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Nucleon form factors in dispersively improved chiral effective field theory.
II. Electromagnetic form factors
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We study the nucleon electromagnetic form factors (EM FFs) using a recently developed method combining
chiral effective field theory (χEFT) and dispersion analysis. The spectral functions on the two-pion cut at t > 4M2

π

are constructed using the elastic unitarity relation and an N/D representation. χEFT is used to calculate the real
functions J 1

±(t) = f 1
±(t)/Fπ (t) (ratios of the complex ππ → NN̄ partial-wave amplitudes and the timelike pion

FF), which are free of ππ rescattering. Rescattering effects are included through the empirical timelike pion
FF |Fπ (t)|2. The method allows us to compute the isovector EM spectral functions up to t ∼ 1 GeV2 with
controlled accuracy (leading order, next-to-leading order, and partial next-to-next-to-leading order). With the
spectral functions we calculate the isovector nucleon EM FFs and their derivatives at t = 0 (EM radii, moments)
using subtracted dispersion relations. We predict the values of higher FF derivatives, which are not affected
by higher-order chiral corrections and are obtained almost parameter-free in our approach, and explain their
collective behavior. We estimate the individual proton and neutron FFs by adding an empirical parametrization
of the isoscalar sector. Excellent agreement with the present low-Q2 FF data is achieved up to ∼0.5 GeV2 for
GE , and up to ∼0.2 GeV2 for GM . Our results can be used to guide the analysis of low-Q2 elastic scattering data
and the extraction of the proton charge radius.

DOI: 10.1103/PhysRevC.97.055203

I. INTRODUCTION

The electromagnetic form factors (EM FFs) describe the
nucleon’s elastic response to external EM fields and reveal
the spatial distribution of charge and magnetization inside the
strongly interacting system. They are among the most basic
characteristics of nucleon structure and have been the object
of extensive theoretical and experimental study. The electric
and magnetic FFs at invariant momentum transfers t < 0 are
measured in elastic electron-nucleon scattering. Experiments
at |t | � 1 GeV2 have been performed at many facilities, most
recently at the Mainz Microtron (MAMI) [1–3] and at Jefferson
Lab (JLab) [4–6]; see Refs. [7–9] for a review of the other
data. The derivative of the proton electric FF at t = 0, or
charge radius, governs the nucleon structure corrections to the
energy levels of hydrogen atoms (electronic or muonic) and is
measured with high precision in atomic physics experiments.
Recent experimental results have raised interesting questions
regarding the precise value of the proton charge radius and
the extrapolation of the elastic scattering data to t → 0; see
Refs. [10–12] for a review. Theoretical calculations of the
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nucleon FFs at |t | � 1 GeV2 are needed to guide the analysis
of the experimental data and help answer these questions.
Dedicated measurements of the proton electric FF at extremely
low momentum transfers |t | � 10−4 GeV2 are planned at JLab
[13]. Knowledge of the low-t EM FFs is also required for con-
structing the peripheral transverse densities and generalized
parton distributions (GPDs) of the nucleon [14,15].

In a previous article we proposed a method for calculating
the nucleon FFs of G-parity-even operators by combining
chiral effective field theory (χEFT) and dispersion analysis
(dispersively improved χEFT, or DIχEFT) [16]. It starts from
the dispersive representation of the FFs as analytic functions
of t and constructs the spectral functions on the two-pion cut at
t > 4M2

π using the elastic unitarity relation [17,18]. An N/D
representation is employed to separate the coupling of the ππ
system to the nucleon from the effects of ππ rescattering in the
t channel. χEFT is used to calculate the real functions J (t) =
f (t)/Fπ (t): the ratios of the complex ππ → NN̄ partial-wave
amplitudes (PWAs) and the timelike pion FF, which are free
of ππ rescattering and show good convergence. Rescattering
effects are included through the timelike pion FF |Fπ (t)|2,
which is taken from sources outside of χEFT [experimental
data, lattice QCD (LQCD)]. The formulation permits first-
principles calculations of the two-pion spectral functions of the
FFs with controlled accuracy. The spectral functions can then
be used to evaluate the FFs and related quantities of interest
(nucleon radii, transverse densities) with subtracted dispersion
relations. The method results in a dramatic improvement
compared to conventional χEFT calculations of the spectral
functions of nucleon FFs [19–23]. The ππ rescattering effects
included through |Fπ (t)|2 substantially increase the χEFT
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results in the near-threshold region t − 4M2
π ∼ few M2

π and
allow one to extend the spectral function calculations into the
region of the ππ resonances at t � 1 GeV2; see Refs. [15,16]
for details. In Ref. [16] the method was applied to the nucleon
isoscalar-scalar FF, where the ππ system in the t channel is in
the I = J = 0 state. The resulting spectral functions and FFs
were found to be in good agreement with those of empirical
dispersion theory and Roy-Steiner equations [24,25].

In the present article we use the DIχEFT method to calcu-
late the nucleon EM FFs at low t and study their properties. We
construct the isovector EM spectral functions on the two-pion
cut by combining the elastic unitarity relation in the I = J = 1
channel, the N/D representation; χEFT calculations of the J
functions at leading order (LO), next-to-leading order (NLO),
and partial next-to-next-to-leading order (N2LO) accuracy;
and the timelike pion FF |Fπ |2 measured in e+e− annihilation
experiments. Realistic spectral functions are obtained up to
t ∼ 1 GeV2, which includes the ρ meson region essential for
EM structure. With these spectral functions we evaluate the
isovector FFs and their derivatives (radii) using subtracted
dispersion relations. We obtain the individual proton and
neutron FFs by supplementing the calculated isovector spectral
functions with an empirical parametrization of the isoscalar
ones [15]. Excellent agreement with the low-t EM FF data is
achieved.

In particular, the method allows us to predict the higher
derivatives of the EM FFs at t = 0 and explain their collec-
tive behavior. They are given by well-convergent dispersion
integrals, which can be evaluated reliably with the DIχEFT
spectral functions, with minimal model dependence. The
higher derivatives are governed by two disparate dynamical
scales—the vector meson mass, M2

V (V = ρ,ω), and the two-
pion threshold, 4M2

π—and exhibit a rich structure. The values
of the higher derivatives therefore differ qualitatively from
what one would estimate based on a single dynamical scale
(naturalness). Recent attempts to fit the low-t proton electric
FF data and extract the charge radius have engendered a debate
regarding the values of higher FF derivatives and their role in
the t → 0 extrapolation [1,2,26–31]. Our predictions for the
higher derivatives can be compared with those obtained in form
factor fits (regarding order-of-magnitude, collective behavior)
and used to discriminate between different fits. Our method
incorporates the exact analytic structure of the FF in t and the
multiple dynamical scales governing its behavior, which are
essential in the analysis of low-t FF data and the extraction of
charge radius.

