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https://doi.org/10.1098/rs0s.221475 Measurement noise is an integral part of collecting data of a
physical process. Thus, noise removal is necessary to draw
conclusions from these data, and it often becomes essential to
construct dynamical models using these data. We discuss a
methodology to learn differential equation(s) using noisy
and irregularly sampled measurements. In our methodology,
the main innovation can be seen in the integration of deep
neural networks with the neural ordinary differential
equations (ODEs) approach. Precisely, we aim at learning a

neural network that provides (approximately) an implicit
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representation of the data and an additional neural network
that models the vector fields of the dependent variables. We
combine these two networks by constraints using neural
ODEs. The proposed framework to learn a model describing the

vector field is highly effective under noisy measurements. The
approach can handle scenarios where dependent variables are
unavailable at the same temporal grid. Moreover, a particular
structure, e.g. second order with respect to time, can easily be
incorporated. We demonstrate the effectiveness of the proposed
method for learning models using data obtained from various
differential equations and present a comparison with the neural
ODE method that does not make any special treatment to noise.
Additionally, we discuss an ensemble approach to improve the
performance of the proposed approach further.
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. | 1. Introduction
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Uncovering dynamical models explaining physical phenomena
and dynamic behaviours has been active research for centuries.
When a model describing the underlying dynamics is available,
it can be used for several engineering studies such as process
design, optimization, predictions and control. Conventional
approaches based on physical laws and empirical knowledge
are often used to derive dynamical models. However, this is
impenetrable for many complex systems, e.g. understanding the
Arctic ice pack dynamics, sea ice, power grids, neuroscience or
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Figure 1. The figure illustrates the framework for denoising the data and learning a model describing underlying dynamics. For this,
we determine an implicit representation of the noisy data (approximately) by a network N\ l‘r,"p and another network for the vector
field A/2". These two networks are connected by enforcing that the dynamics of the output of the implicit representation can be
given by A/ :,Z". Once the objective function (shown in ¢) is minimized, we obtain an implicit network for denoised data and a
model for the vector field A/ Z" ().

finance, to only name a few applications. Data-driven methods to discover models have enormous
potential to better understand transient behaviours in the latter cases. Furthermore, data acquired
using imaging devices or sensors are contaminated with measurement noise. Therefore, systematic
approaches to learning dynamical models with proper noise treatment are required.

In this work, we consider learning autonomous nonlinear differential equation of the form

x(f) = g(x(t)) and x(0) =xo, (1.1)

where x(t) € R" denotes the solution at time #, x(t) is the time-derivative of x at time f, and the
continuous function g(-):R" — R" defines the vector field. We aim to learn to the vector field g(-)
using the noisy measurements. Towards this aim, the initial work [1] proposes a framework that
explicitly incorporates the noise into a numerical time-stepping method, namely a Runge—Kutta
method. Though the approach has shown promising directions, its scalability remains ambiguous as
the approach explicitly needs noise estimates and aims to decompose the signal explicitly into noise
and ground truth. Moreover, it requires that the Runge-Kutta method can give a reasonable estimate
at the next step. Additionally, irregular sampling (e.g. when dependent variables are not collected or
not available at the same time grid) cannot be applied, which can be highly relevant when
information is gathered from various sources, e.g. in medical applications. This work discusses a deep
learning-based approach to learning dynamical models by enhancing neural networks with adaptive
numerical integrations. This allows learning models to represent the vector field accurately without
estimating noise explicitly and when dependent variables are arbitrarily irregularly sampled.

1.1. Our contributions

Our work introduces a framework to learn dynamical models by innovatively blending neural networks
and numerical integration methods from noisy and irregular measurements. Precisely, we aim at learning
two networks: one that approximately represents the given measurement data implicitly, and the second
one that approximates the vector field. We connect these two networks by enforcing an integral form of
the ordinary differential equation (ODE) as depicted in figure 1. The appeal of the approach is that we do
not require an explicit noise estimate to learn a model. Furthermore, the proposed approach is applicable
even if each dependent variable is collected on a different time grid, which can be irregular.
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The remaining structure of the paper is as follows. In the next section, we present a summary of B
relevant work. In §3, we present our deep learning-based framework for learning dynamics from
noisy measurements by combining two networks. In §4, we also demonstrate the effectiveness of the
proposed methodology using various synthetic data with increasing noise levels. Section 5 discusses
the application of learning second-order dynamical models. Moreover, in §6, we discuss how to
handle irregular sampling of measurements. We conclude the paper with a summary and future
research directions. We also discuss an ensemble approach [2-6] to improve our approach further by
taking a mean of the ensemble models.

