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ABSTRACT

Optimal Control Theory is revisited. A minimum time

control rule for a third order regulator is found. A third

order missile model is developed. Minimum time control is

applied to the fast reaction missile defense problem. The

results are compared with Proportional Navigation. The states

controlled in the minimum time application are the derivatives

of Line-of-Sight angle and the vertical distance and

derivatives between missile and the target.
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I. INTRODUCTION

The expectation of any missile system is to hit the

target with high probability; in other words, to make the

terminal miss distance between the missile and target as small

as possible. For thousands of years projectile weapons have

had a lack of control after launching. This is detrimental to

hit probability. Guided missiles have overcome this situation

by being controlled after launching.

Currently, there are three guidance laws for tactical

missiles. These laws are Pursuit Guidance, Line-of-Sight

Guidance and Proportional Guidance. A missile can employ one

or more of these guidance laws. Guidance at the terminal phase

of the missile flight is most important.

A point defense system may be required to hit an

attacking missile that has a speed advantage. Instead of

following an expensive method such as designing new systems

against these targets, current systems may be upgraded.

Present work applies a different control to a surface-to-

air missile. In Chapter II, a minimum time control problem is

defined and solved for a third order regulator. In Chapter

III, the three different missile guidance laws are described.

Acceleration effects on missile velocity is also explained. In



Chapter IV, a missile model is formed and the missile/target

engagement scenario is simulated by using Proportional

Navigation Guidance. In Chapter V, the third order minimum

time solution is applied to the missile/target engagement

simulation.



n. MINIMUM TIME CONTROL

A. OPTIMUM CONTROL

Control system design is a trial and error process

utilizing various techniques to reach a desired outcome.

Classically, the performance of a system is defined in terms

of time and frequency, i.e., rise time, overshoot, gain and

phase margins. However, complex multiple-input, multiple-

output systems require a more elaborate design than the

classical design. For example, when controlling the attitude

of a satellite to minimize fuel consumption, optimal control

theory is required to design a satisfactory system,

incorporating the complicities of multiple input and output

variables. Optimal control theory can be defined as:

"The objective of optimal control theory is to determine
the control signals that will cause a process to satisfy
the physical constraints and at the same time minimize
(or maximize) some performance criterion. " [Ref. l:p. 1]

B. TIME OPTIMAL CONTROL

1. Problem Definition

In minimum time problems, the objective is to drive

a system from an arbitrary initial state to a desired state in

minimum time. Mathematically, the problem is to transfer a

system, that is,



x(t) = Ax(t) + Bu(t) (2.1)

or,

x(t) = f(x(t) ,u(t) , t) (2.2)

from an arbitrary initial state to a desired state by

minimizing

J = jdt = tf
- t (2.3)

to

Control effort u is constrained by a maximum value, such as

\u\ ± N (2.4)

The final state may be any point in the state-space.

In this study, the final point is the origin of the state-

space. When the final state is the origin, in a linear,

stationary, nth order system as defined in Equation (1.1) , the

problem is referred to as the stationary, linear regulator,

minimum-time problem.

2. Problem Solution

In this section, minimum time control for single

input systems will be described. From Pontryaginf 1] , it is



known that the performance measurement J defined at Equation

(2.3) can be minimized by minimizing the Hamiltonian which is

in the form of

H = 1 + p TAx + p TBu (2.5)

In this equation, u minimizes the Hamiltonian by

operating at its maximum value with the opposite sign of its

coefficient p
TB. Thus, u can be written as

u = -N*sign{p TB) (2.6)

An optimal time control can be solved for a system,

if all the eigenvalues of A have non-positive parts. The

control u is called the bang-bang control which occurs at its

maximum values as either +N or -N. The number of switches

between these values is at most n-1 times for systems with

real roots depending on the initial position of the system in

state space where n is the order of the system.

For an existing control, there are two trajectories

possible reaching to the origin; one for u=+N and one for u=-

N. These are zero trajectory curves that finally carry the

system to the origin. These trajectories divide the state-

space into two parts.



Some possible optimal trajectories for a second

order system can be seen in Figure 2.1. The solid line curves

are the zero trajectory curves. The state of the system above

these curves follows a parabolic path parallel to the -N zero

trajectory curve, with the control effort of -N; the state

below these curves has control effort +N and follows a

parabolic path parallel to the +N zero trajectory. These

curves are illustrated with dashed line curves. The control on

these curves switches once. At points A and B the control

switches from +N to -N and at points C and D from -N to +N.
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If these trajectories are described geometrically in

terms of state variables, the control function can be defined

as the switching function. This control function decides the

sign of the control and in which conditions the control will

change its sign in state-space.

Since the final state is the origin, but the initial

state is any place in state-space, it is better to solve the

u in negative time with zero initial conditions. Zero initial

conditions in negative time define the origin, end point of

the positive time problem. In this method, all minimum time

trajectories are defined in a generalized equation in terms of

states. This process is explained in Reference 1.

C. TIME OPTIMAL CONTROL EXAMPLE

As an example, switching law can be found for the

following third order system.

U 1 l/s X 3 l/s x2 l/s Xi

• ^- • »*• ^- • ^-



This system is similar to the missile model which

will be described in the following chapters, so the switching

law which will be solved in this section will be used for the

minimum time application of the missile problem.

The state-space of the system is

x.

1 " xi o"

1 X
2 +

-a. X
3.

1

u (2.7)

The transfer function of the system is

X(s) _

U(s) s 2 (s+a)
(2.8)

Eigenvalues are real and negative, so we can have a

solution. Since the system is third order, there are at most

two switches in the control depending on the initial position

of the system in the state-space.

1. Uncoupled System

The switching law for the system defines hyper-

surfaces in the state-space instead of curves in the state-

plane for a second order system. Transformation of the system

into an uncoupled system provides an easier definition for the

switching law. This is accomplished by taking a partial

fraction expansion of the transfer function and defining each

8



state with respect to control input and assigning a new state

vector to each eigenvalue, which is

x = Gy (2.9)

so,

Uncoupled state-space is found by following

Gy = AGy + Bu

y = G^AGy + G^Bu (2.10)

Description of each state with respect to control is

x1 (s) =
u(s)

S" [S + OL

1/g _ 1/oc 2

+
I/a 2

s 2 s s + ct

(2.11)

Xo (S)
1/a 1/a

s+a
(2.12)

x, (s) =
s+a

(2.13)

From these equations, G and G"
1 matrices are found as

G =

_1

a

1 1
'

a 2 a 2

1 1

a a

1

and G -l _

a 1 o'

a 1

1.

