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ABSTRACT

The AN/UYS-2 represents the U. S. Navy's effort to meet the signal processing demands of

the 21' century. It is programmed using the Processing Graph Methodology (PGM), where signal

processiog applications are reproented as graphs and the nodes specify library primitives. Presently

the AN/LTYS-2 incorporates a First-Come-First-Serve run-time technique to allocate system resources

to support large-grain data-flow execution. While this technique results in low run-time overhead,

the system throughput degrades rapidly under high system load. To provide uniform output even

under high load, a compile-time technique, called Revolving Cylinder (RC) analysis, is developed

further to identify optimal chains and restructure the graph. It is shown by simulation that such

chaining and restructuring improve the overall system performance.
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I. INTRODUCTION

A. THE AN/UYS-2

The AN/UYS-2 Digital Signal Processor (DSP) represents a

new generation of signal processors designed to meet the needs

of the U. S. Navy into the 21Is Century. With weapon and

delivery systems becoming more complex, the need to perform

high speed calculations to counter the threat becomes more

imperative. With the advantage of high speed processing, the

U. S. Navy will be able to quickly detect, localize, identify,

attack, and counter the threat in closer to real time fashion.

The AN/UYS-2 was designed towards achieving this goal as a

"Navy Standard" to be incorporated into air, sea, and shore

assets that rely upon signal processing applications.

The hardware development of the machine is based upon the

use of Standard Electronic Modules (SEMs) incorporating off-

the-shelf processor, and state-of-the-art micro-circuit

devices. Presently there are two SEM versions available: type

"B" and type "E". The "E" format module differs from the "B"

in it is lighter, smaller, and has improved power performance.

The development of the "E" version was driven by these factors

for implementation in aircraft. [RICE 90, pp.2]

The SEMs are used to build autonomous and asynchronous

functional elements (FEs). Currently six FE types exist.
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They are the Arithmetic Processors (APs), Global Memories

(GMs), Scheduler (SCH), Command Program Processor (CPP), and

Input/Output Processors (IOPs), and the Input Signal

Conditioner (ISC). The AP executes signal processing

primitives, GMs provide data storage and execute memory

management functions, the SCH performs node scheduling, the

CPP acts as an overall control unit along with user interface,

IOPs provide formatting of input and output data and

buffering, ISCs are equivalent to IOPs with the addition of

input signal conditioning and generating output for sensor

control.

Communication between FEs is supported by the Control Bus

(CBUS), and the Data Transfer Network (DTN). The CBUS

provides a transfer medium for control messages, while the DTN

provides a transfer medium for the movement of data queues

between FEs. The AN/UYS-2 architecture is given in Figure

1.1. [RICE 90] The details of its operations are described in

[POPS 90] and [RICE 90).

The AN/UYS-2 is programmed using the Navy-sponsored

Processing Graph Methodology (PGM) with Signal Processing

Graph Notation (SPGN). Since the AN/UYS-2 carries out large-

grain data-flow execution, computations are best represented

as a graph. Using PGM, the application to be implemented is

developed as a set of graphs.
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The graphs make use of pre-defined signal processing

functions called primitives from a library [PRIMLIB 90].

1.FWe ft

aF. USK GM g hGMn

2CPP AP1.I APrn ISMk- IOPk

'IV t,,FE

Figure 1.1e The AN/UYS-2 Architecture

Figure 1.2 shows a simple graph description.

Busm

BOW

Figure 1.2 A Sample PGM graph

Circles represent nodes, the basic signal processing entity of

PGM. Nodes in turn represent primitives. Arrows represent

3



first-in-first-out (FIFO) data queues, which provide logical

data storage and transfer medium between nodes. A graph is

executed when the user, through the CPP, invokes it. [RICE 90]

With the application invoked, multiple instances will be

executed dependent upon input data rate and data flow.

The AN/UYS-2, also known as the Enhanced Modular Signal

Processor (EMSP), is currently operational in the acoustic

system onboard the P3-C "Orion" aircraft, the BSY-2 Sonar on

the SSN-21 "Seawolf" class submarine, and has been proposed

for the S3-B "Viking" aircraft electronics upgrade. All of

the above shall remain operational into the 21st Century, and

will be required to perform their missions to the utmost in an

everchanging political environment.

B. OBJECTIVES

The AN/UYS-2 presently uses the First-Come-First-Served

(FCFS) strategy of scheduling an application's nodes to a

prcocessor. Under high loads, the system can become congested

with data, resulting in a degradation of throughput. The FCFS

strategy does not yield any execution control at run-time and

is difficult to analyze in terms of performance, because of

data flow. Since DSP applications are very specific in terms

of the amount of computation required on each node, they lend

themselves to compile-tir- analysis easily. However,

presently, there exist no design tools to optirize the machine
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performance using such analysis in order to ensure the

required throughput.

In this thesis, a compile-time strategy is developed to

analyze a graph and determine if and how any performance

improvement is possible. In particular, chains of primitives

are identified and are then incorporated by restructuring the

original graph.

A set of algorithms is developed that builds upon and

refines the revolving cylinder (RC) technique of controlling

node execution sequence to enhance system performance. [SLZ

92]

1. Scope of the Thesis

In [LIT 91] the RC approach to determine node

execution sequence is first suggested to enhance the system

throughput. This thesis proposes the refinement of the RC

approach and includes

- Critical analysis of previous work [LIT 91]

- Development of a graph preprocessor

- Determination of chains in a graph based on RC analysis,

and

- Determination of dependencies to order node execution

C. ORGANIZATION

Chapter II describes the RC approach and the previous work

accomplished in the area. Improvements that can be

incorporated are pointed out, and the flow diagram for a graph

5



preprocessor is given. Chapter III describes the chaining of

graph nodes, the issues related to chaining, in general, and

within the RC framework. The chapter is concluded with the

presentation of a chaining algorithm that meets the design

specifications. Results of executing an unchained graph using

FCFS and RC scheduling are compared with the chained graph

executed similarly. Chapter IV discusses execution control

within the AN/UYS-2 data-flow architecture and how it can be

achieved based on the RC scheduling approach. The creation of

dependencies is described. The chapter ends with a discussion

of implementation of the artificially created dependencies on

the machine. Chapter V draws conclusions from the work

accomplished along with suggestions for future work to be

done.

6



II. BACKGROUND

A. REVOLVING CYLINDER ANALYSIS

In (LIT 91], a technique for analyzing a PGM graph is

presented. This technique, called the Revolving Cylinder

(RC), performs compile-time analysis and results in the

restructuring of the graph. The restructuring is determined

assuming a given AN/UYS-2 configuration and application graph.

First we describe briefly the RC approach.

The cylinder refers to a logical data structure created

in a systematic approach to determine whether a given graph

can be mapped on to a given number of processors and satisfy

the required data rates. It is constructed by summing the

execution times of all nodes and dividing it by the number of

APs present. The result corresponds to the maximum throughput

supportable by the machine and defines the circumference of

the cylinder. The reason why this quantity is called

circumference becomes clear when it is linked to the periodic

arrival of data and the resulting periodic invocation of the

graph. Each AP is given a portion on the cylinder equal to a

band of unit width. This is equivalent to holding the

cylinder with its axis horizontal and slicing it vertically

into bands of unit width. Each band represents an equal

partitioning of work to be accomplished. Further, each band

7



of the cylinder is divided into slots of a width equal to the

smallest node size. In Figure 2.1 a simple PGM graph is

depicted, where the numbers represent execution times. The

cylinder corresponding to this graph Js given in Table 1

(LIT 91]. Each node of the graph occupies a portion of the

cylinder equal to its execution time. No nodes are preempted

and only one node is assigned in a slot.

a

22

Figure 2.1 A Simple PGM Graph

The cylinder constructed as above, represents a schedule

for one instance of the PGM graph. Another instance of the

graph can be overlapped with the first instance after six

clock cycles. To preserve the correctness of the graph when

instances are overlapped, nodes are assigned indices. For the

example presented in Table 1, e, cannot execute at the same

time as a,, however, eo can. With the incorporation of indices

8



and the divide-by-circumference nature of the node to cylinder

successive instances of a graph can be assigned without

conflict. (SLK 92, pp.4)

Table 1: RC ASSIGNMENT FOR A SAMPLE PGM GRAPH

Cycle (i 1)

6i 5

6i 4 b(i) le(i-1)IF E I
6i 3 1

6i 2 f(i-1) I

6i 1

6i d(i)IF

Cylinder assignment of nodes is not enforced strictly,

rather, it is enforced by restructuring the original graph by

inserting dependencies. The dependencies are used to enforce

node execution order to optimize throughput. The dependencies

between nodes are determined based upon their location in the

cylinder along with their relationship to each other in the

original graph.

Each dependency consists of a source node and a

destination node along with an initial number of data items

that is initialized based on the nodes' relative positions on

the cylinder. These dependencies carry tokens instead of

9



data. At run time, tokens are produced and consumed when the

node that is a source or destination of a dependency is

executed.

When the number of tokens is greater than the threshold,

the scheduler is informed that the node is ready for execution

provided that data requirements for the node are also met.

1. Potential of the RC Analysis

The RC technique of restructuring the application

provides an improvement over the presently used FCFS

scheduling in that the dependencies enforce node execution

order to provide more uniform throughput. The FCFS method

makes uniform throughput unachievable because the nodes

receiving external data are ready for execution independent of

the status of other nodes in the graph. If external data

arrives more frequently than the execution frequencies of the

lower nodes, they fall behind the upper nodes of the graph.

This results in the upper nodes' output queues going over

capacity, preventing them from entering the ready node list.