2. Relevant work

Data-driven methods to learn dynamical models have been studied for several decades (e.g. [7-9]).
Learning linear models from input-output data goes back to Ho & Kalman [10]. There have been
several algorithmic developments for linear systems, for example, the eigensystem realization algorithm
[11,12], and Kalman filter-based approaches [13-15]. Dynamic mode decomposition has also emerged as
a promising approach to construct models from input-output data and has been widely applied in fluid
dynamics applications (e.g. [16-18]). Furthermore, there has been a series of developments to learn
nonlinear dynamical models. This includes, for example, equation-free modelling [19], nonlinear
regression [20], dynamical modelling [21] and automated inference of dynamics [22-24]. Using symbolic
regression and an evolutionary algorithm [25,26], learning compact nonlinear models becomes possible.
Moreover, leveraging sparsity (also known as sparse regression), several approaches have been proposed
[27-32]. We also mention the work [33] that learns models using Gaussian process regression. All these
methods have particular approaches to handling noise in the data. For example, sparse regression
methods (e.g. [27,28,32]) often use smoothing methods before identifying models, and the work [33]
handles measurement noise as data represented like a Gaussian process.

Even though the aforementioned nonlinear modelling methods are appealing and powerful in
providing analytic expressions for models, they are often built upon model hypotheses. For example,
the success of sparse regression techniques relies on the fact that the nonlinear basis functions,
describing the dynamics, lie in a candidate feature library. For many complex dynamics, the
utilization of these methods is not trivial. Thus, machine learning techniques, particularly deep
learning-based ones, have emerged as powerful methods capable of expressing any complex function
in a black-box manner given enough training data. Neural network-based approaches in the context
of dynamical systems have been discussed in [34-37] decades ago. A particular type of neural
network, namely recurrent neural networks, intrinsically models sequences and is often used for
forecasting [38-42] but does not explicitly learn the corresponding vector field. Deep learning is also
used to identify a coordinate transformation so that the dynamics in the transformed coordinates are
almost linear or sparse in a high-dimensional feature basis (e.g. [43-46]). Furthermore, we mention
that classical numerical schemes are incorporated with feed-forward neural networks to have discrete-
time steppers for predictions (see [36,47-49]). The approaches in [36,47] can be interpreted as
nonlinear autoregressive models [9]. A crucial feature of deep learning-based approaches that
integrate numerical integration schemes is that vector fields are estimated using neural networks.
Also, time-stepping is done using a numerical integration scheme. Furthermore, in recent times, neural
ordinary differential equations (neural ODEs) in which neural networks define the vector fields, have
been proposed in [50], where it is shown how to compute gradients with respect to network
parameters efficiently using adjoint sensitivities. As a result, one can use efficient black-box numerical
solvers to solve ODEs in a given time span using any adaptive time-stepping method. However,
measurement data are often corrupted with noise, and these approaches do not perform any specific
noise treatment. The work in [1] proposes a framework that explicitly incorporates the noise into a
numerical time-stepping method. Though the approach has shown a promising direction, its
scalability remains ambiguous. The approach explicitly needs noise estimates by learning the
decomposition of the signal into noise and ground truth. Also, it relies on a Runge-Kutta scheme that
can accurately estimate the variable at the next step. In the context of sparse regression, several
attempts have been made to reduce the effect of the noise on the discovered sparse models, which
are, for example, WSINDy [51] and Ensemble-SINDy [52]. However, these techniques rely on sparse
regression assumptions and assume all dependent variables are collected at the same time.
Furthermore, in scenarios where the data are collected on an irregular time grid, the work [53]
discussed a methodology by combining gated recurrent unit (GRU) and neural ODEs. In the
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approach, an estimate for the initial condition of (latent) ODEs is learned, and an ODE for the vector field
is then integrated using the estimated initial condition. However, long sequences are quite challenging to
estimate the initial condition given measurements future in time. Although in [53] the measurements can
be collected at an irregular time grid, it still requires that all dependent variables are measured at the
same time grid. When each dependent variable is collected at a different time grid, the approach [53]
is not even applicable. Gaussian processes have recently been combined with neural ODEs to deal
with noisy measurements and irregular measurement sampling [54]. In this, each dependent variable
is represented as a Gaussian process, and a probabilistic model is learned, describing the underlying
dynamics. The approach, however, depends on the modelling assumption for each dependent variable
and yields a probabilistic model rather than a deterministic model. Furthermore, it does not focus on
recovering the clean data from the noisy measurements.