(2.14)



The uncoupled state-space system is

Yi 10" Vi o'

y* = y2 + i

A -a. y3
.

l

(2.15)

2. Problem Solution

The discretization of the system is

<t>
= ^((sI-A)' 1

)
=

1 t '

10
e"Bt

(2.16)

A = f$Bdt =

li-2

-±(l-e-at

a

(2.17)

Using these discrete time matrices, the discrete state-space

equation is

>!<«"

y2 (t) =

y3 (t)_

1 t

1

e -at

yx (o)

y2 (o)

y3 (o)

2

- (l-e"at
a

u(0) (2.18)

10



The positive time difference equations are

yx U) = y^O) + y2 (0) t + ±u(0) t
2 (2.19)

y2 (t) = y2 (0) + u(0) t (2.20)

y3
(t) = y3

(0)e-at + iii°i (i- e
-at

) (2.21)

In negative time with zero initial conditions the

difference equations become

yx
(t) = -|u(0) t 2 (2.22)

y2 (t) = -u(0) t (2.23)

y ( t ) = J£i£l(l-eat) (2.24)
a

By applying u=+N to the system, we have Table 1 for

one second intervals. For u=-N, we have Table 2. Zero

trajectory curves are defined by Tables 1 and 2.

As a next step, the curves before final switching

are to be defined. This can be accomplished by equating

positive time equations to the negative time zero trajectory

curve equations.

11



TABLE 1

ZERO TRAJECTORY SET (U=+N)

u=+N t=i t=2 t=3

Yi(t) In
2

2N
1"

y2 (t)
-N -2N -2N

y3 (t) ^(l-e«)
a

^(l-e 2 «)
a

^(l-e 3 «)
a

TABLE 2

ZERO TRAJECTORY SET (U=-N)

u=-N t=i t=2 t=3

Yi(t)
-In
2

2tf -2»
2

y2 (t)
tf 2AT 3N

y3
(t)

-^<l-e«>
a a a

12



At the time control switches from u=-N to u=+N,

negative time equations with control effort u=+N are equal to

positive time equations with control effort u=-N. These sets

of equations are

yi(t )
=lN = yi (0) +y2 (0) - ±Nt 2 (2.25)

y2
(t) =-JV = y2 (0) - Nt (2.26)

y3
(t) = -(l-e«) = y3

(0)e-at-^(l-e-at
) (2.27)

At time t the control switches from -N to +N. From Equation

(2.26) we can get

t-l*^SL (2.28)
N

By putting t in Equations (2.27) and (2.28) we have

* = yi (0) * Slj°L (2.29)

= e-e"
aZ^i

(y3 (0) + ^\ - M + i^e« (2-30)
\ a/ a a

By following the same steps, we can solve the set of

equations for the control switches from +N to -N and obtain

the family of curves shown in Table 3. A common solution from

the Table 3 gives the switching law for the uncoupled system.

13



TABLE 3

SOLUTION SET FOR THE UNCOUPLED SYSTEM

U=+N

t=l

-.*..). is'

-»y,«»

- e-e * (y,(0) + £) - M i?e«
\ a / a a

t=2

« *<°>-4£-

-*y
a (0)

« «-»• * (y,(0) -2) - M i^e»«
\ ft / ft tt

t=3

».*»..^

-«y,(o)

= e s«e * (y,(0)
-J)

- -^ -£e J «

u=-N

t=l

*-*<« -*r

..-. '» (y,(0) -*)*M-2?..
\

J a/ a a

t-2

.«.*,.> -2^

•y,«H

- e a«e * ly.(O) - H) + M - H e"
\

3 a/ a a

t=3

— *«•>-*£'

. .-. '» (y,(0) - ») . M - £e"
\

J a/ a a

14



From Table 3, it is defined ;

• J ,m y2 (0)ly2 (0)
w = sigrly^Q) + -2 J^ (2.31)

f = yx ( o ) + wy2 (Q)

2N
(2.32)

z =

N

f
AH

(2.33)

These common equations define the family of curves which is

"^^"^'^Trlf1
?)

(2.34)

Equations (2.31-34) give the switching law. The switching

function for the uncoupled system is

u = -Nsign
way, (0)"—

(y3 <o) iSW
Y2 W)

z2N +
e^N

a

(2.35)

This switching equation is for the uncoupled system.

For the normal state system we need to define the uncoupled

states in terms of normal states. This can be done by the

following equation

y = G~ xx (2.36)

15



So the uncoupled states are expressed as

y1
= ax

1
+ x

2

y2
= ax2

+ x
3 (2.37)

y3 = *3

From Equations (2.36) and (2.37), the switching law in terms

of normal states can be written as

ii = -N*sigiL"
m

(

X3 (o) +M) +v|^ +^)j (2.38)

Where z,w,f are also in terms of normal states.

3. Simulation of The Third Order System

The third order regulator is simulated with the

switching law found in the previous section. It is seen that

the control changes its sign at two times and drives the

states of the system to the origin. The initial values for the

simulation run are x^O^-0.5, x2 (0)=-0.5, x
3
(0)=0.5. Figures

2.3-5 show that the states reach to zero. The control effort

is in Figure 2.6. After the states reach to the origin, the

control starts chattering or limit cycles. Since the

simulation is in discrete time, the control moves back and

forth between plus and minus zero trajectories around the

origin. This movement causes the limit cycles. The sampling

rate or time delay in control effort decides the magnitude of

the limit cycle. Figures 2.6 and 2.7 show the second order

parabolic relation between states Xj x
2
and x

2
x3 . System states

follows a parabolic path in the second order state-plane.

16



Figure 2.2 First State
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Figure 2.4 Third State

Figure 2.5 Control Effort
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Figure 2.6 State-Plane for x
1
and x

2

Figure 2.7 State-Plane for x2 and x
3
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m. MISSILE GUIDANCE AND CONTROL

A. INTRODUCTION

Guided missiles have much importance over other weapons

because of their high probability of hitting their target.

