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ABSTRACT

It is difficult to propagate a diffraction-limited laser

beam through the atmosphere, since the atmosphere contains

random index of refraction fluctuations. Two parameters that

characterize the atmosphere for optical propagation are the

atmospheric isoplanatic angle, 8 and the refractive

2
turbulence structure parameter, C . This dissertation dealsc n

2
with improved methods for measuring 8 and C profiles using

optical techniques.

By apodizing the receiver telescope aperture, one can

improve the weighting function for isoplanatic angle

measurement substantially over previous systems. We find

that the weighting function is not significantly affected by

inner scale changes with altitude and that the error in

isoplanatic angle measurement from strong low altitude

turbulence (z < 1 km) with this weighting function is small.

Data collected with the improved isoplanometer shows temporal

trends in the isoplanatic angle on the order of 90 seconds

that have not been observed before.

Direct inversion of the amplitude covariance function

(including aperture averaging effects) to yield refractive

turbulence profiles is known to be ill-posed. I suppress

this condition using Tikhonov regulari zation and reproduce

2refractive turbulence profiles from actual C data with some
n

success

.
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I. INTRODUCTION

If one wishes to propagate a spatially and temporally

coherent electromagnetic wave through the atmosphere or any

random medium without distortion, one must somehow

compensate for the random phase and amplitude perturbations

induced by the medium. Adaptive optics is the field of

physics that attempts to compensate for propagation through

the atmosphere, principally by deforming mirrors and

unconventionally by using nonlinear optical materials. In

order to successfully conjugate the effects of the

atmosphere, knowledge of certain atmospheric parameters is

crucial. These parameters are the isoplanatic angle (9
Q ),

the spatial coherence length of the atmosphere, (r , p q
) and

vertical profiles of the refractive turbulence structure

2
parameter, C . This dissertation deals with the theory andr n

measurement of the isoplanatic angle and the refractive

turbulence structure parameter. Currently, reliable systems

exist for the measurement of the spatial coherence length of

the atmosphere [Refs. 1, 2].

The isoplanatic angle is an angular measure of spatial

coherence in the atmosphere. Walters of [Ref. 1] has

developed three generations of instruments (known as

isoplanometers) to measure the isoplanatic angle. This work



has to do in part with the development and test of a fourth

generation isoplanometer having an improved weighting

function. This instrument is optimized for night use and

provides temporally high resolution data (1 second samples)

,

able for the first time to measure trends with periods less

than five minutes. Two fourth generation isoplanometers are

currently operating at different locations.

Of the three parameters noted, the most important is the

2
refractive turbulence C profile. Both the isoplanatic

n r

angle, 9 , and spatial coherence length, r are functions of

2 2
C . Hence, knowledge of the C profile not only gives a

picture of turbulence with altitude, but also gives the

measures of spatial coherence, r and 8 . Unfortunately,r o o
2

high vertical resolution profiles of C are difficult to3 r n

measure. Several measurement techniques exist, each having

its strengths and weaknesses. These techniques will be

discussed later. This research attempts remote measurement

2
of C by direct inversion of the stellar scintillation

n u

amplitude covariance function. Mathematically, the problem

is ill-posed meaning that noise in the data makes inversion

impossible. Different regulari zation techniques exist to

make the problem tractable. This work is an extension of

[Refs. 3, 4] using the Tikhonov regular ization technique

[Ref. 5] to invert the covariance function for two finite

but arbitrary equal apertures.

10



II. BACKGROUND

A. GENERAL DESCRIPTION OF TURBULENCE

Turbulence has certain characteristics that differen-

tiate it from other flow patterns. In [Ref. 8], Lumley

briefly describes these characteristics as I will do here.

The first quality of turbulence almost goes without saying;

turbulence is irregular. This "quality" has a profound

effect on how one approaches a mathematical model or

description of turbulence. Fluid dynamics for years relied

on the application of Newton's laws to fluids. With the

Navier-Stokes equations in hand, one in principle should

be able to solve any problem. However, in the case of

irregular flows, the randomness makes this approach

impotent and we are left with having to use statistical

methods

.

Diffusivity is a property responsible for rapidly

mixing and spreading basic physical quantities like

momentum, mass and heat. This property is present in all

turbulent flows.

Turbulent flows are always characterized by large

Reynolds numbers. The Reynolds number, Re, is given by

Re = —
v

11



where v is the velocity, L is a characteristic dimension of

the entire flow and v is the viscosity. As the Reynolds

number moves beyond a certain critical value, Re ,

(nominally Re
c
« 100, for pipe flow) [Ref. 9], the flow

becomes unstable giving way to turbulence. The value of the

critical Reynolds number depends on the type of flow. Re

for the atmosphere is approximately 2000 [Ref. 14].

Another important property of turbulence is that it is

characterized by three dimensional vorticity fluctuations.

The vorticity fluctuations find their origin in the velocity

field. In order to support the random vorticity fluctua-

tions, the random velocity field must also be three

dimensional. Lumley's example of a two dimensional

atmospheric cyclone is worth noting. Large scale cyclonic

behavior responsible for weather patterns is itself not

turbulent. This does not mean, however, that the cyclone is

not made up of smaller scale turbulent bodies.

Within every turbulent flow is a mechanism that

dissipates energy. The dissipation occurs at small scale

sizes and is a function of the viscosity of the fluid. The

dissipated energy is internalized into the fluid typically

as heat. Clearly, if one increases the rate at which energy

is added to a fluid, the dissipation rate, e, must also rise

proportionately to conserve energy. This occurs after the

energy increase has reached the smallest scale sizes.

12



The last two properties in Lumley's list are rather

obvious but still should be noted. First, turbulence lies

within the continuum model of fluid mechanics. The scale

sizes in turbulence are typically much larger than molecular

sizes. Thus, molecular diffusion does not significantly

affect turbulent flows. And lastly, turbulent flows in

fluids are indeed flows. In principle, as I mentioned

previously, the Navier-Stokes equations provide the general

equations for fluid flows. For turbulence, one is concerned

with the statistics of the Navier-Stokes equations.

Unfortunately, the solution to this set of equations is not

known since the number of unknowns exceeds the number of

equations. This is known as the "closure" problem of the

Navier-Stokes equations [Ref. 10].

As was mentioned earlier, turbulence is an irregular or

random process. Finding exact scale sizes, dissipation

rates, etc., is virtually impossible. However, it is

possible to extract order of magnitude values by dimensional

analysis. This technique is used in the turbulence field to

mathematically model the phenomenon. Other techniques

include asymptotic invariance (the model should behave

properly as the Reynolds number approaches infinity) and

local invariance (depending on the time and length scales in

the turbulence, one may be able to assume that the

turbulence is everywhere similar). These three techniques,

13



in varying degrees, find their way into the treatment of

turbulence

.

All mechanical processes must have an energy source. In

turbulence, the source is principally shear flows within the

mean flow. This is true for turbulence outside the

atmospheric boundary layer. The boundary layer is formed

by the interaction of the flow and the earth's surface given

the no slip condition [Ref. 8]. Buoyancy can also be an

energy source. With an energy source available, a laminar

flow can become turbulent. The laminar portion of the flow

is modeled by the linearized theories valid for small

perturbations much like the classical or quantum harmonic

oscillator. The turbulent portion of the flow is mathe-

matically treated using an asymptotic theory valid for high

Reynolds numbers. This inevitably leads to chaos in the

transition region.

In turbulence there are a number of different length

scales. A description of all the different length scales is

a key component of similarity theory [Ref. 10]. However,

two important ones are covered now. First, the outer scale,

typically noted as L , is the size of the turbulence at

onset (on the order of meters). The outer scale, given by

L = Re v/v, is a function of the Reynolds number, viscosity

and velocity of the fluid as mentioned earlier. In the

outer scale, viscosity does not play a role in the

14



dissipation of energy since inertial terms dominate the

equations of motion. However, at the inner scale or

microscale (on the order of millimeters), viscosity

internalizes the energy of the turbulence as heat. Clearly,

from what has already been said, the key parameters at the

inner scale are the dissipation rate and viscosity. Using

dimensional analysis, Kolmogorov formed length, time and

velocity scales valid at the microscale [Ref. 11]. These

are called the Kolmogorov microscales and their exact

expressions can be noted in [Ref. 8].

Now, we can construct a physical picture of the

formation and dissipation of turbulence. The onset of

turbulence occurs at the outer scale. If the Reynolds

number at the outer scale is again greater than the critical

Reynolds number for turbulence formation, the turbulence at

the outer scale will again break down. The formation of

continually smaller eddies occurs until Re < Re„ and the* c

turbulence is at the inner scale. Hence, energy from the

ordered flow moves through the turbulence "cascade" to the

inner scale where it is dissipated in random processes. The

region of scale sizes between the inner and outer scale is

known as the inertial subrange. The energy transfer from

one scale size to the next is adiabatic in the inertial

subrange. Hence, the entropy increase occurs at the inner

scale. This view of turbulence is appealing since it is so

15



closely related to the second law of thermodynamics. We

might expect that the inertial subrange has a well defined

spectrum. It does, and this will be covered later.

B. STATISTICAL DESCRIPTION OF TURBULENCE

1. Random Variables

Since turbulence is irregular and random, it is most

effectively described statistically. Hence, variables like

the velocity v"(t), become random variables having a mean and

higher statistical moments. In many stochastic processes,

the statistical moments do not change with time or are

stationary. However, with atmospheric turbulence this is

not the case. The nonstationar i ty of turbulence makes the

meaning of long term averages, etc., questionable. In

addition, the replacement of ensemble averages by time

averages (ergodic assumption) presents additional

difficulties. This complicates the description of

turbulence considerably.

2. Homogeneity and Isotropy

Along with stationari ty , most well-behaved random

variables are homogeneous and isotropic. Homogeneity means

that statistical quantities do not change with a Galilean

transformation of coordinates. This implies that

mathematically, functions describing statistics at T, and r~
2

depend only on the difference r\
2

- Ti - T
2

. Isotropy

implies a symmetry in rotations of "r, and T
2

- Hence, if the

16



statistics are homogeneous and isotropic, functions

depending on Fj and r~
2

can be represented by |Ti - To I •

Unfortunately, the atmosphere provides neither

homogeneous nor isotropic random variables. However,

Tatarski in [Ref. 6] adopts the idea of local homogeneity

and isotropy. Over some region R, comparable to the outer

scale L , the statistics of the random variables do not

change with translations and rotations.

In a similar manner, Tatarski handles the non-

stationary problem. He notes that the functions can be

stationary over time increments or stationary increments.

Hence, it is possible to tolerate slow drifts in the mean

and other moments.

3. Structure Functions

Another way to cope with the non-stationary problem

is to define a function in terms of a difference. Tatarski

defines the structure function for temperature as

D
T
(T

1
,r

2
) = < [T(T

2
)

- TCr^)]
2

> • (2.D

< > denotes an ensemble average. We should note that the

structure function depends upon the vectors r
1

and r
2

» If

we assume homogeneity and isotropy, this reduces to

D (r) = < [T(r
2

)
- T^)] 2

> , (2.2)

17



where r = |r*
2

- T, | . Also, in differencing T(r
1

) and T(r
2 ),

effects of a changing mean are removed.

Kolmogorov showed [Refs. 6, 8] by dimensional

analysis that the structure function for temperature

fluctuations in the inertial subrange is given by

D
T
(r) = C

T
2
r
2/3

, (2.3)

2
where CT is the temperature structure parameter. In EM

propagation, one is more concerned with index of refraction

than temperature. So, we can define an index of refraction

structure function, D (r), similar to (2.2) and (2.3),

2
r
2/3

, (2.4)V c
> = C

n
r

2where C is the refractive turbulence structure parameter.
n c

In order to model the turbulence correctly, one must use

quantities that are not affected by position in the fluid.

We refer to such quantities as "passive additives".

Temperature is not a passive additive since it changes with

vertical displacements. However, potential temperature, e,

given by 9 = T - rz where r is the adiabatic lapse rate and

z is altitude, is a passive additive since it is corrected

for changes in altitude.

Figure 2.1 taken from [Ref. 14] shows the behavior

of D
T (r) as a function of log(r). Clearly, if r < 1 the

18
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2
inner scale, D

T (r) = and for r > L
q

, D
T (r) approaches 2a

T

asymptotically as the fluctuations become uncorrelated.

Hence, the structure function has a well defined slope in

the inertial subrange.

4. Covariance Functions and Spectra

Along with structure functions, covariance functions

(or correlation functions if normalized) and spectra are

useful in describing random processes. Conveniently,

covariance functions and spectra form a Fourier transform

pair. The covariance between two random variables S and T

is given by

B
ST

= <[T(r
1

)
- <T(r

x
)>] [S(r

2
)

- <S(r
2
)>]>, (2.5a)

where the average value of T, <T(r)> has different defini-

tions if T is continuous or discrete. Often one uses the

autocovariance function

BTT = <[T(r
1

) - <T(r
1
)>][7(r

2 )
- <T(r

2
)>]>. (2.5b)

If the random variable T is homogeneous or locally

homogeneous BT becomes

B
TT = <T( r;L )T(r 2

)> - <T( ri )>
2

. (2.6)

20



If we choose <T>=0 this reduces to

B
TT

= <T(r
1
)T(r

2
)> (2.7)

There is a relationship between structure functions and

covariance functions given by, [Ref. 6],

DT (r) = 2[BTT (0) - BTT (r)] (2.8)

As mentioned earlier, the covariance function and

the power spectral density form a Fourier transform pair.

The power spectral density gives one insight into how

different frequency components contribute to the variance

For one dimensional spectra, the transform pair is

W(K)
-irK

. c .-. B(r) dr (2.9)

and

B(D = —,

oo

\ f -
1 ' K

W(K) dK (2. 10)

But, before these relations hold, we must realize again

that the functions involved are random. A random function

21



f(r) can be decomposed using Fourier-Stielt jes integrals

given by

f (r) = ' e
iXXt

d<D(K) (2.11)
/iKr

e

where d<|)(K) is a random complex amplitude. The Fourier-

Stieltjes integral must be used since the random

fluctuations are uncorrelated over non-overlapping intervals

[Ref. 12]. Hence, f(r) does not have a derivative and is

non-Riemann integrable.

