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PREFACE.

Some justification is perhaps neaessary for the appearance of

another treatise on Electricity wid Magnetism, in view of the

numerous ones already existing in English. This book is the

result of a demand encountered in my own experience in teaching,

and is based upon various courses of lectures that I have delivered

at Clark University during the last six years. The classical treatise

of Maxwell, which must always remain as a point of departure

for the modern treatment of the subject, is ill adapted to the

purpose of a text-book. To ask a student to attempt to assimilate

the contents of the two volumes of Maxwell in a year, or even

in two years, is only to expose him to the severest pangs of mental

indigestion. Again, Maxwell's own views are there presented by

him with not the greatest clearness, while severe demands are

made upon the student's mathematical attainments. The excel-

lent treatises of Mascart and Joubert and of Watson and Burbury

follow Maxwell with considerable closeness. Professor Gray's

admirable treatise, though containing much recent matter, suffers

under the disadvantage of being in three volumes, while the very

convenient little book of Mr Emtage is somewhat restricted in

scope. Professor J. J. Thomsons altogether delightful Elements

of the Mathematical Theory, which appeared when the present

w. e. b
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book was nearly ready for the press, while extremely modern as well

as clear, is addressed to a somewhat different class of students

from that contemplated in writing the present book.

The theoretical writings of Hertz, Heaviside, Cohn and others

have resulted in the systematization of Maxwell's theory and have

made possible improvements in the mode of its presentation and

nomenclature not contemplated by him. The extremely important

and original contributions of Mr Oliver Heaviside are unfortunately

but little adapted to the use of the student on account of their

very voluminous character as a whole, as well as of an extreme

conciseness of expression in individual parts. The few brilliant

chapters on theoretical matters left by Hertz are hardly by way

of exposition, but rather of a summing up of the conclusions of

the theory.

It has been my aim in the preparation of this volume to

present to the student the results of the theory as it stands to-

day after the labors of Faraday, Maxwell, Helmholtz, Hertz and

Heaviside. Here it may be convenient to state what I consider

to be the essentials of Maxwell's theory as distinguished from

the old theories. To this question may very well be made the

answer of Hertz :
" Maxwell's theory is Maxwell's system of equa-

tions." But to specify more fully the points of difference, they are

in the opinion of the writer

:

1°. The localization of the energy in the medium.

2°. The magnetic action of displacement currents.

While starting from the standpoint of Energy, I have not

thought it advisable to abolish the usual terms repugnant to so

many writers, who assuming the attitude of Maxwellians par

excellence, deny the existence of Electricity. Maxwell himself

was not one of these. Feeling that the consideration of the

Newtonian Potential Function is indispensable, not only for the

old theory of action at a distance, but for the modern theory, and

in addition that it introduces the student to many of the methods

that he will need in various branches of mathematical physics, I
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have prefixed to the treatment of Electricity a rather complete

treatment of the Potential by itself, including the properties of

polarized distributions. It has been the custom of English writers

to include chapters on the Potential in works on Analytical Statics,

as in the cases of the admirable treatises of Routh and Minchin.

It will probably be admitted, however, that the inclusion of this

subject in a treatise mainly devoted to the consideration of rods,

strings, and billiard balls is no more appropriate than in one

devoted to Electricity and is less likely to attract the student of

the latter.

It is unfortunately the case that graduates of our American

colleges are as a rule insufficiently prepared in the departments

of mathematics necessary in approaching the subject of mathe-

matical physics. In fact, I know of but three text-books on the

Calculus in English, those of Greenhill, Williamson and Byerly,

that give a treatment of Green s Theorem. I have therefore

considered it expedient to prefix a mathematical introduction

giving a short treatment of the important subjects of Definite

Integrals and of the Theory of Functions of a Complex Variable,

indispensable to a study of the Potential Function. For the same

reason, I have included a treatment of the fundamental principles

of Mechanics ab initio, including the deduction of the Principle of

Energy, Hamilton's Principle, and Lagrange's Equations of Motion.

I have followed the example of Boltzmann in making the deduction

of the equations of the Electromagnetic Field depend on Hamilton's

Principle by means of the properties of Helmholtz's Cyclic Systems,

the treatment of which is here added. These chapters are ex-

tracted from my lectures on Dynamics. In this manner it has

come about that the book is nearly half finished before the word

electricity is mentioned. This may be objectionable to some

persons, but I consider it of great importance that the student

should be well supplied with tools and practised in their use

before he is called upon to use them on a new and unfamiliar

subject. The physical difficulties connected with electricity are
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great enough without being mixed up with mathematical ones.

It is also a pity to have the student get the idea that certain

theorems pertain to electricity, when they really are simply

matters of geometry or analysis. I have whenever possible at-

tempted to bring out the geometrical or physical nature of the

processes involved before coming to the electrical application.

Thus these introductory chapters may serve as a sort of general

introduction to Mathematical Physics.

After a treatment of the problem of Electrostatics in a single

medium by means of the Principle of Virtual Work the usual

methods of attacking electrostatic problems are treated. These

chapters pertain to either the new or the old theory. I have

then inserted the chapter on Electrokinetics, somewhat out of its

natural order, in order to bring out the geometrical ideas involved

in the so-called Law of Ohm. Of these application is made in

the treatment of Dielectrics and Magnetizable Bodies, which is

carried out in such a manner as to show the close parallelism

between the two classes of phenomena there treated, a point not

always insisted on by Maxwell, but clearly brought out by Hertz

and Heaviside. On account of this the symmetrical notation of

Hertz is adopted in preference to that of Maxwell. I have

however kept the term induction used by Maxwell for magnetism

alone, instead of the term polarization used by Hertz, which I

have used in the more usual sense of moment of unit volume. I

regret not having been able to respond to the appeal made by

Boltzmann to future writers to follow Maxwell's notation. I feel

that it is more important to have a good notation than a familiar

one, and that it is a first essential of a good notation that it

should be symmetrical. The indiscriminate mixture of Greek,

Koman and German letters used by Maxwell is as unfortunate

as the dissymmetry with respect to electrical and magnetic

phenomena.

It is hardly necessary to say that vector methods have been

used throughout, although the abbreviated notation of Hamilton
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and Heaviside has been little used. It is easy to lay so much

stress on symbolism that the student loses sight of the real sim-

plicity of the method. In order, however, to show its extreme

utility, particularly in connection with the operator V, the essen-

tials of the quaternion notation have been explained in the first

chapter.

As the aim of the book has been to present an introduction

to the mathematical theory of electricity, little or no reference

has been made to experimental methods—in fact it seems that

such subjects as standard cells, dynamos, or galvanometers should

be treated* in a separate work, and I have no desire to add to the

large number of such already existing. At the same time it is

hoped that the principles involved in the various modes of mea-

surement are all herein contained.

The figures with which the book is illustrated, while but a few

of them are new, have in no case been copied from existing

figures, but have been, if necessary, recalculated, and in every case

redrawn on a large scale and photographed down to the required

size. For the amount of labor here involved I am under great

obligations to Messrs W. P. Boynton and T. W. Edmondson,

fellows of Clark University, who have undertaken the whole

matter. As the proof has been read only by the author, it is

probable that a certain number of errors have crept in, which it

is hoped may be excused.

In conclusion my aim has been to present a brief, connected

treatise embodying the essential points of the theory and suitable

for assimilation by the student in a period of time not exceeding

a year. To this end I have considered only the usual methods of

treating the various subjects, and included enough examples to

illustrate their working, and no more. If it be considered that

unnecessary matter has been included it may be replied that this

may easily be omitted, and that it is safer to include too much

than to make unwarrantable assumptions regarding the know-

ledge possessed by the student. If the book shall succeed in
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clearing up some of the difficulties generally encountered by the

student and in inducing hirn to read the classical writings of

Maxwell, Helmholtz, Hertz and Heaviside the object of its author

will have been achieved.

A. G. WEBSTER.

Worcester, Mass.,

Dec. 23, 1896.
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MATHEMATICAL INTRODUCTION.

CHAPTER I.

NUMBER.

1. Rationals and Irrationals. The primary objects of

study in Arithmetic are the natural numbers or integers, 1, 2, 3,...

forming an unlimited sequence. Of these any two a and b may
be added together, and we find the fundamental law that

a + b = b + a.

This is known as the commutative law. For more than two

numbers, we find that

(a + b) + c = a 4- (b + c).

This is known as the associative law. Any two numbers may be

multiplied together, and we find that multiplication is subject to

the commutative law,

ab = ba>

to the associative law,

(ab) c — a (be),

and in addition to the distributive law,

a (b + c) = ab + ac.

Defining the operation of subtraction as the inverse of addition,

so that c is defined as the result of subtracting b from a if 6 added

to c will give a, we find that the operation of subtraction is pos-

sible only if a is greater than b. We are thus led to extend our

definition of numbers in such a way as to call that to which b

must be added in order to give a, a number, in the case where a is

less than b. We are thus led to the conception of the negative

w. E. 1
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integers, which we can add, multiply, and subtract according to the

same laws as the natural numbers.

Denning the operation of division as the inverse of multiplica-

tion, so that a divided by b is c, if c multiplied by 6 will give a,

we find that the operation can be performed only when b is a factor

of a. We are thus again led to extend our definition of numbers

so as to call that which, being multiplied by 6, will give a, even

when b is not a factor of a, a number. We are thus led to the con-

ception of fractions, which may be operated upon like the positive

and negative integers. Every fraction is of the form m/n where

m and n are positive or negative integers. This system of

numbers suffices for all the ordinary operations of arithmetic,

including the solution of equations of the first degree.

Any number may be raised to any power, the process being

known as involution. If we define evolution, or the operation of

taking a root, as the inverse of involution, so that the 6th root of

a is c when cb = a, we find that the operation can be performed

only when a is one of the series of numbers,

c, c
2
,
c3

,

If we further extend our definition of number, so that that

which raised to the 6th power will give a, even in the contrary

case, we are led to the conception of irrational numbers. No
irrational number can be expressed as the quotient of two integers,

though for any given irrational a we can always find two integers

such that their quotient differs from a by an amount that is as

small as we please. In symbols, if e is any given positive number

as small as we please, we can always find m and n so that

m
a

n
< e.

By
|
a

|
is meant the absolute, or arithmetical value of a, irre-

spective of sign. E.g., the square root of 2 is an irrational, but

the rules for the extraction of square roots enable us to find a

value that differs from it by as little as we please. The ordinary

theory of enumeration shows that we can express any rational

number in terms of any integer, 6, called the base, as the sum of a

definite number of terms, each of which is the product of some

integer less than 6 by some power of 6 with positive or negative

exponent, or else as the limit of a sum of such terms, where as the
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exponents of the negative powers increase regularly in absolute

value, from a certain term on the coefficients are all obtained by

the repetition of a certain definite group :

a = anb
n + an^x b

71"1 + . . . + a1b + a0 + a_x b~
1+ a_2

6~2 + . . a_m 6~m
,

e.g. ^ = 310° + 2-10-1
,

5

61 = 1-101
-f 010° + HO"1 + 610-2 + 610~3 +

6

No irrational number can be so expressed, though by taking a

sufficient number of terms we may obtain a number differing from

the given irrational by as little as we please. The coefficients in

this case never repeat indefinitely. Since irrationals can not be

expressed by means of a finite number of terms each of which is

rational, they are defined by their properties, or as the limit

approached by an infinite sequence of rational numbers.

2. Limits. If we have a sequence of rational numbers,

following each other according to a given law, and

can find a number A, possessing the property that, corresponding

to any arbitrarily given positive number e however small, we can

find a number jjl such that for all values of n greater than fiy

|

an — A |
< e, n> /j,,

then A is called the limit of the sequence.

Kg. the sequence

1 11 .111
— 1, a2

— 14*2? ^3 — 2"^"4 , ^4 — 2 4 8'

has the limit 2, a rational number.

The necessary and sufficient condition for the existence of a

limit is that when e is arbitrarily given, we can find a number /j,

such that for all integral values of n greater than //,, and for any

positive integral value of p,

If the latter condition is fulfilled, even though the sequence

has no rational limit, the sequence has a limit, which defines an

irrational number.

1—2
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The sequence

111
a1==l, a2 = 1 + |> >

a
3 = l + 2

+ 3' a*
= 1 +

2
+
3 + 4 5

does not fulfil the above condition, for

>>«•*>

11 1 p 1
4.— j > _ r— =—

.

I £^ ...... I J

ti+1 7i+2 7i+_p n+p n
1 H

—

JP

which cannot be made as small as we please, for all values of p, no

matter how great n be taken.

On the other hand, the sequence

1 1 1
Ox = 1, a2

= 1 + -r—^ ,
<x3 = l + t—s +1.2' 3 '1.2 '1.2.3'

1 1
a4 = 1 4- ^—~ + ^ ^ +4 A

' 1 .2 ' 1.2.3 ' 1.2.3.4'

does satisfy the condition, for

1.2.3 Ti+l

1 .2.3 71+1

7i + 2 (71 + 2) (71 + 3) (n + 2) (71

1 1 1
1+—

—

rt + 7— + +
7i + 2^ (71+ 2)

2 (w+2)p-1
J

1 <!_ 1
1

1.2.3 7i + l( (ti + 2^/ V w + 2,

(71 + 2)

1.2.3 7i(7i+l)2 '

which is less than e as soon as n is taken greater than 1/e.

This sequence defines the irrational known as e, the natural

logarithmic base, which is not the root of any algebraic equation

with rational coefficients. The class of irrationals is in fact much

larger than the class of algebraic irrationals, which led to their

inclusion in the number-system.

3. Complex Numbers. The system composed of the rational

and irrational, forming together the real numbers, is still not suffi-

cient for the solution of algebraic equations. For consider the

simple equation

x2 + 1 = 0.
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Since even powers of all real numbers are positive, there is no

real number that has a square equal to — 1. If we further extend

the idea of numbers, so as to call that a number whose square is

— 1, we have a means of satisfying the equation. If we denote the

new number by i, denned by the equation i2 = — 1, we may multiply

it by any real number, positive or negative, integral, fractional, or

irrational, and thus get a class of new numbers, known as pure

imaginary numbers. Evidently no imaginary number is equal to

a real number, for the quotient of two real numbers is always real.

If we consider the sum of a real and an imaginary number, we
arrive at the conception of a complex number (in the narrow

sense). Two complex numbers are equal when their real parts are

equal and their imaginary parts also. Any equation containing

complex numbers is accordingly equivalent to two equations con-

taining only real numbers. In particular the equation

a-hbi = 0,

where a and b are real, is equivalent to the two,

a = 0 and 6 = 0.

A complex number vanishes only when its real and imaginary

parts both vanish.

4. Complex Numbers in the Extended Sense. As we

have formed numbers by multiplying the real and imaginary units

1 and i by all real numbers and forming sums therefrom, so we
may still further extend the notion of numbers to include sums of

terms each formed by multiplying any number n of different units

by real numbers. Such numbers are complex numbers in the

extended sense, a number involving n units es being an 7i-fold

number. The units may have any properties by which we wish to

define them. If they are all independent of one another, it is

obvious that two complex numbers are equal only when composed

of the same number of each unit es , so that any equation contain-

ing all the units is equivalent to n equations containing only real

numbers. In particular, a complex number

a = 4- a2e2 -f anen ,

vanishes only when the coefficient as of each unit es is zero.

Two complex quantities satisfy the associative and commuta-

tive laws with respect to addition, and accordingly the sum of

a = 01& + 0262 + cLnen and b = /S& + /32e2 + Bnfa
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is defined as

a + b = («x + ft) ^ + (a2 + ft) e2 + On + fti) en .

With respect to multiplication, the units are commutative with

respect to real numbers

:

aberce8 = aerbces = abceres = ere8abc, etc.

The associative and distributive principles also hold, so that

(aer) es= a (eres) and either a (er 4- es) = aer + ae8 ,

or er (es + et) = eres + ere*.

We may accordingly define the multiplication of any two com-

plex numbers

ab = (a^ + a2e2 4- anen) + /32e2 + /3nen)

= aift^i
2 + 0Lifi2exe2 + aift^n + Oaft^i + a$$2 +......

It will be convenient to consider a system of units of such a

nature that instead of the commutative property with respect to

multiplication we have eres = — e8er where r and s are different, and

for any r, er
2 = — 1.

If we consider a set of three units, each possessing the above

properties, and in addition the property that the product of any

two taken in cyclic order is equal to the third, we have the system

proposed by Hamilton, and denoted by him by the letters % j, k.

Accordingly by definition

ij = —ji = k, jk = — kj = i, hi — — ik =j.

Multiplying each equation by the first unit appearing in it, and

observing the associative law, we have

necessitating

• • • ... . • «X «= - (IJ) I = — ki = -3>

jp =fk =
• •

- V = -k,

hki = kH = — kik = — (ki) k = -jk= -i,

=j* = k2 = -l.

Even powers of the three units are real, and equal even powers

are equal, while odd powers of any unit are equal to real multiples

of itself, and equal odd powers of different units are not equal.

The product of two threefold complex numbers of this system, a

and b,
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(ai + /3j + yk) («V+ 0'j + yk) = aaV + /3/9'j
2 + 77'A;2 + a/3^>* + /3a'ji

4- fiy'jk + 7jS
/

&/ + 7a'H + c^/iA? = — (aa' + fifi + 77')

+ (#/ - 7/3') t + (7a
7 - */)/+ (a/3' - /3a') A,

is accordingly equal to a real number plus a complex number of

the same system, and this may be considered as a fourfold complex

number compounded of the units 1, k. Such a fourfold number

was called by Hamilton a Quaternion. We shall in this book

seldom need the fourfold number, but shall frequently use the

threefold one.

5. Geometrical Representation of Numbers. The
natural numbers may be represented by an unlimited series of

points laid off at equal distances along a straight line. If we take

a certain point to represent zero, the positive integers will lie on

one side of it and the negative on the other. Points between the

integer points will represent fractions and irrationals, and to every

real number will correspond a point. For any rational number we
may find others lying as near it as we please, and as we have

already stated, for any irrational we may find rational numbers

lying as near it as we please. It may be shown, however, that

between any two rational numbers, however close together, there

can always be found an irrational, consequently the rational

numbers do not form a continuous series. It may be shown that

every point on the line corresponds to either a rational or an

irrational number, so that the whole series of real numbers is

continuous. Quantities which, like the real numbers, require for

their specification but a single given quantity, which may take

any of an unlimited series of values, are said to have one degree

of freedom. It is also said that there is a single infinity of such

quantities.

Complex quantities in the narrow sense, involving two

different units, 1 and i, cannot be represented by points on a line.

If however we lay off the real numbers on a straight line, we may
lay off the pure imaginary numbers on a line at right angles with

it through the point representing zero. The point % is to be taken

at the same distance from zero on this line that the point 1 is on

the other line. The two lines are called respectively the axes of

reals and of pure imaginaries, or the axes of X and F. Any
complex number a = a + fti may now be represented by a point in

the plane whose rectangular x and y coordinates are respectively a
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and Whatever the values of a and /? we may always find a

corresponding point, and to every point in the plane there corre-

sponds a single complex number, including the real and pure

imaginary numbers as particular cases. As each of the real

numbers a and /3 may independently assume the value of any of

the single infinity of real numbers, there is said to be a double

infinity of complex numbers, or a complex number has two degrees

of freedom. The distance of the representative point from the

origin is called the modulus of the complex quantity and denoted

by
|
a

|

= 4- Va2
-f #2 since it includes as a particular case the

absolute value of a real number. The angle that the radius vector

from the origin makes with the X-axis is called the argument of

the number. This representation of complex numbers in the plane

was proposed by Argand and Gauss*. -

The threefold complex quantity a = ai -f /3j + *yk, not being

capable of representation in a plane, may in a similar manner be

represented in space. If we take three mutually perpendicular

axes, points at equal distances from their intersection will repre-

sent the three units i, j, k. Multiples of these by real numbers
will be represented by points on the axes of X

y
F and Z, and any

complex number ai 4- fij + yk may be represented by a point

having the rectangular %, y and z coordinates a, /3, 7. For every

complex number we may find a point, and to every point there

corresponds a complex number. As each of the real coefficients

a, y8, 7 may independently assume any of a single infinity of values,

the complex number has three degrees of freedom, or there is a

triple infinity of such complex numbers. The distance of the

representative point from the origin was called by Hamilton the

tensor of the complex number. We may apply the term modulus

to the tensor, and use the symbol

I

a
I

== + Ja2 + /3
2 + 7

2
.

In this book the arrangement of the axes of X, F, Z will

always be such that the motion of a right-handed screw along the

axis of X will turn the F axis toward the Z axis. This will be

called right-handed cyclic order, Fig. 1.

* Argand, Essai sur une manure de reprdsenter les quantites imaginaires dam
les constructions ge'ome'triques, Paris, 1806.

Gauss, " Theoria residuorum biquadraticorum, commentatio secunda." Werhe,

Bd. 11., p. 169.
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6. Geometric Addition. Instead of the point representing

the complex number ai + fij + yfc, we may fix our attention upon

z

-Y

X
Fig. 1.

the line drawn from the origin to the representative point. This

line is a geometrical magnitude, which is completely specified only

when its direction as well as its length is given. Such quantities

are called vectors, the name arising from the significance of the

operation of carrying a point from one end of the line to the other.

Quantities which do not involve the idea of direction, and are

completely specified by a single number, are distinguished by the

name scalars, the name arising from the possibility of their repre-

sentation upon a linear scale*. To specify the direction of a vector

we must give two angular coordinates, which together with its

length make three data. We may otherwise specify the vector

symmetrically by giving its projections on three given mutually

perpendicular axes. By projection on, resolved part or component

along- a line, we mean the product of the length of the vector by

the cosine of the angle included between the direction of the

vector and the positive direction of the line. If the angle is acute,

the projection is positive, if obtuse, negative. In particular the

projections of the vector on the axes of i, j, k, are the coefficients

of i, j, h
y
in the representation of the vector by the complex

number. It follows from the definition of addition of complex

numbers that to add two vectors means to find a vector whose

components are the sums of the corresponding components of the

two given vectors. This vector may be described geometrically as

* If real. Complex scalars may also be used.
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the diagonal of the parallelogram formed from the two given
vectors as sides, or as given by applying the initial point of the

second vector to the terminal point of the first, and constructing a
new vector joining the initial point of the first to the terminal

point of the second. Either of these geometrical processes shows
that the addition of vectors is commutative. The addition of

vectors in this manner is known as geometrical addition. When
such geometrical addition of vectors is meant, as distinguished

from arithmetical addition of their tensors, we shall denote the

quantities to be considered as vectors by placing a bar over the

quantity otherwise used for the tensor
;

e.g. the equations

R = Xi + Yj + Zk,

M = \M\ = JX* + P + ^2
,

are examples of vector and scalar equations respectively.

7. Geometric Multiplication. As we have seen in § 4,

by direct multiplication, the product of the two vectors

= Xxi + Tjj + ZJc and R2
=X2i + Y^j + ZJe

is - (XXX2 + YXY2 + ZXZ2) + (YXZ2
- ZXY2) %

+ (ZXX2
- XxZ2)j + (X,Y2

- YXX2) h
Of this the scalar part

-(X^+Y^ + Z^)
has an important geometrical meaning. The direction cosines of

the vector R being denoted by cos (12a?), cos (By), cos (Rz), we have
by the definition of the projections of R,

X^Rcos(Rx), Y = Rcoa(Ry), Z =R cos (Rz).

Consequently,

X^X2+ FiF2 + ZXZ2
= RlR2 {cos {Rxx) cos {Rjc)

+ cos (Rxy) cos (R2y) + cos (Rxz) cos (R^)}.

The factor in the brackets is equal to the cosine of the angle

between the directions of Rx and 1?2 . Consequently the scalar

part of the product of the vectors R1 and R2 , or the scalar product

of the two vectors, which will be denoted by the notation SRXR2 is

equal to minus the product of the tensor of either multiplied by
the projection of the other on its own direction

SRXR2
= - RXR2 cos (RtR^.
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In order to avoid the inconvenience of the negative sign in

this, Hamilton's notation, we shall call the negative of the scalar

product the geometric product and denote it by R^R2 , so that

( 1 ) RJZ2 = X,X2 + 7,Y2 + ZXZ2
= RXR2 cos {R,R2\

If two vectors are perpendicular, their scalar product is zero.

The vector part R3 of the product RxR2i or the vector product,

which will be denoted by the symbol Vi^iia, has the components

(2) X3 = YXZ2
— Z1Y2) Y3 = ZYX2

— X1Z2 ,
Z3
= X^Y2

— YXX2 ,

It is to be noticed that the suffixes 1, 2, 3, appear in cyclic order,

as do the letters in the terms on the left and the first terms on the

right. If we multiply these equations by the corresponding com-

ponents of either Rx or R2) we get identically,

(3) RJl3 = + Y,Y3 + ZXZZ
= 0,

R2R3
=X2X3 + Y2Y3 + Z2Z3 = 0,

showing that the vector product is perpendicular to each of the

vectors involved. Squaring and adding the equations (2), we get

Ri = Z3
2 + F3

2
h- Z* = Y?Z* + Z*Yi + Z?X? + X?Z?

+ X?Yl+Y?X?
- 2 ( Y,

Y

2Z,Z2 + Z,Z2X,X2 +X^Y^)
= (Z,2 + Fx

2 + Zf) (X2
2 + Yi + Zi) - (X,X2 + FjF2 + 2̂)

2

= i?^2
(1 - cos2 (JSx-Ba)) =i^2 sin2 (R1R2),

so that

(4) jB3
=

I

Vi^
I

= R,R2 sin (R&).

The vector product of two vectors is accordingly perpendicular

to their plane and its tensor is equal to the product of their

tensors and the sine of their included angle, or geometrically, to

the area of the parallelogram having them as sides.

The equations (1) and (2) show that

RiR2 = R2Ri, VjR1i22 = — "VR2Ri.
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The vector product of two vectors is drawn with respect to

their plane in such a manner that

the rotation of a right-handed screw

advancing in the direction of the

vector product would turn the first

vector towards the second, as is seen

by making the two vectors coincide

with two of the unit vectors % j, k
If two vectors are parallel, their vector product is zero. The
vector and scalar products of two vectors cannot vanish simul-

taneously unless the tensor of one of the vectors vanishes.

Note. Although the above consideration of vectors has been
inserted for the sake of logical connection, we shall seldom make
use of the conception of a vector as a complex number, and when
the term complex number is made use of we shall mean a complex
number in the narrow sense. We shall frequently use the terms
vector, scalar product and vector product, the latter being defined

by the equations (i) and (2) above.



CHAPTER II.

VARIABLES AND FUNCTIONS.

8. Functions. A real quantity is said to vary continuously

between two values a and b if it assumes successively all real

values, rational and irrational, comprised in the interval between
and including the values a and 6. The notion of continuity was
arrived at by considering the motion of a point which at successive

instants of time occupies the positions of all the points between
those representing a and 6, and by the nature of motion cannot
omit any intermediate value.

A quantity y is said to be a function of a variable x, in an
interval from a to b, if for every value that x may take in the
interval ab, there is assigned a definite value of y. A function

defined in this somewhat restricted manner is called uniform, or

one-valued. We may extend the definition so that for each value
of x, y may have several values, in which case it is said to be a
multiform, or many-valued function of x. This definition, due to

Dirichlet, is independent of the question whether we can find an
analytic expression for the value of y in terms of x or not. For
example the analytic expressions

( i ) aQ + a1x + a2x2 + anxn,

(2)
a0 4- axx + + anxn

b0 + b1x+ + bm m

(3) J.X — Qjy

a? a?
(4) ex = l + « +— + — +

(?) ex = 1 + - -\—-—i

—

^—i-
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(6) sin x = x —
2|
+ g-j

—

.11.
(7) sin -=-~-^2 +

a? a? 2! #2 "3! a8

are all functions of a? in any interval from a to 6, where a and 6 are

6o£A positive or negative finite numbers different from zero. Of

these the first three are examples of the class called algebraic

functions, or such as are defined by an algebraic equation between

x and y. An algebraic equation is one in which only a finite

number of powers with finite integral exponents and products of

such powers of the variables appear. All other functions are called

transcendental, and the last four above are examples of such. All

the above are uniform functions, except (3), which has two values,

one of which is the negative of the other. A function such as (1)

is called a polynomial, or a rational entire or integral function. A
function such as (2), or the quotient of any two polynomials, is

called a rational fractional function. (3) is an example of algebraic

irrational functions. (4) and (6), being defined by convergent

infinite series of positive powers of x, are called integral trans-

cendental functions, and the quotient of two such is called a

fractional transcendental function. The distinction between

rational and transcendental functions is similar to that between

rational and irrational real numbers, depending on the matter

of finiteness or infinity in the method of specification.

A uniform, continuous, integral, rational or transcendental

function is called holomorphic.

A function taking the value 1 from the value x = 0, inclusive,

to x = 1/2, exclusive, the value 2 from x = 1/2, inclusive, to #= 3/4,

exclusive, the value 3 from x = 3/4, inclusive, to x = 7/8, exclusive,

etc., and a function defined as taking the value 1 for all rational

points, and 2 for all irrational points, would be, the first difficult,

the second probably impossible to define by analytic expressions.

The former, being perfectly defined for every real value of x from

zero to 1, excluding the latter, satisfies the definition of a function

in that interval, while the latter satisfies it in any interval.

9. Limit of a Function. If y =f(x) is a function of the

continuous variable a? in a certain interval including the value x=a,

and if there exists a number A having the property that to any
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positive number e, however small, there may be found a corre-

sponding number S such that for all values of h of absolute value

less than B,

\f{a + h)-A |
< e, \h\<8,

then the function is said to approach or converge to the limit A
in the neighbourhood of the point x = a. This will be denoted by

the equation

lim f(x)=A.
x-a

The necessary and sufficient condition for the existence of a limit

at a is that

I
/(* + *)-/(* + AO |<e,

\h\<Z,
I

h!
|
< S,

where e, 8 have the same significations as before, and h and h! are

any values whose absolute values are less than 8. If the above

condition is satisfied only when h and h! are positive, the function

is said to approach the limit on the right of a, if when h and h! are

both negative, on the left. A function may approach different

limits on the two sides of a point. It is not necessary that a function

should be varying always in the same sense in order to approach a

limit, e.g. the function

y — x sin x,

which alternately increases and decreases, approaches the value

zero as a limit in the neighbourhood of x = 0. The function

— a Xy= e

approaches the limit zero on the right of x = 0, but not on

the left.

The function

. 1
y = sin -
* x

does not approach any limit whatever in the neighbourhood of

x = 0, for in any interval, however small, from

x —— ~— to X
(4m + 1) 7r (4>n + 3) 7r

'

where n is any integer, however great, the function takes all

values from 1 to — 1.
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If a function does not approach any limiting value for a

certain value of the variable, it must be otherwise defined for such

a point
;

e.g. we may assign to the function defined at all points

1
except x = 0 by the analytical expression sin - any arbitrary value

x

for the point # = 0. The function will then be completely de-

fined.

A quantity that approaches the limit zero is called an in-

finitesimal.

If y is a function of x defined in an interval a to b, where b is

as large as we please, a number possessing the property that, when
if is a given number as large as we please,

\f(x)-A
|
<e, x>M,

for all values of x greater than M
t
is said to be the limit of y as x

increases indefinitely or, briefly, as x approaches infinity. This is

denoted as follows

:

limf(x) =A ;

X—oo

1

e.g. lim e x = 1.
X=<X)

If in the above definition, we change if to a negative number

whose absolute value is as great as we please, and consider all

values of x less than if, we say that A is the limit as x approaches

minus infinity.

If in the neighbourhood of a point x=a, when if is any number

as great as we please, we can find a corresponding number 8 such

that for all values of h, whose absolute value is less than S,

|
f(a + h)

|

>if, \h\<8,

then y is said to become infinite for x = a. If, as above, we change

the definition so that y is less than any negative number, y is said

to become negatively infinite, or

lim f(x) = — oo

.

x=a

The function

1 . 1
y = - sm -

fails to approach any limit, finite or infinite, in the neighbourhood

of the point x = 0, by reason of its continued oscillation between
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greater and greater positive and negative values in any interval,

however small, including zero.

10. Continuity of Functions. A function is said to be

continuous at a point x = a, if for any positive e there is a 8 such

that

| f(a + h) -f(a) |
< e, \h\<8

for all values of h whose absolute value is less than 8.

If the condition holds only for positive values of h, the function

is said to be continuous on the right, if for negative, on the left of

a. A function may be discontinuous at a point by reason of jump-

ing abruptly from one finite value to another, becoming infinite, or

oscillating through a finite or infinite range in an infinitesimal

interval. The last function defined in § 8 is nowhere con-

tinuous, and the next to the last is discontinuous at the points

1/2, 3/4, 7/8, etc., for the first reason, the function ex is discon-

tinuous at x = 0 for the second reason, and the functions

.1 1.1
sin - ,

- sin -

,

1

are discontinuous at the same point for the third reason, ex is

continuous at the left, discontinuous at the right of the point #=0.

A discontinuity arising from a finite jump, or an infinite in-

crease or decrease, is called an ordinary discontinuity, while one

arising from an oscillation is called a discontinuity of the second

kind, and the value of x at which it occurs is called an essentially

singular point for the function.

11. Derivative. In the neighbourhood of any value of the

variable x, the difference-quotient

f{w + h)-f(ai) =f(x + h)-f(w)
(x + h) — x k

is a function of the increment h of the variable. If this quotient

approaches a limit as h approaches 0, the value of the limit is

called the derivative of the function f(x) at the point x
}
and is

denoted byf (x) or by

= iim/^±^Z/^}

.

dx h=o h

w. E. 2
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If a limit exists on one side but not on the other, the function is

said to have a derivative on one side. If no limit exists at the

point x, the function has no derivative at that point; e.g. the

.1
function sin - has no derivative at the point x = 0, although the

x

derivative at any other point however near is

x2, x y

which does not approach a limit as x approaches 0. The last

function defined in § 8 has no derivative anywhere. We may
also find transcendental functions defined by analytic expressions,

which nowhere possess a derivative. The function proposed by

Weierstrass,

f(x) = £ 6^cos (an7r#), where 0 < b < 1 ; a is an odd integer,
n-0

may be shown to have nowhere a derivative*.

12. Functions of two or more Variables. If two real

variables x and y vary continuously in the respective intervals

x0 <x<xu y0 <y<yi>

and if to every possible pair of values of x and y is assigned a

value of a quantity u, u is said to be a function of x and y. For

any particular value of x, u is a function of y, and for any particular

value of y, u is a function of x. Suppose that for a certain value

y, u considered as a function of x approaches a limit as x approaches

a. This limit will jn general depend upon the value of y, let us

call it

lim u = <t> {y).
x-a

It may again approach a limit as y approaches a value 6. If we

consider the limit approached by u considered as a function of y,

we shall have in general a function of x,

lim u =^ (x).

y=b

If x then approaches a, we may have a limit, which is not neces-

sarily the same as before,

lim i lim u ) = lim^(y)=A
)

lim
J

lim u
j
= lim (x) = B

;

y—b i x=a ) y=b x-a ( y-b j x—ob

* Weierstrass, Abhandlungen aus der Functionerilehre, p. 97; Harkness and

Morley, Theory of Functions, p. 58.
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X
e.g. the function u = - has

lim
j
lim u \ = lim (0) = 0,

y=o I z=o ( 2/=o

since the limit for x does not contain y, while

lim
|
lim u\ = oo.

A function of two or more variables is continuous at a point

x = a, = 6, if for any positive value of e, however small, we can

find Si and S2 so that

|
f(x + h, y + k)-f(a), y)\ < e,

|
&

|
< Bu \

k
\
<S2

for all values of h and k which satisfy the above inequalities.

A function of two variables is not necessarily continuous if it

is a continuous function of either variable; e.g. the function

xy/(x2 + y*) is a continuous function of x for any value of yy
even

y= 0, and of y for any value of x, even x = 0. It is not a continuous

function of x and y at x = 0, 3/ == 0, since it = 0 for x = 0, irrespective

of the value of y, and u = 0 for 3/ = 0, irrespective of the value of

x, but if we select pairs of values of x and y, such that y = we

have ^ = -
, which is discontinuous with the value u = 0 at

1 -f m2

x = 0, y = Q.

Derivative- If u considered as a function of x, for any par-

ticular value of y, has a derivative as before defined, this derivative

is called the partial derivative of u with respect to x, and is

denoted byfx' or by

- lim /O + K y) -fix, y)
<-<i """" li-llx

J •

If considered as a function of y}
say (y), has a derivative,

3/
this is called the partial derivative with regard to y of ~-

9 and is
ox

denoted by = lim
+ ft (ff)

9y3^ ^=0 A;

_ iim 1 J lim
/(«+*>y + *)-/(^y)l

.

2—2
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It is evident that

ay _ a2/
dydx dxdy

'

if/and its first derivatives are continuous functions of x and y.

The definitions here given may be extended to functions of any

number of variables.

13. Point-Function- If a quantity has for every position

of a point in a region of space r one or more definite values

assigned, it is said to be a function of the point, or point-function.

This term was introduced by Lame. If at every point it has a

single value, it is a uniform function. Functions of the two or

three rectangular coordinates of the point are point-functions. A
point-function is continuous at a point A if we can find corre-

sponding to any positive e, however small, a value 8 such that

when B is any point inside a sphere of radius < 8,

|
f(B) -f(A) |

< e.

We may have vector as well as scalar point-functions, the

length and direction of the vector being given for every point. A
vector point-function is continuous if its components along the co-

ordinate axes are continuous point-functions.

14. Level Surface of Scalar Point-Function. If V is a

g , uniform function of the point M, continuous

/ / and without maximum or minimum in a

_ m/ /m'
^

portion of space r, through any point M in

/ / the region r we may construct a surface

I % having the property that for every point on

Fig. 3. it V has the same value.

For let the value of V at M be c. Then since c is neither a

maximum nor minimum, we can find in the neighbourhood of M
two points A and J5, such that at A, V is less, and at B, greater

than c, and that in moving along a line AB through m, V con-

tinually increases. If the line AMB is displaced to the position

A'MB!, so that

|

V(A)-V(A')
|

<c-V(A)
and

|

V(B)-V(B') \<V(B)- Gi

then V{A')< c< V{B')
}
therefore there is a point M on the line

A'B' for which F=c.
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As AB moves continuously M describes a line, and this line in

its motion describes a surface, for every point of which V= c.

Such a surface is called a level surface of the function V. A
level surface divides space into two parts, for one of which V is

greater, and for the other less, than in the surface.

As examples of point-functions we may take (1) the length

of a line drawn from the point if parallel to a given line until it

cuts a given plane. Its level surfaces are planes parallel to the

given plane. (2) The distance of M from a fixed point 0. The
level surfaces are spheres with centers at 0. (3) The angle that

the radius vector OM makes" with a fixed line OX. The level sur-

faces are right circular cones with OX as axis. (4) The dihedral

angle made by the planeMOX with a fixed plane through OX. The
level surfaces are planes through OX.

15. Coordinates. If a point is restricted to lie on a given

surface S, the intersection of that surface with the level surfaces of

a function V are the level lines of the function on the surface S
;

e.g. in examples (3) and (4) above, if S is a sphere with 0 as

center, the level lines are parallels and meridians respectively.

A functionf{V1 ,
V2 . . .) ofseveral point-functions is itself a point-

function. If it is a function of one V only, its level surfaces are

the same as those of V
}
for when V is constant, f{V) is also

constant.

Let qu q2 , q3 be three uniform point-functions. Each has a

level surface passing through the point M. If these three level

surfaces do not coincide or intersect in a common curve, they

determine the point M, and we may regard the point-functions

<2i> #2, ?a as tne coordinates of the point M, The level surfaces of

?i> ?2> ?s are the coordinate surfaces, and the intersections of pairs

(?i?2)» (?sjs)» (<Mi)> are tne coordinate lines. The tangents to the

coordinate lines at M are called the coordinate axes at M. If at

every point M the coordinate axes are mutually perpendicular, the

system is said to be an orthogonal system.

16. Differential Parameter. The consideration of point-

functions leads to the introduction of a particular sort of derivative.

If V is a uniform point-function, continuous at a point M, and
possessing there the value V, and at a point M' the value V, in
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virtue of continuity, when the distance MM' is infinitesimal,

F'-F= AFisaiso. The ratio

is finite, and as MM'
being given, the limit

V—V AV
MM' As

As approaches 0, the direction of MM'

lim
AV dv

dsAs=0 As

is defined as the derivative of Vin the direction s. We may lay off

dV
on a line through M in the direction of s a length MQ = and

as we give s successively all possible

directions, we may find the surface

that is the locus of Q.

Let MN be the direction of the nor-

mal to the level surface at if, and let

MP represent the derivative in that

direction. Let M' and N be the inter-

sections of the same neighbouring level surface, for which V= V\
with MQ and MP. Then

AV _ AV MN
MM' MN MM'

'

As MM' approaches zero, we have

AV dV

3

N

V
Fig. 4.

lim A

s=o As

Hence

"~
ds'

dV^dV
ds dn

lim = cos PMQ.

cos PMQ,

that is, the derivative in any direction at any point is equal to the

projection on that direction of the derivative in the direction of

the normal to the level surface at that point. Accordingly all

points Q lie on a sphere whose diameter is MP.

The derivative in the direction of the normal to the level

surface was called by Larn^* the first differential parameter of the

function V, and since it has not only magnitude but direction, we
shall call it the vector differential parameter, or where no ambiguity

* G. Lam6. Legons sur les coordonnges curvilignes et leurs diverses applications.

Paris, 1859, p. 6.
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will result, simply the parameter, denoted by P or Pv . The

above theorem may then be stated by saying that the derivative

in any direction is the projection of the vector parameter in that

direction. The theorem shows that the parameter gives the

direction of the fastest increase of the function V.

If V is a function of a point-function q, V=f(q) i
its level

surfaces are those of q, and

dn dq dn J ^ dn'

and if ± ^ s=&> P = ±f'(q).h,

where the sign 4- is to be taken if V and q increase in the

same, — if in opposite directions.

Suppose now that V=f(q1} q2i q3 )

ds dqx ds dq2 ds dq3 ds

and if A1? h2 , denote the parameters of qly q2) the above

theorem gives

dV dVP cos (Ps) = hi cos (hs) + h2 cos (h2s) +

dV
Now ± 7^- hi is the parameter of V, considered as a function of

qiy and we may call it the partial parameter Piy and since Pi and hi

dV dV
have the same sign if ~— > 0, opposite signs if ^— < 0, we have in

oqi oqi

either case

dV
x— hi cos (^s) = Pi cos (Pi s),

and P cos (Ps) = Px cos (P^) -f P2 cos (P2s) +

This formula holds for any direction s and shows that the

parameter P is the geometrical sum, or resultant, of the partial

parameters,

P = PX + P2 +

Hence we have the rule for finding the parameter of any

function of several point-functions. If we know the parameters
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h, h2 of the functions qu q2 and the partial derivatives

g~ , we lay off the partial parameters

37
in the directions hlf h2 or their opposites, according as^ >0,

or the opposite, and find the resultant of Ply P2 ,

If the functions ql9 q2 , are three in number, and form an

orthogonal system, the equation

P = P1 + P2 + P3 ,

gives for the modulus, or numerical value of the parameter

Examples. (1) in § 14. Let the distance of M in the given direction

\rn.

from the plane be u. AF= Au = -, where a is the angle betweenr
cos a to

the given direction and that of a perpendicular to the given plane.

Au 11
An cos a ' cos a

*

If the given direction is perpendicular to the given plane P=l.
Accordingly for q1 = x, q2

— y, q3
= z, the rectangular coordinates of a

point, we have Px = Py
=Pz = 1 , and for any functionf (x, y, z)

*
l

fa'
2 V 3 ~

d~z>

i

The projections of P on the coordinate axes are the partial parameters

P
1
= P cos (P*) =g, P, =P cos (Py)J£, P3

= P cos (Pz)J£.

Consequently, if cos (sx), cos (sy), cos (sz) are the direction cosines

of a direction s, the derivative in that direction

dV
ds

P
x
cos (sx) + P2 cos (sy) + PB cos (sx)

=— cos (sx) +— cos (sy) +— cos
8# x

' dy w/ v 7

P may be written in terms of the unit vectors i, j, k as
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9 9 9
The operator ir+lV+^r which gives the vector differentialr dx ° dy cz

parameter of a function, was denoted by Hamilton by V. (read Nabla).

If f(x, y, z) is a homogeneous function of degree n> by Euler's

Theorem

* ¥ ¥ df

or nf= P {x cos (Px) + y cos (Py) + % cos (Pz)}.

Now the ± parenthesis is the distance from the origin of the

tangent plane to the level surface at x, y, z. Calling this S,

or the parameter of a homogeneous function is inversely proportional

to the perpendicular from the origin to the tangent plane to the level

surface. For example, if n = 1,

V= ax + by + cz,

P cos(Px) = a, Pcos(Py) = b, Pcos(Pz) = c, P=\/a? + b2 + c\

The level surfaces are parallel planes, and the parameter is con-

stant,

o

V is proportional to the distance of the level surface from the origin.

If » = 2,
jr = - + £+-,

Cfcj G&2 ^3

Poob( jRb)=— ,
Pcos(Py) = ^, i>cos(P«) = -,

2 32

2 «2
2

«3
2 '

8 = ±— = ±

It.v ^
For the surface, V= 1,

a?
2

2/
2 #,2

2 ~2 2
^2 ^3

/in,2 ^2 ^
2

«2
2

»3
2

a familiar result of analytic geometry.
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17. Polar Coordinates. If we call the point-functions of

Examples 2, 3, and 4, of § 14, r, 0, <f>,

we obtain the system of spherical, or polar

coordinates. 0 and
<f>

may be called the

co-latitude and longitude. The level sur-

faces of r being spheres, the normal coin-

cides with r. Accordingly

dn~~dr~~
Xi

The level surface of 0 is a circular cone

of angular opening 0, (Fig. 5), and
Fig. 5.

dn = rd0,
d0

dn

d0_

rd0

1

r
h0 =

r

Fig. 6.

The level surfaces of
<f>

are meridian planes

through the axis of the above cones, (Fig. 6), and

d<t> 1dn — r sin 0dd>.
ôn r sin tid$ r sin 0

5

r sin 0

'

For any function /(r, 0, <£), the partial parameters are

Pr = ±~~hT
df

dr
+ df
dr'

P - +
df h - +

19/

P = +¥ kr
* *d<f>'

t
'~ ±

rsm0d4>'
df

The total parameter, the resultant of these, is given by

1 (df\*

r2
1 90, r2 sin2 0 Va^y

'

18. Cylindrical, or Semi-polar Coordinates. If we take
the rectangular coordinate z> the perpendicular distance from the
#-axis, />, and a> the longitude, or angle made by the plane includ-

ing the point M and the ^-axis and a fixed plane through that

axis, we have the system of semi-polar, cylindrical, or columnar
coordinates, for which we have immediately,

, . , - , 1
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The parameter of a function f(z, p, co) is the resultant of the

partial parameters

rz ~~ ±
dz

i p
~~ ±

dp'
w ~ X

pdco'

$z) \dpj p
2
\do)J

19. Ellipsoidal Coordinates. The equation of a central

quadric surface referred to its principal axes is

x2 y2 z2 n

(Xj 0*2

where a1} a2i a3 may be positive or negative. If they are all

negative, the surface is imaginary.

1°. Suppose one is negative, say

05-3 = C2
,

while a1
= a2

, a2
= b2.

Let a > b > c.

9? U2 Z2

The equation is -£ 4-
fi-
—5 = 1. The surface is cut by the XY-

ct 0 c

plane in the ellipse — + |^=1, whose semi-axes are a and 6, and

whose foci are at a distance from the center

Ja2 — b2 = Ja1
— a2 .

The section by the ^Z-plane is the hyperbola

^ 52 _
1

a2 c2
~ '

with semi-axes a and c, and foci at distance Va2 + c
2 = V^ — a3 on

the X-axis.

The section by the FiT-plane is the hyperbola

b2 c2 '

with semi-axes b and c and foci at a distance V&2
-f e2 = Va2

— a3 on

the F-axis.

The surface is an hyperboloid of one sheet.
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2°. Let two of the constants a lf a2} a3 be negative, say

G'2 ~~ """" b2
j ^3 = 0^ •

The equation is

xA y2 z2

a2 ~~¥~c2 ~~
'

The sections by the coordinate planes and their focal distances

are

IF iK
2

a?

t

ZX «2

a?

z*

c2
"

YZ f
63

z2

Hyperbola Va2 4- b2 = Vax d2 ,

= 1. Hyperbola Va2 + c2 = Va! — a3 ,

FJ? — + ^ = — 1. Imaginary Ellipse V— (6
2 — c

2
) = Va2

— a3 .

The surface is an hyperboloid of two sheets.

3°. If a1} a2) a3 are all positive, the sections are ellipses, and the

surface is an ellipsoid. In all three cases, the squares of the focal

distances of the principal sections are differences of the three

constants Accordingly if we add to the three the same

number, we get a surface whose principal sections have the same

foci as before, or a surface confocal with the original. Accordingly

/ \
°P V

2 z*
i

{I) WVp^ ¥Tp* &Tp~ '

represents a quadric confocal with the ellipsoid

a? y
2 z2

-

a2 ^b2
+

c2
~~

for any real value of p.

If a>b>c and p>—

c

2
, the surface is an ellipsoid. If

— c2 > p > — b2
, the surface is an hyperboloid of one sheet, and if

— b2 > p > — a2 an hyperboloid of two sheets. If —a2 > p, the surface

is imaginary.

Suppose we attempt to pass through a given point x
y y, z a

quadric confocal with the ellipsoid
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Its equation is

X2 y2 z2

a2 + p b2 + p c2 •+• p

where p is to be determined. Clearing of fractions, the above is

(2) (a2 + p) (b2 + p) (c
2 + p) - x2 (b

2 + p) (c2 + p)

-f (o2 + p)O2 + P) - * (a2 + p) (b2 + p) =/(/>) = 0,

a cubic in p. Putting successively p equal to oo ,
— c

2
,
— 62,

— a2
,

and observing signs of/(p),

P = 00
> f(p) = + 00 +

p = - c
2

, /(p) = - s2 (a2 - c2

) ( 6
2 - c2 )

P = ~b\ /(p) = -2/2 (c
2 -62)(a2-62

) +

p = - a\ f(p) = -x2 (b2 - a2

) (c
2 - a2

)

The changes of sign of/(p) show that there are three real roots.

Call these X, v in order of magnitude. X lies in the interval

X > — c
2 necessary in order that the surface may be an ellipsoid, fi

in the interval — c2 > p> > — b2 that it may be an hyperboloid of one

sheet, and v in the interval — b2 > v > - a2 that it may be an hyper-

boloid of two sheets. There pass therefore through every point in

space one surface of each of the three kinds. If we call

cc
2 u2 z2

(3) J .

(X,^y>
,)s_ + _^.+ __l,

the equation jF=0 defines X as a function of x, y, z}
and there-

fore as a point-function. The normal to the surface X = const, has

direction cosines proportional to

3X 3X 3X

dx
y

dy' dz
'

Now since identically F = 0,

/ \ dF 7 dF 7 dF 7 dF ,^ A
(4)

te
dx+

ty
dy + Tz

dz+
dx

dx = 0
'

and we have

dF
d\_/d\\ dx

dx \dx)dy=ldz=iQ d_F'

ax
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Therefore

(5) £_ *
/| ' +31JU + *

dx a2 + X / [(a2 + X)2
(6

2 + X)2
T

(c
2 + X)2

J

2x

(a2 + \) F' (X)

'

5X_ 2y

+ X) (X)

'

9X 2s

9s ~ (c2 + X)jF(X)
"

The parameter of the point-function X is accordingly given by

(6)
,3a?/ \dyj \dz,

4 ( #2

y
2 z 2

• /To i -v \ r> i

that is

(J"(X))2 (<a2 + X)2
(&

2 +*02 (c2 + X)2]'

4

J" (X)
•

Now the direction cosines of the normal to the surface

X = const, are

(7) COB g
,
7- ^" (X) 2* . 0

= i 7Z .

2 -(a2 H-X)l"X -(a2+ X) N/-^'(X)'

cos (nKy) = +
(6

2 + X)V-Jf'(X)'

cos = +
(c2 + X)V- JP"(X)'

Similarly for the normals to the surface fi = const.,

cos (n^x) = +
,

-

.

-
(a2 + M)V-^'(/*)

cos (wuv) = +
, ,

cos {n^z) = +
2

(c2 + /*) V- ^'(m)
'

The angle between the normals to X and fi is given by
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(8) cos =
\(a, + x)(a2+fl)

+ (-62 + x)(62 + /i)

(c2 + X) (c
2 + >JF' (X) JF' O)

*

Now by subtracting from the equation

the equation

we get

x* zz

a2 4-X 62 + X c
2 + X

x
_^ y + —

a2 + /L6 b2 + fM (?
2 + fJL

1,

a?
a2 + X a2 + fi\

+ 2/

l6
2 + X fc

2 + /*.

1 )

or

(9) (X-/*)f

(C2 +\ C2 + fJL)

= 0,

{(a2 + X) (a2 + fi) (b2 + X) (Z>
3 + /*)

+
(c

2 + X) (c
2 +^))

0.

Accordingly, unless X = cos (71^) = 0 and the two normals are

at right angles. Similarly for the other pairs of surfaces. Accord-

ingly the three surfaces of the confocal system passing through

any point cut each other at right angles.

If we give the values of X, \x
y
v, we determine completely the

ellipsoid and two hyperboloids, and hence the point of intersection

x
} y, z (and its seven symmetrical points in the other quadrants).

Hence we may take X, /n, v for the coordinates of the point,

and the family of surfaces forms an orthogonal system. X, fi, v

are called the ellipsoidal or elliptic coordinates of the point.

We shall proceed to find their parameters in a form not con-

taining any coordinates but X, /jl, v. We must find the rate of

change of X as we go along the normal to the ellipsoid X= const.

Since we have identically

x2 y2

+
a2 + X 62 + X c

2 + X
-1=0,
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differentiating totally

v ; (aHX 62+X c
2 + XJ

dX •

or y
2 z = 0.

](a2 + \y (6
2 + A)2

T
(c

2 + X)s

Now if Sx is the perpendicular distance of the tangent plane from

the origin, we have by the last formula of § 16,

x* y
2

z*

(a2+X)2 ^ (6
2 + X)2

(c
2 + X)2 '

so that we may write for the cosines,

cos(n^)=^,

cos (nKy) =^

,

cos (nK z)
e2 +X *

Now as we move along the normal, we have

xS\
dx = dn cos (n^x) = ——— dn,

a2 + X

dy = dn cos (raAy) = dn,

dz = dn cos (/Ia#) = dn.v
' c2 + X

Inserting these values in (10),

(12) 2gA i n
*^ + 77^U: + "7~t~~t~t^ I (fa

|(a2 + X)2 ^ (6
2+X)2 ^ (c2 + X)2

so that

(13)

(a2 + X)2
(&

2 + X)2
(c

2 + X)s

2

(a2 + X)2
(6

2 + X)2 ^(c2 + X)2

In order to express this result in terms of the elliptic co-
ordinates alone we may express x, y, z, in terms of X, p, v. Observe
that the function
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has as roots X, fi, v, and being reduced to the common denominator

(p + a?) (p + b2

) (p + c2
)

has a numerator of the third degree in p. As this vanishes for

P=\ p=P>> P = v

it can only be
- (j> - X) (p - /i) (p - v).

Hence we have the identity

/yi2 n #2 »2

(i4) jP(
p)=-^+ -l_ + -iri

2

-i

= - (P ~ X
) (P - /*) (P ~ Vl

"
(p + a2

) (p + &2

) (p + o2
)

#

Multiplying this by p + a2 and then putting p = — a2 we get

U5; (a2 -62)(a2 -c2
)

'

and in like manner

2 ^ (b* + X)(¥ + iJL)(b
2 +v)

y
(b2 - c2) (b2 - a2

)
'

(c2 + X) (c2 + p) (c2 4- 1/)

(c2 - a2

) (c
2 - b2

)

'

If X, fi, v are contained in the intervals above specified, these will

all be positive, so that the point will be real.

If we insert these values in SA , we shall have h\ expressed in

terms of X, fx y
v.

This is more easily accomplished as follows.

Differentiating the above identity (14) according to p,

/ f\ \ y
2

.z
2

}(I0)
~~ \W+P?

+W+W +¥+ 7?)

=
- (P - X) (p -p) (p-v)
(a2 + p) (6

2 + p) (c
2 + p)1111

+ ' +— X p + <z
2 p—/4 p+ b2 p— v p + e2J

If we put p = X, all the terms on the right except the first, being

multiplied by p — X, vanish, and we have

(I7) - + _IL_ + * -
(a2 + X)2

(6
2 + X)2

(c
2 + X)2 (a2 + X) (6

2 + X) (c
2 + X)

*

W. E. 3
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The expression on the left is . Hence

(18) h, = 2Sx =
(a2+ X) (6

3 + \) (c
2 + \)

(X — ft) (X — v)

In a similar manner we find

h
+ yu.) (b"~ + fi) (c2 + fi)

(/tt — v) (fi — X)

7 n /(a2 + v) (b- + v) (c2 + i/)

and the parameter of any function V(k, p, v) is

'dV\ 2
, . . /37\ 2

)"v+(£j v.

20. Infinitesimal Arc, Area and Volume. If we have

any three point-functions qu q2 , qs forming an orthogonal system

of coordinates, since their parameters are

^"an/ n
*~dn2

>

"3 ~§V

Fig. 7.

the normal distance between two consecutive level surfaces q1 and

qi + dqx is d% =^ ,
consequently if we take six surfaces

?i> qi + dqly q2 , q2 + dq2 , q3 , q3 + dq3 ,

the edges of the infinitesimal curvilinear rectangular parallelopiped

whose edges are the intersections of the surfaces are

dqx dq2 dq3

and since the edges are mutually perpendicular, the diagonal, or
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element of are is

0/8 ~
hi

+
hi

+
hi

J

the elements of area of the surfaces qu q2) qs are respectively

,a _ dg2dq3 ,Q _ d^3% ,~ dqx dq2

h2h3 h3 hx hx h2

and the element of volume is

dr
^d^d^dq3

hxh2hz

Examples. Rectangular coordinates x, y, z

h% —— hy — hg —— 1
j

dSx =dydz, dSy — dzdx, dSz = dxdy
i
dr — dxdydz.

Polar coordinates r, 0, <f>,

hr — 1, h$ = —
, Aa — z

7i

,

r v r sin 0

c£$r = r2 sin 0d0d<j> element of area of sphere,

dSe = r sin 0drd<f> element of area of cone,

dS$ = rdrdO element of area of plane,

dr = r2 sin 0 drd0d<j).

Cylindrical coordinates, z, p, co,

hz = hp == 1 ,
Aw ==

,

P

d/S>2 = pdpdm element of area of plane,

dS
p
= pdadz element of area of cylinder,

dSu = dpdz element of area of meridian plane,

dr = pdpdmdz.

Elliptic coordinates, X, p,, v.

dSK
= ^ "^O^0(^ _ elli id
4 V (a2 + //,) (6

2
4- /*) (c

2 + p) (a2 + i/) (6
2 + v) (c

2 +

7CV dvdX N{y — X) (v — ii) (X — tt) (X — z>) . i i*i
cZ/Sy = —

7 ^ : — hyperboloid,
4 V(a2 + 1;) (6

2 + v) (c2 + y) (a2 + X) (6
2 + X) (c2 -f X)

r

ciflf. = dX^^E^E±^^ v^^^ hyperboloid,
4 V(a2 + X) (b2 + X) (c2 + X) (a2 + /*) (6

2 + p) (c
2 + /*)

^ dXdpdv(X — p) (p — v) (v — X)

"sV^a2^^^
3—2



CHAPTER III.

DEFINITE INTEGKALS.

21. Definite Integral of a Function of one Variable.

If we consider a continuous function of one real variable, the

notion of its definite integral may be illustrated by means of a

geometrical representation. If the function y =f(x) be represented

as the ordinate of a curve of which x is the abscissa, and if between

two points x = a, x = b, we place any number n — 1 of points

and in the intervals between them erect

ordinates to the curve at points £l9 f2 so that

« < £l < ®i, X1 <^2 <X2 <%Jc<Xk &Vi-i < fn < b,

the sum

S = - a)/(&) + (x2
- + (6 - a?»-i)/(fn),

represents the area of the rectangles constructed on the bases

$i ^ (Z, S«2 = #2 "~"
• $k == ffik—i •••••• 8W = 6 — Xn—i f

with the altitudes /(£&)• The value of this sum depends on the

form of the curve or of the function f(x), on the choice of the

points of division, xx xn , and of the points tjk within the

intervals. It can be shown, however, that if all the differences 8&

are less than a certain value 8, all the values that S can take are

confined between certain limits, and if the number of intervals

increases so that 8 decreases without limit while 8X + 82 + &n

remains always equal to b — a, that these extreme values of S
approach a common limit. This limit will represent the area of

the space bounded by the axis of X, the ordinates erected at the

points x = a and x = 6, and the curve representing the function
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This conception may be extended to any function whether

continuous or not, and the limit, if there be any, approached by the

sum

limS=lim*2
,

Si/(&),
n— oo m = oo &= 1

as the number of intervals is made to increase without limit, is

the definition of the definite integral of the function f(x) from a

to b. It is denoted by
'b

f(x) dx,
J a

f(x) is called the integrand, a and b the limits, and ab the field of

integration. Evidently the letter x in the symbol may be replaced

by any other without affecting the integral. If the sum has a

limit the function f(x) is said to be integrable in the region from

a to b.

22. Condition of Integrability. The oscillation of a func-

tion in a given interval is the difference between the greatest and

the least value that it assumes in that interval. It is evident

from the definition of continuity that if e is a positive number as

small as we please we may always find a number S such that in

any interval less than S and lying in the region ab in which the

function is continuous, the oscillation is less than e.

Let £ gn be a system of ordinates for a system of sub-

division x1 xn) and let fw
' be a different set of ordinates

contained in the same intervals S1? S2 8n .

Then
n n n
2 «./(&) - 2 «./(&') = 2 Ss (/(£.) -/(&'))•111

Then we may find 8 so that when all S/s become less than S,

every

and consequently

n n

S S8 (/(£.) -/(£/)) < 2 Ss6 = (b - a) e.

1 1

As n increases indefinitely, e decreases indefinitely, and

n n
lim 2 «./(£.) = lim 2 8./(f/),
n=oo l n—oo 1

so that the selection of the ordinates in the intervals does not

affect the limit, if one exists.
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If Ls is the greatest value of f(x) in the interval B8} l8 the

least, so that the oscillation in that interval is DS ~LS
- ls , the

n n

two sums Si = £ Sg Ls and S2
= 2 Ss l8 must approach limits as n

1 1

increases indefinitely, for $a is always greater than S2 , and as we
increase n, Sx can never increase and S2 can never decrease. Now

n
the sum 2 always lies between Si and S2 , therefore if their

i

n n
difference 2 S§ Ds approaches the limit zero the sum 2 $sf(%s)

i i

must approach a limit.

Consider now two different modes of subdivision of the

interval ab,

C0i , x2 ...... i and Xi ,
x2 •••••• x ^ ^

,

and the corresponding sums

n n'

£ = 288/s and #' = 2S///.

Let the points xY xn^ and xV-i taken together

form the system rx rp^x and let

p2 = r2 ~ Vi

Pp — b y^—i.

In the interval #M ,
x8 there may or may not fall an r. In

general if a?M — rhy xs will be 1), so that

Ss = ^fc+i + Ph+2 + ph+t-

Then

s = Ph+if"h+i + Ph+zf"h+z + ph+tf"h+t

+ PA+i (/* —/' A+i) + (/« -f"h+z) + Pfc-K (/s ~f"h+t)>

where the /&'"s are arbitrarily chosen values of/ in the intervals

p&, and

1 1

where

P = 2 (/s —/"ft+i) + />&+2 (/« —f"h+d + Ph+t (fs —f"h+t)]>
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But in this sum P, for every s the greatest possible difference

f8 —f"n+k is in absolute value not greater than the oscillation D8 .

Therefore
n

1

In like manner
n' p
2 8s'f8 = % phfh + P'>
1 1

where P' ^2S/jD'
1

Then 2Ss/s -2 8/// = P-P',
1 1

% n

and if lim 2 B8 Ds = 0 for all systems of division, the limit 2 B8f8

fi= oo 1 1

is the same for all systems of division. It is easy to show that if

n
the condition lim 2 B8Bs = 0 is satisfied for one mode of division,

n=oo 1

it is satisfied for all. This is then the necessary and sufficient

condition that the function f(x) shall be integrable in the interval

ab.

23. Properties of Definite Integrals. It results imme-

diately from the definition

b n

f(x) dx = lim 2 B8f8}

a n—so 1

that if we interchange the limits a, b, since every B8 changes sign,

the sign of the integral is changed. More generally

rb rc ra
(i) I f(x)dx+ I f(x)dx+ \ f(x)dx = 0.

J a J b J c

The arithmetical mean of a number of quantities is defined as

their sum divided by their number. If f(x) is finite and in-

tegrable in an interval ab, and Bn , Bn ' are two

divisions of the interval, from the last equation of § 22,

ri n n n'

\
2 «; // - 2 B8fs |

£ 2 B8 D8 + 2 s; D/.1111
Consider n constant and let n' increase without limit.

Then
b n n n

f(x) dx-% Sgf8 £ 2 B8 D8) so that 2 B8fs ,all 1
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is an approximate value of the integral whose error is less than

n

i

We may put the 8s's all equal, so that S8
=

. Then

1 f
5 1 " (b — a) 1 n

(2) h~H /(*)^ = lim r^S^—z/8 = lim-S/8 .

O — Co J a n- x 0 — CI i n n=oo il 1

That is, the definite integral of a function in a given interval

divided by the magnitude of the interval represents the arith-

metical mean of all the values of the function taken at equidistant

values of the variable throughout the interval, when the number

of values taken is increased indefinitely.

From the definition it is evident that iff(x) has the same sign

throughout the interval ab, ( f(x) dx has the sign oi(b — a)f{x) >

J a

and if there is in ab a finite interval cd in which f(x) is not zero,

[
d

then 1 f(x) dx is not zero.
J e

In particular, if the function is continuous in a whole interval

ab, and the integral between every two values of x in the interval

is zero, the function must be zero everywhere within the interval.

If therefore two continuous functions give in every interval ab the

same value of the integral, they must be equal everywhere in the

interval.

Suppose that the continuous function f(x) has in the interval

ab a greatest value M and a least value m, the integral will have a

value lying between M (b — a) and m{b — a) and we may write,

b

f(x) dx = A(b— a)y

a

where M>A>m.
Since f(x) is continuous, it will take the value A for at least

one value £ of x between a and b
}
so that we may write

(3) f (6 -o), a<|<6-
J a

The above formula may be generalized. We have always

(4)

lb

f(x) dx
a

& \\\f(x)\)dx.
J a
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If in the interval ab, (a<b\f(x) and <j>(x) are finite and inte-

grate functions, and \f(x) |
lies always between M and m,

'6

(5)
'

\
f{x)<j>(x)dx
a

'b£M (\<f>(x)\)dx.
J a

If in the interval cf>(x) always has the same sign, since

M—f(x) and f{x) — m are positive,

'b rb

(M -fx) $ (x) dx and {/(%) — m) $ (x) dx,
a J a

or

rb rb

Ml cf> (x) dx — I f(x)
<f>

(x) dx
J a J a

fb rb

and I f(x) cf>(x)dx-m j> (x) dx,
J a J a

have the same sign, and therefore
[ f(x)<f>(x)dx lies between
J a

fb rb rbM (f)(x)dx and m <f>{x)dx so that f(x)<f>(x)dx is equal to

'b

a
(x) dx multiplied by a factor A lying between M and m.

If f(x) is continuous, there is some point £ in ab for which

/(£) = A, and accordingly

(6) \

b

f{x) <f>
(x) dx =/(f)

i\ (x) dx, a < f< b.

This important theorem is known as du Bois-Eeymond's
theorem of the mean.

24. Indefinite Integrals. Let f(x) be integrable between
a and b. The integral

'to'

1 x

fix) dx
a

is zero for x = a, and for every value of x between a and b it has a
definite value. It is therefore a function of its upper limit x.

Let us denote it by F(x). If x -f- h be another value of # in a&,

„ rx+h fx rx+h
F(x + h)= f(x)dx= f(x)dx+ f(x)dx,

J a J a J x

and F(x + h)- F(x) = f(x) dx,
J X

= hA, M>A>m.
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Hence F (x) is a continuous function of x. If a is any number
fa? rx

between a and 6, I f(x)dx differs from I f(x)dx only by a con-
»/ a J a

stant, namely the value of the integral I f(x) dx = 0. The

function F{x)-\-C is called the indefinite integral off{x).

Suppose that h approaches zero either positively or negatively,

and letf(x) either be continuous at x, or have an ordinary discon-

tinuity, i.e., by making a finite jump.

Then for any positive number e however small we can find a

number of the same sign as h, such that for every x in the

interval x, x +^ (at most excepting x), the value of f(x) for any

point differs by less than e from f{x + 0) or f(x — 0), according as

h is positive or negative.

Therefore the value /(f) in the expression

F(x + K)-F{x) = hf(^),

differs fromf(x ± 0) by less than e and we have

lim ^fr)~^)
=/(a; + 0)

^Ffr +Q-FM

Txf{x) dx~ F(x) is not only a finite and
a

continuous function of x in the interval ab, but it has at all points

where fix) is continuous a finite and determined derivative f{x)
and where f(x) has an ordinary discontinuity, though not having

a determined derivative, F(x) has one on the right and left

respectively equal to f(x + 0) and fix — 0). If however f(x) has

a discontinuity of the second kind, at x, the value of

F(x + h)-F(x)
h

as h decreases does not approach a limit and F (x) has no deriva-

tive at x.

The principle here proved enables us to calculate the definite

integral whenever we can find a function F(x) whose derivative is

/(#), for then

*f(x)dx = F(b)-F(a).
J a

The definition usually given of the definite integral, as deduced

from the indefinite integral by the above formula, is unsatisfactory,
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the true nature of the definite integral being that of the limit of a

sum.

25. Infinite Integrand or Limit. The definition of the

definite integral presupposed that the integrand was finite in the

field of integration ah. If there should exist points in the region

ah at which f(x) became infinite, the integral would in general

have no meaning. In case however there is a single point c for

which f(x) becomes infinite, if hx and h2 are positive numbers
rc-hx rb

however small, the integrals I f(x)dx, I f{x) dx have a de-
J a J e+h2

finite meaning. If now as and h2 approach zero independently

of each other the sum
fie- hi rbCc-hi rb

\ f(x) dx + f(x) dx,

approaches a definite finite limit, the value of that limit is what is

meant by the definite integral,

b

f(x) dx.
a

For example, let

f(x) = 7 ^-\F * > °>J x 7
(x — c)k

then for x = c,f(x) becomes infinite.

J a (X-C)k
Jh=0h (x - Cf fc2=0 J c+K (x - °)

k

= Hm (- hi)
1-*-(a- c)

l~h + (b - c)
l~k - (h2

y-k

1 — k

There is a limit as Ax and h2 approach zero only if 1 — k > 0.

r x

In like manner if the integral I f(x) dx approaches a finite
a

limit when the limit x increases indefinitely, then this value

defines the meaning of the definite integral

a

Let, as before,

/ f(x) dx>

J a

/(*)
{x - cf

'

•* dx _ (x- cy-k — (a- cY~k

a {x — cf
~

1 — k
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As x increases indefinitely, this approaches a finite limit only if

k > 1, when
dx _ (a — c)

l~k

a (0C — C)h k—1

26. Differentiation of a Definite Integral. Suppose that

the integrand is a function of a parameter u as well as of x. Then
in the case of a function of x that is capable of representation by a

curve, if we change the parameter u we change the curve, and if

f(x, u) is a continuous function of u, to an infinitesimal change in

n corresponds an infinitesimal change in the curve. The area

represented by the definite integral f /(#, u) dx changes by the
J a

area of the narrow strip added to or included between the two

curves, and we may find the ratio of this change to the given

change in u. We thus get a geometrical notion of the meaning of

the derivative of the integral with respect to u. Now by the

definition of the derivative

^ rb j f(®9 u+h)dx —
j f(x, u) dx

\ f(®> y) = lira —
dlt J a '

h = 0 h

lim (

b
I""/^'

u + h
^ ~f(x>

u)

h=0 J a h
dx.

It now becomes a question whether we may change the order

of taking the limits involved in the integration and in making h

approach zero. If f(x, u) is a continuous function of x and u we
may do this*, and since

lim /O, u + h) -fjx, u) = df(x, u)

h=o h du
'

we have

^Jf(*>u)du=l
a
^dx.

We have already considered the definite integral as a function

of its upper limit, and have found, § 24,

* So Kronecker, Theorie der einfachen und der vielfachen Integrate, p. 26, (the

word gleichmdssig being superfluous, vid. Harkness and Morley, Theory of Functions,

§ 64). For a more careful statement, see Tannery, Theorie des Fonctions d'une

Variable, § 166.
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In like manner

-L\j{x)dx= ~L (-/f/<«)
&) —/(«)•

If now u, v, w, are all functions of a variable t, we have for the

derivative of the definite integral according to t,

dZ-d fix u)dx =
d—— + dZ^ + <ll

dt dtJw du dt dv dt dw dt

du f
v df(x, u) 7 j., x dv x dw= -77 I

—
- dx + f(v, u) ^- — f(w}

U) -t; .

dtj w du J v
'

;
dt J v J

dt
*

27. Double and Multiple Integrals. Suppose we consider

a continuous function of two variables, x varying from a to 6, and

y varying from g to h. We may represent f(x, y) geometrically as

the third coordinate z of a surface, erected perpendicular to the

plane of xy. If now we subdivide the interval ah by points

ct ^ Xi ^ X2 ^ ...... ^ —1 ^ Z),

and the interval gh by points

g<yi<y* < yr < Vm-i < K
and draw through these points lines parallel to the axes of x and y }

dividing the plane into rectangles, and at a point in each rectangle

erect perpendiculars meeting the surface, the sum

2 2 (xs - (yr - yr-i)/(f«, Vr)
s-1 r=l

Xg—i <C £s < xs

represents the volume of the rectangular prisms constructed on

the rectangles with sides xs
— yr — yr-i as bases, and altitudes

If as we make the number of points of subdivision increase

without limit, the sum approaches a limit, this limit defines the

definite integral

rb
f h s—n r=m

I f(®> y) dx dv = lim lim ^ s (xs - #M) (yr - yr-i)A r

.

We shall find by reasoning similar to that used in § 22 that

the condition for the existence of a limit is that the sum

s=n r—m

s=l r=l
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where Dsr is the oscillation in the interval xSj yr„lf yr ,

approaches the limit zero.

In forming the double sum we may proceed with the summa-

tion according to x first, in which case

n rb

tyr ~ 2/r-i) Km 2 (xs ~ Vr) = (yr ~ Vr-i)] f(x, Vr) dx,

and the double limit is

Or we may sum first with respect to y> in which case

m rh
(xs - lim 2 (yr - yr-i)/(&, fl?r) = ~ /(&, 2/)

m=oo 1 J fir

and the double limit is

9

But we have always

Ia (/ ^ y)dy)dx.

m (n
1

i U

however small #s — ^s_x and yr — yr_x .
Accordingly,

1 /0> y)*»f ^= 1 f(®> 2/) dy>dx= 1 /(a?, y) etedy.
J g \J a ) J a [J g ) J a J

g

(In writing a double or multiple integral we shall write the

integral signs with their limits in the same order as the differ-

entials.)

We might now deduce theorems for the double integral similar

to those that we have already deduced for the single integral. In

particular, the independence of the limit on the mode of sub-

division, and the theorem of the mean may be demonstrated, and

the extension of the definition made when the integrand or the

limits become infinite. The definition of an integral may be

extended to triple and multiple integrals in an obvious manner.

28. General Definition of Definite Integral. We have

in the preceding definition of a double integral assumed that the

limits of integration with respect to x and y were independent.
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If instead of a rectangle in the JET-plane we should take any closed

curve, given by an equation
<f>

(x, y) = 0, we could in like manner
divide its area into rectangles, erecting perpendiculars in each,

and define the definite integral as the limit of a similar sum for

the new field of integration.

More generally, let f{M) be a function of a point M, moving
either in a plane or in space. If we divide any area S in the

plane or any volume r in space up into a number of parts, take the

value of f(M) at any point within each of those parts, multiply

each value by the area or volume of the part in which it is taken,

and add together for all the parts into which the area or volume is

divided, the limit approached by this sum as the number of parts

increases without limit in such a way that each dimension of

every part approaches zero, if such a limit exists, is called the

definite integral of f(M) through the region in question. We
may write the integrals

fjf(M)dS or jfjf(M)dT,

respectively. In each case, the field of integration must be ex-

pressly specified. It may be easily shown that this definition is

equivalent to the preceding.

A particular mode of subdivision is by drawing level lines

or surfaces for two or three orthogonal coordinates qu q2) q3 . We
have then, (§ 20),

/7tf - d% j„ _ d?i dft dqs
U/KJ — 7 7 ™T =——=—-j

,

fh fi2 ^ h2 h3

Suppose that in two different sets of coordinates

qi>q2,qs ,
and plyp2)p3 with parameters, hly h2,h3 , and gi,g2 ,g$>

f
jj ?a> ?s) dq1dq2dq3 =

jjj[<f> (pl} p2> p3) dpxdp2dp3 ,

when taken through any equal finite portions of a volume r.

Then when we consider the meaning of the definite integral

and its independence of the manner of subdivision, we see as in

(§ 23) that the above integrals, being respectively equal to

jjj
hxh2h 3f(qX) q2 , q3) dr and

jjj

g

xg2g3 <f> (pu p2> p3) dr,
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can be equal only if the point functions

hh2h3 f(qi, q*> q*) = #i02#> ^ (Pi, P2, Ps)>

everywhere in the volume r for the same point if, denoted by

#i> ?2> ?3 or p1? p2 , p3 in the respective coordinates.

29. Calculus of Variations. We shall frequently in what

follows have to make use of the calculus of variations, which,

since we shall use it always in connection with definite integrals,

is introduced here.

In the differential calculus, we have to consider questions of

maxima and minima of functions. A function of one variable has

a maximum or minimum value at a certain value of the variable if

the change in the function is of the same sign for any change in

the variable, provided the latter change is small enough. Since if

f{oc) is continuous at x,

f(x + h) =/(*) + hf (x) + £,/"(*) +

/ (x + h) -f{x) = hf (x) + jl

f"{x) +

If h is small enough, the expression on the right will have the

•sign of the first term, which will change sign with h. Accordingly

the condition for a maximum or minimum is

Suppose that we change the form of the function—such a

change may be made to take place gradually. For instance

suppose we have a curve given in any way, e.g.

x = Fl (f), y = F% (t\ z = F9 (t),

where the Fs are any uniform and continuous functions of an

independent variable t. If we change the form of the j^s we shall

change the curve—suppose we change to

* = Gi (0, V = #2 (0> * = #8 (0-

To every value of t corresponds one point on each curve, con-

sequently to each point on one curve corresponds a definite point

on the other. Such a change from one curve to the other is called

a, transformation of the curve. The change may be made gradually,

€ 'g
'

* = JU0 + «(Gi(0-^i<*)),

y = F2 (t) + e(G2 (t)-F2 (t)),

s = F9 (t) + e (0, (t) - Fd (0).
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For every value of e we shall have a particular curve—for e=0
we shall have the original curve, for € = 1 the final curve, and
for intervening values of e other curves. A small change in e will

cause a small change in the curve, and if e is infinitesimal we shall

call the transformation an infinitesimal transformation. The
changes in the values of x, y, z, or of any functions thereof, for an
infinitesimal change e, are called the variations of the functions, and
are denoted by the sign 8.

Suppose we denote

dx d2x dkx

dt' dt2 ' dtk

by the letters

etc.

/v» rp sr> I

and by
<f>
any function

cf) (t, x, yy zy
x', y\ z\ y<*>, z®, x^m\ yW, z™\

and consider the change in made by an infinitesimal transfor-

mation, where we replace xy y, z by

y + ev (t)>

where f, 77, f are arbitrary continuous functions of t.

mi dx , . , dx d% , d^x* dkx dk£Ihen -77 or x is replaced by -j- 4- € -~ and by -=-7- 4- e—

?

dt r J
dt dt dtk J

dtk dtk3

i.e., by a?<*> + €f<*>.

Hence <£> becomes

+ e£ y + €i?, z + e£ + eg', + e^, + €f(»»>),

which developed by Taylors theorem for any number of variables,

gives on collecting terms in equal powers of e

j>{t, x, y, z, x' ) + efa + |j fa + i
fa + ,

where

w. E. 4
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The terms e^, e
2
<jf>2 >

ek
<f>k

are called the first, second, kth varia-

tions of
<f>
and denoted by

= 8<jf>, e
2

<f>2
= B2

<f>,
= Bk<j>.

If for
<f>
we put successively x

} y, z, x'
, y[, z' we get

Bx = eg, By = €7), Bz = ef, Px = S2
?/ = B2z = 0,

We thus see that the variations of x
} y, z are infinitesimal

arbitrary functions of t, the independent variable, and from the

last equation

bUW ~ 6
dtk ~ eft*

1

6

6) ~ dtk
**'

that is, the operations of differentiation and variation are com-

mutative, for the variables x, y )
z.

It is evident that is the &th derivative of
<f>

with respect to

e Tor the value 6 = 0.

Since we may always change the order of differentiation, it is

evident that the commutative property holds for any function.

Let us now find the variation of the integral

1= $ (t, x, y} zy
x

} y', z , )dt.
J u

Changing x to x + Bx, y to y + By, x' to x' + oV, etc.,

/ + BI + £82/ + = ( \<f> + B(f> + %B2

<f>
+ ) dt,

J u

and the variations are

SI = ^B^dt, BkI= [
tx

Bk$dt}

J to J U

that is, the operations of variation and integration are commu-
tative. (The limits have been supposed given, that is unvaried).

These two principles of commutativity of B with d and j form

the basis of the subject.

30. Line and Surface Integrals. If we consider any curve

in space joining a point A to a point B, and if on the curve

between A and B we place n — 1 points, pu p2 'Pn-i, whose
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^-coordinates are x-i ,
x% ••••••x^—\ ,

multiply the length of each chord

Ps-ips , ^0* - Xs-i)* + (y8 - ys-ij + (zs - ^-i)
2

,

by the value of the point function f(p) at some point 7rg in the

arc between p8__1} p8) and take the sum for all the arcs into which

the curve has been subdivided, then if this sum approaches a

finite limit as the number of subdivisions increases indefinitely,

this limit is called the line-integral of the point-function f(p)
along the curve AB, and is denoted by

[B n _

/ (j?) ds = lim v(fs - ^-i)
2 + (y« - ys-i)

2 + (z8 - zs^)\
J A n—00 1

If f(p) — l, the integral represents the length of the curve

AB
I ds = sAB .

J A

If in forming the line-integral we had multiplied the values of

f(ir8) by the ^-projection of the chord, instead of by the chord

itself, we should have arrived at the integral already defined,

r n

\f(p) dx = lim 2/(tts) (xs - a^),
' n=<x> 1

except that f(p) is a function not of x alone, but of the point on

the given curve corresponding to x. It will in general happen

that as we go continuously along the curve from A, x will not

increase continuously but will increase to a certain value (7, and

then decrease. As x decreases, /"""~~

however, reassuming previous v.

values, we are still continuing

along the curve and reaching

new points and corresponding —
values off (p) which are to be i

used in the integral. The fane-
u~~ ~~ C

tion /, which would otherwise FlG
'
8 *

not be uniform in x, becomes uniform when defined in this manner, so

that if we interpret in the ordinary manner the integral jf(p) dx,

we must separate it into several integrals, in each of which x

varies in one direction throughout, taking in each the values of

f belonging to the corresponding part of the curve. If however

we write

s \ ®8 ^S—1 7

4—2
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where ls = V(xs - x^)2 + (y8
- ys^y + (z8 -^J2

,

lim
i

=
7
- = cos (as, x),

ls as v 7
ls~0

and take 5 for the independent variable, the above integral

becomes
1

fdx =
J{f-^j

ds= j /cos (ds, x) . ds,

in which there can be no ambiguity.

Id like manner if we divide the area of any surface S into

parts, multiply the area of each by the value of a point-function

f(p) at some point on that part, and sum for all the parts, the

Fig. 9.

limit approached by the sum, if any, as both the dimensions of the

parts approach zero, is called the surface-integral of f(p) over the

given portion of surface and denoted by

jjf(p)dS.

Here if we multiply /(p) not by the area of the part of the

surface 8, but by its projection on the XF-plane, we reduce the

surface-integral to the double integral jjf(p) d®xy already

treated, with the exception that the point-function depends not

only upon x and y but upon the surface S. If, as is generally the

case, several regions of the surface project upon the same part of

the XF-plane, the integral must be interpreted in an analogous

manner to that used in the case of the line-integral. If n is the
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normal to the surface 8 drawn always toward the same side of the

surface, it is easily seen that the area of the projection of the

element dS on the XF-plane is dSxy or dSz = dS cos (nz\ We may

accordingly write the surface integral,

jjf (p) cos (nz) dS =
fff (p) dSz

=
jff(p)

dxdy,

with the understanding that in the last form the integral is to be

taken over the projection of the surface S on the XF-plane, in

such a manner that the projection is to be divided into regions for

each of which the normal to S in the corresponding portions of 8
points either always towards the XF-plane or always away from it,

and that those parts of the integral for which the normal points

in opposite directions are given opposite signs. It will be seen

that this corresponds exactly to the interpretation of the line-

integral in terms of x, when x changes its direction of variation.

The first form of the integral above, with 8 as the variable of

integration, is preferable, its meaning being unambiguous.

31. Dependence of Line Integral on Path. Stokes's

Theorem. Curl. The line integrals with which we shall have

most to do are integrals of a vector point-function. If R is a

vector function of the point, whose projections are X, Y, Z
y

functions of x, y, z
}
the component of R along the tangent to the

curve AB at any point is, since the direction cosines of the

dx dy dz
tangent are ^ , ^, ^ ,

Rcos(R
>
ds) =X~ + Y

ŝ
+ Zj

s
.

The line integral of this resolved component

/ = j*R cos (R
} ds).ds^f^(x^+Y^ + Z^jds

may be written

(Xdx + Ydy + Zdz),
A

with the understanding of the previous section.

The functions X, Y, Z, being given for every point y, z, the

integral i" will in general depend on the form of the curve AB.

If we make an infinitesimal transformation of the curve, the
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integral will change, and we shall now seek an expression for the

variation. We have

BI^ItBX.^ +XB^ + BY.^+YB^ + BZ^^ZB^ds.
J\ as as as as as as/

Now

and

^ v dX ^ dX ^ ,
dX 2dA = — - dx + by +— bz,

dx dy dz

^dx __d (Bx)

ds ds

We may perform upon the term

a as

an integration by parts

a as U J A ds
ds,

IB

where XBoc / signifies that from the value of the function XBoc at
/ A

the point B we subtract its value at A. Now

dX dX dx ^ dX dy dX dz

ds dx ds dy ds dz ds
'

Performing similar operations on the other terms we have

B
BI=(XBx+YBy + ZBz)l +

fdX . dX , dX . \ dx
3- ox + — by +— bz
ox dy dz ds

^ dY x ^ dY x

dx dy oz ds

_ Zx (
dX — — ^ + — —"~
\ dx ds dy ds dz ds,

y \dx ds dy ds dz ds)

__^JdZ_dx M<fy +
ctfdz\

\dx ds dy ds dz ds)
ds.

Now if in the variation the ends of the curve A and B are

fixed, Bx, By, Bz vanish for A and JS, and the integrated part
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XSx + YBy + Zhz / vanishes. Collecting those terms under the

sign of integration that do not cancel, we have,

87=| (Sydz - izdy) (^-^) +
(fj

'9F 3X>
+

dy)\

Now the determinant Sycfe — Bzdy is the area of a parallelogram

in the F£-plane the projections of whose

sides on the Y- and if-axes are dy, dz, By,

hz. That is, if we consider the infinitesimal

parallelogram whose vertices are the points

s, s + ds and their transformed positions, the

above determinant is the area of its pro-

jection on the FZ-plane. If the area of the

parallelogram is dS and n is the direction of its normal, we have

as in § 30

Sydz — 8zdy= dS cos (nx),

Szdx — Sxdz = dS cos (ny)
t

Sxdy —8ydx = dS cos (nz),

'dZ dY\ , x idX dZ^
and SI

'dZ dY\ fdX dZ\ , .

^-g7Jcos(^) + ^-.-Jcos(^)

+
'3F 8JT

jdx dy
cos (nz) dS,

which is in the form of a surface integral over the strip of in-

finitesimal width.

If we again make an infinitesimal transformation, and so

continue until the path has swept out any finite portion of a

Fig. 11.
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surface $, and sum all the variations of /, we get for the final

result that the difference in I for the two extreme paths 1 and 2

is the surface integral

lim 2,81= J2
- 7x =

J

j- - cos (nx)

+
(aF - as)

cos^ +
1 a?

- ^ J
cosM

1

^

taken over the portion of the surface bounded by the paths 1 and

2 from A to B. Now — IY may be considered the integral from B
to A along the path 1, so that — is the integral around the

closed path which forms the contour of the portion of surface 8.

We accordingly get the following, known as

Stokes's theorem*. The line integral, around any closed

contour, of the tangential component of a vector R, whose com-

ponents are X
}
Y

}
Z, is equal to the surface integral over any

portion of surface bounded by the contour, of the normal com-

ponent of a vector <w, whose components rj, £ are related to

X, F, Z by the relations

S~~dy dz'

JdXJbZ
v ~

dz dx'

dx dy

'

The normal must be drawn toward that side of the surface that

shall make the rotation of a right-handed screw advancing along

the normal agree with the direction of traversing the closed

contour of integration.

Eds = jXdx + Ydy + Zdz = jj(o cos ((on) dS

=
jj(£

cos (nx) + 7j cos (ny) + f cos (nz)) dS.

The vector <o related to the vector point-function R by the differ-

ential equations above is called the rotation, spin (Clifford), or

curl (Maxwell and Heaviside) of R. Such vectors are of frequent

* The proof here given is from the author's notes on the lectures of Professor

von Helmholtz. A similar treatment is given by Picard, Tmiti Analyse, Tom. 1,

p. 73.
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occurrence in mathematical physics. The curl may be derived

from the primitive vector by the application of Hamilton's vector

differential operator V (§ 16) to a vector point-function R
y

dx
VB = [ iI + j | + (iX+j Y+kZ)

dY dZ\ . fdz
i —i— i

-|- 1 \

—
\dx dy dz) \dy

3P
dz

^ \ dz dx) \dx

dX\

curl R =V VjR = i% +Jt] + k£= co.

So that the vector part resulting from the application of the

operation V to a vector point-function gives its curl. The scalar

part

\ 3a? dy dz,

has an important interpretation to be given shortly.

[The significance of the geometrical term curl can be seen from

the physical example in which the y
vector R represents the velocity of a

point instantaneously occupying the

position x, y, z in a rigid body turn-

ing about the ^-axis with an angular

velocity co. Then the vector R= cop

is perpendicular to the radius p and

its components are
Eig. 12.

X = R cos (Rx) = — R sin (px) = - R ^ =
P

F=iJ cos (Ry)

where co is constant, and

dY
dx

R cos (px) = R

dy

x

y«>>

xco,

So that the ^-component of the curl of the linear velocity is twice

the angular velocity about the ^-axis.]

32. Lamellar Vectors. In finding the variation of the

integral / in the previous section, since the variations 8x, Sy, Sz

are perfectly arbitrary functions of s, if the integral is to be inde-
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pendent of the path, SI must vanish, which can only happen for all

possible choices of 8x, 8y, hz if

dZ BY BX BZ dY dX
dy Bz Bz Bx dec dy

= 0,

that is, if the curl of R vanishes everywhere. In case this con-

dition is satisfied, / depends only on the positions of the limiting

points A and B, and not on the path of integration. IfA is given,

/ is a point-function of its upper limit B, let us say <£. If B is

displaced a distance s in a given direction to B\ the change in the

function
<f>

is

$b> ~"
<i>B
= {Xdx + Ydy -f Zdz) y

J BB

and the limit of the ratio of the change to the distance

lim <t>B>-<t>BjJ>_ = x dx+Yf+z dz

s=0 s vs as as as

is the derivative of <j> in the direction s.

If we take s successively in the directions of the axes of co-

ordinates,

Bx~~ ' dy" 9

dz~~
>

that is, R is the vector differential parameter of the scalar

function <j>.

Accordingly the three equations of condition equivalent to

curl R = 0 are simply the conditions that X, F, Z may be repre-

sented as the derivatives of a point-function. In this case the

expression

Xdx + Ydy + Zdz =~ dx -f ^~ dy + 1^ dz = d<j>

is called a perfect differential.

From the definition of the parameter of a scalar point-function,

we see that the magnitude of the parameter is inversely propor-

tional to the normal distance between two infinitely near level

surfaces of the function. Such a pair of surfaces will be called a

thin level sheet or lamina. For this reason a vector point-function

that may be represented everywhere in a certain region as the
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Fig. 13.

vector parameter of a scalar point-function will be called a laminar,

or lamellar vector (Maxwell).

The scalar function
<f>

(or its negative) will sometimes be termed

the potential of the vector R.

33. Connectivity of Space. Green's Theorem. We
have supposed in § 31 that it was

possible to change the path 1 from A
to B into the path 2 by continuous de-

formation, without passing out of the

space considered. A portion of space

in which any path between two points

may be thus changed into any other

between the same two points is said to

be singly-connected. For instance, in

the case of a two-dimensional space, any

area bounded by a single closed contour will have this property.

If, however, we consider an area bounded externally by a closed

contour (7, and internally by one or more closed contours /, Fig. 13,

such as the surface of a lake containing islands, it will be possible

to go from any point A to any other point B by two routes which

cannot be continuously changed into each other without passing

out of the space considered, that is traversing the shaded part.

The space in Fig. 13 between the contour G and the island / is

said to be doubly-connected. We may make it singly-connected

by drawing a barrier connecting the island with the contour (7,

represented by the dotted line. If no path is allowed which

crosses the barrier the space is singly-connected.

A three-dimensional space bounded externally by a single

closed surface is not made doubly-connected by

containing an inner closed boundary. For instance,

the space lying between two concentric spheres

allows all paths between two given points to be

deformed into each other, avoiding the inner sphere.

But the space bounded by an endless tubular surface,

Fig. 14, is doubly-connected, because we may go from

A to B in either direction of the tube, and the two

paths cannot be deformed into each other. We may
F u

make the space singly-connected by the insertion of
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a barrier in the shape of a diaphragm, closing the tube so that

one of the paths is inadmissible.

The connectivity of a portion of space

is defined as one more than the least

number of barriers or diaphragms

necessary to make it singly-connected.

Thus the space in a closed vase with

three hollow handles, Fig. 15, is quad-

ruply-connected. We shall always

suppose the spaces with which we deal

in this book to be singly-connected, or

to be made so by the insertion of dia-

phragniSy unless the contrary is expressly stated.

Suppose that W is a point-function which, together with its

derivative in any direction, is uniform and continuous in a certain

portion of space r bounded by a closed surface 8. Then its deri-

vative 3 W/dsc is finite in the whole region, and if we multiply it

by the element of volume dr and integrate throughout the volume

t, the integral is finite, being less than the maximum value

attained by dWjdx in the space r multiplied by the volume t.

We have at once

z
Fig. 16.

sides are parallel to the X-axis, and whose bases are rectangles with

sides dyy
dz.



33] DEFINITE INTEGRALS. 61

The portion of the integral due to one such prism is

dydz dx.

Now the integral is to be taken between the values of x where

the edge of the elementary prism cuts into the surface 8 and

where it cuts out from the surface. If it cuts in more than once,

it will, since the surface is closed, cut out the same number of

times. Let the values of x, at the successive points of cutting, be

«*a > ^2 ^271 >

then /!^= "^2- W,+ JP4 - W3 ... + W2n - F2n_x ,

W]c being the value of W for and

dxdydz

Now let d$l3 dS2 ... ^$272,
denote the areas of the elements of

the surface S cut out by the prism in question at xu x2i ... xm
—these all have the same projection on the FJ?-plane, namely dydz.

Now if all these elements are considered positive, and if n be the

normal always drawn inward from the surface S toward the space

t, at each point of cutting into the surface S, n makes an acute

angle with the positive direction of the axis ofX
y
and the projection

of dS is

dydz = dS cos (nx),

but where the edge cuts out n makes an obtuse angle, with

negative cosine, and therefore

dydz = -— dS cos (nx).

We may accordingly write

dydzWx = Wi cos (nxx) dSly

— dydzW2 = W2 cos (n2x)dS2)

dydzW3
= W3 cos (nsx) dS3)

- dydzW2n = W2n cos (nmx) dS27l}
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and in integrating with respect to y and z we cover the whole of

the projection of the surface 8 on the FZ-plane. On the other

hand we cover the whole of the surface 8, so that the volume

integral is transformed into a surface integral,

'3 TP

dx
dr = fjdydz[W2- Wx + ... - Tfm_J

W cos (nx) dS

taken all over the surface S.

In like manner we may transform the two similar integrals

~dW
dy

dW
dz

dr = —JJW cos (ny) dS
}

dr = — jjw cos (nz) dS.

Applying this lemma to the function

dVw= u
dx

where both U, V and their derivatives in any direction are uniform

and continuous point-functions in the space t, we have

Similarly for lf= Udr

dy\ dy)
T =

and for

dy'

jj IT*?— cos (ny) dS
;

BV

Adding these three, and performing the differentiations,

u (d2V &V 3»F\ dUdV dJTdjr dUdTT
dx2 dy2 dz2

J dx dx dy dy dz dz
_

dr

dV dV
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or, transposing, and denoting the symmetrical integral by J,

(I) J
'dUdV dUdV dUdVl

dr
dx dx dy dy dz dz J

TT
(dV ,

N ,
dr , .dv )

"

dx
C0S ^nx ' 'dy

C°S
'dz

C0S (nz
'j

JJJ I
dx2

+
dy2

+
dz'

This result is known as Green's theorem*.

dr.

By the definition of differentiation in any direction the paren-

thesis in the surface integral on the right is

dV
^- =Pv cos (Pvn),

if Pv is the parameter of V.

Since the integral on the left is symmetrical in U and V, we
may interchange them on the right, so that

j=- urbas-
on

lr \d*u d2U d*u\ ,

Writing this equal to the former value, and transposing, we obtain

dn dn
dS

'd°-U d'U d*U
)-"(

d2V d2V 32F>Y[^— + -—

—

\- w , ,

dx2 dy2 dz2
J \ dx

2 dy2 dz2
4- + dr,

which will be referred to as Green's theorem in its second form.

It will be noticed that the integrand on the left in the first form

is the geometric product of the parameters of the functions U and V
9

We shall, unless the contrary is stated, always mean by n the

internal normal to a closed surface, but if necessary shall dis-

tinguish the normals drawn internally and externally as ni and ne .

If we do not care to distinguish the inside from the outside we
shall denote the normals toward opposite sides by ^ and n2 .

* An Essay on the Application of Mathematical Analysis to the theories of

Electricity and Magnetism. Nottingham, 1828. Geo. Green, Reprint of papers,

p. 25.
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34. Second Differential Parameter.

If for the function U we take a constant, say 1,

and we have simply

-fjPr cos (Prn) dS ="//^///gj+% + ?£) <*r.

The function

82F 32F

which, following the usage of the majority of writers, we shall

denote by AT, was termed by Lame* the second differential para-

meter of V. As it is a scalar quantity it will be sufficiently

distinguished from the first parameter if we call it the scalar

parameter. We have accordingly the theorem giving the relation

between the two :

—

The volume integral of the scalar differential parameter of a

uniform continuous point-function throughout any volume is equal

to the surface integral of the vector parameter resolved along the

outward normal to the surface 8 bounding the volume.

We may obtain a geometrical notion of the significance of AV
in a number of ways. Applying the above theorem to the volume

enclosed by a small sphere of radius R, we have, since n is in the

direction of the radius, but drawn inwards,

-— == km -~— ,

on Bs=0 M
d~dS= lim f[YsrzI?dS
on £=0 J J J*

= lim ~l((vsdS-V0S
22=0 ±t [JJ> J

where V0 is the value of V at the centre of the sphere, Vs on the

surface. Now remembering the significance of a definite integral

as a mean, we have

lim ^ {Mean of V on surface — V at center} x Area of surface

—Jfj&
Vdr = (Mean of AV in sphere) x Volume of sphere.

* G. Lam6. Legons sur les Coordonnees curvilignes et leurs diverses Applica-

tions, Paris, 1859, p. 6.
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Now since the volume of a sphere is £ the product of the

surface by the radius, we have, on making R approach zero,

AV— 3 Lim ^ean ^ on surface ~~ "P" a^ center}

The negative scalar parameter — AF was accordingly called by

Maxwell the concentration of V
9
being proportional to the excess of

the value of V at any point over the mean of the surrounding

values. It is evident from this interpretation of AV that if the

concentration of a function vanishes throughout a certain region,

then about any point in the region the values at neighbouring

points are partly greater and partly less than at the point itself,

so that the function cannot have at any point in the region either

a maximum or minimum with respect to surrounding points. A
function that in a certain region is uniform, continuous, and has no

concentration is said to be harmonic in that region. The study of

such functions constitutes one of the most important parts, not

only of the theory of functions, but also of mathematical physics.

