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Raw data on the number of deaths at a country level generally
indicate a spatially variable distribution of COVID-19
incidence. An important issue is whether this pattern is a
consequence of environmental heterogeneities, such as the
climatic conditions, during the course of the outbreak. Another
fundamental issue is to understand the spatial spreading of
COVID-19. To address these questions, we consider four
candidate epidemiological models with varying complexity in
terms of initial conditions, contact rates and non-local
transmissions, and we fit them to French mortality data with a
mixed probabilistic-ODE approach. Using statistical criteria, we
select the model with non-local transmission corresponding
to a diffusion on the graph of counties that depends on
the geographic proximity, with time-dependent contact rate
and spatially constant parameters. This suggests that in a
geographically middle size centralized country such as France,
once the epidemic is established, the effect of global processes
such as restriction policies and sanitary measures overwhelms
the effect of local factors. Additionally, this approach reveals the
latent epidemiological dynamics including the local level of
immunity, and allows us to evaluate the role of non-local
interactions on the future spread of the disease.

1. Introduction
In France, the first cases of COVID-19 epidemic were reported on 24
January 2020 [1], although it appeared later that some cases were
already present in December 2019 [2]. Since then, the first
important clusters were observed in February in the Grand Est
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region and the Paris region. A few months later, at the beginning of June, the spatial pattern of the disease

spread seems to have kept track with these first introductions [3]. As this spatial pattern may also be
correlated with covariates such as climate [4] (see also electronic supplementary material, S1), a
fundamental question is to assess whether this pattern is the consequence of a heterogeneous distribution
of some covariates or if it can be explained by the heterogeneity of the initial introduction points. In the
latter case, we want to know if the epidemic dynamics simply reflects this initial heterogeneity and can be
modelled without taking into account any spatial heterogeneity in the local conditions.

SIR epidemiological models and their extensions have been proposed to study the spread of the
COVID-19 epidemic at the country or state scale (e.g. [5] in France and [6] in three US states), and at
the regional scale ([7,8] in China, [3] in France and [9] in Italy). In all cases, a different set of
parameters has been estimated for each considered region/province. One of the main goals of our
study is to check whether the local mortality data at a thin spatial scale can still be well explained by
a single set of parameters, at the country scale, but spatially varying initial conditions. In this study,
we consider SIR models with time-dependent contact rate, to track changes over time in the dynamic
reproductive number as in the branching process considered in [6]. Using standard statistical criteria,
we compare four types of models, whose parameters are either global at the country scale or spatially
heterogeneous, and with non-local transmission or not. We work with mortality data only, as these
data appear to be more reliable and less dependent on local testing strategies than confirmed cases, in
settings where cause of death is accurately determined [10]. Additionally, it was already shown that
for this type of data, SIR models outperform other classes of models (an SEIR models and a
branching process) in the three US states considered in [6]. The approach we develop here is in line
with the general principle of using parsimonious models eloquently emphasized in [6].

It is widely accepted that the age structure of the population [11] and the presence of asymptomatic
infectious individuals [12] affect the dynamics of the COVID-19 epidemic. Several works take these
features into account (e.g. [13,14] for models with several age classes and [15] for models with a specific
compartment of unreported cases). However, these approaches bring in a new difficulty in that they
involve a larger number of unknown parameters leading to identifiability issues and underdetermination
of the models by the data. As is often the case, there is a trade-off between searching for a more realistic
description and models that can be trusted because they still match the data satisfactorily with a small set
of parameters to identify. From this point of view, we observe that more parsimonious approaches, in
which the above-mentioned compartments (e.g. reported and unreported cases) are merged into a single
‘infectious’ compartment, are still able to capture key features of the epidemic directly from surveillance
data, in some cases even earlier than more complex approaches. For instance, with a simple SIRD model
coupled with a probabilistic observation model, [5] estimated the infection fatality ratio (IFR) at an early
stage of the epidemic, and obtained results that matched subsequent analyses based on more detailed
and realistic models such as in the study of Institut Pasteur [3] that involved several age classes and a
very precise description of the transition from hospital admission to ICU and death. It turned out that in
both cases, the authors obtained exactly the same IFR of 0.5% (excluding deaths in nursing homes). Yet,
the simple SIRD model hinged on a reduced dataset (number of tests, number of positive cases and
number of deaths in France) as compared to the study [3], which required additional data in France and
also data from the Diamond Princess cruise ship. Thus, Occam’s razor leads us here to give preference to
the simplest model whenever it is sufficient to fit the data.