With the substitution of the Fourier-Stielt jes

integral, the covariance function is

[i(K[r,+r] - K'r,] *
B(r

1 +r,r 1 )
= lie -1

<d*(K)d* (K')> . (2.12)1+r , ri , .

ff.

If the medium is homogeneous, B(r,+r, r,) = B(r), since an

average must not depend on the location within the medium.

For the double integral to only depend on r, the following

must be true,

<d$(K)d<fr (K')> = 5 (K-K 1 )W(K)dKdK' . (2.13)

*
We note that <d<j>(K)d<t» (K')> is in the form of a mutual

coherence function (MCF) , which represents the overlap of

22



d<t>(K) and d<j> (K) . Since the d<j>'s are uncorrelated except at

K = K', we get the Dirac delta function with the spectrum

W(K) giving the amplitude. Substituting (2.13) into (2.12)

and integrating over K' gives (2.10).

Since we are dealing with fluctuations of the random

variable T, the mean value is assumed zero giving

/W(Ka
2

= W(K)dK . (2.14)

From (2.8) and (2.10) we see immediately that

oo

ifD(r) = - / [1 - cos(rK)] W(K)dK , (2.15)

since B(r) is an even function.

Tatarski [Ref. 6] develops an expression for W(K)

based upon the form of the structure function for

turbulence. The one-dimensional spectra W(K) is given by

W(K) = a c
2/3 K" 5/3 , (2.16)

where a is a constant and e is the dissipation rate.

23



Vector fields like the velocity, v"(T) , are expressed

in three dimensions. Hence, their spectra are three

dimensional. We will let *(K) denote this power spectral

density. * ( k") is given by

*(K) . ///^,-.^, r) (2.17)

The covariance function is defined similarly. B(r) is given

by

B(r) =

(2

L-, ///,%,«• t(K) (2.18)

Equation (2.18) is also developed from a Fourier-St iel t jes

approach requiring homogeneity. For spherical coordinates,

3— 2
d r = r sinedrded<|> ,

and the 9 and <t» integrals in (2.17) can be completed giving

*(K) =

00

B(r) sin(rK)rdr (2.19)

A similar relation for the covariance function can also be

found. Tatarski uses the relation

24



*<*> -2^ ^ <2-20)

to evaluate the three dimensional spectrum in terms of the

one dimensional spectrum. This gives

»(K) = <*C
n
2K 11/3

(2.21)

for the passive additive, index of refraction, where a is a

constant. This is known as the Kolmogorov spectrum (since

Kolmogorov did the original work) , valid in the inertial

subrange. Spectra have also been developed for the pro-

duction and dissipation regions of turbulence [Ref. 13].

C. EM PROPAGATION THEORY IN TURBULENCE

Clifford [Ref. 15] covers Tatarski's work [Ref. 6] for

weak turbulence. This treatment is analogous to any

application of first order perturbation theory. The

following is Clifford's treatment in a more condensed form.

1. Solving the Wave Equation

— i oj t uConsider a sinusoidal wave of the form e where

the atmosphere has zero conductivity and unit magnetic

permeability. For these conditions, Maxwell's equation in

Gaussian units become:

V • H = , (2.22)
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V x E = ikH , (2.23)

V x "H = -ikn 2
If , (2.24)

V • (n
2
E~) = , (2.25)

where k is the wavenumber of the electromagnetic wave and n

is the index of refraction. We generate the wave equation

for E in the usual way by substituting (2.24) into the curl

of (2.23) giving

-V
2
E + 7(7 • E) = k

2
n
2
E . (2.26)

We can expand (2.25) and solve for v • E. Substituting into

(2. 26) gives

V
2
E + k

2
n
2
E + 2V(E • 7 log n) = . (2.27)

If we assume that depolarization effects are negligible

(i.e. assume isotropy) , the last term of (2.27) can be

neglected. Clearly, one need only consider a single scalar

equation, since all the components follow in the

mathematics. Thus, the scalar wave equation becomes

7 E + k
2
n
2
E = . (2. 28)
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Clifford now applies the method of small pertur-

bations. This means that E can be expressed as a series of

decreasing values,

E = E + E
l

+ E
2

+
* * * (2.29)

E
Q

corresponds to the unscattered wave, E, to single

scattering, E2 to double scattering and so on. In some

2 .

situations the series may diverge, particularly if C is

large or the path length long. This leads to the phenomenon

of saturation. Clifford uses the first order approximation

giving

and

V
2
E
Q

+ k
2
E
Q

=

V
2
E
1

+ k
2
E
1

+ 2k
2
n
1
E
Q

= (2.30)

All terms of order two have been neglected. Clifford like

Tatarski assumes a unit amplitude wave propagating in the z

direction. This allows us to use the standard Green's

function solution for E, (T) ,

E
l(

r) =
^

1 f 3_ e
ik lr-T'|

2L
/ d^T" ± [2k^n,

/—"1 \ 1KZ i
(r 1 )e J (2.31)
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For laser propagation, most of the monochromatic light will

be scattered into a small forward cone. Hence, backscatter

is negligible. Clifford now applies the Fresnel

approximation to E..(T) giving

. 2 ikz / - ( •, r / 1 x 2,} n, (T 1

)

i<*> - Hr-J^ «p j^S.H} tWt - <
2 - 32 >

where p" are the coordinates transverse to the propagation

direction z.

2. The Rytov Approximation

At this point both Clifford and Tatarski apply the

Rytov approximation which assumes that the solution of the

stochastic wave equation is of the form

E = Ae s
, (2.33)

where A is an amplitude and s is a complex phase. The Rytov

solution involves the perturbed wave equation (2.30) divided

by E„. Tatarski gives this equation as

2

^=F- + k
2
n
2
(7) = V

2 log E + (V log E)
2

+ k
2
n
2
(7) . (2.34)

This combination of solution and wave equation is known as

the method of smooth perturbations. The name comes from the
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fact that we require the perturbations to be small over the

distance of a wavelength. This condition is less restrict-

ing than those for the method of small perturbations.

From (2.33), the ratio of E/E
Q
where E = E

Q
+ E

±
is

E~
= 1 + f~

=
T~ exP[i(S - S

n )]E
Q

E
Q

A
Q

(2.35)

Taking the natural logarithm of (2.35) and expanding in a

power series gives Clifford's result,

E
l

A
l .

. + 1(S - S )b
o

A
o

u
(2.36)

Thus, the Rytov approximation has allowed us to obtain

amplitude and phase information from the Green's function

solution to the wave equation. Tatarski and others have

developed the convention

x = £n(A/A n ) = —
A

l (2.37)

and

s - s = Sl

This is convenient since an experiment measures the log

amplitude x. It is trivial to obtain the forms for A^Ag

and (S - S
n ) from (2.32). But it is not so trivial to move
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on from there. The problem is completing the integral over

the random function n,(~r). If one considers the plane wave

propagating in a layered media, where at a given z, there

exists statistical homogeneity, we can expand n,(T) in a

two-dimensional Four ier-St ielt jes integral. We also assume

that each layer is uncorrelated so that an integral along

the path is a sum of incoherent additions. In the notation

of Clifford, n i(r*i') becomes

n
1
(r

r,
J

= / dv(K,z')e
lK '

p
, (2.38)

where dv(K,z') is the complex Fourier-Stielt jes amplitude.

Substituting this into the relations for A-i/Aq and (S - S
Q )

gives

x(r)

_S
1
(T)_

.* r r
dz , dvy^o />T , e

iK-p» cos toaiifl ,

2tt J J (z-z') J \ sin 2(z-z') II

(2.39)

3 2— —
where d r' = dz'd p'. x(r) refers to the cosine of the

bracketed quantity while S-, (T) to the sine. One can perform

the T' integrations leaving the Fourier-Stielt jes integra-

tion and the z' integration. Now we can construct the

two-dimensional covariance functions exactly as before.

B (T, z ) is

B (p,z) = <x(Pi + p, z) x (pi,z)> (2.40)
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Tatarski finds the spectrum from (2.40) to be

F (K,z*-z"=0) = F
X X

and

L

(K,0) = 2*k 2

J MK) sin 2
|"
K {L

2

~ Z)
1 d

(2.41)

F (K,0) = 2irk'
s ' ' /•«->- a [4H dz ,

where L is the path length and *(K) is the three-dimensional

Kolmogorov spectrum.

3. The Huygens-Fresnel Approach

As we have seen, Tatarski and Clifford use the

differential equations approach to solving the turbulence

problem. Since we have linear operators, etc., the

identical problem can be formulated in terms of integral

equations. This is Huygens-Fresnel theory applied to

propagation in turbulence. Lutomirski and Yura [Refs. 16,

17] develop an extended Huygens-Fresnel theory by adding a

random phase term to the Huygens-Fresnel integral. In fact,

it is equivalent to applying the Rytov approximation to the

integral equation. After applying the paraxial approxima-

tion, the extended integral equation becomes

(ik| r-r'
| ) r * (T\ 1 ?* E(T')e

[t(r)]
d
2
T' , (2.42)

IT-T* I
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where is a complex phase (equivalent to S,, Yura's

notation) , the primes denote aperture coordinates and the

non-primes denote image plane coordinates. The Huygens-

Fresnel integral is developed in standard texts like

[Ref. 18]. We should note that (2.42) reduces to the

Green's function solution of Tatarski and Clifford in the

geometrical optics limit (i.e., = k fn, (z)dz). This is

not surprising since the kernal of the Huygens-Fresnel

integral is a Green's function.

Yura now finds the average intensity <I(r)>,

<I (r) > = <

[ik(|7-7' |-|r"--r"|)] *
E fr " ) E (7*

)77 J J 17-7'
I

17-7"

x e
<*' +*"

) d
27'dV > . (2.43)

The only functions in (2.43) that depend on time are

the complex phases ' and <l>". Hence, evaluating the

ensemble average, if we assume ergodicity, becomes an effort

in evaluating the average of the \|>'s. We now change

variables to those of Yura [Ref. 17] and Walters [Ref. 14],

p
+

= (7'+7")/2 ,
7~ = 7' -7"

, 7 = 7 .

With this change of variables, the Fresnel approximation

becomes
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(|r-r-
|

- |r - r"
| ) = ^ (T

+
• T + T • T ) , (2.44)

where z' = z" = 0. This gives a very physical result for

the average intensity

2
-ikT'T",

<I(r)> =
( 27z' ) T dT" M

L
(T")M

s
(T",z)e , (2.45)

where

'L

and

,ik __+ _-.

r (T ) =
J E(T + f-)E CP

+
- |-)e 2 dV+ (2.45)

M
s
(T,z) = <.[*

, Cr,T)+tTF-,T>]
> . ( 2.47)

Since z >> r
1 or r", the exponential in (2.46) can be

approximated as unity. This makes M, the autocovariance of

the aperture (or if normalized, the aperture mutual

coherence function (MCF) ) . M is the atmospheric mutual

coherence function. This allows us to treat the propagation

problem in two distinct parts; the effects of the atmosphere

and the effects of the receiver optics.

The trick now is to find the atmospheric mutual

coherence function. Yura assumes that the amplitude

fluctuation, x, and phase fluctuation, s, that compose i> are

Gaussian variables, which implies that exp ( ^ ' +i> " ) is log-
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normally distributed. Using a property of log-normally

distributed random variables and some results of Fried's

work in [Ref. 19], Yura represents the atmospheric MCF in

terms of the wave structure function D(p), giving

< e ^ * >> = exp(-D(p)/2) , (2.48)

where D(p) = D (p) + D (p). Now we can apply the results of
X 5

Tatarski's work, since we have forms for F (K,0) and F (K,0)
x s

which can be related back to their structure functions.

From this, D(p) becomes

L

:

2
*

~ 1/3
P
2

/ C
n
2
(z)dz ; p < p

Q

1/3
p
2 fc

and

L.

D(p) = 2.91k 2
p
5/3

J
C
n
2
(z) dz ; p > VHT , (2.50)

where i is the inner scale and 0X is the Fresnel zone

size. Based upon (2.49) and (2.50), Yura represents (2.48)

as

<e^ }
> = MCF(p) = exp (--) x

, (2.51)
p
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where p
q

is the transverse distance for the MCF to decline

by e . Yura has developed forms for p q
including inner and

outer scale effects [Ref. 17]. We should remember that p
q

is a distance in the aperture of the optical system. It is

nominally on the order of a few centimeters during the day.

4 . The Modulation Transfer Function Approach

Fried in [Refs. 19, 20] uses the modulation transfer

function (MTF) rather than the MCF. This application of the

MTF and MCF are closely related since both represent the

effects of the atmosphere in different planes (i.e.,

aperture and image planes) . The MTF is the modulus of the

complex optical transfer function from the linear systems

approach to optics. This points to the fundamental

difference between Fried and Yura's approach. Fried's work

is done in the coordinates of the image plane, i.e., spatial

frequencies, while Yura works in the aperture. Both are

equivalent by the Wiener-Khintchine theorem since a lens

produces the Fourier transform of the incident electric

field in the image plane. The transformation between the

two planes is

p - XRK ,

where R is the focal length of the optics and K is the spatial

frequency of the scintillations. This allows us to move

between the aperture and image planes. Thus, the MTF(K) is
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MTF(K) = exp[-3.44
(XRK/r )

] , (2.52)

where Tq is the 1/e distance of the MTF and is given by

00

r
"5/3 =

( g'gg
5

) k
2 sec(+) f dzC

n
2
(z) f (2.53)

where <t> is the zenith angle [Ref. 21].

Explicitly in the MTF and implied in the MCF is a low

pass filtering of the scintillation spatial frequencies by

the atmosphere and optics. This linear systems view is

extremely powerful. It allows us to decompose the turbulent

propagation problem into a product of atmospheric and

optical system filtering functions. We will use this idea

and the Wiener-Khintchine theorem later to our advantage.

5. Measures of Spatial Coherence

As mentioned in the introduction, p
q

and r
Q

represent two measures of the atmosphere's ability to

maintain the spatial coherence of a propagating wave.