By means of the same theorem we may obtain another repre-

sentation of A7. Let us apply the theorem to the space included

between two small concentric spheres of radii Rx and R2 = Rx + h.

Then at the outer sphere

dr )B2
~

( dr )Bl
+

( dr2 )Bl

h
'

and the surface integral being taken over the surface of both

spheres, with the normal pointing in each case into the space

between them,

dS.

As we make h approach zero, the first term of the second integral

destroys the first, and

^— dS = Lim ff h dS,
dn h=0 JJr, dr2

so that AFdr = Lim [( ^ZhdS.

Now hdS is the element of volume dr, so that AT may be

d2V
defined as the mean value of the second derivative

9
~

2
~ for all

w. E. 5
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directions as we leave the point. This interpretation is due to

Boussinesq*.

We may derive the parameter AV by applying Hamilton's

operator V twice to V,

rrfoTT T7/V7T7X /' 9 « 9 7 9 \ / • 9V
,

• 9^
, y 8F\ A Tr

35. Divergence. Solenoidal Vectors. If the components

of the vector parameter are

dV
Pcos (Pa>) =X =

3#
'

d_V

dy>

dV
Pcos (P*) = £ = V-,

oz

Pcos (Py) = F=

we have

Kir dX 3F dZAV = J h
3# 83/ dz

'

and the above theorem becomes

—
Jjp

cos (Pw) dS = —jj(X cos (na?) 4- Fcos (wy) + ^eos (nz)) dS

vaz 3F
dr

\3# 3y 3^/

If P is everywhere directed outward from the surface S, the

integral is positive, and

fdX ,
3F

,
dZ\ Amean hr~ + -5- + -5- > 0.

\ d# oy ozj

dX 3F dZ
Accordingly — -f +^ is called the divergence of the vec-

tor point-function whose components are X, F, Z
y
and will be

denoted by div. R. Comparing with § 31 we find that the

divergence of a vector is minus the scalar part of the V of the

vector,

div.P=-SVJ2.

The theorem as just given may be stated as follows, and will

be referred to as the Divergence theorem : The mean value of
the normal component of any vector point-function outward from

* Boussinesq, Application des PotentieU a Vetude de Vequilibre et du mouve-
ment des solides Glastiques, p. 45.
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any closed surface S within which the function is uniform and

continuous, multiplied by the area of the surface, is equal to the

mean value of the divergence of the vector in the space within S

multiplied by its volume. The theorem was proved for a vector

which was the parameter of a scalar point-function V, but it is

evident that it may be proved directly by partial integration

whether this is the case or not.

Let us consider the geometrical nature of a vector point-

function R whose divergence vanishes in a certain region. In the

neighbourhood of any point, the vector will at some points be

directed toward the point and at others away. We may then

draw curves of such a nature that at every point of any curve the

tangent is in the direction of the vector point-function R at that

point. Such curves will be called lines of the vector function.

Suppose that such lines be drawn through all points of a closed

curve, they will generate a tubular surface, which will be called

a tube of the vector function. Let us now construct any two

surfaces & and S2 cutting across the vector

tube and apply the divergence theorem to the

portion of space inclosed by the tube and the

two surfaces or caps $2 and S2 . Since at every

point on the surface of the tube, R is tangent

to the tube, the normal component vanishes.
FlG# 17

The only parts contributing anything to the

surface integral are accordingly the caps, and since the divergence

everywhere vanishes in t, we have

|| R cos (JKrh) dS! + \\ R cos (Rn2) dS2 = 0.

If we draw the normal to S2 in the other direction, so that as

we move the cap along the tube the direction of the normal is

continuous, the above formula becomes

Jj
R cos (Rnx) d81 -fjs

R cos (Rn*) dS* = °>

or the surface integral of the normal component of R over any cap

cutting the same vector tube is constant.

Such a vector will be termed solenoidal
y
or tubular, and the

'dX d Y* dZ
condition— 4- ~- +—=0 will be termed the solenoidal condition

ox oy oz

(Maxwell). We may abbreviate it, div. R = 0. If a vector point-

5—2



68 DEFINITE INTEGRALS. [INT. III.

function B is lamellar as well as solenoidal, the scalar function V
of which it is the vector parameter is harmonic, for

dX
,
dY

,
dZ ,. n a tt /\

ox dy dz

A solenoidal vector may be represented by its tubes, its

direction being given by the tangent to an infinitesimal tube,

and its magnitude being inversely proportional to its cross-section.

As an example of a solenoidal vector we may take the velocity of

particles of a moving fluid. If the velocity is R, with components

X, Y
}
Z, the amount of liquid flowing through an element of

surface dS in unit time is that contained in a prism of slant

height E, and base dS, whose volume is

R cos (Rn) dS.

The total flux, or quantity flowing in unit time through a

surface 8, is the surface integral

jjR cos (Rn) dS = jj(X cos (nx) + Y cos (ny) + Z cos {nz)) dS.

Such a surface integral may accordingly be called the flux of

the vector R through 8.

A tube of vector R is a tube such that no fluid flows across its

sides, such as a material tube through which liquid flows, and the

divergence theorem shows that as much liquid flows in through

one cross-section as out through another, if the solenoidal condition

holds. If the liquid is incompressible, this must of course be true.

As a second example of solenoidal vectors we have any vector

which is the curl of another vector, for

dx [dy dz) dy \ dz dx) dz

dY_dX,
Q

dx dy

identically.

The equation

d*V d*V d2V ATr A
1 1 — A V = 0

dx* * dy2 ^ dz'

32 g2 ^2
is called Laplace's equation, and the operator A =^2

+^2 +

^

Laplaces operator.
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36. Representation of Solenoidal Vector. Multiplier.

We have obtained in § 32 a means of representing a lamellar

vector-function by means of the level surfaces of its potential

function. By means of Jacobi's multiplier we may find a some-

what similar representation for a solenoidal vector. If we suppose

the curves drawn whose tangent at every point has the direction

of the vector function i2 whose components are X
, Y}

Z, since the

direction cosines of the tangent are

dx dy dz

ds ' ds ' ds*

the curve is defined by the differential equations

(i) dx\dy: dz=X :Y: Z.

The integrals of these equations will each contain an arbitrary

constant. Let us suppose that an integral is of the form

X (x, y, z) = const.

Then we must have

^ dx + ~ dy + ~ dz = 0,
dx dy dz

and since dx, dy, dz are proportional to X, Y, Z,

(2)
dx ay dz

This partial differential equation may serve as a definition of an

integral of the system of differential equations (i). Geometrically

it shows that the vector R is perpendicular to the normal to the

surface X = const., that is, is tangent to the surface. If fi = const,

is a second integral, then

(3) ox dy dz

and since R is tangent to a surface of each family X = const.,

fi = const., the lines of the vector R are the intersections of the

surfaces X with the surfaces jul. From (2) and (3), linear equations

m X, Y, Z, we may determine their ratios. We obtain

(4) X: Y:Z =
9X 3X

dy' dz

d/M dfi

dy' dz

9X

dfi

a*'

ax

dx

dfi

dx

ax ax

dx ' dy

dfi dfi

dx' dy
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If if be a factor to be determined, we may put

(5) MX = A, MY= B, MZ=C,

where A, B, C are the above determinants.

But the determinants A, B
}

C, if differentiated by x, y, z,

respectively and added, are found to satisfy identically the solenoidal

condition

dA dB dC A
(6) 1

i = 0w dx dy dz
'

so that we have the equation for M,

dx dy dz

Consequently for any continuous vector functionR it is possible

to find a scalar multiplier M that shall make the vector whose

components are MX, MY> MZ, solenoidal. If the vector R is

itself solenoidal, the equation for M is satisfied by any constant,

say 1, so that in this case we have

dX dfi dX dfju

(8) F=

dy dz dz dy
9

dX dfju dX dfjb

dz dx dx dz
'

dXdfM dXdfju

dx dy dy dx
'

But if Pa, denote the vector parameters of the functions

X, fi we see by the definition of the vector product,

it! = PAPM sin (PAP„).

If we consider two infinitely near surfaces of the first family

for which X has the values X and X + dX respectively, the normal

distance between which is dn\, we have by §§ 16 and 20

1 dX
dnK = ^- .

Considering two infinitely near surfaces of the other family fi

and ju, + d^, we have in like manner for their normal distance
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The area of a right section of the four-sided tube thus

formed (Fig. 18) is

dS
drix dn l

drix dn t

sin (nk sin (Pa P*)

'

and multiplying this by the value

of It,

EdS =PA Pp. dnK dn^ = dX dp, Em. 18.

which is constant for the whole tube. Consequently we obtain

a new proof of the fundamental property of a solenoidal vector,

for any tube may be divided up into infinitesimal tubes defined by

surfaces of the two families.

37. Principle of the Last Multiplier. If we have two

functions M and N, each of which is a multiplier for the equations

(i), they must each satisfy the partial differential equation (7) so

that

dx dy dz

(dX dY dZ]—1 \. _
dx dy dz

dx dy dz

d_x dY dZ]

) dx dy dz

0,

0.

Multiplying the second of these by My
the first by N, and

subtracting,

dN „dM) „(„dN „dM) .
„[„dN

and dividing by M2
,

dz
NdM]

dz

ox dy

Ml
dz

= 0.

That is, the quotient of the two multipliers is an integral of the

differential equations (1). This result is of particular importance

when we have found one integral X = const, and any multiplier, for

we may then find a last multiplier, which shall give us at once

the remaining integral. By means of the integral equation

X (x, y, z) = const, let us, by solving for one of the variables, say z,

express z as a function of x
} yy

X,

z = z(x, y, X).
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If fi = const, is a new integral, let us by introducing the value

of z just found, express fi in terms of x, y, X,

fi = fi(x, 3/, X).

We shall distinguish the partial derivatives of fi thus expressed

from its partial derivatives when expressed in x, y> z
}
by brackets,

so that we have

dfi

dx

dfi

dx
+

dfi dX dfi

dXj doc
9

dy

dfi
+

dfi

dx

dX dfi

dy' dz

dfi

dx

dx

dz*

Accordingly we obtain for the values of A, B, G

A=- dX

dz

dfi 5 = dx

dz

dfi

dx

Now fi being expressed in terms of x, y, X}
we have

dfi
dfi

dx
dx +

dfi
dy +

dfi

dx
dX,

and since X = const, is an integral, dX = 0,

dfi
dfi

dx
dx +

dfi

3y_
dy.

But from the values of A and B
dfi B dfi

dx ~~dX' 3y„
dz

A

dz

so that

But since

this becomes

, Bdx — Ady
dp=—^—2.

dz

A = MX, B = MY,

M
dfi = 7—(Ydx — Xdy).

dz

Accordingly although the expression

Ydx — Xdy

is not a perfect differential, the factor

M
dX

dz
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makes it the differential of a function fju, and

rM
H = i~( Ydx — Xdy)= const.

Idz

is a second integral of the equations (i). X, Y and ~ must of

course be expressed in terms of x
y y, X.

Consequently if we have the system of differential equations

dx : dy : dz =X : Y : Z,

and we have found one integral X = const, together with a mul-

tiplier satisfying the partial differential equation

d(MX) d (MY) d (MZ) =
dx dy dz

1

then the expression

M
d\

dz

is an integrating factor, or last multiplier* for the equation

Ydx — Xdy = 0.

When X, F, Z satisfy the solenoidal condition, the last multi-

plier is

dX'

dz

This result will be used in § 103.

38. Variation of a Multiple Integral. In illustrating

the method of the Calculus of Variations we have found the varia-

tion of a single integral, and in the example taken the functions

varied were the coordinates x} y, z
}
of points of a curve, the variable

of integration being t. We may in a similar manner vary a

surface or volume integral, by causing the functions entering into

the integrand to change their forms by an infinitesimal trans-

formation, while the variables of integration are unchanged. For

instance let

* Jacobi, Vorlesungen ilber Dynamik, p. 78.



74 DEFINITE INTEGRALS. [INT. III.

be a volume integral, we may define its variation by the equation

where SV is any arbitrary function of x, y, z multiplied by an in-

finitesimal constant e. We may also vary an integral in another

manner. Suppose we consider the volume in question to be occu-

pied by material substance, and that to each material point

belongs a value of the function V. Now let every material

point be displaced in any manner by an infinitesimal amount
defined by the projections Bx, By, Bz. The material point which

arrives at x, y, z brings with it a different value of V, and the

value of the integral through the same portion of space, since the

latter is filled with different material points, is different. It is to

be noticed that this is the exact converse of the process exemplified

in §§ 29, 31 for there the functions X, Y, Z were associated with

fixed points in space, while the integral was over a field which was

varied, whereas here the function V goes with the varied point,

while the field of integration is fixed. As an example, let us

consider the integral

representing the mass of a body r whose density at any point is

p, the density being defined as the limit of the ratio of the mass of

a portion of the body to its volume, both being decreased in-

definitely. Let us consider the mass in an infinitesimal rect-

angular parallelopiped, whose sides are dx, dy, dz, and whose

mass is dm = pdxdydz. When all points are displaced by the

amounts Bx, By, Bz, particles in the face normal to the X-axis and

nearest the origin move to the right a distance 8x, and the volume

of new matter that enters the parallelopiped through that face

is dydzBx, whose mass is pdydzBx, p and Bx having the values

belonging to the face in question. At the opposite parallel face,

farthest from the origin, pBx has the value

and the amount of matter that moves out of the parallelopiped to

the right is

dx,



38, 39] DEFINITE INTEGRALS. 75

The total gain through these two sides is, accordingly, the

difference

— docdydz.

Similarly through the sides normal to the F-axis the gain is

— ~^gy^ docdydz,

and through the sides normal to the i?-axis

— d
dxdydz*

The total increase of the mass in the parallelopiped is therefore

Um = - +
d-(pM +

9
-^>j dxdydz,

and this being taken for an element of our integral, the total

increase of mass, or variation of the integral, is

Sm = _ f[[ \

d-(§M + *Je*s) + dxdydz.

{
doc ^ dy dz ]

We may obtain this result in a more rigid manner by the use of

Green's Theorem. Through each element of surface dS of the

boundary of the space in question there moves inwards an in-

finitesimal prism of matter whose volume is

dS {Sx cos (nx) + Sy cos (ny) + Sz cos {nz)}.

The mass of this is

{pSx cos (nx) + pSy cos (ny) + phz cos (nz)} dS,

so that the total gain of mass in the space t is

Sm =
jj

{pSx cos (nx) -f pBy cos (ny) + phz cos (nz)} dS.

But by Green's Theorem this is equal to

This result will be of frequent use.

39. Reciprocal Distance. Gauss's Theorem- Consider

the scalar point-function, V = *
, where r is the distance from a



76 DEFINITE INTEGRALS. [INT. III.

fixed point or pole 0. Then the level surfaces are spheres, and the

parameter is

ar \rj

and since hr = 1, i2 =
,

drawn toward 0. (§ 16.)

Consider the surface integral of the normal component of R
directed into the volume bounded by a closed surface S not

containing 0, or as we shall call it, the flux of i£ into S,

O
Fig. 19.

The latter geometrical integral was reduced by Gauss. If to each

point in the boundary of an element dS we draw a radius and thus

get an infinitesimal cone with vertex 0, and call the part of the

surface of a sphere of radius r cut by this cone d%
9 dX is the pro-

jection of dS on the sphere, and as the normal to the sphere is

in the direction of r, we have

cZ2 = ±dS cos (to),

the upper sign, for r cutting in, the lower for r cutting out. If

now we draw about 0 a sphere of radius 1, whose area is 47r, and

call the portion of its area cut by the above-mentioned cone dco,

we have from the similarity of the right sections of the cone

c£2 _ r2

dco"! 1

dZ = r2dco.

The ratio dm is called the solid angle subtended by the infinitesimal

cone.
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Accordingly

, . dS cos (rn) d% ,

(2) -ir—
; = ± 37 = ± d<o,

and

. v ffdS cos (ra) , , ,

(3) ±dco.

Now for every element da, where r cuts into S, there is

another equal one, — dco, where r cuts out, and the two annul

each other. Hence for 0 outside S,

(4) //^*0-O.

If on the contrary, 0 lies inside S, the integral is to be taken over

the whole of the unit sphere with the same sign, and consequently

gives the area 47r. Hence for 0 within S,

(5) //^^= - 47,

These two results are known as Gauss's theorem, and the integral (3)

will be called Gauss's integral*.

These results could have been obtained as direct results of the

divergence theorem. For the tubes of the vector function R are

cones with vertex 0. If 0 is outside $, R is continuous in every

point within S, and since the area of any two spheres cut out by a

cone are proportional to the squares of the radii of the spheres, we

have the normal flux of

1R =
/yt2

equal for all spherical caps. Consequently R is solenoidal, and the

flux through any closed surface is zero. If 0 is within S, R is

solenoidal in the space between 8 and any sphere with center 0
lying entirely within 8y

and the flux through S is the same as the

flux through the sphere, which is evidently — 47r.

The fact that R is solenoidal and V harmonic may be directly

shown by differentiation. If the coordinates of 0 are a, b, c,

(6) r2 =O - a)2 + (y - b)2 + c)2
,

* Gauss, Theoria Attractionis Corporum Sphaeroidicorum Ellipticorum homo-

geneorum Methodo nova tractata. Werke, Bd. v.
, p. 9.
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dr x — a dr _y — b dr _z — c
_

(7)

(8)

dx r ' dy r
9

dz r
'

3 /1\ 1 dr x — a

dx \rj r2 dx r3

d2

fl\ __1 3(x-a) dr _ H^~ af~J^
dx2 \r)

~~
r3 r4 dx r5 '

82
f
1}^ 3(?/--&)2 -r2 8

2 /1\ = 3Q--c)2 --r2
.

r/ 3y
2 dz2

= 3 {(a? ~ ft)
2
-f (y - 6)

2 + Q - c)
2
}
- 3r2

= Q
/ytt)

1 .

and - is harmonic, except where r = 0.



CHAPTER IV.

FUNCTIONS OF A COMPLEX VARIABLE.

40. Multiplication of Complex Numbers. We have seen

in (5) how the two-dimensional complex

number a + ib may be represented in

the plane by Argand's diagram. From

the definition of addition of complex

numbers it follows that two complex

numbers are added by the parallelo-

gram construction, that is the sum of

the two complex numbers p = aY + ibY

and q = a2 -\-ib2 is represented by the

diagonal of the parallelogram constructed on lines whose lengths

are equal to the moduli ofp and q,

\p\ = vV + b?
y I q I

= Vai + 6./,

and which make angles with the X-axis equal to the arguments of

p and q.

Fig. 20.

Hence
I P±2 I

«
I 1> I

+ I ? I

•

If we introduce the polar coordinates

r p I
, <j> = tan-1 -

,

we have

a — r cos cf),

b = r sin
<f>,

p = a + ib = r (cos
<f>

4- i sin
<f>).
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Now since

it follows that

i. ^

, , <f>
2

<f>
4

<f>
6

€OB * ssl
-2i

+ 4r6! +

sm^^-Jj +
lj- ,

cos -f i sin <£> = ei(f>

,

p =
| _p |

e*^.

It is easy to show that the modulus of the product of two

complex numbers is equal to the product of their moduli, and that

the argument is equal to the sum of their arguments. For if

p = ax 4- ih = rx (cos fa + i sin fa) =r^1
,

qz=a2 + ib2
= r2 (cos fa + i sin <£2) = r2e

i(t>%

then jpg = r^e* (<^l+<f>2) = nr2 [cos (0a 4- fa) + i sin (fa + fa)].

In like manner for the quotient, substituting the words

quotient for product, and difference for sum. A complex number

vanishes only when its modulus vanishes, and is considered infinite

when its modulus is infinite, whatever its argument.

41. Function of Complex Variable- A function of the

complex variable z = x + iy, if given as an analytic expression

containing z, will be a certain function of the two real variables

x and y and will contain a real part, which we shall denote by

u (x, y), and an imaginary part, which we shall denote by iv (x, y).

Hence the study of functions of a complex variable may be made

to depend on the study of functions of two real variables. Let

w ~f{z) — u -f iv.

The representation of variable and function by means of abscissa

and ordinate of a curve is not here applicable, for both variable

and function have two degrees of freedom. The function may be

otherwise represented by means of another plane in which we

mark off lengths u and v as the rectangular coordinates of another

point representing w on another Argand's diagram. To every

point x, y in the first plane will then correspond a point % v in the

second plane. As the point x, y moves, so will the point u, v. As

the point x, y representing the variable z, describes any curve, u, v,
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representing w —f(z) describes another curve, iff(z) is continuous,

otherwise the point u, v may jump from one point to another.

The definition of continuity is that two points on the function

curve may be made to approach each other as nearly as we please

by taking the corresponding points on the curve of the variable

sufficiently near. Or, a function is continuous in a region of the

2-plane continuing z0 if to every real positive quantity e as small

as we please, we can find a corresponding quantity 8 such that

l/(*)-/(*o) K e if |*-*o|<&

In considering the representation by means of curves, it is of

importance to inquire whether, if the curve of z starting from an

arbitrary point z0 , returns to it after describing a closed curve, the

curve representing w =f(z) also returns to its point of departure.

If this is the case, the function f(z) within the region in which

this property holds, is said to be uniform, or single-valued, for to

every value of z corresponds one value of w.

42. Derivative. Analytic Function. Let us examine

the relation between an infinitesimal change in z and the corre-

sponding change in f(z). The change dz = dx + idy has the

modulus
|
dz

|
= *>/dx

2 + dy2
, and the argument w = tan"1 -~

.

The change dw — du + idv has the modulus
|
dw

\
=^du2 + dv2

and the argument 0 = tan"1 ~ .

Also
, du , du ,

au = ^—dx + — ay,
dx dy

, dv 1 dv 1
dv = dx + Tr- dy,

ox dy

dw = du + idv = ~ dx + 1^
dy + i

|
~ dx +~

|

.

The ratio

du

, . dw du + idv dx
lim

7 du 7 . (dv , dv 7

dz =0 dz dx -f idy dx -f idy

_ dx \dy dy) dx

dx

w. e.
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is in general dependent on ~, that is on the direction in which

we leave the point z. The value of the derivative will not then be

determined for the point z irrespective of the direction of leaving

it unless the numerator is a multiple of the denominator and the

:

. . dy . .

expression containing ~ divides out.

In order that this may be true we must have

'du ^ dv \
^ _ fdu \dv\

m
^.

$x dx) ' \dy dy)

'

. . . (du . dv\ du . dv
that IS l[7r- + lic-) — 7r-+l7r'

\dx dx/ dy dy

Putting real and imaginary parts on both sides equal,

du _ dv dv _ du

^ ' dx dy ' dx dy
'

. dw du .dv dv . du
and -r~ — tt + ^^-=5 * ^-

,

dz ox ox oy oy

\dw 2 _(du^ /^Y-Z'—Y (~\*
|
dz \dx) \dy) \dx) \dy)

In this case the function w has a definite derivative, and it is

only when the functions u and v satisfy these conditions that u+iv

is said to be an analytic function of z. This is Riemann's definition

of a function of a complex variable*. (Cauchy says monogenic

instead of analytic.) The real functions u and v are said to be

conjugate functions of the real variables x, y.

It is obvious that if w is given as an analytic expression

involving z, w =f(z\ then w always satisfies this condition. For

^w — df(z) dz /•/ / x dw _ df (z) dz

dx""~dz~dx"S {Zh dy~U~dy~ %J {z)'

. , .dw . idu .dv\ dw du .dv
Accordingly ir =Mr+ l rl = r = r +^)° J ox \dx dx/ dy dy dy

du _ dv dv _ du

dx dy ' dx dy'

* Riemann, Mathematische Werke, p. 5.
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43. Orthogonal Coordinates. Conformal Representation.

We may apply the considerations of §§ 15 and 20 to the case of

orthogonal coordinates in a plane. If a set of point-functions are

independent of one rectangular coordinate, the geometry of all

planes perpendicular to the axis of that coordinate is the same,

and we have the uniplanar, or two-dimensional case involving only

two variables which we will take as x, y. If we take u and v as

any two point-functions, whose parameters are hU) hv

their level lines u — constant and v = constant may be taken for

coordinate lines.

Their normals have the direction cosines

, x 1 du . x 1 die

, N 1 dv , x 1 dv

and the condition that u and v shall form an orthogonal system is

du dv du dv
1

— o.
dx dx dy dy

The lengths of infinitesimal arcs of curves, forming the sides

of a rectangle whose opposite vertices have coordinates u, v, u + du,

v + dv, are as in § 20

du dv

and the length of the diagonal ds, or element of length of a curve

whose ends have the above coordinates, is given by

, 0 du2 dv2

If now we take for curvilinear coordinates in the x, y plane two

functions u and v such that u + iv is an analytic function of x -f iy,

in virtue of the equations (A) of § 42 we have

du dv du dv _ ^
dx dx dy dy

'

and u and v form an orthogonal system. Now in any orthogonal

system if we construct a set of level curves for equal small incre-

ments of u and v, they will divide the plane up into small

6—2
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curvilinear rectangles the ratios of whose sides at any point are

given by the ratio of the parameters hu and hv . But from the

equations (A), we have

h 2
U

h 2 _ /?
2 _ duo

dz

so that in this case the plane is divided into small squares. Let

us now construct in the second plane, in which u and v are

Fig. 21.

rectangular coordinates, the curves corresponding to u — constant

and v = constant. These are of course straight lines dividing their

plane into small squares. Moreover the length of any arc da of a

curve in their plane, is given by

da2 — du2 + dv2
.

But in virtue of the above relations, this gives

da2 = h2ds2
,

dw
dz

is accordingly the ratio of magnification at the point in

question, and varies for different points of the plane.

Let us now construct, (Fig. 21,) at a point in the x, y plane an

infinitesimal triangle made by the intersection of any three curves,

and let the lengths of its sides he dsX) ds2i ds3 . Construct the

corresponding curves in the u, v plane, intersecting to form an

infinitesimal triangle with sides

d&i, d<r2 ,
dcr3 .

Now we have

d<r1 = hds1> do-2 — hds2 , da3 = hdss ,
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and therefore

daY : da2 : da3
» ds1 : ds2 : ds3}

and the infinitesimal triangles are similar. Consequently corre-

sponding curves intersect each other in the same angle in both

corresponding planes. Such a relation as this is called a Conformal

Relation*, and it is of fundamental importance in the theory of

functions and in mathematical physics. The two planes are said

to be conformal representations of each other. The relation is

sometimes specified by saying that the conformal representations

are similar in their infinitely small parts.

It is easy to show that if the functions u and v give a conformal

representation of the plane, they must satisfy the equations (A).

44. Laplace's Equation. Conjugate Functions. If we

differentiate the equations (A), the first by x and the second by y
d2v d2v

and add, since . . = ^ ~ we have
oxoy oyox

d2u d2u _ q
dx2 dy2 9

so that the function u satisfies Laplace's equation in two variables,

or is harmonic.

Differentiating the other way and adding we show that v also

satisfies the same equation

dx2 dy2

Thus every conformal development or every analytic function

of a complex variable gives us two harmonic functions. The

question arises whether the converse is true. It obviously will

not do to take any two harmonic functions for u and v, for they

must be related so as to satisfy the equations (A). But if one

function is given, we may find the conjugate, for we must have

dv = ~ dx +^ dy,
dx dy °

which by the first equation (A ) is

, du 7 du 7
dv = — ~- dx -f ~ dy.

dy ox °

* Professor Cayley has called it orthomorphosis.
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Now if we call this Xdx -f Ydy it satisfies the condition for a

perfect differential

dy dx ' dy2 dx2
'

f dii dit
Consequently the line integral

J
— — dx 4-^ dy from a given

point x0 , y0 to a variable point x, y is a function only of its upper

limit, and represents v. Similarly if v is given,

fdu 7 3u 7 (dv 1 dv ,

Furthermore the first of the equations (^) is the condition

that vdx + udy is a perfect differential, and the second that

udx — vdy is such.

Accordingly the line integrals

= j vdx -f udy,

yjr — j udx — vdy,

give two new point-functions <£, ^ which in virtue of the equations

d<f> dyjr 3$ 3-\|r

3# dy ' dy dx
'

are conjugate to each other, and give a new analytic function of z9

(f>
-f i^, or -<|r + t<£. From these by new integrations we may obtain

any number.

Examples. The function

z2 = (a? + iy)2 =- #2 + 2ixy — y
2

,

gives w — x2 — y
2
y v = 2^,

both harmonic functions.

The curves u = x2 --y2 — const, and y = 2xy = const, give two

sets of equilateral hyperbolas, which intersect everywhere at right

angles, Fig. 22.

1 1 x — iy
The function

,2 I „,2 »

s x + %y x2 + y
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Fig. 22.

The curves

x
const, and v = ^ = const.,

oc
2 + y

2 " x2 + y
2

x2
-f f ~ Gxx = 0, x2+y2 + 0$ = 0,

give two sets of circles, the first all tangent to the F-axis at

the origin, the second all tangent to the X-axis, Fig. 23.

The power

zn — (x-\- iy)n = rn {cos n$ + i sin ??</>},

gives the two functions

u—rn cos ntf), v = rn sin n<f> 1

and a sum of any number of such terms each multiplied by a con-

stant

Srn {An cos n<f> + Bn sin n<j)},

therefore gives a harmonic function. If a function can be developed

in such a trigonometric series it accordingly is harmonic. Terms

such as these may be called circular harmonic functions.
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Fig. 23.

45. Integral of a Function of a Complex Variable.

Since the complex variable has two degrees of freedom, its integral

is not of so simple a nature as that of a single real variable.

Suppose the variable z moves from a point A to a point B along

any continuous path. The definite integral of f(z) —u + iv along

this path will be defined as the line integral

F= f{z) dz = (u -f iv) (dw + idy)
J A J A

fB #
fB

= udx — i;cfo/ 4- i I vda? + ^dy.
J A J A

Now in virtue of the equations (A) both the integrals above

are independent of the path, so that F is a function of z. It is

evidently y}r + i<j> of the last section. This is on the supposition

that the functions u, v are uniform and continuous in the whole

region considered. If this is the case the function w=u + iv is

called holomorphic.

If w becomes discontinuous in the region considered it ceases

to be true that the integral is the same over two paths AB
between which lies a point of discontinuity of the function w.
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1
For example the function w = - is discontinuous at the point

z

f dz
z = 0. Accordingly the integral I — around a closed contour con-

taining the origin within it is not zero, for it may be taken as the

difference between the integrals between two points i£ on the

contour along two paths between which lies the point of dis-

continuity of the function w. The integral around any closed

contour embracing the origin is however the same as around a

circle of radius R with center at the origin, for between the two

curves there is no point of discontinuity of the function. Now
since z — x + iy = re**, if r is constant = jR,

dz = iRe^ dcj>,

and the integral from z — 1

dz . [Rei(}) d6 . f 7i

z^ l\-R^^ %

]
d<i)

= l^

which taken around the circle is 2m.

f
z dz

The integral
|
— is defined as the logarithm of z, and it pos-

•/ i z

sesses the property that as z describes any closed path enclosing the

origin, 4;he function instead of returning to its original value

increases by a constant 2iri. The function is then not uniform,

but has at any point an unlimited number of values, depending

upon the path by which we arrive at the point. These values all

differ by integral multiples of the constant 2m.

We see that this accords with the ordinary definition of the

logarithm,

log z = log (x -f iy) = log (rei(<f>+2nir)
) = log r + i<f> -f 2mri,

for if we increase the argument </> of a complex number z by any

multiple of 27r, the number is unchanged. A point such that a

function f(z) assumes a new value when the variable traverses a

closed circuit about the point is called a critical, or branch point

In this case the conformal representation given by the function f(z)

is multiple in character, for in the Z7F-plane we are to take a point

for each of the values of the function f(z). Each of these repre-

sentative points gives a conformal representation of the whole of

the XF-plane on a part of the £7F-plane.
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For instance, in the case of the logarithm

log z — log r + i<f> + 2nm,

u = log r, v — cf> + 2w7r,

as z takes all possible values in the XF-plane, u = log r varies from

— oo to + oo but v varies only in limits differing by 2ir
}
so that the

whole X F-plane is entirely represented on a strip of the UV-plane
infinite in one direction but of the finite width 2tt in the

other. This strip is repeated an infinite number of times each

giving the same conformal representation of the whole X F-plane.

For instance the radii cf>
= const, and the circles r = const, cutting

them orthogonally in the XF-plane correspond to the lines

v = const, n = const, in the JJF-plane.

Fig. 24.

Corresponding regions of the figures are similarly shaded.



PART I.

THEORY OF NEWTONIAN FORCES.

CHAPTER I.

PRINCIPLES OF MECHANICS. UNITS AND DIMENSIONS.

46. Matter and Energy. Dynamics. Physics is the

science of Matter and of Energy. Its laws are found to be

invariable and capable of exact statement, that is of presentation

in the language of Mathematics. The application of mathematical

analysis to the treatment of physical phenomena, enabling us to

deduce general laws from the results of experiment, and to infer

the consequences of general laws, forms the subject of Mathe-

matical or Theoretical Physics.

Matter has the essential property of occupying space. It has

in addition universally only the property of Inertia, to be denned

below. In order to define Energy, we must consider the motion of

matter in space. That portion of mathematical physics which

treats of the motion of matter is called Mechanics, or Dynamics.

It is the object of physicists to reduce the explanation of all

physical phenomena to descriptions of motion of matter, and

accordingly the study of the principles of Dynamics is indis-

pensable to the study of any branch of theoretical physics. Before

considering the nature of electrical and magnetic phenomena we

shall therefore devote a few chapters to Dynamics.

47. Scalar and Vector Quantities. Physical quantities

are of two kinds. Quantities whose complete specification involves
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no idea of direction are called scalar quantities, for they may be

conceived as arranged on a scale according to their magnitude.

Such are time, temperature, size, density.

Quantities whose specification involves the idea of direction as

well as of magnitude are called vector quantities. They may be

represented by geometrical directed lines, and all that has been

said of vector quantities and their addition, etc. applies to them.

48. Degrees of Freedom. A set of magnitudes or para-

meters which completely specify a quantity are called its co-

ordinates. The number of coordinates required is called the

number of degrees of freedom of the quantity. For instance,

a point in a plane may be defined by two rectangular, or two polar

coordinates, and has two degrees of freedom. We may also say

that there is a double infinity or oo 2 of points in a plane. A point

in space requires three coordinates of any sort, and has three

degrees of freedom. Every independent relation that the coordi-

nates of a quantity are made to satisfy diminishes the number of

its degrees of freedom by one. For instance, a relation between

the rectangular coordinates of a point restricts it to lie on a

certain surface,—it then has two degrees of freedom instead of

three, and requires but two coordinates to specify it. For example,

a point satisfies the condition x2
-f y

2 + z1 = a2
. It lies on the

sphere of radius a, and may be fully specified by giving its lati-

tude and longitude.

For the coordinates of a vector R we may take its projections

on the three coordinate axes. If we choose its length, or modulus,

and its three direction cosines,

a = cos (Rx), ft = cos (Ry), y = cos (Rz),

one of the four coordinates R
} a, /3, 7 is redundant, for the latter

three satisfy the identical relation
"

a2 + /3
2 + 7

2 = L

This furnishes us an example of the general case where we

give n coordinates of a quantity satisfying k independent identical

relations, or equations of condition. The quantity then has only

n—k degrees of freedom, and we may find n — k independent

coordinates which completely specify it.



47—49] PRINCIPLES OF MECHANICS. UNITS AND DIMENSIONS. 93

49. Velocities. If a point change its position in space, its

motion may be described by giving the values of its coordinates

for every instant of time, by means of equations such as

The functions / must be continuous, since the point cannot

jump from one position to another.

We may describe the motion otherwise by giving two equations

F1 (%> y, z) = 0, F2 (as, y, z) = 0, which denote the carve of intersection

of two surfaces along which the point moves. This curve is called

the path of the point. We must further give the distance s

measured along the curve, which the point has traversed, counting

from a fixed point on the curve. We must know s at all times t,

which is expressed by giving s as a continuous function of t,

s = cf) (t). This, with the two equations of the path, gives as before

three equations to completely define the motion.

The velocity of the point is defined as the limit of the ratio of

the distance As traversed in an interval of time At to the time

At when both decrease without limit,

T . As ds
v — Lim — = -j~ .

At=0 At at

A point travelling with a given numerical velocity may how-

ever be moving in any of an indefinite number of directions,

accordingly a velocity is completely specified only when we give its

direction and magnitude, or velocities are vector quantities. The

direction of the velocity is that of the tangent to its path. Its

direction cosines are accordingly

dx Q dy _ dz
a =

d~s' P-d^' J ~ds'

Velocities are resolved and compounded like vectors in

general,—in particular the projections of v on the coordinate axes

are

dx ds dx dx
Vx = v* = V

Ts~dtds~~dt>

dy _ ds dy _ dy
Vy = V^^ V ds^dtds~dt )

dz ds dz dz
v* =vV =v

ds
=
Ttds

==
dt'
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.and V* = V( * + Vy2 + VZ
2 =

dt)
+

{di.

2

+W
\dt)

We might have defined the vector velocity as the resultant of

the three vectors

_ _ dx _ _ dy - __dz
V
*~dt>

Vy
~dt y Vz

"dt'

50. Accelerations. If the velocity of a point is variable

with the time we define the acceleration of the point as the limit

of the ratio of the increment of velocity Ay to the increment of

time At, as both approach zero. We may consider either the

numerical change

Av dv d2s

di~~
~~Lim

At=o Ac dt2
'

or the geometrical change. If we draw a vector AB to represent

the velocity at the time t and the vector AG to represent the

velocity at the time t + At, and draw the arc of a circle BB, DO
will represent the numerical change of

velocity, Av, not considering its direction,

while BG represents its geometrical, or

vector change, Av, for

AB + BG = AG,

BC = AC-AB = Av.

Fig. 25.
Accordingly

Av
Lim .

At= 0 At At=Q At
Lim BG

is the vector acceleration a.

Since the projections of the geometrical difference of two

vectors are the differences of the projections, the components of a

in any direction will be proportional to the changes of the corre-

sponding components of the velocities, that is

a
dvX

X
dt

d2x

dt2 '

dvy d2

y
~di~"~dt

2>
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The vector acceleration, a, may be defined as the resultant of

the components aXy ayy aZy and accordingly its modulus is

(¥yV /#£\ 2

dt2
)
+
[&*)

+
[dp)

'

d^s
This is not in general equal to ^2

which is the acceleration of

the scalar velocity. The direction of a is given by its direction

cosines

d2x

dt?'

~i
d~x

P =
dt?'

d2

y
7 ~

dt*'

a a a

51. Physical Axioms. The results of universal experience

with regard to motion are summed up by Newton in his three Laws

of Motion or Axioms of Physics. An axiom is defined by Thomson

and Tait* as a proposition, the truth of which must be admitted

as soon as the terms in which it is expressed are clearly under-

stood. These physical axioms rest, not on intuitive perception,

but on convictions drawn from observation and experiment.

Lex I. Corpus omne perseverare in statu suo quiescendi vel

movendi uniformiter in directum, nisi quatenus a viribus impressis

cogitur statum suum mutare.

Every body persists in its state of rest or of uniform motion in

a straight line, except in so far as it may be compelled by force to

change that state.

The property of persistence thus defined is called Inertia.

This gives a criterion for finding whether a force is acting on

a body or not, or in other words a negative definition of force.

Force is acting on a body when its motion is not uniform. By
uniform we mean such motion that the vector velocity is constant.

If the body be a material point, that is a body so small that the

distances apart of its different parts may be neglected, the motion

is uniform if

/ \ dx _ _ dz _(I)
dt~~

Cl
> dt~

C
*' dt

=C3
>

that is

/ \
^x _ d2

y d?z
{2) dP^dP^dP

* Thomson and Tait, Natural Philosophy, § 243.
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Accordingly we see that the force and acceleration vanish together.

Integrating the equations (i),

oc=c1 t + d1 , y = c2t+d2> z=c3t+d3 ,

x — dl __y — d2 z — d-6

Ci c2 c3

the path is a straight line, and since

it is traversed with constant velocity. We may on the other hand

interpret the statement as giving us a means of measuring time.

Intervals of time are proportional to the corresponding distances

traversed by a point not acted on by forces.

The second law gives the measure of a force.

Lex II. Mutationem motus proportionalem esse vi motrici

impressae, et fieri secundum lineam rectam qua vis ilia im-

primitur.

Change of motion is proportional to force applied, and takes

place in the direction of the straight line in which the force

acts.

By change of motion is meant acceleration. If we have to

do with different bodies, however, the factor of proportionality

will be different for each.

Lex III. Actioni contrariam semper et aequalem esse reac-

tionem: sive corporum duorum actiones in se mutuo semper esse

aequales et in partes contrarias dirigi.

To every action there is always an equal and contrary reaction :

or, the mutual actions of any two bodies are always equal and

oppositely directed.

If we have an action between two bodies 1 and 2, if the forces

were proportional only to the accelerations, we should have

c£
2
#! _ d2x2 d2

yx ___
d2

y2 d2zx d2z2

~df~~ d¥ ' ~d¥
~~ W' d¥

Z= ~ W*
This is not the case,but we must introduce factors ofproportionality,

so that
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d?xx d} 2

2dt2 2
dt

d2
yx d*y2

d2zY d2z2

The factors mly m2i are called the masses of the bodies 1 and 2.

This gives us a means of comparing masses. If we make two

bodies act upon each other in any manner, their masses are

inversely proportional to the accelerations they have at the same

instant. The vector whose components are

^ d2x TT d2
y „ d2zx =m

dr'
F=m

df-
z = m

dt>

is called the impressedforce acting on the mass m. If the quantities

X, T, Z are given functions, the above are called the differential

equations of motion of the material point m.

52. Units. The specification of any quantity, scalar or vector,

involves two factors, first a numerical quantity (integer, fraction

or irrational) or numeric, and secondly a concrete quantity in terms

of which all quantities of that kind are numerically expressed,

called a unit. The simplest unit is that of the geometrical

quantity; length. We shall adopt as the unit of length the centi-

meter, defined as the one-hundredth part of the distance at tem-

perature zero degrees Centigrade, and pressure 760 millimeters

of mercury, between two parallel lines engraved on a certain bar

of platinum-iridium alloy, deposited in a vault in the laboratory of

the " Comitd International des Poids et Mesures" at Sevres, near

Paris. This bar is known as the "Metre Prototype" and serves as

the basis of length measurements for the civilized world (except

the British Empire and Eussia*).

It was proposed by Maxwell to use a natural unit of length,

namely the length of a wave of light corresponding to some well-

defined line in the spectrum of some element, at a definite tem-

perature and pressure, as it is extremely probable that such a

wave-length is extremely constant. Measurements were carried

out at Sevres by Michelson, with this end in view, which established

the ratio between the above meter and the wave-length in air of

a red cadmium ray as l,553,164f.

* The United States yard is defined as 3600/3937 metres,

t Michelson, Journal de Physique, Jan. 1894.

W. E. 7
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The unit of mass will be assumed to be the gram, denned as

the one-thousandth part of a piece of platinum-iridium, deposited

at the place above mentioned and known as the "Kilogramme

Prototype!'

As the unit of time we shall take the mean solar second,

obtained from astronomical observations on the rotation of the

earth. The unit of time cannot be preserved and compared as in

the case of the units of length and mass, but is fortunately

preserved for us by nature, in the nearly constant rotation of the

earth. As the earth is gradually rotating more slowly, however,

this unit is not absolutely constant, and it has been proposed to

take for the unit of time the period of vibration of a molecule of

the substance giving off light of the standard wave-length. To

obtain such a unit would involve a measurement of the velocity

of light, which cannot at present be made with sufficient accuracy

to warrant the change.

53. Derived Units. Dimensions. It can be shown that

the measurements of all physical quantities with which we are

acquainted may be made in terms of three independent units.

These are known as fundamental units, and are most conveniently

taken as those of length, mass, and time. Other units, which

depend on these, are known as derived units. If the same quantity

is expressed in terms of two different units of the same kind, the

numerics are inversely proportional to the size of the units. Thus

six feet is otherwise expressed as two yards, the numerics 6 and 2

being in the ratio 3, that of a yard to a foot. If we change the

magnitude of one of the fundamental units in any ratio r, the

numeric of a quantity expressed in derived units will vary pro-

portionately to a certain power of r, r~n ; the derived unit is then

said to be of dimensions* n in the fundamental unit in question.

For instance, if we change the fundamental unit of length from the

foot to the yard, r — 3, an area of 27 sq. ft. becomes expressed as

3 sq. yds., the numeric has changed in the ratio 3 : 27 = 1 : 32= r~2
,

and the unit of area is of dimensions 2 in the unit of length. We
may express this by writing

[Area] = [X2
].

* The idea of dimensions of units originated with Fourier: vid. Theorie

analytique de la Chaleur, Section ix.
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The derived unit increases in the same ratio that the numeric of

the quantity decreases. In our system the unit of area is the

square centimeter, written 1 cm2
. In like manner the unit of volume

is of the dimensions [Z3
] and the unit is 1cm3

. The dimensions

^
, or as we write for convenience,of velocity are

T
velocity = length / time.

Two quantities of different sorts do not have a ratio in the

ordinary arithmetical sense, but such equations as the above are of

great use in physics, and give rise to an extended meaning of the

terms ratio and product.

The above equation is to be interpreted as follows. If any

velocity be specified in terms of units of length and time the

numerical factor is greater in proportion directly as the unit of

length is smaller, and as the unit of time is greater. For instance

we may write the equation expressing the fact that a velocity

of 30 feet per second is the same as a velocity of 10 yards per

second or 1800 feet per minute

30 —-=10^ = 1800
ft

sec. sec. mm.

We may operate on such equations precisely as if the units were

ordinary arithmetical quantities, for the ratio of two quantities of

the same kind is always a number. For instance

30 _ yd. sec.

10 ft. sec.

'

vd . sec.
The ratio ~ is the number 3, while

—
* = 1. Also

ft. sec.

If™ ^ = 3 x 60.
10 it. sec.

ft.

Such an expression as —- is read feet per second.
sec.

The unit of velocity is one centimeter-per-second,

cm. = cm. sec"1
.

sec.

Since acceleration is defined as a ratio of increment of velocity to

increment of time, we have

rAccelerationl =L^1^ = [Length] =[Acceleration] - -
[Time*j

'L_

J>2

7—2
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or the numeric of a certain acceleration varies inversely as the

magnitude of the unit of length, and directly as the square of the

unit of time. For instance, an acceleration in which a velocity of

10 feet per second is gained in 2 seconds is equal to one in which
a velocity of 9000 feet per minute is gained in a minute,

io ft. io ft.

9000
ft.

(2 sec.)2 4 sec. 2 min.2
'

The unit of acceleration is one centimeter-per-second per second.

Since force = mass x acceleration,

TForcel - [MaSs]
' tLength] _ \ML

L
orcej ^fi^ -

The unit of force is one gram-centimeter-per-second-per-second. It

is called a dyne.

All physical equations must be homogeneous in the various

units, that is, the dimensions of every term must be the same.
This gives us a valuable check on the correctness of our equa-
tions.

54. Absolute Systems. The above system of units, which
has for its fundamental units the centimeter, gram, and second, is

called the C. G. s. system, and was recommended by a committee of
the British Association for the Advancement of Science in 1861.
It is sometimes incorrectly spoken of as the absolute system of
units. An absolute system is any system, irrespective of the
magnitudes of the units, by which physical quantities can be
specified in terms of the least number of fundamental units, which
shall be independent of time or place, and reproducible by copying
from standards. A system based on the foot, pound, and minute
is just as much an absolute system as the c.G.s. system. The idea
of an absolute system is due to Gauss*.

The ordinary method of measuring force, used by non-scientific

persons and (or including) engineers, does not belong to the abso-
lute system of measurements. The unit of force is taken as the
weight of, or downward force exerted by the earth upon, the
mass of a standard piece of metal, such as the standard pound or
kilogram. To measure the force in absolute units, we must know

Gauss, lntensitas vis magneticae terrestris ad mensaram absolutam revocata*
Gottingen, 1832. Ges. Werke, v. p. 80.
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what acceleration the earth's pull would cause this mass to

receive, if allowed to fall. Experiment shows that in a given

locality on the earth's surface all bodies fall in vacuo with the

same acceleration. The value of this acceleration is denoted by g,

and its value at the sea-level in latitude 45° is

cm
g = 980-606 ~

.

u
sec. 2

Accordingly the force exerted by the earth on a mass of m grams

is mg dynes, or the

weight of a kilogram in latitude 45° = 980,606 dynes.

Now the value of the acceleration g is not constant, but varies

as we go from place to place on the earth's surface, ascend moun-

tains or descend into mines. Accordingly, the weight of a kilogram

is not an invariable, or absolute standard of force. At the center

of the earth, a kilogram would weigh nothing. Its mass is, how-

ever, invariable. The value of g at points on the earth in lati-

tude X and h centimeters above the sea-level, is given by the

formula, originally given by Clairaut*,

g = 980-6056 - 2*508 cos 2\ - '000003A.

For further information with regard to units, the reader may

consult Everett's Units and Physical Constants.

* Everett, Units and Physical Constants, Chap. in.



CHAPTER II.

WORK AND ENERGY.

55. Work. If a point be displaced in a straight line, under

the action of a force which is constant in magnitude and direction,

the product of the length of the displacement and the resolved

part of the force in the direction of the displacement, that is, the

geometrical product of the force and the displacement (§ 7), is called

the work done by the force in producing the displacement. If the

components of the force F are X, Y, Z, and those of the displace-

ment s are sx> syt sZ} the work W is

(i) TT = sF cos (Fs) = Fs = Xsx + Ysy + Zsz .

Since work is defined as force x distance, we have for its

dimensions,

ML
[Work] = [L] T2

The c.G.S. unit of work is the work done when a force of

one dyne produces a displacement of one centimeter in its own

direction. This unit is called the erg = gm . cm2
. sec

-2
.

If the displacement be not in a straight line, and the force be

not constant, the work done in an infinitesimal displacement ds is

(2) dW=(^^+T^ + Z^d8,

and the work done in a displacement along any path AB is the

line integral
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The components of the force are supposed to be given as

functions of s and the derivatives ~ ^ ^- are known as func-
ds as as

tions of s from the equations of the path.

Understanding this, we may write

r
B

(4) WAB = Xdcc 4- Ydy 4- Zdz.
J A

56. Virtual Work. Suppose that we have a system of n

material points. If they are entirely free to move, they require Sn

coordinates for their specification. They may be mechanically

constrained, however, in such a manner that there must be certain

relations satisfied by their coordinates. Let these equations of

condition or constraint be

<pi{^i> l/i> ^i, tym zn) ~ 0)

^2(^1? 2/1 5 Zi> y^s ocn , yn ,
z^) = 0,

(5)

fykipCn yi> z\y %2i y%> ^2) &m yn) zn) — 0.

Such constraints may be imposed by causing the particles to

lie on certain surfaces. For instance, if two particles 1 and 2 are

connected by a rigid rod of length I, either particle must move on

a sphere of radius I of which the other is the center, and we have

the equation of condition

*
</> = (Xl - oo2y + {Vl - y,y + (zx

- z2y - p = 0.

(We might have constraints defined by inequalities, e.g., if a

particle were obliged to stay on or within a spherical surface of

radius I the constraint would be only from without, and we should

have
(x - a)2 + (y - b)2 + 0 - cf - I

2 ^ 0.

We shall assume that the constraint is toward both sides, and

is defined by an equation.)

If any particle at wry yT) zr is displaced by a small amount so

that it has the coordinates

* The sign = is to be read

—

is identically— i.e., is for all possible values of the

variables, or is defined as.
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in order that the constraint may hold we must have for each <p

cf> (xr -f 8xTi yr -j- 8yr , zr + 8zr ) = 0,

and if
(f>
be a continuous function, developing by Taylor s Theorem,

<f>
(xr -f &ty, yr -j- 8yT ,

zr + 8zr ) =

$ (Xr, Vr, Zr) + 8xr^ +% |£ + 8zr |£ + \8x* |^ + ,

and accordingly, taking account only of the terms of the first order

in the small quantities 8xr ,
Syr3 8zr> and using equations (6), we

have

(7) 8xr + 8yr +^ 8zr — 0.
9#r 3yr osy

If a number of particles are displaced, we must take the sum
of expressions like the above for all the particles, or

as the conditions which must be satisfied by all the displacements

8xri Syr ,
Szr . There must be one such equation for each function

<f>.
Such displacements, which are purely arbitrary, except that

they satisfy the equations of condition, are called virtual, being

possible, as opposed to the displacements that actually take place

in a motion of the system.

The Principle of Virtual Work is an analytical statement of the

conditions for equilibrium of a system. A system is in equilibrium

when the forces acting on its various particles, together with the

constraints, balance each other in such a way that there is no

tendency toward motion of any part of the system. If the system

consists of a single free point, in order for it to be in equilibrium,

the resultant of all the forces applied to it, whose components

are X, Y, Z, must vanish,

(9) X = Y=Z=0.

If we multiply these equations respectively by the arbitrary

small quantities 8%, 8y, 8z and add, we get

(10) Xhx -f Y8y + ZSz = 0,

which expresses that the work done in an infinitesimal displace-

ment of a point from its position of equilibrium vanishes. The
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equation (10) is equivalent to the equation (9), for since the

quantities Bx, By, Bz, are arbitrary, if X, F, Z, are different from

zero, we may take Bx, By, Bz respectively of the same sign as

X, F, Z,—each product will then be positive, and the sum will not

vanish. If the sum is to vanish for all possible choices of Bx, By, hz,

X, F, Z must vanish.

If the particle is not free, but constrained to lie on a surface

$ = 0, Bx, By, Bz are not entirely arbitrary, but must satisfy

Let us multiply this by a quantity X and add it to (10),

obtaining

CO (x + 4*) 8« + (y + x|) 8y + (z+ xg) & -o.

We may no longer conclude that the coefficients of 8x, By, Bz

must vanish, for Bx, By, Bz are not arbitrary, being connected by

the equation (7). Two of them are however arbitrary, say By and

Bz, X has not yet been fixed—suppose it determined so that

ox

Then we have (j+ X By + (z + X |Q Bz = 0,

in which By and Bz are perfectly arbitrary, it therefore follows of

necessity that the coefficients vanish.

F+X^ = 0, Z+X^ = 0.
dy oz

By the introduction of the multiplier X we are accordingly

enabled to draw the same conclusion as if Bx, By, Bz were arbitrary.

Eliminating X from the above equations we get

d(j> d(f> d<j>

dx dy dz

Now the direction cosines of the normal to the surface = 0

are proportional to ~
,
consequently, the components

X, Y, Z being proportional to these direction cosines, the resultant
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is in the direction of the normal to the surface. But under these

conditions the particle is in equilibrium.

In like manner we may show that if the forces Xlf Y1} Zlt act

upon the particle 1, X3 ,
F2 ,

Z2} upon the particle 2, etc., the

condition of equilibrium is

( 1 2) XM\ + Yifyi + Zxhz, +X28x2 + Y2hy2 + Z2Sz2 + ZJzn = 0,

where the displacements satisfy

(13)

3a?! 3^i 3^2 32/2

Multiplying the equations (13) respectively by \u X2 , ... X
fc , and

adding to (12) we have

% •••Wl

(14) +(r1 + jJ&+x3 + x, hh
\ oyx dyt dyt j

Of the Sn quantities 8zn ,
only 3n-k are arbitrary,

we may however determine the k multipliers \ so that the coeffi-

cients of the k other S's vanish, then the coefficients of the 3n — k

arbitrary 8s must vanish, so that we get the 3n equations
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(IS)

n + 1 a7 2 ST +
* a*

~

Eliminating from these the k quantities X, we have 3w - k

equations expressing the conditions of equilibrium, being as many

as the system has degrees of freedom. The equation (12), or as

we may write it

(16) X (XBx + Yhy + Zhz) = 0,

expresses the fact that the work in a virtual displacement vanishes,

and is the condition for equilibrium. This is the Principle of

Virtual Work.

57. D'Alembert's Principle. The equations of motion of a

point are (§51)

7ftr -TTT =A,,
dti

dj"Zy fy

dj OUy -rjr r\

or mr —j— — X r — 0,
at2

(18) m,J'-F,.=0,

m,v

d?Ztf> Zr — 0.

Multiplying the equations (18) respectively by the arbitrary

quantities 8xr , 8yr ,
8zr adding, and taking the sum for all values of

the suffix r,

(19) Xr \(mr - x)j 8xr + [mr^ - Y^j 8yr

d?zr
8zr \ = 0.
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This equation may be called the fundamental equation of

dynamics, and is the analytical statement of what is known as

d'Alembertfs Principle. Lagrange made it the basis of the entire

subject of dynamics*. Interpreted by means of the principle of

virtual work, equation (19) states :

—

If, the motion of a system of particles being given, we find the

acceleration of every particle, and apply to each particle a force

whose components are

-tt /
d"xr T7- , d?yr — . dzzrX'—^W F'-

= ~ m'-^' Z'=~ m^'
then the system of forces X', F, Z\ together with the impressed

forces X, Y, Z, will form a system in equilibrium.

The forces X\ F, Z' are called the forces of inertia, or the

reversed effective forces. D'Alembert's principle is thus only

another form of stating Newton's third law of motion.

We have now a measure of the inertia of a body, namely the

force of inertia above defined f. We may now define matter as

whatever can exert forces of inertia.

58. Energy. Conservative Systems. If in the equation of

d'Alembert's principle, (19), we put for &c, 8y, Sz the displacements

which take place in the actual motion of the system in the time dt
y

SdXy j ^ d/Vy j dZy jxr — ^ dty oyr = -~ at, ozr — at,

we obtain

/2q \ ^ J f^^^t dccy d"yf dyy d^z^ dz^\
r

(

r
\dt2 dt dt2 dt di2 dt J

Zdxr y dy? „ dzr\ 7 , _n
V i~T -* r iT

""""
t7~ i

Ow — U.
dt dt dt)

0 . d2xr dxr , d / /dxr\ 2
\

Smce nh-Wdt
=
^dt{

m^))'
the sum of the first three terms is the derivative of the sum

+ (£)
,+
(*

* Lagrange, Mecanique Analytique. (Euvres, t. 11, p. 267.

f The inertia of a body is sometimes considered as the factor of the negative

acceleration in the expression for the force of inertia, thus making inertia

synonymous with mass.

2'

*r
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and the equation may be written

(21)
d

dt

fdyr\
dt)

+
{dt)

+
dt

dx dy, dZr

dt

dtr
dt dt

1 ~ r
dt

Integrating with respect to t between the limits t0 and t1}

(22)
dt) \dt))_

to

^ ^ doCy -yr- dy^ n dzy
'r] {Xr

dt
1 * r

dt
dt.

The square brackets with the affixes t0) tx denote that the value

of the expression in brackets for t = t0 is to be subtracted from the

value for t = tx .

The integral on the right of (22), which may be written

j
JSl pdflCy -f~ "Yydy^ ~\~ Zydzif)

denotes the work done by the forces of the system on the particle

mr during the motion from t0 to tlt and the sum of such integrals

denotes the total work done by the forces acting on the system

during the motion.

The expression

/dxr\
2

dt) [dt

the half-sum of the products of the mass of each particle by the

square of its velocity, is called the Kinetic Energy of the system.

If we denote it by T, the equation (22) becomes

(23) T
tl
— T

to
= %r I (Xrd%r -+- Yrdyr 4- Zrdzr).

J t0

This is called the equation of energy, and states that the gain of

kinetic energy is equal to the work done by the forces during the

motion.

The equation of energy assumes an important form in tjie

particular case that the forces acting on the particles depend only

on the positions of the particles, and that the components may be
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represented by the partial derivatives of a single function of the

coordinates

U (a?!, yu zu x2 , y2 ,
z*,'"Zn\

(24) Zr ~dzr

'

In this case the expression

Sr [Xrdxr + Yrdyr + Zrdzr

(dU , dU , dU,

>v
dXr +

Wr
VT 8F

dzr
r

— 2?

is the exact differential of the function U, and the integral

I 2 (Xrdxr + Frc%r + Zrdzr) = E/^ — tv

The equation of energy then is

(2 5 )
Tt
-Tt ~Ut

-Ut0 .

The function is called the force-function, and its negative

W = _ JJ is called the Potential Energy of the system. Inserting

IF in (25) we have

(26) r,i+ F, = r,
0
+Tf

<0
.

The sum of the kinetic and potential energies of a system

possessing a force-function is the same at all instants of time.

This is the principle of Conservation of Energy.

Systems for which the conditions (24) are satisfied are accord-

ingly called conservative systems.

The potential energy, being defined by its derivatives, contains

an arbitrary constant. Conservative systems possess the property,

since W depends only on the coordinates, and T+ W is constant,

that T
y
the kinetic energy, depends only on the coordinates, or if

in the course of the motion all the points of the system pass

simultaneously through positions that they have before occupied,

the kinetic energy will be the same as at the previous instant,

irrespective of the directions in which the points may be moving.

For instance, a particle thrown vertically upwards, or a pendulum

swinging, have the same velocity when passing a given point

whether rising or falling.

The principle of virtual work, § 56, may evidently be expressed

by saying that for equilibrium the potential energy of the system
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is a maximum or minimum, and a little consideration shows that

for stable equilibrium it is a minimum.

Examples of non-conservative systems are found whenever the

forces depend upon the velocities as well as upon the coordinates

;

for example, bodies moving through the air or other resisting

medium or bodies whose motion is opposed by friction of any sort,

form non-conservative systems. Even if the friction be constant

in magnitude, its direction will depend on the direction of the

velocities, being in such a direction as always to oppose the

motion, and to diminish the total energy of the system. The
dynamical theory of heat accounts for the energy that apparently

disappears in non-conservative systems.

Kinetic energy being defined as SJmv2 is of the dimensions

'ML2!
-y— , the same as those of work. Potential energy is defined

as work. The unit of energy is, therefore, the erg.

59. Particular case of Force-function. Newtonian
Forces. In the particular case in which the only forces acting

on the system are attractions or repulsions by the several particles

directed along the lines joining them and depending only on their

mutual distances, a force-function always exists.

For let the force between two particles mr and ms at a distance

apart rrs be

It will be convenient to consider

F positive if the force is a repulsion. jS^rs

Consider now the force Fs
{r) acting ^f"

~J

on ms and acting in the direction FlG
-
26 -

from mr to ms . Its direction cosines are those of the vector rrs ,

X (r)

P (r)

V(r)1 s

Jp (r)
•* s rrs

7 W)

rrs
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Now since

rls = (x8 - wr)
2 + (y8

- yr)
2 + {?% - zrJ,

differentiating partially by xS)

2?Vs ~zi ~ ^ (x8 Xr\
OXs

, ~\ dTrs OCg Xr dvrs y$ Ur d^rs %8 %r
v ; dxs rrs

' dys Vrs OZs frs

and accordingly

X^jTrs 7^ dTr, Z.<* drrs

FS
M " dxs

' F,w dy, ' F" dzs

'

rs

If we put Z7rs such a function of rr8 that

^ ^rs i / \

W„ =<t>(rr°l

xw = U"fS ^^Vs ^ ^rs

d'T'rfg c)Xg 5

d TTyg fifyg 3 pg

drrs dz8 dz*

If now we find the resultant Fs of all the forces acting on m
s

due to the repulsions by all the particles mr> we shall have

Y _d^is
t

dU2S ,

dllns dUg

OX a OXc

(29)
Ys
Jp+ d-^ +

9#s dx8

if we write U8 = U18 + U28 ...+ Un8 . Thus Us satisfies the con-

ditions for a force-function as far as concerns the point ms . In the

summation s does not occur as the first index.
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It is evident that the function Urs serves the same purpose for

mr as for ms . For the force F exerted on mr by m8 is equal and

opposite to that exerted on ms by mr . But rr8 is the same function

of (— oor) that it is of xS) therefore

and X W = 6 (r ) ~— =^? = -—and JL r -9(rrs)
d d g

We may add to Us terms independent of oc8i y8y zSi without

affecting the values of Xs> YS) Z8 . If we make U a symmetrical

function of all the coordinates, containing x8i y8i z8 as Us does, then

U will serve as the force function for all the coordinates.

In particular, let the force of repulsion vary as the product of

the masses of the particles divided by the square of their distance

apart cj> (rrs) ==~^- . Such forces are called Newtonian forces, the

most familiar examples of which are the mutual attractions of the

sun and the planets. Then

rnrrns TJ mrm8

1 rs ' rs

TJ _ [in^ng m2ms mnms \

13 1 ) U s — — < -r T
-r -t- t,

and the symmetrical function U will be

l rl2 r13

m2m1 m2m3 m2mn
_l_

_| j_ _j

T21 V2% T2n

{32) H — H h H
'31 '32 '371

m^mA mnm2 mnmn^
_j 1 h -j

or more briefly

TT _
r=l s=l ^Vs

understanding that terms in which r = s are to be omitted,

w. E. 8
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The factor \ is introduced because in the above summation

every term appears twice. But in U each pair of particles is to

appear only once.

If no constant be added to U as defined above, both it and

the potential energy

(33) F =iS,2«s

,

' rs

will vanish when every rrs is infinite, that is when no two particles

are within a finite distance of each other. This furnishes a con-

venient zero configuration for the potential energy, and is the one

generally adopted. We may accordingly define the potential

energy of the system in any given configuration as the work that

must be done against the mutual repulsions of the particles in

order to bring them from a state of infinite dispersion to the given

configuration.



CHAPTER III.

HAMILTON S PRINCIPLE.

GENERALIZED EQUATIONS OF MOTION. CYCLIC SYSTEMS.

60. Hamilton's Principle- If in d'Alembert's equation

s{(-*-x) ta + (-g-r)* + (-g-*)^- o,

we consider 8x, $y, Sz variations consistent with the equations of

condition, we have

d2x ~, _ d fdx ^ \ dx dSx

dP Jt[dt )~dt ~df

_ d fdx g \ dx hdx

dt\dt J dt dt

d (dx ^ \ ^ 1
/dx\ 2

Treating each term in this manner,

<> S sMl*- +S* +5 fc

-***K©" +
(t)

,+
(D"

+ X (XBx + Y8y + ZSz).

If there is a force function TJ we have

Z(X8x+Y8y + Z8z)=SU,

hence the right-hand member of (1) is

ST+SU.
8—2
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The left-hand member being an exact derivative we may inte-

grate with respect to t,

, d.v . dv ^ dz ~ fl

(2)
\

m
\dt

dx+
dt

6y +dt
6Z

, «0

= (
tl

B (T+ U) dt = 8
( *\T + U) dt.

J to J to

If the positions are given for tQ and tly that is if the variations

B%, By
y
Bz vanish for t0 and tly then the integrated parts vanish,

and

B \

t

\T^U)dt^Q )

J to

or

(3) B f\T- W)dt = 0.

J to

This is known as Hamilton s Principle*. It may be stated by

saying that if the configuration of the system is given at two

instants t0 and tly then the value of the time-integral of T+ U is

less (or greater) for the paths actually described in the natural

motion than in any other infinitely near motion.

Hamilton's principle is broader than the principle of energy,

inasmuch as U may contain the time as well as the coordinates.

It is true even for non-conservative systems (where a force-

function U does not exist), if we write instead of BU

XBx + YBy + ZBz.

61. Lagrange's Generalized Equations. By means of

Hamilton's Principle we may deduce the generalized equations of

motion.

Suppose that by means of the equations of condition, if

there are any, we express all the coordinates as functions of

m = 3n — k parameters q1} q2y ... qms which are known as the

generalized coordinates of the system,

x1
= x1 (q1) q2) ... qm)

yi = yi ?2, ... qm)

Then W, if the system is conservative, becomes a function of

the parameters q.

* Hamilton. On a General Method in Dynamics. Phil. Trans. 1834.
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Differentiating the above by t,

/
dxx dx-L dq1 dxx dq2 dxx dqm
dt dqx dt dq2 dt

*"*
dqm dt

dxx t ()X\ f , .„ dqr ,

~
3gi

2l +
a?, * •'" WJm

' ~di~ qr

dt dq,
qi +

dq2
q
*
+ - +dqjm '

dz1 _dz1 , dzi , ,

Tt~dq'i
qi +

dq~i
Cti+ - +

dq~m
<lm -

Since the x, y, are given as functions of ql9 q2 , ... qm alone,

()oo

every ^ is given also as a function of the qs. Hence every

velocity-component is a linear function of the q"a, whose coeffi-

cients are certain functions of the q's. The q"s are called the

velocities corresponding to the coordinates q.

Squaring, adding, and summing, we get

a homogeneous quadratic function of the g"s, whose coefficients

are certain functions of the q's, so that we may write

(3) T= i Qnq^ + \ Q22g2
'2 + + + ,

where

rS
p=i

p \dqr dqs dqr dqs dqr dqs J

*

Performing the operation of variation upon the integral occur-

ring in Hamilton's Principle, we obtain

21
r

dt = 0,

and since

5> / 5> dq<y d ^
Bqr = s

ii
=

it
Sqr>

we may integrate the second term by parts. Since the initial and

final configuration of the system is supposed given, the Sq's
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vanish at t — t0 and £ = £i, so that the integrated part vanishes,

and
» \d(T-W) d (d(T— W)\[

dt(S)
J t0 Lr=l dq, dqr

f 8q7 dt = 0.

Now if all the 8q's are arbitrary, the integral vanishes only if

the coefficient of every 8qr is equal to zero.

d(T-W) d
(
d(T-W)\ Q

dqr dt \ dq^ /
'^ dqr dt \ dq?

or if we write L for the Lagrangian function T— W
d_ at

dt \dqr'J dqr
*

Since the potential energy depends only on the coordinates,

dW—, = 0, and we may write the equation (6)

^ dt \dqr') dqr dqr

Pr is the generalized component of impressed force tending to

increase the coordinate qr >

If the system is not conservative, we must write, instead

of -8W
Sr {Xr 8xr -f Yr8yr + Zr8zr},

and the integral is

(8) 8JTdt + f2,{Xr8xr+Yr8yr+ Zr8zr}dt = Q

= 8/(2* + 1Xrxr+ Yryr 4 Zrzr) dt.

Now

so that if we write

(9) Pr = tA

. dxT ~ dxr dxr «

dx dzS

dqr
' * * dqr

' * dqr)
9

we get the same equations as before. If there is a force-function

dW
dx,

and
faF9#,

,

dWdys dWdzs

'

-f"
^— ^ r

k
9#g 8gv dys dqr dz8 dqr\

dW
dqr

"
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There are m of the equations (7), one for each coordinate q.

These are Lagrange's equations of motion in generalized co-

ordinates.

62. Proof independent of Hamilton's Principle.

We will verify these equations by direct transformation of the

equations in rectangular coordinates

tWr ^_jCr + A1_ + A,_ + ,

(in\ w>
d^r - V 4- X

9^ 4.7k
a*2

4-

my __Zr + X1 ^-+X2 ^- + ,

which are obtained from equation (15) of Chapter IT. by means of

d'Alembert's principle.

Multiplying these respectively by

dxr dyr dzr

dqs
' dq8

' dq8

9

adding and summing for all values of r, the coefficient of X
x be-

comes

If there are no relations between the g's, the expression

<t>i ... qm) = o

is an identity, and all its partial derivatives^ are equal to
k
zero.

Accordingly the terms in X2 ,
X2 , ... disappear.

We have then

2 3^r + 3*l 3yr + 3*l3£r
r
(3#r 3gg 3yr dqs dzr dqSi

, x feZ
2#r (Z

2

yr 3yr cP#r 3^
(ii) ^m^-^^ +^^+^g-

Sxr 3#V -rr 3yr « 3^-

1
dq8 dqs dqs )

Now y= \%mr (#/
2 + y/

2 + */2
),

321

^ / , dxr' , dy^ t
dzr

'\
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but by (i)
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Zr =

hence

dq1
* dq2

qa
' + • • • 1 f\

tyr , +
dyr

3?i dq2

n ' _i_
• * • 1 ^\

oqm

3<2^« f
O^Zy

dqi
qi +

dq.2
g*' +

dzr
• • • 1* /-v

oqm

dxr

dqa

'~
dqs

'

Differentiating xr' by gfi

(13)
3a?/ 3s

3gs 3^3^ *
9ja9g,

Inserting these values in

3T S2
7

.

dt

dqs
" dqs

in (12),

(14)
dqs

'

dT_

dqs

« 1 , dxr , d^r . / 3^v
1

5/

7. ^ , /32^

(is)

^ xdx/ dxr dyr' dyr dzr
r

dzr)

eft 3g> tfe 3^s d£ dqs)

which, since

dcCf

~dt
= mr

d Xy

~dtf

is equal to

dxr t T7- dyr , „ dzrl
jPo.

I 8gs dqs]

(9)

Hence we have proved by direct transformation the expression

d fdT\ dT
dt \dqs'J dq,

to be equal to Ps .
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dT
The derivative , which is a homogeneous linear function of

the g°s, is generally denoted by

In the case of rectangular coordinates,

the ^-component of the momentum of one of the particles. In

general, ps may be called the generalized component of momentum,

belonging to the coordinate qs and velocity q/. The equations of

motion may be written

dt-dqs

+ rs
'

Ps ~dqr

or if, as we shall in future do, we denote by Ps simply that part

of the impressed force which is not derived from the potential

energy, under which are included all non-conservative forces,

{I7)
dt" dqs

+iV

63. Theorem on Reciprocal Functions- The ordinary

notation for partial derivatives of functions of several variables

sometimes gives rise to a certain confusion, from the lack of

indication of what variables are to be considered as constant

during the differentiation. For instance, suppose we have a

function F of any number of variables, which for convenience

we will divide into two classes, denoting them by the letters

and #n , %2 • • • ^m*

Suppose now we have n functions of these variables, given by the

equations

Vi ^fi (*^i , %2 %n ) %i >
z2 • • • ^rn)

o) :::::::::::::::::::::::::::::::::::::::

==fn (pi ) &2 • • • &n > &i > %2 • • • ^m)*
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Let us now consider the function
n

G {9C\
f

t&j • • • > %i i Z% • • • ^m) = F (&i i &2 • • • *^fi >
Z\

}
Z2 > . . Zm) ^^sUs •

1

By means of the equations (1) we may insert the values of

the y
y

s in terms of the xs and #\s, so that G is explicitly given as

a function of the variables and zx ...zm . On the other

hand let us solve the equations (1) for the #'s obtaining

(2)

Xn = <f>n (yly 2/2 • Urn Zif Z2 . . . ^n)>

and by means of the latter let us insert in 0 the values of the afs

in terms of the y's and z's. Let the function in this form, that

is, explicitly given as a function of y1 ...yn and z1 ...zm be de-

noted by G. Then for all values of zs and of os's and ys com-

patible with the equations (1) or (2), we have identically

G (xi

.

. . xny Zi ... #m) = G {y1 . . . yn} Zi ... Zm).

Differentiating both G and G totally by varying all the

variables that occur, we have

n n

dG = dF - tysdoc8 - Xx8dys

1 1

= 2 ~— dxs + 2 5— cfes — Xysdxs
— Xxsdy8J

- n dG m dG

1 9y* 1

but as these are identically equal, we get by transposing,

In this equation there appear 2n 4-m differentials, only n +m
of which are independent, in virtue of the equations (1), or their

equivalents (2). The equation (3) assumes importance when we

define the functions y in a particular way, namely as the partial

derivatives of the original function F with regard to the

variables oo,

_d_F
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Then the coefficients of every dx8 vanish, and since we may
take the dy's and dz's arbitrarily, in order for the sum to vanish

we must have for every dys and dz8 ,

The function — 0 is called the reciprocal function to the

function F with respect to the variables for we have

the reciprocal relations

(\ - d! _ 9 (- G) dF_ 8(-ff)

or :

—

Two reciprocal functions have the property that the partial

derivative of either with respect to any variable of reciprocation

contained in it is equal to the corresponding variable replacing the

original in the other function, whereas the partial derivative of one

function with respect to any variable not of reciprocation is the

negative of the derivative of the other function with respect to the

same variable.

In case the function F is homogeneous of degree /c in the

variables of reciprocation

m ft* ft*

«*a j j • • • ^11

the theorem becomes more striking, for then, by Eulers theorem

dF dF dF _ » _ w

and the reciprocal function is simply a multiple of the original

function.

If the original function is of degree two
}
the reciprocal function

is identically equal to the original function. We have thus a

striking example of the remark made at the beginning of this

section, for here the derivative of the function when expressed

in one form by a variable z is exactly the negative of the derivative

by the same variable of the function expressed in the other form.

In this form the theorem will be frequently used hereafter. By
means of it the equations of motion may be transformed from

Lagrange's form to that given them by Hamilton.
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64. Hamilton's Transformation. We have seen, § 61 (3),

that the kinetic energy is a homogeneous quadratic function of

the variables q' representing the velocities,

T = £Qu?i'
a + iQ22g/

2
. • - + QugiV + V

the coefficients being functions of the coordinates q. If we call

the reciprocal function with respect to the q"s, T, by the last

section this is also the kinetic energy, expressed not in terms

of the velocities, but of the momenta p. Any ps is a homogeneous

linear function of the g^s, so that solving the equations

(I)

for the g"s, every q is a homogeneous linear function of the p'a,

and T is therefore a homogeneous quadratic function of the

momenta p. By virtue of the two properties of the reciprocal

function we have for every qs

r

(variable of reciprocation), and

every qs (not of reciprocation),

(2) ft
dqs dqs

>

so that Lagrange's equations, § 62 (17), are transformed to

{S) dt
+

dqs
~ dqs

+rs
'

q§ * dt dps

'

If we put H=T + W, this is the reciprocal function to the

Lagrangian function

L = T-W,

and the equations take the nearly symmetrical form,

\
dps _ _ dH p dqs _ dH

(4) dt" dq, " dt "dp8

'

These are Hamilton's equations of motion.

From these equations we may immediately deduce the integral

equation of energy. By cross-multiplication of the above equa-

tions, after transposing and summing for all the coordinates, we get

( N
%dHdp8 ,SdHdq8 _" p dqs
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But H is a function only of the p's and qs, so that the left-hand

member is ; and since H is equal to T + W it represents the

total energy. Also Psdqs is the work done by the external impressed

force component Ps in the displacement dqs , so that the right-

hand side is the time-rate at which the external forces do work on

the system, or the activity of the external forces. The equation

dH _ | p
dqs

is accordingly sometimes called the Equation of Activity, while if

there are no external forces, but only conservative ones, we have

the equation of Conservation of Energy,

~ = 0, H=T+W=: const.
at

A case of frequent occurrence is that where there are non-

conservative forces proportional to the first powers of the velocities

q', so that any Ps = — Ksqs

;

. We may then form a function F
which is also a homogeneous quadratic function of the velocities

(7) = P.-
3»

and since in this case

dH n n 7)F

(8) -f=-zpsq;^q;^ = 2F,

F represents one-half the time-rate of loss, or dissipation of energy.

F is called the Dissipation Function. It was introduced by Lord

Kayleigh *, and, like the other function used above, is of use in the

theory of electric currents.

65. Transformation of Routh and Helmholtz. We
shall in general find Lagrange's form of the equations of motion

more convenient than those of Hamilton. An intermediate form,

introduced by Southf , and afterwards by Helmholtz J, is of great

importance.

* Proceedings London Mathematical Society, June, 1873.

t Eouth. Stability of a given State of Motion, p. 61. Rigid Dynamics, i. p. 318.

% Helmholtz. XJeber die physikalische Bedeutung des Princips der hleinsten

Wirhung. Borchardt's Jour, fur Math. Bd. 100, 1886. Wissensch. Abh. m. p. 203.
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Suppose that instead of reciprocating with regard to all the

velocities q as in Hamilton's transformation, we do so with regard

to only a number r of them which we will choose so that they shall

have the indices from 1 to r, while the q"s with indices r + 1, ... n,

remain in the reciprocal function, and with all the coordinates q
play the part of the variables z in § 63. Then calling the negative

of the reciprocal function

(i) T=T-lqs
'p

s,

1

we have

= ~— , tor s= 1, z, ... n,

(2)
d& ^
df dT „ -^ = ^-7, for s = r-fl, ... n,
dq8 dqs

and

(3) *-f|,
-?/-g,far.-l,2,...r.

Replacing T in Lagrange's equations by T, we obtain

(4) dt\dqs') dqs" dqs
+rs >

so that we may use for the suffixes corresponding to the un-

eliminated velocities Lagrange's equations, using the function,

4>= T - W
instead of the Lagrangian function

and obtaining

(5) ^=^ + Ps
' ^ = for , = r+l, r+2,

For the suffixes corresponding to the eliminated velocities we must

use the Hamiltonian form of the equations

If r = y becomes — T, and we have the complete Hamiltonian

form, § 64 (4),
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The function <I> is called by Kouth the modified Lagrangian

function, and on account of its importance has received from

Helmholtz the special name of the Kinetic Potential, by which

we shall designate it. (Helmholtz calls — <3> the kinetic potential*.)

It is to be noticed that the equations for the elimination of the

velocities, the equations (2) of § 63 are now, instead of § 64 (1)

Qrl^l "4" Qr2$2 • • • 4" QrrQr — Pr Qrr+i q r+i • • • QmQn y

so that the q"s become linear functions of the right-hand sides of

these equations and hence of

Pl> P2} ' • • Pry q r+l • >

thus T becomes a homogeneous quadratic function of

p1 . . .pr and q'r+1 . . . qn\

but is not homogeneous in either the ps or the ^''s alone, on account

of terms such as piq/ which are linear in either the p's or q"s.

66. Concealed Motions. A system is said to contain con-

cealed masses, when the coordinates which become known to us by

observation do not suffice to define the positions of all the masses

of the system. The motions of such bodies are called concealed

motions. It is often possible to solve the problem of the motions

of the visible bodies of a system, even when there are concealed

motions going on. For it may be possible to form the kinetic

potential of the system for the visible motions, not containing the

concealed coordinates, and in this case we may use Lagrange's

equations, as in the preceding article, for all visible coordinates,

while the coordinates of the concealed masses may be ignored.

Such problems are incomplete, inasmuch as they tell us nothing of

the concealed motions, but very often we are concerned only with

the visible motions. Such concealed motions enable us to explain

the forces acting between visible systems by means of concealed

motions of systems connected with them.

As an example of a concealed motion let us take the case of a

closed box containing a gyrostat, or fly-wheel, pivoted on an axis

* Helmholtz's notation is quite different from that here employed.
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rigidly fastened to the box. If the box be at rest, there is nothing

on the outside to lead one to suspect the presence of the fly-wheel,

but if the box be moved about the reactions developed will be very

different if the concealed wheel is in rotation or not. In the

former case the least experimenting will render us sure of the

existence of a concealed motion. To convince oneself of the truth

of this statement it is necessary only to take a toy gyroscope in

one's hand and turn it about.

67. Cyclic Motions. In certain cases some of the co-

ordinates do not appear in the expression for the kinetic energy,

although their velocities may. Such are termed by Helmholtz*

cyclic coordinates, and we shall distinguish them by a bar. The
example just given of the gyrostat is such a case, for the angular

coordinate fixing the rotation of the fly-wheel does not appear, but

only its derivative, the angular velocity. Further examples are

furnished by the case of a heavy belt running over pulleys, or by

the case of a fluid circulating in an endless tube. The coordinate

expressing how far a point on the belt or in the fluid has travelled

does not enter, but its velocity does. The condition for a cyclic

coordinate being — = 0 we have for the forces maintaining cyclic

dt \dqs'J
~

motions [§ 61 (7)],

If the forces of the cyclic motions vanish we have

dt \dqs J

or, integrating,

dT__ _
dqs

'~ Ps ~ Cs '

In this case we may with advantage apply Kouth's transformation

in the case of the cyclic velocities. The equations for the elimina-

tion are now

Q11Q1 + Q12Q2 • • • H~ QirQr — <?i
~~" Qi r+i? r+i • • •

~~ QinQn >

QnQi H~ Qr2& • • • 4~ QrrQr ~Cr Qr r+i^ r+i • • • QrnQn •

* Helmholtz, Studien zur Statik monocyklischer Systeme. Borchardt's Journ,

fur Math., Bd. 97. Wiss. Abh. in. p. 128.
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Let the solutions of these for the q"s be

?i == -^n(Ci • •• ~~~Qm (2n ) "+"-^12(^2 ... — QmQn ) • • • 4"-Rir (Cr • • • QmQn )>

=Rri(Ci • •• QinQn )"{~-^r2 (p2 • •• Q-mQn ) ••• "f"-^rr (^r ••• QmQn )•

The i?'s being the quotients of the various subdeterminants of the

determinant

Qn 1 Q12 > • • • Qir

Qrij Qr2> • • • Qrr

by the determinant itself, are functions of the coordinates only,

and since by hypothesis the function T did not contain the cyclic

coordinates, the ii's are functions of only the non-cyclic coordinates.

The kinetic potential consequently is a function only of the non-

cyclic coordinates and velocities, but on account of the presence of

the constants cg , it is not a homogeneous function of the velocities,

but contains a linear function of them, as was remarked in § 65.

Cases in which the kinetic potential contains a linear function

of the velocities may thus be considered as cases with concealed

motions. A case of this nature will be found in considering

the mutual actions of magnets and electric currents. Physically

the difference between the two cases is that while if <3> contains

only terms of the second degree in the velocities, if every velocity

is reversed the kinetic potential is unchanged, and hence the

motion may be reversed without change of circumstances, but if

on the other hand there are terms of the first degree in the

velocities, the motion cannot be reversed unless the concealed

motions are reversed as well.

As an example we will take the case of a gyrostat hung in

gimbals. Let the outer ring of the gimbals A, Fig. 27, be

pivoted on a vertical axis, and let the angle made by the plane of

the ring with a fixed vertical plane be yfr. Let the inner ring B
be pivoted on a horizontal axis, and let its plane make an angle 0

with the plane of the outer ring. The gyrostat is pivoted on an

axis at right angles with the last, and let a fixed radius of the

gyrostat make an angle
(f>
with the plane of the inner ring. It is

shown in the theory of the dynamics of a rigid body that the

energy of a body revolving about an axis is one-half the product

W. E. 9
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of a constant called the moment of inertia of the body multiplied

by the square of its angular velocity, and also that if we find the

Fig. 27.

angular velocities about three mutually perpendicular axes of

symmetry the energy may be found by adding the three parts

obtained for the energy of rotation about the three axes. We
will resolve the motions of the gyrostat into three angular velo-

cities, about the axis of the top, the axis of the inner ring, and

an axis perpendicular to both. About the axis of the gyrostat

the angular velocity is ^ = </>', but there is also the angular

velocity =
ty'

about the vertical axis, which has the com-

ponent ty' cos 9 about the axis of the gyrostat. The velocity

dd
about the second axis is -tt = ff and about the third is the other

at

component of the velocity about the vertical, yfr

f

sin 0. If A is the

moment of inertia of the gyrostat about its own axis, B that

about either of the other two, we have for the kinetic energy

T = 4 [A (<j>' +V cos e)2 + B (0' 2 + f
'
2 sin2

6)\

so that <j) and yfr are cyclic coordinates. For the components of the

forces tending to increase ty, 8, <£,
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p*
=

Jt iw)
=

It
[A (<f>

' + cos d) cos 6 +

B

*' sin2 ^'

dfdT\ dT d

+ A(<f>' +f cos 0) sin 6 - jBip sin 6 cos 0,

If there is no force tending to change the rotation of the gyrostat

in its ring

P^=0, A(<j>' + ^'cos0) = c,

and eliminating <£' by means of this equation,

Q

(f)'
= -j — ^ C(>s 0,

^=r-c^ = -|^ + |£ (0'2 + sin2
0) + cf' cos (9.

the last term containing ^
r

in the first power. Using this form of

<I> to determine the forces, we obtain

d /3<E>\ dP*-|S)-|W^ + OCOBtf)

P
° = It {w) -M -5 -

^

sin * cos
* +^ sin *

The influence of the cyclic motion may be most simply shown

if the vertical ring be held fixed. Then ^ = const., and i/r' = 0,

d6

dt
9

d?6

dt
2

= — c sin 6

Spinning the inner ring about the horizontal axis requires the

same force whether the cyclic motion exists or not, whereas a force

is developed tending to make the vertical ring revolve about its

d9
axis, which must be balanced by the force — c sin 0 . This

force at once shows that there is a concealed motion, even if the

disposition of the concealed parts be unknown. This is exem-

plified in the gyroscopic pendulum, which is simply a pendulum

with two degrees of freedom, containing a gyrostat whose axis is

9—2
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rigidly fixed in the axis of the pendulum. An ordinary pendulum

set vibrating in a plane continues to vibrate in a plane, with a

periodic reversal of its motion. The gyroscopic pendulum on the

other hand describes a curious looped surface, never remaining in

a plane nor returning on its course. This example is worked out

in Thomson and Tait's Natural Philosophy, § 319, Example (D).

68. Cyclic Systems. A system in which the kinetic energy

is represented with sufficient approximation by a homogeneous

quadratic function of its cyclic velocities is called a Cyclic System.

Of course the rigid expression of the kinetic energy contains the

velocities of every coordinate of the system, cyclic or not, for no

mass can be moved without adding a certain amount of kinetic

energy. Still if certain of the coordinates change so slowly that

their velocities may be neglected in comparison with the velocities

of the cyclic coordinates, the approximate condition will be ful-

filled. These coordinates define the position of the cyclic systems,

and may be called the positional coordinates or parameters of the

system. In the case of the gyrostat the two coordinates of the

gimbal rings may be taken for the positional coordinates, while

the cyclic coordinate determines the rotation of the gyrostat. In

the case of a liquid circulating through an endless rubber tube,

the positional co-ordinates would specify the shape and position of

the tube. The positional coordinates will be distinguished from

the cyclic coordinates by not being marked with a bar. The

analytical conditions for a cyclic system will accordingly be, for all

coordinates, either

or if we use the Hamiltonian form of T obtained by replacing the

velocities by the momenta, which we shall denote by TPi since the

non-cyclic momenta vanish

(3 ) ^ = 0 ^ =-^ = 0
v 7 dp8 dq8 dqs

We accordingly have for the external forces tending to in-

crease the positional coordinates [see § 62, (17)],

(3) P. = "
d(T- W) = dJTp+W)

dq8 dqs
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and for the cyclic coordinates

(a\ P - A (
dX\ - dP*

A motion in which there are no forces tending to change the

cyclic coordinates is called an adiabatic motion, since in it no

energy enters or leaves the system through the cyclic coordinates.

(It may do so through the positional coordinates.) Accordingly

in such a motion the cyclic momenta remain constant. The case

of the gyrostat worked out above was such a motion.

In adiabatic motions the cyclic velocities do not generally

remain constant. In the above example, for instance, the cyclic

velocity
<ft

was given by

(f>'
= ~ — i|r' cos 0.

MX.

A motion in which the cyclic velocities remain constant is

called isocyclic.

Tn such a motion the cyclic momenta do not generally remain

constant, but forces have to be applied.

If the motion is isocyclic, the only variables appearing in T are

the q's, the positional coordinates. The positional forces, (3), are

then derivable from a force-function IF— I7
*, so that even if the

system possessed no potential energy, it would appear to possess

an amount of potential energy — T. If the motion on the other

hand is adiabatic, the energy in the form Tp again contains only

the coordinates qs> and the positional forces are now derivable

from the force-function Tp + W, so that in this case a system

without potential energy would appear to contain the amount of

potential energy +TP . In this manner we are enabled to explain

potential energy as kinetic energy of concealed cyclic motions,

thus adding materially to our conceptions of the nature of force.

For it is to be noted that kinetic energy is an entity depending

only on the property of inertia, which is possessed by all bodies,

while potential energy is a term only employed to disguise our

ignorance of the nature of force. Accordingly when we are able

to proceed to an explanation of a static force by means of kinetic

* The reason for the appearance of W with the positive sign is that, as ex-

plained in § 62, end, P8 denotes the external impressed forces, which in the case of

equilibrium, are equal and opposite to the internal forces given by W.
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phenomena, we have made a distinct advance in our knowledge of

the subject. A striking example is furnished by the kinetic

theory of gases, by means of which we are enabled to pass from

the bare statement that all gases press against their confining

vessels to the statement that this pressure is due to the impact of

the molecules of the gas against the walls of the vessel.

69. Properties of Cyclic Systems. Reciprocal Rela-
tions. Since by the properties of the kinetic energy we have

three different kinds of quantities represented by partial deriva-

tives of one or the other of two functions,

<3) *-f' <3>
P
.-f'

<4>*'-^

applying the principle that a derivative by two variables is inde-

pendent of the order of the differentiations we obtain six reciprocal

theorems. We shall throughout suppose that there is no potential

energy.

I a. In an adiabatic motion if an increase in one positional

coordinate qr causes an increase in the impressed force Ps belong-

ing to another positional coordinate qs at a certain rate, then an

increase in the positional coordinate qs causes an increase in the

impressed force Pr at the same rate. For

dqr dqrdqs dqs
'

I 6. In an isocyclic motion we have the same property as

above. For

(6)
8P'= *T = dPr

dqr dqrdq8 dqs
'

II a. If in any motion an increase of any cyclic momentum

pr , the positional coordinates being unchanged, causes an increase

in a cyclic velocity q8
' at a certain rate, then an increase in the

momentum pS) the positional coordinates being unchanged, causes

an increase in the velocity qr
' at the same rate. For

(7)
dqs

' _ d%p _
dpr dp$ps dps

*

II b. If in any motion an increase in any cyclic velocity qr
',

the positional coordinates being unchanged, causes an increase in

a cyclic momentum ps , then an increase in the velocity q8
' causes
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an increase in the momentum pr at the same rate. For

^ dPs _ _dpr

dqr' dqr'dq8' dq/

III a. If an increase in one of the cyclic momenta pr , the

positional coordinates being unchanged, causes an increase in the

impressed force Ps necessary to be applied to one of the positional

coordinates qs (in order to prevent its changing), then an

adiabatic increase of the positional coordinate qs will cause the

cyclic velocity qr
' to increase at the same rate. For

^ ^ dprdqs dqs
'

III b. If an increase in one of the cyclic velocities qr\ the

positional coordinates being unchanged, causes an increase in the

impressed force Ps necessary to be applied to one of the positional

coordinates q8 (in order to prevent its changing), then an isocyclic

increase of the positional coordinate qs will cause the cyclic

momentum pr to decrease at the same rate. For

(iq)
dPs= d*T = dpr

^ dq^ dqr'dqs dqs

*

70. Work done by the cyclic and positional forces.

I. In an isocyclic motion, the work done by the cyclic forces

is double the work done by the system against the positional

forces. In such motions the energy of the system accordingly

increases by one-half the work done by the cyclic forces, the other

half being given out against the positional forces. For if we use

the energy in the form
T=^sqsps ,

we have in any change

( 1 )
ST = 12, (q8

'$p8 + ps$qs')>

and in an isocyclic change, every Sq/ vanishing,

(2) &T=^%sqs
'8p

s .

But since

(3) ^ = Ps, $p8 = Ps&t, and since qs
' =^ , q9'8t = $qs ,

and the above expression for the gain of energy becomes

(4) 8T=i2s qll
'P s8t =^P s Sqs .



136 THEORY OF NEWTONIAN FORCES. [PT. I. CH. III.

But the work done by the cyclic forces is

(5) 8l = 29P 8Sq9 =2ST.

Hence the last part of the theorem is proved. Again, in any

motion

(6) 8T-X.™Sq> + 2.™tq.,

and in an isocyclic motion

(7) s^i>
But since the work of the positional forces is

(8) BA = tsPsZqs= - 2 1|% = - BT,

the first part of the proposition is also proved.

II. In an adiabatic motion, the cyclic velocities will in general

be changed.

Then they change in such a way that the positional forces

caused by the change of cyclic velocities oppose the motion, that

is, do a positive amount of work. For since for any positional

force

P =JT
' dqs

'

the change due to the motion is

Of this the part due to the change in the cyclic velocities is

d2T dri
b-
q

, ra=-Zr bqr = - ir^ bqr ,

and the work done by these forces is

Now we have for any motion

and in an adiabatic motion this is zero, so that
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Substituting this in the sum with respect to s in 8q>A we get

But this expression represents (§ 61 (3)) twice the energy of

a possible motion in which the velocities would be Bq$\ and must

therefore be positive for all values of Sq$'

,
Bqr\

Accordingly 8q<A>0.

The interpretation of this theorem for electrodynamics is

known as Lenz's Law*.

71. Examples of Cyclic Systems. The expression for the

kinetic energy of the gyrostat worked out in § 67 shows that

the system fulfils the conditions for a cyclic system if the velocity

& is small enough to be neglected in comparison with the other

velocities. The forces acting have been already found, and we

can easily verify the theorems of the last two articles for this

case.

A very simple case of a cyclic system is that of a mass m sliding

on a horizontal rod, revolving about a vertical

axis. Let us consider the mass concentrated at

a single point m at a distance r from the axis.

Let the angle made by the rod with a fixed hori-

zontal line be <£, then the velocity perpendicular

to the rod is r<//. The velocity along the rod FlG
-
28 -

being r\ the kinetic energy of the body m is

T=\m (ry2 4- /2
).

If we suppose the motion along the rod to be so slow that we

may neglect r'
2

T= \mr
2

(f>'

2
,

and the system is cyclic, r is the positional,
<f>

the cyclic co-

ordinate.

A system containing a single cyclic coordinate is called by

Helmholtz a monocyclic system. We have for the momenta

dT n _ dT ,

* These Theorems are aU given by Hertz, Principien der Mechanik, §§ 568-583.
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and introducing these instead of the velocities

We have for the positional force

Pr = -— = - mrc/> 2 =~ =
3^2

.

or or mr3

This being negative denotes that a force Pr toward the axis

must be impressed on the mass m in order to maintain the cyclic

state. This may be accomplished by means of a geometrical

constraint, or by means of a spring. The force or reaction —Pr

which the mass m exerts in the direction from the axis in virtue

of the rotation is called the centrifugal force. We see that if

the motion is isocyclic, the positional force increases with r, while

if it is adiabatic, it decreases when r increases. The verification

of the theorems of § 69 is obvious. The cyclic force

vanishes when the rotation is uniform, and the radius constant.

If, the motion being isocyclic, that is, one of uniform angular

velocity, the body moves farther from the axis, P^, the cyclic

force is positive, that is, unless a positive force P^ is applied,

the angular velocity will diminish In moving out from rx to r2

work will be done against the positional force Pr of amount

[
n

, P2 m<f>'
2

— A = — I Prdr = mcf)'
2

1 rdr = —~- (r2
2 — rx

2
),

while the energy increases by the same amount.

Thus the first theorem of § 70 is verified. If the motion is

adiabatic,

ptfi
= ?nr2

(j)

/ = c.

If the body move from the axis, <£' will accordingly decrease.

The change in Pr due to a displacement Sr is

mr
which, being of the same sign as Br, does a positive amount of

work in the displacement, illustrating the second theorem of

S70.
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Dicyclic Systems. The preceding example will suffice as a

mechanical model to illustrate the phenomenon of self-induction

of an electric current (Chapter XII). To illustrate mutual in-

duction we must have at least two cyclic coordinates. Such

models have been proposed by Maxwell, Lord

Rayleigh*, Boltzmann, J. J. Thomson f, and the

author^. In the model of J. J. Thomson, there

are two carriages of mass rax and m2 sliding on

parallel rails, Fig. 29, their distances from a

fixed line perpendicular to the rails being x1

and #2 . Sliding in swivels on the carriages is

a bar, on which is a third mass m3 . We shall suppose that this

mass is movable along the bar, and is at a distance y from the

line midway between the rails, y being positive when ra3 is nearer

m2 . Then, if d is the distance between the rails,

oc-± *4~ 00*2 / \ y
2

and the kinetic energy is, if we may neglect y in comparison

with %2
',

T= \{mX 2 +V2

'2 + m3 O/2 + y' 2
)}

ooi
2 \rn l -f m3

1

2

,
§

, (1 2y2\
+m3#1 #2 I

g ^2
J

The system is cyclic, y being the positional, ocx and cc2 the

cyclic coordinates. The positional force

2d,
+

2d) ~
2W*°°*

d?

vanishes if '. The cyclic forces are

p _dr
*~dt

** ~ dt

1 y , f

,4 <2
S
,

* PftiZ. Ma#., July 1890, p. 30.

+ Elements of Mathematical Theory of Electricity and Magnetism, p. 385.

X Science, Dec. 13, 1895.
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Suppose that the coordinate y and the velocity x%
* are constant.

If now Wi is increased, say by ml starting from rest and moving

to the right by the application of a positive force PXl , then PXi is

positive if
| y \

<
\

d/2
|
and m3 is within the rails,-—in other words,

unless a force to the right is impressed on ra2 also, w2
' will diminish,

and if w2 was also zero, m2 will move to the left.

The force P%
2
must be greater the smaller \y\. This is the

analogue of the induction of currents. Similar effects may be

produced by moving mz along the rod, instead of applying a

force to mj or m2 .

Fig. 30.

Maxwells model, which undoubtedly suggested Thomson's,

differs from it only in having motion of rotation instead of revo-

lution, so that there is no limit to the possible difference in the

coordinates x1} x2 . The independent masses are represented by

the moments of inertia of masses tyi^, m2 carried by two shafts

S1 ,
$2 ,

Fig. 30, each of which carries a bevel-gear wheel A> B
at one end. Engaging these is a pair of bevel-gears C running

loosely upon a third perpendicular shaft, carrying the inter-

mediate mass, m3 .