The plan of the article is as follows. In Sec. II we describe
the steps of the DIχEFT calculation, expanding on the general
description of the method in Ref. [16] and emphasizing the
aspects that are new or specific to the EM FFs. This includes the
unitarity relations and N/D representation in the I = J = 1
channel, the LO χEFT calculation of the J functions, the
estimate of higher-order corrections, and the parametrization
of the timelike pion FF. In Sec. III we present the results
and their interpretation. This covers the isovector nucleon EM
spectral functions, the nucleon EM radii, higher derivatives
(moments) of the EM FFs and their structure, and the spacelike
nucleon FFs at low |t |. In Sec. IV we summarize the results
and comment on possible further applications of the method.

A similar method for calculating nucleon FFs, combining
χEFT and dispersion theory, was described in Ref. [32] and
applied to the EM FFs in Ref. [33]. The differences from our
approach are mainly in the technical implementation of the
ππ rescattering effects in the unitarity relations (N/D method
vs Omnes function) and the estimates of higher-order chiral
corrections. Nucleon FFs were also studied in an extension
of χEFT with explicit vector meson degrees of freedom in
Ref. [34]. The low–t nucleon FFs and their derivatives were
also calculated in heavy-baryon χEFT with �’s, in the context
of a study of two-photon exchange corrections to muonic
hydrogen in Ref. [35].

II. CALCULATION

A. Nucleon EM form factors in DIχEFT

The transition matrix element of the EM current between
nucleon (proton, neutron) states is parametrized by the in-
variant FFs F1(t) and F2(t) (Dirac and Pauli FFs; we use the
conventions of Ref. [15]). The electric and magnetic FFs are
defined as

GE(t) = F1(t) − τF2(t), (1)

GM (t) = F1(t) + F2(t), (2)

where τ ≡ −t/(4m2
N ). At zero momentum transfer the electric

FF gives the electric charge of the nucleon, G
p,n
E (0) = (1,0),

and the magnetic FF gives the total (pointlike plus anomalous)
magnetic moment in units of nuclear magnetons, G

p,n
M (0) =

μp,n = (2.79,−1.91). The isovector and isoscalar components
are defined as

G
V,S
i ≡ 1

2

(
G

p
i ∓ Gn

i

)
(i = E,M). (3)

The FFs are analytic functions of t and satisfy dispersion
relations. They express the FFs at complex t as an integral over
their singularities at real t > 0, corresponding to (unphysical)
timelike processes in which the current couples to the nucleon
through exchange of a hadronic system in the t channel. In the
case of the isovector EM FFs the lowest-mass hadronic state
is the ππ state, and the dispersion integrals start at t ′ = 4M2

π

(two-pion threshold):

GV
i (t) = 1

π

∫ ∞

4M2
π

dt ′
Im GV

i (t ′)
t ′ − t − i0

(i = E,M). (4)

The real functions Im GV
i (t ′) (t ′ > 4M2

π ) are referred to as the
spectral functions. At 4M2

π < t ′ < 16M2
π the ππ state is the

only possible state contributing to Im GV
i (t ′). It is known from

e+e− annihilation experiments that higher states (4π etc.) do
not couple strongly to the EM current, and it is expected that the
ππ channel in the nucleon spectral functions remains dominant
up to t ′ ∼ 1 GeV2. In this region the ππ channel includes
the ρ resonance at t ′ = M2

ρ ∼ 0.6 GeV2, which has a decisive
influence on the EM FFs. In the isoscalar case the dispersion
integral starts with the 3π state at t ′ = 9M2

π , with the dominant
strength at t < 1 GeV2 coming from the ω resonance at t ′ =
M2

ω ∼ 0.6 GeV2. The contribution of higher-mass states to the
isovector and isoscalar FFs is constrained by the total charge
and magnetic moment and has been determined empirically
through fits of spacelike FF data [36,37]; the exact composition
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of these multihadron states is poorly known and will not be
needed in the following applications.

In the region 4M2
π < t < 16M2

π the isovector spectral
functions on the two-pion cut can be obtained from the elastic
unitarity relations [17,18]

Im GV
E(t) = k3

cm

mN

√
t
f 1

+(t) F ∗
π (t), (5)

Im GV
M (t) = k3

cm√
2t

f 1
−(t) F ∗

π (t), (6)

where kcm ≡ √
t/4 − M2

π is the center-of-mass momentum of
the ππ system in the t channel, f 1

±(t) are the ππ → NN̄
PWAs in the normalization of Ref. [36], and F ∗

π (t) is the
complex-conjugate timelike pion EM FF. Equations (5) and
(6) are valid strictly in the region up to the 4π threshold,
4 M2

π < t < 16 M2
π ; if contributions from 4π and higher states

are neglected they can effectively be used up to t ∼ 1 GeV2 =
50 M2

π . The expressions on the right-hand side of Eqs. (5) and
(6) are real because the complex functions f 1

±(t) and Fπ (t) have
the same phase on the two-pion cut (Watson theorem) [38]. The
unitarity relations can therefore be written in a manifestly real
form as [17,18,39]

Im GV
E (t) = k3

cm

mN

√
t
J 1

+(t) |Fπ (t)|2, (7)

Im GV
M (t) = k3

cm√
2t

J 1
−(t) |Fπ (t)|2, (8)

where

J 1
±(t) ≡ f 1

±(t)

Fπ (t)
. (9)

The functions J 1
±(t) are real for t > 4M2

π and thus have no
right-hand cut; their only singularities are left-hand cuts at t <
4M2

π − M4
π/m2

N , the threshold resulting from the singularity
of the nucleon Born term in the ππ → NN̄ PWAs. Equations
(7)–(9) are equivalent to a particular N/D representation of
the PWAs [40],

f 1
±(t) = J 1

±(t)

D(t)
, D(t) ≡ 1/Fπ (t), (10)

in which the numerator functions J 1
±(t) contain the left-hand

cut and the denominator function 1/Fπ (t) contains the right-
hand cut.

To evaluate the spectral functions in the representation
of Eqs. (7)–(9), following Ref. [16], we calculate the real
functions J 1

±(t) in χEFT and multiply them with the empirical
pion FF modulus |Fπ |2. Advantages of this approach are the
following:

(a) The χEFT calculation of J 1
±(t) is free of ππ rescatter-

ing and shows good convergence. Rescattering effects
are entirely contained in |Fπ (t)|2, which is taken from
other sources. In traditional “direct” χEFT calculations
of the spectral functions the ππ rescattering effects
result in large higher-order corrections and render the
perturbative expansion impractical.

(d)

N

(a) (b)

Δ

(c)

FIG. 1. (a)–(c) LO χEFT diagrams contributing to the ππ →
NN̄ PWA in the I = J = 1 channel. (a) N Born term. (b) Weinberg-
Tomozawa contact term. (c) � Born term. (d) Pion EM FF in LO.

(b) The functions J 1
±(t) are dominated by the scales Mπ and

m� − mN associated with the Born graph singularities,
while |Fπ (t)|2 is dominated by the chiral-symmetry-
breaking scale �χ . The representation Eqs. (7)–(9)
is therefore consistent with the idea of separation of
scales.

(c) The squared modulus |Fπ (t)|2 can be imported directly
from the e+e− → π+π− data or from LQCD calcula-
tions without determination of the phase [16,41].

