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ABSTRACT

This study applies machine learning techniques and novel statistical features for two im-
portant classification problems in secure computing: malware detection and file fragment
type identification. We observe combinations of information-theoretic and Natural Lan-
guage Processing features extracted from byte level file content. To the extent possible,
we replicate recent studies to validate the use of these features and expand on recent work
by combining features from malware to detection to fragment identification tasks and vice
versa. By avoiding the use of extracted file signatures and strings, this study contributes
techniques that may be more resistant to obfuscation attacks, lead to enhanced prediction
rates for zero-day malware files, and improved forensics on broken fragments where file
metadata information is not available. We evaluate our results against recent works and
report the highest performing algorithms and combinations of features for each task.
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CHAPTER 1:
Introduction

Machine learning algorithms are used in a range of disciplines including computing, soft-
ware engineering, biology, psychology, and business, and are increasingly in demand for
efficient analysis of big data. Machine learning techniques are particularly useful in identi-
fying patterns and extracting points of interest in datasets that would otherwise be unscal-
able. Furthermore, machine learning can help improve productivity and effective decision
making by providing probabilistic predictions about data.

This study leverages machine learning techniques for two important classification tasks
in secure computing: malware detection and file fragment identification. While the algo-
rithms we use are standard, the approach to feature generation is novel. Classification is
based on information-theoretic descriptions of the byte-level content in each block in a file.
By turning our focus away from extracted file content such as signatures and strings, the
techniques used in this study may be more robust to obfuscation attacks and provide better
classification for similar but previously unseen samples.

Commercial antivirus and academic security researchers have expended significant effort
to discover patterns in malware content using data mining techniques. Still, most off-the-
shelf solutions are unable to detect encrypted malware [4] as well as malicious code em-
bedded inside a file such as a word document, pdf, or image that otherwise looks benign.
Obfuscated malware attacks fly under the radar until the file has been opened or the em-
bedded code has been executed on the victim’s system. Most commercial systems rely on
a database of signatures such as byte sequences and strings that appear in known malware
samples and the tools look for precise signature or rule matches, which are easily evaded.
A system is needed that is resistant to obfuscation attacks and that better predicts if a file
is malicious even if the content has not been seen before. This study combines a tech-
nique proposed by Tabish, Shafiq, and Farooq [4] using a range of information-theoretic
features and a technique for fragment identification proposed by Fitzgerald [5] that uses
natural language processing (NLP) features on byte-level content for 1-, 2-, 3-, and 4- gram
histograms. We observe the effectiveness of various feature combinations and learning al-
gorithms to identify malicious blocks, make predictions about files, and ultimately validate
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the information-theoretic approach.

Research on the use of machine learning for digital forensics is somewhat less compre-
hensive than it is in the malware problem space. However, we recognize and leverage a
potentially useful similarity: fragment identification also involves classification of binary
data. Forensic scientists, like malware analysts, are often faced with more data than can be
sorted in an effective amount of time, even with the fastest tools at their disposal. One ma-
jor, contributing challenge is efficient file carving. In forensic hard-drive analysis, files are
often scattered across a device or across multiple devices. When the file is not contiguous,
it is difficult to identify and reconstruct the pieces and ultimately, determine whether the file
contains criminal evidence. Successes in classifying byte information for malware space
classification and its similarities to the underlying tasks involved in identifying file frag-
ments motivates our use of information-theoretic features and standard machine learning
algorithms, as with malware, to classy byte level file information. Rather than determining
whether a fragment and parent file are malicious, the algorithm predicts the type of the
fragment from the set of types provided in training.

1.1 Research Questions
Our major contribution is to validate the use of information-theoretic and NLP features
for classifying blocks containing byte-level information. Tabish et al.[4] assert that the
information-theoretic method is most effective when all features computed on all 1-,2-,3-,
and 4- gram histograms are used with boosted decision tree analysis. Fitzgerald et al.[5]
recommend linear SVM with natural language processing features for fragment identifi-
cation. We evaluate both methods with matching feature sets using the Python Orange
machine learning tools. In addition, we extend the work to examine new feature vector
combinations. By implementing the methods, we hope to make variables, including type
of algorithm, block size, block count, and feature selection more transparent so they may
be further optimized in future applications.

1.2 Significant Findings
Our experiments support Tabish’s findings [4]: information-theoretic features of byte-level
content are useful for malware classification tasks. This study supports the claim by repli-
cating Tabish’s procedures, to the extent possible, and showing that additional NLP mea-
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sures and n-gram distributions do not significantly increase classification performance. In
contrast to Tabish, however, we find that bagged k-nearest neighbor learners outperform
decision tree algorithms. Additionally, we observe contradictory results to Tabish’s study
in terms which types of malware are most difficult to classify.

For file fragment tasks, we find, similar to Fitzgerald et al.[5] that NLP measures and n-
gram distributions with linear support vector machines, yield promising results. Likewise,
larger training and testing files of 4,000 byte blocks (versus 1,000 or 2,000) resulted in
higher performance. Expanding on Fitzgerald’s work, we show that classification can be
improved by including information-theoretic features used in malware detection tasks.

1.3 Document Structure
This thesis focuses on two classifications problems that, we hypothesize, can be resolved
using similar techniques. Each section is broken into subsections, first addressing a mal-
ware classification problem, then fragment identification. The following summarizes the
sections of this thesis:

Chapter 2 provides an overview of research using artificial intelligence, machine learn-
ing, and other automated techniques for detecting anomalous content. Section 2.1 surveys
research related to static malware detection over the past few decades, while section 2.2
describes recent learning methods for recovering file type information about file fragments.

Chapter 3 summarizes methodologies for obtaining data and running experiments. First, it
documents the sources of our training and testing data, including the VXHeavens malware
dataset, Govdocs1 document database, and mining methods for obtaining supplemental
internet samples. It outlines methods for data selection, provides source statistics, and
analyzes potential for noise. It defines the selected learning algorithms, parameters, and
feature sets. Finally, Chapter 3 provides mathematical definitions for each information-
theoretic and NLP feature, along with our methods for generating feature vectors.

Chapter 4 presents experimental results and a brief comparison to Tabish’s and Fitzgerald’s
conclusions. We sort the results for malware studies by malware type and summarize re-
sults for different learning algorithms across types for easy comparison. For each test we
observe accuracy, precision, recall, f-score, and the most commonly mis-classified types.

Chapter 5 presents a deeper analysis of the results, potential for error, and future improve-
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ments. We address whether the methodologies used in this thesis might be applied in an
operational system, whether it be a forensic file carving tool or malware detection suite.
We include opportunities for further research and parameter optimization.
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CHAPTER 2:
Literature Review

This study focuses on two important classification problems, malware detection and
file fragment identification; both areas where machine learning techniques have shown
promise. The following chapter addresses relevant applications of machine learning al-
gorithms and feature generation. The review highlights limitations of today’s methods,
introduces techniques that may prove useful in both malware and forensic disciplines, and
motivates a need for advanced predictive solutions that work efficiently in practice.

2.1 Malware Detection
Malware detection technologies, including algorithms used in academic research and en-
terprise antivirus software like Symantec, are widely available. Detection techniques can
be either static or dynamic. Each has noteworthy advantages and disadvantages. Dynamic
methods observe the behavioral symptoms of a program as it executes. They are well-
suited for classifying potentially malicious behavior, even when a particular attack has not
been seen before, but they are not best-suited for on-the-fly prevention. Dynamic analysis
usually requires non-trivial computing resources including virtualization, human insight,
and time for bootstrapping suspicious versus normal behavior.

Static analysis, by contrast, is the study of non-executing code. While it is more appro-
priate for live wire applications, it is insufficient against new variants. Signature-based
methods are the most common static techniques in academic and commercial solutions.
Most antivirus systems perform lookups on a database of known “bad” code sequences
to determine whether an incoming file is malicious. Antivirus software and intelligence
producers must continuously update signature databases. Advanced techniques, including
many of the methods discussed here, use previously seen byte sequences in combination
with other heuristic models based on expert rule sets that flag patterns of interest. Both
methods can be easily evaded by encoding, obfuscating, or crafting payloads with entirely
new signatures or re-crafting malicious files to evade watchlist rules. As with any method
that generalizes to new instances, heuristic methods are prone to high false positive rates.
This section addresses the limits of relevant, static detection approaches and motivates our
continued exploration of information-theoretic features for improved precision and recall.
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2.1.1 Heuristics and Inductive Rule-Based Learning
In rule-based learning, experts are employed to engineer a list of features that distinguish
malicious code from benign. For example, an analyst might study the Stuxnet worm and
identify the unique API calls it makes that would likely be found in similar malicious pieces
of code. This method is slow, expensive, and has limited success across the ever-changing
malware landscape.

In an early attempt to improve heuristic practice, Schultz et al. [6] profiled 1,001 benign
and 3,625 malicious PE executables. They used the GNU libBFD binutils library to extract
information about the DLLs called in each class. They applied instance-based learning and
compared DLL information for an unclassified file to DLL features of known files. The
learning algorithm returns the class of the example in the collection which is most similar
to the unclassified file based on the presence or absence of DLL calls that are thought to
have high information gain.

In addition to using expert introspection, Schultz et al. applied an inductive learning algo-
rithm called RIPPER [7], designed to build a set of rules without prior assumptions about
how the known data is similar to the unseen data. RIPPER iteratively constructs a rule set
until all positive examples in the training data have been described and then greedily adds
rules to exclude negative examples. Finally, it applies a combination of cross-validation
and minimum description techniques to generate a reduced set of hypotheses that best ap-
proximate the target concept.

Schultz concluded that rule-based methods using DLLs have significant limits. While RIP-
PER’s inductive learning style outperformed the instance-based nearest neighbor method,
the optimal ROC point had a relatively high 10% false positive rate and unsatisfactory 75%
detection rate. Further considering the human costs of determining appropriate features for
rule-based learning, in particular features that are robust to evasion, the technique is not a
promising method for improved malware detection.

Other well-researched attempts have been made to reduce the burden on human experts
by automating rule-set generation and signature carving. In 1994, researchers from IBM
[8] applied speech recognition algorithms to automatically extract telltale byte-sequence
signatures. A few years later the researchers applied artificial neural networks [9] to detect
variants of boot sector viruses, but were unsuccessful in extending the technique to other
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types of malware. Even if the attempts to automate rule-generation were successful, the
use of rule-based learning provides insufficient detection rates for most operational needs.

2.1.2 Strings and Naïve Bayes
Traditional string-based signature methods rely on unique, previously seen byte sequences
instead of attribute rules. The sequences are often generated by an expert or automated
methods which carve uniquely identifying strings. Byte patterns are sometimes concate-
nated to form one long signature and incorporated into a rule table. If an unclassified file
matches a signature or rule in the database, it is labeled correspondingly. Despite con-
stant updates, signature databases are never complete with respect to the changing malware
landscape.

Schultz’s method [6] called Strings, provided a significant improvement over traditional
byte-sequence pattern matching. Schultz applied a naïve Bayes classifier on ASCII strings
obtained using the GNU strings utility. The method is probabilistic; it computes the likeli-
hood that a given string is malicious or benign given prior probabilities obtained from the
training data.

Extending the Strings method, Shultz applied a voting-naïve Bayes algorithm he called
hexdump [6] which built six naïve Bayes classifiers taking every 6th line of a hexdump

starting with the first through sixth lines of the file. Multi-naïve Bayes yielded the highest
detection rate of 97.76%, with a false positive rate of 6.06% and accuracy of 96.88%.
Although it yielded a marginally lower detection rate, single naïve Bayes had a lower false
positive rate of 3.8% and higher accuracy of 97.1%. While traditional string-based methods
are likely to retain lower false positive rates than statistical methods, they are not best-
suited for detecting unseen types. Even worse, they are easily evaded by substituting out
the known malicious string or encoding the payload.

2.1.3 N-grams and Byte Level Data Mining
In a series of seminal studies, Li and Stolfo determined that advanced statistical methods
could be used with n-gram distributions to further improve detection [3], [10], [1]. In one
study, they created the Anagram Packet Analyzer [11]. Anagram is a semi-supervised
learning algorithm that filters anomalous network packets based the ratio of unseen high-
order byte n-grams (n > 1) to total n-grams in the packet, weighted by the number of
matches to known malicious n-grams. An unseen n-gram is any n-gram that is not in the
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training set of known benign files. Anagram tracks known benign and malicious n-grams
in separate, space-efficient bloom filters. When applied to whole files rather than packets,
a new file is classified based on a model bloom filter built from 5-grams in the training
set. In a follow-on experiment, Stolfo [11] parsed files into substructures (e.g. text, tables,
macro) and assigned a weight to each n-gram based on the structure it belonged to.

