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The basic reproduction number, <0, is of paramount importance
in the study of infectious disease dynamics. Primarily, <0 serves
as an indicator of the transmission potential of an emerging
infectious disease and the effort required to control the
invading pathogen. However, its estimates from compartmental
models are strongly conditioned by assumptions in the model
structure, such as the distributions of the latent and infectious
periods (epidemiological delays). To further complicate matters,
models with dissimilar delay structures produce equivalent
incidence dynamics. Following a simulation study, we reveal
that the nature of such equivalency stems from a linear
relationship between <0 and the mean generation time, along
with adjustments to other parameters in the model. Leveraging
this knowledge, we propose and successfully test an alternative
parametrization of the SEIR model that produces accurate <0

estimates regardless of the distribution of the epidemiological
delays, at the expense of biases in other quantities deemed of
lesser importance. We further explore this approach’s
robustness by testing various transmissibility levels, generation
times and data fidelity (overdispersion). Finally, we apply the
proposed approach to data from the 1918 influenza pandemic.
We anticipate that this work will mitigate biases in estimating <0.
1. Introduction
The analysis of any infectious disease’s dynamics will inevitably
lead to the basic reproduction number (<0). Initially developed in
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the study of demographics [1], this quantity has been interpreted in the epidemiological context as the

average number of secondary infections arising from the introduction of one infected individual into a
totally susceptible population [2]. The usefulness and importance of <0 lie primarily in its threshold
phenomenon [3]. That is, a pathogen can invade a totally susceptible population only if <0 . 1 [4].
Furthermore, the magnitude of <0 gauges the transmission potential of an emerging infectious disease
[3] and the effort required to control the invading pathogen [5]. Thus, accurate estimation of <0 is
crucial for understanding and managing infectious diseases.

Another reason for the popularity of <0 is that one can estimate it from epidemiological data [6] using a
number of methods. For diseases that allow the assumption of endemic equilibrium and homogeneous mixing,
one can followMollison’s method [7] or Dietz’s approach [8]. The former requires prevalence data, whereas the
latter leverages readily available information such as age at infection and average life expectancy. On the other
hand, if an infection leads to either immunity or death in a closed population, seroprevalence studies can
inform the fraction of the population that acquired the disease during an epidemic, i.e. the final epidemic size.
In their seminal paper, Kermack & McKendrick [9,10] formulated a relationship between the final epidemic
size and <0, from which the latter can be calculated. Unlike the previous methods, which require the
epidemic to reach a steady state, <0 may be determined from the intrinsic growth rate of the infected
population [3,5] using incidence data of the early stages of the epidemic, as long as the growth of new
cases exhibits pure exponential behaviour. Alternatively, we can employ the entire report of daily case
notifications if <0 is formulated as a function of a compartmental model’s parameters [11–13]. These models
can be stochastic [14], semi-deterministic [15,16] or deterministic [9,17].

These compartmental models are said to be mechanistic [18], namely, structures based on a scientific
understanding of infectious disease dynamics [19]. The relevance of that mechanistic property lies in the
role of the model. Rather than being a merely mathematical artefact to produce a desired output, the model
also embeds a dynamic hypothesis of the underlying process that generates the observed data. Hence, the
parameters, states and interactions that comprise a particular formulation represent their counterparts in the
real world. If the model accurately captures the properties of the actual phenomenon, finding an adequate
configuration (assign values to parameters) should yield a behaviour over time of infections that resembles
the observed trajectory. The values of such parameters can be obtained from individual-level observations
[4] or via statistical inference [20–22], a process also known as trajectory matching or model fitting.

Furthermore, matching simulated and observed behaviour can be regarded as a validation test on the
dynamic hypothesis that links structure to behaviour [23]. Nevertheless, one should understand this
validation step as a falsification test [24]. That is, if the model fails to reproduce the observed behaviour,
it can certainly be rejected. On the contrary, obtaining an accurate match (or fit) does not immediately
validate the dynamic hypothesis inasmuch as there may be other competing hypotheses that fit the data
equally well. Indeed, this circumstance impacts the estimation of <0 from compartmental models (and
the intrinsic growth rate method), where different assumptions can yield accurate fits [25]. However,
estimates vary according to the specific assumptions embedded in each fitting model [3,26].