For further discussion of the method we refer to Ref. [16].

B. Leading-order calculation

For calculating the J functions of Eq. (9) we use χEFT
with the SU(2)-flavor group and relativistic N and � degrees
of freedom. This formulation ensures the correct position
of the singularities and includes the important contributions
from the � Born term. The setup of the χEFT calculation is
described in Ref. [42] and summarized in Ref. [15] (fields,
chiral Lagrangian, power counting, values of couplings). The
interactions of the spin-3/2 � field are formulated with
consistent vertices [43–46], and the extended-on-mass-shell
(EOMS) scheme is used to maintain the standard power
counting [47] (diagrams with pion loops do not enter in the
present calculation).

The LO diagrams contributing to the ππ → NN̄ PWAs in
the I = J = 1 channel are shown in Fig. 1. They include the
N and � Born terms, Figs. 1(a) and 1(c), and the Weinberg-
Tomozawa contact term, Fig. 1(b), which appears as the
result of chiral invariance of the dynamics with relativistic
baryons. We take the results for the LO πN → πN amplitude
of Ref. [42] (the first relativistic χEFT calculation of πN
scattering with explicit �), and project onto the I = J = 1
channel to get the PWAs f 1

±(t). The pion EM FF at this order
is just Fπ (t) = 1 (pointlike); see Fig. 1(d). The χEFT results
for J 1

±(t) therefore coincide with f 1
±(t) at this order. Analytic

expressions for J 1
±(t) are given in Appendix A. Numerical

results of the LO approximation will be shown below.
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ρ
= +

FIG. 2. Adjustment of the LEC of the NLO ππNN contact term,
c4, in the DIχEFT approach. The original contact term (filled circle,
left-hand side) is equated with the sum of ρ meson exchange and the
adjusted contact term (open circle).

C. Estimates of higher-order corrections

At NLO accuracy, corrections to the I = J = 1 ππ → NN̄
PWAs arise from the NLO contact term in the chiral Lagrangian
with the low-energy constant (LEC) c4. The value of this
LEC has to be adjusted consistently with our unitarity-based
approach [15]. In standard χEFT calculations c4 receives large
contribution from ρ meson exchange. Since in our formulation
the effect of the ρ is included explicitly through |Fπ (t)|2,
we have to remove it from the value of c4 to avoid double
counting (see Fig. 2). Using the estimate for the ρ contribution
of Ref. [48], c

ρ
4 ≈ 1.63 GeV−1, and subtracting it from the

empirical c4 reported in Refs. [42,49], we obtain the range

c4 [adjusted] = (−0.54,0.27) GeV−1. (11)

Note that these values are much smaller than the original c4 and
consistent with zero, which means that the NLO corrections
to the isovector spectral functions in our formulation are very
small. The analytic expressions for the NLO corrections to
J 1

±(t) are given in Appendix A.
At N2LO accuracy pion loop corrections appear, and the

structure of the χEFT expressions becomes considerably
richer. The ππ → NN̄ PWAs and the pion FF now involve ππ
rescattering in the t channel and become complex at t > 4M2

π ,
in such a way that their phases cancel and the functions J 1

±(t) of
Eq. (9) remain real. Also, πN and π� s-channel intermediate
states appear in the πN amplitude. Following Ref. [15] we
perform a simple estimate of the N2LO corrections to the
spectral functions of the electric FF, by taking the N2LO tree-
level amplitudes and fixing the LECs through the charge sum
rule. We require that the unsubtracted dispersion relation for
the isovector electric FF reproduce the isovector charge when
the integration is restricted to the region t ′ < tmax ∼ 1 GeV2,

1

π

∫ tmax

4M2
π

dt ′
Im GV

E (t ′)
t ′

= 1

2
. (12)

This condition gives N2LO contact term contributions with
sign opposite to that of the LO and NLO results, which provides
a crucial curvature in the electric spectral function and allows
us to extend the calculations up to t ∼ 1 GeV2. In the language
of traditional dispersion analysis these contact terms represent
the negative contributions from the ρ ′, which compensate the
excess charge that would be produced by the ρ alone. We refer
to this partial account of the N2LO corrections as pN2LO.
In the magnetic FF no new tree-level amplitudes with LECs
enter at N2LO level, so that the described method of estimating
of the corrections cannot be applied. Our calculations of GV

M

are therefore limited to NLO accuracy, and are expected to
describe the empirical spectral functions only at t � 1 GeV2.

0.0 0.2 0.4 0.6 0.8 1.0
1

10

100

t (GeV2 )

|F
2

FIG. 3. Empirical parametrization of the timelike pion EM FF
|Fπ (t)|2 obtained from e+e− → π+π− annihilation data (details see
text).

Numerical results of the NLO and pN2LO approximations will
be shown below.

D. Timelike pion EM form factor

For evaluating the timelike pion FF entering in our calcula-
tion we use a Gounaris-Sakurai parametrization of the e+e− →
π+π− exclusive annihilation data [50], including effects of
ρ-ω mixing [51], with the parameters determined in Ref. [26].
The squared modulus |Fπ (t)|2 is shown in Fig. 3. One clearly
sees the ρ resonance at t ∼ 0.6 GeV2 and the rapid variation
resulting from ρ-ω mixing. The fact that |Fπ (t)|2 reaches a
value of ∼2 at t ∼ 0.2 GeV2, and ∼10 at t ∼ 0.4 GeV2, shows
that ππ rescattering is very substantial already at moderate
t and justifies our approach of incorporating these effects
empirically.

Since |Fπ (t)|2 is determined very accurately from the
annihilation data, we neglect the effect of its uncertainty on
the spectral functions. In the following we quote only the
uncertainties of the spectral function resulting from the χEFT
calculation of J 1

±(t).

III. RESULTS

A. Isovector EM spectral functions

The spectral functions of the isovector EM nucleon FFs are
evaluated using the DIχEFT method and parameters described
in Sec. II. Figure 4 shows the results of the χEFT calculation of
the real functions J 1

±(t) at t > 4M2
π [Eq. (9)]. For a better view

the plot shows the functions multiplied by the kinematic factors
of Eqs. (7) and (8), k3

cm/(mN

√
t) and k3

cm/
√

2t , respectively.
One observes the following:

(a) The J 1
±(t) with the kinematic factors are smooth

functions, as expected on grounds of their analytic
properties.

(b) The χEFT calculations of J 1
±(t) show good conver-

gence. In both functions higher-order corrections are
small at threshold and increase with t . LO and NLO
results are close because the adjusted LEC c4 is small
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NLO
NLO+N2LO

Hoferichter et al.

LO

0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

t (GeV2 )

(K
in
em
at
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fa
ct
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)×
J +1

NLO

Hoferichter et al.