If all the bevel-gears are of the same diameter, and
<f>2 , <£3

are the angles made by the three horizontal rods with a fixed

horizontal line, then it is evident, since the velocity of the centre

of the wheel G is a mean between the velocities of its highest

and lowest points, which have respectively the velocities of the

rims of the wheels A and B, that

^3
/ = i(^>i

/

+ <^2

/

)-
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Consequently the kinetic energy of the system consisting of

the three masses mu rn2} m3 at distances from the axis ru r2 ,
rz is

T = ^{m^fr'* + m2r2
2
<£2

'2 + m3r3
2
<£3

'2
}

If/ . m3r3
2
\ . ,„ / 0 ra3r3

2
\ m3r3

2
, .

, ,) ,

if the velocities r can be neglected. The system is cyclic, the r's

being positional, the <f>s being cyclic coordinates. In order to

make the model a more complete representation of two electric

currents, Boltzmann modified it so as to have between the co-

ordinates rly r2 ,
r3 the relation

n2 + r£ = y^, r£ + r3
2 = y2

2
,

where yl} y2 are two independent parameters. The two masses

rrix, ra2 are chosen equal, being made one-fourth of ra3 .

The expression for the energy then becomes

T=m
{J^' 2 + +nW/K

and we may independently change either of the three co-

efficients.

The Pythagorean theorem suggests a geometrical means of

imposing the above constraints. To each of the masses m is

attached a string, which runs along the rod to the axis of ro-

tation, where, after passing round a pulley it is carried vertically

downward to be attached to the following device (Fig. 31). A

Era. 31.

pair of rods are articulated at C, the point of articulation being

made to slide in a vertical line CO. The string from m3 is fastened

to the point C. Sliding on a horizontal line AB and in slots

in the rods AC, BC
}
are the points of attachment of the strings

from m1 and m2 , which are then carried outward and upward
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over pulleys. The lengths of the strings being chosen so that

m3 is at the axis when the rods are horizontal, m1 and m2 when

the rods are vertical, we must have, if AG = y1} BC = y2 ,

For the actual construction of the model, the reader is referred

to Boltzmann, Vorlesungen uber die MaxwelVsche Theorie der

Electricitat und des Lichtes.

By means of these models all the properties of Cyclic Systems

may be illustrated, and all the phenomena of induction of currents

imitated, as will be described in Chapter XII.

72. Hamilton's Principle the most general dynamical

principle. We have seen in this chapter how by means of

Hamilton's Principle we may deduce the general equations of

motion, and from these the principle of Conservation of Energy.

As Hamilton's Principle holds whether the system is conservative

or not, it is more general than the principle of Conservation of

Energy, which it includes. The principle of energy is not

sufficient to deduce the equations of motion. If we know the

Lagrangian function we can at once form the equations of motion,

and without forming them we may find the energy. For we

have

L = T- Tf,

E=T+W.

Accordingly

E= 2T - L = ~~L = Ssqs
'?4 - L

:

dqs
2 dqs

so that the energy is given in terms of L and its partial deri-

vatives. If on the other hand the energy is given as a function

of the coordinates and velocities, the Lagrangian function must

be found by integrating the above partial differential equation,

involving an arbitrary function. In fact if F be a homogeneous

linear function of the velocities, the above equation will be

satisfied not only by L but also by L + F. For, F being

homogeneous,

™ ^ ,dF
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Consequently a knowledge of the energy is not sufficient to

find the motion, while a knowledge of the Lagrangian function or

kinetic potential is.

In case we wish to ignore some of the coordinates we may
modify the statement of Hamilton's Principle by the use of the

modified Lagrangian function and put

where we suppose only those coordinates which are not ignored

are varied.



CHAPTER IV.

NEWTONIAN POTENTIAL FUNCTION.

73. Definition and fundamental properties of Poten-

tial- We have seen in § 59, (29), (31), that if we have any

number of material particles m repelling according to the New-

tonian Law of the inverse square of the distance, the function

s ~ In r2 rn y
where ra ,

r2 rn are the distances from the repelling points, is

the force-function for all the forces acting upon the particle ms .

If we put the mass m§ equal to unity the function

( 1 ) V = 1 —
1 1 ' 2 1 n

is called the potential function of the field of force due to the

repulsions of the particles m1} m2 <mn> and its negative vector

parameter is the strength of the field, that is, the force experienced

by unit of mass concentrated at the point in question. Since any

term — possesses the same properties as the function -
, § 39,

we have for every term, for points where r is not equal to zero,

A
(^j

= 0, and consequently

(2) AV— m,A (1) + n>n±
(^)

= 0.

74. Potential of Continuous Distribution. Suppose now

that the repelling masses, instead of being in discrete points,

form a continuously extended body K.

Let the limit of the ratio of the mass to the volume of any

infinitely small part be 0 = lim -r- , which is called the density.

At=0 ^t
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Let the coordinates of a point in the repelling or attracting* body-

be a, b
y a

The potential at any point P, x, y, z, due to the mass dm at Q,

a, by c, is

dm
dV =

r

Fig. 32.

where r is the distance of the point x, y, z from the repelling

point at a, b } c. The whole potential at x
} y, z is the sum of that

due to all parts of the attracting body, or the volume integral

(3 ) r= fff dm
k r

Now we have

dm = pdr,

or in rectangular coordinates dr = da db dc,

dm = pdadb dc.

If the body is not homogeneous, p is different in different parts

of the body K, and is a function of a, b
y
c, continuous or discon-

tinuous (e.g. a hole would cause a discontinuity). Since

r = J(x - a)2 + (y- Vf + 0 - c)
2
,

/ \ y _ f f f ^ — fff
pdadb do

{4)
JJJK~r~ ~JJJk JJo^a^{y~^bf + (z- c)

2
'

For every point y, V has a single, definite value. It is

accordingly a uniform function of the point P, x
} y, z.

It may be differentiated in any direction, we may find its

level surfaces, its first differential parameter, whose negative is

equal to the whole action of K on a point of unit mass, and the

lines offorce, normal to the level, or equipotential surfaces.

* In order to save words, and to conform to ordinary usage, we shall say simply

attracting, for a negative repulsion is an attraction.

W. E. 10
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If for any point x, y, z outside K, rx is the shortest distance to

any point of K and r2 the greatest distance, we have for any point

in iT

r2 > r > ru

111-<-<-,
r2 r r-L

dm dm dm— < — <—
;

r2 r r2

«> HI£< til

Since r2 and r2 are constant

- Hi dm < HI — < i HI dm.
rJ])K JJJk r rJJJx

Now since
jjj

dm =M
}
the whole mass of the body K, the

above is

(6) —<V< —

.

Accordingly for an external point V is finite.

If R is the distance of x, y, z from some point in or at a finite

distance from K,
RM _ RM<RV< .

If now we move off x, y, z to an infinite distance we have

i • R/ -i . R
lim — = lim — = 1,

and accordingly since RV lies between two quantities having the

same limit

(7) lim(BF) = Jf.
i2=oo

We say that V vanishes to the first order as R becomes

infinite.

75. Derivatives. Consider the partial derivatives of V by
x

} yy
z.

The element dm at a, 6, c, produces the potential

7 TT drift .

a V =— at x, y, z



74, 75] NEWTONIAN POTENTIAL FUNCTION. 147

(I)

Differentiating by x, (dm and a, 6, c being constant), we have

_ dm dr9 d /l
r- [dV] = dm ^~
dx ox r2 dx'

By § 39, (7 ),

(2)
dx

dr _
dx

(dV) =

x — a

dm x — a

r

Now

(3)
x — a

r
= cos (r#),

where the direction of r is taken from a, b, c to x, y> z. This being

the derivative for that part of the potential due to dm, we have

to take the sum of such expressions for all dm's in K, that is,

perform a volume integration

3F__ 3 Cffpdadbdc_
dx dx]]] r(4)

- p
x — a

dadbdc = —
\ \\~^ cos {TCC) d>a db dc.

Let the direction cosines of R be cos A, cos B, cos (7, and since

r2 > r> rly

1 I !_
^» 2 /^»2 ^»

2 '

111
= > = > -

r9 r,

-£ cos
(
ra

) > - S cos (r*) > ~ cos^
'2 ' '1

Multiplying and dividing the outside terms by cos A and

integrating,

(5)
- cosA fff C0S (r^)^T>

3Tr
>

cosA fff cos(rx)^
P cos A dx r,

2 IjjP cosA T '

Multiplying by R2 and letting R increase without limit, since

R2 R2 cos(r#) .,am— = lim— = hm ~~~ — 1,
22=00 n n=ccr£ R= 00 cos A

lim
U=co

R dV'

dx
= -McosA,

10—2
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(6) lim
M= oo

lim
Ji= oo

R

R

dy _

t

dV
''dz

= -M cos B,

= -M cos 0.

Therefore the first derivatives of V, and hence the parameter,

vanish at infinity to the second order.

In like manner for the second derivatives

d2V &
m

pdr _
rdx2

doc
2
JJJ r JJJ dx2 \r

3 (x - a)2 - r2

= P dr,

d2V
dxdy

Every element in all the integrals discussed is finite, unless

r = 0, hence all the integrals are finite. We might proceed in this

manner, and should thus find that

:

At points not in the attracting masses, Fand all its derivatives

are finite and (since their derivatives are finite) continuous, as well

as uniform.

(7)

Also since

da?

we have by addition

(8)

3 (x — af — rs

= P
3 (y — by — rs

/pi.

"3 (z - c)
2 - r2

*

»5

dr,

dr,

dr,

d2V d2V d2V „

dx2 ^ dy2 dz2 '

that is, V satisfies Laplace's equation.

This is also proved by applying Gauss's theorem (§ 39 (4)) to

, .
i
dm

each element— .

r

76. Points in the Attracting Mass. Let us now examine

the potential and its derivatives at points in the substance of

the attracting mass.
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din
If P is within the mass, the element— at which the point Q,

where dm is placed, coincides with P, becomes infinite. It does

not therefore follow that the integral becomes infinite (§ 25).

Fig. 33.

Let us separate from the mass K a small sphere of radius e

with the centre at P. Call the part of the body within this

sphere Kf and the rest K". Call the part of the integral due to

K\ V, and that due to K'\ V. Now since P is not in the mass

K'\ V" and its derivatives are finite at P, and we have only to

examine V and its derivatives.

Let us insert polar coordinates

so that, by § 23 (5),

e
2

|

F
r |
< 47r/9m rdr = 4<irpm - ,

if pm is the greatest value of p in K'.

As we make the radius e diminish indefinitely, this vanishes,

hence the limit

lim(V'+V")

is finite.

In like manner for the derivative

dV fff x — a

dx JJJ
r r3 JJJr

Separate off K' from K". The part of the integral from K" is

finite. In the other K' introduce polar coordinates, putting

0 = (rx),
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(2 ) -to=]JJ 0

p—f***eaeai>dr,

dx
< pm \

dr\
|
sin 6 cos 6

\
dddcfr,

< 2ir2
pm e,

dV .

which also vanishes with €. Hence is everywhere finite, and in

dV dV
like manner ^r— ,

— .

oy oz

d*V
If we attempt this process for the second derivatives ^ , . .

.

dv
it fails on account of — , which gives a logarithm becoming go in

the limit.

dV
We will give another proof of the finiteness of—

.

We have

dV rrr a— x
dadbdc

which by Green's theorem is equal to

This is however only to be applied in case the function £ is

everywhere finite and continuous. This ceases to be the case

when P is in the attracting mass, hence we must exclude P by

drawing a small sphere about it. Applying Green's theorem to

the rest of the space K", we have to add to the surface-integral

the integral over the surface of the small sphere.

f C dS
Since cos(^) ^ 1, this is not greater than pm jj

— = ^7repm ,

which vanishes with e. Hence the infinite element contributes

nothing to the integral.

dV
In the same way that ^ was proved finite, it may be proved

dV' dV"
continuous. Dividing it into two parts and , of which the



76, 77] NEWTONIAN POTENTIAL FUNCTION. 151

dV
second is continuous, we may make, as shown, as small as we

please by making the sphere at P small enough. At a neighbour-

ing point P1 draw a small sphere, and let the corresponding parts

be and . Then we can make as small as we please,
ox dx ox r

dV dV'
and hence also the difference ~~g^T* Hence by taking P and

dV
Pj near enough together, we can make the increment of — as

ox

small as we please, or is continuous.
ox

77. Poisson's Equation. By Gauss's theorem (§ 39 (5)), we
have

cos (nr) dS

1s r*
— — 4<7T,

when r is drawn from 0, a point within S. Multiplying by m, a

mass concentrated at 0,

The integral

-jf
d^dS = -jjPcos (Pn)dS

is the surface integral of the outward normal component of the

parameter P, or of the inward component of the force.

The surface integral of the normal component of force in the

inward direction through S is called the flux of force into S, and

we see that it is equal to — 47r times the element of mass within

S. Masses without contribute nothing to the integral. Every

mass dm situated within 8 contributes to the potential at any

point and — 4mdm to the flux through the surface 8. Hence the

whole mass, when potential is V—
jjj > contributes to the

flux

— 4<7rM= — 4>7rjjj pdr,

and

<2)
-\\s

d

Tn
d8-^\\L^-
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Now the surface integral is, by the divergence theorem, equal

to

(3)
JJJ

AVdr^-^TrJJJ^pdr.

The surface S may be drawn inside the attracting mass,

providing that we take for the potential only that due to matter

in the space r within S.

Accordingly for r we may take any part whatever of the

attracting mass, and

AVdr == — 4>7r

jjj
pdr,

(4) (AF+47rp)dT = 0.

As the above theorem applies to any field of integration what-

ever, we must have everywhere (by § 23)

(5) AF+4?rp = 0.

This is Poisson's extension of Laplace's equation, and says that

at any point the second differential parameter of V is equal to

— 47r times the density at that point. Outside the attracting

bodies, where p = 0, this becomes Laplace's equation.

In our nomenclature, the concentration of the potential at any

point is proportional to the density at that point.

A more elementary proof of the same theorem may be given

as follows. At a point x, y, z construct a small rectangular

parallelopiped whose faces have the coordinates

®, ® + Z> y> y + v, z> * + £

and find the flux of force through its six faces. At the face

normal to the X-axis whose x coordinate is x let the mean value of

dV
dx

The area of the face is so that this face contributes to the

integral —
JJ
P cos (Pn) dS the amount — 97£

the force be — = —Px.

dV
At the opposite face, since — is continuous, we have for its

ox
value

\x ^\x
^erms °^ n^ner order in f,



77, 78] NEWTONIAN POTENTIAL FUNCTION. 153

and hence, the normal being directed the other way, this side con-

tributes to the integral the amount

and the two together

d2V
^^Ikv2

^erms °^ n^Sner °rder.

d2V
Similarly the faces perpendicular to F-axis contribute £77£ ^— ,

d2V
and the others gnt-—

.

dz2

Hence the surface integral is

tot
(d

2V d2V d2V)

dx2 By2
dz*

and by Gauss's theorem this is equal to

where p is the mean density in the parallelopiped. Now making

the parallelopiped infinitely small, and dividing by £77 f, we get

AV=- 4>irp.

78. Abbreviations for Operators. If p is any point

function, the potential function at any point due to a distribu-

tion through all space of matter whose density at any point is p
has been denoted by Gibbs and Heaviside by the abbreviation

Pot p, standing for the definite integral

(The suffix qo denotes integration through all space.)

We may thus abbreviate Poisson's equation

- A Pot p = V 2 Pot p = 4<irp,

so that the operation Pot followed by the operation — A = V 2
,

performed on any scalar function, has the effect only of multiply-

Pot
ing it by 47r, or the operations A and — -— are the inverses of

each other.
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79. Characteristics of Potential Function. We have

now found the following properties of the potential function.

1st. It is everywhere holomorphic, that is, uniform, finite,

continuous.

2nd. Its first partial derivatives are everywhere holomorphic.

3rd. Its second derivatives are finite.

4th. V vanishes at infinity to the first order,

Urn (127) = if;
22=oo

... vanish to second order,
coo

lim fj2»|^=-Jfcos^.
R=oo\ OX J

5th. V satisfies everywhere Poisson's differential equation

cfV d^V d2V__
dx2

+
dy2

+
dz2 ~ p '

and outside of attracting matter, Laplace's equation

d2V
i

d2r
[

&v = Q
dx2 dy2 dz2

Any function having all these properties is a Newtonian

potential function.

The force X, F, Z is a solenoidal vector at all points outside

of the attracting bodies, and hence if we construct tubes of force,

the flux of force is constant through any cross-section of a given

tube. A tube for which the flux is unity will be called a unit

tube. The conception of lines of force and of the solenoidal

property is due to Faraday.

Since V is a harmonic function outside of the attracting

bodies, it has neither maximum nor minimum in free space,

but its maximum and minimum must lie within the attracting

bodies or at infinity.

In the attracting bodies the equation — AV=4nrp says that

the concentration of the potential at, or the divergence of the

force from any point is proportional to the density at that

point.
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80. Examples. Potential of a homogeneous Sphere.

Let the radius of the sphere be i£, h the distance of P from its

center,

"pdr

r

Let us put s instead of r, using the latter symbol for the polar

coordinate,

V=
jjj

p~smede d<j>dr.

Now s2 = h2 + r2 - 2hr cos 0.

Fig. 34.

Differentiating, keeping r constant,

sds = hr sin 6dO
y

and introducing s as variable instead of 0,

V= fjj^dsdcj>dr.

We must integrate first with respect to s from h — r to h + r,

if P is external

;

F= f ( rdrds = f r2dr
"> J 0 J h-r "*

Hence the attraction of a sphere upon an external point is

the same as if the whole mass were concentrated at the center.

A body having the property that the line of direction of its

resultant attraction on a point passes always through a fixed point

in the body is called centrobaric.

If instead of a whole sphere we consider a spherical shell of

internal radius Rx and outer P2 , the limits for r being R1 ,
P2 ,

Tr 47TO ^ , _ 47rp , _ _ D _ if
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We have
dV
dh

M
h2 '

d2V_2M
dh"

~~
h3 '

If, on the other hand, P is in the spherical cavity, h < Rly

the limits for s are r — h, r+h

2ttp r** [
r+h

[
R*

V= ~- I I rdrds = 4urp I rdr
h JEiJr-h

2ttP {Ri - R?\

which is independent of A, that is, is constant in the whole cavity.

dV
Hence -^r = 0, and we get the theorem that a homogeneous

oh

spherical shell exercises no force on a body within. (On account

of symmetry the force can be only radial.)

If P is in the substance of the shell, we divide the shell into

two by a spherical surface passing through P, find the potential

due to the part within P, and add it to that without, getting

V = Amp
(/t

3-P1
3)+27rp(P2

2 -A2
)

dV_4nrp (Px
3

h \

dh
~~

3 1 A2
J

'

d2V_ 477-/0 {2RI
hs

+ 1

Tabulating these results

h<B
1

R
1
<h<R2

v

dV
dh

d?V

dh?

2-n-p (Rf - Rf)

0

0

2irp ]R
h?) 4iirpR^

4strp

3

\Rf

3h

h

47T/J (2^
3 { h?

+

^P ( P 8 _ P 3\

3A2 ^ 1

;

87rp
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Plotting the above results (Fig. 35) shows the continuity of

Fm. 35.

V and its first derivatives and the discontinuity of the second

derivatives at the surfaces of the attracting mass.

We see that the attraction of a solid sphere at a point within

it is proportional to the distance from the center, for if Rx
= 0,

dV __ ^TTph

~dh~~
3~

'

and is independent of the radius of the sphere. Hence experi-

ments on the decrease of the force of gravity in mines at known
depths might give us the dimensions of the earth.

81. Disc, Cylinder, Cone. Let us find the attraction of a

circular disc of infinitesimal thickness at a point on a line normal

Fig. 36.
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to the disc at its center. Let the radius be Rlf thickness e,

distance of P from the center h

V
[R f2

Jo Jo

R r2ir erdrdd>
P

\7T

VA2 +

o V/*2 + r2

2irep \/A2 +
R

0

2<7rep {V/fc
2 + R2 - h},

dV
dh

h

Wh2 + R2

-1 .

Attraction of circular cylinder on point in its axis. Let the

length be I and let the point be external, at a distance h from

the center.

By the above, a disc of thickness dx at a distance x from the

center produces a potential at P

dV= 2irpdx {\/R2 + (h — xf -{h — x)}.

Hence the whole is

rl/2

V= 2ttP I {VjK2 +(h — x)2 - (h - x)} dx
J -112

= 27rp \ VjB2 +(h — x)2 +Y log (x - k + VE2 + (h - #

)

2

)
(

2
"2

= 7T/>

2

+ iJ2 log
2

a
+/v
/e2

+(! h

+ JPlogj-|-t +v/i!' + (-| -*)]]

.

Circular cone on point in axis.

Let R be the radius of base, a the altitude, h the height of P
above the vertex.

A disc at distance x below vertex and radius r causes potential

at P, _
c?F= 27rpdx {V(h + x)2 + r2 -(h + x)}

;
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and
r

x

R R
-

, . r = —x,
a a

V= 2ttP r
J 0

dx (h + x)2 +^x2 -(h + x)\

If we have a conical mountain of uniform density on the earth,

and determine the force of gravity at its summit and at the sea

level, this gives us the ratio of the attraction of the sphere and

cone to that of the sphere alone, and from this we get the ratio of

the mass of the earth to the mass of the mountain. Such a deter-

mination was carried out by Mendenhall, on Fujiyama, Japan, in

1880, giving 5*77 for the earth's density.

Fig. 37.

Circular disc on point not on axis. Let the coordinates of P
with respect to the center be a, b, 0. Then

s2 = a2 4- (b - r cos <£)
2 + r2 sin2

<j>,

*R r2ir erdrd(f)V
o Jo Va2 + (6 — r cos

<f>)

2 + r2 sin2

<f>

'

an elliptic integral. The development in an infinite series will be

given in § 102.

82. Surface Distributions. In the case of the circular

disc of thickness e, ep is the amount of matter per unit of surface

of the disc. It is often convenient to consider distributions of

matter over surfaces, in such a manner that though e be considered

infinitesimal p increases so that the product €p remains finite.

The product ep = <r is called the surface density, and the distribu-

tion is called a surface distribution.

We have

dm = adS, V = f|"^?

.

J j f
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In the case of the disc, we had

dV
dh
= 2irep

h

Whf+ B?

When h = 0 we have

'dV\

dh)h ,

= — 27T0\
= 0

The repulsion of a disc upon a particle in contact with it at its

center is independent of the radius of the disc, and is equal to 2tt

times the surface density.

Fig. 38.

If the force on a particle in contact on the right be called F2i

positive if to the right, we have

F2
=± + 2ira.

By symmetry, the force on a particle at the left in contact

with the disc is

F, = - 2ira,

F1-F2 = - 4tt<7.

Now if x denote the direction of the normal to the right,

>dV\

F^ "(SI'
and we see that on passing through the surface there is a dis-

dV
continuity in the value of of the magnitude 47ro\

Consider a thin spherical shell. We have for an external point

V =^ (B* - R*) =§ (R2 - (R2
* + R2R, + R*),
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and making i?2
— i2x

= e, lim ^ = lira _R2 = R,

V - m .6K,

dV_ 47r<r „2

dh~~~hF '

and on the outside for h = B,

dV

Within we have everywhere

V— const., ^ = 0.
ah

Hence there is in like manner a discontinuity in the first derivative

of the potential in the direction of the normal, on passing through

the attracting surface, of the amount 47ro*.

Fig. 39.

Consider now any surface distribution of surface density a.

Apply Gauss's theorem to a small tube of force bounded by portions

of two equipotential surfaces and c?S2 on opposite sides of the

element of the attracting surface dS (Fig. 39). The flux out from

the tubes is

F2dX 2
— F1dX1)

and this must be equal to 4- 47r times the matter contained in

the tube, which is adS. Therefore

jPJdSs-F1dS1 =WS.
But if the length and diameter of the tube are infinitesimal dEx

and d22 are the projections of dS,

dSj = d2 2 = dS cos (Fn),

where n is the normal to the attracting surface. Accordingly

F2 cos (Fn) dS - Fx cos (Fn) dS = 4W£,
W. E. 11
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and since F2 cos (Fn) = — (^-] ,

Fl cos <*»)—

dnJi ways

The normal to S is here drawn toward the side 2. We find

then that in general, on traversing a repelling surface distribution,

the normal force has a discontinuity equal to 4dira.

This is Poisson's equation for a surface distribution. If we

draw the normal away from the surface on each side, we may

write

dv dv
J--— = - 47TO-,

or F1 cos (ifyh) + F2 cos (P#2) = F17li
4- P2„2

= 4tto-.

83. Greenes formulae. Let us apply Greens theorem to

two functions, of which one, V, is the potential function due to

1
any distribution of matter, and the other, U=-, where r is the

distance from a fixed point P,Jying in the space t over which we

take the integral. Let the space t concerned be that bounded by

a closed surface S, a small sphere 2 of radius e about P, and, if P
is without S, a sphere of infinite radius with center P.

Fig. 40.

Now the theorem was stated in § 33 (2) for the normal drawn

in toward r, which means outward from ' S and 2, and inward

from the infinite sphere, as

and since

r
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in the whole space r, so that (i) becomes

1

The surface integrals are to be taken over S, over the small sphere,

and over the infinite sphere. For a sphere with center at P,

b
1
- a

1
_

V T _ 1

on or r2

the upper or lower sign being taken according as the sphere is

the inner or outer boundary of t
;

Vdco,
j j on j j

and for r = oo

V vanishes, hence this integral vanishes. Also

dV . 1
Now at infinity, — is of order —

, and being multiplied by r,

still vanishes. Accordingly the infinite sphere contributes nothing.

For the small sphere the case is different. The first integral

-//Vs.

becomes, as the radius e of the sphere diminishes,

(4) - VP jfdco = -4<7rVP .
•

The second part

dV .

however, since is finite in the sphere, vanishes with e. Hence
on

there remain on the left side of the equation only — 47rFP and the

integral over S. We obtain therefore

^V^hVTn-\TJ dS =\^dT
>

(5) Vr = ±\\^-^dS-l^dr (PoutsideS),

11—2
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the normal being drawn outward from S. This formula is due to

Green.

Hence we see that any function which is uniform and con-

tinuous everywhere outside of a certain closed surface, vanishes

at infinity to the first order, and whose parameter vanishes at

infinity to the second order, is determined at every point of space

considered if we know at every point of that space the value of

the second differential parameter, and in addition the values on the

surface S of the function and its vector parameter resolved in the

direction of the outer normal.

In particular, if V is harmonic in all the space considered, we
have

<6>
V^U)VTn-lfnJ d8

'

and a harmonic function is determined everywhere by its values

and those of its normal component of parameter at all points of

the surface S.

Since

^ r 1 dr

dn r2 dn

1 ( , Jr , v dr
,

, x dr) cos (nr)= -
j

cos
fa
+ cos (ny) + cosM ^} =—^ >

we may write (6)

Consequently, we may produce at all points outside of a closed

surface S the same field of force as is produced by any distribution

of masses lying inside of S, whose potential is V
f
if we distribute

over the surface S a surface distribution of surface-density,

1 (Fcos(nr) 3

- ' k ( r dn

In the general expression (5), the surface integral representing

the potential due to the masses ivithin 8, the volume integral

1 rrrAF
47r JJ J r

d\
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represents, since everywhere

1 AF=p,
4-7T

pd

r

that is, the potential due to all the masses in the region r, viz.,

outside S.

84. Equipotential Layers. As a still more particular case

of (7), if the surface 8 is taken as one of the equipotential

surfaces of the internal distribution, we have all over the surface

V= Vs = const., and the constant may be taken out from the first

integral,

f f COS (flV)
Now by Gauss's theorem 1 1

—~— cZ#= 0 ;
accordingly,

so that VP is represented as the potential of a surface distribution

of surface-density

1 dV 1 „ /rT x
F

<r = - A
„— = ~~F cos {Fn) = ± --

.

47T Oil 4«7T 47T

The whole mass of the equivalent surface distribution is

F cos (Fn) dS,
47TJJ

which, being the flux of force outward from S, is by Gauss's

theorem, § 77 (i), equal to M, the mass within S.

Accordingly we may enunciate the theorem, due to Chasles and

Gauss* :

—

We may produce outside any equipotential surface of a dis-

tribution M the v same effect as the distribution itself produces, by

* Chasles, " Sur l'attraction d'une couche ellipsoidale infiniment mince." Journ.

Ec. Polytec, Cahier 25, p. 266, 1837 ;
Gauss, Allgemeine Lehrsatze, § 36.
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1
distributing over that surface a layer of surface-density equal to —
times the outward force at every point of the surface. The mass

of the whole layer will be precisely that of the original internal

distribution. Such a layer is called an equipotential layer.

(Definition—A superficial layer which coincides with one of its

own equipotential surfaces.) Reversing the sign of this density

will give us a layer which will, outside, neutralize the effect of the

bodies within.

Let us now suppose the point P is within S. In this case, we
apply Green's theorem to the space within 8, and we do not have

the integrals over the infinite sphere. The normal in the above

formulae is now drawn inward from 8, or if we still wish to use

the outward normal, we change the sign of the surface integral

^ (5),

(P inside 8).

Note that both formulae (5) and (12) are identical if the

normal is drawn into the space in which P lies.

Hence within a closed surface a holomorphic function is

determined at every point solely by its values and those of its

normally resolved parameter at all points of the surface, and by

the values of its second parameter at all points in the space within

the surface.

A harmonic function may be represented by a potential func-

tion of a surface distribution.

Now if the surface 8 is equipotential, the function V cannot

be harmonic everywhere within unless it is constant. For since

two equipotential surfaces cannot cut each other, the potential

being a one-valued function, successive equipotential surfaces

must surround each other, and the innermost one, which is reduced

to a point, will be a point of maximum or minimum. But we
have seen (§ 34) that this is impossible for a harmonic function.

Accordingly a function constant on a closed surface and harmonic

within must be a constant.

If however there be matter within and without S, the volume

integral, as before, denotes the potential due to the matter in the
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space r (within S), and the surface integral that due to the

matter without. If the surface is equipotential, the surface

integral is

r one

= Ya([ cqs
) ds +— ((-— dS.

^ttj] r2
4r7rJJ r dn e

The first integral is now equal to 47r, so that

Vs being constant contributes nothing to the derivatives of V, so

that the outside bodies may be replaced by a surface layer of

density

(14) <t = -r- ^- = -— F cos (Fne) = ±-7-.
V 7 47r8^ 47T

V 7
47T

The mass of the surface distribution

(1 5 ) fjodS =I fff£
dS = -^JJ>

cos (i^)

fte being the outward normal, is the inward flux of force through

S, which is equal to minus the mass of the interior matter, and is

not, as in the former^case, equal to the mass which it replaces.

*

85. Potential completely determined by its charac-

teristic properties. We have proved that the potential function

due to any volume distribution has the following properties :

1. It is, together with its first differential parameter, uniform,

finite, and continuous.

2. It vanishes to the first order at 00 , and its parameter to

the second order.

3. It is harmonic outside the attracting bodies, and in them

satisfies

AF= - 4-777).

The preceding investigation shows that a function having

these properties is a potential function, and is completely de-

termined.
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For we may apply the above formula (5) to all space, and then

the only surface integral being that due to the infinite sphere,

which vanishes, we have

If however, the above conditions are fulfilled by a function V,

except that at certain surfaces S its first parameter is discon-

dr.

tinuous, let us draw on each side of the surface S surfaces at

distances equal to e from $, and exclude that portion of space

lying between these, which we will call 8X and S2 .

If the normals are drawn into r we have

The surface integrals are to be taken over* both surfaces Sx and

82 and the volume integrals over all space except the thin layer

between 8X and S2 . This is the only region where there is discon-

tinuity, hence in t the theorem applies, and

_ f f i fr 1 |F fj-f af^
JJsl

rdnl JJs,rdn% JJJ^ r

Now let us make e infinitesimal, then the surfaces 8lf S2

approach each other and S . F is continuous at 8, that is, is the

same on both sides, hence, since
(^j

= — ~-
, in the limit

the first two terms destroy each other. This is not so for the

dV . dV ...
next two, for ~ is not equal to — because of the discontinuity.
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In the limit, then

The volume integral, as before, denotes the potential jlj^dr

due to the volume distribution, while the surface integral denotes

the potential of a surface distribution jj~~>

where

_ 1_ fiV dV
^ ^ ~~

4-7T [dn^ dn2j

Hence we get a new proof of Poisson's surface condition,

§ 82 -

86. Kelvin and Dirichlet's Principle. We shall now
consider a question known on the continent of Europe as

Dirichlet's Problem.

Given the values of a function at all points of a closed surface

S—is it possible to find a function which, assuming these values

on the surface, is, with its parameters, uniform, finite, continuous,

and is itself harmonic at all points within $ ?

This is the internal problem—the external may be stated in

like manner, specifying the conditions as to vanishing at infinity.

Consider the integral

of a function u throughout the space r within 8.

J must be positive, for every element is a sum of squares.

It cannot vanish, unless everywhere ^ = ~ = |~ = 0, that is

u = constant. But since u is continuous, unless it is constant on

Sy this will not be the case.

Accordingly J (u) > 0.

Now of the infinite variety of functions u there must be,

according to Dirichlet, at least one which makes J less than for

any of the others. Call this function v, and call the difference

between this and any other hs
y
so that

u — v + hs,

h being constant.
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The condition for a minimum is that

J(v)<J(v + hs),

for all values of h.

^T du dv ,35
Now =— etc.

ox ox ox

2^ (3v 3s 3v 35 ^ dv ds'

[dx dx dy dy dz dz\

Integrating

, , T/ x 7-
/ x 7 „ r/ x «t [[{ (dvds dvds dv ds\ 7

Now in order that / (v) may be a minimum, we must have

/ x 7o r/ \ [[[ fdv ds dv ds dv ds\ 7 -

(4) * J (.) + 2h
jjj

+& a
-j ^ > 0,

for all values of h
}
positive or negative. But as s is as yet un-

limited, we may take h so small that the absolute value of the

term in h is greater than that of the term in A2
, and if we choose

the sign of h opposite to that of the integral, making the product

negative, the whole will be negative.

The only way to leave the sum always positive is to have the

integral vanish. (It will be observed that the above is exactly

the process of the calculus of variations. We might put Bv instead

of hs.)

The condition for a minimum is then

»dr = 0.(5) \n\ dl dA +
dl d±^ dvdJ

J '

'

' [da; dx dy dy dz dz
t

But by Green's theorem, this is equal to

(6) -jj/£dS-fjjsA*dr.

Now at the surface the function is given, hence u and v must

have the same values, and 5 = 0.
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Consequently the surface integral vanishes, and

sAvdr — 0.

But since s is arbitrary, the integral can vanish only if every-

where in t, Av = 0, v is therefore the function which solves the

problem. The proof that there is such a function depends on the

assumption that there is a function which makes the integral J a

minimum. This assumption has been declared by Weierstrass,

Kronecker, and others, to be faulty. The principle of Lord Kelvin

and Dirichlet, which declares that there is a function v, has been
rigidly proved for a number of special cases, but the above general

proof is no longer admitted. It is given here on account of its

historical interest*.

We can however prove that if there is a function v, satisfying

the conditions, it is unique. For, if there is another, v, put

u = v — v.

'<«>-///

0

= - jjufi^dS—jjjuAudr.

On the surface, since v=v',u = 0. In t, since Av and Av r

are

zero, Au = 0. Accordingly J (u) — 0. But, as we have shown,

this can only be if u = const. But on S, u = 0, hence, throughout

t, u = 0 and v = v'.

87. Green's Theorem in Curvilinear Orthogonal Co-
ordinates. We shall now consider Green's theorem in terms of

any orthogonal coordinates, limiting ourselves to the special case

U — const., or the divergence theorem, § 35,

dr
dS=[([ AVdr,

where ns is the outward normal to 8.

* Thomson, "Theorems with reference to the solution of certain Partial

Differential Equations," Cambridge and Dublin Math. Journ., Jan. 1878; Reprint

of "Papers in Electrostatics and Magnetism," xm. The name Dirichlet's Princip

was given by Riemann
(
Werke, p. 90). For a historical and critical discussion of

this matter the student may consult Bacharach, Abriss der Geschichte der Potential-

theorie, as well as Harkness and Morley, Theory of Functions, Chap. ix.
}
Picard,

Traite d?Analyse, Tom. n., p. 38.
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Let the coordinates be q1} q2} qs .

The parameter P is the resultant of the derivatives of V in

any three perpendicular directions. Let these be in the directions

of the normals to the level surfaces qlt q2) q3 .

Then, calling these P
Ql ,
P

9a ,
P

qs
.

dV
(i) = P cos (Pns)

= P
qi
cos (njis) + Pq%

cos (n2ns) 4- P
q3

cos (n8rz8).

Now P
Qi)

the partial parameter with respect to qu is (§ 16)

dV
dq1

'

Hence

(2) — = Ax -r— cos (WiWg) + A2 ^— cos (w2?is) + % ^~ cos (n sn8).

on8 oqi oq2 oq*

If we divide the volume r up into elementary curved prisms

bounded by level surfaces of q2 and qZi as in the case of rectangular

Fig. 42.

coordinates, we have, at each case of cutting into or out of S,

± dS cos (n^) = dS1} where dS± is the area of the part cut by the

prism from the level surface qx .

By § 20,

iq dq2 dq3

h2 h3

accordingly

(3 , //^sM^/f|rf-f
9

f *i dV
\ A A A
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Transforming the other two integrals in like manner,

(4) //l£^
=
//K^

cos(w^)

+' h2
~- cos (n2ns) 4- h3

^~ cos (n3ns ) [ dS
dq,

dqx \h2h3 dq1 J dq2 dq2 J dq3 KhJh dq3 .

dqYdq2dq3 .

Now this is equal to AVdr.

But ^ dqYdq2dq3

fhh2h 3

Multiplying and dividing in the last integral of (4) by hjiji^,

we find that, since the integrals are equal for any volume, the

integrands must be equal, or

~ 1 2h
\dq1 \h2h3 dq1 ) dq2 \h3h1 dq2 ) 3y8 \Ma 3ga

This result was given by Lame*, by means of a laborious direct

transformation. The method here used is similar to one used by

Jacobi, and is given by Somoff*.

88. Laplace's Equation in Spherical and Cylindrical

Coordinates. Applying this to spherical coordinates

1 1
hr — 1 ,

Hq = —
, hfk = >) ,

r v r sin 6

(6) AV ^fr-sm^-J +a
Jsin^U

r2 sin # !3r V

dlL ?£T+ I?.F + Icot(9—

+

8</> Vsin 0 3<£

32F
d0 r2 sin2 0 9<£

2 *

We may apply this equation to determine the attraction of a

sphere. For external points AF=0, and since by symmetry V is

independent of 8 and </>,

* Lam6, Journal de VEcole Polytechnique, Cahier 23, p. 215, 1833
;
Legons sur

les Coordonnees curvilignes, 11. Jacobi, "Ueber eine particulare Losung der par-

tiellen Differentialgleichung AF=0," Crelle's Journal, Bd. 36, p. 113. Somoff,

Theoretische Mechanih, 11. Theil, § 51—2.
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dr2 r dr dr\ dr

dV dV
r2 -y = c,

dr ' dr r

V=-- + c'.

r

,2
}

But since Lim (rV) = M,
r=<x>

Lim [-c + cV] = M,
T— 00

we must have c = 0, — c = M.

Apply the above transformation to cylindrical coordinates

hz = I, h
p
= 1, h„ = -

,

dr-V d*V ldV 1 32F—_
_l_ J

^
dz2 dp2

p dp p
2
dco 2 '

If we apply this to calculate the potential due to a cylindrical

homogeneous body with generators parallel to the axis of z and

of infinite length, the potential is independent of z and satisfies at

external points,

A d2V d2V
0 = —|

dx2 By2

dp2

p dp p
2

dco
2

'

If the cylinder is circular, V is independent of ay, and we have

the ordinary differential equation

dfV ldV=Q
dp2

p dp
9

dp2

j dp" p
}

d /. dV\ _ _ 1

dp V °^~dp) p
9

dV
log ^ = — log p + const.

dV^G
dp p

9

V=Clogp+C.
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The force in the direction of p is inversely proportional to the

first power of p.

We may verify this by direct calculation. Let us consider the

Q

Fig. 43.

cylinder as infinitely thin, with cross-section -sr. We will find the

component offorce in the direction of p.

The action of dm at z on P at distance p (Fig. 43) is

dm dm

The component parallel to p is

dm , pdm— cos (ps) = ^— .

Now since, calling the density 8, dm — Svrdz, we have for the

total force in direction p

SvrpdzF=2

Put

o V(p2 + 22
)<

z = p tan 0,

dz = p sec2 0d0.

7T

d o * f
2
P

2 sec2 0d0 2otS

Jo p
z sec3 a p

= = — as before.

P P

sin 0

7T

2

0

89. Logarithmic Potential. We may state the above

result in terms of the following two-dimensional problem. Sup-

pose that on a plane there be distributed a layer of mass in such

a way that a point of mass m repels a point of unit mass in
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771

the plane with a force — where r is their distance apart. The

potential due to m is F= — m logr and it satisfies the differential

equation

dx2 dy2

Similarly, in the case of any mass distributed in the plane,

with surface-density fi, an element dm = ndS produces the po-

tential — dm log r, and the whole the potential

V = — jjdm log r — — JjfJb log rdS,

where r is the distance from the repelling dm at a, b to the

repelled point x, y, so that

r2 = (%- a)2 + (y - b)\

We may verify by direct differentiation that, at external

points, this V satisfies

dx2 dy2

dx dx,
ffi log rdadb — — jjf1 ^ Q°g T) dadb

vox J J r2

d2V ff (1 2(y-b)2

dadb,
dy2 Jj^{r2 r4

J„
|2 _ 2[(«-a)H.(y-6y]j^ = Q _

8-2 -pr g2 jr

4"

This potential is called the logarithmic potential and is of

great importance in the theory of functions of a complex variable.

90. Green's Theorem for a Plane. In exactly the same

manner that we proved Green's Theorem for three dimensions,

we may prove it when the integral is the double integral in a

plane

(dUdV dUdV)
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over an area A bounded by any closed contour G. Since we' have

for a continuous function W

(2) Wi-W^.-. + W^-W^ dy

— — I W cos (nx) ds,
J c

where n is the inward normal, ds the element of arc of the

contour.

dV
Applying this to W == U— , we obtain

(3) j
= —

jjj^ cos (nx) ds.

Treating the other term in like manner, we obtain

(4)

dV ff /d2V d2V s

dxdy.

(5)

c dn
w
"

J J a" V9*2
' dy'

Interchanging U and V we obtain the second form

=
JJ

(VAU— UAV)ds,
on cm

where we write

dx2 dy2

91. Application to Logarithmic Potential. If in the

second form above we put Z7= 1, we obtain

(6) /of^ = -//
' *Vd*dy,

which is the divergence theorem in two dimensions. If the

function V is harmonic everywhere within the contour, we have

dV
c dn

ds = 0.

Fig. 44.

W. E. 12
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Applying this to the harmonic function logr, where P, the

fixed pole from which r is measured, is outside the contour,

(7) f
dJ^ds=f i£&=f ds = 0.

Jc on J c rdn J c r

If the pole P is within the contour, we draw a circle K of any

radius about the pole, and apply the theorem to the area outside

of this circle and within the contour, obtaining

(8) f

d-^ds = -( ™<Z*>d.--rdO--*r.
J c on J k r Jo

These two results are Gauss's theorem for two dimensions.

They may of course be deduced geometrically. We may now
deduce Poisson's equation for the logarithmic potential as in § 77

for the Newtonian Potential. The logarithmic potential due to

a mass dm being — dm log r gives rise to the flux of force 2irdm

outward through any closed contour surrounding it, and a total

mass m causes the flux

2irm = 27r
jj

fidx dy.

Put in terms of the potential this is

^ / f^^
5== ~"// ^Vdxdy = 27r

jj
fxdxdy,

and since this is true for any area of the plane, we must have

(IO) AV=-27TfjL.

This is Poisson's equation for the logarithmic potential.

92. Green's formula for Logarithmic Potential. Apply-

ing Green's Theorem (5) to the functions — logr* and any harmonic

function V, supposing the pole of P to be within the contour, and

extending the integral to the area within the contour and without

a circle K of radius e about the pole,

<"> l„v*
r w- v ds

dn

+ f f'oft^-^V-O.k \ dn dn

The third term is

log r
K

t dV fdV
J
Wr-A-iog.j-A-O,
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(since V is harmonic in K) and the fourth

_f vdJ^ ds = _( l rdd = _j Vd0>
J k on J k r J k

which, when we make e decrease indefinitely, becomes

- 2ttVp .

Accordingly we obtain the equation

<»> ^-c/.W's-^O*
which is the analogue of equation (6), § 83. In a similar way

we may find for nearly every theorem on the Newtonian Potential

a corresponding theorem for the Logarithmic Potential. A com-

parison of the corresponding theorems will be found in C. Neu-

mann's work, Untersuchungen uber das logarithmische und das

Newton sche Potential*.

The Kelvin-Dirichlet Problem and Principle may be stated

and demonstrated for the logarithmic potential precisely as in

§86.

93. Dirichlet's Problem for a Circle. Trigonometric

Series. We shall call a homogeneous harmonic function of

order n of the coordinates x, y of a point in a plane a Circular

Harmonic, since it is equal to p
n multiplied by a homogeneous

function of cos co and sin o>, and consequently on the circum-

ference of a circle about the origin is simply a trigonometric

function of the angular coordinate co. Any homogeneous function

Vn of degree n satisfies the differential equation

Wn dVn T.

so that a circular harmonic is a solution of this and Laplace's

Equation simultaneously. The homogeneous function of degree n

anxn + an^xn-1 y + axxy
n-x + aQy

n

contains n -f 1 terms, the sum of its second derivatives is a homo-

geneous function of degree n — 2 containing n — 1 terms, and if this

is to vanish identically each of its n — 1 coefficients must vanish,

consequently there are n — 1 relations between the + l co-

efficients of Vn , or only two are arbitrary. Accordingly all har-

* See also Harnack, Die Grundlagen der Theorie des logarithmischen Poten-

tiates
;
Picard, Traite d*Analyse, torn. n.

12—2
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monies of degree n can be expressed in terms of two independent

ones. We have found in § 44 that the real and imaginary parts

of the function (x + iy)n are harmonic functions of x, y, being

respectively equal to

p
n cos nco and p

n sin nco.

Accordingly the general harmonic of degree n is

(2) Vn = p
n [An cos nco + Bn sin nco} = p

nTn .

We may call the trigonometric factor Tn> which is the value of

the harmonic on the circumference of a circle of radius unity, the

peripheral harmonic of degree n.

If a function which is harmonic in a circular area can be

developed in an infinite trigonometric series

71= 00 oo

T
n(3) V (

x
> y)~^ {An cos nco +Bn sin nco} = 22^

71= 0 0

on the circumference of the circle of radius R, the solution of

Dirichlet's Problem for the interior of the circle is given by the

series

(4) V=Tt +^T1 +^Tt + ....

For every term is harmonic, and therefore the series, if con-

vergent, is harmonic. At the circumference p = R, and the series

takes the given values of V. The absolute value of every term

is less than the absolute value of the corresponding term in the

series (3), in virtue of the factor p
n/Rn, therefore if the series (3)

converges, the series (4) does as well. Since the series fulfils all

conditions, by Dirichlet's principle it is the only function satis-

fying them.

We may fulfil the outer problem by means of harmonics of

negative degree. Taking n negative, the series

(5) V=T0 +^T1+ ~T2 +...
p p

2

is convergent, takes the required values on the circumference, and

vanishes at infinity except the constant term. For a ring-shaped

area between two concentric circles, we may satisfy the conditions

by a series in both positive and negative harmonics,

00

(6) V=Xpn [An cos nco + Bn sin nco]

00

-f 2p~n [An cos nco + Bn' sin nco}.

1
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94. Development in Circular Harmonics. We may use

the formula (12), § 92, to obtain the develop-

ment of a function in a trigonometric series on

the circumference of a circle. Let the polar co-

ordinates of a point on the circumference of the

circle be R
}
co and of a point P within the circum-

ference p, </>. Then we have for the distance be-

tween the two points

r = [E2 + p
2 - 2Rp cos (co - <f>)f.

Removing the factor J?2
,
inserting for cos (co — p) its value in

exponentials, and separating into factors we obtain

Fig. 45.

(7) r = B
2

+
R* B K +

1
2

= R

Taking the logarithm we may develop

and

log ^1 - ei {b>~^

log (l-^e-t^j

by Taylor s Theorem, obtaining

^ni (w—<j>) Q—ni (<a—4>)

^(8) \ogr = \ogR-~X p

00 _n
= log i2 — 2 --^r- COS 715

1
V

This series is convergent if p < R, and also i{ p ~ R, unless

G> =

Inserting this value of logr in (12), differentiation with re-

spect to the normal being according to - R, we have

(9)

8ti

1_ f

2* OF/
2Wo f^(

l0^-f^ C0SW(6, -^)
)
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Expanding the cosines, we may take out from each term of the
integral, except the first, a factor p

n cos n<f> or p
n sin n<f>, so that VP

is developed as a function of its coordinates p, <£, in an infinite

series of circular harmonics, the coefficients of which are definite

integrals around the circumference, involving the peripheral values

of V and dV/dn. This does not establish the convergence of the

series on the circumference. Admitting the possibility of the
development, we may proceed to find it in a more convenient
form. In order to do this let us apply the last equation to a
function Vm , which is a circular harmonic of degree m. Then at

the circumference we have

Vm = R"Tn ^ = - mi^-iTn ,on '

and

(10) vm(p)-
Rm(i -mhgR

ir^
1 71=00 /m \ f 27r

+^ Xj>«&™ (- +
1JJ

Tm cos n {w - <£) dco.

The expression on the right is an infinite series in powers of p,

while Vm (P) is simply p
mTm . As this equality must hold for all

values of p less than R, the coefficient of every power of p except
the rath must vanish, and we have the important equations

/*2ir

( ir )
j
Tm cos n(co-<f))dco = 0) m=M,

j o

1 f
21r

( I2 ) Tm {(f))
= - I Tm (co) cos m (a)— 6) dco,

for all values of n, and for all values of m except 0. Since T0 is a
constant, we evidently have

1 f
2ir

o

These two important results can be very simply deduced by direct

integration, inserting the value of Tm (©), but we have preferred

to deduce them as a consequence of Green's formula (12), § 92, in

order to show the analogy with Spherical Harmonics. Let us
now suppose that the function V(co) can be developed in the
convergent infinite trigonometric series

V (g>) = X (An cos no) + Bn sin nco) = XTn (ew).

0 0
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Multiply both sides by cos m (&> — <£) dco and integrate from 0

tO 27T.

( 1 3) I
Vi00) cos 7ft (&> — <£) ^a> = 2 I Tn («) cos m (cd — 0) rfft).

Jo o Jo

Every term on the right vanishes except the mth which is equal to

irTm {<j>). Accordingly we find for the circular harmonic Tm the

definite integral

1 f
27r

(14) Tm (6)=-l V (co) cos m (co — dco %

if J 0

For ra = 0, we must divide by 2.

Writing for Tm (<f>)
its value

Am cos mcf) + I?m sin ra<£,

expanding the cosine in the integral, and writing the two terms

separately, we obtain the coefficients

1 f27r 1 f
2n

(15) Aq^^-i V(co)dco )
Am = ~ I V(co) cos moo dco,

1 r 27r

5m= - I F (&)) sin m&) dco.
7T Jo

This form for the coefficients was given by Fourier*, who assuming

that the development was possible, was able to determine the

coefficients. The question of proving that the development thus

found actually represents the function, and the determination of

the conditions that the development shall be possible, formed one

of the most important mathematical questions of this century,

which was first satisfactorily treated by Dirichlet *)-. For the full

and rigid treatment of this important subject, the student should

consult Riemann, Partielle Bifferentialgleichungen; Picard, Traite

&Analyse, torn. 1, chap. ix.J

95. Spherical Harmonics. A Spherical Harmonic of degree

n is defined as a homogeneous harmonic function of the coordinates

x, y, z of a point in space, that is as a solution of the simultaneous

equations

* Fourier, Theorie analytique de la Chaleur, Chap, ix., 1822.

f Dirichlet, " Sur la Convergence des Series TrigonomStriques, " Crelle's Journal,

Bd. 4, 1829.

+ A resum.6 of the literature is given by Sachse, Bulletin des Sciences Mathe-

matiques, 1880.
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dV dV dV rr
(2) •^ +

*ay
+*^- nF-

The general homogeneous function of degree n

amxn + an-ly(i xn
-1
y + an_2)0 x

n~2
y
2 + aQ)0y

n

+ an„lyl xn
-x z + an_M xn

~2yz + a0ily
n~lz

+ an-2
,
2 x

n~2z2 + a0
,
2
^-2^2

contains 1 + 2 + 3 + n + l = (n +1) (n + 2)/2 terms. The sum

of its second derivatives is a homogeneous function of degree n — 2

and accordingly contains (n — 1) n/2 terms. If the function is to

vanish identically, these (n — 1) n/2 coefficients must all vanish, so

that there are (n — I) n/2 relations among the (n + 1) (n + 2)/2

coefficients of a harmonic of the nth degree, leaving 2w +

1

arbitrary coefficients. The general harmonic of degree n can

accordingly be expressed as a linear function of 2n + 1 inde-

pendent harmonics.

Examples. Differentiating the arbitrary homogeneous function,

and determining the coefficients, we find for ?i = 0, 1, 2, 3, the

following independent harmonics

:

n = 0 constant

n = 1 x, y, z

n = 2 x2 — y
2
, y

2 — z2
,

xy, yz, zx

n = 3 3x*y-y
3
, %x2z- z\ Sy2x - x\ Sy2z - z\

Sz2x — Xs
,
Sz2y — y

z
,
xyz.

If we insert spherical coordinates r, 6, <£,

x = r sin 0 cos <j>}

y = r sin 6 sin <£,

£ = r cos 6

the harmonic Fn becomes
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where Tn is a homogeneous function of the trigonometric functions

cos 0, sin 6 cos
<f>,

and sin 6 sin
<f>.

Yn being the value of Vn on the

surface of a sphere of unit radius, is called a surface harmonic.

The equation Yn = 0 represents a cone of order n, whose inter-

section with the sphere gives a geometrical representation of the

harmonic Vn .

If u and v be any two continuous functions of #, y, z
}

d2 (uv)
^ d2

v 2^U ^V
+ v

^U
doc? dx2 dx dx dx2

'

a / \ a a « fdu dv fin dv du dv\
(3 ) A(uv) = uAv + vAu +2^ +^^ +^ rz).

Put u = rm, and since

d(rm) m ,drv—/ _ mrm-\ mrm~i x
d# d#

—Z = mrm-2 + m (m _ 2) rm
"4 #2

,

8#2

we get

(4) A (rm) = Smrm~2 + m (ra - 2) rw~4
(#

2 + y
2 + z2

)

— m (m 4- 1) r
m-2

.

If Vn is a harmonic of degree n,

(5) A(rwF^) = rwAFn + m(m+l)rm-2Fll

/ dVn dVn dVn\
+ 2^-2(x^ +y^ + z-^)

= [m (m -h 1) + 2mn] rm~2 Vny

by virtue of equations (1) and (2).

Consequently if m = -(2rc + l), the product rmVn is a harmonic.

Since Vn is of degree ft, and r is of degree unity in the coordinates,

r-(2?i+i) Vn is of degree — (n + 1). Accordingly to any spherical

harmonic Vn — rnYn of degree n there corresponds another,

Vv — 71

y -(n+i) — rn+1 >

of degree - (n + 1). Compare this with the corresponding property

of circular harmonics, where the degrees of the two corresponding

harmonics are equal and opposite.
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96. Dirichlet's Problem for Sphere. By means of these

harmonics we may solve Dirichlet's problem for the sphere. If a

function harmonic within a sphere of radius R can be developed

at the surface in an infinite series of surface harmonics,

(6) F^F. + Fx + F,

the internal problem is solved by the series

(7) F=Fo + ^ Fi +Jf2 + ..

For each term is harmonic, and therefore the series (7), if con-

vergent, is harmonic. At the surface the series takes the given

values of V, Every term of the series (7) is less than the corre-

sponding term of the series (6) in virtue of the factor rnjRn
,

therefore if the series (6) converges, the series (7) does as well.

Since the series fulfils all the conditions it is the only solution.

We may in like manner fulfil the outer problem by the series

of harmonics of negative degree, which vanish at infinity.

(8) F =£ Fo+£ Fl +^F2 +....

For the space bounded by two concentric spheres, we must use

the series in positive and negative degrees, as will be illustrated by

an example in § 198.

97. Forms of Spherical Harmonics. Before considering

the question of development in spherical harmonics, we will

briefly consider some convenient forms. Since if

AFn = 0,

we have

and

dx dx

any derivative of a harmonic is itself a harmonic, so that

da dy rr

dx* dtf dzy
Vn

is a harmonic of degree n — (a 4- /3 4- 7). Since to V0
= c corre-

sponds the harmonic = c/r, we have

da dy /1\
(9) d^dfdzy{r)

= F-<i+«+0+*>-
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If hx be any constant direction whose direction cosines are

cos Qhx) = l1} cos (hxy) = mlt cos (Ax£) = nly

d
7

d
,

d d

and
g^- ^-j is a harmonic of degree — 2, and to it corresponds the

harmonic,

which is of the first degree. Since ix
2 + mx

2
-f n-f = 1, the harmonic

contains two arbitrary constants, and multiplying by a third, A,

we have the general harmonic of degree 1, in the form

If in like manner h2 ,
h3 hn , denote vectors with direction

cosines l2) ™>2, % L> ^n, nn ,

d d d fv

dhx dh2 dhn \r,

is a spherical harmonic of degree — (n + 1) and to it corresponds

(12) V =r2^^ — —(-
K

'
n

dhx dh2 dhn \r.

a harmonic of degree n, and since every h introduces two arbitrary

constants, multiplying by another, A, gives us 2n 4- 1, and we

have the general harmonic of degree n in the form,

(13) Vn ^ A
dh1 dh2 dh~[r)'

The directions h1} h2 , hn are called the axes of the har-

monic. To illustrate the method of deriving the harmonics we

shall find the first two.

_ . _ a d /r
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/ 3 8 d\ fl2x + m2y + n2z
y

— Ar5 \l
*^2^

2 ^m-2°°y ^n^z\

fm2 Sm2y
2 Sl2ooy %n2yz"

^
y y& /yi5 y*5

h\2 3n2z
2 Sl2 ooz Sm2yz

y

^ Vr^ r**
1***

V2 = A {— (y2 + m{m2 + ^1^2) (&'
2 + 2/

2 + ^2

)

+ 3 (Ijl^x
2 + rn^y2 4- + (^m2 -4- /2^i) #2/

The coefficients are of course subject to the relations

k
2 + m 2 + n 2 = 1, Z2

2 + m2
2 + w2

2 = I-

98. Zonal Harmonics. If all the axes of the harmonic

coincide, we may conveniently take the axis for one of the coor-

dinate axes, and write

It is evident that this will contain only powers of z and r, so

that the surface harmonic will be simply a polynomial in

zjr = cos (rz).

The equation Yn (cos (rz)) = 0 may be shown to have n real roots

lying between 1 and - 1, and hence represents n circular cones of

angles whose cosines are these roots, intersecting the surface of a

sphere in n parallels of latitude which divide the surface into

zones. The harmonics are therefore called Zonal Harmonics.

The polynomial in cos (rz) which constitutes the zonal surface

harmonic, when the value of the constant A is determined in the

manner to be shortly given, is called a Legendre's Polynomial, and

denoted by

P„(cos(r*)) = ^r»+^(i

99. Harmonics in Spherical Coordinates. We have

transformed Laplace's Operator into spherical coordinates in

§ 88, and AF=0 becomes

, . . n d I ,dV\ 3 / . a dV\ d I 1 dV\ _
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If we put in this Vn =rnYn we obtain

(16) sin 0. n (n + 1) Yn + * (sin 0
d

-§) + ^ = 0,

as the differential equation satisfied by a surface harmonic

Yn (6, <f>)-
This is the form of Laplace's equation originally given

by Laplace*. If Yn is the zonal harmonic Pni which is independent

of <j>, we have

(17) ^ + l)P» +
sI
^^{sin^"} = 0(

or putting cos 6 — jjl,

This is known as Legendre's Differential Equation. We shall

now, without considering more in detail the general surface har-

monic, find the general expression for the zonal harmonic. It

may be at once shown, by inserting for Pn (/x) a power-series in fi

and determining the coefficients, that for integral values of n the

differential equation is satisfied by a polynomial in /jl. The form

of these polynomials we shall find from one of their important

properties.

100. Development of Reciprocal Distance. We know

that 1/r, the reciprocal of the distance of the point %, y, z from

any fixed point P, is a harmonic function of the coordinates

x, y, z, and although it is not a homogeneous function except when

the fixed point is the origin, it may always be developed in a

series of homogeneous functions, that is, in a series of spherical

harmonics. We shall now use the letter d for the distance from

any fixed point, reserving r for the distance from the origin. Let

us for convenience take the axis of z as passing through the fixed

point P, which lies at a distance r from the origin, and put

cos (rz) — p. Then we have

(19) 1 = [r5 + r'
2 - 2rr>] "* = [x2 + y

2 + (z - /)2
]
~ I

Considering this as a function of z let us develop by Taylor's

Theorem,

(20) /)=/(*)+(-/) (|)^4(_,?0)r/=o+
......

* Laplace, "Theorie des attractions des sph6roi'des et de la figure des plandtes."

Mem. de VAcad. de Paris. Ann6e 1782 (pub. 1785).
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and since for r
f = 0, = -

,

(21)

d r' dzn dzn \rj
9

(;) + •-

Now multiplying and dividing each term by rn+1
}
we find

1 1 f r
r

r'2 r'
n

(22)
d
=
r \
P

<>
+

r
Fl +

7*
F* + - +^ Pn+

where

P0 =l, Pn =i^ r^
n i

n

This is the determination of the constant A adopted by
Legendre, for the reason that, since by the binomial theorem, for

r' < r, and fi=l,

d r \ r

-1 1
'2

= -^1 +- + -- +
r r .2

~\ h

it makes for every n,

(23) Pn(l)=L

The term Pw/r
n+1 is a spherical harmonic of degree — (n+ 1),

and the series (22) is convergent for r' < r. In like manner if

r' > r we find

(24)
r

d

rn

r r r

In order to find Pn as a polynomial in p we may write r/d as

r

d

and develop by the binomial theorem.

(25) -= 2 V2 ^ 6
-
L / /0 r

Developing the last factor

r V - J( 1Y
s(s-l)......(s-r+l) fr'V

2r

<26> 3

*

00 r
*

9(s~r) i • f * I (i + 5 — 1) /r \

* z
( ^uJ^rYi Ms+r

i=0 r=0
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Picking out all the terms for which $ + r=n we get for the

(r'\n

coefficient of ( -

1

/
. 1 . 3 . 5 . . » . . . ^2/i ~~" 1^

(27) Jrn — n 1
^ 1 . 2 (2n - 1)

M

]•
n(n-l)(n-2)(tt-3)
2.4(2n-l)(2n-3) ^

The first polynomials have the values

Po fa) = 1,

P2 (^) = i(3^~-1),

•Ps(M) = i (5/^
3 -3^),

P5 (m) = 4 (63^-70/^ + 15/*).

101. Development in Spherical Harmonics. We may
use the formula (6) § 83 for an internal point, to obtain the

development of a function of 0, on the surface of a sphere in

the same manner as in § 94 for the case of a circle. Since the

polynomials in the development of the reciprocal distance involve

only the cosine of the angle between the radii to the fixed and

variable points, we have if r < r,

1 1 00
fr'\

s

(22) 5
=

r ? [r )
Ps^ M = C°S (rV)

'

and differentiating this with respect to — r, the internal normal,

Inserting these values in (6), § 83, namely

d

and applying it to the case that V is a spherical harmonic

Y — rmY
we obtain, since

dS = r2 smedddcf>,

(29) Vm(P) =±j J
W^ + l^P.G*)

00
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If the coordinates of P be r\ 0\ we have,

Fm(P)=/-rm (£',</>'),

while on the right we have an infinite series in powers of r', with

definite integrals as coefficients. Since the equality must hold for

all values of r' less than r, we must have, collecting in terms in r'
s

fir f2ir

Ym (0 } (f>)Ps (fjL)sm9ded(j>=Of s + m,
Jo Jo

(30)

Ym (d', ^ = m+^
+i

r/o"
7"^ ®f* (m) sin eded*' s = m>

so that we have for the values of the integral

fir flit Am-

(30
J J o

Ym (6, <j>) Pm (j,) sin 0 d6dj> = 7m {6''^
In performing the integration, we must put for /u the value

obtained by spherical trigonometry,

fi = cos (rr') = cos 0 cos & + sin 0 sin & cos (<p — <f>').

By means of the above integral expressions (30) and (31) we

may find the development of a function of 0> <£, assuming that the

development is possible. Suppose we are to find the development

(32) f(6,4>) s=F,+ r1+F1 +

Multiply both sides by Pn {^) sin 0d0d<j>, and integrate over

the surface of the sphere, aiid since every term vanishes except the

nth we obtain

(33) *) pn GO sin 6 d0d<j> = Yn {0\ $ ),

(34) Yn (0', </>') = ?^±1j'jyV, 4>) pn (/*) sm ddefy.

Accordingly to find the value of any term Yn at any point

P, (0\ (f>')
we find the zonal surface harmonic whose axis passes

through the point P, multiply its value at every point of the

sphere by the value of/ for that point, and integrate the product

over the surface. It remains to show that the development is

possible, that is that the sum of the series

1 00 /* it f2ir

^ 2 (2n + 1)
JJ f(0, ftPn fa) sin OdOdfr

actually represents the function f(0
/

,
<£'). This theorem was

demonstrated by Laplace, but without sufficient rigor, afterwards
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by Poisson, and finally in a rigorous manner by Dirichjet. A
proof due to Darboux is given by Jordan, TraiU $Analyse,
Tom. n. p. 249 (2me ed.).

102. Potential of Circular Disc at points not on axis.

We have found in § 81 the potential of a disc of surface

density cr, radius jR, at a point situated at a distance r from the

center on the axis to be

(1) F = 27r<j{vWiJ2 -r}.

Developing by the binomial theorem for the two cases r < M,

r>R,

(2) F=27T<7 ji^l-h^

f ^ 1 r2 1 1 r4 1 . 1 . 3 r6
) D= 2^^ r + £+ _r _,_

l3
+ _

:
_

l5 j
r<R

R2

\
h

)

(3 ) V=27rv\r(l + -f-r
n ,1 1.1 i?4 1.1.3 JR6

, ^ „
2 r 2 . 4 r3 2 .4. 6 ?

5

Fm. 46.

If now the point be not on the axis, but on a line through

the center making an angle 8 < ^ with the axis, and at a distance

r from the center, we may put

(4) V— 2ira j-R — rP, (cos 6) + |J P2 (cos 9)

1 1 r4
)-

g •

4 # p4 (cos (?)
[

r<_R,

(5) r=^&£-±±%p.(«»e)

+ '

l
'

^ -P4 (CQS ^) l ^>^'
2 . 4 . 6 r5 v 7

j

For both of these series are convergent under the assumptions

made, both are harmonic, for rnPn and Pn/r
n+1 are zonal harmonics,

and both take the given values when 6 = 0.

W. E. 13
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103. Equations of Lines of Force. In § 36, we have

considered the integration of the differential equations of the lines

of any solenoidal vector-function and have found that the lines

may be represented as the intersections of two families of surfaces.

We shall now consider the same subject in terms of generalized

orthogonal curvilinear coordinates. Let us call the components of

the force at any point qly q2) q3 in the directions of the coordinate

axes at the point, R1} R2) R3i which by § 16 are

(1) iZj = — ^— ,
R2 = -h2 ^, R3=-h3 ^.

If nowofe be an element of a line of force, its projections on the

three axes being

Jo-^2i ds-^ d,- dqs

K h2 h3

we have

(2) ds1 : ds2 : ds3 — R1 : R2 : RSy

or dq1 : dq2 : dq3 — h^R1 : h2R2 : h3R3f

so that the differential equations of the line of force are

or, dividing by hji2h3 ,

(4) dq, : dqt : dq3 =^^ :^^ :^^ = & : Q, : <2„

while we have by Laplace's equation the relation, (§ 87 (5))

that is

^
3ft dq2 dq3

We may now use the principle of the last multiplier demon-

strated in § 37, replacing w, y, z, by q1} q2) q3 and X, Y, Z by

Qi> Q2, Qs- That is to say, if we have found an integral

MSFi, ?2, q») = const.,

we may obtain the other at once by a quadrature as

(6) m =
f 1
^(Qzdqi - Qirfj2) = const.

dq3
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(7) M =

and inserting the values of Q^, Qlt

1 fh,dV , h.dV, \

saTU¥ 91~K^) = const-'

where of course all the functions under the integral are to be

expressed in terms of q1} q2 , X. This principle will be made use of

in the treatment of the flow of electric currents in thin curved

surfaces.

The theorem becomes very simple in two particular appli-

cations. First let q1} q2> qs be rectangular coordinates x, y, z, and
let V be independent of z, that is, the problem is uniplanar, or

the lines of force lie in planes all parallel to the iJ-plane. Then
X = z = const, is one integral and the other is

'37 , dV

From this we obtain

(8)
^^(W

dxJVdyy congt

(9)

dx dy ' dy dx
9

and the function //, is the function conjugate to the potential

function V, as found in § 42. Since by § 36 the flux of the

vector R across any cross-section of a vector tube defined by four

surfaces \\ + dX, p, juu + dfju is dXdfi, the function p represents

the flux through a tube bounded by two parallel planes z = 0,

z= 1, by the surface fi = 0, and by the surface \x = const. If the

vector R represent the velocity of a fluid motion, /uu is called

Earnshaw's current function, and the amount of fluid crossing unit

height perpendicular to the ^-plane of any cylindrical surface

projected into a curve on the ^-plane is given by the difference in

the values of fi at the two ends of the curve. We may call the

function fi for any vector the flux-function.

In the second case let q1} q2> qs be cylindrical coordinates p, co, z,

and let V be independent of &>, so that the lines of force are in

planes intersecting in the Z-axis. The figure is then symmetrical

around this axis, and we have a problem of revolution. We then

have an integral X = co = const, and for the second,

(I0)
lpfw

dp-
d

£
13—2
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The function
fj,

represents the flux for any tube bounded by
the surfaces fi = 0, fi = const, and two planes through the ^-axis

making a dihedral angle with each other equal to unity, and ^ is

then called Stokes's current- or flux-function.

104. Functions of Complex Variable on Surface. Both
of the cases just considered are cases of a class of problems of

considerable generality. If the vector lines lie in one of the

coordinate surfaces itself, we have the particular integral

X = q3 = const., and accordingly

( ) *
=

1 1h& dq,^ - MaH dq
*\

= C°nSt

or the differential

(2) d/j, = ^- dq1 + ^— dq2 = -r—— dq1
-

7-f- ^- dq2 .

dql
* 3g2 ^

2
dq2

^ h2h3 dqx
^

(3)

From this we must have

dfj, h2 dV dfju hx dV
dq1 hjh^ dq2

' dq2 h2h3 dq1
'

Differentiating the first of these equations by q2} the second by

ql9 and adding,

(4)
n^m + *\^m = o.
dq1 (hsh2 dqi) dq2 (A3A3 dq2 )

Expressing the derivatives of V in terms of those of fi

/ v dV hji
x dp dV_h2h3 d/jL

dq2 h2 dqx
' dq[~ \ dq2

'

Differentiating the first by ql9 the second by q2) and adding,

(6) AMa +iM|iL a
dqx (

h2 dq-i] dq2 {
dqx)

Now if A3 is independent of q1 and q2 , which will be the case

if two consecutive surfaces qs , q3 + dq3 are parallel, or everywhere

the same distance apart, namely,

then hz comes out as a factor of both differential equations, and

we find that V and fi satisfy the same differential equation

(7 ) ^ftS +^H = 0.
dqx \h2 dqlt dq2 (Ax 3^
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In this case from the solution of any problem for the surface q3

we may by interchanging the functions V and /x obtain the

solution of a new problem, as in the case of uniplanar problems.

But this is not the full extent of the analogy. We have for the

length of the arc of any curve on the surface q3 ,
by § 20,

as
"V" - hi'

If we can find any two functions u(qu q2), v(qx , q2) such that

du2 + dv2 = Mds2
,

where M is a function of the position of the point, and does not

involve the differentials dqly dq2) we have

(8) dv? + dv> = M + 'g) .

Now each member of the last equation may be factored into

complex factors linear in dq1} dq2y

(9) (du + idv) (du - idv) = M(^+i 0p - i^
Each of the four factors in this equation is linear in dqx

and dq2 , the first, for instance, being

'du . dv \ , (du . dv \ 1

Now if a product of two linear forms is identically equal to a

product of two others, each factor on one side of the equation

must be a multiple of one of those on the other, so that in this

case we must have either

du + idv = + i <£,

or du + idv =
{^j^

— i ^>

where cf> and i/r are independent of the differentials dqlt dq2 .

If we put

(10) du + idv =
^jp -f i —^j <£,

that is

, x du
7

du 7 • (dv -. dv j \ idqx .dq2\
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equating the coefficients of dq1 ,
dq2) we obtain

du . dv _ <f>

dqx

%
dql ~h1

'

du .dv . <f>

dq2 dq2 h2

Now eliminating <£,

, x 7 \du .dv) (du .dv)

and equating the real parts on each side, and the imaginary parts

in like maimer we obtain

, x 7 du , dv 7 dv
7
3^

v y
3g2 3?i 3?a 8?i

Solving for the derivatives of v

dv _ h 2 du dv _ hx du

^ 5 ' dq1

~~ hY dq2
* dq2 h2 dq1

>

differentiating respectively by q2 and qlf and adding

Solving for the derivatives of u

du _hx dv du _h2 dv

^ 1
dq2

~~ h2 dqx
' dq1 hx dq2

'

differentiating and adding

_9_ fh dv\ d_ fa dv\ _ Q'*
' dq1 \h2 dqj dq2 \hx dqj

that is, the functions ^ and v satisfy the same equation as the

potential and flux-functions V and p. Such a pair of functions,

forming a set of orthogonal coordinate lines on the surface q3 ,
may

accordingly be taken for the potential and flux-function. If we

have a second pair of functions u\ v' such that

du'2 + dv'2 = if'cfe
2
,

we have as before

cfo/ -f idv' §'

du + idv <j>

'
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which is the condition, § 42, that the complex variable u' + iv'

is an analytic function of u + iv. Thus from the solution of

one problem for the surface qs may be deduced the solution of

any number of others for the same surface.

If now the quantities u, v be taken as rectangular coordinates

in a plane, the arc of any curve is expressed in the form,

da2 = du2 + dv\

To any point u, v in the plane corresponds a point with the

same values of u, v
y
on the surface g3 . In virtue of the relation

da2 = Mds2

between corresponding arcs on the plane and on the surface,

we see, as in § 43, that corresponding infinitesimal triangles

are similar, or the surface q3 is conformally represented upon the

plane. If the [TF-plane is conformally transformed to another

plane XY, we have seen that we have u + iv an analytic function

of the complex variable w + iy and the real functions u, v are

potential and flux-functions in the XF-plane.

As we have just proved that they retain this property on

the surface q3> we see that the method of the functions of a

complex variable will give us the solution of any number of cases

upon a surface, and that the surface may be conformally repre-

sented on the plane in an infinite number of ways. Such a

representation of a surface on a plane constitutes a map.

Surfaces which may be conformally represented on a plane

may be conformally represented on each other. The theory of such

transformations is the subject of an important memoir by Gauss*.

The method here given is due to Beltramif , and may be applied

even when the coordinates q1 , q2 are not orthogonal. The method

is particularly applicable to the case of electrical currents flowing

in thin conducting surfaces, and the conformal transformations

may be found by experiment. A thin space bounded by two

surfaces qs in which is distributed a solenoidal vector which may

be represented by a potential or by a flux-function as here de-

scribed, is termed a vector-sheet.

* Gauss, " Allgemeine Auflosung der Aufgabe die Theile einer gegebenen Flache

auf einer anderen gegebenen Flache so abzubilden dass die Abbildung dem

Abgebildeten in den kleinsten Theilen ahnlich wird. " Werke, Bd. iv., p. 189.

t Beltrami, " Delle variabili complesse sopra una superficie qualunque." Annali

di Matematica, ser. 2, t. i., p. 329.
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105. Example. Conformal Representation of Sphere

on Plane. Let the surface q3 be a sphere of radius It, and take

for the coordinates q1 and q2} the co-latitude 0 and the longitude cf>.

Then by § 17, we have

ds2 = R2 (d02 + sin2
0dcj>

2
) = (da2 + dv2

) M,

and the differential equation satisfied by u and v is

d { . A du) d f 1 3m", A
Sin^r-r^ +— 75 f

= 0.

If we take

jMdu = Rd0, JMdv = R sin 0d<j>,

and if we choose jM=Rsin0, then

dv = dd>, du = -^^7;

.

T sin 0

Integrating we obtain

v = cj), u = log tan ~

.

If now we take i£ and v for rectangular coordinates in a plane,

the surface of the sphere is conformally represented upon the

plane by means of the above transformation. This particular

representation is known as Mercator's Projection. The meridians

= const, correspond to the straight lines v = const., and the

parallels 9 = const, correspond to the lines u = const.*

Since the whole sphere is covered by a variation of cf) between the

limits 0, 27r, the projection on the plane has the finite width 2ir,

but the length of the projection is infinite, the poles 0 = 0, 0 = ir

corresponding to u = — oo , u = oo . If we make a conformal trans-

formation of the £7F-plane by means of the function

u + iv = log (x 4- iy),

we obtain the formulae,

u = log r — log Jx2
-h y

2
, v = tan-1 -

,

x

Jx2 + y
2 — r = tan ^ , </> — tan-1 ~

,

* For an example see Fig. 71, § 177.
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which give a new conformal representation of the sphere on the

plane, the meridians corresponding to radial lines yjoc = tan <£,

and the parallels to concentric circles. This is the stereographic

projection, obtained by projecting points on the sphere upon a

plane tangent at one pole from the other pole as a center of

projection. Figure 23 projected upon the sphere by this

transformation is shown in perspective in Fig. 47.

Fig. 47.

106. Diagrams. If we have a diagram representing a plane

section of a set of equipotential surfaces, corresponding to equal

increments of potential, and we superpose upon this a second

diagram representing a second set of equipotential surfaces, drawn

for the same differences of potential, we may draw the curves

representing the equipotentials due to a distribution which is the

sum or difference of the other two by simply drawing lines con-

necting opposite corners of the curvilinear quadrilaterals into

which the diagram is divided by the two equipotential systems.

For as we go from vertex to vertex, the increase of potential due

to one system is just counterbalanced by the decrease due to

the other. Fig. 49 represents a combination of Fig. 23 with a

straight field in this manner.
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In like manner if we have diagrams of the flux-function of

Q any two systems superposed, we may draw

diagrams of the flux-function of the sum or

difference of the two systems, for if we con-

sider two flux tubes bounded by the lines

AB, CD, and A'B\ CD', Fig. 48, the line PQ
has the flux A/jl through it in opposite direc-

tions from the two systems, so that the total

flux through it is zero, or it is a flux-line.

In this manner the Figures 49*, 72, 74, 75, 76,

77, 78 have been drawn.

Fig. 48.

Fig. 49.

* Fig. 49 is to be considered a diagram of lines of flow or of equipotentials

according as the directions of the component vectors at the origin are the same

or opposite. The analogous cases of the rotational problem are represented in

Figs. 74, 75.



CHAPTER V.

ATTRACTION OF ELLIPSOIDS. ENERGY. POLARIZED

DISTRIBUTIONS.

107. Ellipsoidal Homoeoids. Newton's Theorem. If

we transform Laplace's equation to elliptic coordinates and
attempt to apply the methods of § 88 to the problem of finding

the potential of a homogeneous ellipsoid, we are at once con-

fronted with a difficulty. It is not evident, nor is it true, that

the potential is independent of two of the coordinates, and that

the equipotential surfaces are ellipsoids.

The following theorem was proved geometrically by Newton.
A shell of homogeneous matter bounded by two similar and
similarly placed ellipsoids exerts no force on a point placed

anywhere within the cavity. Such a shell will be called an
ellipsoidal homoeoid.

Fig. 49 a.

Let P, Fig. 49 a, be the attracted point inside. Since the

attraction of a cone of solid angle dco on a point of unit mass at



204 THEORY OF NEWTONIAN FORCES. [PT. I. CH. V.

its vertex is

r dm f
r r2 d(odr

o r* Jo r2
rdco,

we have for an element of the homoeoid the attraction

dco (BP - DP),

in one direction, and

dco(AP-CP)

in the other, or in the direction PB,

dco (BD-AC).

Draw a plane through ABO, and let ON be the chord of the

elliptical section conjugate to AB. Since the ellipsoids are similar

and similarly placed, the same diameter is conjugate to the chord

CD in both. But CD and AB being bisected in the same point,

AC = BD
}

and the attraction of every part is counterbalanced by that of the

opposite part.

108. Condition for Infinite Family of Equipotentials.

Although the equipotentials of an ellipsoid are not in general

ellipsoids, we may inquire whether there is any distribution of

mass that will have ellipsoids as equipotential surfaces.

Let us examine, in general, whether any singly infinite system

of surfaces

F(x
y y, z,q) = 0

can be equipotential surfaces. If so, for any particular value of

the parameter q, V must be constant, in other words F=f(q). If

x, y, z are given, q is found from F(x, y, z, q) = 0 and from that V
from the preceding equation.

Now in free space, V satisfies the equation AF=0. But,

since V is a function of q only,

dV^dVdq
doc dq dx

y

d2V dVd2
q dq B fdT
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In like manner

d2V_dVd2

q /dq\ 2 d2V
dy2 ~ dq dy2

+
\dy) dq2 '

d^V_d/Vd2

q /dq\ 2 d2V
W~~dqdz2

+
\dz) dq2 '

dq ^ dq2 q

Accordingly

d2V
Aq _ __ _ d f dV"

{3) V " dV_~~~dq \
gHq

dq

Now since V is a function of q only, the expression on the right

must be a function of q only, say cf> (q). Consequently, that

F{x
} y, z,q) = 0

may represent a set of equipotential surfaces, the parameter q must

be such that the ratio of its second to the square of its first differ-

ential parameter is a function only of q,

If this is satisfied, we have

dV f
l0g

dq
= ~

J
*^ d

1 + G
>

dV
dq

(5) V=A(e-!* {q)dq dq+B.

There must be one value q such that the level surface is a sphere

of infinite radius, and for this V must vanish.
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These conditions are satisfied by the polar coordinate r, for by

§ 95, (4)

Ar = -
,

r

Ar 2
kr = 1

' h/
=

r
= ^r)

'

= -- + £.
r

For r = oo , we must have V= 0, accordingly we must put J3 = 0.

We may get a convenient expression for ^~ by transforming

Aq into terms of three orthogonal coordinates, of which it is itself

one. Put q = qlf and since it is independent of q2 and qs

Aq1
= h^h ^

dq1

' h dqi
{

h2h3 dq^
9

(6)
Aq1 h2hs 3

J

hi
2 K dq^hjiu

3 , / K
log"

3?i \KK

_1 dhx 1 3/l> 1 dh3

K 3?i h dq1
h3 dqx

'

109. Application to Elliptic Coordinates. Applying this

to elliptic coordinates gives

/x AX 3
<7)

o-i / (a2 +X)(62 +X)(c2+X)(^~i;)(M~X)(z/-^) (z;~X)
jg

2V (\-/*)(X- iO(a
2+/^

1
+

2 a2 +X b2 + X c2+X



108, 109] ATTRACTION OF ELLIPSOIDS. 207

which is independent of fjt, and v, and hence the system of ellipsoids

X can represent a family of equipotential surfaces. We have

1 1

(8) J*w^ =iJfe +^ +?+x^
= log V(a2 4- X) (b2 + X) (e2 4- X),

V(a2 + X) (6
2 + X) (c2 + X)

5

(9) F = J. f
;
~——— + B.

J V(a2
4- X) (6

2 + X) (c
2 + X)

The constant B must be such that for X = oo , which gives the

infinite sphere, F=0. This is obtained by taking the definite

integral between X and oo
,

(10) V-aT ~======J
S

X being taken for the lower limit, so that A may be positive, making

V decrease as X increases. V is an elliptic integral in terms of X,

or X is an elliptic function of V. For

dF= A
~~

V(>2 + X) (b2 + X) (c2 + X)
'

(11) A* (^j = (a2 + X) (V + X) (c
2 + X),

a differential equation which is satisfied by an elliptic function.

We may determine the constant A by the property that

lim (rV) = M,
X=CQ

or that lim (r2 = —M cos (rx).
f= OO \ OX J

We have

dV dVdX
dx d\ dx

A 2xS, 2

r

V(aa + (b2 + X) (c
2 + X) O2 + X)

?

'

24a?8*2r3

§19, (5)]

2 _

dx (a2 + X) J{a2 + X) (b2 + X) (c
2 + X)

'
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From the geometrical definition of X,

lim (
-

) = 1.

T— oo

Now consider, for simplicity, a point on the X-axis, where

B^=w=r. The denominator becomes infinite in X^, that is, r5
, and

so does the numerator. Hence

lim (r2!^}=--24=- M,
r—oo ( OX

J

so that

, N Tr M f
00

ds
(12) F=-

2J X \/(a2 +s)(b2 +s)(c2 +s)
'

110. Chasles's Theorem. We have now found the potential

due to a mass M of such nature that its equipotential surfaces are

confocal ellipsoids, but it remains to determine the nature of the

mass. This may be varied in an infinite number of ways; we

will attempt to find an equipotential surface layer. By Chasles's

theorem, § 84 (u), this will have the same mass as that of a

body within it which would have the same potentials outside.

If we find the required layer on an equipotential surface S,

since the potential is constant on S9
it must be constant at all

points within, or the layer does not affect internal bodies.

The surface density must be given by § 84 (io),

1 W i_ * * i
cr = — -:— (

r— , where nK is the outward normal to X,

and
dV^dVd\__

h
dV

dnK dX dnK
k
d\

'

Now since AA = 2SA ,

1 . dV

dV
Since V is a function of X alone, the same is true of , which for

dX
a constant value of X is constant. Hence cr varies on the ellipsoid

S as SA . Therefore if we distribute on the given ellipsoid S a

surface layer with surface density proportional at every point to

the perpendicular from the origin on the tangent plane at the

point, this layer is equipotential, and all its equipotential surfaces
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are ellipsoids confocal with it. Consequently if we distribute

on any one of a set of confocal ellipsoids a layer of given

mass whose surface density is proportional to S, the attraction of

such various layers at given external points is the same, or if

the masses differ, is proportional simply to the masses of the layers.

For it depends only on X, which depends only on the position of

the point where we calculate the potential.

Since by the definition of a homoeoid, the normal thickness of

an infinitely thin homoeoid is proportional at any point to the

perpendicular on the tangent plane, we may replace the words

surface layer, etc., above by the words homogeneous infinitely thin

homoeoid. The theorem was given in this form by Chasles.*

111. Maclaurin's Theorem- Consider two confocal ellip-

soids, l,Fig. 50, with semi-axes a1 , ylt and 2, with semi-axes

Fig. 50.

a2, /32 , 72- The condition of confocality is

«2
2 - «i

2 = &2 - ft
2 = 72

2 - 71
2 = say.

If we now construct two ellipsoids 3 and 4 similar respectively to

1 and 2, and whose axes are in the same ratio 0 to those of 1 and

3, these two ellipsoids 3 and 4 are confocal (with each other,

though not with 1 and 2). For the semi-axes of 3 are Ool^ 0j31} 0yl9

and of 4 are 0a2 , 0{32 , 0y2 , and hence the condition of confocality,

02a 2 - 02a 2 = 02
/32

2 - 02
/31

2 = 02

y2
2 - 0V =02 s

is satisfied. Now if on 3 we distribute one infinitely thin homoeoidal

layer between 3 and another ellipsoid for which 0 is increased by

d0, and on 4 a homoeoidal layer given by the same values of 0 and

d0
}
and furthermore choose the densities such that these two

homoeoidal layers have the same mass, then (since these homceoids

are confocal) their attractions at external points will be identical.

* Chasles, "Nouvelle solution du probleme de Pattraction d'un ellipsoide

het^rogene sur un point exterieur." Journal de Liouville, t. v. 1840.

W. E. 14
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Now the volume of an ellipsoid with axes a, 6, c, is firabc, that

of the inner ellipsoid of the shell 3 is accordingly

and that of the shell is the increment of this on increasing 0 by

d0, or

(vol. 3) = 47r0ad0a1j817i.

Similarly (vol. 4) = 4c7r0
2d0oi2ft2<y2 .

Consequently, if we suppose the ellipsoids 1 and 2 filled with

matter of uniform density p x and p2 the condition of equal masses

of the thin layers 3 and 4,

inrpfldOa&y! = 4f7rp20
2d0a2fi2y2 ,

is simply
-f irp&iPiji = | trp&iPfi*,

that is, equality of masses of the two ellipsoids. And since for

any two corresponding homceoids such as 3 and 4 (0 and 8 -f d0)

the attraction on outside points is the same, the attraction of the

entire ellipsoids on external points is the same.

This is Maclaurin's celebrated theorem : Confocal homogeneous

solid ellipsoids of equal masses attract external points identically,

or the attractions of confocal homogeneous ellipsoids at external

points are proportional to their masses.*

112. Potential of Ellipsoid. The potential due to any

homceoidal layer of semi-axes a, /3, 7, is to be found from our

preceding expression for V, § 109 (12),

y_M r°° ds

where X is the greatest root of

x2 y1 z1

Now if the semi-axes of the solid ellipsoid are a, b, c, those of the

shell a = 0a, /3 = 0b, 7 = 0c, we have M= 4tTr02d0abc, if the density

is unity, and

( 1 ) deV= 2M0abc -. ,w
J a J(aW + s) (¥0* + s) (c

2& + s)

* Maclaurin, A Treatise on Fluxions, 1742.
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where X is defined by

x2 y2 z2
-

To get the potential of the whole ellipsoid, we must integrate

for all the shells, and

(3) V=2wabc 02d0 I „
~—~ -.

VJy
Jo h J(a202 + s)(b202 +s)(c202 + s)

For every value of 0 there is one value of X, given by the cubic

(2), we may say X —
<f> (0).

Let us now change the variable s to t, where, 0 being constant,

s = 0% ds = 02dt ; and put X = 02u.

Then

(4) V=2irabc 0cZ0 -r7 w-,-
-

,v /
Jo J« J(a2 +t)(b2 +t)(c2 +t)

where & is defined by

yDJ a2 + u b2 + u c2jru

Since 02
is thus given as a uniform function of u, we will now

change the variable from 0 to u.

Differentiating (5) by 0,

{ X2 V2 Z2
)

(6) MM = -
)2
+ ^ I >iy

+ du.

When 0 = 0, ^ = 00, and when 0 = 1, u has a value which we

will call cr, defined by

f y
2

a2 + <t b2 + ar
' c

2 + cr

, x x2 y2
z" n

(7) x^+/^:+,tz; = l

Accordingly, changing the variable,

7 ,

,oo

f #2 z 1

) 7 r ^
(8) F-iro&c

«, l(a»+w)» (b2+u)2 (c
2 +u)2

\ J u J(a*+t)(b*+t)(c*+tj

The three double integrals above are of the form

(9) J =[(^u)ff^ dt'

where fit) =

u

1

J{a 2 + 0 (6
2 + 1) (c

2 + 0
14—2
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This may be integrated by parts.

00

Call f(t)dt = 4>(u),
11

-r f
°° <j>(u)du

(IO) m<r—
<t>(

u)

~

G + u

oo /• oo i /

<£' (u) du
+ I C + u

/» 00

Now (oo ) = I /(O * = 0, (since /(oo ) = 0),
J 00

<t>(°)=ff(t)dt,
J cr

<£' O) = -/(«)•

Inserting these values

or the variable of integration being indifferent, we may put ^ for

£ in the first integral.

Applying this to our integral, by putting G successively equal

to a2
, b2

,
c
2
,
multiplying by x2

, y
2
,
z2

}
and adding,

f
00

f X2 V2 Z2 X2 v2 z2
)

(12) V=7rabc \— + «

—

—nr 5— [ f(u)du.v y
J* [a2 +<T b2+<r c2 +cr a2+u b2+u c2+u) J w

Now the first three terms of the integrand are, by definition,

equal to 1, so that

00

(13) V = vabc \1-
y,2
as

6 y2 z2
) du

a2+u 62+ u c
2+u) 7(a2 + u) (J2 + u} (C

2 + w)
•

This form was given by Dirichlet*.

If the point x, y }
z lies on the surface of the ellipsoid

x2 y2 z2

[_ ?z_. _|— — 1
a2 b2 c

2 '

then o- = 0 and

x2 y2 z2
) du

(14) V=7rabc \1-
o( a2 + u b2 + u c

2 + u) J(a2 +u)(b2 + u)(c2 + u)'

* Dirichlet, "Ueber eine neue Methode zur Bestimmung vielfacher Integrale."

Abh. der Berliner Akad., 1839. Translated in Journ. de Liouville, t. iv., 1839.
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We find for the derivatives of V

dv 0 . r du— = — zirabcx \ .

ex Jo- (a2 + u) ls/(a2 + ti)(b2 -\-u)(c2 + u)

-Tra&c^ll ^ f * \

1

dx\ a2
-ha- b2 + a c

2 + a 1 ./(a2 + <r) (6
2 + <r) (c

2 + a)

'

By definition of <r, the parenthesis in the last term vanishes,

and

dV f°° du
= — 2irabcx

(15) ~=-27rabcyf
Jo- (6

2 + u) J(a2 + w) (6
2 + (c

2 +
'

dv 0 , r
00

cfo= — lirabcz
dz ia (c

2 + n/(<x
2 + u) (b2 + u) (c

2 + u)

'

113. Internal Point. In the ease of an internal point, we
pass through it an ellipsoid similar to the given ellipsoid, then by-

Newton's theorem it is unattracted by the homoeoidal shell with-

out, and we may use the above formulae for the attraction, putting

for a, 6, c, the values for the ellipsoid through x
y y, z

y
say 0a, 0b, 0c.

Since the point is on the surface of this, a = 0.

^ = — 2ir0zabcx ^
^U

dx Jo (0
2a2 + ii)j(e2a2 + ii)(02b2 ^u)(02

c2 + u)

Now let us insert a variable u' proportional to u, u = 02u,

^= — 27r03abcx ^ ^ ^U

dx Jo 02
(
aa + U')0*J (

a2 + + u>) (C
2 + ^)

•

The 0 divides out, and writing u for the variable of integration

dV « 7 f
00

du—
- 2/kOuO(jX I

dx Jo (a2 + u) J(a2 + u) (b2 + u) (c
2 + u)

'

So that for any internal point, we put or = 0 in the general

formula. Integrating with respect to x, y, z, we have

r L x2

f__ #) du

Jo t a2 + u b2 +u c
2 + u] V(a2 + u) (b2 + u) (c

2 + u)

'

V = irabc

The constant term must be taken as above in order that at the

surface V may be continuous.
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In the case of an internal point the above four integrals may-

be made to depend on the first. Calling

<P = rrabc
o J(a2 + u) (¥ + u) (c2 + u)

'

34> 7 r 1 du= irabc
Jo 29 (a

2
) Jo 2 (a2 + ^(a2 + (6

2 + (c2 +
'

and accordingly,

o (a2
) 8 (6

2
)

17
a (c

2

)

The integral <& is an elliptic integral independent of oo, y, z y

and so are its derivatives with respect to a2
, 62

, c2
. Calling these

i
L M N

respectively — -r ,
— — , — -7- , we have

~fe TP

F= * - J {Ztf2 4-%2+ Nz2

} ,

a symmetrical function of the second order, and since Z, iHf, A7

are of the same sign, the equipotential surfaces are ellipsoids,

similar to each other. Their relation to the given ellipsoid is how-
ever transcendental, their semi-axes being

V-<& /F-4>

3 (a2
) 9 (6

2
) * d (e2

)

We have for the force

Hence, since for two points on the same radius-vector,

^2
== ^2 = i2 = !:

2 ,wehave$ =5=# = !i..

The forces are parallel and proportional to the distance from
the center.

114. Verification by Differentiation. For an outside

point, we have

V = nabc f°fl - ^- - *
}

du
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dV= — 2rrabcx
du

dx

dx2
— — lirahc

o- (a2 + u) V(a2
4- u) (b2 + u) (c

2 + u)
9

du

-f 2irabcx

<r (a2 + u) V(a2 + u) (b2 + u) (c
2
4- u)

da
|

1

Now by § 19, (5),

da 2x X'
+

dx a2 + <r\ \(a2 +a)2
1

(b2 + <rf
+

(c2 + o-)
2

|

'
I

32F 82F
Forming ^ and and adding

'00

+

+ u b2 + u c2 + u) V(a2 + u)(b2 + u)(c2 + u)
y

4<7rabc

^(a2 + a)(b2 + a) (c2 + a)
'

The integration may be at once effected.

Since

we have

d

7/ x [du dv dw
a (uvw) = •{ 1 h

u V w

V(aa + w> (b2 + u) (c2 +

V(a2 + u) (b2 + (c
2 + w) I 2 V(a2 + uf

Va2 +

1 f 1 1 1 du

2\a2 + u. b2 + u c2 + u) V(a2 + u) (b2 + u)(c2 +u)

The integral becomes then

^irabc

V(aa + cr) (6
2 + <r) (c2 + a)

'

which cancels the second term, and AF=0.

For an internal point

• CO

= — 27rabc
du

o (a2 + w) \Z(a2 + u) (b2 + u) (c2 + u)
9

AF=-4tt.
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At infinity cr = oo , and V and its derivatives accordingly

vanish.

Hence the value of V found satisfies all the conditions.

115. Ivory's Theorem. If x, y, z is a point on the

ellipsoid

x2 y2 z2

v 7
62

2 d2

,i • . ^2 ^2 ^2
the point x—

, y r , # —

lies on the ellipsoid

x2 y2 z2

<2 > ^ +# + 3?= L

These will be called corresponding points. We shall now

assume that these two ellipsoids are confocal, and (2) the smaller.

Then

ai
2 = a2

2 + \, 6x
2 =62

2 + \, Cl
2 = c2

2 + X.

The action of (2) on the external point x, yy
z is

r°° du
X2 = - ZiraAcjc

J ^ J^~^^T^u) (b^ +WW^) '

,2 „/2 ~2

where -7- h rr- h —r~
t

— = 1,
a2

2 + ar b2
2 + cr C2

2+a

_ . x2 y2 z2

and since — -f H—« = ^>
ax

2
6j

2
c

2

we must have cr = X.

If now we substitute

it == u' + <xx
2 - a2

2 = ^' 4-

du•00

X2 = — 2ira2b2c2x
0 (ax

2 + m ) V(ax
2 + u) {b 2 +V) (cx

2 + «0

Now the attraction of the ellipsoid (1) on the interior point

Cbn Oo C2 •

00—
, y j- > z - is

Ox * 61 Cx

1 1 1 1
ax J 0 (ax

2 + u) V(ax2 + w) (&x
2 + u) {cY

2 + u)
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The definite integrals being the same in both cases, we have

X2 _ b2c2

X, " 6lCl
'

Y2 C2Ct2

Z2 _ ct2b2

This is Ivory's theorem : Two confocal ellipsoids of equal

density each act on corresponding points on the other with forces

whose components are proportional to the areas of their principal

sections normal to the components.*

116. Ellipsoids of Revolution. For an ellipsoid of revolu-

tion, the elliptic integrals reduce to inverse circular functions.

Put b = c, a being the axis of revolution,

(1) V= nra* f - \{Xx + Yy),
J <r (b2jfU) \la2 + ll

(2) X = 2irab2 x
r dU

(3)

(b2 + u) (a2 + uf
9

du
Y= 2-irab

2 y —7====-

,

K (b2 +u)2 */(a2 + u)

where -r~ h*—— = 1.
a2 + cr b2 + cr

62 -a2

Put b2 +u
s2

/I \ (1 — s2
)

a2 + u = (b2 - a2

) f£ - l) = (&
2 - a2)

s2

du
s3

_ q2

When u = 00 , s = 0 ; when w = cr, 5 =
^2 ^

, so that

* Ivory, "On the attractions of homogeneous Ellipsoids." Phil. Trans., 1809.
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(4)

(5)

(6)

ds

V=

V&2
-i(Za?+Fy),

\/&2 -
sin"

a"

62 — a2

X = 2irab2x -

62 4- cr

2 (b2 - a2
) s

2

- - £ {Xx + Fy}

szds

4tirab2x

(6
2 -a2)Uo

s3 (6
2 - a2

) (6
2 - a2

)^ (1 - s2f

V 62 + 0" 52 cfe

(l-S2)^

Now

so that

(7)

(8)

[
_^ds_____ s _ f

_d±_

47ra&2& 62 -a2

a2 + cr

sin"1
62 ~-a2

F = 27ra62
2/

4}7rab
2
y

- 2 (6
2 - a2

) s4 . scfe

s3 (6
2 -a2

)
2
V(62 -a2)(l-52

)

S2C?S

Now

so that

(9) F

(&
2 -a2)tJ 0

s2ds

Vl
= J {sin

-1
s — 5 Vl — s2

},

2irab2

y

(6
2 - a2

)^
sm'

/J2 _ a2 /(6
2 - a2

; (a
2 + c-y

For sin-1
lb2 - a2

V b2 +a we may write tan-1

b2 + <r

b2 -a2

a 2 + <t
5

for if

then

sin 0 =
62 + <r

'

COS0

tan 0

a2 +<r

&2 + <r'

fr
2 - a2

a2 + a-

These formulae all serve for an oblate spheroid, where a < b.

