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Abstract

Various statistical models and techniques were employed to

forecast the existence of low-level stratus conditions. They

are illustrated for data at a single station (Moffett Field,

Sunnyvale, California) using single-station surface meteorolog-

ical measurements only as explanatory variables. A preliminary

exploratory data analysis shows that low (high) dew point de-

pression is associated with the existence (non-existence) of

low-level stratus at Moffett Field. Procedures for and results

of various methods of fitting logistic models to the data are

described. The fitted models were used to forecast stratus op

reserved data sets (cross-validation). Results of the cross-

validation are given.





LOW-LEVEL STRATUS PREDICTION USING BINARY STATISTICAL

REGRESSION: A PROGRESS REPORT, USING MOFFETT FIELD DATA

Donald P. Gaver Patricia A. Jacobs

Operations Research Department
Naval Postgraduate School

U . Executive Summary

In this paper various statistical models and techniques

are employed to forecast the existence ot low-level stratus

conditions. They are illustrated for data at an airport

(Moffett Field, Sunnyvale, California).

In Section 2 the data set is described and the results

of a preliminary exploratory data analysis are given. These

suggest that dew point depression should be predictive of the

existence of stratus. Generally, low (high) dew point depres-

sion is associated with the existence (non-existence) of stra-

tus. This association is also made evident by a spectral

analysis of hourly stratus levels and dewpoint depression

described in Appendix F.

The remainder of this paper describes procedures for and

results of, fitting logistic models to the data described.

Validation of the models are addressed as well. The basic

logistic model is

expjx 3_}

P{Y = 1 (explanatory variable x} =
1 + exp

|
x p J

where 21 is a p-vector (row) of explanatory variables and 3_

is a p-vector (column) of coetticients to be determined.



Appendix hi suggests several mathematical justifications tor

use ot the logistic regression model.

We have used various methods to tit logistic models tor

use as predictors on reserved data sets (cross-validation).

Our cross-validation experiences are reported in Appendices a

through D. Appendix G contains the asymptotic distribution ot

a threat score , which is one of the statistics we use to compare

procedures

.

Appendix A reports on use ot the stepwise logistic regres-

sion procedure of the BMDP computer package. The procedure

chooses variables to be used in the regression from a menu of

variables given to it. The BMDP fits are then used to predict

the occurrence ot stratus tor independent data, i.e. from dif-

ferent years. we find that the stepwise feature must be used

with caution; it tends to overtit, inducing variables which

greatly increase the standard error ot the variables tirst

included in the regression. bucli overt ittin y degrades the

predictive powers ot the model.

Copas (iybJ) points out that a regression model, tit by

maximum likelihood (or least squares) to one set ot data, and

then used tor prediction on another set ot data, nearly always

tits or predicts the new set ot data less well than it does the

original set. This phenomenon ot shrinkage can become more pro-

nounced it the original regression model is tit using a step-

wise procedure, which tends to overtit. Appendix b describes

and investigates a procedure suggested by Copas to compensate

for shrinkage on both regressions tit with, and without, stepwise



procedures. In our application, particularly when predicting

changes from stratus to no stratus, the shrinkage procedure

appears to help. However, it appears to do less well in predict-

ing changes from no stratus to stratus.

In Appendix C robust estimation procedures tor logistic

regression are described and carried out on the Moffett Field

data. These procedures are less vulnerable than maximum like-

lihood estimates to a few outlying data points which may not

agree with the model. For the particular cross validations

performed, predictions using models fit with robust procedures

were no better than predictions made with the models tit with

maximum likelihood. The models obtained are, however, system-

atically different from their classical counterparts.

In Appendix D we investigate the predictive use of lo-

gistic regression models that are progressively updated to em-

phasize recent data. The suggestion is that models fit with

data which are closer in time to the dates on which forecasts

are to be made may be more relevant, owing to changing condi-

tions not represented in the model, than a model which is fit

with data of several previous years. We found that models

with updating often did at least as well as models without an

updating feature.

In summary, we have found that £n(dew point depression + 1

appears to be a consistently useful predictor of the occurrence

of stratus. Low (high) dew point depression is associated with

stratus (no stratus). There is no one procedure or model, among

those tried to date, that appears a clear winner. If, for



example, one procedure does well in predicting changes from no

stratus to stratus, it will often do less well in predicting

changes from stratus to no stratus. We found that none of the

procedures did as well predicting the occurrence of stratus in

196^ as it aid in 1961. This suggests tnat perhaps 1962 is not

described by the present models as well as is 1961, Demg in-

trinsically quite different from the previous years 195«-61.

Mooels and methods that represent year-to-year differences will

come under investigation in tuture.

turtner work, with other models, and with data from other

locations, will oe undertaken to shed light on this important

prediction problem.



1 . Introduction and Overview

The purpose of this paper is to exhibit the use of sta-

tistical tools and procedures tor forecasting the existence of

low-level stratus conditions at an airport. The existence of

low stratus (less than or equal to 1UUU ft.) forces the use of

different methods of traffic handling than is the case when

higher stratus levels prevail. A low stratus condition tends

to inhibit flight operations, so it is desirable to torecast

its occurrence. Furthermore, it is of interest to torecast

such conditions on a "single-station" oasis, making use ot me-

teorological measurements available only at the location—e.y.

airport--in question, in case useful supplementary information

is unavailable.

The forecast ing approaches described here are statisti-

cal in nature, meaning that extensive data concerning the re-

ported hourly stratus level at an airport (Moffett Field,

bunnyvale, CA ) , together with certain other meteorological

measurements or parameters recorded and reported at that loca-

tion, were used as raw material tor the forecasts. These data

were. used to estimate the probability of low stratus during a

daily period; the latter probability was estimated using a

logistic regression model , a tool that has been found useful in

biological and medical statistics, and that has been previously

applied in meteorology; cf Brelsford and Jones (1967),

Gilhausen (1979), Gabriel and Pun (1979). In a later section

we present various derivations or justifications of such a

model. Alternative models are also suggested, and the

usefulness of these will be investigated in future work.



The usetulness of the logistic (or any other) model must

be judged by its performance. We have chosen to proceed by (i)

fitting a model to data for certain specific years (1958-196U),

and then (ii) comparing the model predictions to actual occur-

rences tor a completely different period (1961, 1962). Such a

procedure is termed cross validation ; see Hosteller and Tukey

(1977) for good general discussion and references. The results

ot our cross validation are reported suDseguent ly . Another in-

teresting and possibly useful approach is to construct and test

an adaptive, automatically up-dating torecasting model witn

characteristics similar to "exponential smoothing" or "Kalman

filtering." Results of some simple updating procedures tor

torecasting will also be reported.

Successful torecasting with the aid of a model reguires

that the data inputs be relatively "clean," or in basic con-

formity with the model. Occasionally occurring data points

that are out of line for any reason, called out 1 iers , or

influential values , can radically change the values ot Lhe

model parameters obtained from statistical fitting principles

such as least sguares (not used tor fitting our logistic model)

or maximum likelihood (wnich is used). To check tor such

maverick, possibly detrimentally influential, values it is

possible to proceed in several ways. One is to successively

remove each data point (actually a vector of response and

explanatory variables) and re-tit the model, watching for

radical changes in fitted model parameters. This method has

been programmed (in APL, on the NFS IBM 3033 system) and

exercised; its detect is that at present just one data point



is removed at a time, so if several points are mavericks this

fact may be overlooked. Clever ways of automat ica lly diminish-

ing the effects of maverick points have been discussed by

Preyibon (1982); exploration of the applicability of such ideas

to the present stratus prediction problem is currently underway

The methods and some results are reported here.

Another approach to the identification of maverick data,

and to the possible discovery of an appropriate model, is by

computer graphics. We have initiated the examination ot tne

low-stratus data on a pioneering graphics facility at Stanford

Linear Accelerator (SLaC); see an article in science , Kolata

(lytf2), for general description. Tne SLAC system allows an

analyst views of various three-dimensional space projections ot

multidimensional data-clouds. Such examination helps to reveal

the association between certain explanatory ("independent")

variables and the response ("dependent variable") ot interest.

For example, examination ot our stratus data indicated that

changes in the explanatory variable dewpoint depression tended

to be reflected in changes of response, i.e. low stratus level

probability. This association has physical basis, and dewpoint

depression had actually been included in earlier exploratory

logistic fits at the suggestion of W. Sweet ot NLPKb'; its

incorporation into the model considerably improves predictive

performance

.



2 . The basic Data bet

The statistical methods used in this study were applied

to data furnished by to. Sweet of NEPkF, to whom we are grateful.

In summary, these data consist ot reported hourly determinations

of :

(i) stratus level , reported to be at discrete levels ot
100 ft. separation; possible recorded levels are
k x 1UU ft., k = 1 ,2, . . . ,9,1U , . . .

, "999" (no visible
stratus ) .

(li) east-west wind velocity, V , at surface, in miles
per hour;

(iii) north-south wind velocity, V , at surtace, in miles
per hour;

(iv) temperature, at surtace, in degrees F;

(v) dewpoint, at surtace, in degrees F;

all at Moftett Field, California, for the months ot July,

August, and September of the years 19bb-1962; later data are

also available, and remain to be analyzed. Although other

measurements, e.g. ot pressure, are in principle available, they

were not utilized in the present analysis. Nor were measure-

ments from neighboring locations in the San Francisco bay area.

2.1. The Forecasting Exercise Data set

The raw aata described above were adopted to the fore-

casting exercises as follows:

(a) Forecasts are made of the existence of stratus

level less than 1000 ft . (<_ 90U ft.) on any hour between

lUtUU pm (221)0) on day t , and 6:00 am (U6UQ) on day

t + 1 . If hourly-reported stratus level ever fell to a

level _< 900 ft. during such a period beginning on day t,

it is agreed to say that stratus existed on day t; otherwise



that no stratus existed on day t. Denote by the binary

indicator variable y the existence (non-existence) of

stratus on day t according to the above definition. Thus

1 if stratus exists on day t,

if no stratus exists on day t.

Call y the response (or dependent variable) when forecasting

for day t. Note that the observed values of response on pre-

vious days (y _, , y ~ , . . . ) are available as assistance when

forecasting for day t. The above definition of meaningful

stratus agrees with instrument/no instrument landing rules at

airports, and is thus of operational significance.

