 1 .f'x= + (n-1) Ix+-- (n 1)2)SX2 + + XXn-

 ft2$ fix + (n-2) x+ 2 (it 2)2)EX2 + + Xxn-2

 fn-1 ni) f(nl)x L + x-,

 gn rR,,, f (nx + x.
 Then

 (a , t . . . t, x)= (a, , . . .j, k)
 d d d d 1 d

 and, slnce = , - and so on,
 da,f d d d d3 n dd d d

 D = n, d + (n-1) y/d + (n-2)T d + . + 2 d + x d
 Malking these several substitutions in (1), we derive a known result, due to
 Dr. Salmon,

 4 (fx,fX, * *fn - Xf = (1 + XD + X2D2+.. .)4 (a, /3 . . x x). (())
 This theorem, to wlhich the namne of Salmon's Theorem j: has been assigyned, is
 usually given in the opposite order, as, for exainple, in the following state-

 ment:t "1If f is any function of a, b, c. . ., and f' the sarne fuinction of

 * This name was assigned by rae, withouit consultino' Dr. Salmon, in error. The tlheorem, as far as I have
 been able to ascertain, seems first to have beein stated anld proved in a complete form by Cbev. FaA ce dorllruo.
 See his valuable thesaurns "Theorie des fornmes binaires," (Turin, 1876,) p. 130, and again p. 310. So 1mucholl of
 it as is containecd in Salmon's classic work had been previously statecl by Cayley in Crelle. .J. J. S.

 t See Salmon, Higher Algebra, 3d ed., page 59, art. 63; Sylvester, " On a Generaliztation of Taylor's Tlho-
 rem,1a" Philosophical M31agazine, Aug., 1877; Jahrbuch uber die Jobrtscluille (led MathematiA, Vol. 9, p. 171.
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 a1, b1, c1.. ., where 1 = a, b1 - b + ah, el = c + 2bh+ ah2, 2 d d + 3ch
 b112 + ah' ~~d + d( d + 3bh2 + .h.... ,and if Q represents the oper ation a -d-b + 2bd+3cd+ . .'

 then

 f'; = + kQf + -1_ Qf* _- 3fin+ . . . * 2 ~2.3 hl+
 Here, of course, I stands for our x, Q for our D, a for our Y., b for our t,
 anid so on.

 Symbolic demonstrations of these theorems are not difficult to obtain.

 Thus, let u6 be an arbitrary function of . Employing the symbol of enlarge-
 mnent E", representing an operation such that E?zy = ( y + n), we have
 U1 EUo, u2 - E2to, and so on. Let 4 be any function of uo, Eut0, E 2Io . .. , and
 in this function let us treat the symbol E, wherever it occurs, as itself the

 subject of operation. Einploying a sliglhtly different type, let E represent the
 operation of enlargement with respect to E, so that Ex(pE = (E + x), and, simi-

 larly, let D =log E = ,d representing differentiation with respect to E. Then,
 since

 Ex=1 +XD+ - X2D2 + x 3DI+ +...

 2 2. 3
 Ex' = 4 + XD4, + 2 X D-+ 2. 3X XD3+..

 It will be seen, on examination, that this is Salmion's tlheorem. The opera-

 tion Ex changes E, wlherever it occurs in 4, into E + x, and 4; becomes thie same

 function of It0, (E + X) in0, (E + x)2 o0, . . . that it was before of Ito, Elio, E2Uto
 That is to say,

 in0 is replaced by io0,
 U1- EUt " " ' (E + X) Ito =u1 + XU0X
 -2 E2UO " (E + X)2 UI U2 + "XU1 + X2ut0o

 and so on. Let P,) (Eanu,) express 4 as a function of Enlt6,, all the other varia-
 bles inivolved in 4 being regarded as constant. Then*

 D= Dp1 (Eulo) + D02 (E 2tu0) + .
 Since

 Dcbn (E it)) - p' (E t6a) DE'tt0 - p) (E n(0) IE'- - to -d1

 *It is unnecessary to discuiss the well-known principles by which the legitimiiacy of these steps is estab.
 lished. Any reader to whom they are not familiar may refer to the " Essay on the Calculus of Enlargement"
 recenitly printed in this Journal.
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 we have, after substitution,

 dI; t n1 + 2nt1 do + 3IG2 duC

 or, since may be any fulnction of the variables in question,
 d d d

 D = Io + 2ud + 3U2 +

 Or, simnilarly, let D dO and let

 vz '6o + - 6 + .2. +
 2 2.o

 then u0 - vo, it1 = DVO, U2 D2VO, and so on, and if we inake E such that
 d

 Ex4D - q (D +x), and D = loo' E - d-, the demonstration will proceed as

 before. If, on the other hand,

 vz to + t1Z + U2z +3Z3+. .

 we shall, proceeding as in the last case, obtain a theorem equivalent to (1),

 providecdfJ is an algebraic function.
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 PrelWninary Notes on Mir. Hall's Recentt Discovery.

 B-Y H. A. ROWLAND.

 THE recent discovery by Mr. Hall of a new action of magnetism on

 electric currents opens a wide field for the mathematician, seeing that we

 must now regard most of the equations which we have hitherto used in elec-
 tromagnetism as only approximate, and as applving only to some ideal sub-
 stance which inay or may not exist in nature, but which certainly does not

 inclucde the ordinary metals. But as the effect is very smnall, probably it will

 always be treated as a correction to the ordinary equations.
 The facts of the case seem to be as follows, as nearly as they have yet

 been determined: Whenever a substance transmitting an electric current is
 placed in a magnetic field, besides the ordinary electromotive force in the

 medium, we now have another actingy at rioght angles to the current and to
 the magnetic lines of force. Whether there may not be also an electromotive
 force in the direction of the current has not yet been determined with accu-

 racy, but it has been proved within the limits of accuracy of the experiment

 that no electromotive force exists in the direction of the lines of magnetic
 force. This electromotive force in a aiven medium is proportional to the

 strength of the current and to the magnetic intensity, and is reversed when
 either the primary current or the magnetism is reversed. It has also been

 lately found that the direction is different in iron from what it is in gold or

 silver.

 To analyze the phenomenon in gold, let us suppose that the line AB
 represents the original current at the point A and that BC is the new effect.
 The magnetic pole is supposed to be either above or below the paper as the
 case may be. Thie line AC will represent the final resultant electromotive
 force at the point A. The circle with arrow represents the direction in which
 the current is rotated by the magnetism.

 NORTH POLE ABOVE. NORTH POLE BELOW.

 C C

 3 B

 354
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 It is seen that all these effects are such as would happen were the electric

 cutrrent to be rotated in a fixed direction with respect to the lines of magnetic
 force and to an amount depending only on the magnetic force and not on the

 current. This fact seems to point immediately to that other very important

 case of rotation, namely, the rotation of the plane of polarization of light.
 For, by Maxwell's thieory, light is an electrical phenomenon and consists of

 waves of electrical displacement, the currents of displacemeent beinog at right

 ang,les to the direction of proptagation of the light. If the action we are now
 considering takes place in dielectrics, which point Mr. Hall is now investi-

 gating, the rotation of the plane of polarization of light is explained.
 I give the following very imperfect theory at this stage of the paper,

 hoping, to finally give a more perfect one either in this paper or a later one.

 Let 4 be the intensity of the magnetic field, and let E be the original
 electromotive force at any point, and let c be a constant for the g-iven mediumn.
 Then the new electromotive force, E', will be

 E'-_r,t-E.

 and the final electromotive force will be rotated through an angle which will

 be very nearly equal to r 4Mt. As the wave progresses throug,h the metlium,
 each time it, the electromotive force, is reversed it will be rotated tlhrough this

 angle, so that the total rotation will be this quantity multiplied by the numlber

 of waves. If 2X is the wave length in air and i is the index of refraction and c is

 the length of medium, then the nuinber of waves will be - and the total rotation

 The direction of rotation is the same in diamagnetic and feromagnetic

 bodies as we find by experiment, being, different in the two; for it is well

 known that the rotation of the plane of polarization is opposite in the two

 media, and Mr. Hall now finds his effect to be opposite in the two media.
 This result I anticipated from this theory of the magnetic rotation of light.

 But the formula makes the rotation inversely proportional to the wave

 length, whereas we find it more nearly as the square or cube. This I con-
 sider to be a defect due to the imperfect theory, and it would possibly disap-

 pear froin the complete dynamical theory. But the formula at least miiakes
 the rotation increase as the wave leng,th decreases, which is according to

 experiment. Should an exact formula be finally obtained, it seems to ine
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 356 ROWLAND, Preliminary Notes on IMIr. Hall's Recent -Discovery.

 that it would constitute a very important link in the proof of Maxwell's

 theory of light, and, together with a very exact measure of the ratio of the
 electromagnetic to the electrostatic uniits of electricity which we made here

 last year, will raise the theory almost to a demnonstrated fact. The determi-

 nation of the ratio will be published shortly, but I may say here that the

 final result will not vary much, when all the corrections have been applied,
 from 299,700,000 metres per second, and this is almost exactly the velocity

 of light. We cannot but lamnent that the great author of this modern theory

 of light is not now here to work up this new confirmation of his theory, and

 that it is left for so much weaker hands.

 But before we can say definitely that this action explains the rotation of

 the plane of polarization of light, the action must be extended to dielectrics,
 and it must be proved that the lines of electrostatic action are rotated around

 the lines of force as well as the electric currents. Mr. Hall is about to try an

 experiment of this nature.

 I am now writing the full mnathematical theory of the new action, and

 hope to there consider the full consequences of the new discovery.
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 On Certain Ternary Cubic- Forn Equations.

 BY J. J. SYLVESTER.

 ExcuRsus A. On the -Divisors of Cyclotomic Functions.

 Title I. 6ycloto nic Eunctions of the 1st Species. In the preceding section
 which should have been termed and will be hereafter referred to as the Proent

 of Cliapter I, I stated that the proof of the first batch of theorems on the irre-

 soluble cases of equations in numbers of the form x3 + y3 + Az3 - 0, or, as we
 might say, of the formns of numbers A irresoluble into a pair of rational cubes,
 depends on the demonstration of the formi of the numerical liniear divisors
 of the function x3- 3x + 1. At the timne when this proem went to press I had
 reduced to a certainty the law of the (livisors by numerical verifications

 without end, but had not obtained a rational demonstration of it, nor was I
 able to find such or even a statenlent of the law itself in any of the current
 text-books, such as Gauss, Legendre, Bachnyann, Lejeune-Dirichlet or Serret.
 I was therefore coinpelled to seek out a demonstration for inyself, and in so

 doing was unavoidably led to consider the general theory of the species of
 cyclotomic (Kreistkeilung) functions of which the cubic functions above written
 is an example of what may be called the second species and incidentally also

 the theory of the simpler or first species which, although discussed ever sinee

 the time of Euler, appears to me to remain still in a somewhat cloudy and
 incomplete condition. As this inquiry extends beyond the strict needs of

 the subject which called it forth, I entitle it an excursuts. It will be necessary
 for me eventually to introduce another and still more important excursus or

 lateral digression on certain consequences of the Geometrical Theory of Resi-

 duation, which theory itself also took its rise in and is required for the puir-
 poses of the arithmetical tlheory which formns the subject of the entire menmoir.

 If fw is any rational integral function of the order C in its variable, we
 know that in respect to a prime number p as modulus fx regarded as the
 subject of a congruence cannot have more than o distinct real roots. If we
 take pi as modulus, certain conditions increasing in nuniber with the value

 of j, will have to be satisfied in order that fx may have a superfluity (i. e.
 more than o) of real roots.
 91 357
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 358 SYLVESTER, On Certain Ternary Cubic-Form Equations.

 One condition, the universal sine qua' non, will serve for tlhe object I have
 in view, so that it will be sufficient to make j 2. Obviously when this

 superfluity exists two of the roots must differ by a multiple of p since other-

 wise there would be a superfluity of roots qud' the first power of p as modulus.
 If then a and a + Xp where 2X <p be two of the roots, we have fa- 0 and
 fa + 2f'a . p + p2 _R 0 mod. p2. Hence fa - 0 and f'a -0 mod. p, so that

 fa+.p= Oandf'a+yp =0.
 Applying the dialytic method to eliminate a it is obvious that the result-

 ant of these two equations will differ only by a multiple of p from that of fa
 and f'a, i. e. from the arithmetical discriminiant of fa (I use the term arith-

 inetical to distinguish it from the algebraical discriminant in obtaining which

 latter fx is supposed to be affected with binomial numerical coefficients

 X *2 X .. . and the factor X to be struck out from each of the two equa-

 tin d(x, 1) df (x l)) t'ions f (l =0 (d')~?

 We see then that a rational integer function (the subject of a congruence)

 cannot have a superfluity of roots in respect to the power of a prime pi as

 modulus, unless the strict (arithmnetical) discriminant of the function con-

 tains p.

 It is necessary for the purpose I have in view to express the strict rela-

 tion between the arithmyetical discriminant of a function Afx and the product

 of the squares of the differences of its roots '2fx/. I shall for greater simplicity
 suppose that the initial coefficient of fx is unity, as it is in the cases with

 which we shall have to deal.

 We know that Af = y<2f where y is a function of n the order off, so that
 to determinie y we may specializef in any nmanner we please, provided the
 order is maintained. Let fx- Xn- 1. Then it is easily proved that, making

 2r . . 2w
 pcos + sin

 (n)n f- (pn -) - n
 (n - 1)(n -2)

 so that ;2Wf ( ) 2 .itn
 and A -f(_)n -l. ne 2

 Hence A/f (-)(n-)i 2nf-2'2f*

 *As regards the application to be made of this result it was of course not necessary to determine the index
 of the power to which (-) is raised, but it was hardly worth while to leave it undetermined.
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 SYLVESTER, On Certain Ternary Cubic-Form Equations. 359

 expresses the universal relation between the arithmetical discriminant and

 the squared product of the root-difference of a function. If we had been

 dealing, with the algebraical discriminant, it would. have been necessary to
 replace n n2 by n-- in the above equation. It is furthermore to be observed

 that the discriminant is fixed in its sign by the condition that the term con-
 taining the highest power of the product of the expressed coefficients is to be

 taken positively.

 So again it will be seen presently to be necessary to ascertain the strict
 relation between the resultant of two functions of degrees r, s and the product

 of the differences between the several roots p of the one and the several roots a

 of the other of them, or, as we may say, between Rr,s and -DP, where if we
 choose to pay attention to algebraical signs that of 1R4, may be understood to
 mean the resultant so taken that the terin containing the highest power of the

 coefficient in the r-degreed function is positive and 14,,, to mean the product
 of the rs differences (p - ).

 I shall aga.in, for greater simplicity, suppose the initial coefficients of each
 of the two functions to be unity.

 We know that Rr4s = y-D,,, whe3re y is a function of r and s exclusively.
 To determine it we nlay take xr and V + 1 as the two functions, it will be
 found without difficulty that

 Rr, s=1*and_ lp ,, =( (l))r )s+

 Hence we have universally Rr(,s = ()s+ r-D P
 This seems to be the proper place to ascertain (what will be needed for

 future purposes) how far or under what qualifications the reciprocal connexion

 of the two facts: 1. Of two functions in x having a comrmon root. 2. Of their
 resultant being zero, admnits of being extended to roots of congruences in
 respect to a prime-number modulus.

 Suppose.ft, gx to be two in all respects (numericallyt as well as alge-
 braically) integer rational functions of the degrees i, j in x, then by eliminating

 dialytically (i + j - 1) powers of x between
 fx, xfx, x2fx. . . xi-'fx, gx, x

 * Thus ex gr. let r = 4, s = 2. Then Rr, . is the dialytic resultant of
 X5

 X4

 Z=5 + Xs

 X4 + x2
 Xsc + x

 x2 +1
 which is obviously equal to unity.

 t By which I mean that the coefficients are exclusively integer numbers.
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 360 SYLVESTER, On Certain Ternary Cubic-Form Equations.

 we may obtain the equation Xxfx + yxgx = Rxq (q having any integer value
 from 0 to i +j - 1) where R is the resultant of f, g and Xx, yx are in all
 respects integer functions of x of degrees j- 1 and i - 1 in x whose values
 depend on the value of q. If, then, fx and gx are simultaneously zero for
 some value of x, we must universally have R = 0 even if x should be zero, for
 thus we miight make q = 0.

 But this equation will not suffice to show that fx and gx will simulta-
 neously vanish for some value of x, provided that R = 0 for every value of x
 which inakes ft vanish, might, as far as this equation discloses, (and for all
 values of g), have the effect of inaking yx vanish.* We may, however, prove
 the fact in question, on a certain hypothesis to be presently stated, by avail-
 ing ourselves of the knowledge that R is, to a numerical factor prs, the pro-
 duct of the differences between the roots off and those of g.

 The hypothesis I make is that Jfx 0 mod. p is a congruence all whose
 roots are real; in this case I shall show that if the resultant R of fx and gx
 satisfies the congruence R- 0 mod. p (i. e. if R contains p) then gx must have
 at least one real root in common with ft qua mOdUlUSP.