For a prolate spheroid, b>a, they introduce imaginaries, from

which they may be cleared as follows.
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Call sin
-1

(iu) = 0,

then iu = sin 0, Vl + u2 = cos 0
3

e
-ie = cos 0 — i sin 0 = V 1 + + ^,

therefore — i0 = log {Vl + u2 + u],

sin
-1 (m) = 0 = i log {Vl + u2 4- w}.

/a2
# ^2 £2

Put u
b2 +

. , /&
2 -a2

(Va2 + <r 4- Va2 - 62
)

sin"1 a / 7
- = % log \ .

\ .

Hence

Va2 -- 62 + sia2 + 0-)

V&2 + <r J

Va2 -&2 + Va2 + <r

(IO) v =IS log
1

v "

"

T "M i*» +

, , „ 47ra62
a? f.

Va2 -62 + Va2 + <r /a" -6s
)

(II
>

X =(^)i{l0g
VFT^ Vtf+^J'

X7._ 27ra62

y f
\/(a2 - 62

) (a
2 + <r) Va2 - ft

2 + Va2 + °
]

In all these formulae, <r is the larger root of the quadratic

°°
2

4. y
2

_

1

a2 + o- 62 + cr

for an outside point, and or = 0 for an inside point. In the latter

case, we have functions only of the ratio ^ .

117. Energy of Distributions. Gauss's Theorem. If a

particle of unit mass be at p, (%, y, z) at a distance r from a particle

of mass m
q , the work necessary to bring the unit particle from an

infinite distance against the repulsion of the particle m
q
will be

(1) W = nh=V{x
>
y,z)=Vp .

If, instead of a particle of unit mass, we have one of mass mp
the work necessary will be mp times as great,

(2) Wpq =^mp = mpVp =mq
V

q ,

where VQ = —

.

* r

* Thomson and Tait. Natural Philosophy, Part 11., § 527.
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In other words, this is the amount of loss of the potential

energy of the system on being allowed to disperse to an infinite

distance from a distance apart r. Similarly, for any two systems

of particles mp> mq ,

(3) = Xq
Xp = 2prnpVp' = 2q

m
q
Vq ,

Vp being the potential at any point p due to all the particles q

and V
q
being the potential at any point q due to all the particles

p. This sum is called the mutual potential energy of the systems

p and q. If however we consider all the particles to belong to one

system, we must write

(4) Tf = iS2'» = PmF,

where every particle appears both as p and q, the ^ being put in

because every pair would thus appear twice. This expression has

been given in § 59, (33).

If the systems are continuously distributed over volumes t, t'

we have

(5) wpq
= Jjjjjj^^^jjj^r^^jjj^r^.

The theorem expressed by the equality of the two integrals is

known as Gauss's theorem on mutual energy, where Vp represents

the potential at p due to the whole mass M
q ,
V

q , that at q due to

the whole mass Mp
*

The above equality may be also proved as follows. Since

(6) ft^-i^

and Pq = --
I-AVq\

4tTT

47T

the triple integrals in (5) become respectively,

(7) -ljfjvp'AVpdrp ,

and —f-lW V
q
&.V

q
dr

q
.

T

47T

* Gauss. " Allgemeine Lehrsatze in Beziehung auf die im verkehrten Verhalt-

nisse der Entfernung wirkenden Anziehungs- und Abstossungs-Krafte." Werke,

Bd. v. p. 197.
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Now since outside of t, AF= 0 and outside of r', AF = 0 the

integrals may be extended to all space. But by Green's theorem,

both these integrals are equal to

1 [[[ (dVdV dVdV dVdV)
7

^TrJlJ^ldx dx dy dy dz dz j

since the surface integrals

vanish at infinity. Gauss's theorem accordingly follows from Green's

theorem and Poisson's equation.

118. Energy in terms of Field. For the energy of any

distribution consisting of both volume and surface distributions,

the sum (4) becomes the integrals

(8) W^ffVtrdS + lfffVpdT.

Now at a surface distribution Poisson's equation is

If, as in § 85, we draw surfaces close to the surface dis-

tributions, and exclude the space between them, we may, as above,

extend the integrals to all other space, so that

the normals being from the surfaces S toward the space r. But

by Green's theorem, as before, this is equal to the integral

Thus the energy is expressed in terms of the strength of the

field

at all points in space. This integral is of fundamental im-

portance.

It is at once seen that this is always positive.

We may obtain the same expression as follows. Suppose

that the matter at a point x, y }
z is displaced to a point x + Sx>
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y + By, z + Bz. The amount of matter in the fixed infinitesimal

parallelopiped dxdydz, dm = pdxdydz is thereby changed, and

the work necessary is the same as that required to bring the mass

Bdm from infinity to the point x, y, z, where the potential is V,

namely, BW= VBdm. We have found in § 38,

Bdm _ _ +
difM

+

dxdydz.

Consequently the whole increase of energy is

Integrating by parts

""/// dxdydz = -
ff

VpBxdydz + pBx pdxdydz,

< I2 >
SF =//> f^

&+^ +
87 *}*r-jjll*r*r,

the integral being over all space, and the surface integrals vanishing

at infinity.

But since

this becomes

BW=
4-7T

AVSVd-
oo

(13)

47T

47T

dVdBV BVdBV dVdBV)
+

00

00

dx dx dy dy

r/ary vary
2" {{dx)

+
\dy)

+

+
dz dz

j

dv

8tt

so that
00

dx)

'dVy

dy)
+ 1 ~. I +

dz

'dVV

dz)

dr

dr,

W=
8tt

P\dr.
00

For a third deduction, since in moving a mass dm a distance

whose components are Bx, By, Bz the energy lost is equal to the

work done by the system

- BW= dm {XBx + YBy + ZBz}

dV
Bx

d~ *
W

[dx dy

= —dmBV— — pB Vdr.

(H) = — dm { Bx + ^— By + &z!
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The whole variation of the energy is

8W =
jjj

/oSF^as in (12).

Applying Gauss's Theorem to the mutual energy of two distri-

butions, one of which has density p, producing the potential F, the

other the density hp, producing potential 8 V, we have

"

V8pdT=((f PhVdr = hW,

and W =
ljjS

pVdT

gives in agreement therewith

OS) =l{jjJjP
.Vdr + fjfjBVdr}

=
///
>.F*-///jBVdr.
00 ^ ^ ^ 00

The integrals may be now restricted to the space occupied by
matter.

119. Maximum theorem for Energy. By making use

of the two different expressions for the energy we can deduce
an important theorem relating to the energy of a distribution.

We may use the form, § 118, (8),

which is distinguished by the suffix d to denote that the densities

occur explicitly. This form, by the definition of the potential,

holds for any law of force, whether the Newtonian or not.* On
the other hand we may use the form, § 118, (io),

to which we give the suffix / in order to denote that it is ex-

pressed only in terms of the field at all points, and does not

* By this we mean any conservative law in which the action is proportional to

the product of the masses, and to some function of their relative position.
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explicitly contain the densities. This expression holds good only

for a distribution acting according to the Newtonian Law. As
these two expressions must be equal for all distributions, we may
write

(3) W= 2Wd-Wf

= ((<rVdS +
CO

dr.

If in this latter expression for W we make an arbitrary varia-

tion in the form of the function V, we obtain for the varied value

of W an integral containing the variations of V, a, and p. If

we suppose that the new distribution also acts according to the

Newtonian law, in virtue of Poissons equation there will be

relations between BV, Ba, Bp.

We shall however remove this restriction, and consider V, cr, p
as perfectly independent functions, which can be varied inde-

pendently.

We shall choose Bo- and Bp as zero, in other words we shall

suppose V to be varied from the values that it actually has for

the original Newtonian distribution, the variation being entirely

arbitrary, while the densities are unchanged. Calling the varia-

tion under these circumstances S VW,

(4) W + BrW=ffc(V+8V)dS + jjj
p(V + SV)dr

00

L[[( 73(T^ + SF)V
,
fd(V + BV)\

8tt dx

From this we obtain by subtraction of (3),

(5) BvW=ffo8VdS + jjj pBVdr

1 fff {dVdBV dVdBV dVdBV)
7

^TrJJJ^ldoo dx dy dy dz dz
j

Integrating the third integral by Green's theorem, we have
finally
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(6) w//f +^(g +g)}«F^

8tt
CO \ ox ) \oy J \ oz J

dr.

Since the unvaried distribution is a Newtonian one, by Poisson's

equation the factors multiplying SV in the first two integrands

are zero. Consequently the variation of W is equal to minus the last

integral, which, as the integrand is a sum of squares, is necessarily

positive. Accordingly BVW< 0 and we may state the theorem

:

If the potential due to any given distribution of matter acting

according to the Newtonian Law is known, the energy calculated

by the formula (3) is a maximum for the actual distribution of

potential as compared with arbitrary distributions differing by
an infinitesimal amount from the actual.

We may state this theorem in physical language, avoiding

specification of the form in which W is to be expressed, as follows.

We may consider V+8V as the potential due to a Newtonian

distribution whose densities differ at each point of space by an

infinitesimal amount from the densities of the given distribution,

the differences being otherwise perfectly arbitrary. We will call

the supposed distribution 2, the original distribution being 1.

Then the terms

ff<r(V+8V)dS+fjfP (V+8V) dr,

are the mutual energy TT12 of the distributions 1 and 2, by

§ 117, (5).

The integral

is the energy W2 of the distribution 2, by § 118, (10).

Accordingly equation (4) is

so that

$VW= W12 — {W1 + Tf2)<0, W12 < W1 + W, .

W. E. 15



226 THEORY OF NEWTONIAN FORCES. [FT. I. CH. V.

That is : The mutual energy of any two Newtonian distributions

differing infinitesimally from each other, and supposed co-existing,

is less than the sum of their individual energies. This theorem

is probably true for all repulsive forces. We shall make use of

it in § 180 to deduce the laws of dielectric and magnetic actions.

120. Potential of Polarized Bodies. Double Distribu-

tions. If a particle of mass dm be placed at a point where the

field-strength is F, it experiences a force of amount Fdm in the

direction of the field. If any distribution m be placed in a field

which is uniform, that is, for which at all points F is constant in

value and direction, the force P experienced by the whole mass is

P = Fdm = F dm=Fm.

Certain bodies exist in nature which, on being placed in a uniform

field, experience no tendency to move in any direction, so that P
is zero. Accordingly for such bodies m must be zero, or their

density must be in some points positive and in others negative.

Such bodies experience a couple when placed in a uniform field,

although the resultant force vanishes. Not only does the above

property hold for the whole body, but if it be broken into any

number of parts the resultant force on each part is zero. A
magnet is the most familiar example of such a body, for placed in

a uniform field of magnetic force it experiences no resultant force,

no matter into how many pieces it may be broken. In such a

body then the mass of any part, however small, must be zero. Let

us consider how such a condition is possible.

Let us suppose that any portion of space t is occupied by a

body A of constant density p and that occupying identically the

same space is a second body B of constant density — p. The two

bodies will then completely neutralize each other's action in every

way, and when placed in a uniform field would experience neither

force nor couple. Now suppose that the first body A is displaced by

an infinitesimal amount, so that every point in it moves a distance

h in the same direction. The effect will

be that while in the space occupied in

common by the two bodies the densities

neutralize each other, there is a space on

Fig. 51. one side filled with positive matter, and on



119, 120] POLARIZED DISTRIBUTIONS. 227

Fig. 52.

the other a space filled with negative matter, (Fig. 51). The
volumes of these two spaces must be equal, since the bodies A
and B originally coincided. The effect of the system is now that

of a body covered on part of its surface with a

positive, and on the remainder with a negative

surface distribution. If n, Fig. 52, is the normal

drawn inwards, and h represent the direction as

well as magnitude of the displacement, the amount
of matter contained in a right prism standing on the

element of surface dS will be

— ph cos (hn) dS,

but this is equal to crdS where a is the surface density. Accord-

ingly the surface density of the equivalent distribution is

( 1 ) a — — ph cos (hn).

If we now decrease h and increase p without limit, keeping their

product finite and equal to I, we obtain a body charged with

surface density

(2) a — — I cos (hn),

possessing the property of experiencing a couple, but no resultant

force when placed in a uniform field.

To find the magnitude of the couple let us divide the body up

into prisms with their generators parallel to h and standing on the

elements dS. Such a cylinder of length I carries upon one end

the charge adS which experiences the force FadS, and upon the

other the charge ~ adS which experiences the force FadS in the

opposite direction. The moment of the couple thus produced is

I sin (hF) FadS.

For the whole moment we must take the integral of this over the

positively charged surface,

(3) jjl sin (hF) FadS = -F sin (hF)jjll cos (hn) dS.

Now — cos (hn) dS is the area of a right section of the prism on dS,

so that — I cos (hn) dS is its volume ( dr, and the total moment
J 0

becomes

(4) F sin (hF) Idr = FI sin (hF) . r.

15—2
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Such a distribution may be called a double or sliding dis-

tribution, and a body possessing such a distribution is said to be

polarized in the direction h. The conception of the sliding

distribution is due to Poisson. The moment of the couple

experienced by the body when placed in a uniform field of

strength unity whose direction is perpendicular to the direction

of polarization, is called its moment of polarization, and I, the

moment of unit volume, the intensity of polarization. J is a

vector quantity, for the whole couple may evidently be sup-

posed to arise from three bodies occupying the same space,

and polarized in three mutually perpendicular directions, the in-

tensities of polarization being respectively

A = I cos (Ix), B = 1 cos (Iy), C = I cos (Iz).

For if the components of the field are

X = Fcos(Fx), Y=F cos {Fy\ Z = F cos (Fz),

the polarization B produces the couple BZ about the X-axis, and

the polarization G the couple — GY about the same. In like

manner the couples about the other axes are obtained,

(5) L =BZ-CY, M=CX-AZ
3
N =AY-BX.

We accordingly find that the resultant couple is the vector product

of the intensity of polarization and the field-strength, whose

magnitude is

FI sin (FI), agreeing with (4).

Suppose now that we have a body of such a nature that every

element of its volume has a double distribution, although the

direction and magnitude of the polarization / may vary from

element to element. Such a body is polarized in the most general

manner, and the volume-density will not vanish throughout. Let

us seek its value in terms of the polarization at each point. Con-

sider a rectangular element of volume dr, whose sides are dx, dy, dz
y

and in which the values of the component polarizations are A,B,G.

Then the face dydz on the side next to the origin has the charge

— Adydz, while the opposite face has the equal and opposite

charge Adydz. In the next element of volume on the right,

whose center is at a distance dx from the center of the first, the

X-component of polarization will be

A + dx,
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so that the face dydz next the origin will have the charge

dA— ^A + dxj dydz.

This is superposed on the charge + Adydz
f
so that the whole

charge on that face is

— ^^dxdydz.

Similarly the faces dzdx and dxdy on the sides farthest from the

origin, have the charges

— 1~ dxdydz.

and

If we consider these faces as belonging to the element dr, while

the opposite faces belong to adjacent elements, the whole charge

belonging to the element dr is

[dA dB dC) , , ,

~dx
+

By
+

dz)
dxdydz '

Thus the charge per unit volume is

(6) --M +
^ '

^ ~~
\ dx dy dz )

'

Integrating this throughout the volume occupied by the body

dA dB d(

dr = —
dx dy dz

(7) = jj{A cos (nx) + B cos (ny) + C cos (nz)} dS

= Jjl cos (In) dS=-fjadS,

so that the total mass of the volume and surface charges is zero.

121. Induction. Comparing the expression for the density

with the ordinary expression for the density as 1/47T times the

divergence of the force, we have

1
(8)

[dA dB dC)
O — — "S

-\ + TT~r 1 dx dy dz
4

4>7T

dX_ d_Y dZ^

dx dy dz\
'
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so that the vector % whose components are

(9) S = X + 47rJ., g) = F+47rjB, 3 = ^ + 4ttC,

has no divergence anywhere. Its normal component is continuous

at the surface of the body, for since by § 82,

1
or = [Fi cos (FiUi) +Fe cos (Fene)\ = cos (7^),

(where the suffixes i and e denote values inside and outside, and

the opposite directions of the corresponding normals), we have

( 10) % cos (%ini) = Fi cos (i^) + 4ttI£ cos (1^)

= - Fe cos (Fene) = -%e cos ($ene) =& cos (Se n$).

The vector % being everywhere solenoidal, its surface integral over

any closed surface vanishes, so that as many unit tubes enter as

leave the surface. Tubes leave the polarized body where a is

positive, and enter it where a is negative. They form closed

tubes, every one of which passes through the body. The vector %
is called by Maxwell the induction, and is characterized by the

solenoidal property. The line separating the region of positive a
from those of negative is linked with all the tubes of induction

belonging to the body. The induction is not in the same direction

as the force F unless the polarization I is.

We obtain another physical conception of the induction by

considering the force in a cavity in the conductor. By hollowing

out a space in the body we remove a portion of the volume distri-

bution, but give rise to a new surface distribution. We shall

suppose the cavity so small that the volume-density of the part

removed may be considered constant. Now if we consider the

forces at corresponding points of geometrically similar distributions

of constant densities, we have for the action of the volume-density,

and if we increase the dimensions in the ratio n, the element of

volume and the potential at a corresponding point are dr = n3dr
y

and the force

dV' = d(n*V) d_V

ds 3 (ns) ds
3
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while for surface distributions

J J r J J nr
9

ds' ds
'

Accordingly as we decrease the linear dimensions indefinitely, the

force from the volume distribution decreases indefinitely, while the

force from the surface distribution remains finite. Consequently

in an infinitely small cavity the force does not depend on the

volume density of the part removed, but only on the surface

densities formed on the surface of the cavity. This will be at

all points

<r = I cos (In),

the normal being directed into the cavity. Suppose the cavity is in

the form of a cylinder with generators in the direction of the

polarization. Then the density on the sides is zero, and on the ends

/ and - /. If a is the radius of the cylinder, 26 its length, the

action of the ends on a point at the center of the cylinder is the

same as the action of two circular discs, of surface density / and

— /, which, by § 81, is

Wb2 + a2

This is a function only of a/b, as we have just shown that the action

is independent of the linear dimensions. If the radius is infinitely

small in comparison with the length the action vanishes. Accord-

ingly in such a cavity the force is that due to the action of the

rest of the body, or

If on the other hand the length of the cylinder is infinitesimal in

comparison with the radius, the force is 47r/, so that the total force

in the cavity is

X+4vrA=$, F+4ir#=g), £4-4ttC=3,

or the induction is equal to the force in a thin crack perpendicular

to the lines of polarization.

122. Potential due to Polarized Distribution. If we

introduce the expressions of the volume and surface densities in

terms of the polarization, we obtain for the potential due to a

polarized distribution
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<> W/^+JJJ?*
_ jj{A cos (nx) + B cos (ny) 4- G cos ^

r (3a? 3?/ dz)

Integrating the volume integral by parts by Green's method, the

surface integral cancels the surface integral in V, leaving V as the

volume integral

If as usual we use x, y, z to denote the coordinates of the attracted

point, and a, b, c for the coordinates of the point of integration,

we must write,

(3) V =\]\{A^+B^J^dr, dr = dadbdc.

Now since

r3 = (x - a)2 + (y - b)2 + (z - c)\

H^) i
/ \ \rj 1 x — a 1 , .

(4) —— = — = — cos (rx\
da r2 r r2 v 7

W _^ 1 y-b = 1

\r/ 1 £ — c 1 , N= _ — cos (rz),
dc r2 r r2

the integrand is the geometrical product of the intensity of polariza-

tion and r the vector distance from the polarized element to the

attracted point, divided by the cube of the distance. We might

have obtained this result from the consideration of a doublet, or

pair of points of equal masses of opposite signs, placed at a distance

apart A, so that the moment of the doublet is M = mh. Then if

rx and r2 are the distances of the attracted point from the positive

and negative ends of the doublet, we have

y __m m _m (r2
— rx )
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But if h is infinitesimal, we have, neglecting infinitesimals of

the second order, r2
- rx

= h cos Qir) and rfo = r2
,

(s)
Tr mh cos (&r) Jf /7 .7 = -

5
_i_^ = -

3 cos(Ar).

Now in a polarized body in general, the element of volume

dadbdc contributes the potential

Idadbdc cos (Ir) _ It . c?t

so that we obtain the form already given.

If the direction of the axis of the doublet is that of the

iT-axis, we have
Mz

to which, by § 103 (io), we find the conjugate function

, _ Mp2 _ M sin2 (zr)
JL —~ " Z """" •

r

Fig. 53.
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From this, the lines of force due to the doublet, or the lines

•vp = const., are drawn by a simple geometrical construction, Fig. 53.

(Nature, Vol. xxi., p. 371.) The combination of this field with a

straight field in the direction of the axis of the doublet, drawn by

the method of § 106, is shown in Figs. 74 and 75, according as the

axis of the doublet is in the direction of, or opposite to that of

the field. The lines are drawn for equal increments of

123. Potential due to uniform Polarization. We may
easily find a convenient expression for the potential at any point

due to uniform polarization, / = constant. Let II represent the

potential at a pointP whose coordinates are oo, y, z of a body occupy-

ing the space t and filled with a single or ordinary distribution

of the uniform density unity. Then after the body A of the

double distribution has been displaced the distance h in the direc-

tion I, the potential at P is the same as if the body had remained

fixed while P had been displaced the distance h in the opposite

direction, that is,

dn
dh

p <n - h\

The potential at P of the negative body B is

and the potential of the double distribution is the sum of these

two, or

, dn~ ph
dh>

and inserting the value of the polarization,

(6) F=-/_ = -/ 1_ cos (Ix) + g- cos (ly) +^ cos (/*)j

.

Consequently if we know the value of the potential due to a

single distribution of constant density, we may obtain by differen-

tiation the potential for a body of the same form uniformly

polarized. The expression holds both for inside and outside points.

The potential due to a doublet illustrates this, for the potential

due to a point m is
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while the potential due to the doublet is

, . ,3ft ,

a
(r) M cos (hr)

x 3A oh r2

a spherical harmonic of degree — 2.

124. Solenoidal and Lamellar Polarizations. The
volume-density of polarized matter has been found, § 120 (6),

to be equal to the convergence of the polarization. If the polari-

zation is solenoidal, the volume-density vanishes, and the polariza-

tion is equal to a surface distribution, as in the original assump-

tion of § 120. We may then divide the body into tubes of

polarization, or polarized solenoids. Such a solenoid possesses the

property that if it be cut anywhere the two cut ends will bear

equal and opposite charges, their amounts being the same wherever

the cut be made. The potential due to a solenoid of infinitesimal

section depends only on the position of its ends, and a solenoid

may be considered as equivalent to a doublet of points at a finite

distance apart. Again the polarization may be lamellar, that is it

may be the vector differential parameter of a function which

will be called the potential of polarization. We then have

Outside the polarized body, since I =0, $ must be constant,

and accordingly discontinuous at the surface.

Inserting this in the value of V the potential becomes

mH1
) ^ d (-

(Q) V- I I I 1^ +^ _llZ +^ Jill dr(9) y-jjj i3o da + db
— +

dc
—) dT-

Applying Green's theorem we obtain

( i o) V=-jS<f>

d

-^dS-fjj<t>A(±)dT.

But since 1jr is harmonic except for r — 0, if the attracted

point is outside of the polarized body, V is given by the surface

integral,

(ii) v^-jJt-glds.



236 THEORY OF NEWTONIAN FORCES. [PT I. CH. V

Accordingly the potential at points outside of a lamellarly

polarized body depends only on its form and position, and on the

values of the potential of polarization at the surface.

If the attracted point is within the substance of the polarized

body, we may integrate (9) in the other manner, interchanging <j>

and obtaining

which, by the theorem of § 83 (5) or § 84 (12) applied to <£,

becomes

I!
d
(
l
)

(13) V=^<f>-J)<j>^.dS.

In the case of lamellar polarization the induction becomes

so that the induction, being the parameter of the function

— V+4nr<f> }
is also lamellar. For both inside and outside points,

this function is equal, except for a constant, to the surface

integral

ff
a©

(•5) I't-Sr*8,

as we see from (13) and (11), together with the fact that outside

<f>
is constant.

125. Polarized Shells. The characteristic of a lamellar

polarization is that if we construct two infinitely near equi-

potential surfaces of polarization
<f>
= ^ and = <£2 , the polariza-

tion is normal to them at all points, inversely proportional to the

distance between them, and in the direction from the smaller to

the larger value of
<f>.

The portion of matter included between
the two surfaces, which need not be closed, is called a simple

polarized shell. If we consider the infinitesimal portion of the

potential due to such an unclosed shell, the surface integral (11) is

taken over both sides of the shell, the portion over the edge
vanishing, since the width of the edge is infinitesimal. Conse-

quently, replacing n, the internal normal, by nx and n2) away from
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the shell,

-JJ:(,6) r=&)J^iS + t,)J-±-dS-^-4,,)J]-±-LdS.

The geometrical integral,

has been found in § 39 to be equal to the solid angle co sub-

tended at P by the surface S, if points

toward the side of S on which P lies. Con-
sequently the potential at any point P due

to the shell is equal to the product of the

difference of potential of polarization on the

two sides of the shell by the solid angle

subtended by the shell at P, the potential

being positive if P is on the positive side of

the shell, that is, the side toward which the

polarization is directed. Now we have seen in § 39 (5) that the solid

angle integral is equal to — 47r for a point inside a closed surface,

and to zero for an outside point, that is, it experiences a dis-

continuity of 4-7T as P crosses the surface. When the surface is

not closed the same thing takes place. For the integral

co
_rr cos (nr)

dS

is a continuous function of P so long as r is not zero, that is, so long

as P does not lie on the surface. If P lies on the surface, the in-

tegral has an infinite element. We remove this by cutting out a

small area around P. If now to' be that part of the integral due

to the remainder of the surface, co' is finite and continuous even

when P passes through the surface. As P approaches the surface

the solid angle subtended by the small area cut out, which may be

treated as plane, approaches 27r, so that at the surface on the side

1, co1 = co
/ + 27T. At an infinitely near point on the side 2, how-

ever, the cosine in the numerator has changed sign, for the small

area, so that the solid angle subtended by the latter is to have the

negative sign. Accordingly on the side 2, co2 = co' — 27r, and ac-

cordingly,

(l8) COx — C02 = 4>7T,
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and the potential V experiences a discontinuity of — 4<7r (fa
—

fa)

in passing through the shell from the positive to the negative

side.

The discontinuity may be also explained

by considering the solid angles subtended

at points 1 and 2 approaching a point on

the surface from opposite sides. If the

solid angles have different signs on opposite

sides, as the points come together the sum
of the absolute values of the two angles

approaches 47r, so that at the surface

If the thickness of the shell is e, the polarization is (fa
— <£2)/e,

and the moment of the equal and opposite charges on the element

of surface dS on the opposite sides of the shell is, since the volume

of the element is edS, equal to

(<£i - fa) dS.

Thus the surface density times the thickness, or the moment
of polarization per unit of surface of a simple polarized shell, is

constant. The value of the constant <3> = fa
— fa is called the

strength of the shell, and it is this strength that is multiplied by

the solid angle in the expression for the potential.* Suppose now
that the intensity of polarization increases without limit, so that

the strength of the shell fa — fa is finite, instead of infinitesimal.

Then the difference of potential on the two sides of the shell is

finite, or the potential is discontinuous in crossing the shell, by

the amount

Fx
- F2 = 4tt<I>.

The derivative, dV/dn, is however continuous. We may prove

the converse of this proposition. If a function satisfies Laplace's

equation, vanishes at infinity, and is continuous everywhere ex-

cept at a certain surface, its first derivatives being everywhere

continuous, the function represents the potential of a double

distribution on the surface of discontinuity. If the function were

uniform and continuous, it must, by Dirichlet's principle, vanish

everywhere. The demonstration will be given in § 210.

* Gauss. "Allgemeine Theorie des Erdmagnetismus," § 38, 1839. Werke,B&.

v., p. 119.
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126. Energy of Polarized Distributions. If a polarized

distribution is placed in a field of which the potential is V, their

mutual energy is, by § 117,

W= JJVadS+JJjVpdr,

which, by § 120, is equal to

( I ) W == —jJv{A cos (nx) + B cos (ny) + C cos (nz)} dS

[[fjr {dA ,
dB BO) J

Integrating by Green's theorem, this becomes

The integrand is the negative of the geometric product of the

polarization and the force of the field. This result may be ob-

tained directly for a doublet as we obtained the potential in

§ 122.

If the polarization is lamellar, the energy of the distribu-

tion is

(3 ) wjtm
dx dx dy dy dz dz

J

For a polarized shell the volume integral disappears, and the

surface integral becomes

dV 7 „ .
rr dV _ ^ rrdV

dS.

Accordingly the energy of a polarized shell is equal to the

product of its strength by the flux of force through it in the

direction opposite to the polarization.

If we wish to find the energy of the polarized distribution

itself, we must put for V in the above formulae the potential

due to the distribution itself, and multiply by the factor one-

half, as in § 117. It is important to notice that the energy of

polarized distributions is defined as the work that they are capable

of doing if every particle is allowed to retire to infinity carrying
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its own charge. But if the distribution should be cut up into

small parts, new surface densities would appear on each part.

To prevent this the distribution must be supposed split up into

infinitely thin shreds along the lines of polarization—on separating

these from each other no new surface densities would be formed,

so that the energy as calculated would be the work obtained

by letting these shreds be bodily removed to infinite distances

from each other. Similarly polarized shreds side by side of

course repel each other, so that this energy is positive. If we
should further break up each shred into infinitely short lengths,

and separate these from each other, we should have to do positive

work to pull them apart, and if we should remove all the parts

to infinite distances from each other, it has been shown by Lord
Kelvin * that we should have to do exactly as much work as was
before obtained by separating the shreds. Consequently the

energy must be defined by the first operation alone.

127. Development of Potential of Polarized Body in

Spherical Harmonics. We have seen in § 123 (7) that

the potential due to a doublet placed at the origin is a spherical

harmonic. We may develop the potential due to any polarized

distribution in a series of spherical harmonics. If we call r and r'

the distances from the origin of the attracted point x
y y, z, and the

point of integration a, 6, c, so that

r2 = x2 + y
2 + z2

, r'
2 = a2 + 63 + c2,

we have for the distance between the two points, by § 100 (22),

if r < r,

1 1 f r' r'2 1

^=-|p0 (M)+^p1 (M) +^pa (/4) + ...| >

where jjl, the cosine of the angle between r, r\ is

{ax + by + cz)jrr\

Inserting this value and those of P0 ,
Pl9 P2 , § 100, we

have

d~~ r r3
h
2 r*~

+ '

* Thomson. "On the Mechanical Values of Distributions of Matter, and of

Magnets." Papers on Electrostatics and Magnetism, p. 437.
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Now inserting this value of l/d in the expression for the

potential in § 122 (3), in which 1/r is to be replaced by l/d,

or performing the differentiations, w, y, z, r being constant,

+ ///»(£
+ H<<* +h + c,) >,->-*

+ ^ dr

0 (L + H** + *y + 0,)

,

+ \

and collecting in powers of x, y, z, which can be taken out from

under the integral signs, we get the development in spherical

harmonics

lr __Ax + By+ Gz
V -2 — o '

(2L~M-N)&+(ZM-N-L)f+(2N-L-M)z*+3(Pyz+Qzx+Rxy)

where the coefficients are the definite integrals

A=jjjAdT, B=jjfBdr )
C^jjjcdr,

L=jfjAadr,-M=fljBbdT, N^ffjCcdr,

P=ljj(Bc + Cb)dT, Q=jfj(Ca + Ac)dr, J2 = jjf(Ab+Ba)dr.

In like manner the coefficients in the harmonics of higher

orders are definite integrals throughout the polarized body of

the components of polarization multiplied by powers of the co-

ordinates of the point of integration. By a change of the origin

the integrals Z, ilf, N" may be made to vanish. For putting

a = a0 + a\ b = b0 -f b', c =cQ + c\

w. e. 16
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we have

L = a0 jjjAdT+jjjAadr= a0A +L',

Jf= 60 Bdr + Bb'dr = b0B + M\

N = c„
Jjjcdr+f

ffCc'dr = c0C + N'.

and if we choose

L M _NABC
the integrals L\ M', N f

vanish, and F_3 reduces to three terms.

The values of the integrals A, B} C, are not changed by this

change of origin, but those of all the others are.

The new origin is called the center of the polarized distribu-

tion. If the polarization is uniform, it is the center of gravity

of the body. If we find a vector M whose components are

A, B, C, we have

If {cos (Mx) cos (rx) -f cos (My) cos (ry) + cos (Mz) cos (rz)}
7L„ =2 - r2

if cos (Mr)

But this is equal to the potential due to a doublet of moment

M situated at the center. M is called the moment of the polarized

body, and since at great distances the first terms are relatively

the most important, we see that at great distances the body

acts as if concentrated at its center. The line through the center

having the direction ofM is called the axis of the distribution.



PART II

ELECTROSTATICS, ELECTROKINETICS AND MAGNETISM.

CHAPTER VI.

ELECTRICAL PHENOMENA. SYSTEMS OF CONDUCTORS.

128. Fundamental Experiments. We shall begin the

treatment of Electricity by the description of a number of simple

experiments, for the most part due to Faraday and described by

Maxwell, the explanation of which will devolve upon the theory,

when mathematically established.

Experiment I. Let a piece of glass and a piece of resin,

neither of which exhibits properties different from those of

ordinary bodies, be hung up near each other by silk threads.

They do not affect each other, and the threads hang vertically.

Let the glass and the resin be rubbed together, and left in contact.

They still exhibit no peculiar properties. Let them now be

separated. They attract each other, and the strings take an

inclined position. The system composed of the glass and resin

has now acquired energy, which has enabled it to do work against

the force of gravity in lifting the two bodies through a certain

distance.

Let a second piece of glass be rubbed with a second piece of

resin, and be similarly suspended. Then it may be observed that

the two pieces of glass repel each other, and have therefore

acquired energy, which is evinced by their overcoming gravity in

lifting themselves.

16—2
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The two pieces of resin in like manner repel each other. Each

piece of glass attracts each piece of resin. All of these phenomena,

each of which indicates the acquisition of a positive amount of

potential energy, are known as Electrical phenomena, and the

bodies exhibiting them are said to be electrified, or charged with

Electricity.

The properties of the two pieces of glass are similar, but

opposite to those of the resin. What the glass attracts the resin

repels, and vice versa. Bodies repelled by the glass and attracted

by the resin are said to be vitreously, those attracted by the glass

and repelled by the resin, resinously electrified. By general

convention we say positive, instead of vitreous, negative for

resinous.

Experiment II. Let a hollow metal vessel be hung up by

silk threads, and let a lid completely closing it be also so hung, so

that it may be removed and replaced without touching it. Then

if the electrified glass be hung inside the vessel without touching

it, and the lid placed on, the outside of the vessel will be found

vitreously electrified, and the manner of the electrification will be

exactly the same in whatever part of the interior the glass may be.

That is to say, if we place successively at different points of the

external space the same small electrified body, it will be acted

upon at each point by a certain force. The direction and magni-

tude of this force determine a vector called the strength of the

electrical field of force. The field may be geometrically repre-

sented by lines of force in the usual manner. The electric field is

the tangible evidence of the electrification, and the measurement

of a force is the means of its measurement. We may therefore

describe the above experiment by saying that the field external to

the closed metal vessel is independent of the position of the charged

body within. If the glass be removed without touching the vessel,

the electrification of the glass will be unchanged, and that of the

vessel will have disappeared. If resin be substituted for glass the

outside of the vessel will be negatively electrified. Such electri-

fication, which depends on the proximity of electrified bodies, is

called electrification by influence, or induction. In this manner a

body may acquire energy without contact with other bodies, and

it is natural to suppose that the energy has passed through the

intervening medium from the electrified body. Such a medium,
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which allows electrical influences to pass through it, is called a

dielectric, as was proposed by Faraday*.

Experiment III. Let the vessel be positively electrified by

induction as before, let a second vessel be suspended by silk

threads, and let a metallic wire, similarly suspended, be made to

touch both simultaneously. The second will be found to be

positively electrified, and the positive electrification of the first is

lessened.

Experiment IV. If instead of a metal wire we had used a

rod of glass, sealing wax, or hard rubber, no such effect would have

been produced. Bodies may accordingly be divided into two

classes, 1°, those which, like metals, allow a transference of electri-

fication from place to place. These are called conductors. The

second body above is said to be electrified by conduction : 2°, those

which do not allow such transfer. These are called non-conductors

or insulators. The dividing line cannot be drawn with perfect

sharpness, since no bodies have been found to be absolutely non-

conducting. All insulators are dielectrics, but not all dielectrics

are necessarily insulators.

Experiment V. In Experiment II it was shown that the

external electrification of the vessel due to the introduction of the

electrified glass was independent of the position of the latter in

the vessel. If we now introduce the piece of glass together with

the piece of resin with which it was rubbed, without touching the

vessel, the electrification of the latter disappears. We therefore

conclude that the electrification of the glass and resin, which are

able to counteract each other's effects, are equal in amount. By
putting in a number of bodies, and examining the external field,

we may show that the induced electrification is proportional to

their algebraic sum. We thus have an experimental method of

adding the effects of several electrifications without altering the

electrifications.

Experiment VI. Let there be two insulated metallic vessels,

A and 5, and let the glass be introduced into A and the resin

into B, and let them be connected by a wire. All electrification

disappears, as was to be expected. Now let the wire be removed,

and then let the glass and resin be taken out. It will be found

* Exp. Res., § 1168.
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that A is now negatively electrified, and B positively. By intro-

ducing A and the glass together into a larger metal vessel C,

its outside will be found to have no charge, consequently the

induced charge on A is equal and opposite to that of the glass.

In like manner the charge of B may be shown to be equal and

opposite to that of the resin. The charge of A, which is not

apparent as long as the glass is within, is said to be bound by the

inducing charge of the glass, and resides on the inside of A.

By the withdrawal of the glass it becomes free, and appears on the

outside of A. We have thus a method of charging a vessel with

an electrification equal in amount and opposite in kind to that of a

given electrified body without changing its electrification.

Experiment VII. Let the vessel B
}
charged with a quantity

of positive electricity, which we shall take for a provisional unit, be

introduced into the vessel C without touching it. G will be found

charged on the outside with a unit of positive electricity. Now let

B touch the inside of G. The external electrification is unchanged.

If B be now removed from G without touching it, and taken to a

distance, the field external to G is still unchanged, that is, G is

charged with a unit of electricity, but B is completely discharged.

If B be now recharged with a unit of positive electricity, and

again introduced and made to touch C, on removal it will again be

found to be completely discharged, and the charge of G will be

increased by one unit. This may be repeated indefinitely, and no

matter how highly G may become charged, it will be found that B is

always completely discharged. This is a cardinal point in the

theory of electricity. Since when in contact B virtually forms a

part of the conductor 0, we may state that there is no electrifica-

tion on the inside of a charged conductor left to itself. We now

have a means of charging a body with any number of units of

electricity. A machine for the purpose of generating electricity

on this principle is Kelvin's Replenishes whose theory will be

considered later.

The last experiment may be modified by examining the field of

force within a hollow charged conductor. This cannot be done by

introducing anything through a hole, but was accomplished by

Faraday by building a closed conductor large enough for a person

to remain inside. Even when the outside was so highly electrified

that large sparks were flying off from it, the strength of the field

at points within was absolutely zero.
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Experiment VIII. Suppose that while the pieces of electrified

glass are suspended as in Experiment I, we surround them with a

dielectric fluid insulator, such as turpentine, kerosene, or melted

paraffin. It will be found that, if the buoyancy of the liquid be

just counterbalanced by weights, the threads will now hang more

nearly vertically, showing that the repulsion is less. The energy

of the system is consequently less. We see then that the energy

of a system of electrified bodies depends not only on their charges

and positions, but on the nature of the dielectric medium in which

they are placed. The consideration of the part played by the

medium is now one of the principal parts of electrical theory.

If any of the other experiments be repeated with the closed

vessel filled with any dielectric fluid, the results will be unchanged,

showing that the values of charges induced on a closed conductor

by charges within are unaffected by the dielectric.

We will now briefly recapitulate the results of our experi-

ments.

We may examine the nature and the magnitude of the charge

of any electrified body without altering it, by placing it within

an insulated hollow conductor without touching it, and examining

the charge induced on the outside of the latter.

The amount of electricity on a body remains unchanged, unless

it be put in conducting communication with another body.

When a body electrifies another by conduction, the quantity of

electricity on the two remains unchanged.

When electricity is produced by friction (or otherwise, as we

shall find) equal quantities of positive and negative electricity are

produced.

When electrification is caused by induction from a body

surrounded by a conductor, the amount of electricity on the inside

of the conductor is equal in quantity and opposite in sign to the

charge of the inducing body.

There is no electricity on the inside surface of a closed hollow

conductor, charged but under the action of no internal bodies.

The forces between charged bodies, and their electrical energy,

depend on the dielectric medium in which they are placed. The

charges induced on closed conductors by charges within do not.
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129. Mathematical Conclusions. Law of Force. We
have used the words electrification, electricity, and charge to

denote a measurable quantity, which possesses the property of

conservation, that is of remaining unchanged in amount. For if

electricity disappears, it is by the disappearance of two equal

quantities of opposite sign, whose algebraic sum was zero. We
need define these terms no further than by their properties, and

for the present, the single property of exerting force is sufficient.

We may speak of electrification occupying definite portions of

space, for the field of force is such that lines of force issue from

positive electrifications and run into negative electrifications.

Electrifications being always examined by examining their fields

of force, we may consider the field of force as specifying the

electrification. Certain writers have gone farther, and insisted

that electricity does not exist, but that lines of force and electrical

energy are the only real entities. Such a question is purely

metaphysical, and of no importance to the physicist. It is

obviously of no importance whether we define electricity as that

which exists where lines of force converge, or say that the

electricity exerts force upon other electrifications. If we wish to

use the term "electrical fluid" or "matter" we may do so, provided

we use "fluid" or "matter" simply as convenient terms, without

attributing to electricity any of the properties of ordinary fluids or

of matter. It has, so far as we know, no inertia, the fundamental

property of matter, nor is it incompressible. We may then define

a charge of electricity as a "something," "fluid," or "matter," which

possesses the unique property of repelling or attracting other

charges of electricity, according to the signs of the two charges.

By definition the force is proportional to the charge, and it is

natural to suppose that the force between two electrified elements

will be in the line joining them, and proportional to some function

of the distance. Experiment VIII shows that the force depends

on something beside the distance, but if we suppose all space to be

filled with the same dielectric medium, such as air, the assumption

is justified by experiment. This supposition will accordingly be

made for the present. We shall also suppose all conductors to be

made of a single material.

We shall now deduce the law of the force from the result of

Experiment VII,—that there is no force within a hollow conductor.

Let the conductor be in the form of a sphere. On account of



129] LAW OF FORCE. 249

symmetry the charge is so distributed that equal areas possess

equal charges. Let the charge per unit area be cr
}
and let us find

the form of f(r), so that the resultant of all the forces adSf{r)

due to all the elements dS at distances r from a given point Q
within the sphere, shall be zero when resolved in any direction.

On account of symmetry, the force acting

on Q must be in the direction of the radius

OQ. We shall accordingly consider the radial

component R. Let OQ=b, and let the radius

of the sphere be a. Let the distance PQ,

where P is any point on the surface of the

sphere, be r, and let the polar coordinates of

P be 0, <£, the co-latitude 0 being measured

from the radius OQ. Let the angle PQO be 8. Then the whole

force at Q resolved along the radius OQ is proportional to

(1) R — jjadS.f(r) cos 8 = a
j J"

f{r) cos 8 . a2 sin 0d0dcf>.

We may at once integrate with respect to <£,

(2) R = 27m2
<j f /(r) cos 8 sin 0d0.

J o

Now OQ is the sum of the projections of OP and PQ on the radius

r cos B + a cos 0 = 6,

Fig. 56.

(3)
cos S =

b — a cos 0

r

From the relation between the sides of the triangle POQ,

(4) r2 = a? + i>
2 - 2ab cos 0,

we get on partial differentiation with respect to b,

(5)

r -j = b — a cos 0,
do

dr

db

b — a cos 0 = cos 8.

r

Substituting this value of cos 8 in the integral,

and if we call

R = 27mV j'f(r)
d~ sin OdO,

/(r) = <D'(r),
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so that

we have

(6) R = 2ira*a
-J**

(r) sin Odd.

We may now change the variable from 6 to r by differentiating

the relation

r2 = a2 + 52 _ 2a6 cos 0,

rdr = a& sin ddd,

(7) sin #c?0 =
T^ .

For 6 =0, r = a — b, and for 0 = it, r = a + b, so that

™ « , 3 fa+6 <t>(r). rrfr
it = 27ra2 o-.. — •

dbj a- b ab

Calling r<I> (r) = (r),

we have

fa+b

(8) ^, (r)^r = ^(a+6)-^r (a-6),
J a-b

and

(9) fl = 27rao-^j£(¥(a + &)-¥(a-&))}.

By the conditions of the problem this must vanish, so that we

have the differential equation for ^F,

(10)
^|l(¥

(a + 6)_¥(0 .- 6
))j

= o,

which being integrated gives

(11) ±{V(a + b)-V(a-b)} = C,

V{a + b)-V(a-b) =Cb,

a functional equation to determine M*. Differentiating twice with

respect to b,

V"(a + b)-y"(a-b) = 0,

(12) V"(a + b) = V" (a-b).
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This equation holding for all values of a and b, since a+b and

a — b are entirely independent variables, ^P" must have the same

value for all arguments. Accordingly, putting r for the argument,

of the distance. This proof is due to Laplace *. The law of force

was also deduced by Cavendish as a consequence of the fact that

a conductor is completely discharged by contact with the interior

of a closed conductor. The experiment was repeated very care-

fully by Maxwellf. The law of the force may also be deduced

from the result of Experiment II.

The law of the inverse square was obtained by Coulomb by-

direct experiment with the torsion balance, but such experiments

could not be exact enough to demonstrate the law with the same

accuracy as by reasoning from the results of the experiments of

Cavendish and Faraday.

130. Dimensions of Electrical Quantities. Since charges

of electricity in a uniform dielectric medium act on each other

according to the Newtonian Law, the whole mathematical investi-

gation of Newtonian forces and potentials at once becomes

applicable. The volume density of electrification, or the charge

per unit of the volume, will be denoted by p, and the surface

density, or the charge of unit area of a superficial distribution, by

a. The charge of a body e is

(15)

(13)

(14)

V"(r) = A,

^' (r) = Ar + B = r«J> (r),

<3> (r) = J. + —

,

(0

and the potential at a point,

(2) V

* Mecanique Celeste, i. 2.

t Electricity and Magnetism, i. p. 79.
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is the work that must be done against the electrical forces in bring-

ing a unit of positive electricity from an infinite distance to the

given point. Positive electricity tends to move from places of

greater to places of less potential, and negative electricity the

contrary.

The unit of electricity must be defined as the amount of

electricity, which if concentrated on a very small body, will repel

a body similarly charged and placed at unit distance from it in

vacuo, with unit force. This unit is the basis of the electrostatic

system of electrical units. In the c.G.S. system, the unit of elec-

tricity repels a similar unit at a distance of one centimeter with a

force of one dyne.

It is necessary, as shown by Experiment VIII, to specify the

medium in defining the unit. If air were adopted instead of

vacuum, that is, ether, the difference would be so slight* as to

escape detection by all but the most refined electrostatic measure-

ments at present in use, hence we may with very slight error

consider all experiments to be made in air.

The dimensions of the unit of electricity are found from the

equation of force

~ = Force,

, M = [jif*i»r-i],

and the c.G.S. unit of electricity is

1 gm.^ cm} sec.""
1

.

The dimensions of p, a, V are found from

[p] = Volume density

[<r] = Surface density

[F]= Potential

Electrification M
Volume

Electrification
. M

Surface

Electrification
_ W

Distance

* Less than one part in a thousand.
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The strength of electric field, or the intensity of electric force

at a point, F, is defined as the force acting on unit of electricity

placed at the point. Its dimensions are obtained from

ML
[Fe] = Force =

[jP] = [l/^i~^T-1
].

dV
This agrees with the definition F = —— which is of dimensions5 dn

.Length

The energy of the system may be written in either of the forms,

§ 118 (8),

Wd=lfj<rVdS + ljjpVdT,

the integrals having dimensions

[Surface-density x Potential x Surface] = [ML2T~2
],

and [Volume-density x Potential x Volume],

or, § 118 (io),

the integral having the dimensions

[Field-strength2
] x [Volume] = [MDT~%

giving in either case the proper dimensions for energy.

131. Electrical Equilibrium. Suppose we have an electric

field due to the presence of a number of charged insulating bodies

D, together with a number of conductors K, insulated and originally

either charged or not. The charges of the bodies D cannot move
in the bodies, since they are insulators. We shall assume that the

dielectric properties of the bodies D are the same as those of air.

The electrification of the conductors, however, may move in any

manner in the conductors, subject to the condition that the total

charge es of any conductor K8 is constant. By the principle of

virtual work, we can find the condition for equilibrium.

Suppose that in any assumed distribution V is the potential

due to the total electrification of the conductors K, in which the

volume and surface densities are p and <r. Let V be the potential
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due to the fixed electrification ofD in which the volume density is

p. The total energy of the system will be

(I) W = (V+ V) pdr
+lf

fjV+ V) adS

or

Suppose now that if we change p in the conductors to p + Sp

and a to or + So*, the integral W becomes W + S W, while p and V
are unchanged at all points, since the electrification of D is un-

changed. Also since the charges of the conductors are to be un-

changed, we must have for any conductor Ks

(3) Ses = 8 crdS 0.

The condition for stable equilibrium is that for all possible

values of the functions Bp and B<r subject to the conditions Bes= 0,

we must have BW >0, (§ 58).

Making the above changes in the integral (
I ), we have

(4) W + SW = ±jjj (r+ BV+V')(P + Bp)dr

+ (V+BV+ V) (a + B<r)dS

+
ljfj

(V+BV+V')p'dr,

and subtracting W, we get

(5) BW =
lffJ{(V +

BV+V')Bp+pBV}dr

+
\fj

{(V+BV+ V) S<r + <rBV}dS

+ \jgp'*r*r.
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Now V
9
V, 8V are potentials due respectively to distributions of

densities p, a in the space K for V
9 p in the space D for V, and

Sp, 8<t in the space K for 8V, and accordingly by Gauss's theorem

of mutual potential energy, § 117 (5),

(6)
Jf

a8Vd8 =jj F&rdS,

C

P'8VdT=f([ V'8pdT+(f V'SadS.
d JJJk JJk

In virtue of these equalities, the integral reduces to

(7) 8W =
jjjR

(V+ V')8pdT+jf
K
(V+ V')8*dS

+
lfjjK

$V8pdr
+±ff SVStrdS,

all the integrals being taken throughout all the conductors only.

In order to take account of the conditions 8es = 0 we must multi-

ply each such equation by an arbitrary constant, — c8 , and add the

sum to the above value of 8W,

(8) 8W-Sscs8es ^O,

that is, = 0 to the first order of small quantities, while the terms

of second order must be positive for a minimum.

Introducing the values of 8e> (3)

(9) Bes = S
jjjK PdT+8 jjK

adS =
jjjK

BPdr + jj
SadS

>

3 8 8 "^^3

we get

(10) 1
'{ffjK

(r+V'~
cs) BPdT +fjK

(V+ V - cs) Ba-dS
3 8

+
s ///*

BVSpdr
+jfK

sv8*M z 0.

The equations of condition having been introduced, we may
treat 8p and 8a as arbitrary, and if we put in each conductor

(11) F+F'-c8 = 0,

the above reduces to the terms of second order

s SSSk
b r8pdr +

1IL srB<7ds
>
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which being the energy of the distribution 8p, So- may be written

which is necessarily positive. Consequently the condition for

stable equilibrium is that in each conductor the total potential

V -f V is constant*.

The integral which takes a minimum in the above investiga-

tion is the same one that appears in the demonstration of Kelvin

and Dirichlet's principle, § 86. We saw that in general there was

a doubt as to the existence of a function making the integral a

minimum. In the electrical case, experiment shows that there is

always an equilibrium distribution, so that the only doubt which

may affect the mathematician does not trouble the physicist.

Reasoning depending upon such physical facts was frequently

made use of by Green, and while not legitimate for purposes of

mathematical demonstration is frequently of service to the

physicist.

Since in any conductor V + V — c,

(12 )
d(v±v') = d(r +v') ^d(V + V)_ 0

^ ' dx dy dz

or there is no force in the substance of a conductor ; further

A(F+ F) = 0.

But since the distribution causing V lies outside of the con-

ductor, AV = 0 in the conductor, and

(13) AF=0=-47rp.

Consequently, in every conductor p = 0, or the distribution is

superficial. Now at the surface distribution cr we have a-discon-

dV
tinuity in the derivative , and

dv dv
A

( 14) ~ h ^ - = ~ 47TO\

But since within the conductor V -\- F'= c8i

(15) 'dm ~ ' dn] dm dne

'

* The above demonstration is given by Betti, Teorica delle Forze Newtoniane,

p. 164.
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for the derivative of V is continuous on crossing the surface, as

none of the distribution causing V lies on the surface. Accord-

ingly the surface equation becomes

d(V+ V) ,

(,6) = -W
The surface density at any point of a conductor is the deriva-

tive of the total potential in the direction of the external normal

I
to the conductor multiplied by -^ , that is to the field-strength

directed away from the conductor divided by 4nr. This theorem

is due to Coulomb, at least by implication*. The total charge of

a conductor K8 is

i rr d(V+V)
(i 7 ) es =\\ «dS =-^Jl v—Zcia

K8 ^TTJJKs

The following form of the investigation is shorter, and depends

on the variation of the second form of the integral

dr,

where we put, as we shall hereafter do, V for the total potential,

heretofore denoted by V + V,

gF= JL [[( ft
v ^v

{

dvdsv
{

dVdSV]
dr

^ ' 4nr JJJ nldx dx dy dy dz dz
)

__JL/T y [

dBV
)

dBV
] dS

1
[(( VASVdr

VS<rdS+(([ VBpdr.
00

Now in D, 8p = 0, and in external space p = 0, so that the

volume integral can be taken through K only, and introducing the

equations of condition hes = 0,

(19) fj (V - c.) SadS + f
If (V-cs)SP o,

* Coulomb. "Suite des recherches sur la distribution du fluide electrique

entre plusieurs corps conducteurs. " 1788. Collection de mem. rel. a la physique,

pub. par la Soc. franc, de Phys. Tom. I. p. 230.

W. E. 17
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necessitating

F=c„ AF = 0, P =0,

0, ^== — 47T<7,

the same results as above, writing V for V+ V above.

We may easily show that there is but one equilibrium distribu-

tion. For if there be another, V, cr, for which the constant

values of V are cs , let us apply Green's theorem to the difference

oc

du

k on€

dS — jjjuAudr,

the volume integral on the right being extended to all space

outside of the conductors. But in that space AF=AF = 0or
— 4-777/, and accordingly A^ = 0. Also at the surface of any con-

ductor Ks ,

u = cs — cs .

The integral J (u) therefore becomes

Now the surface integral is equal to — 1/47T times the dif-

ference of the charges of Ks in the two distributions. But the

charge being originally given this is 0. Accordingly the integral

J(u) vanishes, and everywhere

du du du ~ ^=
7r = 7T- = = 0, u — V — V — const.
ox oy az

Since V and V vanish at infinity, the constant is 0, and the

distribution cr is the same in either case. Consequently we see

that the constant values of the potential on the surface and

throughout the substance of the conductors, or as we shall say, the

potentials of the conductors, are determined by the electrifications

of D and the total charges of the conductors.
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132. Zero Potential. If we have a single charged conduc-

tor in the form of a sphere, uninfluenced by other bodies, since the

surface density will be constant, the potential at the center will

be - where r is the radius of the sphere, and since the potential
r

s
throughout the conductor is constant, its value will be -

. As r

increases the potential decreases in absolute value. Now the

earth may be considered as a conductor of a radius which is in-

finite in comparison with the dimensions of our apparatus. Its

potential may be therefore regarded as zero, and any conductor may

be kept at zero potential by being connected with the earth.

If within a conductor there is a hollow space, not containing

any electrified body, the function V is harmonic in the cavity,

and being equal to a constant at the inner surface of the conduc-

tor, must by Kelvin and Dirichlet's principle be constant through-

out the cavity, consequently there is no force at any point in the

cavity. Or a closed conductor screens the interior from the effect

of an external field of force. This explains Faraday's Experi-

ment VII.

If the system is composed of a single hollow conductor in

communication with the earth, containing within several rigidly

electrified bodies D, then the total potential V being zero at the

outer surface of the conductor and at infinity is by Dirichlet's

principle zero everywhere in the external space, and there is no

force there. That is, a closed conductor connected to earth shields

external space from the action of an electric field of force within.

This principle of electric screens is of great importance in practice

in connection with electrostatic instruments.

The surface density at the outer surface of the conductor

__ I dV

then vanishes, and the outside is without charge. On the inside

surface, the charge is

the normal being, as usual, drawn away from the conductor. But

17—2
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AV vanishing except in the bodies D, in which it is equal to

— t~ p- Consequently the charge e on the inside of the conductor

is equal and opposite to the whole charge of the bodies D. This

explains Experiment VI.

If the conductor is not connected to earth, the same result as

far as the inner charge follows. There is, however, an outer

charge, but as there is no force in the substance of the conductor,

the distribution of this charge is unaffected by what is within.

This explains Experiment II.

133. Tubes of Force. If we apply the above reasoning

Fig. 56a.

to the space inclosed by any tube of force, which must end either

at infinity or at conducting surfaces, we have, since AV=0,

AVdr={( ~dS+(( ~dS = 0,
JJ^one JJK2

dne

adS = —
\ \

<rdS,

or the ends of any tube of force cover equal and opposite charges,

the flux of force through the tube or the number of unit tubes

contained in it being 4nr times the absolute value of the charge.

134. Theorems on Sign of Electrification. By means
of the properties of tubes of force and of the Potential Function,

we may deduce a number of theorems on the sign of the electrifi-

cation on the surfaces of conductors. These theorems are taken

from the excellent Legons sur VElectricite et le Magnetisme, by
P. Duhem.

We shall call a distribution in which the sign of the surface-

density is everywhere the same, monogenic. If the density varies

in sign we shall call the distribution amphigenic. We suppose

that all the conductors are external to each other, and that in

each case there are no conductors present except those mentioned.
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Theorem I. If the system consists of a single electrified

conductor, the distribution is monogenic. For on the conductor

the potential is constant, while at infinity it is zero. In free

space, being harmonic, it has neither maximum nor minimum

(§ 34), hence all the equipotential surfaces are closed surfaces

surrounding the conductor, and the tubes of force proceed from

dV
the conductor to infinity. Thence ^— is of the same sign all over

07le

the surface of the conductor, and the theorem is proved.

Theorem II. If the system is composed of two conductors,

the distribution of at least one of them is monogenic. For the

greatest and least values of the potential are two of the three

values of the potential on the two conductors, and at infinity.

The potential on one of the conductors is accordingly an extreme

value, so that the derivative has the same sign over its surface.

Theorem III. If an insulated conductor with zero charge is

placed in presence of a charged conductor, the charge of the

former is amphigenic, of the latter monogenic. For since the

charge of the first is zero, the surface-density and hence the

dV
derivative must be positive in some regions, negative in

others, consequently its potential lies between the extreme values,

which are accordingly on the second conductor and at infinity.

Fig. 57.
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On the line on the first conductor separating positive and negative

values of a, the potential does not vary as we leave the surface in

the direction of the norma], or in other words the equipotential

surface of which the conductor forms a part has a sheet cutting

the conductor normally. This sheet is closed, containing the

other conductor with the monogenic charge. This sheet is dotted

in Fig. 57. The direction of the lines of force is shown by the

arrows.

Theorem IV. If the system consists of two bodies with

equal and opposite charges, the distribution on each is mono-

genic. For if not, it is evident on inspection of Fig. 57, that

if we draw a sufficiently large surface including both con-

ductors, the tubes of force will cross it everywhere in the

same direction (outward or inward). But the total outward

flux of force is equal to 4-7T times the total charge within the

surface, which is zero, accordingly all the tubes of force must

issue from one conductor and end on the other.

Theorem V. A charge concentrated at a point produces a

monogenic charge on a conductor whose charge is of equal amount

and opposite sign. For this is a particular case of the preceding

theorem.

Theorem VI. A negative charge concentrated at a point

produces a monogenic distribution on a conductor with a positive

charge of greater absolute value. For the charged point may

be considered as the limit of a conductor with potential — oo

.

This is then the lowest value of the potential occurring. The

value at infinity, namely zero, is not the greatest value, for then

all the values occurring would be negative, but as we approach

infinity the value approached by the potential is M/r, §74(7),

where M is the total charge of all the distributions, which is

here positive. Since positive values occur, the highest value

attained must be on the conductor, whose distribution is there-

fore monogenic.

The remaining theorems are expressed in terms of known

potentials, instead of charges, of the conductors.

Theorem VII. If two conductors have potentials of the same

sign, the distribution is monogenic on the one whose potential

has the greatest absolute value, and the density has the same

sign as the potential.
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For the potential of the conductor having the greatest absolute

value is, if positive, the highest, and if negative, the lowest value

occurring, so that in the former case a is positive, in the latter,

negative.

Theorem VIII. On each of two conductors whose potentials

are of opposite signs the distribution is monogenic. For the

potentials of the conductors are the highest and lowest oc-

curring.

Theorem IX. If one of two conductors has the potential zero,

the other a potential not zero, the distribution is monogenic on

both, and on the second the density has the sign of the potential,

on the first the contrary sign. For this is a limiting case of the

preceding, as the potential of one of the conductors approaches

zero.

Theorem X. On a conductor connected to earth, a charge

concentrated at a point causes a monogenic charge of sign

opposite to its own. For this is a particular case of the preceding

theorem.

Theorem I may be generalized as

Theorem XI. In a system formed of any number of con-

ductors, the distribution on at least one is monogenic. For the

highest or lowest value of the potential must be on one of the

conductors.

135. General Problem of Electrostatics. If we have a

number of conductors in a state of equilibrium, of which some

are insulated and charged with quantities e8 , others connected

to earth, or kept, by means to be hereafter described, at given

constant potentials VS) and influenced by certain bodies D rigidly

electrified with density p> the problem to be solved consists in

finding a potential function V which, 1°, is constant in each con-

ductor, taking the values Vs in those conductors for which the

constant is given, 2°, in the bodies D satisfies the equation

AV=-4<7rp,

and 3°, in the rest of space is harmonic,

AF=0.

We can satisfy these conditions if we can solve n + 1 inde-

pendent problems, n being the number of conductors.
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I. To find for each value of s from 1 to n, a function^, which

at the surface Ks takes the constant value 1, at all the surfacesKr

where r is different from s, takes the constant value 0, and in

all space external to K is harmonic. Each of these n problems

is a different problem of Dirichlet.

II. To determine a function w
y
which in all the conductors is

zero, in the bodies D satisfies the equation

Aw = — 47rp,

and in the rest of space is harmonic.

These n + 1 functions being found, the required function V is

given by the linear function

(i) V= V2v2 ... + Vnvn + w,

where V1 ,
V2 ... Vn are the given constant values. For each of

the functions vs and w is harmonic in all space except D, where

the vs's are harmonic, and w satisfies Aw = — 47rp; therefore the

sum V is harmonic everywhere except in D, where it satisfies

AF= — 47rp.

On any conductor ifs , w and all the v's vanish except v8t which

is 1, hence

From any of the functions v8 and w let us calculate for any

surface Kr the integrals

Since the finding of the function vs is a purely geometrical

problem, depending on the form and position of the surfaces KS)

all the n2 quantities qrs are geometrical constants for the given

system of conductors. We have now for the charge of any con-

ductor Ks

or inserting the above notation for the integrals,

(3) es = qisVi + qosV~2 . . • + qnsVn + Qs .
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There is one such equation for each conductor. These n equa-

tions determine the charges in terms of the potentials, and if

the potentials of some of the conductors are given, and the charges

of the rest, all the remaining charges and potentials are deter-

mined. Qs is the charge of the conductor Ks by induction from D
when all the conductors (including Ks) are connected to earth, and

consequently

136. Coefficients of Induction. Reciprocal Relation.

We shall now suppose the system of conductors to be under the

action only of their own field, so that Q = 0. Then we have

. , e2 - ql2 V1 + 022^2 • • • + tywVn,
(4)

6n= qmVi-\-q271^2* . • "H^nn^ii*

The constants qr8 are called coefficients of induction, and any

qrs is defined as the charge induced on the conductor Ks when

it and all the others are earthed, except Kr which is brought

to potential 1. Any coefficient with double suffix qss is the

charge of Ks when it is at potential unity, and all the other

conductors are earthed. It is called the capacity of the con-

ductor Ks . The dimensions of the qs are y = \L\ We shall

now show that the order of the suffixes in qrs is immaterial.

Applying Greens theorem in the second form to the functions v8

and vr , we have

The volume integral being taken throughout the space ex-

ternal to the conductors where vr and vs are both harmonic,

vanishes, and since vr vanishes on all conductors except Kr where

it is constant and equal to unity, and vs vanishes on all conductors

except Ks where it is equal to unity, (5) becomes

K8
one JJKr

on e

(6) --Lff pds=*(! p-ds,
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We may accordingly state the reciprocal theorem

:

The quantity of electricity induced upon a conductor A of a

system when another conductor B is brought to a given po-

tential V and all the others including A are earthed, is the same

as the quantity induced on B when it and the others are earthed,

except A, which is brought to the same potential V.

137. Energy of System. The energy of the system is

(7) W =
IHK

aVdS =^sVs
!

f

E
adS

or introducing the values of es and bearing in mind the relation

(8) Tf=i?11F1

2 + ig22F2
2 + bqnnVn

*

+ q^V, +qlsV1V3 +......+ q^V2V3 +

That is, the energy is a homogeneous quadratic function of the

potentials of the n conductors, the coefficients being the coefficients

of capacity and induction. The energy expressed in this form will

be denoted by Wv .

We have

(9) = qisvi + + + qmVn = e8 ,

or the charge of any conductor is obtained by differentiating the

energy-function expressed in terms of the potentials partially with

respect to the potential of the given conductor.

138. Coefficients of Potential. Solving the linear equa-

tions (4) we get n equations

^jq^
=Pi^i P^2 "t" Pn2 &n

)

=Pm &i 4" P27102 ^~Pnn@n 3

where any coefficient prs is the minor of qrs divided by A in the

determinant

qn ^21 • • • qm

qu q22 • • • q%2

qm $271 • • • q%n
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dimensions are
e

Since the determinant A is un-

The coefficients p are called coefficients of potential. Their

r
L

changed by interchanging columns and rows, the determinant

of the ps must have the same property, or prs
= p8r

> We may
prove this directly as we did for the q's. Let V be the value of

the potential when Kr has the charge e and all other conductors

charge 0. Let V be the value of the potential when K
8
has

charge e and the others charge 0. Then as in (5)

(11)
dV dV

V -~ V dS = 0,

K \ dn dn

and since on any conductor K{, V and V are constant and re-

spectively equal to Viy F/,

(12) 2i
dV

dS - VI
dV

dS = 0.

K .
dn JJ K . dn

Now since the potential V is due to a distribution in which only

Ks is charged, all the integrals

dn
dS = 0

vanish except for i = s, for which the integral is — 47re, likewise all

the integrals

dV
dn

dS

vanish except for i — r, when the value is — knre. Consequently

we have

(13) -4tfe(7.-I7) = 0.

Now from the equations (10), putting er = e, the other es zero,

Vs prs e.

Again putting es = e, the others zero,

Whence

(H) Prs=Psr,

and we have the reciprocal theorem

:

If a conductor A receive a certain charge, e, all the other con-

ductors of the system being uncharged, the potential of any other

conductor B is the same as would be attained by A if B should

receive the charge e, all the other conductors being uncharged.



268 ELECTROSTATICS. [PT. II. CH. VI.

Making use of the equations (10) and the condition prs =psr ,

the energy W= %2S esV8

becomes

(IS) W= \pn e? + ±p22 e./ + \pnne*

+_p12 eie2 +pa e1 es + + ,

or W is a homogeneous quadratic function of the charges of the

n conductors, the coefficients being the coefficients of potential p.

This form will be denoted by We . If we differentiate partially by
any charge es we get

' ( l6) ^^=^1^1+^^ +PnSen = Vs>

or the potential of any conductor is the partial derivative of the

energy of the system as a quadratic function of the charges, by the

corresponding charge.

139. Properties of the Coefficients. As the energy of an

electrified system is intrinsically positive, the values of the co-

efficients q and p must be such that the functions Wv and We

shall be positive for all possible values of the F's and e's. We may
deduce certain properties of the coefficients from the elementary

properties of the tubes of force and equipotential surfaces. Let

one conductor Ks receive a positive unit of charge, all the others

being uncharged, its potential is then p88 , and the energy

and since this must be positive pss is positive, or: Any coefficient

ofpotential with double suffix is positive.

Any conductor Kr completely enclosed by Ks has the same
potential, so that for these two prs

= pss .
Any conductorKr out-

side of Ks has a potential of the same sign but of less absolute

value. For the charge of a conductor is proportional to the excess

of unit tubes issuing from it over that entering. An uncharged

conductor accordingly has as many leaving as entering. Accordingly

all tubes have one end on Ks and the other at infinity (Fig. 57),

and the potential of Kr> prs is consequently intermediate between

that ofKs and that at infinity,

Pss = Prs ^ ® m

All coefficients of potential are positive, and those with double

suffixes are not greater than those with single suffixes.
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Secondly, let all the conductors be at potential 0, except Ks ,

which is at potential unity. The energy is

so that the capacity of any conductor is positive. The number of

unit tubes of force issuing from Ks is proportional to the charge

qss . Some of these extend to infinity, while others end on the

other conductors. At the latter the charges will be negative, but

the sum of all such charges is not as great as qss .
Accordingly,

every q with double suffixes is negative, and

(17) qss > - (?w + qs-i , s + qs+i,,...+ qns\

If, however, K
s
is completely surrounded by a conductor Kr ,

If a new conductor be introduced into the field, the coefficient

of potential with the double suffix for any conductor is diminished.

For if any portion of the field be made suddenly conducting, elec-

tricity will move in it so as to make the energy less than before.

If Ks was the only charged body, the energy ^pss e
2 must be

diminished, but as the charge e has not changed, pss must be

diminished.

Introducing a new body into the field increases the capacity of

any conductor, and diminishes the absolute value of every co-

efficient of induction. For if the new conductor and all the others

be at potential 0, while K
s
is at potential unity, some of the tubes

of force which before ended on the other conductors, now end on

the new conductor, which receives a negative charge. This in-

duces a positive charge on KS) increasing its charge qss , and positive

charges on the other conductors Kr ,
diminishing their negative

charges qrs .

140. Work done during displacement of conductors.

Suppose that we deform or displace the conductors of the system,

thus changing the geometrical coefficients p and q. Suppose the

configuration of the system is specified by m parameters

fa y <fi2 , •••

so that if the conductors are displaced as rigid bodies m = 6n.

Let the mechanical forces due to the electrification be denoted by

<E> so that the force tending to change the parameter fa is <lv
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Then the work done in a displacement 8<j>1} . . . Bcj)m is

( 1 ) + *2 S<£2 + <!>™S<£m,

and if no energy is furnished to the system this work must be done

at the expense of the electrical energy W and

(2) -SF=2^S<^.

In the differential SW we may use according to circumstances

either of the three forms

Wer = \ts esVs ,
We or Wr ,

which are of course identical, though expressed in terms of different

variables. If we choose WeV the total differential

(3) hWeV = lHs {esWs±Vs hes }

does not contain the S<£'s explicitly. For neither the coefficients p
nor q appear in WeV . However, the Se's and SF's are not inde-

pendent, being connected by either set of equivalent linear relations

(4) or (10) above, which in the coefficients q or p involve the para-

meters
<f>,

consequently we may eliminate either the SF's or Se's,

and replace them by 8<f>'s.

Now we see by the relations

des
~ Vs

> Ws

~
6s

that the functions We and Wv are reciprocal functions (§ 63)

with respect to either set of independent variables elf ...eny or

V1} ... Vn ,
containing also the independent variables

<f>,
coixe-

sponding to the variables z of § 63. Accordingly by the last of

equations (5), § 63,

dwe== _dwz
{4)

dcj>s dcf>s

•

If the conductors are insulated, so that all the charges are

constant, we use the form We , so that any force <I>S has the value,

from (2),

b) s
dcj>s

'

The system tends to move so as to diminish the energy.

If on the other hand the potentials are maintained constant we

must use the form Wv . In this case we must supply energy from
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outside and the equation (5) can no longer be used, but in place of

it we have, by (4),

(6) 4>
a

dWy
d<j>s

The system now tends to move so as to increase the energy, and

the increase of energy is exactly equal to the work done by the

electrical forces. For

(7) 8Fr=2^ty. = 2<W..

We accordingly see that the system is analogous to a cyclic

system. The forces <3>
s correspond to the negative values of the

positional forces Ps , for the latter are defined as the forces that

must be applied from outside in order to equilibrate the reactions

of the system. Comparing equations (5) and (6) with (1) and (3)

of § 69, we obtain the analogous results

P*Jk _<f>__ 9JV
8

dqs
'

s
_

d<f>s
'

P = ^
The electrical energy W plays the role of the kinetic energy T

in the cyclic system. In order to determine which of the variables

e or V are to be assimilated to velocities and which to momenta,

we must recall that in an adiabatic motion work is done through

the positional coordinates at the expense of the energy T. This

corresponds to the case of constant charges (2). The charges are

accordingly the analogues of the momenta, and the potentials of

the velocities. Accordingly to an isocyclic motion will correspond

a motion in which the potentials are maintained constant. We
have already seen that in this case electrical energy must be

supplied from without, and since this must not only do work but

also increase the energy of the system by an equal amount we
have the analogue of the Theorem I of § 70 :—In any motion

of a system of conductors in which the potentials of the conductors

are maintained constant, an amount of electrical energy must
be supplied from without equal to twice the amount of work done

by the electrical forces during the motion.

The equations for the cyclic forces P„ =~ are here not
at

applicable.
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Example, In the case of a single conductor, the coefficients

q and p reduce in each case to a single one, the capacity and its

reciprocal respectively, and
e = qV,

V=pe,

1
p=~,

If the conductor is a sphere of radius r, we have

e 1 lie2

V = -, q = r, p = ~, W = ~rV2 = -~~.
t r 2 2 r

The only geometrical parameter
<f>

is here r, and since We

tends to decrease, Wy to increase, r tends to increase.

If the sphere is elastic, as in the case of a soap-bubble, the

electrical forces tending to enlarge the sphere may be held in

equilibrium by a greater pressure of the air on the outside than on

the inside, or by the surface tension of the film. If P denote this

excess of pressure, that is, the force acting normally on a unit

of surface, the work done by the whole surface S in increasing the

radius by dr is PSdr. If T is the surface tension of the film, or

the elastic force tangential to the surface exerted normally across

a curve on the surface per unit of length, in increasing the surface

by dS we must do work TdS. Hence we have

<S>d$ = PSdr + TdS = -dWe = dWv ,

S = 4<7rr
2
, dS = Sirrdr, We

=.~~,
2 r

4tt {Pr2 + 22V} dr =
| ^2

dr = | V2 dr,

e* = 87rr3 {Pr + 2T},

F2 = 87rr{Pr + 2T}.

If the soap-bubble be blown on a tube connected with a mano-

meter, the difference in pressure P may be observed. T may be

determined by an observation when the bubble is unelectrified.

Calling r0 the radius under these circumstances, P0 the pressure,

P0r0 +2r=0,

T= —
, P0 being negative,
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and using this value of I7

,

V2 = 8>irr{Pr-P0r0}.

Accordingly a potential may be measured in this simple

manner by a measurement of P and r, P0 and r0 having been

observed. If the tube on which the bubble is blown is open to

the air, P = 0, and

V2 =lQirrT.

141. Distribution on an Ellipsoid. We have found the

potential due to an equipotential layer of amount e distributed on

an ellipsoid of semi-axes a, 6, c to be, § 109 (12),

y_ e f°° ds

~2J A V(a2 + s) (b2 + s) (c
2 + s)

'

where \ is the greatest root of the cubic

w2 y2 z2

a2 + \ b2 + \ c2 + X

At the surface of the ellipsoid A, = 0

7 6 f ds

2 Jo V(a2 + s) (b
2 + s) (c

2 + s)
q'

so that the capacity q is the elliptic integral

• 00

0 V(a* + s) (6
2 + 5) (c

2 + s)

The surface density of the charge is given by

which by § 110 gives

6
8,

^irabc 4mabo ' Ix2 y2 z2
'

Ellipsoids of Rotation.

If a = 6, the ellipsoid is one of rotation, and the elliptic integral

simplifies into

ds 2 x/a^c2

.

—

— = sm"1
, 11 a > c,

0 (a2 +s)Vc2 +s *Ja2 -c2 a

W. E. 18
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i.e., when the ellipsoid is oblate, and

ds 2 . f\/c2 -a2 + c)r ds 2 .

I - ..

. log-

Jo (a2 + s)Vc2 + s No2 -a2
{ a

when the ellipsoid is prolate. The capacity is

Va2 — c2

q = —

—

, oblate ellipsoid,
Va2 - c2

r

> , if c> a,

sin"1

a

, ,Yc2-a2 + c|

lo^—

—

, prolate ellipsoid.

For a very long prolate ellipsoid, neglecting 0 ) ,

c

i
2c'

log —6 a

so that as a approaches zero, the capacity approaches zero, but

more slowly, viz., logarithmically*.

In the limiting case of an oblate ellipsoid, for c = 0, we have a

circular disc, whose capacity is

2a
2 =

IT

If in the expression for the surface density we eliminate c by

the equation of the ellipsoid,

x2 y2 z2

c
2 ~J2 \ a2 ¥)'

x2 y2

e V
cr =

^irabz /a?

V a4
' fc +A a* b2

)

[,:(l|logi)] = 0.
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If we now make z = 0, we get the density on an elliptical disc

e
<j ———

V a2
b'

2

and if a = b,

a —
4nra V<a2 — r2

for a circular disc of radius a. At the edge of the disc,

a2 b2 '

and the density is infinite, so that this case is not physically

possible. It is however of considerable theoretical importance.

For the case of the circular disc the potential at any point

becomes

2 Jk (a2 + s) a (2 a) a \/\'

where \ is the greatest root of the quadratic

x2 + y
2 z2

^

142. Concentric Spheres. Suppose we have a sphere of

radius R1} surrounded by a concentric spherical shell of radii J?2

and Rs . In the space between the conductors and outside of the

outer, V satisfies the equation, § 88 (7),

whose integral is

d2V 2dV
dr2 r dr

'

dV= A
dr r2

/

r

If Vl is the potential of the inner sphere,- V2 of the shell,

Fi= ~|; + 5'

18—2
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which determines A :

The surface density on the inner sphere is

^ ~"
47r dne 47r 3r 4«7r r2 '

R1R2 Vi-V*
°l ~

4tt (E2
- i?0 " R?

'

The charge on the sphere is

e^^R^^^^-iV^V,).

In like manner, at the surface r = R2 ;
differentiating by -r, we

get for the charge e2
',

^=#4(1^-^)=-^

To find the charge at the outer surface r = RS) we must

redetermine the constants A and B. Since = 0

^=5 = 0,

J.F=
r

'

F—

^

4 = - V2R3i

dV = V2R3

dr r2

__±(dV\ V2

and the charge at the outer surface

e2
" = 4iriJ3V3 = V2RS .

The whole charge of the conductor 2 is

e2
= + =^\(V, - F) + F2E3 .

We accordingly have for the coefficients g

RiR2 RiR2 p
^u ~ R„ — Rx

'
qw~R^R1

+ "
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143. Condensers. The capacity qu decreases as R2 in-

creases, becoming equal to R1 when R2
= oo . Accordingly by the

presence of the envelope the capacity of the sphere is increased

R
in the ratio

2

P which may be made very large. Such an

arrangement of two conductors, by which the presence of the

second largely increases the capacity of the first, is called a con-

denser, for by it a larger quantity of electricity is condensed on

the first by raising it to a given potential, the second being to

earth. The coefficient qu , or — q12 which is here equal to it, is

called the capacity of the condenser, and will be denoted by K.

It is not necessary that one conductor shall surround the other.

If it does not, we shall not have q12
= — qU} but in any condenser

we shall suppose the coefficients qn> q22) - q12 to be nearly equal.

In that case we need not distinguish between the two conductors,

or plates, of the condenser.

The energy is

Wv = J qn V^ + J q22V2
> + quVlV2

= J qn (V, - V2y + 1 {q22
- qu) V? + (?M + qu) VXV2 .

In virtue of the supposition made regarding the q's, the last

two terms are small compared to the first, and we may write

or the energy of a charged condenser is proportional to the square

of the difference of potentials of the plates. If one of the plates

is to earth this is accurately true, and this is generally the condi-

tion in practice.

Now e1
= qn V, + q12V2

= qu ( Ti - V2) + (qn + q12) F2 ,

or ^ = - e2 = jfiT (Fx
- V2),

to the same order of approximation, and the two plates of a con-

denser receive equal and opposite charges, proportional to the

difference of their potentials. Using

we get

Tir 1 ef 1 e2
2
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or the energy of a condenser is proportional to the square of the

charge of either plate. Since the forces tend to cause Wv to in-

crease, if the potentials remain constant, and We to decrease, if

the charges remain constant, the capacity K tends in any case to

increase.

In the case of the sphere, if R2
— RY be denoted by r, and if S

be the area of the sphere whose radius R is the geometrical mean
of R1} -B2 j

T T 4>7TT
'

If r is small, S is approximately the surface of either plate.

144. Concentric Cylinders. If the internal conductor is

a circular cylinder of radius Rl9 the external a hollow cylinder of

radii R2 and i?3? both of very great length, at a sufficient distance

from the ends we have V dependent only on r, and in the space

between the conductors (§ 88 (9)),

AF-— + - — -0
dr2 r dr

'

dV= A
dr r

3

V=Alogr + B.

The potentials of the conductors being VJ and V2}

V1 =A\ogRl + B9

F2 = ^log R2 +B,

V^Vs^AilogR.-logR,),

V^V2A =
los|

a, = —

At the inner surface

1 dV 1 dV V.-V,
J_

47r dne
~~

iir dr
~~

. , R2
* R'

g R,

The charge on a length I of the cylinder is

( r, - Vt)
e1
= 2irRlla1

= I

2 los|
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At the surface r = iZ2j we get in like manner,

v2 — i
,

2 log
R2

R1

Accordingly the capacity of the condenser formed of I units of
length of two conductors is

I

21<*f
If we put i?2 — R1

= t, and consider r small,

k _IR1 _ 2ttE11 _ 8
2t 47TT ~ 47TT

'

where 8 is the surface of one condenser plate.

145. Parallel Planes. If the conductors are two parallel

planes, of great extent, parallel to the plane of XY, at a sufficiently

great distance from the edges in the space between the plates, V is

independent of x and y> and

d2V

Tz~A '

V=Az + B.

If z is measured from the plate whose potential is Vlt and t is

the distance between the plates,

V, = Ar + B,

Fl - F*- A~ JL±.

The surface density on the plate 1 is
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and on the plate 2,

47T V 3^ / z= t 47TT
(To =

The charge on an area S of either plate is

$
e2 = Sa-2 =— (F2

- Fj) = - ^.

The capacity of the condenser is

agreeing with the results in the two preceding cases.

In fact, for any condenser in which the two plates are separated

by a small distance, which is the same over the whole of their

opposed surfaces, we may use the above value for K.

146. Standard Condensers. For the purpose of furnish-

ing a standard of capacity or for measuring quantities of electri-

city when their potentials are known, condensers of one of the

three forms just described, viz., plates, cylinders, or spheres, are

nearly always used. The spherical condenser is the only one for

which our formulas are exact, for in the other two cases some of

the dimensions have been supposed infinite, and we have dis-

regarded the charges on the backs of the plane plates, or on the

outside of the outer cylinder. This difficulty is surmounted in the

D

A C
II M

'

B

Fig. 58.

following manner. If a portion of the plate A (Fig. 58) be separated

from the surrounding portion 0 by a narrow cut, but be placed in

conducting connection with C, the charge on A, if the edge of the

outer portion 0 is sufficiently remote, will be that calculated, for
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between A and B the field is uniform. A being then discon-

nected from 0, its charge may be used by itself. The outer part

G is called the guard-ring, and its function is to render the field

uniform all over the working conductor A. In order that there

may be no charge on the back of A, the guard-ring G is made

part of a closed conducting box D, which has no charge in its

inner surface, hence none on the back of G and A. The principle

of the guard-ring is due to Lord Kelvin*. It may equally well be

applied to the cylindrical condenser, by separating a portion of the

outer cylinder from the ends, which are connected with an envelop-

ing annular box.

147. Absolute Electrometers. The potentials of the

plate of a plane condenser being V1 and V2) the energy is

The force tending to increase r is

The negative sign shows the force to be an attraction. If the

working plate be hung from a balance, and counterbalanced by the

weight of a mass M,

We thus have an electrometer, or instrument for the purpose of

measuring differences of potential. Lord Kelvinsf original instru-

ment has the plate B carried by a micrometer screw, so that r can

be varied, while A is hung from a system of springs, whose

tension, replacing Mg, is constant. In this case Vx
— V2 is directly

proportional to t. In the balance form, used by Rowland and

others, t is constant, and V1
- V2 is proportional to JM. We

have in this case a practical difficulty, in that if the upper plate

* Electrometers and Electrostatic Instruments. B. A, Report, 1855. Papers

on Electrostatics and Magnetism, p. 263.

t loc. ext. § 358.
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approach too near, the force becomes greater and the plate is

attracted still nearer, and is accordingly in un-

stable equilibrium.

The electrometer of Bichat and Blondlot*

consists of a cylinder with rounded ends inserted

concentrically into a hollow cylinder and sup-

ported by a balance. If the ends of the internal

cylinder are far enough from the end of the

external cylinder, the distributions upon them

will be independent of the depth to which the

internal cylinder enters the other. For a certain

distance the field between the cylinders (whose

equipotential surfaces are shown in Fig. 59)

will be the same as if the cylinders were

of infinite length. Let the length of this portion be I. Then
we have

I

Fig. 59.

K = Ko +
21»g |

I

2 log

and the force tending to increase Z, that is, to draw the inner

cylinder into the outer, is

dWy (Fa - F)2

41og^

The difference of potential is proportional to the square root of

the force, and independent of the position of the inner cylinder,

provided only that the cylinders be long enough. This electro-

meter is of course less entitled to the designation absolute than

Lord Kelvins, on account of the assumptions made.

We have now seen that in any absolute measurement of

potential, we must measure a force and certain geometrical

quantities of the nature of lengths.

* Journal de Physique, 2me . S6rie, t. v.
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148. Symmetrical Electrometers. The last described

electrometer forms an intermediate type to the Kelvin absolute

electrometer and the class of symmetrical electrometers, of which

Lord Kelvin's quadrant electrometer is the commonest example.

Suppose a conductor G, Fig. 60, in the form either of a thin

plate or a cylinder, to be surrounded by two conductors A and B,

( c )

B A

Fig. 60.

composed in part respectively of parallel planes or cylinders, and

together forming a box enclosing C. We must then consider the

coefficients

Q'll? ?22> $33) ?12> 2l3 > <?23>

where the suffixes 1, 2, 3, refer to A, J5, C. As in the last

example, the distributions on the edges or ends of C will be un-

affected by a slight change in its position. Besides this there

will be charges on portions where the field is uniform, and pro-

3
portional to , where S is that part of the surface of C on which

the field is uniform. If we displace 0 from the symmetrical

position by changing a coordinate 0, we shall change 3 by an

amount proportional to 6.

Accordingly, if B and G are at potential 0, A at potential

unity has the charge

?u = (hi + erf,

where an and d are positive constants.

If A and G are at potential 0, B at potential unity has the

charge

(^22
==

^'22 •

If A and B are at potential 0, the charge of C at potential

unity is

#33 = ^33 + (Ci - c2) #.

If A is at potential unity, B at potential 0 is not affected

by the position of G at potential 0 whereas the negative charge

on G contains a part proportional to 8. Accordingly

^12
== ^12 ) ^13 ~ ^13 Ci@> $23

= ^23 "f* ^2^*
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If the apparatus is symmetrical

1 dS

4ttt B0
'Ci — Co —

In the quadrant electrometer, the box AB is a flat circular

box divided into four quadrantal sectors,

connected alternately to form the two

conductors A and B.

The conductor C, called the needle,

is of the shape shown in the figure, and

rotates about its center, the angle of

rotation being the coordinate 6. The

couple tending to produce rotation is
Fig. 61.

dW
}

where

Wv = i (on + ctf)V* + J (a22 - c26)Vi + 4 {a* + (d - c2) 0} Vi

+ a12V1V2 + (a13
- Cyd)V1V3 + (a23 + c26>)F2F3 ,

giving

and

If the electrometer is correctly constructed and adjusted cY
= c2 ,

The needle is usually suspended either by a torsion fibre, or

by a bifilar suspension, so that the force of restitution <E> is

proportional to the deflexion, the factor of proportionality being

denoted by A.

In the usual method of use, the potential V3 of the needle

is made large in comparison with V1 and V2 . We may then

neglect the second term in the brackets, and the deflection is

proportional to V2
— Vx . This is called the heterostatic method

of use, the needle being charged by an extraneous source of

potential.

In the idiostatic method, the needle is put into connection

with one pair of quadrants, which are put at the potential to

be measured, the second pair of quadrants being to earth. Then
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* = 1
F >

and the deflection is proportional to the square, instead of to the

first power of the potential. This method does not show the sign

of V like the former.

If the electrometer is not in perfect adjustment, we use the

more general form

$

=

Ad = favs - $cvt
*

+

He, - c>)Vi - cjrjr, + c2f2f3 .

In order to be able to adjust c2
and c2 to equality, two of the

quadrants should be capable of motion toward or from the center,

one roughly, the other micrometrically, so that the amount of

surface of the needle covered by them may be varied. In order

to make the adjustment, we may first put both pairs of quadrants

to earth and observe the deflection when the needle, originally to

earth, is charged. Calling this 00) we have

^=4(Ci~c2)F3
2
,

which shows whether cx or c2 is greater. We may then adjust

until there is no deflection, however the needle is charged.

If a high potential is not available for V
z , we may conveniently

proceed as follows

:

By means of a voltaic battery and two commutators, we may
charge either of the quadrant-pairs to a given potential V either

positive or negative, the other quadrant-pair being to earth. We
thus have four combinations, as follows

:

0 Vi V2

^ ^ ^ > reverse commutator A
02 -V 0 () J)* }

\ reverse „ B
w reverse „ A

04 0 Vj

The deflections are given by

A9S = -ic2F2+ |(Cl - c2)F3
2 - c2VV3 ,

AO^ -lc^ + Hci- c2) + c2VV3 ;
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Taking differences we obtain

A(o% - e1)^2o1rr99

A(6,~e3) = 2c2VV3 ,

c2 #4 — 03

In this manner we can accurately bring the ratio — to unity.

Whether the adjustment be made or not, and without the

necessity of making V3 large, if we can reverse the sign of V
we may by observing 81 and 02 get the correct value, since

so that V is directly proportional to the difference of the two

deflections, or to the arithmetical mean of their absolute values.

149. Induction Electrical Machines. As a further

example of induction in a system of conductors, we shall con-

sider the action of a class of electrical machines typified by Lord

Kelvin's Replenishes

This consists essentially of two semi-cylindrical conductors

A and B called the inductors, and two smaller conductors G
and D called the carriers, which may be rotated as a rigid system

about the axis of symmetry. If Vx be the (positive) potential

of A at any time, V2 that of B, supposed

negative, then if G and D be put in conduct-

ing communication with the earth while in the

position shown, G will have a negative, and

D a positive charge induced upon it. Now on

insulating" C and D, and turning" them until G
Fig 62

is opposite B and D opposite A, if C be put into

communication with B, being nearly surrounded by B
y
it will give

up its charge, thereby increasing the absolute value of the negative

potential of B. D being put into communication with A gives up

its positive charge, and increases the positive potential of A.

The connections of G and D with each other and with A and

B are made automatically by contact springs once in each half

revolution.

If Vx
{n) and V2

{n) are the potentials of A and B after n half-

revolutions, Kx and K2 the capacities of A and B and whatever
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conductors they are respectively connected with, their charges are

If q1 and q2 be the absolute values of the coefficients of induction

of A and B respectively upon the carriers when they are connected

to earth, the charges induced on the carriers are

- qxV^n) on G and - q2V2
{n) on D.

These are given up after a half-turn to B and A respectively,

so that

p (tt+i) — p in) _ n y (n)

p (n+i) — p in) n y in)v2 — ^2 ' l >

or in terms of the potentials,

TT(n+i)— y(n)__<h_ y (n)
Y i — y i K

y (n+i) _ y (n) _ _2l fm

If we write g
2 and for the positive constants ~r and ~r

y
we have

iti K 2

y(n+i) _ y^n) _ q^V2
{n
\

Multiplying these equations respectively by p and q, adding and

subtracting, gives

py^+D _ ?
yjn+D = (^yw _

? y^)) ^ + pqy

Consequently the linear functions

pV1+qV2 and pV1 -qV2

decrease and increase respectively in constant ratios for each half-

turn, and

p V£n) + qV2
{n) =

(p + qV2
{0)

) (1 - pq)
n

,

pVJn) _ qy2
(n) == (jp-prto) _

?F2
(0)

) (1 + i^y*.

As n increases, no matter what the original signs or values of Vx

and V2y pV1 + qV2 tends toward zero, so that ultimately V1 and V2

become opposite in sign, and since pV1
— qV2 increases, the values

of the potentials may be made as large as we please, and increase

very rapidly. If the replenisher be turned in the reverse direction

V1 and V2 are rapidly reduced to equality.
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In Lord Kelvin's form of the quadrant electrometer, a re-

plenisher is used to bring F3 , the potential of the needle, to a

definite value, which is controlled by a small guard-ring attracted

disc electrometer, called the gauge. Descriptions of the complete

instrument are found in Lord Kelvins Reprint of Papers on Electro-

statics and Magnetism, and in the usual treatises on Electrical

Measurements.



CHAPTER VII.

METHODS FOR THE SOLUTION OF PROBLEMS IN

ELECTROSTATICS.

150. Equipotential Layers as Screens. The theorems

of Green, given in § 84, have an important electrostatic appli-

cation. By the first theorem we may produce at all points outside

of a closed surface S the same field as is produced by any electri-

fication within S, whose potential is V, by distributing over the

surface S a certain surface distribution, and if S is an equipotential

surface, the surface density must be

= j_ aZ

If now we place on the surface S a distribution whose surface

density is — a instead of a, its effect on outside bodies will be the

negative of that of the internal electrifications. Accordingly if a

closed equipotential surface completely surrounding electrified

bodies be made conducting, we may cover it with such a charge

as to completely screen external bodies from the electrical action

of the internal charges. By the same theorem the magnitude of

the surface charge is equal and opposite to that of the internal

electrification. By the theorem for an interior point, we see that

upon such an equipotential surface made conducting we may place

a charge that shall shield internal points from the action of the

external electrifications, the magnitude of the shielding surface

charge being now equal to that of the internal charges.

w. E. 19
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151. Green's Function. As a means of solving certain

problems in electrostatics Green introduced a certain function*,

whose properties we shall next consider. Greens problem for a

portion of space t bounded by a closed surface S may be stated as

follows

:

It is required to find a function G satisfying the following

conditions

:

1°. G is harmonic in the whole space considered with the ex-

ception of a single point P.

2°. G becomes infinite at P, but in such a manner that the

function G — ~ is harmonic, r being the distance from the pole P.

3°. The value of any function V harmonic in r is given at the

pole P by the surface integral

<> 7
'-III/I"*-'

A function satisfying these conditions is called Green's function

for the space r and pole P.

The problem is unique, if it has a solution. For if there are

two solutions G1 and G2 ,
by 3°,

w
.

r--lllv^ ds-

so that by subtraction

(4) f^-^^-^dS^O,

for any harmonic function V. But by 2°,

1 1& and (r2—
r r

*

are harmonic, so that their difference Gx
— G2 is also harmonic.

Applying the above result to the harmonic function G2
- G2j

(5)
J|((?

1
-(?2)

9i^--^^= 0.

* Green, Essay, § 5. The name GreerCs Function is due to C. Neumann, who

applies it, however, as does Maxwell, to the function G - ^

.
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But by Green's theorem this is equal to the volume integral

which, as in § 86 can vanish only if G1 — G2
= const. That is, with

the exception of a constant, Green's function is unique. But as in

the employment of the function only its derivative is used, the

constant makes no difference.

Since the function G — - is harmonic, we have by § 33 (2)

<6
> //KI;HM«-i)e^

or transposing,

by § 83 (6). If on the surface G — 0 we obtain

Consequently ifwe can solve Dirichlet's problem for the given space,

obtaining a harmonic function T which takes at the surface S the

values

then the function G = T + -
r

solves Green's problem. Conversely ifwe can solve Green's problem

for the space and for any pole P, the equation (1) enables us to

find any harmonic function V from its values at the surface,

solving Dirichlet's problem.

The problems of Green and Dirichlet are thus exactly

equivalent.

In physical language, Green's function is the potential due to

a positive unit of electricity placed at the pole P together with

that of the charge which it induces on the surface S made con-

19—2
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ducting and connected to earth. If <rG is the density of the

induced charge,

1 dG
<tq = -

47r drii

and (1) is

VP = - 1 1
V<iGdS.

s

Suppose that G is Green's function for a certain space, with

the pole P, whose co-ordinates are a, 6, c, and that G' is Greens

function for the same space, but a different pole P' whose co-

ordinates are a\ b', c. Then there exists the reciprocal relation

that the values of either function at the pole of the other are

equal. For

rP rP>

where the suffixes indicate from what point the distance is measured.

Now since T and T7
are harmonic, by the property of the two

Green's functions G and G'

,

(8)

so that

(9) w[r,-ry=//(r^-rdG' „,dG\
dS

dn

^ (rv
d

=//(rI
:-^HKr^- r'-r/^

The last integral but one vanishes because T and V are harmonic

functions, while on account of the surface values of T and the

last becomes

rp> on rP on /

Since both the functions l/rP and l/rP' are harmonic except at

their poles P and P', by constructing small spheres about the

points P and P' and proceeding as in § 83, we find that the two

parts of the last integral destroy each other (each being equal to
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4-Tr/rpp), so that rp- = T'P . Accordingly we have for the two points

P and P',

(10) Gp> = Yp> -f
-— = r'p + ^7— = G' p.
rPP> ' rPP '

In order to show the dependence of the function G on the co-

ordinates of its pole P let us write it

(x !)
Gr(x>y>z) = g y, 2

>
a> c),

and G' {x, y, z) — g (oc, y, z, a\ b'
y

c').

Then by the above theorem

G (a', b', c') = G' (a, b, c),

(12) g (a', b\ c\ a, 6, c) = g(a
}
b, c, a\ b', c'),

or Green's function is a symmetric function of its variables a, 6, c

and a, b\ c.

152. Examples of Green's Function. Plane. Let us seek

Green's function for all that portion of space lying on one side of

a given plane. Let A be the given pole, at a distance a from the

plane, on the left, and let B be its geometrical image in the plane.

Let the distances of any point at the left of the plane from A and

B be r and r respectively. Now for every point at the left of the

plane the function — ^ is harmonic, and for points on the plane,

1
where r = r\ it assumes the value — . It is therefore the function

r

r of the preceding article. We have then

1
(? = --

dG
drii

cos (rii r) cos (rii r) 2 cos 0
h -

r,'2

where 9 is the acute angle included between the radius r and the

normal to the plane. Consequently, the equation

4>7rJJ drii Z7r, 2ir r3
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solves Dirichlet's problem for the left-hand side of the plane. If

we suppose a charge of a positive unit placed at A, and a negative

unit at jB, the plane of symmetry will be an equipotential surface

of zero potential, and we may apply the theorem of equipotential

layers. If the plane of symmetry is made conducting, and the

charge B removed, the conducting plane receives a charge — 1

which screens the space on the right from the action of A. The

surface density on the plane is <7g= — cos #/27rr2
, so that the

whole charge on the plane is, applying Gauss's theorem,

— Iff cos 6 ir, -

This is an example of the second theorem of § 150, the space

on the right being considered internal.

The charge — 1 at B is said to be the electrical image in the

plane of the charge + 1 at A.

Two point-charges A and B are said to be electrical images of

each other in a certain closed surface separating them if either one,

say JS, produces in the portion of space in which the other, A, lies,

the same effect as would be produced there by the charge induced

on the surface made conducting and connected to earth, by the

point A alone, the image B, being removed.

153. Planes intersecting in a sub-multiple of two right

angles.