In subsequent investigations, Li and Stolfo [1] applied entropy measures and several clas-
sification techniques to both file type and malware domains. They examined the use of
n-gram distributions, three different model building methods, and similarity measures to
classify file type and benign versus malicious. They hypothesized that n-gram distributions
of a file or parts of a file can be used to model the file and discover anomalous binary data.
Their file dataset included eight different file types while the malware dataset included
infected versions of the same file types. First, they constructed single-centroid models,
meaning for each type of file they computed a single model representing that type. Then
they computed the Mahalanobis distance of the test file to each centroid model and returned
the class of the model with the shortest distance to the test file. Since some file types do not
have sufficiently similar distribution to be represented by a single model, the authors also
experimented with multi-centroid models. In this case a k-means clustering with Manhat-
tan distance as a similarity metric is applied to compute multiple models for each file type.
A test file is compared to all models for each type. Again, the class of the model that is
most similar to the test file is returned. In both studies, they evaluated the above methods
on truncated file head and tail sections (e.g. the first 10, 50, 200...6000 bytes) of a file and
on 1- and 2-gram distributions. By truncating files the authors hoped to determine whether
identifying information typically contained in the beginning and end of file is essential for
classification, but acknowledged that header information is often damaged or unavailable
and would be a poor feature for a practical system. The authors only report detection rates
for the head and tail studies (see Table 2.1). They do not report precise AUCs or provide
measures of concern if implementing an operational system. Instead, they conclude that
the studies are preliminary and suggest increasing further experimentation with increased
n-gram size. The results of their file type experiments are more promising (see Table 2.4)
and discussed in Section 2.2.

Kolter and Maloof expanded the study of n-gram distributions [2] and evaluated a range
of classifiers as shown in Table 2.2. They concluded that several text classifiers are highly

8



Table 2.1: Li and Stolfo: Malware Detection Using Clustering, after [1, p. 11]
Method Detection Rate
Head 1000 bytes 87.5%
Head 500 bytes 90.5%
Head 200 bytes 94.5%
Tail 1000 bytes 75%
Tail 500 bytes 80.1%
Tail 200 bytes 72.1%

effective for distinguishing malicious versus benign files. J48 boosted decision trees proved
most effective with an AUC of .996 under the ROC approaching 100%. They also conclude
that 4-grams are optimal over 1- and 2-grams, and suggest that only the 500 n-grams with
the highest information gain are needed as features in any data mining phase.

Kolter and Maloof [2] performed further research to determine whether a malicious file
could be classified based on its payload function. Since many executables perform multiple
functions (e.g. a payload could be a backdoor and keylogger) the authors chose one-versus-

all classification, grouping all of the executables with a particular functionality into a class
and all others into a non-class. They applied classification to all the models and reported
combined positive results. For example, a file could be classified as a backdoor according
to one model and a keylogger according to another. Again, boosted J48 decision trees
produced the highest AUCs: .88 for mass mail payloads, .87 for backdoor, and .91 for
viruses at 95% confidence intervals. Unlike other studies, Kolter and Maloof implemented
the system in a real-world, online application and measured the false-positive rates on 291
new, previously unseen executables as shown Table 2.3. Although the performance of the

Table 2.2: Kolter and Maloof: PE Classification with Top 500 N-grams Length 4, after [2, p.
2731]

Method AUC
Boosted J48 .9958+/-.0024
SVM .9925+/-.0033
Boosted SVM .9903+/-.0038
IBk, k=5 .9899+/-.0038
Boosted Naïve Bayes .9887+/-.0042
J48 .9712+/-.0067
Nav̈e Bayes .9366+/-.0099
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system decreased, boosted decision trees yielded less than 10% false positive rates 100% of
the time. Overall, the authors conclude that J48 boosted decision trees are highly effective
with 4-gram byte distributions for determining maliciousness and, to a moderate extent,
payload. However, the results apply only to PE executables and a small subset of possible
payload classifications.

2.2 File Type Classification
Similar to malware detection, a number of studies have examined the use of machine learn-
ing techniques for file fragment classification.

Li and Stolfo, as cited above [3], used the unigram byte histograms of head and tail sectors
for eight file types and applied single centroid, k-nearest neighbor clustering, and centroids
with exemplar files to develop models of each type. They achieved superior results for file
type identification (see Table 2.4), as opposed to their malware experiments. The highest
performing method compared the unigram distributions of test files (a subset consisting of
1 in 5 randomly selected files without replacement) to the remaining training files using
Manhattan distance. However, this technique has several limitations for our purposes; it
relies on header information that is often not available in forensic practice and provides the
type of an entire file. It does not necessarily extend to file fragment identification. It is
also largely dependent on file type signatures found in the head and tail, making it easy for
attackers to evade.

Calhoun and Coles [12] considered four file types (jpg, bmp, gif, and pdf). They used
linear discriminant analysis with nine statistical variations of entropy and longest common
substring. The algorithm finds linear combinations of features to draw classification lines
in pairwise comparisons; e.g. jpg vs. bmp and bmp vs. gif. The best discriminant relied on
ASCII code frequencies (0x32-0x192), low byte frequencies (<0x32), high byte (>0x32)
frequencies, the sum of the four highest byte frequencies, and the standard deviation of the
frequencies with 128 bytes of header removed and 1024 byte blocks. It yielded an average
accuracy of 88.3% across all four types. They found that different combinations of features
and pairs produced better results than other combinations. For example, jpg and bmp files
could be distinguished with 100% accuracy using a combination of all possible features.
Interestingly, the best overall discriminant did not include entropy. Veenman [13] also used
linear discriminant analysis but expanded the study to 11 file types with Shannon entropy
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Table 2.3: Kolter and Maloof: PE Classification of 291 Unseen Samples, after [2, p. 2735]
Method FP = .01 FP =.05 FP=.1

Predicted/Actual Predicted/Actual Predicted/Actual
Boosted J48 .94 / .86 .99 / .98 1.00 / 1.00
SVM .82 / .98 .98 / .90 .99 / .93
Boosted SVM .86 / .56 .98 / .89 .99 / . 92
IBK, k = 5 .90 /.67 .99 / .81 1.00 / .99
Boosted Naïve Bayes .79 / .55 .94 / .93 .98 /.98
J48 .20 / .34 .97 / .94 .98 / .95
Naïve Bayes .48 / .28 .57 / .72 .81 / .83

Table 2.4: Li and Stolfo: Fileprint Results, after [3, p. 70]
Experiment EXE GIF JPG PDF DOC Average
Single-centroid 88.3% 62.7% 84% 68.3% 88.3% 82%
Multi-centroid 88.9% 76.8% 85.7% 92.3% 94.5% 89.5%
Exemplar files 94.1% 93.9% 77.1% 95.3% 98.9% 93.8%

and Kolmogorov complexity as features. He analyzed 4096 byte blocks. His experiments
were accurate 45% of the time across the 11 types and found similarly that some types are
more easily classified than others.

Axelsson [14] considered a larger set of file fragment types and again found that fragments,
especially those with high entropy, were not easily classified even with a different learning
method. Axelsson used k-nearest neighbors clustering with compression distance, 10 trials,
10 random test files, and 14 random 512 byte blocks from each, against 3,000 fragments of
known types. Of the 28 file types considered, Java fragments were most easily classified,
though at a disappointing accuracy of 48%. On average, accuracy was 34%.

Conti et al. [15] achieved better results using Shannon entropy, Hamming weight, Chi-
square goodness of fit, and mean byte value features grouped by k-nearest neighbor with
Euclidean distance. Their study boasts accuracy rates ranging from 88% to 100% depend-
ing on type. This is especially impressive given the source of the data which included text,
encoded fragments, machine code, and bitmap fragments gathered through various sources
or constructed from existing files. The data sources, however, were somewhat contrived
and the technique did not perform well on actual file fragments.
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During the time that the experiments in this paper were conducted, another study was pub-
lished that tested combinations of features used in over twenty different file fragment clas-
sification studies. It is by far the most comprehensive study to-date. Using a newly con-
structed (and distributable) dataset with 38 file types, Nicole Beebe et al. achieved 73.4%
classification accuracy across all types. They used support vector machine and varied in-
put features to include unigrams and bigrams, complexity, and other byte frequency-based
measures [16]. The publication provides a rather comprehensive summary of features
used across recent experiments. Beebe concludes that the most performant approach is
to use concatenated unigrams and bigrams with linear SVM. An open source tool called
Sceadan [17], implements their approach. It is available online along with their dataset.

2.3 Summary
This chapter familiarized the reader with a variety of recent machine learning approaches
including variations on learning algorithms, input features, and data sources applied to
malware classification and fragment identification. The limited success of string and sig-
nature based approaches lead us to consider novel methods that employ statistical charac-
teristics of byte content. The following chapters describe our methods for evaluating the
information-theoretic based methods asserted by Tabish et al. [4] for malware classification
tasks and NLP inspired approach employed by Fitzgerald et al. for file type classification
tasks [5].
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CHAPTER 3:
Methodologies

In this chapter, we describe the methods we used to conduct malware and file fragment
machine learning experiments. First, we describe our data sources and attempts to obtain
the training and testing sets used by Tabish [4] and Fitzgerald c [5] for replication pur-
poses. We define the features used in our experiments as well as learning algorithms and
parameters. This chapter describes the procedures and tools we use to perform malware
classification and preliminary file type tests.

3.1 Datasets
This section describes the repositories used in our experiments including their provenance
and summary statistics. The following sections explain how data was selected.

For file fragment identification tasks, we required a repository containing a range of
file types commonly found on hard drives and in other media of forensic interest. The
govdocs1 corpus by Garfinkel et al. [18] is a rich database with a million files and over 50
different file types. It is the main dataset used in Fitzgerald et al.’s experiments. Unfortu-
nately, we were unable to obtain a precise list of the files used by Fitzgerald [5]. In a best
effort attempt to remain as true as possible to Fitzgerald’s procedures, we obtained a local
version of the govdocs1 repository and examine the same extensions as those presented in
Fitzgerald’s 2012 paper [5].

To reproduce information-theoretic feature experiments on malware we needed a set of be-
nign files and malware files of known type, matching those used by Tabish et al. Govdocs1
provided benign pdf, jpg, and doc files. We obtained exe, zip, and mp3 files by mining
open-source internet repositories and lab computers. The provenance of these files is de-
scribed later in this section. It should be noted that the six benign types used by Tabish et
al. are common candidates for attackers attempting to obfuscate malicious code in docu-
ments, email attachments, and internet downloads. The list of good candidates, of course,
is not limited to these six. Like Tabish et al. [4] we utilize the VXHeavens [19] malware
database, a large sample of malicious files created by a range of novice to professional
hackers discovered on the internet over the past several years. We were, again, unable to
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obtain the precise files used in the original studies, but replicate the experiments as closely
as possible.

3.1.1 VXHeavens Corpus
Until March, 2012 VXHeavens was a freely available collection maintained by a user
named Herm1t at vx.netlux.org [19]. Its self-proclaimed goal was to provide expert
level information and education about computer viruses. The web server was seized by
Ukrainian police and Herm1t was prosecuted in March 2012 to intent the share and sell
malicious code. It was one of the few existing, public malware repositories and has been
used in a number of academic studies including Tabish et al.’s work [4] [20] - [22] to cite a
few. After completing the experiments in this study, VXHeavens came back online. It can
be accessed at www.vxheavens.org.

As recommended by VXHeavens’s splash page at the time this study was conducted [23],
we sourced our version from The Pirate Bay [24]. The torrent and peer-to-peer download
completed on February 21, 2013 delivering 44GB of data and 83,852 files. While there
are no official sources to determine provenance for the individual specimens, our review of
the files along with VXHeavens related blog posts, articles, and other web media suggest
that the VXHeavens repository is one of the largest collections available, that it contains
samples collected over the last decade and likely represents viruses less complex than those
produced by nation states and parties with capital resources. Since these experiments,
the webpage has been restored and it appears that new owners are crowd sourcing and
maintaining an expanded 400GB database. As addressed more thoroughly at the end of
this paper, experimenting with new VXHeavens samples posted since our 2013 download
remains future work. Many of the files in the 44GB VXHeavens download used in this
study are included in industry alerting databases such as Microsoft’s Security Essential’s
and Symantec’s Virus Definition databases [25]. Each file is classified by the its malicious
function and the target operating system. A count of each type is shown in Table 3.1 and
by the type of operating system the file runs on (e.g. Win32, DOS). The majority, 75,530
files, are Win32 PE format.