 From the congruence of fx- 0 mod. p we may, by a well known princi-
 ple, infer the existence of an equation Fx = fx +pcpx = 0 whose roots are the
 same as those of the conigruenice above written, and the dialytic method of
 elimination renders it self-evident that the resultant of Fx and gx will differ
 only by a multiple of p from that of fx and gx, and will, therefore, be a mul-
 tiple of p.

 If, then, we call the roots of Fx (all real by hypothesis) a1, a2, . . . ai, we
 shall have ga1 .ga2 .ga3 . . . gai 0 mod. p, and, as all the factors on the left
 hand side of the equation are real, one of them must contain p. Hence, if
 B (fx, gx) 0 O mod. p, and fx 0 mod. p has all its roots real, one of these
 roots must belong also to the congruence gx- 0 mod. p.

 Goino back now to what precedes this investigation, let us determine
 strictly the relation between the arithmetical discrimninants and resultant of
 two functionis in x and the discriminant of their prodnct.

 Let o, 1 be the degrees in x of two altogether integer functions fx,f1x,
 and suppose Fx =fx.fi1x. Then obviously '2Fx= 2fx 2fxX (D(f f))2.
 Hence Aw-2woI2AFx (FX +)w + ?-2fzx . *f1x (R (fx,j1x))2.

 * I th,ink it would not be incorrect to say that in all cases the fact of the resultant of two functions of x
 containing a prirne number raises a strong presumption that the functions have a common congruence root in
 respect to that number.
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 If, tlhen, p any prime number is contained in Aft, and o, c()) are each less
 than p, p will necessarily be contained in Acx. And as a particular case of

 this theorem, if p were contained in the discritninant of any factor of xP-- 1

 it would be contained in the discrimrinant of xP-- 1, i. e. in a power of

 (p- 1), which is impossible. Hence, by a preceding theorem, no factor of

 xP-l 1, regarded as the subject of a congruence, can contain a supe'flaitiy of
 real roots (i. e. more real roots than there are units in its degree) in respect to

 the modulus pi.

 It is easy to show, althouoh I do not find it distinctly stated in anv of

 the current text-books, that xP-- 1- 0 nod. pi has p - 1 real roots.

 For let x - yPj. Then the congruence becomes

 9P '- (P-')- I1--O mod. pi,
 where p'-'. (p -1) is what is commonly designated as the qp function of pi,
 the numnber of numbers less than pi and prime to it, (the so-called qp func-
 tion of any number I shall here and hereafter designate as its r function
 and call its Totienit). This last congruence by Ferm at's extended theorem

 has all its roots real. It is easy to see that they will consist of (p -1)

 groups, each group containing p'-' numbers for which the value of x qatdC
 Modulus pi will be the same, but different for numbers belonging to two

 different groups. For let y, be any of the y roots, and ygPj-l 0 mod. pi.
 Then qu( mod. p, y2z Y2 and y<' y1, because p-l -1 contains p - 1.

 All the values of y2 will, therefore, be comprised in the series

 yl, Iyi +p,9 y, + 2p, I * y, + (p i-1 1l)p,
 and (yg + 2 p)P2' - yi<j+pK Q.
 Hence the pi term-s of the series (and no other valtues of z) all satisfy the

 cong,ruence
 ZP~~~ -ml~_ )od. p .

 Hence x = yPi_' has (p - 1) distinct real values qit(t pi or there are (p - 1)
 real roots to the congruence xP-1 1-O mod. pi. Hence, if ft is any
 factor of xP-1 1, ft 0 [nod. pi] will have all its roots real.

 For letfx.fix - xP-1-I
 Then since xP -'- 0 mod. pi has all its roots real, and fx and f1x have

 no congruence root gUad inod. p in common 3 if .fx 0 O to the modulus pi has

 nlot its full quota, fix will have a superfluity of roots, but this has been shown
 to be impossible.

 *For if this were the case two factors of XP -1 1- qua mod. p having two roots in common xP - 1 - 1
 would not have its full quota of roots.

 92
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 362 SYLVESTER, On Certain Ternary Cu3ic-Form Equations.

 Now, let p = mk + 1. Then xk' 1 is a factor of xP-- 1. Let Xkx be the
 factor of x- 1, which contains all its primitive roots; this is what I termn a

 cyclotownic function of the first species to the index k. X,x being a factor of
 Sk - 1 is a factor of x2'- 1, and will therefore, by what has just been shown,

 have all its roots real qua the modulus pi.
 Hence a cyclotomnic function of the 1st species to the index k contains,

 as a divisor, any power of any priune number of the formn r/k + 1, and, more-

 over, if o is its degree, (where o represents the totient of k), (rn/k + 1)i will be
 an (-fold divisor of the function, i. e. will be a divisor tlhereof corresponding
 to (o distinct valuies of the variable of the function, i. e. values incongruent

 with one another qudc the modulus pi.
 The divisors of the cyclotomic function to index k mnay be divided into

 two classes, viz: divisors which do not divide the index, which may be called
 superior or extrinsic divisors, and divisors which divide at the same time the
 function and its index which 1may be termed inferior or intrinsic divisors. I
 shall begin with showing that any prime numnber extrinsic divisor dirninished
 by unity must contain the index, i. e., that if p is an extrinsic divrisor and k the
 index, we must have p = rnk + 1 which is a reciprocal proposition to the one
 just established.

 If possible letp, any prime such that p - 1 does not contain k nor k con-
 tain p, be a divisor of the cyclotomic function of the first species %kx. And
 let A be the greatest common divisor of p - 1 and k. Then we slhall have

 I 1 _0 mod. p. But we have also Xkx - 0 mod. p. Hence the resultant

 of x8 - 1 and Xkx must contain p, but Xk I contains xx; d Jbrtiori therefore

 the resultant of this and x'- 1 will contain p. But this resultant is evidentlv
 k k

 equal to the value of x -1 (where x' = 1) raised to the power A, i.e.

 and therefore, ex-hypothesi, does not contain p.
 It has tlhus been proved that every extrinsic divisor of XkX can only be of
 the form qr/k + 1.

 Next let k - k/1p' (k/ being prime top) and suppose_p to be a divisor of XkX.
 Then p is a divisor of (xPj))A 1 and, therefore, by what has been shown,

 must be of the form mkr + 1, unless xPv- 1 contained p in wlich case since
 pi - 1 is divisible by p - 1, x - 1 must contain p and consequently p will be
 a divisor of XJ.
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 To find the value of Xj1 we may proceed as follows:
 Let k aa. b. c. d.eE. Then the totient of k is

 a- t1 '/ - - 1 -l e- 1J -(yS + "SaFy + 5@ |
 a~ '. b~'. c~. d~1. e - { : a,3~ e+2 ,-a,3/2c }

 and if we write this L + ]JI+ N-A P- Q -R

 (x - 1) (XQ - 1) (X? 1)

 and so in general the expression for X,x, however many the distinct prime
 factors of k, imitates and follows patri passt the expression for the totient of k;
 and if L, AL, N, . . . be the positive terms and P, Q, R, . . . be the negative
 ones in the algebraical representation of that totient by the common theory

 of vanishing, fractions, shows that Xj L -.1 N-. . Thiere are two cases: 0 ~~~~~~~P. Q. ft.. .
 10. When k contains i distinct prime factors, where i > 1. In that case sup-
 posiing a to be one of them and a its index, the index of ct in L. i1l. N..
 will be

 a{ 1+ 1-)(i-2)+ (i-1)(i 2)(i-3)(i-4)+)+
 and in P. Q. 1 ....

 ag l+ i1) (i -2) (i 3) }

 so that the index in the quotient is x (I l)i-', i. e. is zero. And so for

 b, c,e.. Hence Xjc - 1.  Xaa~
 20. When i = 1 and k = aa the value of ,x = -l- and conse-

 quently Xk = a. Hence, when k - 1 pJ, and kI is not unity, p, if a divisor of
 X,x, mnust be of the form rntkc + 1. Moreover, the case of kc1 - 1 offers no
 exception to tlhis conclusion, inasmuch as wvhen k1 - 1, p, (like every otlher
 numtber) comnes under the form ink1 + 1.

 It now retmains to show the converse that if k= kiPj and p - ritkc + 1,
 p will be a divisor of XkX.

 For the sake of greater simplicity, we imay consider apait the case wlhere

 I=pi. HIere %kX - -- - =1 + XpJ-'+ X21,i-'+ (P+ j-t)1f which, (to

 odulus p) I 1 x + x2 +.* + x = - and, therefore, can only
 contain p, if xP 1., and, consequently, x- 1 contains it. Ilence, the only
 root of X,x 0- [mod. p], for this case is x - 1.
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 Moreover, only p itself, and no higher power of p, can be a divisor of
 the cyclotomic function in question, because

 (1 + 2 p)P'-1 = 2p+*+... + Bp2+ c3 +... + Lp)p)- P)p

 does not contain p2.t

 To save unnecessary fatigue of attention, about a small matter, to my
 readers and myself, I will take, as a representative of the general case,

 k = k_p, k/ = abc, p r mkn + 1; it will easily be verified that the increase
 of the number of distinct prime factors a, b, c, or the affection of them or of

 p with indices, will in no mnanner affect the course of the demonstration or the
 validity of the conclusion.

 In the above special case

 (X-cP 1a)b(X - - 1)(XbCb- 1 ) (XlP - 1)(xbp - 1)(xcP (x 1)
 XkX= (X(xbc 1)(Xabp - 1)(Xacp 1)(Xb,p 1)(Xa 1)(XI 1) (Xc 1)(XP _1)

 Let now xkl-1 - 0 so that xP x. Then obviously kX =abc

 Hence the resultant of x,,x and X,x is pT(k1) (rk/ meaning the totient of kl).
 Consequently since x1x -l- 0 [mod. p] has all its roots real, one root at least of
 x- 0 [Emod. p] will be a root of the preceding congruence.

 It will be noticed that if instead of X,,x we took Xk lx where A1 is a factor
 of k/ it would not be true that the resultant of it and XkX would cointain p.

 For exaimlple, if k'/ = ab and xk'l - 1 = 0 we should have
 xabep +I X ab p

 xk abc (b x + xab i - * -1
 Or again if k'1= a and xk" - 1 0 we should liave

 XabcP_ 1 xab_1 xac 1 ,f- 1 1 1

 x -1 * X(bp_1 Xacp j -Pi p P

 as before. So that the resultant instead of being p would, in each case, be 1,

 and consequently xk - 1 0 [mod. p] and x"' - 1- 0 [mod. p] could not
 have a root in common. And so in general it may be shown that if k - k/cpi

 k,

 and k'l = a the resultant of xk' - 1 and XkX is 1, except when 3 = 1 in which

 case it is p.

 Hence the roots of X,x _ 0 [mod. p] are to be sought not among all the
 roots of xk - 1- 0 [mod. p], but exclusively among only such of them as
 belonig to the congruence XZkx 0 ( [mod. p].

 *When p = 2 and j 1 the third term will not be of a higher power in p than the second term in the
 development of the numerator, so that the conclusion ceases to hold; as ought to be the case for the cyclotomic
 of the 1st species to the index 2, viz: x + 1 will obviously contain every power of 2 as a divisor.
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 SYLVESTER, On the Divisors of Cyciotoloic PTunctions. 365

 We have seen that if _p, a prime nunmber, is an extrinsic divisor of a cyclo-
 tomic function to the index k, any power of p is also a divisor of the function.

 On the contrary, if p is an intrinsic divisor it will appear that p2 cannot
 (and consequently no higher power of p than the 1st, can) be a divisor. For

 if x satisfies the congruence Xk1X -0 [modl. p] we must havTe x1 - 1 + 2p and
 xP xmkl. x = (1 + mp) x, where m represents a series of ascending powers

 of p. Hence
 xAiP 1 xab 1 xnc _1 x7 ' 1 xaP _ 1
 %-1 t I Cp_1 P_ 1 * _ I * _ I

 where the first factor, being equal to Xkl(P-1) + Xkl(p-2) + + 1 will be of
 the form p (1] + Pp), P being, a series containing only positive powers of p.
 Ag,ain,

 Xab 1 QpXab Q2p2x2ab
 (1 + Qp) X-b1 + ab (1 +Xa

 where Q1 is an infinite series containing, positive powers only of p and x.

 In like manner x 1 (1 + Rp)Il 1 = 1 + R,p where R1 (lilke R) is an

 infinite series of positive powers of p and x, and so for each separate factor.

 On multiplying the product of these infinite series by p (1 + PI), we
 shall necessarily obtain a finite series of the formn p (1 + Gp). Consequently,
 the cyclotomi-ic function will divide by p but not by p2. And we mig,ht have
 used this method exclusively to have established the fact of the first power

 of p, under the conditions presupposed, being a divisor of the function. This

 metihod serves also to establish directly that every root of Xk1X- 0 is a root
 of the congruence X--z 0 [mod. p]. And we thus see that the intrinsic

 divisor, when it exists, is a rk,-fold (livisor of the cyclotomic function.

 When k is the index to a cyclotomnic function, and k - k,_p, where p is a
 pritne not contained in k, let us agree to call k, the sub-index to p. Then,
 froin what precedes, we may draw the conclusion that a cyclotomic function
 of the first species has never more than one initrinsic divisor, which, if it

 exists, is the greatest priane number contained in the index, but is such only
 in the case when diminished by unity, it contains its own sub-index, (a con-
 clusion necessarily satisfied when the index is a prime, for then its sub-index

 is unity), and, moreover, that the first power only of such intrinsic divisor,
 when it exists, is a divisor of the function.

 It being true and capable of easy demonstration, that when a rational

 integer function contains, as a divisor, each of two numbers prime to one
 93
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 366 SYLVESTER, On Certain Terntary Cubic-Form Equations.

 another, their product will also be a divisor of the function, it follows that

 any number, each of whose prime factors, dimninished by unity, contains the

 index and also every such number multiplied by the highest prime number
 which is contained in the index (provided that when dilDinished by unity that
 prime contains its own sub-index) is a divisor of a cyclotomic function of the

 first species. This, as I have said, is only another name for that irreducible

 factor of a binomial Xk- 1 whose degree in x is the totient of k.

 When the cyclotornic function of any species is made homogeneous by

 the introduction of a second variable y, relatively prime to x, it becomes a

 form, (in the technical sense of the word), and may then very conveniently

 be designated a cyclo-qttantic.
 Title 2. Cyclotoinic Functions of the Second Species (Covjugate Class).* I

 pass on to the theory of the divisors of the function which has for roots

 the sum of the binomial (zweigliedrig) groups of the primitive roots of

 k- 1, or, in other words, all the distinct values, 2 (k) in number, of
 2z- k

 2 cos kwhere x is any number less than - and prime to k.

 Such a function, in which the coefficient of the hig,hest power of the varia-

 ble is supposed to be unity, I call a cyclotoinic function, or simply a cyclotomic,
 of the second species and conjugate class to the index k. It may be found mnost

 readily by dividing the corresponding one of the first species, whose variable

 say is x, by x T (k), substituting u for x + 1 and applyinu for successive
 values of in the trigonometrical formula for expressing cos mO in terms of

 powers of cos 0, except when the index is a prime number, in which case the

 function in tu is given more expeditiously at once by the well-knowrn formula

 >+ ?n -1 m-1 m-2 m-2 _ 3_ + (rn -2)(n-3) ,?4 (n -3)(m-4) m-5
 rni m-2rn-2m1. 2

 which last coefficient, in the French edition of the Disq. Arith., 1807, it may

 be worth noting, is written erroneously (- 1)(rn-4)
 1. 2

 I have thought it would be useful anid convenient for many of my readers
 to be able to see before them the functions of the two sorts, and I accord-
 ingily annex a table of their values for all indices up to 36 inclusive.

 *When, in the matter comprehended under this title, by inadvertence, cyclotomic functions of the second
 s)ecies are spoken of without a qualification annexed, it is to be understood, in all cases, that only those of the
 conjugate class or, in other words, those whose roots are all real, are intended. For brevity I shall usually call
 this class of functions cyclotomics of the second sort.
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 SYLVESTER, On the -Divisors of Cyclotomic Fucnctions. 367

 To the index 1 or 2, the cyclotoinic of the second species has no existence.

 Those of the first species to the index 1 or 2, and of the second to the index

 3, 4 or 6 are linear, and of course as formns, have no arithmetical properties,
 but contain every numiber as a divisor, linear forms being, as it were, the pro-
 toplasm out of which the higher forms are organized.

 Table of Cyclotomnic Fanctions of the first species and the conjugate class of the
 second species for all values qf the index frorn 1 to 36 inclusive.

 Index. 1st Species. 2d Species, Conjugate Class.

