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METHOD OF CALCULATING VARIANCES AND COVARIANCES FROM 

THE FUNDAMENTAL DEFINITION OF THESE QUANTITIES 

AND THE LAW FOR THE PROPAGATION OF ERRORS 

by 

B. J Dalton—^ and Robert E 
* . 2/ 
Barleau— 

ABSTRACT 

This report gives the mathematically exact equation for cal¬ 

culating all variances and covariances of the constants evaluated 

which is applicable to any function, regardless of the relationship 

between the observables and the constants, and was developed from 

the fundamental definition of these quantities and the law for the 

propagation of errors. 

INTRODUCTION 

As far as we are aware, all authors and all programs available 

for calculating variances and covariances are based on the assump¬ 

tion that the formulas that apply to linear problems are applicable 

to non-linear problems, once the linearized normal equations are 

1/ Research chemist, Helium Research Center, Bureau of Mines, 

Amarillo, Texas. 

2J Supervisory research chemist, project leader, Thermodynamics, 

Helium Research Center, Bureau of Mines, Amarillo, Texas. 

Work on manuscript completed January 1966. 
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formed. We reject this assumption, preferring to calculate variances 

and covariances from the fundamental definition of these quantities 

3/ 
and the law for the propagation of errors (4, 6)— . 

3/ Underlined numbers in parentheses refer to items in the list of 

references at the end of this report. 

The present method in use for evaluating variances and covari¬ 

ances of the parameters is therefore only an approximation. How 

good this approximation is can only be decided by testing it against 

the mathematically exact equation to be given in this report. This 

exact equation is applicable to any function regardless of the 

relationship between the observables and the constants. 

EVALUATION OF THE CONSTANTS 

Let us consider a set of n experimental data points: Y. , N , 
i(o)’ 

til 
x. , x„ , x~ , ... (i=l,2, ... ,n) , where Y., x is the i— observed 

1. 2. 3. i(o) 
l 1 1 

dependent variable and x. (j=l,2, ... ,k) are the i— observed inde- 

Ji 

pendent variables. We define 

F = F(Y.; x. ; 3 ) = 0 
K i’ j.’ Miri 

J l 

(1) 

In our treatment of this problem, we assume that the x. 's are 

-1 i 

accurately known and that random errors occur only in the observed 

Y.'s, and that they are normally distributed. 

Now because of random errors in Yf/ . , when Y. . N is substituted 
i(o) i(o) 

in equation (1), F will not reduce exactly to zero. Let F^ be the 
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value of F when Y., N and x, are substituted in equation (1); 
1(0) j.. 

thus , 

Fi = F(Yi(o); Xj.; Pm) (2) 

Equation (1) can be solved for a calculated so that F reduces 

to zero; thus, 

F = F(Y., . x. ; p ) = 0 
i(calc) j ’ ^m (3) 

where are the independent variables, corresponding to the 

observed x ' s evaluated at the i— data point and |3m (m=l,2, ... ,k) 
m 

are the k constants. 

Now AY., the residual of Y., . , is the difference between the 
i i(o) 

observed and calculated values. This is not the true random error 

of Y., * because we do not know the true value of Y., .. However, 

we can maximize the probability that the AY^'s are equal to the 

true random errors and this is just what the principle of least 

squares does. The principle of least squares says that we maximize 

the probability that the AY^'s represent the true random errors by 

minimizing the sum of the weighted squares of the residuals. Thus, 

we should minimize the quantity 

n 

R ■ Iv, <*V 
i=i i<» 

(4) 

where W, J.T is the weight to be given Y., .. If the Y^ . ' s all 

Yi(o) l(o) l(o) 

have the same precision index, then they will have the same weight 
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and W. 
Y. 
i(°) 

index, then 

= 1. If the Y#/ .'s do not have the same precision 
1(0) 

W 
Y. 
i(o) 

Y Y 
i(o)Yi(o) 

(5) 

where L is a constant and S 

a particular problem, it may be necessary to assume W 

„ „ is the variance of Y,, . . In 
Y. / >Y,, v i(o) 
i(o) i(o) 

= 1 in 

i(o) 

the beginning; however, if this is done, then the residuals should be 

examined to see if there is any statistical evidence of the residuals 

squared being a function of the Any assumption as to the 

variance being a function of Y,, . can be checked by examining the 
r(o) 

residuals. In any event, 

to be evaluated. 

i(o) 

is not a function of the parameters 

To minimize R with regard to the various constants, we form the 

k partial derivative equations from which the k unknown constants can 

be obtained. Thus, we have a system of normal equations of the form 

(Hr) 
1 Xj.,Yi(o),P2’ 

• BAY.. 