3.1.2 Govdocs Digital Corpus
The govdocs1 digital corpora includes one million files that were obtained by searching
.gov domains for random combinations of words in the Unix dictionary concatenated with
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Table 3.1: Counts for each File Type in the VXHeavens Corpus
Label Count
Trojan 52437
Backdoor 16007
Virus 8304
Worm 1870
Email Worm 1016
Rootkit 991
Exploit 602
Net Worm 582
Hoax 493
Constructor 277
HackTool 204
VirTool 201
P2P Worm 175
Flooder 154
IRC Worm 153
IM Worm 120
Packed 111
DoS 88
SpamTool 17
Spoofer 10
Misc 3

random numbers between 1 and 1 million [18]. The files have been reviewed to determine
proper extension, but this is an ongoing and imperfect process. As stated in the govdocs1

documentation [18], the listed extension is not a precise indicator of actual file type. Ta-
ble 3.3 shows the estimates provided by the govdocs1 documentation for the database. We
explored alternative methods for identifying the actual file type, but doing this task correctly
over a large dataset is beyond the scope of this study. One alternative relies on libmagic

descriptions instead of the file extension to establish ground truth. Unfortunately, similar
challenges exist with both methods. Many files can be classified as more than one type
while others are reported as “unknown”. For example, csv files are essentially txt files
except that content is separated by strategically placed commas. New versions of Windows
Office files are similar to xlsx. Pptx files are similar to zip files. Table 3.2 shows a por-
tion of the output from running the file command on zip files in govdocs1. A variety of
types were returned.
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Table 3.2: Sample Output of file Command on zip Files
Filename ’file’ Return Value
654117.zip: Microsoft Excel 2007+
656219.zip: HTML document
656438.zip: XML document text
862565.zip: Microsoft Word 2007+
947671.zip: Microsoft PowerPoint 2007+

File extension inaccuracies with respect to ground truth are potential sources of noise in
training, testing, and the final results.

3.1.3 Supplemental Benign Files
For the malware detection experiments we required a benign dataset that matched Tabish et
al.’s set containing six types. Three of these types were not available in govdocs1. These
exceptions are shown in Table 3.4. We obtained the needed types by mining websites that
host open-source collections as well as lab computer drives. In this section we summarize
the sources for exe, mp3, and zip files in the benign dataset issued in our malware detection
experiments. The dataset is available upon request.

3.1.4 Data Selection
Malware Files
Following Tabish et al. [4], we focus on six malware categories found in the VXHeavens

collection. We examined samples and describe what is included in each category:

Backdoor

A backdoor is a program that listens for commands over a network connection and gives an
attacker remote control of a system. Backdoors typically require client/server components
to accomplish the network communication portion. Most backdoors allow an attacker to
perform file transfers, acquire passwords, and execute commands. More nefarious versions

Table 3.3: Govdocs Extension Accuracy Estimates
Accuracy Rating Percentage
High 92.5%
Medium 7.0%
Low <.25%
None <.25%
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Table 3.4: Source of exe, mp3, and zip Files for Malware Detection
Type Number Source Date
exe 80 http://img.cs.montana.edu/windows/ 6/5/13

77 http://www.fractals.net/public/ 6/8/13
38 http://mirror.thekeelecentre.com/pub/java/ 6/10/13
11 http://sourceforge.com 6/12/13
27 Student hand-coded in VB, compiled with .NET2003 6/12/13
138 Windows 7 64bit files and user programs 6/12/13

mp3 1277 ccmixter.com - open source music 6/10/13 6/10/13
zip 284 ftp://download.dosgamesarchive.com/ 6/6/13

10 http://img.cs.montana.edu/windows 6/5/13,
7 http://sourceforge.net/projects/npp-plugins/files/ 6/11/13

include bots which automatically cause the infected system to attack other systems. Zom-

bies, bots and agents are typically used to carry out coordinated DDOS attacks. RATs or
remote administration tools allow the attacker to access the system as needed, granting
control over the systems devices (webcams, microphones, and speakers).

BACKDOOR EXAMPLE:

Rbot is a family of backdoor that allows the attacker to take control of a victim’s
machine. Rbot connects to an IRC server where it receives commands from at-
tackers. For example, the attacker may run commands that scan the infected com-
puter’s network for exploitable windows vulnerabilities, look for file shares with
weak passwords, infect other computers on the network, and launch denial of ser-
vice attacks. [26]

Trojan

Trojans are programs that appear benign but perform covert, malicious activity. Trojans
come in variety of forms. Some trojans completely replace an existing program but main-
tain its functionality, while others simply modify or add additional functions to existing
programs. A generic example would be a login program that illegally collects and transmits
passwords. Trojans can cause serious technical issues ranging from performance disruption
to making the system unusable.

TROJAN EXAMPLE:
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Trojan.Win32.Buzus is a program that installs unauthorized files on the infected
system, typically a worm, capable of spreading via removable USB drives and per-
forming other unwarranted actions on the system. It is typically distributed as an
executable file attached to an e-mail message or downloaded from a compromised
website. [27]

Virus

Viruses are designed to self-replicate and distribute themselves to other files, programs, or
computers. Viruses are often inserted into a benign carrier. For example, a word document
might contain a viral macro. A virus that runs inside or is executed by another application
is an interpreted virus. Some compiled viruses are stand-alone files that can be directly
executed by the operating system. Virus impacts range from causing moderately annoying
pop-ups to overtly malicious modification, dissemination, or destruction of sensitive data.

VIRUS EXAMPLE:

Virus.WWin32.Xorer a family of file infectors. The virus waits for a certain amount
of time to pass between infecting more files. According Microsoft’s repository, it en-
crypts and prepends the virus code to an existing document. It has worm capabilities
and is able to drop copies of items in writable drives, as well as rootkit capabilities
which allow it to avoid detection. It is a virus that can infect both files and boot
sectors. [28]

Worm

Worms are self-replicating, self-propagating, stand-alone programs that can execute with-
out user intervention. Network worms take advantage of network services to infect other
systems. One common medium by which a worm spreads is via mass email. The process
can overwhelm email services and cause performance issues for infected systems. Worms
are also used to call backdoors, perform general denial of service attacks, and aid other
types of attacks.

WORM EXAMPLE:

Worm.Win32.Autorun is a family of worms that secretly copies itself into programs
and data files. It spreads by copying itself into more files and removable drives every
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time the the host program is run. [29]

Constructor

Constructors are malware creation toolkits that allow users to specify settings and automat-
ically assemble new code. They are useful for attackers with little programming experience
and for creating polymorphic code [30]. The kits range from simple to very sophisticated
in terms of the options and features they provide.

CONSTRUCTOR EXAMPLE:

Constructor.Win32.NGVCK.0_40 is a variant of Program:Win32/Advdown.A that
downloads malware from http://www.paragon-software.com/ and mainly targets
computers in Nepal, Moldova, Togo, Somalia, and Vietnam. [31]

Miscellaneous

The misc category includes exploits, flooders, hacktools, virtools, and hoaxes. Exploits,
hacktools, and virtools are programs that take advantage of vulnerabilities, such as causing
buffer overflow so the attacker gains execution control. Flooders run mass email, instant
messaging, and SMS attacks. Hoaxes are non-malicious alerts and programs that cause
damage through social engineering. Hoaxes can cause a backlog of complaints to IT de-
partments or trick users into making changes to security settings that are less secure.

Selection: Malware and Benign Files for Training and Testing
Tabish et al. built six separate classifiers, one for each category of malware using 50 random
files of the specific type of malware (see Table 3.5) and a total of 50 random benign doc,
jpg, exe, pdf, zip, and mp3 files. They do not specify how many of each benign type were
represented. Tabish et al. claim to test their models on all remaining files which would seem
to include the entire VXHeavens database and approximately 295 files of each benign type.
Since Tabish et al. were unable to provide their precise dataset upon request, we chose to
test the types equally. Ultimately, we collected a subset of 300 files for each of the following
types: virus, trojan, worm, constructor, backdoor, misc, exe, zip, mp3, doc, pdf, and
jpg. Following the cited method, we created six training sets, one for each malware type.
Each training set is comprised of blocks from 100 files including 50 randomly selected
malware files of the type in question and 50 total benign files (8-9 of each type). Table 3.6
summarizes the composition of the six training models, one for each malware type, used
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in our classification experiments. Likewise, we create six test sets each containing the
remaining 250 malware files of the particular type and 250 benign files (41-42 of each
benign type), so that files used in training are excluded from testing. A summary of the test
files is given in Table 3.7. It is important that no training files are used in testing since one
of our goals is to verify whether the Tabish method is effective on unseen files.

File Fragment Identification
Like Fitzgerald et al. we source from the govdocs1 corpus to obtain a variety of file types.
There are 50 different extensions represented in the repository and Fitzgerald et al. study 24
of them. This study examines the 23 extensions highlighted in Table 3.8. The frequency of
types across the govdocs1 corpus is not uniform. Following Fitzgerald, our study excludes
uncommon extensions that are not of interest as well as those where the sample is not large
enough to ensure separate training and testing. One of such types is .zip files. Although
Fitzgerald et al. cite 10 zip files in the govdocs1 database, we discovered that these files
are not actually zip files. Therefore the govdocs1 repository does not have sufficient
representation of zip files and we have decided to exclude them from all our trials. In the
fashion of Fitzgerald’s work, this study assumes that extension is ground truth for a file’s
type even though this method can produce inaccuracies.

From the list of almost 1,000,000 files in the the govdocs1 repository, we randomly se-
lected sets of 1,000, 2,000, and 4,000 blocks of 1,204 bytes from each of the 23 types
excluding file header and footer blocks. We exclude header and footer blocks because
these sections often contain descriptive flags that make identification too easy. It is prefer-
able to represent a variety of different sample files for each type so that the model is not
overtrained to a particular file. We also ensure that the training and testing datasets are
comprised of blocks from mutually exclusive files even though other papers do not appear

Table 3.5: Training Subset: Malware Files
Type Files Average Size Blocks
Backdoor 50 447119 21832
Trojan 50 229042 11184
Misc 50 189015 9229
Constructor 50 392253 19153
Virus 50 95821 4679
Worm 50 219779 10731
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Table 3.6: Six Training Models: One for Each Malware Type and All Benign Types
Model Malware Files Benign Files
Backdoor 50 backdoor subset 50 benign subset
Constructor 50 constructor subset 50 benign subset
Misc 50 misc subset 50 benign subset
Trojan 50 trojan subset 50 benign subset
Virus 50 virus subset 50 benign subset
Worm 50 worm subset 50 benign subset

Table 3.7: Six Test Sets: One for Each Malware Type and All Benign Types
Model Malware Files Benign Files
Backdoor 250 backdoor subset 250 benign subset
Constructor 250 constructor subset 250 benign subset
Misc 250 misc subset 250 benign subset
Trojan 250 trojan subset 250 benign subset
Virus 250 virus subset 250 benign subset
Worm 250 worm subset 250 benign subset

concerned about this. We applied the following methodology to ensure sufficient represen-
tation of each type from a variety of files and that there is no overlap in training and testing
data.