Another important issue that suchmodels may help to address is the quantification of the relative effects
of restrictions on inter-regional travel, versus reductions in the probability of infection per contact at the local
scale. France went into lockdown on 17 March 2020, which was found to be very effective in reducing the
spread of the disease. It divided the effective reproduction number (number Rt of secondary cases
generated by an infectious individual [16]) by a factor 5–7 at the country scale by 11 May [3,17]. This is to
be compared with the estimate of the basic reproduction number R0 carried out in France at the early
onset of the epidemic, before the country went into lockdown (with values R0 ¼ 2:96 in [3] and R0 ¼ 3:2
in [5]). Contact-surveys data [18] for Wuhan and Shanghai, China, have found comparable estimates of
the reduction factor. The national lockdown in France induced important restrictions on movement, with
e.g. a mandatory home confinement except for essential journeys, leading to a reduction of the number
of contacts. In parallel, generalized mask wearing and use of hydroalcoholic gels reduced the probability
of infection per contact.

After the lockdown, restrictions policies were generally based on raw data rather than modelling. An
efficient regulation at the local scale would need to know the current number of infectious and the level
of immunity at the scale of counties. The French territory is divided into administrative units called
‘départements’, analogous to counties. We use ‘counties’ hereafter for départements. These quantities
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cannot be observed directly in the absence of large-scale testing campaigns or spatial random sampling.
In particular, there is a large number of unreported cases. Previous studies developed a mixed
mechanistic–probabilistic framework to estimate these quantities at the country scale. These involved
estimating the relative probability of getting tested for an infected individual versus a healthy
individual, leading to a factor ×8 between the number of confirmed cases and the actual number
of cases before the lockdown [5], and ×20 at the end of the lockdown period [17]. This type of
framework—often referred to as ‘mechanistic-statistical modelling’—aims at connecting the solution
of continuous state models such as differential equations with complex data, such as noisy discrete
data, and identifying latent processes such as the epidemiological process under consideration here.
Initially, introduced for physical models and data [19], it is becoming standard in ecology [20].

Using this framework, the objectives of our study are (i) to assess whether the spatial pattern
observed in France is due to some local covariates or is simply the consequence of the heterogeneity
in the initial conditions together with global processes at the country scale, (ii) to evaluate the role of
non-local interactions on the spread of the disease, and (iii) to propose a tool for real-time monitoring
the main components of the disease in France, with a particular focus on the local level of immunity.
c.Open
Sci.7:201382
2. Material and methods
2.1. Data
Mainland France (excluding Corsica island) is made of 94 counties called ‘départements’. The daily
number of hospital deaths—excluding nursing homes—at the county scale are available from Santé
Publique France since 18 March 2020 (and available as electronic supplementary material). The daily
number of observed deaths (still excluding nursing homes) in county k during day t is denoted by m̂k,t.

We denote by [ti, tf ] the observation period and by nd the number of considered counties. To avoid a
too large number of counties with 0 deaths at initial time, the observation period ranges from ti = 30
March to tf = 11 June, corresponding to nt = 74 days of observation. All the counties of mainland
France (excluding Corsica) are taken into account, but the Ile-de-France region, which is made of eight
counties with a small area is considered as a single geographic entity. This leads to nd = 87.

2.2. Mechanistic-statistical framework
The mechanistic-statistical framework is a combination of a mechanistic model that describes
the epidemiological process, a probabilistic observation model and a statistical inference procedure. We
begin with the description of four mechanistic models, whose main characteristics are given in table 1.