Let us seek Green's function for a portion of space lying in the

acute angle between two planes intersecting in an angle which is

equal to two right angles divided by an integer. Let the planes

be denoted by 1 and 2, let the pole be P, and let Pj be the

geometrical image of P in 1, P2 that of Px in 2, P3 that of P2 in 1,

and so on alternately in the two planes. Let Qx be the image of

P in 2, Q2 that of Qx in 1, Q3 that of Q2 in 2, and so on. Since the

angle is a submultiple of ir it is easily seen that the series of

images will be finite, the Q's and P's finally coinciding. Let the

distance of any point from P be denoted by r, from any Ps by rs ,

and from any Qs by rs
'. Then the reciprocal of any distance rs or

r8
' is a harmonic function in the space between the planes since

none of the images lie in that space. Also for all points lying on

the plane 1,

11.1 1.11.11,*
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and for all points lying on the plane 2,

11 11 11 11
f
— j ~~~ \J

, ^ ^ V/, V .......

Consequently the function

r \rj. \r2 r2 / \rs r3 J

vanishes for points on either plane, and being harmonic except

at P, is Green s function.

154. Two parallel Planes. If P lie in the space between

two parallel planes the successive images will all lie in a straight

line, and will be infinite in number. Using the same notation as

in the last example, we have the same equations, and the same

form of Green's function, except that we shall have an infinite

series.
00

G=- + 2(-l) >

r i

1 1

155. Sphere. Let A be the given pole, at a distance a from

the center of the sphere of radius R. Take a point B lying on the

same radius as A, at a distance from the center b such that ab=R2
.

Then A and B are said to be inverse points with respect to the

sphere. If M be any point on the surface of the sphere, the

triangles OMB and MAO are similar, for they have a common
angle at 0, and the sides including it are proportional, for by

hypothesis,

R a

R

b B I

a A

Fig. 63.

Accordingly, for points on the surface

r' r , 1 iJl
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r and r being the distances of any point from A and B respec-

tively. Therefore, since 1/r is harmonic in the space containing

A, Greens function is for that space

(3) G =±-*\,

dO 1 dr R 1 dr' _ cos (r^r) iJ cos (v')

97k r2
(j/ii a r 2 dni r2 a r'2

9

(5)
7>A

//
v{^^ +^^]d8,

so that the density of an equipotential layer induced by a unit

charge at A on the sphere made conducting is

. 1 (cos (%r) R cos (r^r

)

(6) ao,=^\~^~~a—i^
Now in the triangles OMB and M40 we have

a2 = R2 + r2 — 2Rr cos (n{r),

^ b2= R2 +r'2 - 2Rr cos (mr ),

so that

cos (tijr) i? cos (^/)

a

2 -
(R2 + r2

) i? (b2 - (R2 + r'
2
))

r2 a r
72 2Rr*

+
a 22ir'8

ii2 — a2

which by (i) and (2) gives ^ ,
and

(9) aG =^-R^~>

(10) VA =
a^^\[ ~d8.

The whole induced charge is

, 1 ff /cos (ri*r) R cos (n{r')
\ j Q6 ~ to J] Vr^ ~ a J
^

and if A is an outside point by Gauss's theorem

so that
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If we should place a charge e at the outside point A
3 and a

charge e at the inside B, the potential on the surface of the

e e
f

sphere would be V— - + ~f
which, if we make e = — Re/a becomes

zero. The action of the charge e at B in portions of space

outside of the sphere may thus be exactly replaced by making the

sphere conducting and removing the charge B. Accordingly the

charges at A and B are electrical images of each other in the

sphere.

Suppose now that the sphere, instead of being connected to

earth, is insulated and charged to a potential V, then beside the

induced charge it will have a uniformly distributed charge VR of

density V/^ttR, so that the whole charge of the sphere is now

(13) E=VR- 6
^, and F=f + £.

The surface density

1 (V R2 -a?
(H) "=Y7r\R + --W
vanishes along the circle Vr3 = a2 — i£2

, which divides the surface

into two parts oppositely electrified. If however

JT a2-R2
Tr a2-R2

y > or V <
(a-Rf ^ (a+Ry

the surface density is of the same sign all over the sphere. Since

the action of the induced charge on external points is the same as

would be that of a charge e' at B, and the action of the uniform

charge is the same as that of a charge VR at the center, the

repulsion of the whole charge of the sphere on the charge

e at A is

, , VRe
,

e'e ^ (V ea
(15) —i- + 7Z—j^ = eR

a2
(a -by (a2 (a2 -i?2

)
2

= f
R5 (2a2 - R2

))

~a2
\

6
a(a2 -R2

y

This is negative, so that there is an attraction, when V= 0, or

E= 0, or a —R is small; that is if the sphere is connected to earth,

if it is insulated without charge, or in any case if the charged

point A is very near to the sphere. On the other hand, by

making V or E of the same sign as e and great enough in absolute
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value, we have a repulsion, when

V\>
ea?

(a2 - jR2

)
2

or E\>
eRs (2a2 - R2

)

a(a?-R?y

156. Electrical Images in a Sphere. Points which are

electrical images of each other, besides having the properties

connected with equipotential layers described above, possess

peculiar reciprocal properties with respect to the portions of space

in which they are respectively situated. There thus arises a

method of finding from the known solutions of electrostatic

problems a new class of problems whose solutions can be found.

This method of electrical images was discovered by Lord Kelvin in

1848*. Suppose as before that A and B are inverse points with

reference to the sphere of radius R, A being outside. Let M and

M' (M outside) be two other inverse points situated at distances

I and V from the center, and at distances r and r respectively

from A and B. Then the triangles OAM and OM'B are similar,

since ah = It = R2
. Suppose a charge e placed at A, and a charge

e' = — eR/a placed at B. If we call V the potential at M due to

the charge e, and V the potential at M' due to the charge e',

we have

(1) V~~rf
* e~ e' r'~ a b~ R~~ t

'

If then we have any number of electrified points such as A,

and find their images B, and if V be the potential of the system

A at any external point, M, then

(2) v=- RZ=JI

will be the potential at M' the inverse point to M
f
of the system

B which is the electrical image of the system A.

We shall give an analytical proof of the same proposition,

based on the method of curvilinear coordinates. If x, y, z are the

coordinates of the point M, of, y\ z\ those of the point M', we have

x/x = y'/y = z'jz and since It = Rr,

, R2x
,
R2

y , R2z
<3) * =-£T> V =~y-> * = y>

I2 = a)2 + y2 + Z2
f
p = x'2 + y'2 + z'\

* Papers on Electrostatics and Magnetism, p. 144.
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If x, y', z are given, we know x, y, z and the position of M, so

that we may consider af, y', z given by the above equations, as

curvilinear coordinates of the point M, disregarding for the present

their relation as rectangular coordinates of the inverse point M'.

Forming their differential parameters,

dx' = R> \~ -—1
dw' =-2R^ dA = -2R2XZ

(4)

dx I
4

j
' dy I*' dz ¥

'

Tx~~ LK T' dy~
M

\P >}' dz~~
£a T'

dz' _ op/* 9T*y? ^-pj1 2z°

dx~~~
AK

l*' dy~
ZU

I*' dz~ W~ T

to t a , , , , 4K%2
. .

,
. ,

Rt 4>RV R*
h?=V=V=V = («

2 + Jf + *2

) + y ji- = y »

(5) h = T =W
It is easily seen that the surfaces, a?' = const., y' = const.,

z — const., cut each other orthogonally, for example the cosine of

the angle between the normals of = const, and y' = const, is

proportional to

dx dy' dx dy' ^ dx' dy
__ ^4

(4 (x3
y + xy3 + xyz2

) ^ 4<xy\ _ ^
dx dx dy dy dz dz \ I

8
I
6

J

We have then by § 87, (5)

(6) AF= l- {A f-

1^ + 1 ^ ?T) + a ri 9^W a
^i^, ^ -t-

dy, ^ 1-
a/ yv% dz

,

and performing the differentiations

d (i dv\ 1 d2v 2
a
(r) ,= 77o + t> 0 , ? ^C.

a*
7

v^2 3a?v z
/2 a^2 v dx dx

Now we have

,'1
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Forming the derivatives for y and z, writing

32 32 32

A' for 1- 1

and comparing with the expression for AV above, we get

But l/l
f

is harmonic except at 0, and therefore

4

(8) A'{|} = F AF-

If we put

F' = ^,then

(9) AT' = |AF,

and we get the proposition that if V is a harmonic function of the

point M
y
then V is a harmonic function of the corresponding

point if'. If the distribution causing V is distributed continu-

ously in three dimensions, the density is p = — A Vf^ir and in the

image the density is p = — A'F'/4<7r so that

(10)
,
= F =

iT

If ds and cfo' be corresponding infinitesimal arcs, expressing ds

in terms of the curvilinear coordinates x\ y\ z

dx 2 dy'2 dz'* I" , 1 „ , l9 , /ox
l
4
ds'*

7y2 V
so that we have for the ratios of corresponding infinitesimal arcs,

surfaces, and volumes

ds' B? Z'
2 dS' R* I'* dr' R6

l'
s

(")
ds ~ f R2 ' dS I

4 R* ' dr 1° R*

The ratio of charges of corresponding infinitesimal volumes is

(I2)
de~pdr I R"

and of the surface densities
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It is to be noticed that if the original distribution is an equi-

potential one, which is the case if it is on the surface of a

conductor, the image will not be equipotential, on account of the

variable factor lfl\ but if we place at 0, the center of inversion, a

charge —RV, its potential — RVJV added to the potential due to

the image gives zero, an equipotential distribution. Consequently

any problem of electrical equilibrium whose solution is known
gives us the solution of the problem of induction by any point-

charge on a conductor whose surface is the inverse of the given

conductor with respect to the point at which the inducing charge

is placed. Conversely the solution of a problem of induction by

a point-charge gives us the solution of a problem of undisturbed

equilibrium. Thus the solutions of the problems treated above

furnish us new solutions.

The image of a sphere is a sphere (including a plane as a

special case) for the equation of a sphere

A. (x2 + y
2 + z2

) + Bx + Cy + Dz + E = 0,

becomes, using the equations (3),

AR* BR2x' CR2y' DR2z

x'2 + y' 2 + z 2
+
x 2 + y

2 + z 2
+

x* + y'2 + z 2
+
x 2 + y'2 + z 2

+ E ~~ °'

that is,

E (x 2 + y
2 + z 2

) + BR2x + CR2y' + DR2
z' + AR*=0.

If A is zero, we have originally a plane, which inverts into a

sphere passing through the origin, while if E is zero, the sphere

through the origin inverts into a plane.

As an example of the method, let us invert a sphere of radius

a/2 charged to potential V about a point on its surface, with

radius of inversion, R = a. The sphere inverts into a plane

tangent to the sphere at the point diametrically opposite the

center of inversion. The charge of the sphere being Va/2, the

surface density is

V

Consequently

lira'

, a3 Va2

l'
3 2ttVz '
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and if we put at the center of inversion a charge e = — Fa,

a = ea

is the density of the charge induced on the plane, agreeing with
the result of § 152. Inverting the distribution induced by a point-

charge on the two parallel planes gives us the equilibrium

distribution on two spheres tangent to each other, and inverting

the distribution on two intersecting planes gives the equilibrium

distribution on two spheres intersecting at an angle which is a

sub-multiple of two right angles. For the full treatment of these

and other examples the reader may be referred to Lord Kelvin's

Reprint of Papers on Electrostatics and Magnetism, xiv, xv,
and to Maxwell, Treatise, Vol. I, Chapter xi.

157. Distribution on Spherical Bowl. As a final example
we shall work out the solution of the most remarkable problem
that has been treated by this method, namely the distribution of

electricity on an open spherical bowl, or segment of a sphere.

This is the only case in which the distribution on a portion of a
geometrical surface has been solved, except in the case of the

distribution on a circular plate, the inversion of which gives the

circular bowl. We shall not follow the method of Lord Kelvin, but
that given by Lipsehitz* who solved the problem independently,

being unacquainted with the existence of a previous solution.

Let R be the radius of the sphere of which the bowl is a segment,

Fig. 64, and let the radius of the

opening be a. Let the surface of the

bowl be denoted by S, and let the plane

surface which closes the bowl, of radius

a and distance c from the center of the

sphere, be denoted by 2. Inverting

the figure with respect to the center

of the bowl and radius It, let the

spherical segment into which the

plane 2 inverts be denoted by 2'.

Let the space enclosed between 8 and

2 be denoted by T, that between 2
and 2' by T", and the remaining portion of space by T. Let

T'

Fig. 64.

* Lipsehitz, BorchardVs Journal, Bd. lviii., p. 162, 1861.
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us now form a function W which behaves at infinity like a

potential function, and is harmonic in all space, except that it is

discontinuous everywhere on the spherical segment S. (If it were

not for the discontinuity, such a function would vanish everywhere.)

Let us also form a function W defined by

(1) W'{x,y,z) = jW[j
2 ,

jf-, -j,

= jW(x', y\ z
f)=

l^W{x\ y\ z').

Multiplying by l/R = R/f,

(2) W(x\y',z) = f W'(wiy,z) = $ W'(^f 9 ^
If the values of the functions for points internal and external

to the sphere 8 be distinguished by the suffixes i and e, on the

surface 8, since x = x\ y = y\ z = z\

(3) Wi'=we , w;=Wi.

W y, z) vanishes for I = oc and is finite for I = 0 since

(4) W t

(x>
y,z) = ^W(x\y f

)
z

f

) and

lim W = 4 lim VW (x\ y\ z') = const.

Let us now put

(5) V(x, y}
z)=W (x, y, z) + W (x

9 y, z\

and we shall show that the function W may be so defined that V
will be the potential of an equilibrium distribution on the spherical

segment.

We have seen in § 141 that the potential at any point due to

an equilibrium distribution on a circular disc of radius a is

a [2 a

where A, is the greater root of the quadratic

x2 + y
2 z2

a2 + X
+
X
=

*

The derivative of this function according to the normal of

course has a discontinuity by changing sign on crossing the disc.

If we consider the disc placed in the mouth of the bowl, on
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account of the change of ^-coordinate we must take X as the root

of the equation

(6)
g!±^4>~ c)2 =lK) a2 +X +

X

and if X' be the same function of x\ y'
y
z that X is of x, y, z we

must have

(7) ^ + Sr- =1
'
or

We will now define our function W by two different analytic

expressions.

In the space T we take

2 a

and in the space T' and T"

IF = ~" — tan"
2 a

This makes TF continuous at S as required, since on the disc

X = 0, and the change of sign in the second term makes the

normal derivative continuous in crossing the disc 2. By the

definition of W we have in T and T" (since the inverse of T is T\

and of T" is itself)

and in T

Accordingly we have for the values of V in

2 a 6 \2 a

(9) r. F'-|-,m-.f+ f(| + ta„-.f),

T", 7"=? - tan- ("J- tan-
2 a I Y2 a
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The function V is everywhere continuous, for W and W are

continuous except at S and there, by (3),

(lO) Vi^Wi+W/^We'+W^Ve,
so that V is continuous.

We have already seen that the derivative of W is continuous

in crossing 2, and accordingly that of W is continuous in crossing

2'. Now the derivative of W is continuous in crossing 2', since

W is defined by the same continuous analytic expression in T and

Z
7
", and the derivative of W is continuous in crossing 2, since W

is denned by the same continuous analytic expression in T and

T". Accordingly the derivatives of V as well as V itself satisfy

the required conditions of continuity, and on S, since

x = x, y — y, z = z', l — R, X' = X,

we have V = ir and V, the function assumed, is therefore the

potential of an equilibrium distribution on the bowl. At the

center of the bowl we have on the one hand

while in order to employ the formula (9) we have x = y — z = 0,

\ = c\

But when I is infinitely small, X' must be infinite of the second

order, as we see by making I infinitesimal in the equation

(8) a- + y
. + ^_gyg+i)=(a«+V)|

i
.

The terms of the lowest order are

x2 + y\ + z2 = -^.

Hence approximately
ft4

and

W (0) = lim -7- — tan-1 -j-) — 1™ 1 tan-1 ~ = ~ .w
i=o I \2 la) i= 0 I R2 R

Therefore we have finally

(12) F(°)^ +tan1 + rl'
<I3) e = i^^ + tan-1^ + a.

w. E. 20
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If we call 7 the angular half-opening of the bowl, a/R = sin 7,

a/c = tan 7 and the charge of the bowl is

(14) e = R (tt — 7) + R sin 7,

giving as its capacity

(15) iz- « 2J^±^.
V TT

To complete the problem we have to find the surface density.

We find

(16)
dV 1 1 ax E 1 1 3X'

,
^ ' 2a Vx 9rc* ( ! .

X" 2a Vx' 9%
a2 a2

R dl /V x ,
Vx7

~ — tan-1
I
2

drii V2 a

9^
x +

^
' 2a Vx 3^

+
i

x
V ' 2aVx7 9w«

a2 a2

^+tan-^

Now on the surface S

X — ^ 9X' 9X
; ^ _ _ 1

dn dn'
1

dn e drii

and therefore

(18)
SF=If-- tan"1—

^) +
a —

dn{ R\2
an

a J <y 4- X) Vx 9w*

'

/ x
3F' 1 /tt

,
, . Vxa a SX

(19) — = — - + tan-1— -— - —

.

V yJ Sne R\2 a J (a2 + X) Vx dne

Now the direction cosines of the normal ne being x/R,y/R,zj

R

y

we have

, x dX _ x dX y dX z dX

dn e Rdx Rdy Rdz
'

The quadratic for X is, cleared of fractions,

(21) X (a2 + X) - (x2 + y
2
) X - (z - cf (a2 + X) = 0,
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which being partially differentiated gives

[a2 + 2X - (x2 + y
2

) -(z- c)
2
] — = 2\x,

(22) [a2 + 2X - (x2 + y
2

) -(z- c)
2
}

d~ = 2\y,

[a2 + 2X - (x2 + i/
2
) - 0 - c)2] ^ = 2 (a2 + X) 0 - c).

Multiplying these respectively by y/i?, z/R and adding

gives

, \ 8X _ 2X [(x2 + y
2 + ^2

) - C2r] 4- 2a2£(> - c)

^ 3 ' 3^" ii [a2 + 2X - (x2 + y
2
) - (z - c)

2
]

'

Putting now x2 + y
2,

4- z2 — R2 = a2 + c2 and using the quadratic

(2 1 ), the numerator 2 {\(R2 — cz) + a2z2 — a2
cz], becomes equal to

the denominator, 2R (X + cz — c
2

), multiplied by (a2 + X)/ii so that

finally

z x 3X 3X a2 4-X
(24) = _ = ^

,

CWg 9^- it,

and for the density within and without we obtain

o- . = - JL 8F= _ _L j
77* _ tan-1— -—

47r 3??^ 47ri? (2 a Vx,

T f a ^ ,
a

7= — tan-1
4tt2E (Vx Vxj

'

(25)

1 3F' 1

47r 3n„ 4-7ri2

7r , . Vx a )- + tan"1 Y-r=\
2 a VxJ

47T2i?
( VX VXj

'

The difference of the densities within and without is V\^ttR.

The smaller the opening of the bowl, the smaller is the density

within. At the edges of the bowl, where X becomes zero, the

density is infinite, as in the case of the circular disc, but the

capacity in either case remains finite.

158. Application of the Conformal Representation to

two-dimensional problems- In cases where the densities of a

distribution are the same at all points situated on the same line

parallel to a given direction, as for instance, in the case of the

20—2
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electrification of very long cylindrical conductors at a distance

from the ends, the potential is independent of the coordinate whose

axis is parallel to the given direction, and Laplace's equation

reduces to two terms.

^ dx2 dy2

Such problems are called two-dimensional, or uniplanar, since

the distribution is the same in all planes parallel to a single one.

For the solution of two-dimensional problems the method of the

conformal representation by means of functions of a complex

variable gives a powerful method. Let V be a function of x
y y,

holomorphic in a certain region of the plane. Let us make a

conformal transformation of the plane by means of two conjugate

functions u, v. V then becomes a function of u, v in the trans-

formed plane. That is, u, v are to be taken as rectangular

coordinates in the transformed plane. Then to every point P in

the original plane, having the coordinates x, y, there correspond

definite values of the functions u, v, and the point P' in the

transformed plane having the coordinates u, v corresponds to the

point P. To corresponding values points P and P' belong the

same values of V. Thus level lines of V in the XF-plane corre-

spond to level lines of different form in the Z7F-plane. We shall

first show that a certain function of the derivatives of V remains

unchanged if we replace in it one set of rectangular coordinates x, y
by the other u

}
v.

Considering V as a function of u, v

3F= 3Fau
+
aFch; VV^dVdu

+
dV dv

dx du dx dv dx
9

dy du dy dv dy
9

^ dx2 du2 \dx) dvdu dx dx du dx2

^Vdudv_ cfV /dv\ 2 dV(Pv_

dudv dx dx dv2 \dx) dv dx2 9

d2V_d^fdu\ 2 ^V_dvdu dV&u
dy2 ~~ du2 \dy) dvdu dy dy du dy2

d2V du dv
^

d
2V (dv\ 2

t

dVd2v

dudv dy dy dv2 \dy) dv dy2
'
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Adding the second derivatives, and making use of the funda-

mental equations of conjugate functions, § 42 (A), § 44,

du dv dv

dx dy
?

dx

du d2u d2u _ d2v d2v

dy' dx2
+
dy

2==
dx2

+
dy

2=z
'

we obtain

{3)
dx2

+
dy2 ~ \du2

+
dv2

) \[dx)
+

[dy) )
*

If we call

du2 dv2 '

we see that in a conformal transformation the second differential

parameter A'V of any function V in the transformed plane is equal

to the second differential parameter AF for the corresponding

point in the original plane divided by the square of the ratio of

duj
at the point P' (§ 43). Consequently

dz
linear magnification h =

a harmonic function of x, y is transformed into a harmonic function

of u, v.

In like manner squaring the first derivatives and adding, we
obtain

(4)
/dry idr
\dx dy

vrv fdr^ 2

+
du dv

fdu\ 2 /dv> 2

dx) \dy,

Calling

we see that the square of the first differential parameter hv pos-

sesses the same property with regard to the transformation.

Dividing equation (3) by (4) obtain

(S)
AT
hir2

d
2r d2r—i

—

dx2 dy2

'dry /d
2rv

dx) \dy )

d2r d2r— ^

—

du2 dv2

fdr
du

+
dv

AT
X72

or the ratio of the second differential parameter of any function to

the square of the first is unchanged by a conformal transformation.

We may call such a quantity an invariant of the transformation.
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We now require the condition that an equation (%, y) = 0
represents an equipotential family of curves. In this case we shall

have for the potential function V, F=f(<j>) and as in § 108, (2)

rifV d2V
(6) AF=^A* +^V = 0,

so that

(7)
da?

+
dy2

_ _d£ _ f" (<f>)

Kdx J \dy J d<$>

The right-hand member depends on cf> alone, consequently the

left hand must also. Consequently in order that (%, y) = C shall

represent an equipotential family the ratio of the second to the

square of the first differential parameter of cf> must be a function

of $ alone. Let now (00, y)—C represent an equipotential family,

and let <I> (u, v) = C be the transformed family. Since by (5)

h<s>'
2 h^2 J

and since A^/h^2 depends only on <£, A'<I>/yV 2 will depend only on

<I>, for cf> and <E> are constant together.

Accordingly a conformal transformation leaves every equipo-

tential family equipotential. It is upon this property that the

application to electrostatical and other physical problems depends.

If we integrate the second parameter of V over a portion of the

XF-plane where it does not vanish, using the element of area in

curvilinear coordinates

, a dudv
dS=

(8
> JJfe +w) &<HrW +w) it >

and now considering the second integral to refer to the trans-

formed plane, and e and e
r

to be charges of corresponding regions,

(9) e= jjp docdy=-^ jj
AVdxdy = -^ jj A'Vdudv

=
jj

p dudv = e,

or corresponding regions in the two planes have equal charges (the

densities being different).
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If 'VP be the conjugate function to V, we have for the charge

upon any conductor V— G between points A and B,

f
B

, 1 [
B dV,

e — I ads = — -r- \ _ as
^7T J A dne

B(dV
, , dV

, XKcos (nex) 4- ^r— cos (ney) \
as,

4>7r J A [dx 3y

or since cos (nx) ds — dy, cos (ny) ds = — dx}

so that the flux of force of any tube of force is measured by 1 /4ir

times the difference of the values at its two sides of the conjugate

function to the potential, as in § 103.

159. Examples. Eccentric Cylinders. Let us transform

by means of the function w = log z giving (§ 45),

( 1) u — log r = log \/x2 + ?/
2
, v = cf)

= tan-1 ^

.

A pair of parallel planes u= Vl9 u= V2 , transforms into a pair

of concentric circular cylinders r = r1 ,
r=r2 . To the potential

function V=u we have the conjugate function i
f? = v so that

for the charge of the cylinders we have between </> = 0 and 27r,

(2) e= i_
{
^_^o}

= ^.27r = i
)

and the capacity is

(3) ^= ,J tt, = = + 1/2 log -
,
as in § 144.

The use of the fractional linear function w = (z -f — a),

gives us an important new result. Replacing i in

/ x . x + iy + a
(4) ^+t^=——#

x + iy — a

by — i, as a reference to the theory of the complex variable shows

is always possible, gives

(5) u-iv= £
,x — iy — a
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and multiplying together,

(6) u* 4- vz =_ (x 4- a)2
4- y

1

(x — of 4- y
2

'

We will now make use of the results of the preceding example,

denoting, however, by our present u and v what were there denoted

by x and y. The cylinders

u 2, + V2 = Ti u2 -^v2 — r2
2

transform into

(7)
(x 4- a)2 4- y'

= n2
,

(x + a)2 4-

(a? — a)2
4- y

2
~~ ' 2 '

(8)

(# — a)2
4- y

1

which on clearing of fractions,

(x2 4- y
2
) (1 - r 2

) 4- 2a# (1 4- r 2
) 4- a2

(1 - r 2
) = 0,

(x2
4- y

2
) (1 - r2

2
) 4- 2ax (1 4- r2

2
) 4- a2

(1 - r2
2
) = 0,

are seen to be eccentric circular cylinders. Their trace on the new
XF-plane is shown in Fig. 65, which represents the transformation

of the right-hand part of Fig. 24 by means of the function

z 4- a
w = log

z — a

If we denote for either cylinder the radius by R and the distance

of the center from the origin by d> since we may write (8)

Fig. 65.
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1 + r2 /I + r2N 2

(9 ) x> + f + 2a* j—^ + a2 (——

^

1 - rV J (1 - r2

)
2 '

we have

, x 7 r2 + l r + llr n ± 2ar ±2a
(io) d — a~—7 = a ,

—
T
= ry-.

v / r2 — 1 r—l/r r2 — 1 r — ljr

from which

, x d + *Jd2 - B?
(n) rss—tb—

'

Since i2 and r must be positive, we take the upper signs in

(io) and (i i) for r > 1, which makes d > 0, and gives the circles on

the right, the lower for r < 1, which makes d < 0, and gives the

circles on the left.

Now making use of the results of the last example, we have

for the functions V and

V= log r = log V(w2 + v2
),

so that in the transformation, for r = rlf r = r2 ,

V1
= log n = log -g—— ,

(I3) ^ , , d2 + </d*=B>
V2
= log r2 = log

,

and the capacity of the pair of eccentric cylinders is

R ±1

2 logs
(d, + Vd2

2 - tf2
2
) ^

In case r2
= 1, d2 and Ji2 become infinite, and we have for the

capacity of a single cylinder in presence of the infinite conducting

plane x=0,

(IS) K= 1
.

2 l°Z { B )

The formula given above for the capacity of a pair of cylinders

of which one is internal to the other is not convenient in practice,

since we are given not the distances dl9 d2 , but only their difference
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d = d2
- d1} the distance apart of the lines of centers, together

with the radii R1} R2 . We must therefore solve the equations

(1 6) d
* = a

rTZi>
(I7) d^ arf-V

(18) R1 =2a^, (19) R^Za^,
(20) d2 — d1

= d,

so as to obtain rl9 r2 ,
a, dly d2 , in terms of Rl9 R2) d. We need for

use only the ratio n/^. Eliminating du d2 from (20) by (16) and

(1 8), (17) and (19),

(2I) ^SgL^U*
and a by (18), (19),

Taking the sum and difference of these two equations we obtain

(23) R^-R^^d,

(24) *k-?l = d.
r2 rx

Multiplying these equations together

Ri + Rf-RA j^ + !>l = dV

or

b) rj n ' R,R2
>

a quadratic for r2/r2 or r2/rlt Solving we obtain

<26> I =4^ +

± Jkr, + R2y [(12, - i^2 - #]}.

It is easily seen that taking the square root with one sign makes

the whole expression the reciprocal of its value with the other

sign. Consequently we use the upper or lower sign according as

r2 is greater or less than rlt The capacity is accordingly

(27 ) K = 1

21o&
I 2R^2

which for d = 0 becomes ±1/2 log (R^/Hi) as in § 144.



159, 160] CONFORMAL REPRESENTATION. 315

If the two cylinders are external to each other, we must insert

the minus sign on the right of (18), so that the equations are the

same as before, with Rl replaced by its negative. Accordingly

we obtain

<28
> ?r23h. {

*- (3* +Rf>

(29) K =

± Juft+W^'*] [(^ - A)2 - dF]},

1

2 log
-(AV + AV) ± J[<t- - { It, + R,Y\ \dr - (IL-im I

•

The formulae (15), (27) and (29) are important in calculating the

capacities of telegraph wires.

160. Elliptic and Hyperbolic Cylinders. In the pre-

ceding examples we were given a function of a complex variable,

and from that obtained a conformal representation. We will now
consider a case in which we are given a set of orthogonal curves,

and we shall seek a function of a complex variable which will

make them the conformal representation of orthogonal straight

lines. The functions X and ^ defined by the equations

%2

y
2

,

a.
3 + \ 62 + X

or y2

a2 + fju b2 + fi

are a pair of orthogonal coordinates. Solving for x and y we obtain

,
(a2 + \) (a2 + fi)

a2 — b2

(2)

v - a
/(ft2 + X) (&

2 + a*)

and differentiating logarithmically

dx __1 { d\ djuu

x 2 aaU aJ + /i
'

(3)
dy __ \ f

dX dfi
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so that

a2 + X

(4)

d\2

(5) ds2 = dx2 + dy2 =
^ (X- /a)

j(a
2+ X) (6

2 + X)

dp2

(a2 + M)(62 + M)j*
For a conformal relation we must have

ds2 = (da2 + rfv
2
)/^

2
.

Consequently if we put

7 dJx
ait =

7 . C?Lt

2 V(a2 + (b2 + /&)

'

the functions u, v will give us a conformal relation in which the
straight lines u = const., v = const, in the J7F-plane correspond to

the ellipses and hyperbolas X, in the XF-plane.

Integrating the differential equations (6)

u = log [s/a2 + X + V&2 + X},

(7) 1 ,(2/^ + ^ + 6
a = ~ cos 1

J

2 ( a2 -62

Taking the antilogarithm and its reciprocal, of the first equation,

eu = Va2 + X + VFTx,

__u = Va2 + X - VP+X
e

aY-¥ '

Solving these for Va2 + X and V&2 + X,

^ Va^+X = A {e
u + (a2 - 62

)
e~w

},

VftM^X = |- {e
w - (a2 - 62

)

From the integral for v we get

1 + cos 2v 0 a2 + a= cos2 v = ——

.

(io)
1 - cos 2v . 0 62 + ^= sm2 v = 7 ,

2 62 - a2 '
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which give

Va2
-f ^ = cos?;. Va2 — 62, *Jb2 4- /a = sin v. V&2 — a2

.

Inserting the values of the four square roots in the values of x

and y in (2)

, oc = ^ {e
u + (a2 - b2) e~

u
) cos v,

' 1

y = J - (a2 - 62

) e-^} sin v,

(12) a? + iy = J [e
w (cos v + i sin + (a2 — >3

2
) (cos v — i sin v)]

= 1 +
(a2 t2

) e
-{u+iv)

l

which gives the form of the function sought,

(13) z = ±{e
w + (a2 - b2) e~%

or

(14) w = log \z ± Vz2 - (a2 - 62
)}.

We may now conveniently change our unit so that the focal

distance Va2 — b2 shall equal unity. Then the function z becomes

the hyperbolic cosine of w. A table of comparison of the principal

properties of the hyperbolic and circular functions is appended*.

* 160a. Hyperbolic and Circular Functions.

cosh#= | (6
x + e-:c ) sinh a:= J (ex - e~x

)

cosh" 1 x= log (x ± *Jx2 - 1) sinh-1 x= log (x =fc >Jx
2 + 1)

tanh x — sinh a:/cosh x

secha:= 1/cosh x.

(1) sinh (~x)=~ sinh x. (1') sin ( - x) = - sin x.

(2) cosh(-a:) = cosha:. (2') cos(-#)=: cos a;.

(3) cosh2 x- sinh2 x=l. (3') cos2 x + sin2 re = 1.

(4) 1 - tanh2 #= sech2 x. (4/) 1 + tan 2 x= sec2 x,

(5) sinh (x ± t/) = sinh a; cosh (5') sin (#±?/) = sin a; cos?/

d= cosh x sinh y. ± cos x sin 2/.

(6) cosh (a: ± = cosh x cosh ?/ (6') cos (x± 1/) = cos a; cos ?/

± sinh a; sinh ?/ . =F sin x sin ?/

.

, , , , tanh a; ± tanh 7/ , A
. . tan a? =fc tan ?/

(7) tanh(a;±?/) = ~ - ^ . (7') tan(ar±2/)
1
—7 1

—

w/ ^
y

1 ± tanh a; tanh ^
w/ v * ;

1 =f tan a; tan 2/

.10 cosh 2a: -1 . „ 1- cos 2a:

(8) sinh2 x= 0
— . (8 ) sin2 x= .

, „ cosh 2a: + 1 . „ _ 1 + cos 2a:

(9) cosh2 a:=- (9 ) cos2 x — ~
.

(10) ~ sinh x= cosh x. (10') -~ sin x = cos x.
v 7 dx dx
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By means of it we may show that the four functions

cosh z, sinh z, cos z, sin z

give conformal representations which are identical except for inter-

changes of the axes. By means of the equations § 160 a, (15), (i 6),

(15'), (16') we obtain the pairs of functions u, v for the four cases,

and by the use of equations (3'), (3) after division by one of the

factors on the right in the values of u, v we get

I. w = cosh z,

u = cosh x cos yy
v = sinh x sin y ;

(a)
u<2

4.
y2

- 1 (b)
u2 v2 — 1

cosh2 x sinh2 x ' cos2 y sin2

y

II. w = sinh z,

u — sinh x cos y f
v = cosh x sin y ;

(a) + (b) -4—
smn2# cosn2 # x cos2

;?/
sin2

;?/

III. w = cos z,

u = cos a? cosh v = — sin x sinh 3/

;

(a)
u2

+
^ _

1
/
&
x ^2 _ v2,

= j
cosh2

2/ sinh2 y ' ^ ' cos2 # sin2 #

IV. w = sin z,

u = smx cosh 7/, v = cos x sinh
2/

;

(a\
u2

+ ^ — 1
^2

^
2

_ 1
cosh2

7/ sinh2 y ' sin2 x cos2 x~~

(11) ~ cosh x= sinh a\ (11') ~ cos x= - sin x.

(12) ~ tanh a;= sech2 a\ (12') ~ tan a;= sec2 x.x dx x
' dx

( r 3) sinh (ix)= i sin # . (13') sin (ix) = £ sinh x.

(14) cosh (isc)=cos#, (14') cos (ix) = cosh

(15) sinh + = sinh x cos y (1$') sin + = sin a; cosh y

+ icosh x sin 2/. 4- i cos a; sinh y

.

(16) cosh (# + iy)= cosh a; cos y (16') cos (# + ii/)=:cos# cosh?/

+ i sinh # sin y. - i sin x sinh a/.

, . , , . , . v
tanh a; + i tan 1/ tan a; + i tanh w

sinh a; cosh x + i sin cos y _ sin a? cos x + i sinh ?/ cosh ?/

""
cos2 y cosh2

a; + sin2 y sinh2
a: '

~~
cos2 x cosh 2 y + sin2

a" sinh2 y

'
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We see that the straight lines x — const, correspond to con-

focal ellipses, in (I) and (II), while the lines y = const, correspond

to confocal hyperbolas, while in (III) and (IV), the lines

y — const, correspond to ellipses and x = const, to hyperbolas.

The geometrical character of all four transformations being

therefore the same, we shall consider only case I, Fig. 66.

(It is to be noticed that we have interchanged z and w in (13).)

To any line x = const, corresponds the ellipse whose semi-axes

are cosh x and sinh x. When x — 0 the ellipse reduces to the

Fig. 66.

straight line between the focal points u=l, v—0 and u = — l,

v = 0. As x increases the ellipses become continually larger, until

for x infinite they become infinite circles. For any negative x we

get the same ellipse as for the corresponding positive. The lines

y = const, correspond to the hyperbolas whose semi-axes are cos y
and sin y. When y = 0 the hyperbola reduces to those portions of
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the CT-axis outside the focal points and as y increases the hyper-

bolas become continually less sharp, until when y = tt/2 the hyper-

bola reduces to the F-axis. As y goes on increasing we obtain the

same hyperbolas in inverse order. Accordingly the whole of the

£7F-plane is represented by the portion of the ZT-plane lying to

the right of the F-axis and between the lines y = 0 and y = 2tt.

Other regions of the XT-plane of similar dimensions correspond

repeatedly to the [TF-plane. The point x = 0, y=0 corresponds

to the two focal points. We may get a good idea of the corre-

spondence of the two planes by describing any path composed of

portions of horizontal and vertical lines in the XF-plane, and

noticing that when we turn to the right or left through a right

angle in the XF-plane we turn in the same direction in the UV-

plane. Such a path is represented in Figs. 66 a and b, where

the correspondence of the various regions is indicated by the

shading.

Fig. 66 a. -XT-plane.

The whole of the space between two ellipses corresponds to a

rectangle of altitude 2tt in the right-hand upper quadrant of the

XF-plane.
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As we have interchanged z and w since equation (13) we must

interchange x, y with u, v throughout, so that instead of (7) we

use, putting a2 — b2 = 1,

Fig. 66 6. C7F-plane.

Now choosing for the functions V and M*, V= x, ^ — y, we

obtain on the cylinders whose semi-axes are a1 = Ja2 -\-X1 and

a2
— Ja2 + A,2 the whole charge e = \, with the potentials

Vi = log (<h + n/cV - 1), F2 = log (a2 + Jo22 - 1).

The capacity of the pair of cylinders is accordingly

E=± —
2 log

^2 a^ "* ^

«i + v/ax
2 - 1

By interchanging the functions F and ^ we may find the dis-

tribution on the hyperbolic cylinders, and in particular by putting

y=z 0, y= 7r/2 we may find the distribution on the edge of an in-

finite plate in presence of a second infinite plate at right angles

with it beyond the edge.

W. E. 21
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161. Logarithmic Transformation of last case. If we
transform the last figure by means of the function w' = log w

}
we

obtain the whole of the CTF-plane represented on a strip of the

TJ' F'-plane of width 2tt, so that the transformation

(1) w' = log cosh z

transforms the right-hand half of a horizontal strip of width 2ir in

the XF-plane into the whole of the same strip in the CTF'-plane.

Taking the antilogarithms we have

(2) e
w = cosh z = cosh x cos y -j- i sinh x sin y,

that is,

(3) & (cos v + i sin v
f

) = cosh x cos y + i sinh x sin y,

so that

(4) eu ' cos ?/ = cosh x cos y, eu ' sin t/ = sinh x sin

from which, in the same manner as above,

cos2
?/ sin2

?/ 1 cos2
?/ sin2

?; 1

V.5) ^TuiT,cosh2 # sinh2 # 02M
'' cos2

3/ sin2 ?/ e

and taking logarithms,

cos2
v' sin2

?/

- .cosh2 # sinh2
a?

1

(6)
(cos2

?; sin2
?;

«' = -|l0g|;

U = ~ 7Z

2 {cos2 y sin2
?/

From these equations the curves corresponding to x = const,

and y = const, may be immediately plotted by the aid of tables of

logarithms and hyperbolic functions. They are shown in Fig. 67.

It is at once seen that v! is a periodic function of v\ the period being

7r. The figure is the same for negative x and y as for positive. In

order to represent the whole of the i7F-plane corresponding to the

half strip in the XF-plane, we must however let v' vary from 0 to

2tt. The curves x = const, are sinuous curves, v! having maxima for

v = 0, 7r, 27T, ... and minima for v = 7r/2, Stt/2
}

The maxima

u' = log cosh x and minima u'= log sinh x differ but little for large

values of x, since then approximately cosh x= sinh x — e?/2 so that

we may then take out this factor from u'
}
obtaining u' = x — log 2

for all values of v, so that the curves x = const, are nearly straight

lines.

As x diminishes the maxima and minima both diminish, but

get farther apart, the maxima being always positive, while the
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minima eventually become negative. The curves all cut the axis

of v! to the right of the origin, but stretch out farther and farther

2

Fig. 67. U"F'-plane.

toward the left, so that for x = 0 the curve reaches from 0 to

minus infinity, coinciding with the left-hand half of the u! axis.

21—2
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In fact we see from the equation that for any finite u, v' must be

zero when x is zero.

The curves y = const, are different in appearance,.on account of

the minus sign, u has minima for v' = 0, 7r, 27r... having the

values u = log cos y which are all negative, and decrease more and

more rapidly as y increases to tt/2. The maxima of v! are how-

ever infinite. In fact while u increases continuously as v' varies

from 0 to tt/2, as soon as v > y the parenthesis becomes negative

and u is imaginary. The curves y = const, accordingly approach

horizontal asymptotes v' = y. These curves correspond to the

hyperbolas of the last figure, the sinuous curves corresponding to

the ellipses. Corresponding regions in the three figures are simi-

larly shaded. The circle in Fig. 66 corresponds to the vertical V-
axis in Fig. 67.

If we choose for the functions V and the values V=y,
= x, and consider the strip between v' = tt/2 and v = — tt/2, we

have the case of the electrification of an infinite plane with a free

edge, lying between two infinite planes parallel with it at distances

7r/2 from it, and extending to infinity on all sides. Since at a

distance from the edge x is equal to v! -f log 2, the field is straight,

but the charge from the edge to the point uf

is greater by

(log2)/47r than if the plate extended to infinity instead of stop-

ping at the edge. Thus the edge increases the capacity of the

upper or lower side of a portion of the plate of any width by the

amount K = (log 2)/4tt (V2
- = (log 2)/2tt2

. This result may
be used to find the capacity of a circular plate between two infinite

parallel plates at a distance from it d so small that the edge of the

circular disc may be considered straight*. The effect of the edge

is the same as that of increasing the radius by (log 2) cZ/(7r/2), so

that the capacity would be, counting both sides,

R 8 + 2irR . 2d (log 2)/tt _ J?2 2R log 2

2ird 2d it

* Maxwell, Treatise, Vol. i. Art. 196.



CHAPTER VIII.

ELECTROKINETICS. STEADY FLOW IN CONDUCTORS.

162. Ohm's Law. The condition of equilibrium of electri-

city in homogeneous conductors has been found to be that in each

conductor the potential has a constant value. If this condition is

not fulfilled in any conductor, the electrification changes with the

time, if the conductor be left to itself, or in ordinary terms elec-

tricity moves from one place to another in the conductor. The
laws of this flow of electricity were enunciated in 1827 by Georg

Simon Ohm*, although the notion of the potential was unknown
to him. If at any point in the conductor we construct an element

of surface dS, the quantity of electricity q crossing the surface in

the unit of time per unit of area will vary according to the direc-

tion of the normal to dS at the point. That direction of normal

for which the quantity per unit of time is greatest is called the

direction of the current at the point, and the quantity q is called

the current density. The current density is a vector quantity,

and its components according to the axes will be denoted by
u, v, w. If the quantities u, v, w are independent of the time, we
call the state of the conductor a state of steady flow. We shall

now consider the properties of the steady state. If we consider

any portion of a conductor in which there is no electricity created

nor destroyed, as much electricity must enter the space during any

interval as leaves it, or the whole flow resolved along the inward

normal must be zero. Accordingly

( I ) 0 = 1 I q cos (qn) dS = \\{u cos(w#) -f v cos(ny) + w cos(nz)} dS

* G. S. Ohm, Die galvanische Kette mathematisch bearbeitet. Berlin, 1827.
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and as this must be true for any portion of space fulfilling the

above conditions, we must have everywhere in such regions

^ ^ dx dy dz

This is called the equation of continuity, and shows that the

current density is a solenoidal vector. Current lines and tubes

accordingly possess properties similar to those of tubes of force in

the case of equilibrium.

The law of Ohm is identical with that stated by Fourier* for

the conduction of heat, and connects the current density with the

potential, the corresponding quantity for heat being the tempera-

ture. If the conductor be isotropic, that is if its properties are at

each point the same for all directions, the direction of the current

is the same as that of the electrostatic field, and their magnitudes

are proportional, the factor of proportionality depending on the

physical properties of the conductor at each point. If n is the

normal to an equipotential surface at the point in question drawn

in the direction of the current, we have

(3) ^
as the mathematical statement of Ohm's Law. The factor of pro-

portionality X is called the conductivity, and its reciprocal the

specific resistance, or resistivity of the conductor. If X is the same

at all points of the conductor, the conductor is said to be homo-

geneous, if X is variable, the conductor is heterogeneous.

The above equation is equivalent to the three

(4) u = ~ X
te'

V = - X
ty>

W = ~ X
dz-

Inserting these in the equation of continuity,

If the conductor is homogeneous, this becomes AV= 0. Hence

the density p is zero, or there is no free electricity in any portion of

a homogeneous conductor in the state of steady flow"f*.

* Fourier, Theorie analytique de la chaleur, 1822.

f Kirehhoff. "Ueber erne Ableitung der Ohm'schen Gesetze, welche sich an die

Theorie der Elektrostatik anschliesst." Pogg. Ann., Bd. 78, 1849. Ges. Abh., p. 49.
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163. Boundary Condition. Refraction of Lines of

Flow. In passing from one homogeneous conductor to another,

X may be discontinuous, and since the current
#
must be continuous,

we must have at the surface

(6)

or

?i cos + ?2 cos (q2n2) = 0,

\

F

1
cos {FjTii) + \F2 cos (F2n2) = 0,

Xj —
f- \2 «— ~

The boundary condition (6) has a simple geometrical meaning.

Since the derivatives of V are discontinuous only on crossing the

surface, we have the derivatives in any direction t tangent to the

surface, dV/dt the same on both sides of the surface. If 01 be the

acute angle made by the current line with the normal on one side

of the surface, 02 the acute angle on the other, resolving along the

normal,

(7) XLFl cos #! = \2F2 cos 02 .

Resolving along the tangent plane, since this component is

continuous,

(8) sin 6X
= F2 sin 02 .

Dividing the second of these equations by the first, we obtain

^ tan #! tan 02

or the line of flow is refracted on passing the surface, so that the

tangents of the angles of incidence and refraction are in the ratio

Xi/Xa dependent only on the media. The law of refraction is

different from the optical law, in which we have the sine instead

of the tangent, and in the case of the

tangent law we do not have the phe-

nomenon of total reflection, since the

tangent takes all values from zero to

infinity.

164. Systems of Conductors.

All the statements heretofore made

are true for the flow of heat, if V
represent the temperature, but whereas

in the case of heat in passing from one

conductor to another the temperature
Fig. 67 a.
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is continuous, in the case of electricity, in passing from the con-

ductor 1 to the conductor 2, we have at the surface of separation

(io) V,-V,=El2 ,

where E12 is a quantity depending on the nature of the two

conducting substances.

In the theory of heat, if we have a chain of conductors in

contact with each other, surrounded by a non-conductor, we may
have equilibrium, but in the case of electricity this is the case

only if the sum of the discontinuities of potential is zero,

(i I ) E= E12 + E23 + . . . 4-Enl = 0.

Conductors may be divided into two classes. Those of such

a nature that for any number of them an equation of this sort

holds constitute the first class. To it belong all metals (their

temperatures being the same). To the second class, for which

in general such equations do not hold, belong solutions of salts

and dilute acids.

If we have a set of conductors of either class, the constants

E
Vi r+1 being given, and also the conductivity \ as a point-

function, we shall show that the problem of flow is determined

as soon as we are given any two equipotential surfaces.

Let Vji be the potential at one of the surfaces A, VB that

at the other J5.

Let <E> be a function holomorphic in the whole space occupied

by the conductors, satisfying the differential equation

and the boundary condition

at surfaces of separation of two conductors, taking the value

unity for all points of the surface A, and the value zero for all

points of the surface B, while 3$/3n = 0 for all points of surfaces

separating the conductors from the surrounding insulators, or at

infinity, if the conductors reach so far. Then if v1 be the potential

function in the conductor 1 (in which lies the surface A), v2

that in the conductor 2, . . . vn that in the conductor n (in which
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lies the surface B), we may show that in the different conductors

the potential is given by the functions

=
(E + VA - VB) <5> + VB - E,

= (E + VA -VB)<P + VB -E + E12)

= (E + VA -VB)® + VB - E + En + E*,v3

(14)

V ml
= (E + VA - VB) ® + VB - E + E12 + En„2 , n^ ,

Vn =(E+vA -vB)<f> + rB .

For since the function <I> satisfies the differential equation

that is satisfied by the potential, any v8 , which is a linear function

of <i>, must also satisfy the same equation. Also at any surface

separating the conductors r and r -f 1,

and

dnr onr+1

from the definition of the function <3>. At the insulating boun-

dary of any conductor

that is, there is no flow across the boundary. The function v1 takes at

the surface A the value VA , and the function vn at the surface B
the value VB . But these are all the conditions satisfied by the

potential function. It remains to show that the function <E> is

uniquely determined by the conditions that have been imposed

upon it. The problem of finding the function <I> is of the same

nature as Dirichlet's problem, differing from it in that while

the values of <I> are given over part of the bounding surface,

over the remainder instead of <3> the values of d&/dn are given.

Suppose that there are two functions <I> both satisfying the

conditions of definition. Let them be denoted by ^ and <3>2 .

Then let us form the integral taken throughout the conductors

considered

fd (3>x - <E>a)V ,
/3 (<!>!- <W ,

fd - 3>
2)

)
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By Green's theorem this is equal to

-//M-<(*^K(^)

The surface integral is taken over the surfaces A and B, and

the surfaces bounding the composite conductor, the integrals over

the surfaces separating two conductors vanishing in virtue of (13).

But at the surface A, 3>
x and <E>2 are both equal to 1, hence

^-^ = 0,

and at the surface B,^ and <J>
2
are equal to 0, while on the remaining

surfaces d^/dn = d<&2/dn — 0. Consequently the surface integrals

vanish. But the integrand in the volume integral vanishes in

virtue of the differential equation satisfied by both functions.

Consequently the integral J vanishes, but as in Dirichlet's demon-
stration this can only be if <3>i-<I>2 is constant. But since

and <S>2 are equal on the surfaces A and JS, they must be every-

where equal. Consequently the solution is unique.

165. Properties of Vectors obeying Fourier-Ohm Law.
The vectors F, the electrostatic force, and q the electric current-

density are typical of a class of pairs of vector-functions of frequent

occurrence in all parts of mathematical physics, distinguished by
the following properties. The first vector is lamellar, the second

is solenoidal. In isotropic bodies the vectors have the same
direction, and their ratio depends only on the physical nature

of the body at each point. When two vector-functions have these

properties we shall say that they satisfy the law of Fourier-Ohm.
The study of the properties of such vectors is of great importance.

We shall in general call the solenoidal vector the flux-density,

and the surface integral of its normal component over any surface

the flux through that surface.

It is remarkable that the characteristic properties of such

vector-functions are embodied in the single statement that if V,

the potential function of the lamellar vector, is uniform, finite, and

continuous, in a certain region r, its first derivatives possessing
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the same properties with the possible exception of certain sur-

faces 2 at which they may be discontinuous, then if the values

of V are given on parts of the surface S bounding the region r,

and the value of dV/dn is zero on the remainder, the integral J
throughout the region t,

is a minimum* for that function V which makes the vector q

solenoidal, where

(2) u=qcos(qw)=z\^, v = q cos(gy) = X^ ,

w=qcos (qz) = \^ .

For if we change the form of the function V by the arbitrary

amount 8V
}

J+8J= J(V+SV)

The integral with the coefficient 2 is equal, by Green's theorem,

to

on

-/JMI(^£(*£K(»£)}*-
where and n2 are the normals on opposite sides of a surface 2
of discontinuity of the derivatives. On those portions of the

bounding surfaces for which V is given SV= 0, and for the re-

* Kirchhoff, Ges. Abh. p. 44.
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maining parts XdV/dn = 0. Consequently the integrals over the

bounding surfaces disappear, and we have

(4) &/=

In order for J(V) to be a minimum, this must be positive

for all possible choices of the arbitrary function SV. This can

be true only if we have everywhere in the region r

and at every surface of discontinuity 2,

dV dV
AT H A2 ~— = U.

Consequently the statement that J" is a minimum is equiva-

lent to stating that q is solenoidal.

166. Integral form of Ohm's Law. We have seen in § 35

that the solenoidal condition signifies that the flux,

I =
jjq cos (qn) dS

across any surface bounded by the sides of a vector tube is the

same for all parts of the tube. In the case of electrical flow,

the flux is called the current (current-strength, or intensity) in

the tube. Although V has discontinuities, the function <3> has

not. Since we have between any equipotential surfaces A
and B

y

the ratio of the flux to E+VA -VB) the difference of potential

plus the sum of the sudden rises of potential as we go in the

direction of flow, thus depends only on the function <&, which
depends only on the configuration of the space r, and the values

of the function \. That is, the ratio of the flux in any tub^ of the
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vector qtoE plus the difference of potential between two equi-

potential surfaces depends only on the physical properties of the

substance in the tube. This is the usual form of the statement of

Ohm's Law, and is the integral form, whereas our previous state-

ment was the differential form. In the case of electrical flow,

the difference of potential VA — VB is called the external

or electrostatic electromotive force from A to B
}
and it is

evidently the line integral of electrostatic force along any line

from A to B. E is called the impressed, intrinsic, or internal

electromotive force. The ratio G of current to total electromotive

force is called the conductance of the tube. Its reciprocal R is

called the resistance of the tube.

If we consider a closed tube of flow, the two surfaces A and B
will coincide, and we shall have the ordinary expression of Ohm's

Law,

E
I = CE = Y)

)

or:—For any closed tube of flow, the current is equal to the

impressed electromotive force divided by the resistance of the

tube.

167. Heat developed in Conductors. We shall now con-

sider the physical meaning of the integral J in the case of elec-

trical flow. In passing from a point where the potential is VA to

one where it is VB a unit of electricity does VA — VB units of work,

and that quantity of electrostatic energy thus disappears. Also at

every surface of discontinuity, Er r+1 units of work must be done

upon it. But if we consider heat as a form of energy, if

mechanical energy disappears, an equivalent amount of heat must
make its appearance. If accordingly we find energy appearing in

no other form, the electrostatic energy W that disappears, to-

gether with the work done by the impressed electromotive forces,

must be converted into heat. In the case of steady flow we find

this to be the case.

In unit time the quantity

/ =
Jjq

cos (qn) dS

crosses any section of a tube of flow, so that considering that part

of the conductor between the equipotential surfaces A and B we
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have I units entering at potential VA and emerging at potential VB .

The energy converted into heat in that portion of the conductor

will accordingly be

(I) ~^ + EI =H = (E+ VA — VB) I =

dS.

But transforming the integral, § 165 (i), by Green's theorem,

and taking the normal at A, B, and the surfaces of discontinuity

always in the direction of the current,

(a) jjvxfn dS + ^jj(vrxr
|E - vr+1xr+1 g) as

+
SL

vxd^ d8

[doo \ dx J dy\dyj dz\ dz ))

The volume integral vanishes by the equation § 162 (5), and

in virtue of the surface conditions § 164? (10) and (13),

(3) J=-(E+VA -rB)jf^d8 = H.

The integral which is a minimum in the actual distribution of

current accordingly represents the heat generated in the conductor

in the unit of time.

The equation (1), written

(4)
ElJJ +H>

is the equation of activity for steady currents. It may serve for

a definition of the magnitude of an impressed electromotive force,

as the rate at which energy is taken into the system per unit of

current in its direction. Combining with (1) the equation of

Ohm's Law,

(5) RI =E+VA -VBi

we have

(6) H = RI\
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This is the equation of Joule's Law*:

—

The heat developed in any portion of conductor in unit time is

equal to the resistance of that portion of the conductor multiplied

by the square of the current traversing it. This law is universally

true, whether the flow is steady or not.

168. Sources of Electromotive Force. Suppose we have

a closed circuit of a number of different conductors. We have

already seen that if all are of the first class there can be no cur-

rent. Suppose that one only is of the second class, and let its

suffix be 1. Then for all the others we have

E2Z + ^34 + n + Em = 0,

so that the total electromotive force around the circuit is

E =E12
— En2 +Em = E12 +E2n + Eni ,

depending only on the conductor of the second class and the two

of the first class in contact with it. Such an arrangement is called

a galvanic or voltaic cell.

In a conductor of the second class traversed by a current,

chemical actions go on, whose laws were discovered by Faraday

and Helmholtz. Such actions belong to the subject of electro-

chemistry, which is a branch of thermodynamics, and will be

treated by the author elsewhere. For the same reason the theory

of thermoelectromotive forces will not be treated here.

We have so far considered impressed electromotive forces to

exist only at certain surfaces, where the potential is discontinuous.

If, starting at any equipotential surface in a closed conductor, we
plot the potential as an ordinate, on a diagram in which the

abscissa is the resistance from the initial to any other equipotential

surface, the curve will be composed of portions of parallel straight

lines, whose slope is proportional to the current. The total

impressed electromotive force will be equal to the sum of sudden

rises minus the sum of sudden falls as we pass in the direction of

the downward slope. It is evident that the discontinuities may
occur at as many points as we please, and that provided the alge-

braic sum is the same the current will be unchanged. It is

evident, comparing the two figures in which this is the case, and

* Joule. "On the Heat evolved by Metallic Conductors of Electricity, and in

the Cells of a Battery during Electrolysis." Phil. Mag. 19, p. 260, 1841.
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the slope of the broken lines is the same, that the more evenly the

discontinuities are distributed the less is the maximum difference

of potential between various parts of the circuit. By making

the discontinuities small enough, we may therefore, without chang-

ing the current, make the differences of potential in the circuit as

small as we please. In the limit the electromotive forces would

be continuously distributed, and there would be no difference of

potential. In that case there would be no electrostatical electro-

motive force. Such a continuous distribution of electromotive

force may be produced by electromagnetic induction, the theory of

which will be given at length in Chapter XII. The existence of

a current does not, therefore, imply differences of potential.

169. Conductors in Parallel and Series. By the defini-

tion of conductivity of a current tube, it is evident that the

conductivity of any number of current tubes between the same

two equipotential surfaces is the sum of their individual conduc-

tivities. Now those portions of the surface of any conductor

which are in contact with an insulator are portions of the sides of

a current tube, for there is no flux across them. If then two equi-

potential surfaces are given in such a conductor so that the

current flows in at one and out at the other, these surfaces are

known as electrodes for the conductor, and if the electrode sur-

faces of several conductors are brought into contact and kept

equipotential, the conductivity of the system is the sum of the

individual conductivities. The essential in this proposition is that

the contact of the several conductors shall not change the form of

the equipotential surfaces that have been called electrodes. This

condition is sure to be fulfilled if the conductors are linear, that

is if each conductor forms a tube of flow whose cross-section is

small enough to be neglected in comparison with its length. The

electrodes in this case reduce to surfaces of infinitesimal area, and

may be regarded as points. Conductors having two common

electrodes are said to be connected in parallel, or in multiple arc,

and for such the resistance B of the system is given by the

equation,

It J?! R2 Rn

The resistance of the system is evidently less than any of the

separate resistances. If several conductors be placed in order so
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that each is in contact only with the preceding and succeeding,

the system forms a single current tube, and the current is the

same through any cross-section. The conductors are then said to

be connected in series. If the surfaces of contact are equipoten-

tial we may apply Ohm's Law to each conductor. The potential

at the entering electrode of the rth conductor being Vr , and at the

issuing electrode Vr', we have

(2) r2
- vi = r2i,

Adding these equations we have

(3) F1+#12 +#23 +En_hn -Vn
' = E+V1-Vn

'

= 7(^ + ^2 + + JRn),

so that if R be the resistance of the system,

(4) R = R1 + R 2 4- Rn ,

or the resistance of conductors in series is the sum of their

individual resistances. If the conductors are linear the conditions

at the ends are sure to be fulfilled.

170. Networks of Conductors. KirchhofFs Laws.
We have so far considered conductors filling a singly-connected

space. In order to treat a conductor filling a multiply-connected

space we have only to reduce it to a singly-connected region by

the insertion of cross-sections, and it is easily seen that if the

difference of potential on the two sides of a cross-section is given

the potential is determined. These cross-sections are most

naturally taken as the surfaces of impressed electromotive force.

Fig. 68.

Suppose now that a conductor has in a certain region a forked or

embranched form, as in Fig. 68. Then a portion of the tubes of

w. e. 22
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flow which fill the portion A of the conductor continue in the

portion B, while the remainder leave them to traverse the portion

C. Then if we consider successive equipotential cross-sections

beginning in the portion A we shall finally reach an equipotential

which is divided into two parts, one lying in B and the other in G.

The last equipotential which does not break up into two consists

of two parts touching each other and touching the surface of the

fork of the* conductor in a common point. This point, and this

equipotential surface may be taken to define the branching of the

conductors, and the surface will be taken for the common electrode

for the three portions A, B, and C. In a similar manner we may
have a conductor branching into any number of portions at a

common equipotential surface. Consider now any network of con-

ductors forming a figure of any degree of connectivity. The

distribution of current and potential is determined when the im-

pressed electromotive forces are given. If the equipotentials of

embranchment are given, we may consider each conductor r between

two successive surfaces of embranchment as a separate conductor,

to which we may apply Ohm's Law,

( 1 ) Er + Vr — Vr
' = RrIr j

for Ir , the total current in the branch, is perfectly defined.

At every surface of embranchment p the equation of continuity

holds, so that if we call the currents in the s different branches

positive if they all flow away from the embranchment,

(2) Ipi + Tp2 + Jps = 0.

For every conductor there is an equation of the form (1), and

for every embranchment one of the form (2). The equations are

all linear in the currents in the different branches and the poten-

tials of the embranchments. They therefore suffice to determine

all the currents and potentials, in terms of the resistances and

impressed electromotive forces, except that the potentials may
contain an arbitrary constant. This is determined if the potential

at any one equipotential surface is given.

In the above we have assumed the equipotentials of embranch-

ment given. It is easily seen however that these surfaces will

vary in form as the impressed electromotive forces vary. Suppose

for instance that an electromotive force be impressed in the branch

C of Fig. 68 so as to make the total current in that branch
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zero. Then all the tubes of flow in A pass into B and the equi-

potential surface of embranchment is as it were sucked up as

shown in Fig. 68 a. The conductor B is now longer than before,

and we accordingly see that the resistance of a branch is not

constant, but depends upon the electromotive forces. This diffi-

culty immediately disappears if the conductors are linear, when

the surfaces of embranchment reduce to points, where the several

conductors join. The resistance is then between definite points,

and the above linear equations determine the distribution of

currents.

Kirchhoff, who first treated the general problem of a network of

linear conductors*, eliminates the potentials by adding the equa-

tions of the first kind above for any group of conductors of the

series forming a closed circuit. The potentials thus disappear,

and for the circuit we have the equation

(3) E1 + E2 -f -f- En = R1I1 + R2I2 + R>nln-

This and the equations (2) for the junctions are generally

referred to as the equations of Kirchhoff's two Laws. Maxwell*)'

treats the problem in the following more symmetrical form.

171. Maxwell's treatment of Networks. Consider n

points of junction, each of which, in the most general case, is

connected with each of the others by a conductor. The number of

conductors in this case is n (n — 1)/2. If some of the conductors

are lacking this will be expressed by putting the conductivities

* Kirchhoff. "Ueber die Auflosung der Gleichungen, auf welche man bei

der Untersuchung der linearen Vertheilung galvanischer Strome gefuhrt wird."

Pogg. Ann., Bd. 72, 1847. Ges. Abh., p. 22.

t Maxwell, Treatise, § 280.

Fig. 68 a'.

22—2



340 ELECTROKINETICS. [PT. II. CH. VIII.

between the corresponding points equal to zero. Let the current

from the point p to the point q be Ipq , and let the conductivity of

the conductor pq be Cpq , the impressed electromotive force Epq .

Then evidently

Ipq — ~ Iqp> Epq — ~Eqp ,
Gpq=Gqpf Ipp = Epp = 0.

The equation (i) may be written

(4) Ipq = @pq (Epq+ Vp ~ Vq)>

Substituting the values of the currents in the equation of

continuity (2) for the point p y

(5) Cpl (Epi+Vp-r1) + Cp>(Ep>+Vp-ra)

+ Cpn (Epn + Vp - Fw) = 0.

Let us introduce a symbol Cpp , defined by the equation

s=n

Cpp = — (Gpi + Gp2 + Gpn) or 2 Cps — 0.

5= 1

The equations (5) may then be written in the symmetrica]

form

(6) Cp.Vr+c^r, + c„rp +
+ Gpn ==: GplEpl 4" Gp2Ep2 + . . . + CpnEpn •

If we add these equations for all the points of junction, the

result will be an identity, so that the equations are not all

independent. The equations therefore suffice to determine the

differences of potential between the junctions, but not the

potentials themselves.

Since in th§ equations (4) only the differences of the potentials

appear, it is evident that we may choose one of the potentials

arbitrarily. Let us therefore put Vn equal to zero, and use the

first 71 — 1 of the equations (6), which are independent, to deter-

mine the potentials Vl9 V2 TV-i- Calling A the determinant

of the coefficients of conductivity,

G2i ,
G22 a

71—1

2, 71—1

Gn—l, 1 Gn_1, 2 an—i, 7i—i
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and Ars the minor of GrS) we have A a symmetrical determinant,

and Arg= Asr , since Gpq = Gqp . The solutions of the equations (6)

are of the form

(7) A.Ft=Ali(CA +«2 + +CmEm)

4- A2j (G21E2l 4- C22E22 4- 4- G2nE2t})

4- Aw_lf j (Cn—i }
i En_Xj j + Cn—i

)
2 En_lj 2

4- Cn—1} n En_lj w).

Inserting these values of the potentials in the equations (4),

we obtain the currents in all the branches as linear functions of

the impressed electromotive forces in the branches. Picking out

the terms containing Ers or its negative Esr in the current Ipq we

obtain

^-g^
dJpq Cj^A^Cys AspGsr &rqGrs 4* Ag^(7gr)

dErs A

GpqOrs (

A

rp A^ krq + ASg)

(9)

In like manner the coefficient of Epq in Ir8 is

3-^r« GrsGpq(Apr A^r Apg +A^g)

A
dl

But since A rg = A gr ,
etc., this is equal to .

Consequently the current produced in a branch pq as a result

of introducing an electromotive force E in a branch rs is the

same as the current produced in the branch rs on introducing an

equal electromotive force into the branch pq. This theorem is

analogous to the reciprocal property of electrified conductors given

in § 136. If

( 10) Apr + &q8 = Aqr + Ap§ ,

an electromotive force applied in one branch produces no current

in the other, and the conductors are said to be conjugate.

172. Heat developed in the System. If we denote the

coefficient

GpqGrs (Ap,. 4- A^g Agf A^g) by Gpqrs >

we have
r=n r=n

(11) Ipq =: ^ ^ ^ GpqrsErs .

r=l s=l
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Now the activity of the electromotive force Epq is JEpqIpq .

Forming the products for all the branches and summing, bearing

in mind that each branch appears twice, we obtain for the total

activity

p=nq=n
| ^ S Epqlpq — ^XXX2 OpqTgEpqErs .

p=l q-1 p q r s

But since there is supposed to be no electrostatic energy, this

must be the heat developed in the system in unit time. The heat

is accordingly a homogeneous quadratic function of the impressed

electromotive forces. If we should solve the equations (n) we

should obtain the electromotive forces as linear functions of the

currents. Then forming the expression for the activity we should

obtain a homogeneous quadratic function of the currents, and by

our general theorem for the heating this must be equal to

^Rpqlpq\
p q

This might be obtained from the equations above by the aid of

certain properties of determinants.

173. Wheatstone's Bridge. As an example of the above

principles let us consider the case of

Wheatstone's Parallelogram or Bridge.

It consists of four points connected by

six conductors, which may be represented

by the sides and diagonals of a parallel-

ogram, or more symmetrically as in

Fig. 69.

Suppose that the only impressed

electromotive force is in the branch 12,

and that we require the current in the

Fig. 69.

branch 34. The equations (6) are

c11v1 + c12r2 + c13f3 +

C

14F4
= C12E12 ,

^21 V\ + + C23 V% + ^24V* = ^21^21 >

GnV, + C32F2 + C„F, + CMVt= 0,

C«Fx + C42 V, + Ci3Vs + CUV4 = 0,
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from which, putting F4 = 0, and using the last three equations,

^21^21 (^31^42 CllC^)G21 C^22 C21

C31 0

^42 0

A

From this we obtain the current in 34,

^12^34 (C31G42 ~~ C41C32)
I34
=

21

if

The current vanishes and the conductors 12, 34 are conjugate,

CS1C42 = C41C32 > that is p- = 75 .

-^41 -^42

This arrangement is used for measuring the resistance of a

conductor in terms of three known resistances. A battery is

inserted in one of the conductors 12, 34, and a galvanometer in the

other, which is called the bridge wire. The resistances in the

other branches being varied until the galvanometer shows no

current, the condition of conjugacy is attained. In practice we

wish to know how much current will pass when the condition of

conjugacy is deviated from by a certain amount, in order to

determine the accuracy with which a resistance can be measured.

We therefore have to calculate the determinant A.

174. Resistance of Linear Conductor of Variable

Section. If the cross-section of a conductor is infinitesimal, and

equal to &>, we may write for the total current

s being the length of the conductor measured from a certain point.

Integrating with respect to s from st to s2 ,

1 2

J j Xco J x
Xco

3

and the resistance is given by

I J 1 Xco
"
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This formula is important in the case of standards of resistance

formed of tubes filled with mercury, the varying diameter of the

tube being determined by a calibration. If the conductor is

homogeneous, X is constant, and if the cross-section is constant,

or the resistance of a uniform wire is proportional to its length

and inversely to its cross-section.

175. Non-linear Homogeneous Conductors. In the case

of homogeneous conductors, X being constant, the equation of flow,

S 162 (5), becomes

dx2
+

dy2
+

as2

or the potential is harmonic. Consequently every theorem on

harmonic functions applies to the potential in this case, and

every method of solving problems of electrostatic distribution may

be applied to the solution of problems of steady flow. We must

have the electrodes of the conductor given. Now by the equation

of Ohm's Law it is evident that the effect of increasing the

conductivity of any portion of a conductor is to make the potential

vary less rapidly there, the current being given. If then a portion

of the conductor be made infinitely conducting its potential will

become constant throughout. Accordingly if we introduce a thin

plate of infinitely conducting material, this will form an equipo-

tential surface and may be taken as an electrode for the conductor.

This supposition will be made in the following examples. Since in

the electrostatic problem the capacity is given by

1 CfdV
dS

and in the problem of flow the conductance by

X r— dS ^

,y j j on
°~~ V,-V1 R '

we find that the conductance of a portion of a homogeneous con-

ductor between two electrodes is equal to 4tt\ times the capacity

of a condenser whose plates have the geometrical form of the

electrodes of the conductor, and whose dielectric occupies the
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space corresponding to that occupied by the conductor. The case

of a straight field, § 145, gives

K=~, (7=*£, R= d
47TCT d 9

\S'

as in the case of the uniform wire. The case of flow radially

between concentric cylindrical electrodes gives, § 144,

K= L r- 2X7rl p _ iog(iW
2 log (RjR,) 9

U
log (R./R,)

9 M ~
2\irl

'

This formula might be used for calculating the resistance of

the liquid in galvanic cells where the plates are concentric

cylinders. The case of radial flow in a sphere from a spherical

electrode of radius R0 (§ 142) gives, if the outer electrode is at an
infinite distance,

K = R0 , C= 47t\R0} R =
A

* „ .

This formula may be used to find the resistance of the earth

between two telegraphic earth-plates. If both earth-plates are

equal spheres buried deeply in the earth at a distance apart so

great that it may be considered infinite in comparison with their

diameters, we may consider the resistance from one to the other as

that of two conductors of the last case in series, so that

27rXjRn

If, as would more nearly represent the practical case, the con-

ductors are hemispheres, with diametral planes in the surface of

the earth, we may consider the space in the preceding problem
split along the surface of flow formed by the plane through the

centers of the spheres, and take the lower half, whose conductivity

will be half of that just found, or

R =
ttXRc

In like manner the problem of the ellipsoid and the circular

disk will give us the resistance between earth-plates in the form of

circular disks laid on the surface of the earth as 7r/2 times that for

a hemisphere of the same radius. It is important to notice that

in any case of geometrically similar electrodes, the resistance is

inversely proportional to the linear dimensions of the earth-plate,
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and not to its surface. This of course comes from the fact that

the lines of flow diverge in all directions from the electrode

instead of remaining parallel. It explains the necessity for large-

sized plates for telegraphy or for the earth connection of a light-

ning rod. In practice, the conductivity of the earth varying from

point to point, the conductivity of the portions near the electrode

plays the most important part, so that it is important that the

earth-plate be buried in good-conducting material. The problem

of the spherical bowl shows that if such a bowl should be made an

electrode immersed in an infinite conductor, the other electrode

being at a great distance, nearly all the current would flow from

the outside of the bowl, the current density being greatest at the

lip.

The method of the conformal representation furnishes a means

of solution for the case of two-dimensional problems, in particular

for the flow of current in a thin plane sheet. Fig. 67 for instance

shows the lines of flow in the case of a long ribbon of conductor

slit along the axis of U'.

176. Correction for End of Wire. We shall conclude

this subject with the consideration of the practical problem of

finding the correction that must be made in the value of the

resistance of a uniform wire when it ends in a conductor so

large as to be capable of being considered infinite. This is of

importance in the case of mercurial standards of resistance, for

the tubes end in large cups of mercury. We shall consider a

right circular cylindrical conductor ending in a conductor of in-

Fig. 70.
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finite extent and bounded on one side by a plane perpendicular to

the cylinder, Fig. 70. We may obtain an upper and lower limit for

the desired correction by an artifice due to Lord Bayleigh* It is

evident that if we introduce anywhere a portion of conductor of

greater conductivity we increase the conductance of the whole. Let

us accordingly introduce in the mouth of the cylinder a plane sheet

of infinite conductivity, thus rendering that circular section equi-

potential. The flow in this case will resemble the actual flow in

that V will be continuous in crossing the plane, while it will differ

from the actual case in that dV/dn will be discontinuous, its

integral over the section, or the total current being continuous.

We may then use for the portion below the mouth the solution for

a straight field, so that the resistance of a length I of radius a is

7? - _L - 1

Above the mouth of the cylinder we may use the formula for the

flow from a circular disk of radius a to infinity, so that the resist-

ance on the upper side is

Consequently the lower limit of the resistance is

1

In a similar manner the resistance of the system will be increased

if we introduce non-conducting surfaces not coincident with the

walls of current tubes. Let us below the mouth of the cylinder

suppose the cylinder split up into an infinite number of cylinders

of infinitesimal cross-section, by means of cylindrical non-conducting

surfaces introduced, and let the current density in these filaments

be maintained constant, in the whole of the cylinder. Then

below the mouth the equipotential surfaces will be planes, but on

the upper side of the plane of the mouth the potential will not be

constant, as we shall show. Consequently at the mouth of the

cylinder Fis discontinuous, while dV/dz is in this case continuous.

Since below the mouth

* Rayleigh, Theory of Sound, Vol. i. § 305.
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is constant by hypothesis, we have

dV/dz = const.,

and if dVjdz is to have the same value on the upper side, V must

there be the same as the potential due to a fictitious (non-equi-

potential) distribution on a disk of radius a of constant density

1 dV 1 qa =
2tt dz 2?r X

'

The mass of such a distribution would be

2
a29m = ira2 a = —
2X

'

The resistance of the upper side may be calculated by Joules Law,

H=RP,

, fdVy fdVy fdVy)

2T= 0

The integral in the numerator being through one-half of infinite

space is 8ir\ times one-half the energy of the distribution on the

disk. The integral in the denominator is 4<7r\ times one-half the

mass of the disk. Consequently

K2
—

where W is the whole energy of the distribution of the disk. This

energy is very easily calculated. The potential at the edge of a

disk of radius p with constant surface density a is

If we introduce polar coordinates, the origin being the attracted

point on the edge, and 0 being the angle included between r, the

radius to the point of integration and the diameter through the

origin, this becomes

7r J r=0 '

2
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The work done in increasing the radius of the disk by dp is, since

the mass is increased by lirorpdp,

dW= V
p
.27r<rpdp }

so that the whole energy of the distribution is

" , 8 „ „ 8 mra ra #W = 2tT<7 Vppdp = 87TO"2 p
2dp = - 7TCT w —

J o Jo » " 'ft'®

2

2a3 = ^

Inserting this in the value of R2

irXm2 37r2\a '

we get

Consequently the infinite conducting mass necessitates a cor-

rection equivalent in value to an increase in the length of the

wire of between tt/4 and 8/3tt, that is *785 and *849, times the

radius of the wire. Lord Rayleigh has succeeded in bringing the

limits still nearer together, and the results have been confirmed by

experiment.

177. Current Sheets. The current-density being a solenoidal

vector, all that has been said about lines and tubes of such vectors

may be applied to current lines and tubes. The current tubes

may be defined by the intersection of two families of surfaces. A
current sheet will be denned as a portion of space bounded by two

infinitely near parallel surfaces, in which currents flow, converg-

ing to or diverging from certain points called electrodes. If the

equation of the surface is q3
= const, and qx and q2 are two coordi-

nates forming an orthogonal system, the flow may be defined by

either the potential V or the current-function which both

satisfy the equation, § 104 (7),

3 (KdV)

Problems of plane current sheets may be at once solved by the

method of functions of a complex variable, and from them any

number of problems for other surfaces may be solved by finding

conformal transformations. Such transformations may be found

practically for a surface by constructing it of thin metal, intro-
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ducing current from a battery to it by various electrodes, and

finding by touching the surface with two sharp conducting points

connected with a galvanometer, the locus of points of equal

potential. Doing the same for any other surface with the same

number of electrodes of the same sign will give a conformal trans-

formation of the two surfaces* If the whole of one surface is

transformed upon only a part of the other, it is necessary to cut

out corresponding parts of the two surfaces, making the whole of

each equipotential edge an electrode. This can be done in practice

by soldering the edge of the sheet to a massive three-dimensional

conductor of great conductivity. Fig. 71 represents the flow in a

spherical sheet corresponding by Mercator's projection to the flow

in a plane sheet given in Fig. 22, and Fig. 47 represents Fig. 23

transformed to the sphere by stereographic projection.

Fig. 71.

* Kirchhoff. "Ueber die stationaren elektrisclien Stromungen in einer ge-

krummten leitenden Flache." Monatsber. der Berl. Akad. 1875. Ges. Abh. p. 56.

Kelvin. " Generalisation of Mercator's Projection performed by aid of Electrical

Instruments." Electrician, p. 553, 1892.



CHAPTER IX.

PROPERTIES OF DIELECTRICS AND MAGNETIZABLE BODIES.

178. Magnetic Phenomena. In the previous treatment

of electrostatics we have supposed all of space not occupied by

conductors to be filled with a single uniform dielectric. In this

chapter we shall remove this restriction and consider the distribu-

tion of the forces when any number of varying media are present

besides the conductors. Inasmuch as all the phenomena here

treated have exact analogues in the phenomena of magnetism, we

shall first briefly describe magnetic phenomena. A magnet is

a piece of loadstone, or of metal, generally iron or steel, possessing

the property of attracting iron, and of attracting or repelling

other magnets. The forces thus developed are called magnetic

forces. A small magnet in the form of a filament or needle, under

the action of any other magnet, tends to set itself in a certain

direction at every point in space, and this direction is said to be

the direction of the magnetic force at the point. A portion of

space in which such forces are exerted on the magnetic needle

is called a field of magnetic force, and may be represented by

drawing lines of force in every portion of it. If the lines of force

are straight and parallel, the field is said to be straight or uniform.

Different parts of a magnet possess opposite properties with

regard to attraction or repulsion, we may therefore consider them

charged with matter of different signs. We make use of the term

matter here precisely as in connection with electricity, not to

denote something which has inertia, but simply something which

attracts, and which is measured by its power of attraction. Experi-

ment shows that any magnet placed in a uniform field experiences

no resultant force, but only a couple. We therefore conclude
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that a magnet is polarized (§ 120). The intensity of the polariza-

tion is called the intensity of magnetization. A magnet may be

magnetized solenoidally, and will then appear to be charged only

superficially. A long thin magnetic solenoid may be assimilated

to two equal and opposite magnetic points. These are called the

poles of the solenoid. It is a matter of indifference which one is

taken as positive—in practice, as the earth is surrounded by a

magnetic field whose lines run roughly north and south, the end

of any magnetic solenoid which tends to move toward the north is

called positive.

It is to be noticed that a magnetic point never exists alone,

but is always accompanied by an equal and opposite point, just as

when electricity is generated, equal and opposite amounts always

appear simultaneously. In the case of electricity we often lose

sight of one of the charges produced, but in magnetism we cannot

do so, though we may remove one of the charges as far as we

please by making the magnet long enough. It was in this manner

that Coulomb, by experiments with a torsion-balance, was able to

investigate the forces between magnetic poles, finding that they

acted upon each other according to the Newtonian Law of the

inverse square. The unit magnetic pole is then defined as the

pole which will repel with unit force a similar pole placed at unit

distance from it. This definition is the basis of the magnetic

system of measurements, which stands in the same relation to

magnetic quantities that the electrostatic system does to electric

quantities. All the mathematical work that has been done for

electricity (with one exception) is then directly applicable to

magnetism. Magnetic potential, density, energy, and so on, are

defined in a similar way to the corresponding electrical quantities,

and their dimensions in the magnetic system are the same as those

of the electrical quantities in the electric system. The exception

noted is that phenomena of magnetic flow do not exist—there are

no magnetic conductors, and no dissipation of magnetic energy

into heat by flow. It may accordingly seem that the principal

part of electrical phenomena, namely the distribution of charges

on conductors, forming the subject of electrostatics, has no place in

magnetism. While this is true, we shall find that a very important

part of electrostatics, namely the consideration of the field in

dielectrics, has exact analogues in magnetism, and these are yet to

be treated.
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If we perform an experiment analogous to Experiment VIII

of Chapter I, namely, suspend two magnets so that two of their

poles may repel each other in the air, and then surround them

by another medium, for instance by a solution of a salt of iron,

we shall find that the magnets fall together, or the system seems

to lose energy. The experiment in this form would be difficult,

but if we introduce into only a portion of the space a different

medium, for instance by introducing a piece of iron between the

magnets, the effect is unmistakeable. We are thus led to con-

clude that the energy of a magnetic or electric distribution depends

not only on the distributions themselves but on the media which

surround them. Many of the mathematical developments of the

preceding chapters must therefore be abandoned, and all must be

examined in the light of this conclusion.

179. Parallel treatment of Electrostatics and Magneto-
statics. Inasmuch as all the phenomena to be considered in this

chapter are exactly parallel, for electricity and for magnetism,

we shall in general not distinguish which they may be, but shall

consider in all cases the words magnetic or electric to be used

interchangeably. We shall accordingly in this chapter not in-

troduce different symbols for the two sorts of quantities, the

necessity for so doing occurring only when both sorts of pheno-

mena exist simultaneously.

Experiment shows that in the general case here considered the

forces experienced by a point-charge are conservative, conse-

quently a potential exists. The law of the inverse square how-

ever ceases to hold in general, and the potential is not harmonic

in free space outside the acting distributions.

When the charges are given, since the forces are different from

those previously calculated, the relation between the density and

the potential must be different from that given by Poisson's equa-

tion. Since however we suppose the force due to any element

to be proportional to the charge of the element, the differential

equation must be linear. Let us examine what conclusions are

true irrespective of the law of force. By the definition of potential

as a quantity of work necessary to bring unit charge from infinity

to any point, it follows, as was found in § 117, that the energy of

any distribution is

(I) Wa^ljfradS+ \fjjVpdT.

w. e. 23
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The theorem on mutual potential energy of two distributions,

§ 117 (5), also holds,

(2) f
fV'crdS + jjjVpdr = jj

Va'dS' +
fjj

Vp'dr'.

By making use of these theorems, we find by the process of

§ 131, that the potential in conductors is constant. All the

theorems on systems of conductors, §§ 136—140, also remain un-

changed, except that the coefficients of capacity and potential

receive different values from those there given.

180. New Law of Force. Action of Medium. We
have found in § 118 that the energy of any distribution acting

according to the Newtonian Law was exactly accounted for by

supposing each element of volume in all space to contain a

quantity of energy equal, per unit volume, to 1/87T times the

square of the total force of the field. Since the phenomena now
to be considered resemble the phenomena of Newtonian distri-

bution to such an extent that it was long before any difference

was discovered, this proposition must be nearly true. We have

found however that the energy depends on the medium as well

as on the distribution. We shall therefore, in order to explain

the phenomena, make an assumption deviating as little as possible

from the above proposition in regard to the energy, and con-

taining it as a particular case, but allowing us to take account of

the medium.

The assumption will be justified if its consequences accord

with experiment. We shall assume merely that each element

of volume contributes to the energy an amount per unit volume

proportional to the square of the force of the field, the factor of

proportionality being a property of the medium, which may vary

from point to point. The whole energy is accordingly

where fi is a positive point-function, which is given as soon as

the substances occupying each region of space are known. For

a homogeneous medium jjl is constant. We shall now insert this

form of the energy in the expression W= 2Wd — Wf , and apply
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the maximum theorem of § 119, which we shall also assume to

hold.* We have now

(4) W=fjaVdS + jjj P Vd

8tt.

73F\ 2 (dVS (dV\*\ ,

Letting V vary without changing the charges <r, p,

( S ) W + SrW=jl<r(V + 8r)d8+jfj p(V+SV)dr

8tt
OO

from which

(6) 8VW= <r8VdS+ pSVdr
oo

4tt
00
^ ' 9# 8# 3y By dz dz

> dr

and by Green's theorem applied to the third integral

i / dV
)nj\

+
oo

P +

8tt.
00

4nr (3a;

f/3SFV ,
/3SF\ 2

dr.

SVdr

If now the energy of the actual distribution of potential is

to be a maximum for all possible values of SV, the first two in-

tegrals must vanish, which can be the case only if throughout

space we have

(8)

* See Helmholtz, Wiss. Abh. Bd. i., p. 805.

23—2
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and at every surface of discontinuity,

(9) <7 =
-4^f1

9Wl
+ ^

These equations will henceforth be known as the generalized

Poisson's equations. They give us the law of distribution of force

in the differential form, and contain the forms heretofore used as a

special case, obtained by putting /ju = 1.

The form of the integral expressing the energy is the same

as that of the integral J of § 165 (i). All the properties of

the integral J are accordingly possessed by the integral Wf. In

particular it follows that if the potential is given at certain

surfaces the condition that the energy shall be a minimum re-

quires that in the space between

/ x
d f dV\ d ( BV\ 9 / dV\ A

(10) ^te) +^Ty) + d-A*Tj = °>

and on surfaces of discontinuity

, . dV dV .

We may call the problem of finding a function that shall

satisfy these differential equations, and take the required surface-

values, the generalized Dirichlet's Problem. The function V may
be called quasi-harmonic.

It is evident, as in § 86, that the solution of the problem,

if there be any, is unique.

We have heretofore said nothing regarding the localization of

the energy of a distribution, which we have represented either by

an integral Wa throughout the acting distribution, or by an integral

Wf, which is expressed in terms of the field at all points of space.

Whereas both representations are equivalent mathematically, it is

a fundamental point in Maxwell's theory to regard the energy as

localized in the medium wherever a field exists.

181. Induction. If we define a vector § by the equations

dV
3E = g cos = — fi

(12) g) = Scos(g#) = -^

doc
'

dV
dy

dV
3 = S COS = - fJL ,
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the vector has, by (8), the property of being solenoidal in all parts

of space where there are no charges. That is

(13) divg =P + f9 +
a3

0<
ox dy oz

The force, or field-strength F, no longer enjoys this property in

general, but does so in a homogeneous medium, for which yu, comes

out as a constant factor. The vector $ is called the induction, and

is connected with the force by the equations

(14) 3e = MX, g) = /*F, 3 = /*£

The induction accordingly satisfies everywhere the law of

Fourier-Ohm.

The surface integral over any surface of the induction resolved

normally to the surface is called the total induction, or induction-

flux, through the surface. The quantity /jl is called the inductivity

of the medium. A more usual name for it is the specific inductive

capacity or dielectric constant, in the electric case, magnetic per-

meability in the magnetic case. The latter name is due to Lord

Kelvin, to whom the recognition of the analogy to the case of

flow in electricity and heat is due.* The name permeability comes

from the hydrokinetical analogy of water flowing through a porous

medium.

m
The lines of induction suffer refraction in the manner described

§ 163 when passing from one medium to another. In the

Eig. 71a.

* Magnetic Permeability, and Analogues in Electro-static Induction, Conduction

of Heat, and Fluid Motion. Papers on Electrostatics and Magnetism, p. 487.
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electric case, /jl does not differ widely for different media, seldom

reaching ten times the value for air or empty space, and never

being less than for empty space, while in the magnetic case, fju

may be, for iron, several thousand times as great as for air, and in

some cases is slightly less than for air. Consequently lines of

force emerging from iron into air are generally nearly normal to

the surface in the air unless very nearly tangential in the iron.

This is exemplified in Fig. 7 la, showing the distribution of lines

of force between the pole-pieces of the field magnet of a dynamo

with the armature removed. In virtue of the analogy to electric

conductivity, it is evident that the lines of force exhibit a tendency

to crowd together into parts of the field where p is large.

182. Relation of Charge to Induction. Since the force

no longer possesses the solenoidal property, except in homogeneous

media, while the induction does, it is more logical to speak of

tubes of induction than of tubes of force, although geometrically

the two coincide. The flux of force through various cross-sections

of a tube, however, varies, while the flux of induction is constant

for the tube.

The volume density is no longer determined by the divergence

of the force, but of the induction, being equal to 1/4tt times the

divergence of the induction, § 180 (8),

^5) p ~4irt&c 3y dz

while the surface density is 1/4tt times the discontinuity of its

normal component, § 180 (9),

(16) a =
^r ^mx + ^m^'

Accordingly the charge of any portion of space t,

47T

dx dy dz

{I cos (nx) + g) cos (ny) + 3 cos (nz)} dS,

is equal to 1/4tt times the excess of the number of unit tubes

issuing from the space over the number entering. We shall call

the densities thus defined, for a reason to be presently explained,

the densities of true electricity or magnetism.
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183. Apparent Charge. Since on passing from one medium
to another where the inductivity is different the force is dis-

continuous, the surface acts as a charged surface has previously

been found to act, § 82. Also since the force is not solenoidal

in a heterogeneous medium, there appear to be bodily charges.

The magnitude of these apparent charges, whose densities are p, &
are given by the usual equations

(18) 0' =-l*V>

and comparing these with the equations for the true densities

we find

,_ir dVdjt dVdji\\
{20) P ~

fi \
P +

4tt \dx dx
+

dy dy
+

dz dz))
9

or in a homogeneous medium

(2D') p' = £

.

fJt*

For the surface density

fil 47T \ /i! /
2

/JL2 %7T \ fJL2 /

The potential is then determined by § 85 (18), as

(22) 7 - - — ff- (— +—1 d#

that is

:

A distribution of charges acting according to the Newtonian Law,

of densities /o' and cr', would produce everywhere exactly the same

field as that actually produced by the true charges p and a. The

Newtonian Law thus reappears, and may be used to calculate the

forces, only the true charges do not follow the law, but the apparent

charges, which are known as soon as the true charges and the

properties of the media are given.
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184. Capacity. Reluctance. In the electric case we have

for the capacity of a condenser whose dielectric is homogeneous, so

that A7 = 0,

{23) K ~^r ( 7, — Fa)
~

4tt (7,-7,)

'

that is, the capacity equal to that found in Chapter VI multiplied

by the inductivity of the medium. This is Faraday's capital dis-

covery,* leading to the development of the theory according to

which the energy resides in the medium, so that electrical actions

are transmitted by means of the medium, and not by action at a

distance. Faraday experimented with condensers in the form of

concentric spheres, the intervening space being filled by the

dielectric in question. The material of the dielectric outside the

larger sphere was accordingly immaterial. Instead of capacity the

term permittance has been proposed by Heaviside.

In the magnetic case, the value of the quantity analogous to

the capacity has been called the permeance or inductance, while its

reciprocal, corresponding to the resistance in the case of electric

flow, was called magnetic resistance by Bosanquet, a name which

has given way to that of reluctance.

185. Induced Charge. The apparent charges denned above

minus the true charges are called the induced charges due to the

action of the forces of the field. If we examine the amount of the

induced charge in a body r surrounded by a homogeneous medium,

we shall obtain an important result. Let the constant inductivity

of the external medium be fily and let us denote the normal

toward the interior of the body t by n{ and the normal toward the

outside by ne . Then if we use the formula (21) for the apparent

charge on the surface we find

(24) ji^ij^-iss^y^,
and transforming the second integral on the right by Green's

theorem this becomes

* Exp. Res. § 1252 seq.
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(25) H^Jj.dS-lff^^Jl^dS

1 fmd/^)+lU d
I) + lJ»

d
-Z)^r.

4*717^ J J J [dx \ dx I dy \ dy J dz \ dz

But by the definitions of true and apparent volume density this is

(26) =1 ffvdS - jjlpdr + 1 jjjpdr,

so that, transposing,

(27) //^ +///^T =i;_ adS + II
J
pdr

or the total apparent charge of a body surrounded by a homo-

geneous medium is equal to the true charge of the body divided

by the inductivity of the surrounding medium. In particular a

body which has no true charge has a total apparent charge equal

to zero, and since this remains true however the body may be

subdivided, the body is polarized. In the magnetic case, the body

is always found to be polarized, consequently we must conclude

that the true magnetic charge of all bodies is zero, or in other

words, true magnetism exists only as polarization. This is a second

apparent difference between electricity and magnetism, but if we
remember that whenever electrification is produced equal quan-

tities of both signs appear, the difference disappears.

186. Polarizations. Since experiments on electrification

and magnetization are almost always made on bodies surrounded by

a homogeneous medium, namely air, it has become customary to

regard their apparent charges as due to the polarizations of the

bodies themselves, although it is evident by § 120 that the surface

charges are due only to differences of polarization on the two sides

of the surface. The surrounding medium might be uniformly

polarized to any degree without producing any effect, consequently

its absolute polarization cannot be determined, and is of no import-

ance whatever. The apparent polarization of the body must

produce the surface density, by § 120 (2),

(28) a = - J cos (Irii).
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But using the equation for the apparent surface density (21) when

the true surface density is zero,

(29) a =
{^^J

Fi cos (Fim),

so that if we put

giving 1" in the direction of F and g, we obtain the proper surface

density. From the components of /,

c = ^
(— — z

4t7T {fa

we obtain for the volume density due to the polarization, § 120 (6)

fdA dB dC

^TT^ydx dy dz) 4<7r\dx dy dz)
'

and since by (18) we have

'=— (— — +^1 = — divi^'33/ P ~~
4<7r\dx dy dz) 4<Tr

we must have

/ x
as, 39, 33

<34) dx+dy
+

dz
=

°>

or the induction is solenoidal. The induction accordingly possesses

the property of the vector called the induction in § 121, and by the

equations (31) is equal to it if fa is equal to unity.

187. Examples. Point-charge in Medium bounded by

Plane Pace. Suppose we have a point-charge e placed at P at

a distance a from a plane face separating two media of inductivities

fa, fi2> their extent being infinite. We may solve the problem of

induction by the method of images as in § 152. Suppose that e

lies on the left of the dividing plane, and that at its geometrical
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image P' we place a charge e\ Then we may determine the

charge e' so that on the left the potential will be the same as

that due to charges e and e placed at P and P' in a uniform

medium, while on the right we shall have V the same as would be

produced by a charge e + e placed at P. For if we put

on the left V~ - + ,

dV e dr e' dr' e — e

on the right V

—

drii r2
dfh r 2 3^

e 4- e'

cos 0;

r

dV
dn2

e + e' dr e + e
cos 0.

r2 dn2 r

But at the surface these must satisfy the equation

^ dV dV , , , A1 cos 0

^drh + ^ fa2

= m(e - e ) ~ v*(e + e )}

Consequently if we put

/*! (e-e')-fi2 (e + e') = 0,

e — e
Ml + M2

'

Fig. 72.
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the condition will be satisfied. The surface density induced on

the surface of separation is

so that the distribution is proportional to the distribution on a

conducting plane, as in § 152. The lines of force in the medium 2

are straight, and the refraction on crossing the plane is shown in

the diagram, Fig. 72, in which /^2//^i = 4. The greater /jl2 the less

is the force in the medium 2, and if we make fx2 infinite, the force

in the medium 2 vanishes, and the surface density becomes

, _ e a
a ~~

27r^'

as in the case of a conductor.

188. Slab in Uniform Field- Suppose a slab of induc-

tivity yu-2 with parallel faces of infinite extent is placed in a uniform

field parallel to the equipotential surfaces, and let the inductivity

of the surrounding homogeneous medium be fa. Then the potential

satisfies Laplace's equation in the slab as well as outside it. Ac-

cordingly the solution for either of the three parts of the field, in,

above or below the slab, is a linear function of the single co-

ordinate perpendicular to the equipotential planes, and the force

has values which are constant, but different, in the three regions.

V,

d fi
2

d
2 A*i

v4

-v
2

Fig. 73.

If V\ and V2 are any two equipotential planes outside the slab at

distances dx and d2 from its faces, Vz and V4 the potentials of the

faces of the slab respectively facing them, and d the thickness of

the slab, we have the conditions at the surfaces Vs ,
V4

(1) faF^faF, faF = faF2 ,

that is

(2) F1 = F2
= ^2

-F.
Mi
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Now by § 145 we have

, w Vi-7, v Vs-Vt F4-F2 _
(3) pi

— _
>

_ ^ =___^,
so that we have the equations

W M(F1-F3) =M(^~F4).

Solving these for Vs and F4

3
/i2 (dj 4- d2) +

?

y _ ^1^2 + F2 (djfi2 + dfa)

from which we get for the force outside the slab

(6) -Fx =
dj d1 + d2 + c^//^

"

In the electrical case if Vlf V2 , are the surfaces of conductors,

the density on the upper plate V1 is

rrt fc _fi1F1

and the capacity of the condenser of area S

aS faS
(8) K V1 -V~kir (d, + d2 + d^/fjL,)

*

By measuring the capacity with the slab and with it removed

we may determine the dielectric constant of the slab in terms of

that of the surrounding medium. If dl
and d2 are zero, the

capacity is

which is, as was stated in § 184, proportional to the dielectric

constant. The apparent surface density on the upper face of the

slab is

Q- ~ J1 ~
47r 47r/t2 47r [/ji2 (dx + d2) + fad]

9

so that the intensity of polarization is

4>7T [fi.z (c?! + d2) + fad]
9

which is in the direction of the force if fi2 >
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189. Point-Charge in Sphere. Suppose we have a point-

charge e at the center of a sphere of radius R of homogeneous

substance of induetivity surrounded by an infinite homogeneous

medium of induetivity fi2 - Then Laplace's equation being satisfied

in either medium, we may use the solution of § 142, and put V in

either medium equal to a linear function of 1/r

A A f

^ = - + 5, F2 = -.

The condition at the surface r — R gives, since

dVi A dV A/_

dn,
~~ R2 9

dn,
"

JS2 '

so that

^dn, +fh R2
v

>

dV
since the integral of %n = — fx over any surface inclosing e

must be kire.

The apparent surface density and charge of the sphere are

4^(3% dn2 ) 4rjr R2
/jl2

e' = kirR2a =e(fi1
— /*2)/Wv

The real charge e at the center acts, by § 183 (20"), like an

apparent charge e//^,and the apparent charge of the sphere e acts

at outside points as if concentrated at the center. Accordingly

the whole force in the medium 2 is

e/fii + el _ e

r2
ft2T

2 '

which is the same as found from — 3 V.Jdr.

190. Unit of Electricity or Magnetism.. If the charge

be situated in a medium of induetivity /n extending to infinity, the

force of the field is, by the above, equal to e/fjur
2 and the action of

e on a charge of ex units is ex times as large, or eeY\yjr
2

. Now the

unit charge has been defined as the charge which repels an equal

charge placed at the unit of distance from itself with a unit of

force. We accordingly see that the magnitude of the unit will
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depend on the medium, and if the experiment be made in a

medium of induetivity fi the unit thus obtained will be larger in

the ratio V//, than if it had been determined in a medium of unit

induetivity. We also see that the dimensions of the unit involve

fa for we must have the dimensional equation

'ml
y2

so that

It is customary to choose the unit of induetivity so that the

induetivity of empty space is unity, or as it is sometimes stated,

the induetivity of the ether is unity. This is, as we have seen,

purely arbitrary, as experiments enable us to determine only ratios

of inductivities. The induetivity of air, both electric and mag-

netic, differs very little from that of a vacuum, so that for practical

purposes we may consider the size of the units determined by

experiments in air. We must notice that even if fju is put equal

to unity its dimensions remain in the equation and the dimensions

of fi we have no means of knowing. As the matter of dimensions

is alwrays more or less arbitrary, we may make any supposition

that we please, until we are led to contradictory results. Two

different suppositions are convenient. We may, when dealing

with electrical quantities, assume that the dimensions of the

electrical induetivity are zero. This gives the electrostatic

system of units. We may on the other hand, when dealing with

magnetic quantities, assume that the dimensions of the magnetic

induetivity are zero. This gives the magnetic system. Both

these systems are due to Gauss, and when we use both systems for

their respective kinds of quantities, we shall say that the quantities

are measured in Gaussian units. This has been the case in the

preceding chapters. When we come to deal with both electrical

and magnetic quantities at the same time, we must choose one or

the other of these assumptions, as we shall find in the next chapter

that both together are incompatible.