LO

0.2 0.4 0.6 0.8 1.0

0.0
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1.5

t (GeV2 )

(K
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ct
or

)×
J −1

FIG. 4. χEFT results for the functions k3
cm/(mN

√
t) J 1

+(t) and
k3

cm/(
√

2t) J 1
−(t), Eqs.(7)–(9), at t > 4M2

π . Dashed lines: LO approx-
imation. Blue bands: NLO approximation. Red band: NLO+pN2LO,
estimated as described in Sec. II C. Solid orange lines: Roy-Steiner
analysis results [52].

[Eq. (11)]. In J 1
+(t) the pN2LO corrections, estimated

as described in Sec. II C, are negative and cause the
function to decrease and turn negative at larger t .

(c) The χEFT results for J 1
±(t) show reasonable agreement

with the functions extracted from an analysis of πN
scattering data using Roy-Steiner equations [52]. In
both J 1

+ and J 1
− the LO and NLO approximation agree

with the Roy-Steiner result up to t ∼ 0.2 GeV2. In J 1
+

the negative pN2LO corrections extend the region of
agreement up to t ∼ 1 GeV2. Note that the large change
between NLO and pN2LO at t > 0.5 GeV2 suggests
that higher-order corrections beyond those included
here might be important in this region.

Here and in the following, the error bands in the figures only
show the uncertainty resulting from the variation of the LECs
at a given order; the total uncertainty should be inferred taking
into account also the discrepancy between the LO, NLO, and
pN2LO approximations.

Figure 5 shows the isovector spectral functions, obtained
by multiplying the χEFT results for J 1

±(t) with the empirical
|Fπ (t)|2, cf. Eqs. (7) and (8). The spectral functions clearly
show the effects of ππ rescattering, which are not suitable

NLO

Belushkin et al.

Hoferichter et al.

LO

0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

t (GeV2 )

Im
G
MV

NLO
NLO+N2LO

Belushkin et al.

Hoferichter et al.

LO

0.2 0.4 0.6 0.8 1.0

0

5

10

15

t (GeV2 )

Im
G
EV

FIG. 5. DIχEFT results for the spectral functions of the isovector
nucleon EM FFs, Eqs. (7) and (8). Dashed line: LO approximation.
Blue band: NLO approximation. Red band: NLO+pN2LO, estimated
as described in in Sec. II C. Orange band: Results of Roy-Steiner
analysis [52]. Black line: Empirical dispersion analysis [55].

for perturbative χEFT treatment and are included through the
empirical pion FF in our approach. Note that the enhancement
through |Fπ (t)|2 is large even near the two-pion threshold
t ∼ 4 M2

π , cf. Sec. II D and Fig. 3. The convergence pattern
of the spectral functions follows from that of the χEFT
calculation of J 1

±(t). In both Im GE and Im GM , the LO
and NLO approximations are in good agreement with the
Roy-Steiner results up to t ∼ 0.2 GeV2. In Im GE the negative
pN2LO correction (estimated) is sufficient to reproduce the
Roy-Steiner result up to t ∼ 1 GeV2.

B. Nucleon EM radii

The nucleon’s isovector electric and magnetic radii are
given by the dispersion integrals

〈r2〉Vi = 6

π

∫ ∞

4M2
π

dt ′
Im GV

i (t ′)
t ′2

(i = E,M). (13)

The factor 1/t ′2 ensures convergence of the integral over the
range t ′ � 1 GeV2; see Fig. 6. The integrals can therefore be
evaluated with the DIχEFT spectral functions. Table I summa-
rizes the DIχEFT results for the isovector radii and compares
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2
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FIG. 6. The integrands of the dispersive integrals for the isovector
nucleon electric and magnetic radii, Eq. (13), evaluated with the
spectral functions of Ref. [52].

them with the results of other dispersive approaches and LQCD
calculations. For the electric radius our NLO+pN2LO result
agrees very well with the result of the Roy-Steiner analysis
[52]. Our lower-order results overestimate this value, because
the LO and NLO spectral functions are larger than the Roy-
Steiner result around the ρ peak. For the magnetic radius our
result is larger by a factor ∼2 than the phenomenological
and LQCD results, because our magnetic spectral function is
likewise too large around the ρ peak.

DIχEFT allows us to calculate the isovector nucleon EM
FFs and radii, which are matrix elements of G-parity even
operators. Experiments measure the individual proton and
neutron FFs and radii. In view of the questions concerning the
proton charge radius measurements, it is interesting to compare
our results directly with the experimental results for the proton
and neutron charge radii. To do so, we supplement the DIχEFT
results for the isovector spectral functions with an empirical
parametrization of the isoscalar spectral functions. We use a
two-pole parametrization with the ω pole at M2

ω = 0.61 GeV2

and a second pole at M2
2 ≈ M2

φ = 1 GeV2 [15]:

ImGS
i (t) = π

[
aω

i δ
(
t − M2

ω

) + a
(2)
i δ

(
t − M2

2

)]
(i = E,M),

(14)

where the coefficients aω
i (including their uncertainties) are

taken from the dispersive FF fit of Ref. [37], and the coefficients
a

(2)
i are adjusted to reproduce the total charge and magnetic

moment. The second pole is an effective pole representing
the overall strength of the spectral function at t ∼ 1 GeV2;
the details of the strength distribution at these values of t are

not important for estimating the nucleon radii. The proton and
neutron radii obtained in this way are summarized in Table II. In
the proton and neutron electric radii, the estimated uncertainty
is dominated by the isoscalar component. (Note that we
have a theoretical uncertainty estimate only for the isovector
component calculated in DIχEFT, and that the uncertainty
in the isoscalar component is purely empirical.) Our results
obtained with the NLO+pN2LO DIχEFT calculation of the
isovector radii are in agreement with the experimental values.
In the magnetic radii the estimated uncertainty is likewise
dominated by the isoscalar component. Note that the DIχEFT
calculation of the isovector magnetic spectral function does not
include the N2LO corrections and strongly overestimates the
empirical result (cf. Table I); this discrepancy is not reflected
in the uncertainty estimate.

C. Higher derivatives of EM form factors

Higher derivatives of the nucleon EM FFs at t = 0 are
of interest for several reasons. In the experimental analysis,
the values of higher derivatives allowed (or assumed) in fits
of FF data at t < 0 directly affect the extrapolation to t = 0
and extraction of the nucleon charge radii; see Refs. [27–31]
for details. In the theoretical studies reported here, higher
derivatives of the FFs represent clean chiral observables that
can be predicted almost model independently with minimal un-
certainties. The comparison of low- and high-order derivatives
reveals the presence of two dynamical scales in the nucleon
FFs, which implies a surprisingly rich structure and should be
incorporated into the experimental analysis.

In the context of the traditional representation of the FFs as
Fourier transforms of three-dimensional spatial densities, the
higher derivatives of the FFs at t = 0 correspond to the higher
r2–weighted moments of the densities. The connection is given
by [30]

GE(t) = 1 + 〈r2〉E
3!

t + 〈r4〉E
5!

t2 + 〈r6〉E
7!

t3 + · · · ,

(15)

GM (t)

μ
= 1 + 〈r2〉M

3!
t + 〈r4〉M

5!
t2 + 〈r6〉M

7!
t3 + · · · ,

(16)

1

n!

dnGE

dtn
(0) = 〈r2n〉E

(2n + 1)!
, (17)

1

n! μ

dnGM

dtn
(0) = 〈r2n〉M

(2n + 1)!
(for either p or n). (18)

Note that for the proton and neutron the magnetic radii are
defined as the derivatives of the FFs divided by the magnetic

TABLE I. Isovector nucleon EM radii calculated in DIχEFT (left columns) and in other approaches (right columns).