2.2.1. Mechanistic models

ModelM0: SIR model for the whole country. The first model is the standard mean field SIRD model that was
used in [5,17]

S0(t) ¼ �a(t)
N

S I,

I0(t) ¼ a(t)
N

S I � (bþ g) I,

R0(t) ¼ b I
and D0(t) ¼ g I,

9>>>>>>>>=
>>>>>>>>;

(2:1)

with S the susceptible population, I the infectious population, R the recovered population, D the number
of deaths due to the epidemic and N the total population, in the whole country. For simplicity, we assume
that N is constant, equal to the current population in France, thereby neglecting the effect of the small
variations of the population on the coefficient α(t)/N. The parameter α(t) is the contact rate (to be
estimated) and 1/β is the mean time until an infectious becomes recovered. The results in [21] show
that the median period of viral shedding is 20 days, but the infectiousness tends to decay before the
end of this period: the results in [22] indicate that infectiousness starts from 2.5 days before symptom
onset and declines within 7 days of illness onset. Based on these observations, we assume here that
1/β = 10 days. The parameter γ corresponds to the (hospital) death rate of the infectious. The infection
fatality ratio (IFR) was estimated in France by several studies [3,5,17], leading in each case to a value



Table 1. Main characteristics of the four models. The quantity nt = 74 corresponds to the number of days of the observation
period and nd = 87 corresponds to the number of administrative units.

heterog. initial data heterog. contact rate intercounty transmission no. parameters

M0 no no no nt
M1 yes no no nt
M2 yes yes no nd × nt
M3 yes no yes nt + 2
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0.5%. This value is consistent with previous findings in China (0.66%) [23] and Germany (0.36%) [24], is
lower than in Spain (1.15%) [25] and on the Diamond Princess cruise ship (1.3%) [26]. The value 0.5% in
France is probably underestimated as it only takes into account the deaths at hospital, but is consistent
with the data that we used here (hospital mortality). The IFR corresponds to the fraction of the infected
who die, that is: γ/(γ + β). Thus, a value of 0.5% for the IFR implies a value γ = 5 × 10−4.

Model M1: SIR model at the county scale with globally constant contact rate and no spatial transmission. The
model M0 is applied at the scale of each county k, leading to compartments Sk, Ik, Rk, Dk that satisfy an
equation of the form (2.1), with N replaced by Nk, the total population in the county k. In this approach,
the contact rate α(t) is assumed to be the same in all of the counties.

Model M2: SIR model at the county scale with spatially heterogeneous contact rate and no spatial
transmission. With this approach, the model M1 is extended by assuming that the contact rate αk(t)
depends on the considered county.

Model M3: County scale model with globally constant contact rate and spatial transmission. The model M1

is extended to take into account disease transmission events between the counties

S0k(t) ¼ � r(t)
Nk

Sk
Xnd
j¼1

wj,k Ij,

I0k(t) ¼
r(t)
Nk

Sk
Xnd
j¼1

wj,k Ij � (bþ g) Ik,

R0
k(t) ¼ b Ik

and D0
k(t) ¼ g Ik:

9>>>>>>>>>>>=
>>>>>>>>>>>;

(2:2)

The parameter ρ(t) is a ‘local’ contact rate, i.e. the contact rate corresponding to the interactions between
the susceptible individuals of the county k with the infectious individuals from the same county.
The weights wj,k are dimensionless and describe the ratios between the contact rates associated with
the j–k interactions and those associated with the k–k interactions. We assume a power law decay of
these weights with the distance

wj,k ¼ 1

1þ (dist(j, k)=d0)
d
, (2:3)

with dist(j, k) the geographical distance (in km) between the centroids of counties j and k, d0 > 0 a
proximity scale, and δ > 0. Thus, the model involves two new global parameters, d0 and δ, compared
to model M1. This model extends the Kermack–McKendrick SIR model to take into account non-local
spatial interactions. It was introduced by Kendall [27] in continuous variables. The model we adopt
here is inspired by the study of Bonnasse-Gahot et al. [28] in a different context where the same types
of weights have been used. We thus take into account diffusion on the weighted graph of counties in
France. This amounts to considering that individuals in a given county are infected by individuals
from other counties with a probability that decreases with distance as a power law, in addition to
contagious individuals from their own county. This dependence of social spatial interactions with
respect to the distance is supported, notably, by Brockmann et al. [29], who analysed the short-time
dispersal of bank notes in the USA. This type of power-law decay is commonly used in ‘gravity
models’ to describe the flow of people from one area to another [30]. Though promising extensions
have been proposed, with for instance higher-order interactions between cities [31], this type of
interactions remains a standard choice in infectious disease modelling (e.g. [32–34]). We also refer to
[35] for a thorough discussion on the various applications of power-law dispersal kernels since they
were introduced by Pareto [36].
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With this non-local contagion model, in contradistinction to epidemiological models with dispersion

such as reaction–diffusion epidemiological models [37], the movements of the individuals are not
modelled explicitly. The model implicitly assumes that infectious individuals may transmit the disease
to susceptible individuals in other counties, but eventually return to their county of origin. This has
the advantage of avoiding unrealistic changes in the global population density.

