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The Air Force Oil Analysis Program (OAP) uses spectrometry' c analyses

of used oil to monitor the levels of metallic contaminants in the lubricat-

ing systems of aircraft engines and other types of equipment. Oil samples

are analyzed at more or less regular intervals (every 10 operating hours,

after every flight), allowing observation of the temporal evolution of the

contaminants being monitored. These temporal observations are used, in

turn, to recommend special maintenance actions when required, generally

triggered by "high" levels of one or more contaminants.

During fiscal year 1982, the Air Force contracted for the development

of the Comprehensive Engine Management System (CEMS), phase IV. This sys-

tem is to operate at two different levels:

(a) it is to gather maintenance and other data at the level of the

individual base, making this data available at the base level to

aid in maintenance decisions.

(b) a central data bank is to be located at Tinker Air Force Base,

bringing together data from all the individual bases.

The OAP data generated by an Air Force base is to be one of the data

elements in the base level CEMS IV system. Because of this, upon the adop-

tion of the CEMS IV system it is planned that every Air Force oil analysis

laboratory will be equipped with a computer terminal, linking it to the

base's CEMS IV computer, allowing real time processing of the oil analysis

data.

The use of regression methodology to aid the OAP decision making proc-

ess has been suggested several times (see references [1] through [6]). The

main drawback to implementing this type of approach has been the data-

analytic requirements of such a system. Many of the OAP laboratories main-

tain a heavy workload of sample analyses and are not equipped to handle
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extensive number crunching prior to giving a laboratory recommendation, based

on the numbers produced by the spectrometry c analysis of a used oil sample.

Availability of real time data processing, and a direct link between the

spectrometer and the CEMS IV computer, will remove this drawback.

For any aircraft participating in OAP, used engine oil samples are re-

moved on a regular basis. The frequency of such samples depends on the

aircraft type involved. Some aircraft are sampled after every flight, some

every flying day, some every 10 flight hours, etc. In every case the used

oil sample is delivered to an oil analysis laboratory where it is analyzed

on a spectrometer. The spectrometer produces a digital readout of the part

per million content of any of 20 different contaminants; generally the lab-

oratory only analyzes for those metals that are in contact with the lubri-

cating oil in the engine sampled. In current practice, the reading for

each metal of interest is subjected to two comparisons defined by the Tech-

nical Order (T.O.) table for the specific engine sampled. The T.O. table

gives a trend value and a number of range values, for each contaminant of

interest. The range values provide absolute limits for the amount of the

contaminant, regardless of how long it has been since the last sample was

taken or since the oil was changed. Thus for iron, for example, the table

may say the normal range is 0-12 ppm, the marginal range is 13 to 15 ppm,

the high range is 16 to 18 ppm and the abnormal range is 19 ppm and over.

The spectrometer operator then observes where the current iron reading

falls, relative to these values, and notes the appropriate recommendation.

The trend value is used to judge the change in contaminant level from

the preceding sample to the current reading. For iron, say the T.O. trend

value is 4 ppm. The spectrometer operator must then take the iron reading

for the current sample, subtract the iron reading for the previous sample,



multiply by 10 and then divide by the change in operating hours. This

computation gives an estimate of the rate of change of the iron contamina-

tion, standardized to a 10 hour operating period. If the computer value is

no more than 4 (for this example) the sample has a normal trend; otherwise

the T.O. recommendation is to declare the trend abnormal and appropriate

recommendations are made, based on the range and trend results.

The oil sample received by the spectrometri c laboratory is removed

from the aircraft's oil sump while the engine is still hot, hopefully en-

suring that the fluid in the sump is homogeneous and that the contamination

in the sample removed is representative of that in the sump. The sample is

placed in a small bottle, labelled to identify the aircraft, date and cumu-

lative hours since the oil was changed, and then is sent to the laboratory.

At the laboratory the sample is well mixed and then a small part of the oil

in the bottle is burned by the spectrometer to produce the ppm contaminant

counts.

The counts produced by the spectrometer are in fact observed values of

random variables. This apparent randomness in the readings is caused by a

number of factors, including the following. If the oil in the same sample

bottle is analyzed two or more times, the counts produced are not the same.