3. Proposed methodology for learning dynamics: implicit networks
combined with neural ODEs

This section discusses our framework for learning dynamical models using noisy measurements without
explicit noise estimation. To achieve the goal, we use the powerful approximation capabilities of deep
neural networks and their automatic differentiation feature with the neural ODEs approach [50].
Neural ODEs allow one to integrate a function, defining the vector field, with any desired method
and accuracy, and computing derivatives with respect to the parameters efficiently. For details, refer
to Chen et al. [50]. Consider the nonlinear dynamical system of the form (1.1). Note that the solution
x(t;) can be given as

x(t) =x(t) + | gx() s 1)

Next, we discuss our framework to learn dynamical models from noisy measurements. The approach
involves two networks. The first network implicitly represents the variable as shown in figure 1b, and the
second network approximates the vector field, or the function g(-). These two networks are related by
connecting the dependent variables at time #; and ¢, as given in (3.1). That is, the output of the
implicit network is not only in the vicinity of the given noisy measurement data, but also its
time-evolution can be defined by g(x) or as in (3.1).

To be mathematically precise, let us denote noisy measurement data at time t; by y(#;). Furthermore,
we consider a feed-forward neural network, denoted by N Iomp and parameterized by 6, that
approximately yields an implicit representation of measurement data, i.e.

y(t) = N ™ (1) =:x(t), (3.2)
where i € {1, ..., m} with m being the total number of measurements. Additionally, let us denote another

neural network by N g Dyn parameterized by ¢ that approximates the vector field g( -). We connect these two
networks by enforcmg that the time-evolution of the output of the network /\/ , © can be described by

Nzy , ie.
x(tiv1) = x(4) + [’/ g(x(7))dr and x(t) = NDyn(x( t)), (3.3)

where x(t) is defined in (3.2). As a result, our goal becomes to determine the network parameters {6, ¢}
such that the following loss is minimized:

L= /\MSE : EMSE + )‘Integral ) EIntegral + )\Grad : £Gradr (34)

where

— Luse denotes the mean square error of the output of the network N I;np and the noisy measurements,
ie.

1 m
Laser=- > ING™ () — y(t)lE, (35)

where y(t;) is measurement data. The loss enforces measurement data to be in the vicinity of the
output of the implicit network, and Ayg is its weighting parameter.
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— The term Liptegra1 links the two networks by comparing the prediction, i.e.

2

, (3.6)
F

ti

X(ti+1) - X(ti) - J g(X(T)) dr

£

1
£Integra1 .= m Z

where x(t;): =N i,mp(t,-) and the parameter Arytegra1 defines its weight in the total loss.

— The vector field at the output of the implicit network can also be computed directly using automatic
differentiation, but it can also be computed using the network N’ Eyn' The term Lgraq penalizes its
mismatch as follows:

Lommai= 2 S IN D x(0) ~ X(®)]E, 7)

and Agraq is its corresponding weighting parameter.

The total loss £ can be minimized using a gradient-based optimizer such as Adam [55]. Once the
networks are trained and have found their parameters that minimize the loss, we can generate
the denoised variables using the implicit network A l,,mp, and the vector field by the network N 2}7“.
In the rest of the paper, we denote the proposed methodology by implicit-neural ODEs (in short Imp-
NODESs).