2.2.2. Observation model

We denote by �Dk(t) the expected cumulative number of deaths given by the model, in county k. With the
mean-field model M0, we assume that it is proportional to the population size: �Dk(t) ¼ D(t)Nk=N, with
Nk the population in county k and N the total French population. With models M1, M2 and M3, we
simply have �Dk(t) ¼ Dk(t). The expected daily increment in the number of deaths given by the models
in a county k is �Dk(t)� �Dk(t� 1).

The observation model assumes that the daily number of new observed deaths m̂k,t in county k
follows a Poisson distribution with mean value �Dk(t)� �Dk(t� 1)

m̂k,t � Poisson(�Dk(t)� �Dk(t� 1)): (2:4)

Note that the time t in the mechanistic models is a continuous variable, while the observations m̂k,t are
reported at discrete times. For the sake of simplicity, we used the same notation t for the days in both the
discrete and continuous cases. In formula (2.4), �Dk(t) (resp. �Dk(t� 1)) is computed at the end of day t
(resp. t− 1).

2.3. Initial conditions
In models M1, M2 and M3, at initial time ti, we assume that the number of susceptible cases is equal to
the number of inhabitants in county k: Sk(ti) =Nk, the number of recovered is R(ti) = 0 and the number of
deaths is given by the data: Dk(ti) ¼ m̂k,ti . To initialize the number of infectious, we use the equation
D0(t) = γ I(t), and we define I(ti) as 1/γ × (mean number of deaths over the period ranging from ti to
29 days after ti)

Ik(ti) ¼ 1
g

1
30

X
s¼ti ,...,tiþ29

m̂k,s: (2:5)

The 30-days window was chosen such that there was at least one infectious case in each county. In model
M0, the initial conditions are obtained by adding the initial conditions of model M1 (or equivalently,
M2) over all the counties.

2.4. Statistical inference

2.4.1. Real-time monitoring of the parameters and data assimilation procedure

To smooth out the effect of small variations in the data, and to avoid identifiability issues due to the large
number of parameters, while keeping the temporal dependence of the parameters, the parameters α(t)
and αk(t) of the ODE models M0, M1 and M2 are estimated by fitting auxiliary problems with time-
constant parameters over moving windows (t− τ/2, t + τ/2) of fixed duration equal to τ days. These
auxiliary problems are denoted, respectively, by ~M0,t, ~M1,t and ~M2,t (see electronic supplementary
material S2 for a precise formulation of these problems). The initial conditions associated with this
system, at the date t− τ/2 are computed iteratively from the solution of M0, M1 and M2, respectively.

2.4.2. Inference procedure

For simplicity, in all cases, we denote by

f�Dk ,m̂k
(s) :¼ (�Dk(s)� �Dk(s� 1))m̂k,s

m̂k,s!
e�(�Dk(s)��Dk(s�1))

the probability mass function associated with the observation process (2.4) at date s in county k, given the
expected cumulative number of deaths �Dk given by the considered model in county k.

In models ~M0,t and ~M1,t, the estimated parameter is ~a. The likelihood L is defined as the probability
of the observations (here, the increments {m̂k,s}) conditionally on the parameter. Using the assumption
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that the increments m̂k,s are independent conditionally on the underlying SIRD process ~M0,t (resp. ~M1,t),

we get

L(~a) :¼ P m̂k,s, k ¼ 1, . . . , nd, s ¼ t� t

2
, . . . , tþ t

2

n o
j~a

� �

¼
Ynd
k¼1

Ytþt=2

s¼t�t=2

f�Dk ,m̂k
(s):

We denote by ~a�
t the corresponding maximum-likelihood estimator, and we set a(t) ¼ ~a�

t in model
M0 (resp. M1):

For model ~M2,t, the inference of the parameters ~ak is carried out independently in each county,
leading to the likelihoods

Lk(~ak) :¼ P m̂k,s, s ¼ t� t

2
, . . . , tþ t

2

n o
j~ak

� �

¼
Ytþt=2

s¼t�t=2

f�Dk ,m̂k
(s):

