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The aim of this paper is to study the qualitative behaviour
predicted by a mathematical model for the initial stage of
T-cell activation. The state variables in the model are the
concentrations of phosphorylation states of the T-cell receptor
(TCR) complex and the phosphatase SHP-1 in the cell. It is
shown that these quantities cannot approach zero and that
the model possesses more than one positive steady state for
certain values of the parameters. It can also exhibit damped
oscillations. It is proved that the chemical concentration which
represents the degree of activation of the cell, that of the
maximally phosphorylated form of the TCR complex, is, in
general, a non-monotone function of the activating signal.
In particular, there are cases where there is a value of the
dissociation constant of the ligand from the receptor which
produces a maximal activation of the T cell. This suggests
that mechanisms taking place in the first few minutes after
activation and included in the model studied in this paper
suffice to explain the optimal dissociation time seen in
experiments. In this way, the results of certain simulations
in the literature have been confirmed rigorously and some
important features which had not previously been seen have
been discovered.

1. Introduction
In humans and other vertebrates, the immune system is of crucial
importance for protecting an individual from dangers such as
pathogens, toxins and cancer. (For background information on
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immunology, we refer to [1].) The central players in the immune system are the white blood cells
(leucocytes) and it is important that these cells are able to distinguish between dangerous substances
and host tissues. This is often referred to as the distinction between non-self and self. A failure to combat
dangerous substances may lead to infectious diseases becoming life-threatening. On the other hand, if the
immune system attacks host tissues, this can lead to autoimmune disease. The process of discrimination
between self and non-self is complicated, involving numerous mechanisms. An important element of
this process, which is investigated in the present paper, is the activity of the class of leucocytes called
T cells. An individual T cell is supposed to recognize a particular substance (antigen) and take suitable
action if that substance is dangerous. Recognition is based on the binding of the antigen to a molecule on
the T-cell surface, the T-cell receptor (TCR). It is believed that the most important aspect of this process is
the time the antigen remains bound before being released (the dissociation time), an idea which has been
called the ‘lifetime dogma’ [2]. When it recognizes its antigen, the T cell changes its behaviour and is said
to be activated. In this work, we study a mathematical model of the first few minutes of T-cell activation
after the TCR binds to its antigen.

In [3], Altan-Bonnet and Germain introduced a model for the initial stage of T-cell activation.
Simulations using this model gave results which fitted a number of experimental findings. On the other
hand, it was too elaborate to be readily accessible to a mathematical analysis of its dynamics. In [4],
the authors introduced a radically simplified version of the model of [3]. The new model includes
the essential explanatory power of the old one while being much more transparent and tractable for
analytical investigation. It also predicts features of experimental data which had not been explained
previously, such as the fact that the response of a T cell can decrease as a function of the amount of antigen
when the concentration of the phosphatase SHP-1 is sufficiently high. In [4], a number of interesting
analytical calculations were performed, but the mathematical conclusions which can be drawn from
these were not worked out in detail.

The relations between these two models will now be explained briefly. The TCR is associated with
other proteins (CD3 and the ζ -chain), forming the TCR complex. These other proteins have cytoplasmic
tails on which there are regions called immunoreceptor tyrosine-based activation motifs (ITAMs). Each
ITAM contains two tyrosines on which it can be phosphorylated (i.e. phosphate groups can become
bound to these tyrosines) separated by a few other amino acids. Phosphorylation of the ITAMs is a typical
sign of T-cell activation. In the TCR complex, there are 10 ITAMs and thus a total of 20 phosphorylation
sites of potential importance for the activation of the T cell. In a later step of the process, the protein
ZAP-70 binds to the doubly phosphorylated ITAMs of the ζ -chains and itself becomes phosphorylated.
There are two ζ -chains in the T-cell complex and each contains three ITAMs. Thus a total of six
further phosphorylations are possible. The exact order in which all these sites are phosphorylated is
not understood in detail and so this part of the system is treated in a rather schematic way in the models.
In the model of [4], it is assumed that there are N sites which are phosphorylated sequentially, i.e. in a
particular order. ZAP-70 is not included in the model. In the simulations, the choice N = 5 is made. In
the model of [3], the phosphorylation sites included are those of one ζ -chain and ZAP-70, leading to a
total of nine. Both models include a negative feedback acting through the phosphatase SHP-1, which can
dephosphorylate the sites just discussed. The importance of SHP-1 in controlling T-cell activation was
pointed out in [5].

The other main difference between the models of [3,4] is the treatment of events downstream of the
process of phosphorylation of the receptor complex. In [3], phosphorylation of ZAP-70 leads to a chain of
events culminating in the activation by double phosphorylation of extracellular signal-regulated kinase
(ERK). There is also a positive feedback loop from ERK through SHP-1 to the receptor complex. The
positive feedback loop is absent from [4] and is thus seen to be unnecessary for explaining the main
effects studied in [3]. In [3], it was found that the reactions linking phosphorylation of the receptor to
the activation of ERK act as a switch: when the concentration of the phosphorylated receptor complex
exceeds a certain threshold, ERK becomes activated. In the model of [4], this switch is incorporated in
the form that when the concentration of the maximally phosphorylated form of the receptor complex
exceeds a certain threshold, this is taken as the defining property of the T cell being activated.

The aim of the present paper is to obtain results about the qualitative behaviour of solutions of
the model of [4] which are as general as possible. In §2, the model is defined and some of its basic
properties are derived. The model describes a situation where both an agonist (the antigen which should
be recognized) and an antagonist (a competing antigen) are present. Section 3 is concerned with the
number of steady states and their stability. After some general results have been derived, the discussion
turns to more detailed properties of the solutions in the case that the antagonist is absent and treats
cases where the number N of phosphorylation sites included in the model is small. In particular, it is
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shown that when N = 3, there are parameters for which three positive steady states exist (theorem 3.1).
A numerical calculation reveals that for a specific choice of these parameters two of the steady states are
stable, while the third is a saddle. For N ≤ 2, there is a unique steady state and in the case N = 1 it is
proved to be globally asymptotically stable. There are parameter values for which the approach to this
steady state is oscillatory.

The qualitative behaviour of the steady-state concentration of the maximally phosphorylated state,
which expresses the degree of activation of the T cell, as a function of the antigen concentration and the
dissociation time, is investigated in the case where only the agonist is present in §4. Let us consider the
function f (L1, ν1), which expresses the degree of activation in terms of the parameters L1 (concentration of
agonist ligand) and ν1 (reaction rate for the dissociation of the ligand from the receptor, i.e. the reciprocal
of the dissociation time). It is shown that the dependence exhibits certain types of non-monotone
behaviour in some cases. The results obtained include both rigorous results on general features of the
function f (theorem 4.2) and simulations which reveal more detailed features. In particular, it is found
that are values of the parameters in the model for which the function f has a maximum as a function of ν1
for fixed L1. In other words, there is a value of the dissociation time which is optimal for T-cell activation.
Thus, the model studied here is able to reproduce this fact which has been experimentally observed [6].