4. Numerical experiments

We now investigate the performance of the approach discussed in §3 to denoise measurement data and to
learn a model for estimating the vector field by means of an example. To that aim, we consider data
obtained by solving a differential equation that is then corrupted using additive Gaussian white noise
by varying the noise level. For a given percentage, we determine the noise as follows:

Noise%
~ Pa ith o = .
v~N(QO, ¢°), witho 100

4.1. Training set-up

We have implemented our framework using the deep learning library PyTorch [56] and have optimized
both networks simultaneously using the Adam optimizer [55]. We have used torchdiffeq [50], a
Python package, to integrate ODEs and to do back-propagation to determine gradients with the
default settings. Since at the start of training the parameters of the neural networks are far from the
optimized values as they are initialized randomly, it is not required to solve the integral term in (3.6)
very accurately. Therefore, we can approximate it using the fourth-order Runge-Kutta (RK4) method
at the beginning of the training. Consequently, we can expect to gain computational advantages
because the RK4 method requires only four calls of the function defining the vector field. Therefore,
we first train using this approximation of the integral for 5000 epochs, followed by training using an
adaptive ODE integration scheme for 10000 epochs. We also make use of a learning scheduler,
for which we reduced the learning rate by one-tenth after every 4000 epochs. Furthermore, for the
implicit networks, we map the input data to [-1, 1]. Note that, in our experiments, we report
the results obtained from one attempt by setting the random seed to 42, except in §4.2.5, where we
discuss an ensemble approach. The neural network architecture design and hyper-parameters are
discussed in appendix A, and we have run all our experiments on a NviDIA P100 GPU.

4.2. Cubic damped model

For illustration purposes, we consider a simple damped cubic system, which is described by

21(t) = —0.1x1 (1) + 2.0x,(1)° W)
and fot) = —2.0x (1) — 0.1xa (1), ‘

It has been one of the benchmark examples in discovering models using data (e.g. [32,57]), but it is
assumed that the dynamics can be given sparsely in a high-dimensional feature dictionary. Here, we
do not make such an assumption but instead learn the vector field using a neural network. For this
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Figure 2. Cubic2D example. A comparison of vector fields of the ground truth and learned models for various noise levels.

example, we take 2500 data points in the time interval [0, 25] by simulating the model using the initial
condition [2, 0]. We add various noise levels to the clean data to obtain noisy measurements synthetically.
We, therefore, corrupt the data by adding mean-zero Gaussian white noise with {5%, ..., 30%} noise.

4.2.1. Training and results

Next, we aim to obtain a denoised signal and a model, defining its vector field using the proposed
methodology. Thus, we construct neural networks for the implicit representation and the vector field
with the parameters given in table 2.

To train the implicit network and the neural network for ODEs, we set Artegra1r = 1.0 and
Aorad = 1072 in the loss function (3.4); we choose Awsg = 1.0 for 5% noise, and Awgz = 0.5 for
{10%, 20%} noise, and Aysg = 0.2 for 30% noise to avoid over-fitting of noisy data for the implicit
network. Moreover, to integrate the ODEs, we consider the time span of 10-dt with dt = 1072. We
compare our methodology with the neural ODE framework [50], which also focuses on learning a
neural network that defines the underlying vector field. We note that the neural ODE framework does
not have any special treatment to handle noise. For this methodology, we train the model for 1000
epochs only, since we shall later illustrate that it is prone to over-fitting when trained longer.
Furthermore, it is trained with the same configuration for neural network architectures and using
training data as for our approach. Having the trained models, we compare the vector field in the
domain [-2, 2] x [-2, 2] by taking 25 points in each direction. We plot the results in figure 2, where
the learned models of the vector fields obtained from the proposed method (Imp-NODEs) are
compared with neural ODE [50] (Std-NODEs).

It is clear from the figures that Imp-NODEs is able to learn the underlying vector field faithfully,
whereas Std-NODEs fails to identify the vector fields correctly which becomes particularly evident for
higher noise levels. Our approach consists of an implicit network, aiming to generate denoised data in
the vicinity of noisy data whose dynamics is defined by a neural network. Thus, we plot the denoised
data obtained from the implicit network in figure 3. We note that despite not employing any data-
filtering scheme, we can obtain denoised data, close to the ground truth clean data even for a high
noise level, which is, otherwise, not possible by employing solely Std-NODEs. We note that the
proposed method takes 0.11s for one epoch, and a similar order of computational time is taken for
Std-NODEs.
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Figure 3. Cubic2D example. The plots show the noisy data, and denoised (recovered) data from the implicit network. The clean
(reference) data are indicated using the black dashed lines. The third and fourth columns indicate absolute and relative errors
between ground truth and denoised data, respectively.