Nominal values for r
Q

are approximately 3-10 cm for ground

to space measurements. From (2.53), we see that turbulence

close to the aperture of an optical system contributes most

2 .

to r
Q

since C
n

is largest in the boundary layer [Ref. 2].

Fried in [Ref. 21] derives the theoretical equation

for another measure of spatial coherence in the atmosphere.
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This is the isoplanatic angle, e
Q

. Isoplanatism is the

dependence of the optical transfer function of a system on

the position of the source. Since, Yura and Fried's

approaches break the propagation problem into MCF's and

MTF's for the atmosphere and optics, the atmospheric

turbulence does not affect the OTF of the optical system.

It affects the OTF of the atmospheric part, hence the term

anisoplanatism. This means the atmospheric OTF is dependent

on the particular propagation path through the turbulence.

The isoplanatic angle is an angular measure of

spatial coherence. If we consider two paths through

turbulence in the atmosphere, the isoplanatic angle relates

the mutual coherence e point between the two paths. Fried

defines the function S(T,?) given by

S(T,~e) = 2.905 k
2

/ dvC
n

2
(|r[l-(^)]

|

5/3
+ [Qv)]

5/3

path

- ±|{r[l-(f)]|
2

+ 2re[l-(f)]vc + {ev} 2
|

5 / 6 - i| { r [1- <S) ]

}

2

2re[l-(J)3vc + {e v }

2
|

5/6
) , (2.54)

where L is the path length, v is a position along the path

and c is the cosine of the angle between r and 9. In the

limit as r/8 * » (or two rays crossing at infinity)

,
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lim
r/9 +

S(T,9) = 2.905 k
2 f dvC

n
2
(ev)

path

5/3
(2.55)

Fried defines e
Q

as

e
5/3 = 2.905 k

2
/"dvC

n
2

v

path

5/3
(2.56)

Interestingly, r
Q

is given by the other limit of the

function S (T,T) ,

lim
r/e

Sfr,T) = 2.905 k
2

J dvC
n
2

{

path

r[l - (£)] }

5/3 (2.57)

where

r
„"V3 , ,240s,

k
2

y dvCn
2
tl -

(

V,]5/3

path
6.88 (2.58)

5/3
and the (1 - V/L) ' term is a spherical wave weighting

function. Clearly, we can change variables from v to z by

correcting for zenith dependencies, i.e.,

v * z sec <t> ,

where
<t> is the zenith angle. Now one can immediately see

the relationship between Tq and e
Q

. The isoplanatic angle

measurement looking up is the same as the r
Q

or MTF

measurement looking down from space.
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Walters has shown e
Q

relates back to p
Q

and the

Huygens-Fresnel picture. The relationship is given by

9n = Po/L (2.59)

Using the Huygens-Fresnel picture, one can gain a physical

insight into r
Q

and 9
Q
measurements. Consider a source on

the earth propagating spherical waves into space. 9q is the

angle such that the MCF of the field at two different points

on the wavefront is e its original value. This picture

can be reversed where two points in space emit spherical

waves that sum at a point on the earth. This gives the

corresponding r« measurement. One of the advantages to the

Huygens-Fresnel approach is this reciprocity.

Based upon the isoplanatic angle weighting function,

turbulence between 8-15 km is weighted heavily. Hence,

turbulence near the tropopause tends to make the isoplanatic

angle small (i.e., 3-5 urad) . Large isoplanatic angles are

in the neighborhood of 13-20 prad. The largest isoplanatic

angles (20 yrad) are very small, consequently adaptive

optics concepts that compensate for the atmosphere have a

monumental task since the correction is only good for an

angle 9q.

6. Intensity Fluctuations

Tatarski in [Ref. 6] obtains the variance of the

intensity fluctuations from
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a = B (0) ,

X
(2.60)

where B (0) is the covariance function at p = 0. He
x

evaluates the integral over K in B (0) for point sources and
A

point receivers giving results for plane and spherical

waves. In reality, we do have point sources, stars.

However, real point receivers do not exist. Fried [Ref.

2
22], obtains a for finite apertures. He finds that the

aperture averaged variance is

2 _a = 2ir

n 2 2
,irD . I

pdp MTF(p)B (p)
A

(2.61)

where D is the diameter of the optics and a is a constant

depending on the type of aperture. B (p) can be represented
A

by the two-dimensional Hankel transform of the spectrum

because isotropy imposes cyclindrical symmetry.

Substituting this into (2.61) gives

2 2tt , 4 , 2
° = — (

5")

irD
J

pdp MTF(p) [2ir f J
Q
(Kp)F (K,0)KdK]. (2.62)

The p integration is trivial since we have the Hankel

transform of an MTF or autocorrelation. This transform
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yields the intensity spectrum for the finite aperture

involved, I (K) . Hence, the normalized variance is

2
CT

s

S
2

- 2ir j KdKF
x
(K,0)I (K) , (2.63)

where

2 2

S - a (-j-) I

Again we see the filtering of spatial frequencies by

the atmosphere in F (K,0) and by the optics in I (K)

.

Aperture averaging is the filtering done by the optical

system. Equation (2.63) has limits for point apertures and

infinite apertures. In [Ref. 6], Tatarski shows that for

point apertures, (2.63) behaves as z /
, while for infinite

2
apertures it behaves as z . This implies that all other

apertures fall between these two z dependencies.

Over the years, research has modified and shown the

limits of Fried's initial aperture averaging work [Ref. 22].

Yura [Ref. 24] suggests a form for the covariance function

for arbitrary z. This modified Fried's results slightly.

However, a more serious problem was found by Dunphy and Kerr

[Ref. 25] and by Homstad, et. al [Ref. 26], if turbulence is

very strong. Experimental work has failed to show the

theoretical aperture averaging effects in strong turbulence.
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The trend is towards less aperture averaging than expected

in strong turbulence. Azar, et. al. [Ref. 27] and Clifford,

et. al. [Ref. 28] explain that the covariance function for

strong turbulence is governed by two transverse scale sizes.

The short size determines the initial fast drop in the

covariance function, while a second scale characterizes the

long tail. The long tail of the covariance function reduces

the effects of aperture averaging. The aperture averaging

controversy will arise again when we look at isoplanometer

data.

7. Problems in the Theory

The theory for wave propagation presented so far has

been for weak turbulence or single scattering. We have

neglected the effects of multiple scattering. When the path

lengths are long or the turbulence is strong, the linear

theory breaks down. Experiments show that for intensity

2variances of o « .3, the normalized variance saturates to 1

[Ref. 28]. Multiple scattering destroys the spatial

coherence of the wave. The linear theory assumes a coherent

wave incident on the perturber whose strength is dependent

2
on C (or the temperature gradient) . If the spatial

coherence is degraded such that it is less than the Fresnel

zone size, "s/xl , the wave is partially coherent across the

perturber. This implies that interference can no longer

completely modulate the wave. Hence, the variance of the

42



fluctuation intensity tends to saturate or approach a

constant. Other theories have evolved to handle propagation

in strong turbulence or multiple scattering. Many of the

theories find their basis in techniques developed for

quantum mechanics. Stroebehn in [Ref. 29] reviews iterative

Green's function solutions that give an exact answer to the

multiple scattering problem. But the solution, in practice,

cannot be computed. He also summarizes the concept of

Feynman diagrams originally developed for quantum electro-

dynamics, and other more sophisticated theories developed

for strong turbulence.
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III. REMOTE MEASUREMENTS OF THE ISOPLANATIC ANGLE

A. TECHNIQUE

Loos and Hogge [Ref. 23] extend Fried's work of [Ref.

22] by completing the Hankel transform of the MTF for a "top

hat" aperture function. Loos and Hogge [Ref. 23] and

Walters [Ref. 30] realized that by measuring the normalized

variance of the intensity fluctuations of stars one could

obtain the isoplanatic angle to within a constant. Walter's

technique is as follows. The normalized variance of

intensity fluctuations is

2 L -
2

-§- = 4(4tt
2

) (.033k
2

) /*C
n

2
(z)dz

J
KdK*(K)sin 2

(^2f)I(K) ,

S

(3.1)

where K is the spatial frequency of the amplitude

2scintillations, L is the path length over which C is non-

zero, I (K) is the intensity spectrum of the receiver optics

-11/3
and *(K) is the K portion of the Kolmogorov spectrum

for turbulence in the inertial subrange. The similarity to

the isoplanatic angle given by

'

5/3
= 2.905 k

2
[sec <D]

8/3 f dzC
n
2
(z)

z

5/3
, (3.2)
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is obvious. The trick is to make the weighting function

W(z) ,

W(z) = /
2

KdK*(K)sin 2
(^2f)I

(

K ) , (3.3)

5/3behave as z . Mathematically this means that

,5/3 AW(z) , (3.4)

where A is a proportionality constant. Hence, the

isoplanatic angle becomes

9q
-5/3 =A .

(
_J_)

, (3.5)

where A' is a new proportionality constant taking account

the four's and Pi's, etc. of (3.1).

Previously we noted that the weighting function integral

9 c /c
behaves as z for infinite apertures and z ' for point

apertures [Ref. 6]. Luckily, the isoplanatic angle

weighting function, z /
, lies within these two limits.

Hence, theoretically it should be possible to mimic this

behavior

.

The power of this isoplanatic angle measurement tech-

2
nique is that no explicit knowledge of the C

n
profile is
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2
required. C in the free atmosphere is difficult to

measure remotely with high vertical resolution (as we shall

see later). Hence, integrated parameters like r
Q

and 9
Q

2 2
depending on C are usually measured independent of a C

n n

profile. Another important advantage that naturally evolves

from this technique is the filtering done by the aperture

averaging. The averaging aids in suppressing the high

spatial frequency scintillations that are most affected by

passage through the atmosphere and are most liable to cause

saturation.

B. THE FIRST ISOPLANOMETERS

Walters developed the first isoplanometers to operate

during the day and night [Ref. 30]. The optical receiver is

an Celestron 14 Schmidt-Cassegrain telescope obscured so

that a 11 cm diameter clear aperture remains. The theory at

the time of instrument development was based on a "top hat"

aperture function. Walters found that the 11 cm aperture

5/3gave a good approximation to the z ' weighting function.

Since these instruments are designed to operate at both

day and night, they have a very small field of view to

suppress the Rayleigh scattered background encountered in

daytime viewing. Hence, high quality telescope drives and

mounts are required for accurate tracking. In short, the

first three generations of isoplanometers require full-time

support. In [Ref. 30], Walters shows that these instruments

operate properly within the weak turbulence limits.

46



C. APERTURE APODIZATION FOR WEIGHTING FUNCTION IMPROVEMENT

1. Weighting Functions for the Top Hat Aperture

One can compute numerically the integral over K in

(3.3) giving the theoretical weighting function for a

certain I (K) . In reality, the limits to the K integral are

not zero and infinity. The spatial frequencies of the

scintillations are truncated by the inner and outer scales

of turbulence. Hence, the upper and lower limits of

integration become

Kmax

and

Kmin

2 IT

*0

2jr

L

where i
Q

is the inner scale and L
Q

is the outer scale. For

the following computer simulations, i
Q

= 5 mm and L n = 10 m.

The integration over K is done by a brute force application

of Simpson's rule over 512 points for a given value of z.

The z stepsize is log (Az) = .05.

5/3
Figure 3.1 shows the error from z for a 10 cm top

hat aperture as a function of z for a 500 nm electromagnetic

wave. I(K) for the 10 cm top hat is the Airy pattern,

I (K) = (3.6)
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where D is the diameter of the receiver optics. The curve

in Figure 3.1 is normalized so that the integrated error

between 2 and 20 km is zero. This ensures that the error is

5/3not consistently above or below z giving erroneous

results when this weighting function is integrated into a

measurement system. The normalization interval 2 to 20 km

2
results from the fact that turbulence, hence C , is large

n

enough in that region to contribute to the isoplanatic angle

5/3 2
integral given the z dependence. Clearly, C is largest

in the boundary layer [Ref. 2], however the weighting is

very small there causing little change in the isoplanatic

2
angle. Actual profiles of C , like that provided by Dr. E.

Good from the Air Force Geophysics Laboratory, Hanscom AFB,

MA in Figure 3.2, bear out this assumption. The particular

profile shown will be used extensively in Chapters IV and

VIII of this dissertation. A more complete description of

the profile will be provided at that time.

In [Ref. 24], Loos and Hogge plot the two

theoretical limits for point and infinite apertures as a

function of z. They also plot the aperture averaged

weighting function for a 35 cm telescope. They note that

2 5/3
the large aperture is on the z side of z In Figure 3.1

2
we see two different slopes present. If W(z) - z , the

slope would be +1/3, while if W(z) = z , the slope would

be -5/6. At low z, the slope in Figure 3.1 is 0.26, while
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at high z the slope is -0.63. As the diameter gets larger

the slope of the low z portion moves closer to 1/3.

Clearly, these figures only show the general influence of

the limits. Figure 3.3 shows the movement of the peak

towards higher z with increasing aperture size. Thus, we

2 . ,see more z behavior as expected.

The question arises as to why, with increasing

2aperture size, one sees more z behavior. The answer is

straightforward. From [Ref. 23], we see that as D, the

diameter of the optics goes to infinity, I(K) = S(K-O). As

finite D increases, the width of the Airy disk narrows due

to the Hankel transform. Eventually, the Airy disk becomes

2
a good approximation to the 6-function, hence, the z

behavior.

Figure 3.4 shows the wavelength dependence of the

weighting function. To first order, the normalized variance

given by (3.1) is wavelength independent. This can be shown

by expanding sin 2
(K

2 z/2k) in a Maclaurin series giving

2 4 2

f(z) = sin 2 (^) w (5-f-) + ... (3.7)
ZK

4k

The k
2

cancel in (3.1) removing the wavelength dependence

2
We also see from (3.7) how the z weighting function

mentioned above comes about. The weighting function, (3.3),

51



h-
cr
X 1-

Q_
O
o
a

i

i

Z

U in

N
\—i

II

zIT)

U
Z)

a:
\-\

o
1-

Ld
Q_
X
m
a:
a

z
o

i

z

u s
u
z

II

z
X
i—

i

a

Ld
O
z
u
Q_
U
a o
z
o
1—

1

1-

_i
o
01

1u
z

1

z
in
in

(J
z
l—(

h-
X
l-H

u

X
I—

I

a

r /
/

• / y
. / /

yy /
/

Ar /
/.