The analysis of the response function is extended to cover the effects of the antagonist in §5. The last
section is devoted to conclusions and an outlook.

2. Definition of the model
In the introduction, it was stated that a T cell recognizes an antigen. In more detail, the molecule
concerned is a peptide (a small protein) which is bound to a host molecule called a major
histocompatibility complex (MHC) molecule. Thus, we talk about a pMHC complex as the object to be
recognized. In the model of [4], two types of pMHC complexes are considered. The first, called an agonist,
represents the case where the antigen comes from a pathogen and should activate the T cell. The second,
called an antagonist, represents the case of a self-antigen, which should not activate the T cell. Detection
takes place through the binding of a pMHC complex to the TCR. As explained in the introduction,
when this happens certain proteins associated with the TCR are phosphorylated, i.e. phosphate groups
become attached to them. For simplicity, we describe this by saying that the receptor-pMHC complex is
phosphorylated.

The reaction network for the model of [4] is shown in figure 1. The state variables will now be listed.
The concentration of unphosphorylated complexes of the TCR with the agonist is denoted by C0 and the
concentration of unphosphorylated complexes of the TCR with the antagonist is denoted by D0. Cj and
Dj are the corresponding quantities for the case of j phosphorylations, up to a maximum value N. The
specific value of N has little influence in what follows. In some of our results, we choose N small so as
to obtain the simplest possible mathematical setting. The number of phosphorylation sites relevant to
the models of [3,4] have been discussed in the introduction. R, L1 and L2 are the total concentrations
of receptors and the two ligands, i.e. the agonist and antagonist. Another important element of the
system is SHP-1. This substance is a phosphatase which means that when active it can remove phosphate
groups from the receptor-pMHC complex. It contributes a negative feedback loop to the system. S is the
concentration of active SHP-1. The receptor complexes are subject to phosphorylation with rate constant
φ and dephosphorylation with rate constant b. They are also dephosphorylated by SHP-1 with rate
constant γ and dissociate with rate constants ν1 and ν2. Antigens bind to the receptor with rate constant
κ . SHP-1 is activated by the singly phosphorylated complexes with rate constant α and deactivated with
rate constant β. All the rate constants are assumed positive. ST is the total concentration of SHP-1. It is
assumed that all reactions exhibit mass action kinetics and this leads to the following system of equations:

Ṡ = α(C1 + D1)(ST − S) − βS, (2.1)

Ċ0 = κ

⎛
⎝L1 −

N∑
j=0

Cj

⎞
⎠

⎛
⎝R −

N∑
j=0

(Cj + Dj)

⎞
⎠ + (b + γ S)C1 − (φ + ν1)C0, (2.2)

Ċj = φCj−1 + (b + γ S)Cj+1 − (φ + b + γ S + ν1)Cj, 1 ≤ j ≤ N − 1, (2.3)

ĊN = φCN−1 − (b + γ S + ν1)CN , (2.4)

Ḋ0 = κ

⎛
⎝L2 −

N∑
j=0

Dj

⎞
⎠

⎛
⎝R −

N∑
j=0

(Cj + Dj)

⎞
⎠ + (b + γ S)D1 − (φ + ν2)D0, (2.5)
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Figure 1. Themodel considered in this paper. The species R is the T-cell receptor (TCR), and L1 and L2 are the two ligands, i.e. the agonist
and antagonist. The species C0 are unphosphorylated complexes of the TCR with the agonist, and the Cj ’s are the j-phosphorylated
complexes. The Dj ’s are the analogous complexes for the antagonist. The phosphatase SHP-1 provides a negative feedback, and is
represented by S. The different reactions represent receptor complex phosphorylation with rate constantφ and dephosphorylation with
rate constant b, as well as receptor complex dephosphorylation by S with rate constant γ and dissociation rate constants ν1 and ν2.
Antigens bind to Rwith rate constantκ , and S is activated by the singly phosphorylated complexes with rate constantα and deactivated
with rate constantβ .

Ḋj = φDj−1 + (b + γ S)Dj+1 − (φ + b + γ S + ν2)Dj, 1 ≤ j ≤ N − 1 (2.6)

and ḊN = φDN−1 − (b + γ S + ν2)DN . (2.7)

In a direct formulation of the system as arising from the reaction network, it is necessary to include the
concentrations of free ligands, free receptors and inactive phosphatase. This extended system has four
conservation laws corresponding to the total amounts of ligands, receptors and phosphatase. The explicit
form of the conserved quantities is

N∑
j=0

Cj + L1,U = L1,
N∑

j=0

Dj + L2,U = L2,

N∑
j=0

Cj +
N∑

j=0

Dj + RU = R, S + SI = ST,

where L1,U, L2,U and RU are the concentrations of unbound ligands and receptors and SI is the
concentration of the inactive form of SHP-1. Using these conservation laws to eliminate the additional
variables leads to the system (2.1)–(2.7).

The right-hand sides of the equations are Lipschitz and so there is a unique solution corresponding
to each choice of initial data. To have a biologically relevant solution, the quantities in the extended
system should be non-negative. It is a well-known fact for reaction networks of this type that data for
which all concentrations are positive give rise to solutions with the same property and that data for
which all concentrations are non-negative give rise to non-negative solutions. In terms of (2.1)–(2.7),
this implies statements about the positivity of the quantities S, Cj and Dj and of the differences ST − S,
R − ∑N

j=0(Cj + Dj), L1 − ∑N
j=0 Cj and L2 − ∑N

j=0 Dj. Let us call the region where all these quantities are
strictly positive the biologically feasible region. Note that owing to the conservation laws, this region is
bounded. Let Σ1 = ∑N

j=0 Cj and Σ2 = ∑N
j=0 Dj. Then it follows from (2.1) to (2.7) that

Σ̇1 = κ(L1 − Σ1)(R − Σ1 − Σ2) − ν1Σ1 (2.8)

and
Σ̇2 = κ(L2 − Σ2)(R − Σ1 − Σ2) − ν2Σ2. (2.9)

Lemma 2.1. Consider a solution (S(t), C0(t), . . . , CN(t), D0(t), . . . , DN(t)) in the closure of the biologically
feasible region. Then if (S∗, C∗

0, . . . , C∗
N , D∗

0, . . . , D∗
N) is an ω-limit point of this solution it is also in the biologically

feasible region. In particular, any steady state is in the biologically feasible region.