Candidate explana tory (independent) variables are these:

(b) wind velocities at 6:00 pm (1800) on day t ,

items (ii) and (iii) above;

(c) temperature (T ) and dewpoint (D ) at surface at

6 : 00 pm on day t

;

(d) dewpoint depression, a\ = T^ - D. at 6:00 pm
t t t

on day t ;

(e) hours of stratus ( H , ) between 2200 on the previous

day t-1 and 0600 on the current day t ;

(f) existence/non-existence of stratus ( y . , ,
y .

2
, . . . )

on previous days.

Let NS denote the number of consecutive days of stratus in

a run of stratus days that includes day t-1, the day on which

the prediction is made. NNS is the number of consecutive days

of no-stratus in a run of no-stratus days that includes day

t-1.



Note that because of the way in which the response y

is defined, it is legitimate and of interest to forecast y in

terms of T\ , D^ , A . , V (t), etc. These latter quantities are
t t t x

all available at 6:U0 pm for forecasts applying later, i.e. from

10:00 pm to 6:00 am on the following day. Of course many other

functions of the hourly observations are candidates for

explanatory variable status.

}



3 . Preliminary Analysis

Before proceeding to the fitting of specific models, a

subset of the data has been examined in terms of simple summa-

ries. Since the objective is to forecast, we have divided (con

ditioned) the data for the years 1958, 1959, 1960 into four

groups

:

observations such that Y±. -\

= U, Y t
= ^ >

observations such that y _ . =
, y = 1 ,

observations such that y . = 1 , y = ,

Group 00

Group 01

Group 10

Group 11 observations such that y _ = 1, y = 1 ,

and have then computed summaries of the observed distributions

of certain candidate explanatory variables. The argument is

that a noticeable separation of such distributions when predict-

ing y. from the particular explanatory data suggests that the

variable in guestion may be useful in forecasting.

Note that we have explicitly used the known stratus state

of the system at t-1 as one important variable, wishing to

make full use of persistence, and to improve upon it. We are

especially interested in the power of explanatory variables and

their combinations to correctly forecast changes in stratus

conditions, e.g. from y _ -.
= (no stratus on day t-1) to

y = 1 (stratus on day t). Simple persistence forecasting,

which predicts y = y , will never identify prospective

changes .

Computer graphic analysis carried out at SLAG, plus

physical insight, suggest that dewpoinf depression, A , should

be an effective explanatory variable. Another useful variable

! 1



seems to be the hours of stratus observed on day t-1, denoted

by H There are limitless other plausible explanatory

variables, as well as combinations and re-expressions (trans-

formations) of the latter, but here we look at only two. One

systematic way of uncovering predictive combinations of explana-

tory variables is by use of some form of principle component or

factor analysis; such work is not reported here. It seems pos-

sible that a robust principle component analysis may be informa-

tive (see Gnanadesikan (19"7
"
7 ), or Campbell (1982)), for the

existence of groups of maverick-like data have been reported in

the overall data base. Clustering procedures may also be of

va lue

.

Tables 1 and 2 give a few useful summaries of the behavior

of the candidate explanatory variables A and H ,__-i/* these

have been developed for the years 1958, 1959, i960. The figures

in parentheses are natural logarithms of their counterparts.

The log transformation is suggested to symmetrize the sample

distribution (histogram or Tukey stem-leaf plot), which often

tends to appear positively skewed for the above data. The

medians and quartiles are used instead of the ordinary means and

standard deviations because of the possible non-robust/resistant

properties of the latter traditional mpasures.

We can draw the following conclusions from Table 1:

(a) corresponding summary figures for dewpoint depression
(0,M,U) are rather stable from year to year.

(b) dewpoinc. depression (or its log) should have prognostic
power: roughly speaking,

12



TABLE 1

Observed Distribution of Dew Point Depression (A )

Year Lower Quart i le

(0)

Med ia n Upper Quart i le

( M ) ( )

19 58;

19 5 9;

1960;

1 >

1 * 1

1.1 > 1

->-

1 >

1 + 1

* 1

*

] +

1 > ]

I) > 1

+

9(2.2)

6(1.-79)

6(1. -79)

10(2.3)

8(2.08)

6(1.-^9)

"7(1.95)

10(2.3)

"7(1.95)

6(1.-79)

-7(1.95)

10(2.3)

9(2.2)

7(1.95)

8(2.08)

13( 2.56 )

9(2.2)

-7(1.95)

9(2.2)

14( 2.64)

10(2.3)

8(2.08)

8(2.08)

13( 2.56)

10(2.3)

9(2.2)

8(2.08)

17(2.83)

11( 2.4)

9(2.2)

10(2.3)

16(2.^-7)

13(2.56)

9(2.2)

11(2.4)

16(2.-7-7)

1 )



(b-1) if stratus is present at time (day) t-1, and it

A is relatively high (9 or above), a change to

no stratus is indicated, while if A is rela-

tively low (below 9) the stratus condition tends

to continue ; on the other hand

(b-2) if no stratus is present at time (day) t-1, and

if A is relatively high (10 or above) the no

stratus condition tends to continue , while if A

is relatively low (below 10) changes to a stratus

condi t ion become more frequent.

These results are physically plausible, and appear con-

sistently, if not overwhelmingly strongly, in the present data.

Figures 1 and 2 show box plots of dew point depression

and £n(dew point depression + 1) for the years 19b8-60 (cf. Tukey

andMosteller (19 77 )). Each of the four plots in the figures

contain only those points for which y , = i + j = y for

i,j = 0,1 . The top (bottom) edge of the box is the upper

(lower) quartile of the data set; the symbol within the box is

at the median; the lines connect the mean; and the circles out-

side the boxes represent outlying data points.

It appears from the top two plots in each figure that dew

point depression, A , may have more prognostic value if there

is no stratus the day before. If there is no stratus the day

before, then high A appears to be associated with persistence

of no stratus. Since the box plots do overlap, it is clear that

A will not provide perfect prediction.

14
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An exploratory spectral analysis of hourly £n(stratus

height) and £n(dew point depression + 1) for 1958 described in

Appendix F also suggests that high (low) dew point depression

is associated with high (low) stratus height.

In Table 2 are corresponding figures for hours of stratus

on previous days.

TABLE 2

Observed Distribution of Previous Days 1 Hours of Stratus

Year Lower Quart ile Median Upper Quart i le

( ) ( M ) ( )

19 58; 1+0: 2 ( . "M 4(1.4) 8(2.1)

1 + 1: 6(1.8) "Ml. 9) 8(2.1)

19 59; 1+0: 3(1.1) 4(1.4) 4(1.4)

1+1: 4(1.4) 6(1.8) 8(2.1)

1960; 1 + 0: 3.0(1.1) 4(1.4) 4(1.4)

1+1: 4(1.4) 6(1.8) 8(2.1)

Again the figures in parentheses are logs.

Again some indications from the table are of interest:

(a) corresponding summary figures are rather stable, but
somewhat less so than for A ,

(b) relatively low values of previous days' hours of stratus
tend to be associated with change to no-stratus condi-
tion, but the tendency is rather weak.

The tendency noticed above may possibly be accounted for by the

fact that an underlying weather system is passing over the

Moffett area. Towards the end of its sojourn there the hours

of resulting stratus tend to gradually decrease to zero.

1"?



box plots for the number of hours of stratus the day

before when there is stratus, tor years 1958-60 appear in Figure

3. Lach figure contains only those points for which the current

day has no stratus or stratus respectively. There appears to be

an association between a high number of hours of stratus the day

before and persistence of stratus. The association does not

appear strong, however.

Although the above sort of analysis is interesting, it

tails to incorporate the joint--poss ibly interactive—effects

of several variables. Note that no such analysis is reported

here for the other possible explanatory variables related to

surface wind, namely V and V . Somewhat surprisingly,1 x y
r * i >

these have been tound to have secondary value for the location

and years under investigation.

18
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APPENDIX A

Logistic Fitting ana Cross-Validat ion usiny the bMDP Package

In Appendix F we give several mathematical just it icat ions

tor use ot the logistic regression model. In the present Appen-

dix results are given ot titting various logistic models to

available Motlett field data tor years lyt>b-bl); they are cross-

validated tor years 1961 and !Vb2.

Here the term model refers to the basic logistic

representation

PJ y = l
|
explanatory variables xl = -=—-^—2_1— (A-l)

1 J d —

'

1 + expj xg
\

where x is a p-vector (row) ot explanatory variables, and j3_

is a p-vector (column) of coefficients to be determined. The

bMOP package performs the fitting, i.e. determination ot 8_

from observations, by maximum likelihood or a closely related

method. It also furnishes Student t-values tor assessiny the

statistical significance of the coefficients determined, and

has a step-wise facility, which enters explanatory variables in

accordance with their judged explanatory value. The above pro-

cedure assumes that the model is appropriate tor the data, a

practice that may be dangerous in observational studies, as has

been pointed out by Pregibon (ly«j), who suggests some remedies.

An examination ot remedies tor dealing with possibly "ill-

fitting" data by the logistic is currently in progress, and will

be applied to the Motfett Field, and other, data.

In the exercises reported, we have fitted 195b-iybU data

by logistic models using the variable selection feature. Two

types of tits are considered. In one type we condition on the
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previous day's stratus state; in other words P n
(x.) means the

probability of stratus on day t , given no stratus on t-1 and

the influence of explanatory variables x ; P-i(x.) means the

probability of stratus, given stratus on t-1. In the other type

we have fit all the data at once, using an indicator variable to

identify stratus - no stratus days.

The predictions made are categorical: i.e. if the calcu-

lated p-value exceeds 0.5, stratus is predicted, while if below,

no stratus is predicted. We have cross-validated predictions

against the years 1961 and 1962.

Model A-l : Prediction, given no stratus the previous day

(y.i = 0). The explanatory variables selected are: a constant,

Jin (A +1), V . The fit is as follows with standard errors of

the fitted parameters in parentheses below:

XB = 6.63 - 3.65 ln(A )
- 0.08^8 V- t y

(1.^0) (0.^41) ( 0.0495)

where A = A + 1 .

The cross validations results for 1961-19b2 ( F means Forecast,

A means Actual) are below.

1961-1962

Fract ion
Correct

.93

.2~>

Fraction Correct =
8 + 6

88 + 6 + "? + 16
- = .80

.'!