For instance, the choice of the distributions of the latent and infectious periods (epidemiological
delays) in the deterministic susceptible–exposed–infectious–recovered (SEIR) framework plays an
essential role in the inference of <0 [25]. Briefly put, misspecifying the structure of such delays leads
to biases in the estimates. That is, a systematic difference between true and estimated parameters.
Although there are techniques [27,28] to construct models with realistic distributions, modellers do
not know exactly which distribution to incorporate in their formulation. In the view of this drawback,
Wearing et al. [25] fitted various SEIR models (with different delay distributions) to a single incidence
dataset to select the best structure based on a goodness-of-fit measure. Nevertheless, the results
appear inconclusive. Notwithstanding that Krylova & Earn [29] assume their validity, no further
research establishes the reliability of such an approach. This assessment immediately warrants the
need for the work presented here: a systematic study oriented to determine whether it is possible to
infer <0 accurately from SEIR models fitted to incidence data in light of the uncertainty in the
distributions of the epidemiological delays. We describe the steps of this study in the sections below.
All the analysis is performed in R. The code is freely available at https://github.com/jandraor/delays.

2. Data generating process
2.1. The system (latent) component
In order to undertake a systematic study, experimenters must have access to a sizeable set of
observations. In this case, multiple time series of daily case notifications of a particular disease under

https://github.com/jandraor/delays
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various conditions. Equally important, such conditions need to be known a priori. To meet these

conditions, we leverage the mechanistic property of compartmental models and employ the SEIR
framework as a synthetic data generator [30,31]. This framework has been widely applied to studying
various infectious diseases, such as measles [29,32,33], COVID-19 [16,34,35] and influenza
[12,17,22,36–38]. In this work, we restrict our attention to the simplest version of this family of
models. The rationale for this decision is straightforward; conceptual models entail efficiency
inasmuch as they facilitate the understanding and identification of the underlying causes of a
particular result. Moreover, it is often the case that principles that stem from basic models apply to
more elaborated extensions.
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Specifically, the SEIR (equation (2.1)) stratifies individuals as susceptible (St), exposed (Et), infectious (It)
and recovered (Rt) and describes the transitions between states (St→ Et→ It→Rt) in terms of differential
equations. Susceptible individuals acquire infection, St→ Et, through contact with infectious individuals,
where the number of contacts is independent of the population size (N). Formally, one refers to this
assumption as the frequency-dependent (or mass action) transmission: βStIt/N. Here, β corresponds to
the effective contact rate or transmission parameter. The movement of individuals from the class Et to
class Rt is modelled using a well-known mathematical procedure [39] to achieve realistic distributions
[40,41] of the time that individuals spend in states Et and It, otherwise known as the latent and
infectious periods, respectively. Such a procedure corresponds to the subdivision of a class into stages
arranged in series. For instance, one can divide the exposed class into i stages. Newly infected
individuals enter the first exposed stage, E1

t , pass through each in turn and become infectious upon
leaving the ith stage (Ei

t). The progression between stages is assumed to occur at a constant per capita
rate (iσ), leading to an exponential waiting time with mean 1/iσ in each stage [11]. This formulation
implies that the lapse between infection and becoming infectious is described by the sum of i
independent exponential random variables with equal rates, a convolution resulting in a gamma-
distributed random variable [42]. Therefore, the subdivision of the exposed class into various stages
is equivalent to formulating the latent period in terms of a gamma distribution with mean σ−1 and
shape i. Similarly, one can divide the infectious class into j stages to formulate a gamma-distributed
infectious period.