’Iv. “O 
LI Y‘<«> #1 '"j »2. 

J i 

= 0 (6.1) 

33 
2 Xj . ,Yi(o) ,ei,P3’ 

n 
-3AY. 

2Iwy., .AYi(rf 
i=l i(o) 

2 Xj.’Yi(o)’ei’e3’ 

0 (6.2) 
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n 

0 (6.k) 

31’* " ,3k-l 

If the functional relationship between the observables and the 

constants is a linear one, then the solutions of the normal equations 

will be straightforward; however, if the functional relationship 

between these quantities is a non-linear one, then it will be neces¬ 

sary to solve the normal equations by an iterative procedure. Even 

though it may be necessary to solve the normal equations by a series 

of approximations, it is important to realize that the best values 

of the constants are determined such that the normal equations are 

satisfied exactly. 

The method used by the Helium Research Center for handling non¬ 

linear regression problems is the Newton-Raphson method (7.) . In 

this method, the exact normal equations are formed and the problem 

is linearized by expanding the exact normal equations in a Taylor's 

series expansion, retaining the first two terms. For a more detailed 

discussion of the principles involved in non-linear regression pro¬ 

blems, we refer the reader to our previous reports on this subject 

(1, 2) . 

The linearized normal equations are of the form 

(7.1) 

(7.2) 
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akl^l + ak2A02 + ••• + akkA@k “ \ (7.k) 

where 

n 

11 

-dAY.t o' 
n 

S AY.,o r- /OLiJL.'iv-' v-, /o ux.\ 

■ Iv. ,y. ♦Iv,.,«fcr‘) 
i=l 

i(o) 'd3l x4 ,Y , N ,S0, 
(8.11) 

ji* i(o) ,p2 ’ ’ ’ ’ i=l i(o) 93 x xj.,Yi(o)’^25’' 

a21 a12 

f, /SAY.vO 

Iv..(se) 
/dAY.kO 

(»r) 
i=l l(o) d@1 xji,Yi(o)’^2’* *' ^ Xj.,Yi(o),01’ 

n 
■ 3 AY. \ o 

+ I Y, YiCairB 
i(o) ^YYx. ,Y.. . 

i-l j1’ i(o) 

(8.12) 

akl alk 

,3AY o 

zy, asst) 
,3AY.no 

fer) 
i=l i(o) 01 xj.,Yi(o) ,P2’ * * ' Xj.,Yi(o)’^l 

n 
r ,3 AY. .0 

+ ) Wv AY?(tt—r~ ) 
L y , . Ass .as./ 
i=l Uo; i k x ,Y ( ) 

(8.1k) 

n 
V 

22 iV, Aap 

,3AY..o 

(air) 
1=1 P2 Xj.’Yi(o)>ei> 

+ L WY. . AYiL 2 / V Q 

i=l l(o) d02 Xj.,Yi(o),P1’ 

n 

V (8 22) 
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£ rdAY.x o ^dAY.i o 

L wy.. (sp, J 
i=l 1(°) 2 

) ( 
x. ,Y. ,3i> • • • 
J. 1, \ i d iiafc.V 
J1 (o) 

^k x. ,Y ,3 
i(o) H1 

n 
, B2AY.no 

+ V W AY ( L Y. / x i' 

1=1 l(0) 
'SB2S0kA. , Y. . . 

i(o) 

2 
o 

and 

M- 1 

o 

X 

(9.1) 

n 

= -I 
i=l 

W„ AY 

i (o) 
Y, , 

,ciAY.xo 

0—*) 