Note that simple persistence forecasting ("tomorrow is

the same as today") for both 1961 and 19b2 gives a fraction of

correct forecasts equal to 0.83 ( ( 88 + "?
) /( 88+7+16+4 ) ) , which is

actually slightly better than the logistic forecast. However, the

present logistic model does correctly forecast about one-quarter

to one-third of the changes from no stratus to stratus correctly;

persistence will never correctly forecast a change.

Model A-2 ; Prediction given stratus the previous day (y , = 1)

The fit is
i

x p = 6.12 - 3.34 £n(A ) + 0.30 H

The variables selected were £n(A + 1) and H , .

(2.07) (0.940)
t (0.0893) t-1

where A = A + 1 .

The numbers in parentheses beneath the coefficients are standard

errors based upon the assumption of a correct model, maximum-

likelihood fitted.

The cross validation results are below.

1961-1962

A \ F
1

Fract ion
Correct

1

16

! 4

6

29

.73

.6^

Fraction Correct = 0.69 = 16 + 29
14+29+16+6

In this case the logistic model did as well as persistence (0.66)

in predicting stratus and no stratus. Furthermore, it predicted

73% of the changes correctly.
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The results of the validation for 1961-1962 of the two

fits in Exercises A-l and A-2 are combined in the following fable

U + 88

+ 1 6

1 + 16

1 + 1 29

Predict ion

Success Failure

16

6

14

Fraction Correct

0.9 3

0.2^

0."?3

0.6"?

The threa t score for predicting changes from + 1 is

C
+ 1

N
+ l

+ F
+

( 6+16 +
"
7

)

= 0.21 (A-2)

where

C M , = the number of correct predictions of change from
->• 1 ,

N
0+1 the total actual number of changes from 0*1,

F„ ,\
= the number of incorrect predictions of no change

0>U
+ 0.

Similarly the threat score for predicting changes from

1 + is

1 + 16
N

n n + F, . 16+6+14
1 + 1 + 1

0.44 . (A-3)

The threat score for predicting all changes

TT =
C + C
0+1 1*0

Vl + N
l +

+ F 0+0 +F l+l
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The fraction of correct predictions using the logistic

models is

88+6+16+29
182

= 0.-76.

The fraction of correct predictions using persistence is

88+^+29+14
182

= 0.^6.

Of course persistence predictions will never be correct when a

change takes place, while the methods just presented, and others,

may actually do quite well and seem worth the extra trouble.

Model A-3 : Prediction based on all data. The variables selected

are: a constant, £n(A + 1), and H , . The fit is

x 3. = 6. 7 3 - 3.39 £n(A + 1) + .225 H

(1.30) (0.5^0) ( 0.050"7
)

where A = A + 1 .

Again numbers in parenthesis are standard errors.

The cross-validation results are below:

1961-1962

Pred ict ion

Success Failure

- 91 4

0+1 5 1*7

> 16 6

1+1 30 13

Fraction Correct

0.9 6

0.2 3

0.^3

0.-7
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Fraction Correct =
* l + 5 ,* 16 + "° = U.7b

1 o Z

traction Correct Persistence = :

—

= u.7b
lb2

The threat scores for predicting changes are

= U.19
U 5+17+4

T
l = 16 /

6

6 + 13
= U ' 46

TT =
16 + 5

= n 3411 16+5+17+6+4+13 U,J4

The threat scores tor the fit using all the data are about

the same as those tor the separate fits, i.e. those that condition

on whether or not stratus existed on the day before. The fraction

of correct predictions of stratus and no stratus is also about the

same as that for the two separate fits, and tor prediction by

persistence. We conclude that doing separate fits based on

whetner or not there is stratus the day before may not De

profitable; a single logistic model may do as well as two.
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APPENDIX b

bhrinkaye

The term "shrinkage" is used in connection with the

tollowing phenomenon: a regression model tit by maximum likeli-

hood (or least squares) to one set of data which is then used

for prediction on another set of data nearly always fits the

new set of data less well tnan it does the original set. Copas

(1982) points out that shrinkage can be more pronounced if the

original regression fit is made with the aid of a stepwise pro-

cedure; the latter tends to overfit. he suggests using the

tollowing logistic model tor binary prediction:

P{Y = 1
j
explanatory variable x_]

n

exp{6 ,'+K ) $ ! (x. - x . ) }
U ^ , l l l

= - - (B-l)

1 + exp{6 "+K V b! (x.- x. )}u .

u
, 1 1 i

i = l

where x. is the mean of the i explanatory variable tor the

original data. {£.} are the MLE estimators tor the original

data and K is a shrinkage parameter; K = 1 means that there

is no shrinkage. Data-derived prescriptions can be found tor

K, but in the exploratory work reported here we have found several

numerical trial values and taken note of their general effects.

The stepwise regression procedure of BMDP was used to

fit a logistic model to data t rom 1958-61). This model with, and

without shrinkage was then used to predict the occurrence of

stratus in the years 1961-62. Tables J and 4 give the results
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of the cross validation. Note that shrinkage slightly improves

the prediction of no stratus on the following day.

Tables 5 and 6 give the results of fitting logistic models

to the data from 1958-60 and using the models with and without

shrinkage to predict stratus in 1961. Four different models were

used. The parameters of the models are as follows

Parameters

Mode 1

A

AW

B

BW

constant, in A , y _ -.

constant, Jin A,., y t , , V , V
t J t - 1 x y

constant, in A, , NS. , NNS, , H
t-1

constant, in A , NS , NNS , H , V , V

where A is the dew point depression plus 1.

The models were fit using maximum likelihood. Stratus was

predicted on day t if the forecast probability of stratus was

greater than or egua 1 to a . The cutoff point a was taken to

be 0.5, or alternatively 0.41, the fraction of days of stratus

during the years 1958-1960.

Tables 7 and 8 give similar results for the models fit to

data in 1958-61 and validated on 1962 data. The cutoff point a

was taken to be 0.5, or alternatively 0.3 7
, the fraction of days

of stratus during the years 1958-61.

Tables 9 and 10 give the threat scores for the prediction

of changes (equations A-2, A-3, and A-4 )

.

The simplest model A with a cutoff of 0.5 seemed to do as

well as any of the more complicated models. The rise of the

I'1



historical fraction of stratus days sometimes improved prediction

of changes, but not in all cases. The use of shrinkaye once again

often seemed to improve prediction ot changes from stratus to no

stratus but again not uniformly. Models A and B with no

shrinkage did as well as the stepwise BMDP procedure with no

shrinkage

.
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Table 3

Validation on 61-62 ot BhDP stepwise Fit

Using all Data b8-60 with Shrinkage

K 1 0.6
!

u. , b I 0,,4 ""I

trans it ions

U -

S F FC S F FC S F FC 1 S F FC

91 4 .96 93 2 .9bl 93 2
|

.98 9b 1.0

U + 1 5 17 .23 3 19 .14 3 19 .14 1 21 • ob

1 > 16 6 .73 17 5 .77 17 b .77 17 b .77

1 * 1 30 13 .70 2b 17 .60 26 17 1 .60| 22 21 .51

Validation on 1961 ot bMDP stepwise Fit

Using all Data 58-60 with Shrinkage

K 1 .6 0. b 0. 4 1

trans it ions

+

s F FC a F FC s F KC S F FC

53 3 .95 b4 2 .96 54 2 .96 56 1
j

0*1 3 8 .27 3 8 .27 3 8 .27 1 10 .09

1 U 8 3 .73 9 2 .82 9 2 .82 9 2 . 82

1 + 1 9 4 .69 8 5 .62 8 5 . 62 7 6 .54

FC = traction correct predictions
S = number of successful predictions
F = number of unsuccessful predictions
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Table 4

Validation on iy62 of bMDP Stepwise Fit

Using all Data 38-bl with Shrinkaye

K 1 U .b U.5 0. 4

trans it ions

+ U

s F FC S F FC b F FC s F FC

38 1 .97 39 U 1 39 u 1 8y u 1

U + 1 2 y .18 U 11 U U 11 u u 11 u

1 -»• u 8 3 .7j 8 8 .78 a 8 .73 8 3 .73

1 » 1 21 y .70 18 12 . bU lb 14 . 88 11 ly .87

Model has explanatory variables constant

Fst coetticients
( Std . Frrors )

b .71

(1.12)

An(A )

-3.42
( U.48y )

H
t-1

U .242
( U.U434 )

Validation on iyb2 ot Separate BMDP stepwise Fits

For Data Points with Stratus or No Stratus the Day

Before Usiny data of 1958-61 with Shrinkaye

K 1 u .b U.5 u. 4

trans it ions s F FC s F FC S F FC S F FC

U + U 3ti 1 .97 39 U 1 3y u 1 3y U 1

U •» 1 2 y .18 U 11 U U 11 U u 11 U

1 * u 8 3 .73 b 3 . 8b 3 b .48 8 i .73

1 -> 1 21 y .711 22 8 .73 Z4 b . 8U 2b •i . 8b

Explanatory variables ior moaei with no stratus the day before

constant £n ( A . ) V

Fst Coetticients
( S td . trror )

b .U3
( U.42)

in (A )

-3.43
( U.blU )

y
-U.U81
( U.U4b )

Explanatory variables tor model with stratus the day betore.

constant £n ( A ) h
t t-1

tst Coetticients b . 7 1 -3.3b U . 2 y

1

(Std. Error) (1.82) (U.8iy) (U.U82y)

*U



Table b

Validation on 1961 of Predictions with Shrinkage

of Models Fit with MLE Usiny all Data from 1958-6U

Shrinkage Model A Model AW
Parameter Cutoff 0.5 0.41 0.5 0.41

A\F 1 FC 1 FC 1 FC 1 FC
1

U

14 1U
7 60

.58

.90
17 7

13 54
.71
.81

11 13
10 57

.46

.85
17 7

12 55
.71
.82

K = 1 trans it ions S F S F S F S F

U ->•

+ i

i -»-

1 + 1

53 3

3 8

7 4

11 2

.95

.27

.64

.85

48 8

5 6

6 5

12 1

. 8b

.45

. 54

.92

50 6

3 8

7 4

8 5

1

.89

.27

.64

. 62

48 8

5 6

7 4

12 1

. 86

.45

.64

= s=
92

A\F 1 U 1 U

1

U

11 13
4 63

.46

.94
14 1U
7 bU

.58

.89
10 14
4 63

.42

.94
15 9

11 56
. 63
.84

K = U.b trans it ions S F S F S F

+

+ 1

1 +

1 + 1

54 2

3 8

9 2

8 5

.96

.27

.82

. 62

53 3

3 8

7 4

11 2

.95

.27

.64

.85

54 2

3 8

9 2

7 6

.96

.27

. 82

.54

49 7

5 6

7 4

10 3

.88

.45

.64

.77

A\F 1 1 1 1

1

U

8 16
4 63

.33

.94
14 1U
7 bU

. 58

.89
8 16
4 63

.33

.94
12 12
11 56

.50

.84
K = 0.5 trans it ions S F

+ U

0+1
1 + U

.1 + 1

54 2

3 8

y 2

5 8

.96

.27

.82

.38

53 3

3 8

7 4

11 2

.95

.27

.64

.85

54 2

3 8

9 2

5 8

.96

.27

.82

.38

49 7

4 7

7 4

8 5

.88

.31

.64

.62

A\F 1 U 1 1 1

1

U

5 19

(J 67
.79
1

14 10
7 bO

.58

.90
6 18
1 66

.25

.99
11 13
8 59

.85

k = 0.4 trans it ions S b' S F S F S F

+

U + i

1 +

1 + 1

56
1 10

11 U

4 9

1

.U9
1

.31

53 3

3 8

7 4

11 2

.93

.27

.64

. 85

56
Z 9

1U 1

4 9

1

.18

.91

.31

52 4

3 8

7 4

8 5

.93

.27

.64

. 62

FC = traction correct predictions
,, ,, Number of uays of stratus in 195b-19b0
y 4 j^ = *

Total Number ot bays in 1 95b-lyb0

Explanatory variables in nodel A = constant, y._,/ £n(A ).