<0 ¼ bg�1: ð2:2Þ

Overall, we refer to equation (2.1) as the SEiIjR framework. Notice that the standard SEIR corresponds
to the SE1I1R instance. Moreover, as the parameter i increases, the distribution becomes more closely
centred on its mean (tighter), to the extent that if i→∞, the variance is removed. That is, in the limit,
all individuals have the same latent period. An equivalent argument applies to the infectious period.
No less important, as indicated by Lloyd [11], irrespective of the values of i and j that the SEiIjR may
take, the basic reproduction number depends exclusively on the transmission rate and the mean
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infectious period (equation (2.2)). Furthermore, it is noteworthy to mention that subdividing a class is a

mathematical device that allows the incorporation of additional distributions in a system of differential
equations, and the number of stages may not correspond to biological features of the infection process
[32]. Lastly, we assume that the disease leads to permanent immunity and that the outbreak’s time
scale is much faster than the characteristic times for demographic processes (births and deaths),
therefore their effects are not included. This last assumption implies that the population remains
constant over the simulation period.

_Ct ¼ risEi
t

and xt� ¼ Ct�þ1 � Ct� , t� [ N0:

)
ð2:3Þ

Subsequently, we define the link between the SEiIjR and incidence data (equation (2.3)). Based on the
literature [15,16,22,36], we posit that incidence ( _C) is proportional to the rate at which individuals become
infectious (Ei

t ! I1t ). Such proportional effect or reporting rate (ρ) stems from the fact that individuals
experience various degrees of symptom severity [43]. In particular, individuals with low severity
levels (asymptomatic and mild symptoms) may not seek health care attention, resulting in case
reports that most likely miss a significant fraction of infected individuals. As opposed to the
continuous nature of differential equation models, case notifications occur at discrete times. To
reconcile this tension, we define the report of new cases (xt�) as the change in the total number of
cases (Ct) in 1-day intervals.

Furthermore, we tailor the synthetic data generator towards influenza given that this virus causes
unpredictable but recurring pandemics that can have significant global consequences [44]. As a matter
of fact, there have been four influenza pandemics over the past 100 years, including the H1N1
pandemic in 1918, with an estimated 50 million deaths [45]. Adapting the SEiIjR framework to this
choice involves the selection of plausible parameter values or ground truths [46]. For simplicity, we
restrict the synthetic data generator to eight instances: i = {1, 3} × j = {1, 2, 3, 4}. These instances share
constants σ, γ, β, ρ and N, which are configured identically. In particular, we configure parameters σ
and γ from the assumed values (1/2 for both) in the Cumberland case study [12,22]. Following this
choice, we select a value of β that yields a basic reproduction number (2.5) within a plausible range
(2–4) of pandemic influenza [47]. Regarding ρ, we choose a value (0.75) consistent with reported
estimates in the literature [12,22]. The remaining constant, N, has only a scaling effect, and any
particular value (10 000 in this case) does not alter the model dynamics provided that N = S0 + E0 +
I0 +R0, where E0 ¼

Pi
k¼1 E

k
0 and I0 ¼

Pj
k¼1 I

k
0. In relation to initial conditions, we assume that a patient

zero triggers the outbreak of a novel influenza pathogen. In mathematical terms, S0 =N− 1 and I10 ¼ 1.
The remaining initial conditions of the within-host profile are set to zero.

Having delimited the SEiIjR framework and configured its instances, we run simulations (figure 1)
that illustrate the impact of the delay structure on the incidence dynamics. In agreement with the
literature [4,25], note in figure 1 that if we fix the latent period distribution (i) and vary that for the
infectious period ( j), incidence reports that stem from more tightly distributed infectious periods
(larger j) reach the incidence peak earlier and end more abruptly. This difference in behaviour over
time occurs despite the fact that these instances share identical <0 and equal average latent and
infectious periods. On the other hand, if we fix the infectious period (compare two lines of the same
colour across panels), decreasing the latent period’s variance (increasing i from 1 to 3) produces the
opposite effect. Namely, tighter latent period distributions (larger i) push forward the peak time and
extend the outbreak’s duration.