2 Xj.’Yi(o) ,ei’e3’ 

(9.2) 

and Ap , 

Equations 

n 
dAY.vo 

M*, = -IwY.,xA4apr) (9.k) 

i=l 
'i(o) 

k Xj.,Yi(o) ,P1’* ‘ * ,Pk-l 

A32> • • • jA3^ are corrections to the undetermined parameters 

(6.1), (6.2), ..., (6.k) result from expanding AY_^, 

(8.2k) 

(8.kk) 
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/SAY. 
\ i 

t—i 
on 
so

 

x Y 
3± i(o) 

\ 

uk x. ,Y . ( . 
3± i(o) 

• BAY.. 

■ior) 
2 Xji’Yi(o) 1 ’^3 ’ 

in a Taylor's series expansion about 

the approximate solution, (AY )°, retaining only the first two 

terms. 

The method to be used for obtaining the solutions of our 

linearized normal equations involves finding the inverse matrix, 

which we now proceed to do. 

Let A represent the matrix of the coefficients of the linear' 

ized normal equations 

A = 

11 a12 ’•- 3 Ik 

21 a22 '*‘ a2k 

kl ak2 •** akk 

or 

A [ a , ] /1 i \ [^*]/ii\ 
jm (k,k) mj (k,k) 

= A (10) 

where 

,SAY.no 

V.Aair) Y fl laTV Y fl +ZWY.. y 
. i(o) j x. ,Y. . N ,p m x. ,Y., v , p . / . , i(o) m x. . 

* 1 J. i(o) mfj J. i(o) jrm 1=1 J j, i(o) 

SAY.n o 
i 

n 

+ ) W, 
d AY.N o 

AY°f 

Here, j ranges from 1 to k and denotes the row, while m ranges from 

1 to k and denotes the column of the element a. , and A of order 

(U) 
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(k,k), obtained by interchanging rows and columns in matrix A of 

order (k,k), is referred to as the transpose of A. 

Now let us write the linearized normal equations as the 

single matrix equation 

[ajJ(k,k)tiPm](k,l) (k,l) 
(12) 

where [AS ] ✓, is a column matrix 
m (k , 1) 

a column matrix of k rows. 

Let b. represent the elements 

nated as A \ 

of k rows, and is 

of the inverse matrix, desig- 

A 
-1 

b- b b 
ii 12 ik 

b b ... b 
21 22 2k 

b b , . b 
kl k2 kk 

or 

-i 

^bjiJ (k,k) ^bmj (k,k) 

-1 T 
= (A L) (13) 

Now A is just that matrix which when multiplied by A gives the 

identity matrix, I 

10 ... 0 

0 1 . . . 0 

00 ... 1 

(14) 

(k,k) 
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and we see from equation (14) that the identity matrix ... "is 

uniquely defined by the property that it behaves like the scalar 

1 in matrix multiplication" (5). Therefore, multiplying both sides 

of equation (12) by A \ we get 

tABm](k,l) = [b jm] (k ,k) ^ (k, 1) 

^mjhk.lO^jkk.l) O-5) 

from which we can evaluate the A8 's, where the AS 's (m=l, 2, ..., k) 
m m 

are defined as 

= Sx - @1 (16-D 

Ap2 = e2 - (16.2) 

APk = Bk ' Pk (16’k) 

and 02 > . . . , 3^ are t*ie un<^et:erm^ne<^ constants while 3°, 3°> 

..., 3° are approximate values for these quantities. 

If the assumed values for the undetermined constants are not 

too good, then it will be necessary to repeat the calculations 

using the new 3^> 32’ •••» 3^ as the start of a new iteration. We 

continue this iterative technique, provided the problem is con¬ 

tinuing to converge, until jjl = ^ = . . . = p, = 0, to within some 

predetermined small quantity, the final 3^5 ^2’ '*•’ being the 

least squares solution for these quantities. For a more detailed 

discussion of methods to use that will lead to convergence of the 
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iteration when the problem starts diverging, we refer the reader 

to our previous report (_3) on this subject. 