Explanatory variables in model AW constant, y, ., £n(A ), V , VJ t-1 t x y
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Table 6

Validation on 1961 of Predictions with shrinkage

of Models Fit with MLE Using all Data from 19b8-60

Shrinkage Mode 1 B Mode.L BW
Parameter Cutoff O.b 0.41 0.5 0.41

A\F 1 FC 1 FC 1 FC 1 U FC
1 13 11

6 61
.54
.91

16 8

12 55
.67
.82

13 11
8 59

. 54

.88
16 8

12 55
.67
.82

K = 1 transitions S F b F S F b F

+

+ 1

1 +

1 + 1

53 3

3 8

8 3

10 3

.95

.27

.73

.77

48 8

4 7

7 4

12 1

.86

.36

.64

.92

52 4

3 8

7 4

10 3

.93

.27

.64

.77

48 8

5 6

7 4

11 2

.86

.45

.64

.85

A\F 1 1 1

1 11 13
4 63

.46

.94
13 11
9 58

.54

.87
11 13
4 63

.46

.94
14 10
11 56

.58

.84
K = 0.6 transitions S F b F b F

+

+ 1

1 +

1 + 1

54 2

3 8

y 2

8 5

.96

.27

. 82

. 62

51 5

3 8

7 4

12 1

.91

.27

.64

.92

54 2

3 8

9 2

8 b
]

.96

.27

. 82

.62

49 7

3 8

7 4

11 2

. 88

.27

.64

.8b

a\f 1 1 1 1

1 11 13
3 64

.46

.96
13 11
7 60

.54

.90
10 14
3 64

.42

.96
13 11
11 56

.54

.84
K = 0.5 trans it ions S F S F b F b F

+

+ 1

1 + u

1 + 1

55 1

3 8

y 2

8 5

.98

.27

.82

. 62

53 3

3 8

7 4

10 3

.95

.27

.64

.77

55 1

3 8

9 2

7 6

.98

.27

.82

.54

49 7

3 8

7 4

10 3

.88

.27

.64

.77

A\F 1 1 1 1

1 7 17
2 65

.29

.97
13 11
6 61

.54

.91
6 18
2 65

.25

.97
12 12
8 59

.50

.88
K = 0.4 trans it ions S F S F S F b F

+

0+1
1 +

1 + 1

56
1 10
y 2

b 7

1

.09

. 82

.46

53 3

3 8

8 3

10 3

.95

.27

.73

.77

56
1 10
9 2

5 8

1

.09

. 82

.38

52 4

3 8

7 4

9 4

.93

.27

.64

.69

FC = fraction correct predictions
, Number of Days of stratus in 19b8-l960

Total Number of Days in I9b8-1960

Explanatory variables in Model «

Explanatory variables in Model bw

constant , ns
t

'

t

IMNb
t'

-1'

\_i' £n(V
constant, Nb . h ., £n(A ), V , V
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Table 7

Validation Using 1962 of Predictions Using Shrinkage

and Models Fit with MLF Using all Data trora 1958-61

Shrinkage
Parameter Cutoff

Model A

0.5 0.37

Mode]

U.5

L AW

0.37

A\F 1 FC 1 FC 1 FC 1 FC
1 26 15

4 46
.63
.93

29 12
8 42

.71

.84
25 16
4 46

.bl

.92
29 12
7 43

.71

.86
K = 1 trans it ions S F S F S F S F

+
-» 1

1 +

1 + 1

3b 1

2 9

8 3

24 6

.97

.18

.73

.80

36 3

3 8

6 5

26 4

. 92

.27

. 55

.87

38 1

2 9

8 3

23 7

.97

.18

.73

.77

37 2

J 8

6 5

26 4

.95

.27

.55

.87

a\f 1 1 1 1

1 15 26
2 48

.37

.96
28 13
6 44

. 68

.88
15 26
2 48

.37

.96
26 15
5 45

.63

.90
K = 0.6 trans it ions S F S F S F S F

+

+ 1

1 +

1 + 1

39
11

9 2

15 15

1

.82

.50

38 1

2 9

6 5

26 4

.97

.18

. 55

.87

39
11

9 2

15 15

1

. 82

.50

38 1

2 9

7 4

24 6

1

.97

.18

.64

.87

a\f 1 1 1

1 15 26
2 48

.37

.96
26 15
4 46

.63

.92
8 33
1 49

. 20

.98
26 15
5 45

. b3

.90
K = 0.5 transit ions S F S F S F S F

+

+ 1

.1 +

1 + 1

39
11

9 2

15 15

1

. 82

.50

38 1

2 9

8 3

24 6

.97

.18

.73

.80

39
11

10 1

8 22

1

.91

.27

38 1

2 9

7 4

24 6

.97

.18

.b4

.87

a\f 1 1 1 1

1 7 34
50

.17
1 .00

26 15
4 46

.63

.92
6 35

50
.15
1

25 lb
4 46

.bl

.92
K = 0.4 trans it ions S F S F S F S F

+

0+1
1 +

1 + 1

39
11

11
7 23

1

1

.23

38 1

2 9

8 3

24 6

.97

.11

.73

. 80

39
11

11

6 24

1

1

. 20

38 1

2 9

8 3

23 7

.97

.18

.73

.77

0.37

FC = fraction correct
Number of Days of stratus in 1958-19bl
Number of Days in 1958-1961

Model A explanatory variables constant, y £n(A )

.

t-1' ~t
Model AW explanatory variables: constant, y. -. » £n(A ), V , V

U -L I- A.
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Table 8

Validation Using 1962 Data of Prediction Using Shrinkage

MLE Using all Data from 1958-61 and Models Fit with

Shrinkage Mode L B Mode.L BW
Parameter Cutoff U.5 U.37 0.5 U.37

A\F 1 FC 1 FC 1 FC 1 FC
1

U

23 18
4 46

.56

.92
27 14
8 42

.66

.84
23 18
3 47

.56

.94
27 14
7 43

.66

.86
K = 1 trans it ions S F S F S F 5 F

+
+ 1

1 +

1 + 1

38 1

2 9

8 3

21 9

.97

.18

.73

.70

36 3

3 8

6 5

24 6

.92

.27

.55

.80

39
2 9

8 3

21 9

1

.18

.73

.70

37 2

3 8

6 5

24 6

1

.95

.27

.55

.80

A\F 1 1 1 U

1

U

18 23
3 47

.44

.94
24 17
6 44

.59

.88
18 23
3 47

.44

.94
24 17
6 44

.59

.88
k = U.6 transitions S F S F S F S F

+

0+1
1 +

1 + 1

39
11

8 3

18 12

1 .00
0.00
.73
.60

38 1

2 9

6 5

22 8

.97

.18

.55

.73

39
11

8 3

18 12

1.00
0.00
.73
.60

38 1

2 9

6 5

22 8

.97

.18

.55

.73

A\F 1 U 1 1 U 1

1

U

17 24
3 47

.41

.94
24 17
6 44

.59

.88
15 26
3 47

.37

.94
24 17
5 45

.59

.90
k = U.5 transitions S F S F S F S F

+

0+1
1 +

1 + 1

39
U 11
8 3

17 13

1 .00
0.00
.73
.57

38 1

2 9

6 5

22 8

.97

.18

.55

.73

39
11

8 3

15 15i

1

.73
_._b0_.

38 1

2 9

7 4

_22 8

1

.97

.18

.64

.73

A\F 1 1 U 1

1 10 31
3 47

.24

.94
24 17
5 45

.59

.90
7 34
3 47

.17

.94
23 18
4 46

. 56

.92
k = U.4 trans it ions S F S F S F S F

+ U

+ 1

1 +

1 -v 1

39
U 11

8 3

1U 2U

1 .00
0.00
.73
.33

38 1

2 9

7 4

22 8

.97

.18

.64

.73

39
11

8 3

7 23

1 .U0
0.00
.73
.23

38 1

2 9

8 3

21 9

.97

.18

.73

.70

FC = traction correct predictions
y -, 7 .

Number of Days of stratus in 1958-1961
Number of Days in 1958-1961

Model B explanatory variables: constant, NS

Model BW explanatory variables: constant, NS , NNS , H

t
, NNS , H

t _ 1
, £n(A

t
) .