First, we randomly selected 1,000, 2,000 and 4,000 files of each type assuming random
ordering of the file list. We then randomly selected one 1,024 byte block from each file
without replacement of blocks until there were 1,000, 2,000 or 4,000 blocks per file type.
For types where there were less than 1,000, 2,000 or 4,000 distinct files, some files are
revisited and another random block is selected from the file. We call this an limited dataset:
each block comes from a distinct file. Put differently, there is a 1:1 block-to-file ratio. The
types of files represented in the limited dataset are shown in Table 3.10. The unlimited

dataset includes subsets of 1,000, 2,000 and 4,000 blocks per type but excludes types with-
out enough files to achieve a 1:1 block-to-file ratio. See Table 3.9 for a summary. For
the unlimited sets that included all types, we divided each 1,000, 2,000 and 4,000 block
pool into 2 pools to obtain a 9:1 training-to-testing ratio. To prevent any overlap between
training and testing files in the limited set, we ignore any blocks remaining at the end of a
file after building the training set. We start building the test set from a new, unused file in
the pool. Note that, for these types, there is not a perfect 9:1 ratio. In the limited sets, files

21



Table 3.8: Govdocs1 File Types Used in Fragment Experiments Highlighted
Extension Count of files MB
pdf 232794 127492
html 191407 11222
**jpg 109278 35970
*text 83805 50406
doc 80648 30099
xls 66599 29041
ppt 50257 122918
xml 41994 8405
gif 36301 2920
ps 22129 27668
csv 18396 3347
gz 13870 8651
log 10241 4204
unknown 8188 4456
eps 5465 3082
png 4125 1079
swf 3691 1853
pps 1629 3629
kml 995 149
kmz 949 226
hlp 660 5
sql 632 226
dwf 474 42
java 323 11
*txt 286 9
pptx 219 562
tmp 196 15
docx 169 32
ttf 104 1
js 92 2
pub 76 1
bmp 75 31
xbm 51 1
xlsx 46 6
jar 34 2
zip 27 1
wp 17 2
sys 8 0
dll 7 0
exe 5 0
exported 5 0
**jpeg 3 0
tif 3 0
chp 2 0
data 1 0
pst 1 0
squeak 1 12
Total 986278 477641

*types can be collapsed

represented in training were necessarily distinct from the files represented in testing. This
guarantee allowed us to use Orange’s [32] built in cross-validation. The experiments are
described further in the next section. In total, our process yielded six datasets as shown in
Table 3.9 and Table 3.10.

3.2 Feature Generation
This section defines the features extracted from malware and benign files, including the so-
called information-theoretic features used by Tabish [4] and so-called NLP features used
by Fitzgerald [5]. Although their naming is somewhat specious, we have chosen to adopt
the authors’ original terminology for simplicity throughout this paper. The features dis-
cussed in this section were extracted for each block in the testing and training datasets. We
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Table 3.9: File Type Classification on Unlimited Dataset: Blocks Come From Distinct Files

Blocks Total Included types
per type types (distinct original files)
1000 16 jpg gz png ppt doc pdf txt html xml xls gif ps csv swf pps rtf
2000 14 jpg gz png ppt doc pdf txt html xml xls gif ps csv swf
4000 13 jpg gz png ppt doc pdf txt html xml xls gif ps csv

Table 3.10: File Type Classification Limited Dataset: Blocks Can Come From Repeat Files
Blocks Total Under-represented types
per type types (repeat original files)
1000 23 (all) pptx docx xlsx sql java tex bmp
2000 23 (all) pptx docx xlsx rtf pps sql java tex bmp
4000 23 (all) swf pptx docx xlsx rtf pps sql java tex bmp

performed experiments using different combinations of selected features to determine the
features with highest accuracy and lowest false positive rate.

3.2.1 Information-Theoretic Features
Information theory provides mathematical methods for quantifying information such as
the limits on data compression, reliable transmission, and data storage [33]. Note that
information theory is not concerned with the semantic meaning or function of the data.
Instead, it describes numeric qualities of the data. Table 3.11 summarizes the features we
compute and the previous studies that motivated us to include them.

Some of the features are based on common information-theoretic measures computer sci-
ence, biology, ecology, and other statistical sciences. A subset of these features are more
commonly used for language processing tasks. Several so-called NLP features are used
in Fitzgerald’s study, and therefore, in our experiments as well. In total, we include 17
distinct information-theoretic features. The features used in Tabish’s malware study [4]
are computed for 1-, 2-, 3-, and 4-gram frequency distributions. Following Fitzgerald’s
example [5], these include NLP features on per block unigram frequencies (count of byte
values 0-256). We experiment with combinations proposed by both authors and various
combinations of features. Experiments are described in Section 3.4.

Following Tabish et al.’s work [4], we adopt their terminology to reference the statistical
features they present, but we recognize that it is somewhat an abuse of notation to say we

23



Table 3.11: List of Features
Feature Computed On frequencies Source
Kolmogorov complexity Sliding byte window (unigram) Fitzgerald et al.
Hamming weight Sliding byte window (unigram) Fitzgerald et al.
contiguity Sliding byte window (unigram) Fitzgerald et al.
longest repeating seq Sliding byte window (unigram) Fitzgerald et al.
Simpson’s index 1-,2-,3-,4-gram Tabish et al.
Shannon entropy 1-,2-,3-,4-gram Tabish et al.
angular separation 1-,2-,3-,4-gram Tabish et al.
Bray-Curtis divergence 1-,2-,3-,4-gram Tabish et al.
Canberra distance 1-,2-,3-,4-gram Tabish et al.
Chebyshev distance 1-,2-,3-,4-gram Tabish et al.
correlation coefficient 1-,2-,3-,4-gram Tabish et al.
Itakura-Saito distance 1-,2-,3-,4-gram Tabish et al.
Jensen-Shannon distance 1-,2-,3-,4-gram Tabish et al.
Kulback-Leibler divergence 1-,2-,3-,4-gram Tabish et al.
Manhattan distance 1-,2-,3-,4-gram Tabish et al.
Minkowski distance 1-,2-,3-,4-gram Tabish et al.
variation 1-,2-,3-,4-gram Tabish et al.

apply “information-theoretic formulas”. We simply take advantage of the fact that these
measures produce a numeric description that may prove useful in identifying and classify-
ing the information encoded in each block. Typically, information-theoretic distance and
divergence metrics are used to observe the difference between two points or input vectors,
for example, the difference between a two vectors representing prior and actual probability
distributions. This study applies information-theoretic formulas on two input vectors, but
unlike typical applications, our vectors are derived from the same frequency distribution.

We denote the first vector as Xi. It represents the left end of each n-gram frequency
distribution such that Xi = (X0,X1, . . . ,Xn−2), n = 28x, and x is the n− gramsize in bytes.
For example, if x =1 byte, the first frequency distribution counts the occurrences of n-
gram values in range (0,1,2, . . . ,254) for each block. The second vector Xi+1 is the
same distribution shifted by 1. It represents the right end of the frequency curve such
that Xi+1 = (X1,X2, . . . ,Xn−1),n = 28x. If x = 1 byte again, Xi+1 counts the frequency
of n-grams whose values range from (1,2,3, . . . ,255). We reflect the fact that the fea-
ture generation methods are somewhat contrived with respect to their typical information-

24



theoretic uses, by representing the feature formulas with prime (’) and the input vectors as
Xi and Xi+1 rather than p and q.

Ultimately, the goal of applying features based on information theory is to produce a quan-
titative profile of the binary information contained in each file. Even if those measurements
do not have clear mathematical meaning, they may have be useful descriptors and provide
an identifiable signal. The selected features are defined as follows:

Minkowski Distance
The Minkowski distance gives the m-order distance or the power mean of the component-
wise differences between two points or vectors. It is a generalization of Manhattan distance
and Euclidean distance.

Minkowski(p,q) =

(
n

∑
i=1
|pi−qi|m

)1/m

(3.1)

Minkowski′(Xi,Xi+1) =

(
n−1

∑
i=0
|Xi−Xi+1|m

)1/m

(3.2)

Chebyshev Distance
The Chebyshev distance is the maximum distance between two vectors along any coordi-
nate system. In other words, it is the limit of the Minkowski distance as m goes to infinity.

Chebyshev(p,q) = lim
k→∞

( n

∑
i=1
|pi−qi|k

)1/k

= max
i
(|pi−qi|) (3.3)

Chebyshev′(Xi,Xi+1) = max
i
(|Xi−Xi+1|) (3.4)

Manhattan Distance
The Manhattan distance is the geometric, right angle distance between two points in vector
space given a Cartesian coordinate system. It is computed by taking the sum of line segment
lengths between points along coordinate axes. It is an instance of the Minkowski distance
where m=1.
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Manhattan(p,q) =
n

∑
i=1
|pi−qi| (3.5)

Manhattan′(Xi,Xi+1) =
n−1

∑
i=0
|Xi−Xi+1| (3.6)

Canberra Distance

Canberra distance is a weighted version of the Manhattan distance. Typically it is used to
find the normalized distance between two points (p,q) in vector space. For example, in
intrusion detection Canberra distance might be used to quantify how similar a suspect file
is to a predetermined, normal model.

Canberra(p,q) =
n

∑
i=1

|pi−qi|
|pi|+ |qi|

(3.7)

Canberra′(Xi,Xi+1) =
n−1

∑
i=0

|Xi−Xi+1|
|Xi|+ |Xi+1|

(3.8)

Bray Curtis Distance

The Bray Curtis distance is a measure of dissimilarity between two frequency distributions.
It is commonly used in ecology to measure the difference between compositions of species
at two sites. It can also be considered a normalized Manhattan distance.

BrayCurtis(p,q) =
∑

n
i=1 |pi−qi|

∑
n
i=1 (pi +qi)

(3.9)

BrayCurtis′(Xi,Xi+1) =
∑

n
i=1 |Xi−Xi+1|

∑
n
i=1 (Xi +Xi+1)

(3.10)

Angular Separation

Angular separation is a similarity measure based on the cosine of the angle between two
vectors. High angular separation means that the input vectors are similar.
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AngularSep(p,q) =

n−1
∑

i=0
(pi)(qi)√

n−1
∑

i=0
(pi)2

n−1
∑

i=0
(qi)2

(3.11)

AngularSep′(Xi,Xi+1) =

n−1
∑

i=0
(Xi)(Xi+1)√

n−1
∑

i=0
(Xi)2

n−1
∑

i=0
(Xi+1)2

(3.12)

Correlation Coefficient

Correlation coefficient is the separation between vectors centered around the mean of the
vector coordinates. A high correlation coefficient implies similarity.

CorrCoe f f (p,q) =

n
∑

i=1
(pi− p̄)(qi− q̄)√

n
∑

i=1
(pi− p̄)2

n
∑

i=1
(qi− q̄)2

(3.13)

CorrCoe f ′(Xi,Xi+1) =

n−1
∑

i=0
(Xi− X̄i)(Xi+1− X̄i+1)√

n−1
∑

i=0
(Xi− X̄i)2

n−1
∑

i=0
(Xi+1− X̄i+1)2

(3.14)

Shannon Entropy

Shannon entropy is a measure of how much information is contained in a message or how
much information is missing if a symbol in a message is unknown. Entropy quantifies the
dispersal of a distribution and the uncertainty of a random variable.

Entropy(X) =−
n

∑
i=1

p(xi) log2 p(xi) (3.15)

where p(xi) is the probability of xi.
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Entropy′(X) =−
n

∑
i=0

p(xi) log2 p(xi) (3.16)

where p(xi) is the probability of the ith n-gram in a block.

Total Variation
In probability, total variation is the largest possible distance between two distributions for a
given event. It is related to the Kolmogorov-Smirnov test [34] which measures the distance
between an empirical and cumulative distribution for a sample.

Variation(p,q) =
1
2 ∑

x
|p(x)−q(x)| (3.17)

Variation′(Xi,Xi+1) =
1
2 ∑

i
|Xi−Xi+1| (3.18)

Kullback-Leibler Divergence
Kullback-Leibler divergence [35] measures how much information is lost by trying to ap-
proximate one distribution with another. It is often used to encode and quantify how far a
model or theory is from a true distribution and is the basis for information gain calculations
used in decision tree induction.

KullLeib(p ‖ q) =
n

∑
i=1

log
(

p(i)
q(i)

)
p(i) (3.19)

KullLeib′(Xi ‖ Xi+1) =
n−1

∑
i=1

log
(

Xi

Xi+1

)
Xi (3.20)

Jensen-Shannon Divergence
Jensen-Shannon divergence [36] is a symmetric, smoothed version of Kullback-Leibler
divergence. It measures similarity between probability distributions.

JenShan(p ‖ q) =
1
2

K(p ‖ m)+
1
2

K(q ‖ m) (3.21)
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where m = 1
2(p+q).

JenShan′(Xi ‖ Xi+1) =
1
2

D(Xi ‖M)+
1
2

D(Xi+1 ‖M) (3.22)

where M = 1
2(Xi +Xi+1).

Itakura-Saito Distance
Itakura-Saito distance [37] is an example of Bregman divergence, a generalized Euclidean
Distance that maintains certain convexity, non-negativity, and duality properties.