CALCULATION OF VARIANCES AND COVARIANCES 

Once we have determined the best values of 3-^, . .., 

we proceed to calculate all variances and covariances of these 

constants. We do this from the fundamental definition of these 

quantities and the law for the propagation of errors (4, 6}. 

This law says that if we have a function or quantity, say Q, 

that is a function of the independently-observed quantities y^, 

y , ..., y , then the variance of Q is given as 

-Xfe*r) QQ dy,. i(o)' yi(o)yi(o) 

(17) 

i=l 

2 2 
where S is the variance of y., . , and S^ is the variance 

yi(o)yi(o) l(0) QQ 

of Q. Extracting the square root of the variance, we obtain a value 

on the same scale as the function Q. This value is referred to as 

the standard error or standard deviation of Q. 

The values of our constants which we have evaluated are func¬ 

tions of all of the observed Y.’s and x. 's. Since we assumed the 

1 h 
errors of the x. 's to be zero, then the expression for calculating 

Ji 
the variances of the constants is of the form 

Sg 0=1, 2, k) 
pnrm 

(18) 
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The expression for calculating the covariances of the constants 

is of the form 

n 

2> ••• k; = I (a¥Tr)(sYTL) 
$3 , 

3 3 mj 
i=l 

i(o) 
is; y (19) 

'i(o)' i(°) i(o) 

S3 

Now in order to evaluate equation (18) , we must evaluate 

—)(m=l, 2, ... k) , multiply by Sy 

i(o) i(o)Yi(o) 

square the 

product of these two quantities and then sum the resulting pro¬ 

duct over all of the observed Y.'s. Similarly, in order to evak 

1 / aem \ 
uate equation (19), we need to evaluate -y(m=l, 2, ... k) 

S3, 
i (°) 

se and ^~y-^—^(j = l, ..., k; j^m), multiply the product of the 

i(o) 2 
two quantities by S , then sum the resulting product 

i(o) i(o) 

over all of the Y^^'s. We now proceed to evaluate these quan¬ 

tities . 

We have a total of n pairs of the observed quantities Y^, 

x. . The constants are determined from the solutions of equations 
h 

(6.1), (6.2), ..., (6.k). Now suppose we change one of the observed 

Y.'s, say Y_, N , to [Y0/ N + AY„, sl. Then on solving equations 
l y 2(o) 2(o) 2(o) ° ^ 

(6.1), (6.2), ..., (6.k), we will get new values of 3-^? 32’ •••> 3^• 

Then we can calculate 

(se-) ■ 
A3 

m 

2 (o) 
AY 

2(o) 

(m=l, 2, k) (20) 

This means that when we change Y~, N by the small amount AY„, N , 
2 (o) y 2 (o) 

then equations (6.1), (6.2), ..., (6.k) must still hold exactly. 
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Mathematically, this means that 

(!B by., . ; 
1(0) mX.^Y1(o) 

0 (m=1, 2 , ...,k) (21) 

Now the (g-) 's are functions 

m x. ,Y.t x 
i(o) 

and, through the constants evaluated, 

Y., 's. Then, under these conditions 
i(o) 

of all of the constants 

are functions of all of the 

, we have 

(22.1) 

(22.2) 



... ■ ! • .. 
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Now we can solve equations (22.1), (22.2), ..., (22.k) simul- 

( ^31 \ / ^2 '\ 
taneously and evaluate the derivatives -J , -J 

' ’ VdY., J 

1(0) Yr#. i(o) Y^. 

Then once we have expressions for each of these 

l(0) Vi , s 
quantities, we can multiply each derivative, say —-j , by 

i(o) Y 
rfi 

Sy , square the product, then sum this product over all of 

i(o)Yi<o) 

the observed Y^'s. This will give us an expression from which we 

can calculate the variance of |3 . In a like manner, we can calculate 

the variance of of 3^, . and of 3^. 

In order to evaluate the variances of our constants, we see 

from equations (22.1), (22.2), ..., (22.k) that we need expressions 

for 
\SB.3B / 

(-th. ) 
5 VdB.dB J 

( 32r ) 
’ WdB J .33,^3 ) v ’ \B39c>3 - v 1 m x. ,Y. , N 2 m x. ,Y#/ N 

3± i(o) 3± !(°) 
S3kS3m'x. ,Y. , v 

3t 1(°) 

and 

for (ft:) 
LdYi(o) VS3i'x. ,Y.f v39,...jx. ,Y ,.,3t,. 