(POPS 90]

Another benefit of the RC approach is that, by

inspecting the projected execution trace represented by the

cylinder assignment, optimization schemes such as chaining of

nodes can be realized automatically, instead of manually, to

reduce node setup and breakdown overhead. With the chains

10



realized, data queues can be combined as well to reduce GM

contention.

With the construction of the cylinder and assignment

of nodes to specific AP's, the execution order can be enforced

strictly or loosely. The preferred approach is to run the

system in a fully dynamic mode, that is, the nodes are

scheduled at run time only. When all input for a node is

available, the node is assigned to a free processor. The

cylinder in this mode is used as a compile-time data structure

that is not used during run-time. The RC analysis and

subsequent restructuring simply enhance the fully dynamic

mode.

Enforcing the cylinder strictly would make the system

fully static. With the AP determined for the execution of

each node in the cylinder and the exact time to begin

processing of the nodes given by the cylinder, it can be

enforced directly by the scheduler to yield the fully-static

mode. With the presence of a dedicated processor to schedule

nodes in the AN/UYS-2, running an application in the fully-

static mode is unwarranted. This mode of operation is usually

limited to machines that do not have a dedicated run-time

scheduler.

The dependencies determine execution order for the

nodes. With all AP's assumed to be identical, it becomes

unnecessary to assign a specific processor to a specific node.

If a node is ready for execution, it is assigned to the first

11



available processor. This reduces the amount of time a node

waits for a processor in the fully static case, and provides

flexibility and optimal utilization of system resources.

[LB 90, pp.334]

2. Refining the Current RC Implementation

The implementation of the RC approach can be improved

in the following manner.

The first improvement is in the area of node

assignments to the cylinder. In order to minimize the time a

node waits to be placed on the RL due to dependencies, the

number of tokens required should be kept minimal. In order to

accomplish this, the size of the cylinder must be kept to a

minimum. In the previous work, the circumference of the

cylinder was doubled when there was insufficient space on the

cylinder for a node to be assigned, and the assignment was

started with the first node of the graph down to the last one.

With this scheme, the last node to be assigned may be

sufficiently large to cause the cylinder to double in order to

accommodate that final node. An improvement to the assignment

of nodes to the cylinder is proposed which assigns nodes based

on their execution time, and only increases the size of the

cylinder by incremental slot sizes until adequate space in the

cylinder is available to fit the next node. When the

circumference of the cylinder is derived, the execution time

of the largest node is stored, and as nodes are considered for

12



assignment to the cylinder the largest nodes are assigned

first. With all nodes equal to this size assigned, the next

largest node size is then considered. This process continues

until all nodes of the graph are placed within the cylinder.

In the previous work with RC analysis, the advantages

of chaining were mentioned; however, any chaining of nodes

that had been accomplished was done by hand prior to

assignment of nodes to the cylinder. This represents the

second improvement. When chaining was done by hand combining

of nodes took place regardless of how they were assigned to

the cylinder and without regard to how the chain might

increase the size of the cylinder. An obvious improvement

here is a chaining algorithm that identifies chains and

assigns them to the cylinder within the limits of its existing

size. Chains are, therefore, identified to produce optimal

throughput without increasing dependency token queue size.

Finally, node assignments were previously based on an

earliest start time of a node. This means that nodes that

were ancestors were moved until their respective predecessors

had completed processing. If a node's earliest start time

could not be met, the index of the node was decremented

indicating a previous instance of that node. This resulted in

node indices varying by only one. This was achievable for all

nodes because of the large cylinder size, and resulted in

dependencies only being created between nodes with equal

indices. By attempting to meet a node's earliest start time,

13



the assignment of dependencies is not optimal since it results

in a large cylinder and token size. A proposed improvement

for index assignment for nodes on the cylinder is that the

index can vary by more than one, and the assignment of that

index is determined by examining the graph and position of a

node in the cylinder with reference to its parents and

children.

Another pitfall to earlier determination of

dependencies was that they were not allowed if one node was an

ancestor of another, which made the assumption that the data

dependency would compensate for the lack of an artificial

dependency. A modification to improve upon this would be to

assign the dependency regardless of ancestor status. The key

here is to control execution independent of data status and

optimize the throughput.

B. STRUCTURE OF A GRAPH PREPROCESSOR

All the improvements described above are incorporated in

a graph preprocessor. The first step in the preprocessor, as

depicted in Figure 2.2, is determining the chains that are

within the input graph. Once the chains have been determined

by the chaining algorithm, the user must incorporate them

manually, and run the chaining algorithm multiple times, if

required, until no chains are output. The reason for multiple

executions is that after the nodes are chained, a new cylinder

14



assignment may result in an appearance of previously unforseen

chains due to a different assignment of nodes to the cylinder.

With all chains incorporated in the graph, the

dependencies are then determined.

Machine Configuration
Input Graph

Cylinder Assignment
Coupled with Chain Formation

E Collapse Chains

Assign
Inic".

to Node"

D•d

eIneoporatingDependencies

Data Queues

Figure 2.2 Structure of Graph Preprocessor

The more the nodes that can be combined, the fewer the

dependencies. Using the output of the dependency algorithm,

the graph is again restructured. The dependencies are to be

15



incorporated as additional data queues whose input and output

nodes are designated based on the algorithm.

The structure of each of the individual components of the

preprocessor is described in the remaining chapters of this

thesis.

16



III. CHAINING OF SIGNAL PROCESSING PRIMITIVES

A. THE CHAINING PROBLEM

The possibility of chaining for a given graph represents

an easily exploitable performance improvement due to the

large-grain nature of the AN/UYS-2. However, the problems

associated with chaining are not obvious. Assume that the

input graph is simply a sequential execution of primitives.

This would lead to a single chain of all nodes in the graph.

With this chain, all the primitives must be executed on one

AP, thereby eliminating the advantages of a multi-processor

machine. We note here that the AN/UYS-2 distributed operating

system allows only one copy of a node to be executing at any

time.

Another difficulty encountered in determining chains is

that, if a node's structure is such that more thain one input

or output queue is associated with it, when the node has

completed execution all queues must be written or read. This

produces the problem of determining all applicable queues and

their locations and relationships to other nodes in the graph.

The queues are not directly related.

The question also arises as to which node to begin

chaining from. Input and output nodes cannot be used for

chaining since they must provide formatting and conversion of

17



external data. Starting with the smallest node would seem to

be a reasonable approach since the ratio of execution time to

setup and break-down times would yield a large improvement.

However, the chain still must not contain multiple input or

output data queues. Starting the chain at the largest node

may under-utilize other processors if the chain becomes too

large.

Finally, although a chain may be inherently obvious when

the graph is visually examined, its size may be too large for

the local memory of the APs to process.

All of these questions and difficulties are addressed in

the chaining algorithm developed. It will be shown that the

RC technique readily lends itself to the determination of

optimal chains.

1. Chaining in the RC Context

Given a graph to be executed in the RC context the

graph's node execution times are first summed, excluding input

and output nodes. The sum is then divided by the number of

AP's. This number is equal to the circumference of the

cylinder. Examining the correlator application for the

AN/UYS-2, depicted in Figure 3.1 [ECOS 89], we can see that

the node execution times vary from five thousand to one

hundred thousand microseconds. Previously, the slot size was

determined using the smallest node size, but as can be seen in

the graphical representation of the correlator graph, node

18



twelve has an execution time is seventy five hundred. This

node would require two cylinder entries with half of one

actually empty.

"Mal input• Que ExAw Input Oue
T-R-C-106364 T-R-C-1 384
1: FDXFL1 -. 0W 2: FRXFL2-5000
T-R-,C,-1384 T-R-C-11384
3: BAND1-15000 4: BAND2-16000

T-R-16MC-1 , 84 T-R-16M.C-16384
IRI- -F I W t. R9 F - 10000

T-R-T-40C-T-RC49 7:. :EROIL. -5000

T-RR-C-409610: FFTI- 1-00000 t ) -10 0

T-R-C-4O•S R-R-C-406610: VANDO1 11: WNDO2-000

1 M - POWERX -100000
T-R--4MT-R-C-dOIS

I6 I- 14 POWERY-100
1 T-R-C-41T-R-C-4

1M MULTPWR,SQRT -
50•0

T-A-C-6$,SP-2052 T-R-C-I,P-4

T-RlC-513 17: INTEGRATE-2DOOOO
10: EXPAVG -5M0 T-R-C-613
T-R-C-615

19: GRAMOUT- 10000
T-R-'C-61320: ASCANOUr.100W

En Oul Qe Output Queue

Figure 3.1 The Correlator Application

This situation represents the first computational

problem, called graph partitioning, that needed to be

addressed. The chaining algorithm corrects this problem by

computing the greatest common divisor (GCD) of all nodes.

This value is then used as the slot size of the cylinder, and
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with the GCD computed, the circumference of the cylinder is

then adjusted to be a multiple of the GCD.

A second computational difficulty is the packing of

the cylinder while keeping the circumference at a minimum size

for node execution. If the graph application is short and

many AP's are available for processing, the cylinder becomes

short and wide. Here, the problem of packing the cylinder

becomes apparent if one node is considerably larger than the

others. The cylinder is increased until the largest node can

be fit onto one AP. It is assumed the circumference is never

less than the largest node's execution time. This case rarely

should occur but it does need to be handled appropriately.

If the cylinder is constructed where the largest node

is not equal to the circumference, the problem of node

assignment can be handled by simply starting with the top of

the graph and moving to the bottom. Handling of assignments

in this manner benefitted from simplicity, but if the bottom

nodes were large the cylinder size would have to be increased

unnecessarily. A more efficient packing algorithm was

developed that assigns largest nodes first, and as these nodes

are assigned to the cylinder, the next largest node size is

determined for next assignment. In this way, the smallest

nodes are assigned last and, if the cylinder size does need to

be increased, it is done in small increments.
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With the improvements to the cylinder consolidated the

complete cylinder for the correlator application is depicted

in Figure 3.2. The actual code that implements the refinement

of the cylinder assignment is given in Appendix A.