This variation in readings is caused by voltage fluctuations, temperature

variations, actual length of time the spectrometer uses to burn the oil,

variations in the actual contamination contents in the small amounts burned,

etc. From a broader view, if a second sample were removed from the aircraft

sump it is quite likely that the actual contamination levels in the two

bottles are not in fact identical and, of course, both may differ from the

actual contamination levels of the sump itself, the quantity of interest.

Earlier studies ([3], [4]) have shown that the readings produced by the



spectrometer appear to be well described by a normal (Gaussian) distribution,

Additionally, it has been shown ([2], [3], [4]) that different serial num-

bers of the same type of equipment appear to present individual signatures

for contaminant buildup in the oil sump, even though they are presumably

"identical" in construction.

Previously the only useful environmental variables readily available

to the technician in making oil analysis recommendations were the number of

flight hours since the oil was changed and the number of hours since over-

haul. With the advent of CEMS IV a new environmental variable is now

available from other maintenance sources: whether or not fresh oil was

added to the sump. Our major task for this year was to provide an imple-

mentable statistical algorithm to aid the operator in making recommenda-

tions. This algorithm was to take into account (minimize the effects of)

the random noise of the spectrometer, the number of flight hours since oil

change and the oil addition records.

For the A-10 aircraft, maintenance procedures call for oil to be added

(if needed) after the oil sample has been removed for the oil analysis pro-

gram. The maintenance form on which additions are recorded allows entry of

the number of whole units (pints, quarts or gallons) added to the sump; for

the A-10 aircraft the unit used is pints. No provision is made for the

entry of fractional amounts of units being added to the sump. Thus the oil

added values consist of O's and l's, indicating whether or not a one pint

can of oil was opened and used to top off the A-10 sump. In actual prac-

tice, of course, the amount added is generally a fraction of a pint, but

this is not reflected in the records available to CEMS IV.

Among other topics, reference [6] discusses the use of oil addition

records to estimate wear metal production rates for aircraft engines. This



approach is based on several assumptions which may or may not be universally

acceptable for all aircraft types. A tacit assumption apparently made is

that oil is lost through a leaking or burning phenomenon and that the

metallic contaminants are also lost in direct proportion to the oil lost.

That is, if the iron contamination level (as measured by the spectrometer)

is, say, 10 ppm and one pint of oil has been added to an aircraft sump which

holds 10 pints, reference [6] suggests that the iron contamination level

shoud be "corrected" to read 11 ppm (a 10% upward adjustment to account for

the 10% addition of fresh oil). The procedure suggested in [6] also tacitly

assumes a relatively accurate record made of the amount of oil added on each

occurrence, rather than a simple 0-1 variable indicating whether a one pint

can was opened and partially poured into the sump. This suggested procedure

then goes on to suggest fitting least squares regression curves with the

corrected concentration as the dependent variable and number of flight hours

since oil change as the independent variable. The least squares regression

approach certainly seems justified, to minimize the effects of the spectrom-

eter errors of measurement of the ppm concentration. The use of the

"corrected" concentration, though, does not seem wise for the CEMS IV algo-

rithm, in part because of the crude indication of how much oil was added

(and thus how much the spectrometer reading should be corrected). Of equal

importance, it may not be true that the iron contamination is lost at the

same rate as the oil itself. If an evaporative mechanism were causing the

oil loss, it seems possible the iron contamination may not evaporate at the

same rate as the oil, if at all; if this were true the "corrected" concen-

trations would then be too high.

The algorithm employed in the CEMS IV prototype uses least squares re-

gression methodology to minimize the effects of the random spectrometer



errors. It utilizes the number of hours since oil change as an independent

variable and, if oil addition records are available, it lets least squares

itself determine the "corrections" to be applied to the spectrometer con-

tamination readings. This algorithm wi 1 1 now be described.

The contaminants monitored for the TF34 engine in the A-10 aircraft are

Fe, Ag, Al, Cr, Cu, Ni, Ti . These 7 different contaminants are treated

separately and in the same way. The following discussion refers to only one

contaminant; it is understood that the same procedures are applied to each

and that the data from each different serial number are treated separately.