LO NLO NLO+pN2LO Lorenz Epstein Hoferichter LQCD Leupold
[26] [53] [52] [54] [33]

〈r2〉V
E (fm2) 0.98 (0.98, 0.99) (0.33, 0.43) 0.416(8) 0.405(36) 0.327(24)(15) (0.27,0.31)

〈r2〉V
M (fm2) 3.28 (2.87, 3.50) 1.78+0.10

−0.11 1.81(7) 1.81(11) 1.08(11)(14) 1.81a

aIn the χEFT calculation of Ref. [33] the LEC c4 is adjusted to reproduce the magnetic radius.
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TABLE II. Left columns: Proton and neutron EM radii obtained from the DIχEFT calculation of the isovector radii and the empirical
parametrization of the isoscalar radii. Right columns: LQCD and experimental results. For the experimental values we quote the averages
compiled by the Particle Data Group (upper and lower limits obtained by adding statistical and systematic errors) [56]. The smaller values
correspond to the extraction from muonic hydrogen measurements; the larger values correspond to electronic hydrogen measurements;
extractions from electron-proton scattering data using different methods have produced results supporting either value; see Ref. [56] for
details.

LO NLO NLO+pN2LO LQCD [54] PDG [56]

〈r2〉p
E (fm2) (1.11, 1.49) (1.05, 1.52) (0.46, 0.94) 0.589(39)(33) (0.706, 0.707)

(0.755, 0.777)
〈r2〉p

M (fm2) (1.19, 1.46) (1.04, 1.54) 0.506(51)(42) (0.53, 0.68)
〈r2〉n

E (fm2) (−0.84, −0.47) (−0.88, −0.40) (−0.29, 0.18) −0.038(34)(6) −0.1161(22)
〈r2〉n

M (fm2) (1.29, 1.64) (1.08, 1.81) 0.586(58)(75) (0.73, 0.76)

moments; this is not the case for the isovector and isoscalar
components. In the following we quote results for the moments;
they can be converted to FF derivatives through Eqs. (17) and
(18).1

The higher moments of the isovector FFs are given by the
dispersion integrals

〈r2n〉Vi
(2n + 1)!

= 1

π

∫ ∞

4M2
π

dt ′
Im GV

i (t ′)
t ′n+1

(i = E,M). (19)

The factors 1/t ′n+1 strongly suppress contributions from large
t ′ and render the integrals well convergent. The integrals can
therefore be evaluated accurately using the DIχEFT spectral
functions. Figure 7 shows the integrands for the isovector elec-
tric FF derivatives with n = {1,2,3}; the curves are normalized
to unit integral for each n and show the relative distribution of
strength in t ′. The distributions clearly indicate the presence of
two dynamical scales: the ρ meson mass m2

ρ ∼ 0.6 GeV2 ≈
30M2

π (the peak of the spectral function), and the two-pion
threshold 4M2

π (the start of the spectral integral). The integrals
receive contributions from both regions of t ′, and their relative
importance changes with n. For a rough assessment we can take
M2

ρ/2 = 0.3 GeV2 as the boundary between the two regions.
For n = 1 approximately 2/3 of the integral comes from the
region t ′ > M2

ρ/2, and 1/3 from 4M2
π < t < M2

ρ/2. For n = 2,
each region contributes about 1/2. For n = 3 and higher, the
near-threshold region dominates.

The presence of two dynamical scales in the isovector
moments can also be demonstrated by considering the ratios
of successive moments,

〈r2n+2〉Vi
(2n + 3)!

/ 〈r2n〉Vi
(2n + 1)!

(i = E,M). (20)

If the dispersion integral were dominated by a certain region
of t ′, the value of the ratio Eq. (20) would be given by the

1The representation of FFs in terms of three-dimensional spatial
densities is physically meaningful only for nonrelativistic systems.
For relativistic systems such as the nucleon a proper spatial represen-
tation is provided by the two-dimensional transverse densities at fixed
light-front time; see Ref. [57] for a review. We refer to the moments
〈r2n〉 only because this representation is used in the experimental
literature, and use it only in the sense of a mathematical representation
of the FF derivatives at t = 0.

average of 1/t ′ over that region. The ratios thus directly reveal
the effective values of 1/t ′ in the integral. Figure 8 shows the
ratios of the isovector electric FF moments obtained with the
DIχEFT spectral functions. One sees that the ratios start with
a value ∼1/m2

ρ at n = 1 and increase to values ∼1/(4M2
π ) at

large n.
The presence of two dynamical scales implies that the

higher FF moments are of “unnatural” size, i.e., their values are
very different from what one would estimate using the value
of the lowest moment and a single-scale functional form of
the FF. [In the dispersive representation such a single-scale
form would be, e.g., a spectral function Im GV

i ∝ δ(t − M2
ρ ),

or derivatives thereof.] This conclusion relies only on general
features of the dispersive representation and is insensitive
to the details of the dynamical calculation presented here.
It has has numerous consequences for the interpretation of
the FF moments and the analysis of low-t elastic scattering
experiments, which will be elaborated below.

Table III shows the DIχEFT results for the higher moments
of the isovector FFs, GV

E and GV
M . Because the dispersion

integrals with n � 2 sample the spectral functions near thresh-
old, the higher moments can be computed accurately and

n = 1

n = 2

n = 3

0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

t (GeV2 )

Im
G
EV

(t)
/t
n+
1

[N
or
m
al
iz
ed

]

FIG. 7. Integrand of the dispersive integral for the moments of the
isovector electric FF GV

E , Eq. (19), for n = 1, 2, and 3, evaluated with
the spectral functions of Ref. [52]. The plot shows the t ′ distributions
divided by the value of the integral, i.e., normalized to unit area under
the curves.

055203-7



J. M. ALARCÓN AND C. WEISS PHYSICAL REVIEW C 97, 055203 (2018)

1 M2

1 4M2

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

n

a n
+1

/a
n

(fm
2

)
[a
n

=
<
r2
n

>/
(2
n+
1)

!]

FIG. 8. Ratios of successive moments of the isovector electric
FF GV

E , Eq. (20), computed using the DIχEFT isovector spectral
functions (see Fig. 5). The horizontal lines indicate the values of the
dynamical scales 1/M2

ρ and 1/(4M2
π ).

represent genuine predictions of our approach. This is seen in
the intrinsic uncertainty estimates of Table III: with increasing
n, the derivatives become less sensitive to higher-order chiral
corrections. We emphasize that one should be careful in
interpreting the numerical values of the individual moments in
Table III, as they contain large factorial factors. The unnatural
behavior of the higher moments should be demonstrated by
taking ratios (see above) or comparing the moments to a
reference FF (see below).