Proof. If S∗ = ST we can consider the solution starting at that point at some time t0. Since the ω-limit
set of a given solution is invariant, the solution under consideration lies entirely in the ω-limit set of
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the original solution. In particular, it is contained in the closure of the biologically feasible region. The
solution starting at the point with S∗ = ST satisfies Ṡ(t0) < 0 because the first term on the right-hand side
of (2.1) is zero for t = t0 and the second term negative. Hence, the solution starting at the ω-limit point
satisfies the inequality S(t) > ST for t slightly less than t0, a contradiction to the fact that the original
solution was in the biologically feasible region. In a similar way, equation (2.8) implies that

∑N
j=0 C∗

j

cannot attain the value L1 and equation (2.9) implies that
∑N

j=0 D∗
j cannot attain the value L2. Summing

(2.8) and (2.9) shows that
∑N

j=0 C∗
j + ∑N

j=0 D∗
j cannot attain the value R.

Note next that C0 cannot be zero at an ω-limit point. For if it is zero at such a point, we can consider
the solution passing through that point at a time t0. As the inequalities already proved imply that the
first term in equation (2.2) is positive for t = t0 that equation implies that Ċ0(t0) > 0 and that C0(t) < 0 for
t slightly less than t0, a contradiction. Once the positivity of C0 has been proved we can use equation
(2.3) with j = 1 to show that C1 cannot be zero at an ω-limit point. This, in turn, allows us to prove using
(2.1) that S can never be zero at an ω-limit point. In a similar way, it can be concluded successively that
C2, . . . , CN and D0, . . . , DN are positive at any ω-limit point of a non-negative solution. This concludes
the proof of the lemma. �

The fact that all ω-limit points of solutions in the closure of the biologically feasible region are in the
biologically feasible region, together with the fact that the closure of that region is compact, implies that
the infimum of the distance of a given solution to the boundary in the limit t → ∞ is strictly positive.
When this last property holds, the system is said to be persistent [7]. Note in addition that the closure of
the biologically feasible region is convex and hence homeomorphic to a closed ball in a Euclidean space.
It follows from the Brouwer fixed point theorem that a steady state exists (cf. [8], ch. I, theorem 8.2). As
steady states on the boundary have already been excluded, we can conclude that there is at least one
steady state in the biologically feasible region for any fixed choice of parameters. That this is the case
was assumed implicitly in [4].

3. Multiplicity of steady states
A question not addressed in [4] is whether there might exist more than one positive steady state for a
fixed choice of parameters. In this section, it is shown that for some values of N and the reaction constants
this is the case. The aim is to find any parameter values with this property while not worrying for the
moment how biologically relevant this choice of parameters is. Let f1 and f2 denote the right-hand sides
of equations (2.8) and (2.9). Then ∂f1/∂Σ2 and ∂f2/∂Σ1 are negative and hence the system (2.8)–(2.9) is
competitive. It follows that every solution of this system converges to a steady state as t → ∞ [9].

A steady state (Σ∗
1 , Σ∗

2 ) of (2.8)–(2.9) satisfies the equations

κ(L1 − Σ∗
1 )(R − Σ∗

1 − Σ∗
2 ) − ν1Σ

∗
1 = 0 (3.1)

and
κ(L2 − Σ∗

2 )(R − Σ∗
1 − Σ∗

2 ) − ν2Σ
∗
2 = 0. (3.2)

We can solve for Σ∗
1 and Σ∗

2 as functions of Σ∗
1 + Σ∗

2 :

Σ∗
1 = κL1(R − Σ∗

1 − Σ∗
2 )

κ(R − Σ∗
1 − Σ∗

2 ) + ν1
(3.3)

and

Σ∗
2 = κL2(R − Σ∗

1 − Σ∗
2 )

κ(R − Σ∗
1 − Σ∗

2 ) + ν2
. (3.4)

Hence

κ(L1 + L2 − Σ∗
1 − Σ∗

2 ) = κL1ν1

κ(R − Σ∗
1 − Σ∗

2 ) + ν1
+ κL2ν2

κ(R − Σ∗
1 − Σ∗

2 ) + ν2
. (3.5)

The function of Σ∗
1 + Σ∗

2 on the left-hand side of this equation is decreasing on the interval [0, L1 + L2].
The function on the right-hand side is increasing on the interval [0, R]. Their graphs can intersect in at
most one point. We already know that they must intersect since a positive steady state of the full system
exists. That they intersect can also be seen directly. For in all cases, the left-hand side is greater than
the right-hand side for Σ∗

1 + Σ∗
2 = 0 and the opposite inequality holds for Σ∗

1 + Σ∗
2 = min{L1 + L2, R}.

Thus, the equation has a unique solution for Σ∗
1 + Σ∗

2 in the interval [0, min{L1 + L2, R}]. From this, it is
possible to compute values of Σ∗

1 and Σ∗
2 which solve (3.1) and (3.2) and lie in the intervals [0, min{L1, R}]
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and [0, min{L2, R}], respectively. The quantities Σ∗

1 and Σ∗
2 are functions of the parameters R, L1, L2, κ , ν1

and ν2.
It can be concluded that the solution passing through an ω-limit point of a solution of the original

system satisfies a simplified system containing Σ∗
1 and Σ∗

2 as parameters. C0 and D0 can be eliminated
from this system in favour of the other Cj and Dj. The result is

Ṡ = α(C1 + D1)(ST − S) − βS, (3.6)

Ċ1 = φΣ∗
1 + (b + γ S − φ)C2 − (2φ + b + γ S + ν1)C1 − φ

N∑
j=3

Cj, (3.7)

Ċj = φCj−1 + (b + γ S)Cj+1 − (φ + b + γ S + ν1)Cj, 2 ≤ j ≤ N − 1, (3.8)

ĊN = φCN−1 − (b + γ S + ν1)CN, (3.9)

Ḋ1 = φΣ∗
2 + (b + γ S − φ)D2 − (2φ + b + γ S + ν2)D1 − φ

N∑
j=3

Dj, (3.10)

Ḋj = φDj−1 + (b + γ S)Dj+1 − (φ + b + γ S + ν2)Dj, 2 ≤ j ≤ N − 1 (3.11)

and ḊN = φDN−1 − (b + γ S + ν2)DN . (3.12)

This form of the equations is valid for N ≥ 3. In the case N = 2, it is still correct if it is taken into account
that the condition 2 ≤ j ≤ N − 1 is never satisfied so that the equations containing that condition are
absent. The sum from j = 3 to N is zero in that case. The case N = 1 is exceptional from the point of
the notation.

To get more information, we restrict in the remainder of this section to, what we call, the agonist-only
case. This is obtained from the system (2.1)–(2.7) by setting L2 and the Di to zero. There is a corresponding
limiting system, which is obtained from (3.6) to (3.12) by setting Σ∗

2 and the Di to zero. In this case,
we write Σ∗ instead of Σ∗

1 for brevity. Consider the limiting system in the agonist-only case with N = 1.
This is

Ṡ = αC1(ST − S) − βS (3.13)

and
Ċ1 = φΣ∗ − (φ + b + γ S + ν1)C1. (3.14)

Solving the equation Ṡ = 0 for C1 and substituting the result into the equation Ċ1 = 0 gives the quadratic
equation

βγ S2 + [β(φ + b + ν1) + αφΣ∗]S − αφΣ∗ST = 0. (3.15)

As the quadratic polynomial has positive leading term and is negative for S = 0, it is clear that it has
a unique positive root. It follows from (3.15) that this root is less than ST. Equation (3.14) implies that
C1 < Σ∗ at a steady state and so these quantities can be completed to a steady state of the original system
by defining C0 = Σ∗ − C1. The steady state is unique in this case.