AP0 _ _ W W •

Node Node Node NO&e Node

8 9 13 14 15

Node Node 4 Node 12
Node Node 17 Node 18
10 11 NdNode8 Node 6 Empty

Node7 Node7 s

CkCI.Um1vM-140,000mlcsecs l Size-2,500 mlcroscs

Figure 3.2 Cylinder Assignment for the
Correlator

B. THE CHAINING ALGORITHM

1. Parameters of the Algorithm

The input for the algorithm was made to be compatible

with the NPS simulator developed and is depicted in Figure

3.3. Only the key elements of the PGM representation are read

in, that is, node information along with queue information.

Column header should be ignored and the required data should

be in an ASCII file "graph". [LIT 91, pp.32]
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After the graph is read in and the circumference is

properly determined, the slot size is set to the GCD of all

nodes.

9 Constitutes the total number of queues
Queue Node Node Arrival Threshold Production Overcapacity

ID In Out Period Value Value Value
1 -1 a 6 1024 1024 8192
2 a b 0 1024 1024 8192
3 a c 0 1024 1024 8192
4 b d 0 1024 1024 8192
5 b e 0 1024 1024 8192
6 c f 0 513 513 4096
7 d f 0 1024 1024 8192
8 e f 0 1024 1024 1024
9 f -1 0 1024 1024 1024

6 Constitutes the total number of nodes
ode IOP AIS Execution Number Input Number Output
ID Node Size Time of In Queue of out Queue

Queues ID Queues ID
a 1 256 1 1 1 2 2 3
b 0 256 1 1 2 2 4 5
c 0 256 2 1 3 1 6
d 0 256 2 1 4 1 7
• 0 256 4 1 5 1 8
f 1 256 2 3 7 8 6 1 9

Figure 3.3 Input Format for the Chaining Algorithm

With the GCD determined, it must be ensured that a

slot size as large as possible is used. If the nature of the

graph is such that the slot size is one, large amounts of

memory will be required and the program may terminate

execution abnormally. To avoid this situation a manual

smoothing of execution times may be essential. Although this

smoothing may result in wasted cylinder space, the overall

effect on the algorithm is expected to be minimal.
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Mapping of the graph nodes to the cylinder is

accomplished by assigning all the largest nodes first. Once

the node to be assigned is established, the algorithm examines

the number of input queues and output queues. Based upon this

information, it attempts to chain down the graph, up the graph

or down and then up. In Figure 3.1, the actual correlator

application for the AN/UYS-2 was shown in PGM form prior to

determination of any chains. Figure 3.4 shows the cylinder

assignment as identified by the algorithm for the correlator

graph with the chains incorporated. Comparing Figure 3.2 and

Figure 3.4, it should be noted that the node execution sizes

are not to scale, and the sum of all empty cylinder slots in

both figures is equal.

AP I AP2 1 W W4

Naft Nab Node Node Node
8 9 13 14 15

Nods 16 Node
Nod. Node 17

Nos 18 10 11

C1umilrwno-140,000 mlfroses So SIz-Z5 microS

Figure 3.4 Cylinder Assignment for the
Correlator with Chaining

With three means of traversing the graph, the algorithm is

sufficiently robust to determine all possible chains contained

23



therein. Figure 3.5 shows the actual restructuring of the

application in PGM form.

T-W- =T-RMIWo684
1:PIXPL1 -AM02: FDIR2 -50GM
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Figure 3.5 The Correlator Application with Chains

2. Explanation of the Algorithm

As seen in Figure 3.6, the main procedure "chaingraph"

simply identifies which subroutine to call based on the number

of input and output queues. If none of the cases indicated

applies to the given node, it is not considered for chaining,

and is assigned to the cylinder by itself. Examining the

"chaindown" portion of the algorithm depicted in pseudo code

of Figure 3.7, the first statement gets the output queues

associated with the node.
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From here the output node of the queue is obtained and the

node that the function was entered with is flagged as being

assigned to the cylinder.

procedure Chaingraph(node, cylinder, slot size);
if ((number of input queues for node is not 1

and (number of output queues is 1));
chaindown(node, cylinder, slotsize)

end(if);
if ((number of input queues for node is 1)

and (number of output queues is not 1));
chainup(node, cylinder, slotsize)

end(if);
if ((number of input queues for node is 1)

and (number of output queues is 1));
chaindwnup(node, cylinder, slot-size)

end(if);
end (procedure)

Figure 3.6 Procedure Chaingraph

While there is sufficient cylinder space available and

the number of input and output queues is one, and the end of

the graph has not been reached, the chain becomes longer. As

more nodes are added to the chain, the execution size and AIS

are summed with the entry node. As each node is added to the

chain, it is flagged as assigned to avoid assigning a node

multiple times to the cylinder and eliminate the possibility

of it being incorporated in other chains. The last "if" in

the "chaindown" subroutine handles the case when a chain is

terminated by a node whose number of input queues is one and

number of output queues is not one. This node still meets the

criteria for chaining and is added with this piece of code.
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Upon exiting the "chaindown" procedure, the node that entered

the subroutine now is of a size equivalent to the size of the

chain and is assigned to the cylinder.

procedure Chaindown(node, cylinder, slot-size);
determine node's output queues
determine children of the node
assign node to the cylinder
while((child's number of input queues = 1) and

(number of output queues = 1) and
(child not an iop) and
(sufficient space in the cylinder))

sum node and child's execution times
sum node and child's AIS
ancestor assigned to cylinder
get next child

end (while) ;
if((child's number of input queues = 1) and

(number of output queues not = 1) and
(child not an iop) and
(sufficient space in the cylinder))

sum node And child's execution times
sum node and child's AIS
child assigned to cylinder

end(if);
end (procedure)

Figure 3.7 Algorithm f or Chaining Down a Graph

The routine for chaining up the graph is provided in

Figure 3.8. The only difference is that the input queue for

the node that the routine was entered with is now examined and

the successor node is considered for chaining. All other

conditions and assignments of variables remain the same as

those found in "chaindown".
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"Chaindwnup" is essentially the combination of

"chaindown" and "chainup". For the sake of brevity, its

algorithm is not included here.

procedure Chainup(node, cylinder, slotsize);
determine node's input queues
determine parent of the node
assign node to cylinder
while((parent's number of input queues = 1) and

(number of output queues = 1) and
(parent not an iop) and
(sufficient space in the cylinder));

sum node and parent's execution times
sum node and parent's AIS
parent assigned to cylinder
get next parent

end(while);
if((parent's number of input queues not = 1) and

(number of output queues = 1) and
(parent not an iop) and
(sufficient space in the cylinder));

sum node and parent's execution times
sum node and parent's AIS
parent assigned to cylinder

end(if);
end(procedure)

Figure 3.8 Algorithm for Chaining Up a Graph

The routine will add nodes to the chain in the same

manner, and under the same restrictions previously discussed.

When one of the conditions for addition of a node to a chain

is not met while chaining down the graph, it will reverse

direction and attempt to find nodes to be added by searching

up the graph.

By summing the execution times of all nodes contained

within a chain, the algorithm assigns a block of size equal to
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the sum on the cylinder. By determining chains within the

confines of the cylinder, we are guaranteed that they are

optimized for throughput, and are divided over all AP's so as

to distribute the work to be done evenly. The algorithm also

ensures that the nodes chained can be assigned to the same AP

to produce the desired effect of minimizing communication

overhead.

It should be noted that the chaining algorithm never

increases cylinder size to accommodate a chain. The cylinder

size can only be increased by the assignment of an individual

node. By assigning nodes from largest to smallest the

algorithm ensures that the cylinder size will not be increased

by a large node as long as the number of large nodes does not

exceed the number of APs.

The output of the algorithm is located in the file

"cylchain". In this file, the chain number is provided along

with the nodes contained within the chain, the input and

output queues for the chain, and the new AIS for the chain.

After the information pertinent to the chains is output the

cylinder assignment by AP for the graph is produced.

The algorithm also allows for the chaining algorithm

to be disabled, thereby allowing the user to examine the

cylinder assignment before chaining and after chaining. If no

chains for a graph are generated, this will be indicated in

the output file.
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Exact code for the algorithm is provided in Appendix

B.

C. SAMPLE RESULTS

With the chaining algorithm developed, a simulation of the

correlator graph and the chained version of the correlator

were executed on the NPS simulator, and in the RC executions

the dependencies utilized were arrived at as described in

(LIT 91]. The results of the simulation for the correlator

are depicted in Figures 3.9 and 3.10. In Figure 3.9, the AP

Efficiency is plotted against the Normalized Input Data

Interval, where the normalized input data interval refers to

the theoretical maximum throughput rate for the application,

assuming no internal delays. This value is arrived upon by

dividing the total execution time for the graph by the number

of APs for the system configuration.

As seen in the plot for the correlator graph, the AP

efficiency for the FCFS peaks and quickly falls off under high

system loads, whereas the efficiency is constant for the RC

run regardless of the system load. The AP efficiency results

are supported in Figure 3.10, where the number of graph

instances completed for a fixed time interval are given. The

results indicate that the number of graph instances executed

varies directly with the AP efficiency.
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By examining the AP efficiency for the execution of the

chained version of the correlator given in Figure 3.11,
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Figure 3.9 AP Efficiency for the Correlator Application

it is seen that, once aaain, the efficiency for the FCFS

execution drops off quickly under heavy system loads.