This high probability is the result of adjustments in missile

movements to keep the missile on an intercept course despite

target movements. The missile acts under commands from the

guidance and control system. These systems keep the missile on

an intercept course with the target. The guidance system

applies the command to the missile body.

B. GUIDANCE

An unguided weapon may have an excessive miss distance

because of the following reasons:

Incorrect direction of launching;

Perturbation of weapon by weather or wind;

Unpredictable movement of the target after launching.

A good method to reduce miss distance and thus improve

hit probability, is to use a closed loop system. A general

form of a closed loop system is shown in Figure 3.1 [Ref 2. p.

71] . All guidance systems are particular examples of the

general system in Figure 3.1.

20



Target.
Data I

Guidance
System

Steering
orders

Missile
Data

Sensors for
Missile Data

Figure 3.1 Closed Loop

Missile position and behavior is measured by an

observation instrumentation which may be actually combined in

the missile itself or may be situated on a remote platform

such as a ship or an aircraft. This missile data is fed into

the guidance computer with target data. The computer

determines the maneuvers of the missile to improve its chances

of hitting the target. Steering instructions, such as desired

lateral acceleration in the pitch and yaw plane, are passed by

the computer to the control system. The control system moves

the control surfaces or determines the propulsive thrust. The

resulting motion of the missile is measured by observation

21



instrumentation. The cycle continues with new observation

data.

C. TYPES OF GUIDANCE LAW

1. Pursuit Guidance

Pursuit guidance is established by having the

missile velocity vector directed toward the target. The

missile always stays along the line-of-sight from missile to

the target. This guidance is effective against slow moving or

oncoming targets which have slow line-of-sight rate;' The

pursuit guidance is illustrated in Figure 3.2.

Target position and velocity vector12 3 4
^BBBBHBHI^^^I iigrimfr iii

Missile position
and velocity vector

Figure 3.2 Pursuit Guidance Trajectory

22



2. Line-Of-Sight Guidance

The objective of a Line-of-Sight guidance system is

to constrain the missile to lie as nearly as possible on the

line joining the observation point and the target. This may be

done by two forms which are called Command Guidance to Line-

of-Sight and Beam Riding. In beam riding guidance, the target

tracker maintains its radar beam on the line-of-sight and the

missile tries to stay on it. In command guidance to line-of-

sight, the missile receives commands to stay on the beam. In

Figure 3.3, beam riding line-of-sight is illustrated [Ref. 3].

3. Proportional Navigation Guidance

In this guidance law, the missile moves in such a

way that its rate of turn is proportional to the rate of turn

of line-of-sight from the missile to the target. The

navigation ratio is a fixed or variable ratio between the

missile rate of turn and the rate of turn of the line-of-

sight. This guidance system demands an acceleration command

perpendicular to the line-of-sight. Since proportional

navigation anticipates the future position of the target, it

is effective against maneuvering targets. The proportional

navigation guidance is illustrated in Figure 3.4 [Ref 3].

D. CONTROL SYSTEM

The control system has two important functions; the first

one is to provide a stable flight in all phases of flight and

23
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Figure 3.3 Line of Sight Guidance Trajectory

in every probable disturbance. For example, in the presence of

wind, the necessary balancing commands to the control surfaces

come from the control system. The second function is to follow

the acceleration commands coming from the guidance system to

keep the missile on an intercept course with the target.

The acceleration commands are provided by the guidance

system and applied to the missile by the autopilot in the

control system. In Figure 3.5a [Ref. 4] an acceleration

command in j direction in missile coordinate system is seen

for a missile with a velocity in i direction. The angle 7 is

measured from the reference axis shown in the figure. Figure

3.5b [Ref. 4] is the top view of ij plane and shows the effect

of centripetal acceleration Aj in the direction of missile

24
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velocity v. The change of velocity vector along j axis can be

seen in Figure 3.5c. From Figure 3.5c [Ref. 4], the following

equation may be written by assuming the change of direction

happened in At seconds.

Aj = V-|l = V? (3.1)

In Equation (3.1) , commanded acceleration Aj
C
is shown in terms

of tangentional velocity v and angular rates 7

.
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Figure 3.5 Central Acceleration Effect
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IV. MISSILE MODEL AND SIMULATION

A. ASSUMPTIONS

For the missile/target engagement scenario it is

necessary to have a missile model. In the simulation, the

missile will be considered a point of mass. The simplified

missile motion equations will be defined under the following

assumptions.

The seeker head angle rate is an estimate of the line-
of-sight rate.

The missile thrust cancels drag.

The reference for the flight path angles is the x and
y plane.

B. TWO DIMENSIONAL MISSILE TARGET GEOMETRY

Before looking to the missile model, it is advantageous

to understand the equations of motion in two-dimensional

geometry. In Figure 4.1, a missile and target geometry is

shown in x and y directions. VM and VT are the velocity

vectors of missile and target, respectively. 7M and yT are the

velocity angles from the reference line. The missile flight

path angle can be expressed as

yM = Arctan

27
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Figure 4.1 Intercept Geometry For Two Dimensions

Where V,^ is the velocity component in the x direction and V,^

is the velocity component in the y direction. From the same

geometry, the target flight path can be expressed as

y T = Arc tan
( V.TY

TX

(4.2)

Where V-^ and V^ are the target velocity components. The range

between the missile and the target is defined as
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R =
yj (xT-xM )

2 I (yT-yM)
2

( 4 - 3 )

Where xT , yT , xM/ yM are the x and y coordinates of the target

and the missile.

a is the angle of line-of-sight from the missile to the

target. It is defined as

o = Arc tan (4.4)Vt ~ Ym

\
XT XM

The magnitude of velocity vectors can be defined as

yM =
v' ^ + ^

(4.5)

VT =
yj V^ + V^y

Line-of-sight rate (a) is a necessary factor in

proportional navigation. This data is provided by the seeker

head. Analytic expression for the line-of-sight rate is :

6 =
Ur~*„) (Vjy-Vt/y) - JYt-Ym) ( vtx~ vmJ (4#6)
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C. MISSILE MODEL

1. System Signal Flow Graph

The total system signal flow graph in the x

direction is illustrated in Figure 4.2 [Ref. 4]. Since

proportional navigation will be simulated, the guidance system

has a seeker head which provides line-of-sight rate, (a) . The

input for the autopilot is the multiplication of the

navigation ratio and a. The output signals of the autopilot

are required signals for the missile dynamics.