We denote by ~a�
k,t the corresponding maximum-likelihood estimator, and we set ak(t) ¼ ~a�

k,t in modelM2:

For model M3, we apply a two-stage estimation approach. We first use the estimate obtained with
model M1 by setting ρ(t) = C α(t), where α(t) is the estimated contact rate of model M1 and C∈ (0, 1)
is a constant (to be estimated; note that estimating ρ(t) means estimating nt parameters). This constant
C can be interpreted as the fraction of the overall contact rate α(t) which can be attributed to within-
county transmissions. Given α(t), the only parameters to be estimated are the constant C, the
proximity scale d0 and the exponent δ. They are estimated by maximizing

L(C, d0, d) :¼ P({m̂k,s, k ¼ 1, . . . , nd, s ¼ ti, tf }jC, d0, d)

¼
Ynd
k¼1

Ytf
s¼ti

f�Dk ,m̂k
(s):

2.4.3. Model selection

We use the Akaike information criterion (AIC, [38]) and the Bayesian information criterion (BIC, [39]) to
compare the models. For both criteria, we need to compute the likelihood function associated with the
model, with the parameters determined with the above inference procedure

L(Mm) ¼
Ynd
k¼1

Ytf
s¼ti

f�Dk ,m̂k
(s), (2:6)

with m = 0, 1, 2, 3 and �Dk the expected (cumulative) number of deaths in county k given by model (Mm).
Given the number of parameters ]Mm estimated in model Mm, the AIC score is defined as follows:

AIC(Mm) ¼ 2 ]Mm � 2 ln (L(Mm)),

and the BIC score:

BIC(Mm) ¼ ]Mm ln (K)� 2 ln (L(Mm)),

with K = nd × nt = 6438 the number of data points.

2.4.4. Numerical methods

To find the maximum-likelihood estimator, we used a Broyden–Fletcher–Goldfarb–Shanno (BFGS)
constrained minimization algorithm, applied to � ln (L) via the Matlab® function fmincon. The ODEs
were solved thanks to a standard numerical algorithm, using Matlab® ode45 solver.
3. Results
3.1. Model fit and model selection
To assess model fit, we compared the daily increments in the number of deaths given by each of the four
models with the data. For each model, we used the parameters corresponding to the maximum-
likelihood estimators. The comparisons are carried out at the regional scale: mainland France is
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Figure 1. Model fit at the regional scale. The data have been smoothed (moving average over 15 days), for easier graphical
comparison with the models.
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divided into 12 administrative regions, each of which is made of several counties. The results are
presented in figure 1. In all the regions, the models M1, M2 and M3 lead to a satisfactory visual fit
of the data, whereas the mean field model M0 does not manage to reproduce the variability of the
dynamics among the regions.

The log-likelihood, AIC and BIC values are given in table 2. Models M1, M2 and M3 lead to
significantly higher likelihood values than model M0. This reflects the better fit obtained with these
three models, compared to model M0 and shows the importance of taking into account the spatial
heterogeneities in the initial densities of infectious cases. On the other hand, the log-likelihood,
though higher with model M2 is close to that obtained with M1, and the model selection criteria are
both strongly in favour of model M1. This shows that the spatial heterogeneity in the contact rate
does not have a significant effect on the epidemic dynamics within mainland France.

ModelM3 with spatial transmission leads to an intermediate likelihood value, between those of models
M1 and M2, with only two additional parameters with respect to model M1. As a consequence, the
model selection criteria exhibit strong evidence in favour of the selection of model M3. This means a
large part of the difference between models M1 and M2 can be captured by taking into account the
spatial transmission, which therefore seems to have a significant effect on the epidemic dynamics. An
important advantage in using statistical criteria such as AIC and BIC is that they were conceived to
avoid over-parametrization, and to select as it were the ‘true process’ that generated the data [40]. From
a pragmatic viewpoint, the notion of ‘true process’ has to be understood as ‘likely process’. Since these
criteria only provide us with a model comparison, they only yield specific conclusions. Here, they allow
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Table 2. Log-likelihood, AIC and BIC values for the four models. The last column ΔAIC corresponds to the difference with the
AIC value of the best model (here M3).

model AIC BIC log-likelihood ΔAIC

M0 2.68 × 104 2.73 × 104 −13.4 × 103 −9.57 × 103

M1 1.74 × 104 1.79 × 104 −8.62 × 103 −220
M2 2.97 × 104 7.36 × 104 −8.41 × 103 −1.25 × 104

M3 1.72 × 104 1.77 × 104 −8.52 × 103 0
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us to state that global processes are more likely to have shaped the spatial distribution than local covariates
(M1 versusM2). Indeed, introducing a local effect does not improve the AIC and BIC values. Furthermore,
intercounty transmission has played a significant role in the spread of the epidemics (M1 versus M3).