1# *n(A ), V , I
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Table 9

Threat Scores for 1961 Validation
of Models fit with MLE on

data from 1958-1960

Model A AW B BW
Cutpoint 0.5 0.41 0.5 0.41 0.5 0.41 0.5 0.41

T 0.21 0.26 0.18 0.26 0.21 0.21 0.20 0.26

K = 1 T
1

0.54 0.50 0.44 0.58 0.57 0.58 0.50 0.54

TT 0.37 0.35 0.30 0.39 0.39 0.35 0.34 0.38

T 0.23 0.21 0.23 0.28 0.23 0.19 0.23 0.17

K = U.6 T, 0.56 0.54 0.53 0.50 0.56 0.58 0.56 0.54

TT 0.41 0.37 0.40 0.38 0.41 0.36 0.41 0.32

T
u

0.23 0.21 0.23 0.22 0.25 0.21 0.25 0.17

K = U.5 T
1

0.47 0.54 0.47 0.44 0.56 0.50 0.53 0.50

TT 0.38 0.37 0.38 0.32 0.43 0.36 0.41 0.31

T 0.09 0.21 0.18 0.20 0.09 0.21 0.09 0.20

K = 0.4 T
1

0.55 0.54 0.50 0.44 0.50 0.57 0.47 0.47

TT 0.39 0.37 0.39 0.32 0.34 0.39 0.33 0.33

Model

A

AW

B

BW

0.41

Explanatory Variables
constant

constant

constant

constant

*nU
t

) y t _ 1

*n(A
t

) y t _ 1

£n(A ) NS

£n(A
t

) NS

V
x

NNS,

NNS,

V

t-1

t-1
V

No. days of stratus during 1958-60
No. days during 1958-60

V
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Table 1U

Threat Scores for 1962 Validation
of Models fit with MLE on data

from 1958-1961

A AW B BW
Cutpoint 0.50 0.37 0.50 0.37 0.50 0.37 0.50 0.37

T
o

U.17 0.21 0.17 0.23 U.17 0.21 0.1b 0.23

K = 1 T
a

0.47 0.40 0.44 0.40 0.40 0.35 0.40 0.32

TT 0.34 0.31 0.33 0.32 0.31 0.29 0.32 0.30

T 0.17 0.17 0.17 0.17

K = 0.6 T
1

0.35 0.40 0.35 0.41 0.35 0.32 0.35 0.32

TT 0.24 0.30 0.24 0.31 0.24 0.26 0.24 0.26

T 0.17 0.17 0.17 0.17

K = 0.5 T 0.35 0.47 0.30 0.41 0.33 0.32 0.31 0.37

TT 0.24 0.34 0.23 0.31 0.23 0.26 .22 0.29

T 0.17 0.17 0.17 0.17

K = 0.4 T
1

U. J2 U.47 0.31 U.44 0.26 0.37 0.24 0.40

TT 0.24 0.34 0.24 0.33 0.19 0.29 0.18 0.31

Model

A

AW

B

bW

0.3"7

Explanatory Variables
constant

constant

constant

constant

*n(A
t

) y t _ 1

*n(A
t

) y t_ 1

£n(A ) NS NNS.

v V

£n(A ) NS NNS
t-1

t-1
V

No. days of stratus during 1958-6 1

No. days during 1958-61

V
y
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APPENDIX C

Robust Estimation for binary Logistic Regression .

Maximum likelihood estimates are susceptible to outlying

data points: they are unduly influenced by a few (exceptional)

data points which may not agree with the assumed model. Pregibon

(1982) suggests robust procedures which yield estimates that are

resistant to a tew such exceptional data points. The procedure

that has been used in this report is as follows.

Let the deviance of point i be

d. = -2 (y in p + (1-y.) in(l-p.)) f 1 = 1 , . . . , N (C-l)

where in the logistic model

exp{x 6

}

1 + exp{x
. 6

}

— i

(C-2)

and

x.B = B M + B,x., + 3 x + ... + B x.—l— 1 ll 2 i2 p lp
(C-3)

x., is the value of the k— explanatory variable for the
lk

i— data point, and B is the estimate of B. / the regression
k K

coefficient for the k— explanatory variable, x ; k = l,...,p.

The problem of finding the MLE estimators turns out to

be to solve for ,,,...,B in the non-linear equations
u p

N

E X
ik

i = l
1K

iii

1 + e
Hit

= U (C-4)

for k = 1 , . . . , p

.
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One possible robust-resistant (insensitive to outliers)

procedure is to find estimators 3 ,...,(3 such that

I w(i)x.
k

1 = 1
*i

e

1 + e

where

i f

w ( i )
=

(H/d.)
1/2

=

d . < H
l
—

otherwise

,

(C-5)

(C-6)

. th
d. is the deviance of the i— data point and the fitted model

l

at that point, from (C-l).

A value of H = 1.35 was suggested by Pregibon and used

for the tuning constant; if H = » the procedure carries out

the ordinary MLR fitting, while as H decreases the effects of

extreme local deviance points have progressively less effect on the

fitted model. Notice that the i— data-determined weight, w(i),

is made relatively small if d(i) is large. Thus data points

which are not well fit by the assumed model will tend to receive

less weight than others that are. The resistant estimates, 3_ ,

are found by iteration. First the MLR estimate is found and the

initial weights computed. Then (C-5) is solved for {3 (1),
K

k = l,...,p} by a Newton-Raphson procedure. New weights w (1)
K

are computed from (C-6). Then these are entered in (C-5), and it

is solved for (3(2), k = l,...,p}; this process repeats until

the iterative estimates converge.
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On each day either stratus occurs or not. If stratus

occurs on consecutive days then a run of stratus days is said

to occur. Let NS be the length of the run of stratus days

that includes day t-1. For example, NS =0 if the previous

day had no stratus, so y._-i = 0? while

NS
fc

= 2 if y
1

= 1, y = 1, y = . Let NNS be the

length of the last run of no stratus days that includes day t - 1

Table (11) gives the estimates for five iterations of the

robust procedure applied to a model using 1958-1960 data. The

explanatory variables are: constant, NS , NNS , H , , £n(A )

here A is the dew point depression plus 1.

TABLE 11

Results of Iteration of Resistant Procedure

w

Number of
I tera t ion Constant NS

fc

NNS
t Vi fcn(A )

(NILE) 6.81 -0.01 -0.05 0.21 -3.34

1 9.30 -0.04 -0.05 0.28 -4.55

2 9.98 -0.0b -0.04 0.30 -4.88

3 10.16 -0.0 6 -0.04 0.31 -4.9"7

4 10.21 -0.06 -0.04 0.31 -5.00

5 10.22 -0.06 -0.0 4 0.31 -5.00

Note that except for the estimated value of NNS the

resistant procedure has made the estimates greater in absolute

value. Such sharpening of the expression is a common occurrence

when robust logistic procedures are utilized.
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We fit this model b robustly to iybb-61) data and then used

the fitted model to predict the occurrence of stratus with a cutoff

point of U.5. We also robustly fit model B to 195B-61 data and

used it to predict the occurrence of stratus in ly62. Although the

estimated parameters using the robust procedure were different, the

results of the cross-validation were almost the same as with the

maximum likelihood fit reported in Appendix b. Results of the

cross-validations with models fit robustly appear in Table lb at

the end ot Appendix D.
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APPENDIX U

Logistic Models with Updating

Despite best attempts to develop a single model with which

to predict stratus in any given year, the resulting model may

sufter from lack ot timeliness. The basic reason is that simple

models fitted with data t rom one period may well not be entirely

relevant to another, owing to changing conditions not represented

in the model. une attractive procedure tor dealing with the lack

ot timeliness issue is to progressively update the model fit so

as to incorporate recent data, i.e. data representing conditions

near in time to those to be forecast. This is the philosophy ot

the well-known Kalman filter. In the present context the updating

procedure has been carried out completely straightforwardly, i.e.

by simply re-computing estimates using recent data. Computation-

ally economical and sophisticated methods remain to be developed,

we report the results ot an investigation ot updated model

tits to predict the occurrence ot stratus. Three updating schemes

were tried.

1. a model was initially tit using all data from the previous

year. Then a forecast of the occurrence ot stratus was made using

the model for the first ten days ot the current (forecast) year.

These ten days were then added to the forecasting data set, ana

the eldest, or initial, ten days ot data were dropped. The model

was re-tit using the updated data. Using the new model, the oc-

currence ot stratus the next ten days of the current year was

forecast. Then the second-eldest ten-days-worth of data were

dropped, and the newest ten days were added, and the model was

4 I



re-fit, forecasts made, and so the process was continued. This

may be referred to as a 90-day rolling forecast in steps of ten

days .

II. A model was initially fit using all data from the previous

year. A forecast for the occurrence of stratus was made for the

first day of the current year. This data point was added to the

forecasting data set, and the eldest point deleted. The model was

refit using the altered modeling data set. A forecast of the occur-

rence of stratus was made for the next day of the current year.

This data point was added to the modeling data set and the oldest

point was dropped, and so forth. This is a rolling forecast in

one-day steps.

III. Same as II but the initial modeling data set includes only

the last 45 points of the previous year.

Two different sets of explanatory variables were tried,

A and B with and without wind speeds, where

A: constant, y ,, £n(A ).

AW: constant, y^ ,, £n(A), V (t), V (t)
t-1 t x y

B: constant, NS , NNS , H , £n(A )

BW: constant, NS , NNS , H ,, £n(A ), V (t), V (t)
L L. l_ -L l_ A. y

as before; A is the dew point depression plus 1.

A prediction of stratus was made if the forecasted proba-

bility was greater than a . In most cases a = 0.5. Additionally,

a was sometimes taken to be the fraction of the number of days

of stratus over all years previous to the current year.

The results are summarized in Tables 12-14 of threat scores

( T
()

f T ,iTT) and fraction of correct predictions ( FC ) . For com-

parison purposes results are also given for prediction without
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updatiny. full tables ot the numbers ot correct and incorrect

predictions can be round in Tables lb-lb.