2.2. Measurement component
Yt� � Nbinðxt� , fÞ: ð2:4Þ

Borrowing terminology from the state-space literature [18,48], one can frame the output produced by the
SEiIjR framework as predictions obtained from a system or latent component. In practice, though,
continuous and smooth predictions from ODE models differ from noisy and discrete incidence reports
collected by public health surveillance. Moreover, given that a system component is merely a partial
representation of a more complex reality, some elements are necessarily omitted. Consequently, it is
required to equip the data generating process with a structure that accounts for the discrepancies
between model prediction and actual data. We refer to this structure as the measurement component.
In epidemiology, one can formulate the measurement of new infections via the negative binomial
distribution, considering that this function does not tie the observation mean to the variance, offering
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Figure 1. Incidence reports generated by various instances of the SEiIjR framework. In this plot, we present two distributions of the
latent period and four distributions of the infectious period. The colour of a line corresponds to a particular value of j (infectious period
distribution). Solid lines indicate that the incidence report stems from an SEIR model with an exponentially distributed latent period
(i = 1). Dashed lines indicate that the incidence report stems from an SEIR model with a gamma-distributed latent period (i = 3).
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the flexibility to account for overdispersion [19]. Accordingly, we define the observation of new cases (Yt�)
in terms of a negative binomial distribution (equation (2.4)) specified by location (mean) and diffusion
parameters. The former corresponds to the predicted incidence by the system component (xt�),
whereas the latter (ϕ) modulates the concentration of measurements. Note that the inverse of the
concentration parameter (ϕ−1) represents overdispersion inasmuch as an increase in its magnitude
leads to greater diffusion in the data.

Defining a measurement component completes the formulation of the data generating process.
Consequently, we draw samples from equation (2.4) using statistical simulation (rnbinom in R). For each
SEiIjR instance, we generate 40 noisy time series. We perform this process for two levels (high and low) of
data fidelity, a feature measured by ϕ−1. High-fidelity data (ϕ−1 = 0) imply that the measurement
component applies only a slight distortion on the original signal (incidence). Notice that this configuration
of the negative binomial (with no overdispersion) is equivalent to the Poisson distribution. Conversely, a
positive value (overdispersion) of ϕ−1 (such as 1/3) distorts the original signal to such an extent that one
cannot easily discern the underlying incidence dynamics (low-fidelity data). We generated a total of 320
incidence reports, of which figure 2 presents a sample of four representative reports. The reader can find
the complete details in the electronic supplementary material, S1. To facilitate the communication of
results, we introduce the notation Dij, which indicates the origin of a given set of time series. For
example, D14 indicates that the observed incidence was obtained from the SE1I4R instance.
3. Inference
The synthetic incidence reports described in the previous section allow us to assess the performance of
various candidate models in recovering ground truths, particularly <0, our quantity of interest.
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Specifically, we fit model candidates to incidence data following a Bayesian approach [22,49]. That is, each
candidate’s unknown parameters are treated as random variables, which describe the knowledge (or
uncertainty) about their actual values [50], expressed in terms of a probability distribution. This
distribution is updated in light of new information summarized by a likelihood function. This
function evaluates the compatibility between a given incidence report and multiple configurations of a
model candidate [51]. Such updating process yields the target or posterior distribution, an information
device whereby we derive answers for our inferential questions. We approximate the posterior
distribution via sampling using Hamiltonian Monte Carlo or HMC [52], an algorithm successfully
employed to perform statistical inference from epidemiological models [16,17,22,53,54]. This algorithm
is provided by the statistical package Stan [55].
3.1. Three unknowns (traditional): β, ρ, I0
For simplicity, we initially restrict the inference analysis to D1j high-fidelity observations. To fit each
incidence report, we postulate four instances, j = {1, 2, 3, 4}, from the SE1IjR framework, which share
identical mean latent and infectious periods. We refer to the approach of fixing the means of the
epidemiological delays to values obtained from the literature, regardless of their distribution, as the
traditional parametrization. Moreover, it is assumed that the measurement component is fully known.
Consequently, discrepancies between estimated and actual values are ascribed to misspecification in
the infectious period distribution. To avoid confusion between the origin of data and the fitting
model, we denote the latter as Mij. As a consequence, this design requires the estimation of 320
posterior distributions. Given this process’s computational burden, we limit the number of random
variables in each model to three: the transmission rate (β), the reporting rate (ρ) and the initial number
of infected individuals in stage one (I10 ). The remaining parameters and initial conditions are
considered to be known, i.e. they are fixed to their actual values. Based on this set-up, we fit each
candidate to a given dataset using HMC sampling, with four Markov chains and 1000 iterations (plus
1000 for warm-up) each, checking for convergence and effective sample sizes. The complete set of
results can be found in the electronic supplementary material, S2, §1.