'

\

v
/ '

\

\
'A

\
'

\

\

\ N

\ \

\ \ .

"A \

.

~ \ \

.

\ \ •

\ x

I.I. A
.
A

u
n
x

o
_l

in S)

ce/s^z/cz)M) son

en

0)

N
•H
cn

(D

S-l

P
-P
u
aj

a
<
+j

X

o
Eh

CP
C
•H
>i
^
fd

>
u
o

en

in

in

I

N

e
o

4-1

o

W

n
<y

5-1

Cn
•H
fa

52



X flT) /
x / /

CL
O —
h- •

/ /
/ / •

~ II

X / '

x cr ."!/
1- l-H

<j 7
.z ^

LJ .-
\

^

_l h- Wu o
> n
cr i -*-

x 2:
z

\z s
O (S

en \

Ld
u •-

Z X
-3\U LD

a x
.\\z a

LJ 1

X z .\\u z Aa s
s "

-\\z en

(—1 .- ,\\
1- a A\u -<

z _l \ \

=3 " \\
l_ en

1 ,\\
e> z

,\\z z
1—

1 s A\1- s
X en

. , . AYU . . .
1 1

a)

u

M
u
CD

a
<
+j
«j

a
o
Eh

<D

+J

M-l

ro

LD

N

e

z H
N^* 14-1

u U

a H
~) M
h- W
1—

1

Q3

h- X!

_J
+J

X M-l

LD

O
_J

CD

C
CD

n
c
a)

a
<u

a
£
4-1

c
cd

rH

>

3:

U in a in n

C E/S^Z/(Z)M) 301
Q)

u

Cn
•H

53



is itself not wavelength independent, hence we see the

behavior persent in Figure 3.4. As the wavelength increases

the weighting function moves laterally towards lower z.

The calibration constant, A', from (3.5), for the

10 cm top hat aperture is nominally 1.0 x 10 . We would

expect that this constant should get larger as more aperture

averaging is included since the normalized variance will

decrease.

2. Improved Weighting Functions

5/3
The error from z in Figure 3.1 at 100 m is about

a factor of three. In the weighting function given by

(3.3), the only variable that depends on the measurement

system is I(K). The remainder is due to the amplitude

fluctuation spectra F (K,0). For some time, different

groups have been modifying telescope apertures or image

2planes to measure C profiles [Refs. 31, 32, 33]. The

modification of aperture functions by masks, etc., is called

5/3aperture apodization. Since the z weighting function

lies between the theoretical limits, we hope that through

aperture apodization we might improve the isoplanometer

weighting function.

To obtain intensity spectra from different aperture

functions, one can Hankel transform the MTF or autocorrel-

ation of the aperture or Hankel transform the aperture

function and square the resultant amplitude spectra. The
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results are equivalent by the Wiener-Khintchine theorem.

Bateman [Ref. 34] compiled many different Hankel transform

pairs. Using this list and different combinations of Bessel

functions, I began constructing different weighting

functions. Appendix A is a synopsis of the some apertures,

spectra and resultant weighting functions. We found that

combinations of Bessel functions are most desirable for

spectra, since they represent apertures that can be

implemented easily on a telescope.

Before moving on to the aperture function that

5/3approximates the z ' quite well, it is interesting to look

5/3
at the error from z produced by a simple annulus

aperture. Figure 3.5 is an error plot for an annulus with a

10 cm outer diameter and a 4 cm obscuration diameter. The

two peaks correspond to the influence of the inner (lower z

peak) and outer (higher z peak) diameters of the two Bessel

functions involved. This leads one to believe that by using

5/3
combinations of Bessel functions the z ' dependence could

be mimicked. Figure 3.6 is the error for a Celestron C8

telescope aperture. It is interesting to note that the

inner diameter affects the weighting function at high z,

while the outer diameter affects performance at low z. We

saw this before with the two theoretical limits of the

weighting functions.

After some effort, an aperture function was

identified for a 8" Schmidt-Cassegrain telescope that
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produces a weighting function that approximates the z
5/3

dependence. The aperture is the double annulus shown in

5/3
Figure 3.7 producing the error from z shown in Figure 3.8

for a 500 nm electromagnetic wave. Over the altitude range

critical for isoplanatic angle measurements (2-20 km) , this

weighting function does very well.

The weighting function for the double annulus

aperture function is given by

W(z) =

(1_e
l
+e 2" e

3
)2 / KdK*(K)sin

2
(|j^)

e-KD
2J1<—T>

e
2
KD

-e
23, (

e
1
KD

l v 2

e
x
KD KD

2

e^KD
2Ji<-r~

>

e
3
KD

n 2

J

(3.8)

where e,, e
2

, e» are constants that ratio the inner

diameters to D, the outer diameter of the optics. $(K) is

-11/3
the K dependence of the Kolmogorov spectrum. Figure

3.9 shows a comparison of the amplitude spectra squared

(intensity spectra) for the 20 cm double annulus and a 20 cm

top hat aperture. It is interesting to note that the

increased higher spatial frequencies present in the double

annulus spectrum are responsible for the improvement in the

weighting function.
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3. Double Annulus Calibration

The calibration constant, A', for the 20 cm double

annulus aperture function is approximately a factor of four

larger than the 10 cm top hat. This is due to the increased

aperture averaging. The double annulus weighting function

shows the same wavelength dependence as the top hat, Figure

3.10. An increase in the wavelength of the EM radiation

shifts the weighting function to lower z. One interesting

point is that the normalized variance has no wavelength

dependence as we have shown. However, the isoplanatic angle

certainly does (3.2). Clearly, all the wavelength

dependence for the isoplanatic angle is in A' and it should

2
behave, to first order as k . Figure 3.11 shows the A'

wavelength dependence. At wavelengths greater than 800 nm,

2
A' behaves as k but diverges below 800 nm. Clearly, this

is important depending on the temperature of the stars used

for isoplanatic angle measurement.

Based upon the factor of four increase in the

calibration constant, one might expect that an instrument

with this weighting function would be able to withstand a

factor of four more turbulent intensity before saturating.

However, [Refs. 25, 26, 27] show that the aperture averaging

effects may be degraded in strong turbulence making the 10

cm and 20 cm devices saturate at the same relative

normalized variance. This issue will be resolved later by

experiment.
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The 20 cm double annulus has approximately twice the

area of the 10 cm top hat. This implies that the telescope

will collect twice the photons increasing the average

intensity by a factor of two. The variance of the shot

noise current will also increase by a factor of two.

Mathematically, the isoplanatic angle for the 10 cm system

is

-5/3
9
o = A

10

2 2
a + a
S n

2 2where a is the variance of the signal and a is the
o n

variance of the noise. For the 20 cm double annulus system,

this same equation becomes

I

"5/3 = 4A*
'o

qA
10

r 2 2
° ~ + 2a ~s n

4I
2

The proportionality constant, A 1

, for the 20 cm system is

approximately a factor of four larger than for the 10 cm

system. In practice, we measure the shot noise experi-

mentally and remove it from the variance in software.

Hence, its effect is negligible at night. The 10 cm

isoplanometer uses a pellicle to split the light beam in the

detector subassembly. This reduces the average intensity by

a factor of two. The 20 cm system, without the pellicle, is

equivalent to the 10 cm system.
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4. Double Annulus Improvements

The single greatest advantage the double annulus

aperture function isoplanometer would have over the previous

systems is that the 35 cm telescope is no longer required.

This fact alone means saving approximately $8000.00 per

system, not to mention that an isoplanometer based on an 8"

telescope can be set up and operated by a single individual.

The weighting function itself is a significant improvement

over that of the top hat. We will see in the next chapter

just what this improvement means in terms of isoplanatic

angle measurement.
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IV. APODIZED ISOPLANOMETER SENSITIVITY ANALYSIS

Two questions might be asked based on the double annulus

weighting function of Figure 3.8. First, at 100 m there

2remains a factor of 1.75 error. C at low altitudes is
n

5/3large, so deviations from z may cause significant errors

in the isoplanatic angle measurement. Second, in the

numerical calculations of the weighting functions, a fixed

inner scale was used for all z. Clearly, the inner scale is

a function of altitude which may drastically change the

weighting function. These two issues are addressed in this

chapter.

A. WEIGHTING FUNCTION PERFORMANCE IN STRONG TURBULENCE

Consider an isoplanometer viewing a star directly

2
through a convective plume. Clearly, the values of C will

—12 —2 /3
be very large; on the order of 10 m ' near the ground.

From Figure 3.8, one can immediately see that the weighting

function for the double annulus has its greatest error in

5/3
this region. Even though the z weighting is low near the

2
earth, the C values in strong turbulence may be large

enough to cause significant error in isoplanatic angle

measurements. Based on this concern, I performed a

sensitivity analysis on both the 10 cm top hat and double

annulus aperture weighting functions.
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1. The C Profile
n

The most realistic way to test the weighting

2
functions is to use real C data. Figure 3.2 shows Good's

2
C data between 500 m and 40 km. Good obtained this
n

profile by differential temperature measurement between two

balloon-borne microthermal probes. From these differences

one can construct the temperature structure function DT and

2 2 2
obtain C as a function of z. C and Cm are related by

n n T 2

the expression, [Ref. 6],

C
n
2 = C

T
2 (79P/T 2

x 10
6

)

2
, (4.1)

where P is the pressure in millibars and T is the

2 .

temperature in Kelvin. Direct measurement of C in this
n

manner yields very high vertical resolution, on the order of

tens of meters. AFGL averaged raw data to give the 500 m

resolution in Figure 3.2.

For purposes of this analysis, the region of

greatest interest lies below 500 m. Walters [Ref. 2], plots

2C^ versus altitude for 1 to 1000 m. Walters measured this

particular data set at midday in a desert location and it

represents very strong turbulence conditions. To account

for convective plumes in low altitude turbulence, I doubled

2 2the Walters C values. This gives one C profile from 1 m
n 3 n

to 40 km.
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2. The Analysis

For convenience, I segmented the profile into four

regions, 1 to 10 m, 10 to 100 m, 100 to 500 m, and 500 m to

40 km. Over each of these regions, I numerically evaluated

three integrals,

Theoretical

Top Hat Aperture

h 2
(z)z 5/3 dz ,

(4.2)

C
n

(z)W
TH

(z)dz ,

Double Annulus Aperture = / C (z)WD (z)dz

Based on Figures 3.1 and 3.8, we would expect the weighting

function integrals to be smaller than theoretical at low z.

Table 1 shows the results of this analysis. Table 2

contains the relative errors for each segment and the total

path. The integrated values in Table 1 show that even the

strongest turbulence at low z accounts for only a small

percentage (about 2%) of the integrated path effect.

Clearly, the errors over the total path for both the top hat

aperture and the double annulus are within the limits of the

theory. As one might expect, this analysis is extremely

sensitive to the choice of A, a proportionality constant,

where

5/3 AW(z) (4.3)
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TABLE 1

CONTRIBUTIONS TO THE ISOPLANATIC ANGLE INTEGRAL FOR
STRONG TURBULENCE ANALYSIS

Theoretical Top Hat Double Annulus

1-10 m 2.61 x 10
-11

3.44 x 10~ 12 5.80 x 10
_12

10-100 m 8.19 x 10" 10 2.28 x 10~ 10 3.77 x 10
_1 °

100-500 m 1.18 x 10" 8 5.50 x 10~ 8 8.67 x 10~ 9

500 m-40 km 3.89 x 10~ 7 3.88 x 10~ 7 3.91 x 10
-7

TABLE 2

RELATIVE ERROR FROM THEORETICAL FOR STRONG
TURBULENCE ANALYSIS

Top Hat Double Annulus

1-10 m .87 .78

10-100 m .72 .54

100-500 m .69 .26

500 m-40 km 7 x 10" 4
6 x 10~ 3

1 m-40 km .02 3 x 10~ 3
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In building an isoplanometer , the better one can define A or

A', the better the instrument should operate.

This analysis shows that an isoplanometer should

perform well, based on its weighting function in strong

turbulence. However, we must note that in very strong

turbulence, saturation has already reduced the reliability

of the isoplanatic angle measurements.

B. INNER SCALE EFFECTS

The inner scale, n, is given by

v
3 1/4

("J") > (4.4)

where v is the kinematic viscosity and e is the energy

dissipation rate. Clearly, the kinematic viscosity and the

dissipation rate are both functions of altitude. In com-

pleting the weighting function integral (3.3) numerically, I

used the same inner scale for all values of z. This could

mean that the weighting function does not accurately model

the z ' behavior required for isoplanatic angle

measurement

.

1. Constructing the Inner Scale as a Function of
Altitude

From (4.4), we see that the inner scale depends

strongly on the kinematic viscosity v, given by
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v =
p '

where 6 is the viscosity coefficient and p is mass density.

The U.S. Standard Atmosphere [Ref. 35] has vertical profiles

of the kinematic viscosity. Hence, this portion of the

inner scale is well understood.

The dissipation rate is another story entirely.

Turbulence in the free atmosphere is intermittent,

temporally and spatially, unlike boundary layer turbulence.

This is compounded by the fact that measurements in the free

atmosphere are difficult to make. Using [Refs. 36-41], I

constructed what might be called a "nominal" dissipation

rate profile. This profile, by no means, represents the

output of any theoretical model on my part. It is a

synopsis of the data and model results given in [Refs.

36-41]. The "nominal" dissipation rate profile is shown in

Figure 4.1. Some controversy exists as to the behavior of

the dissipation rate at higher altitudes [Ref. 38]. It is

generally agreed that e can reach values comparable to that

observed in the surface layer. My profile shows light-

2 3moderate turbulence near the surface, e = 40 cm /sec (or

2 3
log £ = 1.6) at 100 m and decreases to .38 cm /sec (or

log e = -0.42) at 55 km. As a point of reference, we might

note that the dissipation rates in convective storms are on

3 4 2 3
the order of 10 -10 cm /sec [Ref. 40]. The units on
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dissipation rate indicate a "specific" dissipation rate

where system mass is removed.