Define

Y. = Spectrometer contaminant reading for the i— sample.

T. = Number of hours since oil change when i— sample is taken.

a. u

a. = Amount of oil added to the sump, after the i— sample is sent to

the spectrometer.

x
x

=

i

X. =
I a- lY./H , the accumulated "correction" to the spectrometer

i

j=2
J-i J

reading in the spirit of reference [6]; the TF34 sump is assumed

to hold 11 pints, the reason for the divisor of 11.

e. = random spectrometer measurement error on the i— sample.

Formally, the computations in the algorithm then are consistent with the

assumption that

(1) Y, - H * »
1
T

1
6
2
X

i
a, ,

where the e. 's are independent normal random variables with mean and

variance o . Standard formulas for unweighted least squares, with two



independent variables (T. and X
i

) are employed to estimate the unknown param-

2
eters Bq, Bp B

2
and a . Detailed definition of these formulas is

provided in Appendix I.

The synthetic variable X. in equation (1) is created from the oil

added values (a.) and the spectrometer contaminant readings; indeed X. is

the "correction" to be applied to the i— contaminant reading by one of the

procedures described in [6], granted the full pint was added to the sump.

If we were to assume that B
2

= "1 then equation (1) is equivalent to the

wear metal production rate estimation procedure given in [6]. Use of X.

in this way gives (1) an autoregressi ve flavor. It is interesting to note

that the use of regular unweighted least squares on (1) does in fact yield

true least squares estimates of 3q, Bi and B
2 » as "" s proved in Appendix II,

With the added assumption of normality of the e. 's , the estimates used are

also maximum likelihood.

The CEMS IV algorithm applies two statistical tests to the spectrometer

reading, in addition to the T.O. limits mentioned earlier. These two tests

are meant to be similar in spirit to the T.O. range and T.O. trend compari-

sons; they differ from these T.O. comparisons in that they are determined by

the historical data base for the serial number being analyzed. These two

statistical tests are called the Primary test (similar to the T.O. range

comparison) and the Secondary test (similar to the T.O. trend comparison).

After the spectrometer analysis has been made for an incoming sample

(say from serial number 1111), the computer calls up the prior data base for

2
serial number 1111, and uses this data to estimate By, Bj, B

2
and a from

equation (1). This estimated equation then is used to extrapolate forward

to the hours since oil change value (T, ) and the X. value for the new sample
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just analyzed. This extrapolation produces three numbers, labelled N, M, H

in Figure 1 (plotted for a case in which no oil has been added); these num-

bers are 90%, 95% and 99% prediction limits for what contaminant reading one

would expect at this time, based on the data base. The current contaminant

reading (just produced by the spectrometer) is labelled C. Table 1 gives the

result of the primary test, based on the relationship of C to N, M, H.

Table 1

Current value Primary test result

C <_ N Normal

N < C <_ M Marginal

M < C _< H High

H < C Abnormal

As pictured in Figure 1 the primary test result would be normal.

The Secondary test adds the current reading C to the data base and

then splits the data base into two parts: the earliest 75% of the data

records versus the latest 25% of the data records. Equation (1) is then fit

separately to each of these two pieces, giving two estimates of 3-1, the

rate of change of the contaminant. These two estimates of B, are then

compared (using a Student's t statistic) to see if it appears likely that

the rate of change in the later data is larger than that in the earlier part.

This test is pictured in Figure 2, again for a case with no oil additions.

f- h

If the computed t statistic exceeds the 95— quantile of the appropriate

t distribution, the secondary test produces an abnormal recommendation;

otherwise the recommendation returned is normal. For the two slopes pictured

in Figure 2, the Secondary test result is normal.