As stated previously, the cutoff point, a , for the up-

datiny procedures was either U.b, or alternatively, the historical

fraction ot days of stratus. for the simpler model A, the use ot

the historical traction appeared to improve prediction ot stratus,

but to worsen the prediction of no stratus. Usiny robust estimates

in updatiny procedure I yave the same results as usiny the simpler

MLE estimates. The more complicated model b often (but not always)

improved predictions ot changes. Addiny information about winds to

either model A or b never improved prediction much. Usiny shrinkage

with the updatiny procedure 11 once again tended to improve pre-

diction of changes from stratus to no stratus, but tended to worsen

prediction ot a change from no stratus to stratus. Updatiny

procedure 111 often seemed to do better in predictiny changes from

no stratus to stratus than updatiny procedure 11; however, it did

worse when predictiny chanyes t rom stratus to no stratus. Upaatiny

procedure 1 always did at least as well as in predictiny chanyes

from stratus to no stratus but sometimes not as well as III in

predictiny chanyes from no stratus to stratus. Model b with an

updatiny procedure otten did better than Model A with updatiny

particularly in predictiny chanyes from no stratus to stratus. In

summary, models with updatiny sometimes did better than models with

no updatiny, but the improvement was surprisingly small.
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Table 12

Threat Scores for Changes and Fraction of Predictions

Correct for iy61 Predictions

Based on Models With and Without Updating

Model A

Data Used
to Fit Model 1958--1960 1960

AW
1958-1960

Updating NO NO I II III NO
Method MLE MLE MLE MLE MLE MLE

a 0.5 0.41 0.5 0.5 0.41 0.5 0.5 0.5 0.41

T
o

TT

0.21

0.54

0.37

0.26

0.50

0.35

0.26

0.56

0.40

0.25

0.53

0.39

0.39

0.50

0.44

0.25

0.50

0.38

0.29

0.50

0.39

0.18

0.44

0.30

0.26

0.58

0.39

FC
j
0.81|0.78 || 0.77 ||0.79 |

. 80
|

|
. 78

|
|

. 78
|

|
. 75 | . 79

Model B

Data Used
to Fit Model 1958-1960 1960 BW
Updating NO NO I 11 III 1958-1960
Method MLE Robust MLE MLE Robust MLE MLE MLE

a 0.5 0.41 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.41

T
l

TT

FC

0.21

0.5^

0.39

0.81

0.21

0.58

0.35

U.^8

0.21

0.5^

0.39

0.81

0.35

0.56

0.45

0.80

0.43

0.60

0.52

0.84

0.43

0.60

0.52

0.84

0.29

0.56

0.43

0.81

0.29

0.44

0.36

0.77

0.20

0.50

0.34

0.79

0.26

0.54

0.38

0.78

Model A has explanatory variables: constant, y ., £n(A )

Model B has explanatory variables: constant, NS , NNS , H -. , £n(A )

Fraction correct using persistence is 0.76
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Table 13

Threat Scores for changes and traction of predictions correct tor 1962
Predictions

Model A

Data Used
to Fit Model 1958--1961 1961

AW
1958-1961

Updat iny NU NO 1 II III NO
Method MLE MLE MLE MLE MLE MLE

a O.b U .37 U.5 O.b U.37 U.b U.b U .b U .37

T
l

TT

VC

U.17

U .47

0. J4

u.7y

U .21

U .40

I). 31

U .78

U

U.47

0.29

0.78

U

0.31

U .lb

U .74

U.21

U.17

u.iy

U.77

U

U.31

U. lb

U.7b

U.14

U .27

U . 21

U.7b

U.17

U .44

U.J3

|U.78

U .23

U .40

.32

.79

Model b

Data Used
to Fit Model 1958-1961 1961 bw

Updat iny NO NO I 11 III 19b8-19bl
Method MLE Kobust MLE MLL Robust MLE MLE MLE

a O.b 0.37 O.b 0.5 O.b O.b O.b O.b O.b 0.37

T
o

T
l

TT

FC

0.17

0.40

.31

0.76

0.21

0.40

0.31

0.7b

0.17

0.3b

0.28

0.7b

0.17

0.29

.24

0.7b

0.1b

0.37

.28

0.74

0.1b

0.37

0.28

0.74

0.08

0.26

0.19

0.71

0.20

.22

.21

0.71

0.18

.40

.32

0.77

0.23

.3b

0. 30

0.77

Model a has explanatory variables: constant, y ,, lv\ (a )

Model b has explanatory variables: constant, 1Mb , NNb , H ., £n (A )

Fraction correct usiny persistence is 0.7b
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Table lb

Validations for Rolling tits
(10 days at a time initiating with only the

previous year

)

Model
(Fitting Procedure)

Cutoff O.b

i

(Ml

a

B

(mle;
O.b

( Robust

)

O.b
ybb-by o.b 0.52

A\F
Stratus 1

no Stratus

1 FC 1 FC 1 u FC 1 FC
12 12
b bb

.50 11 13
b bb

.46

. bb
14 10
b bb

. bb

. bb
14 10
b bb

.bb

. btt

+

transitions U •* 1

1 + U

1 + 1

S F S F s S F

bl
2 12
7 8

10

1

.17

.47
1

bl
2 12
7 b

9 1

1

.17

.47

.90

bO 1

b y

b 7

y l

.yb

. 3b

.b3

.90

bO 1

b y

b 7

y 1

1

. 9b

. 3b

.53

.yo
=)by-b0 .b 0.267 O.b .b

A\F
1

1 1 1 1

22 19
y 40

.54

. b2
36 b

22 27
.bb
.bb

20 21
b 43

.49 20 21
6 43

.49

. 88

+

+ 1

1 +

1 + 1

s f S F S F S F

31 3

b 10
y 6

17 y

.yi

.67

.60

.6b

23 11
10 b

4 11
26

. 6b

.67

.27
1

31 3

4 11
12 3

16 10

.yi

.27

. ttO

. b2

31 3

4 11
12 3

16 10

.91

.27

.80

. b2
460-61 O.b 0.41 O.b O.b

A\F
1

1 1 1 1

13 11
b bb

.54

. b8
17 7

11 bb
.71
.b3

lb y

b 61
. b3
.y2

lb y

b 61
.63
.92

+

+ 1

1 +

1 + 1

S F S F S F S F

bO b

4 7

b 3

y 4

.91

.36

.73

.69

4b 7

7 4

7 4

10 3

.87

.64

.64

.77

b2 3

b b

y 2

y 4

.yb

.bb

. b2

.by

b2 3

6 b

y 2

y 4

.yb

.bb

. 82

.by
461-62 O.b .37 O.b O.b

A\F
1

1 1 1 1

2b 13
10 3y

. 6b

.bo
32 9

12 37
.7b
.76

24 17
b 43

.by 24 17
b 43

.by

. 88

U +

+ 1

1 +

1 + 1

S F S F S F S F

3b 3

11
4 7

Zti 2

. y2

. 36

.93

^b 3

3 b

2 y

2y i
4

.y2

.27

.lb
,y7

3b 2

z y

7 4

2 2 b

.yb

.ib

.64

.73

3b 2

2 y

7 4

2 2_ _b

.yb

.18

.64

.73

number ot days ot stratus during all previous years
number ot days in ail previous years

3del A explanatory variables: constant, y ,, £n(A )

Ddel b explanatory variables: constant, NS , NINS , H ,, £n(A )
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Table lb

une year Validations lor Updatiny MLE tits

of models for one day ahead and dropping

the oldest day (cutoff - U.b)

fybb-by

Model
Initiating
Data bet

lyby-bU

A\t'

1

U

A

transitions
U

1

• u

_1_

a\f
1

II

1

ii
a

b2
2

1

y

u > u

U > 1

1 -> u

1 + 1

24
1U

32
b

a

iy

lybu-bi

A\F
i

u

12
a

b

u -* u

U »• 1

1 + u

1 + i

1961-62

A\F
1

u

bl
4

a

a

u

lb
by

28
y

b

b^
U

4

2a

u

12
a

_l

u

FC
4b
aa

u

i

.14

.47

.yu

17
4U
F

2

1U
a

.by

.au

lb
b2

s F

bU
2

12
6

1

2

12
3

4

U

FC
.33
.y3

.yb

.14

.au

.bO

u

lb
a

y

by

.y4

.33

.bU

.73

U

12
by

24
12

17

ba

31
4

7

2U

11

y

b

.by

.7b

bl

a

lu

FC
.63
. aa

u

a

1U
lb
b7
F

22
a

iy
42

U

bU
aa

13

41

.yi

.36

.73

.62

lb
y

n
bb

.yi

.27

. 44

.77

.b4

.87

bU
b

a

a

. aa

. a2

.ay

.4b

.7b

. b2

52
4

LU

la

2

11
b

a

.98

.64

.bb
1

.b4

.84

47
4

1U
4

b

1U
b

FC
.55
.8b

24
11

17

by
s

u

12
b

12
62

.94

.27
. bb
.69

. bU

.yb

31
4

8

21)

.7b

.94

.67

.40

.b9

."78

b

11
a

b

U

1U

11

b7

.91

.27

.bU

.77

.b4

.8b

28
1U

lb

4U

2

11
"7

2

.9b
U

.5b

.93

3b
2

4

2b

ba
au

bb
4

y

a

23
8

18
42

.9b

.bb

. 82

. b2

bU
b

7

8

.92

.18

.5b

.87

37
1

b

22

2

1U
b

a

.bb

.84
2b
11

lb

b9

.89

.4b

.64

. b2

F

.9b
• U9
.4b

3b
3

4

. 73^23 ===7

.63

.78

.90

.27

.5b

.77

F: entire previous year used to tit initial model

H: halt previous year used to tit initial model

Model A explanatory variables: constant, y t _j_»
£n(A

t
)

Model b explanatory variables: constant, N^, NNb
t ,

H
t _ L

'
^ r'( A

t
)

FC = traction correct predict; ions
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Table 17

Validation of Updating of Model b with Shrinkage.
The Model was initially fit with entire previous

year and one point from new year added and oldest
point dropped in each iteration.

K 1 0.6 0. 5 0. 4

A\F 1 FC 1 FC 1 FC 1 FC
1 12 12 .50 10 14 .42 8 16 .33 5 19 .21

1960-61 U 5 62 .93 4 63 .94 2 65 .97 1 66 .99
transitions S F S F S F S F

+ 53 3 .95 54 2 .96 55 1 .98 56 1

0+1 4 7 .36 3 8 .27 2 9 .18 1 10 .09
1 + 9 2 .82 9 2 .82 10 1 .91 10 1 .91
1 + 1 8 5 .62 7 6 .54 6 7 .46 4 9 .31

A\ F 1 1 1 1

1 23 18 .56 19 22 .46 19 22 .46 15 26 .37
1961-62 8 42 .84 5 45 .90 4 46 .92 4 46 .92

trans it ions S F S F S F S F

+ 37 2 .95 38 1 .97 38 1 .97 38 1 .97
+ 1 1 10 .09 11 11 11

1 + 5 6 .45 7 4 .64 8 3 .73 8 3 .73
1 + 1 22 8 .73 19 11 .63 19 11 .63 15 15 .50

FC = fraction correct

Model B explanatory variables: constant, NS , NIMS , H , , £n(A. )

Cutoff = 0.5 .
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Table 18

Validations tor MLE fits without updating based
on different amounts of historical data

Validation Yr.
Historical data

1961
196U 1958- SO

1962
1961 1958-151

A\F
1

transitions
+ U

- 1

1 -

1 -» 1

1 FC 1 FC 1 FC 1 FC
Model

A

13 11
10 57

.54

.85
14 10
7 60

.58

.90
24 17
3 4"?