Based on the Standard Atmosphere kinematic viscosity

profile and my "nominal" dissipation rate profile, one can

now construct the behavior of the inner scale with altitude.

Figure 4.2 shows the inner scale profile. Clearly, the

inner scale changes dramatically with altitude. At 55 km,

n is on the order of a meter. As expected, the inner scale

follows the kinematic viscosity since kinematic viscosity

increases three orders of magnitude between 100 m to 50 km.

2. Weighting Function Dependence on the Inner Scale

A crude approximation to the inner scale effect can

be obtained by increasing the inner scale for all z while

numerically evaluating the weighting function integral.

Figure 4.3a shows how the double annulus aperture weighting

function changes with an inner scale of 10 cm. The

deviation in W(z) caused by the change in inner scale from 5

mm to 10 cm is not catastrophic, however, a more complete

analysis needs to be done.

Since the upper limit of the K integration depends

on the inner scale, we see that increasing inner scale size

corresponds to lowering the upper limit of integration. We

expect that W(z) will not change significantly at lower z,

due to the modest increase in the inner scale. However, as

the inner scale increases, the upper limit of integration
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will decrease. At some critical K , the upper limit willmax rr

begin eliminating integrand producing a dramatic change in

the weighting function.

Figure 4.3b shows the error from z ' for the double

annulus aperture weighting function with the z dependence in

the upper limit of integration. As expected, we see little

change at lower altitudes. At 40 km, the inner scale is now

large enough to begin removing part of the integrand. The

5/3deviation from z begins when the inner scale reaches 15

5/3
cm, and by 25 cm, the error from z is a factor of three.

The inner scale behavior of the weighting function

is not a problem in a measurement system, since values of

2 -22 -2/3
C at 40 km are approximately 10 m Disturbances
n

to the electromagnetic wave propagating through the medium

2
occur at lower z where C is larger.

n

C. SENSITIVITY ANALYSIS CONCLUSIONS

Based on the results of sections A and B, the

isoplanatic angle weighting function appears very robust.

The only real theoretical problem, in terms of measurement,

is saturation of the normalized variance. One might ask

about outer scale effects. Nominally, the outer scale,

except very near the surface, remains on the order of 10 m

[Ref. 42]. This can be seen from the Reynolds number. The

Reynolds number is, (as shown in the Background section),
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Re = Sk
V

where v is the velocity, L is a characteristic size of the

flow and v is the kinematic viscosity. The onset of

turbulence occurs at Reynolds numbers of 2000 or greater,

in the free atmosphere remains about the same and v

increases with altitude. Thus, velocity is the parameter

responsible for large Re. Since L does not vary

considerably, L
Q , the next scale size smaller, should not

vary considerably either. Near the earth, L has an

immediate fixed boundary condition that reduces its size.
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V. INSTRUMENT QUALIFICATION

Currently, many DoD agencies require isoplanatic angle

measurements at night. Based on this need, we fabricated a

fourth generation isoplanometer . What follows is a brief

description of the hardware, detailed analysis of instrument

qualification and a comparison with the 10 cm "top hat"

isoplanometer.

A. HARDWARE

1. Telescope

The double annulus aperture function of Figure 3.8,

was developed for use on an 8" Schmidt-Cassegrain telescope.

The Celestron C8 is a reasonably priced and readily

available Schmidt-Cassegrain telescope with a high quality

worm-gear drive for star tracking. The choice of Bessel

functions as a spectral basis set has the advantage of

simple obscuration implementation. The aperture obscuration

is two disks made of flat black rubber adhered to the

Celestron corrector plate with rubber cement. This allows

removal at a later date without damage to the optics or

coatings. With the exception of the obscuration, all of the

equipment associated with the telescope (tripod, mount,

etc.) is furnished by Celestron.
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2. Detector

The detector subassembly is a modification of the

already existing 10 cm "top hat" isoplanometer detector

developed by Walters [Ref. 30]. Walters engineered and

implemented the modifications to the fourth generation

detector subsystem, associated signal conditioning hardware

and software. The detector subassembly screws into the rear

of the telescope. Incident radiation is directed over one

of two paths. To acquire stars and focus the telescope, the

light enters a wide angle eyepiece. Otherwise, the light

passes through a pupil (on the order of millimeters), and is

incident on a photomul tipl ier tube that senses the intensity

fluctuations (stellar scintillations) . The image is

slightly defocused to remove the effects of any inhomogen-

eities on the surface of the photomultiplier . The photo-

multiplier is chosen to have good red response, which causes

a slight improvement in the weighting function at low alti-

tudes, Figure 3.10 and suppresses any Rayleigh backgound.

We should note that the pupil in this instrument can

be much larger than the previous isoplanometer, since it is

intended for night use only. The 10 cm isoplanometers use a

chopper to make reference background measurements necessary

for daytime operation. This feature is not required on the

fourth generation system for the same reason as above. A

schematic diagram of the detector subassembly is shown in

Figure 5.1.
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3. Signal Conditioning and Isoplanatic Angle Extraction

The first fourth generation isoplanatic angle

measurement system (A system), uses a Hewlett-Packard

HP 3421 Data Acquisition unit to sample the output of a

signal conditioning unit. The signal conditioning unit

performs two functions. It low pass filters the incoming

signal below 500 Hz and calculates the mean and rms values

of the input voltage data from the photomultiplier . The

Data Acquisition Unit, with an internal voltmeter, detects

the voltage on each channel once/second and relays the

information to a Hewlett-Packard 217 Computer.

Once the data is in the computer, the normalized

variance of the signal is calculated from the mean and rms

values of the voltage. Obtaining the isoplanatic angle is

then a simple matter of applying the constant A' to the

normalized variance. The average intensity (in volts) and

isoplanatic angle (in yrads) are plotted on a graphics

monitor. A real-time plot of the average intensity can be

very helpful during data acquisition in determining the

occurrence of clouds and monitoring stellar tracking errors.

The isoplanatic angle is very robust to drifts in the

average intensity since we normalize the variance.

On later systems (B systems) , the HP 3421 is

replaced by an Infotek A-D converter that resides within the

HP computer. The computer samples the A-D converter so that
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one isoplanatic angle measurement is made per second. The

computer does not store all the isoplanatic angle data.

Instead, the computer calculates ten second averages and

stores the averages every 15 minutes.

The fourth generation isoplanometer uses software

that has evolved and become more "friendly" with each field

experiment. Currently, the zenith angle dependence of the

isoplanometer angle is removed within the main program.

B. ZENITH ANGLE QUALIFICATION TESTS

It is an interesting problem to know if your instrument

is really measuring the isoplanatic angle. One could fly

2
balloons and obtain a direct measurement of the C

n
profile

5/3and integrate with z weighting, however, Walters [Ref.

30], has developed a much less costly and simpler technique,

The isoplanatic angle is

_c /o 8/"3 *^s
) = [sec *] A' (-=-)

, (5.1)
S^

including the zenith angle dependence. For increasing path

length (higher zenith angles), the normalized variance will

increase since the light is encountering more integrated

2 2turbulence. Hence, a plot of o /s versus log (sec <J>

)

should have an 8/3 slope if the instrument is truly

measuring the isoplanatic angle to within a multiplicative

constant

.
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Walters used this technique to qualify the 10 cm "top

hat" isoplanometer (really 11 cm) [Ref. 30]. The following

is an application of the above technique to the fourth

generation system, but first a caution. Clearly, if the

atmosphere is horizontally homogeneous (i.e., composed of

onionskin layers) , the technique should be effective.

However, if the atmosphere is irratic and the turbulence is

not uniform over the night sky, this technique will not be

as reliable.

We (D. L. Walters and myself) obtained qualification

measurements for the fourth generation system at two

different locations. The first data set is from McDonald

Observatory in western Texas. The night was ideal for

instrument qualification using the zenith angle technique.

The isoplanatic angles were on the order of 15u rad. In

Figure 5.2 each point represents one 10 sec average of the

normalized variance, while each group of points is 400

seconds of data on a given star. Figure 5.2 shows very good

agreement with theory on this test. The least-squares fit

has a slope of 2.60, which is not a significant error from

8/3. The least-squares fit does not include the two data

sets at high zenith angles since the normalized variance is

saturating

.

The second set of data is from Albuquerque, New Mexico,

acquired when atmospheric conditions were less than optimal.
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During the daylight hours, large thunderstorm cells formed,

dissipating at night into a layer of cirrus. About 0200,

the cirrus cleared and we obtained the data set in Figure

5.3. The least-squares fit includes the three observations

at lower zenith angles. The slope of the least-squares fit

is 2.48, less than the 8/3 theoretical. Based on the

conditions that night, the results are very good.

More interesting in Figure 5.3 is the behavior of the

normalized variance at large zenith angles (last two data

sets) . We note that the normalized variance is no longer

changing for these data sets. Clearly, the path is long

enough to induce saturation in the normalized variance. For

the fourth generation isoplanometer this occurs at

normalized variances of about .06 to .07. The 10 cm

isoplanometer saturates at normalized variances of .2 to .3.

The aperture averaging has lowered the normalized variance

between the two instruments the predicted amount. Remember,

the calibration constant A 1 for the 10 cm isoplanometer is

approximately 1 x 10 , while A 1 for the fourth generation

isoplanometer is 4 x 10 . Hence, for a given isoplanatic

angle, the normalized variance for the new system will be a

factor of four lower than the 10 cm system. Thus, the

double annulus system is saturating at an equivalent

normalized variance. We still have not resolved whether the

increased aperture averaging aids in forestalling
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saturation. The fourth generation system saturates at its

nominal "saturation" normalized variance, however, it may

take four times the turbulence to make it saturate. The

fourth generation system seems to take reliable data at

slightly larger zenith angles than the 10 cm system.

Resolving this question requires simultaneous observations

with both instruments on the same stars for a zenith angle

check. This test has not been possible due to instrument

availability.

C. APODIZED AND 10 cm ISOPLANOMETER COMPARISON

Even though simultaneous zenith angle tests were

impossible in Albuquerque due to instrument availability and

atmospheric conditions, we did obtain simultaneous data on

Vega on August 25, 1985. The data is contained in Table 3.

The mean isoplanatic angle for the 10 cm isoplanometer data

is 6.7 + .17; while the double annulus averaged 6.8 + .15.

This shows very good agreement between the two instruments

and removes the ambiguity of the multiplicative constant in

the zenith angle test. Table 3 also shows an unstable

night. The isoplanatic angles range from 4.5 yrad to 9.0

yrad over a one hour period.

D. ISOPLANATIC ANGLE MEASUREMENTS WITH SUPPORTING
METEOROLOGICAL DATA

During September, 1985, the fourth generation system was

in use on Haleakalea crater, Maui, HI. One night, our data
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TABLE 3

10 cm AND DOUBLE ANNULUS COMPARISON

Time (Local Stand ard) 10 cm (pra d) Do uble Annulus ( urad)

2211 7.5 7.8

2212 9.0 8.9

2213 8.3 8.9

2214 8.3 7.9

2216 7.6

2219 6.6 6.3

2220 6.9 7.3

2222 6.9 6.7

2224 5.4 5.8

2226 4.7 6.1

2228 6.9 6.5

2229 5.7 7.0

2230 7.7 7.3

2231 7.3 7. 1

2233. 00 6.5 6.8

2233. 41 6.9 6. 8

2234 6.4 6.5

2235 6.6 6.6

2237 6.4 7.3

2238 7.4 6. 6
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TABLE 3 (CONTINUED)

Time (Local St and ard) 10 cm (uraid) Double Annulus (urad)

2240 6.3 6.9

2241 6.3 7.4

2242 8. 3 7. 5

2243 6.7 6.6

2246 7.0 7.1

2247 6.9 6.9

2249 7.2 7.0

2250 6.5 6.5

2252 6. 2 6.4

2253 6.0 6.0

2255 6.4 5.9

2256 4.5 4.7

2257 4.9 5. 3
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collection overlapped a meteorological balloon flight. The

balloon provided altitude, pressure, temperature, dewpoint

depression, relative humidity, wind speed, and direction.

Figure 5.4 shows the real-time computer output on 17 Sep

1985 (Star 17=Vega) . The solid line is the time history of

the average intensity, while the points represent 1 second

measurements of the isoplanatic angle. The spikes in the

average intensity occurred when the telescope dome lights

were turned on. Figure 5.4 shows a small isoplanatic angle.

However, no zenith angle correction has been applied to this

data. Figure 5.5 contains this 15 minute set of data after

application of the zenith angle dependence. The isoplanatic

angles are in fact fairly large, approximately 13 yrad.

These large isoplanatic angles indicate low turbulence

between 8-15 km. Hence, the wind profile should show low

wind speeds and small shears. The complete set of meteoro-

logical data is contained in Appendix B, the wind shear data

is as follows. The balloon data indicates three shear

layers (2 km, 14 km, 27 km). The wind speed at the 2 and 14

km levels is approximately 4 knots, while at 27 km is 47

knots. These wind speeds are very low and indicate that

very little shear driven turbulence is present. Hence, the

large isoplanatic angles agree with the observed wind

profile data.
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E. QUALIFICATION CONCLUSIONS

Based on the zenith angle tests, the simultaneous

measurements with the 10 cm device and the measurements with

supporting meteorological data, we conclude that the

instrument is indeed measuring the isoplanatic angle

correctly. Currently, two fourth generation instruments are

in operation at different locations worldwide. This data is

being archived at the Naval Postgraduate School by D. L.

Walters

.
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VI. DATA COLLECTED IN MAUI

As mentioned previously, we conducted a trip to Maui, HI

supplying an isoplanometer to the AMOS facility. During

this trip, weather prohibited acquisition of large amounts

of data, however, we did obtain that data mentioned in

Chapter V, along with what I will present here.