In the case N = 2, the equations are

Ṡ = αC1(ST − S) − βS, (3.16)

Ċ1 = φΣ∗ − (2φ + b + γ S + ν1)C1 + (−φ + b + γ S)C2 (3.17)

and Ċ2 = φC1 − (b + γ S + ν1)C2. (3.18)

Proceeding in a manner analogous to what we did in the case N = 1 it is possible to get a cubic equation
for S in the case N = 2, which we can write schematically in the form p(S) = ∑N

k=0 akSk. We have

a0 = −αST(b + ν1)φΣ∗,

a1 = β[b(φ + b + ν1) + ν1(2φ + b + ν1) + φ2] + α(b + ν1)φΣ∗ − αγ STφΣ∗,

a2 = βγ (φ + 2b + 2ν1) + αγφΣ∗,

a3 = βγ 2.

The sequence of signs of the coefficients ai is either (−, −, +, +) or (−, +, +, +). There is precisely one
change of sign and thus by Descartes’ rule of signs the polynomial has precisely one positive root. Once
a value of S is given, the values of C1 and C2 at the steady state can be determined successively. Following
the arguments in the case N = 1, we see that S < ST, C1 + C2 < Σ∗ and that the steady state is unique.
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In the case N = 3, the system is

Ṡ = αC1(ST − S) − βS, (3.19)

Ċ1 = φΣ∗ − (2φ + b + γ S + ν1)C1 + (−φ + b + γ S)C2 − φC3, (3.20)

Ċ2 = φC1 − (φ + b + γ S + ν1)C2 + (b + γ S)C3 (3.21)

and Ċ3 = φC2 − (b + γ S + ν1)C3. (3.22)

A calculation for N = 3 analogous to those already done gives a quartic polynomial. Its coefficients are

a0 = −[(b + ν1)2 + φν1]αφΣ∗ST,

a1 = βγ {(φ + b + ν1)[(b(b + ν1) + ν1(φ + b + ν1)] + ν1(φ + b + ν1)

+ φ2(b + ν1) + φ3} + [(b + ν1)2 + ν1φ]αφΣ∗ − 2(b + ν1)αγφΣ∗ST,

a2 = βγ {b(b + ν1) + ν1(φ + b + ν1) + 2(φ + b + ν1)(b + ν1) + φν1 + φ2}
+ 2(b + ν1)αγφΣ∗ − γ 2αφΣ∗ST,

a3 = β{2γ (b + ν1) + γ 2(φ + b + ν1)} + γ 2αφΣ∗,

a4 = βγ 3.

The coefficient a0 is negative, while a3 and a4 are positive. Unless a1 > 0 and a2 < 0 Descartes’ rule of
signs implies that the polynomial only has one positive root. Otherwise, the rule implies that it has one
or three positive roots (counting multiplicity), but does not decide between these two cases.

It will now be shown that in the case N = 3, there are values of the coefficients for which the
polynomial p(S) has three positive roots. To do this, we vary the coefficients ST and ν1 in the system
(3.19)–(3.22) and keep all others fixed. Note that these coefficients come from the parameters in the
agonist-only case of (2.1)–(2.4). To obtain the desired variation of the coefficients, we fix all parameters
in (2.1)–(2.4) except ST, ν1 and κ and vary κ in such a way that ν1/κ does not change. This ensures
that Σ∗ does not change. In fact, we may simplify the calculations by setting b = 0 because if three
positive roots can be obtained in that case the same thing can be obtained for b small and positive by
continuity. Suppose that ST and ν1 depend on a parameter ε with both of them being positive for ε > 0.
Suppose in addition that in the limit ε → 0, we have the asymptotic relations ST = S̄Tε−1 + o(ε−1) and
ν1 = ν̄1ε

4 + o(ε4) for constants S̄T and ν̄1. Then we obtain asymptotic expansions a4 = A4, a3 = A3 + o(1),
a1 = A1 + o(1) for positive constants A4, A3 and A1, a0 = A0ε

3 + o(ε3) for a constant A0 < 0 and a2 =
A2ε

−1 + o(ε−1) for a constant A2 < 0. Let q(S) = εp(S). Then q(1) converges to A2 for ε → 0 and is thus
negative for ε small enough. The same is true for p(1). On the other hand,

p(ε2) = A0ε
3 + A1ε

2 + A2ε
3 + A3ε

6 + A4ε
8 + o(ε2) = A1ε

2 + o(ε2). (3.23)

Hence for ε sufficiently small p(ε2) > 0. Putting these facts together shows that p has three positive roots
when ε is small. For each of these roots, the values of C1, C2 and C3 at the steady state can be determined
successively. S < ST, C1 + C2 + C3 < Σ∗ and defining C0 = Σ∗ − (C1 + C2 + C3) gives a steady state of
the original system.

It has already been noted that p cannot have more than three positive roots. There are parameter
values for which the positive steady state is unique. To see this, it is enough to assume that ST is small
while keeping the other parameters fixed. Then ai > 0 for all i > 0 and the polynomial can have no more
that one positive root because its derivative has no positive root. These results can be summed up as
follows:

Theorem 3.1. The agonist-only case of the system (2.1)–(2.7) has exactly one positive steady state for N = 1
and N = 2. In the case N = 3, there are parameters for which it has three positive steady states and it can never
have more than three.

A concrete example of parameters for which there are three positive steady states is obtained by
setting α, β, γ , φ, L1 and R equal to one and choosing ST = 10, κ = 2 × 10−4, ν1 = 10−4. A computer
calculation shows that the coordinates (S∗, C∗

0, C∗
1, C∗

2, C∗
3) of the steady states are approximately

(1.1769, 0.1570, 0.1334, 0.1133, 0.0963), (3.24)

(0.0005, 0.0001, 0.0001, 0.0003, 0.4996) (3.25)

and (0.2860, 0.0085, 0.0294, 0.1028, 0.3593). (3.26)
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Figure 2. Multistability of steady states as a function of L1. Shown is the coordinate C3, but other coordinates behave similarly. Stable
branches are shown in green and unstable in red. (a) Linear scale, (b) log–log scale. Parameters areα = 1, ST = 10,β = 1, κ = 2 ×
10−4, R= 1, b= 0, γ = 1,φ = 1, ν1 = 1.

It shows in addition that while the first and second of these steady states are asymptotically stable the
third is a saddle with a one-dimensional unstable manifold. A plot of the steady states as a function of
the parameter L1 (figure 2), suggests that there is a fold bifurcation.