It is worth noting that the ππ rescattering effects included
through the timelike pion FF play an important role even in
the higher FF moments. The moments with n � 3 receive
most of their contributions from the region 4M2

π < t ′ � 10M2
π

of the spectral integral Eq. (19) (see Fig. 7). The value of
|Fπ (t ′)|2 is ∼1.3 at t ′ = 4M2

π , and ∼2 at 10M2
π (see Fig. 3). The

enhancement compared to traditional direct χEFT calculations
of the spectral functions is therefore quite substantial (note that
without the factor |Fπ |2 our results at LO and NLO would be
identical to those of the direct calculation). Nevertheless our
results for the higher moments agree with those of the direct
χEFT calculation of Ref. [35] within errors.

In the isoscalar FFs the strength of the spectral functions
is located overwhelmingly at the ω meson mass. The higher

TABLE III. Higher moments of the isovector nucleon FFs calcu-
lated in DIχEFT.

GV
E

LO NLO NLO+pN2LO

〈r4〉 (fm4) 1.81 (1.72, 1.86) (0.88, 1.02)
〈r6〉 (fm6) 9.86 (9.54, 10.03) (6.68, 7.16)
〈r8〉 (102 fm8) 1.40 (1.37, 1.41) (1.17, 1.20)

GV
M

LO NLO
〈r4〉 (fm4) 6.49 (5.81, 6.85)
〈r6〉 (10 fm6) 3.82 (3.53, 3.98)
〈r8〉 (102 fm8) 5.68 (5.38, 5.84)

TABLE IV. Higher moments of the proton and neutron electric
and magnetic FFs, calculated using the DIχEFT results for the isovec-
tor moments and the empirical parametrization of the isoscalar FFs.

G
p
E

LO NLO NLO+pN2LO

〈r4〉 (fm4) (2.09, 2.48) (2.00, 2.53) (1.16, 1.70)
〈r6〉 (fm6) (10.8, 11.7) (10.5, 11.9) (7.59, 9.00)
〈r8〉 (102 fm8) (1.44, 1.48) (1.42, 1.49) (1.21, 1.29)

Gn
E

LO NLO NLO+pN2LO
〈r4〉 (fm4) (−1.53, −1.13) (−1.58, −1.04) (−0.74, −0.20)
〈r6〉 (fm6) (−8.94, −8.02) (−9.11, −7.71) (−6.24, −4.84)
〈r8〉 (102 fm8) (−1.35, −1.31) (−1.36, −1.29) (−1.15, −1.08)

G
p
M

LO NLO
〈r4〉 (fm4) (2.38, 2.68) (2.14, 2.81)
〈r6〉 (10 fm6) (1.39, 1.46) (1.29, 1.52)
〈r8〉 (102 fm8) (2.05, 2.08) (1.94, 2.13)

Gn
M

LO NLO
〈r4〉 (fm4) (3.30, 2.87) (3.49, 2.51)
〈r6〉 (10 fm6) (1.96, 1.86) (2.04, 1.71)
〈r8〉 (102 fm8) (2.95, 2.91) (3.04, 2.75)

moments are therefore governed by this single scale and are of
natural size. This in turn implies that the higher moments of
the proton and neutron FFs are dominated by the isovector
component and can be inferred from our DIχEFT results.
Table IV shows our results for the moments of G

p
E , Gn

E , G
p
M ,

and Gn
M , obtained using the DIχEFT results for the isovector

moments and the empirical parametrization of the isoscalar
FFs. We stress that the isoscalar information is used here only
to demonstrate that the higher derivatives are dominated by
the isovector component, and that the uncertainties associated
with the isoscalar parametrization are irrelevant in the higher
derivatives.

The theoretical results described here have implications for
the analysis of electron-proton elastic scattering data at low
Q2 ≡ −t and the extraction of the proton charge radius. The
overall behavior of G

p
E in the region 0 < Q2 � 1 GeV2 is

associated with a scale of the order of the vector meson mass
M2

V (V = ρ,ω). The first derivative of G
p
E at Q2 = 0 is of the

order 1/M2
V and therefore appears natural, i.e., simple single-

scale parametrizations of the finite-Q2 data give a reasonable
estimate of the first derivative. The higher derivatives, however,
are governed by the scale 1/(4M2

π ) and appear unnatural.
Single-scale parametrizations or “natural” powers of the first
derivative give qualitatively wrong estimates of the higher
derivatives. To illustrate the point we compare the order of
magnitude of the higher derivatives obtained from DIχEFT
with the ones of the dipole parametrization

G
p
E(t)[dipole] = �4/(t − �2)2, (21)

which provides a good overall description of the FF data at
0 < Q2 � 1 GeV2 with �2 ≈ 0.71 GeV2. Figure 9 shows the

055203-8



NUCLEON FORM … . II. ELECTROMAGNETIC … PHYSICAL REVIEW C 97, 055203 (2018)

DI EFT

Dipole

0 1 2 3 4 5 6 7 8

1

10

102

103

104

105

n

c n
(d
n
G

/d
tn

)/[
dG

/d
t]n

FIG. 9. The normalized ratios of the nth derivative of the proton
electric FF G

p
E and the nth power of the first derivative, Eq. (22). The

ratios are normalized such that their values are unity for the dipole FF
Eq. (21).

ratios

cn

dnG
p
E

dtn
(0)

/[
dnG

p
E

dtn
(0)

]n

, cn ≡ 2n

(n + 1)!
, (22)

as obtained with the DIχEFT results. The coefficients cn are
defined such that for the dipole FF Eq. (21) the ratio is equal
to unity for all n. The ratio Eq. (22) therefore indicates how
strongly the actual higher derivatives deviate from the single-
scale estimate based on the dipole form. One sees that the
ratio is ∼102 for n = 4, and reaches values ∼105 for n = 8. It
shows the striking consequences of the two dynamical scales
in the higher FF derivatives, as implied by their dispersive
representation. A similar observation regarding the ratio of the
actual FF moments to the dipole was made in the context of an
empirical analysis in Ref. [59].

The values of the higher derivatives of G
p
E and their impact

on the Q2 → 0 extrapolation are presently the subject of
intense discussions [27–31]. Fits to the low-Q2 FF data with
different classes of functions (polynomials, rational functions)
give widely different values of the second and higher deriva-
tives; see Table V for a compilation of recent results. The
DIχEFT results are broadly consistent with the range of em-
pirical values. An analysis of FF data incorporating theoretical
constraints from DIχEFT will be the subject of a future study
[60]. For reference we quote in Appendix B the numerical
values of the DIχEFT moments of G

p
E up to n = 20. While the

individual values have little physical significance, their order

of magnitude and collective behavior could be compared with
the pattern and observed in higher-order polynomial fits.