 1 x 1

 2 x-+
 3 x2+x+1 u +1

 4 x2 + 1 u
 5 x4 + x+ X2+ X + 1 u2 + -l
 6 x2- x+1 u-i

 7 x 6+ x 5+ x4 x3x2+ x +[ 1 u3 + U2 - 2u -1
 8 x4+ 1 u2- 2

 9 x6+X3+1 U3-3u- 1

 10 x4 X3 + x2-x+1 +2 u_ U + 1
 11 x'0+ x9+ + x + u 15+ U4 -U3 3a2 + 3u + 1
 12 x4 x2 + 1 u 2-3

 13 x 2+ x11+ ...+ X+1 u46+ u5 -5U4 -4U3 - 6u2+ 3u-1

 14 x6_x5 + x4-x3+ x2-X+1 u3- _u2+ 2u + 1

 15 x8-x7-f-.X _-X4+ X3-X + 1 u4-u3-4U2+ 4u + 1

 16 x8+1 u4-4U2+2

 17 x16 + x15+ ..+ x + 1 U8+du-7u6-_6u5+ 15U4+ 1OU3-1OU2 -4u+ 1

 18 x6-X3 +31 +u 3-3u + l
 19 x18+ x17+ . . . + x+1 u9+u8-8U7-7u6 +21u5+15&4

 + lO13-_ OU2 + 5u + 1
 20 x8-x 6 + x4-x2 +1 u4-5U2 +5

 21 x12 _ x" + x9 x8 + x6 x4 u 6 u5- 6U4 + 6,3+ 8U2-8ut +1

 +X3-X + 1

 22 xo _ x9 + . . . -x+1 u5-u4-4U3 + 3u2 3u + 1
 23 x22 + x'1 + + x + 1 ull + u10-0O9 - 9u8 + 36U2 + 28u6-56u5

 - 35u4 + 3563 + 15U2- 6u-1

 24 8-_X4 + 1 u 4 4U2 +1

 25 x20 + x15 + x 10+ x5 + 1 U10- 10u8+ 35U6+ U5 -- 50u4-5u3+ 25u2-5u-1
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 368 SYLVESTER, On Certain Ternary Cubic-Form Equations.

 Index. 1st Species. 2d Species, Conjugate Class.

 26 x12_ XI' + .x+1 ,u6 u'55it' + 4]U3 + 6U2-3u 1
 27 x18_ -x9+ 1 u9-9U7 + 27u5-30U3 + 9U - 1
 28 x12_ x10+ x8- x64-+ x4_ x24+1 u6-7U4 + 14U2--7
 29 x 28+ 27X2 + .,+ X1 u 14 + U3-13u2 _12ull + 66u'0 + 55u9-165UA

 - 120U7 + 21 0U6 + 126u5-1 26U4 56U3 + 28mt3
 + 7u -1

 30 x16_x14+ x0- X8+ X6_X2+ 1 u8 9U6 + 26U4 -26U2 + 1
 31 X30 + x29 +... + x + 1 u15 + U14 - 14u'13 _ 13U12 + 78u0 + 664u1O 220U9

 - 165U8 + 330U7 + 210U6 -252u5-126U4 + 84U3
 + 28U2 - 4u-1.

 32 x16 + 1 U8_- 8U6 + 20u4- 16U2 + 2
 33 X20-_ 19 +17_-16+x14-x13 o- 10u7+34u6-34u5

 +X1- x10+ x9- x7t x 6_ x4 -434 + 43u'+ 12U2- 12u- 1
 +X3-X+ 1

 34 x16_x15+ x14_- + .x-x +1 u8 _-u7-7U6 +6 u5 + I5U4-10U3-_ 10t2 + 4u4 + 1
 35 X24-X23 + x9 x18+17_ x16 u12-_ ul- 12u'0 + 1u9 + 54u8- 43U7-- 113m6

 +x 14_ x13+ X 12-X I+ x10-X8 + 7 hi5 + 1 1 OU4-46-3 - 40U2 + 8ut + 1
 +x-7 -X6- X5-X + 1

 36 x12 _ -x6 + 1 u6- 6 U4 + 9U3 3

 A very good test (or, in most cases, pair of tests) of the correctness of

 the figtures is to write u = 2" corresponding to x = 1 and see if the values
 for the samiie index agree. Our interest will presently be concentrated on the
 single entry in the right hand column, that which expresses the conjug,ate class
 of the second species of cyclotomic to the index 9, but the function for the
 neighboring case of the index 8 is worthy of arresting the reader's attention

 for a moment, inasmiuch as the general theory of cyclotomic divTisors applied

 to it will be seen to supply an instantaneous proof that all prime numbers
 of the form 8n + 1, and no other prime numbers have 2 for a quadratic
 residue.t

 It is hardly necessary to observre that, when the index is a primne number,
 it may be duplicated without affecting the character of either set of functions,
 the only effect produced thereby being the entirely unimportant one of a
 change in the sign of the variable.

 * And a fuLrther double test is given by taking u = 0, x - 2, as we ought to find xi- 2ATkipO.
 t So, under the third Title, it will be found that u2 2 2 is a non-conjugalte cyclotomic of the second species

 to the index 8, of which, according to the general cyclotomic law, the odd prime divisors are of the forin
 8m + 1 or 8m + 3.
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 SYLVESTER, On the Divisors of Cyclotomic Functions. 369

 The formula which I have employed for computing cos nO is that which,
 beg,inning with the highest power of cos 0, adlirtits of a uniform scheme of set-
 ting down the work, which is not the case when the series is started from the

 *pO sin Po
 other end. It, and the series used for 2 also required for my purposes,

 .0'
 sin 2

 may be obtained by a much simnpler method than any I have seen given in
 the text books as follows.

 In general, the denominator of - - - -. . -, say the procumulant

 [al, a2, . *. au] =Ao -A1 + A2 etc., where Ao is a1. a2. . . . au, A1 is the sum
 of the quotients of AO by any pair of consecutive elements a?. at + , A2 of the
 quotients of AO by the product of any two such pairs as a, . a, + 1 a . a +1,
 and so on. If we call the number of such quotients in Ai, Din, it is obvious
 that

 ,+ ln = - 2Dit.

 Hence Dn=1, D1n=n-1, 2n (n-2) n3 D3n- (n --3)(n --4)(n -5)
 2 1.2.3

 and so on.

 On making al = a2 n. . . = a 2 cos 0, it will immediately be seen that

 the procumulant [2 cos 0, 2 cos 0 . . . to n ternms] expresses ( +i1 0
 because, calling this un, the equation in difference for finding it is

 un+1=2 cosun-un_1 and uO= 1.

 Consequently (n - (2 cos 0)-n (2 cos0)f2+ 2)(2 cos f

 sin no
 Hence 2 cos nO= 2( (; 0 Cos 0 n = (2 COS 0)n- n (2 COS)n-2

 2n + 1

 n -3 Si.2 0 sin (n +1) 0 sin no
 + n-2 (2 cos 0) n-4 Also, 0 = i0 + -0 (2 cos 0)

 sin 2

 + (2 cos O)-1 -n (2 cos 0)n2- (n - 1) (2 co 0) +

 *This expansion Gauss (Rech. Arith., Paris, 1767, p. 431) suggests deriving by means of the exceedingly

 awkward and uMmanageable process indieated by the formula / ncos n being previously supposed
 1 Cos a o Obigpevosyspoe

 to be expanded in terms of powers of cos 0. Quandoque bonus dormitat Homerus.
 94
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 370 SYLVESTER, On Certain Ternary Cuhic-Porm Equations.

 Writing v in place of 2 cos 0 these are the two expansions which I have
 p-I p-I

 used to express x? + 1- and 2 2 iX 2 in terms of powers of x + I in calcu-

 lating the cyclotomics of the 2d sort whose values are given in the preced-
 ing table.

 Since (xP-l- 1) (xP?l- 1) xP - xP+1 xP- + 1, if, for convenience,

 we write x+ - =- 2 cos 0, it is evident that cosp - cos 0, regarded as

 an algebraical function of cos 0, will contain all the cyclotomic functions of

 the second species (conj ugate class) whose indices are divisors of p -I or p + 1

 and in addition to these x- 2 ) or ut2- 4 derived from the factor x2_ 1

 which is common to xP-- 1 and xP+I 1, but does not give rise to a cyclo-
 tomic of this sort until it is squared; cosp0 - cos 0 is thus a product exclu-
 sively of cyclotomics of the second sort.

 It is well known that cospO - cos 0 - (mod. p) regarded as a congruence

 in cos 0 has the p roots cos 0 = 0, 1, 2; 3, . ._p-1, p being supposed to be
 a prime number.

 But more generally the congruence cos piO - cos p'-O- 0 mod. pi has
 its full complement of p' real roots a theorem, this, which is the analogue of the
 theorem of Fermat extended to powers of prime numbers put under the form
 of affirming that xs:- xi-'--- 0 mod. pi has its fall complement of real roots;
 but, as I do not recall seeing the cosine theoremn for modulus pi anywhere
 stated, and as it is wanted for the theory I amn developing, an(d its truth
 is inot obvious, I shall proceed to prove it. For greater simplicity of nota-
 tion let us begin with the case where j - 2. We have then cos p20 - (cos 0)P2

 2P2 1 )P' (~~p2f __2_p_ 1 _p 2(p _____ P C2 kOs)S .(slf + 1.2 3.4 (cos0)P24.(sin 0)'...and

 cosp =(cos O)P-P 2 (cos )P-2. (sin 0)2+() (cos P)P-. (sin 0)4 . 2 ~~~~~1. 2.3.4 -(o0~.sn).
 where of course all the powers of (sin 0)2 are regarded as functions of cos 0. It
 will easily be recognized that every coefficient in the first series will be

 divisible by p2 with the exception of those terms in which a new multiple of
 p first makes its appearance among the factors of the denominator, which will
 lose one power of p; the next coefficient to any such as last named taking, up
 a new factor of p into the numerator, the fraction to which it belongs will
 recover the lostp and be again divisible by p2.

This content downloaded from 
�������������89.187.177.72 on Mon, 13 Mar 2023 21:25:50 UTC������������� 

All use subject to https://about.jstor.org/terms



 SYLVESTER, On the Divisors of Cyclotomic Functions. 371

 The difference, therefore, between the two series quar mod. p2 will be
 (cos 0)P2- (cos 0)P,

 +2 (p2_ 1.2..2_ (cos 0j)p9-2p. (Sill 0)2P-p2 (cos O)P-2 (sin 0)2

 p2(p2-1). (2 -.4p +1) (cos 0)P-4P(sin)P (P-l)(p-2)(p-3)
 + 1* 2*. 2 .. . * 1.2.3.4 (CO *) - 4. (Sin 0)*

 It may be showni that every. pair of terms in the above is divisible by p2
 for all real values of cos 0.

 10. (cos 0)P'- (cos O)P contains p2 by Fermat's extended theorem.
 2. Qua p, (cos O)P2-2P-(COS 0)P-2 and (sin 0)2P- (sin 0)2
 Hence qua p2, the sum of the second pair of terms

 p- l(p+ 1)(p- 2)(p - 3). . (p2 _2p + ) 1 =0
 P 2 3 2 .3 ... (2p }-o. _

 -P 2 {2. 3 ..(2p_- 1)-1 -o.
 3?. Quap, inasmuch asp2 5p+4 =(p-) (p -4), (cos O)P`4P_ (cos O)P-I

 and (sin 0)4P -(sin 0)4. Also,pn_1 p_1,p2 -2-p-2andp2-3 p-3.
 Hence the suin of the 3d pair of terms qua p2

 =p (p -1)(p 2)(p 3) (p- 4)(p2 5)4. (p2-4p?1) _
 * p(p-(1.2.3.4 - 4.5 ... (4p-1) })

 And so each pair of terms may be proved to be congruous to zero qua p2.
 The same form of demonstration may be shown to apply to the case of

 the modulus pi,* and we mnay regard as proved the important theorem that

 cos p10 - cosp-10 0 _ [mod. pi] contains the maximum number of roots p.
 It follows that cospO - cos 0 _ mod. pi will contain p distinct roots. For, if

 we make 0 =pi-', the congruence becomes cos pqp - cospi-p- 0 mod. _,
 which has p' roots. These roots will separate into p groups of pj-l each, such
 cos (pb-1q) will be the same for all the (cos )'s in the same group, but
 different (qua mod. pi) for any two belonging to distinct groups. For if cos (
 be one of the values regarded as given, and cos (pj_''2) -cos (p-1'(p) mod. pi,

 COS (pjT1 2)- COS p 2 o
 and cos (p-1(1) -cos P id. p.

 * The reader will please bear in mind that in the expansion of (a + b)p' the number of coefficients in which
 p enters to the power j, j-1 . . . 2 1 0 respectively is pj-1pj-j1pj-Ipj-2 . .. p2 -p p -1, 2.
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 372 SYLVESTER, On Certain Ternary Cubic-Forrn Equations.

 If, then, we form the series

 cos l, cos p - + p, cos qp + 2p,...cos qm + (pi-' l)p,
 all the values of cos 1p must be included among the terms of this series.
 Conversely, if we iiake cos P2 COS IN + 2Pp, we shall have

 Cos P'1 02 -CGSpi'1O- 0 mod. pi.
 For, writing o for pi 1,

 COS q(P2 = (COS +)7 - q 1 (cos (P2)l -2. (sin 1)2)2 +

 If in this development we take the terni containing (cos (P2)q-21. (sin (P2)2t,
 its coefficient will contain q, except in the case where t contains p', in which

 case the coefficient will contain -7 but not q, and the index of (cos (P2) and

 (sin (p2)2 will each contain pi. Hlence, since cos -2= Cos p + _p, and conse-
 quently (sin (p2)2 is of the forrn (sin (p')2 +-t Ap, it follows tllat the difference
 between this terin and the corresponding one in the development of cos q+1

 will in the one case contain qp and in the other J p/+', in eitlher case therefore ipi

 it contains p . q, i. e. pi, and consequently making cos (P2 equal to any of the
 pi-' terms of the series, we shall have cos (pi-l(P2) -cos (p-'1(p) miod. pi as
 was to be shown. Hence cospO - cos 0 0- mod. pi will have p real roots.

 Again no algebraical factor of cos p0 - cos 0 can have a superfluity of
 real roots qatd mod. pi, for if it hlad then by the same reasoning as applied to
 the cyclotoinics of the first species, it would be necessary for p to be contained

 in the discriminant of cospO - cos 0 regarded as a function of cos 0 , but qiUd
 mnod. p, this is the saime as the discriminant of (cos 0)P - cos 0 in reg,ard to
 cos 0 or of xP - x in regard to x which is the discriminant of xP-1 -1 multi-
 plied by the squared resultant of x and xP- - 1, ancl is therefore a power of
 (p - 1). Hence every algebraical factor of cospO - cos 0 qud1 m)od. pi contains

 its full quota of real roots, i, e. as many roots as there are units in its degree.
 If then p rn/k + c, where 4 - - 1, since cos p0 - cos 0 will contain the

 cyclotomic of the second sort to the index k, such cyclotonmic equivalented

 to zero [milod. pi] will have all its roots real, so that (rikn/c 1)i will be a

 2-k -fold divisor of such function.
 2

 As in the case of cyclotomics of the Ist species we may separate the

 divisors of those of the 2d sort into intrinsic and extrinsic, according as
 they are or are not divisors of the index.
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 SYLVESTER, Ot the Divisors of Cyclotontic Functions. 373

 First, as regards the extrinsic divisors, we may prove that no other prime
 numbers except those of the form k ? 1 can be divisors of the 2d species of
 cyclotomics to the index k.

 To show this I proceed as follows: 4ku is contained algebraically in
 k

 2 , and afortiori in its square, i. e. in 1 coso k so that if 2 cos 0 is a value
 8111 -21

 of u, which makes 4ku contain p,

 cos kO -1 mod. p,

 but also cospO cos 0 mod. p, and if sin P a + bp,
 sin 0

 1 = (cos 0)+ a' (1 -cos 0)?+ cp,
 1-Cos kO

 and (1-a2) (1 -cos 0)2 = Cp , and, therefore, a = 4 1 inod. p, for -i - - 0

 does not contain (1 - cos 0), and if (1 - cos kO) contains 1 - (cos 0)2, which is

 only the case when k is even, 1 -cos kO , does not contain either 1 - cos 0 or
 1 - (Cos OY I~~~~~1 cos kG

 1 + cos 0, and, therefore, 4ku, whicll, in that case, is contained in

 vill not contain either 1- cos 0 or 1 + cos 0.
 Hence 1 - (cos 0)2 is not zero, and, consequently, a-4 1, and, there-
 sin P0O_

 fore, si ?_ 1 mod. p.

 Hence, either

 - 0 =COS po. COSs (sin 0 2-(COS 0)2 + (sin 0)2-1 Cos (p -i 0=csp0cos mod.sin0)
 or sod.p,

 Cos (p +1) 0 = cospo. Cos 0- (sin 0)2 _ (COS 0)2 + (sin 0)2_1

 and writing E = A 1, we must have

 cos (p- E) 0-1 mod. p.

 If possible, let (p - E) not contain k, and ( (less than k) be the greatest coni-
 mon measure of k and (p -e).