3± i(o) 2 3± r^i K1 

r d /dR \ 
Lby.. . 

l(o) W 

r d /dR 
LdY.( s i(o) w J 

‘j . ’ i(o)’pl’p3 
Ji 

jt’ i(°),P1 

M ’ r/i’pl 
J i 

k-1 i. rfi 1 
l 

. We now proceed 
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to evaluate these quantities. 

We start with equations (6.1), (6.2), ..., (6.k): 

(Sr) 
n 

1 Xj.’Yi(o),P2’* *‘ 

BAY.' /UUi. 

■ife4) 
i=l l(o) 1 j.,Yi(o),P2’''' 

(6.1) 

(fir) 
n 

2 Xj.’Yi(o)’Pl’@3 

SAY.' 

:i(aer) 2Zwy y flfl 

i=l l(o) 2 Xji,Yi(o),P1,P3*'*• 

(6.2) 

(Hr) 
n 

k Xj.’Yi(o)’Pl’@2’ 

SAY 

= 2 ) W„ AY 

i=l 

Y. , “*i\Sp i(o) 
(6. k) 

k xj.’Yi(o)>ere2’- 

Let us differentiate equation (6.1) with regard to each constant; 

thus, 

s2r 

-) S(3,S(3 <- v 
1 Km x. ,Y.. . 

3± U°) 

n 
^ ,SAY.. /SAY.. 

2 Awy.. AST-) Y . (aTY Y 

1=1 l(o) 1 j.,Yi(o)’P2’"' m xj.’Yi(o) 

n 

+ 2IW 
/,S2Ayi ^ 

i\S6.SB / 
AY , 

Y. , . i\S3,S3 . v 
. , i(o) 1 m x. ,Y. . . 
i=l 2± i(o) 

(m=l,2,...,k) (23) 



; 1 9 

. 



And differentiating equation (6.1) with regard to a single Y^^ 

holding all constants and all x. ' s fixed, we get: 
J i 

i(o) 1 Xj . >^2 5' * ’ xj .’^"r^i’^1 ’ ’ ’ * 

(24) 

2W 

,dAY 
i \ 

y^.ASYw.J (S 
f(°) i(°) x j > Yr^ ^ > • • • ^ xj , »^i(0) * ’ ’ ’ 

+2WV AY. Y. . v l 
i(o) © 

i (o) ^ xj . ,Yi(o) ,P2’* * * "j.’^i’^l x, ,y ,3,, 

Now AY., the residual of Y., is iust the difference between Y.. . 
i i(o)’ J i(o) 

and • Therefore, 

• dAY. 

far1-) = 1 (25) 

i(o) Xj ,Y^^,3 ^ • • • 

and 

dAY. 

1 l(0) Xj.,Yr^i’Pl’-" Xj.,Yi(o),P29,'* 

. /dAY. 
d ( i 

.BY., .\d3. / V Q 
i(°) i xji’Yi(0)»P2*’* . x. ,Y , . ,3 ,.. . 

j. rfl 1 
l 

(26) 

Substituting equations (25) and (26) into equation (24), we get 
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Therefore, we have from equations (23), (27), (21), and (22.1): 

11 \SY.. 
+ a. 

i(o) Y ,. 
rf l 

33, 

12\dY. 

, d3 
+ ... + a 

i(o) Y 
VaY., J, 

r^i 

lk\dY.( 1 

l(o) Yr*i 

= M, (28.1) 

where 

n 

11 

r ,dAY.N2 

= 1 WY AdT") Y 
l(0) 1 Xj.’Yi(o)’B2’- 

n 

I + ) W„ AY 
Y. 

i=l i=l 
i(o) • d3 

(29 

1 
x ,Y ,3 , 

J i i(o) z 

and 

,3AY.\ 

M! = “wy AapT") 
i(o) 1 X ,Y ,3 , . 