The unnatural behavior of the higher FF derivatives is a
consequence of analyticity and the singularities of the πN
Born amplitudes, which govern the dependence of the spectral
function in the near-threshold region. Any dispersive descrip-
tion that includes the correct near-threshold dependence and
the enhancement of the spectral function in the ρ meson region
should reproduce this behavior. Dispersive fits to the low-Q2

FF data should therefore be able to provide reliable results for
the higher FF derivatives [26,37].

D. Spacelike EM form factors

The DIχEFT approach also allows us to calculate the
nucleon FFs at finite t < 0, where they are measured in eN
elastic scattering experiments. For the isovector FFs we use
the twice-subtracted dispersion relations

GV
i (t) = GV

i (0) + t
dGV

i

dt
(0)

+ t2

π

∫ ∞

4M2
π

dt ′
Im GV

i (t ′)
t ′2(t ′ − t)

(i = E,M). (23)

Here the FFs at t = 0 (charge and magnetic moment) and
the first derivatives (electric and magnetic radii) are taken as
input, and the dispersion relations predict the t dependence
starting from the second order. The integrals in Eq. (23)
are well convergent and can be evaluated with the DIχEFT
spectral functions. For the isoscalar FF we use the empirical
parametrization Eq. (14), which imposes the correct value of
the FF at t = 0. Combining the two we predict the individual
proton and neutron FFs. Figure 10 summarizes the results.
The estimated uncertainties are dominated by those of the
isoscalar component, for which we have only the empirical
parametrization. One observes the following:

(a) In the electric FFs G
p
E and Gn

E , the LO and NLO
approximations describe the experimental data only up
to Q2 ∼ 0.1 GeV2, while the NLO+pN2LO approx-
imations show good agreement with the data up to
Q2 ∼ 0.5 GeV2. This reflects the improvement of the
isovector electric spectral function due to the pN2LO
corrections; see Figs. 4 and 5.

(b) In the magnetic FFs G
p
M and Gn

M , our results describe
the data up toQ2 ∼ 0.2 GeV2. In this channel the N2LO
corrections cannot be estimated using the method of
Sec. II C.

TABLE V. Higher moments of G
p
E extracted from recent fits to low-Q2 FF data using different classes of functions.

G
p
E

Standard Bernauer Horbatsch Higinbotham Higinbotham Sick
Dipole [58] [30] Rational [28] Power series [28] [31]

〈r4〉 (fm4) 1.08 2.63 0.60 1.38 1.50 2.01
〈r6〉 (fm6) 3.30 26.93 5.00 5.68 5.75
〈r8〉 (fm8) 16.2 408.12 99.36 40.06 24.68
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FIG. 10. DIχEFT predictions for the proton and neutron electric and magnetic FFs, obtained with the twice-subtracted dispersion relation
for the isovector FF, Eq. (23), and the empirical parametrization of the isoscalar FF Eq. (14). The results are compared to the experimental data
of the A1 Collaboration [1,2] and the LQCD results from the ETM Collaboration [54].

Altogether we obtain a very satisfactory description of the
nucleon EM FFs with our dynamical approach.

IV. SUMMARY

This work reports a study of the nucleon EM FFs at
momentum transfers |t | � 1 GeV2 using a new method com-
bining χEFT and dispersion analysis (DIχEFT). The isovector
spectral functions on the two-pion cut are constructed through
the elastic unitarity condition. The N/D method is used to
separate effects of ππ rescattering from the coupling of the
ππ system to the nucleon. χEFT is employed to calculate the
real functions J 1

±(t) describing the ππ coupling to the nucleon,
which are free of ππ rescattering effects, resulting in good
convergence. ππ rescattering effects are included through the
timelike pion FF |Fπ (t)|2, which can be taken from e+e−
annihilation data or LQCD calculations. The new organization
is consistent with basic principles of χEFT and represents
a major improvement over traditional direct calculations of
the spectral functions. It allows us to calculate the isovector
spectral functions up to t ∼ 1 GeV2 (including the ρ meson
region) with controlled accuracy. With these spectral functions
we are able to evaluate elements of the FFs (radii, higher
derivatives, t dependence in the spacelike region) using well-
convergent subtracted dispersion relations.

The new method permits a realistic description of the low-t
nucleon FFs and their derivatives. While the basic features
of the FFs are rooted in analyticity and have been studied
earlier in empirical dispersion theory, the new aspect is that the
spectral functions can now be computed in a χEFT framework
with controlled accuracy. It makes it possible to represent the
information content of the nucleon FFs in the form of a few
physical masses and LECs, resulting in a significant reduction
of complexity. It also enables new interpretations of FFs in
terms of spatial densities [14,15] and a space-time picture of
the chiral processes in peripheral nucleon structure [61–63].

Our study shows that the derivatives of the EM FFs involve
two dynamical scales. The first derivative is governed by
the scale 1/M2

V , while higher derivatives are governed by
the scale 1/(4M2

π ) � 1/M2
V and therefore appear unnaturally

large. The rich structure attests to the fact that, through
analyticity and the dispersion relations, the FFs of the nucleon
are connected to its hadronic couplings and excitation spectrum
and reflect the multiple dynamical scales characterizing the
latter. The DIχEFT calculations provide an explicit realization
of this general feature. While the predicted pattern of the higher
moments is likely far beyond what can be extracted from
experimental data, our analytic functions can be used in Monte
Carlo simulations to study how well the first few moments
can be extracted under realistic conditions. Our numerical
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estimates of the higher derivatives can be used in an empir-
ical analysis based on bounded least-squares regression. An
analysis incorporating theoretical constraints from DIχEFT is
in progress [60].

The DIχEFT FF calculations described here could be
extended in several directions. The method could be applied to
the N -� transition FFs as well as the EM FFs of the � itself,
which are defined rigorously in the context of S-matrix theory
(as poles in the N → πN and πN → πN EM transition
amplitudes) and have been studied in relativistic χEFT [64,65].
The method could also be applied to nucleon FFs of other
G-parity-even operators, such as the energy-momentum tensor
or higher moments of the GPDs. Finally, one might con-
template extending the DIχEFT approach to nucleon FFs of
G-parity odd operators with a three-pion cut, using methods of
three-body elastic unitarity that are presently being developed
for the analysis of meson decays and LQCD calculations
[66,67].