 LetX(p-e)-yk=S3. Then

 CosX (p -e)0 1 sin(p -)0 mod
 sin pO mdp.
 sin. -

 95
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 374 SYLVESTER, On Certain Ternary Cutbic- Form Equations.

 Hence cos SO- 1 mod. p, and, consequently, the resultant of Pku and cos O - 1
 in respect to cos 0 rnust contain p. But 4kU, when A is any divisor of k other

 than k itself, is an algebraical factor of coskO a fortiori, therefore, the
 Co 80 - 1

 resultant of this last named function of cos 0 and of cos M- 1 must contain p.
 coklO - 1 This resultant will be the product of the values of cos for every

 root of cos 0 - 1, it is therefore the 4th power of the value of the vanishing

 (sin --

 fraction CS/ v b1 [where w - when cos -P =1, i. e. of ( when Cos (P-1 si

 - - 0. The resultant is, therefore, a , which cannot contain p, since, by

 hypothesis, p is not contained in k. Hence p - nik, or p =/mk A 1. So

 that, for the extrinsic divisors, the law, both as reg,ards what nuinbers are
 and what are not such divisors, is precisely the same as for the cyclotomics of

 the first species, except that mk ] I takes the place of mk + 1.
 Next, for the intrinsic divisors. Suppose p to be any such, and that

 k =k1p, where k, is prime to p. Then p is a divisor of cos k, (pjO) - 1, and,
 therefore, by what has been shown, must be of the form ntkl ] 1, unless

 (COS P O - 1) contains p, in which case, since

 Cos piO = (Cos p'O- cos pj-10) + (COS pj 0 cos pj 20) +. . .+ cos 0,

 cos 0 - 1 must contain p, and, consequently, p must be a divisor of 4k2, i. e.
 of Xj, whicll we have seen is equal to 1, except when k1 - 1. Hence, p must
 be of the form mkn1 A 1. To show the converse, that when k =lkpj and

 p =nk,1 + 1, p will be a divisor of 4kT. Taking, first, the case of k, = 1 or
 k pj, 7,u for t= 2 will be equial to Xj1, which, as we have seen, will divide
 by p, and not by p2.

 To ascertain if there is any other value of u which will iiake the func-

 tion divisible by p, I observe that, for this case, (cou)2 -Sp _1o , which is
 COs pj3 10 -1

 of the form Os 0-i1 + Lp and if this function contains p, we must obviously
 cosO6-1 + p

 have cos 0 -1 mod. p.

 Proceeding to the more general case where k -k1p' and k, is other than
 unity, talking as I did for the first species the specitnen case k = klp ,k, - abc,
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 SYLVESTER, On the -Divisors of Cyclotomic Functions. 375

 p = mkr1 =L 1, we shall have
 __ (cos abcpO - 1)(cos abO- 1) (cos acO- 1 )(cos bcO-1)(cos apO-1)(cos bpO - 1)(cos cpU -1)(cos o 1)

 (VAkU) (cos abcO- 1)(cosabpO- 1)(cos acpO- 1)(cos bcpO- 1)(cos aO- 1)(cos 66- 1)(cos cO- 1)

 If, now, cos k10 - 1 = 0, and we suppose cos 0 to be a root of Q?CU = 0,

 co p0 = cos (+ 0) = cos 0, (;ku)2 becomes equal to co' spkO-I _1 nd pay coskj0-I -P,adpy
 ing no attention to the algebraical sign which is immaterial to our object, we

 shall have 4ku= p, and the resultant of 4k1U and X%U will be pTkl, and, conse-
 quently, since Xklu- 0 mod. p has all its roots real, one of themn, at all
 events, will belono to X?t - 0 mod. p, and precisely in like manner, as in the
 case for cyclotomics of the 1st species, it may be shown that this reasoninig
 ceases to apply if cos 0, although satisfying cos k1O - 1 = 0, does not satisfy
 xk1u- 0 in which case the resultant, instead of being a power of p, would
 become unity, so that the value of cos 0, satisfying cos k10 - 1 0 O mod. p,
 could not be a congruence root of y u 0 mod. p. Finally, as for the case
 of the 1st species, it may be shown that every congruence root of X'u 0

 [when k = klpi- and p = m+r, A 1] will satisfy the congruence Xk, 0 nod. p,
 and that onlyp, and not p2, will be a divisor of Xku, subject, however, to an
 exception for the case of p 2, when k 2 or k = 4, and also for the case of

 p =2 aid p 3 wvhen k= 6 * As regards these intrinsic divisors, it is clear
 that any root must be the hig,hest primie factor of the itndex unless its sub-

 index is 3, in which case it inay be 2. It is obvious, then, that except the
 index is 6 or 12, the second cyclotomic function can have only one intrinsic

 divisor. When the index is 6, the function is simply u - 1, and contains of
 course every power of 2 and 3, as well as every poNver of 6i + 1 as a divisor.

 Ljeaving out of consideration the three known cyclotoinics, whose indices
 are 3, 4, 6, and the one just referred to, u2- 3, whose index is 12, we may
 combine the results obtained into the statemnent that any number, each of
 whose factors, ditninished or increased by unity, contains the index, and any
 such number, inultiplied by the highest primne number in the index, provi(led
 that that number, when increased or diminished bv unity, contains its sub-
 index, and no other numbers but such as satisfies one or the other of these two

 descriptions, will be a divisor of a non-linear cvelotomic function of the conju-
 gate class of the second species whose index is other than 12. As regards

 *I may probably show this in full in a future note. But since the vast and dazzling theory for cycloto-
 mics of all species, with an indefinite number of classes to each species, has loomed into view, I must confess to
 a certain feeling of impatience as regards working out these small details for a single class of a sinigle species.
 The inordinately augmented amplitude of the subject calls for some broader method of treatment.
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 376 SYLVESTER, On Certain Ternary Cubic-Formn, Equations.

 the index 12, any number, whose factors are all of the formn 12n 4 1, as also
 the double, treble and sextuple of any such number, will be a divisor of the

 function.

 Bv way of example let us consider the indices 15, 21, 35.

 x15x will contain neither 3 nor 5, 415x will contain 5 but not 3.
 x21x will contain 7 but not 3, 421x will contain 7 but not 3.
 X35x will contain neither 5 nor 7, 435x will contain neither 5 nor 7.
 To find a value of x which inake A,,x contain 5, write 43u u + 1- 0

 miod. 5, then u - 1.
 To find values of x which nmake 421x contain 7, write u + 1 0 mod. 7,

 then t __ 6; and to find values of x which make X21X contain 7, write
 x2 + x + 1 -0 mod. 7, then x - 2 or x -4.

 On turning to the table p. 367 it will be seen that

 41(1 1) =1 + 4 --4+1 =-5,
 421 (-1) 1+1-6-6+8+8+1=7,

 4/212 = 4096 + 512 + 64 + 8 + - 4681-2322 = 2359 = 7. (16. 21 + 1),
 -2048 -256-16-2 J-

 and of course since x21x2 contains X21x as an algebraical factor, X214 will also
 contain the intrinsic divisor 7 on the general principle that if x be any num-

 ber prime to k, XkxA must contain Xkx as an algebraical factor, as admits of
 easy demonstration.

 Also 4216- -21 (2 + 4 2) - 12 [mod. 7] will also contain 7. Lastly, to

 mod. 5, for x =0 1, 2, 3, 4

 X35(X) -- 1X 17 1X 1X 1; '485(X)- 1X 1X 11 1;
 and to mod. 7, for x 0, 1. 2, 3, 4, 5, 6,

 X35(X) -1, 1,1 , ,1,1, 11; 435(X)-- 1, 2, 1, 3, 1, 2;
 so that neither 5 nor 7 is a divisor of either function to index 35.

 Title 3. On Cyclotomic Functions of Any Species and Class. The cyclotonmic
 functions, called by me, of the second sort or conjugate class of the second

 species discussed under the preceding title, constitute the leading class of a
 much nmore general kind of binomial (zweigliedrig) cyclotomics, which it would

 mislead were I to suppress all allusion to.

 Suppose k to contain 0 distinct odd prime factors, then we know that the
 number of square roots of unity to the modulus k is 20, except when k is

 divisible by 4, in which case it is 20?+, or 2?+2, according as k is frac-
 tional or integer, or, setting apart unity, the number remaining is 2o. 1,
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 SYLVESTER, On t(le -Divisors of Cyclotoinic Functions. 377

 20 + '1, 2? 2 + 1 in the three cases respectively. Let VI (one of the

 totitives to k) denote any specific one of these square roots. Then, if we
 call p any primrary kth root of unity and make x - p + p ", we shall obtain

 a completely integer function of the degree 2 Tk in x, which may be called
 a binomial cvelotoinic. When k is divisible by 4, one value of 'v1 will be
 k 7
 k + 1, and the value of p + p' + 2 being zero, the cyclotoinic function that
 ought to be degenerates into a power of x. Heince, wlhen k is not divisible
 by 4, the number of binomial cyclotomics is 20' 1, when it is divisible

 by 4, 20+ 1_2, or the double of the former value, and when by 8, 20 + 2- 2.
 All these binonmial cyclotomnics will be found to possess similar properties

 to those which have been demnonstrated under Title 2 concerning their leading

 class, as the annexed examples will serve to demonstrate, where the odd priine

 extrinsic factors it will be seen are of the form mkn + 1 or n/k +- +V/1; that is to
 say, in respect to the index, are congruous to one or the other of the primnor-

 dinal totitives 1 and <1 where the latter quantity has a definite value for each

 of the cyclotomics in question.

 Thus, suppose k= 1o, the square roots of unity (qud(G 15) are A 1, A 4.

 Let /l - 4, and make x - p + p', then it will be found that X4-_ x%+ 2xV2
 + x + 1 will contain the foutr roots of x and all the odd prime divisors of this
 function are of the form 15iin + 1, 4.

 Or, again let a - p + p11, then it will be found that x is a root of the

 function X4 + XI + X2 + X + 1 , the pritme factors of which, other than 5, are of

 the form 15)n + 1, 11 , which is, in effect, the saine as the form 5in + 1 .

 Agyain, let k ? 20. The values of /V [mod. 20] are + 1, + 9. If we
 were to put x = p + p11, its value vould be zero, blut writing x = p + p9, we
 shall finid it will be the root of x4+ 3x2+ 1, all the prime factors of whiclh,
 otlher than the intrinsic one 5, are of thie form 20mn + 1 , 9 .

 WXTe may now proceed to generalize these results by considering cycloto-
 mics of everv possible nuimerositv of grouping for a given inidex, and of every
 possible order of c(njunction for a given numerosity-in a word, we are

 brought face to face witlh the inost general thieory of v-nomnial cyclotomtnic

 functions.t

 * If k 8 anid we take x = -1 + p3 it will be a root of X2 + 2 of wlich the oddt extrinsic faetors will be of tlhe
 form 8m +j-i 1, 3-

 tAll the species with their several clmsses here referred to form i)ut a sinlde gentus of evelotomic functions.
 The seconid genus will arise froIm tlle subdivision of giroups inlto smaller groLups aind so on continually.

 96
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 378 SYLVESTER, On Certain Terntary Cubic-Form Equations.

 I have accordingly calculated cyclotomnic functions for the cases fol-
 lowing:

 k=15 y=2 v 4

 k=21 I=4 v= 3

 It3 v 4
 It2 v= 6

 k=26 I=4 v= 3

 It2 v= 6
 k=28 It4 v=12

 yI2 v= 6
 k=25 I=5 v= 4

 k=33 I=5 v= 4

 It4 v 5
 I=2 v=10

 Understanding by the " totitives" of k the numbers less than k and prime
 to it, these totitives may be arranged in (among others) the natural groups
 hereunder written.

 Totitives to 15 for =2, v = 4
 1 4 11 14

 2 7 8 13

 to21 for y=4, v=3
 1 4 16

 2 8 11

 5 17 20

 10 13 19

 it "4 for It=3, v=4

 1 8 13 20

 2 5 16 19

 4 10 11 17

 "9 "6 for t =2, v=6

 1 4 5 16 17 20

 2 8 10 11 13 19

 " to26forI=4, v=3
 1 3 9

 5 15 19

 7 11 21

 17 23 25
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 SYLVESTER, On the Divisors of 6Ayclotomic Functions. 379

 Totitives to 26 for y=3, v= 4
 1 5 21 25

 3 it 15 23

 7 9 17 19

 "28 for 44, v=3
 1 9 25

 3 27 19

 5 17 13

 11 15 23
 " " for I = 2, v = 6

 1 3 9 19 25 27

 8 10 11 17 18 23

 to25 forI =5, v=4

 1 7 18 24

 2 11 14 23

 3 4 21 22

 6 8 17 19

 9 12 13 16

 To save space, I omit the groupings to k = 33.

 If, in any of the above tables, we call the totitives of the several rows,
 r1,1 er1,2 erl,v

 t'2,1 er2, 2 ** 2, v

 'S,1 'y,2

 and if p be a primitive root of x#- 1, and we writeR, = prO, 1 + prO, 2 +... p, v,
 R1, R2, ... R, will be the roots of a cyclotomic of the vth species to the
 index k, or, as we may say, the index k and nome v.

 The values of the cyclotomic functions may be found most easily by cal-
 culating all the values of cr (the sum of the ith powers of its roots), fromn

 i=Ilto i = I uwhere It (k)
 The value of Xk,, will then be the sum of the terms not containing

 negative powers of x in the development of xF {e-z - -. j }.

 It will, of course, be recognized that the first row of numbers (the
 primordinal totitives, as we nmay term them) in any of the foregoing natural
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 380 SYLVESTER, On Certain Ternary Cubic-Form Equations.

 schemes of decomposition of the kth primitive roots of unity into groups are
 vth roots (not necessarily comprisirng any primitive root) of unity in respect
 to the index k as mnodulus.

 The values of the cyclotomics are exhibited in the annexed table.
 Index. Nome. Cyclotomic function. Priinordinal Totitives.

 15 4 x2 x 1 1, 4, 11, 14

 21 3 x4 x3 x2- 2x+4 1,4, 6

 4 4 x3 x2 -2x+ 1 1, 8, 13, 20

 "6 6 x2 x -5 1, 4, 5, 16, 17, 20
 26 3 x4 -x3 +2x2+4x+3 1,3, 9

 4 x3- x2 -4x- 1 ,5, 21, 25

 28 3 x4- 3X2 + 4 1, 9, 25
 "6 6 x2 -7 1, 3, 9, 19, 25, 27
 25 4 XI-_ l(x3 + 5X2 + lOx + 1 1, 7, 18, 24

 33 4 X5 X4 - 4x3 + 3x} + 3x - 1 A 1, A 10
 64 5 x44- x3- 2 x2 - 3x + 9 1,-2, 4, -8, 16

 " 6 10 x2 x -8 1,+2,+4,+8,+16

 In eacli of the above cases calling the index k, its totient yv, the nome v

 and the primordinal totitives 01, 02 . . . 0v, it wvill be found tllat all the odd
 extrinsic prime number divisors (i. e. priines dividing the functionn but not its
 index) are of the form mik + 01, 02, . . . 0.

 Here, for the present, I mnust be content to leave this great theory, or I

 should be in danger of never findinig myiv way back fromn it to the oririnal
 object of the mremnoir wlich, although its l)arent, it transcends in importance;
 for Babchmann's work, as it seems to me, gives proof, that Cyclotomy is to be

 regarded not as an inicidenitail application, but as the natural and inlherent
 centre and core of the arithinetic of the future.

 Remark on tke intrinsic divisors of cyclotomic funetions of the 1st species.

 It has been seen that if k -r pj= kpil kX 0 mod. pJ has all its

 roots the samie as those of kx 0 mnod. p and does niot contain p2. If, then, we

 make j successively 0, 1, 2 . . j- 1 it will follow that Xk,1 Xklp Xk1p2, X * * XklPj-1
 will each contain p, but only in the first power for the samiie Tkl values of x.

 (p x 1) Iic I
 hlence x -I1 whiceh contains all time above written Qcclotomlics, Will

 *The values of O2) X X4o C. in this case follow the noticeable progression 9, 4, 25, 16.
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 SYLVESTER, On an In- and- Exscribed Triangle to a Cubic. 381

 contain pi, so that C -1-- 0 mod. pi will have r (P 1) primitive roots, and
 k

 it is easy to see that xn - 1 will not have any congruence root in common

 with xkl - 1 in respect to the modulus pi.

 The theory of intrinsic divisors, it wvill thus be seen, contains within itself

 the whole theory of primitive roots, which I notice because it induces me to

 withdraw the remark made in a previous foot note that the exact determina-

 tion of the properties of the intrinsic cyclotomic divisors is a matter of com-
 paratively small importance.

 NOTES TO PROEM.