However, the efficiency begins to improve when the normalized

input data interval ranges between .9 and 1.0. The RC

execution reaches a maximum efficiency below the peak of FCFS,

but maintains its maximum efficiency even when the input data

rate is high. In Figure 3.12 the number of graph instances

completed varies directly with the AP efficiency for both

simulations, thereby confirming the results obtained for AP

efficiency.
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Figure 3. 11 AP Efficiency for the Chained Correlator
Application

31



In the FCFS mode of execution, the incorporation of

optimal chains produced a reduction in AP efficiency when the

demand on the system was high. This result indicates that the

chains developed were not suited for FCFS execution.

FCFS Dashed. RC Solid, for Chained Correlator Graph
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Figure 3.12 Number of Instances Completed for the Chained
Correlator Application

In examining the AP efficiency for the RC simulation,

however, it stabilizes at a level ten percent greater for the

chained correlator than that for the unchained version.

Therefore, in order to realize the highest system throughput

in RC scheduling, the incorporation of optimal chains is

necesssary.
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IV. EXECUTION CONTROL

A. AN/UYS-2 EXECUTION

The AN/UYS-2 utilizes a distributed run-time operating

system that incorporates a hybrid data-flow and control-flow

technique at the task level and the control-flow approach at

the elementary processing level. [POPS 89, Rice 90]

The data-flow organization is implemented when a

task(node) has the machine resources available to it, and the

input data is available. Sequencing is performed by the flow

of data in an asynchronous manner, thereby eliminating the

need for a program counter or central control. All input data

is consumed and the output results are passed directly to

subsequent tasks as input data. By using data-flow at the

task or functional level communication and bookkeeping

overheads are minimal compared with the gain in concurrent

processing, and the parallelism inherent in signal processing

applications can be exploited.

Control-flow processing is implemented at the fine grain

level to eliminate the communication and bookkeeping overheads

that would result if data-flow organization was used. All

control-flow is contained within each individual processing

element(node). [RICE 90]
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With data-flow execution of nodes implemented on the

AN/UYS-2, the only fixed time frame for arrival of data is the

data rate associated with input queues. Once this data is

consumed by follow-on nodes and the entire graph is involved

in execution, the status of individual queues, set-up and

break-down of nodes, and available APs are all independent of

the original graph structure. The only remaining way to

evaluate performance of the machine is by examining the

throughput. Since the process of executing a graph on the

AN/UYS-2 is nondeterministic, a compile time prediction of

performance is infeasible.

The SCH presently being employed on the AN/UYS-2 uses a

FCFS scheduling scheme. Scheduling is performed by matching

a ready node to a free AP by maintaining four tables: the

ready-node list, the free AP list, the node status table, and

the queue-to-node table. The SCH receives queue information

from the GMs. As queues exceed threshold levels, the GMs send

queue over threshold messages to the SCH. When all of a graph

node's queues are over threshold, the SCH attempts to match

free APs to ready graph nodes. If a match is found, and the

node is not currently executing, scheduling data is sent to

the GMs and database tables are updated to indicate the match.

If a match is not achievable, the node status table and ready-

node list are updated to reflect that a ready node is waiting

to be executed. When an AP does become available, the first

node on the list is served without regard to priority or
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optimization of throughput. Throughout the process of

scheduling a node, there exists no execution control other

than the queues going over threshold or capacity. [POPS 90,

RICE 90]

1. Enforcing the RC Assignment in the AN/UYS-2

Within the constraints of the AN/UYS-2 programming and

run-time environment, a way of controlling graph execution has

been developed. The RC approach of assigning dependencies to

the graph to enforce the desired scheduling of nodes is

realized by consuming and adding tokens and is given in

[LIT 91]. The graph is modified by inserting artificial

dependencies to optimize throughput. The creation of

dependencies in the previous work is improved upon by the

cylinder being filled more efficiently and the incorporation

of chains. Since the size of the cylinder has been reduced

significantly the instances of nodes now placed on the

cylinder are no longer the same and represent more than one

previous instance of the graph. A new algorithm to determine

from which instance of the graph a node is placed on the

cylinder is developed based upon the improved assignment of

nodes. Since the instances of a graph on the cylinder can now

be substantially separated, a new dependency generation

algorithm was needed.
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B. ASSIGNMENT OF DEPENDENCIES

1. Assignment of Node Indices

As described earlier, because of the data-flow

execution of the graph, the assignment of nodes to the

cylinder must be analyzed to determine which instance of a

node is actually to be executed. The cyclic interpretation of

the cylinder assignment represents one instance of the graph.

However, a node within the graph cannot be executed until its

parents have executed, and produced the data required for the

present node's execution. The procedure to as3ign indices for

each node is given in Figure 4.1. This algorithm,

"assignindex" is contained within the code to determine

dependencies and the exact code is given in Appendix C.

The code is entered with one of the largest nodes in

terms of execution time. It is assigned an index of zero to

represent the fact that it is the current instance of this

node that is being executed. Every parent of the node entered

with is examined with respect to their relative positions on

the cylinder. If the parent's completion time on the cylinder

is greater than the present node's start time on the cylinder,

the parent must be executing a previous instance. The

algorithm is then called again with an initial index plus one;

however, the procedure is now entered with the parent node,

and its index is assigned one greater than the starting node.

If the condition of the "if" statement does not hold, the
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parent is assigned an index equal to the one of the node which

entered the procedure.

procedure AssignIndex(node, index)
node's index <- index
for every parent of node

if parent's index not determined
if ((parent's finish time on the cylinder) >

(node's start time on the cylinder))
Assign_Index(parent, index+l)

else
Assign_index(parent, index)

end(if)
end(if)

end(for)
for every child of node

if ((child's index not determined) or
(child's index >= index))

if ((child's start time on the cylinder) <
(node's finish time on the cylinder))

Assign_Index(child, index-l)
else

Assign_Index(child, index)
end(if)

end (if)
end (for)

end (procedure)

Figure 4.1 Algorithm for Index Assignment

With all parents of the original node assigned their

indices, the algorithm now examines all child nodes of the

initial node. If a child has not been assigned an index or

its index is greater than or equal to the present index, the

second conditional "if" is examined. If the child's start

time on the cylinder is less than the present node's

completion time, then the index of the child is the index

minus one. This index indicates that the child is an instance

37



behind the node that the algorithm was entered with. When the

comparison of cylinder start and finish times is not met the

node instance is the same as the node entered with.

The assignment of indices represents a "snap shot" of

one graph instance. By giving each node a respective index

based on its position in the cylinder, it can be determined

for each node as to how far ahead or behind it is. A positive

index indicates that a node is that many instances ahead of

the reference node, while a negative index indicates that the

node is that many instances behind the reference node. The

decision to make the algorithm recursive was to ensure

multiple "visits" to each node and ensure that no node was

preempted from receiving an index. The cylinder assignment

for the chained version of the correlator graph is given in

Figure 4.2 with the indices assigned for each node.

2. Creation of Dependencies

With the cylinder assignment determined and the

indices for each node assigned, the required dependencies for

the RC schedule are now determined. The algorithm is given in

Figure 4.3. The input for the procedure is the node listing

and circumference of the cylinder. Again, all input is

compatible with the input for the NPS simulator. Since

dependencies may be created for all nodes, the graph is

examined from top to bottom.
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Figure 4.2 Cylinder Assignment for Chained
Correlator with Indices

procedure createdependencies(node list, circumference);
/*n,, n, are nodes of graph, G*/
for all nodes, n,

check index i of n.
find the latest node, n,, that ends before
n. starts on the cylinder
check index j of n,
/* if index i is not equal to j, and */
/* a dependency does not already exist.*/
add a dependency from n, to n,
if i >= j

put i - j tokens on the arc
set threshold = 1, consume = 1

else
put 0 initial tokens on the arc
threshold = j - i, consume = 1

end(if)
end(for)

end(procedure)

Figure 4.3 Algorithm to Generate Dependencies
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Upon entering the algorithm, the node's index is

stored, then the latest of all other nodes that end before the

entry node starts on the cylinder is found. There can be more

than one of these nodes since multiple nodes may end on the

same slot entry in the cylinder, and the node's end time is

modulo circumference to ensure nodes at the bottom of the

cylinder are also considered. If these conditions are met and

the two nodes have different indices, a dependency is created.

Having determined that two nodes require a dependency,

it is now a matter of finding the initial tokens, threshold

value and consume value for the dependency. These values are

determined by using the index of the two nodes. If the index

of the initial input node is greater than or equal to the node

found to require a dependency, then the initial token size is

the difference of the indices. This results in a node that

will complete more instances, not executing until the other

node has executed as many times as the initial token size.

Otherwise, no tokens are placed and the threshold value is

equal to the difference of the indices. The threshold amount

determines the number of tokens that must be present before

the destination is eligible for execution.

Dependencies are created for each node, but there can

be no more than one dependency for each node pair, and no node

can have a dependency to itself. In Figure 4.4 the chained

version of the correlator application is restructured

incorporating some of the dependencies identified by the
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algorithm. The dependencies are identified by arcs between

nodes, and the 3-tuple associated with each indicates the

tokensize, threshold, and consume values for that dependency.

The implementation of the algorithm in its coded form is given

in Appendix D.

1 2

(3,1,1) (21,1) 13 14•1,1)

(1.1 (11)1

Figure 4.4 Chained Correlator Application Restructured by
Dependencies

Output of the dependency program is found in the file

"tokens". The node pairs are identified along with the token

sizes, threshold values, and consume values. All of these

values are given in bytes to interface with the NPS simulator

whose construction and execution constants are based upon

bytes per second.
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C. IMPLEMENTATION OF DEPENDENCIES

There are two possible approaches for actual

implementation of the dependencies in the AN/UYS-2. The first

is equivalent to the implementation described in the previous

work completed (LIT 91]. The second is to use the information

provided by the dependency program to add additional data

queues for the node pair involved. Each of these approaches

has its advantages and disadvantages.