As a by-product of the estimation of the parameter α(t) (resp. αk(t)) of model M1 (resp. M2), we get
an estimate of the effective reproduction number in each county, which is given by the formula [41]

Rk
t ¼

a(t)
bþ g

Sk(t)
Nk

,

so that Ik0(t) < 0 (the epidemic tends to vanish) whenever Rk
t , 1, whereas Ik0(t) > 0 whenever Rk

t . 1 (the
number of infectious cases in the population follows an increasing trend). The dynamics of Rk

t obtained
with model M1 are depicted in figure 2, clearly showing a decline in Rk

t , as already observed in [3,17],
but there the computation was at a fixed date.

For model M3, the maximum-likelihood estimation gives C = 0.87, d0 = 2.16 km and δ = 1.85, which
yields a nearly quadratic decay of the weights with the distance. The value of d0, indicates that non-
local contagion plays a secondary role compared to within-county contagion: the minimum distance
between two counties is 36 km, leading to a weight of 5.5/1000, to be compared with the weight 1 for
within-county contagion. However, the fact that the parameter C is significantly smaller than 1 (recall
that the contact rate in model M3 is ρ(t) =C α(t) with α(t) the contact rate in model M2 ) shows that
the non-local contagion term plays an important role on the spreading of the epidemic.

3.1.1. Immunity rate

Using model M3, which leads to the best fit, we derive the number of recovered individuals (considered
here as immune) at a date t, in each county, and the immunity rate Rk/Nk. It is presented at time tf in
figure 3. The full timeline of the dynamics of immunity obtained with model M3 since the beginning
of April is available as electronic supplementary material (see SI 1).

3.1.2. Limiting movement versus limiting the probability of transmission per contact

Before the lockdown, the basic reproduction number R0 in France was about 3 [3,5], and was then
reduced by a factor 5–7, leading to values around 0.5 (see [3,17] and figure 2). This corresponds to a
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contact rate a(t) � bRt � 0:3 before the lockdown and α(t)≈ 0.05 after the lockdown in model M1. Let
us now consider a hypothetical scenario of a new outbreak with an effective reproduction number that
rises again to reach values above 1. Due to the higher awareness of the population with respect to
epidemic diseases and the new sanitary behaviours induced by the first COVID-19 wave, the
reproduction number will probably not reach again values as high as 3.

The new outbreak scenario is described as follows: we start from the state of the epidemic at 11 June,
and we assume a ‘local’ contact rate ρ(t) jumping to the value 0.11 in model M3 (corresponding to a
twofold increase compared to the previous 30 days). In parallel, to describe the lifting of restrictions
on individual movements, we set d0 = 20 km for the proximity scale in model M3. This new outbreak
runs during 10 days, and then, we test four strategies:

— Strategy 1: no restriction. The parameters remain unchanged: ρ(t) = 0.11 and d0 = 20 km.
— Strategy 2: restriction on intercounty movement. The parameter ρ(t) = 0.11 is unchanged, but

d0 = 2.16 km, corresponding to its estimated value during the period (ti, tf ).
— Strategy 3: reduction of the contact rate within each county (e.g. by wearing masks), but no restriction

on intercounty movement: ρ(t) = 0.05 and d0 = 20 km.
— Strategy 4: reduction of the contact rate within each county and restriction on intercounty movement:

ρ(t) = 0.05 and d0 = 2.16 km.

The daily number of deaths corresponding to each scenario is presented in figure 4. We estimate in each
case a value of the effective reproduction numberRt over the whole country by fitting the global number
of infectious cases with an exponential function over the last 30 days. As expected, the more restrictive
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the strategy, the less the number of deaths. After 30 days, the cumulative number of deaths with the first

strategy is 17 271, and Rt � 2. Restriction on intercounty movement (strategy 2) leads to a 81% decrease
in the cumulative number of deaths (3281 deaths) and Rt � 1:2; reducing the contact rate within each
county leads to a 88% decrease (strategy 3, 2139 deaths) and Rt � 0:8; finally, control strategy 4,
which combines both types of restrictions leads to a 91% decrease (1503 deaths) and Rt � 0:4.