4.2.2. Hyper-parameter effects on performance of Imp-NODEs

Next, we study the effect of hyper-parameters on the performance of the proposed methodology. To that
end, we first note that for Imp-NODEs, the loss function is given by a weighted sum of three terms; see
(3.4). Here, we aim to study the influence of one of the hyper-parameters, namely Aysy, on the
performance of the learned model using Imp-NODEs, by keeping the other two hyper-parameters
fixed. They are set t0 Arptegra1 = 1.0 and Agraq = 1072, similar to the previous subsection. Recall that
Avse determines how well the given data are approximated using an implicit network. We take the
cases of {5%, 20%} noise levels. We train different models by varying Ausg. We then plot its effect on
the performance of the method in figure 4. The figure shows that for low noise levels, the method is
robust with respect to the change of the parameter Aygg, but it is rather sensitive for high noise levels.
This can be explained by the fact that when the data are highly noisy, the implicit neural networks
learn the noise by over-fitting, as more weight is given to fitting noisy data. Moreover, when Aygg is
very low, then the implicit network does not learn enough information from the data; hence, the
underlying vector field cannot be expected to be identified accurately. Therefore, finding a good value
of the hyper-parameters is important to obtain a good fit for the model, defining the vector field.

To determine a good region for Aysg, we make an attempt and borrow an idea from solving ill-
conditioned least-squares problems (e.g. [58]). In light of this, we solve the underlying optimization
problem for different values of Aysg and observe the data-fidelity term Lysg, given in (3.5). We then
plot these quantities, namely Ausg and data-fidelity term, as shown in figure 4b. Such a plot often
exhibits an L-type curve, and a promising region for the value Ayge lies at the corner. These kinds of
studies are often carried out to determine hyper-parameters for solving Tikhonov-regularized least-
squares problems [58]. It is also what we observe in our case, and such a hyper-parameter search can
provide us with a hint about a suitable parameter region.
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Figure 5. Cubic2D example. The figure illustrates the effect of longer training on the performance of Imp-NODEs and Std-
NODEs.

4.2.3. Longer training effect on Imp-NODEs and Std-NODEs

At least in the context of neural networks, it is widely known that longer training with many iterations
(or epochs) can over-fit the model, particularly for noisy measurements. Here, we study the effect of
longer training on the performance of Imp-NODEs and Std-NODEs. Keeping the same setting as in
§4.2.1 and taking data for 20% noise, we learn vector fields using Imp-NODEs and Std-NODEs by
varying the number of epochs. We plot the results in figure 5, which shows that Imp-NODEs is quite
robust with respect to the number of epochs, and it does not start over-fitting when trained longer.
Potential reasoning could be that our approach Imp-NODEs is augmented with an implicit neural
network, which can act as an adequate regularizer to avoid over-fitting. By contrast, we observe that
Std-NODEs starts learning noise as the training progresses after certain epochs. Hence, early stopping
is quite an important factor in having good performance for Std-NODEs.

4.2.4. Employing low-pass filters as a pre-processing step

We have already observed in §4.2.1 that Imp-NODEs is capable of yielding denoised data, which are close
to the clean data, without any pre-processing step. However, one might argue that employing classical
methods such as low-pass filters can be beneficial, and they provide a computationally cheap yet
powerful tool to remove a major part of the noise. This is what we study next—that is, how the
performances of Imp-NODEs and Std-NODEs to learn models are affected when a pre-processing step
is employed. We have the same setting as in §4.2.1, except that we now employ a low-pass filter to
smooth the data. This is achieved by third order digital Butterworth filter with critical frequency 0.1
and is implemented using scipy.'

'The command scipy.single.butter (N=3, Wn=0.1, btype = ‘lowpass’ ).
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Figure 6. Cubic2D example. Having employed a low-pass filter as a pre-processing step, we here present a comparison of vector
fields of the ground truth and learned models for various noise levels.
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median error for vector field
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Figure 7. Cubic2D example. The plot shows the effect on employing a pre-processing step using a low-pass filter on both
approaches, Tmp-NODEs and Std-NODEs. It illustrates that the pre-processing step does not have a major impact on
the performance of Imp-NODESs, in contrast to Std-NODEs.