The original enforcement of dependencies was accomplished

by the maintaining of a dependency list. When a node was

considered for execution not only were its queues checked for

exceeding the threshold, but the number of tokens for the

dependency were also checked. The advantage with this

approach is its simplicity. Until the required number of

tokens has been accumulated, the node is not executed. The

disadvantage of this method is that the data-flow execution of

nodes presently incorporated in the AN/UYS-2 does not allow

the checking of tokens in the SCH. To actually implement this

scheme, a complete rewriting of SCH code would be required to

check the tokens and the operating system would also require

rewriting.

By implementing the dependencies as data queues the data-

flow execution in the AN/UYS-2 can be used as it already

exists. When the graph is instantiated by the user the

dependencies can be determined prior to execution and the

dependency queues are Constructed as standard data queues.
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Instead of initializing these queues to be empty, the token

size can be inserted, and as with any data queues, the

threshold and consume values can be established.

Although there is an additional latency involved in

creating more queues and more memory is required, the

dependencies are incorporated within the original structure of

the AN/UYS-2. There is no need for operating system or

application modifications. The new queues are transparent to

the user along with being cost effective.

With the dependencies now incorporated the graph

preprocessor is complete.
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V. CONCLUDING REMARKS

A. CONCLUSIONS

In the thesis, a graph preprocessor was developed that

identifies optimal chains within the RC context and determines

improved artificial node dependencies to optimize system

throughput.

The preprocessor was used to modify the application

identified as the Correlator. With the appropriate chains for

the Correlator determined by the RC analysis of the graph, the

restructured graph was then simulated on the NPS simulator

[LIT 91]. Using both scheduling schemes of FCFS and RC

without the improved dependencies, results were presented.

The results show that in the FCFS case under high system

loads, with and without chaining, performance rapidly

deteriorated. While the RC case without chaining maintained

a uniform throughput, it was improved upon with the addition

of optimal chains.

An improved cylinder assignment was then developed that

creates artificial dependencies that will control node

execution order more efficiently. With the improved

dependencies implemented, the execution of the graph should

yield better performance results than previously realized. No

simulation results for the improved dependencies are available
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since the NPS simulator does not presently have the capability

to operate with the implementation of the dependencies as data

queues. The ETS++ simulator provided was considered for all

simulations, however, once again, the specifics for

incorporation of dependencies as data queues with initial

tokens contained within presented a dilemma.

With the preprocessor providing compile-time analysis for

a given graph, the throughput for the AN/UYS-2 can be

optimized by improving processor efficiency even under high

system loads. This will result in an extension of service

life for presently employed systems at a low cost, since the

modification is done in software without changes to the

operating system. If hardware upgrades to the AN/UYS-2 are

realized the RC analysis can still be utilized.

B. FUTURE WORK

As seen in the cylinder assignments for the Correlator and

the chained version of it, empty slots are available to be

utilized. With many possible assignments of nodes to the

cylinder conceivable, the one that produces the fewest

dependencies and smallest token sizes can be identified. The

incorporation of such an algorithm will increase latency when

dependencies are developed, but the overhead at run-time will

be decreased.

Accurate simulation results need to be obtained. In the

thesis, all simulation was done on the NPS simulator, which
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has yet to be validated against the ETS++ simulator.

Benchmarks for the ETS++ simulator must be acquired to perform

a valid comparison between the two. With the validation

completed, a method for implementation of the dependencies as

data queues must be instituted. The nature of signal

processing involves delays, therefore a mechanism should be

readily available for this to be accomplished.

Using the preprocessor on the benchmarks and restructuring

the graph accordingly, an accurate comparison between FCFS and

RC scheduling could then be completed.
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APPENDIX A: IMPROVED CYLINDER ASSIGNMENT CODE

IfDescription : This code assigns nodes to the cylinder
//Parameters :temp - the graph node to schedule

Ifcircum - the circumference of the cylinder
Ifwidthavg - slot size in the cylinder
Ifnumaps - the number of aps in the AN/UYS-2
Ifcyl - the cylinder itself

void topgraph ::schedulenode(topgraph *temp, long int
widthavg, mnt numaps,cyltype *cyl){

cyltype *tempcylinder = cyl;
cylentrytype *tempcyl, *temp2cyl;
boolean scheduled = false;
boolean available = false;
nt, nodesize = 0;

int blockcount = 0;

if ((temp->width % widthavg) == 0){
nodesize = temp->width / widthavg;

I
else{

nodesize = temp->width / widthavg + 1;

tempcylinder = cyl;
while (scheduled == false){

for (mnt i=l;i<=numaps;i++){
tempcyl = tempcylinder->cylentrylist;
while ((tempcyl->nodesch != 0) && (tempcyl !=NULL)){

tempcyl =tempcyl->nextcylentry;

temp2cyl =tempcyl;
while ((blockccount != nodesize) && (temp2cyl !=NULL)){

if (temp2cyl->nodesch == 0) f
blockcount =blockcount + 1;
available =true;

I
else{

available =false;

temp2cyl = temp2cyl->nextcylentry;

if ((available) && (blockcount ==nodesize)){
temp2cyl = tempcyl;
for (mnt j=l;j<=nodesize;j++){
temp2cyl->nodesch = temp->id;
temp2cyl = temp2cyl->nextcylentry;
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scheduled = true;
break;

}
else {

tempcylinder = tempcylinder->nextcylap;
blockcount = 0;

// Description : This code implements the improvements to the
// assigning of nodes to the cylinder discussed in Chapter III.
// The cylinder is constructed in the code with the circumference
// determined and the slot size calculated using the GCD
// algorithm. Largest nodes are assigned to the cylinder first.
// Parameters : tempgnodelisting - the node graph itself
// numaps - the number of aps in the AN/UYS-2
// chainop - chain option selected
void topgraph :: assignrc(gnode *tempgnodelisting,int

numaps,int chainop) {

gnode *temp2gnodelisting = tempgnodelisting;
ptrtoptrtoaq *tempptrtoptr = NULL;
topgraph *q = NULL;
topgraph *qtemp = NULL;
topgraph *temp = NULL;
int count = 0;
int nodecount = 0;
int chainnum = 1;
long int gcd = 0;
long int tempgcd = 0;
long int circumference = 0;
long int maxwidth = 0;
long int nextmax = 0;
long int widthavg = 0;
long int j = 0;
cyltype *cylinder = NULL;
cyltype *tempcylinder = NULL;
cylentrytype *cyl2entrylist = NULL;
boolean iopinnode = false;
boolean iopoutnode = false;

while (temp2gnodelisting 1= NULL) {
tempptrtoptr = tempgnodelisting->getgnodeinputqslist

(temp2gnodelisting->getnodeid());
while (tempptrtoptr != NULL) {

if (tempptrtoptr->getnodein() == -1) {
iopinnode = true;
break;
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else{
iopinnode = false;

tempptrtoptr = tempptrtoptr->getnextelemento;

tempptrtoptr = tempgnodelisting->getgnodeoutputqslist
(temp2gnodelisting->getnodeidor);

while (tempptrtoptr != NULL) I
if (tempptrtoptr->getriodeout()o -1){
iopoutnode = true;
break;

I
else{
iopoutnode = false;

tempptrtoptr = tempptrtoptr->getnextelemento;

if ((iopinnode) 11 (lopoutnode)){
1/do nothing

else{
count++;
if (q == NULL){

if (!(q = new topgraph)){
fprintf (stderr, "Insufficient memory f or topgraph\n");
exit(1) ;

q->id = temp2gnodelisting->getnodeido;
q->width = temp2gnodelisting->primtime;
gcd = g->width;

//improve RC assignment using GCD of node execution times.
if (q->width > maxwidth) f
maxwidth = q->width;

/; / note q->est set equal to zero by constructor
circumference = circumference + q->width;
qtemp = q

else{
if (!(qtemp->next = new topgraph)){
fprintf(stderr, "Insufficient memory for topgraph\n");
exit(l);

qtemp->next->id = temp2gnodelisting->getnodeido~;
qtemp->next->width = temp2gnodelisting->primtime;
tempgcd =qtemp->next->width;
if (gcd !=1) f

if ((tempgcd %gcd) != 0){
while (gcd *tempgcd !0){

if (tempgcd >= gcd){
tempgcd =tempgcd -gcd;
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I
else{

gcd =gcd - tempgcd;

if (qtemp->next->width > maxwidth){
maxwidth = qtemp->next->width;

circumference = circumference + qtemp->next->width;
qtemp = qtemp->next;

temp2gnodelisting = temp2gnodelisting->getnextgnode 0;

widthavg = gcd;
circumference = circumference / numaps;
if (circumference < maxwidth) f
Ifcircumference is largest node if smaller than largest node

circumference = maxwidth;

if (circumference % widthavg !- 0){
circumference = circumference+(circumference % widthavg);