The results presented in figure 3 replicate a finding previously reported in the literature [25,56]: the
existence of a subtle yet fundamental interaction between the assumed model structure and estimated <0.
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Figure 3. Inference results obtained from the three-unknown parametrization. This plot shows the results of fitting model
candidates to incidence reports. (a) Comparison of estimates for the basic reproduction number obtained from fitting four
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true value. (b) Comparison between inferred incidence (lines) obtained from two candidate models fitted to two incidence
reports (dots). Twenty time series represent inferred incidence. Given the high-fidelity data, all inferred incidences are nearly
identical, giving the impression of only one line in each panel.
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Misspecifying the infectious period distribution with a tighter distribution (higher j) generates lower <0

estimates (figure 3a). Furthermore, regardless of the assumed distribution of the infectious period, all
candidate models fit the data equally well. To emphasize the importance and implications of this
observation, we compare inferred and actual latent incidences in figure 3b. Recall that fitting a
candidate model to a given incidence (yt) produces a set of samples that describes the posterior
distribution. Then, we use those samples to simulate the candidate’s system component, thereby
generating inferred latent incidences (lines in figure 3b). Then, those lines are compared with xt�, the
true latent incidence (figure 1). Notice that by definition, we do not have access to xt� in practical
applications, but by virtue of this simulation study, such an impediment is overcome. The comparison
reveals a symmetry shared among the candidate models. That is, any of these formulations can match
the true latent incidence provided that β, ρ and I10 are configured appropriately. It is important to
remark that this symmetry is restricted to the latent incidence and does not extend to the dynamics of
other states. For instance, candidates with different delay distributions that yield equivalent incidences
will not reach the same long-term equilibrium, given the differences in their <0.

Logically, such symmetry should render the approach of comparing fit scores impractical. A fit score,
such as the maximum-likelihood estimate (MLE), measures the consistency between a dataset and the
output generated by a model. Since candidates produce equivalent output, differences among MLEs
will solely reflect the stochasticity (noise) of the measurement component. We empirically verify this
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conjecture by selecting the candidate with the largest MLE for each incidence report (see the electronic

supplementary material, S2, §1.3.2). We observe that M11 candidates attain the largest MLE in only 12
out of 20 times when matching D11 incidence reports. Even worse, M13 instances are always
outperformed in fitting D13 datasets. Overall, no candidate passes the 60% mark. Similarly, the mean
absolute scaled error (MASE), a metric specifically designed for evaluating the accuracy of time-series
forecasts [57], indicates that candidates produce virtually identical scores when fitting any given
incidence report. In the light of this evidence, one can safely conclude that score comparison is not a
reliable approach to determining the correct distribution of epidemiological delays from incidence
data. To further complicate matters, information criteria (such as Akaike (AIC) and Bayesian (BIC))
and cross-validation methods cannot assist in this task, considering that the evaluated structures
produce equivalent output and share an equal number of unknown parameters.
l/rsos
R.Soc.Open

Sci.10:230515
3.2. Four unknowns: β, ρ, I0, γ
The reason for such inherent symmetry is the generation time, the time between the infection of a primary
case and one of its secondary cases [58]. This quantity’s shape, in tandem with <0, determines the initial
dynamics of an infectious disease [5]. Interestingly, these elements also characterize long-term behaviour.
Krylova & Earn [29] found that SEIRmodels that account for demographic processes with different delay
distributions produce equivalent dynamics of epidemiological transitions (e.g. from annual to biennial
epidemic cycles) if they share identical <0 and mean generation time (τ). An analytical expression for
this last quantity can be obtained using the method described by Svensson [58]. In particular, for the
SEiIjR framework, τ can be expressed as a function of the average delays (σ−1, γ−1) and the infectious
period distribution ( j).