4. Discussion
We show here that a parsimonious model can reproduce the local dynamics of the COVID-19 epidemic in
France with a relatively high goodness of fit. This is achieved despite the spatial heterogeneity across
French counties of some environmental factors potentially influencing the disease propagation.
Indeed, our model only involves the initial spatial distribution of the infectious cases and spatially
homogeneous (i.e. countrywide) parameters. For instance, we do observe a negative correlation
between the mean temperature and the immunity rate (see electronic supplementary material, figure
S1); however, it does not reflect a causality. Actually, our study shows that if there is an effect of local
covariates such as the mean temperature or e.g. the local age structure, on the spread of the disease
once it emerged, its effect is of lower importance compared to the global processes at work at the
country scale, such as sanitary measures. Local covariates might play a major role in the emergence of
the disease, but our work focuses on the disease dynamics after the emergence.

Hence, we find that initial conditions and spatial diffusion are likely to be the main drivers of the
spatial pattern of the COVID-19 epidemic. This result may rely on specific circumstances: e.g.
mainland France covers a relatively middle-sized area, with mixed urban and countryside populations
across the territory, a relatively homogeneous population age distribution, and a high level of
centralism for public decision (in particular regarding the disease-control strategy). Of course, these
features are not universal. In other countries with more socio-environmental diversity within which
environmental drivers and state decentralization could significantly induce spatial variations in
disease spread and, consequently, in which countrywide parameters would not be appropriate.
Moreover, at the global scale, the COVID-19 dynamics in different countries seem highly contrasted as
illustrated by the data of Johns Hopkins University Center for Systems Science and Engineering [42]—
see also http://covid19-forecast.biosp.org/ [43]—and could probably not be explained with a unique
time-varying contact rate parameter. Nonetheless, this model could be adapted to many other
situations at an appropriate geographical level, with a single well-defined political decision process.

Back-of-the-envelope estimates suggest that herd immunity requires that a fraction of approximately
1� 1=R0 � 70% of the population has been infected. It is far from being reached at the country scale in
France, but we observe that the fraction of immune individuals strongly varies across the territory, with
possible local immunity effects. For instance, in the most impacted county, our mathematical model’s best
estimate is that the immunity rate is 16%, whereas it is less than 1% in less affected counties. At a thinner
grain scale, even higher rates may be observed, for instance, by 4 April the proportion of people with
confirmed SARS-CoV-2 infection based on antibody detection was 41% in a high-school located in
Northern France [44].

Real-time monitoring of the immunity level will be crucial to define efficient management policies, if
a new outbreak occurs. We propose such a tool which is based on the modelling approach M3 of this
paper (see Immunity tab in http://covid19-forecast.biosp.org/). Remarkably, the estimated levels of
immunity are comparable to those observed in Spain by population-based serosurveys [45], with
values ranging from 0.5% to 13.0% at the beginning of May at the provincial resolution. Actually, a
very recent study [46] (October 2020) provides estimates for prevalence of anti-SARS-CoV-2 antibodies
in France. It shows that the nationwide seroprevalence was 4.93% ([4.02–5.89]) by mid-May. This is
consistent with the immunity rate given by our model at the same dates (4.51%). The distribution
of the immunity rate in figure 3 here also seems in good qualitative agreement with the findings of
this study.

Our results indicate that, at least in the simple mathematical model that we considered here, travel
restrictions alone, although they may have a significant effect on the cumulative number of deaths
and the reproduction number over a definite period, are less efficient—at the country scale—in
reducing transmission than social distancing and other sanitary measures. Obviously, these results
may strongly depend on the parameter values, which have been chosen here on the basis of values
estimated during the lockdown period. This is consistent with results for China [47], where travel
restrictions to and from Wuhan have been shown to have a modest effect unless paired with other
public health interventions and behavioural changes.

http://covid19-forecast.biosp.org/
http://covid19-forecast.biosp.org/
http://covid19-forecast.biosp.org/
http://covid19-forecast.biosp.org/
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Themodel selection criteria led to strong evidence in favour of the selection of modelM3 with non-local

transmission and spatially constant contact rate. It is muchmore parsimonious than the fully heterogeneous
model M2 and is therefore better suited to isolating key features of the epidemiological dynamics [6].
Despite important restrictions on movement during the considered period (mandatory home
confinement except for essential journeys until 11 May and a 100 km travel restriction until 2 June), the
model M3 was also selected against the model M1 which does not take into account non-local
transmission. This shows that intercounty transmission is one of these key features that the non-local
model manages to take into account.