1/circumference set to multiple of gcd
for (int i=1;i<=numaps;i++) f

//This loop constructs the cylinder
if (cylinder == NULL) {

if (!(cylinder = new cyltype)){
fprintf (stderr, "Insufficient memory for cyltype\n");
exit(l);

j = 0;
while (j < circumference){

if (cylinder->cylentrylist == NULL){
if (!(cylinder->cylentrylist = new cylentrytype)){

fprintf (stderr, "Insufficient memory for
cylentrytype\n");

exit(l);

cylinder->cylentrylist->widthstarttime =j
cyl2entrylist = cylinder->cylentrylist;

else{
if ((cy12 entryl1ist->nextcy lentry = new cylentrytype))

fprintf(stderr, "Insufficient memory for
cylentrytype\n");

exit(l);

cyl2entrylist->riextcylentry->widthstarttime = j
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cyl2entrylist = cyl2entrylist->nextcylentry;

j = j + widthavg;

tempcylinder = cylinder;

else{
if (!(tempcylinder->nextcylap = new cyltype)){
fprintf (stderr, "Insufficient memory for cyltype\n");
exit(l);

j = 0;
while (j < circumference){

if (tempcylinder->nextcylap->cylentrylist == NULL){
if (!(tempcylinder->nextcylap->cylentrylist = new

cylentrytype)) {
fprintf (stderr, "Insufficient memory for

cylentrytype\n");
exit(1) ;

tempcyl inder->nextcylap->cylentrylist->
widthstarttime = j

cyl2entrylist = tempcylinder->nextcylap->cylentrylist;

else{
if ((cyl2entrylist->nextcylentry = new cylentrytype)){

fprintf (stderr, "Insufficient memory for
cylentrytype\n");

exit(l);

cyl2entrylist->nextcylentry->widthstarttime j;
cyl2entrylist = cyl2entrylist->nextcylentry;

j = j + widthavg;

tempcylinder = tempcylinder->nextcylap;

nodecount = count;
qtemp = q
while (qtemp != NULL){

if ((qtemp->width == maxwidth) && (qtemp->assigned==false)){
//Largest nodes scheduled first

temp = qtemp;
if (chainop == 1) / /Chain nodes if option selected
chaingraph (q,tm, qtemp, cylinder,

nodecount,widthavg, chainnum);

qtemp->assigned = true;
qtemp = qtemp->next;
while (qtexnp->assigned == true){
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qtemp = qtemp->next;

while (cylirider->checkfreecylspace (cylinder) <
(temp->width/widthavg)){

cylinder =cylinder->
increasecylsize(cylinder, circumference);

circumference = circumference + widthavg;

schedulenode (temp1 widthavg, numaps,cylinder);
temp->assigned = true;
nodecount = nodecount - 1;

if ((qtemp == NULL) && (nodecount != 0)){
qtemp = q
maxwidth =nextmax;
nextmax =0;

I} 
I

else{
if ((qtemp->width > nextmax) &&

(qtemp->width < maxwidth) && (qtemp->assigned =

false)){
nextmax = qtemp->width;
qtemp =qtemp->next;

else{
qtemp =qtemp->next;

if ((qtemp == NULL) && (nodecount!=0{
qtemp = q
maxwidth =nextmax;
nextmax =0;

if ((chainnum == 1) && (chainop == 1)){
printf("\nNo chains were found for this graph\n');
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APPENDIX B: NODE CHAINING CODE

// Description : Determines which direction in the graph to chain
// based on the number of input and output queues of the node.
// Parameters : temp - the node to begin chaining frcm
// cylinder - the cylinder
// nodecount - the number of nodes remaining to be

// assigned to the cylinder
// widthavg - the slot size of the cylinder
// chainnum - the number of the chain being built
void topgraph :: chaingraph(topgraph *q, topgraph *temp,

topgraph *qtemp, cyltype *cylinder,
int &nodecount, long int widthavg, int &chainnum) {

gnode *temp3gnodelisting = gnodelisting;

while (temp->id != temp3gnodelisting->nodeid) {
temp3gnodelisting = temp3gnodelisting->nextgnode;

if ((terp3gnodelisting->numinqs !=1)
&&(temp3gnodelisting->numoutqs == 1)) {

chaindown(temp3gnodelisting,temp,qtemp,cylinder,
nodecount,widthavg,chainnum);

if ((temp3gnodelisting->numinqs == 1)
&& (temp3gnodelisting->numoutqs != 1)) {

chainup(temp3gnodelisting,q,temp,qtemp,cylinder,
nodecount,widthavg,chainnum);

if ((temp3gnodelisting->numinqs == 1)
&& (temp3gnodelisting->numoutqsinqs1

chaindwnup(temp3gnodelisting,q,temp,qtemp,cylinder,
nodecount,widthavg,chainnum);

// Description Chains nodes down the graph while the conditions
// discussed in Chapter III are met.
// Parameters temp3gnodelisting - starting node to begin chain
// q - the beginning of the topgraph
// qtemp - temporary topgraph
// cyl - the cylinder
// nodecount - number of nodes remaining to
// be assigned to the cylinder

widthavg - cylinder slot size
// chainnum - the number of the chain being
// built
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void topgraph :: chaindown(gnode *temp3gnodelisting, topgraph
*temp, topgraph *qtemp, cyltype *cylinder,
int &nodecount,long int widthavg, int &chainnum){

ptrtoptrtoaq *temptrtoptr = NULL;
gnode *temp4gnodelisting = gnodelisting;
gnode *temp5gnodelisting;
boolean chained = false;
Pit newaissize = 0;
mnt gnodeoutqnum = 0;
int. qnodeoutnum. = 0;

newaissize = temp3gnodelisting->aissize;
temptrtoptr = temp3gnodelisting->

getgnodeoutputqslist(temp3gnodelisting->nodeid);
gnodeoutqrum temptrtoptr->getgqueueido;
qnodeoutnum =texnptrtoptr->getqnodeoutnum (gnodeoutqnum);
while (qnodeoutnum != temp4gnodelistirig->nodeid) {

temp4gnodelisting = temp4gnodelisting->nextgnode;

qtemp->assigned = true;
while ((qtemp->id !=temp4gnodelisting->nodeid)

&& (temp4gnodelisting->iopidassigned == 0)){
qtemp = qtemp->next;

if ((qtemp->assigned == false)
&& tempmp4gnodelisting->iopidassigned == 0)
&& (temp4gnodelisting->numinqs == 1)
&& (cylinder->checkfreecylspace (cylinder)
>= ((temp->width/widthavg)

+ (temp4gnodelisting->primtime/widthavg)))){
printf("\n");
printf("Chain number: "1);

printf("I%d", chainnum);
printf("I is made up of nodes:")
printf("I %d "1, temp->id);

while ((temp4gnodelisting->numinqs == 1)

&& (temp4gnodelisting->numoutqs == 1)
&& (temp4gnodelisting->iopidassigned == 0)

&& (qtemp->assigned == false)
&& (cylinder->checkfreecylspace (cylinder)
>= ((temp->width/widthavg)

+ (temp4gnodelisting->primtime/widthavg)))){
temp->width =temp->width + temp4gnodelisting->primtime;
newaissize =newaissize + temp4gnodelisting->aissize;
nodecount =nodecount - 1;
printf("I %d "1, qtemp->id);
qtemp->assigned = true;
chained = true;
temp5gnodelisting = temp4gnodelisting;
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temptrtoptr = temp4gnodelisting->
getgnodeoutputqslist (temp4gnodelisting->nodeid);

gnodeoutqnum =temptrtoptr->getgqueueidoi;
qnodeoutnum =temptrtoptr->getqnodeoutnum (gnodeoutqnum);
while (qnodeoutnum != temp4gnodelisting->nodeid){

temp4gnodelisting = temp4gnodelisting->nextgnode;

while ((qtemp->id !=temp4gnodelisting->nodeid)
&& (temp4gnodelisting->iopidassigned == 0)){
qtemp, = qtemp->next;

I f I; e p g o e i t ng > u i q = 1

if ((temp4gnodelisting->numoutqs = = 1)

&&(temp4gnodelisting->iopidassigned == 0)
&&(qtemp->assigned == false)
&&(cylinder->checkfreecylspace (cylinder)

>= ((temp->width/widthavg)
+ (temp4gnodelisting->primtime/widthavg)))){

temp->width =temp->width + temp4gnodelisting->primtime;
newaissize =newaissize + temp4gnodelisting->aissize;
nodecount =nodecount - 1;
printf("I %d "1, qtemp->id);
qtemp->assigned = true;
chained = true;
temp5gnodelisting = temp4gnodelisting;

if (chained){
printf("\n");
printf ("The new node number is:")
printf(" %d ",temp->id);
printf("\n");
printf ("The new execution time is: "1);

printf("I %1d ",temp->width);
printf("\n");
printf ("The new AIS size is:")
printf("I %d "1,newaissize);
printf("\n");
printf ("The input queue(s) is/are: "1);

temptrtoptr = temp3gnodelisting->
getgnodeinputqslist (temp3gnodelisting->nodeid);

while(temptrtoptr != NULL) {
printf (" %d "l,temptrtoptr->getgqueueid o);
temptrtoptr = temptrtoptr->getnextelemento;

printf("\n");
printf("'The output queue(s) is/are: "1);

temptrtoptr = temp5gnodelisting->
getgnodeoutputqslist (temp5gnodelisting->nodeid);

while(temptrtoptr != NULL) {
printf (" %d "l,temptrtoptr->getgqueueido);
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temptrtoptr = temptrtoptr->getnextelement();

printf("\n");

chainnum =chainnum + 1;

IfDescription :Chains nodes up the graph while the conditions
/1 discussed in Chapter III are met.