 1. On the rational in- and- exscribed triangle to the cubic curve
 x3 3xy2 y3+3z3O0

 IN the proem it was, under another form of expression, intimated in

 advance of what will be shown in the second section of this chapter, that the

 curve x3 + y'+ Az3= 0 has a correspondence with the curve x- 3xy2_ y-
 + 3Az3 = 0 of such a kind that whenever the second equation has a rational

 solution, the same muist be true of the first, so that (ex. gr.) on makinog A = 1,
 the solubility of x3 3xy2 -y3+ 3z3=0 in integers implies the like of the

 equation x' + y'+ Z 3= 0. Hence it might, at first sight, be raslhly inferred
 (which is what happened to ine when writing the 2d foot-note to page 284

 from a sick bed) that since a cube number cannot be broken up into the sum of

 two others, tlle former of these last written equations is insoluble in integers.
 But the fact stares one in the face that it has three solutions in integers, viz:

 x : y:z:: 1: 1:1

 x:y: z:: -2: 1: 1

 x: y: Z:: 1:-2: 1
 In general, (except at points of inflexion or at points whose ith tangen-

 tials are points of inflexion*), one rational point in a cubic gives rise to
 an infinite series of rational derivatives, but in this case the three points
 1: I: 1 , -2: 1: 1 1: - 2: 1 are the angles of a triangle in- and- exscribed

 to the curve x3- 3xy2 y3+ 3z3, and are the only rational points on the curve.
 Each of them is its own third tangential, so that, at any one of the three, an

 * Thus we have the following distinction of cases as regards the algebraically rational derivatives of any

 point on a cubic curve: 10. An infinite succession of links. 20. A finite open chain reducing in the case of

 inflexions to a sing,le point. 30. A closed chain with a finite number of links.

 97
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 382 SYLVESTER, On Certain Ternary Cubic-Form Equations.

 infinite number of cubic curves can be made to pass having plethoric, or, so

 to say, pluperfect contact with each othier (9-point contact) and accordingly
 will not intersect each other in any other point.

 To these three points wvill be found to correspond (as wvill presently be

 showin in ? 2) points for which x or y is zero in the curve x3 + y3 +z 3=0.
 This perfectly explains the seeming paradox.

 The sides of the rational in- and- exscribed triangle are easily seen to be

 y-z=O, x+y+z-O, x-z=O.
 In general, if any cubic be thrown into the form xy + y2z + z2x + Xxyz,

 it will obviously be in- and- exscribed to the triangle x, y, z*. In the present

 instance, if we write x - z = u, y - z =v, x + + z =-w, it will be found

 that the curve X- 3xy2- y3 + 3Z3 becomes sirnply v2+ vw2 + wit2, of which
 the Hessian is the three straight lines uC3 + V3 + W3- 3Uvw. If we take the

 sides of an equilateral triangfle whose area is 2 A for the axes of u, v, w, we

 shall have u + v + w = A, and the three real points of inflexion being in the
 line u + v + w, will pass off to infinity, so that the curve will possess three

 infinite branches. Writing 1 = -, each asymptote will cut the sides of the

 angles of reference in 3 pairs of segments abutting at the several angles, such

 that the ratio to each other of the segments in the several pairs, taken in

 regular order, will be (for the three asymptotes respectively),
 cos w cos 2(w cos 4(o

 cos 2(o' cos4w ' cos w I
 cos 2(o cos 4(o cos (a)

 cos 4(o' cos (o. cos 2w'

 cos 4w cos (0 cos 2w

 cos (O cos 2cD cos w

 These ratios, of course remaini the same, for the conjugate cubic

 u2v + v2w + W2U , except that the order of the readings has to be reversed.
 According to my departed friend, (of cherished niemory), Otto Hesse's

 dictum, I suppose it mnay alrnost be taken for granted witlhout proof, which
 would obviously be easy, that the two sets of real asynmptotes for the conjugate

 cubics will envelop one and the same conic.
 In a future excursus I propose to demonstrate the existence of an infinite

 number of polygons in- and- exscribable about any given cubic, and to deter-

 *For x will touch the cubic at x, y; P at y, z; z at z, x.
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 SYLVESTER, On Poiygons In- and- Exscribable to a General Cubic. 383

 mine the number of such polygons for any existent number of sides. Since
 uv2 + vui2 ? uw2 0 is equivalernt to (2uw + V2)2 + (4u3v - V4) = 0, we are able

 to deduce, from the fact that one cube cannot be the sum of two others, the

 theorem that the equation v4- 4t3v -= t2 has no solution in integers,* (zeros

 excludled) which seetns to me (the way in which it is got, I mean, not the

 theorem itself) a very surprising inference.

 SCHOLIUM. On triangles and polygons in- and- exscribable to a general cubic.

 The apices of any such triangle must be points which are their own 3d

 tancgentials. Any such point, it mnay be shown, is conipletely defined by the
 condition that two right lines, drawn, the first through it and any one chosen

 at will, of the 9 points of inflexion, the second through its tangential and

 some other point of inflexion, shall meet the curve in the satne point.

 If, then, the cubic be written under its canonical form, and we select the

 point of inflexion (I), for which x 1, y _ 1, and through the point P (x, y, z),
 which is to be its own 3d tang,ential, and I draw a ray meeting the curve in

 P', and through P' and Q, the tangential to P, [i. e. the point whose coordi-
 nates are x (y3- z3), y (z3- x3), z (x3- ,3)] draw a ray, the point (X, Y, Z),
 where that ray meets the curve, must be a point of inflexion, and, vice versa,

 if the condition is fulfilled, P is its own 3d tangential.

 It will be found that

 X: - x6y3-yz3 -Z zx3 ? 3X3y3z3

 Y: _36 -y x 3Z6 + 3x3y3z3
 Z: xyz (X 6+y6 + z6 x3y3 _y3z3-z3x3)

 and we must have X = 0 or Y= 0 or Z 0 the factor which figures in Z
 xyz

 being, disregarded, because it would lead to the 9 points of inflexion, which

 *Suppose the equation tu2v + v2w + w2,t = 0 is resoluble in non-zero integers. We mnay regard u, v, l
 as lhaving no common measure, as any such, if it existed, could be diriven out of the equation by division.
 Suppose p to be any prime number entering exactly a timiies into tu and /3 timies into v; theni writing u =pau1
 v =pPv1, since w21 contains pax and v2w, ', we must have a =2/ and )'3pul2V1+Vl2V+ w2u1 =0, and proceed-
 ing simi-ilarly with each prime conmmnon mleasure of u, v of v, w and of w, u, it is obvious that, callingthe greatest

 commi-lon mneasure of these thlee pairs d, E, 0, we inust have 03Zu'2v'j-+ e3v'2w/ + 03wu'2u/ = 0 , where u' v', 'w,
 have no two of them any comnmon mieasure. Hence, apart froml algebraical. sign u', v', w' must be each of them
 unity, and the above equation m?y be written da + F1 + 03 =0, the same in form as that which gave birth to the

 equiation i3 - 38$2 + 73 = 0, of wvhich u2v + v2w + 1',2u = 0 is a transformation. It is worthy also of remark
 that the two equations u2v + a2 0, + w2u =0 and X3 + y3 + Z3 = 0 pass into one another through the umedium of
 the self-reciprocal substitution-matrix

 1 1 1
 1 4

 2 5- 5

 pw p4 p7c o where p is a primitive cube root of unity.
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 384 SYLVESTER, On Certain Ternary Cbthic-Forrn Equations.

 rnay be tlhrown out of account, as for each of them the in- and- exscribed

 triangle reduces to a point.

 Coni-bining each of the above equations taken separately with the equa-

 tion to the cubic, we see that there will be 3 X (9 + 9 + 6), i. e. 72 points
 forming the apices of 24 in- and- exseribed triangles to the cubic. It may be

 shown further that these 24 triangles consist of 12 pairs of conjugate triangles,
 every pair being so situated that eacll is a threefold perspective representa-

 tion of the other, the three perspective centres beinog some one of the 12 sets

 of 3 collinear points of inflexion.*

 The 24 in- and- exscribed triangles may therefore be distributed into 4

 groups, each containing 3 pairs of conjugate triangles. T]lis theory and the

 general one of in- and- exscribed polygons with any number of sides to a
 cubic curve will be treated more fully in a future excursus. It may, how-

 z
 ever, be remarked here that the equation - 0 is equivalent to the two 7 ~~~~~~~~~~~xyz
 X3 + py3 + p2z3 - 0 and x3 + p2-y3 + pz3 - 0, so that 18 of the points xyz may be
 found by solving two cubic equations between x3, y3 or y3, z3 or z3, x3. The

 remaining 54 may be found by substituting for x, y, z respectively (in the
 simple equations which express their ratios)

 10. x?Z,+ z x+py +p2z X +pY+pz
 20. x+y+pz x+py +z px +y +z
 30. X+y+p2z X+p2y+Z P2x+y +z

 (these substituted values, together with the original values of x, y, z, rep-

 *ABC, LMN are in threefold perspective when AL, BM, ON; AM, BN, CL; AN, BL, CM meet in three
 several points. If ABC be taken as the triangle of reference and the coordinates of L, M, N are a, b, c;
 a b, c'; a", b", c"/ respectively, the triple " perspectivische lage" requires only the satisfaction of two con-
 ditions, viz: ablcl = bclal = ca/b", so that there is nothing between single and triple perspective relation.
 This statement constitutes a porism. The double condition ba'cl = cb'a" = aclbll of course corresponds to
 the contrary relation of triple perspective where AM, BL, CN; AL, BN, CM; AN, BM, CL meet in three
 several points.

 Let I, I', I", J, J', J1", K, K', K" denote three points of collinear inflexions and P, Q the 3d point col-
 linear with P and Q any two points on the cuLbic. If Q is the tangential to P, one of the vertices in question,
 it may be proved that any inflexion I, being assumed, another J may be found such that IP = JQ. Fronm this
 it follows that PQ will satisfy the 10 equations

 PP =Q

 IP =JQ JP =KQ KP =IQ
 I'P =J'Q J'P _ K'Q K'P =I'Q
 I"P =J" Q J"P K" Q K"P =I" Q.

 These will necessarily continue to be satisfied when I and J are interchanged, provided that 4P, Q be written
 KP and KQ or IK'P and K'Q or IK"P and I/'Q, and, consequently, to P, Q, R one in- and- exscript, will cor-
 respond another denotable indifferently by KP, KQ, KR, KIP, KIQ, KIR, K"P, K"Q, KI"R, which will
 obviously therefore be in triple perspectivische tage with the first named one.
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 SYLVESTER, On Polygons In- and- Exscribable to a General Cubic. 385

 resenting the sides of the 4 triangles which contain 3 points of inflexion

 on each side).*

 We may thus neglect altogether the equations X= 0, Y- 0, the values

 of x, y, z, to which they would lead, being comprised aimong those resulting
 from the above method.t

 In like manner, as we have found the number of in- and- exscribable

 triangles, it may be shown that the number of quadrilaterals in- and- ex-

 scribable to a cubic is 54, and of p-laterals, when p is a primie number,

 8 (2P-1- 1) (2P-2+ 1). For a k-sided polygon, where k is any nunmber what-
 ever, the rule is as follows. Let

 (px- 8 (2'1 - ()x) (2zx2_ (-)x-2

 and let the totient of k, (supposed to contain i distinct prime factors) be

 expressed in the usual mnanner as the sum of 2i1- positive terms P and the like

 number 2'-1 negative terms Q.

 Then it may be proved (for it requires proof) that EpP- EpQ will con-
 tain k; the quotient will contain the nunmber of Ik-sided polygons in- and-
 exscribable about a cubic.

 This theorem does not accord with the fornmula given by Professor Cay-
 ley in the Phil. Tr. for 1871, as quoted in the Math. Fortschr., Vol. III.

 The number of triang,les in- and- exscribable to a curve whose order is x,
 whose class is X ancl whose number of cusps + three times its class is i, is

 there stated to be

 X4 + (2x3 - 18X2 + 52x - 46) X3 + (18x3 + 162X2 - 420x + 221) X2

 + (52x3 - 420x2 + 704x + 172) X + (x4 - 46x3 + 221X2 + 172x)
 + g {9X2 + (12x + 135) X+ (9X2+ 135x- 600) }.

 t When tbe cubic is X3 + y3 + Z3, X, Y, Z become x9 + 6X6y3+ 3X3y6 -y9, . . . ,Xyz (X6 + X3y3 + y6)
 X3 2wr 4wr 8w

 X=Othengives - = t -t2 if tS-3t+ 1 =0, i. e.,t= 2cos ---, 2 cos - 2 cos -; calling the threevalues
 y3 9 '9 9'

 o 3
 of thus obtainedc 717274, one of the two real in- and- exscribed triangles will have at its vertices

 - 1' 2 = 2 47, r - 4=3; tl j rl respectively, and the triangle conjugate to it will have

 y at its vertices-, -, _i equal to the same three systems of ratios.

 t If X3 +y3 + Z3 + 3mxyz be the given cubic, one set of 9 points will be found from the equation
 [(1 - p) y3 + (1 _ p2) Z3]3 + 27m3 (py6z3 + p2y3z6) = 0,

 or y9-- 3((1 -p2) m3 -p2) y6z3 -(( p) m3 - p) y3z6+ z9 = 0

 and the fellow set by interchanging y and z. The disadvantage of this method consists in its leading to equa-
 tions with imaginary coefficients for finding inter alia real roots which the equations Y = 0 or Z 0, being
 of odd degrees, show must necessarily always exist.
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 386 SYLVESTER, On Certain Ternary Cubic-Form Equations.

 On making x = 3 X= 6 and g = 18 we ought to have 24 the number of
 in- and- exscribable triangles to a general cubic, but on making these substi-

 tutions the result will be found to be zero. It is quite certain, therefore, that

 this fornmula requires some correction which has been overlooked by its

 illustrious author. For I have actually, in the text, given a cubic and a

 triangle in- and- exscribable to it, not to add that it is manifestly impossible

 for a general cubic to refuse to pass under the form xy2 + yz2 + zx2 + mxyz.
 Before quitting this subject I wish to call attention to the fact that thle

 formula above given for composite numbers is a form deduced from the form

 pk precisely as in the excursus, the expression for log Xx was deduced from log
 (xk - 1).* It is clear from general logical considerations that this sort of

 deduction must be continually liable to occur and a name is imperatively

 called for to express it as much as one was formerly wanted to express the

 kind of deduction which leads from an algebraical form to its Hessian. Here

 the deduction depends on the arithmetical constitution of the subject of the

 form, and it is a great impediment to the free course of ratiocination not to be

 able to pass at once, in language and in thought, from the form to its deduct.

 I intend then in future to call such deduct the functional totient of the form,

 say qpk, fromi which it is derived, and to denote it by (pr) k. This constitutes
 a very important gain to arithrnetical nomenclature.

 I would further call attention to the fact of an arithmetical theorem of

 some considerable difficulty to demonstrate (by means of Fermat's extended

 theorem) in the general case as any one, who goes through the process of the

 proof for the single case of k = the product of two primes, will easily satisfy

 himself, (I mean the theorem that the functional totient of 8 (2k-1_(1)k-1) (2k2

 (1)k2) is always divisible by k) should admit of an intuitional proof
 through the intervention of a pure property of cubic curves without any re-
 course to concepts drawn from reticulated arrangements, as in the applications

 of geometry to arithmetic made by Dirichlet and Eisenstein. This example

 of the possibility of such application (akin to that whereby the binomial theo-

 rem is made to prove that - (m + in') is an integer) is, as far as I can recall,

 without a precedent in mathematical history.

 * The expression actually there given is for X: and not its logarithm; uising the notation explained above,
 and calling f k - log (xSc- 1) the cyclotomic of the 1st species to the index k, is eT)k
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 SYLVESTER, On 2 and 3 as Cubic -Residues. 387

 Postscriptun.

 Mr. Franklin obtains my result as follows: The condition that the

 (i-1)th tangential shall lie on the first polar is of the degree 2.4i`+ 1
 the number of points on the cubic (exclusive of inflexions) satisfying this con-

 dition is 3 (2. 4i- I + 1)- 27 - 24 (4 -2 1). But the (i- )th tangential will

 be on the first polar, not only when it is a true antitangential, but also when

 it is the original point itself or the consecutive point; so that we have to

 deduct from the above number twice the number of points (exclusive of

 inflexions) whose (i- 1)th tangentials are the points themselves; i. e. denot-

 ing by u, the number of vertices of in- and- exscribed i-laterals, we have
 ai 24 (4`-2 1) -2ui1

 =24 {22i-4- 22X-5 + + (-2)i-1- (1- 2 + 22 . + (- 2)i-3}
 = 8 (2i-1 + (_ I)i-2) (2' -2 _(_ I)i-2)1

 which will be the number of the vertices, not only of true i-laterals, but

 also of all the - - laterals, (8 being any divisor of i except i itself) as well.