For higher values of N it is possible to derive a polynomial equation of degree N + 1 for S. There is
no obvious reason why this polynomial should not have an arbitrarily large number of positive roots
for N arbitrarily large. A simple upper bound is that the polynomial can have no more than N positive
roots for N odd and no more than N + 1 for N even. Simulations indicate that in the case N = 5 there are
parameters for which three steady states exist but no parameters were found for which there are more
than three for any value of N.

In general, it is difficult to obtain information about the stability of the steady states by analytic
methods. In the case N = 1, the vector field defining the dynamical system has negative divergence and so
by Dulac’s criterion und Poincaré–Bendixson theory, all solutions converge to the steady state as t → ∞.
The system can exhibit damped oscillations as will now be shown. To do this, we choose parameters
so that

αC1 + β = φ + b + γ S + ν1. (3.27)

For fixed values of the quantities R and ST, the quantities C1 and S are bounded uniformly in the
quantities appearing in (3.27). Thus, if we make α and β small while fixing the other parameters, we can
arrange that the left-hand side is smaller than the right-hand side. If starting from there, we make β large
while fixing the other parameters we can arrange that the left-hand side of (3.27) is greater than that of
the right-hand side. It follows that parameter values exist for which (3.27) holds. Why this is interesting
is that the discriminant of the characteristic equation of the linearization is the sum of a term which
vanishes when (3.27) holds and the expression −4αγ (ST − S)C1. Thus when (3.27) holds, the linearization
has eigenvalues with negative real part and non-zero imaginary part and there are damped oscillations.

An interesting limiting case of the agonist-only system is obtained by assuming that α = 0 and S = 0.
We refer to this as the kinetic proofreading system because it is closely related to McKeithan’s kinetic
proofreading model [10]. In fact, McKeithan only considered the case b = 0, but this makes no essential
difference for the analysis which follows. It was observed by Sontag [11] that the deficiency zero theorem
of chemical reaction network theory can be applied to McKeithan’s system to conclude that there is a
unique steady state in each stoichiometric compatibility class and that this solution is asymptotically
stable in its class. Strictly speaking, chemical reaction network theory is applied to the extended system
which includes free receptors and free ligand as variables. To show that the steady state is globally
asymptotically stable, it suffices to show that there are no ω-limit points on the boundary. That this is
the case can be proved just as we did for the full system above. The steady state is hyperbolic as follows
from appendix C of [12].

Consider now the full agonist-only system. Setting α = 0 gives a system where the kinetic
proofreading system is coupled to a system describing the decay of S. The steady state of the kinetic
proofreading system gives rise to a steady state of the agonist-only system with α = 0 which is on the
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boundary of the biologically feasible region and is a hyperbolic sink. Denote its coordinates by (0, C∗

j ).
For α small and positive, there exists a hyperbolic sink which is a small perturbation of that for α = 0.
It must be in the biologically feasible region because C1 > 0 there and equation (2.1) would imply that
Ṡ > 0 there if S were negative. Thus for sufficiently small values of α, there exists a positive steady state
which is a hyperbolic sink (S∗(α), C∗

j (α)) close to (0, C∗
j ). There exists a positive number r such that for α

sufficiently small, say α ≤ α0, (S∗(α), C∗
j (α)) is the only ω-limit point of any solution in the open ball of

radius r about that steady state.
Let h(Cj) be the Lyapunov function in the proof of the deficiency zero theorem. It is known from

general arguments that ḣ ≤ 0 with equality only for Cj = C∗
j . It follows that on the complement of the ball

of radius r about the steady state the function ḣ has a strictly negative maximum. We can consider the
behaviour of the function ḣ for solutions of the system for positive α. For small α, it is still a Lyapunov
function on the complement of a small ball about the steady state, while there are no ω-limit points except
the steady state itself within that ball. Hence for α, sufficiently small a solution can have no ω-limit points
other than the steady state. It follows that for α small the steady state is globally asymptotically stable.
Of course, this means that the limiting system obtained from the agonist-only system by passing to a
solution through an ω-limit point also has a unique steady state which is globally asymptotically stable
for α sufficiently small. A similar argument applies in the case of the full system (2.1)–(2.7) because in that
case the system obtained by setting α and S to zero is just the product of two copies of the corresponding
system in the agonist-only case.

4. The response function
This section is concerned with the agonist-only system. From a biological point of view, the essential
input parameters to the system are the ligand concentration L1 and the binding time of the ligand to
the receptor, which in the model corresponds to ν−1

1 . The latter is a measure of the signal strength. The
essential output is the value of CN which is a measure of the activation of the T cell. Given values of
L1, ν1 and the other parameters, we can consider the value of CN in a steady state. In fact, it is more
convenient to use the quantities log CN and log L1. This leads to a response function log C∗

N = F(log L1, ν1).
If there is more than one steady state for a given choice of the parameters, this has to be thought of as a
multi-valued function. It might naively be thought that F should be an increasing function of L1 and a
decreasing function of ν1: more antigen leads to more activation of the T cell and a longer binding time
leads to more activation. This turns out not to be the case and the function F is not a monotone function
of its arguments. This was observed in the case of the dependence on L1 in the simulations of [4]. It is
possible to understand intuitively how this situation can arise. An increase in the stimulation of the T
cell leads to activation of SHP-1 and that in turn has a negative effect on the activation of the T cell. Many
of the calculations in this section are guided by those in [4].

The behaviour of the response function will be estimated in various parameter ranges. To do this, it
is useful to parametrize the solutions in a certain manner which will now be described. In the case of a
steady state, the equation (2.3) is a linear difference equation for the Cj with constant coefficients. This
suggests looking for power-law solutions, an idea which motivates the following result.

Lemma 4.1. Steady-state solutions of equations (2.2)–(2.4) in the agonist-only case can be parametrized in the
form

Cj = a+rj
+ + a−rj

−, (4.1)

where the coefficients r± and a± are positive and depend on S. The quantities r+ and r− are given by

r± = φ + b + γ S + ν1 ±
√

(φ + b + γ S + ν1)2 − 4φ(b + γ S)
2(b + γ S)

(4.2)

and satisfy r− < 1 < r+.