The present study demonstrates the potential of χEFT to
yield fully predictive results for conventional nucleon structure
observables. The same approach can be applied to hadronic
structure elements appearing in searches for physics beyond
the standard model; see, e.g., Refs. [68–70].
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APPENDIX A: J FUNCTIONS IN χEFT

In this Appendix we list the χEFT expressions for the
real functions J 1

±(t), Eq. (9), which appear in the N/D
representation of the elastic unitarity condition and are used
in the analytical and numerical studies described in the text. In
the following 4M2

π < t < 4m2
N , and

kcm =
√

t/4 − M2
π , p̃cm =

√
m2

N − t/4 (A1)

are, respectively, the physical pion CM momentum and the
unphysical nucleon CM momentum in theππ → NN̄ process.
The functions resulting from the Weinberg-Tomozawa contact
term [Fig. 1(b)] and the N Born term [Fig. 1(a)] are

J 1
+(t)[LO, cont] = mN

24 πf 2
π

, (A2)

J 1
−(t)[LO, cont] =

√
2

24πf 2
π

, (A3)

J 1
+(t)[LO,N ] = g2

Am3
NA2

N

16πf 2
π p̃ 3

cm k3
cm

(− arctan xN + xN )

− g2
AmN

24 πf 2
π

, (A4)

J 1
−(t)[LO,N ] =

√
2 g2

Am2
NA2

N

32πf 2
π p̃ 3

cm k3
cm

[(
x2

N + 1
)

arctan xN − xN

]
−

√
2 g2

A

24π f 2
π

, (A5)

AN ≡ t/2 − M2
π , (A6)

xN ≡ 2kcmp̃cm

AN

= 2
√

t/4 − M2
π

√
m2

N − t/4

t/2 − M2
π

. (A7)

The contributions of the � Born term [Fig. 1(c)] are

J 1
+(t)[LO,�] = h2

A A�

(
2p̃ 2

cmF − A�mNG
)

192πf 2
π p̃ 3

cmk3
cm

× (arctan x� − x�) + h2
A D�+

432πf 2
π m2

�

, (A8)

J 1
−(t)[LO,�] =

√
2 h2

A A2
�G

384πf 2
π p̃ 3

cmk3
cm

[(
x2

� + 1
)

arctan x� − x�

]
+

√
2 h2

A D�−
864πf 2

π m2
�

, (A9)

A� ≡ t/2 − M2
π + m2

� − m2
N, (A10)

x� ≡ 2kcmp̃cm

A�

= 2
√

t/4 − M2
π

√
m2

N − t/4

t/2 − M2
π + m2

� − m2
N

. (A11)

The functions F and G appearing in the first terms of Eqs. (A8)
and (A9) are [16]

F ≡ α(m� + mN ) + β

3
(m� − mN ), (A12)

G ≡ −α + β

3
, (A13)

α ≡ t

2
− m2

N +
(
m2

� + m2
N − M2

π

)2

4m2
�

, (A14)

β ≡
(

mN + m2
� + m2

N − M2
π

2m�

)2

; (A15)

they are the invariant amplitudes of πN scattering at t > 4M2
π

and s = m2
� in the conventions of Ref. [63]. The functions

D�+ and D�− appearing in the second terms in Eqs. (A8) and
(A9) are

D�+ = m3
N + 2m2

Nm� + mNm2
� − mNM2

π + (mN − m�)t,

(A16)

D�− = −10m2
N − 4mNm� + 2m2

� − 2M2
π + 5t. (A17)
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The J functions resulting from the N and � Born terms
have logarithmic left-hand cuts starting at

N : t < 4M2
π − M4

π/m2
N

�: t < 4M2
π − (

m2
� − m2

N + M2
π

)2
/m2

�

}
. (A18)

The singularity results from the intermediate baryon lines
going on mass shell and corresponds to the left-hand cut of the
ππ → NN̄ PWA. The singularity is contained in the inverse
tangent functions in Eqs. (A4), (A5), (A8), and (A5), which
have logarithmic branch points at xN,� = ±i. The J functions
do not have a right-hand cut at t > 4M2

π , in accordance with
their definition within the N/D method, Eqs. (9) and (10).
While the expressions in Eqs. (A4), (A5), (A8), and (A9)
contain prefactors with inverse powers of kcm, they are in
fact regular in the limit kcm → 0, because the expressions
in parentheses/brackets depending on xN or x� vanish in the
limit: xN,� = O(kcm). Further properties of the J functions are
discussed in Ref. [16].

The masses and coupling constants used in evaluating
the LO expressions are the standard values for the SU(2)
flavor group [16]: Mπ = 139 MeV, fπ = 93 MeV, mN =
939 MeV, gA = 1.27, and m� = 1232 MeV, hA = 2.85.

The contributions of the NLO contact term in the πN
amplitude are

J 1
+(t)[NLO, cont] = c4t

24π f 2
π

, (A19)

J 1
−(t)[NLO, cont] =

√
2 mNc4

6π f 2
π

. (A20)

The value of the LEC c4, determined by the procedure de-
scribed in Sec. II C, is given in Eq. (11).

APPENDIX B: HIGHER DERIVATIVES OF PROTON
ELECTRIC FORM FACTOR

For reference we present in Table VI our numerical es-
timates of the higher moments of the proton electric FF,

TABLE VI. Higher-order moments ofGp
E , obtained by combining

the DIχEFT calculation of the isovector derivatives with an empirical
estimate of the isoscalar derivatives.

G
p
E

LO NLO NLO+pN2LO

〈r4〉 (fm4) (2.09, 2.48) (2.00, 2.53) (1.16, 1.70)

〈r6〉 (fm6) (10.8, 11.7) (10.5, 11.8) (7.59, 9.00)

〈r8〉 (102 fm8) (1.44, 1.48) (1.42, 1.49) (1.21, 1.29)

〈r10〉 (103 fm10) (4.21, 4.24) (4.18, 4.26) (3.86, 3.94)

〈r12〉 (105 fm12) (2.13, 2.13) (2.12, 2.14) (2.02, 2.04)

〈r14〉 (107 fm14) (1.60, 1.61) (1.60, 1.61) (1.55, 1.56)

〈r16〉 (109 fm16) (1.66, 1.66) (1.66, 1.67) (1.61, 1.62)

〈r18〉 (1011 fm18) (2.25, 2.25) (2.25, 2.26) (2.20, 2.21)

〈r20〉 (1013 fm20) (3.86, 3.86) (3.85, 3.87) (3.79, 3.80)

〈r22〉 (1015 fm22) (8.15, 8.15) (8.13, 8.16) (8.00, 8.03)

〈r24〉 (1018 fm24) (2.08, 2.08) (2.07, 2.08) (2.04, 2.05)

〈r26〉 (1020 fm26) (6.28, 6.28) (6.27, 6.28) (6.18, 6.20)

〈r28〉 (1023 fm28) (2.22, 2.22) (2.22, 2.22) (2.19, 2.20)

〈r30〉 (1025 fm30) (9.11, 9.11) (9.09, 9.11) (8.99, 9.01)

〈r32〉 (1028 fm32) (4.27, 4.27) (4.27, 4.28) (4.22, 4.23)

〈r34〉 (1031 fm34) (2.28, 2.28) (2.27, 2.28) (2.25, 2.26)

〈r36〉 (1034 fm36) (1.37, 1.37) (1.37, 1.37) (1.35, 1.36)

〈r38〉 (1036 fm38) (9.20, 9.20) (9.19, 9.21) (9.10, 9.12)

〈r40〉 (1039 fm40) (6.88, 6.88) (6.87, 6.89) (6.81, 6.83)

obtained by combining the DIχEFT calculation of the isovec-
tor moments with the empirical estimate of the isoscalar
moments based on Eq. (14). While individual higher moments
have little physical significance and cannot realistically be
extracted from the data, the order of magnitude and collective
behavior of our results could be compared with the patterns
observed in fits to FF data [1,2,26–31,58].
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