 Mr. Franklin further suogests that the discrepancy between this result for

 - 3 and Prof. Cayley's formula may be due to the latter not taking account
 of the peculiar kind of in- and- exscription in which the curve is in- and-

 exscribed at the same points. Finally, let us call the surmrnant of a number

 k of the forin aX. bl. cv (a, b, c being primnes) the well-known quantity consist-
 ing of (1 + A) (1 + i') (1 + v) . . terms whiclh represents the sum of the

 divisors of k. We may speak of a functional summant to cpk obtained by

 prefixing p to each monomial term in the developmnent of the summant and
 denote it by (cpa) k. The equation (cpn) k - o (k) has for its solution
 fk / (or) k. My method gives at once, for the functional summant of ik
 (withoutt exclusion of inflexions) (2k - Tk)2, and accordingly, the functional
 totient to this form divided by k is the simplest expression for the number of

 ex- and- inscribed k-laterals to the cubic. Thus, for k - 1, 2, 3, 4, 5, 6, that
 number is 9, 0, 24, 54, 216, 648 respectiNTely.

 2. On 2 and 3 as cubic residues.

 For the benefit of those among my readers in this country who may
 not have access to the later works on arithmetic, it may be as well to point
 how with the aid of their Gauss or Legendre they may verify the conditions
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 388 SYLVESTER, On Certain Ternary Cubic-Formn Equations.

 which, later on, I shall have need to emnploy of 2 or 3 being cubic residues to
 k a prime of the form 6i + 1. The cyclotomic function of the third degree

 in the variable to the index k, if we make 4k - m2 + 27n2, is known to be

 3 + x2- k2 7- 2 + -, where e2 =jl and mn-s contains 3. Con-
 necting this with the same function formed in the ml-anner in which the
 cyclotomics in the Excursus under Title 3 have been calculated, calling U the

 numnber of solutions of the congruence 1 +/3 + y-- 0 (mod. k), where /, y
 are any two unequal cubic residues to k, and 0 the number of solutions

 (1 or 0) of the congruence 1 + 2-- 0 (mod. k), it will easily be found, by
 comparing the constant terms in the two expressions, that

 30 k-8 + czn
 U+ -2. 18

 Hence, when 0 = 1, i. e. when 2 is a cubic residue, ni (and therefore also n)

 must be even, and consequently when 0 - 0, or 2 is not a cubic residue, m
 must be odd, and vice versa.

 Again, if we compare the values of the sum of the 4th powers of the roots
 of the cyclotomic as found by the general method with that deducible from
 the given function, we shall find

 V- 2 , k2 + 3k-66-4mec
 3 162

 where V is the number of soluLtions of the congruence 1 + +7+ - 0,

 plus the nuinber of solutions of the congruence 1 + d + 27 -0 (/, y, S
 being cubic residues to k) and a the number of solutions of the congru-
 ence 1 + 3/3_ 0 (mod. k), i. e. 1 or 0, according as 3 is, or is not, a cubic
 residue to k.

 The numerator is necessarily divisible by 54, but the criterion of a being
 O or 1 depends on its being divisible or not by 81. On substituting for k
 its value in terms of rn and n, it will be found that 16 times the numerator

 to modulus 81 is congruous with 54 times (n2_1) + E { ( )3 m - }

 and consequently is divisible or not by 81 according as n is not, or is, divisible
 by 3. Hence a = 1 when n is divisible by 3 and otherwise is 0.

 The joint effect of these two results may be translated into the following
 statement, which is better adapted than the more complete* form of enuncia-
 tion would be to the purposes of this memoir.

 *1 mean more complete in the sense of fixing the cubic character in the case of 8 being a non-residue,
 which is unimportant to the matter in hand.
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 SYLVESTER, On Nunubers Irresoluble into Two CJtbes. 389

 Ifk =f2 + 3f2, when (f + g) contains 9, 3 is, and 2 is not, a cutbic residue;
 when g contains 3, but not 9, 2 is, and 3 is not, a cutbic residue; when g contains 9,

 2 and 3 are each of 'temn cubic residaes, and in any other case neither 2 nor 3 is a

 cubic residue to 1.*

 The equation U+ 2- = 3k -1 + emk contains a complete solution of the
 2 ~~18

 interesting question, "How many times, if the cubic residues to a given mnodu-

 lus are set out in a regular ascending, series, xvill consecutive terms differ from

 one another by a single unit?" When 2 is not a cubic residue, the answer is

 obviously 2 U, for 1 + a + =- n gives two sequences, a, n - ( and 3, n -a,
 differing by units. 13ut when 2 is a cubic residue, there will be three extra

 sequences not contained aiongo the 2 Ujust spoken of, viz:

 1, 2; k1 k+ 1 k-2, k-1i.
 2 2

 Hence, in each case, the number is 2 U+ 30, i. e. k-8 + n, or, if we count

 k +em+ 1 in 0 as a residue, k e

 SECTION 2.

 On certain numbers and classes of numbers that cannot be resolved into the stun

 or difference of two rational cutbes.

 Title 1. Theorem on irresoltuble numbers whose prime factors other than 2 or 3

 are of the form 18n + 5 or 18n, + 11.t I propose to prove the following col-
 lective theorenm. If A represents any one of the numbers 1, 2, 3, 4, 18, 36 or
 any number of the form

 p, q, 2 22
 -P p, 12 q,2

 9p, 9q, 9p2, 9q2,
 2p, 4q, 4p2, 2q2,

 p 2 2 2 2 2

 (where any p nmeans a pritne nurnber of the form 18n + 5, and any q a prime
 of the form 18n + 11) A will be irresoluble into the sum of two unequal
 rational cubes.

 *In other words, if 4p m2 + 27n2 [an equation alwaYs possible when p -fi, + 1], n divisible by 2 is the
 necessary and sufficient condition of 2, and n divisible by 3 is the necessary sufficient condition of 3, being a
 cubic residue top.

 t This theorem includes and transcends all the cases of irresolubility that bad been discovered prior to the
 date of publication of the Proein in the last number of the Journal, with the exception of certain specific numn-
 bers whose irresolubility had beeni determined by the Abb6 P6pin.
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 390 SYLVESTER, On Certain Ternary Cubic-Form Equations.

 Lemma. If we decompose A (when it is not a prime) into any factors

 f, g, h, prime to each other, other than 1, 1, A, the equation fx3 + gy3 + hz3 = 0
 will be irresoluble in integers.

 I prove this by showing that the above equation converted into a con-

 gruence to modulus 9 is irresoluble in integers.
 x3,y, Z3, each of them to this modulus is equivalent to one or the other

 of the three numbers 1, 0, 1.

 p, X plX p2 to this modulus is equivalent to 4

 q, ql1, 92 "2
 2 gs2 4;4 2

 2 , p2 4" 4 1 4 22 S << 4

 and on inspection, it wvill easily be verified that the limited linear congruence
 f2 + gy +hv -- 0 [mod. 9], where A, , v must each be picked out of the
 three numbers 1, 0, 1, has no solution.

 Hence, if fx3 + gy + hz3 andf. g. h = A, and x, y, z are supposed to
 be prime to each other, two of the quantities f, g, h will be unities and the
 third equal to A.

 Let, now, x3 + y3 + Az3 0 be supposed soluble in integers. Then, since
 A contains no 6n + 1 prime, we must have

 x +y-A3 1

 X X2 ? y2 = 3 when x + y does not contain 3,
 z J

 and
 x +y=943 )
 X2 Xy + y 2 - 3CJ3 j-when x + y contains 3.
 z 34 J

 If x + y is even, since X2 y ? y2 (?Y)2+ 3 (x2 Y) we must have

 ZY+N/-3- - =(E+^/-3>1)3, when x+y does not contain 3, and

 2Y- + -3 x ( + V-3 )3, when x + y contains 3. In the one case 26

 X+y 3 9)3 xY- 312J _ 3n3 anid ill the otherXTY-03_9n2g, -+Y 2 ~~2 teohr2 ~ ~ 6
 302n - 3n3.

 In the one case, then, 24 (- 3n) ($ + 337) = A 3, and in the other
 2n (E - ) (d+ T ) = A43. In either case, therefore, there is an equation-system
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 SYLVESTER, On Yumnbers Irresoluble into Two Cubes. 391

 of the form p?z =- A '3, p + a + r = 0 , to be satisfied; therefore, disregard-
 ing permutations of p, o, t, we must have

 p. orx1 _gy3, r hz3

 f.Y. It=.A xY,ylz = ;
 fx3 + gy3 + kz3 = 0,

 andl consequently by the Lemma 3+ y3 + AZ3 -0 (or the sarne equation with

 x1, y', z1 interchanged) where x1y,z1 is a factor of z.
 Continuing the same process perpetually, as long as the new x and y have

 the same parity, each new x, y, z being contained in the immediately preceding
 z, must perpetually decrease, and if the process could be indefinitely con-

 tinued, x and y must each evidently become unity, since otherwise z could go

 on decreasing without limit. This could only happen when A = 2, and even

 then is excluded by the condition that the cubes are to be unequal as well as

 rational.* Hence, if the proposed equation is soluble at all, it must contain

 solutions in which x and y are one even and the other odd.

 On this hypothesis, let us consider separately case (1), where x +?y does
 not, and case (2) where x + y does contain 3.

 Case (1). Here (x + y)2 + 3 (x y) 4 (L + 3M2) - 4w," and all the
 solutions of this equation are necessarily inclu(led in those of the systeni

 L2+3MI2-(3, x+y=L+3M, x-y=L-M.
 Hence x+y= +9Th-91-9'3 Ag3. On making 0,= -3nj,

 this becomes 03-36n2 +72n'=A;3, or, making n'6nj, 303 - 30,2?+ t3= 3A '3,
 which, on writing n' = + i) becomes 3- 3r 2 + $3 3_A;3, where A unless it
 is unity contains at least one factor that is not of the form 18n L= 1, or else
 (in the case when A = 3) the square of 3. Hence, by virtue of the cyclotomic

 law for index 9, species 2 (conijugate class) (see Table, p. 367), the above

 equationi is insoluble in integers.t

 *To prove this. Let $, r?, C be the system of variables, for which f = 1, 1= I and x, y, z the system
 immediately preceding it. Trhen we have A =2, f = 1, V - 1, V _-1, and either x-y= O, or x+ y=O.
 The latter of these equations would inmply z = 0 and the former x: y : z:: 1: 1: -1 , and so continually until we
 fall back on the original equation in x, y, z. Hence the only possible resolution of 2, if x + y is even, is into

 two equal cubes.

 t 3A not containing any cube, 4 and 3A must be prime to each other, since otherwise 9, f. S would have
 a common measure. Hence we may make = ,u 3AA, and, consequently, (,a3 - 3i + 1) 3= - 0 mod. 8A,
 and, therefore, a3 - 3, + 1 must contain 3A.

 This conclusion would not hold if 3A were of the form A1B3 where A1 contained no cube. We could then

 only inferU3 3- 3+ 1 = 0 mod. A1 . Thus, in the case of A - 9, 3A =B3, and our inference would become
 3 83 + I - 0 mod, 1, which, of course, is satisfied, and, accordingly. 9 ought to be resoluble into two cubes,
 as it obviously is, viz: into 1 and 8. Thus, the equation a'3 - 3Xy2 + y3 = 3Az3, when A = 9 lhas an infinite
 number of solutions when A =3 has no solution, and when A = 1 has just 3 solutions.
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 392 SYLVESTER, On Certain Ternary Cubic-Form Equations.

 Case (2). Here, using Land Min the same sense as above, -+ L-M
 3

 and x-y L+3Aior $-3_ &:2nj 9$jn2 + 3K3 =3A<3. Here writing y2n = i,j
 + 2:, the equation becomes 3- 3n 2+ 3- 3A43, and is iniso]uble in inte-

 gers as before. Hence, since by hypothesis x + y is not even, and it has been

 shown that it cannot be odd, the number A when not unity is irresoluble into the

 sum or difference of two uneqzual rational cubes.*

 When A is unity the equation above written becomesn3 - 3 + +3= 3;3
 the necessity for discussing what may be avoided by clhoosing the x, y out of

 x, y, z (which in this case are indistinguishable) so as to nmake x + y always
 even, which is the ordinary and easier nmetliod; but it is not without interest

 to show hiow the desired conclusion may be arrived at by keeping x + y

 always odd. This may be done as follows: The equation between i, , l
 on writing v + = it, <- = v, - + u ? V w2 become uV2+ VW2 + WU2- 0
 which, as shown in foot note to p. 383, involves the relations u4y'2z' v;Z'2X',

 w x'2y' and consequently x'3 + y'3 + z'3 0 where ay'z' 4/uvw.
 Let us use in general two or more separate letters enclosed within a

 parenthesis to denote the absolute value of the greatest one of then (their domi-

 nant as I am wont to call it).

 Wheni x + y does not contain 3, x + Y -<, X2 xy + y2 - (' + 32)3.

 Hlence < <21 (xl, y3) (1, m)<33 (x-, y). Therefore ($, , )<31 (x, y,z)
 and consequently since 0 $j + 3n, and n = $i + 3m, ($, , ') <4 . 31 (x, y, Z)
 and therefore (u, v, w) < 4. 34 (x, y, z)3. Hence x'. y' .z' <(u, v, w) <4 .33 (x, y, z)1.

 In like manner when x + y does contain 3, from the equations 2 - -

 g x + y = 93, x2-Xy + y2 = 3 (g2 + 33K2)3, follow < (3 (x, y)

 <0,1 <(x,y)3, (01, 7n, ;) < (XI y IzA (004 ;) <(x, y, z) 3I x'.y'.Z'< (u,v, IV)
 <3 (x, y, z)*.

 In any case therefore x'. y'. z' < 4 . 34 (x, y, z) < 18 (x, y, z)1. But the
 difference between any two cubes except 8 and I being greater than 8, the

 It may be worth noting that, in general, if (x, y)l =-Azn, and A ==A, B, where A1 contains no nth power
 of a number (x, l)n will contain A1 as a divisor, provided that the coefficient of xn in (x, y)n is prinme to A1

 Cases of this inference being drawn of course frequently occur, but the general principle, obviouis as it is, I do
 not recollect to have seen formulated in the text books. It may be made more precise by the statement that
 any factor of A1 prime to the coefficient of xi will be a divisor of (x, l)n.

 * The equations of substitution are: for case 1, = j + 381, ; -F j + 371; and for case 2, 2 = -

 t From these equations it is obvious that the dominant, i. e. the arithmetically greatest of the quantities
 u, v, w, is less than 3 times the dominant of $, 97, C.
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 SYLVESTER, On Nuinbers Irresoluble into Two Cubes. 393

 smallest of the numbers x?, y', z' cannot be less than 3, and, since neither 33+ 43

 nor 33+ 53 is a cube, it follows that x" yZ z>18 and therefore (x', y, z') < (x, y,z)i,

 or the dominant of the quantities x, y, z which satisfy X3 + y3 + Z3 = 0 is

 continually replaced by another similar dominant less than the cube root

 of its predecessor, which is impossible.

 Hence X3 + y3 + Z3 =0 is insoluble. Let us see how this is reconcilable
 with the existence of the 3 rational solutions of 3 - 3n2 + 3 = 3A4'2, Viz:

 i, I =1 1, 1 1 or 2, 1, 1 or 1, 2, 1 respectively.
 In case (1) = + 3rn 7 = 1 + 3r1 i = gives 7O = O

 , = 2, 1 gives n, = -j i, n = 1, 2 gives n, = 0,. In each instance therefore
 AI= 3>? (-2 _21) =0 and consequently x + y =L = x -y and y = O.

 In case (2) =-21 W =, W = 1, 1 gives 0j = 3 i, nl 2, 1
 gives 0j = - 3n, and i, n = 1, 2 gives j = 0.

 In each instance therefore L = ij (-2 9,n2) =0 and therefore x =0. Thus
 the rational solutions of the equation in i, n, in both cases correspond to
 rational but futile solutions of the equation in x, y, z.

 [To be continued.]
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 A Quincuncial Projection of the Sphere.

 By C. S. PEIRCE.

 [Published by the authority of the Superintendent of the U. S. Coast and Geodetic Survey.]

 FOR meteorological, magnetological and other purposes, it is convenient to
 have a projection of the sphere which shall show the connection of all parts
 of the surface. This is done by the one shown in the plate. It is an ortho-

 morphic or conform projection formed by transforming the stereographic pro-
 jection, with a pole at infinity, by means of an elliptic function. For that

 purpose, 1 being the latitude, and 0 the longitude, we put

 Cos2 1 - COS2ICOS2O- Sill I

 1 + V1-cos2I cos2d

 and then +FPp is the value of one of the rectangular co6rdinates of the

 point on the new projection. This is the same as taking

 cos ant (x +H y/ -1) (angle of mod. = 450)-tan -2 (cos 0 + sin 0 -1),

 where x and y are the coordinates on the new projection, p is the north polar
 distance. A table of these coordinates is subjoined.