In this section, we will see one of the greatest assets

of the fourth generation isoplanometer. That is its ability

to make isoplanatic angle measurements effortlessly each

second. The following plots show trends in isoplanatic

angle data that have not been observed before.

Figures 6.1-6.7 are real-time computer output of each 1

second isoplanatic angle measurement. As in Figure 5.4, the

solid line is the average stellar intensity and each point

is an isoplanatic angle measurement. We might note that the

average intensity is much more steady than in Figure 5.4.

This is due to the lack of high thin cirrus clouds. Also,

in Figure 6.2, the steps are caused by changing the voltage

to the photomul tipl ier. Note that these changes do not

affect the isoplanatic angle measurements. In Figure 6.7,

the deviations in the average intensity are due to the star

beginning to move out of the telescope f ield-of-view.

In these data sets, we see isoplanatic angles ranging

from 16 yrad to 5 urad. This, of course, indicates a very
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unstable night. But, what is most interesting are the low

frequency oscillations present in the data. Figure 6.4 has

oscillations with periods on the order of a one minute,

while Figure 6.5 shows oscillations on the order of three

minutes. Unfortunately, no balloon measurements of meteor-

ological data were performed on 20 September. Without

supporting meteorological data, it is impossible to

ascertain exactly the mechanism responsible for producing

data like this.

Based on the isoplanometer weighting function, it is

possible to make some general comments on the location of

the turbulence that could produce this type of oscillation.

5/3Since the isoplanometer is weighted z , low altitude

turbulence (boundary layer to 2 km) is not responsible for

this behavior. Most likely, the turbulence producing the

oscillations is located in the tropopause. At 10 km, the

5/3 2
z weighting and C values are large enough to produce

the lower isoplanatic angles we see. Researchers in

Albuquerque, NM, indicate that they observe oscillatory

data, with the second fourth generation isoplanometer, when

the jet stream is moving into the area. As the jet stream

approaches, wind speeds in the tropopause begin to increase.

Periodically, the gradient Richardson number (ratio of

potential temperature gradient to velocity gradient), will

fall below the critical Richardson number (about R. = 1/4)

,
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and the flow will give way to shear driven turbulence. The

jet stream is not close enough to supply the energy

necessary to maintain the turbulence. Hence, after a short

period of time, the flow becomes stable and the isoplanatic

angles increase. Once the jet stream has completely entered

the area, the isoplanatic angles no longer oscillate, but

remain low due to constant turbulence. Thus, one can

surmize that the oscillatory isoplanatic angles are caused

by temporally intermittent turbulence.

More research needs to be done in the area of

isoplanatic angle measurement with supporting meteorological

data. Once trends in isoplanatic angle data have been

established for certain atmospheric phenomena, balloon data

may no longer be necessary for an accurate picture of

turbulence in the tropopause.
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VII. REFRACTIVE TURBULENCE PROFILING

In the discussion on the isoplanatic angle, we saw that

by measuring the normalized variance, we avoided the unknown

2
C profile. Clearly, the integrated parameters like B and

r
Q

do not provide direct information on the distribution of

turbulence with altitude. Many laser system design analyses

2
require C profiles. However, they are difficult to obtain

n

by remote measurements. In Chapters IV and V, I presented a

profile measured by microthermal probes on a balloon. This

2
represents a direct measurement of C , with very high

vertical resolution (on the order of meters), along a single

2
vertical path through the atmosphere. Actively, C

profiles are measured by acoustic sounders (up to approxi-

mately 1 km) and pulsed Doppler radars (2-30 km) [Refs. 41,

43], Active techniques provide good vertical resolution,

but the cost of such instruments is quite high.

In this chapter and the next, we will look at profiling

2
C passively by direct inversion of the amplitude

scintillation covariance equation with application of the

Tikhonov regular ization technique. But before delving into

a rigorous solution, we should make note of the other

2
passive techniques for measuring C profiles.
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A. PREVIOUS WORK

The time lagged covariance function of amplitude

scintillations for a point source and two equal circular

aperture receivers is given by [Ref. 44],

B (p») = 4irk
2 ^dz'C

n
2
(z') J K'dK'sOOJotK'

| p
" - v(z')t|]

x si °
2

[^] (7.1)

where p' is the separation between the detectors, v(z') is a

wind profile, t is the time-lag, $(K') is the . 033K '

~ 11//3

portion of the Kolmogorov spectrum and D is the diameter of

the circular receiving apertures. Often this equation is

written for point receivers. In that case the J,(x)/x + 1.

2
For measuring C profiles, we let the time-lag, x, equal

zero, removing the unknown velocity profile. Hence, B (p
1

)

is in the form of a Fredholm equation of the first kind,

B (p') = A / Q(z , ,p')C
n
"(z , )dz' , (7.2)

where A is a constant and Q(z',p') is the kernel given by

the integral over K*. Fredholm equations of the first kind

are notorious for being ill-posed (i.e., errors or noise in

the data make the solution ill-behaved). In fact, Fredholm
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equations of the first kind may have no solution at all.

Peskoff [Ref. 45] was the first to invert this equation for

point apertures. Shen [Ref. 46] realized that the problem

was ill-posed and used a least-squares technique to minimize

error. As time progressed, other methods for handling the

ill-posed problem appeared. Heneghan and Ishimaru [Ref. 47]

proposed a statistical inversion technique to compensate for

the large errors induced by inversion. However, one should

note that none of these techniques evolved into an actual

measurement system. People began to realize that if the

2
weighting function, W(z'), (3.3), could be made to peak, C

could be measured directly without inversion using (3.1).

1 . Remote Probing with Apodized Apertures

To make W(z') peak requires filtering in the

aperture or image plane [Refs. 31-33]. NOAA [Ref. 32]

2fabricated a C profiling instrument (stellar scintillo-

meter) based upon the filtering technique. By using three

2optical weighting functions, it measures values of C at

seven levels between 0-20 km. Unfortunately, the weighting

functions, W(z'), are somewhat broad. The structure we

observe in Figure 3.2 would not be as pronounced if this

profile had been measured by the optical scintillometer.

However, the scintillometer does follow the general trends

of C
2
well,

n

In Appendix A, I show many weighting functions,

W(z), for different apertures and spectra. This was an
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effort to find highly peaked weighting functions for an

optical scintillometer type instrument. Unfortunately, the

quest proved fruitless, but other interesting weighting

functions were found.

2. Binary Star Techniques

Several French researchers [Refs. 48-50] have

2developed a technique for profiling C using a spacio-

angular correlation function of two stars in a telescope

aperture. The maxima in the correlation function correspond

to levels of turbulent layers through the relationship,

p
i

= eh
i '

where p. is the location of a correlation maxima, 9 is the

angular separation of the binary stars and h. is the

altitude of the turbulence corresponding to the maxima. The

2
group built instrumentation to measure C profiles in this

manner. They report vertical resolution on the order of 2

km, which is very good. However, being dependent on binary

2
stars is a significant hinderance, esecially when the C

n

profile vertical resolution depends on their angular

separation.

B. INVERSION WITH TIKHONOV REGULARIZATION

Jarem [Refs. 3, 4] implemented a regulari zation

technique for handling the ill-posed direct inversion

problem on the covariance function for point detectors
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2
This has been the first "new" attempt at C profiling

recently. The Tikhonov regularization amounts to filtering

the high spatial frequencies of the inverted spectrum.

Since aperture averaging also filters high spatial

frequencies, it seems reasonable to include this effect in

the covariance function to aid in regularization. In the

following sections, I will invert the aperture averaged

covariance function by Hankel transform and apply the

Tikhonov technique. This inversion is a general approach

developed by Peskoff [Ref. 45], The regularization portion

follows Tikhonov [Ref. 5] and Jarem [Refs. 3, 4],

1. Inverting the Fredholm Equation

The covariance function of amplitude scintillations

for a single point source (star) and two identical but

arbitrary apertures at zero time lag is given by [Ref. 44],

00 CD

2

B (p«) = 4u 2
k
2

Jdz'C n

2
(z') f K , dK , *(K')sin (

K
2)<

Z
)I(K')

x J (K'p') , (7.3)

where k is the wavenumber of the monochromatic electro-

magnetic wave, K' is the spatial frequency of the amplitude

-11/3
scintillations, $(K') is the K' / dependence of the
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Kolmogorov spectrum, p' is the detector separation and I(K')

is the intensity spectrum of the receiver optics. We might

note that the equation is valid only in the inertial

subrange due to the Kolmogorov spectrum. Like Jarem, we

2will extend the limits of integration over C such that^ n

C
n
2
(z') = C

n
2
(-z«) ; -L < z' < L ,

2 .

where L is the path length over which C is non zero3 n
2

equates to making C (z') an even function.

This

The two-dimensional Hankel transform of B (p
1

) is

the spectrum F (K') given by

(K») = 2* j B (p'UQfK'pMp'dp' . (7.4)

Substituting (7.3) into (7.4) gives

2.

F (K') = 4TT
3
k
2

Jdz'C
2
(z») /dK*(K)I(K) sin

2
[%j^l

x j p'dp'KjQtKpMJotK'p') (7.5)

Peskoff points out that
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J p'dp'KJQfKp'JjQfK'p') = 5(K-K«) . (7.6)

This allow us to complete the K integration giving

K
,2

z'
F (KM = 4Tr

3
k
2
l (K')MK') Jdz , C

n
2
(z') sin 2

[

K
2|<

Z
].

2k

(7.

Using the double angle relation sin a = (1/2) (l-cos2a)

,

(7.7) becomes

ao ao

F (K') = 27r
3
k
2
I (KM * (KM / dz'C 2

(zM - [dz'C^zM

r
K
,2zM

X COS [—r ] (7.8)

/ 2 — 2 — 2Jarem notes that J dz'C (z'J = 2C , where C is t
n n n

he

average value of C along the path. The second term

2
represents the Fourier transform of C (z 1

), which we will

2call C
n

(KM. Substituting these results into (7.8) gives

F (KM = 2ir
3
k
2I(KM*(KM [2C

2
- C

2
(K')1 • (7.9)

A 1

1

1

1
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Jarem defines a set of dimensionless variables for

convenience

,

K = K-
2

(|) , z -f! . p -£- ,

where d is the maximum separation of the detectors. It is

interesting to note that (L/k) is related to the Fresnel

zone size since

L 1/2 ,XL^l/2
. f

(

k> " ( 2*>
(2t)

1/2 '

where f is the Fresnel zone size. With the new variables,

$ (K * ) becomes

*(K.) = .033K.-
11/3

= .033(£r
11/6

k"
11/6

= (£)

" 11/6
* (K) .

(7.10)

If the receiver aperture is given by a "top hat" function,

I (K
' ) becomes

I(K') =
K'D

K
1/2

b.
2J

1
(-1—

)

K^b
= I(K), (7.11)

where b is given by
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b = D(k/L) 1/2

Making these substitutions into (7.8) gives

F (K')
X

2*
3
k
2
(£)

11/6 *(K)I(K) / LdzC (z')
n

f LdzC 2
(z' )cos(Kz)

Following Jarem, let

C
N
2
(z) - A 3 ^" 11'6 C

n
2
(z') (7.11b)

giving

F (K') (|^)«(K)I(K) J dzCN (z) - / dzC„ (z)cos(Kz)

^V K > (7.12)

(On C , lower case n subscript indicates the dimensioned

variable, while upper case N subscript indicates the

dimensionless variable). Making similar substitutions into

B (p») leads to
A
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V p,) = B
x (p) (7.13)

where

B
x (p) =^ |dzC

N
2
(z) f dKI(K)#(K) sin 2

(^|)

x J (aK
1/2

p) (7.14)

and

a = d<£) 1/2

Another important relation is how the Hankel transform

scales under the change of variables. Beginning with (7.4),

using (7.12) and (7.13) gives

00

j~F
x (K) = 2tt f B

x
(p)J

Q
(aK

1/2
p)d

2
pdp .

Hence, F
X

( K ) is

F
X
(K)

irkd

/
1/2

pdpB
x
(p)J (aK p) (7.15)
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With the relations we have developed, (7.9) becomes

F (K) = G(K) [2CN
2

- C
N
2
(K)] , (7.16)

where

G(K) = *(K)I (K)

The solution to the integral equation becomes

CN
2(Z

> =27 / CN
2(K >

el KzdK (7.17)

or

'N ^-^ I

"F
x
(K

> - 2— + 2C
G(K)

Z^N
e dK (7.18)

This is the ill-posed solution of the integral equation.

Tikhonov proposes using a low pass filter function q(K) such

that the high spatial frequencies contaminated by the

inversion process are removed. We should note that this

process does nothing to errors at low spatial frequencies.

The regularized solution is of the form

C
N
2(Z) _1

2tt /

-F
x
(K) - 2

12 + 2C
G(K) ^N q(K)e lKzdK . (7.19)
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A profiling system would measure B (p
1

). Using the

relations developed, B (p») is scaled to B (p) and trans-

formed to F
X
(K). In (7.19), all the quantities are kn

with the exception of C
N . CN is given by

owns

2CN
2

= / dzCN
2
(z) ,

which can be defined as a dimensionless form of Fried's r
n

by

— 2
R " 2C

N

where

= 4.66k 3
,k -5/6 -5/3

R
sec *

( L ) r
'

(7.20)

where <j> is the zenith angle. Instruments exist to measure

r
Q
which immediately gives Rg.

Another unknown, in terms of a practical measurement

system, is L. In reality, the value of L need only to be

2known approximately. The C„ profile can be normalized by

independent measurements of 9g and r^.

2. Constructing the Filter Function

Clearly, in any measurement, noise will be present.

Hence, the spectrum, F
X ( K )/ can be represented by a "true"

component and a "noise" component,
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F
X
(K) = F

x
fc
(K) + F

x
n
(K) , (7.21)

where the superscript t and n imply true and noise. Hence,

2
CN (K) is also composed of a "true" and "noise" component.

If we let

C
N
2(K) = 2C

N
2

" C
N
2(K) /

(7.15) becomes

F
X
(K) = G(K)C?-

2
(K) . (7.22)

The kernel, G(K), is type I to good approximation in

Tikhonov's representation. Type I implies that there are

no zeros along the real axis and as K + •, B(K) 0.