191. Susceptibility. The equation giving the apparent

polarization of a medium of induetivity fa surrounded by a medium

of induetivity fa is, (§ 186 (30))

4tt V fa J
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so that the polarization is proportional to the total force of the

field, that is the sum of the external field and the field of force due

to the polarization. The coefficient

1 fa-fit
Km —'21 A

47T fXx

is called the magnetic susceptibility, in the magnetic case. In the

electric case the quantity k has never come into practical use.

The equation

I = kF,

was the basis of Poisson s theory of magnetic induction, k being

supposed a quantity inherent in the body, and equal to zero for

air. We see however that tc depends on the medium by which the

body is surrounded, as well as on the body itself: k21 may therefore

be called the relative susceptibility of the body of inductivity jjl2

in a medium of susceptibility If k21 is positive, the polariza-

tion is in the direction of the polarizing force, and the body is said

to be paramagnetic, or simply magnetic. If k21 is negative, the

polarization is in the opposite direction to the force, and the body

is said to be diamagnetic. Accordingly any body immersed in a

medium of greater inductivity than its own will appear diamag-

netic. If we consider always the polarization of a body with

respect to a vacuum, so that ^ = 1, we may put

/c=i (/i ~ 1) '

fJb = 1 -f 47T/C.

Bodies are accordingly magnetic or diamagnetic as /jl is greater

or less than unity. It is evident that the assumption that k is

zero for a vacuum is arbitrary, in the same degree as, but inde-

pendently of the assumption that the inductivity of vacuum is

unity, for we might assume all apparent polarizations to be the

differences of the polarizations of bodies from the polarizations of

vacuum.

192. Uniform Polarization by Induction. When a body

of different inductivity from the rest of the medium is inserted

into a field of force, the configuration of the field is disturbed

owing to induction, the polarization due to which produces new

forces Fi which must be added to the forces of the undisturbed
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field F0 . We shall now examine in what cases the introduction

of a polarizable body into a uniform field will produce such a

resultant field that the polarization of the body will be uniform.

Let the potential of the undisturbed field be V0 and the potential

of the forces due to the induced polarization be V{, so that the

total potential of the field is

If X0 ,
F0 ,

Z0 denote the constant components of the force of

the undisturbed field, we have

(2) F0=C-X0#-F0y-£>.

Let a, /3, 7, be the constant direction cosines of the uniform

polarization, so that

<3) A ^Ia, B = I/3, G=Ir
Then since / = kF we must have for the total potential

(4) F=Cr-X«- Yy-Zz = C'--(ax + /3y + ryz).

fC

But we have seen in § 123 (6), that if fl be the potential of a

single distribution of density unity occupying the space filled by

the polarized body we have for the potential due to the polariza-

tion

Consequently if we put for 12

(6) n = C" - \ [Lx* + My" + Nz*},

so that

{;) Vi = / (Lax + M/3y + Fyz) = LAx + MBy + NCz,

(8) F= V0 + F< = C + (LA -X0)x + (MB - F0) y + (M? - £0) 5,

all our conditions will be fulfilled by taking

<9) LA-X0
= -—, Z£-F0 = --, i(7- 0̂ = ~-.w/

/C K K

Now the only body for which fl has the form of a quadratic

function of the sort given is an ellipsoid. The values of the

constants L, M, Ar in terms of the axes are given in § 113. We
have accordingly found that an ellipsoid introduced into a uniform

w. E. 24
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field is uniformly polarized, and the field inside the ellipsoid is

uniform. The field outside will not be uniform.

We obtain from equations (9) for the components of the polari-

zation

(10) i^, B =-^W) C= «Z«

1 + jcL' 1+kM' 1+kJST'

and for the field in terms of the undisturbed field

(11) X=^, Y= T^ f̂)
Z Z«

1+kL' 1+kM' 1+kN'

The field in the polarized body is not in the direction of the

undisturbed field, unless either L =M =N (sphere), or the un-

disturbed field has the direction of one of the axes of the ellipsoid,

when two of the components X0y Y0 ,
ZQ vanish. The force due to

the polarization, Fi, has the components

V V V V

<i*) Tt-r-r.-^Y.,

If k is positive, this force is in the opposite direction to the

undisturbed force. If the body be magnetic, and hard, so that

when the field FQ is removed, the polarization is retained, the

force F{ alone acts, and tends to produce a magnetization in the

reverse direction, or to demagnetize the body. The force Fi is

accordingly called the self-demagnetizing force, and since we may
write

(13) Xi = -LA, Yi = - MB, Zi = -NC,

L, M, N are called the self-demagnetizing factors for the three

axes.

193. Couple experienced by Ellipsoid. The couple ex-

perienced per unit of volume has, by § 120 (5), the components

BZ, -CF0 ,
CX0 -AZ0% AYQ -BX0 .

Suppose that the force of the undisturbed field is in one of the

principal diametral planes of the ellipsoid, then the couple tends
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to turn it about the axis perpendicular to this plane. Suppose

the force is in the IF-plane, and makes an angle 6 with the X-axis.

Then
Xo^ocosfl, F0 = 2^ sin 0, #0 = 0,

and the couple about the ^-axis acting on the whole ellipsoid of

volume 47ra6c/3,

4i7rabc { k # } kirabcic2 (M—L) v . Q n— J _ _L X0Y0 = ttt- fT7T~; W\*o2 Sin 0 COS 0.

3 (1 -f fcL 1 + /dtf] 3 (1 + kL) (1 4- kM)

The values of Z, M, N are by § 113,

5 du
27rabc

o (g
2 +0 V(a2 + ^^)(6

2 + 'w)(c2 + w)'

where L, M, JV are obtained by putting a, 6, c respectively for

Accordingly L, if, JV are in the reverse order of magnitude from

a, 6, a Consequently if a >b and #< 7r/2 the couple is positive,

or from X to F, that is, the ellipsoid tends to turn its longer axis

parallel to the field, whether k is positive or negative. This is in

contradiction to a statement frequently made, that diamagnetic

bodies tend to set their longest dimension across the field. They

do not do so if the field is uniform. If an ellipsoid be suspended

by a torsion fibre in a magnetic field, the field will cause it to

vibrate more rapidly when its long axis is parallel to the field, and

more slowly when it is across the field, than it would do in the

absence of the field. It is however extremely difficult, if not

impossible, to obtain a magnetic field nearly enough uniform to

show these phenomena in diamagnetic bodies, on account of the

extreme smallness of k2
.

194. Polarization of Sphere. In the case of a sphere for

inside points we have by § 80,

(1) Q = 2tt IB,
2 ~

3
J = 2tt.B2 - -tj- (*

2 + y
2 + z%

so that

(2) L =M =N=^,

which is the self-demagnetizing factor.

Accordingly the force is in the direction of the original field,

24—2
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and the polarization is

F,
(4) I=kF=

1 47T

K 6

3 - *0 ^
47T (/* + 2/^) °

*

The self-demagnetizing force is

(s)

If be infinite this becomes equal to — F0 , so that the total

force inside the sphere is zero. This is the case for a conducting

sphere in an electric field, and is nearly the case for soft iron in

a magnetic field.

Outside the sphere we have a different form for 12,

(6)

so that

(7)

n 4tt R3

j.dn^&TrR8! cos (hr)

dh 3

The field due to the polarization is accordingly, by § 123 (7),

the same as the field of a doublet of moment 4nrR3Ij3 =—R3
Fi, and

the total field outside the sphere is obtained by superposing this

upon the uniform field FQ . If yit = go the moment of the sphere is

R*F0 .

The lines of force due to a uniform field disturbed by a doublet

Fig. 74.
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pointing in its own direction or the opposite are shown in Figs. 74

and 75 respectively.

Fig. 75.

The field of the sphere in a uniform field is shown for ^^ = 3

and fi/fa
— oo respectively in Figs. 76 and 77. These figures were

originally given in Lord Kelvin's Reprint of Papers on Electro-

statics and Magnetism, (p. 492), where the equations of the curves

are discussed. The figures have been re-drawn for this book, the

lines being drawn for equal increments of the flux-function M*,

or ^ § 103 (io).

Fig. 76.

195. Infinite Elliptic Cylinder. If one of the axes of the

ellipsoid is infinite, we have the case of an infinite elliptic cylinder.

If c = oo , N is zero, and L, M, reduce to trigonometric forms. The

force parallel to the Z-axis is the same as that of the undisturbed
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field. This is a consequence of the distributions on the ends

being infinitely distant. We may then measure k as the ratio of

Fig. 77.

the longitudinal magnetization to force, a method often used in

practice, and accurate only when the cylinder is extremely long.

196. Ellipsoid of Revolution. In the case of an ellipsoid

of revolution the form of the integrals simplifies, and inserting in

the formulae of § 116 the eccentricity e=*Ja2 — b2[a we obtain for a

prolate ellipsoid

L = 47T
1 , 1 + e

(2) 1-e '

and for an oblate ellipsoid

(3) Z= 47T <~ -1 Vl
sin"1 e

(4)
(Yl

e3
sin

-1
e

For e = 0 all these expressions become indeterminate, but on

evaluating the indeterminate form they take the common value

already found for the sphere. For e = 1 the expressions for the

prolate ellipsoid become indeterminate, and on evaluation we find

Z = 0, M=F=27T.
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This gives the case of the infinitely long circular cylinder, for

which, as we have previously found, the longitudinal demagnetiz-

ing factor vanishes, while for transverse magnetization it is equal

tO 2?T.

When e = 1 the expressions for the oblate ellipsoid give L = 47r,

M— N— 0. This gives us the case of a disk magnetized normally,

for which the demagnetizing factor is the largest possible, namely

47r, or parallel to the faces, when the demagnetizing factor is zero.

For a long prolate ellipsoid, for which e is nearly unity, we

may conveniently use an approximate formula. Putting m = a/b

for the ratio of the length to the diameter, since

b2 110 v

a? rrtf

we have approximately

4tt f
" m

<*> L
= fen los (m + Vm2 - J

)
- 1

(6) M=N=g (log 2m - 1).

A table of values of the demagnetizing factor is given by

Ewing*, and a larger one by du Bois*(".

197. Magnetization of Hollow Cylinder. We shall now

consider a few cases of induction in which the induced magnetiza-

tion is not uniform. In the first case let us consider the uniplanar

problem of the transverse magnetization of an infinite homo-

geneous circular cylinder, placed in a field such that the lines of

force are the intersections of cylindrical surfaces with planes

perpendicular to the generators of the cylinder. If the cylinder is

circular the method of development in series of circular harmonics,

§ 94, gives the general solution of the problem.

Let the cylinder be hollow, the inner radius being b and the

outer a, the inductivity of the cylinder being /jl2 , and of the space

within and without Let the undisturbed field, as before, be

represented by F0 with potential VQ , while the field due to the

induced polarization is F{ with the potential We shall

suppose that the bodies producing the field lie outside the

* Ewing, "Magnetic Induction in Iron and other Metals," p. 32.

t du Bois, "Magnetische Kreise, deren Theorie und Anwendung," p. 45.
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cylinder, so that the potential VQ and its derivatives are finite

and continuous at the surfaces of the cylinder.

Let it be developed at the outer surface in the infinite series

of harmonics

(i) V0 = T0 (4>) + T, (</>) + T,{$) +

Then at points for which p< a it is given by the series,

»2

(2) V,= Tt + £T1 + £T,+
tv Uj

The potential Vi is represented by three different develop-

ments in the three different regions, (1) p >a, (2) a> p > 6, and

(3) p<b. We will distinguish these by an affix. Since

vanishes at infinity, we have outside the cylinder

00

(3) Vim = 2 AnP-»Tn .

0

In the substance of the cylinder we must take

(4) V^=i(Bnp- + Gnp-)Tn>
o

while in the cavity, since Vi is finite at the center,

(5) Vt* = 1 Dnp*Tn .

0

Since Vi is continuous, at the surface p = awe have Vi (l) =Vi (2)

,

and as this must be identically true for all values of
<f>
we must

have for every term the coefficients of Tn equal.

(6) Ana~
n = Bna

n + Cna~n.

In like manner, at the surface p = by
we have for every term,

(7) Dnb
n = Bnb

n+Cnb-".

Beside the conditions of continuity, we have at each surface of

the cylinder

(8) ^d^+^r 0
'

for the whole potential V—V0 + Vi. The potential of the ex-

ternal field being continuous, with its derivatives as well, we have

dvn dvn .
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which being multiplied by /i2 and subtracted from (8) gives

(io) ^__ +/,2
__ =(M2 _ /,i)

_.

At the surface p — a this gives, differentiating (2), (3), (4), by p,

00

(n) frSi-Annar^ Tn)
0

0 0

and consequently for every n

(12) - nxAnarn - /i2 (Bnan - Ona"n) = (/*2
-

and at p = 6,

(13) - Dnnb^ Tn
0

o o ft

and consequently

(14) -^ 2)n&* + /a, (fiw6» - CJ>-«) = - <>2
- y .

The four linear equations (6), (7), (12), and (14) determine the

four constants A n ,
Bn ,

Cn ,
Dn .

Solving, we obtain for their values, putting

^±J^ _ m w 1

LL - IL
~~

'
U ~~

/k\ 2n 9

(15)

Since the absolute value of M is greater than 1, and since

bja<l, J¥n is always positive, and accordingly Dn is always

negative. Accordingly the effect of the induced polarization
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within the hollow is to oppose the external field. We have for

the whole potential in the cavity, by (2), (5), and (15)

1 - (T
(16) F« = F.« + Fi» = 2(£) I

1 \Tn .

The absolute value of the coefficient of any Tn is less, the

smaller the ratio b/a, that is, the thicker the walls of the cylinder.

By making the walls thick enough, we can make the coefficient

approach as nearly as we please the value 1—1/

M

2
. Now this

is smaller, the greater the ratio fa/fa. For fa/fa infinite the

internal field would be reduced to zero, as in the case of the

sphere.

This principle was used by Lord Kelvin in his marine galvano-

meter, in which a thick cylinder of iron shields the galvanometer

from the influence of external magnetic fields. Such an arrange-

ment is now nearly always necessary to protect magnetic instru-

ments from the field of electric railroads (in America).

In case the external field is uniform, the internal field is also.

We then have, if F0 is the strength of the external field,

v0=foP cos4>=£r1?
a

(17) F<3, = 1 7171 KV C0S
tf>

In this case if fa/fa = 1000, and if the thickness of the cylinder

is only one-tenth of its outer diameter, the field within is reduced

to two per cent, of the value outside. The effectiveness of the

shielding is thus plainly shown.

The total field is shown for this case in Fig. 78, for which

6/a = 2/3, fa/fa=10.

This represents approximately the distribution of the lines of

force in a ring-armature of a dynamo.

198. Magnetization of Hollow Sphere. The case of the

sphere may be treated in precisely the same manner as the case of
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the cylinder, substituting spherical for circular harmonics. Let us

Fig. 78.

again suppose that the bodies producing the undisturbed field are

outside, so that at the outer surface of the sphere

<0 P.=ro (0, 40 + ^(0, <f>)+Y2 (e, 4>)+ ....

Accordingly for r < a,

7 a a2

The potential of the induced polarization is given by

•00

(3) ViW = 2Anr-^)Yn> r>a,
o

00

<4) Vi® = $ (Bnr* + Gnr-^) F», a>r> b,

o

00

<S) F<» = 2D„r»7w , r<&.
o

The conditions of continuity of V{ give as before

<6) Ana-<
n+1

> = Bna
n + 0„a-'"+1»,

<7) D»&n =£„6" + C}l
6-<»+1

'.
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The condition (10) of the preceding section gives the corre-

sponding equations,

(it) ^ I {- An (n + 1) a~*+*>} Yn
o

00

- fi2 2 {Bnnan~*-Cn (n + 1) or***} Yn = (IH - 2 na~lYn ,

o o

(12) -yM-nO + 1) a~ ,n+1)

- p, {5w7ia
n - C„ (w + 1) a-<»+1

> } = (/i2 - /t^ rc,

(13) -^ZDnnb
n-l Yn

0

+ M2 2 {^"-i - Cn (n + 1) &-<"+2
» } Yn = - (^ - ^) 2 »^ F„

,

0 0 &

(14) - ^D„n&w + /x2 {B»n&» -Cn (n + 1)

Solving the equations (6), (7), (12), (14), we get, putting

J>\2»+1

ilOf- I" )

(15)

= ~Mn\ Nn ,

^ = -a-»{l-g)
m+1

}^.

The results are similar to those in the last section. Since

Mn and Mn
' have the same sign, and are greater in absolute value

than unity, Nn is positive, and Dn is negative. The field in the

cavity is given by
271+1
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For a uniform external field

F0 = jF0rcos<9 = - Tu
a

the internal field is uniform, and given by

1 - £)'
^3=1 1 ~TT, |*>COS0.

\a

If b/a = 9/10, fajfa = 1000, the internal field is 1/67 of the ex-

ternal.

The sphere thus shields more effectively than the cylinder,

as might be expected. A table of the relative strengths of the

internal field for various ratios of b/a and for fa/fa = 100 and

= 1000, is given by J. J. Thomson, Elements of the Mathematical

Theory of Electricity and Magnetism, p. 264.

If 6=0 the results of this section agree with those of § 194.

For instance in the sphere

V MnMn J fa + 2fa

agreeing with § 194 (3).

199. Forces acting on the Polarized Body. In virtue

of the polarization of a body whose inductivity differs from that

of the surrounding medium the body experiences certain forces.

These forces may be calculated by considering the work done

when the induced body is moved from one part of the field to

another, during which motion its polarization will in general

change.

Before considering the general problem, let us, to fix the ideas,

examine the case of an electrical condenser. We have seen that

the capacity is proportional to the inductivity of the dielectric.

Accordingly for a given charge, the difference of potential of the

plates is inversely as the inductivity, consequently the force of

the field varies in the same ratio. The energy being proportional

to the product of the charge by the difference of potential is

accordingly inversely proportional to the inductivity. Now since,

the charge being given, the energy tends to decrease, if the di-

electric is movable, and its inductivity variable, it will tend to
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move so that portions of greater inductivity shall be drawn into

the field. If on the other hand the potential of the condenser

plates is maintained constant, the charge is directly proportional

to the inductivity, so that the energy is also directly pro-

portional.

We have seen in § 140 that in this case the energy tends to

increase, so that again the forces tend to bring substance of greater

inductivity into the field. These properties of the energy should

not be confused with the maximum property mentioned in §§ 119,

180, for there the variation was in V
y
tending to make it differ

from the values necessitated by the differential equation

fi being unvaried. Here the variation is in fi, and may be made

to depend on geometrical parameters fixing the position of the

polarizable bodies, precisely as in § 140 we had changes in

geometrical parameters, and in this case the variations of V must

be such as are consistent with the above differential equation.

We may look at the matter from a slightly different point

of view. Since we found in § 140 that the capacity tends to

increase when the forces of the system produce motion, the system

will move so as to increase fi. The capacity will be increased

when a body of greater inductivity moves into stronger parts of the

field, consequently magnetic bodies are drawn into the strong parts

of the field, while diamagnetic bodies are repelled from the stronger

portions to the weaker portions. This property was correctly

stated by Faraday, and was demonstrated by Lord Kelvin. It

is this tendency of diamagnetic bodies to move to the weaker

parts of the field that often makes them set themselves across

the field, instead of along it as they should do in a uniform field.

We may calculate the mechanical forces experienced by unit

of volume of a substance by the proposition that the work done

by the forces in a displacement is equal to the loss of energy

of the system. Let us call the force per unit volume H, H, Z.

Then if a body is displaced so that a point x, y, z comes into

the position x + Sx, y + By, z + hz, and the corresponding change

in W be 8 W, we have

(!) gW = - fff(BSx + RBy + Zhz) dr.
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During the displacement the distribution of the field varies,

but if we use the form of W given in § 119, namely,

we have the important simplification that 8VW = 0*, for after the

motion as well as before the potential satisfies the conditions

§ 180 (8) and (9). Accordingly in considering the variation BW
we have to consider only the variation of p and p, produced by

the motion, the change of W in other ways being taken account of

in the condition BVW= 0. The change in p at any point is caused

by matter differently charged coming to the point, and we find as

in § 38, putting dm — pdr,

a
(d(PBx) d(pBy) d(PBz)\

In like manner /j, has changed to the value it formerly had at the

point x — Bx, y— By, z — Bz, which has moved to x, y, z, so that

(3)

Accordingly (considering surface distributions as a limiting case of

volume distributions) since we have

0 = SFF= SV.pdr
00

~
iTrJJJ^ldx dx dy dy ' dz dz

00

we obtain the change in W as

(4) »W--iffvFP +>J& +>J&}*

[dVdSV dVdBV dVdBV\
dr,

oo

1 fff(dfi

Sir JJ] \ dx
00

and integrating the first integral by parts, the surface integral

vanishing at infinity,

oo

* (To the first order.)
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Since this is to be equal to

r

(3&» + r% + Zhz) dr
CO

for arbitrary values of Bx
} Sy, hz we must have everywhere

Z = ~

(6) h = ~ P
™ - i-

d±
{m +m +m\
{/dry /dVy fdV\

dz

The first term is the force exerted by the field on the real charge

at each point. It is of course in the direction of the field. The
second term is due to the polarization, and is proportional to the

square of the field strength, and in the direction of fastest decrease

of fi. That is, any point of a polarized body tends to move toward

the side on which the inductivity is less, or to bring more inductive

matter into the field, as stated above. The form of deduction

here given is due to Helmholtz*.

200. Stresses in the Medium. The modern theory of

electricity and magnetism, due to Faraday and Maxwell, assumes

that bodies do not act directly on other bodies at a distance, but

by means of actions transmitted through the intervening medium
from particle to particle. The influence of the medium has been

made apparent in this chapter, as we in fact started from the

expression of the energy as being distributed in all space. It

remains to find a system of stresses that shall account for the

electrical or magnetic forces which have been here investigated.

If forces S, H, Z per unit volume act on all portions of a body,

for example gravity, these forces will throw the body into a state

of strain, and in order to produce equilibrium the applied forces

S, H, Z must be balanced by a set of elastic stresses developed in

the body. These are forces acting from point to point in the body,

and may be specified as follows. Suppose at any point P the

body divided into two portions, 1 and 2, by a plane whose normal

is n. If we consider a small area dS of this plane containing the

point P the portions of the body on the two sides of the plane

* Wiss. Abh. Bd. i., p. 811. See note in Appendix.
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exert forces on each other, whose combined action may for either

part be represented by a single resultant force applied to dS. Let

the force acting through the area dS on the portion of the body 1

be denoted byFndS, Fn is not in general normal

to dS, but has a tangential component. This

tends to cause the two portions 1 and 2 to slide

over each other, or to be sheared. The normal

component of Fn , if directed toward the body

2, tends to make the two portions of the body Fm
*
79 *

approach each other, and is called a traction or tension, as in

the case of a stretched rope. If the force Fn on 1 is directed

toward 1, the force is called a pressure, as in the case of

liquid pressure. A traction will be considered positive, that is

the force acting on a portion of the body has a positive com-

ponent along the normal drawn outward from that portion. We
shall denote the components of Fn by Xn ,

Ynf Znf the suffix n

denoting the direction of the normal to the element of surface to

which they are applied. If we consider three sides of an infinite-

simal cube at any point, we may specify the stress at that point by

giving the components of the stresses on each side, those on the

side perpendicular to the X-axis being XX) Yx ,
ZX} those on the

side perpendicular to the F-axis being Xy ,
Yy ,

Zy ,

and those on the face perpendicular to the ^-axis

being Xz ,
YZy Zz . If we consider the equili-

brium of an infinitesimal tetrahedron formed by

cutting off one corner of this cube by a plane

whose normal is n (Fig. 80), the areas of its

four faces being dSX) dSv ,
dSz ,

dSn ,
(the suffixes

• . . Fig 80
denoting their normals) and its volume being

c?t, we have for the equations of equilibrium, resolving along the

three axes,

Bdr +- XxdSx 4- XydSy + XzdSz
— XndSn — 0,

(
i
) Rdr + YxdSx + YydSy + YzdSz - YndSn = 0,

2Mt -f- ZxdSx + ZydSy + ZzdSz
— ZndSn = 0.

Now the faces dSx ,
dSy ,

dSz are the projections of the face dSn on

the coordinate planes, and accordingly

dSx = dSn cos (noo)
)

dSy — dSn cos (ny),

dSz = dSn cos (nz).

w. e. 25
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If we now let the dimensions of the tetrahedron diminish in-

definitely, the volume dr is of a higher order than the surface of

any face and can accordingly be neglected, accordingly the equa-

tions of equilibrium become, dSn dividing out,

Xn =Xx cos (nx) +Xy cos (ny) + Xz cos (nz),

(2) Yn = Yx cos (nx) + Yy cos (ny) + Yz cos (nz),

Zn = Zx cos (nx) 4- Zy cos (ny) 4- Zz cos (n-z),

which proves the statement that the stress at any point, involving

the action on a plane element in any direction at the point, may
be expressed in terms of the nine components at the point,

X%> YXj ZXi Xy, Yy, Zy, XZ , I Z , ZZ .

Let us now consider the condition of any finite portion of

matter r. Let the body-forces H, H, Z, per unit of volume be

applied to each element. If now the forces Xn ,
Yn ,

Zn applied to

each unit of surface are to produce the same effect as the given

system of body forces, then the system of body forces with their

signs reversed, together with the surface forces, would produce

equilibrium. For equilibrium we must have, resolving in the

X-direction,

(3) fjxndS-jfjHdT = 0.

Let us now express Xn in terms of the nine components by the

equations (2),

(4) jj
[Xx cos (nex) +Xy cos (ne y) 4- Xz cos (ne z)} dS

-///Srfr-O.

Transforming the surface integral into a volume integral we obtain

© j//^- +f + £'- B}*-*

and if every portion of the body is to remain in equilibrium under

the stresses, in order that the integral shall vanish for every field

of integration we must have everywhere

(6) B=^ + 3** +
3Z«

dx dy dz
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In like manner we find

H = dYx .
dY„ . dY,

(6')
dx

+ y

z= dS +

dy

dz,y

+

+
dx * dy dz

1

as the equations of equilibrium.

In order to explain electrical and magnetic forces by means of

stresses we must therefore be able to transform the expressions

already found for H, H, Z, into forms involving partial derivatives

as above.

Introducing into the expression for S the value of p from

1 (d f dV" 3 / 97;
47r [doc dx J dy \ dy

and transforming the derivatives we obtain

3 / dT
+

dz V
1

dz

~ 1 dV(da = -— -— J— dV'

4<7r doc [dx \ dx

1 dfi

+
d ( dV\ d ( dV

(7)

8tt dx

_L A
87T dx

1 d

dy

dVy
+

dx )

dx)

ty)

dV^

+

dy
+

'dry

dy)

i a

dz ^ dz

dz)

'dvv\

dVdV)
4eir dy C~ dx dy j

' 47r 82 { dx dz

The expression now has the required form of a sum of three deri-

vatives. If we perform similar transformations on H and Z we

shall find that the equations of equilibrium are satisfied by putting

Xx =

Y =
y

Sir

JL
8tt

'd_VV _ fdVV
dx) \dy

)

'dW (dV
dx

dz)

8tt

dx)

(8)

ZX=XZ

dy

dvy (dj\

dy)
+

\dz)

47T 8y ^ 47T 47T

4nr dz dx 4nr
3%

y — V tL^K^X. L vv Lair
*~ *~ 4nr dx dy~*ir ~ iv^

25—2
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Since Yz
= Zy) etc., it is easy to see that the couple tending to

turn any element of volume about either of the axes vanishes, as

is the case with ordinary elastic stresses. If the body is not

isotropic this condition does not hold.

We shall now apply the expressions found to determine the

nature of the stress in two particular cases. First, let the element

dS be perpendicular to a line of force. Then we have

cos (nx) = j, cos (ny) = ~ , cos (nz) = j ,

and using these values in the equation (2)

X Y ZXn =Xx ~jj,
-\- Xy ~p + Xz -p ,

1 X 1 XY2 1 XZ2 1

(9) ^ =l^+h^ Y-^l+l%-l*Y
'

Zn =

These components of Fn are equal to ^F/Stt multiplied by the

direction cosines of F, which is in the direction of the normal n.

That is the force Fn is perpendicular to its plane. A plane

possessing this property is called a principal plane of the stress.

The stress being positive represents a tension. Accordingly the

medium is in a state of tension along the lines of force, of an

amount per unit of surface equal to ^Fj&ir, which, it may be

noticed, is the amount of energy of the medium per unit volume.

Consider secondly an element tangent to a line of force. Then

we have

p cos (nx) + cos (ny) 4- j, cos (nz) = 0.

Multiplying this equation by FS/^rr and subtracting it from

the expression for Xn gives

Xn = JL {2$X - %F] cos (nx) + ^ 3f7 cos (ny) +^ $Z cos (nz)

(10)

1 %F
- {XX cos (nx) + XY cos (ny) + XZ cos (nz)} = -— cos (nx).
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In like manner

389

Yn = ~ cos (ny), Zn =
07T

— ^— cos (nz).
07T

* 1

4 1

+ •

l

4 |

|

* -1

4 i

I

1

i

l

1

'1

4 i

* i

4 |

4 i

! 1

Fig. 81.

Here again the components of Fn are equal to —%FI&Tr

multiplied by the direction cosines of n, or the force is normal to

its plane. Consequently any plane tangent to a line of force is a

principal plane of the stress, and the stress is symmetrical about

the line of force. The negative sign shows that the stress is a

pressure. The state of stress consisting of tension along the lines

of force combined with an equal pressure at right angles to them

was described by Faraday*, who expressed the matter in words that

state in effect that the lines of force tend to contract and to repel

each other.

This may be illustrated by supposing the medium to be divided

into filaments along the lines of force, and

these again to be subdivided into short

filaments. Then each short filament is a

polarized body which acts like a doublet, and

since unlike poles of successive elements are

in juxtaposition, the filaments all attract each

other endwise. For filaments lying side by side, however, since

like poles are together, there is a sidewise repulsion.

201. Permanent Magnets and Electrets. Intrinsic

Polarization. The fundamental laws of magnetic and electric

induction may be summed up in the statement that in soft iron

and in similarly acting bodies the force is lamellar, and fi times

the force is solenoidal. Or in brief

(i) curli^O,

(i') div(/^)=0.

Iron for which this statement is true is said to be perfectly

soft. When the external field affecting such iron is removed, the

polarization disappears. As a matter of fact, this is an ideal

condition not exactly realized by any sort of real iron, for when

the external field is removed, a part of the polarization persists.

This is called residual magnetization. The harder the iron or

steel, the greater is the fraction of the induced polarization which

* Faraday, Exp. Res. (1297).
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persists. A substance in which, when the external field is removed,

the whole induced polarization remains, is called perfectly hard,

and a body consisting of such substance is called a permanent

magnet. The inductivity of such a body is to be considered the

same as of air. Such bodies do not exist any more than perfectly

soft ones. We may however treat actual bodies as if they were

formed by the superposition of perfectly hard and perfectly soft

matter. The portion of the polarization which permanently

remains is called the intrinsic polarization*. In order to carry out

the analogy, Heaviside has proposed to call a dielectric per-

manently polarized body an electret, and its polarization electriza-

tion. Certain natural crystals when heated assume this condition.

The permanent or intrinsic polarization now forms a real

magnetic or electric charge, and if the intrinsic polarization be

denoted by I0 with components A 0 ,
B0 ,

G0) we have for the real

density

^ ' ^ \dx dy dz

with a similar expression for or.

Comparing this with the expression for p in § 182 (15), we find

vo/
47r {dx dy dz) \dx dy dz

or the divergence of the induction is equal to 4?7r times the

convergence of the intrinsic polarization. Comparing the expressions

for the apparent density, that is the sum of the real and induced,

in terms of the force F, § 186 (33), and in terms of the total

polarization /, § 120 (6), we find

, 1 (31 37 dZ) (dA
,
dB d

(4) P' = 7-kr+o^ +^ =-kr + ^r:
+

47r
\ dx dy dz) {dec dy dz

Accordingly

(5) ^ (X + +1 (7+ torB) + 1 (Z + 4tt0) = 0,

or more briefly,

(5) div(F+47r7)=0.

The solenoidal vector-sum, F+^ttI, has been called in § 121,

the induction. We shall call it the Maxwellian induction, and

denote it by %Mi since it corresponds to the definition of the

* Thomson. Beprint of Papers on Electrostatics and Magnetism, p. 578.
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induction given by Maxwell. It is solenoidal in intrinsically

magnetized bodies as well as elsewhere. The induction, which
is divergent in intrinsically magnetized bodies, and which is

defined as fiF, we shall call the Hertzian induction, and denote by

%H . In magnetically soft bodies these two inductions are identical,

but in intrinsically polarized bodies they differ.

If we write equation (3) as

(6) div(g ir + 47r/0) = 0,

and from it subtract

(5) div (F + 4tt/) = 0,

we have

(7) div ( gH - F) = 4tt div (7- 20).

Now if we call It the induced polarization, we have as always

(8) ii
= KF=(tz}l Fi J= /„ + /,.

4<7r

Inserting these in (7)

div ( %H - F) = 4m- div Ii
= div {(ft - 1) F),

and transposing div F}

(9) div&^divO^),

agreeing with the definition of %H .

202. Heaviside's treatment of Intrinsic Polarization.

The treatment given by Heaviside differs in several respects from

that just given. According to that author the induction is always

solenoidal, so that true magnetic charges do not exist. The only

reason given for this assumption seems to the present writer

insufficient, being, as stated by Heaviside, "to exclude unipolar

magnets." It appears that the exclusion of unipolar magnets

merely means that for any magnet the integral charge is zero,

adS+jjj pdr=0,

which simply means that the distribution is what we have called

polarization, and lays no restriction on the divergence of the

polarization or induction. It might be supposed that Heaviside's

induction was what is here called the Maxwellian induction, were

it not for the fact that he says that " we use always " 5 = f*F. In
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order to make these two statements, which we hold to be mutually-

exclusive where there is intrinsic polarization, appear consistent,

Heaviside proceeds in the following, as it appears to us, artificial

manner. In our notation, Heaviside* considers the field F as made

up of a part h = AwIq/ defined as the intrinsic force, together with

a lamellar force which we shall denote by Fh (F in Heaviside's

notation),

F=h + Fh ,
curli^ = 0.

In order to make the induction solenoidal, he then puts

Ii = /cFh}

instead of 7$ — kF. Then the induction is defined, not as

but as % = Fh + 4tti".

Inserting for I the sum of the intrinsic and induced polariza-

tions, this becomes

g =^ + 47r (I0 + Ii) = Fh + fJi + (p-l)Fh
= fxFh -f fih = fiF.

This gives, in conjunction with the equation supposed to be

fundamental, namely

divg=0,
the equation

1 . 1— div (u,Fh) = — x~ div uh = — div IQ)W 47T

which we may compare with our equation (6). Accordingly

Heaviside's fiFh has the property of our Hertzian induction. The

difference in Heaviside's treatment may be summed up as : 1. A
different definition of the total field. 2. Induced polarization

produced by only a part of the field. 3. The Hertzian induction

considered solenoidal, even in case there is intrinsic polarization.

We have stated the difficulties of Heaviside's treatment as they

appear to us, without wishing to dispute the dicta of so weighty

an authority. The theory as we have given it seems to be that of

Helmholtz and Hertz, both of whom explicitly state that real

magnetism exists in permanent magnets. Neither they, however,

nor any other author, so far as known to the present writer, have

* Papers, Vol. i., pp. 453—4.
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worked the matter out in detail as has Heaviside, nor have any

problems been solved in which a difference becomes of importance.

In either treatment, the flux of induction issuing from a

magnet is the same, which is the quantity with which we are

concerned in practice, the ambiguity existing only in the substance

of the intrinsic magnet. The difference between intrinsic and

other magnets is that in the former two independent vectors are

necessary to characterize the state of the body, while in the latter

one suffices. These may be taken as

%H and g

203. Variability of fi. Hysteresis. Throughout this chapter

it has been assumed that the value of fi at any point was constant

for that point. This assumption is not borne out by the facts,

but was necessary in order to make the subject amenable to

mathematical treatment. It is found that fi is a function of the

strength of the field, and that for magnetic bodies, in which this

phenomenon has been most carefully investigated, as the force

increases, fx diminishes, finally tending towards the limit unity, so

that the ratio of the induction to the force approaches unity. At

the same time the difference between the induction and the force

tends towards a constant maximum value, which is equal to 47r

times the greatest intensity of magnetization that the substance

can assume. This is known as the intensity of saturation. For

wrought-iron this intensity of saturation has been found to be about

1700 c.G.s. units. The variability of ja does not affect the validity

of Ohm's Law, which determines the distribution of the tubes

of induction, although it seriously complicates the mathematical

theory. In fact no cases of magnetization have been worked out

taking account of the dependence of p upon F. But this is not

the only defect of our theory. It has been found that for a given

value of F there is not a single determinate value of but that

the value depends not only on the actual value of F
f
but upon the

values which have acted at the point in question at previous

times. If we plot a curve having as abscissas the values of F at

a given point at various times and as ordinates the values of % at

the corresponding times, we may express this phenomenon by say-

ing that the value of fi at any point of the diagram depends on

the path by which the substance has been brought to the point,

that is, on the whole history of the field at the point. This
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phenomenon, discovered by Warburg*, and thoroughly investigated

by Ewingf, was named by the latter Hysteresis, to denote the after-

effects of the fields to which the substance has been submitted.

Warburg and Ewing found that if the field was increased to a

certain value, then decreased, and then varied successively between

the same limiting values, the path of the representative point on

the F-% diagram was a closed curve, which was re-traversed after

the first periodic cycle. This is called the hysteresis-loop, and its

area has an important physical significance. Such a loop is shown

in Fig. 82. If instead of continuing to repeat the same cycle

we vary F between different limits the point may take any

position between the two limiting curves of the loop, as

shown in Fig. 83, both these figures being copied from Ewing.

Fig. 82. Fig. 83.

If the cycle be so chosen that at some point, F, while decreasing,

passes through the value zero, the value of 1" calculated as

the corresponding value of g/47r is the residual magnetization.

If the force F is still further decreased, its value when 7=0, g = F,

is called, after Hopkinson, the coercive force, since it measures the

negative force necessary to destroy the residual magnetization.

Besides these phenomena of hysteresis, there is another more

complicated effect, which causes the magnetization to arrive at

its final value only gradually, taking a certain time to reach

its permanent value. This is denoted by the name of viscous

hysteresis, magnetic lag, or after-effect (Nachwirkung), to dis-

tinguish it from the proper or static hysteresis just described.

* Warburg, Wied. Ann. 13, p. 141, 1881.

+ Ewing, Phil. Trans, clxxvi., p. 523, 1885.
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204. Dissipation of energy in Static Hysteresis. Since

we have seen that jul is not uniquely determined by the value of F
y

so it must be for the energy of the field. Accordingly the forces

acting on polarized bodies cannot be derived from a single-valued

potential, but must be non-conservative. In taking a body through

a cycle of magnetization, accordingly, a certain portion of the work

done upon it fails to be stored up as energy, and is therefore

dissipated into heat. We may easily find an expression for the

value of this dissipated energy. The potential energy of a

polarized body in a field whose potential is V is, by § 126 (2),

equal to

or in terms of the field

W= — jjj(AX + BY+CZ)dr.

If we consider an element of volume dr, and suppose it moved to

a point wThere the field is

X + dX, Y+dY, Z + dZ,

the work dW done upon the particle during the motion is accord-

ingly equal to the increase in the value of the energy,

(1) dW= - dr(AdX + BdY+ GdZ).

In the second position the values of A, B, G have changed to the

values

A+dA, B + dB
}
C + dC,

but the change made by using these values in the expression for the

work would be of the second order and may be neglected. If instead

of moving the particle we change the strength of the field the work

done will be the same. Inserting the values of A, B, G in terms

of the induction and force we obtain

(2) dW = - ~ p - X) dX + (g) - F) dY+ (3 - Z) dZ}.

If now we vary X, F, Z through a cycle of values, coming back to

the value from which we started, the integral

(3) \xdX,
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vanishes, since the value of X 2 at both limits is the same. The

integral

may be integrated by parts, giving

-3EX|
2

+ fxdl.

Of this the integrated part vanishes, since, as found by Warburg

and Ewing, after the cycle has been once traversed $ returns to

the same value on traversing the complete cycle. We thus find

that in taking the particle through the whole cycle of magnetic

operations, and leaving it in its original state, we have done a

quantity of work, which is equal, not to zero, but to

the integral being taken around a closed loop. Each term of the

integral must of course be obtained from a separate loop. The

whole energy dissipated in the body is

'Xd%+Yd$ + Zd^ dr.

Of course the general theory is so complicated that it is not even to

be assumed that when we have carried the magnetization through

a closed cycle in one point of the body we have done so at all

points. In practice we can calculate the dissipation only in the

case of a uniformly polarized body, where A, B, C are the same at

all points of the body and in the direction of the force. The cycle

is then the same for all points, and the energy dissipated is

equal to

vol. of body x ^ jFd%

The integral

]Fd%

is evidently the area of the hysteresis-loop. This area is inde-

pendent of the time of description of the cycle. In the case of

viscous hysteresis there is an additional dissipation which depends

in a complicated manner on the rate of description of the cycle.
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205. Hysteresis couple. In the examples of §§ 192—198,

it is evident that a sphere or cylinder turned about an axis of

symmetry in the field would experience no resisting couple, for no

work would be done against the forces of the field. In like manner

an ellipsoid would require on the whole no work to rotate it about

an axis, for the forces hindering the motion in one part of the

revolution would have corresponding forces helping the motion in

another part of the revolution. If hysteresis exists, however, the

case is quite different. Then the ellipsoid in a position in

which its long axis makes a diminishing acute angle with the

direction of the field experiences a mechanical couple tending to

accelerate its motion. The magnetic force parallel to the long

axis is then increasing, so that when the force has reached the

same value in the symmetrical position in which the axis

makes the same angle with the direction of the field, but on

the other side, F being then on the decreasing branch of the

hysteresis-loop, the value of the magnetization is greater, so

that the mechanical force, which now retards the motion, is

greater. Accordingly the motion is on the whole retarded*, and

it is easy to see that the mean retarding couple is proportional to

the mean difference of the ordinates on the upper and lower

branches of the loop, that is to the area of the loop. Upon this

principle is based Ewing's Hysteresis indicator")*, in which a long

sample of iron is rapidly revolved between the poles of a magnet,

and the mean couple between them measured by the pull on the

magnet. The couple is, as seen above, independent of the time of

revolution.

* An effect of this sort was observed in diamagnetic and very slightly magnetic

bodies by Mr. A. P. Wills, in the physical laboratory of Clark University, in the fall

of 1895, and was discovered independently by Mr. Wm. Duane, in the physical

laboratory of the University of Berlin. Wied. Ann. Bd. 58, p. 517, 1896.

f Ewing, Journ. Inst. Elec. Eng. 24, p. 398, 1895.



CHAPTER X.

CONDUCTION IN DIELECTRICS.

206. Variable Flow. Relaxation-Time. We have hitherto

supposed dielectrics to be perfect insulators. This can hardly be

said to be the case, even for the best insulators. On the other

hand, although, as we have seen, the greater the inductivity of a

dielectric, the more nearly does it act, as far as concerns electro-

static distributions, like a conductor, it is by no means likely that

the inductivity of conductors is infinite. Still less is it likely that

it is zero. We shall now consider the consequences of considering

a dielectric to possess, in addition to its electrical inductivity /jl, an

electric conductivity X. We shall now deal with currents which

are not in the steady state, and shall require to assume that at

any instant Ohm's Law determines the distribution of the currents,

namely

q = \F.

This assumption is justified by experiment. Instead of the sole-

noidal condition for the current, however, we must obtain a new
equation. This is obtained by the consideration that, if we consider

a portion of substance r bounded by a closed surface S, the tota]

charge within that surface increases in any interval of time by the

amount of total current flowing into t through the surface, that

is, if n is the internal normal

(i) ~£ jjjpdT=jj{ticos(nw) + vcos(ny)^wcos(nz)}dS

dx dy dz

)

Since this equation must hold for any portion of space, we must

have everywhere

(
. c?p_ (da dv dw]

{2) di~"\dx + dy
+

dz'
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But in a dielectric,

K3} P
4tt \dx dy dz

Differentiating (3) by t, and eliminating ^ from (2), we obtain for

a conducting dielectric

3 ( 1 dl) d [ 1 dg)

(4) + 4^4 +
al/r

+^W
If we put ^. v, w, X, g), 3 in terms of the field, assuming that the

substance is homogeneous as regards both fi and X, this becomes

, v 9 f Tr 1 COT

(5) tot
VZ +S /4 *

47T

or in terms of the density

(6) +_ =

Integrating this differential equation, we have

_4ttA
^

(7) P = Po6 •

Accordingly whatever charge the body has originally decreases in

geometrical ratio as the time increases in arithmetical progression.

The constant T— fi/^irX, which is the time it takes for the density

at any point to fall to 1/e of its original value, has been called by

Cohn* the relaxation-time, a term used by Maxwell in connection

with the Kinetic Theory of Gases. For ordinary metallic con-

ductors this time is so short as to have hitherto defied observation.

The importance of its discovery was recognized by the committee

setting subjects for an international prize competition in 1893, who

proposed this as one of the questions for investigation!. It appeared

that no experimenter ventured to attack the problem, it being

evidently considered too difficult. The finite relaxation-time was

determined for so good a conductor as water in some remarkable

experiments by Cohn and Arons|, who are entitled to the credit of

discovering the finiteness of T for conductors.

* Cohn, Wied. Ann. 40, p. 625, 1890.

+ Elihu Thomson Prize, Electrician, 1892.

% Cohn u. Arons. ''Leitungsvermogen und Dielektricitatsconstante." Wied.

Ann. 28, p. 454, 1886.
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207. Method of Cohn and Arons. Consider a condenser

A t
which may or may not be connected in parallel with the con-

denser B and the resistance wire i2. Let the capacity of A be if,

the inductivity of the dielectric fi. Let the conductivity of the

dielectric in A be X and in B zero. Then the charge of one of the

plates 1 of A is in terms of the induction, § 182 (i 6),

(8) 0! = 4~ cos (
na)) + <9 cos (ny) + 3 cos (nz)) dS.

On the other hand the quantity flowing through the dielectric in

the condenser in unit time is

(9) —^ =
JJ{u

cos (nx) + v cos (ny) -f w cos (nz)) dS,

81

so that, assuming X and jju constant,

dex 47rX

(10)

#1 — ^o^
^

If we assume that an electromotive force is applied to the

plates in order to establish a steady difference of potential V0

until a steady state of flow is attained, we have everywhere in

the dielectric p = 0. If the electromotive force is suddenly re-

moved, we have from that time on
4rrA.

p = 0, e1
= e0e~

and accordingly the difference of potential of the condenser plates

is

(11) V=V0e
»

t

If the difference of potential V can be measured by an electro-

meter at any time t, we have

0*) y=^ = t

4t7r\ log V0
— log V

'

If in the second place the condenser A is connected in parallel

with the condenser B and wire of resistance JS, we have for the

charge e( of the plate 1 of B, e/ = K'V where K' is the capacity

ofjB.
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If after the steady state is established, we remove the electro-

motive force and leave the system to itself, we have flowing through

the wire R per unit of time the quantity

V
R'

Accordingly we have for the decrease of the charges

(i3)
_^£H^ =j^

which when combined with the equation

gives the differential equation

_ -i-— p ——
Substituting for the charges elt e/, their values in terms of the

difference of potential V, we have

which being integrated gives

(16) V=V0e
v " *> l

Putting R = oo
, K' = 0 we obtain the solution (i i) just found.

Considering the condenser B alone discharging through the wire,

we obtain, putting K= 0,

t

(17) V=VtfT*'R.

A conducting condenser accordingly behaves, when left to itself,

exactly like a perfectly insulating condenser discharging through a

wire. The relaxation-time of such a condenser is KR
y
but for a

conducting condenser, although we may use the same formula,

the relaxation time is independent of the form or dimensions of

the condenser, since, as we have seen in § 184, if K0 be the

capacity of the condenser with air as a dielectric, we have

K = aK0 , R = . ^ rr , KR = = T.

The relaxation-time is accordingly a characteristic constant of

the medium, and may be determined independently of other

w. e. 26
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media, whereas we may determine only the ratio of the inductivity

of a medium to that of a standard medium.

If we make two experiments with the above combination of

condensers, one with A alone, which gives T, and a second with A
and B which gives

(£ + i)/<* +^
if we know K' and R we may from these two results determine K,
and if the condenser is made in any shape suitable for calculating

K0 from geometrical data, we can then determine jn. In this

manner Cohn found for water fi = 73*6, the largest value of the

electric inductivity yet found for any substance. In the case of

metals, all that we know is that T is extremely small. This is

of course due to the large value of X, so that whether /x is large or

small we have as yet no means of knowing.

208. Condenser with two Dielectrics. Absorption. In

the preceding section we have seen that a charge residing in any

part of a conducting dielectric will gradually disappear, and that

no electricity will accumulate at any part of such a dielectric.

We have considered only the discharge or leakage of a condenser,

starting from a state of steady flow. We shall now consider the

state which precedes the attainment of the steady state when
an electromotive force is suddenly applied to produce a difference

of potential between the plates of the condenser. We shall also

suppose that the condenser contains two dielectrics of different

properties, and for simplicity we shall consider only a plane con-

denser. Let the potentials of the two plates be V1 and V2 , and

let that of the plane separating the two dielectrics be F3 .

Let the thickness, inductivity and conductivity of the upper

dielectric be d1} ftu \1} and of the lower d2) fi2 ,
X2 . The force in

the upper dielectric will be the same at all points, Fl9 which

however depends on the time. In the lower dielectric let the

force be F2l also a function of the time.

Let the currents in the two dielectrics be q1 and q2 respec-

tively, and let Flt F2f qlf q2 , be considered positive when measured

from V1 to V2 . Let the condenser plates, of area S, be connected

by a wire of no resistance, into which we can suddenly introduce

an electromotive force E, which can be suddenly removed. The
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circuit may also be broken. If I is the current in the wire from

the plate 2 to plate 1, we have, since whatever charge arrives by

the wire is uniformly distributed over the plates

(1) S
d£ = I-€b$=I-\lFl S,

(2) s%£ = -I + toS = -I +\Jt8,

(3) 8^ = (Sl -qt)S =\F1 -*j;.

The densities are determined by the equations

(s)

(6) <r, =^(&-&) = 3^. W-Mifi).

Beside these we have always, taking the line integral of the

force plate to plate, the equation

(7) d,F, + d2F2
= "Pi — F2 .

From (i) and (4), (2) and (5)

(R\
1

\ F - ^ dFl
(8) S"^ 1"^ dt

'

(9) S~^2 ~4tt W
and integrating from £= 0 to t = r,

^£ /# -£ X&dt =£ {^ (T) - ^(0)},

I

|

T

/eft- = {F2 (t) - ^(0)}.

If 2^ be the greatest value of Fx in the interval t = 0, £ = r, we

have

Jo

26—2
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and since Fx is finite, as we decrease r indefinitely, we have in the

limit, since jPi(O), F.2(0) are zero,

(io) • itf-gl^

That is, the forces jump suddenly from zero to F1 and F2) while

the total quantity of electricity e=jldt passes from one plate to

the other. This is called the instantaneous charge.

From the equations (io), (7), we find

(12)

d^2 -t- d2fji1

'

4tt d^2 + dzfa
'

the same as if there were no conductivity, as in § 188. The
ratio

e S
(13) Vx

- V2 4tt (d^fjL, + d2jfi2)

'

or the instantaneous capacity, is the same as the true capacity.

If we now keep the electromotive force E in the wire, electricity

continues to flow into the condenser, its plates always maintaining

the same difference of potential V1
— V2 =E. The capacity appears

to increase without limit. In order to examine what goes on, we
must integrate the differential equations. Eliminating / from (8)

and (9),

By means of the equation (7) we may introduce F2 in terms of

F1 and E, and differentiating the equation (7),

d
dF

^
ai

dt
+Ct2

dt
~°'

from which we may obtain dF2jdt in terms of dFJdt, giving finally

(15)
dFl

1

4?r (Xld/2 + x*dl)p - 4?rX2 £
dt fxxd2 -f fi2d1

1

f^id2 + fi2dx
'

as the differential equation for i^. This is to be integrated with
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the arbitrary constant so determined that for £ = 0, Fx
has the

value

(i 6) F^=F ^

The integral is accordingly

(1 7 ) j^=jsrJ —=-^3—=- -+-
f
— —3--^-^-^--^- J "SiS+Si*

- *

and from this and (7)

(18) j;=jgJ—^—=+( ,^
1 ; 2 (XA + W2 + /^i xA + Mi/

From (4), (5), (6), putting for brevity

fad2 + ^2c?! _ T X2 _ ^ ^1 _ n
47T (X^ H" ^2^!) ' X^ +X^ ' Xjrfg + XgC?!

^2 _ r Mi
&i> —7-; T = &2>

we have for the densities,

(19) ^2 = - K + (62 - <h) e~r},

The plane 3 accordingly acquires a charge, which is not the

case if the dielectric is homogeneous, or if the relaxation-times of

the two dielectrics are equal. We shall distinguish the values of

F, <r, etc., attained after the time ^ by an affix, F^K Suppose

that the circuit be now broken. We accordingly have 1 = 0 and

therefore

Ml ^1 1 "\ Jp A

(20)
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and the charges of the three planes begin to die away at different

rates. At any subsequent time later by an interval t2 ,

*

(21)

= iV1
' e~ ' = F^ e

_47rA2 ti

F2
® = i^d) e

2 = Fjn e T
s

(22) <72
(2) = o-2

(d e ^

0-3(2) =-(^(1)^ ^ + cra«e

If the condenser be now left to itself, the charges will finally

entirely disappear. If however the plates are short circuited, we
have the same conditions as in the first stage, with E=0.
Accordingly the forces change suddenly from F^2

\ F2
® to F^\

F2
{3)

, and there passes through the wire the instantaneous dis-

charge

(33) ^f/^=^^
(3'- J?'- <2,^ =^^ (3, -^ ,2,

)'s
.v J/

J 4tt 4tt

We now have, by (7)

<oy3
> + d2F2

® = 0,

and since

^F,® -^ =^ -^ = - 4tt<73
<
2
>,

we obtain

jf rfa* +<ri»)s.

(If t2 , the time of leakage through the condenser, be zero, and if

the time of charge, be either zero or infinity, we find that con-

duction is without effect, and the instantaneous discharge, — e\ is

equal to the instantaneous charge.)

There now remain the charges

47T ^Yd2 + fl2d1

'

A 2̂
(3) dlfi2a^

4<7T fJL1d2 + fach
9
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If the circuit be again broken, the circumstances are the same

as in stage 2, so that if the condenser is subsequently again short-

circuited, we obtain a new instantaneous discharge, called the

residual discharge, and this may be repeated as often as we please.

It will be seen that the residual discharge arises from the charge

<j3 that has accumulated by conduction on the plane 3, and that

there will accordingly be no residual discharge in a condenser in

which the relaxation-time is the same in every part. This is a type

of what would occur in any non-homogeneous dielectric, and it is

in this manner that Maxwell gave a possible explanation of the

phenomena of electric absorption, and of residual charge (Riick-

stand). Maxwell's explanation has found confirmation in experi-

mental results ofRowland and Nichols, Hertz, Arons, and Muraoka*,

all of whom found that when the dielectric was perfectly homo-

geneous there was no residual charge.

209. Total and Displacement current. In the funda-

mental equation § 206 (4), we see that the vector

2 +
47T dt

whose components are

i_dx \^<mU +
4tt dt'

V+
4tt dt '

W +
4nr dt

9

is solenoidal. If we consider the condition at the surface of an

ordinary conductor, in which we consider 3 = 0, surrounded by an

insulator (in which q = 0), we have

^ = — \u cos (riioo) + v cos (niy) + w cos (n^)}
t

1

so that here also the solenoidal condition is fulfilled. The vector

1 d^
9+i r. is called by Maxwell the total current It is a funda-
* 47T dt J

mental principle of Maxwell's theory that the magnetic effects of

* Eowland and Nichols, Phil. Mag. (5) 11, p. 414, 1881 ;
Hertz, Wied. Ann. 20,

p. 279, 1883; Arons, Wied. Ann. 35, p. 291, 1888; Muraoka, Wied. Ann. 40,

p. 328, 1890.



408 ELECTROKINETICS [PT. II. CH. X.

the current are due to the total current, and not to the conduction

current alone. In insulators the part d%jdt . 4ur, which alone

exists in insulators is called the displacement current, since

Maxwell calls §/47r the electric displacement. The corresponding

magnetic quantity, which, since there is no magnetic conduction,

constitutes the magnetic current, has important physical properties,

which will be considered in Chapter XIII.



PAKT III.

THE ELECTROMAGNETIC FIELD.

CHAPTER XL

ELECTROMAGNETISM.

210. Magnetic Force due to Linear Current. The dis-

covery was made by Oersted*, in 1820, that if a linear circuit be

traversed by an electric current, the space in its neighborhood

constitutes a field of magnetic force. The nature of the forces of

the field was completely investigated by Ampere-f", who found that

they were of the same nature as if they proceeded from permanent

magnets. They accordingly have a potential, which, with its first

derivatives, is continuous and vanishes at infinity, and which

satisfies Laplace's equation at all points outside of the conducting

wire, supposing that a single homogeneous medium is present.

We have however seen that a single-valued, or uniform function

having all these properties vanishes everywhere. Accordingly the

magnetic potential due to a current is not uniform.

* Oersted, Experimenta circa effectum Gonfiictus Electrici in Acum Magneticam^

Copenhagen, 1820.

t Ampere, " Memoire sur la theorie mathematique des phSnomdnes electro-

dynamiques, uniquement deduite de l'experience. Gilbert's Ann. 67, 1821 ; Mem.
de VAcad. t. 6, Ann. 1823.
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We shall in future denote the magnetic force by H, its com-

ponents by X, M, N, the magnetic induction by S3, its components
by 8,

s
)Jl, % and the magnetic potential by fl, reserving the nota-

tion F
y
X, Y, Z, S, §), 3> V, for the corresponding electric

quantities. For the electric inductivity we shall use the letter e,

leaving /ul for the magnetic inductivity. These distinctions have
not before been necessary, since we have not at the same time

considered both electrical and magnetic quantities, as we must do

from now on. If we form the line integral of magnetic force from

a point A to a point B, we have

(i) Ld%+ Mdy + Ndz = £lA -£lB ,

J A

which must be independent of the path AB, for otherwise, by
changing the path infinitely little, we should, starting with the

given value ilA , cause Q,B to change by an infinitely small amount,

and could thus cause £lB to take at the same point a series of con-

tinuously varying values. The integral is accordingly the same
for all paths that can be changed into one another by continuous

deformation. If, however, the current separates two paths ACB,
ADB, the integral is not the same for both. In other words, while

the integral around any closed path not linked with the circuit is

zero, the integral around a path linked with the circuit is not.

But the integral around any two closed paths each linked once

with the circuit is the same, for they may be continuously

deformed into each other. Or in other words,

we may connect two such paths 1 and 2, Fig.

84, by a path PQ. The integral around the

circuit ABPQDCQPA, which is not linked

with the current, is zero, but this is equal to

the sum of the integrals PABP around 1 in

the positive direction, together with the in-

tegral QDCQ around 2 in the negative direction,

while the integrals over the coincident paths

PQ, QP in opposite directions destroy each

other. Accordingly

PABP = jQCDQ.

We shall say that two geometrical circuits are linked positively,
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+ Right

when, given a direction of circulation about each circuit, the

direction of circulation in one circuit agrees with

the forward motion of a right-handed screw,

whose rotation corresponds to the direction of

circulation in the other circuit. Fig. 85 repre-

sents two circuits linked positively above and

negatively below. By an extension of the above

reasoning we see that the integral around any

circuit linked n times in the positive manner

with the current is nJ, where J is the integral

around any circuit linked once. Accordingly

the potential at any point is an infinitely

valued function, whose values differ from each other by integral

multiples of J. We may however make the potential a uniform

function, if we prevent passage from one point to another by

paths not continuously deformable into each other,

that is, if we reduce the doubly connected space

about the current to a singly-connected one by

means of a diaphragm covering the current

circuit. Then no two paths can be separated

by the current. If we consider the potential FlG - 86 -

at two points infinitely near each other but lying on opposite

sides of the diaphragm, Fig. 86, to get from one to the other we

must perform a closed circuit about the current, so that their

potential differs by the amount J", accordingly in crossing the

diaphragm, the potential is discontinuous, the amount of the

discontinuity being

where A is on the positive side of the diaphragm. There is, how-

ever, no discontinuity nor lack of uniformity in the derivatives

of a

If we now consider all space, except a small sphere of radius R
with center at the point P, and apply to it Green's theorem

where for V we put the magnetic potential 12, and for TJ the

function 1/r, where r is the distance from P, the volume integrals

vanish, and the surface integrals are to be taken over the infinite
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sphere, where they vanish, over the small sphere about P, where

we have as in § 83, on making R decrease indefinitely,

r on dn 1

and over the two sides of the diaphragm, where we have

roth arij / J I \r dn2 dn2 /

Since, however, dfl/dn is continuous, the first terms in the two

integrals cancel each other, the normals nx and n2 being in opposite

directions, and since

a (I) a
f
I'

3nx dn.
2

this becomes

and finally

O) 47raP + jj(n2 - no -^p. ds = o.

Since Clx
— fl2 = J we have

so that the action of the current is the same as that of a magnetic

double-layer or shell of strength

(5) <i> = = fll

n

'2

4<7T 4*7T

This result was given by Ampere, by different reasoning. Experi-

ment shows that the magnetic forces are proportional to the

strength of the current, so that if A be a factor of propor-

tionality,

!

:

9©
(6) nP = Aljj -g-pdSf = Aim,
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the surface integral, being by Gauss's theorem, § 39, equal to co

the solid angle subtended by the current circuit at the point P.

The positive side of the shell and the one toward which the normal

is to be drawn is the side toward which a right-handed screw

advancing in the direction of the normal to the diaphragm, would

move when rotating with the current. The line of force is

positively linked with the current. Since the potential every-

where, except in the substance of the conductor, satisfies Laplace's

equation, the force is everywhere solenoidal, and the tubes of

force are endless, and are all linked once with the current.

211. Electromagnetic Units. The determination of the

factor A, which is a natural constant, is a matter of experiment.

It is extremely small, that is, an enormous number of electro-

static units of electricity must pass in unit time in order that the

current may produce magnetic forces of appreciable amount. If,

however, we choose a new unit for 7, defined by the assumption

A = 1, so that

n = Io),

we get a new system of measuring currents known as the electro-

magnetic system. The unit magnetic potential is defined as the

potential at unit distance from the unit magnetic pole in vacuo,

accordingly the electromagnetic unit of current is referred at once

to a magnetic pole, instead of to an electrified point. From this

definition of the new unit of current we may at once obtain a

whole system of electrical units. We define the new unit of

quantity of electricity as the quantity passing in unit of time

when a steady current of one electromagnetic unit flows. From
this definition of unit charge we obtain, as before, new units of

field, of electric potential, of resistance, capacity, and the rest.

Conversely if, measuring the current in electrostatic measure, we
put 4 = 1 we shall get a new unit of magnetic potential, from

which we may obtain a complete set of units for magnetic quan-

tities, all referred to the unit of electric charge, instead of to the

unit magnetic pole. We may thus measure electric quantities in

the electromagnetic system, or magnetic quantities in the electro-

static system, or as before, each kind of quantity in its own

appropriate system, thus obtaining the Gaussian system.
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212. Dimensions of the Units. If we denote the numeric

of a quantity when measured in the electrostatic system by the

suffix e and when measured in the electromagnetic or magnetic

system by the suffix m, we have for the magnetic potential

(i)

(2)

nm = Aie co =

i

mo),

Consequently the number A denotes the ratio of the numeric of a

certain current when measured electromagnetically, to the numeric

of the same quantity measured electrostatically, or 1/A is the

number of electrostatic units of current in one electromagnetic

unit. If m denote a magnetic charge, we have the dimensional

equation, by § 190,
m

(3) [fl]
Jill

the quantities being measured in either system. Also since the

dimensions of solid angle are zero, the dimensions of 12 are the same

as of /, and

(4) m=[fi]=|j5 •

Since the unit of electric charge in either system is obtained

from the unit of current multiplied by the unit of time,

(5) W = UT]
JUbL

and we accordingly have for the ratio of the two units of electricity

or of current, inserting the suffix m in (5)*

(6)

"1"
ee 1

e

A J-

m

Now the fundamental assumption in defining the magnetic system

was that the dimensions of fju were zero. Also the assumption

defining the electrostatic system was that the dimensions of e

were zero. Accordingly the dimensions of ee , and 01 r>im ,
.
botb

belonging to the Gaussian system, and defined by precisely the

same considerations, namely

(7)

"
e2

' ~ m2 ~ ML'
J1L

2 T2

* Evidently any dimensional equation holds when either suffix e or m is inserted

on both sides.
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are the same. Hence the dimensions of the quantity 1\A are accord-

ingly the same as those of a velocity. All that has been said of

course applies to any absolute system of units, and has no re-

striction to the C.G.S. system. If the units of length, mass, and

time are given, we can by definition immediately obtain the

unit of electricity in either the electrostatic or electromagnetic

system, and by experiment determine the number of electrostatic

units contained in one electromagnetic. If the unit of mass is

now changed, and we define our electrical units as before, the size

of both units of electricity has changed, but in the same ratio,

so that the number of one kind contained in one of the other

is the same as before. If, on the other hand, we change the

unit either of length or time, the two electrical units change,

but in different ratios, so that the numeric expressing the number
of one kind in one of the other is changed from its former value.

It has, however, changed in precisely the same way that the

numeric expressing any given velocity has changed, so that we
may say that the number 1/A represents a certain definite velocity,

which is totally independent of the units chosen. When the units

of mass, length, and time have been settled upon, the numeric of

this velocity may be given. This velocity will be denoted by v.

It is to be noticed that the determination of the quantity v
depends upon the determination of a certain numeric, the units

being settled upon, and that there is nothing of the nature of an

actual velocity involved. We shall, therefore, not as yet be under-

stood to speak of v as a velocity, but merely as a quantity whose

numerical expression changes like that of a velocity, with any

change of units. The quantity v is the most important electrical

natural constant. Numerous determinations of its value have

been made, the first by Wilhelm Weber* and Rudolf Kohlrausch,

in 1856. The number now generally accepted is

v== 3 x 1010 cm. /sec.

Electrical and magnetic potential are defined in terms of

work, so that

(8) [e V] = [mil] =

which agrees with the other possible definition

* Weber, Elektrodynamische Maassbestimmungen iv. 1856 ; Werke, Bd. in. p. 609.
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From (8) and (6) we obtain

(9) [ee Ve] = [emVm]>

(9') Vm

"1"

v

and there are v electromagnetic units of potential in one electro-

static unit. Capacity is defined as ratio of charge to potential,

so that

(10)

from which

(IO')

e

V

V p V "1

6m Ve _

[v2
],

or there are v2 electrostatic units of capacity in one electromagnetic

unit. Resistance is defined as ratio of potential to current, so that

V
I

Re Y e z m
"1

V I V2

(ii) [R]

(ii')

or there are v2 electromagnetic units in one electrostatic unit.

213. Practical System. The absolute system of units

was due to Gauss, and was introduced to practice by Weber. The

system was first made practicable for general use by the exertions

of the British Association, which issued copies of the unit of

resistance, and decided on various multiples of the C.G.s. electro-

magnetic units for practical units. Its action has been seconded

by international congresses, at Paris in 1881, 1884 and 1889, and

at Chicago in 1893, which determined on the following multiples of

the electromagnetic units

:

1 Volt = 108 C.G.s. electromagnetic units of Potential.

1 Ohm = 109 „ „ Resistance.

1 Ampere = 10 1

1 Coulomb = 10-1

1 Farad = 10"9

1 Joule = 107

1 Watt = 107

Current.

Electric Charge.

Capacity.

Work.

Activity.

The prefixes mega and micro are used before the preceding names

of the units to denote respectively multiplication and division by
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a million. These units form a consistent system, so that electrical

relations involving quantities measured in these units require no

numerical factors. For instance, a current of one ampere is

produced when an electromotive force of one volt is impressed in

a circuit whose resistance is one ohm, and the activity of one watt

thereby exerted dissipates energy at the rate of one joule per

second.

214. Electrostatic compared with Practical Units. From

the above definitions with the value of v given and equation (9')

we find

1 c.G.s. electrostatic unit of Potential = 300 Volts.

From (10')

1 Farad contains 9*10n c.G.s. electrostatic units of Capacity.

The electrostatic unit of capacity is the unit of length, accordingly

1 Microfarad = 900,000 cm. of Capacity.

A sphere of nine kilometers radius in free space would have a

capacity of one microfarad. From (6)

1 Coulomb = 3109 C.G.S. electrostatic units of Electric Charge.

From (n')

900,000 Megohms = 1 C.G.s. electrostatic unit of Resistance.

From equation (7) we may find the dimensions of e and ra, when

those of e and fi are settled upon. Any convention that may be

made gives us a possible system of units. It must be noticed,

however, that there is always a relation between the dimensions of

6 and From equations (4) and (5)

m
~

Squaring this and dividing by
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Consequently the dimensions of the product of the electric

and magnetic inductivities must in any system be those of the

square of the reciprocal of a velocity. The absolute dimensions

of either factor are arbitrary. Attempts have been made to settle

the absolute dimensions of e or jul, but they are evidently based

upon misconceptions of the theory of dimensions. The two

common assumptions are, that

. 1

This gives the electrostatic system. Secondly we may assume

i
1

= € =
v2

*

This gives the electromagnetic system. We shall, when

dealing principally with the magnetic properties of currents, use

the electromagnetic system, but when dealing equally with elec-

trical and magnetic phenomena, to avoid ambiguity, we shall,

following Helmholtz and Hertz, use the Gaussian system,

measuring all electrical quantities in the electrostatic system,

all magnetic quantities in the magnetic system, and introducing

the factor A, with the numerical value 1/v. A complete table

of dimensions of the various units is given at the end of

Chapter XIII.

215. Potential due to Circular Current. The potential

at P due to a current being 12 = Ico, where co is the solid angle

subtended at P by the current circuit, if P is situated at a dis-

tance x from the center of a circular current of radius P, on

the line through its center 0 perpendicular to its plane, we

have for the area of the segment of the sphere of unit radius

about P cut off by the right cone whose vertex is P, and base

the current,

(i) co = 2tt I sin 6d0 = 2ir(l — cos a)

= 2tt (l - -7=^=1 = 2tt [l — .

This may also be obtained, according to § 123, by differen-

tiating the expression for the potential of a disc at a point on the

axis.
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The force in the direction of the axis is

L = -

At the center of the circle

2ttI

E

From this expression comes the definition often given of the

unit of current as that current which, flowing in a circle of unit

radius, produces the field 2ir at its center, or less correctly, the

current, which, flowing in an arc equal to the radius in a unit

circle, produces unit field at the center.

The expression for the force is an example of the proposition

that similar geometrical circuits traversed by equal currents,

produce at corresponding points forces inversely proportional to

their linear dimensions. For at corresponding points the solid

angle, and therefore the potential is the same. In the circuit of

n times the dimensions, the potential changes by equal amounts

for displacements of n times the length, hence for equal displace-

ments the change is Ijn as great, and the force is n times smaller.

When the point is not on the axis of the circle, the cone,

having an oblique section circular, is elliptic, and we must cal-

culate the area of the spherical ellipse cut out by it from the unit

sphere. This involves an elliptic integral.

We may however develop the result in an infinite series of

zonal spherical harmonics, as in the case of the potential of a disc,

in § 102. Developing the above expression for co at points on the

axis by the binomial theorem, we have

\2\(c) 2.4U/
+
2.4.6Wri/JRy 1.3/JSy 1.3.5 /fly

}
x> R,

= 2w U
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Accordingly for points not on the axis, at a distance r from the

center of the circle,

1.3/Py 1.3.5 ARy

B 1 2 \RJ
3 2.4 VP,

In order to find the direction of the force we must differentiate

this in the directions parallel and perpendicular to the axis, and

take the resultant. A figure of the lines of force is given by
Maxwell, Plate 18.

216. Infinite Straight Current. Law of Biot and
Savart. If we have a current flowing through a straight linear

conductor of infinite length, we may consider the circuit com-

pleted by conductors lying at an infinite distance all in the same
plane. The solid angle subtended by the circuit at a point P
will be that sector of the unit sphere with center at P included

between the plane through the straight conductor and P, and a

plane through P parallel to a given plane, which is assumed to

be the plane of the circuit. This angle being <£, we have the

ratio of the solid angle co to the surface of the unit sphere equal

to the ratio of the plane angle to the circumference of the unit

circle,

t=t' w==2^ n=2I<
f>-

But <j) is equal to the angle made by a plane through P and
the conductor with a fixed plane through the conductor. Conse-

quently the equipotential surfaces are planes through the con-

ductor, and the lines of force are circles whose planes are per-

pendicular to the conductor.

The line integral of force about a circle of radius r is the value

of the force JET, which is tangential to the circle, times the length

of the circumference, and this must be equal to 47r/,

4>tt1 = ZirrH.

Accordingly the value of the force is

r

This is the law of Biot and Savart*.

* Biot et Savart, Ann. Chim. Phys. 15, p. 222, 1820.
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217. Force due to any Linear Current. If the potential

at a point P is 12 and at a neighboring point Q is H 4* SZl, where

the distance PQ — Sh, and if H is the magnetic force at P, we
have

(1) H cos (Hh) = -gj ,

(2) sn = - jffSA cos (m).

This change in the potential is the same as the change that

would be made in the potential at P by moving the whole circuit

parallel to itself the same distance Sh in the opposite direction.

The change 8£l is proportional to the change Sco made in the

solid angle subtended at P due to the motion of the circuit, which

is easily seen to be exactly the solid angle subtended at P by

the narrow ribbon of cylindrical surface whose edges are the

initial and final positions of the circuit, and whose generating

lines are equal and parallel to Sh. But any arc ds has described

in the motion an area dS of a parallelogram equal to

(3) dS — dsSh sin {ds, Sh),

and if n be the normal to this element of area, we have for the

element dSco of the solid angle subtended by it at P,

dS cos (7i>r)

(4) dSco = —- = dsSh sin (d$, Sh) cos (nr),

where r is the distance of the element from P. Consequently

integrating around the ribbon

, N cv cst f sin (ds, Sh) cos (nr) 1

<S) &*> =M \ r
— ds

>

(6) SO = 18a,.

If we consider that each element of the current of length ds

contributes to the field the potential dZl and the force dH, we
have, by (2),

/ \ 7tt*7 /iTT 7^ T rds Sh sin (ds
,
Sh) cos (nr

)

(7) - dHSh cos (dH, Sh) = dSCl = / 1—- .

The numerator is the volume of the parallelepiped whose sides

are r, ds, Sh. It therefore vanishes if the direction of Sh coincides

with that of r.

There is accordingly no component of the force in the direction

of r, or the force is perpendicular to r. In like manner if Sh has
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the direction of ds, the force vanishes, so that the force is per-

pendicular to ds. If Bh is perpendicular to the plane of r and ds,

we have

cos (dH, &h) =1, sin (ds, Sh) = 1,

/ox 7 TT rds cos (nr) rds sin (r. ds)
(8) dH= ^~l = ~t

Accordingly if we call da the component of ds perpendicular

to r, the magnetic force due to the whole conducting circuit will

be obtained if we suppose each element ds to contribute to the

field the amount

(9)

which has the direction perpendicular to the element ds and the

radius r.

The total field is the vector sum of all these infinitesimal parts.

The proper sign to be chosen may be found by considering the

way in which the lines of force are linked with the current, and
we find that the direction of the force is given by the rotation

of a right-handed screw advancing with the current in the

direction of da. The complete specification may be most con-

cisely stated by saying that the force due to the element ds is

1/r3 times the vector product of Ids and r, the vector r being

drawn from the element ds to the point P,

( IO) dH= ~n Vds.r.

The resolution of the field into elementary fields is artificial, for

the field is of course due to the whole closed circuit. Moreover
the resolution may be performed in an infinite number of ways,

for it is the integral of the above differential taken around the

whole circuit which gives the field.

We may consequently add to the differential above the differ-

ential of any function of the coordinates of the element ds, for in

integration around the circuit this function returns to its original

value so that the integral vanishes.

If the coordinates of a point in the current circuit are xlf y1} zl9

these of P, x, y, z
}
since the direction cosines of f and ds± are
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respectively

x-xx y-Vi
ry*

*
ry ' ry

'

dx1 dyx dzY

dsx
* dSi

}

dsx

'

we have for the components of the vector-product representing the

field due to an element dsly

dL= ^ {fyi 0 - 50 - dz
* (y

-

( 1
1
) dM =— [dzY (x — xx )

— dx
l
(z — z^},

dNz=^ \
da)i (y - - dv^O -

We may obtain the same result by the use of Stokes's Theorem,

§ 31. Since

r r

a©a = Ia = IJJ-^-dS,

the component of the field in the direction h is

Let the constant direction cosines of h be a, /3, 7, and those of

n be X, yL6, z/, variable over the surface of the diaphragm. Then

a
3a

p
3y

7
a*'

(13)

dn dx1
^ dyx dzx

'

Now since

r» = (a? - + (y - yO
2 + 0 - ^)

2
,

we have

d(r) 8
(r) ^ (r)

9
(r)

9
(r)

8
(r,

3a? 9^ ' 3y
~~ dyx

' dz " dzY

9
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so that

Now since 1 jr satisfies the equation

we may write

»a)

dec,
2 " dy? dz?

9

with similar substitutions for 92 (l/r)/3#!2 and 32 (l/r)/^i
2

'
Making

these substitutions, and arranging the terms differently, we obtain

Consequently if we put
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dz1 dyj.

(16)

^
(r) ^ (r

^ 3^

making Qh the resultant of 0^, Vhi Wh equal to / times the

vector product of the unit vector h and the vector parameter of

1/r, the force in the direction h is

(17) #cos(m) = -jy{\(^ dz1 dzi 3^i

V
\ 3^i dy1

I (curl Q/j) cos (curl Qh ,
n) dS.

dS

But by Stokes's theorem this is equal to the line integral

(1 8) - j( Uudxj + Vhdy1 + Wndz^ = -
j Qh cos (Q^ck) d*,

around the current circuit.

Accordingly attributing to each element ds the amount of field

dH,

(19) dH cos (dH, h) = adL + /3dif + ydJST

= -
( Uhdx1 + Vhdy1 + FA),

and since this must hold for every value of a, /3, 7, equating their

coefficients we obtain

dL = I 4) 4) >

v 3^!
1

3^!
1

J

(r) , C') ^— dx1
-

I 3yi

which give the values obtained in (11).
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218. Forces on Conductor carrying Current, The

magnetic energy of a pole m at P in the field due to a current is

(1) W= mil = mil I -~ dS

d(-)

-'/Jtt*-'//^*1

where Om is the potential due to the pole. For any number of

of poles, in like manner £lm being the potential due to them all,

(2) W=ljj d-^dS==-ljjHm cos (Hmn) dS}

which is the flux of force through the current circuit in the

negative direction, due to all magnets. The potential energy

tends to decrease, consequently a current in a magnetic field

tends to move so as to make the surface integral a maximum, that

is, to embrace the largest possible number of tubes of force linked

with it in the positive direction. This statement of the mechanical

action of magnetic forces on a current is due to Faraday.

219. Mechanical Force acting on Element of Circuit.

We may consider the forces acting on the wThole circuit as the

resultant of the forces acting on each element dslt with the same

degree of arbitrariness as in the case of the field due to the current.

By the principle of reaction the force on ds1 due to the presence of

a unit pole P must be equal and opposite to the force dL, dM, dN
on the unit pole, due to the current element dsx . Consequently if

cE, dH, dZ, are the components of the mechanical force acting on

ds1

da = ~
s
{dy1 Ox -z)- dzx (yx

- y%

(3) dU. =~ {dz1 (xx
- x) - dxx (zx

- z)},

But

I
dZ=- {dxx (yx

- y) - dyx (xx
- x)}.

1 xx -x 1 yi-y _u 1 z^~ z - w

are the components of the field at dsx due to the unit pole at P.
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Consequently

da = I{Nmdyx
-Mmdz^

(4) dR = I (Lm dz^ —Nmda$,
dZ — I (Mmdx1

— Lmdy^),

and the whole force due to the presence of any number of

magnetic bodies producing a field L, M
y
N is the resultant of all

the individual actions

dB = I (Ndy1
- MdzJ,

( 5 ) dU = I (Ldz1
- Ndx^,

dZ = I {Mdx1
- LdyJ.

That is : the mechanical force on the element is the vector

product of the current element Ids1 and of the magnetic field

where it is situated*.

Suppose that the magnetic field is due to a second element ds2

of strength I2 at a distance r from ds1 . Then since by (1 1) § 217,

putting ds2 for dslf x1} yu zY for x, y, z,

dL = ^ {
dV* (*i ~ **) ~ dz2 (y, - y2)},

dM = ~2
{dz2 (xx

— x2) — dx2 (z1
— z2)},

dN=z
~t {

dx* (Vi - 2/2) - dy2 (oc1 - x2)},

we have for the mechanical force acting on dsu by (5),

(6) d2B = - [dy1 [dx2 (y1
- y2) - dy2 (x, - x2)}

— dz1 \dz2 {xx
— x2) — dx2 (z1

— z2))\

Adding and subtracting the term dx1dx2 (x1
— x2)/r

3 this maybe
written

^•2 1

(7) + dxx + y±=^ dVl +^ d2l

= {cos cos {ds^s^ — cos (cfe^) cos (rd^)},

r being drawn from cfej to ds2 .

* It would be hard to devise a simpler rule for remembering the direction of the

force than the one given on p. 12.
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In like manner

Iilz&hds

2

j
cog cog (fe^^ _ cos (ds2y) cos {rds^))

y

1 1 ds ds
tfZ — _J_J

—

\—2
{cos (rz) cos (dSidsz) — cos (ds2z) cos (rds^}.

The resultant d?R has a component

IYI2dsYds2 cos (ds1ds2)

in the direction of r, and one of magnitude

I^I^ds^ds^ cos (r, c?^)

in the direction ds2 . This resolution into infinitesimal forces is

unfortunate on account of the lack of symmetry with regard to

the two elements.

220. Mutual Energy of two Currents. The whole force

acting on the circuit 1 is found by integrating the expressions (7)

already found for d2a, d2U, d2Z, around both circuits 1 and 2,

(8) B = IJ2
\ \

- {dx1dx2 + dyYdy2 + dzxdz2)

dx..

^
7

^ 0) 7
^ CO 7 /

W 2 8#i 3^!

with similar expressions for H and Z. If we now suppose the

circuit 1 displaced or deformed in any manner, so that a point

xly ylt zly is displaced by the amount Sxl9 Syly 8z1 the circuit 2

being fixed, the forces 3, H, Z do the work

(9) E&*i + I%1 +Z8*1
=

1J 2 v

3© s© 1

3yi dzx

[dxxdx2 4- dy^dy2 + dzxdz2 )

{dx28xx 4- dy2hyx
4- dz2 8z^)

u 2

8
(?)

80 s©
«—— dxx +—— dy2 + c£?9

I 3a?! dy2 dz2



219, 220] ELECTROMAGNETISM. 429

The second factor in the second integral may be written

and we may then perform the integration around the circuit 1,

integrating by parts, obtaining

4)
{dx2 hx1+ dy2Syx+ dz2 8zx) , dsx

1 CLS\

—
^ (dx2 8x1 + dy2hyx 4- dz2 Bz1) j

J 1 r V
2
ds1

+ay
* ds1

+
dSl )

dSl '

The integrated part vanishes, for the factors Sxlf Syly 8z1 are the

same for the beginning and end of the circuit. Accordingly the

expression for the work becomes

ij..2
' U 2

4) 4) 4) ,

(io) + f f - {dx2hdx1 + dy2 hdy1 + dz2 hdz^)

( ~ (dxxdx2 + dyxdy2 -f dzYdz2)

denoting the change made by changing x1 yl z1) keeping x2 y2 z2

constant. We have accordingly obtained the work as the change

due to the motion in the value of a line integral around both

circuits. Consequently the mechanical forces are derivable from a

force-function, and the integral represents the negative mutual

potential energy due to the magnetic forces acting between the

two currents.

(1 1) — W= I1I2 - (dxxdx2 -f dyxdy2 + dzY dz2)
JlJ2 r

This form of the integral was given by Franz Emil Neumann* in

1845 and is generally known in Germany by the name of the

Electrodynamic Potential of the currents 1 and 2.

* Neumann, "Allgemeine Gesetze der inducirten Strome." Abh. Berl. AJcad.

1845.
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221. Various Resolutions into Elementary Forces. The

value of the integral will not be changed if we add to the integrand

any expression,

ds1 ds2

'

where F is any function of r, for it will disappear when integrated

around either circuit. If we put F ==r,

dr _ dr dx1 dr dyY dr dzl

ds1 dx1 dsj dy-^ ds1 dzY ds1

*

If, Fig. 87, we drop a perpendicular from ds2 on

the tangent at dslf and call the length of the

tangent thus cut off p, we see by infinitesimal

geometry that

— dsj cos (r, ds^ = dr, ds2 cos (dsl9 ds2) = dp.

dr
- — cos(r, dsj,

dsi dp

Fig. 87.

Accordingly

(12)

ds1

dp

ds2

dr

— cos (dsly ds2),

= cos (r, ds2).

But p — r cos (r, ds^ = — r

Consequently

(13) cos (cfei, ds2) =H = -

and

dr'

ds<> V dslt

dr

ds1

'

dr dr — r
d2r

ds2 dsx dSids2

9

(14)
d2r

dsids*

1

r

dr dr

3«i ds2

+ cos (ds!
,
ds2)

cos (r, dst) cos (r, ds2)
— cos (cfel5 cfe2)

r

and multiplying this by an arbitrary constant (1 —k)/2 t
and adding

to the integrand in ( 1 1 )*

1 f(l + h)
(is) - WssI^jJ2

+

2

(1-*)

cos (dsl9 ds2)

cos(r, ds^ cos (r, ds2)\ dsids2 *

The value k = 1 gives Neumann's form of the integral, from which

may be obtained the resolution into elementary forces already

* Helmholtz, Wiss. Abh. Bd. 1. p. 567.
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given. For k = — 1 we get a resolution into forces proposed by

Weber and C. Neumann, and for k = 0 one implicitly suggested by

Maxwell. Let us examine the case k = — 1.

(16) - W = IJ2fJ^^)^^^ds1 ds2

~ 1 2

JJ *r dSl ds,
lClS*-

From this we obtain

(17) - &W-II ( ( {^^.^.Sr--— d—- 1 — d
-\dsd8(17) bW -l^jj^^^bi

rdg^ r ^ dgJ
dSlds2 .

Integrating by parts, the second term around the circuit 1, and

the third around the circuit 2, the integrated parts vanishing in

both cases,

BW I^I2 ^ ^ + ^ ^- ^J +^ ^- ^J

|

Bi d^d^

(18)

f f ( 1 dr dr 2 d 2r )

Since the integrand contains the factor Sr, work is done only when

the distances apart of some of the pairs of elements are changed, and

we may resolve the action into attractions between ds1 and ds2 of

the magnitude

(19)

= IXI2
— {2 cos (d^u ds2) — 3 cos (r, ds^ cos (r, cfe2)}.

This form for the elementary forces was given by Ampere*. Accord-

ing to this form, we see that parallel elements perpendicular to the

line joining them attract each other with a force

2I1I2 ds1 ds2

Parallel elements having the direction of the line joining them
repel each other with a force

I\I2 ds-±ds2

* Amp&re. "M6moire sur la th6orie mathSmatique des phenomenes Slectro-

dynamiques." Mem de VAcad. T. vi., 1823.
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while mutually perpendicular elements exert no action on each

other if either is perpendicular to the line joining them.

222. Currents distributed in three Dimensions. We
have seen in § 210 that a current / is equivalent to a magnetic

shell of strength

J
47T

where J is the line integral of the magnetic force around a circuit

positively linked once with the circuit, and in the electromagnetic

system / = <3>. Accordingly

J = 47r/.

If now we consider steady currents distributed in any manner in a

conducting body with current density q, the integral of magnetic

force around any closed curve depends only on the tubes of flow

with which it is linked, being equal to 47r times the total current

through the curve. Consequently

(i) \Ldoc + Mdy + Ndz

= 4-7T jj{u cos (noo) -h v cos (ny) + w cos (nz)} dS,

the surface integral being taken over any surface bounded by the

curve. But by Stokes's theorem

jldx + Mdy + Ndz

'dN dM\ fdL dN\ , N^-^Joofl^ + ^-^JcoBCiiy)

The surface integrals can be equal for all surfaces bounded by any
curve whatsoever only if we have everywhere

dN dM
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These are the fundamental equations of electromagnetism. In the

Gaussian system, we must introduce the factor A on the left. By
these equations the solenoidal vector q is expressed as the curl of the

magnetic force H. The magnetic forces cannot be derived from a

potential except where there is no current, but must be found by

integration of the partial differential equations (2). In order to

show how this may always be accomplished, we shall prove a

general theorem.

223. Vector Potentials. Helmholtz's Theorem. Any
uniform, continuous, vector point-function vanishing at infinity

may be expressed as the sum of a lamellar and a solenoidal part,

and the solenoidal part may be expressed as the curl of a vector

point-function. A vector point-function is completely determined

if its divergence and curl are everywhere given.

Let R be the given vector, with components X, F, Z. Let us

suppose it possible to express it as the sum of the vector parameter

of a scalar function and the curl of a vector-function Q, whose

components are U, V, W. Then

X = U dW_dV
ox dy dz

(I ) Y= di +
dU-- d-^

^ dy dz dx
7

z ^d$ +
dv _du

dz dx dy
'

Finding first the divergence of M,

A . t-> dX dY dZ AJLdiv R = 3- +— +— = A<£,
ox dy dz T

for the curl of any vector is solenoidal, § 35.

But by § 85 (18) we know that if $ and its first derivatives

are everywhere finite and continuous, we have

00

Since jB is continuous by hypothesis, div R is finite, so that

, , • 1 [[[(dX dY dZ) dr

w. E. 28
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Consequently the lamellar part ofR is determined by its divergence.

Secondly finding the curl of R, say to, with components rj, f,

du bw*
dy dz dy\dz dx dy J dz\dy

+
dy dz dy \dz dec dy J dz\dy dz dx

(4)
ATT d [du dv bw.= — A UA— \— A 1

ox [ox dy dz

Since Q is as yet undetermined except by the partial differential

equations ( i ) we may impose on it the condition of being sole-

noidal,

Hence

dx dy dz

and in like manner

(6)

dy dz

dx dZ

dz dx

dY dX
doc dy

But since R is continuous, curl R must be finite, and therefore as

before

"-Mil*-
00

00

The vector Q, whose components are 1/4tt times the potentials of

the scalar functions £, v, J, the components of &>, is derived from

g>/47t by the operation Pot, considering w asa vector, so that we
may write

(8) 3 =^ PotS,

and call 4m Q the Vector Potential of co. Since the solenoidal part

of R is the curl of Q, we shall also say that Q is the vector

potential belonging to R. We accordingly see that the solenoidal

part of R is determined by curl R, and accordingly the vector
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is uniquely determined by its divergence and curl. This theorem

was given by Helmholtz in his celebrated paper on Vortex

Motion*.

224. Symbolic Formulae. These relations may be con-

cisely expressed by means of Hamilton's and Gibbs's symbols V
and Pot (§ 78). In words we may say that any solenoidal vector

is the curl of the vector potential belonging to it, which is the

vector potential of 1/47T times its curl.

By virtue of the definition of Hamilton's operator we have the

vector equation

(9) R = V$ + V$,

so that we may call the sum of the scalar
<f>

and the vector Q
the quaternion potential belonging to R

}
from which R is derived

by the single vector operation V. Inserting the values of c/>

and Q,

( 10) R = V jJ- (- Pot div R + PotcurLB);

so that the operator (Pot curl — Pot div)/47r is the inverse of V,

when applied to a vector-function.

For a lamellar vector we have

(") curl 1 = 0, R=- ^-V Pot div 5,
47T

and for a solenoidal vector

(12) div R = 0, R = ~— V Pot curl R = ^- curl Pot curl R.

Taking the curl of co, we find in like manner

curl co = curl2R = — AR,

(R being solenoidal) so that

(13) R=t- Pot curl2 R.
4>7T

In fact since the operations of definite integration and partial

differentiation are commutative, the operations Pot and curl

must be.

* Helmholtz. "Ueber Integrale der hydrodynamischen Gleichungen, welche

den Wirbelbewegungen entsprechen," Crelle's Journal, Bd. 55, 1858, p. 25. Wiss.

Abh. Bd. 1. p. 101.

28—2
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225. Magnetic Force from Current. Applying Helm-
holtz's theorem to the solenoidal vector H, the magnetic force,

and calling the components of the vector potential F, G
}
H* and

using the fundamental equations (7), together with § 222 (2), we
obtain

dy dz
3

(14) M = ~-- d~
K 4;

dz dx
'

dx dy
5

'-!!!>
CO

(is) Q-jjjidr,
00

H-///" *•
QO

or the vector potential belonging to the magnetic force is the

vector potential of the current density.

226. Energy of Magnetic Field of Currents. The mag-
netic energy of the field is by § 118 (10),

(I) Wm = ±jjJ(& + M* + iV 2
) dr9

00

and introducing the vector potential this becomes

Integrating by parts for any volume t bounded by a closed

surface S,

* It is to be noticed that the letter H is here unfortunately used for both the

resultant magnetic force and one component of the vector-potential. This is

because we have followed Maxwell in using the letters F, G, H. The ambiguity
need cause no confusion.
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d
.dy dz ) \dz dx J \dx dy

=
ff
{(MH- NO) cos (rue) + (NF- LH) cos (ny)

+ (LG- MF) cos (nz)} dS

This important theorem in integration may be abbreviated as

(4) {jJcrarlQ — QcujcTff} c«-r =^V.^TQ cos V. J?"Q) rfiST.

The integral representing the energy is extended over infinite

space, and the surface integral vanishes at infinity. Inserting

the value of curl H in terms of the current density, § 222 (2), we
obtain

(5) Wm=z
lS!fc

Fu + Gv + Hw)
dr

>

and since no portion of space contributes to the integral unless

it is traversed by currents, we may take the integral simply

through conductors carrying currents. The components of the

vector potential are however themselves triple integrals over the

same portions of space, so that if we distinguish a second point

of integration by an accent, we have the double volume integral

r2 =(w- x'J + (y - yj + (z- z')\

where each point of integration traverses the whole volume

occupied by currents.

This form of the energy corresponds to the form in terms of

density given in § 117 (5), the integrals being there taken through

all distributions of matter.

If we perform the volume integration by dividing the space

up into current tubes, of infinitesimal cross-section S, ds being

the length of the generating curve, and 1= qS the total current in

the tube, we have for the element of volume dr = Sds, so that the

integral becomes
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both ds and ds traversing all current tubes. The sextuple in-

tegral is here interpreted as a line integral around every current

tube and then an integration for the double infinity of tubes for

each variable s and s\ If the currents consist of two linear

circuits, or closed tubes of infinitesimal cross-section and strengths

Ix and 7*2, the sextuple integral reduces to a double-line-integral,

and since both variables s and s' are to traverse both circuits, we

may divide the integral up into four parts according as s or s

coincide with s1 or s2 ,

Wm =X
J J

^(d

r

sds')

ds ds' +
1
^ f j

cos(d

r

Sds,)
dsds'

$=Si S
,= S

l
6"= S 1 S'= S2

(8)

IJsf
f

CQS (dsds)
dsds, + IJ-f fOOB^O ^

2 J J r 2 J J r
S= S2 S'= $\ S = S2 S'=S

2

The second and third integrals are equal, for it is evidently

a matter of indifference which point of integration is associated

with either circuit, so that we may write for the sum of these two

terms

JlJ2 T

where each point of integration goes once around one of the

circuits.

This term is equal to the negative of the mutual potential

energy of the electromagnetic forces acting between the two

currents, as found in § 220 (i i).

In like manner the first and last terms, where each point of

integration goes once around the same circuit, are the negatives

respectively of the potential energy of either current in its own

field, from which the electromagnetic forces acting between its

different parts may be calculated. If we call the integrals

Ll =fj
C0S

f
ds

'hsds', L^jJ^-^dsds',

f
f eoB((M»)

J i J 2 r

we may say then that the magnetic energy of the field due to

both currents

(9) Wm = \LJ* +M12IJ2 + \L2I2\
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is the negative of the total potential energy. But the potential

energy tends to decrease, and if the current strengths are constant,

while the circuits are moved or deformed, their position and form

being specified by a certain number of geometrical parameters q8 ,

the forces Ps according to these parameters are given by

( 10) 2sPs8qs =-8W=$Wm = +UMu + |/2
2S£2 ;

( t i ) ps
= *u l

L
> + 1a^ + ii: f» .

dqs
1 2 dqs

1 2 dqs

The magnetic energy of the field then tends to increase, and

we find the system behaving in the same manner as a cyclic system

during an isocyclic motion, § 70. The energy which must be

furnished to the system during a motion caused by the electro-

magnetic forces must be double the amount of work done by

the electromagnetic forces, which is equal to the loss of potential

energy, and must be furnished by the impressed electromotive

forces that maintain the currents. We have already seen that

in the case of concealed motions we cannot always tell whether

energy is potential or kinetic, and that in cyclic systems the

kinetic energy has the properties of a force function for either

isocyclic or adiabatic motions. We are therefore led naturally

to consider a system of currents as a cyclic system, and, instead

of considering W as potential energy, to consider Wm = — W as

kinetic energy. We shall henceforth call it the electrokinetic

energy, and denote it by T.

These considerations, assimilating an electrical system to a

mechanical system, are due principally to Maxwell, and by means

of them we shall in the next chapter be able to deduce the laws of

induction of currents.

If in the integral (5) we integrate over current-tubes in the

manner just explained, for udr we must put

q cos (qx) Sds = Idx etc.,

so that we obtain for each current

(12) T=^j(Fdx + Gdy + Hdz\

where the integral is around its own circuit, but F, G, H are

the definite integrals over all currents, as previously used. Apply-

ing Stokes's theorem to the above line-integral, we obtain
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/ v m I tttfiH dG\ . . fdF dH\ . .

(1 3) T -
2 JJ {( 97 " Fj

C0S <"•> +U " to)
C°S (w2/)

+
(IS-If)

cos(w0)}^
over any surface bounded by the current.

But by the equations § 225 (14),

(14) T=
^ JJ{Z

cos + 1/ cos (ray) +N cos <W)} rffif,

or the electrokinetic energy of a system of currents is equal to one-

half the sum of the strengths of each current multiplied by the total

flux of magnetic force through its own circuit in the positive direc-

tion. The part of the flux due to the current itself constitutes the

term \LI*, while for any two currents 1 and 2, the portions con-

sisting of one-half the strength of either times the flux through

its circuit due to the other current, being equal to the two

middle terms of (8), are equal. We may consequently express the

mutual kinetic energy of two currents as the strength of either

multiplied by the flux through its circuit of the magnetic force due

to the other.

227. Mechanical Forces. We may deduce the mechanical

forces acting on conductors carrying currents from the expressions

found in § 219 (7). Calling the forces per unit of volume H, H, Z,

and writing for Idx the value in terms of the current density udr,

we have

d(~)

(1)
jjj

Bdr
=HjllS"IT"

(W + m ' +W) drdr
'

r

> f

5

,

s
(^)

,

8
i j 7 /

[
doc dy dz

J

The first terms in the first and second integrals destroy each

other. The second terms may be written respectively, since the

accented quantities are independent of the unaccented,

and
u' , ,) , fff dF ,
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Consequently we get

and we obtain for the mechanical forces on the conductor per unit

volume,

S = vN~wM
y

(3) H = wL - uN
y

Z=uM-vL.

The mechanical force per unit volume is the vector product of the

current density and the magnetic field.

228. Effect of Heterogeneous Medium. Let us consider

what changes are necessitated in our equations by the presence of

magnetizable bodies, so that the magnetic inductivity fi is not con-

stant throughout space. In the reasoning of § 210 we supposed

the magnetic force to be both lamellar and solenoidal in all space

not traversed by currents. As soon as we have variations in the

inductivity, the force is in general no longer solenoidal, but the in-

duction is. We cannot, however, apply the reasoning unchanged to

the induction, for this, in general, is not lamellar. The reasoning

connecting the current strength with the work of carrying a pole

around a closed circuit is however unchanged, and if the circuit lie

in any other medium than air, the work is the same as if the circuit

lay in air, namely zero if the circuit is not linked with the current,

47mI if linked n times positively. For consider a circuit composed

of two infinitely near circuits each embracing the current once,

corresponding points of the two lying infinitely near each other on

opposite sides of a surface separating air from another medium.