2. Guidance System

In signal flow graph, the guidance system includes

the seeker head. A seeker head is a homing head mounted on an

airborne missile. The purpose of the seeker is the tracking of

the target. This is done by sensing radiation or reflected

energy from the target. Tracking the target by seeker shows

the angular direction to the target.

The signal flow graph of a seeker which is gimballed

to the missile is shown in Figure 4.2. This seeker points at

the target by rotating. Applied torques provide rotation

proportional to the target of fbore-sight . This can be written

T=J|3 (4.7)

Where T is the torque, J is the moment of inertia of the

seeker head and J9 is angular acceleration. From Figure 4.2 and

Equation (4.7) the resulting equation of motion is
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Figure 4.2 System Flow Graph
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= 1 = -K
2 £ - Kx$ + KXQ (4.8)

Where Kj and K2 determine the time constants of the seeker. The

transfer function of the seeker head from input line-of-sight

angle (a) to the output seeker angle (/9) can be expressed as

P(s)
,

*
i

o(s) s 2 + iqs + jq
(4.9)

The flow graph of the seeker transfer function is shown in

Figure 4.2.

3. Flight Control System

Previously, it was mentioned that the control system

provides a stable flight to the missile, and passes the

guidance system commands to the control surfaces by keeping

the missile stable. These stability requirements are satisfied

by the autopilot in the control system.

The control system causes a lag in the missile

system. In the present missile simulation model, the autopilot

is modeled as a first order lag with a time constant, 1/a.

4. Missile Dynamics

The missile can be considered a point mass moving

under the acceleration commands perpendicular to the missile

velocity vector. From Figure 4.3, components of acceleration

can be expressed as:
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Figure 4.3 Missile Acceleration and Components

aMx = -<3„sinY

aMy = <3«COSY
(4.10)

The position of the missile in the x and y plane can

be found by integrating the acceleration components twice.

Figure 4.4 shows the missile dynamics in two dimensions.

D. PROPORTIONAL NAVIGATION SIMULATION

In this section, the missile/target engagement will be

presented in two different simulations by using proportional

simulation. In the first simulation the defensive missile has
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Figure 4.4 Missile Dynamics in Two Dimensions

the speed advantage; in the second simulation the target

missile has the speed advantage. The following assumptions are

made for both simulations

The missile is limited to 20 g's acceleration.

The target is on the final leg of its flight and is now
on a non-maneuvering trajectory, so it has no
acceleration.

The x and y plane is the reference system for the flight
paths and angles of the target and the missile.

The miss distance will be estimated by interpolating the
two most minimum ranges between the missile and the
target.

- The navigation ratio is 3.25. Flight constant time
constant is 1/3 second.

K] and K2
constants in seeker head are 100 and 20,

respectively.
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1. Speed Advantage of Missile

In the first scenario, the defensive missile has the

speed advantage over the incoming target. The initial

conditions for the simulation are :

vmx(°) ~ 2000 feet/sec

xT (0) = 10,000 feet

yT (0) = 1000 feet

vtx(°) = -1000 feet/sec

All other initial conditions are zero. As shown in Figure 4.5,

a successful intercept occurs and the range goes to zero. Miss

distance is 0.625 feet. Figure 4.6 is a plot for the missile

and the target flight paths. The target starts its motion from

10,000 feet distance and moves towards the y axis. The missile

has an intercept path with the target. Figure 4.7 is a plot

for the applied missile acceleration. Missile acceleration

components in x and y direction are shown in Figure 4.8. At

initial phase, maximum acceleration especially in y direction,

is commanded. The line-of-sight angle is in Figure 4.9. Line-

of-sight angle rate is shown in Figure 4.10. Initially these

parameters increase, then decrease until just prior to

intercept.
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Figure 4.7 Applied Acceleration
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2 . Speed Advantage of Target

In this simulation, the incoming target has the

speed advantage over the defensive missile. Only the missile

and target velocities are changed from the previous

simulation. The velocities are:

VnJO) = 1000 feet/sec

VTx(°) = -2000 feet/sec

All other initial conditions are the same as in the previous

simulation. As seen in Figure 4.11, the range goes towards

zero but with an increasing miss distance. The miss distance

is 17.96 feet. This is an expected result because of the speed

advantage of target. Figure 4.12 shows the missile and the

target flight paths. The missile still has the capability to

follow the target motion. This is due to present geometry

advantage for the missile and non-maneuvering target motion.

Applied acceleration and acceleration components are shown in

Figure 4.13 and Figure 4.14, respectively. The acceleration

especially in the y direction increases during the initial

phase. Figure 4.15 is a plot of the line-of-sight angle. Line-

of-sight rate is shown in Figure 4.16. At initial phase line-

of-sight rate increases rapidly, then decreases as the missile

comes to a constant course.
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Figure 4.13 Applied Acceleration
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Figure 4.15 Line-of-Sight Angle

Figure 4.16 Line-of-Sight Rate
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V. MISSILE APPLICATION OF THIRD ORDER CONTROLLER

A. MISSILE AND THIRD ORDER REGULATOR

When the system dynamics in Figure 4.2 are examined, the

autopilot and the missile dynamics together form a third order

system. This third order system is basically similar to the

third order regulator switching function found in Chapter II.

The difference between the two systems is the factor of Vmcos7

and VMsiny between 7 and the acceleration components.

The autopilot and the missile dynamics together can be

considered a third order regulator that drives the selected

states to zero in minimum time as illustrated in Figure 4.1.

If the right states are chosen to be driven to zero in state-

space, the intercept occurs between the missile and the

target.

The system signal flow graph of the missile for minimum

time application is shown in Figure 5.1. In simulation, the

same initial conditions used in Chapter IV for the speed

advantage of the target simulation, will be used. The states

which will be driven to zero are :

The vertical distance between the missile and target and
its derivative;

The derivatives of line-of-sight angle (a)

.
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B. GUIDANCE BY VERTICAL DISTANCE BETWEEN MISSILE AND TARGET

In the first approach, the states to be driven to zero

are the vertical distance between the missile and the target

and the first and second derivatives. The purpose is to force

the missile to rise to the height of the target in minimum

time, then turn on the target for head-on-collision.