For type I kernels, the filter function, q(K) can be

represented by

q(K) = £1*13
, (7.23)

[G(K)] 2 + M(K)

where M(K) is a smoothing function. If the spectral

characteristics of the noise are known, and the spectrum

2
C (K) unknown, M(K) becomes

M(K) = aK
2P

, (7.24)

118



where M(K) is a p order stabilizer with regularization

parameter a. If the noise spectra and signal (CN
(K)

)

spectra are known, one can construct an optimal Wiener

filter with

M(K) =
f(i} ' < 7 ' 25 >

where S(K) is the signal spectra and N(K) is the noise

spectra

.

If the noise process is white, like the shot noise

in a measurement system, Tikhonov states that P = 1/2 in

(7.24). Following Jarem, we can make an approximation to

the optimal Wiener filter, (7.25). Consider an error

functional of the form

e —
J [CN

2
(z) - CN

2t
(z)]

2
dz , (7.26)

2where C^ (z) has both signal and noise components and t in

2
the second term denotes the "true" component of CN

(z). By

Parseval's theorem, we can rewrite (7.26) as

"
2V / [S 2(K) " CN

2t
<K)]

2
dK

•
(7.27)
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mac

Now, CM (K) is given by
'N

CN (K) =
[ N G (K)

J

[G(K)]

[G(K)K + M(K)
(7.28)

and CN
2t

(K) is given by (7.16). Substituting (7.16), (7.28)

and (7.21) into (7.27) gives

-^ I
9

(F Y
fc
(K) + F v

n
(K))

2C - - -
N G(K)

[G(K)]

[G(K)p + M(K)

G(K)
dK

- 2C
2

(7.29)

Putting (7.29) over a common denominator and performing the

appropriate cancellations leaves

-^ f
[-G(K)F

x
n
(K) - M(K) [2C xt

2 +
F„ (K) -. 2

(kT~ ]

.

[[G(K)]
2

+ M(K)]
2

dK ,

(7.30)

2twhere the second bracket in the numerator is merely C (K)

.

Squaring the numerator of (7.30) gives

e — 1

77 /

[G(K)F
x

n
(K)]

2
+ 2M(K)G(K)F

x

n
(K)C

N
2t

(K)

[[(G(K)]
2

+ M(K)] 2

[M(K)C
N
2t

(K)]
2

]

[[(G(K)] 2 + M(K)] 2
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Jarem notes that the middle term,

2M(K)G(K)F
x
n
(K)C

N
2t

(K)

[[G(K)] 2 + M(K)] 2
=

since the noise spectra, F
n
(K) and the signal CN

fc
(K) are

produced by uncorrelated processes. Hence, the error

becomes

e =
2 IT /

[G(K)F
x
n
(K)]

2 + [M(K)C
N
2t

(K)]
2

[[G(K)]
2

+ M(K)]
2

dK . (7.32)

We want to construct M(K) so that the error is minimized.

This implies that the derivative of the error functional

with respect to M(K) vanishes or

de
dM(K)

= (7.33)

After performing the differentiation, we find that the

minimizing M(K) is given by

M(K) =
F

n
(K)

C
N
2t

(K)

(7.34)

n
Since our noise process is white, F (K) can be approximated

2t
by a constant N. Jarem makes an assumption about CN

(K)
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that is invalid for vertical soundings. His data is along a

2t
2 km horizontal path. Hence, CN (z) is basically a

2t
N
2tconstant making CM (K) behave as

A sin K
K

Substituting back into (7.34) gives

moo =
nV

2 . 2A^ sin^ K

2The average value of sin K is 1/2 making M(K)

where

M(K) = ctK
2

, (7.35)

2N 2

a = —~- . (7.36)
A

This corresponds to a stabilizer of order p = 1 and

represents an optimal Wiener filter. It is interesting to

note that M(K) is completely independent of the aperture.

2t
For vertical paths, CM (z) varies over five orders

2tof magnitude. Hence, the assumption of a constant CN
(z)

is not valid. However, it does represent a first order
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approximation and is a starting point for numerical

simulation. If problems occur in the inversion, one can

2tmodel C„ (z) as an exponential decreasing in z, giving a

new smoothing function M(K). Therefore, we have two

stabilizers of order p = 1 and p = 1/2 to attempt successful

inversion.

For Jarem's inversions, he finds that the regulari-

zation parameter, a, is nominally 10 for the horizontal

paths. Chapter VIII investigates this inversion technique

on the 500 m vertical resolution data of Good shown in

Figure 3.2. But before moving on to the simulations, I will

investigate two analytical results that we will find

convenient.

In (7.14), the z integration can be completed

analytically. First, interchanging the K and z integrations

gives

00 00 _

B (p) =- / dKG(K)J
Q
(aK

1/2
P) J

dzCN
2 (z)sin 2

(—2~) •

-"

(7.37)

After completing the z integral, we have

B (p) = 1
J dKG(K)J

Q
(aK

1/2
p) [2C

N
2

- C/(K)] , (7.38)
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where the sin term is expanded using the double angle

relation as before. For test purposes, it is convenient to

2 2
input CN (z) as a cosine wave. Hence, C^ (K) becomes a

delta function giving

B (p) -* / 1/2.W,? 2 _dKG(K)J
Q
(aK ' p) [2C

N
fi(K-K')] • (7.39)

— 2 .

If the cosine wave has no offset, 2CN
is zero and the K

integral has an analytic result,

B
x (p) = \ G(K')J (aK'

1/2
p) , (7.40)

where K 1 is the wavenumber of the input cosine wave. Thus,

(7.40) is an analytical check for softwave.

3. Noise Computations

Detectors in an instrumentation package that measure

B (p') will add shot noise to the signal. From [Ref. 51],

the average, rms shot noise current is given by

i
N

(v) = 2elAv , (7.41)

where Av is the frequency bandwidth, I is the average

current from the detector and e is the electron charge. I
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depends on the intensity of the starlight and quantum

efficiency of the detectors. To find the irradiance of a

given star on the telescope aperture, we can use the

following [Ref. 52] relation,

log (— ) = . 4(Mag
1

- Mag
2 ) , (7.42)

where I,, I
2

are the stellar intensities on earth and Mag,

and Mag
2

are the magnitudes of the different stars. Using

the sun as a reference, we find that the star a Auriga

— 8 2
(Capella) has an irradiance of 1.05 x 10 W/m on the

telescope for Planck radiation between 0.4-0.6 ym (visible).

For the apodized aperture, the detector sees 2.15 x 10 W.

The quantum efficiency is [Ref. 53]

Q.E. =
n_

(7.43)

where n - is the number of photoelectrons emitted by the

detector/second and n is the number of incident quanta/

second on the detector. Hence, n can be found using the

following relation,

n
q

" hT
(7.44)
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where P is the power/wavelength interval of the starlight on

the detector, h is Planck's constant and v is the frequency

of the incident light. For the illustration of Capella, n
si

o
is 5.4 x 10 quanta/second given X = 500 nm. If we consider

a detector with a quantum efficiency of 10%, I is 8.66 x

-12
10 A. Hence, the variance of the current due to shot

-27 2
noise is 1.39 x 10 A given a bandwidth of 500 kHz.

Thus, we can construct a theoretical signal-to-noise ratio

given by

SNR =

n

8.66 x 10
-12

3.72 x 10
-14

= 232.63 (7.45)

We can use this figure for constructing Gaussian white noise

in Chapter VIII. As pointed out earlier, the shot noise

-1/2
increases with I . Since the signal is proportional to

the intensity, the signal-to-noise ratio increases with

4. Inversion Conclusions

The derivation of sections 1 and 2 is completely

general in terms of the receiver apertures. Hence, the

receiver apertures can be apodized to optimize inversion

performance. We hope that the additional spatial filtering

done by the aperture averaging will aid in regularizing the

ill-posed nature of the inversion process.
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VIII. NUMERICAL SIMULATION OF THE AMPLITUDE COVARIANCE
FUNCTION INVERSION WITH TIKHONOV REGULARIZATION

2
In this chapter, we hope to see if C profiling by

direct inversion of the scintillation amplitude covariance

function with Tikhonov regularization is a practical

measurement technique. We can accomplish this by

2numerically modeling the inversion process using the C

balloon data of Good presented previously. From this data,

I construct the covariance function and use Tikhonov

regularization to invert the covariance function regaining

the original data. What follows is a step-by-step analysis

of the numerical simulation.

A. CONSTRUCTING THE C XT AND SCINTILLATION SPECTRA
N

2
The first step in obtaining CN (K) is to transform Good's

data into the dimensionless set of variables described in

Chapter VII. We accomplish this by applying (7.11b)

obtaining CN
2
(z) from C

N
2
(z'). C

N
2
(K) is simply the Fourier

transform of C
N
2
(z). For this test, the path length L is

2
31.5 km representing the first 63 points of the known C

N
2

profile (500 m to 31.5 km). I obtained the value of C
N

at

2
the surface by assuming the -4/3 dependence of C

N
at low

altitudes described in Chapter IV. Since the balloon data

has a vertical resolution of 500 m, A Z = 0.0159. The spatial
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frequency resolution of the Fast Fourier Transform (FFT) is

given by [Ref. 54] as

AK =
NAz

where N is the number of data points. Hence, AK is 0.9843.

(We should remember that K and z are dimensionless

2
variables.) The value of AK implies that CN

(K) should span

zero to 63. However, FFT's are based on the Nyquist

criteria, [Ref. 55] that requires two points per Az

interval. Therefore, half the frequencies in the FFT are

duplicates, implying that K spans zero to 31.5.

2
The analysis in Chapter VII requires that CN be an even

function. This is convenient since the Fourier transform of

an even function is real. Figure 8.1 shows the real part of

2 2C^ (K). The modulus of CN (K) is simply the absolute value

of the real part since the imaginary part is zero. We

obtain the scintillation spectrum F
X
(K) by applying (7.16).

It is interesting to note that the FFT is very robust in

the presence of noise. Using an algorithm from [Ref. 56], I

injected Gaussian white noise with poorer signal-to-noise

than that described in Chapter VIII, into the real and

:

N (K) . The real part of C
N

2 2
imaginary parts of C (K) . The real part of CN (K) with

2noise is shown in Figure 8.2. If we inverse FFT CN
(K) with

2
noise, we obtain the C^ (z) profile in Figure 8.3. The
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noise has very little affect on the transform. We will find

that very small amounts of noise produce drastic results in

the inversion of the covariance equation.

B. CONSTRUCTING THE COVARIANCE FUNCTION

I determine the covariance function using (7.38). The

numerical integration uses the Trapezoid rule at each

detector separation p. We should note that the Trapezoid

rule integrates functions with noise quite well since it

does not require higher order derivatives in the data.

Figure 8.4 shows the covariance function for a maximum

detector separation of d = 0.5 m. The detector optics have

a "top hat" aperture with a diameter of 1 cm. The form of

the covariance function in Figure 8.4 is consistent with

theoretical calculations [Refs. 6, 15].

The analytical form of the covariance function for a

2delta function C
N

(K) is given by (7.40). I used this to

check the covariance function software. The relative error

is .02. Hence, the covariance function calculations have

"noise" (errors) due to the numerical computations. We will

use this as a source of noise for ill-conditioning.

We should note that the covariance function has the

proper dependence on optics aperture size and electro-

magnetic wave wavelength. Figure 8.5 is the dependence of

the covariance function on aperture size. As expected, the

covariance function becomes wider with larger apertures.
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This is predicted by the transform properties involved.

Figure 8.6 shows that the covariance function widens for

increasing wavelength.

2In a C
N

profiling system based on this technique, we

would measure the intensity covariance function. Hence, the

covariance function is the starting point for inversion to

2obtain the C
N profile. The following sections describe the

data manipulations required for an actual measurement

system. It is interesting to note that experimental

covariance function measurements of laser beam scintillation

do not have the negative portion that represents the

correlation of maxima and minima in the scintillation

pattern [Ref. 28]. This may be due to the fact that the

photomul tipliers measure a positive definite quantity (i.e.,

intensity)

.

C. CONSTRUCTING THE SCINTILLATION SPECTRUM AND APPLYING
TIKHONOV REGULARIZATION

The scintillation spectrum F
X (K) is the Hankel transform

of the covariance function. The dimensionless form of the

'N
transform is given by (7.15). CN

2
(K) is found by (7.16).

To compensate for the ill-conditioning present, we introduce

a low pass filter of the form given in (7.23). This is the

Tikhonov regular i zation. Figure 8.7 shows C
N (K) after the

regularization with a stabilizer of the form aK . Note the

affect of the filter on the higher spatial frequencies.
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2
Figure 8.8 shows how CN (K) changes with stabilizers of

2
different powers of K. We obtain CN

(z) by inverse FFT.

2
Figure 8.9 shows the true C (z) profile, unregularized

solution and regularized solution with a = 1 x 10 and a

3
K stabilizer. Remember that a determines the amount of

ill-conditioning allowed to enter the solution. The

unregularized solution (dots) bears no resemblence to the

'N

2
original CM (z) profile. The regularized profile with a = 1

x 10 does very well resolving much of the 500 m

resolution structure present in the actual data. The small

"hump" in the regularized solution after the real data has

gone to zero is part of the ill-conditioning. Note that the

regularized solution has problems near zero. It in fact

becomes negative (not shown) which is unphysical. This is

very likely due to the frequency truncation. Consider a

"top hat" aperture. We can Hankel transform the "top hat"

to obtain the Airy spectrum. Hankel transforming back to

aperture coordinates produces an oscillation in the original

aperture function, Figure 8.10. This is due to frequency

truncation. This same truncation occurs in our calculation

2
of the covariance function and C spectrum. Hence, an

2induced oscillation in C. (K) transforms as the large

N
2 (K) t-r

N

negative value in the space coordinate, z. The fact that it

is negative implies that the oscillation in the spectra is

out of phase with the other frequencies present.
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Lowering the regularization parameter a allows more of

the ill-posed nature of the problem into the solution.

Figure 8.11 shows the true solution and regularized solu-

-9 -13 3
tions with a = 1 x 10 and 1 x 10 for a K stabilizer.