At this point the computer has evaluated four recommendations for each

element: the T.O. range and trend values, as well as the Primary and Second-

ary statistical test results. It then takes the worst case of the T.O. range

and Primary tests, and the worst case of the T.O. trend and Secondary tests

and uses these as entries in the T.O. decision making guidance table. The

result of this is the computer's recommendation for each element for the cur-

rent sample (standard A, B, C, E, F, H, J, P, S, T, or U as used in the

JOAP laboratory manual). This computer recommendation may be accepted (used)

by the OAP technician or may be overridden and changed by him if he feels that

to be appropriate.

This discussion of the Primary and Secondary tests has referred to a

historical data base for each serial number. For many aircraft types, oil

changes are widely separated in time and for some types, the oil is never

changed. Thus, if all historical data were maintained, the data base could

become quite large for each serial number, requiring a very large, accessible

data storage facility for each engine at each base. Of equal importance, it

seems intuitively reasonable that older data gets "stale", that ancient his-

tory has little bearing on the judgment of the current state of an engine's

health. Because of this the statistical data base for each engine consists

only of the 20 latest historical records which were accepted as being normal

st
for the given engine. The current spectrometer reading makes the 21

—

record, the largest number used in the statistical algorithm; as each new

record is accepted as being normal, it replaces the oldest record in the data

base.

When a new engine enters the program, or an old engine has an oil

change, for the first 7 records only the T.O. range and trend computations

10



4- U

are used for the computer recommendation. When the 8— record becomes avail-

able, the Primary test is also applied (but the Secondary is not); this is

also the case for records 9, 10, 11 and 12. The 13— and all subsequent

records are subjected to both the Primary and Secondary tests. The statisti-

cal algorithm has been programmed in APL at the Naval Postgraduate School and

in Fortran by the CEMS IV contractor. Several data sets have been used,

giving identical results from both programs.
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Formulas for CEMS IV OAP

H. Larson, T. Jayachandran

I Primary Test Model 1

Element values Y, , Y
?

, ..., Y
N

,

Time values T, , T
?

, ..., T.. ,

Computed "oil addition" values X,, X
?

, ..., X
N

,

Compute sums of squares and cross products

ss - iv
2

-Mi:>
Y l T

i N-l

»I IT? - 5£T L
l N-l

SS
X

" ^ X
i

" N-l

SP
YT I Y

1
T

i
" N-l

SP
YX " ^Vi " N-l

_ (I^OdX.)
SP

TX " ^T
i
X

i
" N-l

Compute denominator D = (SS
T
)(SS

X
) - (SP-™)

Compute coefficients

^ = [(SS
X
)(SP

YT
) - (SP

TX
)(SP

YX
)] t D

6
2

= [(SS
T
)(SP

YX
) - (SP

TX
)(SP

yT
)] i D

Iy. It. £x.

and means ? = ^| , T = ^| , X =
^^j

2
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Compute residual

RES = SS
y

- B
1

(SP
YJ

) - 3
2
(SP

YX )

Current values for time, "oil addition 1

Current value for element - Y,

V X
N

N

Compute increment

INC = < /y + E(T
N
-T)

2
SS

X
+ (X

N
-X)

2
SS

T
- 2(T

N
-f)(X

N
-X)SP

TX ] * D) gff

1/2

Compute predicted element value

P = Y+e^-T) + b
2
(x

n
-x)

Compute limits

L
]

= P + t
9
(N-4)INC

L
2

= P + t
g5

(N-4)INC

L
3

= P + t
>gg

(N-4)INC

where t g(N-4), t gr(N-4), t gg(N-4) are quantiles of the t-distribution,

N-4 degrees of freedom

Sample reading is normal if Y.. < L,

Sample reading is marginal if L < Y.. < L~

Sample reading is high if

Sample reading is abnormal if l_

3
• Y..

4 < Y
N 1 L

3

13



II Primary test Model 2

Element values Y, , Y~, ..., Y
N

,

Time values T-. , T
2

, ..., T
N

,

Compute sums of squares and cross product

Y L
l N-l

SS
T IT? - iffL

i N-l

(IV,.) (IT.)
SP

YT " IY
i
T
i

" N-l

Compute coefficient

3 = SP
YT

/SS
T

and means Y =
2>. IT -

N-l N-l

Compute residual

RES = SS„ -

(sp
yt

)'

Y SS.