Since the VMcos-y is a multiplier in y channel of the flow

graph, it is taken as a scaling factor for finding the

uncoupled system. The y channel of the system can be

considered as the following third order regulator:

Vitcosy

u 1
l/s *{^Y l/s y i/s y

-a

/** *3 Xa Xi

Figure 5.2 Missile y Channel as Third Order Regulator

The differential equations of the system are

y = k
x

= x2 (5.1)

y = x
2

= x
3 (5.2)
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y = x
2

= V*4
= V(-ax

4
+ u)

= v(-a^+u) (5.3)

= -ox
3

+ uV

Where V=VMcos-y. So the state-space of the system for y channel

is

y *i 1 ' *i 0'

y = *2 = 1 x
2 +

x k\ -a. X
3.

V
u (5.4)

For the uncoupled state-space, the states are defined as

V/g _ V/a 2

+
V/a :

s+a
(5.5)

V/a V/a
s+a

(5.6)

*3 =
V

s+a
(5.7)

G and G"
1 matrices are

G =

V/a -V/a 2 V/a 2

V/a -V/a

V

aiid G 1 _

a/V l/V
a/V 1/V

1/V

(5.8)
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The uncoupled state-space is

Vi 10" Vi o'

y2
= y2 + 1

y3
.

-a. y3
;

1.

u (5.9)

It is seen that the uncoupled system is the same for the

third order regulator example in Chapter II. Thus, the

switching law is the same as in Equation (2.35) for the

uncoupled state-space. But the transformation from uncoupled

state-space to normal state-space by Equation (2.36) will be

different. The uncoupled states in terms of normal states

are

Vi = — X, + — X,
V 1 V 2

y2 = — x, + — X,
V 2 V 3

y3 = lx3
=y

V 3
'

(5.10)

It is seen that all states are divided by VMcos-y.

Therefore, the switching law from Equation (2.38) is obtained

by dividing the states by VMcos7.

After running the simulation, the missile rises to the

height of the target and then turns onto the target for head-

on-collision. The flight paths of the missile and the target

are in Figure 5.3. The range according to time is shown in
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Figure 5.4. The miss distance is 0.07 feet. The vertical

distance between the missile and the target according to time

is shown in Figure 5.5. It is seen that the vertical distance

is driven to zero and kept at that value until intercept

occurs. The acceleration and the acceleration components are

shown in Figures 5.6 and 5.7, respectively. Acceleration,

especially at the beginning of flight, is applied at its

maximum. Acceleration in y direction starts with a high value

and decreases as the vertical distance decreases.
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Figure 5.3 Missile and Target Trajectories
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Figure 5.6 Applied Acceleration

Figure 5.7 Acceleration Components
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C. GUIDANCE BY DERIVATIVES OF a

The second group of states which is chosen are the

derivatives of line-of-sight angle (a , a , a) . If the a is driven

to zero, the a becomes constant. If the relative velocity is

decreasing and the line-of-sight is constant, intercept occurs

between the missile and target. This is the theory of

Proportional Navigation Guidance and illustrated in Figure

3.4.

We can have the a and its derivatives analytically from

Figure 4.1. In an actual application, these values can be

estimated by a Kalman filter or a Luenberger observer. Line-

of-sight angle is given by Equation (4.4). Derivatives of a

are

6 =
XVy

~
yV* (5.11)

g =
xay ~ y*x _ 2 {xVx + yVy ) (xVy - yVx )

(5 .i 2 )

... _ ( V^y+xy-Vya^yx) (R2
) -2 {xVx+yVy ) (xay-yax )

i?
4

2 (vl+xa^Vy+yay) (xVy-yVx ) +2 (xay-yax ) (xVx+yVy ) (5.13)

R A

x'J'y' v-^ r y J w x l8 (xV+yVv )
2 (xV-yVx )
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Where x = xT-xM y = yT-yM

Vx
= V^-V^ V

y
= V^-V^

ax
= aTx~aMx a

y
= aTy~aMy

After the simulation, we found that the control drives

the derivatives of a to zero and intercept occurs. Flight

paths of the missile and the target are shown in Figure 5.9.

The range is plotted in Figure 5.10. Miss distance is 0.045

feet. The line-of-sight angle is shown in Figure 5.11. Figure

5.12 shows the line-of-sight angle rate. It is seen that the

control drives the line-of-sight angle rate to zero, so the

line-of-sight is kept constant and intercept occurs.

Acceleration and its components are shown in Figures 5.13 and

5.14.
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Figure 5.12 Applied Acceleration
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VI. CONCLUSIONS

A third order minimum time switching law was developed.

The switching law that was found, was applied to the third

order fast reaction missile defense problem. The Proportional

Navigation Guidance is applied to the same problem for

comparison.

Minimum time application was established using two

different approaches. One was with the vertical distance and

derivatives, the other was the first, second and third order

derivatives of Line-of-Sight angle. Both approaches gave more

effective results than Proportional Navigation Guidance.

Since bang bang control always uses negative or positive

maximum control effort, another control logic is necessary to

shut off the control effort when the desired conditions are

met. Otherwise, the system starts a chattering mode or limit

cycles. This may be a subject for future projects.
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APPENDIX

1. PROPNAV.M
% Missile/Target engagement simulation
% Proportional Guidance
% Target has a non-maneuvering flight
% Program terminates when the range starts to increase
% Miss Distance is found by interpolating the minimum range

clear,tclg
Nr=3.25;
alp=3,•

f

maxac==640;

Am=[0 1 o;

o;

i;

o];

Bm=[0 0;l ; ; 1 ] ;

Aa=[-alp]

;

Ba=[alp];
As=[0 1

;

-100 -20];
Bs=[ 0;100];

% Navigation Ratio
% 1/a = Autopilot time constant
% Allowed maximum acceleration
% Missile state matrices

% Autopilot states

% Seeker states

% DISCRETIZE THE SYSTEM
dt=0.01;
[phim,delm]=c2d(Am,Bm,dt)

;

[phit]=[phim] ; [delt]=[delm]