Ji i(o) z 

(30.1) 

Now differentiating equations (6.2), ..., (6.k) with regard 

to each constant and then with regard to a single Y.^^, we get 

expressions similar to equations (23) and (27). Then upon substi¬ 

tuting these expressions into equations (22.2), ..., (22.k), recalling 

the relationship of equation (21), we get expressions similar to 

.11) 

(29.12) 

’Yi(o) 

(29.1k) 

i(o) 



' 
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equation (28.1) of the form 

( 3pl ) 

a"l\dY./ J 
+ a. 

/ 3@k \ 
+ • • • + a?i.(^-) = Mo 

i(o)'Yr)4i “~‘l(o)'Yr^ 2V3i(o)Yriti 
21\SY. , J„ ' ~22\SY. , J 

(28.2) 

33 

akl(dY. . J + ak2^Y .) + 
i(o) Y^. i(o) Yrjt. 

33 

&), 

33i / U|Jk \ 

• + akk(s7—“ “k (28A) 

1<°) Yr*i 

where 

a21 al2 
(29.12) 

akl alk 
(29.1k) 

n 
SAY., 2 

a22=IWY. (sT1) +ZWY. AYi. 
i=l l(o) 2 Xj.,Yi(o)’^l,P3’,‘* 1=1 l(o) SP2 Xj.’Yi(o)’^l’^3’’’ 

n 

I 
/32AY., 

■itr1) 
(29.22) 

ak2 a2k 

n 

W. \ae„ J 
1=1 Yi(o)KSe2 'xji.Y1(o),B1,b3 

/3AY.* 

(air-1) 

32AY. 

V 

1=1 Ji i(o) 

+i« 

k •*!(«,) >*1 

(29.2k) 

n 
/3AY .N 2 

ai-1; 

n 

+ Y W AY. 
Y. , “*iV^n2 

2 
3 AY. 

i 

akk L WY. , A33 r v q q ' v 
i=l l(o) k Xj.,Yi(o),P1’‘*•,Pk-l i=l l(o) dpk Xj.’Yi(o) 

(29.kk) 
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and 

/dAY. 

M2 = "WY 

i(o) 2 xj.>Yi(c)’ere3’ 

(30.2) 

/dAY-\ 

Mk = ~^Y-( ' Y R 
l(0) k Xj.,Yi(o),Pi,**',Pk-l 

l 

(30.k) 

Equations (28.1), (28.2), ..., (28.k) can be written as the 

single matrix equation 

ry 30 x 

= [MJ 
i(o) Y (k,l) 

rn 
j (k,l) 

(31) 

where 

A = [a . ] n . v = [a . ] . , = A 
jm (k,k) mj (k,k) 

(32) 

and 

£ .BAY., /BAY . £ /B2AY. « 

3 jm = A WY. ( Aap. / ft ) +Z WY. ( ,AYi\B3.B3 / Y 

i=l 1(0) J Xji,Yi(o) m Xj.’Yi(o)’Vm i-1 l(°} J “V i<°> 

Here, j ranges from 1 to k and denotes the row, while m ranges from 

r/ \ ~ 
1 to k and denotes the column of the element a. ; (—-) 

jm L\oY. , ,/ J,. -j, 
i(o) Y,., (k,l) 

is a column matrix of k rows; and [M,] , .. is a column matrix of 
J \k, L) 

k r ows. 

We see that the a^ element defined by equation (33) is of 

the same form as that defined by equation (11). The difference 

(33) 
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between these two definitions is that equation (33) applies when 

the least squares solution is obtained while equation (11) applies 

to a trial solution. For the final iteration, a. as defined by 
Jm 

equation (33) can be considered as the value of the a. element of 

the coefficient matrix 

Multiplying equation (31) by the inverse matrix, A ^, we get 

rv S3 

&). j 
LVSYi(o)'Y J(k,l) 

r^i 
= A'1[Mj](k.D 

(34) 

where 

A’1 = [b. ],, .. = [b . = (A_1)T 
jm (k,k) mj (k,k) 