IIParameters :temp3gnodelisting - starting node to begin chain
// q the beginning of the topgraph
//temp - temporary topgraph
//qtemp - temporary topgraph
//cyl - the cylinder
II nodecount -number of nodes remaining to

// be assigned to the cylinder
//widthavg - cylinder slot size
II chainnum -The number of the chain being

// built.
void topgraph ::chainup(gnode *temp3gnodelisting, topgraph *q,

topgraph *temp,topgraph *qtemp, cyltype *cylinder,
mnt &nodecount, long mnt widthavg, mnt &chainnum){

ptrtoptrtoaq *temptrtoptr = NULL;
gnode *temp4gnodelisting = gnodelisting;
gnode *temp5gnodelisting;
boolean chained = false;
int newaissize = 0;
int gnodeinqnum = 0;
int qnodeinnum = 0;

newaissize = temp3gnodelisting->aissize;
temptrtoptr = temp3gnodelisting->

getgnodeinputqslist (temp3gnodelisting->nodeid);
gnodeinqnum = temptrtoptr->getgqueueido;
qnodeinnum = temptrtoptr->getqnodeinnum (gnodeinqnum);
temp4gnodelisting =gnodelisting;

while (qnodeinnum 1=temp4gnodelisting->nodeid) {
temp4gnodelisting =temp4gnodelisting->nextgnode;

qtemp->assigned = true;
while ((qtemp->id !=temp4gnodelisting->nodeid)

&& (temp4gnodelisting->iopidassigned ==0)){

qtemp = qtemp->next;
if (qtemp == NULL){

qtemp = q

if ((qtenip->assigned ==false)

&& (temp4gnodelisting->iopidassigned ==0)

&& (temp4gnodelisting->numoutqs == 1)
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&& (cylinder->checkfreecylspace (cylinder)
>= ((temp->width/widthavg)

+ (temp4gnodelisting->primtime/widthavg)))){
printf("\n");
printf("Chain number: "1);

printf("%d", chainnum);
priritf(Q is made up of nodes: "1);

printf("I %d "1, temp->id);

while ((temp4gnodelisting->numinqs ==1)
&& (temp4gnodelisting->numoutqs ==1)

&& (temp4gnodelisting->iopidassigned == 0)
&& (qtemp->assigned == false)
&& (cylinder->checkfreecylspace (cylinder)
>= ((temp->width/widthavg)

+ (temp4gnodelisting->primtime/widthavg)))){
temp->width =temp->width + temp4gnodelistinq->primtime;
newaissize =newaissize + temp4gnodelisting->aissize;
nodecount =nodecount - 1;

qtemp->assigned = true;
chained = true;
temp5griodelisting = temp4gnodelisting;
temptrtoptr = temp4gnodelisting->

getgnodeinputqs list (temp4gnodelisting->nodeid);
griodeinqnum = temptrtoptr->getgqueueido;
qnodeinnum = temptrtoptr->getqnodeinnum (gnodeinqnum);
temp4gnodelisting =gnodelisting;
while (qriodeinnum !=temp4gnodelisting->nodeid){

temp4gnodelisting = temp4gnodelisting->nextgnode; -

while ((qtemp->id !=temp4gnodelisting->nodeid)
&& (temp4gnodelisting->iopidassigned == 0)) f
qtemp = qtemp->next;
if (qtemp == NULL){

qtemp, = q

if (epgoe;sig>uiq
if ((temp4gnodelisting->numintqs !=1)

&& (temp4gnodelisting->iopidassigned == 0)
&& (qtemp->assigned == false)
&& (cylinder->checkfreecylspace (cylinder)
>= ((temp->width/widthavg)

+ (temp4gnodelisting->primtime/widthavg)))){
temp->width= temp->width + temp4gnodelisting->primtinie;
newaissize =newaissize + temp4gnodelisting->aissize;
nodecount =nodecount - 1;
printf("I %d "1, qtemp->id);
qtemp->assigned = true;
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chained = true;
temp5gnodelisting = temp4gnodelisting;

if (chained){
printf("\n");
printf ("The new node number is:")
printf("l %d ",temp->id);
printf("\n");
printf ("The new execution time is:")
printf(" %ld ",temp->width);
printf("\n");
printf ("The new AIS size is:")
printf(" %d "l,newaissize);
printf("\n");
printf ("The input queue(s) is/are: "1);
temptrtoptr = temp5gnodelisting->

getgnodeinputqslist (temp5gnodelisting->nodeid);
while(temptrtoptr != NULL) {

printf (" %d "l,temptrtoptr->getgqueueidoc);
temptrtoptr = temptrtoptr->getnextelemento;

I;
printf("\n");
printf("'The output queue(s) is/are: "1);
temptrtoptr = temp3gnodelisting->

getgnodeoutputqslist (temp3gnodelisting->nodeid);
while(temptrtoptr != NULL) {

printf("l %d "l,temptrtoptr->getgqueueido);
temptrtoptr = temptrtoptr->getnextelemento;

printf("\n");
chainnum =chainnum + 1;

IIDescription :Chains nodes down first until one of the
Ifconditions discussed in Chapter III is not met. Then it will
Ifchain up the graph until one of the required conditions is
//not met.

IIParameters :temp3gnodelisting - starting node to begin chain
// q -the beginning of the topgraph
//temp - temporary topgraph
//qtemp - temporary topgraph
//cyl - the cylinder
// nodecount -number of nodes remaining to

II be assigned to the cylinder
//widthaivg - cylinder slot size
/1 chainnum -The number of the chain being

// built.
void topgraph: :chaindwnup (gnode *temp3gnodelisting, topgraph *q,

topgraph *temp, topgraph *qtemp, cyltype *cylinder,
int &nodecount, long hit widthavg, mnt &chainnum){
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ptrtoptrtoaq *temptrtoptr = NULL;
gnode *temp4gnodelisting = gnodelisting;
gnode *temp5gnodelisting = temp3gnodelisting;
gnode *temp6gnodelisting = temp3gnodelisting;
boolean chained = false;
int newaissize = 0;
int gnodeoutqnum = 0;
int qnodeoutnum = 0;
int gnodeinqnum, = 0;
int qnodeinnum = 0;

newaissize = temp3gnodelisting->aissize;
temptrtoptr = temp3gnodelisting->

getgnodeoutputqslist (temp3gnodelisting->nodeid);
gnodeoutqnum = temptrtoptr->getgqueueidoC;
qnodeoutnum = temptrtoptr->getqnodeoutnum (gnodeoutqnum);
while (qnodeoutnum != temp4gnodelisting->nodeid) {

temp4gnodelisting = temp4gnodelisting->nextgnode;

qtemp->assigned = true;
while ((qtemp->id !=temp4gnodelisting->nodeid)

&& (temp4gnodelisting->iopidassigried ==0)){

qtemp, = qtemp->next;

if ((qtemp->assigned == false)
&& (temp4gnodelisting->iopidassigned ==0)

&& ((temp4gnodelisting->numinqs =1)

&& (temp4gnodelisting->numoutqs ==1))

::((temp4gnodelisting->numinqs ==1)

&& (temp4gnodelisting->numoutqs 1=1))
&& (cylinder->checkfreecylspace (cylinder)
>= ((temp->width/widthavg)

+ (temp4gnodelisting->primtime/widthavg)))){
printf("\n");
printf ("Chain number: "1);
printf("%d", chainnum);
printf("I is made up of nodes: "1);

printf("I %d "1, temp->id);

while ((temp4gnodelisting->numinqs ==1)

&& (temp4gnodelisting->numoutqs ==1)

&& (temp4gnodelisting->iopidassigned ==0)
&& (qtemp->assigned == false)
&& (cylinder->checkfreecylspace (cylinder)
>= ((temp->width/widthavg)

+ (temp4gnodelisting->primtime/widthavg)))){
temp->width =temp->width + temp4gnodelisting->primtime;
newaissize =newaissize + temp4gnodelisting->aissize;
nodecount =nodecount - 1;
printf("I %d "1, qtemp->id);
qtemp->assigned = true;
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chained = true;
temp5gnodelisting = temp4gnodelisting;
temptrtoptr = temp4gnodelisting->

getgnodeoutputqslist (temp4gnodelisting->nodeid);
gnodeoutqnum =temptrtoptr->getgqueueido~;

qnodeoutnum =temptrtoptr->getqnodeoutnum (gnodeoutqnum);
while (qnodeoutnum != temp4gnodelisting->nodeid) {

temp4gnodelisting = temp4gnodelisting->nextgnode;

while ((qtemp->id !=temp4gnodelisting->nodeid)
&& (temp4gnodelistirig->iopidassigned ==0)){

qtemp = qtemp->next;

if 1; e p g o e i t ng > u i q = 1

if ((temp4gnodelisting->numoutqs !-1

&& (temp4gnodelisting->iopidassigned == 0)
&& (qtemp->assigned == false)
&& (cylinder->checkfreecylspace (cylinder)
>= ((temp->width/widthavg)

+ (temp4gnodelisting->primtime/widthavg)))){
temp->width =temp->width + temp4gnodelisting->primtime;
newaissize =newaissize + temp4gnodelisting->aissize;
nodecount =nodecount - 1;
printf("I %d "1, qtemp->id);
qtemp->assigned = true;
chained = true;
temp5gnodelisting = temp4gnodelisting;

temptrtoptr = temp3gnodelisting->
getgnodeinputqslist (temp3gnodelisting->nodeid);

gnodeinqnum = temptrtoptr->getgqueueid o;
qnodeinnum = temptrtoptr->getqnodeinnum (gnodeinqnum);
temp4gnodelisting =gnodelisting;

while (qnodeinnum !=temp4gnodelisting->nodeid) {
temp4gnodelisting = temp4gnodelisting->nextgnode;

while ((qtemp->id !=temp4gnodelisting->nodeid)
&& (temp4gnodelisting->iopidassigned == 0)) f
qtemp = qtemp->next;
if (qtemp == NULL){

qtemp = q

if ((qtemp->assigned ==false)

&& (temp4gnodelisting->iopidassigned == 0)
&& (chained == false) && (temp4gnodelisting->numoutqs ==1)){

printf("\n");
printf("Chairi number: "1);
printf("%d", chainnum);
printf("I is made up of nodes: "1);
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priritf("I %d "1, temp->id);

wIl ((epgoeitng>uiq =1

whil (temp4gnodelisting->numoutqs = 1)

&&(temp4gnodelisting->iopidassigned == 0)
&&(qtemp->assigned == false)

&& (cylinder->checkfreecylspace (cylinder)
>= ((temp->width/widthavg)