;

[phia,dela]=c2d(Aa,Ba,dt)

;

[phis
/
dels]=c2d (As,Bs,dt)

;

% INITIALIZE THE STATES
xm( : , 1)=[ % xmO

1000 % xdmO
% ymO

] ; % ydmO

% Sampling time
% Missile system
% Target system
% Autopilot
% Seeker head

[x;xd;y;yd]

xt(: ,1)=[10000 % xto
-2000 % xdtO
1000 % ytO

0] ; % ydtO

[x;xd;y;yd]
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R(l)=sqrt( (xt(l,l)-xm(l,l) )
A 2+(xt (3 , 1) -xm(3 , 1) )"2) ;

time(l)=0; % Time
am(l)=0;amx(l)=0;amy (1)=0; % Acceleration
gamadmis (1)=0; % Missile flight angle
beta ( : , 1)=[0;0]

;

% Seeker head angle
% BEGIN SIMULATION LOOP
Tf=15; % Simulation time
kmax=Tf/dt+l;
for i=l:kmax-l
v_mis(i)=sqrt(xm(2, i)

A 2+xm(4,i) ~2) ; % Missile velocity
gama_mis(i)=atan2 (xm(4, i) ,xm(2, i) ) ; % Missile vel. angle
sigma (1, i)=atan2 ( (xt(3, i)-xm(3, i) ) , (xt(l, i) -xm(l / i) ) )

;

beta ( : , i+1) =phis*beta ( : , i) +dels*sigma (i)

;

% Input For the Autopilot=betadot*Nr
gamadmis ( i+1) =phia*gamadmis (i) +dela*Nr*beta (2 , i+1)

;

% Missile Acceleration
am(i+l)=v_mis (i) *gamadmis (i+1)

;

if abs(am(i+l)) > maxac % Check for max. acceleration
am(i+l) =maxac*sign (am(i+l) )

;

end
% Acceleration is perpendicular to gama

u (
:

, i+1) =[-sin(gama_mis (i) ) *am(i+l)

;

cos (gama_mis (i) ) *am(i+l) ]

;

% Update missile & target states
xm ( : , i+1) =phim*xm( : , i) +delm*u (

: , i+1)

;

xt(: ,i+l)=phit*xt(: , i) +delm* [0; 0]

;

R(i+l)=sqrt( (xt (1, i+1) -xm(l, i+1) )
A 2+(xt (3 , i+1) -xmp, i+1) )

A
2) ;

time (i+1) =time (i) +dt;

% Check for the min. distance
if abs(R(i+l)) > abs(R(i))

xms=[xm(3 / i-l: i+1) ;xm(4, i-1: i+1) ;xm(l, i-1: i+1) ;xm(2 / i-1: i+1) ]

;

xts=[xt(3,i-l:i+l) ;xt (4, i-1: i+1) ;xt (1, i-1: i+1) ;xt {2, i-1: i+1) ]

;

rl = interp(xms(: ,1:2) ,xts(: ,1:2) ) ; % [Ref. 5]

r2 = interp(xms(
: ,2:3) ,xts( : ,2:3) )

;

rmin=min([rl r2]);
break % Terminate if distance is min.

end
end
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% PLOT RESULTS

% Flight paths of missile and target
plot(xt(l,l:i+l) ,xt(3,l:i+l) ,xm(l, 1:1+1) , xm(3 ,1:1+1)

)

title('Flight Paths');
gtext(['rmin = '

/ num2str (rmin) ] ) ; pause

% Acceleration Components
plot (time (1: i) ,u(l,l:i) ,time(l: i) ,u(2, 1: i) )

;

title ( 'Acceleration Components') ;pause;

% Missile acceleration
plot (time (1: i+1) ,am(l: i+1) )

;

title ( 'Missile Acceleration') ;pause;

% Line-of-sight rate
plot (time (1: i) , beta (2 , 1:1) )

;

title ( 'Line-of-Sight Rate') ;pause

% Line-of-Sight angle
plot (time (1 : i) , sigma (1:1))

;

title('Line of sight' ) ;pause

% Range
plot ( time (1: i+1) ,R(l:i+l)

)

title ('Range')
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2. YYDYDD.M
% Missile/Target engagement simulation
% Control by Third Order Minimum Time Controller
% Control States: Vertical Distance and derivatives
% Missile acceleration limited to 640 ft/sec2

% Program terminates when the range starts increasing
% Miss Distance is found by interpolating minimum distance

clear;:clg

alp=3; i

N=l;
maxac==640;
Am=[0 1 o;

o;

i;

o];

Bm=[0 0;l 0;0 o; i];

Aa=[0 i;

-air>];

% 1/alp = Autopilot time constant

% Missile matrices

% Autopilot states

% Sampling time

xm( : ,1:2)=[ 10; % xmO
1000 1000; % xdmO

. o; % ymO
o]; % ydmO

xt ( : , 1 : 2 ) = [ 10000 9980; % xtO
-2000 -2000; % xdtO
1000 1000; % ytO

o]; % ydto

R(l)=sqrt( (xt(l,l)-xm(l,l) ) ~2+(xt (3 ,
1) -xm(3 , 1)

)

"2)

;

R(2)=sqrt( (xt (1 , 2) -xm(l, 2)
) "2+ (xt (3 , 2) -xm(3 , 2) )*2)

;

time(l:2)=[0 0];
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gmis (1)=0;

gamamis( : , 1:2)=[0 0;0 0];
amy ( 1 : 2 ) = [ ]

;

v_mis ( 1 ) =1000 ; aax ( 1 ) =0 ; aay ( 1) =0

;

% SWITCHING LAW
ax=0

;

ay=0

;

Vx=(xt(2,l)-xm(2,l) ) ; Vy=xt(4 / l)-xm(4 / l)

;

x=(xt(l,l)-xm(l,l) ) ; y=xt(3,l)-xm(3,l)

;

xsl(l)=y; xs2(l)=Vy; xs3(l)=0;
u ( 1) =N*swth_law (xsl , xs2 , xs3 , alp, N)

;

%BEGIN SIMULATION LOOP
Tf=15;
kmax=Tf/dt+l;
for i=2:kmax-l

% Missile velocity
v_mis (i)=sqrt (xm(2, i) ~2+xm(4 , i)