(33) 

j ranging from 1 to k and identifies the row, while m ranges from 

1 to k and denotes the column of the b. element. The b. element 
jm jm 

defined by equation (35) is of the same form as that defined by 

equation (13) . The difference between these two definitions is 

that equation (35) applies when the least squares solution is ob¬ 

tained, whereas equation (13) applies to a trial solution. For 

the final iteration, b. of equation (35) can be considered as the 
jm 

value of the b. element of the inverse matrix. 
Jm 

Therefore, from equations (34) and (35), we have 

r/ S3 
1 ( Hm \ 

,.j(k,D = [V(k>k)[V(k,i) 
rfi 

(36) 

S3 
and the derivative 

e-) 
u°) Vi 

is of the form: 



. 
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f—I_\ 
^Yi(o) Y hllMl + b21M2 + + bklKk 

' ' r^i 

= bllMl + b12M2 + • ' • + blA 
(37) 

Now multiplying equation (37) by S and then squaring 

i(o)Yi(o) 

this product, we have 

*>1 \2 

BY. , x / Y. 
i(o) i(o) i(o) 

2 2 2 2 2 2 
bUMl + b12M2 + • • • + blkMk 

+ b b MM + b b MM 
11 12 1 2 12 11 12 

+ . . . + bnblkMlMk + blkbuM1Mk 

+ b12blk^2^k + blkb12M2Mk 

+ 

Y Y 
i(o)*i(o) 

But from equation (5) 

Yi(o)Yi(o) 
W. 

Y. 
i(o) 

(39) 

and multiplying equation (39) by M^, where M^ is defined by equa¬ 

tion (30.1) , we get 

2 2 
M1 S 

i(o) i(o) 

2 
L W, 

,BAY.X2 

i(o)\BB, 

1 Xj.’Yi(o)’P2’ 

(38) 

(40) 
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and, in general, 

M M 
m 

cj2 /ml, 2 , ,k\ 

j Yi(o)Yi(o)^ = 1’2, " ' 

9 ,dAY.x ,SAY .* 

= L\(o)^x Y 6 Mx Y B (41) 
i(o)’Kj£n J Ji> i(o) Vj 

Substituting equation (41) into equation (38) and then summing over 

all of the Y./ *'s, we get 
i(o) 

--t-)s2 = S2 
BY. , x/ Y. , J., N 6,8, 

i(o) i(o) l(o) M1M1 

k k 

^ I 
m=l j=l 

n 
SAY.. 

i IHY., Xw1) blmblj ZA 

/SAY.v 

(sr1) 
. . i (o) Km x. ,Y. / *,p., x. , Y. . , ,3 , . 
i=l Ji i(o) ,Kj?hn J ji’ i(o) m/j_ 

which is the mathematically exact equation for calculating the variance 

of 3^ 

Now the derivative ( 
33 
2\ 

SY. , Jv 
i(o) Y 

rf i 

is of the form 

= b M + b M + + b M 
.BY., 21 1 22 2 2k k 

(43) 

i(°) Y 
r^i 

Multiplying equation (43) by S and then squaring this pro- 

i(o) i(o) 

(42) 

duct, we get 



); 
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( ^2 )2 s2 

3Yi(o) Yr;tl Yi(o)Yi(o) 

2 2 2 2 
b21Ml + b22M2 + ' 

2 2 
• + b2kMk 

+ b21b22MlM2 + b22b21M2Ml + 

+ b21b2kMlMk + b22b2kM2Mk 

+ 
b2kb22M2Mk 

+ ... 

SY Y (44) 

Substituting equation (41) into equation (44) and summing over all 

of the observed Y^'s, we get 

which is the exact equation from which we can calculate the variance 

of ^ • Similarly, the variance of 3^. is of the same form as j3^ and 

32: 

k k 

Vk 
= L 

m=l j=l 

n 

bi bv • km kj 
W 

Y. ( AB3 / v Q 
. , i(o) m x. ,Y., N,3. y J 
i=l J, i(o) Kj/m 

f—i) 
\33 x. ,Y. . . ,3 , . 