ItakSaito(p,q) =
n

∑
i=1

(
p(i)
q(i)
− log

p(i)
q(i)
−1
)

(3.23)

ItakSaito′(Xi,Xi+1) =
n

∑
i=1

(
Xi

Xi+1
− log

Xi

Xi+1
−1
)

(3.24)

Simpson’s Index
Simpson’s index [38] is commonly used in ecology to determine the probability that two
specimens selected at random from an ecosystem will belong to the same class. The vari-
able n represents the number of organisms of a particular class and N is the total count of
all organisms. For binary file information, n is the count of each possible n-gram value and
N is the total number of n-grams in a block.

Simpsons =
∑

n
i=0 n(n−1)
N(N−1)

(3.25)

Simpsons′ =
∑

k
i=0 nk(nk−1)
N(N−1)

(3.26)

where nk is the frequency of the kth value and N is the number of n-grams in a block.

3.2.2 Natural Language Processing Features
The following features are used by Fitzgerald et al. [5] to distinguish file fragments. Fol-
lowing Fitzgerald et al., we apply them in our file fragment identification experiments. We
also include them in some of our malware detection trials with promising results. While
the measures described in this section are common in language processing tasks, they do
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not strictly belong to that domain of problems. We adopt Fitzgerald’s notation throughout
this paper.

Contiguity
Contiguity measures the average distance between byte sequences. Essentially, it is a
heuristic that can potentially determine if there is a general, repeating pattern to the data.
In this study we only compute the contiguity between consecutive 1-byte n-grams, but in
future research it might prove useful to explore other pattern lengths. When computing
different n-gram lengths, it will also be necessary to consider the various offsets at which a
pattern might start. For feature generation, we define contiguity as:

Contiguity =
k−1

∑
i=0

|nk−nk+1|
k

(3.27)

where k is the block size in bytes.

Hamming Weight
Hamming weight is computed by summing the 1s and dividing by the total number of bits
in a binary string. For a given string, it is the same as the Hamming distance from the
all-zero string of equal length.

HammingWeight =
k

∑
i=0

nk

k
(3.28)

where k is the block size in bytes.

Longest Repeating Sequence Length
Some files contain long strings of a repeated byte sequence. Empty document files, for
example, contain long strings of 0s. This measure is computed as the length of the longest
repetition of any single byte value. It is also possible to take the string made up of any
single repeating n-gram value. For simplicity, we observed only the longest string with
respect to bytes.

LongRep = max
i

length(si) (3.29)

where si is the longest string consisting only of bytes with value i.
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Kolmogorov Complexity
The Kolmogorov complexity, also known as algorithmic complexity, is the length of the
shortest descriptor or language needed to produce a string. It can be approximated using
compression algorithms like bzip and gzip. We apply Python’s zlib compression function
to obtain an estimate.

Kolmogorov(s) = |d(s)| (3.30)

where d(s) is the shortest descriptor of s.

3.3 Learning Algorithms
This section is a review of the learning algorithms used in each experiment. Each algorithm
was applied to the training sets to obtain a classifier. Each classifier was then evaluated on
the test sets previously described.

3.3.1 k-Nearest Neighbor (KNN)
KNN is an instance-based learning method that classifies objects by taking a majority vote
among its neighbors. The training examples are represented as vectors in a multidimen-
sional space and their ground truth classes are known. The user defines a positive constant
integer k which is the number of neighbors that will be allowed to vote. A distance such
as Euclidean distance or Hamming distance determines the k closest neighbors in the fea-
ture space to the object in question. The new object is labeled with the class that is most
common amongst the neighbors. This is disadvantageous when the data is skewed. For
example, a class may dominate the feature space if there is a disproportionate number of
examples of that class to other classes.

Several parameter optimizations have been proposed to improve the performance of KNN
learners. One method is to weight neighbors by their distance to the new point. It may
also be productive to explore the optimal value for k. This is important because a k that
is too large will not be able to distinguish the classes. Another method is to vary the
distance metric used to determine nearest neighbors. Scaling and dimension reduction are
often utilized to reduce noise and eliminate irrelevant features. Some studies use genetic
algorithms in preprocessing to determine the optimal parameter values.
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3.3.2 Decision Trees
Decision trees are an inductive method that create a list of parameters from a set of fea-
tures and training data, and classify a new file based on those parameters. Following its
name, combinations of parameters can be represented as branches on a tree. Classes are
represented as tree leaves. There are a number of decision tree algorithms for generating
rules from the training data. The algorithms vary in terms of what measure is used to split
data, whether the predicted class is continuous or discrete, how over-fitting is handled, and
whether missing values are permitted. The most common are C4.5, its ancestor ID3 [39],
and the Weka implementation of J48.

For this study, decision trees are implemented with Python Orange’s orange.TreeLearner

module, which uses a top-down induction method similar to C4.5. By default, Orange [40]
uses the information gain ratio (information gain divided by the entropy of the feature’s
value) to determine parameters for splitting data at each node [40]. Information gain is also
known as the Kullback-Leibler divergence. It is a normalized measure of the difference
in entropy, or how much more information is available given the true value of a variable
in a probability distribution. At the beginning of the induction process all features are
considered possible candidates for rule generation. Nodes are generated recursively, taking
the feature with the highest information gain that has not already been used at another node.
Although the Python Orange implementation is similar to the Weka J48 implementation
used in the Tabish study [4], it is not precisely the same.

3.3.3 Naïve Bayes
Naïve Bayes classifiers are probabilistic models in which the given probability of features in
training independently influence the probability of the object’s class. Despite the unrealistic
assumption that features are independent, Naïve Bayes classifiers are a useful solution to a
host of real classification tasks.

This study applies the Bayes classifier included in Python Orange [41]. According to
documentation, Orange implements a version of Bayes’s algorithm as defined by Tom
Mitchell [42]. It is a standard implementation and similar to the the Weka implementa-
tion used in Tabish et al.’s work. Essentially, the classifier returns the class with the highest
likelihood based on prior probabilities of each feature chosen to model the instance:
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classi f y( f1, . . . , fn) = argmax
c

p(c)
n

∏
i=1

p( fi | i) (3.31)

3.3.4 Support Vector Machines
Support vector machines are a classification and pattern matching method that build a rep-
resentation of training data with p features in p-dimensional space [43]. In a linear SVM,
the space is split by a (p−1)-dimensional hyperplane that maximizes the gap between data
points belonging to two different classes. A support vector machine evaluates new exam-
ples by first mapping them into the partitioned space and then returning a classification
based on where the new data point falls in relation to the hyperplane [43]. More formally,
a linear support vector hyperplane is represented as

P = {(xi,yi) | xi ∈ Rp, yi ∈ {−1,1}}n
i=1 (3.32)

where subyi is either 1 or −1 and represents the class of xi, and xi is a p-dimensional
vector. The hyperplane creates maximum distance between the points where yi = 1 and
those where yi =−1.

Non-linear SVMs apply a kernel so that the hyperplane is mapped into a transformed a
formulaic space; they are useful when the data cannot be linearly separated. Common
kernel transformations include Gaussian radial basis, polynomial, and hyperbolic tangent
functions.

This study utilizes several of the SVM classifiers available in Python Orange’s LibSVM

library [44]. The orange.SVMLearner module allows the user to specify a kernel parame-
ter. In this experiment we utilize the linear, polynomial, radial, and sigmoid kernels. The
Orange implementations are equivalent to those used in Tabish’s study [4].

3.3.5 Stacked Learners
As addressed in the discussion of our experimentation design, we utilized several Python
Orange libraries to perform classification trials. Unlike Weka and other readily available
machine learning libraries, Python Orange affords the ability to test a combination of learn-
ers. According to available documentation, the method infers a meta-classifier from class
probability estimates on preliminary cross-validation data [45]. This method can produce
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meta-classifiers that have greater prediction accuracy than the individual classifiers in its
substructure. We apply a Stacked classifier that includes KNN, naïve Bayes, and linear
SVM sub-learners It is referenced throughout this paper as a “Stacked KBL” classifier.

3.4 Experiments
This section describes the procedures used in our malware detection and fragment iden-
tification experiments. We apply the classifiers described in the previous section to three
feature combinations; a set that includes the information-theoretic features from the Tabish
study [4], a set that includes the features from the Fitzgerald study [5], and a set that com-
bines features from both studies.

3.4.1 Malware Classification
A major goal of this thesis is to validate Tabish et al.’s [4] work which recommends using
all information-theoretic features on 1024 byte blocks. Following their methods, we ran
three experiments with a preliminary block size of 1024 bytes.

We ran ran three malware classification sets, each with a different feature vector. In
“Tabish” trials we apply the the 13 information-theoretic features on 1-, 2-, 3-, and 4-grams
from Tabish’s study [4], shown in Table 3.11. This yields a total of 52 features.

In the second trial, we apply five Fitzgerald features (Kolmogorov complexity, Hamming
weight, contiguity, longest repeating string, and Shannon entropy) [5] to unigram distribu-
tions. We also include 255 unigram counts (values 0 to 255) making a total of 261 features.
From this point forward we refer to any trial using this feature vector as a “Fitzgerald”
experiment.

Finally, we combine features from both papers in what we henceforth call “Combined”
experiments. This feature vector includes the 52 features from “Tabish” experiments, 256
unigram counts and 4 “Fitzgerald” features, 5 features minus Shannon entropy which is
already included in the “Tabish” set. “Combined” experiments apply 312 features.

In total we perform 36 classification experiments: six learning algorithms: (KNN, bagged
KNN, linear SVM, Stacked KBL, regression trees, and naïve Bayes) are applied to each of
the six malware models. After models for each classifier and malware category are built,
we extract features on each test block and classify it as either malicious or benign. When
the model has made a prediction for every block in a test file, majority voting is used to
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determine the class of the entire file. The threshold in our study and Tabish et al. [4] is 50%.
For instance, if there are 100 blocks in a file and a model classifies 49 blocks as benign and
51 blocks as malicious, the predicted class for the entire file is malicious. In the edge case
where the votes are equal, the file is labeled malicious. The classifiers are evaluated on
the set of benign files and malware files not used in training. For example, a tree learner
is applied to a training set that includes backdoors and benign files. The trees are tested
on leftover benign files and backdoor files, but not on worm, virus, trojan, constructor, or
miscellaneous files. Figure 3.1 summarizes the overall experiment design from the feature
generation phase to block classification and file classification by majority vote.

3.4.2 File Fragment Identification
The following trials are designed to validate the use of NLP features and n-gram fre-
quencies for fragment classification and evaluate the potential usefulness of information-
theoretic features combined with NLP features. We classify a limited set of file types
compared to the 23 types presented in Fitzgerald’s study [5]. Our pilot study only includes
the the types with enough files from our data sources to take be able to take one or fewer
blocks from each file. Like Fitzgerald, we experiment with the number of blocks used in
training (1,000, 2,000 or 4,000).

Expanding on Fitzgerald’s work [5] with linear SVM, we test five additional learning al-
gorithms from the Python Orange library on each dataset (1,000, 2,000 and 4,000 blocks).
The six Orange learners used are: KNN, bagged KNN, Stacked KBL, regression trees,
naïve Bayes, and linear SVM. The classifiers produced a file type prediction for each of the
blocks in the test set. Ultimately, we apply Orange’s 10-fold cross-validation tool to obtain
accuracy, precision, recall, and f-score.

Since the goal is to validate or disqualify the need for further research on information-
theoretic features in file type identification tasks, we only present results for “Combined”
feature vector experiments. Similar to our second malware classification trial, the vector
includes 312 features, 52 from “Tabish” and 260 from “Fitzgerald”. Although limited in
scope, our trials produced promising results; details are provided in Chapter 4. Chapter 5,
addresses variations that are not included but are worthy of future research.
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Figure 3.1: Malware Vs. Benign File Experiment Design

3.5 Summary
This chapter described our data sources, learning algorithms, methods of feature selection,
and experiment processes for malware and file type classification. Chapter 4 presents the
results of our experiments and an analysis of our results compared to Tabish’s [4] and
Fitzgerald’s [5] findings. We evaluate the highest performing combinations of features,
learning algorithm, and block size as a result of our methods and their potential for further
investigation.
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CHAPTER 4:
Results

4.1 Introduction
In Chapter 3, we outlined the methods used to calculate features for the files we want to
classify. This included computing the same information-theoretic features that Tabish et al.
[4] used to identify malware files, as well as NLP and unigram distributions that Fitzgerald
et al. [5] used to predict a file’s type from incomplete fragments. We also outlined where
we obtained our training data, how we performed machine learning, and used voting to
obtain a prediction. In this section we present the results including accuracy, precision,
recall, and f-score. This section also compares our results to [4] and [5] where relevant.