More generally, in France just as in Italy [9], the spatial pattern of COVID-19 incidence indicates that
spatial processes play a key role. At this stage, only a few models can address this aspect. Some have
adopted a detailed spatio-temporal modelling approach and use mobility data (see [9] for an SEIR-like
model with nine compartments). The framework we develop here, including the non-local model and
the associated estimation procedure, should be of broad interest in studying the spatial dynamics of
epidemics, due to its theoretical and numerical simplicity and its ability to accurately track the
epidemics. This approach applies when geographical distance matters, which may not be the case at
the scale of countries like the USA. However, it does at more regional scales. Furthermore, we can
envision natural extensions of the approach that would take into account long-range dispersal events
in the interaction term.

We considered here a macroscopic deterministic framework. That is, we used continuous models at
the population scale rather than at the individual scale. These models can be seen as the large population
size limit of stochastic Markov epidemiological models [48]. Clearly, stochastic dispersal, contagion and
single stochastic extinction events play a major role at very early stages of the epidemic. Our study
focused on a period of time when the epidemic is already well-established in the population.
Therefore, we were not aiming here at describing the beginning of the epidemic. Actually, data at the
county scale are not available for this early stage.

Deterministic models are numerically more tractable and simplify parameter estimation procedures.
Thus, they seem more adapted for our purpose. However, we note that according to recent studies [49],
stochastic SIR models are Markovian only if the infectious periods follow independent exponential
distributions, which may not be realistic. Other more general assumptions, with e.g. a bimodal
distribution of the sojourn time in the infectious compartment lead to more complex macroscopic
integro-differential models [49]. Nonetheless, the estimated parameter values (e.g. R0) and the
epidemic trajectories remain very close to those obtained with the simpler (Markovian) SIR model. Yet
it would be interesting to carry out a similar study to ours here with this more general framework.

As underlined by our study, sanitary policies seem to play a major role compared to other (more
local) covariate effects such as average temperature. Spatially differentiated policies may therefore
induce a spatial heterogeneity in the contact rates. Since June 2020 (and until October 29), France has
adopted local policies. One could also consider an intermediate model between M2 and M3, with a
few classes of counties, each class corresponding to a level of sanitary measures. Such an approach,
that would allow some intermediate spatial heterogeneity in the contact rates, would probably
improve the current model M3 for the recent periods in France.

Our model can be used for predicting the spatial unfolding of the epidemic. However, such a forecast
holds true only as long as the transmission and interaction coefficients remain constant in the future. In
practice, this does not happen over long periods as there are public policy measures that keep changing
over time. To wit, Schlosser et al. [50] demonstrated a strong effect of mitigation policies on long-range
interactions in Germany. That affects the coefficient wj,k in model M3. In the same spirit, Roques et al. [17]
showed a reduction of the contact rate due to lockdown in France. Furthermore, people may adapt their
social habits because of increased awareness of the epidemic or owing to a fatigue effect. Nonetheless, the
prediction is useful for the public decision process as one can predict the time scale and spatial spreading
of the epidemic, if all else remains constant, that is, in the absence of policy or social changes.

Thus, the forecasting of future disease spread would require a model that takes into account the
interactions between the epidemic dynamics and the disease management strategies, at a local and
global scale. A possible approach would involve a coupling between an epidemiological system and a
decision-making model. In this framework, the epidemiological system is an extended version of M3 in
which the spatial heterogeneity and the intercounty transmission depend on the local management
strategies. The decision-makingmodel could follow the line of the epi-economic approach proposed in [51].

Data accessibility. All data used in this manuscript are publicly available. French mortality data at the county scale are
available at https://www.gouvernement.fr/info-coronavirus/carte-et-donnees. The data necessary to generate all of
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