Ji i(o) m^j 

(46) 

Now we proceed to calculate the covariances of our constants 

Suppose we multiply the product of equations (37) and (43) by 

S2 
Y Y 
i(o) i(o) 

This gives us 
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\SY. )Y., */v \BY. . N/v Y. . v Y. . ' 
1(°) Yr?Li 1(0) Y^ 1(0) 1(0) 

bllb21Ml + bllb22MlM2 + + bllb2kMlMk 

b12b2kM2Mk + b12b2iM2Ml + b12b22M2 + + 

+ . 

+ b„b„M,M, +blkb22MkM2+ ... +blkb2kMk 
lk 21 k 1 

Y Y 
i(°) i(o) 

(47) 

and substituting equation (41) into equation (47) and then summing 

over all of the Y^^'s, we get 

t SP1 V 3P2 \,2 
\SY. . J\SY., Jw *w v 

, l(o) l(o) l(o) l(o) Y-' 'Y-' ' = V2 

k k 

= L 

m=l j=l 

n 

(^) hmhj ZY, . v^.F . v a .~K. . v 

_ 1=1 l(o) 1,1 Xj.’Yi(o)’ej^ J Xj.’Yi(o)’PmA 
(£) 

f 

ri 

I 

(48) 

from which we can calculate the covariance of 3^32’ Similarly, the 

covariance of 3 8 is of the form 
1 q 

Yq 

= L 

k k 

I 
m=l j=l 

n 

bi b lm qj 
W. 

/SAY. 
i 

,SAY.. 

Y. , v\S3 ) v a '33. 
. . i(o) m x. ,Y. , x,3./ i 
i=l j . i(o) ’Pj£n J 

x. ,Y.f . ,3 , . 
Ji i(o) Wj 

(49) 

where b . is the element of the inverse matrix of order (k,k). 
qj 

Similarly, the covariance of 393 is of the form 
c. q 

k k 

2 2 
S8 B = L 

323q 
m=l j=l 

n 

b ry b . 
2m qj 

q 

/SAY 
W_ 

^ Y. , AS3 1 v 0 VS3. / v a . . i(o) m x. ,Y. . . ,3 . J x. ,Y. . .,3 
i=l Ji i(o) j?hn J Ji i(o) 

SAY 
l (50) 
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Therefore, we see from equations (42), (45), (46), (48), (49), and 

(50) that we can write the single equation 

(51) 

where b is the element of the inverse matrix of order (k,k). 
pm 

Equation (51) is the generalized exact equation from which we can 

calculate all variances and all covariances of the constants eval¬ 

uated because if p = q = 1, then equation (51) is nothing but the 

expression for calculating the variance of 3^ and is just equation 

(42). Now if p=l and q=2, then equation (51) is nothing but equation 

(48) and is the expression for calculating the covariance of 

Suppose we simplify equation (51) by substituting equation (33) 

into equation (51): 

(52) 

From equation (32) , we have 

A [ ^ . ] /1 i \ 
jm (k,k) 

T 
(32) 

Let the inverse of A, designated as A , be 

A 
-1 

^bqj4k,k) '-bjq4k,k) 
(53) 



P . 
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Then 

where 

A_1A = I 

^ °mq ^(k,k) 

k 

c = ) a .b. 
mq mj jq 

j = l 

(54) 

(55) 

and it follows that c (m=q) = 1 and c (m^q) = 0. Therefore, we 
mq mq 

see that the first term which appears on the right-hand side of 

equation (52) is 

a .b. j = b 
mj jq/ pq 

(56) 

Therefore, substituting equation (56) into equation (52), we get 

k k 

m=l j = l 

b b . 
pm qj 

n 

w. 

i=l 
i(o) 

2 
5 AY. 
__i 

53 .53 
J 

(57) 

which is the exact mathematical equation from which we can calculate 

all variances and covariances of the constants evaluated. Notice 

that since the coefficient matrix is symmetr ical, then it is only- 

necessary to evaluate half of the elements of the coefficient matrix 

and of the inverse matrix. In other words, we need only evaluate 

those elements which lie on or above the principal diagonal of A and 

of A ^ [The principal diagonal is composed of those elements which 

have the same row and column index]. 
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