Clearly, the choice of a is a trade-off between structure

and magnitude accuracy. The aperture averaging does in fact

filter the higher spatial frequencies, however manipulating

a produces more favorable results than changing the optics

diameter

.

2
It is interesting to note the affect on CN

(z) for

stabilizers with different powers of K and the same

2
regularization constant, a. Figure 8.12 shows CN (z) for

K , K and K stabilizers all with a = 1.0 x 10 .In
2Chapter VII, we found that K stabilizers correspond to the

3
optimal Wiener filter. From this simulation, I feel that K

2stabilizers offer the best fit to the CN
profile.

D. REGULARIZATION CONCLUSIONS

Initially, we were interested in whether direct

inversion of the covariance function with Tikhonov

2regularization offered a practical way of obtaining CN

profiles. I have shown that one can obtain high vertical

resolution profiles (Az = 500 m) with this technique.

However, covariance function measurements are very difficult

to make. The quality of the measured covariance functions

will never be comparable to those calculated numerically in
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this section. Based on this fact alone, I feel that other

techniques are more likely to yield accurate, high vertical

2
resolution C-, profiles. I will propose a method for

obtaining such profiles in the next chapter.
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IX. CONCLUSIONS

The importance of the atmospheric isoplanatic angle and

refractive turbulence profiles to the Space Defense

Initiative (SDI) cannot be overstated. In this dissertation

I have demonstrated an improved isoplanatic angle

measurement system and presented a technique to measure

refractive turbulence profiles. In the following sections,

I will briefly review each area and propose future work.

A. ISOPLANATIC ANGLE MEASUREMENT

We saw that the original Walters isoplanometer could be

improved by apodizing the aperture of the receiver tele-

5/3
scope. To best approximate the z altitude weighting

required for isoplanatic angle measurement, I constructed a

double annulus aperture function optimized for a Celestron

C8 telescope. The double annulus aperture weighting

function is a significant improvement over that of the "top

hat" clear aperture used on the previous isoplanometers

.

Sensitivity analysis of the double annulus weighting

function to strong low altitude turbulence and inner scale

changes with altitude showed no effect detrimental to a

measurement system. Hence, we fabricated a fourth

generation isoplanometer based on the double annulus

aperture. This instrument is designed for night use and
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offers many advantages over the previous system. First, the

double annulus no longer requires the use of the Celestron

C14 telescope as did the "top hat" aperture. This is a

considerable savings in cost and instrument managabili ty

.

This instrument also has the ability to make isoplanatic

angle measurements once per second giving data with very

high temporal resolution. Trends in the isoplanatic angle

are emerging now that have never been seen before and

indicate that this instrument may be an extremely effective

tool to probe the tropopause.

In Chapter V, I detailed tests proving that the

instrument is indeed measuring the isoplanatic angle

correctly. And lastly, I presented data from Maui showing

interesting trends in the isoplanatic angle. Currently, two

fourth generation isoplanometers are operating at different

locations, supporting high priority programs.

Clearly, the greatest need in the area of isoplanatic

angle measurement is a painstaking correlation between the

structure observed in isoplanatic angle measurements and

meteorological data. One hopes that the isoplanometer might

effectively measure turbulence at the tropopause. This

would save money in balloon flights, etc.

Also of interest would be to modify the fourth

generation system to provide high temporal resolution data

during the day. This requires the use of high quality
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telescope mounts and drives, but I feel daytime data is well

worth the expense.

B. REFRACTIVE TURBULENCE PROFILING

In this section, we investigated the inversion of the

scintillation amplitude covariance equation. I included the

filtering done by the receiver optics and obtained a closed

form solution to the inversion problem. Unfortunately,

inverting the covariance function is ill-posed in a

mathematical sense, meaning that noise in the data causes an

unstable solution. Hence, I incorporated a regularization

technique developed by Tikhonov to compensate for the ill-

conditioning. Tikhonov regularization is a low pass filter

designed to eliminate high spatial frequencies most

contaminated by the ill-conditioning.

I modeled the inversion numerically using an actual

refractive turbulence profile with 500 m vertical

resolution. We saw that the Tikhonov regularization

reproduced much of the profiles very well. However, we note

that actual covariance function measurements are very

difficult to make. Hence, I recommend pursuing the

weighting function approach to refractive turbulence

profiling described in Chapter VII. One should be able to

obtain suitable weighting functions given an appropriate

basis set. This would allow refractive turbulence profiling

by scintillation intensity variance measurements, operating

much like the isoplanometer

.
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APPENDIX A

OTHER WEIGHTING FUNCTIONS

Many different weighting functions can be generated

using the technique mentioned in Chapter III. What follows

is a brief overview of the many weighting functions I

5 /3generated while trying to approximate to the z / behavior

or find weighting functions that peak at a given z.

First, a few words about the double annulus aperture.

In Figure 3.8, we have noted the error remaining at low z.

This can be improved by making the inner annulus larger,

Figure A.l. However, you sacrifice some performance at

5/3larger altitudes. Because of the z weighting for the

isoplanometer , we felt error should be minimized at higher z

at the expense of low z.

I also tried other combinations of Bessel functions.

One is the "wedding cake" aperture function (in my

nomenclature) , which is composed of two "top hat" functions

with different transmissivi ties , Figure A. 2. Typically, the

2
"wedding cake" aperture gave a weighting function of z

below 3 km, Figure A. 3. Associated with the "wedding cake"

is the "three tier" aperture function, which has one more

"layer". Weighting function behavior with the "three tier"

is basically the same as the "wedding cake".
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One can incoherently add spectra of different aperture

functions since the correlation distance is so small (on the

order of centimeters) , given a telescope with a sufficiently

large aperture. Using this technique, I was able to make

the weighting function bend at a given z, Figure A. 4. The

weighting function in Figure A. 4 is an incoherent addition

of the "top hat" and "wedding cake" aperture functions.

Weighting functions with this characteristic are also

important.

From the Bateman manuscripts, I tried some Hankel

transform pairs. If we consider the Hankel transform of

f(x), (the spectrum), in the form

CO

f(y) = / f (x)J
Q
(xy) (xy)

1/2 dx (1)

the function x~ ' e~ax has the spectrum y (y + a ) .

The exponential aperture function has the weighting function

shown in A. 5. This weighting function is also on the z

5/3side of z ' .

Shown in Figures A. 6 and A. 7 are the weighting functions

associated with sine and cosine spectra. Both have

analytical aperture functions that can be found in the

Bateman Manuscript [Ref. 34].

This is by no means a complete list of all the apertures

I found weighting functions for. However, these are the

more interesting and applicable.
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APPENDIX B

MAUI METEOROLOGICAL BALLOON DATA

LO-CATE WO-8000 UPPER AIR DATA MANAGEMENT SYSTEM P106277
REV2.11 (C) 1984
DATE (GMT) TIME (GMT) ASCENT NO. FLIGHT EQ. STATION SONDE NO,
850917 04:16 17 5 6685

TIME PRESSURE HEIGHT TEMP DP-DEP RH
MIN. MBARS M-MSL CEL. CEL. PERCENT

0.00 711.4 12.0 21. 1 22.

0.65 700.0 135 11.2 17.8 28.3

1.73 682.4 348 11. 2 14.6 36. 2

2.73 659.4 633 9.5 15.0 34.7

4.00 627.7 1038 4.6 12.0 41.7

6. 10 577.7 1709 0.0 11.2 42.9**

6. 15 576.4 1727 -0. 1 11.3 42. 6

6.28 573.2 1788 90.8 17.8 46.9

6.35 571.7 1816 -0.3 11.1 43. 3

7.80 540.6 2261 -4.1 7.1 57.7

8.75 518.8 2585 -5. 5 12.6 36.8

8.82 517.3 2608 -2.7 12.8 37.1

8.88 515.7 2632 -5.9 12. 3 37.6

9.67 500.0 2874 -7.3 13.1 34.6

9.88 495.7 2941 -7.9 15.0 29.0

11.40 466.0 3418 -11.6 11.5 38.4

12.80 443. 3 3800 -12. 6 14. 5 28. 9

15.55 400.0 4576 -18.4 14.0 28.3

22. 23 305. 6 6530 -32. 5 10. 3 35. 1

22.65 300.0 6660 -33.5 10.0 35.6

25.73 260.8 7627 -41.6 6.6 47.9
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TIME PRESSURE HEIGHT TEMP DP-DEP RH
MIN. MBARS M-MSL CEL. CEL. PERCENT

26.60 250.0 7913 -43.8 8.4 38.4

27.87 233.8 8359 -47.5 8.1 37.9

29.80 216.1 8876 -50. 2 8. 2 36.5

31.30 200.0 9377 -54.2 7.9 35.8

34.78 169.1 10427 -65.0 7.0 35. 1

36.72 153.2 11022 -70.0 6.6 34.8

37. 13 150.0 11147 -70.6 6.5 34.7

37.40 148.0 11227 -71.1 6.5 34.7

38.40 140.6 11531 -70.0 6.6 34.7

38.45 140.1 11554 -26.4 9.8 39.4

38. 58 139.0 11606 -70. 1 6.6 34.7

40.38 126.9 12143 -73.7 6.3 34.4

43. 53 109.0 13029 -74.7 6. 2 34. 3

44.83 102.3 13396 -76.6 6.0 34.2

45.30 100. 13527 -76.8 6.0 34. 1

45.63 98.4 13620 -76.7 6.0 34. 1

48. 10 87.4 14310 -72. 2 6.4 34. 5

52.60 70.0 15633 -67.2 6.8 34.8

54. 15 64.9 16092 -65. 7.0 34. 9

56.53 57.5 16830 -65.0 7.0 34.9

58.75 51. 6 17495 -62.0 7.3 34.9

59.42 50.0 17690 -61.7 7.4 34.9

63. 05 41.6 18835 -59.4 7. 6 34.7

66.17 30.0 20883 -59.2 7.7 34.4

66.73 20.0 23427 -58.8 7.7 34.4

66.75 19.6 23554 -58.8 7.7 34.4

68.03 10.0 27711 -65.8 7. 1 34. 2

70.00 0.0 28794 -69.3 6.7 34.2

70.07 0.0 28794 -68. 5 6.8 34. 2

70.13 0.0 28794 -67.6 6.9 34. 3

70. 25 0.0 28794 -65.7 7.1 34.4
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TIME PRESSURE HEIGHT TEMP DP--DEP RH
MIN. MBARS M-MSL CEL. CEL. PERCENT

70.32 0.0 28794 -64.7 7.2 34.4

71.78 0.0 30992 -43.0 8.5 38.1

71.85 0.0 30992 -42.0 8.5 38.4

71.92 0.0 30992 -41.0 8.5 39.0

71.98 0.0 30992 -40.3 8.4 39.7

72.03 0.0 30992 -39.4 8.3 40.7

72.10 0. 30992 -38.5 8.1 41.8

WIND VELOCITY

TIME HEIGHT DIRECTION SPEED HEIGHT
MIN. M-AS DEGREES KNOTS FT-MSL

79 29.0 0.0

1 204 102 21.3 668.7

2 424 99 11.6 1391.1

3 718 94 6.8 2356.5

4 1038 49 2. 8 3405.

5

5 1358 43 3.4 4453.8

6 1677 67 3.1 5502.

1

.7 2015 116 3.3 6612.5

8 2329 178 3. 5 7641.8

9 2668 188 6.2 8753.4

10 2978 216 6. 8 9769.3

11 3292 247 6.1 10801.2

12 3582 246 7. 2 11751.0

13 3856 212 9.4 12652.3

14 4139 199 12. 7 13578.

1

15 4421 198 10.7 14503.9

16 4708 206 9.8 15444.7

17 5000 219 10.4 16404.0

18 5292 234 12. 2 17363.

2

19 5585 220 12.2 18322.4
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TIME HEIGHT DIRECTION SPEED HEIGHT
MIN. M-AS DEGREES KNOTS FT-MSL

20 5877 234 10.6 19281.6

21 6169 257 13. 1 20240.8

22 6462 256 19.3 21200.0

23 6770 248 21.1 22210.

5

24 7083 246 26.9 23239.4

25 7397 265 21. 1 24268.

4

26 7715 284 25.6 25311.6

27 8054 292 33.5 26423.

3

28 8395 295 37.6 27541.5

29 8662 296 39.0 28418.

8

30 8943 291 35.3 29339.8

31 9277 283 31.0 30435.6

32 9588 268 25.6 31456.6

33 9889 255 26. 2 32445.

6

34 10191 240 27.2 33434.6

35 10494 239 28.0 34428.0

36 10801 229 37.7 35437.

7

37 11107 246 36.0 36440.

2

38 11409 260 29.0 37432.3

39 11730 284 20. 1 38485.

2

40 12029 247 23.4 39464.0

41 12316 243 21.9 40408.

2

42 12598 248 18.4 41331.0

43 12879 255 16.7 42253.8

44 13161 251 13.0 43178.

2

45 13443 209 11.8 44103.

5

46 13723 197 14.4 45021.5

47 14002 203 8. 3 45939.

2

48 14282 24 2.9 46856.9

49 14575 50 10. 9 47816.

8

50 14868 79 15.7 48781.4
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TIME HEIGHT DIRECTION SPEED HEIGHT
MIN. M-AS DEGREES KNOTS FT-MSL

51 15163 87 19.7 49746.0

52 15457 90 19.1 50710.5

53 15751 102 20.4 51677.9

54 16048 107 18.6 52649.4

55 16355 95 19.7 53658.7

56 16665 80 20.4 54674.6

57 16970 86 23.9 55675.7

58 17270 97 23.8 56660.0

59 17568 100 21.7 57638.1

60 17874 97 13.0 58641.1

61 18189 88 13.2 59675.0

62 18504 89 19.2 60708.9

63 18819 96 25.4 61742.8

64 19459 106 27. 2 63842.6

65 20116 106 27.1 65998.5

66 20773 106 27. 1 68154.

3

67 24364 106 27.1 79933.6

68 27603 106 27. 1 90560.9

69 28794 277 47.8 94468.3
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