A
2)

;

gmis (i) =atan2 (xm(4,i),xm(2,i));
xsl (i)=(xt (3, i) -xm(3 / i) ) / (v_mis(i) * cos (gmis (i) ) )

;

xs2 (i) = (xt (4 , i) -xm(4 , i) ) / (v_mis (i) *cos (gmis (i) ) )

;

xs3 (i) =-gamamis (2 , i) ;%-amy (i) ;%

u(i)=N*swth_law(xsl(i) ,xs2 (i) ,xs3 (i) ,alp,N)

;

% Input for the autopilot = u

gamamis ( : , i+l) =phia*gamamis ( : , i) +dela*u(i)

;

% Missr'.le acceleration
am (i+l) =v_mis (i) *gamamis (2 , i+l)

;

if abs(am(i+l)) > maxac
am (i+l) =maxac*sign(am(i+l) )

;

end

% Acceleration components
amx(i+l) =-am(i+l) * sin (gmis (i) )

;

amy(i+l)= am(i+l) *cos (gmis (i) )

;

% Update missile and target states
xm( : , i+l)=phim*xm(

: , i) +delm* [ amx(i+l); amy(i+l)];
xt(: / i+l)=phit*xt(: , i) +delm* [0;0]

;

R(i+l)=sqrt( (xt (1, i+l) -xm(l, i+l) ) ~2+(xt(3, i+l) -xm(3 , i+l) ) ~2) ;

time ( i+l) =time(i) +dt;
if (abs(R(i+l)) >abs(R(i)))
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xms=[xm(3,i-l:i+l) ;xm(4, i-1: i+1) ;xm(l, i-l:i+i) ;xm(2, i-i:i+l) ]

;

xts=[xt(3,i-l:i+l) ;xt(4,i-l:i+l) ;xt (1,1-1:1+1) ;xt(2, i-1: i+1) ]

;

rl = interp(xms( : ,1:2) , xts( : ,1:2) ) ; % [Ref. 5]

r2 = interp(xms( : ,2:3) ,xts( : ,2:3) )

;

rmin=min( [rl r2]);
break

end
end

% PLOT RESULTS
% Flight paths
plot (xm(l, 1:3: i+1) ,xm(3 , 1: 3 : i+1) ,xt(l, 1:3: i+1) ,xt (3, 1:3 : i+1)

)

title (
' Flightpaths ' )

;

gtext (
[ 'rmin=' , num2str (rmin) ] ) ;pause;

% Control input
axis([0 time(i)+0.1 -N-N/10 N+N/10])
plot(time(l:2:i) ,u(l:2:i) ,time(l:2:i) ,u(l: 2 : i)

, '*'
)

;

title ('U') ; pause; axis;

% Missile acceleration
axis([0 time (i) +0.1 -maxac-maxac/25 maxac+maxac/25]

)

plot (time (1:2 : i+1) ,am(l:2:i+l) )

;

title ('Missile acceleration' ) ; pause; axis;

% Missile velocity angle
plot (time (1:2: i) ,gmis (l, 1:2: i) )

;

title ( 'Gama' )

;

pause;

% Missile velocity
plot (time (1:2 : i) , v_mis(l:2: i) , time (1:2: i) ,v_mis(l:2 :i) , '*')

;

title( 'Missile velocity ') ;pause

% y states
plot (time (1:2 : i) ,xt(3, 1:2:1) -xm (3, 1:2:1) )

;

title (' (Y_target - Y_missile vs Time ');

pause;
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3. SIGMDER.M
% Missile/Target engagement simulation
% Control by Third Order Minimum Time Controller
% Control States: Derivatives of Sigma
% Missile acceleration limited to 640 ft/sec2

% Program terminates when the range starts increasing
% Miss Distance is found by interpolating minimum distance
clear ;clg
alp=3;
N=l;
maxac=64 0;

Am=[0 10 0;

0;

1;

] ;

Bm=[0 0;

1 0;

0;

1];

Aa= [0 1

;

-alp]

;

Ba=[0;alp]

;

dt=0.01;
Tf=25;
kmax=Tf/dt+l;
% INITIALIZE STATES
xm ( : , 1 ) = [ ;

1000;
o;

o];

xt(:,l)=[ 10000;
-2000;
1000;

0];
xm( : ,2)=[ 10;

1000;
o;

o];

xt(:,2)=[ 9980;
-2000;

% Missile matrices

% Autopilot states

% xmO
% xdmO
% ymO
% ydmO
% xtO

% xdtO
% ytO
% ydtO
% xmO
% xdmO
% ymO
% ydmO
% xtO
% xdtO
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1000; % ytO

0] ; % ydto
R(l)=sqrt((xt(l,l)-xm(l,l)) *2+(xt (3 , 1) -xm(3 , 1)

)

A
2)

;

R(2)=sqrt((xt(l,2)-xm(l,2) ) *2+(xt (3 ,2) -xm(3 , 2) )
A
2) ;

gamamis( : , 1: 2)=[0 0;0 0];
am ( 1 : 2 ) = [ ] ; amx ( 1 : 2 ) = [ ] ; amy ( 1 : 2 ) = [ ]

;

time(l:2)=[0 dt]

;

[phim,delm]=c2d(Am,Bm,dt)

;

[phit]=[phim]

;

[delt]=[delm]

;

[phia,dela]=c2d(Aa,Ba,dt)

;

v_mis ( 1 ) =1 00 ; aax ( 1 ) =0 ; aay ( 1 ) =0

;

ax=0; ay=0;
Vx=(xt(2,l)-xm(2,l)) ; Vy=xt(4,l)-xm(4,l)

;

x=(xt(l,l)-xm(l,l) ) ; y=xt(3,l)-xm(3,l)

;

sigma (1, l)=atan2 (y,x)

;

sigma(2, l)=(Vy*x-Vx*y) / (x A 2+y A
2) ;

sigma(3, 1) =(ay*x-ax*y) /R(l) "2-2* (x*Vx+y*Vy) * (x*Vy-y*Vx) /R(l)

M;
sigma (3 , 1) = (ay*x-ax*y) / (x A 2+y A 2) -2* (x*Vx+y*Vy) * (x*Vy-y*Vx) /

(

x"2+y A
2)