.59

.94
26 15
4 46

. 63

.92
S F S F S F S F

48 8

5 6

9 2

8 5

.86

.45

.82
62

53 3

3 8

7 4

11 2

.95

.27

.64
85

39
11

8 3

24 6

1

.73

.80

38 1

2 9

8 3

24 6

,9~i

.18

.73

.80

A\F
1

U

transitions
U > U

-»• 1

1 + u

1 * 1

1 FC 1 FC 1 FC 1 FC
Model

B

14 1U
8 59

.58

.88
13 11
6 61

.54

.91
22 19
6 44

.54

.88
23 18
*4 46

.56

.92
5 F S F S F fa F

50 6

6 5

9 2

8 5

.89

.55

. 82
62

53 3

3 8

8 3

10 3

.95

.27

."73

.77

38 1

2 9

6 5

20 10

.97

.18

.55

.67

38 1

2 9

+ 8 3

21 9

.97

.18

.73

.70

Cutoff point = 0.5

Model B
the same

fit robustly to
results as mLF.

data 1958-60 and cross-validated on 1961 yives

Model B fit robustly to data 1958-61 and cross-val laated on 1962 yives
the same results as MLF except in the cases * and +; tor * tne corres-
ponding numbers are 5 ana 45; for + the corresponding numbers are 7 and 4
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APPENDIX E

Survival Models ; Relation to the Logistic Representation .

E . 1 Preliminary Models

Suppose a system occupies one of two states tor a varying

("random") time period, then switches to the other, and back.

Such events occur at times t = 0,1,2,3,.... Such is the case

with the stratus-no stratus fluctuation that has been studied,

but is also true of many other weather-related events, rainfall-

no rainfall being a prime example.

We discuss several traditional stochastic models as a

preliminary.

Model 1 : Markov Chain

Let Y denote the state variable of the system at time

t. Suppose (here i,j = 0,1)

P{Y =
t=JlVi =i} Pi: > ; (E-l)

in particular, no further past history is useful:

P{Y
t
=j|Y

t_ 1
=i,Y

t_ 2
=a,Y

t_ 3
=b *

t_ t
-k...) - p l3

CE-2)

tor all i,j and all t .

There is then a long-run or steady-state distribution

{•n ,71,} that satisfies balance equations:

"o^i
=

"lPio
= (1_,r

o
)p io

(E-3)

SO

10 '01

PlO + Poi PlO + P 01
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If such a model truly described nature, i.e. stratus level at

an airport, then tt , could be referred to as the climatolog ical

probability of stratus , (Y =1), on a day . Such a model may be

fitted to data: one simply estimates Pin' for example, by

the fraction of changes from 1 to (stratus to no-stratus)

observed in an observational period. The model does not have

the capacity to incorporate physical parameters or explanatory

variables, such as dewpoint depression.

Model 2 : Two-State Renewal Process

Let S represent the generic length of a stratus period,

i.e. or number of days throughout which there is uninterrupted

stratus (Y =1). Just before S , and just after, there will be

periods of one or more no-stratus days; let such a generic pe-

riod be C (C denotes "clear"); (throughout the period

Y = U). If {S.} is a sequence of statistically indpendent

stratus periods from the same distribution, and {C . } is a

collection of corresponding clear periods, then the time history

of system state appears as below:

• © • • •

• o • o

++ Ci . <--s
2
— > + c

3

bZ



In the long run,

E[S]
lim P{Y =1} =

t E[S] + E[C

Mean Length of Stratus Period .

Mean Length of Strat. + Mean Length of No-Strat.

The above can be called the climatological probability of stratus

on a day. Strictly, the two-state renewal process model stipulates

that the sequence of stratus day periods {S
.
} is one of inde-

J

pendent, identically distributed random variables, as is the

sequence of clear day periods {C } ; the two sequences are mutu-

ally independent. The Markov chain model is a special case of

the two-state renewal model in which stratus periods, generically

S , have a geometric distribution with mean E[SJ , and the clear

periods, C , have their, generally different, geometric distri-

bution with mean E[C].

Once again, this model contains no direct accounting for

the possible influence of explanatory variables upon the proba-

bilities of stratus state changes.

E . 2 The General survival Model

Suppose a forecaster is in action at time t . He easily

notes the current system state; suppose Y = , i.e. no

stratus. He wishes to predict the system state at t + 1. A

believer in Model I will act in an actuarial fashion, computing

the conditional probability that the same state will prevail

("survival" occurs), given that the current clear state has

lasted tor d days:

53



P{C>d+l |C>d} = e

-h
Q
(d+l)

or

p { Y
t + l

=1
'

Y
t
=U ' Y t-l

= ° Y
t-d+ i

=0
' Y t-d =1....} =

(E-6)

= P{C<d+l|C>d} (E--7)

= 1 - e

-h (d+1)

Similarly, if stratus is now present (Y =1),

P{Y
t+1

=l|Y
t
=l,V

t _ 1
=l V

t _d+1
=l,Y

t _d
=0,...}

= e

h
1
(d+l)

(E-8)

the quantities h (d), h,(d) may be referred to as the hazards

associated with the states in question, for

-h
1
(d+1)

1 - e - h
x
(d+l) i t h, ( d+1 ) is small

is the conditional probability, or, picturesquely, hazard , that

a stratus period of duration (
" lif elength " or "age") d actually

"dies", or changes to a non-stratus period at age d+1.

Similarly when a non-stratus period is in progress, the change

occurs with hazard h„(d+l).

A promising enterprise is now to enhance the above forecast

of survival, or death, at age d+1 by further relevant informa-

tion about the physical environment of the process. Under present

circumstances, i.e. when forecasting stratus, one might well use

54



dewpoint depression A as well as previous days of stratus (or

no-stratus). Other explanatory variables might well be appropri-

ate, and can perhaps be identified from physical arguments aug-

mented by graphical or other exploratory techniques.

In order to utilize the hazard notion in a regression

context it is convenient to put

h
Q

= exp{x
t
a
Q

} (E-10)

where for instance the vector of explanatory variables might be

and

x
t

= (l r NS tf A
t
,H

t „ lf t)

-0
( 6 01' * * * ' 3 0p

}

(E-ll)

(E-12)

is the required system of constants. A form such as (E-1U) can

never be negative, a minimal requirement. Precisely the expres'

sion (E-10) has been used by Cox (19 7 2) for describing hazards.

Actually Cox's hazard is written as

X ( t )exp{xg} (E-13)

Suppose observations are available on n days: these

are of the form

(y
t'

X
tl'

X
t2'***

,X
tp

)
'

where, as was mentioned earlier, possibly

tl
1, x = ln(A

fc

), x
fc3

= H
t _ lf x

t4
= NS

t
(i.e. # days of

continuous stratus) .
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Note that interactions and transformations can directly be

included; e.g. simply put x
fc5

= x
t3

x
t 2

= H
t-1

x ln < A
t

) to

represent an interaction term.

Now the likelihood for the 3^ vector is

n -h
Q
(x ) y "h (x ) 1-y

L(3_ ;y_,x) = n Le J Ll-e J

t = l

(fcI-14)

taking logs, we get

n -hyix )

MB.) =
I ty

t
h
u
(x

t
) + (l-y

t
)£n[l-e

= -
I ly explx^J + ( l-y

t
)£n(l-exp{x

t 3.u
}) ] (E-lb

and this can be maximized by choice of 3_ . , a non-linear

optimization task. The usual approach would involve differen-

tiation with respect to $.. , and solving the resulting non-

linear system by a variation of the Newton-Raphson method.

Package programs are available tor such a task.

E . 3 The Logistic Model from Cox's Model

Suppose a Cox model is under consideration tor describing

the probability distribution ot "age to death" or, in the present

context, the survival ot a stratus (or no-stratus) episode tor

another day. in a simple torm, the probability ot survival

through t + 1 in state j (j = 1,U) given that for the past m

time periods state j is in effect is
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V m'V E p{Y
t + i

=jlVJ'Vi =^--- Y
t- lB-i)"J'WJ'^t- st }

-h (m+l)
= e J = exp [-A ( t )exp{x 3.} ] . (E-16)

Ordinarily X (t) is thought of as a deterministic but
J

unknown function of t , i.e. time since start of the process.

In an application to stratus forecasting, and to other weather

phenomena, it may be desirable to allow a dependence of the basic

hazard rate upon m , the duration or "age" of the current epi-

sode (stratus, or non-stratus as the case may be): X (m). This

necessitates a specification, either parametric or non-parametric;

the Cox procedure in Cox [1972] was to estimate X . (m) non-

para metrically.

In order to associate the Cox model explicitly with the

logistic, adopt the attitude that X.(m) is actually random ,

and is independent ly distributed from period to period, with a

distribution characteristic of the state. In such a case we can

do no better than to attempt to estimate the model

P (m,x ) = E(exp[-A (m)exp{x £}]) , (E-17)

where the expectation operator E(») is over the distribution of

the now-random hazard. To be quite specific, allow X .(m) to

have the Gamma distribution for a . ,y . > ,

P{X
n
(m) < x} = / e J —hT~\ h^ ' (E-18)

where a and v characterize the hazard variability when

state j is in effect. Now for this distribution the expectation

is explicitly in terms of the Laplace transform:
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a .y y .

3 (a .y) J

P (m,x. ) = /°°exp[-y exp{x R } ] , -j y dy
J L Q L 1 V

' -i
' J

J.

Y
3

a . + exp{.x_4-.§.}

Y A

1

1 + 1 e^ti
a •

J

(E-19)

This is the probability of survival in state j for one more

period (no change).

Now the probability of a change is, using the above

randomizing model,

P{Y
t+1

*j|Y
t
=j,x

t
} = 1

"
J

1 *t£
1 + - e

a .

3

and, in case y •
= 1 (mixing by an exponential) we find

-i M
a . e_J

(E-20)

P(Y
t + 1

^lY
t
=:^t

=x
t

}
=

-1 ^
1 + a . e

(E-21)

J

which is precisely the logistic regression model. It is thus

clear that the logistic regression model can arise from a plau-

sible stochastic mechanism. Note that the derivation presents

an alternative to the simple logistic model that incorporates one

more parameter, thus possibly allowing for the better represen-

tation of a wider range of binary response data than by the

classical logistic.
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E .4 The Cox Survival Model with Stable-Law Random Hazard .