4.2 Malware Detection
This section presents the results for our malware classification experiments. It includes
side-by-side comparisons of the top performing learner on on the various types of malware
and addresses results for the the three different input vectors. Results are grouped into
sections by malware type. The majority are shown in table format with accuracy, recall,
precision, and f-score moving across the rows.

4.2.1 Tabish Features
Below are the results for our first phase of experiments, which used 52 “Tabish” features to
identify benign files versus six types of malware. In general, we find that accuracy rates are
similar, but not quite as strong, as those reported by Tabish et al. [4]. Overall the highest
performing learner is bagged KNN (Table 4.1). Except on constructor and worm files,
bagged KNN yielded the highest f-scores.

Trojan Detection
Of the six classifiers, the highest performing classifier for trojans versus benign files was
bagged KNN with a coefficient of k = 3. It resulted in .91 accuracy, although it did not yield
particularly impressive false negative and false positive rates. Bagged KNN had .63 recall
and .62 precision. Although the Python Orange stacked KBL method produced fewer false
negatives with a recall (.71), KNN maintained the highest f-score (.75). See Table 4.2.
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Table 4.1: Tabish Features: Top Learner Results by Malware Type
Class Learner Accuracy Recall Precision F-score
Miscellaneous Bagged KNN 0.93 0.7 0.72 0.82
Virus Bagged KNN 0.93 0.44 0.98 0.75
Constructor Stack KBL 0.9 0.86 0.54 0.78
Trojan Bagged KNN 0.91 0.63 0.62 0.75
Backdoor Bagged KNN 0.87 0.88 0.48 0.75
Worm Bagged KNN 0.9 0.51 0.6 0.7

Table 4.2: Tabish Features: Trojan Detection
Dataset↓ Accuracy Recall Precision F-score
KNN (k=3) 0.90 0.66 0.58 0.62
KNN (BAGGED, k=3) 0.91 0.63 0.62 0.75
LINEAR SVM 0.86 0.38 0.43 0.56
STACK K B L 0.88 0.71 0.5 0.72
REGRESSION TREE 0.86 0.33 0.44 0.54
NAIVE BAYES 0.69 0.51 0.2 0.43

Backdoor Detection
Similar to trojan detection, bagged KNN outperformed the other 5 classifiers in terms of
accuracy (.87) and f-score (.75). In this case, bagged KNN also outperformed stacked KBL
methods on all fronts, including recall (.88) and precision (.48). See Table 4.3.

Virus Detection
Again, bagged KNN performed best out of the 6 classifiers. With an accuracy of .93 and
f-score of .75, it is also one of the highest performing Tabish models over all the malware
types. Linear SVM produced similar accuracy rates (.91), but did not perform as well in
terms of recall (.33) and precision (.88). See Table 4.4.

Table 4.3: Tabish Features: Backdoor Detection
Dataset↓ Accuracy Recall Precision F-score
KNN (k=3) 0.85 0.90 0.46 0.60
KNN (BAGGED, k=3) 0.87 0.88 0.48 0.75
LINEAR SVM 0.78 0.4 0.25 0.46
STACK K B L 0.83 0.84 0.41 0.68
REGRESSION TREE 0.84 0.45 0.34 0.55
NAIVE BAYES 0.7 0.38 0.17 0.37
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Table 4.4: Tabish Features: Virus Detection
Dataset↓ Accuracy Recall Precision F-score
KNN (k=3) 0.92 0.46 0.82 0.59
KNN (BAGGED, k=3) 0.93 0.44 0.98 0.75
LINEAR SVM 0.91 0.33 0.8 0.62
STACK K B L 0.78 0.94 0.35 0.64
REGRESSION TREE 0.9 0.24 0.95 0.55
NAIVE BAYES 0.77 0.91 0.35 0.63

Worm Detection
Unlike KNN classifiers for trojan, backdoor, and virus detection, KNN did not outperform
other methods in terms of f-score (.70) on worm files. Stacked KBL performed better in
terms of precision (.46) and recall (.78), achieving an f-score of .71. Bagged KNN did,
however, produce the most accurate results (.90) of the six classifiers. Since the accuracy is
significantly higher for bagged KNN versus stacked KBL (.78), we consider bagged KNN
the top performer on worms. See Table 4.5.

Constructor Detection
Bagged KNN performed well for constructor identification, but not as well as the stacked
KBL method. Bagged KNN produced an accuracy of .88 and f-score of .74; while Stacked
SVM achieved accuracy of .9 and an f-score of .78. This is the only class for which we do
not consider bagged KNN to be the highest performer. See Table 4.6.

Miscellaneous Malware Detection
Bagged KNN performed significantly better than other methods for malware that did not
fall into one of the previously discussed classes. In fact bagged KNN achieved an accuracy
of .93, matching bagged KNN results for what Tabish [4] suggest is the easiest malware
to classify in terms of accuracy. Bagged KNN also outperformed other learning methods

Table 4.5: Tabish Features: Worm Detection
Dataset↓ Accuracy Recall Precision F-score
KNN (k=3) 0.90 0.59 0.59 0.59
KNN (BAGGED, k=3) 0.9 0.51 0.6 0.7
LINEAR SVM 0.87 0.3 0.45 0.52
STACK K B L 0.86 0.78 0.46 0.71
REGRESSION TREE 0.88 0.06 0.8 0.21
NAIVE BAYES 0.69 0.7 0.24 0.49

39



Table 4.6: Tabish Features: Constructor Detection
Dataset↓ Accuracy Recall Precision F-score
KNN (k=3) 0.87 0.89 0.46 0.61
KNN (BAGGED, k=3) 0.88 0.88 0.48 0.74
LINEAR SVM 0.75 0.84 0.29 0.57
STACK K B L 0.9 0.86 0.54 0.78
REGRESSION TREE 0.69 0.84 0.25 0.52
NAIVE BAYES 0.72 0.66 0.24 0.49

in terms of precision (.72), recall (.7), and f-score (.82). This is also the highest f-score
produced in any of the Tabish trials and malware types. See Table 4.7.

4.2.2 Fitzgerald Features
The following are results of experiments where we applied 261 NLP and unigram distri-
bution frequencies that Fitzgerald used to identify file fragment types [5]. For these trials
we applied the features and again use six learning algorithms to predict whether a file is
malicious or benign. Similar to our results after applying Tabish features, bagged KNN
generally performed best; for the majority of trials. It achieved the highest accuracy and
f-score. See Table 4.8.

Backdoor Detection
An exception to all other classification experiments using Fitzgerald’s feature set, the high-
est performing method for backdoor detection was KNN not bagged KNN. Although its
accuracy (.85) is just below that of stacked KBL (.86), the recall for KNN is a relatively
high .90 and its f-score (.60) outperformed most other methods. It is worth noting that
linear SVM also produced decently high results and an f-score of .61 that is just above
the f-score for KNN, but it did not fair as well for accuracy (.8) For all remaining mal-

Table 4.7: Tabish Features: Miscellaneous Detection
Dataset↓ Accuracy Recall Precision F-score
KNN (k=3) 0.90 0.66 0.61 0.63
KNN (BAGGED, k=3) 0.93 0.7 0.72 0.82
LINEAR SVM 0.84 0.44 0.38 0.57
STACK K B L 0.88 0.75 0.53 0.74
REGRESSION TREE 0.77 0.72 0.32 0.58
NAIVE BAYES 0.74 0.79 0.3 0.57
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Table 4.8: Fitzgerald Features: Top Learner Results by Malware Type
Miscellaneous Bagged KNN 0.93 0.67 0.76 0.82
Constructor Bagged KNN 0.92 0.85 0.6 0.81
Virus Bagged KNN 0.92 0.58 0.76 0.78
Trojan Bagged KNN 0.91 0.63 0.64 0.76
Worm Bagged KNN 0.9 0.54 0.61 0.71
Backdoor KNN 0.85 0.90 0.46 0.60

ware classes, the highest performing learner was bagged KNN. However, bagged KNN
performed surprisingly poorly for backdoor detection with an accuracy of .33 and f-score
of .31. See Table 4.9.

Constructor Detection
KNN, bagged KNN, and stacked KBL algorithms all performed well on constructor mal-
ware files. Bagged KNN achieved the highest accuracy (.92) and f-score (.81). Its recall
(.85) and precision (.6) are slightly higher that of KNN (.89 and .46) and stacked KBL (.84
and .52). The results are not as strong for linear SVM, regression trees, and naïve Bayes.
Still, it is worth noting that all accuracy, precision, and recall scores are above .70 and have
an f-score above .58. See Table 4.10

Miscellaneous Malware Detection
Similar to results for constructor files, all algorithms produced noteworthy results on mis-
cellaneous files that did not fall into one of the other malware categories. Again, bagged
KNN produced the highest accuracy (.93) and f-score (.82). Stacked KBL produced rea-
sonably close accuracy (.92) and an f-score of (.81) as shown in Table 4.11.

Table 4.9: Fitzgerald Features: Backdoor Detection
Dataset↓ Accuracy Recall Precision F-score
KNN (k=3) 0.85 0.90 0.46 0.60
KNN (BAGGED, k=3) 0.33 0.96 0.15 0.31
LINEAR SVM 0.8 0.72 0.35 0.61
STACK K B L 0.86 0.35 0.43 0.54
REGRESSION TREE 0.54 0.97 0.21 0.45
NAIVE BAYES 0.71 0.39 0.18 0.38
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Table 4.10: Fitzgerald Features: Constructor Detection
Dataset↓ Accuracy Recall Precision F-score
KNN (k=3) 0.87 0.89 0.46 0.61
KNN (BAGGED, k=3) 0.92 0.85 0.6 0.81
LINEAR SVM 0.76 0.83 0.3 0.58
STACK K B L 0.89 0.84 0.52 0.76
REGRESSION TREE 0.77 0.76 0.3 0.58
NAIVE BAYES 0.75 0.68 0.26 0.52

Table 4.11: Fitzgerald Features: Miscellaneous Detection
Dataset↓ Accuracy Recall Precision F-score
KNN (k=3) 0.90 0.66 0.61 0.63
LINEAR SVM 0.87 0.61 0.48 0.68
KNN (BAGGED, k=3) 0.93 0.67 0.76 0.82
STACK K B L 0.92 0.7 0.69 0.81
REGRESSION TREE 0.81 0.67 0.36 0.61
NAIVE BAYES 0.76 0.76 0.31 0.57

Trojan Detection
Bagged KNN, again, produced the best results. It achieved the highest accuracy (.91) and f-
score (.76). While regression trees achieved high precision (.79), they achieved poor recall
(.2). KNN and stacked KBL achieved similar, notable accuracy rates (.9). See Table 4.12.

Virus Detection
Like the other malware experiments using Fitzgerald’s unigram distribution and NLP fea-
tures, bagged KNN achieved best results for predicting virus files. While several algorithms
scored .92 in accuracy (KNN, Linear SVM, and bagged KNN), bagged KNN achieved the
highest f-score of .78. Linear SVM yielded similar though slightly weaker results with an
f-score of .75. The regression tree learner produced a high precision of .87, but did not

Table 4.12: Fitzgerald Features: Trojan Detection
Dataset↓ Accuracy Recall Precision F-score
KNN (k=3) 0.9 0.66 0.58 0.62
LINEAR SVM 0.88 0.46 0.52 0.64
KNN (BAGGED, k=3) 0.91 0.63 0.64 0.76
STACK K B L 0.9 0.59 0.6 0.73
REGRESSION TREE 0.89 0.2 0.79 0.48
NAIVE BAYES 0.72 0.52 0.23 0.46
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perform as well on recall (.34), and thus, overall f-score (.64). Table 4.13 displays the
results.

Worm Detection
In contrast to the results of bagged KNN with Tabish features, bagged KNN yielded better
results than other classifiers with the Fitzgerald feature model. Although KNN and re-
gression trees also achieved an accuracy of .9, bagged KNN produced the experiment high
f-score of .71. This f-score is significantly higher than that of other learners. KNN, the
learner that produced the next highest f-score yielded only .59 for precision, recall, and
f-score. Stacked KBL yielded an extremely high recall of .98, but suffered the trade off in
precision (.23). See Table 4.14i.