Proof. Note first that the quantities r± in (4.2) are the roots of the characteristic equation

φ + (b + γ S)r2 − (φ + b + γ S + ν1)r = 0, (4.3)

associated to the difference equation already mentioned and it is obvious that they are positive. The fact
that they satisfy the characteristic equation is equivalent to the condition that the Cj defined by (4.1)
satisfy the steady state form of equation (2.3). That r− < 1 < r+ can be seen by noting that the function
on the left-hand side of (4.3) is negative at r = 1. The condition that the quantities Cj satisfy the equations
(2.2)–(2.4) with Ċj = 0 is equivalent to the conditions that they satisfy (4.1) with r± as in (4.2) and certain
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coefficients a− and a+ together with the equations obtained by substituting (4.1) into the equations Ċ0 = 0
and ĊN = 0. The explicit form of these last equations is

[(b + γ S)r− − (φ + ν1)]a− + [(b + γ S)r+ − (φ + ν1)]a+ = −ν1

N∑
j=0

Cj (4.4)

and
rN−1
− [φ − (b + γ S + ν1)r−]a− + rN−1

+ [φ − (b + γ S + ν1)r+]a+ = 0. (4.5)

It follows from the discussion in §3 that
∑N

j=0 Cj, which was denoted there by Σ∗
1 , is uniquely determined

for fixed values of the parameters in (2.2)–(2.4) and fixed S. Thus for fixed values of these parameters and
S, all quantities in (4.4) and (4.5) except a− and a+ are known. It will now be shown that these equations
have a unique solution for a− and a+. Note that

[φ − (b + γ S + ν1)r−][φ − (b + γ S + ν1)r+] = − φ2ν1

b + γ S
, (4.6)

as can most easily be seen by multiplying out the left-hand side of this equation and substituting for
r+r− and r+ + r−, which are the sum and product of the roots of the characteristic equation (4.3). Thus
equation (4.5) gives a positive expression for a+/a−. Note also that (4.6) implies that the factors in the
product on the left-hand side of that equation have opposite signs. As r− < r+, the first factor is positive
and the second negative. Substituting the expression for a+/a− into (4.4) gives an equation of the form

a−

[
A − B

(
r−
r+

)N−1
]

= −ν1Σ
∗
1 [φ − (b + γ S + ν1)r+], (4.7)

whose right-hand side is positive. Here

A = [(b + γ S)r− − (φ + ν1)][φ − (b + γ S + ν1)r+] (4.8)

and
B = [(b + γ S)r+ − (φ + ν1)][φ − (b + γ S + ν1)r−]. (4.9)

It follows from the fact that the first factor on the left-hand side of (4.6) is positive that the first factor
in the expression for A is negative and hence that A itself is positive. In addition, a straightforward
computation shows that A > B. If B were not positive, then the quantity in square brackets on the left-
hand side of (4.7) would be positive. If B is positive, then the fact that r− < r+ implies that the quantity in
square brackets is again positive. Hence in any case, (4.7) can be solved to give a unique positive value
of a−. Then a+ can be determined in such a way that (4.4) and (4.5) hold. This completes the proof of
lemma 4.1. �

Lemma 4.1 shows that for fixed parameters in (2.2)–(2.4) and a fixed value of S the steady-state values
of all the Cj are determined, but this does not yet give expressions for the Cj which can be directly applied
to study the properties of the response function. For the purposes of what follows, it is convenient to
rewrite (2.8) in the form

κ

⎛
⎝L1 −

N∑
j=0

Cj

⎞
⎠

⎛
⎝R −

N∑
j=0

Cj

⎞
⎠ − ν1

N∑
j=0

Cj = 0. (4.10)

The equation for S can be solved to give the relation S = ST(C1/(C1 + C∗) with C∗ = β/α. Summing the
expression for Cj given in Lemma 2 over j gives

N∑
j=0

Cj = a+
rN+1
+ − 1
r+ − 1

+ a−
rN+1
− − 1
r− − 1

. (4.11)

The following equation relating a− and a+ is equation (21) of [4]:

a+ = −a−
(

r−
r+

)N+1 r+ − 1
r− − 1

. (4.12)

Combining the last two equations gives

N∑
j=0

Cj = a−
1 − r−

[
1 −

(
r−
r+

)N+1
]

. (4.13)
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Having completed the necessary preliminaries, we now proceed to study the qualitative behaviour of

the response function in different regimes. When L1 is small, it is to be expected that the concentration of
the phosphatase is small and that the response function resembles that of the kinetic proofreading model.
It will now be shown that when L1 is small, the leading term in the function F depends linearly on log L1
with slope one and the additive constant in this linear function will be determined. The equation (4.10)
can be written in the form

N∑
j=0

Cj = κRL1

κR + ν1

⎡
⎢⎣1 + L1

R

⎛
⎜⎝

⎛
⎝∑N

j=0 Cj

L1

⎞
⎠

2

−
⎛
⎝∑N

j=0 Cj

L1

⎞
⎠

⎞
⎟⎠

⎤
⎥⎦ . (4.14)

Note that
∑N

j=0 Cj ≤ L1 so that this equation implies that

N∑
j=0

Cj = κRL1

κR + ν1

(
1 + qL1

R

)
, (4.15)

where − 1
4 < q < 0. Using (4.12), it is possible to write down an explicit expression for CN , namely

CN = a−rN−(r+ − r−)
r+(1 − r−)

. (4.16)

It follows from (4.13) that

CN = rN
−

1 − r−/r+
1 − (r−/r+)N+1

N∑
j=0

Cj. (4.17)

Combining these equations gives

CN =
{

rN
−

1 − r−/r+
1 − (r−/r+)N+1

κR
κR + ν1

}
L1

(
1 + qL1

R

)
. (4.18)

The function of r− and r+ in this equation defines a function of S. This function of S tends to a positive
limiting value as S → 0. Now C1 ≤ ∑N

j=0 Ci = O(L1) and S = O(C1). Hence for R fixed, we can replace the
function of r+ and r− in the above expression by its limiting value for S → 0. If the resulting relation
is plotted logarithmically, it gives a straight line of slope one as the leading order approximation in the
limit log L1 → −∞.

Next we look at an intermediate regime where the amount of activated SHP-1 is well away from both
zero and ST. As a first step, we obtain an estimate for r− which is sharper than that in lemma 4.1. To
do this, we compute the left-hand side of the characteristic equation (4.3) for r = φ/(φ + ν1). The result is
−φν1(b + γ S)/(φ + ν1)2 < 0. It follows that r− < φ/(φ + ν1). Hence 1 − r− > ν1/(φ + ν1). Substituting this
into (4.13) gives a− > (ν1/(φ + ν1))(

∑N
j=0 Cj). Note that S/ST ≥ min{C1/2C∗, 1

2 }. Hence a positive lower
bound for C1 implies a positive lower bound for S/ST.

Next, we will derive a lower bound for γ S in the case that ST is large. This will be proved by
contradiction. Suppose that γ S ≤ ρ for some ρ > 0. Then it follows from the characteristic equation
that r− ≥ φ/(φ + ρ + ν1). Using this in the equation for C1 gives C1 ≥ (φν1/(φ + ν1)(φ + ρ + ν1))(

∑N
j=0 Cj).