We present the quality of the learned vector fields using Imp-NODEs and Std-NODEs in figure 6. We
note that the performance of Std-NODEs is only slightly affected, as compared to the case when no pre-
processing step was employed (compare figures 2 and 6). On the other hand, for Std-NODEs, we observe
a substantial improvement, especially for high noise levels. A reason is that Std-NODEs does not have an
inherent capability of handling noise; hence, any filtering approach would be highly beneficial, in
contrast to our approach Imp-NODEs, which implicitly aims to yield denoised data as well. We
explicitly report this behaviour by means of a bar plot; see figure 7. Despite improving the
performance of Std-NODEs by means of pre-precessing, our approach Imp-NODEs still outperforms
Std-NODEs in terms of the quality of the learned models for the vector field. Furthermore, we note
that such filtering approaches are not straightforward to employ, especially in the case of irregular
data. In those cases, employing our approach, namely Imp-NODEs, could be beneficial since it does
not require any pre-processing step yet yields good models and denoised data.

4.2.5. An ensemble approach to improve performance

Ensemble approaches are widely employed machine learning techniques to improve model predictions.
The main principle is to combine predictions of many possible independent models, for example, by
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Figure 8. Cubic2D example. The figure demonstrates the performance of the ensemble approach combined with Tmp-NODEs.
We constructed an ensemble of 20 models and have taken the mean of these to predict the vector field.

taking an average. Several methods exist in this direction, such as bragging, bagging and boosting (e.g.
[2-4,6,59]). In this work, we take inspiration from bagging and propose the following to obtain an
ensemble of models for predicting the vector field.

In bagging, data bootstraps are often used with replacements, followed by learning a model for an
ensemble. In our framework, the data are very limited, thus focusing on using all of them in some
form. However, we require to build an ensemble of independent models. For this purpose, we
propose modifying the terms (3.5)-(3.7) using a weighting vector @ as follows:

1
L = S W ING(8) — v, (4.22)
® 1 2 i 2
g =y 3 (1) = x(t) = | glx(m)dr| (4.20)
i i F
1 n .
and Claa = 3 WRIN P (x(0) — x(6) (4.20)

1

where w; is the ith entry of w and is sampled randomly from a uniform distribution between [0, 1]. Using
the modified loss terms as above, we can define a new weighted total loss as in (3.4). We can expect a
different solution for every random vector o, as the underlying optimization problem is highly
nonlinear and non-convex. Moreover, a physical interpretation of @ or w;, in the context of the classical
bragging philosophy, can be given as follows: it defines a probability of drawing the sample y; (or x).
Consequently, we can obtain an ensemble of models by randomly selecting . For Imp-NODEs, we
build 20 models to predict the vector field for 5% and 20% noise levels and plot the mean of the
ensemble models in figure 8. We also show the standard deviation among these 20 models. These
figures indicate that we have a good approximation of the vector field in the region of the collected
data and can estimate the confidence by means of the obtained standard deviation. To further
quantify the performance of the ensemble approach, in table 1 we note the mean and median errors
of the vector fields of the mean-ensemble model, the best and worst models among the 20 trained
models. Interestingly, we find that the mean-ensemble model can even outperform the best-obtained
model with a single attempt. This illustrates the powerful capability of an ensemble approach.
However, we note that ensemble approaches come with computational disadvantages, as we are not
only required to train several models, but during the inference, we also need to make use of those
many models to take an average of them.

5. Second-order neural ODEs for noisy data

Several dynamics observed in engineering processes, particularly in electrical and mechanical systems,
are of second order, which can be given as follows:

%(t) = g(x(t), x(1)), (5.1)
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Table 1. Cubic2D example. A comparison of the mean-ensemble, the best and the worst models is presented by comparing the [}
mean and median of the error of the vector field. It shows that the mean-ensemble model can outperform the best model
obtained using a single attempt. The best performing model using mean and median measures is highlighed in bold.

5% noise 20% noise

mean mean
ensemble model 0.724 0.191 1.072 0.503
best model 0.700 0.304 1.158 0.697
worst model 0.924 0.282 2117 1.321

*sosi/Jeunof/6106uiysgnd/aposjedos

where x(t) and X(t) denote the first and second derivatives of x(f) with respect to f, respectively. As

discussed in [60], it is advantageous to consider the companion first-order system of (5.1) which
is as follows:
21(t) 8(z2(t), z1(t))
. = , 5.2
[Zz(f)] { z1(t) 6-2)

where z;(f) = x(t) and z,(t) = x(f), and it inherently preserves the second-order behaviour. The above
system can be seen as a first-order system with a constraint. The method proposed in the previous
section can be readily applied to learn second-order neural ODEs for noisy measurements by
incorporating implicit networks.