 Upon an orthomorphic potential the parallels represent equipotential or
 level lines for the looarithmic projection, while the ineridians are the lines of
 force. Consequently we may draw these lines by the method used by Max-
 well in his Electricity and Magnetism for drawing tlle corresponding lines for
 the Newtonian potential. That is to say, let two such projections be drawn
 upon the same sheet, so that upon both are shown the saine ineridians at
 equal angular distances, and the same parallels at such distances that the ratio

 of successive values of tan 2 is constant. Then, number the meridians and

 also the parallels. Then draw curves through the intersections of meridians
 with meridians, the suins of numbers of the intersecting meridians being,
 constant on any one curve. Also, do the same thing for the parallels. Then

 these curves will represent the meridians and parallels of a new projection
 having north poles and south poles wherever the component projections had
 such poles.

 394
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 PEIRCE, A Quinunciatl Projection of the Sphere. 395

 Functions may, of course, be classified according to the pattern of the

 projection produced by such a transformation of the stereographic projection

 with a pole at the tangent points. Thus we shall have-

 1. Functions with a finite number of zeros and infinites (algebraic functions).

 2. Striped functions (trigonometric functions). In these the stripes may

 be equal, or may vary progressively, or periodically. The stripes may be
 simple, or themselves compounded of stripes. Thus, sin (a sin z) will be
 composed of stripes each consisting of a bundle of parallel stripes (infinite

 in number) folded over onto itself.

 3. Chequered functions (elliptic functions).

 4. Functions whose patterns are central or spiral.

 I. Table of Rectangular Coordinates for Construction of the "Qutinlcuncial
 Projection."

 x (for longitudes in upper line). y (for longitudes in lower line.)

 00 60 100 150 200 250 800 350 400 450 500 550 600 650 700 750 800 850

 iAT. 90 85 80 76 70 66 60 55 50 45 40 35 30 25 20 15 10 5 LAT.
 850 .033 ..033 .033 .032 .031 .030 .029 .027 .025 .024 .021 .019 .017 .014 .011 .009 .006 .003 850

 80 .067 .066 .0.66 .064 .063 .061 .058 .055 .051 .047 .043 .038 .033 .028 .023 .017 .012 .006 80

 75 .100 .100 .099 .097- .094 .091 .087 .082 .077 .071 .065 .058 .060 .042 .031 .026 .017 .009 75

 70 .135 .134 .133 .130 .127 .122 .117 .110 .103 .095 .087 .077 .067 .057 .046 .035 .023 .012 70

 65 .169 .169 .167 .163 .159 .154 .147 .139 .130 .120 .109 .097 .085 .072 .058 .044 .029 .015 65

 60 .205 .204 .201 .198 .192 .185 .177 .168 .157 .145 .131 .117 .102 .086 .070 .053 .036 .018 60

 55 .241 .240 .237 .232 .226 .218 .208 .197 .184 .170, .154 .138 .120 .102 .082 .062 .042 .021 55

 50 .278 .277 .274 .269 .261 .251 .240 .227 .212 .196 .178 .159 .139 .117 .093 .072 .048 .024 50

 45 .317 .316 .312 .306 .297 .286 .273 .258 .241 .223 .202 .181 .158 .134 .109 .083 .OS55i.028 45

 40 .357 .356, .351 .344 .334 .321 .307 .290 .270 .250 .228 .204 .179 .151 .123 .094 .063 .032 40

 35 .400 .398 .393 .384 .373 .358 .341 .322 .301 .279 .254 .228 .200 .170 .139 .106 .071 .036 35

 30 I .446 .443 .437 .427 .413 .896 .377 .356 .332 .308 .281 .253 .222 .190 .155 .119 .081 .041 30

 25 .495 .492 .484 .471 .455 .485 .414 .391 .365 .388 .309 .279 .246 .211 .174 .134 .091 .046 25

 20 .548i .545! .534 .518 .498 .476 .452 .426 .398 .369 .339 .307 .272 .235 .195 .151 .104 .053 20
 15 .6091 .604 .5891 .568 .544 .517 .490 .461 .432 .401 .369 .336 .300 .262 .219 .173 .121 .062 15

 10 .681 .672 .649 .620 .590 .559 .528 .497 .466 .434 .401 .367 .330 .291 .248. .2001 .143 .076 10

 5 .775 .752 .713 .673: .635 .600 .566 .532 .600 .467 .433, .399 .863 .324 .2821.2341 .177 .102 5 0 1.000 .841 .774 .723 .679 .6391 .602 .567 .533 .500 467 .433 .398L .361 .321 .277 .226 .159 0
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 396 PEIRCE, A Quincvucial Projection of the Sphere.

 II. Preceding Table Enlarged for the Spaces Surrounding Infinite Points.

 x (for longitudes in upper line). y (for longitudes in lower line).

 00 10 20 30 40 50 60 80 100 1210[ 150 750 7710 800 820 840 850 860 870 880 890

 LAT. 90 89 88 87 86 85 84 82 80 77-2 75 15 121 10 8 6 |i 4 3 2 1 LAT.
 150 .609 .609 .608 .607 .606 .604 .602 .596 .589 .579 .568 .173 .147 .121 .098 .074 .062 .050 .038 .026 .013 150

 12' .643 .643 .642 .641 .639 .636 .634 .627 .618 .606 .594 .185 .159 .131 .107 .082 .069 .055 .042 .028 .014 121

 10 .681 .681 .680 .678 .675 .672 .668 .659 .649 .635 .620 .200 .173 .143 .118 .091 .076 .062 .047 .031 .016 10

 8 .715 .714 .713 .710 .706 .702 .697 .686 .674 .658 .641 .213 .185 .155 .129 .100 .085 .069 .052 .035 .018 8

 6 .753 .752 .750 .746 .741 .735 .728 .714 .700 .681 .662 .227 .199 .169 .142 .112 .095 .078 .060 .040 .020 6

 5 .775 .774 .770 .765 .759 .752 .745 .729 .713 .692 .673 .234 .207 .177P .150 .119 .102 .084 .065 .044 .022 6

 4 .798 .797 .793 .786 .779 .770 .761 .743 .725 .704 .683 .242 .215 .185 .158 .128 .110 .092 .071 .049 .025 4

 3 .825 .823 .817 .808 .798 .788 .778 .757 .7d8 .715 .693 .250 .224 .194 .168 .137 .120 .101 .079 .055 .029 3

 2 .857 .853 .843 .831 .819 .806 .794 .772 .750 .726 .703 .269 .233 .204 .178 .148 .131 .112 .090 .065 .035 2

 1 .899 .889 .872 .854 .839. 824 .810 .785 .763 .737 .713 .268 .24? .215 .190 .161 .144 .126 .105 .079 .046 1

 0 1.000 .929 .899 .877 .857 .841 .825 .798 .774 .747 .723 .277 .253 .226 .202 .175 .159 .143 .123 .101 .071 0
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 Notes on the "15" Puzzle.

 I.

 BY WM. WOOLSEY JOHNSON, Annapolis, Vid.

 THE puzzle described below has recently been exercising the ingenuity
 of many persons in Baltimore, Philadelphia and elsewhere. A ruled square
 of 16 compartments is numbered as in this diagram:

 1 2 3 4

 5 6 7 8

 9 10 11 12

 13 14 15

 the 16th square being left blank. Fifteen counters, numbered in like man-
 ner, are placed at random upon the sqaares so that one square is vacant.

 The counter occupying any adjacent square may now be moved into the
 vacant square-thus: If No. 7 is vacant, either of the counters occupying
 Nos. 3, 6, 8, 11 can be moved into it, but no diagonal move is allowed. The
 puzzle is to bring all the counters into their proper squares by successive
 moves.

 It seems to be generally supposed, by those who have tried the puzzle,

 that this is always possible, whatever be the original random position of the
 counters, but this is an error, as the following demonstration will show:

 When the blank or sixteenth square is the vacant one, the arrangement
 of the counters may be called a positive or negative one, according as the
 term of the 15-square determinant, which has for first anid second subscripts
 the numbers- on the squares and counters, is positive or negative. Let n
 101 397
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 398 JOHNSON, Note on the " 15" Puzzle.

 moves be made, leaving some other square vacant, and then suppose the

 counter which occupies the blank square to be transferred directly to the

 vacant square, we thus obtain a positive or a negative arrangement. Had

 n + 1 moves been made before the transfer took place, the arrangement pro-
 duced would have been one which can be derived from that last lmentioned
 by a single interchange of two counters. (For example, if the (n + 1)th

 move is from No. 6 to No. 7, the moved counter will be in No. 7 and the

 transferred counter in No. 6; whereas, had the transfer taken place after n

 moves, the former would have been in No. 6 and the latter in No. 7).
 Now the first two moves followed by a transfer are equivalent to one inter-

 change; therefore the displacement effected by n moves followed by a transfer
 is one which could have been produced by n - 1 interchanges. Now suppose

 that after m moves the blank space is again left vacant, then the mth move is

 itself a transfer from the blank square, and therefore the displacement pro-

 duced by the in moves is one which might have been produced by m - 2

 interchanges.

 If the squares were coloured, as in a chess board, each move would
 change the colour of the vacant square, and therefore m is an even number;

 it follows that the displacement is one which might have been produced by

 an even number of interchanges, and can never change a positive to a nega-

 tive arrangement or the reverse; hence the desired arrangement, which is a

 positive one, can never be produced if the original random arrangement

 happens to be a negative one. This conclusion is obviously not affected in
 any way by the shape of the board.

 In order to m-ake this demonstration satisfactory to non-mathematicians

 who may be interested in this puzzle, I add a simple demonstration of the

 tlheorem upon which the classification of the arrangements as positive and

 negative depends, viz: that a permutation that can be derived fromli a given

 one by an odd number of interchanges can never be produced by an even

 number of interchanges. Let the numbers 1, 2, . . . n be written down in

 natural order, and under them place any other permutation of the same

 numbers, thus if n = 15, as in the present case, we might have
 1, 2, 3, 4, 5, 6,7, 8, 9, 10, 11, 12, 13, 14, 15;

 12, 10, 8, 15, 9, 6, 3, 4, 11, 1, 7, 2, 14, 5, 13.

 Now group the numbers into cycles as follows: beginning with any one of
 the numbers, look for it in the upper row and write next to the number that
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 STORY, Note on the " 15" Puzzle. 399

 w'hich is found under it, then looking for the latter in the upper row, write
 next the number found under it, and so on until we find the original number
 in the lower row. Thus in the example above beginning with 1, we have the

 cycle
 1, 12, 2, 10.

 Then taking a number not found in this cycle, say 3, form a new cycle, and
 so on till the numbers are exhausted. In this case we shall find the other

 cycles to be
 3, 8, 4, 15, 13, 14, 5, 9, 11, 7, and 6,

 the last cycle happening to consist of a single number. Let m denote the
 number of these cycles. In the above case nt = 3. Now let two of the lower
 numbers be interchanged. A little consideration will show that if these
 numbers belong to the same cycle, this cycle will be broken up into two
 cycles; but if they belong to different cycles, these cycles will be comnbined into
 a single one. In either case, the value of m will be changed from an even to
 an odd number, or the reverse. The same is true of the number n -m. Nov,
 when the lower numbers are in natural order, there are n cycles, each com-
 posed of a single number, and n - m = 0. Hence, starting from this arrange-
 ment, any odd number of interchanges will produce an arrangemnent in which
 n - m is odd, and any even number, one in which n - m is even. The former
 are the negative, and the latter the positive arrangements alluded to above.

 Postscript.

 Since the above was written the puzzle has been published in the formn
 of a square box containing 15 blocks, the squares not being numbered. The
 requirement is simply to " move the blocks until in regular order." It has
 been shown in the New York Evening Post that xvhen it is impossible to
 arrange the blocks, with the block 1 in a certain corner, it is possible to obtain
 a regular arrangement with the block 1 in an adjacent corner.

 II.

 BY WILLIAM E. STORY.

 IN the preceding note Mr. Johnson has proved that, with the ordinary
 form of the puzzle, a positive arrangement with the 16th square blank cannot
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 400 STORY, Note on the " 15" Puzzle.

 be obtained from a negative arrangement with the same square blanlk. But,
 evidently, the same method of proof will shew that, on a square or rectan-

 gular board divided by any number of vertical and any number of horizontal
 lines into spaces or squares, if a nunmber of counters one less than that of

 squares, numbered successively from 1 on, be arranged in any way, and then
 moved as in the " 15 " puzzle, a positive arrangement cannot be converted by

 such moves into a negative arrangemiient with the same square blank, nor

 vice versd. And this result is entirely independent of the position of the

 blank square. Moreover we may, in forming the arrangements of the num-

 bers of the counters, take the first number from any given square of the

 board, the second from any other, the third from any remaining square, and

 so on, without affecting the validity of the proof, provided we use the squares

 in the same order in all the arrangements considered. The order in which
 I shall suppose the squares to be employed in forming the arrangements is

 this: beginning at the left-hand square of the upper row, I shall take the

 squares in succession along the upper row from left to right, then back along

 the second row from right to left, and so on along the successive rows, alter-

 nately from left to right and from right to left, until all the squares on the
 board have been taken, omitting, the vacant square. The succession of the
 numbers of the counters taken in this order we shall speak of simply as the

 order of the arrangement, calling the order positive or negative according as

 the numnbers taken in this way form a positive or negative permutation.

 That arrangement whose order is the natural order of the numbers we will

 call the standard arrangement. We proceed now to deduce a rule for deter-

 mining whether a given arrangement can be converted into the standard

 arrangement, and, if so, in what manner this can be effected.

 1. Evidently, with any given arrangement, two squares, upon which are
 counters adljacent in the order of the arrangement, are either adjacent squares

 upon the board, or both adjacent to the blank space. Now the blank can be

 interchanged with any adjacent counter by simply moving the latter into the

 place of the formner. Thus the blank can be made to pass from any one posi-

 tion on the board to any other, by successive interchanges with an adjacent

 counter, without altering the order of the arrangement. Thus the condition

 for the possibility of converting any given arrangement into the standard

 arrangement mav be treated as independent of the position of the blank

 square, but depending only upon the order of the given arrangemnent, since
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 STORY) Note on the "15" Puzzle. 401

 the arrangemnent itself depends only upon the position of the blank square

 and the order.

 2. In any arrangement any counter can be made to pass over the two

 counters next preceding or next succeeding it in order, without otherwise

 altering the order; i. e. if a, b, c be any three successive counters in the order

 of the arrangement, then a may be passed over b and c. For, bring the blank

 space to the side of c, so that a, b, c and the blank shall occupy four succes-

 sive squares, situated in two successive rows (or in one, in wlich case either

 adjacent row may be taken for the second), and these two rows, joined at

 both ends, form a closed circuit in which a, b, c may be moved along until

 they, together with the blank space, occupy the two squares nearest the same

 end of both rows, thus:

 a bc

 or

 c a b

 If then a, b, c, a be successively moved into the blank space, the arrangement

 in these four squares becomes

 b ca

 or - _ _

 a b c

 in the one or the other case respectively, which is the above arrangement

 with a, b, c respectively replaced by b, c, a. Reversing the moves by which

 the three counters were brought to the end of the rows, and also those by

 which the blank square was brought to the side of c, we have the original

 arrangement with a, b, c respectively replaced by b, c, a, i. e. a has been

 rpassed over b and c, but no other change made in the order. It is evidently
 not necessary to reverse the mnoves by which the blank was brought to the

 side of c, for these do not affect the order of the arrangement.

 Whatever be the given arrangement, the counter marked 1 may be

 passed over the counters preceding it in order, two at a time, until it occupies
 102
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 402 STORY, Note on the " 15" Puzzle.

 either its proper position in the standard arrangement (viz: the first s(luare
 on the board), or the next square; if, in this process, it comes into the square

 adjacent to its own, the counter which occupies its square may be passed

 over it and the next counter, thus leaving it in its proper place. When the

 1 is in place, we may pass up the 2 and each successive number, passing it
 back over two counters at a time until it reaches its own square or the next;

 if the latter, the counter in question may be brought into its own square
 by causing the counter which occupies its place to pass over it and the

 next. This process may be continued until only the last two counters

 remain, when these will be either in their proper or in inverted order.

 Thus every arrangement may be broug,ht into one or the othier of these two

 final arrangements, differinig by one interchange, and therefore of opposite
 characters (the first of a positive and the second of a negative order). From
 which it follows (since no arrangement whose order is positive can be changed

 into one whose order is negative, or vice versa) that every arrantgenment whose
 order is positive, and only such, can be converted into the standard arrangement.
 Thiis is the desired criterion for the possibility of a standard solution.