It follows that

S ≥ ST min

⎧⎨
⎩ φν1

2C∗(φ + ν1)(φ + ρ + ν1)

⎛
⎝ N∑

j=0

Cj

⎞
⎠ ,

1
2

⎫⎬
⎭ . (4.19)

It is then clear that for a given value of ρ and fixed values of the parameters other than ST, this leads to
a contradiction if ST is sufficiently large. In other words, given any ρ > 0 there is a lower bound for ST
which implies that γ S ≥ ρ. It is convenient to make the restrictions that κR ≥ 1 and L1/R ≤ 1 since then it
is possible to replace

∑N
j=0 Cj in (4.19) by 3L1/4(1 + ν1) using (4.15).

From (4.2), it can be concluded that

r− = φ

b + γ S
(1 + O(η)) (4.20)

and

r+ = 1 + O(η). (4.21)
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where η = (φ + ν1)/(b + γ S). This gives approximate expressions for the roots of the characteristic
equation if (φ + ν1)/(b + γ S) is small. As a consequence of these equations

r−
r+

= φ

b + γ S
(1 + O(η)). (4.22)

Taking the expression for C1 supplied by Lemma 2 and using (4.12), (4.13) and (4.15) gives

C1 = r−
κRL1

κR + ν1
(1 + O(η)). (4.23)

This implies that C1 = O(η) and the expression relating S and C1 then shows that S
ST

= O(η). In fact,

C1 = C∗S
ST

(1 + O(η)). (4.24)

These relations indicate that in leading order r− is proportional to S. However, it is also the case that

r− = 1
S

φ

γ

1
1 + b/(γ S)

(1 + O(η)), (4.25)

which indicates that in leading order r− is proportional to S−1. Hence

r− = C∗(κR + ν1)
κRL1ST

S(1 + O(η)) (4.26)

and

r− = 1
S

φ

γ
(1 + O(η′)), (4.27)

where η′ = max{η, b/(γ S)}. Combining these two relations gives

S =
√

φκRSTL1

C∗γ (κR + ν1)
(1 + O(η′)). (4.28)

Substituting this back into the equation for r− gives

r− =
√

φC∗(κR + ν1)
γ STL1κR

(1 + O(η′)). (4.29)

This means that

CN =
⎛
⎝ N∑

j=0

Cj

⎞
⎠ rN

−(1 + O(η′′))

=
(

κR + ν1

κRL1

)N/2−1 (
φC∗
γ ST

)N/2
(1 + O(η′′))

=
(

φβ

αγ ST

)N/2 (
κR + ν1

κR

)N/2−1
(L1)1−N/2(1 + O(η′′)), (4.30)

where η′′ = max{η′, L1/R}. Choosing L1 small enough makes L1/R small. With L1 fixed, making ST large
enough makes η small. Thus, η′′ can be made as small as desired by choosing L1 sufficiently small and
ST sufficiently large.

Theorem 4.2. Consider the response function log CN = F(log L1, ν1) for the steady states of the system (2.1)–
(2.4) with L2 = 0 and Dj = 0. Choose fixed values for all parameters in the system except L1 and ST. Suppose that
κR ≥ 1. Let ε > 0. Then for any sufficiently small constant δ > 0, the following holds. If 0 < L0 < δ, there exists
μ > 0 such that if ST ≥ μ the inequality∣∣∣∣∣

(
φβ

αγ ST

)−N/2 (
κR + ν1

κR

)1−N/2
(L1)N/2−1F(log L1, ν1) − 1

∣∣∣∣∣ < ε, (4.31)

holds on the interval [log L0, log δ].
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Figure 3. Log–log plot showing linearity of log C3 as a function of log L1 for small L1, followed by decreasing, increasing and saturation
regimes. Parameters areα = 1, ST = 6 × 105,β = 5 × 102, κ = 10−4, R= 3 × 104, b= 4 × 10−2, γ = 1.2 × 10−6,φ = 9 ×
10−2, ν1 = 10−2.

Proof. To obtain the conclusion of the theorem, it suffices to show that under the given assumptions η′′
can be made as small as desired. That this is possible follows from the above discussion. �

Note that this theorem implies, in particular, that for N > 2 and suitable values of L1 and ST there
exists a range of L1 in which the response function is decreasing. The theorem also implies that in this
regime, the response function can be an increasing function of ν1. This effect was not captured by the
calculations of [4] because there ν1/κR was assumed to be so small as to be negligible.

Finally, we examine the regime where L1/R is small, but the phosphatase is close to being completely
activated. This means that S/ST is close to one. This holds provided C1 is sufficiently large compared to
C∗. It remains to check that such a regime actually occurs for some values of the parameters. It is possible
to make

∑N
j=0 Cj large while keeping L1/R constant. This can be done by making R large. This makes

a− large without making r− small. Hence it makes C1 large and hence S close to ST. In this regime, the
function of r+ and r− occurring in the expression for CN can be replaced by its limit for S → ST and we
again get a region where the slope of the graph of log CN as a function log L1 is one but the line has been
shifted compared to that obtained for L1/R small.

In [4], these types of behaviour were exhibited numerically in the case N = 5 with biologically
reasonable choices of the parameters. We found that changing these parameters a little allows similar
observations to be made in the case N = 3. In the plot shown in figure 3, the three regimes can be seen
together with a fourth regime where L1/R is no longer small. It is clear that a regime of this type must
exist because the response function is globally bounded.

We now turn to the dependence of the response function on ν1. It has been suggested in [13] that the
kinetic proofreading model with negative feedback as studied here is not able to explain the presence of
an optimal dissociation time, a biological effect confirmed by the experimental work of [6]. The plots
of the response as a function of the dissociation time in that type of model in [13] show that it is
increasing. Having an optimal dissociation time would require that there be a region where this function
is decreasing. The response function being increasing as a function of the dissociation time corresponds
to its being decreasing a function of ν1. Here, we have given an analytical proof in theorem 4.2 that there
exist parameters for which the response is an increasing function of ν1, in contrast with the plots in [13].
As the theorem is of limited help in finding explicit parameters for which this happens, we also did a
numerical search and identified parameters of this type. The results are displayed in figure 4, where it is
seen that F has a maximum as a function of ν1 for fixed L1, which corresponds to an optimal dissociation
time. The conclusion of both the analytical and the numerical work is as follows. The claim that the
kinetic proofreading model with feedback can only produce a response which is a decreasing function of
the parameter ν1 is dependent on the parameter values chosen to do the simulations and not a general
property of the model. This means that the model of [4] can reproduce the observation of an optimal
dissociation time and that as a consequence that phenomenon could arise by the mechanisms taking
place in the first few minutes of activation which are included in the model of [4].



14

rsos.royalsocietypublishing.org
R.Soc.opensci.4:170821

................................................
10–52.5

(a) (b)×10–6

0.5

1.0

1.5

C3

2.0

10–9

10–8

10–7

10–6

plot of C3 versus n1 log–log plot of C3 versus n1

n1n1

110–2109876543210 10–1 10

Figure 4. C3 as a function ofν1 inmodel withN = 3, showing non-monotonic behaviour for some values of parameters. (a) Linear scale,
(b) log–log scale. Parameters areα = 10−1, ST = 107,β = 10, κ = 10−6, R= 105, b= 10−2, γ = 10−4,φ = 10−2, L1 = 103.