Then if we carry a pole around the circuit in air in one direction,

and back around the circuit in the other medium in the opposite

direction, since the double circuit is not linked with the current no

work has been done. For otherwise, in going around the double

circuit in one direction or the other, we might store up energy, as

much as we pleased, by repeating the operation. But this would

be in opposition to the principle of conservation of energy, which

says that the energy is definitely determined wThen the positions

and strengths of poles and currents are given. Consequently our
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electromagnetic equations § 222 (2) remain unaltered. When we
consider the energy and the mechanical forces, however, we have

changes. The potential due to a current is no longer proportional

to the solid angle subtended by it, and accordingly we can no

longer deduce the forces as simple line- integrals. We must now
write for the energy of the field, by § 180,

(1) T=i jjf(LZ+Mm + m)dT,
00

so that if a given current is placed in an infinite homogeneous

medium, since the distribution of the force is independent of the

medium, as long as it is homogeneous, the induction, and therefore

the energy, are directly proportional to the inductivity. Contrast

this behaviour of a current with that of a permanent magnet, which

in different homogeneous media always emits the same total flux of

induction, while the force and therefore the energy are inversely

proportional to the inductivity. The flux of force emitted by the

conductor carrying current is constant.

Since the magnetic force is no longer solenoidal, it can no

longer be represented as the curl of a vector potential. The in-

duction, on the contrary, can be so represented, and the vector

potential belongs to the magnetic induction.

m dG

(2) m =

9Z =

dy dz
'

dF dH
dz dx

'

dx dy

'

On account of this change it is no longer possible to integrate the

equations § 222 (2) in the same simple manner as in § 225, for

while the current is the curl of the magnetic force, it is the

induction that is the curl of the vector potential. Taking the

curl of the induction,

K6) dy dz ^\dy dz) dy dz

or using § 222 (2),

dy dz
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so that the vector potential is not related simply to the current,

but the magnetic forces still occur in the differential equation.

We have the same difficulty as occurs when we undertake to find

the potential of the field when the inductivity varies. As we

there made use of an apparent density, so here we may define an

apparent current as

so that the vector potentials are

F= l,,U
' ' r

If each magnetizable body is homogeneous,

dx dy dz
'

and the apparent currents are the true currents multiplied by the

inductivity, except at the surface separating two media, where the

derivatives of yu,, and consequently the values of AF, A6r, AjET, are

infinite. We have the above form for F, G, H only when AjF, etc.

are finite, and when they are infinite at a surface we must proceed

as in the case of a surface distribution of matter, that is we must

consider an apparent current-sheet between the two media. Con-

sidering two surfaces infinitely near each other and situated on

opposite sides of a surface of discontinuity of //, at a distance dn

from each other, and integrating the equation (3) over the volume

of the thin sheet between them we obtain*

<> ///{!-£}*«

^ cos (ny) — cos (nz) \ dndS
on on J

=
/ 1

{(ST - 91) cos (ny) - (W - 9R) cos (nz)} dS

* The second integrand in (4) is equal to the first since n is the direction of

most rapid (infinitely rapid) change in the functions Sft, 5ft, in the infinitely thin

sheet.
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SSJt', 9?', being the components of the induction on the side

toward which n is drawn, 8, 9Ji, % on the side from which it is

drawn. We must now, as shown in § 85 (18), add to the volume

integral already found for F the surface integral

47r J J [dn^ dn 2 ) r
'

which is the effect of an apparent current whose ^-component per

unit of surface is 1/4tt times

(9T - 9?) cos (ny) -(W - 3R) cos (nz)

= 33' {cos (33V) cos (ny) — cos (33';?/) cos (nz)}

— S {cos (33#) cos (ny) — cos (33y) cos (nz)).

Now the normal component of the induction is continuous, its

tangential component being discontinuous, while the tangential

component of the force is continuous. The normal plane tangent

to the line of force is the same in both media, and the amount of

the discontinuity in the tangential component of the induction is

33' sin - 33 sin (33n).

Referring now to the definition of a vector product, we see that

the first parenthesis above is the ^-component of the vector product

of the induction and a unit vector in the direction of the normal,

which vector product has the magnitude 33' sin (33'ft). The apparent

current is accordingly in the surface, perpendicular to the normal

plane containing the line of force where it crosses the surface, and

its magnitude per unit of surface is 1/47T times the discontinuity

in the tangential induction. If the lines of force are normal to

the surface, the apparent surface current vanishes*. If, however,

there is a surface carrying a true current-sheet, by the same

reasoning, applied to equations § 222 (2), we find a discontinuity

in the component of the force tangent to the surface and perpen-

dicular to the current of amount 4-7T times the current density.

229. Mutual Energy of Magnets and Currents. If we
have permanent magnets and currents situated in a homogeneous

medium of unit inductivity, we may represent their mutual energy

in two ways. We may in the first place consider the magnets to

* This apparent current-sheet was overlooked by Maxwell, and it was not until

the appearance of the Third Edition of his Treatise that the correction was made
by J. J. Thomson.
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be traversed by apparent currents and current-sheets, as in the

preceding section in the case of temporary magnets. We there

introduced the discontinuity in the induction, but we might have

introduced the intensity of magnetization. In the case of the

permanent magnet this will be more convenient—in either case

the form of the vector potential will be the same.

We have for the potential due to a magnet in a homogeneous

medium of unit inductivity, § 122 (3),

rrrf Hl
) H') "ftl

<> H!!{*¥+*¥+^}^
where A\ B', C are the values at a, 6, c,

dr = dadbdc,

r2 = (x - a)2 + (y - bf + (z - c)
2

.

The field at any point x, y, z has the component

Now the derivatives of 1/r with respect to a, b, c are the negatives

of its derivatives with respect to x, y}
z, so that we may write

and thus the integral becomes
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But since fx — 1 we have

^__dH dG
dy dz

'

and accordingly the components of the vector potential may be

taken as

rrrl
s
(
l
)

ml H1
)

3 ("

rrrl Hl
)

Every element of volume produces at x
y y, z a portion of vector

potential equal to 1/r2 times the vector product of its magnetiza-

tion by its vector distance from the point x
y y, z. The mutual

energy of currents and magnets is then obtained by the equation

§ 226 (5), omitting the factor ^. This method of treatment is

that of Maxwell*.

From the above form for the vector potentials we may easily

express the solenoidal vector F, G, H as itself the curl of another

vector potential. For again replacing derivatives of 1 jr by a, b, c by

derivatives by x, y, z,

dyJJJ r dzJJJ r

so that if we introduce the vector potential of magnetization, with

components

'-hi?"-

<;> «-///?^

*-//]?*'•

* Treatise] Vol. n., Art. 405.
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the vector potential belonging to the magnetic force is its curl.

F= dR_dQ
dy dz

'

dx dy

'

This leads us to a second manner of obtaining the mutual energy,

due to Helmholtz. The expression for the energy of a permanent

magnet in a magnetic field L, M, N" is, § 126 (2),

(9) W=-jJj(AL+BM+CN')dT }

where the volume of integration is that occupied by magnets, or

it may be extended to infinity, since elsewhere

A = B = C = 0.

We may transform the integral into one taken throughout the

space occupied by currents. If we introduce the vector potential

of intensity of magnetization, we have from (7), if the magnetiza-

tion is everywhere finite,

A = - AP,

(10) B = -I Ml

C = - — AR.
Air

Introducing these values of A, B, C into the integral (9),

(11) W=~fff(LAP + MAQ+NAR)dT,
00

and transforming each term by Greens theorem in its second form,

the surface integrals vanishing at infinity,

(12) W=^fjj(P*L + Q&M+R£W)(fo.
oo

Let us now substitute for L, M, JSf their values in terms of the

vector potential belonging to them, noticing that, since the differ-
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ential operator A is commutative with any partial differentiation,

we may write

• j- a (dH dG\ dAH BAG
(13) AL-A^-^j--^-- ir .

But if the vector potentials F, G,H are those of the currents u, v, w,

AF = - 4ciru,

AG = — 4-77-1>,

AH= - 4t7rw,

so that finally

(14) W=-Jf[ P
,^_M +

Q^u_dw\
+ R^ du\)

dr,
,dy dz) \dz dxj \dx dy

<JU

which by the theorem of § 226 (3), (4) is equal to

<*> '--///Hf-f)»(f-I)-(g-D)
= -fjj{uF + vG + wH} dr.

00

Comparing with § 226 (5) we find a difference in sign, W being

mutual potential energy, Wm electrokinetic energy, while the

factor \ is omitted in mutual energy.

The integral may now be restricted to the space occupied by
currents. The form involving the curl of P, Q, R is that used by

Helmholtz*, who writes L, M, N instead of P, Q, R. Replacing

P, Q, R by their values (7) we obtain the double volume-integral

d(-

(16) W=-[(([f[{(wB'-vCr) ^r

dx

a (I) a (I

+ (uC'-wA') -£L + (vA'-uff) -jL-Ydrdr',

which differs from the result of substituting (5) in § 226 (5) in

the same way as (15), above.

We have thus seen how we may replace every magnet by an

apparent current

* Helmholtz, Ges. Abh. Bd. 1. p. 619.
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4i7r 47r \oy oz.

^ = __j_ A(? = La(— -—
47r 47r dx

w' = -—AH=-— A ——
47T 47T \3# 3y

which would produce the same magnetic effect. It was for this

reason that Ampere was led to the hypothesis that all magnetism

was due to currents of electricity circulating about the molecules

of matter.

The above formula all refer to currents and magnets placed in

a homogeneous medium, and as has been already seen, lose all

their simplicity when the inductivity varies. For although we

may still calculate the vector potentials due to the induced

magnetization, the process will be complicated, and in general

impracticable. For this reason, and because both scalar and

vector potentials are quantities whose physical significance is

much less apparent than that of the strength of the field,

Heaviside and Hertz have been led to avoid the employment of

potentials, and to deal directly with the electrical and magnetic

fields. We have however introduced the vector-potentials here

on account of their important mathematical relations, and the

fact that they have been so much used by the highest authorities.

230. Magnetic Field due to Current-Sheet. We have

found that in a current-sheet the amount of electricity that flows

in unit time across a curve connecting any two points in the sheet

is equal to the difference of the current-function "SP at those two

points. This quantity is the same whatever the curve connecting

them, unless there is an electrode lying between. We shall sup-

pose that a sheet has no electrodes, so that the current flows in

closed circuits in the sheet. We may find the magnetic field of

such a sheet, at points not lying in the sheet, by the consideration

that the strip of the sheet bounded by the curves ¥ = const, and

+ = const., being a constant difference in the values of

the current-function for the two curves, is equivalent to a linear

current of strength d&. Such a current, by § 210, is equivalent

to a magnetic shell of strength dV. The whole current sheet

may therefore be replaced by an infinite series of magnetic shells,

whose edges only are given, the form of the shells being in-

w. E. 29
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different, so long as the attracted point lies outside them. These

shells may be considered to form a continuous body, which is,

being divided into shells, lamellarly magnetized, the potential of

magnetization
<f>

being equal to the current-function ^ (§ 124).

The magnetic potential Q is accordingly at outside points, by

§124(1 1),

But since the form of the magnetic shells is indifferent, as long

as their edges are of the given shape, we may consider them all

deformed so as to coincide with

the current-sheet, as is illustrated

in Fig. 88. The shells overlap

each other continuously, so that

there are more shells laid on the

sheet the greater the values of
Fig. 88. .

&
1

.

As we cross the sheet, the poten-

tial Q is discontinuous, as in the case of a single magnetic shell.

As in that case also, the normal component of the magnetic force,

being continuous for all the shells, is continuous on crossing

the sheet. The tangential component in the direction of the

lines of flow is also continuous, but, as we found at the end of § 228,

the component perpendicular to them experiences a discontinuity

equal to 4-7T times the current-density, that is 4nrdty/dn*. This may
also be very simply obtained by taking the line-integral of magnetic

force around any circuit composed of two infinitely near portions

lying on opposite sides of the current-sheet and coinciding with

an electrical equipotential line, the integral being equal to 4*7r

times the difference in the values of the current-function at the

two points where the circuit cuts the sheet.

231. Examples. Coefficients of Induction. Toroidal

and straight coils. We shall now calculate the energy due to

currents in a few simple cases. The coefficients of the half-squares

and products of the current-strengths in the expression for the

electrokinetic energy, are called, for reasons to be explained in the

next chapter, coefficients of induction, or more briefly, inductances,

distinguishing coefficients of half-squares by the name self-in-

ductance, coefficients of products by the name mutual inductance.
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Any self or mutual inductance is the magnetic flux through a

circuit due to unit current in its own or another circuit respec-

tively.

We shall first consider a solid of revolution bounded by a

surface generated by revolving any closed plane curve about an

axis in its plane not cutting it. Such a solid may be called a tore.

If the tore be uniformly wound with wire carrying a current, so that

every winding lies very nearly in a

plane passing through the axis of

revolution, Fig. 89, we may very

approximately consider the layer

of wire as a current sheet, the

difference of value of the current
Fiq gQ

function between any two points

being ml, where / is the current in the wire, and m is the number

of turns of wire between the points. By reason of symmetry the

lines of magnetic force must be circles whose planes are perpen-

dicular to the axis of revolution, and whose centers lie on the axis.

Consequently the strength of the field H is a function only of

the distance p from the axis, and the line integral of the field-

strength around any line of force is equal to the constant value

of H on that line times the circumference of the circle. If n be

the total number of turns of wire on the tore, any circle lying in

the substance of the tore is linked with the current n times in the

same direction, so that the value of the above line-integral is

(1) kmrl — 2irpH.

This gives as the value of the force for internal points

(2) H=T .

A circle lying outside the tore, however, is not linked at all with

the current, so that the line integral is zero, and therefore the

force H must be zero. Such a closed coil or toroidal current-sheet

accordingly emits no tubes of force, but all its tubes lie within

the doubly-connected space of the tore. The force accordingly

has a discontinuity at the sheet equal to 4«7r times d^/dn, which

is the amount of current crossing unit of length of a circle co-

inciding with a line of force, or nlj^irp. If the tore be filled

with a homogeneous medium of magnetic inductivity fi the

induction at any point will be p,H =2n/nl/p. This whole reasoning

29—2
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has supposed that the external medium is homogeneous, but since

there is no field there, the value of the inductivity is immaterial.

If z> p be rectangular coordinates parallel and perpendicular to

the axis in the plane of any orthogonal cross-section of the tore,

the whole flux of induction through the section is

(3) jf
nHdS = 2^i

jf

d^ = 2npl

f

log
(J)

dz,

px and p2 being the least arid greatest values of p on the contour

of the section for a given value of z
}
and being given as functions

of z by the equation of the contour.

If another circuit be wound in any manner about the tore,

embracing it n' times, the flux through it is ri times that just

found, and the mutual electrokinetic energy of a current I2 in it

and a current Ix in the former winding is, according to the last

sentence of § 226,

(4) T = inn'pIJi
f
log^ dz.

The mutual inductance of the circuits is accordingly

( 5 ) M12 = 2nn'nj log
(J)

dz.

If the second coil coincide with the first the flux through itself is

2n2
/jbl

2

j log ^-
2

^
dz,

so that the self-inductance of the toroidal coil is

(6) L = 2n^jlog(^jdz.

The electrokinetic energy is

<?> T=brllh^-Ml

^

For a coil of square cross-section whose side is 2a and whose mean
radius is R,

(8) L = 4tn2ua log ^ a
.

it — a
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For a circular cross-section of radius a

f
a R + Va2 — z2

(9) L = 2n2
fi log j==^=

2
dz = 4t™> (R - s/R2 - a2

).

If in equation (2) we insert the number of turns of wire per unit

of length of the line of force, rn, since n = lirpm,

(10) H = 4urml,

or the force depends only on the amount of current per unit of

length. In case the radius of the tore is increased indefinitely,

so that we get an infinitely long straight coil, m is the number of

turns per unit of length of the coil, and we have within a uniform

field of the magnitude bmml. If any coil of ri turns be wound
on outside, the mutual inductance will be

It is noticeable in all these cases that it is of no importance whether

the outer coil is in contact with the inner or not, for in any case

it is threaded by the whole flux of force. If there were any field

external to the tore, the case would be different. It is however

necessary that the tore be entirely filled by the medium of induc-

tivity fx. The formulae of this section are applicable to induction

coils and transformers, providing the coils are endless. The line-

integral of magnetic force ^irnl is called the magnetomotive force,

and the problem of finding the magnetic induction in the tore is

the same as that of finding the current in a tore of conductivity

p in which there is an impressed electromotive force of the

amount 4mnl, the lines of flow being circles. In case the cross

section of the tore is small compared to its radius, we may neglect

the curvature of the coil, and find the reluctance (§ 184), by § 174,

so that we have

z x Tlx- ™ Magnetomotive force kirnl
(11) Induction r lux =—0 ^ . =—=— .

Keluctance I

This formula is used in practice in finding the flux in the field

magnet of a dynamo-electric machine, although it is accurate only

in the case that we have treated, where all the tubes of force are

encircled by all the current turns, so that the numerator is the

same for every tube. Any tube being partly in iron and partly

in air, the reluctance of any infinitesimal tube is found by the

formula for the resistance of conductors in series, as iLl/fiS.
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In order to find the influence of the ends of a uniform straight

coil of any cross-section, we may consider that each current turn

is replaced by a plane shell, so that the whole current sheet is

replaced by a uniformly magnetized cylindrical magnet with

intensity of magnetization dcfrjdz = ml. The free surface charges

of all the shells accordingly cancel each other except for the two

plane ends of the magnet. These ends are single distributions

identical with each other except for the difference of sign. If V1

is the potential at any point due to a uniform single distribution

of unit density on the positive end 1, and V2 that due to an

identical distribution on the negative end 2, then at any point

outside the region bounded by the cylindrical current sheet and

its plane ends, the potential due to the sheet is

(12) £l = m/(F1 -F2).

We may find the potential at a point inside the space in question

by the result that for an infinite cylindrical sheet the force is

^irml, so that if z is measured parallel to the generators of the

cylinder in the direction of the force,

(13) O = — 4*irmlz (for the infinite cylinder).

If D! is the potential due to all of the infinite coil except the

portion which we are considering, we have accordingly

(14) ft + H' = — 4nrmlz.

But the space in question is outside the two magnets replacing

the two infinite parts of the sheet, so that for a point between

the ends,

giving

(15) n = mT(V1
- V2 -4irz).

Now as we pass one of the ends of the coil the potential V is

continuous, being the potential of a single distribution, but its

derivative has a discontinuity of amount 47r by § 82, accordingly

the potential fl is discontinuous, but the force is continuous, the

discontinuity in changing from the formula (12) to (15) just can-

celling the discontinuity in dV/dz. In the case of a circular

cylindrical coil, the potentials V1 and V2 may be found by the

development in spherical harmonics given in § 102, and the devia-
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tion from uniformity of the field at any part of the solenoid

calculated. In a long solenoid the field is very nearly uniform

for a considerable distance from the middle of its length. By
differentiating the expressions for V1 and V2 with respect to r,

the distance from the center of either, multiplying by the element

of the area of a sphere of radius r, and integrating, we may find

the flux due to either end through a circle perpendicular to and

with center in the axis, and hence the correction due to the end

to be made in the mutual inductance of the coil with another

circuit of a single turn, and thence by another integration with

respect to any concentric coil.

232. Pair of Rectangular Circuits. In the case of two

linear circuits, we may use Neumann's formula for the mutual

inductance

[[ cos (cfeid&j) ds^s.2

r

m. those cases which are simple enough for us to effect the

integration. If the two circuits are D
4

c
equal rectangles ABGD and A'B'C'D', / y

7

Fig. 90, of length lx and breadth l2 % /
with corresponding sides parallel, and A

the lines joining corresponding cor- \

ners perpendicular to their planes and /
of length a, then for pairs of sides /__

which are perpendicular the integral A 2
^

B

vanishes, while for pairs of parallel

sides the cosine is either plus or minus unity, according as we

consider corresponding or opposite sides in the two rectangles.

For the sides AB, A'B' we have

The integration of the logarithms in the second integrand may

be performed by taking as a new variable the quantity whose

logarithm is to be integrated, and then integrating by parts, the

result being

MAB> A .B = 2 a - Va* + 1? + k . log fi±^L±ii
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For the pair of sides AB
y
C'D\ substituting the square of their

distance apart, a2
-f- l£-> for a2 and changing the sign, we have

. a f
, , k + Va2 + If + l2

2
)MAB, c>d> = - 2

jVa2 + U - Va2 + Ji
2 + 42 + Z2 . log j==

The portions for the pairs of sides B0
}
B'C, and #0, jD'J.', are ob-

tained from these by changing lx into l2 . We have then considered

just half of the two circuits, so that, adding these four parts and

multiplying by two, we obtain the value of the inductance

M = 8{a- VWia - Va2 + 1£ + Va2
-f if + Za

2

{

(Z2 4- V^+X2
) Va2 + Z2

2

-f-4-R.log

+ 4 . log

(k + Va2 + /x
2 + If) a

(Z2 + Va2 + Z2
2 Va2 + Z/

Z2 + Va2 + ^ + Z2
2 a

The attraction of the two circuits for each other when traversed

by unit current is obtained by differentiating this expression by a.

233. Pair of Parallel Circles. If the circuits are circles

of radii Rl7 R2 , their planes being perpendicular to the line

joining their centers, of length a, we

may put

Xl
= i2j COS fa, x2

— R2 COS fa,

yx
= Rj sin fa, y2

= R2 sin fa,

z1
= 0, z2

= a,

FlG
-
91

- = R1 dfa ,
ds2

— R2 dfa,

r2 = a2 + (Ri cos fa
- R2 cos faf + sin - R2 sin <£2)

2

= a2 + i^2 +E2
2 - 2RXR2 cos - fa),

=
fa* f2* cos (fa- fa)RAdfadfa

JO J 0 ^tf+Rf +Rf-ZRA COS (^>i — <£2)

The integration with respect to fa amounts merely to multipli-

cation by 2ir. If we put

fa
—

fa = 2-sfr — it, d (fa
—

fa) = 2dyfr, cos (fa
—

fa2)
= - cos 2i/r,

4Ji1i?2

a2 + (2^ +1^5

the integral becomes

= k-

, f
2 (l-2sin2 iir)cWr
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and writing

1-2 sin2
i/r = - (1 - k2 sin2f) + 1

2

K2 K2

we have finally

M= 4ttV^A
J?

J£ (*) + *

where i? and .F are the elliptic integrals

TT TT

E(k)= fVl - *2 sin2fdf, F(k) = P ^=^L=.
Jo Jo vl — k2 sm2

-\|r

These definite integrals are functions only of the parameter k,

and their values have been tabulated by Legendre for various

values of k. If we put

2
•

2 2
a2 ^-(R1 -R,)2 r 2

«2 = sm2

7,
cos2

7 = a^^?
= -,

rx and r2 are the maximum and minimum distances of points

on the circumferences of the two circles from each other. The

expression M/^tt VR±R2 being a function only of k and therefore

of 7, has been tabulated by Maxwell as a function of 7. (Treatise,

Vol. 2, Art. 701.)

We may also find the value of M in a series of zonal spherical

harmonics by means of the series of § 215 by differentiation with

respect to r and integration over a spherical segment bounded by

the second circle. For a full treatment of the properties qf

circular coils the reader is referred to Maxwell's Treatise, to

Mascart and Joubert, Lessons on Electricity and Magnetism, and

to Gray, Absolute Measurements in Electricity and Magnetism,

where a great variety of formulae will be found.

234. Non-linear Currents in Parallel Cylinders. If

the expressions in the two preceding sections be used to find

the self-inductance of a linear circuit we find a difficulty, for on

putting a = 0 in § 232, the expression becomes logarithmically

infinite, while on putting a = 0, Rx
= i?2 in § 233, k becomes unity,

the elliptic integrals reduce to trigonometric, and F (k) becomes

logarithmically infinite (log tan irj2). This is easily seen to be*

the case for any linear circuit, for if ds1 and ds2 traverse the

same circuit there is an infinite element in the integrand, and,
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considering the element in which it occurs as straight the integral

'ds

s

becomes logarithmically infinite. We may see the reason for the

self-inductance becoming infinite in another way by considering

Biot and Savart's Law, for as we approach a linear conductor

the force is inversely proportional to the distance from the

conductor. The flux therefore increases like the logarithm of

this distance, and is not finite when we approach the linear

conductor indefinitely. We may avoid this difficulty by con-

sidering conductors of finite cross-section, for in that case the

corresponding element of the integral, in which the integrand

fdr
becomes infinite, I — is not infinite, as was proved for an ordinary

potential, § 76.

We shall now consider currents flowing in three-dimensional

conductors in the form of cylinders of infinite length whose

generators are all parallel. We might treat the problem by the

application of the law of Biot and Savart to each infinitesimal

tube of flow, but we shall prefer to make use of the general

equations § 222 (2), and § 228 (2). It is evident that the lines

of force are in planes perpendicular to the conducting cylinders,

which we shall take for the XF-plane, so that iV=0 and the field

is independent of the coordinate z. The problem is accordingly

% two-dimensional problem, and all the quantities concerned are

independent of z. Since u — v = 0 we have F— G = 0 so that our

equations are

dM dL
(1) 4nriv-

(2) fxL =

dx dy
9

dH
dy

'

dH
(3) ^ = -

9,>

from which results, if fi is constant,

(4) -4^ =^ +— .

But this is Poisson's equation for the logarithmic potential, §91 (10),
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so that its integral is

(5) H=G—2 jj/jiwlogrdadb,

where r2 = (x — a)2 + (y — 6)
2

,

and C is a constant, which, though infinite, does not affect the

value of the force.

If the conductors are concentric circular cylindrical tubes and

the current-density is uniform, we may find the magnetic force

without finding the vector-potential, in the same way as in § 231,

for it is evident that the lines of force are all circles in planes

perpendicular to the conductors. At points outside the outer

tube, at a distance p from the axis, the line integral of magnetic

force (which we will denote by P instead of H, to prevent con-

fusion with the vector-potential) around a circle is

2ttPP = 47r/,

(6) P-f,
where

(7) I=jjwdxdy,

is the total current through all the conductors. Accordingly at

external points the field is the same as if the current were con-

centrated in the axis of the conductor. If different tubes are

made part of the same circuit, so that all the current flowing

in one direction is returned in the other direction by concentric

conductors, the total current is equal to zero, and the force is zero at

all external points. Such a double tubular conductor accordingly,

like a toroidal coil, emits no tubes of magnetic induction. For

this reason, when it is wished to protect delicate magnetic instru-

ments from the action of strong currents, the circuit should be

formed of concentric conductors. The mutual inductance of any

external circuit with such a concentric conductor is accordingly

zero, so that, as we shall see in the next chapter, no currents

would be induced in the concentric conductors by external cur-

rents. Such a conductor would thus be suitable for telephone

circuits.

In the space outside the conductors the magnetic potential is

(8) n = 2I(j) = 21 tan-1 ^

,

x
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which we know to be a harmonic function, as <j> is conjugate to

the function log p, both being derived from the function log (x + iy).

In the substance of the conductors, there is no magnetic potential.

We may find the force by evaluating the expression for the vector-

potential, or as above, except that now the line of force does not

surround the whole current, but only a portion of it. If the

conductor is a solid cylinder of radius i2,

2irpP — 4-7T . irphv — 4nrl

21
(9) P = B? P '

The integral (5) represents H only when /jl has the same constant

value everywhere, for if it has discontinuities we must add a part

corresponding to the apparent current as shown in § 228. In the

case just treated, however, the apparent current vanishes, for

the induction is tangent to the surfaces of the conductors.

In the general case, if fi is constant in the space outside of

the conductors there is a magnetic potential, and the equations

(2) and (3) become

8 (jdl) _ dH
dx ' dy

dy dx

showing that the function is conjugate to the vector-potential

H, which is accordingly the flux-function for the magnetic induc-

tion. The method of functions of a complex variable is accordingly

applicable to problems connected with the field of cylindrical

conductors. For instance, Fig. 65 represents for external points

the lines of force and equipotential lines of the field due to two

circular cylinders carrying equal currents in opposite directions.

No one of the circles in the figure however represents either of

the conductors, whose centers are at the points + a. The surface

of a cylindrical conductor is tangent to lines of force only when

it is alone in the field, or accompanied by concentric conductors.

Within conductors, although there is no magnetic potential,

equations (2) and (3) show that H is still the flux-function for

the induction.

If S is the area of the cross-section of any conductor, the

vector-potential at any point, whether external or internal, is by
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(5) equal to

G — 2/jlwS log f = C — 2fjullog f,

where f is defined by the equation

(i i) 8 logr —
j
j logrdadb.

But from the interpretation of a definite integral as a mean, §23,

we see that logr is the arithmetical mean of the logarithms of

the distances of all the points of the cross-section from the fixed

point x, y. Now defining the geometric mean of n quantities as

the nth root of their product, we see that r is the geometric

mean of the distances of the points of the area from the point

cc, y, for its logarithm is the arithmetical mean of their logarithms.

If rj and r2 be the geometric mean distances of a point from two

areas Sx and S2 ,
rs the geometric mean distance of the point from

both areas taken together, we have by the definition, (n),

(12) (S1 4- S2) log r3 = S1 log rY + S2 log r2 .

By means of this principle we may find the geometric mean

distance from a complex figure if we know it for the various

parts of the figure. This method is due to Maxwell*. We shall

first find the geometrical mean distance from a circular ring of

infinitesimal width. Let p be the radius, 6 the width of the ring,

and h the distance of the given point from its center. Inserting

polar coordinates in the equation (i i),

'2tt

0

This integral assumes different forms according as h is greater or

less than p. Taking out from the parenthesis the square of the

greater of these, and integrating, we get

(14) logr = logA+^/(£), h>p,

or

(1 5 )
1og^ = 1°gP + 47r

J (~)> P> h
>

where J is the definite integral

(13) 2irpe log r =
j J log (h2 + p

2 - 2hp cos (j>) ped<j>.

J (a) = I log (1 + a2 — 2a cos <f>) eZ<£,

J 0

* Trans. Roy. Soc. Edinburgh, 1871—2.
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which is a function only of the parameter a, and we are to put

a = p/h when h > p and a = h/p when h< p. We can easily show

that J (a) = 0 if a < 1. For

J (a) = Jx (a) + J2 (a), where

7T

j; (a) = log (1 + a2 - 2a cos <£) c%
Jo

J2 (a) = log (1 -f a2 - 2a cos cf>) d<f>.

J TT

Substituting
<f>
= tt + (/>' gives

J"s («) = I"log (1 -f a
2 + 2a cos 0') d<f>',

and since the variable of integration is indifferent, we may drop

the accent. The integral being now between the same limits as

in Jx we may add the integrands, giving

J (a) = flog {1 + a4 - 2a2
(2 cos2 - 1)} d<f>.

J o

Now substituting 2<£ = <£' we obtain

J" (a) = i log (1 + a4 - 2a2 cos f) d<f>' (a2
)-

^ J 0

Repeating the process we get

J(a) = i/(«2
) = ^(«4

) - = («").

and letting w increase indefinitely we obtain, if a < 1, </(a) = 0 if

J"(0) is finite. But J(0) = 0. We accordingly obtain from (14)

and (15) the result that the geometric mean distance from a

circular line is, for an outside point, its distance from the center,

and for an inside point, the radius of the circle. By means of

this result we may find the mean distance from the area of a

ring of finite width, of internal radius i2x and external R2 . For

a point outside the ring the mean distance is its distance from

the center. For a point in the space within the ring, by (11)

or (12),

rR

tt (R2
2 - Rf) log f = 2tt

I
"log p. pdp

= | nv {R? (log R? - 1) - Rf (log - 1)J,

(16) log r = p^TRl) hS^ "R * lo%& ~ * (R *
~
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For a point in the area of the ring itself, we must divide the ring

into two, one within and one without the given point, so that

7T (i?2
2 - iJ-T

2

) log r = 7t (h2 - R*) log h

+ 7T [Ri log R2
- A2 log (.R2

2 - A2

)},

(17) logr =^^2
{R2nogR2^Ri

nogh^^(R 2-h%

The vector-potential is always, for uniform flow,

H= 0-2^x1 logr,

and since this is the flux-function for the induction, by reason of

the equation

tP^-^L cos (py) + cos ( Px) = -_ .
JL -- ^ = -^ ,

we obtain the induction perpendicular to the radius, by differen-

tiating according to — h, so that

which agrees with the result (9), in which R± is equal to zero.

The electrokinetic energy of the system of currents is, by

§ 226 (5),

and inserting the value of H from (5),

(19) T = \ (((Cwdadbdz — ff (f /
fiww' log rdadbda'db'dz,

2...

r2 = (a - aj + (b - 6')2-

If we integrate with respect to z from — 00 to 00 , we obtain an

infinite result for the energy, but for a finite length I the energy

is proportional to I, so that the energy per unit of length of the

conductors T/l is given by the above expressions omitting the

integration with respect to z. Each point of integration a, b

and a\ V is to traverse the cross-sections of all the conductors. The

first integral, containing the constant 0, disappears, since to every

current there is a return current, in each of which the same value

of C appears, while for the two cross-sections the integral

wdadb,
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representing the total current in the positive direction, is zero.

If the flow is uniform in all the conductors, for any two conductors

there will be a term
-fiTJ2 logr12 ,

where

SjSz log r12
—
jjjj

log rdadbda'db',

and f12 is the geometric mean distance of all pairs of points in

the two cross-sections. For instance let us consider a single

circuit made up of conductors whose cross-section is denoted by

S1 and conductors carrying the return current whose cross-section

is S2 . We then have

T= 1
jjw'H'da'dV + | jj

w'H'da'db',

Si S%

while if we divide H into two parts, Hx due to the conductor 1,

and H2 due to the conductor 2,

H1
= C1

— 2 jjfiw log rdadb.

Si

H2
= G2

— 2
j
j fiw log rdadb,

$2

T becomes the sum of the integrals

fiww log r dadbdadV

S\ S\ S\

fda'db' — jjjjfjuww' log r dadbdadb'

s2 Si s2

a
+ da'db'-jjjjfiww log r dadbdddb'

Si S$ S\

+ ^ jj
W

)

'^a' )̂' ~~ jjjj

P

ww ' r dadbda'db'.

s$ s% $2

The first and third integrals, being the constant multiplied by

the direct and return currents respectively, cancel each other, and

so do the fifth and seventh. The fourth and sixth are equal to

each other, and their sum is

- 2fjLlJ2 log r12 = 2fil2 log rl2 ,
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where f12 is the mean distance between points of the two cross-

sections. The second integral is

-fiI 2 logrn ,

where rn is the mean distance between pairs of points of the

section Si, and the eighth integral is the corresponding quantity

for the area S2 . Accordingly the self-inductance of the whole

circuit per unit of length is

(21) y = p (4 log r12
- 2 log ru - 2 log r^) = 2fi log

If the conductors are circular cylinders, we may use the formulae

already found. If both the direct and return conductors are

single cylinders external to each other, their axes being a distance

d apart, r12
= d. For infinitely thin tubes of radii R and R',

rn = R, = Rf

, so that

(22) jSs2^logm .

For tubes of radii Rly R2 and 12/, R2 ,
integrating (17) over the

area of the ring,

-fi-2 —-til J Bi

2tt

Ri-R?

-^ {Ri (log Ri- 1) -A2 (log R? - 1)} + i (i?2
4 - i>!x

4

)}

,

and making reductions

From this we obtain by replacing Rlt _R2 by i^', R2
', so that

we obtain for the self-inductance of the circuit

.
N
L .

f
.

, , #2 ,
Ri'*

,
22,'

(24) j = fy jlog^ +^ _m log^ +^ _^2)2
logg

4>(R^-R^) ' 4 (i?2
'2 -iJ1

'
2
)j

•

For solid wires, since lim (.B log iJ) = 0, this becomes
18=0

(25) T = ^(l0^15' + 2j-

w. e. 30
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The repulsion between the wires per unit length is

dd v dd ~ d
'

By means of the principles here stated, Maxwell has calculated

the inductances of coils of wire, by supposing the diameter of the

coil to be so great in comparison with the distance apart of the

different turns that the coil may be treated like a group of

straight conductors. The treatment of the magnetic field due

to currents even in straight conductors whose inductivity is

different from that of the surrounding medium, except in the case

of concentric cylinders, is a problem of considerable complexity,

and the results given by Maxwell, for the case of two wires,

Art. 685, are only approximately correct.



CHAPTER XII.

INDUCTION OF CURRENTS.

235. Systems of Currents as Cyclic Systems. The
phenomena of the induction of electric currents by changes in

the magnetic field were discovered by Faraday in 1831*. The
results obtained experimentally by Faraday were deduced mathe-

matically from the law of Lenz (see below), and from Ampere's

results regarding magnetic shells, together with the principle of

Conservation of Energy by F. E. Neumannf in 1845. The credit

is due to Maxwell J of having had the idea of treating a system of

currents and the magnetic field belonging to them as a mechanical

system, subject to the ordinary laws of motion, and of thus de-

ducing the equations of induction from the generalized equations

of Lagrange and Hamilton. The particular class of systems to

which currents may be assimilated is that studied by Helmholtz

under the name of cyclic systems, a detailed treatment of which

has been given in Chapter III.

We have seen in the last chapter that if the strengths of a

system of currents be maintained constant, the currents tend to

move in such a way that the energy of the field produced by them
tends to increase. This energy is a homogeneous quadratic function

of the strengths of the various currents, the coefficients, which we
have called inductances, being determined by the form and rela-

tive position of the circuits, and the nature of the medium in

which they are situated. The medium being specified, these

geometrical specifications of the circuits may be made by giving

* Faraday, Experimental Researches in Electricity, Vol. i. p. 1.

t F. E. Neumann, "Allgemeine Gesetze der inducirten Strome," Abh. Berl.

Akad., 1845.

X Maxwell, "A Dynamical Theory of the Electromagnetic Field," Phil. Trans.

clv. 1864. Sci. Papers, Vol. i. p. 526.

30—2
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a certain finite or infinite number of geometrical parameters qs .

The electromagnetic forces due to the action of the currents may
be equilibrated by the action of certain impressed forces PS) and

these forces may be determined as partial derivatives with respect

to the parameters of the potential energy, or of the energy of the

field. These impressed forces we shall call the positional forces, and

since they are the negatives of the electromagnetic forces already

found, we have for any positional force P8i

dW

In order to specify the action of the system completely, we must

give, beside the values of the parameters qSi only the values of

the current-strength in every current-tube. If the currents are

distributed in three dimensions, this necessitates an infinite

number, but if there are a finite number of linear conductors,

only a finite number of electrical parameters I
s . The energy of

the field is expressed as a homogeneous quadratic function of these

electrical parameters, the coefficients being functions of the posi-

tional parameters, whose velocities do not occur. If we consider

the negative energy of the field — W as, instead of the negative

potential energy, the electrokinetic energy of the field, the current

strengths being considered as cyclic velocities, the analogy to a

mechanical cyclic system is complete. The cyclic coordinates qs>

being the time-integrals of the currents, represent the total

amounts of electricity that have traversed the respective circuits

since a fixed epoch. Since neither these coordinates, nor the

velocities of the positional coordinates occur in the expression for

the electrokinetic energy, all the conditions for a cyclic system are

fulfilled. A restriction must, however, be made, which is of no

importance in practice, namely that the velocities of the positional

coordinates must be small compared with a certain velocity, which

in this case is the velocity v, the ratio of the two units of elec-

tricity. For the case of all ordinary velocities, however, the

electrokinetic energy is accurately represented in the form already

found.

If we have n linear currents, the electrokinetic energy is

T= \LJ? + M12IJ2 +MmIJn
(2) + \LJ? +M2dI2Iz +MmIJn

+ + \LnIn\
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where the coefficients L, M have the form obtained in § 220 if a
single homogeneous medium is present, and in any case may be
defined as magnetic fluxes as in § 231. The electrokinetic

momentum of any circuit,

dT

S

may be defined as the total flux of magnetic induction through
that circuit in the positive direction due to all the currents. We
have already found for any positional force, equation (i),

(4) P, =-^ = -k/
l2^ + Jl/2^3?* I

Sqs dqs

The force P
s
belonging to any cyclic coordinate qs consists of the

impressed electromotive force Esi due to chemical, thermal, or

other action, and the dissipative term given by Joule's law,

— RsIsy where Rs is the resistance of the circuit. Accordingly

we have

(5) P
s
= E

s
- RS

I
S
=

dt

dt

If we write this in the form

Es
- d4

(6) /, =
dt

d

Rs

we see that the current in any circuit may be calculated %y
Ohm's Law provided that we consider acting beside the electro-

motive force Es an additional electromotive force - dpjdt. This
is called the electromotive force of induction, and from the above
definition of ps we see that it is equal to the time-rate of diminu-
tion of the flux of magnetic induction through the circuit in the

positive direction. The law of induction was announced in virtually

this form by Faraday*, and was obtained from theoretical con-

siderations involving the idea of work by Neumann f, HelmholtzJ,
and Kelvin§. The above equation is the general equation of an

* Exp. Res. §§ 114, 3082.

t Neumann, loc. cit.

t Helmholtz, Ueber die Erhaltung der KrafU Berlin, 1847. Wiss. Abh.
t
Bd. i.

p. 12.

§ B.A. Report, 1848. Math, and Phys. Papers, Vol. i. p. 91.
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electric current, and includes the steady state as a particular case,

for if the currents do not vary with the time, and there is no

motion of any circuit, every ps is constant, and we have for each

circuit,

the usual form of Ohm's Law. The statement is frequently made
that Ohm's Law does not hold for induced currents—this is a mis-

conception, for in the statement of Ohm's Law we should include

electromotive forces of all kinds, including those due to in-

duction.

If permanent magnets are present there will be terms in T
where each current is multiplied by the flux through it due to

magnets. These terms will be of the first order in the currents,

so that Twill not be homogeneous, and we have the case mentioned

in § 66—each magnet acting like a concealed current. We have

in the previous chapter considered the possible replacement of a

magnet by currents, so that we may consider magnets replaced by
" concealed " or " apparent " currents of unchangeable strength.

236. Isocyclic and Adiabatic Changes. An adiabatic

variation, being defined by the constancy of cyclic momenta, wr
ill

take place when in each circuit the electromotive force E
s is just

large enough to maintain the current in the circuit steady, namely

E
s
= BSIS . If the current is varying, this necessitates the varia-

tion of Es . Such changes seldom occur in practice. Isocyclic

motions are such that all the currents remain unchanged. The
electrokinetic momenta may be varied by motion or deformation

of the circuits, involving change of the values of the parameters

qs , or by motion of permanent magnets. The simplest phenomena
to observe experimentally, and those first discovered, are of this

class.

We may now apply to a system of currents the theorems which

have been demonstrated in §§ 69, 70. In particular may be

noticed the two theorems of § 70, which may be thus stated.

I. In any motion of currents or magnets during which the

strengths of all the currents are unchanged, the work done by the im-

pressed electromotive forces Es is equal to twice the work done
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against the positional forces, plus the amount of energy dissipated

as heat. For by § 70 (5) and (8)

81= 2ST= - 2SA = ZPMs= 2E3
Is St - XRs

I
s

2
St,

and therefore

XEs
Is St = XRsIs

2St-28A.

This theorem was stated by Lord Kelvin in 1860*.

II. Lenz's Law. In any system of conductors, induced currents

due to motion of the conductors are so directed as to oppose the

motion. This law, stated by Lenzt in 1834, was, together with

Ampere's results, the basis of Neumann's deduction of the laws of

induction.

Particular Cases of Induction in Linear Conductors.

237. Effect of sudden change of Electromotive Force

or Resistance.

(1) Single Circuit. Let us first consider a single circuit of

resistance R0 ,
containing a constant impressed electromotive

force E0 , and accordingly traversed by the steady current

I0 = E0/R0 .

Let now the electromotive force or the resistance, or both, be

suddenly changed to new values E1} The current now varies

from the initial value 70 , in accordance with the differential

equation (5) § 235, which becomes

If we subtract Il9 the steady value of the current under the new

circumstances, from the total current, the difference

7-7
1 = /-tf1

/JRI = /w

is called the induced or eatfra-current. The differential equation

thus becomes

A 7(0

(2) L^ +BJ^O,
whose integral is

B

* Nichol's Cyclopadia, Article " Magnetism, Dynamical Relations of." Reprint

of Papers on Electrostatics and Magnetism, § 571.

+ Lenz, Pogg. Ann, 31, p. 439, 1834.
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so that the induced current dies away in geometrical ratio as the

time increases in arithmetical progression. Since after an infinite

interval of time the total current has attained the steady value Il9

the value of the constant A is determined, and we have

(3) 7= 71 + (70
-7

1)<f£
t

,
7« = (70-71

)e~Z
<

.

The induced current is always in such a direction as to oppose the

change in the total current. The effect of self-induction is accord-

ingly to make changes of strength less sudden. It is to be noticed

that the induced current varies in the same manner as the current

charging a condenser through a circuit without self-induction, as

treated in § 207 (17). We shall here, as there, call the time in

which the current decreases in the ratio 1/e the relaxation-time,

r = L/R.

Both in the case of the condenser and in the present case in-

creasing the capacity or the self-induction increases the relaxation-

time, but whereas in the former case increasing the resistance

increases the relaxation-time in the latter it produces the opposite

effect.

In practical cases the relaxation-time is usually very short, so

that the induced current disappears almost entirely in a very

short time. Under these circumstances the total quantity of

electricity that has passed may be measured by a ballistic galvano-

meter. For as the force exerted by the current on a magnet is

proportional to the strength of the current, the total quantity

passing, or the time integral f Idt, is proportional to the time
Jo

integral of the force on the magnet, or to the momentum imparted

to the magnet. If this momentum is all imparted before the

magnet has had time to move, it may be easily shown that it

may be measured by the first swing of the magnet. The quantity

passing in a time t is

Cldt = f {/i + (J0
- JO e

J
r] dt =U - r (J0 - 1,) (e

J
r - 1).

Jo Jo

This formula was verified by Helmholtz* in 1851. The total

* Helmholtz, " Ueber die Dauer und den Verlauf der durch Stromesschwan-

kungen inducirten elektrischen Strome," Pogg. Ann, Bd. 83, p. 505. Wiss. Alh.

Bd. 1, p. 429.



237] INDUCTION OF CURRENTS. 473

quantity due to the induction current is

f/« «ft = t (/,-/,).
J 0

If the current be passed through an electrodynamometer, that is

an instrument containing a fixed and a movable coil, the mechani-

cal action between them is proportional to the square of the

current and the momentum imparted to the movable coil is pro-

portional to the time integral of the square of the current. The

effect due to the whole induced current is

poo /•(*> 2t

J o

I®>dt = (/0 - I02

J o

e"dt = \ (I0
-

These two integrals have the same values that would be obtained

from a steady current of strength (I0
— 1^/2 passing for a time 2t.

(2) Two Circuits. In the case of two circuits which are

closed at the same instant, or which have their electromotive

forces or resistances suddenly changed simultaneously, we have

during the subsequent period the differential equations

(4)

M^ + L2 -f R2I2
= jE72 •

dt dt

Again calling the final steady currents =2?
1/jR1 ,

I2
{1) = E2/R2>

we have for the induced currents = Ix — I2
(l) = I2 —

dT (*) dT $

, dt at

M^ +L^ + RJ/^0.

These equations are typical of all those in this chapter, and are

readily integrated by the assumption

where A, B and X are constants to be determined. Inserting

these values in the differential equations (5), the factor e** appear-

ing in every term may be omitted, giving us the simultaneous

equations

(L,\ + Rj)A + MXB = 0,

(6) MxA + (L2\ + R2) B = 0.
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These equations can be satisfied for values of A and B differing

from zero only if the determinant of the coefficients,

ZXX + Rlf M\
ifX , L2\ + R2

vanishes. But this being expanded gives us the equation

(7) (LXL2
- if2

) X2 + (JBA 4- R1L2) X + RXR2
= 0,

a quadratic to determine X. If we call its roots \ and X2 , we have

x - ~ + R1L2) + ^(R2Li +iW - 4EA(XA - if2
)

(8)

1

2 (ZA - M2
)

3

x _ - CBA +AZ2) - V(JiA + J^Z,) - 4i?1i?2(ZA - if2
)

2(Z1Z2 -if2
)

Both roots are real, for we can write the quantity under the

radical sign

{R2LX
- R.L.f + kRxR2M\

both terms of which are positive. Both roots are also negative,

for since the electrokinetic energy

T^LJf + MIJt +Wf,
is intrinsically positive, we must have

LXL2
- if2 > 0.

Having found the value of X either of the equations (6) will give

us the ratio of the constants A, B. If we choose the value \
the first equation gives

w A~ M\ *

If we choose the value X2 we obtain a different ratio

/ IO\ ^2 _ ZXX2 4- Rx

K } A~ ifX2
'

The theory of linear differential equations shows that the sum of

particular solutions is a solution, and that the general solution is

given by
= A^J + A 2e^,

//) = B^* + B^*,

where the constants A 1} Blf A 2 ,
B2 are connected by the equations

(9) and (10). We may now determine the absolute values of these
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constants by means of the initial values of the currents Ix and

I2 . These being and I2
{0) we have for the induced currents

when t = 0,

These equations with (9) and (10) determine the four constants,

so that the solution is complete. The most important case is that

in which there is no electromotive force in one circuit, while the

other circuit originally open, and containing an electromotive force

E, is suddenly closed. The latter circuit is called the primary, and

will be taken as that denoted by the suffix 1, the former the

secondary, with the suffix 2. We accordingly have

j^o) = jt
m = 72

(D = 0, 1^ = EjR,

and
EL 1/ RJ^-RJ* \

11 R1 \ 2 \V(iJ2i/1
- RiL^f + 4i£1iW2 J

1 / R2L1 — R\Li

j _ — EM ht g\tt\

Since \ and A2 are negative, the induced currents die away as the

time goes on. The function

I = + C2e^

vanishes when
^

has a maximum or minimum when

Ki — \ "-1^1'

and the curve representing it has a point of inflexion for

1 , / V<73\

These three points are equidistant, and, since \x and \2 have

the same sign, are real if Gx and G2 have opposite signs. This is

the case for the secondary current 72 , but the primary current has

both coefficients negative, and consequently has no maximum nor
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inflexion, but rises continuously, the appearance of its represen-

tative curve to the eye being the same as in the case of a single

circuit. The growth of the currents is represented in Fig. 92.

Fig. 92.

The total quantity flowing in the secondary is

(13) pyf- EM
t

1 EM

This result may also be obtained by direct integration of the

second of equations (4), with E2 = 0,

M - /,<»>) + Z, (!,« - JT.w) + R, fltdt = 0,
, . Jo

J 0 1*2

To find the effect of breaking the primary current, we have
7"^°) —EjRX) J^ssO, so that the whole quantity passing in the

secondary on breaking is the same as on making. This is one of

Faraday's fundamental results. The manner of variation of the

secondary is, on the contrary, very different from that on making.

After the break we have to consider the primary circuit as sup-

pressed, so that the secondary is to be considered by itself, and
varies according to equation (3) above, where Iu the final value, is

zero, and I0 , the initial value, is to be found from the above value

of the time-integral of the secondary,

( ' 5>

Jtl1 Jj2
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The fact that , the secondary jumps abruptly from zero to its

maximum value I0 at starting may be reached from considering

the preceding case with R1 =qo . The time between the secon-

dary's taking the value zero and attaining its maximum and the

'time from then to the inflexion is (log X^/X^/fa - \2), which is less

the greater Rly vanishing for jRx
= oo .

The effects here described may be illustrated by means of any
of the mechanical models described in § 71. For instance suppose

that the mass m1} Fig. 30, is revolving with a uniform angular

velocity, the centrifugal force, which represents the electromagnetic

force, being just balanced by an applied force so that the distance

of m1 from the axis remains constant. If ra2 is at rest and we
suddenly apply a force to the upper bar so as to increase its

angular velocity, the lower bar will begin to turn in the reverse

direction, the velocity representing the secondary induced current.

If on the other hand the upper bar is suddenly retarded, the

lower begins to move forward in the direct sense. Similar effects

may be produced by suddenly changing the distance of either rax

or m2 from the axis, corresponding to a relative motion of the two
circuits, producing a change in the mutual inductance. We have

not in this section explicitly considered this case, but since if the

change is made suddenly, and the circuits then remain at rest,

the differential equations are the same as those we have used, and
the solution is obtained from those here given.

238. Periodically-vailing Electromotive-force.

(1) Single Circuit. Suppose that in the circuit is included

a variable electromotive-force varying proportionately to the cosine

of a linear function of the time, as would be the case if a coil of

wire should rotate in a uniform magnetic field about an axis in

the plane of the coil, and perpendicular to the direction of the

field. Then' the equation for the current is

dl
(i) L-^ + RI=E0 cos6ot.

A convenient way of treating such an equation is by replacing

the trigonometric term cos cot by the exponential ei(at

y
whose real

part is the trigonometric part in question. The value of / thus

obtained will be complex, and its real part will be the solution of

the differential equation with the cosine term on the right, while

its imaginary part will have as the coefficient of i the solution of
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the equation with the sine on the right. In this way by separa-

tion of the real and the imaginary we are enabled to use the

exponential function, which retains its form on differentiation,

while the sine and cosine interchange. Accordingly writing the

equation

(2) L~ + RI=E^\

we may get a particular solution by assuming 7= Aei(ot
,
inserting

which in the equation gives, on removing the factor e*
wt

,

(3) (Liw + R)A = E0 .

This determines the complex constant A as

Lico + R ZW + iJ2 '

so that the solution of the equation (2) is

4 iu>t _ ^° ~~ Lico) (cos cot + i sin cot)

Taking the real part we obtain for the solution of the equation (1),

T
__EQ (R cos cot + Leo sin cot)

~ ZW + R2
'

This assumes a more convenient form if we determine two

constants a and J so that

R cos a Leo sin a

Zw+jR2== ~7~' iv +I2
=
T"'

giving
T

(4) tan a = , J= (Z2
a>

2 + iJ2
)*,

when the solution becomes

E
(5) I =— cos (cot — a).

We may obtain this result, and at the same time graphically

represent the relations of the current and electromotive-force by

making use of the fundamental properties of complex quantities.

The complex quantity E^**1 has the modulus E0 and the argument

cot, and is therefore represented by a vector of length E0 making
an angle cot with the real axis, that is a vector revolving about the

origin with angular velocity 00. The projection of this vector on

the real axis represents the impressed electromotive-force in the
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circuit. A quantity varying in this manner is said to perform a

harmonic oscillation, with the amplitude E0 .

The electromotive-force takes on all values between E0 and
—E0 and returns to its original value in the time that the vector

takes to make a complete revolution, T= Sir/co. The time T
is called the period, and its reciprocal, the number of periods in

unit time, n = co/27r, is called the frequency.

In like manner the quantity Aeiiat
is represented by a vector

revolving with the same period, of length equal to the modulus of

the complex quantity A. Since the argument of a quotient is

equal to the difference of the arguments, the vector representing

Ae^ lags behind that representing E0e
i<ot by the constant angle

E0
a = arg- ~j •

But from the equation (3) we find that this ratio is the complex

quantity, R -f iLw, whose argument is tan-1 Lco/R. The current,

being represented by the projection of the second vector on the

real axis, is said to differ in phase from the electromotive-force by

the amount a, the difference in this case being a lag. The ampli-

tude of the current, being the modulus of A, is the quotient of the

moduli

l^o E0

\R + iLo>
I

(E2+£2
o>

2)**

Expressing these results analytically we obtain equation (5).

The quantity J", by which it is necessary to divide the ampli-

tude of the electromotive-force in order to obtain the amplitude of

the current, is called, as proposed by Heaviside, the impedance.

If the circuit has no self-inductance, or if the current is steady

(g) = 0), it becomes the resistance.

It has been proposed by Hospitalier* to call the coefficient of

i in the ratio E0/A, the reactance.

The mean value of a quantity varying harmonically taken

over any exact number of periods is zero, while in virtue of the

formulae

1 c
T

, ... 1 r
T

. „ .

1

2\

f
T 1 f

T 1 1 [
T

! cos2 oytdt = I sin2 cotdt = -
, Tp \

sin cot cos cotdt = 0,

* Hospitalier, VIndustrie Electrique, May 10, 1893. See also, Steinmetz and

Bedell, Trans. Am. Inst. El. Eng. 1894, p. 640.
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the mean value of the square of such a quantity is one-half the

square of its amplitude, and the mean of the product of two such

quantities of the same period and a difference of phase equal to a

right angle is zero.

The quadratic mean, or square root of the mean square of a

variable current or electromotive-force is called the effective or

virtual current or electromotive-force. Its value in the case of

a harmonically-varying quantity is accordingly the amplitude

divided by V2«

The activity, or power absorbed by the circuit, is

E 2

EI= ~j cos cot cos (cot — a),

and its mean value, by the above formulae,

m 1 F rut -^2cos * - E« R
{0)

TJo
Ai at ~ 2J ~ 2 (R* + £V)

"

To the solution (5) is to be added, in order to obtain the

general solution of (1), the solution of the equation with the right

hand member equal to zero, obtained in the preceding section, but

as the current thereby represented rapidly dies away, the resulting

state of the alternating current is that which we have found.

A number of circuits in parallel, to which a single harmonic

electromotive-force is applied, receive virtual currents inversely

proportional to their respective impedances—if the frequency

is great enough the distribution is almost independent of the

resistances of the branches, the impedance being sensibly equal to

the reactance.

(2) Two Circuits. Suppose that we have two circuits, one

of which, the primary, contains a harmonic electromotive-force,

while the secondary contains no impressed electromotive-force,

except that due to induction. The equations then are

X1§ + if§ + i?1/1 = J&0 cos cot,

, x at at
(7) , T AT
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or making use of complex variables as before,

A particular solution is given as before by putting

giving

(Ljc* + R1) A + MicoB = #0

^ Jfi©A + (X2io> + 22,) B = 0.

'

Eliminating B from these equations we get

do) j^o, + ft + ^ V̂
~
RfJ\

A =

Comparing this with equation (3) above we find that the current

in the primary is the same as if the secondary were absent, and

the resistance and self-inductance of the primary were R and L',

where

T'-T L*M2<»
2

^ i?2
2 + Z>2

'

These results were first given by Maxwell in 1864 in his celebrated

paper "A Dynamical Theory of the Electromagnetic Field*."

They constitute the basis of the theory of the alternating current

transformer.

We see from equations (11) that the effect of the presence of

the secondary circuit is to cause an apparent increase of resistance

and decrease of self-inductance in the primary. Both of these

effects cause a decrease in the angle of lag of the primary current

behind the electromotive-force, and accordingly, by (6), an increase of

power. Inserting the values (1 1) in (6) we obtain for the power

(12)
E 'R

E* {RJlj + a>» {&Lt + R2M>)}

2 [R^Ri+ a2 (L?R* + L*R* + + »4 - MJ}

'

* Phil. Trans. Vol. clv.

W. E. 31
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As we increase the ratio L2 a>jR2 the values of the apparent resist-

ance and self-induction approach the limiting values

M 2

Rao = Hi + R% ~r~2 9

(13)
2

T '-T ¥1

These values are nearly approached in actual transformers, par-

ticularly when fully loaded with a number of lamps in parallel in

the secondary. Now although we have in general

LXL2 >M\
still when the primary and secondary are toroidal coils wound on

the same core (§ 231), so that very nearly the whole induction-flux

due to either is linked with the other, we have very nearly

The transformer is then said to have no magnetic leakage. In this

case the apparent inductance LJ is reduced to zero, the current

does not lag, and takes on the largest value that it can have,

namely
I=E0/R00

/
.

The expression (12) for the power becomes, if we neglect the

square of R2jL2G> in comparison with unity,

^ I4; 2 {(R^R^IUY + *>
2 (L, - 'M*jL%f)

9

as we see on dividing numerator and denominator by Z2
2
&>

2 and

then adding and subtracting the term R2
2M4/L2

4 in the deno-

minator. If there is no magnetic leakage, this increases as R2

decreases, until it reaches the limiting value

2 Rx

y

while if there is magnetic leakage, the power absorbed is a

maximum when

J*i +M2 j— = co ( Lx
—
^

becoming equal to

a (t m

and thence decreasing as R2 decreases.
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The power when R2 is zero is only

E?R,

2 [R* + o>
2 (A - if2/Z 2)

2
}

'

which, for high frequencies, may be much less than the maximum*,

being, when co is great enough, sensibly equal to the maximum
value multiplied by

2R1

co (L, - if7Z2)

*

The second of equations (9) gives

B - Mico
( IS ) A" L2 ia> + R2

'

The modulus of the quotient, being the quotient of the moduli,

(16)
B
A

shows that the amplitude of the secondary current is equal to

the amplitude of the primary 1^ multiplied by Ma> divided by the

impedance of the secondary. Inserting the values of B!, L', from

{11) ml^,

(17) I A I
= Jx<°>= ,

E°

gives for I£0)
,

(18)
I
5|

EpMco

[(R*R* + a)
2 (L*R* + UR12 + 2if + co' (L*L* + if4 - ZL^M^f

In the case of no magnetic leakage this becomes

/ IQ \ J(0) =
ff0 JLJj* . CO

V ^ 2

[R^RJ + o>
2 (L,R2 + LAff

9

and if we may neglect RJ^co or R2/L2co in comparison with unity

we have the simple form

(20)
Eo

t> /L2

+ R2 A / JT

This is the practical equation of the transformer. By § 231, (5)

and (6), we have

* J. J. Thomson, Elements of the Mathematical Theory of Electricity and

Magnetism, p. 409.

31—2
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where % and % are the numbers of turns in the primary and
secondary coils. If n% \nx is so small that its square may be

neglected, we have

(21) 7»
,,)=

TT2
The ratio n% \n^ is called the ratio of transformation.

The argument of the ratio BjA, being the difference of the

arguments of the numerator and denominator, shows that the

secondary lags behind the primary current by the phase-angle

2
+tan

r;

which approaches two right angles as the ratio Z2a>/i22 increases.

The efficiency of the transformation, or the ratio of the activity

in the secondary |-i?2J2
(0)S

, to that in the primary, is, by ( 1 8) and ( 1 2),

, ,x R2M2
a>

2

{2I)
R,R2

2 + q)
2 (R,L 2 + lpf»)

'

which, neglecting R1R2/M2
eD

2
, becomes

1
(22)

- .Si L 2

1+ 1
-

i?2 if
2

that is, in practical cases, nearly unity.

239. Circuit containing a Condenser. In the cases

heretofore considered the only energy of the system has been

electrokinetic. If the circuits are connected with conductors

upon which charges of electricity can accumulate, we shall in

addition have electrostatic, or potential energy.

As the simplest case let us consider a single circuit whose ends

are connected to a condenser of capacity K. If the charge of one

plate of the condenser at any instant is q, then the current flowing

into that plate is defined as

(1) 7=^

The electrostatic energy of the system is (§ 143)

(2) w=\£,
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which gives rise to the difference of potential, or electrostatic

electromotive-force impressed in the circuit in the direction of the

current,

Accordingly the differential equation for the current is

(4) zg + */=--|,

from which, substituting from (i), we obtain the equation for the

charge,

(s) ^S+aS + ih 0 -VD/ dt2 dt K
Again, assuming q = ext we obtain the quadratic for X

(6) lA2 + iJ\ + ^ = 0,

whose roots are

R

R
\2 = —

1

~KL'

B? 1

4£2 KL'2L

We have now to consider two cases.

Case I. R2 > ±LjK. Both roots real We then have

(8) q = + BeK*\

and as \ and X2 are both negative, the charge, and likewise the

current

(9) I ^^Ae^ + \^BeK^,

die gradually away. If there is a permanent impressed electro-

motive-force E0 in the circuit, we must add the quantity E0K to

the charge, which, however, does not affect the current.

Determining the constants A and B by the conditions that

there is initially neither current nor impressed electromotive-

force, and that the initial charge is q0) we have

(10) q =^Lr {\e^~\e^t

} )

A,2
—

*>L

while if there is no initial charge, but an impressed electromotive-

force E0) we obtain

(U)
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In either case, the curve representing the charge as a function of

the time has a point of inflexion distant from the origin by the

amount

(12) I
— 1

Yog ^?
X.j — X2

while the curve of current has one at an equal distance farther on.

The curves of charge and of current are represented in Fig. 93.

Fig. 93.

Case II. R2 < 4<L/K. Both roots complex. If we write

R
= -

2L'
v =

1 R?

KL 4£2
'

we have for the roots

(13)
\ = /j, + iv,

X-2 = [Jb — iv,

and we may write the solution

(14) q^e^ (A cos vt + B sin vt).

In this case the charge not only dies away, but periodically

changes sign, performing a damped harmonic oscillation of the

period

(IS)
v 1 __R2

KL 4Z2

We have for the current

(16) I = ^=z eut {(Afi -f Bv) cos vt + (Bp - Av) sin vt).

Determining the constants so that the initial current is zero, and

the charge q0 , we have

(17) q =q^1 ^cos vt — ^ sin vtj .



239] INDUCTION OF CURRENTS. 487

This case is represented in Fig. 94. The charge is zero at times

such that

v
vt = tan"1 — = 0,

Fig. 94.

which is later than the time of the vanishing of the current by

the phase difference 0, which approaches tt/2 the smaller p.

We may specify the damping, or decrease of the charge or

current, by the relaxation-time of the damping factor e^, namely

t = 2L/R, or by the logarithmic decrement, that is the logarithm

of the ratio of a maximum value to the absolute value of the

next following minimum. Since the maximum and minimum
values of the parenthesis in (17) are equal and opposite, and

separated by intervals of time T/2 = ir\v, the ratio of the absolute
/X7T

values of q is e v
, and the logarithmic decrement X,

(18) X = - fJLTT IT

4£
KB?

- 1

If R = 0, there is no damping, X = 0 and the period is

(19) TQ = 2irs/KL.

Introducing these values of T0 and X we may write (15),

(20) T=T0 1 "f" 9 — ^0 ( 9 "i" • • •

so that if the damping is small it affects the period only by small

quantities of the second order.
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We have in this case a type of the very important class of

phenomena known as electrical oscillations, of which we shall

presently give the general theory. The theory here given was

published by Lord Kelvin* in 1855 and by Kirchhoff-f- in 1864

The theory was confirmed experimentally in a qualitative manner

by FeddersenJ in 1857, by observations on the electric spark

arising when a Leyden jar is discharged, and by Helmholtz§ in

1869, and Schiller
||
in 1874, under conditions admitting of quan-

titative results. More exact determinations in absolute measure

have been made by Lodge and Glazebrook by a method involving

the spark, and by the author, by a method similar to that of

Helmholtz.

We have seen that the occurrence of oscillations is due to the

presence of both kinetic and potential energy. If there is no

kinetic energy, L = 0, and we reach the case treated in § 207, while

if there is no potential energy, we have the case of § 237, to which

we may pass by putting K = oo . A mechanical model of an

oscillation may be obtained from any mechanical system possessing

both potential and kinetic energy, such as a pendulum or a heavy

body moved by a spring. The stronger the spring the quicker is

the oscillation, so that we may assimilate the reciprocal of the

capacity of the condenser to the elasticity of the spring. The

self-inductance of the system, on the other hand, is the analogue

of the mass, or inertia of the mechanical system. The analogy

of the resistance may be obtained by making the system move in

a viscous medium, so that the motion is retarded by a force

proportional to the velocity.

240. Periodic Electromotive force. Resonance. If

into a circuit joined to the plates of a condenser is introduced

a harmonically-varying electromotive force, we have for the cur-

rent, instead of (4) of the preceding section the equation

dl 1 f

(1) L ^ + J^ +^ I Idt = E0 cos cot.

* Thomson, " On Transient Electric Currents," Phil. Mag. June 1853 ; Math,

and Physical Papers, Vol. 1. p. 540.

t Kirchhoff, " Zur Theorie der Entladung einer Leydener Flasche," Pogg. Ann.

Bd. 121, 1864; Ges. Abh. p. 168.

X Feddersen, "Beitrage zur Kentniss des elektrischen Funkens," Dissertation,

Kiel, 1857; Pogg. Ann. 103, p. 69.

§ Helmholtz, "Ueber elektrische Oscillationen," Wissensch. Abh. Bd. 1. p. 531.

||
Schiller, Pogg. Ann. 152, p. 535.
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Proceeding as in § 238, we write

(2) L
1ti
+RI+i!Idt=

E

»
ejMt)

and assume for the particular solution I=-Aei<at
, which inserted

in (2) gives

(3) (li» + R +1±)A-E..

From this we get, by comparison with § 238, for the impedance,

f / 1 Vl^
(4) J=^+[Lco-m
and for the lag of the current behind the electromotive force,

Leo - -

,

(5) a = tan 1 ^

so that the solution of (1) is

E0 cos (cot - a)

In order to obtain the general solution we must add to this result

the solution of the equation with E0
= 0 from the previous section.

An oscillation whose period is that of the force, as in our present

case, is called a forced oscillation or vibration, in contradistinction

to the case of the previous section, where, no force being applied,

the period is governed by the constants of the system, and the

oscillation is called a free oscillation. If there is damping, the

free oscillation soon dies away, leaving only the forced oscilla-

tion. We see by (6) that if there is no condenser, K = 00 , we

obtain the case of § 238, and the current lags, while if on the

other hand L = 0, the lag is negative, or the current advances by

the phase-angle

a = tan-1
KcoR'

The reason of this is of course that in the differential equation

the inductance is multiplied by the derivative, and the capacity-

reciprocal by the integral of the current, which, when the

electromotive force is an exponential with imaginary exponent,

introduce the factor ico into the numerator or denominator

respectively, producing opposite effects on the argument of A.
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Thus the tendency of the inductance and capacity is to neutralise

each other's effects. Exact neutralization is produced, so that

there is neither lag nor advance, when

T 1 1 2tt
JbCO = -==-

, CO = = -yfr .

In this case the impedance is the smallest possible, and the

magnitude of the current is a maximum, being the same as would
be given by Ohm's Law for steady currents with a closed circuit.

The period of the electromotive force which gives this result is

exactly that of the free vibration which would be natural to the

system if there were no damping. Under these circumstances

the system is said to be in resonance with the force. The
magnitude of the current is inversely proportional to the resist-

ance, and if there were no damping would be infinite. For this

reason resonant oscillations, either mechanical or electrical, may
be very intense. By connecting two similar circuits with two
similar Leyden jars, Lodge has caused the oscillatory discharge of

one jar to produce such violent resonant oscillations in the other

circuit that a considerable spark-discharge is produced. The
phenomena of resonance have been demonstrated in a number of

interesting papers by Pupin*.

In order to show how the resonance depends on the agreement
of the frequency of the impressed force with that of the free

vibration, we give in Fig. 95 a graphical representation of the

current as a function of the frequency. If we call com the value

of co which gives the maximum current,

1
n> 2

the amplitude of / is

E0

L f CO com\
2

KR%
\COm CO

In Fig. 95 are plotted the values of the factor of JE0/R as

ordinates, the abscissas being those of co/com . The different

curves are, beginning at the outermost, for integral values of

the ratio
sjlfc^ ^ fr°m 1 to 10. The resonance is sharper the

larger this ratio.

* Pupin, "Electrical Oscillations of Low Frequency and their Besonance."
Am. Journ. Science, April, May, 1893.
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241. General Theory of Electrical Oscillations. We
shall now consider the question of electrical oscillations in the

Fig. 95.

most general case of a network of linear conductors, conducted

with any number of conductors K which may carry electrostatic

charges. These may be grouped in pairs to form condensers, as

in the last section, or they may be entirely independent of one

another. Of the linear conductors, any one may form a closed

circuit unconnected with the others, and affected only by current

induction, or may end at points of embranchment with other

conductors, or upon any of the conductors K. For brevity we

shall call the linear conductors wires, and the conductors K
accumulators. We shall suppose that the net contains p points

of embranchment, k of which are connected with accumulators,

for all wires which end on the same accumulator are to be

considered as meeting in an embranchment. Let the number of

wires be I. Then if all the wires form a part of the same net,

the number of independent meshes is I —p + 1, for we see at once

that the smallest number of lines that can join p points to form

a closed net is p }
giving one mesh, and that after the first mesh

every additional line adds a mesh*.

For every wire r between points a and b we have an equation

(i) +Mrl^ + RrIr = Eab+va-rb ,

dt '
~™ dt

~ rl
dt

where Eab is the impressed electromotive-force from a to b and Va

and Vb are the potentials of the points a and 6. There are I

equations of this sort.

* By independent meshes we mean such that circulation about any one is not

the resultant of circulation about any number of others. For instance the outer

boundary of a plane net is not independent of its meshes.
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For every point of embranchment a we have an equation

the currents being now marked with double suffixes to denote the

points between which they run, as in § 171, and ea denoting the

charge of the accumulator connected with the point, or zero if

there is no accumulator. These p equations are not all indepen-

dent, for adding them all together, every current appears in both

directions, so that the left-hand side in the sum is identically zero,

giving

(
. de.de, dep

(3)
dt

+
Tt

+ ^ =0
'

which is merely the statement that the total charge of the system

is unaffected by the flow of currents. There are accordingly p — 1

independent equations (2).

For every accumulator Ka we have an equation, § 138 (10),

/ \ ir SW
(4) Ya =Pia,ei + P2a^2 + + Pleach = ^~ •

oea

From the equations (1) the "Ps may be eliminated by Kirch-

hofFs principle, § 179. If, traversing any closed circuit, we add

the equations (1) for each wire, every V appears with both signs,

so that on the right we obtain the sum of the E's around the

circuit. We shall thus obtain as many equations as there are

independent meshes in the net, l—p + 1. Other equations may
be obtained in the same manner by traversing any unclosed circuit

ending on two accumulators. All the potentials at embranch-

ments passed over are eliminated except those of the two ends.

The number of equations to be obtained in this manner is one less

than the number of accumulators, or k — 1. We thus obtain in all

I — p + k = n equations, and there are the same number of inde-

pendent variables. We may take as parameters to characterize

the system a set of currents, one circulating in each mesh, so that

the actual current in any wire is the sum or difference of the

currents in the two meshes to which that wire is common. The
time-integral of any mesh-current shall be taken for one of the

parameters q. Besides the I— p + I g's thus defined, we will

choose k — 1 others, denoting the integral currents along any series

of wires joining the accumulators two and two, the whole series

forming a chain with two ends. The charge of any accumulator is



241] INDUCTION OF CURRENTS. 493

thus the difference of the two qs of this sort whose wires it

separates. The whole number of qs is now just equal to n, the

number of degrees of freedom of the system. The current in any
wire is the sum of two or three of the qs with the proper signs,

and as the electrokinetic energy is a homogeneous quadratic

function of the currents, it becomes one also of the g^'s. The
d / dT\

derivative ^s tne electromotive-force of induction around

the circuit s, for

dT 2 dlr
dqs

' ~ r
dlr dqs

' 9

and every dlr/dqs
' is zero except in the case of the currents which

bound the circuit, for any of which dlr/dq8' is either plus or minus
unity. The dissipation function, § 64, (7)

F = \{RJ* + R2I* RJ*} 9

becomes also a homogenous quadratic function of the q"s in which

the product terms will in general appear. The dissipative force

dF
will also be represented by — , for

oqs

dF dFdlr
r

dqs
' ^ dlr dqs

'
'

which is again the sum of the products RI around the circuit.

The terms

d (dT\ aF
dt [dqj + dqr

are accordingly what we get by adding the equations (1) for all the

wires bounding the mesh s.

Since any charge is equal to plus or minus one of the g's of

the second sort, or to the difference between two, W, the electro-

static energy, becomes a homogeneous quadratic function of these

dW
q's. Again — is the electrostatic electromotive-force belong-

ing to qs , for

dqs

r
der dqs

'

dW de .Now by (4),
-— =Vr> while ~~ is zero except for the accumu-

lators at the beginning and end of q8 , where the derivative has the
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values minus one and plus one respectively. We shall write our

three functions

T = ^Er%sMrsqr qs ,

(5) F=%2 rZrRrsqr'qs
',

W=^rXsprsqrqs ,

where the M's are linear combinations of the inductances of the

wires, the JS's linear combinations of their resistances, and the ps
linear combinations of the coefficients of electrostatic potential of

the accumulators. The values of the coefficients of the three

functions are such that each of the functions is positive for all

possible choices of its variables.

We may now apply Lagrange's equations for any parameter qs .

() dt{dq8

f

J
+

dqs

' +
3?,

"

where Es is the total external electromotive-force around the

circuit. Performing the differentiations this becomes

M 18 df
+ M 2S ^ + Mnsw

(7) , r> ^2 , p dq2 p dqn

+i>i^i+i?2S g2 +pnSqn=Es ,

a linear differential equation of the second order with constant

coefficients. We have one such equation for each parameter qs .

We shall first find the free oscillations, that is the solutions

with everyE§ = 0. As in the case of the simple examples of § 237,

a particular solution may be obtained by assuming for every qs ,

(8) qs = ase
Kt

,

where \ is the same for all the q's. Inserting these values in (7)

we obtain

(Jfu\2 + RnX +pn) ax + + (Mm\2 + RlnX +pm) an = 0,

(M21X2 + R21X + p2i) a, + + (M2nX2 + R2nX + Pm) &n = 0,

(9)

(MnlX2 + Rru\ +pm) &i+ + (MnnX2 + RnnX +pnn) &n = 0,

a set of linear equations to determine the ratios of the ay

s when X is

known. If these are to be satisfied by other than zero values of
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the as, however, the determinant of the coefficients must vanish,

namely

(10)

MUX* + RnX + pn , MmX* + RlnX +p12 = 0.

MnlX2 + RnlX + pn , MnnX2 + RnnX -f pnn

This is an equation of order 2n in X, from which the odd

powers are absent if F = 0. We shall denote its roots by

If we multiply the rth equation (9) by ar> and take the sum
for all r's, we obtain

(11) X2X7£sMrsaras + X2rSgi?fSaras + Sr^8prsaras = 0.

The double sum by which X2 is multiplied is the value of the

function 2T when for every qs
' is substituted as . We shall denote

this by 2T(a). Similarly the coefficient of X is 2F(a) and the term

independent of X is 2W(a). But by the fundamental property of

the three functions, each must be positive. The equation (11),

X2T(a) + XF (a) + W(a) = 0,

shows us at once that X can not be real and positive, for that

would involve the sum of three positive terms being equal to zero.

Secondly, if F = 0, that is, if the resistance of every wire is

zero,

~ T(a)
'

and X is a pure imaginary. In this case eM and e~~
u are trigono-

metric functions, representing an undamped oscillation of the

same period for all the parameters q.

Thirdly, if F is large enough, X can be real and negative. In

this case each parameter q gradually dies away to zero, the relax-

ation time being the same for all. This corresponds to Case I of

§ 239.

Fourthly, if either W or T is zero, instead of a pair of roots we
have a single one, which is real and negative, the cases correspond-

ing respectively to § 237 or § 207.

Fifthly, in other cases, that is when neither T, F
}
nor W

vanish, and F is not too large, X is complex. We shall prove that

then the real part of X is negative.
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When any value of X is determined, the equations (9) deter-

mine the quantities a except for a common factor. If complex

values enter, since any equation which involves i will also hold

good if i be changed to — i, changing any root X to its conjugate

X' causes every a to change to its conjugate a'. We shall denote

the a's corresponding to the conjugate roots X and X' by a and a\

where
X = fi + iv, X—fji— iv,

Cts — CLS "J" iff§ > — CLS iffg •

Let us now apply the process that gave us equation (11),

except that we multiply the equations (9) containing X by the a"s

belonging to X', obtaining

(12) X^r^§Mrsarag +

In this equation, any coefficient Mab appears in the terms for

which r= a, s = b and r — b, s = a, so that the sum is

or substituting the values of the as,

Mah {(«* + iffa) (*b ~ iffb) + («& + iffb) («* - iff)} = %Mdb (aaa b + ffaffb)-

Using a notation similar to that before employed, equation

(12) is

(13) \*{T(a)+T(ff)} + \{F(a) + F(ff)}+W(a)+ W(ff) = 0.

Now performing the same process on the equations (9) with X',

and multiplying by the as we obtain

(14) X'2 {T(a) + T(/3)} + X' {F(a) + F(ff)} + W(a) + = 0,

so that X and X' are roots of the same quadratic. We have there-

fore for their sum

(15) X + X - 2
>* ~ ~ T(a) + 3*08)

'

Accordingly yu, is negative. The solution therefore represents

a damped vibration, as in the second case of § 239, the period and

damping being the same for all the qs.

Since for every root X we obtain a set of values of the a% we
shall distinguish the values for the different roots by a second set of

suffixes, so that ar8 means the, coefficient of e
K
> in the coordinate qr

for the 5th period. The theory of differential equations tells us
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that for the general solution we must take the sum of the terms

ae\t for au ^\iq roots, so that we obtain

?i = (hi^
lt + ai2^ + + anne

x^nt
i

q2
= a21e

xJ + a22e
x^ + + a22ne^n^

(16)

qn = am^-{- ame^tjr + an2ne
x^.

We may now replace the exponentials by trigonometric terms.

The appearance of the terms with conjugate imaginaries

ase
xt + as'e

x t = (as cos vt — fi8 sin vt)

leads to the disappearance of imaginaries from the result, so that

we obtain,

q1
— 2 {efXit(an cos vYt

— /3n sin vj) + . . . + (am cos vnt — fim sin z^£)}>

g2 = 2 {e^ t (a21 cos ^£ - /321 sin vYt) + . . . 4- (a2w cos vnt - /3m sin i>ntf)},

qn = 2 {e^(amcos - sin vxt)+. . . + ^(an7l cos^ - £nw sin vnt)}.

The ratios of the a's or of the /3's in any column are given by the

equations (9), being different for the different columns. Since the

ratios of the /3's of any column are the same as those of the a's, we

may otherwise write the equations as

qx
= 2 [A^e^ cos (vj - y2 ) + A 12e^ cos (v2t — y2) . . . +Am eflnt cos (i/n£ - yn)},

g2 = 2 {^4 21e^ cos (vj - y2) + 422^ cos (v2t — y2) . . . +-4. 2n 0*»
f cos (j/n* - yn)},

(18)

qn = 2 {A nle^ cosfat - yx) + -A n2e^ Cos (v2t - y2) . . . +Ann er»
t cos (i>w£ - yn)},

where

J. 2 = a 2 ,
o 2 _ dr8

2
)

ry
s
= — tan-1 — = — arg ars .

ctrs

We accordingly may state the general result :—The free vibra-

tions of any electrical system consist, for each electrical coordinate,

of the resultant of a number of damped harmonic oscillations of

different periods, the number of different terms being n, the

number of degrees of freedom of the system. The phase and

w. e. 32
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damping of any particular simple oscillation are the same for all

the coordinates, and the n factors of the amplitudes and the n

phases are to be determined from the initial values of the qs and

of their first time derivatives.

We will now consider the case of forced vibrations.

On account of the linearity of the equations, if we find a solu-

tion qr
{1) for a particular set of values E

s
{1) of the right-hand

members of our equations (7), and a second solution <^
(2) for a

second set E}2
\ then the sum qr

{l) + qr
{2) will be the solution when the

right-hand members are E
s
il) + E}2

\ We shall, therefore, consider

the effect of each impressed force by itself. Suppose first then

that in each circuit there is impressed a harmonic electromotive

force, Es
cos cot, all of the same period. Then we have the equations

of which the sth is

(20)
18

dt2 ^"^ ns
dt2 ^ 18 dt^

'

'

*
+ ns

dt

+ PuQi + • • • +K&n = Ese
i<at

.

Assuming qr = ase
i<at these reduce to

(-Mnco
2 + Rnico + pu) <h + • • • + (—Mmco

2 + Rmico + pm) an =Ex

(-Mnlco
2 +Rnlico +pni) «i+ • • • + (—Mnnco

2+Rnnico+

p

nn) an=En

a set of linear equations to determine the as,

If we call the determinant of equation (10), D (A,), and Drs (X)

the minor of the element of the rth column and 5th row, we have

as the solution of (21),
*2

s
Drs (ico) E

s

(22) ar
=

D (ico)

Since D (X) = 0 is the determinantal equation for the free vibration,

whose roots are Xl7 X2 ••• ^2«> we have

(23) D (x) = c (x - \) (x - a*) ... (x - x2w) = cns (x - \).

Accordingly the denominator D (ico) is

(24) D {ico) = GUS (ico - \) = CUS {- + i (ft) - »s)}.

The minors Drs (ia>) are rational integral functions of ico, and the

numerators are therefore complex quantities, which reduce to real
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ones if the i£'s are zero. Calling the modulus of a numerator Br>

and its argument 6r ,

(25) SAH^, = -BA
6r is a small angle if the resistances are small. We thus have

Br e
id

r jgreWr-y«>
(26) ^- an^_^ + z> _^ }

}- GUAs >

where

(27) 4,= (o> -*,)»}* tana
s
=-^—^.

Retaining now only the real parts, we have for the solution

-Sr cos (cot + 0r - S8
a

g)
(25) qr=

Thus if the resistances are small, all the oscillations are in

nearly the same phase. If the frequency of the impressed force

coincides with that of any one of the free oscillations, co — v8
= 0,

and one factor of the denominator reduces to psi so that if the

damping of that oscillation is small, the amplitude is very large,

or infinite if there is no damping. This is the case of resonance.

(Resonance may also be defined in a slightly different manner as

occurring when ico is one of the roots of the equation D (X) = 0 in

which all the i£'s have been put equal to zero. This corresponds

with our example in § 240. In practical cases the difference is very

small.)

If now we have a system acted on by electromotive forces each

one of which is the sum of any number of harmonic components of

different periods, any component may cause resonance with any

free oscillation of the system, so that resonance may occur in a

large number of ways.

242. Examples. Two Circuits. We shall illustrate the

principles of the preceding section, aside from the examples that

have already been given in §§ 239, 240, involving one degree of

freedom, by an example of two circuits. Consider an induction

coil in which both the primary and secondary contain a condenser

in series. This is the case of the so-called Tesla high-frequency

coil, in which a Leyden jar produces an oscillatory discharge

through the primary, while the ends of the secondary are usually

connected with a small capacity, say a pair of knobs. We shall

32—2
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take for ^ and qt the charges of the two condensers, so that the

currents are

_dq1

(0
dt

'

We accordingly have

T=\LJl
^MI

lI2 + \LiIi,

(2)

and the differential equations for the free oscillations are

(3)

M
dt2

d2
qY

dt2 '

~ a
dt2

The equation for the frequencies is

dt

dq2 1

dp

(4)

L.X2 + R{k +

MX

MX

,
L2\2 + R2\ + K 2

= 0,

or

(5) (AXa
-M2

) X + {LA + L2RX) X + (j± +^ + R,R2^
X

l

/R1 R2\^ 1

J5T. ' K,

As this equation is of the fourth degree, we shall treat only the

case of no damping, which, as we have seen, will not cause a large

error in the determination of the frequencies. Putting then

R
x
= i£2 = 0 the equation becomes

1
(6) X4 + Tr Tr , r r °,„s A.

2 +K1Ki (LlL,- M')

or, as we may otherwise write,

(7)

- If2

)

= 0,

If the two roots of this quadric are

A I
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we have for the periods,

so that

(8)

T=^^^*^

If we introduce the periods of the two circuits alone,

T^torjKJ^, T2 =2ttJK2T2 ,

and a quantity 6 which is nearly a mean proportional between
them,

these periods become

(9) ,

r= / + r2
2 - J{T* - t2j +

V 2

In case T1=T2 ,

= Tj 2 + & = 4tt> (Z^ + ilf yi^),
y/2 = yj2 _ #2 = 4?r2 _ ^

This is a case of so-called resonance, though not the one that we have
examined. We see that one of the periods is greater and the
other less than the common period of the separate circuits.

If the period of one of the circuits is much greater than that
of the other, so that both

T
x > T2 and T*-Ti>28\

we have, developing the square roots by the binomial theorem, the
approximation,

T2 = T 2 -4- -x l ~T m 2 m 2 >

(il) 11 ^2

T'2 — T 2

In this case the longer period is nearly that of the longer individual
period, being somewhat longer, while the shorter period is some-
what shorter than the shorter individual period. This is probably
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the usual case of the Tesla coil, where only the longer oscillation

plays much part. For a further treatment of this example, the

reader is referred to articles by Oberbeck* and Blumckef.

We shall now consider the forced oscillation. Let there be

an impressed force E0 cos cot in the primary circuit, there being

none in the secondary. Then we have for the secondary

q2 = a2 e
i(at

,

(r2) a _ E0Ma,*

The amplitude of the secondary current J2
(0) = co .

\

a2 \
is

(13) *2(0) =
E0 Mco*

We get resonance when co
2 is one of the roots of the quadratic

(14) (^-^^-(14)^+^=0.
•

In case there is no condenser in the secondary, we have

if2 = CO,

and there is then but one frequency for resonance,

(15) *>- =
K^L^-M*)-

This is the practical case of a transformer or induction coil, and
is treated by J. J, Thomson in his Recent Researches in Electricity

and Magnetism, Chapter VI., to which the student is referred for

further examples of this subject. For a treatment at length of the

subject of oscillations, the student may consult Rayleigh, Theory

of Sound, Chapters IV, V. and X.B, and Routh, Advanced Rigid

Dynamics, Chapter II.

* Oberbeck. "Ueber den Verlauf der electrischen Schwingungen bei den Tesla'-

schen Versuchen." Wied. Ann. 55, p. 623, 1895.

t Bliimcke. "Bemerkung zu der Abhandlung des Hrn. A. Oberbeck." Wied.
Ann. 58, p. 405, 1896.



CHAPTER XIII.

EQUATIONS OF ELECTROMAGNETIC FIELD.

ELECTROMAGNETIC WAVES.

243. Localized Electric Force of Induction. In the

preceding chapter we have developed the theory of current induc-

tion in linear circuits, on the basis of the treatment of a set of

currents as a mechanical cyclic system, and we have thus arrived

at equations which are justified by experiment. We have found

for the electromotive force of induction in any circuit,

d(dT\_ dp

where p, the electro-kinetic momentum corresponding to the circuit,

is by the results of § 226 denned as the total flux of magnetic

induction through the circuit, that is the surface integral

(2) p = cos (nx) +M cos (ny) + 9t cos (nz)) dS

over any cap bounded by the circuit.

If we consider the electromotive force around the circuit as

made up of electric forces acting at each point of the circuit, just

as in § 166 we considered the electromotive force due to electro-

static action as the line-integral of the electrostatic field-intensity,

we may here consider the electromotive force as a line-integral

around the circuit,

(3) Ei = j(Xdx + Ydy + Zdz) = jF cos (Fds) ds.

The vector F whose components are X, F, Z is a quantity of

the same nature as the electric field-intensity, and we shall not in

future distinguish whether it is of electrostatic or electrodynamic

origin. If we apply Stokes's theorem to the line-integral in (3) we
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convert it into a surface-integral which, in virtue of (i), must be

equal to the negative time-derivative of the surface-integral in (2).

(4)
//

= —
~_jJ

{8 cos (noo) + sDi cos (ny) + 9t cos (nz)} dS.

dS

As we assume that the circuit does not change geometrically

with the time the differentiation with respect to t may be passed

under the sign of integration, and operates only on the quantities

8, 9Jt, 9i. Since the two surface-integrals may be taken over the

same surface, and the equality holds for any portion of surface

whatever (as we may choose any cap over any circuit), the

integrands are necessarily equal at all points of space, necessi-

tating the equations

_38 JbZ JbY_
dt ~~dy dz

3

dx dz^ dt dz aV

dt dx dy

These equations, which are more compactly expressed by

(6) - lr = curl

are the general equations of induction, and are justified because of

their leading, by the reverse process, to the equation ( 1 ), which is

directly verified by experiment. A direct experimental verification

of equations (5) has been given but recently.

If we wish to introduce the vector-potential belonging to the

magnetic induction, by § 226 we have the alternative expression

for p*,

(7) p = j(Fdx + Gdy + Hdz).

Comparing this now with the line-integral in (3) gives us

(8) j{Xdx + Ydy + Zdz) = -
~f

(Fdx + Gdy + Hdz).

* See the definition ofp following equation (3), p. 469.
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From the equality of the line-integrals we must not conclude

the equality of the integrands, for the line-integral of any lamellar

vector point-function around a closed path vanishes. We accord-

ingly obtain

dF
"ji^L. — I ,

vt

(9) t—^+t;

where (X', Y', Z') is a lamellar vector. If X, Y, Z denote the

whole electric force, when the state of the magnetic field is not

changing it becomes the electrostatic force, so that the components

X', Y\ Z' must be the negative derivatives of the electric potential.

Accordingly the equations are

dF dVX=-

(10) F=

Z=

dt dx
y

d_q _d_v

dt dy
9

dH dV
dt dz

These are the equations as given by Maxwell*. We shall

however prefer the form (5), not containing either potential, as

introduced by Heavisidef and Hertz
J.

Since the electrostatic

field has no curl; it need not be considered separately in equa-

tions (5).

If however there are impressed electromotive forces X', Y', Z/

not of electrostatic origin, such as those due to chemical or

thermal effects, and X, Y, Z still denote the total field, we must

replace X, Y
f
Z in equations (5) by X-X', Y-Y\ Z-Z'.

(Heaviside, Vol. I. p. 449.)

In a closed conductor undergoing electromagnetic induction

there are not necessarily differences of electric potential, for

* Treatise, Art. 598, equations (B).

t "Electromagnetic Induction and its Propagation." Electrician, Feb. 1885,

Papers, Vol. 1., p. 447, eq. (20).

% "Die Krafte elektrischer Schwingungen behandelt nach der Maxwell'schen

Theorie." Wied. Ann., 36, p. 1, 1889. Jones's trans., p. 138.
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example in the case of a circular ring placed perpendicularly to the

force of a varying uniform magnetic field the electric potential is

constant. If however the circuit is broken, current flows for a

very short time until the electric force vanishes; there is then

produced a disturbance of charges producing differences of

potential to be calculated from the equations

_ az ==^
T

_^r=^ jz= dA
dx dt ' dy dt ' dz ~

dt
'

Conductors connected to the broken ends of the circuit, for

instance the plates of an electrometer, will then show a difference

of potential.

244. Displacement Currents. If we compare the equa-

tions (5) with the equations § 222 (2),

(ll) 4<7TV =

4?7TW

dN dM
dy dz

'

dL dN
dz dx

'

dM dL

dx dy \

we notice that they are analogous in having the right-hand sides

equal to the curl of the electric and magnetic field respectively.

We make the analogy still more complete by introducing the

conception introduced into the theory by Maxwell of the electrical

displacement current *.

Suppose that we have a condenser charged with electricity.

There is then a field of electric force, the lines of force running

from the positively charged plate to the negative. The electric

induction is, by § 182 (16),

% = 47TO".

If now the plates be connected by a conducting wire, the

positive charge passes from the positive plate along the wire, until

a state of equilibrium is reached. During this period the electric

induction between the condenser plates is diminishing and finally

reaches zero. The hypothesis of Maxwell is that the change of the

* "A Dynamical Theory of the Electromagnetic Field (11)," Phil. Trans. Vol.

clv. 1864.
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induction produces the same magnetic effect as would be produced

by a current of current-density

- = JLl

at every point of the field, which together with the current in the

wire would form a closed circuit. As the equations § 222 (2) were

deduced from the magnetic effect of closed currents, some hy-

pothesis is necessary if we are to deal with unclosed currents, and

Maxwell's hypothesis is justified by its remarkable consequences.

Since Maxwell calls the vector g/47r the electrical displacement, he

terms the vector ^ the displacement current.

The consequence of Maxwell's hypothesis is that in the dielec-

tric we must introduce the components of the displacement

. 1 33P 1 ag) 1 33 .
, f • ^current — , — -ttt , 1— ^7 m place 01 u, v, w m the equa-

47T dt 47T dt 4-7T dt f
1

tions (n), giving

di aiv dM

(12)

dt dy dz

8J9 = dJk _ dA
dt dz dx

33 dM dL

dt dx dy

'

These equations are now completely analogous to the equations

(5) except for the difference of sign on the left, the two sets being

represented by

(13)

- 3— = curl F,
ot

= curl H.
ot

If the dielectric is conducting, we must introduce both the

conduction and the displacement current, so that the equations are

d£
, A dN dM
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Differentiating these equations respectively by x, y, z and

adding we obtain

K b) dx Utt dt
+ U

J
+
dy Utt dt

+V
)
+

dz \4nr dt J
U'

so that the total current is solenoidal, like the flow of an incom-

pressible fluid. Integrating (15) through a portion of space t

bounded by a closed surface 8,

(16)
dt III (§5

+
dy-

+
dz-)

dT =
-IH{dx

+
ry
+

dz-)
dT'

= jj{u cos (nx) + v cos (ny) + w cos (nz)} dS,

which by § 182 (17) becomes

(17) ^jjj
pdr = ^ =

JJ{w
cos + v cos (tm/) -f w cos (nz)} dS.

That is, the increase of charge of any portion of space is equal

to the electricity brought in by conduction. This agrees perfectly

with our previous conceptions. Our statement made in § 129 that

electricity is not incompressible is also reconcilable with Maxwell's

statement that the total current, the resultant of the conduction

and displacement currents, is like the flow of an incompressible

fluid.

By the analogy between the equations (5) and (12) we

might call the vector |~ *ne magnetic displacement current.

Magnetic conduction-currents do not exist, although they have

been introduced into the equations by Heaviside* for the sake

of symmetry.

245. Complete System of Equations for Media at rest.

We may now collect all the fundamental equations of the theory

as it has been developed. Before doing this it will be convenient

to make a slight change in our units. It will be recalled that in

the whole of Part III since the introduction of the electro-

magnetic system of units we have considered all quantities,

whether electrical or magnetic, to be measured in that system.

Up to the present this has been most convenient, and in prac-

tical cases dealing with electro-magnetism and electro-magnetic

* " Electromagnetic Induction and its Propagation." Electrical Papers, Vol. 1.

p. 441.
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A dx

dt
+ 4<ttAu

dN~ dM
dz

'

(A) A ag)

dt
+ 4>ttAv

dL

dz

dJsr

dec
'

A 33
dt
+ 4>ttAw

dM
doe

dL

dy'

induction this will generally be true. We are now, however, about

to consider a new class of phenomena, and it will be convenient to

use the Gaussian system, that is, to measure all electrical quantities

in electrostatic units, and all magnetic ones in magnetic units.

We shall therefore be obliged to reintroduce the factor A, § 210,

which will multiply the electric currents, and divide the electrical

forces, according to § 212, equations (6) and (9). Equations (14) and

(5) thus become*

-A- = dJ^- dX
dt "dy dz

9

-A— =—
dt dec dy

These are the equations of cross-connection between the elec-

tric and magnetic fields and thus show that in non-conductors the

curl of the force of either field determines, or is determined by,

the time-variation of the induction of the other. If we know the

state of the field at any instant we may accordingly find it at any
subsequent instant. For we have the three sets of equations

expressing the Fourier-Ohm laws,

3E = eX, 8 = fiL, u — \X,

(C) g) = eF, (D) m = fiM, (E) v=\Y,

3>=eZ, $l = fiX, w = \Z.

The letter e denotes the electric inductivity, which in Chapter IX,

where we did not distinguish electric and magnetic quantities, was
denoted by jju. It will be noticed that equations (A) and (B),

which are the fundamental equations of the theory, contain no
quantities that are intrinsic to the media, but only those quantities

which completely specify the electric and magnetic state of the

fields. The equations (C), (D), and (E), on the contrary, contain

the quantities e, p and X, which denote properties of the media.

These latter equations are not fundamental to the theory, as they

may under certain circumstances be replaced by others. In addition

* In Hertz's papers the right-hand members appear with the opposite sign, since

Hertz employs the left-handed arrangement of axes. (Cf. Fig. 1.)
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we have for the electric and magnetic energies and the dissipativity,

or heat generated per unit of time,

(F) T= -^([[ (Li + MWl + N$l) dr,
oo

877-,

H= III (Xu + Yv + Zw) dr.
00

246. Eolotropic Media. The equations (C), (D) and (E)

have been established on the supposition that the medium is

isotropic, that is that it has the same properties in all directions

at any point. In some "todies, such as certain natural crystals, this

is not true. The assumption next in order of simplicity to that

made in Chapter IX is to assume that the energy per unit volume

is a homogeneous quadratic function of the components of the field

^ {euX^ + e^F2 + e33£2 + e2ZYZ + ezlZX + e12XF},

the six coefficients being properties of the medium. If we then

apply the reasoning of § 180, we find that our results are the

same as before, providing that we define the inductions by the

equations

f = euX + e12F + e13£, 2 = fJLnL + p12M + ^N,
(C) g)=e21X + 622F+e23^, (DO m^^L + ^M+f*^

3 = e31X + e32Y+ €&Z, 91 = fjbnL + -f fi^N9

where ^rs =€sr ; /^5 = /v
The inductions thus defined have all the properties that we have

hitherto predicated with regard to them. It has been pointed out

by Pupin* that these are not the only possible generalizations of

the equations (C) and (D).

Media which are not isotropic are called eolotropic. A body

may also be eolotropic with respect to conduction, in which case

u = X,nX -f- X^F-f- \i3 2/ }

(E
r

) v^XaZ + ^F+X^Z,
w = X31 + X32F + X^if.