+ (temp4gnodelisting->primtime/widthavg)))){
temp->width = temp->width + temp4gnodelisting->primtime;
newaissize = newaissize + temp4gnodelisting->aissize;
nodecount = nodecount - 1;
printf("I %d 11, qtemp->id);
qtemp->assigned = true;
chained = true;
temp6gnodelisting = temp4gnodelisting;
temptrtoptr = temp4gnodelisting->

getgnodeinputqslist (temp4gnodelisting->nodeid);
gnodeinqnum = temptrtoptr->getgqueueido;
qnodeinnum = temptrtoptr->getqnodeinnum (gnodeinqnum);
temp4gnodelisting =gnodelisting;

while (qnodeinnum !=temp4gnodelisting->nodeid){
temp4gnodelisting = temp4gnodelistirig->nextgnode;

while ((qtemp->id !=temp4gnodelisting->nodeid)
&& (temp4gnodelisting->iopidassigned == 0)){
qtemp = qtemp->next;
if (qtemp == NULL){

qtemp = q

if ((temp4gnodelisting->numinqs != 1)
&& (temp4gnodelisting->numoutqs == 1)
&& (temp4gnodelisting->iopidassigned ==0)
&& (qtemp->assigned == false)
&& (cylinder->checkfreecylspace (cylinder)
>= ((temp->width/widthavg)

+ (temp4gnodelisting->primtime/widthavg)))){
temp->width =temp->width + temp4gnodelisting->primtime;
newaissize =newaissize + temp4gnodelisting->aissize;
nodecount =nodecount - 1;
printf("I %d "1, qtemp->id);
qtemp->assigned = true;
chained = true;
temp6gnodelisting = temp4gnodelisting;

if (chained){
printf("\n");
printf("'The new node number is: )
printf("I %d ",temp->id);
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printf("\n");
printf("The new execution time is: )
printf(" %ld ",temp->width);
printf("\n");
printf ("The new AIS size is:")
printf(" %d ",newaissize);
printf("\n");
printf("The input queue(s) is/are:")
temptrtoptr = temp6gnodelisting->

getgnodeinputqslist (temp6gnodelisting->nodeid);
while(temptrtoptr != NULL) {

printf (" %d ",temptrtoptr->getgqueueid Q);
temptrtoptr = temptrtoptr->getnextelemento;

printf("\n");
printf("The output queue(s) is/are:")
temptrtoptr = temp5gnodelisting->

getgnodeoutputqslist (temp5gnodelisting->nodeid);
while(temptrtoptr != NULL) {

printf (" %d ",temptrtoptr->getgqueueidor);
temptrtoptr = temptrtoptr->getnextelement o;

printf ("\n");
chainnum = chainnum + 1;

63



APPENDIX C: CODE TO ASSIGN INDICES TO NODES

IfDescription : This code implements the assigning of node
1/indices as discussed in Chapter IV. It is implemented by
//checking the graph for parents and children of the
/1input node and calls itself recursively until all
//nodes receive the proper index.

IIParameters :tempgnodelisting - The node to start with
Ifindex - The index a node is to be assigned.

void gnode :: assignindex(gnode *tempgnodelisting, mnt index){
gnode *temp2gnodelisting = tempgnodelisting;
ptrtoptrtoaq *temptrtoptr = NULL;
int gnodeinqnum = 0;
int qnodeinnum = 0;
int gnodeoutqnum. = 0;
int qnodeoutnum. = 0;

tempgnodelisting->index = index;
temptrtoptr = tempgnodelisting->

getgnodeinputqslist (tempgnodelisting->nodeid);
while(temptrtoptr != NULL) {

Ifget the node's parents but not iops
gnodeinqnum =temptrtoptr->getgqueueido~;
gnodeinnum =temptrtoptr->getqnodeinnum (gnodeinqnum);
temp2gnodelisting =gnodelisting;
while (qnodeinnum.! temp2gnodelisting->nodeid){

temp2gnodelisting = temp2gnodelisting->nextgnode;

if (temp2gnodelisting->iopidassigned ! = 0) f

else{
if(temp2gnodelisting->index == -10000) {

if (temp2gnodelisting->finishtime >
tempgnodelisting->startime) j

assignindex(temp2gnodelisting, index + 1);

else{
assignindex(temp2gnodelisting, index);

temptrtoptr = temptrtoptr->getnextelementoi;

temptrtoptr = tempgnodelisting->
getgnodeoutputqslist (tempgnodelisting->nodeid);
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while(temptrtoptr != NULL){
//now get the node's children but not iops

gnodeoutqnum =temptrtoptr->getgqueueid 0;
qnodeoutnum =temptrtoptr->getqnodeoutnum (gnodeoutqnum);
temp2gnodelisting =gnodelisting;
while(qnodeoutnum 1=temp2gnodelisting->nodeid){

temp2gnodelisting = temp2gnodelisting->nextgnode;
I;
if(temp2gnodelisting->iopidassigned != 0){
I
else{

if ((temp2gnodelisting->index = -10000)
(temp2gnodelisting->index >= index) {
if (temp2gnodelisting->startime <

tempgnodelisting->finishtime){
assignindex(temp2gnodelisting, index - 1);

else{
assignindex (temp2gnodelisting, index);

temptrtoptr =temptrtoptr->getnextelementoc;
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APPENDIX D: CODE FOR CREATION OF DEPENDENCIES

//Description : Creates dependencies based on a node's index and
1/ start and finish times in the cylinder. Threshold, Consume,
Ifand Produce values are resolved as described in Chapter IV.

1/Parameters :tempgnodelisting - The node to start with
//circum - The circumference of the cylinder

dependencyqs *topgraph :: createdeps (gnode *tempgnodelisting,
long int circum) f

gnode *temp2gnodelisting = tempgnodelisting;
gnode *temp3gnodelisting;
gnode *temp4gnodelisting;
dependencyqs *headdepq = NULL;
dependencygs *tempheaddepq;
int indexnr = 0;
int indexns = 0;
long mnt largestcylentry = 0;
boolean needependency = true;

while (temp2gnodelisting != NULL){
if (temp2gnodelistirig->iopidassigned != 0){

temp2gnodelisting = temp2gnodelisting->nextgnode;
I
else{

indexnr = temp2gnodelisting->index;
while (needependency == true) {

needependency = false;
temp3gnodelisting = tempgnodelisting;
while (temp3gnodelisting != NULL){

if ((temp3gnodelisting->iopidassigned != 0)

-:(temp3gnodelisting->nodeid =
temp2gnodelisting->nodeid)) I

else{
if (((temp3gnodelisting->finishtime % circum)

<= temp2gnodelisting->startime)
&& (temp3gnodelisting->finishtime
>= largestcylentry)
&& (temp2gnodelisting->index !

temp3gnodelisting->index)
&& (headdepq->alreadydeps

(headdepq, temp3gnodelisting->nodeid,
temp2gnodelisting->nodeid) == false)){

temp4gnodelisting = temp3gnodelisting;
largestcylentry =

temp3gnodelisting->finishtime;
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needependency = true;

temp3gnodelisting = temp3gnodelisting->nextgnode;

indexns = temp4gnodelisting->index;
if (needependency) {

if (headdepq == NULL){
if (!(headdepq = new dependencyqs) )

fprintf (stderr, "insufficient memory for
dependencyqs\n");

exit(l);

if (indexnr >= indexns){
headdepq->deptokensize=(indexnr-indexns) * 4;
headdepq->threshold = 4;

//consume initialized to 4 bytes in constructor
headdepq->nodefrom =

temp4gnodelisting->nodeid;
headdepq->nodeto = temp2gnodelisting->nodeid;

else{
headdepq->threshold=(indexns - indexnr) * 4;

Ifinitial tokens set to 0 in constructor
//consume initialized to 4 bytes in constructor

headdepq->nodefrom =
temp4gnodelisting->nodeid;

headdepq->nodeto = temp2gnodelisting->nodeid;

tempheaddepq = headdepq;

else{
if (! (tempheaddepq->nextdepq=new dependencyqs))

fprintf (stderr, "insufficient memory for
dependencyqs\n");

exit(l);

if (indexnr >= indexns){
tempheaddepq->nextdepq->deptokensize=

(indexnr - indexns) * 4;
tempheaddepq->nextdepq->threshold = 4;

//in bytes
//consume initialized to 4 bytes in constructor

tempheaddepq->nextdepq->nodefrom =
temp4gnodelisting->nodeid;

tempheaddepq->nextdepq->nodeto =
temp2gnodelisting->nodeid;

else{
tempheaddepq->nextdepq->threshold

(indexns - indexnr) * 4;
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1/initial tokens set to 0 in constructor
//consume initialized to 4 bytes in constructor

tempheaddepq->nextdepq->nodefrom =
temp4gnodelisting->nodeid;

tempheaddepq->nextdepq->nodeto =
temp2gnodelisting->nodeid;

tempheaddepq = tempheaddepq->nextdepq;

temp2gnodelisting = temp2gnodelisting->nextgnode;
needependency = true;
largestcylentry = 0;

tempheaddepq = headdepq;
printf("\nThe following dependencies need to be assigned\n");
printf ("All values are presented in bytes to interface with NPS

simulator\n");
while(tempheaddepq != NULL){

printf("From: 11);
printf (" %d "l,tempheaddepq->nodefrom);
printf("I To: "1);
printf (" %d "1,tempheaddepq->nodeto);
printf("I Tokensize: "1);
printf (" %d "l,tempheaddepq->deptokensize);
printf("I Threshold: 11);
printf (" %d "l,tempheaddepq->threshold);
printf(C" Consume: "1);
printf (" %d "l,tempheaddepq->consume);
printf(II\n"I);
tempheaddepq = tempheaddepq->nextdepq;

return headdepq;
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