4.2.3 Combined Features: Tabish Information-Theoretic and Fitzger-
ald NLP Features

This section discusses the results of malware classification experiments using a total of 312
information-theoretic features, unigram distributions, and NLP, the union of features rec-
ommend by Tabish [4] and [5]. Overall, combining all the features did not produce higher
results than using just one of the features sets. As we saw with Tabish and Fitzgerald [4] [5]
feature vectors in the previous two sections,features, bagged KNN performed better than
other learners for the majority of malware classes. See Table 4.15. for a summary of best
to worst performance using combined features.

Backdoor Detection
Scores for combined features on backdoor files were low compared with scores on other
malware types using the combined features, as well as compared to experiments applying
just one feature set. Also, this is the only experiment where linear SVM showed strong

Table 4.13: Fitzgerald Features: Virus Detection
Dataset↓ Accuracy Recall Precision F-score
KNN (k=3) 0.92 0.46 0.82 0.59
LINEAR SVM 0.92 0.53 0.74 0.75
KNN (BAGGED, k=3) 0.92 0.58 0.76 0.78
STACK K B L 0.78 0.94 0.36 0.65
REGRESSION TREE 0.91 0.34 0.87 0.64
NAIVE BAYES 0.78 0.94 0.36 0.64
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Table 4.14: Fitzgerald Features: Worm Detection
Dataset↓ Accuracy Recall Precision F-score
KNN (k=3) 0.9 0.59 0.59 0.59
LINEAR SVM 0.88 0.38 0.52 0.6
KNN (BAGGED, k=3) 0.9 0.54 0.61 0.71
STACK K B L 0.58 0.98 0.23 0.48
REGRESSION TREE 0.9 0.2 0.84 0.49
NAIVE BAYES 0.71 0.41 0.19 0.39

Table 4.15: Combined Features: Top Learner Results by Malware Type
Miscellaneous Bagged KNN 0.93 0.68 0.72 0.81
Virus Bagged KNN 0.92 0.53 0.75 0.75
Worm Bagged KNN 0.9 0.53 0.62 0.71
Trojan Bagged KNN 0.89 0.52 0.58 0.69
Backdoor Stack KBL 0.87 0.66 0.48 0.69
Constructor Stack KBL 0.87 0.66 0.48 0.69

performance against other learners. Linear SVM matched stacked KBL with the highest
f-scores (.69). Still, stacked KBL was able to produce a slightly higher accuracy (.87)
compared to linear SVM (.84). KNN and bagged KNN produced slightly weaker results.
See Table 4.16.

Constructor Detection
Both bagged KNN and stacked KBL performed well for identifying malware constructor
files, yet stacked KBL produced slightly stronger results. Stacked KBL yielded an accuracy
of .93 and f-score of .84. Bagged KNN yielded an accuracy of .91 and f-score of .79.
These were significantly better than the remaining learners and seem to perform best on
constructor files regardless of features selected. See Table 4.17 for results using combined

Table 4.16: Combined Features: Backdoor Detection
Dataset↓ Accuracy Recall Precision F-score
KNN (k=3) 0.85 0.90 0.46 0.60
LINEAR SVM 0.84 0.82 0.43 0.69
KNN (BAGGED, k=3) 0.75 0.92 0.33 0.61
STACK K B L 0.87 0.66 0.48 0.69
REGRESSION TREE 0.52 0.99 0.21 0.44
NAIVE BAYES 0.71 0.39 0.18 0.38
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features, Table 4.6 for Tabish results and Table 4.10 for Fitzgerald results.

Miscellaneous Malware Detection
Bagged KNN performed best for classifying malware that did not fall into any of the other
malware classes using a combined feature set, as with other feature sets. It achieved a high
accuracy (.93) and the high f-score compared to other learners in the group. In general
though, all learners achieved relatively high accuracy; all were above .89. See Table 4.18
shows the results.

Trojan Detection
Bagged KNN and stacked KBL yielded similarly promising results for detecting trojan
files. Bagged KNN produced a slightly higher accuracy of .89 compared to stacked KBL
with an accuracy of .88. Both learners yielded f-scores of .69. Overall, none of the learn-
ers performed particularly well in terms of precision and recall on trojans using the com-
bined feature set. Trojan prediction was better under our ‘Tabish”model [4] (Table 4.2) and
“Fitzgerald” model [5] (Table 4.12). See Table 4.19 for combined feature results.

Virus Detection
Bagged KNN produced the strongest results for virus detection using combined features.
Although all learners yielded high accuracies of .92 (except naïve Bayes), Bagged KNN
yielded the highest f-score (.75). It is worth noting that recall (.92) was much stronger than
precision (.51) for Bagged KNN. Similarly, stacked KBL had strong recall (.94), but weak
precision (.36). Interestingly, linear SVM and regression trees produced similar f-scores of
.74 and .72 respectively, but precision was significantly stronger than recall. The regression
tree, for example, yielded a precision of .92 while recall was only .42. See Table 4.20.

Table 4.17: Combined Features: Constructor Detection
Dataset↓ Accuracy Recall Precision F-score
KNN (k=3) 0.87 0.89 0.46 0.61
LINEAR SVM 0.81 0.81 0.35 0.63
KNN (BAGGED, k=3) 0.91 0.85 0.57 0.79
STACK K B L 0.93 0.85 0.66 0.84
REGRESSION TREE 0.74 0.86 0.29 0.57
NAIVE BAYES 0.74 0.68 0.26 0.52
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Table 4.18: Combined Features: Miscellaneous Detection
Dataset↓ Accuracy Recall Precision F-score
KNN (k=3) 0.90 0.66 0.61 0.63
LINEAR SVM 0.89 0.62 0.53 0.71
KNN (BAGGED, k=3) 0.93 0.68 0.72 0.81
STACK K B L 0.92 0.73 0.66 0.8
REGRESSION TREE 0.84 0.65 0.4 0.64
NAIVE BAYES 0.75 0.76 0.31 0.57

Table 4.19: Combined Features: Trojan Detection
Dataset↓ Accuracy Recall Precision F-score
KNN (k=3) 0.90 0.66 0.58 0.62
LINEAR SVM 0.88 0.45 0.51 0.63
KNN (BAGGED, k=3) 0.89 0.52 0.58 0.69
STACK K B L 0.88 0.58 0.53 0.69
REGRESSION TREE 0.89 0.2 0.78 0.48
NAIVE BAYES 0.72 0.51 0.22 0.45

Table 4.20: Combined Features: Virus Detection
Dataset↓ Accuracy Recall Precision F-score
KNN (k=3) 0.92 0.46 0.82 0.59
LINEAR SVM 0.92 0.51 0.73 0.74
KNN (BAGGED, k=3) 0.92 0.53 0.75 0.75
STACK K B L 0.78 0.94 0.36 0.64
REGRESSION TREE 0.92 0.42 0.92 0.72
NAIVE BAYES 0.78 0.94 0.35 0.64

Worm Detection
The strongest algorithm for worm detection was bagged KNN. It yielded the highest accu-
racy (.9) and f-score (.71) in the experiment. Although KNN and regression trees achieved
the same accuracy (.9) they performed poorly in terms of precision an recall, yielding f-
scores of .59 and .52 respectively. Also, worth noting, stacked KBL achieved very strong
recall (.98), but this was at the cost of precision (.23). See Table 4.21.

4.2.4 Malware Detection Result Summary
Regardless of the feature set used, we found worms and backdoors hardest to classify.
Accuracy and f-scores were generally lowest across trials for these two types. On the
other hand, miscellaneous files were easiest to predict. Viruses were, not surprisingly also
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Table 4.21: Combined Features: Worm Detection
Dataset↓ Accuracy Recall Precision F-score
KNN (k=3) 0.9 0.59 0.59 0.59
LINEAR SVM 0.88 0.38 0.51 0.59
KNN (BAGGED, k=3) 0.9 0.53 0.62 0.71
STACK K B L 0.63 0.98 0.25 0.52
REGRESSION TREE 0.9 0.2 0.86 0.48
NAIVE BAYES 0.71 0.38 0.18 0.38

relatively easy to classify compared to other classifiers. The latter two types had the highest
accuracies and f-scores across trials, regardless of feature set. Additionally, we find that
bagged KNN is the most consistent learner; it yielded the highest accuracy and f-score
results across the majority of malware and feature vector variations.
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4.3 File Fragment Identification
This section presents the results of preliminary trials in which we validate some of Fitzger-
ald’s work using n-gram distributions and linear SVM and show that information-theoretic
features may aid Fitzgerald’s approach.

We performed several pre-trial tests using Python Orange’s 10 fold cross validation tool to
explore the use of information- theoretic and NLP features for file type classification. The
section is divided by same three input vector variations we used for malware detection;
Tabish [4] features only, Fitzgerald [5] features only, and combined features. Similar to
Fitzgerald [5] we performed these trials on 1,000, 2,000, and 4,000 blocks, each consisting
of 1,024 bytes. Note that, although our dataset included all the file types tested by Fitzger-
ald et al. we only present the results for file types where we obtained a sufficiently large
dataset to generate 4,000 block chunks without reusing blocks from the same files.

Summary of File Fragment Trial Results
Out of four learners applied to the file fragment datasets, the highest performance was
achieved using linear SVM (See Table 4.22. We also find that classification is improves
with larger block count. Accuracy was higher using 4,000 blocks versus 1,000 or 2,000
blocks (See Table 4.23). It is unclear whether continuing to increase the number of blocks
would further improve results. However, we note that it becomes increasingly difficult
to find training files large enough to accommodate trials with larger block counts without
reusing data.

Similar to Fitzgerald [5], we find that high entropy file types are more difficult to classify.
Image files like png and compressed gz files, where repeated information is eliminated to
reduce storage (thus increasing entropy), had the lowest prediction accuracies. Table 4.24
shows the results of using linear SVM on 4,000 blocks of each file type. Like Fitzgerald, we
found that this combination of learner and size yielded the highest accuracies. After com-
bining Fitzgerald’s features with information-theoretic features we obtained significantly

Table 4.22: Results: LSVM and Combined Features by Block Size
Blocks Accuracy Precision Recall f-score AUC
1000 0.588 0.639 0.567 0.601 0.891
2000 0.619 0.674 0.577 0.622 0.901
4000 0.659 0.685 0.581 0.629 0.916
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Table 4.23: Results: 4000 Blocks and Combined Features by Learner
Blocks Unigrams Learner Accuracy
4000 y NAÏVE BAYES 0.4533
4000 y REGRESSION TREE 0.5033
4000 y KNN (k=3) 0.5877
4000 y LINEAR SVM 0.6458
4000 n NAÏVE BAYES 0.3612
4000 n REGRESSION TREE 0.4171
4000 n KNN (k=3) 0.5177
4000 n LINEAR SVM 0.504

Table 4.24: Results: 4000 Blocks, LSVM, and Combined Features by File Type

File Type Accuracy Precision Recall F-Score
png 0.906 0.408 0.5 0.449
gz 0.907 0.401 0.425 0.413
jps 0.911 0.451 0.71 0.552
gif 0.937 0.574 0.712 0.636
pdf 0.93 0.582 0.309 0.404
ppt 0.934 0.663 0.301 0.414
html 0.967 0.822 0.725 0.77
xml 0.971 0.823 0.796 0.809
csv 0.993 0.937 0.968 0.953
txt 0.955 0.657 0.857 0.744
ps 0.987 0.904 0.93 0.917
doc 0.947 0.685 0.581 0.629
xls 0.973 0.879 0.75 0.81

higher accuracy scores compared to those reported by Fitzgerald.

4.4 Results Summary
Overall, our outcomes support the methods employed by Tabish [4] and Fitzgerald [5],
with some differences in terms of highest performing feature set and learning algorithm.
Although we did not perform malware detection experiments using the same Weka J48 im-
plementation of decision trees as Tabish et al. [4] we generally find that KNN outperforms
tree based methods. Going beyond Tabish’s work, we find that enhanced meta-classifiers
such as stacked ensembles packaged with Python Orange, further improve classification
results. We were surprised to find that certain classes in our dataset, such as miscellaneous
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files, were easy to classify by contrast to Tabish’s results [4].

Based on preliminary trials, we find that linear SVM and large block sizes are most effective
for file fragment classification, as suggested by Fitzgerald [5]. We were unable to present
results for all file types tested in Fitzgerald’s study, but generally find that high entropy files
are more difficult to classify. Beyond Fitzgerald’s results, we find that including additional
information- theoretic features improves file fragment classification.