It is of interest to investigate other ways of introducing

auxiliary randomness into the Cox proportional hazard survival

model. This process considered here represents model parameter

fluctuation from day to day (in the present application) that is

not covered by the simple representation

H*
t + 1

=
J | \ = JfX

t
= x

t
) = exp[- A exp{x

t
3_}] ; (E-22)

instead the form of the randomized model is obtained by insertiny a

term in the hazard:

P{y
t + l

=
J I

Y
t
=
J, -t

=
-t'

e
t

}
= exP [ " Xe

t
ex p{>Lt e_}j .

(E-23)

Now e is not directly observable or estimable if, as

is assumed, only one observation on a probabi li ty depending on

each e is available. Effectively one observes the marginal

probability of *.. + i

=
J ' given ^ =J and values of the explana-

tory variables X :

P{Y
t+l =J I

Y
t =J '-t

=X
t

}
= E

e
(ex P [_Ae

t
exp{x

t
£}J) .

(E-24)

Suppose now that e obeys a positive stable law distri-

bution (see feller (1966), p. 17U). In this case the Laplace

transform of e is always the form

-se Y

E[e
t

J
= e

(aS)
, U < Y < 1 . (E-2b)

Unfortunately, explicit formulas tor the density of e are

generally not available; that for y = 1/2 is an exception:

f (x; 01,-7) =
T7~> e • (E-26)

t /2n(x/a)

by



It follows generally and directly from (E-24) and (E-z5)

that if e is positive stable the marginal probability of one-

day survival is

= exp[-(Aa) T exp{x_
t
YB_}] , (fc-27)

once again exactly a Cox model (i.e. of the form (E-22)) but now

with the parameters

A' = Ua) 1 (E-28)

Thus the particular Cox model discussed is completely insensi-

tive to the type of hazard randomization introduced here. Notice

that the effects of the explanatory variables or covariates,

x , as measured by the magnitudes of their coefficients

IB + y| , y < 1) , becomes progressively smaller as y + u ; the

latter "shrinkage" tendency is associated with greater and

greater "spread" of the e. distribution (here "spread" cannot

be measured by variance, tor the latter tails to exist). It

follows that the predictive (in terms of explanatory variables)

power of a Cox model could improve by reducing any tendency

towards hazard randomization of the type exhibited, if such is

poss ible

.

further work on randomized Cox models yielding binary time

series will be reported elsewhere.
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APPENDIX F

Spectral Analysis of Hourly Stratus Levels and Dew-Point

Depression for July-September 1958 .

The data for the height of the stratus level are hourly

records, in units of hundreds of feet, of the height of the

stratus layer. There are 2208 such observations. The data is

integer valued with a minimum of three and a maximum of 999;

1410 of the observations are 999 which denotes the category of

no stratus (infinite height); the next largest observational

value is 888, of which there are 62; all the rest of the obser-

vations are less than or equal to 180.

Logarithms of the stratus heights were taken to reduce

the range of the data. Figure (4) shows the Jin (normalized

periodogram) of the transformed data; (cf. Cox and Lewis (1966)

pp. 99). If the data are uncorrelated and stationary then

the values of the normalized periodogram will appear independent

and have the unit exponential distribution. The line is at the

95% quantile for the maximum of 1104 independent unit exponentials

The largest peak occurs at 91. Other peaks occur at 1 and 2 7 6.

The peak at 91 suggests that a 24 hour cycle may be present; the

peak at 2 7 6 suggests an eight hour cycle. The peaks around 1 may

be attributable to the dependence of the data. A least squares

cyclic fit for the 24 and eight hour cycles was next carried out.

The residuals from the fit were then whitened, using an AR2 proc-

ess. Figure (5) shows the log (normalized periodogram) of the resi'

duals following the cyclic fit and AR2 whitening. There are still
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two values of the periodogram above the quantile line at 91 and

160. Figure (6) exhibits the cumulative periodogram of the

residuals. If the residuals were uncorrelated and stationary,

then the cumulative periodogram would have the same distribu-

tion as the order statistics of an independent sample of 1104

independent uniform random variables. The Kolmogorov-Smirnov

statistic of goodness of fit is 1.12 (Theoretical 99% quantile is

1.628) and the Anderson-Darling statistic is 1.39 (theoretical 99%

quantile is 3.8S"7 ).

As a result of the above, we model the logarithm of

hourly stratus heights as

in L = (-1.55)sin(~|) - 0.322 cos(^|)

(-0.202)sin(^^) " 0.300 cos(^) + A t ;
o o t

A = 0.^50A
1

+ O.U^BA
2

+ E

m*where E are stationary and uncorrelated random varicbles.

I
Figure (

7
) shows the residuals E .

A similar analysis was carried out on £n [dew point

depression + 11 (LDPD). The data range from to 9.21; the values

have a discrete nature, but not as noticeably as that of the

stratus levels. The Jln-per iodogram of LDPD is given in

Figure 8. There are visible peaks at 92, 186 and 2 7 6, as

well as near 1. The peaks at 92, 186, and 2 7 6 suggest 24 hr,

12 hr, and 8 hr cycles, respectively. A least-squares cyclic

fit was made, and the residuals from the fit were once again

whitened with an AH2 process.
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Figure 9 gives the cumulative per iodogram of the residuals

with the Kolmogorov-Smirnov and Anderson-Uarling statistics. Our

model lor LDPD is

LDPD
t

= 0.015 sin(^j-) + 0.019 cos(^)

+ 0.060 sin(-^j-j) - 0.031 cos(^y|)

+ 0.087 S i n (il^) + 0.061 cos(^)

+ b

b = .802 b + .092 b + E .

A graph of the residuals { E
f

} is presented in Figure 10

Note the two large residuals.

Next the residuals, (k } °£ tne ^ n (stratus neight)

level were regressed on ^
t

^ > tne residuals of Jin (dew point

depression) using a least-squares procedure and the robust bi-

weight procedure.

E* = 0.0005 + 0.2712 E^

(.022) (.076)

(Least Squares)

(Standard Errors

E* = 0.0073 + 0.084 E^ ( b iweight

)

If the two points corresponding to large LDPD residuals

are deleted than the following values for regression coefficients

are obtained

E
£

= 0.009 + .3421 E
d

(.022) (.086)

( Least Squares

)

(Standard Errors)

d d
E = 0.0083 + 0.1372 E ( biweight

)

c-,
)



The positive slope of the regression of the residuals

suggest that the larger the dew point depression, the higher

the stratus level. Since the regression was performed on the

residuals of both series after detrending and whitening the

relationship should not be strongly influenced by non-stationary

and dependence effects in the marginal series.

The small values of the fitted slopes suggest that the

relationship is present, but not very strong. This relationship

together with the box plots of Figure 1 provide evidence that

aewpoint depression and the existence of stratus are indeed

re lated

.

The residuals were also examined for lagged relationships,

i d
eg. a relationship between E and ^*._-j • No relationships

were evident.
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APPENDIX G

Threat Scores

In this section we discuss the asymptotic distribution of

a threat score.

Consider an event that either does or does not occur on

day n, n = 1 , . . . ,N .

Let

1 if event occurs on day n ;

Let

Let

U if event does not occur on day n .

1 it the prediction is made that the event
occurs on day n ;

U if the prediction is made that the event
does not occur on day n .

N

(1-YH1-X )L
, n n

n = l

be the number of correct predictions of the event not occurring;

N

s, = y y x ,

1 L
, n n

n = i

be the number of correct predictions of the event occurring;

F I, (1"V X
n '

n = l

be the number of incorrect predictions when no event occurs;
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F, = y Y (1-X ) ,

n-1

the number of incorrect predictions when the event occurs.

The threat score for predicting that the event occurs is

T =
S
l

+ F
u

+ F
l

(li-D

Equations (A-2), (a-3), and (a-4) give threat scores for predic-

ting changes from no stratus to stratus, changes from stratus

to no stratus, and all changes respectively.

Note that

T =
1-S, \ L\l IM /

(G-2)

where f ( x , , x )

1-x..

If there is perfect prediction, then S,.+ S,= N and T=i. It b,=U

then T=U. In the case of predicting changes from no stratus to

stratus, the threat score would be U if prediction of stratus

is done using only persistence.

Assume (b
()

' t*
( ,

# b,f t' . ) has a multinomial distribution with

parameters N, y , y UA # ^n' Y iu*
Asymptotically as

/
S
U

b
'u

S
l

b
'l\

N * o>,
I
——

'
——

'
——

'
—— J has a normal distribution with mean

(r uu' Y ul' Y ll' Y lu*
and covariance matrix — I where I eguals
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Y uu (

1

Y uu '

Y UU Y U1

Y UU Y 11

Y U0 Y 1U

Y UU Y U1

Yoi (1 -Y oi }

Y U1 Y 11

Y U1 Y 1U

Y UU Y 11

Y U1 Y 11

Y ll
(1 -Y ll )

Y 11 Y 1U

Y UU Y iU

Y U1 Y 1U

Y 1I Y 1U

Y iu
(1 - Y iu }

(ct. Bishop et al. (1975)).

A Taylor expansion of 1 in (G-2) yields

r -lii- + J- l?!> \

YH (tl \

+ o ma XU Y UU/'U Y ll)

It tollows trom an application of the multidimensional 6 -

method (ct. Theorem 14.6-2 of bishop et al.) that as N -» °°
, T

Y ll
has an asymptotic normal distribution with mean ^z anc'

UU

1 ^variance — a where
N

2
X Y ll Y UU

a = Y ii
—

-T-
(i_Y

uu )

1-T
It y is fixed, then a has a maximum at y,

,

1

UU
at

which it has the value
2<1-^

>

'

At Y n = U ana y
± ±

= 1 - y
U(j

, o = u .
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Another application of the 6-method shows that the trans-

formed threat score arcsin/T has an asymptotic normal distribu
T

l

1-T,

T lltion with mean arcsin/^ and variance
00

1 1

N 4 ( 1 - y )

*

v Y 00
'

Thus, if Y nn is fixed, then the transformed threat score

arcsin/T has a variance which does not depend on y . How-

ever, both the threat score, T , and arcsin/T can have large

variance if Ynn i-s c l° se to 1 (which will often be the case)
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