5. Including the antagonist
When the antagonist is included, the output variable expressing the degree of activation of the T cell is
CN + DN . Now asymptotic expressions for this quantity will be derived. It has already been shown that
for a steady state of the system (2.1)–(2.7), the quantities

∑N
j=0 Cj and

∑N
j=0 Dj can be expressed in terms

of the parameters. The equation for S can be solved to give the relation S = ST((C1 + D1)/(C1 + D1 + C∗)).
Cj solves the same difference equation as in the agonist-only case and Dj solves the difference equation
obtained from that one by replacing ν1 by ν2. The quantities r−, r+, a− and a+ differ in the two cases.
We can, nevertheless, proceed as in the former case to see that the solutions for Cj and Dj allow
parametrizations in terms of these quantities as before. Note that using the equations (2.8) and (2.9),
it is possible to eliminate the Dj from the equation for C0 and the Cj from the equation for D0. Thus,
we have coupled equations for the Cj and Dj which can be analysed just as in the agonist-only case to
express C1 and D1 as functions of S and the parameters. We can also write CN and DN as functions of
Σ1 and Σ2, respectively. Proceeding as in the agonist-only case, we get an expression for CN + DN in the
kinetic proofreading regime. The multiple of L1 obtained there as leading term is replaced by a linear
combination of L1 and L2.

Next the intermediate regime will be considered. For this, it is necessary to define a new parameter
η = max{(φ + ν1)/(b + γ S), (φ + ν1)/(b + γ S)}. There are asymptotic expressions for r− and r+ where the
leading terms are just as in the agonist-only case. In particular, they are the same for Cj and Dj. Two
asymptotic expressions for the quantity C1 + D1 can be obtained:

C1 + D1 = C∗S
ST

(1 + O(η)), (5.1)

= r−
(

κRL1

κR + ν1
+ κRL2

κR + ν2

)
(1 + O(η)). (5.2)

This gives an expression for r− in terms of S. As in the agonist-only case, this gives an expression for r−
where the dependence on S has been eliminated in leading order:

r− =
√

φC∗
γ ST

(
κRL1

κR + ν1
+ κRL2

κR + ν2

)−1
(1 + O(η)), (5.3)

where η′ is defined in terms of η as in the agonist-only case. Following the steps used in the agonist-only
case leads to an expression for CN + DN which is the same as that previously obtained for CN except that
the expression κRL1/(κR + ν1) is replaced by κRL1/(κR + ν1) + κRL2/(κR + ν2). This leads in the end to
an asymptotic expression for CN + DN under a suitable assumption on L1 and L2. The assumption made
in the agonist-only case can naturally be written as an assumption on κRL1/(κR + ν1) and in the present
case it is replaced by an assumption on κRL1/(κR + ν1) + κRL2/(κR + ν2). This implies that under certain
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circumstances, CN + DN increases when L2 increases and L1 is held fixed. An increase in the amount of
self-antigen can lead to a decrease in the response to a foreign antigen. Note that the restriction needed
to make this result hold is that first L1 and L2 are sufficiently small and then, with upper limits for these
quantities having been fixed, that second ST is sufficiently large. It follows that these conditions can be
achieved in situations where L1/R and L2/R are as small as desired and hence the competition of the
antagonist with the agonist for occupancy of the receptor is negligible. Hence the effect by which more
antagonist leads to a decrease in the response to an agonist is, in general, owing to the influence of SHP-1.
This gives a rigorous confirmation of a fact already observed in [4].

6. Conclusion and outlook
In this paper, some properties of the solutions of the model of [4] for T-cell activation were proved.
A new discovery was that already in the case of three phosphorylation sites (N = 3), there can exist
more than one positive steady state for given values of the parameters. Another new observation is that
damped oscillations can occur. It was also proved that, as suggested by the calculations in [4], the output
variable CN (concentration of the maximally phosphorylated receptor) is a decreasing function of the
concentration L1 of antigen in some parts of parameter space. In an analogous way, it was proved that
under some circumstances the activation in response to an agonist can be decreased by increasing the
concentration of the antagonist. It was proved that it can also happen that CN is an increasing function of
the dissociation constant ν1. This abstract result was given a concrete illustration by a plot showing that
CN can have a local maximum as a function of ν1.

The stability of the steady states was only determined analytically in the very special cases N = 1
and α close to zero. For N = 3, numerical calculations showed the occurrence of two stable steady states
for certain values of the parameters. It was proved that damped oscillations occur, but can there also
be sustained oscillations (periodic solutions)? It is, thus, clear that there remain several aspects of the
dynamics of this system which would profit from further investigations, analytical and numerical.

In immunology, it is important to describe diverse situations including the course of different types
of infectious disease, the development of autoimmune diseases and the destruction of tumour cells by
the immune system. It would be unreasonable to expect that a simple mechanism could be the key
to describing all these situations. One strategy to try to obtain more understanding is to choose one
mechanism and to investigate which types of situations it suffices to describe. This may be done by
combining mathematical models with experimental data. What are the restrictions under which the type
of model studied in this paper might be appropriate? The first assumption is that in the situation to
be explained the distinction between self and non-self takes place within an individual T cell. In other
words, it is assumed that it is not necessary to consider the population dynamics of the T cells involved or
even the interaction of their population with that of other types of immune cells such as regulatory T cells
or dendritic cells. A quite different type of mathematical model, where population effects are considered,
can be found in [14]. In that case, in contrast with the lifetime dogma, the response depends on the rate of
change of the antigen concentration. The second assumption which is important for the models studied
here is that the distinction between self and non-self takes place on a sufficiently short time scale, say
three minutes. On longer time scales, there may be essential effects related to the spatial distribution
of molecules on the T cell surface (formation of the immunological synapse) so that a description by
means of ordinary differential equations may be insufficient. It may also happen that some TCRs become
inactive on a longer time scale (limiting signalling model, cf. [6]).

In this paper, we have concentrated on studying the mathematical properties of a particular model for
the biological phenomenon of T-cell activation with arbitrary values of the parameters. A complementary
question is to what extent known experimental data on the parameters may further constrain the
dynamics in this model. In addition, it is important to know whether this model is consistent with all
biological data and how it compares to other possible models for the same biological system. For a
discussion of this, we refer to [6,13,15]. It was indicated in [6] that the situation where CN is a decreasing
function of ν1 cannot be reproduced using the model of [4]. Our results indicate that a failure of the
model to reproduce this effect must depend not only on the model itself but on the choice of parameters
used for simulations. At the same time, it may be that this effect only occurs in experiments where
the measurements are done on long time scales (many hours) and not on the time scale of the initial
activation (a few minutes) for which the models of [3,4] were primarily intended. We plan to investigate
these questions further elsewhere.
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