Current values for element, time Y.,, T,.

Compute increment

INC = +
(T

N"
T)

N-l SS-

1/2

N-3

Compute predicted element value

P = Y + B(T
N
-T)
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Compute limits

L
]

= P + t
g
(N-3)INC

L
2

= P + t
g5

(N-3)INC

L
3

= P + t
gg

(N-3)INC

where t
g
(N-3), t

>g5
(N-3) t

gg
(N-3) are quantiles of the t-distribution,

N-3 degrees of freedom.

Sample reading is normal if Y
N

< l_.

Sample reading is marginal if L, < Y
N

<_ L
?

Sample reading is high if L
?

< Y
N

< L^

Sample reading is abnormal if L~ < Y..

III Secondary test model 1

Element values Y, , Y
?

, ..., Y..

Time values T, , T
?

, ..., T
N

Computed "oil addition" values X-,, X
2

, ..., X.

Data is split into 2 segments

Segment 1 Earliest N, = [.75N] values

Segment 2 Remaining N
?

= N - N, values

15



For each segment separately, j = 1,2

Compute sums of squares and cross products

SS

SST .

L
i

SS
Xj

pf-

K-

(IV, >

2

N.
>-

'

C[T, >

2

N
:

'

(IX, >

2

N

(ZV|)(Tr,)
SP

YTj * ^Vi "
N.

SP
YX.i

* ^i X
i

(IV^V

SP
TXj " ^T

i
X
i

"
(IV'IV

Compute denominators D. = (SS
T
.)(SS,. .) - (SP

T
„.)'

Compute coefficients

8,
j [(ss

xj
)(sp

yTj
) - (sp

txj
)(sp

yxj
)] . D

S
2j

[(SS
Tj

)(SP
yxj

) - (SP
Txj

)(SP
YTj

)] . D.

Iy. It. Ix.
and means 7j = -+ , Tj » -^ . Xj = -jg

1

J J J

Compute residuals

RE Sj - SS
yj

- B
l0
.(SP

YTj
) - B

2j
(SP

Yxj )

16



Compute test value

,
A A

TEST = (3
12

-3n ) *

(RES
1

+RES
2

)

N-6

SS
XI

SS
X2

1/2

Sample trend is normal if TEST < t
g g

(N-6)

Sample trend is abnormal if t
qg

(N-6) < TEST

where t
g9

(N-6) is a t-distribution quantile, N-6 degrees of freedom.

IV Secondary test Model 2

Element values Y, , Y„, ..., Y
N

Time values TT T
2' •••' T

N

Data is split into 2 segments

Segment 1 Earliest N, = [.75N] values

Segment 2 Remaining N~ = N-N, values

For each segment separately, j = 1,2

Compute sums of squares and cross products

SS
^Yj 1

i N.

SS
Tj z 'i N.

SP
YTj

yv.T. -
(1*,)^,)

17



Compute coefficients $. =
SP

j ss
T

.
J = 1,2

Iy. It.
and means Y = -^ , T = -^- , j = 1 ,2

Compute residuals

RES. = SS V . - 6-SPVT .

J Yj
p
j YTj

j = 1 ,2

Compute test value

/\ /N

TEST = CB
2
-8

1
) *

"RES
1

+ RES
2

N-4 SS
T1

SS
T2

1/2

Sample trend is normal if TEST < t qq(N-4)

Sample trend is abnormal if t gg(N-4) < TEST

V. Residual SS = 0? test

Residual SS is RES in II

VI. Residual SS = 0? test

Residual SS is RES in I



VII. Residua^ = Residual = 0? test

Values are RES, and RES
?

in IV

VIII. Residual
-j

= Residual „ = 0? test

Values are RES, and RES
?

in III

IX. T.,X. correlation = 1? test

With definitions in I the correlation is

SP
TX

r = -

, compare with 1.

/ss
x

ss
T

When the data is split into 2 segments, compute the correlation

separately for each

SP

r.
U
{ .

J - 1.2.

19



X Oil addition computation

The values for X,, X
2

, ..., X.. are computed using only the data in the

current window and do not depend on earlier values.