* Pupin. "Studies in the Electro-magnetic Theory." American Journal of

Science, Vol. l., p. 326, 1895.



245—247] EQUATIONS OF ELECTROMAGNETIC FIELD. 511

We shall in the future, as we have done in the past, consider only

isotropic bodies.

247. Consequences of the Equations of the Field.

Propagation. If we differentiate the equations (A) respec-

tively by x, y, z and add, we obtain

dt \dx dy dz) \dx ay dz)

the consequences of which we have discussed in Chapter X. If the

medium is an insulator, the relaxation-time is infinite, and

dx dy dz

is independent of the time.

Applying the same process to the equations (B), we obtain

as dm d$t—i
j

—

dx dy dz

independent of the time, and the value of this divergence is zero,

except in intrinsic magnets (§ 201).

We shall now deduce the more important consequences of the

equations, proceeding from the simpler to the more complicated

cases. We shall first, therefore, consider the phenomena in insu-

lators, in which the equations (A) and (B) are exactly symmetrical.

On account of the dual nature of the relations of the two fields it

follows at once that every effect of electrodynamic induction in

producing electromotive forces has an analogous effect in the pro-

duction of magnetomotive forces by electric displacement currents.

For instance a closed iron ring placed in an electrostatic field

varying with the time would become magnetized. Effects of this

sort have not yet been observed, on account of the extreme small-

ness of the factor A, by which the displacement current is multi-

plied. For the same reason, electrostatic forces produced in

insulators by the variation of magnetic fields have not been
successfully observed, although the attempt has been made by
Lodge*. The justification of the equations (A) has been given

by other results.

* Lodge. " On an Electrostatic Field produced by varying Magnetic Induction.

"

Phil. Mag. (5) 27, p. 469, 1889.
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If we perform upon the equations (13) the operation of curl,

which is typified by the result of differentiating the third of

equations (B) by y and subtracting it from the second differentiated

d2X
by z we obtain, after adding and subtracting

2 >

dx'

d) a^P— = AX

^

dt \dy dz J dx\dx dy dz J
'

Now supposing the medium to be homogeneous, that is e

and fju constant, making use of the equations (C) and (D), and

supposing there is originally no electrification, we have

dx dY dz A—1
1
— — 0,

dx dy dz

and making use of the first of equations (A) we transform ( 1
) into

A 2fie^ = AX.

Proceeding in like manner we obtain for the other components,

d
2Y d2Z

A*/i€-Qp=AY, A 2fxe-^ = AZ,

7)
2L d2M

(2) ^>e^=Ai, 4>6
d| = AI,

We thus find that in insulators each component of the two

fields satisfies a differential equation of the form

(3)

where a = 1/A Jpe.

Since this is an equation of great importance in mathematical

physics, we shall investigate its general solution. Let us multiply

both sides of the equation by the element of volume dr and

integrate throughout the volume bounded by a closed surface

S, applying the divergence theorem to the right-hand member,
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If the surface 8 is a sphere of radius r with its center at the point

P, we have

where by <pr we denote the values of at points on the surface of

the sphere of radius r, with center P.

Introducing polar coordinates into the left-hand side of equation

(4) also we may write it

Now differentiating this and the transformed right-hand

member (5) by the upper limit r changes our equation (3) into

(7) t-^/J^-a.1(^1//^).
The surface integral

jj<j)r
dcD,

which appears on both sides is 4-7T times the mean value of the

function
<f>
on the surface of the sphere of radius r. Calling this

mean value <j>r we have the equation

which, on performing the differentiations and dividing by r, may be

written

fn\
82
(rfa „2 & (r$r)

{9)
dt* ~ a

dr*~~'

If we now introduce two new independent variables

u = at 4- r, v = at — r,

we have, putting rcj>r = yfr,

dyfr dyfr du dyfr dv /dyfr dyfr\

dt
~ du dt dv dt

~"
\ 8w 3# /

J

dyfr du dyfr dv dyfr dyfr

dr du dr dv dr du dv
3

dt" \du* ^ dudv^ dv"

d2
yfr d

2
yfr _ d2

yfr d2
yfr=

dv?
~

dudv
+W '

w. E. 33
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so that our equation (9) becomes

(10) -^=0
dudv

Of this equation the general solution is

(11) f = ftW+ftW,
where gx and g2 are perfectly arbitrary functions of their arguments.

We consequently have for the solution of (9),

(12) r$r = g1 (at + r) +g2 (at - r).

When r = 0 we have

0 = 0! (at) + g2 (at),

and this being true for all values of t the functions gu g2 are not

independent, but one is the negative of the other, whatever the

value of the argument, Putting then

gi = g, 92= -g,
we have

(13) r$r = g(at + r) -g (at - r).

Differentiating by r,

(14) & + r^ = g
r

(at + r) + g' (at- r),

and again putting r = 0^ we obtain

(15) $r==0 = 2g'(at).

But ^>r is the mean value of
(f>
over the surface of a sphere of radius

r with center at P, and the mean value over a sphere of radius

zero is the value at P itself. Accordingly

(16) <t>p = 2g'(at).

Now differentiating (13) by r and t,

ft Wr)
= 9' (a* + r) + g' (at - r),

d —

jt (r$,) = a {g (at + r) - g' (at - r%

so that

(17)
mi +i»m,^ +r),

and for t = 0,

(18)

~

d (r<j>r) 1 d (rfc)
'

dr a dt
=y (r).
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Now inserting the value of <j>rj

(19) 2</(r) =
1a/it*-:

Suppose that for a certain initial instant, for which we shall

take t= 0, the values of the function and of its time derivative

^ are given as functions of a point in space,

'd<j>'

dt «=0
=/<>> y>(20) [<£]*=o = ^(#>

Inserting in the equation (19) it becomes

(21) 2g' (r)=4 ff*Vd») +^///,(*»,^ w 3r V47rJJ
" r "

J
' 47ra,

but when r — at the value of the left-hand side is by (16) equal

to
<f)F .

Accordingly we have finally,

(22)

This solution was given by Poisson*. It shows that the value of
<f>

at all times may be calculated for every point P if we know the

mean value of d<j>/dt at a time earlier by the interval at for all points

on the surface of a sphere of radius at about P. as well as the rate

of variation of the mean value of
<f>

as the radius of the sphere is

altered. Suppose that initially and —- are both zero except for

a certain region whose nearest point lies at a distance rx from P
and whose farthest at a distance r2 . Then as long as t<r-L\a

the mean value of (j> on the sphere of radius at is zero, and after

t > rja as well. Accordingly there is no disturbance except

between the times rja and rja, or the quantity is propagated

in all directions with the velocity a. It may be easily shown that

epp is finite if F and/ are finite everywhere.

We might have obtained the same result in a more simple

manner by transforming A<£ to polar coordinates in equation (3),

making independent of the angular coordinates, when the equa-

tion becomes

(23)
dt* \3r2 rdr

* Nouveaux M€moires de VAcademie des Sciences, t. in.

33—2
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or
d1

(rfl)

Of this a solution is

(24) 4>
=

r

as has been shown (12). Accordingly for all points and times for

which at — r has the same particular value we have the same

value of r<£, or a particular value of
<f>

travels outwards with the

velocity a. The value of is inversely proportional to the distance

r traversed. The solution makes the value of cf> infinite at the

point from which it is propagated. This is only an apparent

difficulty, for just as the potential due to a single mass-point is

infinite at the point, but is never infinite when the mass is

continuously distributed with finite density, so here if we consider

a finite region in which
<f>

is not zero, the infinite value will not

occur, as is shown by our general solution (22).

We see, accordingly, that a state of electric or magnetic field

existing in any region of space has its action propagated with the

finite velocity a = 1
/
A V/*e in all directions, and inasmuch as by

the equations (A), (B), the time-variation of one field is propor-

tional to the curl of the other, the second term of (22) shows that

a curl of one field in any part of space causes a propagation of a

field of the other kind.

The conclusion that electrical and magnetic actions are pro-

pagated with a finite velocity is the great and remarkable

consequence of Maxwell's theory, and was enunciated by him in

1864 in his celebrated paper on the Dynamical Theory of the

Electromagnetic Field. From this, and the other consequences

of the equations, he was led to enunciate the theory that light

was an electromagnetic phenomenon. In fact, the equation (3)

is, as we have shown, the equation of wave motion, and is the

basis of any undulatory theory, whether of light or of sound.

The manner in which the equations give us a theory suitable for

light and not for sound will be discussed in § 249.

Since the velocity of propagation is 1/J.Ve/i,, in air the velocity

should be 1/A = v, or the velocity which corresponds to the ratio

of the two electrical units of quantity. Determinations of this

purely electrical quantity, as refinements in measurement in-

creased, gave results showing a surprising agreement with the
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determinations of the velocity of light, so that many German

authors are accustomed to speak of A as the reciprocal of the

velocity of light. It seems preferable, however, to keep the

definition of A and v purely electrical, as we have given it in § 212.

A further confirmation of the electromagnetic theory of light

was sought in the fact that the index of refraction, being inversely

proportional to the velocity, should in non-magnetic bodies, for

which fi = 1, be proportional to the square root of the electric

inductivity. This relation was experimentally verified for a

sufficient number of transparent dielectrics to make it appear that

the agreement was not accidental, although many exceptions were

found.

Nevertheless, although these considerations made the electro-

magnetic nature of light very probable, the theory of propagation

of actual electrical disturbances with finite velocity remained

unverified by experiment until 1887, when Hertz began the

publication of his remarkable researches*, which have since carried

conviction of the truth of Maxwell's theory of electricity and

magnetism to the most conservative parts of the scientific world.

For an account of them the reader is referred to Hertz's collected

papers on "Die Ausbreitung der elektrischen Kraft," or to the

English translation by D. E. Jones.

248. Transfer of Energy. Poynting's Theorem. We
shall now form the equation of activity for any portion r of the

field. If JS= W+ T be the total energy, H the dissipativity, we

have

(i)
di + H^^^Jfl(XX +W+2Z+U +mM + ^F)dT
dt Sirdt

+ \l\(Xu+Yv + Zw)dT.

Since e and fi do not vary with the time we have, by (C), (D),

— (V JT\ V i
^— 2

dt
K } ~

dt dt
~ dt'

3 /or\ o , T 32 «r 32

* "Ueber die Ausbreitungsgeschwindigkeit der elektrodynamischen Wirkun-

gen." Wied. Ann. 34, p. 551, 1888, trans, p. 107.
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Inserting these and the corresponding values in the integrand,

and replacing the time derivatives by the curl-components from

equations (A) and (B), we have

, x dE TT

x P^-^K) + t(^-—)+z(— -—
dy dz J \dz dxj \dx dy4™A ... ^

d
$y dz J \dz dx) \dx dyJ)_

Now integrating by the theorem of § 226 (4), this becomes

(3) ~ +H= Îff
{{YN-ZM) cos inx) + (ZL - XN) cos (ny)

+ (XM-YL)cos(nz)} dS.

We have supposed that there are no intrinsic electromotive forces,

but if there are, the components X, F, Z in ( 1 ) must be replaced

by X-X', F-F, Z-Z' (§ 243), except in the last integral

representing the dissipativity, consequently that integral will not

be entirely cancelled as above, but there will remain the term

(4) (X 'u + Y'v + Z'w) dr = St,

representing the activity of the impressed forces, in addition to

the surface-integral. If we extend the integral in (3) to a space

to whose boundaries electric and magnetic actions do not extend,

since the integrand in the surface-integral vanishes we have

dE
(s) ~i

+H=n

as the equation of activity (cf. § 64 (6)), whose H is the present E}

while H of (5) is the 2F of § 64, (8).)

If the fields are not zero at the surface S, the equation (3)

shows that the energy in the volume will be accounted for by

supposing that a quantity of energy

per unit of surface 8 enters the volume t in unit time. We may
therefore call the vector
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whose components are

RX = (YJST - ZM)l4nrA,

Ry = (ZL -XN)/4ttA
9

Rz = (XM-YL)/4*TrA,

the energy-current-density.

The equation (3) accordingly states that the quantity of energy

R is transferred per unit of time across the unit of surface tangent

to the direction of both the electric and the magnetic force. This

is Poynting's* remarkable theorem.

It has been remarked by J. J. Thomson, Heaviside and Hertz

that this determination of the energy current is not the only

possible one, since we may add to the above vector any solenoidal

vector without changing the surface-integral in (3). Hertz has

also pointed out that, as this makes energy flow at all points where

fields of both kinds exist, it involves the continuous flow of energy

(in closed tubes) when a magnetic pole and an electrified point

exist in each other's presence. In many cases, however, the notion

of the motion of the energy here given is a very fruitful one. It

has been further developed in several papers by Wienf. The

vector R is sometimes called the radiant vector.

249. Plane Waves- Let us again consider a perfect insu-

lator. The equations § 247 (2) are all satisfied by any function of

the argument s = loo 4- my +nz — at, where a = 1 /A *Je/uu.

(1) (j>=^(j>(lx + my-\-nz-'at).

For we have

A<£ = (I
2 +m2 +O <£" 0),

and therefore

(3) w =a?^
* Poynting, PHI. Trans. 2, p. 343, 1884.

+ Wien. "Ueber den Begriff der Localisirung der Energie." Wied. Ann. 45, p.

685, 1892. "Ueber die Bewegung der Kraftlinien im electromagnetischen Felde."

Wied. Ann. 46, p. 352, 1892.
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if we take

(4) i
2 +m2 + ^2 =l.

The quantities X, F, Z, L
y M, N accordingly have the same set of

values for all points for which

(5 ) l® + my + U2 — at — const.

But this is the equation of a plane whose normal has the

direction cosines I, m, n, and whose distance from the origin is

at + const. The plane is accordingly travelling in the direction of

its normal with the velocity a=l/A\f]i€. The disturbance is

accordingly a plane electromagnetic wave, whatever the nature of

the function <£.

The six functions <j> are not independent. For let

(6) X = &, r=<£2 ,
Jf=^„ if=^3 .

Then inserting these in the equations (A) and (B) we have

(7) ~ & = n^' - (8)

a system of linear equations to determine the ratios of <j>

n
s

and ^°s.

Multiplying the equations (7) or (8) in order by I, m, n, and
adding either set, we obtain

(9) + ™<l>2 + = °> %' + + ^3' = 0.

These are two differential equations with regard to the

variable s} integrating which gives

Ifa + m<f>2 + ncf)3 = Cu Ifa 4- myfrz 4- nyjr3 = (72 ,

that is

(10) lX+ mY + nZ=Cl9 IL + mM + nN = 02 .

This shows that the component of either field resolved parallel

to the direction of propagation is constant as we travel in that

direction as well as in the plane of the wave, and is therefore

^3 =
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constant throughout space. But such a constant field is not

propagated at all, and we shall therefore disregard it, and put both

constants equal to zero. Both fields are consequently perpen-

dicular to the direction of propagation. It is for this reason that

Maxwell's theory is appropriate for an explanation of light, which,

as the phenomena of polarization show, is due to transverse undu-

lations.

Although the forces of the two fields lie in the wave-plane,

and are constant over any particular wave-plane, it does not

follow that their directions are the same in all wave-planes, that

is for different values of s. We shall however assume that their

directions are the same* in all wave-planes, and we will call the

direction cosines of F, alf /31? 7^ and of H, /32 , y2 . Such a

wave is said to be plane-polarized. Then we have

(11) X = ct1fc F=^, £=7i<£, £ = «2f, M=0tf, #=72*.

and our equations (7) and (8) take the form

-
\f*~

= (^72 - nfo) hj^ a2f = (my1
- wft) <f>',

(12) -^-frV^inoLz-h,)^', (13) ^^foV^im-hi)?*
r

- sj-^ 7i$' = (IP* - mc(2) if/. ^ y2f = (Ifo - max)

Multiplying the equations of the first set respectively by

«2j @2 > 72 a*id adding, we get

( 1 4) ai«2 + +' 7i72 = 0,

or the electric and magnetic forces are mutually perpendicular, as

well as perpendicular to the direction of propagation. There are

accordingly two directions, either of which might be chosen to

define the plane of polarization, and it rests with experiment to

decide between them.

Squaring and adding either equations (12) or equations (13)

gives

Extracting the square root and integrating,

Ve<^ = \//t6A|r = /
,

(5),



522 THE ELECTROMAGNETIC FIELD. [PT. III. CH. XIII.

putting the integration constant equal to zero for the same reason

as before. Accordingly the fields are

Y - aif(s) v_A f(s) s,__ 7i/0)^ —

—

1=—
>
x——j=— > ^ —1=—

>

Ve Ve Ve

Vfi V fi V fju

The two fields are accordingly propagated together.

Comparing the energies of unit volume we find

W= (X2 + F2 + Z2
) = = ~(L* + M* +N2

) = T,
07T 07T 07T

or the energy is equally divided between the two fields.

The radiant vector VFH is of course in the direction of

propagation.

250. Propagation in a Conductor. In § 247 in deducing

the equations of propagation we have supposed the conductivity to

be zero. If we do not make this assumption in substituting the

value of the curl-components on the left of equation (i) we obtain

(I) ^>(e^ + 47r\^) = AX,

and in like manner all the components of both fields satisfy the

equation

(2)

The general solution of this equation has been given by
Boussinesq, but it is too complicated to be given here. A
particularly interesting special case will be treated below. In the

mean time we shall content ourselves with the consideration of

disturbances which are harmonic functions of the time. For this

purpose we shall assume

(3) <£ = e^£7(>, 2/,*),

when our equation becomes

(4) A 2 (- fieco
2 + ^irXficoi) £7= A U.

The equation

(5) AU = k2U
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has been made the subject of a treatise by Pockels. We shall

here consider only the case in which U depends on a single

rectangular coordinate x} the circumstances being the same all

over each plane perpendicular to the X-axis. In a conducting

dielectric the value of k2
is complex. In metals we know nothing

regarding the value of the electric inductivity e, for whereas

electrostatic phenomena may be explained by supposing it to be

infinite, in variable states this is far from being the case. In

fact in all experiments that have been performed with electric

waves thus far the value of oo has not been great enough to make

the influence of the term containing e appreciable in comparison

with that containing X. (See § 206.) We shall therefore neglect

the first term, so that our equation of propagation is

(6) kirAV == A(£'

This is the equation for the conduction of heat, as given by

Fourier. We shall consider it in some detail below (§ 254), but

shall now return to the consideration of the equation

d2U

in which k2
is the pure imaginary

(8) k2 = 4<7rA 2
\ficoi

The solution of equation (7) is

(9) U = <V* + C,e~kx.

Since we have Vi = (1 + i)/V2 the value of k is

(10) k = ± A V27r\/xco . (1

Accordingly the real and imaginary parts of

furnish us with particular solutions of (6). We thus obtain

(
f)
z=e-A^ar*MB

• * cos (cot— A VZrrXfJLw . x),

$ = e~AV*^- x sin (cot — A ^2ir\fMw . x),

^ 1

1

^
<j> = e

A ^2^". * Cos (at + A*/2ir\fia> . x\

0 = e
Aj2^>

. x sin (at + A V27r\fico . x).
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x

Of these the first two, being of the form e df(x—at), represent

damped waves travelling in the direction of increasing x with the

velocity a =
2~X~

* Per*0(^c fac^or a^ anv time repeats

1 / 27T
its values when x is increased by the distance 1 = 7 a/

,A V XfJLCD

which is called the wave-length, the frequency being n = o)/27r.

The damping factor e'A^2enklua ' x which causes the amplitude of

the wave to decrease in geometrical progression as the distance

travelled increases in arithmetical, has the relaxation-distance, or

the distance in which the amplitude diminishes in the ratio 1/e,

d=
^

.

A v 27r\fjbco

The last two particular solutions represent waves travelling in the

opposite direction with the same velocity and damping.

Since the velocity depends on the frequency, there is no

definite velocity of propagation in a conductor. On account of the

damping, harmonic disturbances of high frequency rapidly die out,

consequently alternating fields penetrate but a short distance into

conductors. This was shown by Maxwell*, but its importance

was brought out by the researches of Heavisidef, Lord RayleighJ

and Hertz §.

We shall now consider the relations between the two fields.

If the components X, F, Z, L, M> N are equal respectively to the

complex constants A lf A 2) A 3 ,
B1} B2 ,

B3) each multiplied by

euot+kx9
inserting in the equations (A) and (B) we obtain

4i7rA\Aj = 0, — AfiicoBi = 0,

(

1

2) 4«7rA\

A

2
= — kB3 , — A /uLicoBz = — kA 3 ,

4}7rA\A B = kB2 ,
—AfiicoB3 = kA 2 .

Eliminating A 2/B3 or A 3/B2 we obtain the value for k already

found. We thus see that the directional relations of the fields

* Treatise, Art. 689.

t " The Induction of Currents in Cores." Electrician, 1884. Papers, Vol. i.,

p. 353.

t " On the Self-induction and Resistance of Straight Conductors." Phil. Mag,

21, p. 381, 1886.

§ " Ueber die Fortleitung elektrischer Wellen durch Drahte." Wied. Ann. 37,

p. 395, 1889. Jones's trans, p. 160.
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and the direction of propagation are the same as in insulators, but

the ratio of the two fields is

The magnetic field accordingly lags in phase by one-eighth of a

period behind the electric, while in an insulator the fields have the

same phase.

251. Reflection of Waves by a Conductor. We shall

now consider the effect of a train of plane waves in an insulator

striking the plane surface of a conductor which is parallel to their

plane. We shall suppose the conductor to extend to infinity in

one direction. Let us take the plane x = 0 as the face of the

conductor. Let the waves be harmonic in the insulator, for which

x < 0, and let the electric force be parallel to the F-axis, the

magnetic to the i?-axis. Then in the wave approaching the con-

ductor we have

= — 6 \ a/
y

ve

N — —=e \ a/.
VfJb

In the conductor we have

Y= C2e
i<at-kx

,

(2 ) „ „ /27TX

V Un(0

At the plane x — 0 the boundary conditions to be satisfied are

that the tangential components of both forces and the normal

components of both inductions are continuous. The latter com-

ponents being zero we have only the first two conditions to satisfy.

There are not enough constants to enable us to satisfy them both,

it is accordingly necessary to add to the terms representing the

disturbance in the insulator other terms representing a wave

travelling in the opposite direction, or a reflected wave. We
therefore take

F=-~ e V a'+-j=e \ *'
,

(3)
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in the insulator,

by eM9

(4)

Our boundary conditions are then, dividing

C-i + G\

9i^ = c
2J2

^(i-^i\

Accordingly we have

(5)

G1

1- 2ttXij.

mefix

+ 72^
V coeiii

2

v;+ A/^(i-o
ft)/*!

Since these two ratios are complex, at the surface of the con-

ductor there is a difference of phase between the direct, reflected

and transmitted waves. As we increase the conductivity of the

conductor the ratio C^jG1 approaches the value — 1, in which case

the electric force vanishes at the boundary, which is a node for the

electric field, while the magnetic field is a maximum. On the

other hand, as we increase the frequency of the oscillation or the

magnetic inductivity of the conductor the ratio O//O1 approaches

+ 1, or the magnetic force vanishes at the boundary, while the

electric is a maximum. If we put

r
27r\/JL

we find for the ratios of the amplitudes of the reflected and trans-

mitted to that of the direct waves

^2 ^2"! i
,Q
1(1 + r)2 + r*

2

Ve [(1 + r)2 + r2]*

Accordingly whether r be very great or very small the reflected

waves tend to become as great as the direct, while the larger r the

less is the magnitude of the transmitted waves.
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The experiments of Hertz* confirmed the above results, the

boundary of the conductor being more nearly a node for the electric

than for the magnetic force. If the amplitude of the reflected

waves approaches that of the direct ones, the two systems will

interfere and produce a set of standing waves, with nodes at regular

distances from the conductor. This field was explored by Hertz

by means of a resonator, composed of a circle of wire with its ends

terminating in two small balls near together, constituting a con-

denser. This system has a certain period of its own, and what has

been said in § 240 applies to it. It was tuned to the period of

the waves, and being placed anywhere in the field would have

currents induced in it by the harmonic electromotive forces of

the field.

Thus where the force is a maximum sparks appear between the

balls of the resonator, disappearing at the nodes. For the further

theory of the resonator the reader is referred to Poineare, Les

Oscillations Electriques, J. J. Thomson, Recent Researches in Elec-

tricity and Magnetism, and Drude, Physik des Aethers.

252. Spherical Oscillator. We have hitherto considered

waves in insulators, without considering how they are produced.

In the experiments of Hertz the waves were produced by disturb-

ing the charges in a peculiar dumb-bell-shaped conductor, and

allowing oscillations to set in, which were propagated outward

through the air. A satisfactory theory of the oscillations in Hertz's

oscillator has not been given. We may state the general problem

:

given a charge disposed in any manner not in equilibrium upon a

conductor of any form, find the. nature of the oscillations that

ensue while the conductor is settling down to its state of equi-

librium, together with the fields to which they give rise. This

problem is a very complicated one, and has been solved for very

few cases. We shall consider the case of a conducting sphere,

the charge upon which is that induced by placing the sphere in a

steady uniform electric field. The field is supposed suddenly

destroyed, and the charge then oscillates until equilibrium is

attained.

We shall suppose e = = 1,

* "Ueber elektrodynamische "Wellen im Luftraume und deren Eeflexion." Wied,

Ann. 34, p. 609, 1888,
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Since both fields are propagated according to the equation

and since any derivative of a solution is also a solution, we may
take

Y _ d24> r _ ,

dxdz' dydt'

(i)K)
dydz'

M
*dxdt'

„ fd
2
d> d

2
d>\ . , 32

<f> „ „^— CaS
+ ^)

—

A* + a5-
N==0

'

which satisfy the solenoidal condition and the equations (A) and

(B). If we assume cf> to be a function only of r and t, we have for

a diverging wave

/ \ _t f(r — at)
(2) ~

r
•

Differentiating
<f>
by the coordinates we obtain

d<f> d<f> dr d(f) z

dz dr dz dr r
'

92
<ft _ 9/1 d$\dr__ 3_/l

9r v
(3)

3a?3,0 3r \r dr) dx dr \r dr) r

d2

<f> ^ J9 A <ty\ ^ = 3_ A ^\yi
dydz dr \r dr) dy dr \r dr) r

}

dz2
~~

3r \r dr) dz r dr" dr \r dr) r r dr
'

so that the forces are

X— ^ ^\ xz

dr \r dr) r
'

dr\rdr)r r dr
^'

The field is thus the resultant of two parts, the first, equal to

3 /ldd?
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parallel to the radius, and the second, equal to

i a<£

r dr

parallel to the i?-axis. At the surface of the sphere, r = R, if the

conductivity is large, the lines of force are normal to the surface,

so that this second component vanishes, and we have

r or or2 r or

that is

(S)
'&<j> i

dr2 r dr
= 0.

When t = 0, the electric forces are derivable from a potential,

which is, by (i), equal to — ^ (since A</> = 0). But by § 194 (7)

the potential is, in the case supposed, proportional to

r3 dz\r

Consequently initially

Introducing the value of
<f>
from (2) this gives

(6) /(r) = C.

Consequently the function f is constant for all values of its argu-

ment greater than R. Hence the value of <£,

/(r-q£)

r
'

remains equal to C/r so long as r — at> R, and the field remains

unchanged. When t = (r — i?)/a, the wave arrives at the distance r,

and to determine the field at subsequent instants we must deter-

mine the values of/ for values of its argument less than R.

Let us make use of equation (5).

Differentiating <j> by r gives

d4> =f(r-at) f(r- at)

?* =fJ?^ at) _ Y(r-at) 2/(r-at)

w. e. 34
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and inserting these in the equation (5) we have

/" (R - at) f'(R-at) f(R-at)
ft(8) ^ w—+ Rs

=0.

This is an ordinary differential equation, which, if we put

u= R — at,

becomes

(9)
^_I^ + / =0w du* R du R2

This has the solutionf= e*", where

(10) v__ X + ^-0,

From this we obtain the general solution

/(y) = e*
R (A cos^ w + B sin ^| w

r-at V3, . V3
e 2jB ^4 cos^ (r — a£) + 5 sin^ (r— at)

<p —
r >

representing a damped harmonic spherical wave of wave-length

£ = 47ri?/V3 = 7'255jB.

The logarithmic decrement is

7r/V3 = 1814,

so that the oscillation almost ceases after a complete vibration.

This extreme damping is due to the radiation of the energy, and

not at all to the dissipation in the conductor, of which we have

taken no account.

The nature of the field radiated by an oscillation of this sort

has been discussed by Hertz*, making certain assumptions.

The preceding problem is the simplest that can be proposed

to represent a practical case of oscillations in a conductor. The
above demonstration is given by Poincare'. It is evident, from

the investigation of oscillations in the last chapter, that a system

has as many possible periods as there are degrees of freedom. In

a conductor of three dimensions the currents have an infinite

* Hertz. "Die Krafte der elektrischen Sehwingungen, behandelt nach der

Maxwell'schen Theorie." Wied. Ann. 36, p. 1, 1889. Translation, p. 137.
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number of degrees of freedom, and there are an infinite number of

periods. The above problem corresponds to the lowest possible

frequency for a sphere, when the surface-density of the electrifica-

tion is a zonal surface-harmonic of degree one. For the general

treatment of oscillations in spheres and cylinders the reader is

referred to J. J. Thomson, Recent Researches in Electricity and

Magnetism.

253. Waves on Wires. We now come to what is perhaps

the most important practical problem connected with electrical

waves, namely their propagation along wires, for upon this question

depends the theory of telegraphy and telephony. The subject has

been treated in great detail by Heaviside*, to whose papers the

reader is referred.

We shall suppose that the direct and return conductors are either

cylindrical wires parallel to the X-axis, or concentric tubes. Let R
be the sum of the resistances of the two wires per unit of length.

Let K be the capacity of the pair of conductors per unit of length,

L their self-inductance per unit of length. Let the total current

in one wire be / and the difference of potential between points

on the two wires having the same ^-coordinate be V. All these

quantities are supposed measured in the electromagnetic system.

We may describe the phenomenon as follows. When an

electromotive force is applied between any two corresponding

points on the wires, say by connecting them with the poles of a

battery, electricity of opposite signs flows out upon the surfaces

of the two wires, producing an electric field in the surrounding

space. The electrifications then move along the wires, causing a

current, thus producing a magnetic field. Both these fields im-

mediately begin to penetrate into the conductor, and are there

dissipated into heat. As the electric field, whose lines are in the

planes perpendicular to the conductors, rises from zero, it gives

rise to displacement currents in the planes perpendicular to the

conductors. The magnetic effect of these displacement currents

we shall ignore in comparison with those of the conduction

currents in the wire. We shall also ignore the penetration of the

currents into the conductors, the theory of which would lead us

too far for the present purpose. This we may safely do if the

* Heaviside. " Contributions to the Theory of the Propagation of Current in

Wires." Papers, xx. et al.

34—2
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wires are small enough, or the tubes thin enough, or in any case

if the conductivity is great enough. Ignoring the manner of

distribution of the current, then, we consider only the total cur-

rent / in the wire at any point. This is variable from point to

point, and is, like V, a function of x and t. We shall suppose

that the phenomena are exactly symmetrical in the two conductors

as far as the currents go, so that I has equal values with opposite

signs at corresponding points in the two conductors.

Let us consider the charge that exists at any instant on the

portion of one conductor between the points x and x -f dx. Since

the capacity per unit length is K
y
the difference of potential V

9

we have for the charge dq,

dq = VKdx.

If the current flowing in the positive direction at x is J, that at

x -f dx is

I + ~^dx,

so that the total gain of charge of the element in unit time is

We accordingly obtain the differential equation connecting the

current and difference of potential,

Considering now the flow of the current, we have in the pair of

corresponding elements of the two wires the electrostatic electro-

dV
motive force —^-dx and the electromotive force of induction

ox
dl— Ldx^, the resistance being Mdx. Accordingly the current

equation is

The equations (i) and (2) are the equations of the problem.

Differentiating (1) by t and (2) by x we may eliminate /, obtaining

(3) KL~+KBV~ =
dt2 dt dx
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Differentiating (i) by x and (2) by t we eliminate V, obtaining

(4) d¥ di
=

dx?'

Consequently both the current and the potential are propagated

in accordance with the equation

which, as it will be observed, is of the same form as the equation

§ 250 (2), the resistance of the wires here taking the place of the

conductivity of the medium. We shall, with Poincare, refer to

the equation (5) as the Telegraphic Equation. If the wire is sur-

rounded by a concentric tube, we have (§ 144), inserting the factor

A 2 for electromagnetic measure,

eA 2

while if the currents be supposed concentrated in the adjacent

surfaces of the tubes, we have by § 234 (21), since r12 = r222 y

L = 2fj, log^

.

Consequently the coefficient of the first term is

KL = efiA2
.

If we have two wires of the same diameter, which is small with

respect to their distance apart, the formula § 159 (29) becomes

eA 2

2 log%
while the formula of § 234 (22) gives

d2

Z = 2/*log-£
2 ,

so that we have the same relation as before. This relation is of

course not accidental, depending upon the similar equations

satisfied by the electric and magnetic fields between the conductors,

relations which are brought out in § 234. The only reason for

any deviation from the above relation is that in obtaining L the

current density was supposed uniform, while in obtaining K the

surface density was not. The theory of electromagnetic waves
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in free space however shows us that in all cases we must have the

coefficient of equal to €/ulA\

If accordingly the resistance of the wires is negligible, the

disturbances are propagated with the speed l/A^e/n or in air

with the velocity 1/A=v. The determination of this velocity

and the comparison of it with the results of determinations of

the ratio of the two units v is thus a matter of great importance.

Determinations of the velocity have been made by Blondlot*, by
Trowbridge and Duanef, and by Saunders

J, under the direction

of the author. These have given a satisfactory agreement with

theory, and are the only direct experimental verifications, for it is

to be noticed that in the determinations of Hertz, based upon

measurements of wave-lengths, the frequency was not observed,

but calculated, thus virtually begging the question.

The result just announced, and the statement that the velocity

of the waves should be approximately that of light, were contained

in a paper published by Kirchhoff§ in 1857, and were afterwards

rediscovered by Heaviside||. The equations (i) and (2) were given

by Heaviside|| in 1876, and both researches remained singularly

unnoticed until recently.

254. Particular Case. Submarine cable. The first case

of the telegraphic equation to be treated was that in which the

self-inductance of the circuit is negligible in comparison with its

resistance. This is the case in a submarine cable, in which the

wire is surrounded by a concentric tube of water, separated from

it by a thin layer of dielectric. We may then neglect the first

term of (5), making use of the equation

* Blondlot. Comptes Rend. 117, p. 543, 1893.

f Trowbridge and Duane. " The Velocity of Electric Waves." Phil. Mag. (5),

40, p. 211, 1895.

X Saunders. " On the Velocity of Electrical Waves." Physical Review, (4), 2,

p. 81, 1896.

§ Kirchhoff. "Ueber die Bewegung der Electricitat in Drahten." Pogg. Ann.
Bd. 100, 1857 ; Ges. Abh. p. 131.

|| Heaviside. " On the Extra Current." Phil Mag. Aug. 1876; Papers, Vol. 1.

p. 53.
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and obtaining the current from the equation

(7) I=-± dZU) R dx
'

We thus arrive at the so-called electrostatic theory of propagation,

given in 1855 by Lord Kelvin in his paper " On the Theory of the

Electric Telegraph*," which established beyond question the feasi-

bility of an Atlantic cable.

As we have seen in § 250, harmonic disturbances are propagated

with a velocity proportional to the square root of the frequency.

There is therefore no definite velocity of propagation in a cable,

and there is liability of signals mixing with each other and losing

their character. We are however more concerned with the question

of how a single arbitrary short disturbance is propagated. If we
consider a cable with different constants, for which

by changing the variables by multiplying by constant factors we
may make one solution do for both. If we put

CO QjOCy t — J)tf

we have
K'R'W 1 drr

b dt
~

a? dx2 '

so that V (x, t') = V O, <),

b K'R'
if

that is

a2 KB '

/y«'2 /y»2

K'R' —7 = KR
,

t t

Accordingly the time necessary to produce a given potential at a

distance x from the origin is proportional to KR multiplied by

the square of the distance. We quote Lord Kelvin's words

:

"We may be sure beforehand that the American telegraph

will succeed, with a battery sufficient to give a sensible current

at the remote end, when kept long enough in action; but the

time required for each deflection will be sixteen times as long as

would be with a wire a quarter of the length, such, for instance,

* Proc. Roy. Soc, May 1855 ; Math, and Fhys. Papers, Vol. n. p. 61.
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as in the French submarine telegraph to Sardinia and Africa.

One very important result is, that by increasing the diameter of

the wire and of the gutta-percha covering in proportion to the

whole length, the distinctness of utterance will be kept constant

;

for R varies inversely as the square of the diameter, and K
(the electrostatical capacity of the unit of length) is unchanged

when the diameters of the wire and the covering are altered in

the same proportion/'

(The so-called " KR-li&w " has been applied to the theory of

telephony on long-distance land-lines, to which it is not at all

applicable, as has been shown by Heaviside. The use made of

this law by the chief electrician of the English telegraphs would

have prevented long distance telephony in England, even had there

been any long distances.)

Guided by the conclusion announced above, we shall insert a

new variable, u — xj^t, and attempt to satisfy the equation (6) by

a function of u alone.

We have

dV dVdu 1 dV x

(8)

dt

dV

du dt 2 du V^3
'

dVdu dV 1

dx

d
2V

du dx du *Jt'

f

i d2Vdu id2V
dx2

\Jt du2 dx t du2 9

so that our equation becomes

(9)
KB, dV d*V
2 du du?

'

or

(10)

The integral of this equation is

dV
du

or, integrating from 0 to u = xj*Jt,

rxl^t KB
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If we now write u instead of u this is

x /km

(13) F=C"P ' e-^du.
J 0

This definite integral is a function of its upper limit, and

therefore of x and t, satisfying equation (6). For x > 0 and t = 0

the value of the integral is Jtt[2*. As we may add any constant

to V, we will put

(14) F=F0 (l- JL£ ' er"duy

Thus for x > 0 and t = 0, F= 0. For # = 0, t > 0, the value of

the definite integral is zero, so that V= V0 . Consequently the

solution (14) represents the result of connecting one end of the

cable with a constant battery, and leaving it permanently con-

nected.

The definite integral in (14) is the transcendent known as the

probability-integral, for which numerical tables have been cal-

culated. From these the values of V have been plotted, showing

the potential at the different points on the cabl£, Fig. 96, the

different curves being for times 1, 2, 3, 4, 5 times KB. It is to be

noticed that however small the interval of time from the instant of

connecting the battery, the disturbance is felt somewhat at all

points, however remote. Thus the velocity of propagation would

be infinite, if we could speak of a velocity. This shows that the

* This may be shown as follows. We have

J= I e~ x2 dx= I e-y*dy.

Consequently

/oo f 00

/ e-W+v*) dxdy.

Changing to polar coordinates,

rr

= -j[« p
Jo •

Therefore e~ u2 du,
2 Jo
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theory is only an approximation, for it is hardly imaginable that

the velocity should be greater than in free space.

V

Fig. 96.

The current is obtained, according to (7), by differentiating

with regard to x. We must therefore differentiate the integral

by its upper limit, multiplying this by its derivative by %.

Accordingly

KRx*

Fig. 97.
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The values of the current for different points are shown in

Fig. 97 for times i, i, 1, 4 times KR. When x= 0 we have

so that when t = 0 the value of the current is infinite, instan-

taneously.

The rise of the potential at any given point other than

x — 0 is shown by the outside curve in Fig. 98, taken from Lord

V

Fm. 98.

Kelvin's paper, the abscissas representing the time, the ordinates

the potential.

The potential rises asymptotically to its value at the origin, but

the current rises to a maximum, which occurs at the time

t — KRaf/2, and then dies away to zero. The maximum values of

/ are inversely proportional to the distance from the origin, and to

the resistance R.

Since our differential equations are linear, disturbances due to

different initial states are merely added. If the battery is con-

nected, instead of permanently, for a definite time r, and the

cable then put to earth, the effect is the same as if, in the preced-

ing case, after a time r we permanently apply the potential — V0

at the origin. If the preceding solution be called V(t) the present

will be V(t)— V(t — r\ consequently we may obtain the graphical
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representation by taking the difference of ordinates of the outside

curve in Fig. 98 and the same curve pushed to the right the

distance t. The other curves in Fig. 98 represent the potential

at x when the battery is applied for times 1, 2, 3, 4, 5, 6, 7, times

KRa?.

Since any derivative of a solution of (6) is a solution, the

derivative of (14) by x is also a solution, and

represents the result of instantaneously connecting a battery and

then insulating the end of the cable. The distribution at any

time is of course shown in Fig. 97, and while V is initially infinite

at the origin, the total charge

q =K \ Vdx = q0

Jo

is finite, and remains constant throughout.

255. General case of Telegraphic Equation. The
telegraphic equation (5) has been treated by Heaviside, Poincare*,

Picard f, and BoussinesqJ. We shall give the solution of Bous-

sinesq, not only because he has given the general solution of the

more general equation § 250 (2), but because his method obtains

the solution by an ingenious artifice from Poisson's solution § 247

(22), and the knowledge of other methods required by the processes

of Poincare and Picard is unnecessary.

Let us put

KL~~
a

' L
Z0

>

so that our equation is

* Poincare\ " Sur la propagation de relectricite." Comptes Bendus, 117, p.

1027, 1893.

+ Picard. " Sur liquation aux derivees partielles qui se rencontre dans la

the'orie de la propagation de l'electriciteV' Comptes Bendus, 118, p. 16, 1894.

$ Boussinesq. "Integration de 1'equation du son pour un fluide indeiini."

Comptes Bendus, 118, p. 162, 1894.
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and let us suppose that initially the state of the line is given, that

is the potential and current are given at all points, by

V=F(x\ /=(?(#),

dt Kdx j^w-zw.

Let us transform the equation by putting

(3) F= e& u.

Accordingly

dv fdu
-f pu

)
ept

,

dt \dt '
r

J

d2 V (d2u ^ du
(4) -gjT ~b +^ +H^

so that if we put p~—b the equation becomes

The initial conditions now become

The method of Boussinesq may be applied to the more general

equation

which we shall accordingly consider, putting whenever we choose

u independent of y. The artifice employed is the introduction

into the function u of one more degree of freedom, by making it

depend upon another parameter z which is finally to be given any

constant value we please. Let then u satisfy the auxiliary equa-

tion

(8) a^ = ¥u>

so that the equation (7) becomes, taking this into account,

d2u „ (d
2u d2u d2u]



542 THE ELECTROMAGNETIC FIELD. [PT. III. CH. XIII.

We will suppose that the initial conditions are now,

u = ®(x
} y, z\

(10) du . , . H = 0.

Then the solution of (9) is, by § 247 (22), inserting explicitly

the rectangular coordinates and the direction cosines cos a, cos /3,

cos 7, of the radius r in the functions <i>at , <f>at ,

(11) u(x,y
}
z) =

j
jt<&(x+at cos a, y + at cos f},z + at cos 7) dco

+ ~jjtcf>(x + at cos a, y + at cos ft, z + at cosy)dco.

The equation (8) holds for all values of t Solutions of it are

* y, z) = F {x, y) cos — z -f # y) sin - ^r,

(12)
a a

0 y> z) = 9 O, y)cos—z + h (x, y) sin — 2,
a a

and for z = 0 these reduce to $ = F, <f>=f, so that for t = 0 we

have the proper values of u, ^~ . We therefore insert the values
ot

(12) in the integral (11). Now as we integrate over the whole
sphere, the sine terms, being odd functions of z, disappear, while

the cosine terms, being even functions, give us double the value

that we should get by integrating over the hemisphere for which
z>0.

Accordingly, giving z the constant value zero,

(13) u = ~•

^ jjtF (x + at cos a, y -f at cos j3) cos (ibt cos 7) dco

+ jjtg (x + at cos a, y + at cos /3) cos (ii>£ cos 7) dco.

In the telegraphic equation F and # are independent of y, and
are therefore constant on all small circles of the sphere normal to

the X-axis. We will therefore employ polar coordinates, a the

angle made by r with the X-axis, and % the angle that the plane

of r and the X-axis makes with the XiT-plane. Then

^ j^ cos 7 = sin a cos

dco = sin adccd^,



255] ELECTROMAGNETIC WAVES. 543

and
7T

I 3 r2

(15) u=z
2tt^Ij J

^tF (% + at cos a) cos (ibt sin a cos x) sin ada

tr

1 r*
+

J J ^ ^(^ + a^cosa)cos(^sinacos^)sinada%.
2tt

2

Let us put
i&£ sin a = £

The definite integral

TT

1 r 2

(16) J0 (?) = -] ^cos (f cos x) dX ,

is one of the set
V

(17) /,(£) = ^j\am*X cos (f cos X> <%
2

which may be evaluated by developing the cosine into a series

and integrating each term. We thus obtain

rr

(18) Ip (?) = L
\\^ sin*X^ cos*x cfc,

2

an infinite power-series in f, the coefficient of f
2
? being

(- AI9 r

(22) !

lpq '

where

(19) 7f2 = ir sin*X cos=«X%
~2

an integral which we can evaluate. Integrating by parts, writing

the integrand (sin2^ x cos X) cos2?-1

rr

2

2p + lJ 1
2

sin2
.? ^ (1 — cos2

^) cos2

x^X
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from which follows the reduction-formula

(21) I = 2g " 1
I{21) Ipq

2 <j>^re-
integrating (19) again by parts, writing the integrand

sin 2̂ 1

^ (cos2^ sin y),

it rr

T cos25+1v sin^-V
/

2 2p-l P . , k 72*2
TT

(22) 2v — 1 r 2
7

=2g+Tj w
cos29 (1 -sin

2x)sin2 ^-1)^

giving the reduction-formula,

By q successive applications of the reduction-formula (21) and p
of the formula (23) we get

<oa\ T = (2g-l)(2g-8)-l-(8p-l)(8p-8)...l
v 4; 2,9 2(^ + ?)2(|) + y-l)...2(2) + l)2p.2(p-l)...2 °°'

But we have
rr

1 f
2

700 = - rf% = 1.

2

Accordingly, introducing even factors into numerator and

denominator,

7 (2p) ' (2g)

!

and our integral (17) becomes

If we multiply this by ^gi)* _ the serie8

(- 1)
9 /gv24
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is called the Bessel's function of order p, and tables of its values

have been calculated for real and pure imaginary values of the

argument £*. Our integral (16) is therefore equal to

Jo (?) = J0 (ibt sin a)

and (15) is

1 d f
*

(28) u -^Kl\ tF(x + at cos a) J0 (ibt sin a) sin ada
* dt J 0

1 f
n

-f - tg (x -f at cos a)J0 (i'Ztf sin a) sin a da.
2 Jo

The Bessel's function i~*Jp (ix) of a pure imaginary argument is

usually denoted by Ip (x) (not the Ip of the preceding). Putting

then

a£cosa = \, — atsma = d\, £ = ib\/t2 — \2/a2
,

our solution becomes

1 d 'at

(29) u = jr— 7t I ^ (0 + X) /„ (6 V*2 - V/a2
) d\

vtj
m
- at

1 fa£

+ <r ^ (^ + X) Jo (& ^2 ~ ^2M2

)

Performing the differentiation by t (§ 26), since I0 (0) = 1

1 rat 7) ,

(30) +~
J

J?
1

(x + X) ^ Jo (6 V*2 ~ *7a2

)

+^ g(x + \)I0 (b \/t
2 - X2/a2

) dX.
ZaJ

—

at

This solution was obtained by Heavisidei* and by Poincare, by

entirely different processes.

We shall now suppose that initially there is no current in the

line, and that the potential is zero except between two points

Xi Xq .

That is

F (x) = 0, except when x
x < x < x0y

(31) G^lwi\^^g(x) = bF(x))

* See Gray and Mathews, Treatise on Bessel Functions.

t " The General Solution of Maxwell's Electromagnetic Equations in a Homo-

geneous Isotropic Medium." Phil. Mag. Jan. 1889, p. 30 ;
Papers, Vol. 11. p. 478,

eq. (40).

w. E. 35
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Then for

x — x2 > at or xx
— x > at

all the functions occurring have the value zero, therefore V is zero.

This at once distinguishes the solution from that for the case of

the cable, for the disturbance does not arrive at x until the time

I = —^1 on the right,

or

When

we have

t =

a

Xt "~~ x

a
on the left.

x -~* x^ ^ at ^ x —~ x2

-it

(32)
2

,-bt

F(x-at) +
]_

r-(x-x.2)

a -at

6 + /0dX

F (x - at) + - r Jf
T (»-X)(6+|-

N

)J0d\

This represents the disturbance while the wave is passing over,

for a point on the right. In like manner for a point on the left,

for x1
— x < at < x^ — x,

(33)

-bt

F(x + at) +
'at

xx—x

Finally, at later instants,

x — x1 < at or x2
— x < at,

(34)
p—bt rx-x

x / 7)

This represents the disturbance after the wave, travelling with

velocity a, has passed on. Accordingly the solution, while repre-

senting a wave travelling with the velocity a, as in free space,

differs from that case in that there remains a residue, or tail to the

wave, which does not fall to zero however great the time. The

exponential factor shows that the disturbance, both in the wave

proper, and in the tail, is continually becoming attenuated.

Thus when successive impulses are transmitted, each leaves

a tail, which interferes with all the succeeding waves, and the

possibility of telephonic speaking depends not only on the attenua-

tion and distortion with the distance, but on the magnitude of

the tail of the wave. The tail also explains the discrepancies

that existed between the results of the attempts made to determine
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the velocity of electric waves by means of telegraph lines, what
was generally observed being more probably the maximum dis-

turbance than the front of the wave.

In order to give a concrete idea of the nature of the propagation,

and to afford a means of comparison with the electrostatic theory,

we shall suppose that the function V is constant and equal to V0 ,

from x1 to x2 . We shall also change our units of time and length,

by taking the relaxation-time r — 1/6 for the unit of time, and the

relaxation distance, d = ar = a/b, as the unit of length. Accordingly

putting

,/ t - , x — x2 b(x — x2) bX

r a a a ^

we have

V»<r*
(35) V

2

for a point on the right while the wave is passing over. This

equation was given by Heaviside in 1888, who carefully refrained

from giving his method of deduction, remarking " since, although

they were very laboriously worked out by myself, yet as mathe-
matical solutions, are more likely to have been given before in

some other physical problem than to be new*."

Inasmuch as not only Heaviside's results but any others were

overlooked by the three French mathematicians quoted, who
published results six years later, we may conclude that in the

English writer modesty and original productiveness were more
strongly developed than historical research. (This modesty is not

maintained on the same plane throughout.)

Inserting in the value of V the series for I0 (dropping accents),

(36)

and developing each term by the binomial theorem, we obtain

(37) /0^-^2 =2 2 \2Q

L

\
* —

* " Electromagnetic Waves." Phil. Mag. 1888; Papers, Vol. n. p. 373,

eq. (52).

35—2
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Changing the order of summation and putting

(38)

p=oc q' = co

I„ 7** - = 2 2
(_ i)j>0 p2p

which by the definition of Ip* is equal to

(39)

' 1 ?

P=

Differentiating by t and adding to itself,

^ \
+

dt)
0
~

PZ 9 2»pl \ V +
t» >+1

J*

which by the formula connecting the derivative of Ip with the

contiguous function Ip+i,

h' («) =\h (*) + Ip+i («)

[Gray and Mathews (141)] may be written

p=<° (- iy fjr {Ip (t) + Ip+1(t)}

PZo~~Wf\ v>
•

Inserting in the integral (35), and integrating from oa to t,

V.tr*
(42) V=

_ a (-iy^+1 {Ip (t) + Ip+1 (f)}'

0 2^jp!(2p + l) tP

The terms free from x may, by writing out the sums for Ip , and

collecting terms, be shown to be equal to e*.

We, therefore, finally obtain for V

(43) v= Z?
2

1 0—t s ( t\p 1 • 3 . 5 . .
. 2p 1

^+1

From this the values of V have been calculated and plotted by

Mr W. P. Boynton in Fig. 99, which shows the distribution of

potential along the line to the right, for times t = 1, 2, 3, 4, 5 times

* From (27) we have for the present Ip
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the relaxation-time. This may be compared with Fig. 96 showing

the electrostatic theory. The rise of potential at particular points,

V

x

Fig. 99.

as a function of the time, is shown in Fig. 100, which is the

analogue of the outer curve in Fig. 98. The different curves

V

T

Fig. 100.

are for the points at 1, 2, 3, 4 times the relaxation-distance

from the start.

The potential produced by connecting the battery for a definite

time, and then removing it may, as before, be obtained by taking

the differences of two curves relatively displaced. In this way the

effect of the initial potential shown by the rectangle in a is shown

in 6, c, d, e, Fig. 101 for the times % *4, *6, 1*6 times the relaxation-
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time, the dotted lines showing the wave as it would be if there were

no resistance. The last figure,/, Fig. 101, shows the effect of short-

ening the duration of a signal, the tail left being noticeably smaller.

T°
a

j

j

V, e
i

r—\
* i
• t

H
f H

X

X

X

X

Fig. 101.

From these figures we may obtain an idea of the distance to

which telephony is possible, if we know the relaxation-distance of

the line. With ordinary land-lines the relaxation-distance is of

the order of several hundred kilometers. This has made speaking

possible between Boston and Chicago. Obviously it is of importance

to make the relaxation-distance d = v . 2L/R as great as possible

by making the distance between the wires great, and using large

copper wires.

256. Terminal Conditions. In the preceding examples we
have considered the line to be without end. In many practical
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cases we wish to know what goes on in a line of finite length, when
the ends are connected to any electromagnetic systems whatever,

both when the systems are left to themselves and when electro-

motive-forces are applied. Space is lacking for more than the

briefest possible treatment of this matter, which is very fully

treated in Heaviside's papers on wires to which reference has

already been made.

The method of procedure is the same in every case.

We shall make use of the equations

Let us seek particular solutions of the form

(3) V= e
xt u(x), I=e^t w(x).

Inserting in (1) we have

(4) (KL\* +KR\)u~
2 ,

and if we put

(5) KL\* + KR\ = -fx\

we have the equation for u
}

(6) £ +^-0.

The solution of this is

(7) u = A cos fjL% + B sin fix,

where A and B are constants to be determined. From (2) we
obtain

(8)

^ = K\u = KX (A cos fix + B sin fix),
CLOG

w = "^-^ (B cos /xx — A sin /xx).

The functions (3) are solutions of the differential equations

whatever the value of \. The values of X that are admissible are

determined by the terminal conditions. We shall take as an

example one of the simplest cases possible. Let us suppose that

at one end, where x = i, the two wires are connected, while at the
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other they are connected with the plates of a condenser of capacity

K„. The conditions are then

V=0, x = l,

(9) *.?—/,««<>.
at

Applying these to the solutions (3), (7), (8), we have

A cos fil + B sin fil = 0,

(10) KjJL— ZblJ.

Eliminating A/B we obtain

K
(11) fi tan fil = j^r

,

a transcendental equation to determine jjl. This has an infinite

number of roots, which may be real or complex. When these are

determined, X is determined for each root by the equation (5).

Thus we find that there are an infinite number of possible periods

for the free vibration, corresponding to the ?i periods for a system

with n degrees of freedom. The equation (11) corresponds to the

determinantal equation of § 241 (10). The ratio B/A is determined

by (10). The determination of the absolute value of the co-

efficients depends on the initial conditions.

Having found an infinite number of particular solutions, any

root /jl8 being distinguished by its suffix, the general solution is

(12) V~ 2seV (Af cos /xsx + B8 sin fjisx),

where we sum for all the roots. If the potential is initially given by

(13) V=F(a), t = 0,

we must have

(14) F(x) = 26. (A 8 cos fx8x + Bs sin fjb8x).

The problem to be solved is then that of developing an

arbitrary function of x in a trigonometric series of the form (14)

where the ytt/s are the roots of a certain transcendental equation,

namely (n). The problem is in general of considerable com-

plexity, and we shall content ourselves with referring to Heaviside,

who has treated it at great length.

If there is no condenser at ^' = 0, but the circuit is open,

equation (11) is

tan id = 00
,
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and the roots are

(14)
2 j-

The series (14) then becomes

(15) *(.)-Sf {A. cos <^±^ f +Bs sin
<*±1>Z

I)
,

a Fourier's series, with the even terms omitted. If R = 0 we see

by (5) that X is a pure imaginary, so that all the oscillations are

harmonic.

The wave-length L is

(16) j = +

or the length of the wires is an odd number of quarter wave-

lengths.

If on the other hand the capacity KQ is infinite, we get

(17) /xtan/xZ = 0,

which is the same as if we had considered the circuit closed at the

origin also, putting V= 0, for 0, from which (7) and the first of

(10) would give

sin fd = 0,

(18) S7T 21

The length of the line is then a multiple of a half wave-

length. The two cases correspond to the cases of an organ pipe

open at one end and closed at the other, or closed at both ends.

These conclusions have been verified by experiment. The

above theory applies, for instance, to the experiments of Saunders

cited above.

The method employed in this example is typical of the general

process, for the terminal conditions, of whatever nature, are given

in the form of an ordinary linear differential equation in the time,

involving the derivatives of V and /. Applying this to our

assumed solutions (3) introduces algebraic functions of X, so that,

eliminating by means of (5), we obtain an equation of the form

(19) tan fd = (fi),

where cj> is an algebraic function. The case we have considered is

the simplest case of this transcendental equation.
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257. Equations for Bodies in Motion. All the equations

of this chapter have been deduced on the supposition that all the

media were at rest. In deducing their extension to the case of

media in motion we shall follow the method of Hertz, as given in

the last and crowning paper of his remarkable researches*.

We shall suppose the media to be moving at every point with

velocities v whose components at any point are a, /3, 7. The

medium is not supposed necessarily to be moving like a rigid

body—it may be deformed in any manner. At the surface of

separation between two media, although the velocity may be

discontinuous its normal component must be continuous, in order

to preclude the occurrence of vacant spaces. The fundamental

assumption made by Hertz is that as the medium moves or is

distorted, the lines of force are carried by the medium so as to pass

through the same material points. That is, this would be the

effect of the motion if it were the only influence at work to change

the field. Besides this, we have the usual effects that appear in

bodies at rest.

Let X, §), 3> 2, 9i, represent the field at any point at rest

with respect to the coordinate-axes. The total change in S at a

point in motion will depend on several causes, the first being the

change that is instantaneously taking place at the fixed point

through which the material point happens to be passing. This we

93?
shall denote by — . Secondly the point is displaced to new parts

of the field where the forces are different. The sum of these two

parts we shall call

dt~ dt
+

dx dt
+
dydt

+
dz dt dt

+CL
dw* P dy

+ y
dz'

If a small element normal to the X-axis of area dS were

displaced parallel to itself, the flux through it would vary as just

stated. But if the element rotates, it takes in new amounts of

flux. At the start the flux through it was XdS, but as it turns,

da
it acquires a projection normal to the F-axis at the rate con-

sequently its flux in the positive direction decreases from this

* "Ueber die Grundgleichungen der Elektrodynamik fur bewegte Korper."

Wied. Ann. 41, p. 369, 1890; Trans, p. 241.
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cause at the rate g) and in the same manner from its ^-projection

doc
at the rate 3 ^~ • But the area of the X-projection of the element

oz

is also increasing, at the rate ~ in the Y-direction and ^ in the

^-direction. From this cause the flux increases at the rate

We have therefore to replace the term — in equations (A) by

the sum

, x dX 336 ,->33£ 33E ^ (dB dy) ^ ~ ^3a T 3a'

=f + |-.08«-«®)-|;(«3-7S) + «
.38) .93'
i" 7; r

dt dy dz (3a? dy dz

We have thus added in virtue of the motion two parts, the

first of which is the component of the curl of the vector whose

components are

7S>-£3, a3-y£ /8S-ag),

that is the vector product of the induction of the field and the

velocity. The last term is the component of the velocity times

the divergence of the induction. We may therefore abbreviate

our equations which replace both (A) and (B) thus

(A") A
j||

+ curl Vgv 4- v div % + 4tt?J
= curl H,

(B") - A |^ + curl VSu + v div 33

J
= curl F.

We may interpret the meaning of the new terms physically

thus. In the equation (B") the term

- A curl V33u

produces a part of curlF. Two vectors having the same curl

differ only by a lamellar vector (§ 223). Consequently the motion

gives rise to an electromotive force — AV^Bv = AVv^i perpen-

dicular to the magnetic field and to the direction of the motion.

This is the ordinary electromotive force of induction, and its mag-

nitude may be specified as equal in any element of conductor
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to the number of unit tubes of induction cut perpendicularly

by the element in unit time.

On the left of (A") appears the term

A |~ + curl Vgi; + v div § + 4nrq\

consisting of, first, the ordinary conduction current q, as in § 222

(2), second, the displacement current, as in equations (A), third,

a new term equal to the product of the velocity by the density of

electric charge. In other words a charge in motion produces the

same effect as a current. This is verified by Rowlands celebrated

experiment*. The corresponding quantity in equation (B") shows

the known electromotive forces produced by the motion of magnets,

and also explains the phenomena of unipolar induction. It is to

be noticed that the theory makes the magnets carry their lines of

force with them.

The complete symmetry between electrical and magnetic

phenomena may now be said to have been completely verified by

experiment, with the exception of the second term of equation (A")

which would show the existence of a magnetic field due to the

motion of insulating bodies in an electric field. The existence of

such magnetic fields is made probable by an experiment made by

Rontgenf.

The method of deducing the equations (A") and (B") may be

applied even when our axes of coordinates are in motion, if a, /3, 7
be the velocities relative to the axes, and e, ya, X refer to the points

fixed with respect to the moving axes. Thus the mutual actions

of bodies depend only on their relative motion. Some simple

considerations of this nature elucidating the phenomena of uni-

polar induction are found in a paper by the author in the Electrical

WorldX, the statements there made being borne out by experi-

ments by Lecher§.

* Helmholtz, "Bericht betreffend Versuche iiber die elektromagnetischo

Wirkung elektrischer Convection, ausgefiihrt von H. A. Rowland." Pogg. Ann.

148, p. 487, 1876 ; Wiss. Abh. Bd. 1. p. 791.

t "Ueber die durch Bewegung eines im homogenen elektrischen Felde befind-

lichen Dielektricums hervorgerufene electrodynamische Kraft." Wied. Ann. 35, p.

264, 1888.

X "Unipolar Induction and Current without difference of Potential." Elec.

World (N.Y.), 23, pp. 491, 523, Apr. 14—21, 1894.

§ " Eine Studie iiber unipolare Induction." Wied. Ann. 54, p. 276, 1895.
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258. Other Systems of Units. The systems of units that

have been explained in this book are those in universal use. The

electromagnetic system is the one altogether used in practical

measurements, but as we have seen when considering the mutual

effects of electrical and magnetic phenomena the Gaussian system

is least liable to produce confusion. When only electrostatic

phenomena are under consideration the electrostatic system is

most convenient.

A change of units has been proposed by Heaviside, who would

define the unit of electricity and magnetism in such a way that

the flux of force due to unit charge out from a closed surface in

air should be unity in value, instead of 47r. This would have the

convenient effect of causing the disappearance of the factor 47r

from many of our equations, for instance from the equation

Sin, + %m 2
= 47TO",

while the energy per unit volume would be

\ (Li + Mm + N$l).

A practical advantage would be the disappearance of 4*tt in

the formula connecting current-turns with magnetomotive-force.

On the other hand the quantity 4-7T would be introduced in certain

places where it is now absent. For instance the force at a distance

r from a charged point m would be

m
47rer2

'

It is rather singular that Maxwell adopted this method in his

definition of electrical displacement, making the density equal to

the divergence of the displacement, but did not do it in the case

of the magnetic induction, nor even of the electric force. He was

therefore obliged to make the displacement equal to times the

force, and his equations have an unfortunate appearance of dis-

symmetry. This has been avoided by Hertz, and in the present

book, and it therefore seems merely a matter of convenience in

writing whether we adopt Heaviside's proposition or not. Heavi-

side has called the new units rational, probably not because they

are more reasonable than the old ones, but because of their avoid-

ance in the majority of cases of the irrational number 47r. Of the
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convenience of this there can be no question, but the question of

units seems now to be beyond the control of theoretical writers*.

A system of units has been proposed by Dr Johnstone Stoney*f%

who advocates the choice of units so as to make the velocity v the

unit of velocity. This would make the numerical measure of all

quantities the same in both electrostatic and electromagnetic

units, which would be convenient, but inasmuch as the velocity v
is not yet accurately known, the proposal is hardly practical.

A table of dimensions of the principal electric and magnetic

quantities is annexed.

TABLE OF DIMENSIONS.

Quantities. Dimensions.

Fundamental Units.

Length

Mass

Time

X
M
T

Derived Units.

Area

Volume

Angle

Solid Angle

Velocity

Angular Velocity

Acceleration

Momentum
Force

Pressure

Energy

Activity or Power

Energy-Density

Energy-Current-Density

X2

X3

x°

x°

XT-1

LT~2

MLT-1

MLT-*
ML~l T~*

ML2 T~2

ML2 T-*

ML-1 T'2

MT-*

* Heaviside. "The position of Aw in Electromagnetic Units." Nature, July

28, 1892, p. 292 ;
Papers, Vol. n. p. 575.

f B. A. Report, 1891.
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Electrical Units.

Charge

Volume-Density

Surface-Density

Moment

Polarization

Potential

Field-strength

Induction

Induction-Flux

Current

Current-Density

Capacity

Resistance

Conductance

Inductivity

Conductivity

Resistivity

Magnetic Units.

Charge

Volume-Density

Surface-Density

Moment

Polarization

Potential

Field-strength

Induction

Inducjbion-Flux

Vector-Potential

Inductance

Reluctance

Inductivity

Reluctivity

e/i = L^T2

-» 1
•>

1

*«* MhL~ 1
_ 1— TV

U

*«* M*L~ 1 u 2
1

M^l}
1

f

MhL~ h T~
_ 1

M*L~ 1
_ 1

fx
-

M\Lh T~ T~V*
1

Jf*Z* T~V*
l €

a 1

, l

Mll} T~ *«* MhLi

2,1 MOL-

L € L-

IS V
L T~ L~

L- 2JT2

T~ L~

T e- 1 Z2 V

Jf*Z* e Jf^Z1 T~
, 1

>-

if*Z"
5
2

1

M^L~ 1 rp-v
J/*Z~ I

1
2" M^L~

Jf^Z1 €

1

T-
. 1V

1/*Z" § €
1
2" M^L' i rp-V

Ml-l} MhLh

MhL~

M*L~ 1 €
. 1

M%L~
1

€
* MhLl T~

1

M^L~
1
•J e~

1
2 T~

1

L~•1^2 €~ 1 L

L 2 € L~-1
A
4
" 1

L~-2^2 6~-1
A
4

Z2 2 e A
4
" 1
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TABLE OF COMPARATIVE NOTATION.

This book. Maxwell. Kirchhoff. Helmholtz.* Heaviside.

Electric Field F.XYZ PQR J7^ XYZ £
Electric Induction Arrf&rrflAfrh 47r$47r2)47r3 4ttD

Electric Current-density q, uvw UVW uvw c
Magnetic Field H.LMN a(3y XYZ H
Magnetic Induction abc 47r«4irSK4w9l B
Vector Potential

J (UVW
t47rU47r2347r2i)

belonging to mag- v fgh FGH (IVw A
netic induction i

Vector Potential of
] PQR LMN LMN

maonetization f

x. oianzciuion ABC afiy XfjLvlmn I

Mechanical Force SHZ XYZ XYZ, ABC XYZ
Volume Density /> P h (T, e, r P

Surface Density <r <r h, e <r

Electrical Potential F F, * P
Magnetic Potential

Electric Inductivity € 1+4ttk 1 +47T€, 47T6 c

Magnetic Inductivity 1+ 47T0, 47T/X

Susceptibility K K K. (9

Conductance X C X k

Capacity

Eesistance R
Total Current I

* Helmholtz's usage is variable, particularly as to the position of 47r.
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Note to §§ 199, 200. According to the equations (6) § 199,

the force on an element of medium in an electric or magnetic field

becomes infinite at the surface between two media of different

inductivities, for there jul is discontinuous. The layer in which

this takes place is however infinitely thin, so that the total force

on the surface is finite. We may find the force, as stated in § 199,

by integrating throughout the space included in an infinitely thin

layer containing the surface of discontinuity, as in § 85. We may

also use the results of § 200, finding the components of the stress

in both media by equations (8). The six components Xx ,
Yy ,

ZZy YZ) Zx ,
Xy , will in general have discontinuities at the surfaces

of discontinuity of /jl, and the forces on the unit of surface are

equal to these discontinuities. For instance let us consider a

surface bounding a medium of inductivity /x2 , surrounded by a

medium of inductivity the surface being such that the lines of

force are normal to it in both media. Then taking the direction

of the normal to a certain element for that of the X-axis, we have

in the medium 1,

(1) X^^&ft, Yy = Zz=Yz = Zx =Xy = 0,

the force being a tension. In the medium 2 we have

1
(2) Xx = g— %2F2 .

The two tensions being in opposite directions on the two sides

of the surface, the resultant force acting on unit of surface is the

difference,

(3) T^^-W,
w. e. 36
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acting towards the medium 1. But since the induction is con-

tinuous, we have %1
= $2 and the force becomes,

(4) T=£ (F> - F2) =^ (1 - £) = g|

.

We may also obtain the formula (4) in a simple manner by

considering the energy-density in the two media. This is in the

media 1 and 2

and q
— respectively.

8777^ 8777^

If now we consider the surface displaced normally a distance

dn toward the medium 1 the prism standing on the element dS
exchanges its energy

8777^
dSdn,

for the amount

8777*2

so that there is a loss of energy

dSdn,

J^-{— — i-i dSdn,
8tt (fr fi2)

during the motion through the distance dn. Accordingly the

force on the element dS is that given by (4) towards the medium
1*. If there is a real charge on the surface, so that the induction is

discontinuous, we have

(5) T=±®1F1 -&FJ,

and if = this becomes

(6) r=ia-( 1̂ + 2̂).

This is exemplified in § 147.

As a second particular case, let us consider a surface of discon-

tinuity at which the induction is tangential. Then we have in the

medium 1 the pressure

* The deduction given by Maxwell, art. 440, is only approximate, lacking the

factor /x2 in the denominator.
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and in the medium 2 the pressure

1^2
==

Stt
^2 2̂>

in the opposite direction.

There is accordingly on the element of surface the difference of

pressure

(7) P =^ -m>
acting towards the medium 1. If the two media lie side by side

between the plates of a plane condenser we have F the same in

both media, so that the pressure is greater in the medium for

which fi is greater, and the surface is impelled towards the other

medium. This has been verified by Quincke*, who blew a large

bubble of air into a liquid contained between the plates of a con-

denser, and observed the additional pressure necessary to be given

the air in order to resist the pressure due to the fluid. Quincke

also verified the tension in the direction of the lines of force by

filling an absolute electrometer with liquid. The stresses in

magnetized media have been similarly verified by experiments by

Quinckef and Taylor Jones
J.

Upon the principle of the sidewise force Mr A. P. Wills has

founded an accurate method for determining k for substances in

which it is extremely small, both for magnetic and diamagnetic

substances, by observing the attraction or repulsion on a slab with

its edge in a uniform field.

* Quincke, " Electrische Untersuchungen," Wied. Ann. xix. p. 705, 1883.

f Ibid. xxiv. p. 347, 1885.

+ Jones, " On Electromagnetic Stress," Phil. Mag. xxxix. p. 254, 1895.

36—2
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Absolute electrometers, 281
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Absorption, electric, 402

Acceleration, definition of, 94
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Action and reaction, 96

Activity, equation of, 125

„ „ „ for steadyflow, 334

„ of circuit, 479

Addition, geometric, 9

Adiabatic changes, 470

,, motion, 133, 134

Africa, 536

d'Alembert's Principle, 107

Algebraic function, 14

Ampere, 409, 412, 416, 431, 449, 471

,, unit, 416

Amphigenic charge, 260

Amplitude of oscillation, 479

Angle, solid, 76

Apparent charge, 359

,, current, 443

Argand, 8, 79

Argument of complex number, 8

Arithmetic, 1

Arithmetical mean, 39

Arons, 399, 400, 407

Association, British, 416

Associative law, 1

Attenuation of waves, 546

Axioms, physical, 95

Axis of polarized distribution, 242

Bacharach, 171

Bedell, 479

Beltrami, 199

Bessel's functions, 545

Betti, 256

Bichat, 282

Biot, 420

Blondlot, 282, 534

Blumcke, 502

Body in motion, equations for, 555

du Bois, 375

du Bois-Keymond, 41

Boltzmann, 139, 142

Bosanquet, 360

Boston, 550

Bound charge, 246

Boussinesq, 66, 522, 540, 541

Bowl, spherical, distribution on, 302

Boynton, 548

Branch-point, 89

Bridge, Wheatstone's, 342

British Association, 100, 416

Cable, submarine, 534

Cadmium ray, wave-length of, 97

Calculus of variations, 48

Capacity, 265, 360

of cylindrical condenser, 278

of ellipsoid, 274

,
, and inductance, neutralization

of, 480

instantaneous, 404

„ of plane condenser, 279

,, specific inductive, 357

of spherical condenser, 275

Cavendish, 251

Cavity, force in, 231

Cayley, 85

Centimeter, 97

Centrifugal force, 138

Centrobaric body, 155
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C.G.S. system, 100

Changes, isocyclic and adiabatic, 470

Charge, amphigenic, 260

„ apparent, 359

„ bound and free, 246

,, induced, 360

instantaneous, 404

monogenic, 260

„ relation to induction, 358

Chasles, 165

theorem of, 208

Chicago, 416, 550

Circuits, linking of, 410

,, primary and secondary, 475

„ rectangular, 455

Circular circuits, 456

,, harmonic functions, 87, 179

,, ,, „ development

in, 181

Clairaut, 101

Clifford, 56

Coefficients of induction, 265, 450

,, of potential, 266

„ of potential and induction,

properties of, 268

Coercive force, 394

Cohn, 399, 400

Coil, toroidal, 451

Coils, induction, 453

Comite international des poids et me-

sures, 97

Commutative law, 1

Complex numbers, 4

„ „ in extended sense, 5

,, „ multiplication of, 79

,, ,, variable, function of,

80

» „ „ function of, on

surface, 196

Component, 9

Concealed motions, 127

Concentration, 65

„ of potential, 152

Condensers, 277

„ circuit containing, 484

„ conducting, 401

„ cylindrical, capacity of, 279

,, discharge of, 401

„ spherical, capacity of, 275

,, standard, 280

„ with two dielectrics, 402

Condition, equations of, 92

Conditions, terminal, 550

Conductance, 333

Conduction, electrification by, 245

Conductivity, 326

Conductor, carrying current, forces on,

426

,, definition of, 245

Conductors, energy of systems of, 266

„ heat developed in, 333

„ linear, 336

„ mechanical forces on, 440

„ networks of, 337

,, non-linear, 344

„ in parallel and series, 336

,, propagation in, 522

„ steady flow in, 325

Cone, potential of, 158

Confocal ellipses and hyperbolas, 319

„ quadrics, 28

Conformal representation, 83, 199

„ „ of sphere on plane,

200

,, in two-dimensional

problems, 307

Conjugate functions, 82, 85

Connectivity, 59

Conservation of Energy, 110, 125

Conservative systems, 110

Constraint, equations of, 103

Continuity, 17, 81

Coordinates, 21

cyclic, 128

cylindrical, 26

„ ellipsoidal, 27

„ generalized, 116

,,
orthogonal, 21, 83

polar, 26

„ positional, 132

,, semi-polar, 26

Correction for end of wire, 346

Coulomb, 251, 257, 352

,, unit, 416

Couple experienced by polarized ellip-

soid, 370

„ hysteresis, 397

,, moment of, due to polarization,

227

Critical point, 89

Curl, 53, 57

Current, apparent, 443
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Current, displacement, 506

,, element of, force due to, 422

equivalent to magnetic shell,412

,, extra, 471

,, force due to straight, 420

forces on conductor carrying,

426

induced, 471

linear, force due to, 421

„ magnetic energy of field of, 436

magnetic force due to, 409, 436

potential due to, 410

,, potential due to circular, 418

total, 407, 508

,, virtual and effective, 479

Current-sheets, cylindrical, 349, 454

„ magnetic field due to, 449

Currents, circular, 456

as cyclic systems, 439, 467

„ energy of, 428

,, and magnets, mutual energy

of, 444

,, non-linear, 432

,, in parallel cylinders, 457

„ in three dimensions, 432

Curvilinearcoordinates,Green's Theorem

in, 171

Cyclic coordinates, 128

,, forces, 128

momenta, 133

„ motions, 128

„ system, electrostatic analogy of,

271

„ systems of currents as,

439, 467

,, systems, 132, 134

,, velocities, 128

Cylinder, elliptic, polarization of, 373

Cylinder, hollow, magnetization of, 375

,, potential of, 158, 175

Cylinders, eccentric, distribution on, 311

electrification of concentric,

278

elliptic and hyperbolic, distri-

bution on, 315

„ parallel non-linear currents

in, 457

Cylindrical condenser, capacity of, 279

current-sheet, 454

Damped oscillation, 486

Damping factor, 487

Darboux, 193

Decrement, logarithmic, 487

Definite integrals, 36

Demagnetizing factor, 375

Density, 74

,, definition of, 144

,, magnetic, 352

,, surface, 159

Derivative, 17

„ in direction, 22

,, partial, 19

,, of potential function, 146

Derived units, 98

Development in circular harmonics, 181

,
, in spherical harmonics, 191

,, of potential of polarized

body in spherical har-

monics, 240

„ of reciprocal distance in

spherical harmonics, 189

Diagrams of lines of force, 201

Dicyclic systems, 139

Dielectric, 245

conducting, 398

constant, 357

„ „ of slab, 365

Dielectrics, condenser with two, 402

Differential, perfect, 58

Differential equations of motion, 97

parameter, 21, 64

Differentiation of definite integral, 44

Dimensions, of e, 418

,, of electrical units, 251, 414

of 367

,, table of, 558

„ of units, 98

Dirichlet, 12, 169, 183, 193, 212, 259

,,
principle of, 169, 171

, ,
problem of, 169

„ for circle, 180

,, for sphere, 186

Disc, potential of, 157

,, in zonal harmonics, 193

,, repulsion of, 160

Discontinuity, 17

,, of derivative of potential,

162

,, of potential of shell, 238

Displacement, current, 408, 506

,, electrical, 408
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Dissipation of energy in hysteresis, 375

Dissipation function, 125

Distance, reciprocal, 75

Distortion of waves, 546

Distribution on ellipsoid, 273

on spherical bowl, 302

Distributions, double, 226

„ polarized, energy of, 239

,, ,, potential of,

231

Distributive law, 1

Divergence, 66

of force, 154

„ theorem, 66

„ „ for two dimensions,

177

,, ,, in curvilinear coor-

dinates, 173

Double distributions, 228

Doublet, potential of, 233

Drude, 527

Duane, 397, 534

Duhem, 260

Dynamics, 91

Dynamo-machine, 453

Dyne, 100

Earth-plates, 345

Eccentric cylinders, 311

Effective current, 479

Efficiency of transformer, 484

Electrets, 389

Electric field, 244

Electrical equilibrium, 253

"fluid," 248

„ force, law of, 248

„ image, 294

„ „ in sphere, 298

,, inversion, 301

,, phenomena, 243

,, quantities, dimensions of, 251

Electricity, not incompressible, 248, 508

„ true, 358

unit of, 252, 366

Electrification, 244

,, theorems on sign of, 260

Electrified sphere, energy of, 272

Electrodes, 336

Electrodynamic potential, 429

Electrokinetic energy, 439

Electrokinetics, 325

Electromagnetic field, dynamical theory

of, 515

„ „ equations of for

media at rest, 509

theory of light, 517

units, 413

Electromagnetism, equations of, 433

Electrometer, Bichat and Blondlot's, 282

Lord Kelvin's, 281

Quadrant, 284

Electrometers, 281

„ symmetrical, 283

Electromotive force, 333

j, of induction, 469,

555

„ „ periodic, 477

Electrostatic system of units, 252

,, theory of cable, 535, 549

,, units compared with prac-

tical, 417

Electrostatics, general problem of, 263

„ andmagnetostatics,paral-

,, lei treatment of, 353

Element of circuit, force on, 426

,, of current, force due to, 422

Elements, parallel, attraction of, 431

Ellipses and hyperbolas, confocal, 319

Ellipsoid, capacity of, 274

distribution on, 273

,, polarized, couple experienced

by, 370

,, potential of, 210

,, ,, forinternalpoint,

213

,, of revolution, attraction of, 219

„ polarization of,

374

„ uniform polarization of, 369

Ellipsoidal coordinates, 31

,, homoeoid, 203

Elliptic cylinder, polarization of, 373

,, cylinders, distribution on, 315

Embranchment, point of, 338, 491

End of wire, correction for, 346

Energy, 91

„ conservation of, 110

„ dissipation of in hysteresis, 395

,, of distributions, 219

,, electrokinetic, 439

,, equation of, 109

,, in terms of field, 221
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Energy, Gauss's theorem of, 219

kinetic, 109

„ magnetic, 352

, , ofmagnetic field of currents, 436

,, maximum theorem for, 223

,, mutual, ofmagnets and currents,

444

,, mutual potential, 220

„ mutual, of two currents, 428

,, of polarized distributions, 239

,, of system of conductors, 266

,, transfer of, 517

unit of, 111

Eolotropic media, 510

Equation of activity, 125

,, ,, for steady flow, 334

,, telegraphic, 533

„ „ generalcase of,540

Equations of condition, 92

,, of constraint, 103

„ differential, of motion, 97

,, of electromagnetic field for

media at rest, 509

,, of electromagnetism, 433

,, of equilibrium of stressed

body, 387

,, of induction, 504

,, of lines of force, 194

,, for moving bodies, 555

„ of propagation, 512

Equilibrium, condition for, 104

,, electrical, 253

,, of stressed body, 387

Equipotential layer, 165

,, layers as screens, 289

,, surface, 145

Equipotentials, condition for infinite

family of, 204

Everett, 101

Ewing, 375, 394

Extra-current, 471

Factor, demagnetizing, 375

Family of equipotentials, 204

Farad, 416

Faraday, 154, 243, 245, 251, 259, 335,

382, 384, 389, 467, 469

Feddersen, 488

Field, electric, 244

,, energy in terms of, 221

,
, of current, magnetic energy of, 436

Field, magnetic, 351

,, due to polarization of sphere, 372

,, strength of, 144

Field-magnet, 453

Flow, steady, in conductors, 325

,, variable, 398

Flux of force through circuit, 440

,, of vector, 68

Flux-function, 195

„ for magnetic induction,

460

Force, centrifugal, 138

,, coercive, 394

,, on conductor carrying current,

426

,, electrical, law of, 248

„ electromotive, 330

,, ,, of induction, 469

,, of induction, lo-

calized, 503

,, equations of lines of, 194

,, flux of through circuit, 440

,, impressed, 97

,, of inertia, 108

,, law of electrical, 248

,, lines of, 145

,, magnetic, due to current, 409, 436

,, magnetomotive, 453

,, mechanical, on element of cur-

rent, 426

,, tubes of, 260

,, unit of, 100

,, unit tube of, 154

Forces acting on polarized body, 381

,, elementary, various resolutions

into, 430

,, mechanical, on conductors, 440

Force-function, 110

,, Newtonian, 111

Formulae, symbolic, 435

Fourier, 98, 183, 326, 523

„ series of, 183

Fourier-Ohm law, properties of vectors

obeying, 330

Free charge, 246

Freedom, degrees of, 92

Frequency, 479

Function, algebraic, 14

,, analytic, 81

„ of complex variable, 80; on

surface, 196
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Function, conjugate, 82, 85

„ continuous, 17, 19

dissipation, 125

„ Green's, 290

„ harmonic, 65

„ holomorphie, 14, 88

„ homogeneous, 25

„ irrational, 14

,, monogenic, 81

„ multiform, 13

„ of point, 20

„ rational, 14

,, transcendental, 14

uniform, 13, 81

Functions, circular harmonic, 87, 179

force-, 110

„ hyperbolic and circular, 317

„ reciprocal, 123

„ spherical harmonic, 183

Gauss, 8, 77, 100, 165, 199, 220, 238, 416

,, integral of, 77

„ theorem of, 75

„ theorem on energy, 219

Gaussian system of units, 367, 413, 414,

418, 509, 557

General problem of electrostatics, 263

Generalized coordinates, 116

„ equations of Lagrange, 118

Geometric addition, 9

„ mean distance, 461

,, multiplication, 10

„ product, 11

Gibbs, 153

Glazebrook, 488

Gram, 98

Gray, 457

„ and Mathews, 545

Green, 59, 164, 290

,, formulae of, 162

,, „ for logarithmic poten-

tial, 178

„ function of, 290

,, „ for plane, 293

„ ,, for sphere, 295

„ problem of, 290

,, theorem of, 59, 63

„ ,, for plane, 176

„ „ in curvilinear coordi-

nates, 171

Guard-ring, 281

Gyrostat, 129

Hamilton, 6, 8, 25, 57, 116, 123, 124

„ equations of, 124, 467

Hamilton's Principle, 116, 142

Harkness and Morley, 18, 44, 171

Harmonic functions, 65

„ circular, 87, 179, 181

,, ,, ,, development

in, 181

„ „ spherical, 183, 186,

187, 188, 189, 191,

240

„ oscillation, 479

Harnack, 179

Heat developed in conductors, 333

Heaviside, 56, 153, 360, 390, 391, 392,

393, 449, 479, 505, 508, 519, 524, 531,

534, 536, 540, 545, 547, 551, 557

Helmholtz, 56, 125, 128, 335, 355, 384,

392, 418, 430, 435, 447, 448, 467, 469,

472, 488, 556

Helmholtz 's theorem, 433

Hertz, 137, 392, 407, 418, 449, 505, 517,

519, 524, 527, 530, 534, 554, 557

Heterogeneous medium, effect of, 441

Hollow cylinder, magnetization of, 375

Holomorphie function, 14, 88

Homoeoid, attraction of, 210

„ ellipsoidal, 203

Homogeneous function, 25

Hopkinson, 394

Hospitalier, 479

Hyperbolas, orthogonal equilateral, 86

Hyperbolic and circular functions, 317

„ cylinders, distribution on,

315

Hysteresis, 393

„ couple, 397

„ dissipation of energy in, 375

,, loop, 394

,, static, 394

Idiostatic method, 284

Image, electrical, 294

,, „ in sphere, 298

Impedance, 479

Impressed force, 97

Indefinite integral, 41

Index of refraction, 517

Induced charge, 360
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Induced current, 471

Inductance, 450

„ and capacity, neutralization

of, 490

Induction, coefficients of, 265

,, coils, 453

,, „ high-frequency, 499

definition of, 230, 356

,, electrical machines, 286

,, electrification by, 244

,, electromotive force of, 469

„ general equations of, 504

,, Hertzian, 391

,, localized electromotive force

of, 503

,, Maxwellian, 390

,, particular cases of, 471

„ relation of charge to, 358

Inductive capacity, 357

Inductivity, 357

Inertia, 91

definition of, 95

forces of, 108

„ moment of, 130

Infinite integrand or limit, 43

„ straight current, force due to,

420

Infinitesimal, 16

„ arc, area, and volume, 34

,, transformation, 49

Infinity, 16

Influence, electrification by, 244

Instantaneous capacity, 404

,, charge, 404

Insulators, 245

Integrability, 37

Integral, 36

definite, 36, 46

double and multiple, 45

„ of function of complex vari-

able, 88

indefinite, 41

line-, 50

,, surface-, 50

Integral form of Ohm's law, 332

Intrinsic polarization, 389

,, Heaviside's treat-

ment of, 391

Invariant of transformation, 309

Inverse points, 295

Iron, hard, 389

Irrational, 2

,, algebraic, 4

,, function, 14

Isocyclic changes, 470

,, motions, 133, 134

Ivory's theorem, 216

Jacobi, 69, 73, 173

Jones, 517, app. 563

Jordan, 193

Joule, 416

Joule's law, 335, 469

Kelvin, 240, 259, 281, 288, 298, 302, 357,

382, 469, 471, 488, 535, 539

„ and Dirichlet's Principle, 169

Kelvin's replenisher, 286

Kilogramme prototype, 98

Kinetic energy, 109

„ potential, 127

,, theory of gases, 134, 399

Kirchhoff, 326, 331, 337, 339, 488, 534,

415

Kirchhoff's laws, 337

Kohlrausch, 415

" KB-law," 536

Kronecker, 44, 171

Lagrange, 108, 119, 123

„ equations of, 118, 467

Lagrangian function, 118, 124

„ „ modified, 127

Lame, 22, 64, 173

Lamellar polarizations, 235

,, vectors, 59

Laplace, 189, 192, 251

,, equation of, 68, 85, 148

„ ,, in spherical coordi-

nates, 173

, , „ cylindrical coordi -

nates, 174

„ operator of, 68

Law, associative, 1

commutative, 1

,, distributive, 1

,, of electrical force, 248

,, of force, generalized, 354

„ Joule's, 335

„ KirchhofE's, 337

„ KR-, 536

„ Lenz's, 137, 471
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Law of motion, Newton's, 95, 96

Layer, equipotential, 165

Layers, equipotential, as screens, 289

Leakage, magnetic, 482

Lecher, 556

Legendre, differential equation of, 189

„ polynomial of, 188

Length, unit of, 97

Lenz, 467, 471, 476

„ law of, 137, 471

Level sheet, 58

,, surface, 20

Leyden jar, 488, 490, 499

Light, electromagnetic theory of, 517

Limits, 2

„ of functions, 14

Linear conductors, 336

„ ,, resistance of, 343

,, current, force due to, 421

Lines of force, 145

„ equations of, 194

Linking of circuits, 410

Lipschitz, 302

Lodge, 488, 490, 511

Logarithm, 89, 90

Logarithmic decrement, 487

„ potential, 175

„ transformation, 322

Machines, electrical induction, 286

Maclaurin, 209, 210

Magnetic density, 352

energy, 352

field, 351

,, „ due to current-sheet, 449

,, force due to current, 409, 436

,, leakage, 482

potential, 352

,, due to current, 409

,, resistance, 360

, ,
shell, current equivalent to, 412

,, solenoid, 352

Magnetism, true, 358

,, unit of, 366

Magnetization, 352

„ induced, of cylinder, 377

„ „ of hollow sphere,

378

„ residual, 389

,, uniform, of ellipsoid, 370

,, ,, of sphere, 371

Magnetomotive-force, 453

Magnetostatics and electrostatics, paral-

lel treatment of, 353

Magnets, 226, 351

„ and currents, mutual energy

of, 444

,, permanent, 389

Magnification, 84

Map, 199

Mascart, 457

Mass, definition of, 97

„ unit of, 98

Matter, 91

Maximum or minimum of harmonic

function, 154

„ theorem for energy, 233

Maxwell, 56, 59, 65, 67, 97, 139, 243,

251, 302, 324, 339, 384, 399, 407, 420,

431, 436, 439, 444, 446, 457, 461, 466,

467, 481, 505, 506, 507, 508, 516, 517,

521, 524, 557

Mean, arithmetical, 39

,, distance, geometrical, 461

„ quadratic, 479

,, theories of the, 41

Mechanical force on conductor, 440

,, „ on element of circuit,

426

Medium, action of, 354

effect of dielectric, 247

„ eolotropic, 510

„ heterogeneous, effect of, 441

stress in, 384

Megohm, 417

Mendenhall, 159

Mercator's projection, 200, 350

Metre prototype, 97

Michelson, 97

Microfarad, 417

Minimum condition for equilibrium, 111

n „ in Dirichlet's Prin-

ciple, 170

„ in Fourier-Ohm law, 331

Models, mechanical, of induction, 139,

149, 477

Modulus, 8

Moment of polarized distribution, 242

Momentum, generalized component of,

121

Monocyclic system, 137

Monogenic charge, 260



INDEX. 573

Motion, adiabatic, 133, 134

concealed, 127

,, cyclic, 128

,, differential equations of, 97

„ isocyclic, 133, 134

Multiform function, 14

Multiplication, geometric, 10

Multiplier, Jacobi's, 69

,, undetermined, 105

Muraoka, 407

Mutual potential energy, 220

Nabla, 25

Nachwirkung, 394

Networks of conductors, 337, 491

, , Maxwell's treat-

ment of, 339

Neumann, 179, 290, 429, 431, 467, 469,

471

Newton, 108, 203

,, laws of, 95

,, theorem of, 203

Newtonian forces, 113

,, law, electric, 251

Nichols, 407

Non-linear conductors, 344

Notation, table of comparative, 560

Numbers, complex, 4

,,
imaginary, 5

,, integer, 1

,, irrational, 2

Numeric, 97

Oberbeck, 502

Oersted, 409

Ohm, 325

unit, 416

Ohm's law, 326, 332

Operators, abbreviations for, 153

Order, right-handed, 8

Orthogonal coordinates, 21, 83

Orthomorphosis, 85

Oscillation, damped, 486

electrical, 488, 491

,, forced, and free, 489

„ of function, 37

harmonic, 479

Oscillator, spherical, 527

Parallel, conductors in, 336

Parallel elements, attraction of, 413

Parallelogram, Wheatstone's, 342

Parameter, differential, 21

„ „ first, vector, 22

„ ,, second, scalar, 64

Paris, 97, 416

Path, dependence of integral on, 53

Pendulum, gyroscopic, 131

Period, 479

Periodic electromotive force, 477

Permanent magnets, 389

Permeability, 357

Permittance, 360

Physics, axioms of, 95

„ definition of, 91

„ mathematical, 91

Picard, 56, 171, 179, 183, 540

Planes, parallel, distribution on, 279

Pockels, 523

Poincare, 527, 530, 533, 540, 545

Point, branch or critical, 88

Point-function, 20

,, charge in sphere, 366

Poisson, 193, 515

,, equation of, 152

,, for logarithmic potential, 178

,, for surface, 162, 169

Poisson 's theory of induction, 368

Polarization, 361

,, of ellipsoid, 370

,, intensity of, 228

intrinsic, 389

„ Heaviside's treat-

ment of, 391

„ lamellar, 235

,, solenoidal, 235

,, of sphere, 371

field due to, 372

,, uniform, 368

„ „ potential due to,

234

Polarized body, 226, 228

„ distributions, energy of, 239

„ forces on, 381

„ potential of, 231

„ „ development of, 240

shells, 236

Positional coordinates, 132

Potential function, characteristics of, 154

„ „ coefficients of, 266

,, „ completely defined by

characteristic pro-

perties, 167
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Potential function, definition of, 144

„ „ of cone, 157

„ „ of cylinder, 158

„ „ of disc, 157

„ of ellipsoid, 210

„ of polarized distribu-

tion, 231

Potential due to circular current, 418

„ due to uniform polarization,

234

„ electrodynamic, 429

energy, 110, 114

,, kinetic, 127

,, logarithmic, 175

,, magnetic, 352

„ mutual, 220

vector, 433

„ zero, 259

Pot, operator, 153

Power absorbed by circuit, 479

Poynting's theorem, 517

Practical system of units, 416

Pressure, 385

„ perpendicular to lines of force,

388

Principle, d'Alembert's, 107

„ Hamilton's, 116

„ Kelvin and Dirichlet's, 169

Primary circuit, 475

Probability integral, 537

Problems, Dirichlet's, 169

Green's, 390

Problems, uniplanar, 308

Projection, Mercator's, 200, 350

„ stereographic, 201

„ of vector, 9

Propagation in conductor, 522

,, of disturbance, 515

„ equation of, 512, 515

Pupin, 490, 510

Quadrant electrometer, 284

Quadratic mean, 479

Quaternion, 7

Quincke, app. 563

Badiant vector, 519, 522

Bational functions, 14

„ numbers, 1

,, units, 557

Bayleigh, 125, 139, 347, 502, 524

Beactance, 479

Beaction, 96

Beciprocal distance, 75

„ „ development of in

spherical har-

monics, 189

,, functions, 123

„ theorem in electrostatics, 266

Bectangular circuits, 455

Benection by conductor, 525

Befraction, index of, 517

of lines of flow, 327

Belaxation-distance, 524

-time, 399

,, „ of induced current, 472

Beluctance, 369, 453

Beplenisher, 246, 286

Bepresentation, conformal, 83

„ „ electric application,

307

Besidual magnetism, 389

Besistance, 333

,, of linear conductor, 343

„ magnetic, 360

Besistivity, 326

Besolutions, various, into elementary

forces, 430

Besolved part, 9

Besonance, 488, 499, 501

Besultant, 23

Biemann, 82, 171, 183

Bight-handed order, 8

Bontgen, 556

Botation of vector, 56

Bouth, 125, 502

Bowland, 407, 556

Sachse, 183

Sardinia, 536

Saturation, intensity of, 393

Saunders, 534, 553

Savart, 420

Scalar product, 10

Scalars, 9

Schiller, 488

Secondary circuit, 475

Series, 97

,, conductors in, 336

,, trigonometric, 179

Sheet, current, 349

„ vector, 199
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Shells, polarized, 236

Singular point, 17

Slab in uniform field, 364

Soap-bubble, electrified, 272

Solenoid, magnetic, 352

polarized, 235

Solenoidal property of induction, 230

„ polarizations, 235

vectors, 66

Solid angle, 76

,, potential of shell propor-

tional to, 238

Somoff, 173

Specific inductive capacity, "357

Sphere, attraction of, 157

,, hollow, magnetization of, 378

„ potential of, 155

„ uniform polarization of, 371

Spheres, concentric, electrification of, 275

Spherical bowl, distribution on, 302

harmonic, 183

,, ,, axis of, 187

,, development in, 191

,, ,, development of po-

tential ofpolarized

body in, 246

,, forms of, 186

,, „ zonal, 188

,, oscillator, 527

Spin, 56

Standard condensers, 280

Steinmetz, 479

Stokes's theorem, 53

Stoney, 557

Strength of field, 144

,, of polarized shell, 238

Stress in medium, 384

Submarine cable, 534

Surface-distributions, 159

„ -tension, 272

Susceptibility, 367

Symbolic formulae, 435

Symmetrical electrometers, 283

Systems of conductors, flow in, 327

„ conservative, 110

„ of currents as cyclic systems, 467

Tannery, 44

-Taylor's theorem, 49, 181

Telegraph, theory of, 535

Telegraphic equation, 533

Telegraphic equation, general case of, 540

Telephone circuits, 459

Telephonic speaking, possibility of, 546

Telephony, long-distance, 536

Tension, 385

„ along lines of force, 388

Tensor, 8

Terminal conditions, 550

Tesla, 499, 502

Tetrahedron, equilibrium of infinitesi-

mal, 386

Theorem, du Bois-Eeymond's, of the

mean, 41

„ Chasles's, 208

,, divergence, 56

„ Gauss's, 75

„ on energy, 219

Green's, 59, 63

Helmholtz's, 433

Ivory's, 216

„ Maclaurin's, 209

maximum, for energy, 223

Newton's, 203

,, reciprocal, in electrostatics,

266

Stokes's, 53, 56

Taylor's, 49, 181

Theorems on sign of electrification, 260

Thomson, 171, 240, 488

Thomson and Tait, 95, 132

Thomson, Elihu, 399

Thomson, J. J., 139, 381, 444, 483, 502,

519, 527, 531

Time, relaxation-, 399

,, unit of, 98

Tore, 451

Toroidal coil, 451

Total current, 407, 508

Traction, 385

Transcendental function, 14

Transformation of curve, 48

„ infinitesimal, 49

,, logarithmic, 322

Transformer, 481, 483

,, efficiency of, 484

Transverse undulations, 521

Trigonometric series, 179

Trowbridge, 534

True electricity and magnetism, 358

Tubes of force, 260

,, „ unit, 154
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Undulations, transverse, 521

Uniform function, 13

polarization, 368

Uniplanar problems, 308

Unit of acceleration, 99

„ of electricity, 252, 366

,, of force, 100

„ of length, 97

, , of magnetism, 366

,
, of mass, 98

,
, of time, 98

,, of velocity, 99

,, tube of force, 154

Units, absolute, 100

,, derived, 98

,, dimensions of, 98

,, electrical, 414

electromagnetic, 413

electrostatic compared with prac-

tical, 417

Gaussian, 367

„ practical, 411

,, rational, 557

,, various systems of, 557

Value, absolute, 2

Variable, complex, function of, 10, 196

Variable flow, 398

Variation of multiple integral, 73

Variations, calculus of, 48

Vector potentials, 433

„ product, 11

Vector, sheet, 199

„ radiant, 519, 522

Vectors, 9

addition of, 9

,, lamellar, 57

,, multiplication of, 10

,, obeying Fourier-Ohm law, 330

„ solenoidal, 66

Velocity, definition of, 93

„ generalized component of, 117

,, of propagation, 515

,, unit of, 99

Virtual current, 479

Volt, 416

Vortex motion, 435

Warburg, 394

Water, dielectric constant of, 402

Watt, 416

Wave-length, 524

,, as standard of length, 97

Waves, plane, 519

Weber, 415, 416, 431

Weierstrass, 18, 171

Wheatstone's bridge, 342

Wien, 519

Wills, 397, app. 563

Work, 102

, , in displacement of conductors, 269

„ virtual, 103

Zero potential, 259

CAMBRIDGE: PRINTED BY J. AND C. E. CLAY, AT THE UNIVERSITY PRESS.