SLYLTT -0L DS uadp oS Y

5.1. Numerical example: pendulum dynamics
To illustrate learning second-order dynamics, we consider the nonlinear pendulum model
¥(t) = —sin(x(t)) — 0.05 - x(¢t). (5.3)

We collect data using the initial condition [%(¢), x(t)] = [—0.5, 2.0] with time steps of dt = 0.05, which is then
corrupted by adding Gaussian white noise of {5%, 10%, 20%, 30%} noise levels. Here, as well, we do not
apply any pre-processing step to observe the performance of the proposed methodology without any pre-
processing. By imposing the second-order structure, we employ the proposed scheme by combining an
implicit network and neural ODEs. We train the networks with parameters Arytegrar = 1.0, Agraq = 1072,
and Aysg = 1.0 in (3.4) for 5% noise, and Aysg = 0.5 for 10% and 20% noise, and Aysg = 0.1 for 30% noise to
avoid over-fitting. We also use an early stopping for standard neural ODEs to avoid over-fitting, as
discussed in §4.2.1. We train it for 200 epochs. For numerical integration, we take a time span of 5 - dt.

We compare our results with neural ODEs for second-order systems, the approach proposed in [60];
we denote it by SO-Std-NODEs. We plot the learned vector field from both methods in figure 9, where
we see a better performance for the proposed method than SO-Std-NODEs. It is particularly apparent
for more significant noise, where SO-Std-NODEs fails to capture the vector field (see figure 9 third
and fourth rows). Moreover, in figure 10, we plot the denoised data, which is the output of the
trained implicit network, indicating the faithful recovery of the data without performing any prior
pre-processing step.

6. Data at irreqular sampling

Lastly, we illustrate the ready applicability of the proposed method (Imp-NODEs) when the data are
collected at an irregular time grid, especially when dependent variables are not even measured in the
same time frame. This is of particular interest in medical applications, where data often come at quite
irregular time intervals or when the sources of information are different.

We here present the framework for two-dimensional problems; however, it readily extends to
arbitrary dimensional dynamics. Let us consider a dynamical model as follows:

X(t) = g(x(t)), (6.1)

wherex = [x1, x3] € R?. Next, assume that the variable x; is measured on the time grid Ty = {t;l), ., t,(}) },
whereas the variable x; is collected on the time grid T, = {t§2>, ey, tﬁ,% )} with T; # T,. To learn a model for



1.20
2 R
406 2 \n
g 32
931 = 2
e
5 &
-14.57
1.20
RIS
406 7 O
%ﬂ —
031 = @
5 O
)
_14.57 =
1.20
RS
406 2 O
£ N
31 = @
5 o
1457 =
1.20
RS
406 7 9
gn o
931 = _%
502
-14.57

Figure 9. Pendulum example. A comparison of the learned vector fields for second-order dynamical models using the proposed
methodology and SO-Std-NODEs for various noise levels. It illustrates the robustness of the proposed approach with respect to
various noise levels.

the vector field representing the dynamics for x using measurements at an irregular time grid, we construct
an implicit representation for x so that both variables can be estimated on the same time grid (let us denote
it by T=1{t, ..., t,}) but with a constraint using measurements. Assume the implicit network and neural
ODE defining the vector field are denoted by N Iamp and N gyn. To train the network, we define the
following loss function:

1 m 1 m
M <nZ IV DI =xa () + S IV () - x2<t§2>>||p)

1
+ /\Grad - Z
p i F
1 fis1
+ )\Integral EZ
i

NN ™ (7)) dr
where [ - ] denotes the kth element.

m] d m]
NN - G

\wé“‘*’(tm) - N - |

ti

)

6.1. Numerical example: linear 2D

We illustrate the considered scenario using a linear 2D example given by
X1(8) =0.1-x1(f) +2.0 - x2(8)

and

5C2(t) =2.0- X1 (t) -0.1- Xz(t).
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Figure 10. Pendulum example. The figure shows the noisy measurements, and denoised data obtained from the implicit network.
The black dashed lines show the ground truth reference. The third and fourth columns indicate absolute and relative errors between
ground truth and denoised data, respectively.

noisy irregular data zoomed-in

3 4 5 6

Figure 11. Linear 2D example. An illustration of collected noisy and irregular data. In the zoomed-in plot, it is clearly visible that
the variables x; and x; are not collected at the same time frame.