Formula used: X-, =

x
i + i

= x
i

+ a
i

Y
i + i

/D

where Y. is the ith element reading, a. is the ith "oil" value

(generally or 1), D is the sump capacity (unrelated to D used in I).

Example

1

2

3

4

5

6

7

8

9

10

OIL = a

1

1

1

1

_FE_=_y.

4

3

3

2

4

5

4

3

3

4

X.
i

.3

.3

.7

.7

.7

.7

1.0

1.4

D = 10

20



Appendix II

For any fixed number, n , of data points the CEMS IV algorithm is

consistent with

(1) Y. = 3 + B
1
T

i

+ e
2
X. + e . , i = 1,2,. ...n

where Y. = spectrometer contaminant reading, sample i

T. = time since oil change, sample i

X- =

i

^i
=

I a
n- i

Y
.:
/ 1 1 , where a. = amount of oil added, sample's

1
-j =2 J J J

e. = random spectrometer additive noise, sample i .

In standard least squares notation, define Y to be the nxl vector of

contaminant readings, define X to be the nx3 matrix whose first column is

all l's , whose second column contains the n - T. values and whose third

column contains the synthetic X. values, and define 3 to be the 3x1

vector with components 3
Q , 6,, 3 2

• Then it is well known that the simple

unweighted least squares estimate for 3 is given by

3 = (X'X)"
1

X'Y

where X
1

denotes the transpose of X .

To see the form of the least squares estimates of 3q, 3^ and 3
2

for

equation (1), let A represent the lower triangular n x n matrix whose

first row is all O's, whose i— diagonal and all elements below it in that

column are a. , if a. , = , and whose remaining elements are all . A
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little reflection shows that the elements of the n x 1 vector V = AY then

are the values for X,, X
2
,..., X , the synthetic oil added variable. Addi-

tionally, let U represent the n x 2 matrix consisting of the first 2

columns of the matrix X , let y be the 2x1 vector with components

3q and 3i (the first two components of 3) and let e be the n x 1 vector

with components e,, e
2
,... e . Then (1) can be written

Y = Uy + 3
2
V + e

= Uy + 3
2
AY + e ;

rearranging terms, this also can be written

Y - 3
2
AY = Uy + e

or

(I - 3
2
A)Y = Uy + e .

The unweighted least squares estimates are by definition the parameter values

which minimize

Q = e'e = ((I - 3
2
A)Y - Uy)'((I - 3

2
A)Y - Uy)

= Y'(I - 3
2
A)'(I - 3

2
A)Y - 2y'U'(I - 3

2
A)Y

+ y'U'Uy .

90 90 90
Letting ^- represent the vector whose components are jg- and y^- ,

respectively, it is easy to see that
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|£ = - 2U'(I - 6
2
A)Y + 2U'U Y ,

from which it is evident that

t = (u'urki'd - i
2
A)Y .

Remembering that B
2

is a scalar, a little algebra shows that

3Q .

30,
Y'(A' + A)Y + 2 6

2
Y'A'AY + 2 y'U'AY ;

setting this equal to zero, and substituting the above solution for y then

easily gives

Y'(y(A'+A))Y - Y'UCU'uTVaY

2
Y'A'(I - U(U'U)"

1
U')AY

as the least squares estimate for
2

•

That these solutions for
Q , 0, (y) and i-L are in fact the same as

the earlier quoted simple unweighted least squares values is easily seen by

realizing that

e = Y - Uy - 6
2
V

v - < u i
Av>(-y

= Y - X0

since the X matrix is (U | AY ) and the 8 vector is (—|— )
. The well known

solution 6 = (X'X)~ X'Y then must consist of the subvectors y and L

defined above. If we also assume that e is multivariate normal with mean

2
vector and covariance matrix a I , it is immediately apparent that y

23



and 3
2

are also the maximum likelihood estimates and the maximum likelihood

estimate for a is

-2 = Y'Y - p'X'Y

The CEMS IV algorithm actually uses

2 no
s =

n - 3

as the estimate for a .
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