A
2;

xsl (l)=sigma(2 / 1) ;xs2 (l)=sigma(3 / 1) ;xs3 (1)=0;
u(l)=N*swth_law(xsl,xs2 ,xs3 ,alp,N)

;

for i=2:kmax-l
% Missile velocity
v_mis(i)=sqrt(xm(2, i)

A 2+xm(4, i)
A
2)

;

gama_mis (i) =atan2 (xm(4,i) , xm(2 , i) )

;

ay=-amy(i); ax=-amx(i)

;

Vy=xt(4,i)-xm(4,i) ; Vx=(xt (2 , i) -xm(2 , i) )

;

y=xt ( 3 , i ) -xm ( 3 , i ) ; x= ( xt ( 1 , i
) -xm (1,1));

aay (i)=(-amy (i-1) +v_mis (i-1) *cos (gamamis (1, i) ) *u(i-l) )

;

aax(i)=(-amx(i-l)+v_mis(i-l) *s in (gamamis (1, i) ) *u (i-1) )

;

sigma (1, i) =atan2 (y,x)

;

sigma(2, i)=(Vy*x-Vx*y) / (x*2+y~2)

;

sigma ( 3 , i) = (ay*x-ax*y) / (x A 2+y~2) -2* (x*Vx+y*Vy) * (x*Vy-y*Vx) /

(

x A 2+y A
2)

A
2;

xsl (i) =sigma(2, i) ;xs2 (i)=sigma(3 / i)

;

xs3 (i)=(Vx*ay+x*aay (i) -Vy*ax-y*aax(i) ) /R(i) "2-. .

.

2*(x*Vx+y*Vy)*(x*ay-y*ax)/R(ip4-. . .

2*( (Vx A 2+x*ax+Vy A 2+y*ay) * (x*Vy-y*Vx) +(x*ay-y*ax) *(x*Vx+y*Vy)
)/R(i)M+...
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8* (x*Vx+y*Vy) A 2* (x*Vy-y*Vx) /R(i) A
6;

u(i)=N*swth_law(xsl(i) , xs2 (i) , xs3 (i) , alp,N)

;

% END SWITCHING LAW
% Input for the autopilot = u

gamamis (
:

, i+1) =phia*gamamis ( : , i) +dela*u(i)

;

% Missile acceleration
am(i+l)=v_mis(i) *gamamis(2, i+1)

;

if abs(am(i+l)) > maxac
am(i+l)=maxac*sign(am(i+l) )

;

end
% Acceleration components
amx(i+l)=-am(i+l) *sin (gamamis (1, i+1) )

;

amy (i+1) = am (i+1) *cos (gamamis (1, i+1) )

;

% Update missile and target states
xm( : , i+l)=phim*xm( : , i) +delm* [ amx(i+l) ; amy(i+l)];
xt (

:
, i+1 ) =phit*xt ( : , i ) +delm* [ ; ]

;

R(i+l)=sqrt( (xt (1, i+1) -xm(l, i+1) ) ~2+(xt (3 , i+1) -xm(3, i+1) )"2) ;

time (i+1) =time (i) +dt;

if (abs(R(i+l)) > abs(R(i)))

xms=[xm(3, i-1: i+1) ;xm(4, i-1: i+1) ;xm(l, i-1: i+1) ;xm(2, i-l:i+l) ] ;

xts=[xt(3,i-l:i+l) ;xt (4, i-1: i+1) ;>t (1, i-1: i+1) ;xt (2, i-1: i+1) ]

;

rl = interp(xms(
: , 1:2) ,xts( : , 1:2) ) ; % [Ref. 5]

r2 = interp(xms (
: , 2 : 3) ,xts ( : ,2 : 3) )

;

rmin=min([rl r2 ] )

;

break
end

end
% PLOT RESULTS

% Flight paths
plot (xt (1,1: 3: i+1) ,xt(3, 1:3: i+1) , '*' ,xm(l, 1: 3 : i+1) ,xm(3,l:3:
i+1))

title ('Flight paths');
gtext (

[ 'rmin=/ , num2str (rmin) ] )

;

pause;
% Control input

plot (time (1: 2 :i) ,u (1:2:1) ,time(l:2:i) ,u(l:2 : i) ,
'*'

) ;

title('U')

;

pause;
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% Missile acceleration

plot(time(l:2:i+l) ,310(1:2:1+1) ,time(l:2: i+1) ,3111(1:2:1+1) ,'*');

title ( 'Missile acceleration');
pause;
% Missile velocity angle
plot (time(l:2: i) ,

gamamis(l, 1:2: i) ,time(l:2: i) ,gama_mis(l, 1:2

:i),'*');
title('Gama') ;xlabel ( 'Time' ) ;ylabel ( 'Radian'

)

pause;
% Missile velocity
plot (time (1:2: i) ,v_mis (1:2 : i) ,time(l:2:i) , v_mis(l: 2 : i) ,'*');

title( 'Missile velocity');

; pause
% y states
plot (time (l: 2 :i) ,xt(3,l:2:i) -xm(3,l:2: i) )

;

title (' (Y_target - Y_missile) vs Time' ) ;pause;%meta sigcd6
% range

plot (time, R) ;title( 'range' ) ;pause;%meta range
% sigma
plot (time (1: i) , sigma (1, 1: i) ) ;title( 'sigma' )

;

pause;
% sigmadot

plot (time (1: i) , sigma (2 , l.:i) ) ; title ( 'sigmadot' ) ; pause
%meta sigmadot
plot (time, amx, time, amy) ; title ( 'comp. ' ) ; pause ;%meta comp
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4. SWTH_LAW.M
% Function calculates the sign of the control

function [s]=swth_law(xl / x2 ,x3 , alp,N)

;

w=sign( (alp*xl+x2) +( (alp*x2+x3) *abs (alp*x2+x3) / (2*N) ) )

;

f=(alp*xl+x2)+w*((alp*x2+x3)"2/(2*N) )

;

z=sqrt(abs(f)/N)

;

s=sign(w*( (N*exp(alp*z) /alp) -(2*N/alp) ) +( (exp(-alp*z) *

.

exp(-w*alp*(alp*x2+x3)/N) ) * (x3+w*N/alp) ) )

;
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