We collect data using an initial condition [x, x;] =[2, 0] with a time step dt = 0.05 in the time interval
[0, 20]. We randomly collect 60% independent samples for the first and second dependent variables,
followed by corrupting them using Gaussian white noise for {5%, 10%, 20%, 30%} noise levels.
Consequently, we obtain the data, which are not only noisy but irregular as well, as shown in
figure 11. Furthermore, we take the time grid for prediction of the output of the implicit network as
the uniform grid with dt = 0.05 for the time interval [0, 20] so that it can be fed to evaluate the
integral terms. For learning models for the vector field, we set Amtegrar = 1.0, Agraa = 1072, and
Ayse = 1.0 for 5% noise level, Aysg = 0.5 for 10% noise level, and Aysg = 0.2 for {20%, 30%} noise
levels. For time integration, we consider the time span 5 - dt.

We show the estimates of the learned vector fields using the proposed methodology and compare
them with the ground truth in figure 12, illustrating faithful capturing of the dynamics. Moreover, we
can recover the clean signal without any prior information about the noise and any pre-processing of
the data, even for irregular data, as shown in figure 13.
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Figure 12. Linear 2D example. A comparison of the learned vector fields for second-order dynamical models using the proposed
methodology and Std-NODEs for various noise levels. It illustrates the capability of the proposed method to learn dynamic
models from highly irregular data and its robustness with respect to various noise levels.

7. Discussion and conclusion

This work has presented a new approach for learning dynamical models from noisy time-series data and
for obtaining denoised data. Our framework blends the universal approximation capabilities of deep
neural networks with neural ODEs. The proposed scheme involves two networks to learn
(approximately) an implicit representation of the measurement data and of the vector field. These
networks are combined by enforcing that an ODE can explain the dynamics of the output of the
implicit network. We also discussed its extension to second-order neural ODEs to learn second-order
dynamical models using corrupted data. Furthermore, we have presented that the proposed approach
can readily handle arbitrarily sampled points in time. The dependent variables need not be collected
at the same time grid. This is possible because of the construction of an implicit representation of the
data in our framework that does not require data to be at a particular grid. We also discussed an
ensemble approach, inspired by bragging, to improve the quality of the models by taking an average
of an ensemble of models. We have also discussed a scheme based on an L-curve analysis to
determine a good regime for hyper-parameters.

In the future, we will focus on using the encoder—decoder framework combined with an implicit
network to learn latent ODEs and explain even richer dynamics. Moreover, when the data are high-
dimensional (e.g. coming from partial differential equations), applying neural ODEs becomes
computationally intractable. However, it is known that the dynamics often lie in a low-dimensional
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Figure 13. Linear 2D example. The figure shows the ability to recover the clean data by means of the implicit network, even for
irreqular data.

manifold. Therefore, in our future work, we aim to use the concept of low-dimensional embedding to
make learning computationally more efficient for high-dimensional data. Furthermore, it would be
interesting to use expert knowledge and physical laws to have physics-constrained neural ODEs so
that the generalizability and extrapolation capabilities of models can be further improved.
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Appendix A. Suitable architectures and chosen hyper-parameter

Here, we briefly discuss neural network architectures suitable for our proposed approach. We require
two neural networks for our framework, one for learning the implicit representation N f, and the
second one A ](,Dyn is to learn the vector field. For implicit representation, we use a fully connected
multi-layer perceptron (MLP) as depicted in figure 14a with periodic activation functions (e.g. sin) [62]
which has shown its ability to capture finely detailed features as well as the gradients of a function.
To approximate the vector field, we consider a simple residual-type network as illustrated in
figure 14b with exponential linear unit (ELU) as an activation function [63]. We choose ELU as the
activation function since it is continuous and differentiable and resembles a widely used activation
function, namely rectified linear unit (ReLU). For the considered examples in the paper, we report the
architecture designs (e.g. numbers of neural and layers) in table 2.
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Figure 14. The figure shows two potential simple architectures that can be used to learn either implicit representation or to approximate
the underlying vector field. (@) A simple multi-layer perceptron and (b) a residual-type network but fully connected.

Table 2. The table shows the information about network architectures and learning rates.

example networks neurons layers or residual blocks learning rates
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