The next chapter analyzes our results and compares them to the historical studies which
influenced our work in greater detail. Further, it addresses limitations and provides recom-
mendations for future research.
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CHAPTER 5:
Conclusions And Future Work

5.1 Conclusions
The experiments described in this paper examined the use of non-signature based features
as suggested by Tabish [4] and Fitzgerald [5] We observe their effectiveness in two impor-
tant problem spaces: malware classification and file fragment identification. Although we
were unable to obtain the original researchers’ malware test data, we followed the methods
defined by Tabish et al. [4] and confirmed some of their conclusions. We also examined
additional non-signature features, including the NLP features that were used by Fitzger-
ald et al. [5] to identify file types from fragments. We applied different combinations of
these feature sets as well as different learning algorithms used by both research groups.
Finally, we performed preliminary studies using Tabish’s features for file fragment identifi-
cation and noticed increased learner performance with feature sets augmented by Tabish’s
information-theoretic features.

5.1.1 Malware Detection
Our malware experiments support Tabish et al.’s claim [4] that malware files are different
from benign files at a byte level and that this information can be used to gain some statistical
intelligence about the type of a malicious file. Using 13 information-theoretic features
on 1-,2-,3-, and 4-gram byte sequences, all learners achieved accuracy rates between .87
and .93 and f-scores between .7 and .82, suggesting that there is an discernible difference
between malware and benign files. Unlike, Tabish et al., however, we find the bagged
KNN generally performed better than the recommended J48 decision trees. We should note
though, that bagged KNN is not the most efficient learner in terms of speed; it is particularly
slow compared to other learners. Our experiments also resulted in lower performance for
viruses and higher performance for miscellaneous and constructor files than expected based
on Tabish et al.’s results. Tabish [4] concludes that virus files were easiest to classify,
generating the largest area under a ROC curve, and miscellaneous files were most difficult
to classify. See Table 5.1 for a side-by-side comparison. Our experiments resulted in
similarly high virus file and miscellaneous file classification outcome. Surprisingly, bagged
KNN achieved an even higher f-score for miscellaneous files than for virus files.
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Table 5.1: Malware Classification Difficulty: Our Results vs. Tabish
Most Difficult↓ Tabish Results Our Results

Miscellaneous Backdoor
Constructor Worm
Backdoor Trojan
Trojan Virus
Worm Constructor
Virus Miscellaneous

In addition to supporting Tabish’s findings [4], this study shows that using additional so
called NLP features, including those applied by Fitzgerald et al. [5], does not significantly
increase classification performance on different types of malware files. Using Fitzgerald
features alone and augmenting Tabish features with Fitzgerald features yielded similarly
high accuracy rates and f-Scores, as opposed to using Tabish features alone. The range of
maximum accuracies for Tabish trials is .87 to .93, as compared to .85 to .93 for Fitzgerald
features, and .87 to .93 for combined features across six classes. F-score ranges have similar
distribution as well: .7 to .82 for Tabish trials, .60 to .82 for Fitzgerald trials, and .69 to .81
for combined features.

5.1.2 File Fragment Identification
Preliminary trials using both Tabishi [4] and Fitzgerald [5] features, LSVM, and 4,000 file
fragments per file type yielded promising results with significantly higher accuracy com-
pared to Fitzgerald’s results [5]. Even for high entropy files that were more difficult to
classify, our pretrial results were significantly higher, with all accuracies exceeding .9. In
Fitzgerald’s experiments [5], LSVM yielded prediction accuracies below .9 for several of
the types included in our pretrials: png, doc, txt, gz, zip, ppt, and jpg. Our pretrials
achieved overall accuracy of .65 across 13 file types, while Fitzgerald achieved an accu-
racy of .34 across 24 types. The results of our trials motivate further experimentation using
n-gram distributions with information-theoretic features, particularly on an expanded list
of file types. Even when the number of classes is expanded to include additional file types,
recently published research provides evidence that a combined feature set is useful for en-
hanced fragment classification. Most recently, Beebe et al. [16] achieved overall prediction
accuracy of .73 across 30 different file types using a combination of features from twenty
different classification experiments. Beebe’s work includes several information-theoretic
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features not used in Fitzgerald’s work [5] and several additional features not used in this
study.

Similar to Fitzgerald [5] and Beebe et al. [16], we find that LSVM is the highest performing
learner for file fragment identification. LSVM performed better than KNN, naïve Bayes,
and decision trees. We also find that including unigram distributions and 4,000 fragments
per type (versus 1,000 or 2,000) increased the performance of LSVM on fragment classifi-
cation. As discussed in the following section, additional experiments are needed to examine
the effect of manipulating the number of file fragments, combinations of selected n-gram,
and information-theoretic features.

5.2 Future Work
The following section recommends variations on the experiments described in this paper
for follow-on study. It also addresses implementation issues and areas requiring further
research if the techniques are to be incorporated into useful tools for information security
analysts.

5.2.1 Parameter Optimization
This thesis led to the development of a framework that facilitates building trained models
and testing various parameters. The studies presented here focus on recommendations pro-
vided by Tabish [4] and Fitzgerald [5]. This work examines a few additional combinations
of Tabish’s and Fitzgerald’s feature sets. However, there are many “levers” that can be
varied in future studies that may achieve even more optimized performance and results.

1. Block Size: The block size is an important feature because it defines the minimum
size for malware or a fragment that can ibe detected in a model. Decreasing the
block size, of course, increases the amount of time and computation required to build
a model and test a file, but has potential to further improve results in both the malware
and fragment domains.

2. N-gram Size: The maximum n-gram size is set to four bytes in this work and recent
studies. In the future, our extraction and feature models can be optimized for better
memory management and processor efficiency to allow computation on longer n-
grams. Similar to decreasing the block size, increasing n-gram length may allow the
the model to detect sequences that were not detected in this study. The n-gram size
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is an upper bound on the size of an instruction or “word” with high information gain.
3. Feature Set: This study applies information-theoretic features gathered from a num-

ber of recent byte-level classification proposals. We observe that results were best
when we included a combination of information-theoretic, Natural Language Pro-
cessing, and n-gram measures in the feature set. This superficially suggests that
there is a positive relation between number of features and results. However, we also
observe that the difference is insignificant for malware classification tasks, but sig-
nificant for file fragment identification. Further work is needed to observe the effect
of more features such as larger n-gram counts as well as more focused sets that parse
out features with the highest information gain.
Beebe et al.’s work [16], which examines a variety of unigram, bigram, and
information-theoretic input vectors, suggests that future work focus not on increas-
ing the number of features, but on finding the optimal set of types of features. They
find that performance degrades, due to over-fitting, not necessarily when more fea-
tures are used, but when several different types of features are used. Beebe et al.’s
work [16] also suggests that future experiments utilize unigram and bigram concate-
nation, as this was found to be superior to other input vectors when a large number
of file and data types were involved. Future studies would also feature support vector
machines with a linear kernel, as suggested by Beebe et al. [16].

4. Classes: Another limitation of this research and related studies, is that learning is
performed on a finite set of malware and file type classes. This study examines six
malware categories; a list which could be expanded to include bot code, web injects,
rootkits, and many other common malware types. For file fragments, our goal was
only to examine the potential of combined unigram and information-theoretic fea-
tures (not to build a comprehensive classifier), but we only examine present 13 file
types. Like Beebe et al. [16] whose study examines 30 types and is the most com-
prehensive to date, we recommend that future work expand the research to include
common data types such as elf, sql, rtf, swf, wav, mov, and wma.

5. Training Data: We use widely available datasets for training file fragment and mal-
ware models. As discussed in Chapter 3, there are a number of limitations to these
sets. In future file identification studies, we recommend using data that is labeled
with libmagic or other methods that are comprehensive and accurate. For malware

54



studies, a repository containing more recent samples from diverse sources is needed.
While the methods proposed in this thesis produce good results when the test data
is not used in training, the test data comes from the same repositories. Future stud-
ies, should seek a dataset with samples from a diverse time period, including current
samples for training and testing. This is especially important considering the speed
of malware evolution and how quickly training data can become outdated.

6. Learner Parameters: Most programmatic learners require user specified parame-
ters. In file fragment identification for example, we instruct the support vector ma-
chine to split the vector space with a linear kernel. There are many other types of
kernels, including custom kernels, that may prove even more effective. In trials, we
experimented with a radial kernel. The results are not officially presented, though
we did not find that it significantly outperformed linear SVM. Our study affirms the
conclusions presented in other related literature as well. We find that decision trees
perform better than regular Bayesian approaches, KNN, and linear SVM for mal-
ware detection. However, there are many settings for decision trees including prun-
ing (pruning = 2 in our study) and the measure or algorithm used to split the tree
(information gain ratio in our study). Future experiments are needed to determine
optimal learning algorithm parameters.

7. Boosting: Boosting methods can improve supervised learners by reducing bias and
combining weak learners into a strong learner. As our results, affirm, byte-level
classification across multiple types is difficult. We observe that stack and boosting
methods significantly improve the performance for malware detection. In the fu-
ture, it would be interesting to apply boosting techniques to SVM for file fragment
identification tasks as well and experiment with stacked ensemble combinations.

8. Systematic Method and Voting Schemes: By performing classification on blocks
of byte-level information, our framework provides some insight into the potentially
interesting sections of a file.
With file fragments, it may be productive to look at confidence intervals for file class
given a block’s predicted class. Other work can be done to determine the accuracy
of the voting model used in malware detection for file fragmentation to predict the
extension for a file of unknown type. How many blocks of a file are needed to
achieve highly confident overall file predictions? In addition, it would be interesting
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to experiment with classifying smaller, more focused type categories. A framework
that classifies files into groups might be particularly useful when it is known a priori

that a file belongs to a limited set of possibilities. For example, if we know the
fragment comes from an image, does prediction improve for a model trained just on
gif, jpg, png, and other image files? Would using sub-classifiers or sub-categories
like “image” be combined to create an even stronger learner? These questions are
a natural extension of our work, but even more importantly, are synergistic with
realities of forensic practice for file fragment identification.
There are also a number of potentially useful modifications that might be made to the
malware framework used in this study. Naturally, the voting threshold used to deter-
mine whether a file is malicious can be adjusted. In future studies, we recommend
examining the ROC curve generated by adjusting the threshold above and below our
current setting of 50%. In the future we intend on testing new malicious and benign
files from sources other than the VXHeavens data and observing the effectiveness
of the classifiers in a live intrusion detection system (IDS). Testing the framework
on new files is needed to further address whether the model is useful for detecting
unseen types.

5.2.2 Toward Operational Systems
Beebe and Garfinkel [17] released Sceadan just after these studies were conducted.
Sceadan is an operational, open source C implementation for file fragment classification
using the optimal feature set obtained in their trials. Beebe et al. [16] reports a few possible
code efficiency enhancements and a desire to improve classification speed using multi-
threaded programming and optimized code. Future improvements could also includes the
capability to test and select different feature sets or have the tool test and suggest a feature
set based on those with highest information gain. Another addition should be the capability
of the tool to adapt over time. This would involve the ability to incorporate new training
data as the malware landscape changes and to rank and evaluate input feature vectors since
the optimal vector also may change over time.

While Sceadan is an important contribution for file fragment classification, a similar, open
source solution is needed for malware detection and other classification problems beyond
file type forensics. The development of a tool that allows users to define training and testing
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data, classes, and experiment with different features and block lengths would greatly en-
hance research on the use of NLP and information- theoretic features on byte level content
and provide operational value to information security analysts monitoring for both seen and
unseen malware files.

5.2.3 Final Conclusions
Improved file identification using non-signature based methods is an ever-important area
of research in information security. A constantly changing malware landscape, with the
proliferation of payload encryption and polymorphic coding, makes malware detection
a particularly elusive problem. In this paper, we evaluated the potential of several non-
signature based techniques for malware detection, and applied the techniques laterally to
another important task in forensics, file type classification. We find that these techniques
hold significant potential and value for further research. Overall, information-theoretic and
natural language processing features with linear support vector machines and bagged KNN
learning algorithms yielded high precision and accuracy rates. Although our results were
not as high as Tabish’s results [4] for malware detection, they are nonetheless encouraging.
For file fragmentation, we were able to achieve significantly higher results in preliminary
trials compared to Fitzgerald’s [5] recent work. Considering Beebe’s [16] recent successes
in applying various feature combinations for file fragment identification, we find advanced
statistical features useful in machine learning for file classification tasks.
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