 It is evident that any two arrangements, which can be converted into

 the same third arrangement, can be converted into each other, and that any
 two arrangements cannot be converted into each other, if they can be con-
 verted into two other arrangemnents not convertible into each other. Now

 every arrangement can be converted into one or the otlier of the two above-

 mentioned final arrangements. Hence any two arrangements are inter-
 changeable if their orders are both positive or both negative, and not
 interchangeable otherwise. Hence, also, an arrangement whose order is

 positive can or cannot be converted into a given arrangement, according as
 the latter is convertible into the standard arrangement by an even or an odd
 number of interchanges; and an arrangenment whose order is negative can or
 cannot be converted into a .given arrangement, according as the latter is con-
 vertible into the standard arrangement by an odd or an even number of

 interchanges. Now what may be called the natural arrangement (i. e. the
 arrangement in which the numbers on the counters follow each other from

 left to right in the upper, second, third, etc. row in their natural order, and
 the right hand square of the bottom row is blank) can be converted into the

 standard arrangement by reversing the order of the counters in the second,
 fourth and every even row. Evidently, any row may be reversed by inter-
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 STORY, Note on the " 15 " Puzzle. 403

 changing the counters equally distant from its two ends. Thus a row con-
 taining an even number of counters may be reversed by a number of inter-
 changes equal to half the number of counters in the row, and a row containing
 ani odd number of counters by half the number less one, since the position of
 the mniddle counter is not altered by reversing. Hence the numnber of inter-
 changes necessary to reverse a row of an odd number of counters is the same
 as for a row containing a number of counters one less. The numnber of
 necessary interchanges is the same for each even row, unless the board
 contains an even number of rows and an even number of columns, in which
 case the numnber of interchanges for the last row will be one less than for
 any other even row.

 Representing the number of rows on the board by r and the number of
 columns by c, we shall have four cases, viz:

 I. r even, c even; II. r even, c odd; III. r odd, c even; IV. r odd, c odd.
 The number of interchanges necessary to convert the natural arrange-

 ment into the standard arrangement in each case is

 I. i c in each of i r -1 rows and i c-1 in one row,
 II. i (c-1) in each of i r rows,

 III. I c in each of - (r- 1) rows,

 IV. i (c- 1) in each of a (r -1) rows;

 i. e. I. i cr - 1, II. i (c - 1) r, III. i c (r -1), IV. i (c - 1) (r - 1).
 We may divide all possible boards into two classes, regarding as of the

 first class a board for which the number just found is even, and as of the
 second class one for which this number is odd. We have then this rule:

 On a board of the first class a given arrangemnent can or caninot be converted
 into the ntatural arrangement, according as its order is even or odd; but on a board
 of the second class a given arrangemnent can or cannot be converted into the natural
 arrangement, according as its order is odd or even.

 For the ordinary " 15 " puzzle we have r = 4, c = 4, which belong to
 Case I.; I cr - 1 = 3, which being an odd number, the boardl is of the second
 kind, and the natural arrangement can be obtained from any arrangement
 whose order is odd, but not from one whose order is even. For a square
 board with five rows and five columns we have r 5, c=5, belonging to
 Case IV., I (c - 1) (r - 1) - 4, and the board is of the first class, hence the
 natural arrangement can be obtained from any arrangement whose order is
 even, but not from oine whose order is odd. We may designate as the reversed
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 404 STORY, Note on the " 15" Puzzle.

 natural arrangeenent that which is obtained from the natural arrangenment by
 reversing all the rows, leaving the left-hand square of the lower row blank.

 Using the notation just employed, the natural order may be reversed by

 i er - 1 interchanges, when c is even; and by a (c - 1) r interchanges, when
 c is odd; i. e. the condition for the possibility of forming the reversed natural

 arrangement from any given arrangement will be the same or the opposite

 as that for the natural order, according as the numnber last obtained [9 er - 1,

 if c is even; and i (c- 1) r, if c is odd] is even or odd. Thus if r = 4, c = 4;
 i er - 1 = 7 and the reversed arrangernent can always be formed wvlhen the

 natural arrangement cannot, and only then. If r = 5, c = 5; a (c- 1) r = 10,
 and the reversed arrangement can be formed when the natural order can be,

 and only then. I. e. with the ordinary "15" puzzle, it is always possible to

 arrange the numbers in the natural order with the 1 in the right-hand upper

 square, when it is not possible to do it with the 1 in the left-hand upper
 square (as Mr. Johnson has remarked in the postscript to his note) ; but on a

 square board with five squares on a side, a solution is possible from each of

 the four corners, or not at all.

 There are otlier arrangements beside the natural and reversed natural

 wvhich may be regarded as solutions of the puzzle, viz: beginning at either

 cor ner of the board, the counters may be arranged in their natural order by

 rows or by columns, there being in all eight such solutions.

 The " 15 " puzzle for the last few weeks has been prominently before the American public, and may safely

 be said to have engaged the attention of nine out of ten persons of both sexes and of all ages and conditions of

 the community. OSut this would not have weighed with the editors to induce them to insert articles upon such
 a subject in the American Journal of Mathematics, but for the fact that the principle of the game has its root
 in what all mathematicians of the present day are aware constitutes the most subtle and characteristic concep-

 tion of modern algebra, viz: the law of dichotomy applicable to the separation of the terimis of every complete
 system of permutations into two natural and indefeasible groups, a law of the inner world of thought, which

 may be said to prefigure the polar relation of left and right-handed screws, or of obje^ts in space and their
 reflexions in a mirror. Accordingly the editors have thought that they would be doing no disservice to their
 science, but rather promoting its interests by exhibiting this a priori polar law under a concrete form, through
 the medium of a game which has taken so strong a hold upon the thought of the country that it may alrnost be

 said to have risen to the importance of a national institution. Whoever has made himself master of it may
 fairly be said to have taken his first lesson in the theory of determinants.

 It may be mentioned as a parallel case that Sir William Rowan Hamilton invented, and Jacques & Co.,

 the purveyors of toys and conjuring tricks, in London (from whom it may possibly still be procured), sold a
 game called the " Eikosion " game, for illustrating certain consequences of the inethod of quaternions.-EDS.
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 CLIFFORD TESTIMONIAL FUND.

 The friends of Professor CLTFFORD, who was compelled by ill-healtli to relinquish active work
 and reside in Madeira, were anxious to present him with a substantial Testimonial in public recog-
 nition of his great scientific and literary attainments.

 At a meeting held at the Royal Institution, Albemarle Street, on Friday, January 31st, WIL-
 LTAM SPOTT1SWOODE, Esq., President of the Royal Society, in the Chair, it was resolved that a Fund
 should be raised for the above-mentioned purpose, and that the sums received should be placed in
 the hands of Trustees, for the benefit of Professor CLIFFORD and his family.

 In consequence of the lamented death of Professor CLIFFORD (the probability of which at an
 early period was foreseen) the sums received will be applied to the benefit of his surviving widow
 aind clhildren.

 Contributions may be paid to the account of "Clifford Testimonial Fund," with Messrs.
 Robarts, Lubbock & Co., Lombard Street, London.

 March, 1879.

 General Committee:

 WILLIAM SPOTrISWOODE, ESQ, President of the Royal Society, Chairman.

 F. A. ABEL, C.B., F.R.S. Hon. C. W. FREEM&NTLE. H. N. MOSELEY, Esq., F.R.S, Oxford.
 Prof. F ALTHAUS, Ph.D. DOUGLAS W. FRESHFIELD, Esq. J. FLETCHER MOULTON, Esq.
 F. L. ATTWOOD, Esq. J. W. L. GLAISHER, Esq., F.R.S., Trinity Col- W. DONALD NAPIER, Esq.
 FLETCHER BEACH, Esq., M.D. lege, Cambridge. Prof. A. NEWTON, F.R S., Cambridge.
 Rt. Hon. LORD BELPER F.RS. Prof. A. GOODWIN. M.A. ISAMBARD OWEN, Esq., M.B.
 H. SELFE BENNETT, Esq., M.B. Prof. CHARLES GRAHAM, D.Sc. C. KEGAN PAUL, Esq.
 Rev. Prof. BONNEY. F. GREENWOOD, Esq. Sir FREDERICK POLLOCK, Fart.
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 Jolins Hopktins University.
 In addition to the AMERICAN JOURNAL OF MATHEMATICS, the following Publica-

 tions are issued under the auspices of this University.

 I.

 AMERICAN CHEMICAL JOURNAL.
 Edited, with the Aid of Chemists at bIloe and Abroad, by IRI REMISEN, Professor of Chemistry.

 Contents for February, 1880, Vol. I, No. IF.
 On a Method for the Proximate Analysis of Plants, On the Oxidation of Substitution Products of Aro-

 by H. B. PARSONS. matic Hydrocarbons:

 On the Estimation of Phosphoric Acid as Magnesic IV. On the Oxidation of Orthotoluenesul-
 Pyro-Phosphate, by F. A. GOOCii. phamide, by IRA REMSEN and C.

 Laboratory Notes, by A. MICHAEL. FAULBERG.
 I. On Monethyl-Phthalate.

 II. On a New Formation of Ethyl-Mustard Oil. On an Unusual Case of Electrolysis, by J.W. MALLET.
 III. On the Preparation of Methyl-Aldehyde.

 IV. On the "' Migration of Atoms in the Mole- Reports, Notes, &c., by J. W. MALLIET, the Editor,
 cule," and Reimer's Chloroform Alde- and others.

 hyde Reaction.

 This Journal contains original articles by American and foreign chemists; reviews of works relating to
 chemical science; reports on progress in the various departments of Chemnistry; and items of general interest
 to Chemists.

 It is published in numbers of from 64 to 80 pages; six numbers forming a volume of from 400 to 500 pages.
 Price for the volume $3 00; single numbers 50 cents.
 Subscriptions and communications should be addressed to the Editor.

 I I .

 STUDIES FROM THE BIOLOGICAL LABORATORY.
 Edited by R. NEWELL MARTIN, Professor of Biology, and Dr. W. K. BROOKS, Associate in Biology.

 Contents of Vol. I, No. 2.

 On the Respiratory Function of the Internal Inter- On the so-called Heat Dvspncea, byCHRISTIAN SIHLER.
 costal Muscles, by H. NEWELL MARTIN and A Self-Feeding Chronograph Pen, by H. NEWELL
 EDWARD AIUSSEY HARTWELL. MARTIN.

 Observations on the Physiology of the Spinal Cord, Observations upon the Early Stages in the Develop-

 by ISAAC OTT. ment of the Fresh Water Pulmonates, by W. K.
 On the effect of Two succeeding Stimuli upon Mus- BROOKS.

 cular contraction, by HENRY SEWALL. The Development of Amblystoma Puncdatum, by S.
 F. CLARKE.

 Vol. I. of the Studies from the Biological Laboratory is now complete, and contains over five hundred
 pages and forty plates, as follows: No. I. 1878-79, 91 pp., 4 plates. No. II. 1879-80, 125 pp., 12 plates.
 No. III. (originally published as Scientific Results of the Chesapeake Zoological Laboratory, 1878,) 170 pp.,
 13 plates. No. IV. 1880, 124 pp., 11 plates.

 Separate copies of parts 2 and 4 can be obtained at $1.00 each; the whole volume will be forwarded on
 receipt of $3.50.

 In future the parts will contain about 120 pages, and will be supplied separately at $1.50, and the volume
 of four parts at $5.00.

 The editors are desirous of making arrangements for exchange with other serial scientific publications.
 All communications should be addressed to the Editors.
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 I I I .

 AMERICAN JOURNAL OF PHILOLOGY.
 Edited by B. L. GILIERSLEEVE, Professor of Greek.

 Contents of Vol. 1, iNo. 1, February, 1880. 126 pp., So.

 cEditorial Note. REVIEWS AND BOOK NOTICES:

 Ai,cat dzo' av,ufl60wv and fi'cat av062Latat, by W. W. Whitney's Sanskrit Grammar-Clough's Hex-
 GOODWIN. of acrvard Univervsity. amoter and Latin Rhythmis-Vincent and

 Two German Scholars on one of Goethe's Masque- Dickson's Hand-Book to Modern Greek-
 rades, by F1tANK LIN CARTE It, of Yale College. Wheeler De Alcestidis et Hippelyti Inter-

 Geddes' Problem of the Homeric Poems, by L. R. polationibus-Tyler's Lyric Poets-Hewett's
 PACKARD, of Yale College. Frisian Language.

 Encroachments of jt on olv in Later Greek, by the

 EDITOR. REPORTS:

 Revue de Philologie-Anglia-Revue Arch6olo-
 NOTES:

 The Dionysion at Marathon. (By THioMtiAs DA- gique - Hermes - Athenaion - Fleckeisen's
 VIDSON.) II. B. 318, 319. (By A. C. aER- Jahrbilcher-Mnemosyne-Romania.
 RIAMI.) The word weasand. (By ALBERT LIST OF PERIODICALS.
 S. COOK.) Varia: Korinna, p. 20.-Aristot.

 Met. A 7 p. 1072, 62. (BelKk.)-Paus. I 26, RECENT PUBLICATIONS.
 5. (By THOMAS DAVIDSON.)

 This Journal will be open to original communications in all departments of Philology, classical, compara-
 tive, oriental and modern; yet a large portion of the space wvill be given up to condensed reports of current
 philological work, anld arrangements have been malde to present regularly summaries of the chief articles in the
 leadin(g philological journals of Europe, while a close watch will be kept over the fragmentary and occasional
 literature to which the isolated American scholar seldom has full access. The reviews of books will be intrusted
 as far as possible to specialists; and it is hoped that the Journal will meet a want that has long, been acknowl-
 edged among American scholars, and serve as a means of inter-communication and as an organ of independent
 criticism.

 The Journal will be in the ordinary review form, four numbers to constitute a volume, of from 400 to 500
 pages, one voluimie to appear each year.

 Price per volume $3.00; singfole numbers $1.00.
 All communications should be adclressed to the Eclitor.

 Tables of the Common Logarithms anid Trigonometrical Funictions

 T O SI T F A..OS O X s A oF DEC IM 1\ A I. T11S.

 With Special Regard to their Use in Schools.

 Edited by Dr. C. B3REMIKER,

 Professor and Chief of a Dep)artment in the Royal Geodetical Institute in Berlin.

 Fourth Revised and Stereotyped Edition, 536 pages, bound, 5 Mark.

 The most distinguished scientific men have given their opinion that these new six-place Tables deserve
 decidedly the preference over all other tables for expedition and accuracy in calculation. Not only many
 higher institutions of learning, technical schools, etc., but also the Genieral Staff of the Prussian Army, have
 definitively adopted them.
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 D. VAN N OS T RAXND,

 Publisher of Scientific, Military aid Naval Books)
 23 ]itrray and 27 Warren Streets, New York.

 Our Stock comprises a Large and Complete List of Works pertaining to

 ARCHITECTURE, ASTRONOMY, NAVIGATION, BREWING, DISTILLING

 CHEMISTRY, PHYSICS, CIVIL AND MECHANICAL ENGINEERING,
 ELECTRICITY, GEOLOGY, HYDRAULICS, SANITARY ENGI-

 NEERING, MATHEMATICS, and Works of Reference, etc.

 D -C alaoogyes of /ie aboYe w'll be sent to any address upon app ication.-a

 VAN NOSTRAND'S

 ENGINEEKING MAGAZINE,

 COMMENCED JANUARY, 1869.

 Published on the 15th of the month at $5.00 per year.

 The current year is the twelfth of the existence of this MAGAZINE. Beginning as an Eclectic Journal, and
 presenting altmost exclusively matter selected from current literatuire, it has gradually become the chief medium
 through which the leading writers on engineering subjects can best present their original essays to American
 readers.

 The present attitude of the MAGAZINE is that of a journal of original and 'selected papers upon subjects
 relating to modern advanced Engineering Theoretical and practical Essays are alike presented in its pages,
 although the latter largely out-number the former, as best suited to the tastes and demands of the American
 Engineers. Some of the most valuable contributions to the literature of technical science within the latt few
 years have been first presented in these pages.

 Amnong the more extended original contributions to the later volumes may be cited new contributions to
 Graphical Statics-Transmission of Power by Wire Ropes-Maxinmum Stresses in Framed Bridges-Momentum
 and Vis Viva-Rapid Methods of Laying out Gearing-Transmission of Power by Compressed Air-Geo-
 graplhical Surveyinig-Mathematical Theory of Fluid Motion-Thermodynanmics-Practical Theory of Voussoir
 Arches-Cable Making for Suspension Bridges.

 To the above mnay be added the following valuable essays. translated from foreign sources. which have first
 appeared in these pages: Linkages and their Applications-The Origin of Metallurgy-and the Theory of Ice
 Machines.

 The plans for the present volume comprehend further improvements in the same direction. The wants of
 the educated practical eng-ineer, who desires to keep in the foremost rank of his profession, will be steadily kept
 in view, and our constantly increasing resources for supplying the best of scientific information will be employed
 to secure such result.

 S&Cloth covers for Volumes I. to XXI. inclusive, elegantly stamped in gilt, will be furnished by the pub.
 lisher. for fifty cents each.

 If the back numbers be sent, the volumes will be bound neatly in black cloth and lettered, for seventv-five
 cents each. The expense of carriage must be borne by the subscriber.

 Notice to Newv Sttbscribers.-Persons commencing their subscriptions with the Twenty-second Volume
 (January, 1880), and who are desirous of possessing the work from its commencement, will be supplied with
 Volumes I. to XXL. inclusive, neatly bound in cloth, for $55.00. In half morocco, $8s5.00.

 Notice to CiUbs.-An extra copy will be supplied, gratis, to every Club of five subscribers, at $5.00
 each, sent in one remittance.
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