t ¼ s�1 þ jþ 1
2j

g�1: ð3:1Þ

In this analysis, we have, until now, fixed the mean generation time on each candidate model by
excluding σ and γ from the inference process. Taking note of the effects on short- and long-term
dynamics that produce the interaction between τ and <0, we now promote γ to the category of
estimated parameter in order to explore the impact of a variable mean generation time. The reason for
choosing γ as the extra parameter is based on the fact that it interacts with both quantities of interest
(equations (2.2) and (3.1)). This choice implies the need for estimating four parameters per model
instance. To do so, we follow the approach described in the previous section. The reader can find the
full set of results in the electronic supplementary material, S2, §2. Unsurprisingly, given the extra
degree of freedom, all candidates fit any of the incidence data equally well. In this design, though, the
match between synthetic data and fitting model’s output is achieved at the expense of less precision,
although greater accuracy. Precision refers to the width of uncertainty intervals, and accuracy to
whether the interval captures the actual value. To illustrate this phenomenon, in figure 4, we present
the results of fitting four candidates models (M1j) to four incidence reports that stem from different
distributions of the infectious period (D1j). Here, we see that the range of <0 widened (figure 4a)
compared with that presented in the previous section (figure 3a).

Undoubtedly, the primary insight from allowing γ to vary is the unravelled interaction between <0

and τ. We visualize this interaction by plugging samples of β and γ into equations (2.2) and (3.1) to
obtain an approximation of the expected values of <0 and τ. When these two quantities are displayed
on a scatter plot (figure 4b), a linear relationship appears, regardless of the data’s origin or the fitting
model’s structure. The interpretation of such linear association indicates that for a given fitting model,
infinite pairs of <0 and τ yield equivalent incidence dynamics. However, in virtue of their linear
relationship, each value of τ corresponds to exactly one value of <0.
3.3. Three unknowns (alternative): <�1
0 , r, I0

More importantly, the linear relationships shown in figure 4b reveal an intriguing insight. Notice that
irrespective of the structure (M1j) fitting data of any origin (D1j), the true values of <0 and τ as a pair
(the intersection between the dotted and dashed lines) are subsumed into any of the linear
associations. This observation implies that the true <0 can correspond only to the right τ. Therefore, it
could be possible to accurately estimate <0 from a model whose mean generation time is fixed to the
true underlying value, but the shape of the epidemiological delays may differ from that of the data
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number obtained from fitting four candidate models to four incidence reports. Error bars correspond to 95% credible intervals, and
the vertical line denotes the true value. (b) Linear relationship between the basic reproduction number and the mean generation
time estimated from posterior distributions obtained from fitting four candidate models to four incidence reports. These distributions
are represented via samples. From each sample, we compute the predicted <0 and τ (dots). (c) This plot collapses the second
column in b into a single panel.
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generating process. To test this hypothesis, we reformulate the SEiIjR framework so that τ becomes a
parameter of every model instance. Consequently, we combine equations (2.2) and (3.1) into (3.2),
which expresses β as a dependent variable of four parameters: j, σ, τ and <0.

b ¼ 2jðt�s�1Þ
<�1

0 ðjþ1Þ
and g ¼ b<�1

0 :

9=
; ð3:2Þ

Parameter j is based on the fitting model’s structure, whereas σ and τ are fixed to the true values that
produced the incidence reports. For instance, a D12 report stems from a structure whose σ and τ are
equal to 0.5 and 3.5 (applying equation (3.1)), respectively. Therefore, an M14 candidate fitting this
report has j, σ and τ fixed to 4, 0.5 and 3.5, respectively. An immediate consequence of this procedure
is the need to constrain γ in order to maintain logical consistency. Accordingly, we define γ as a
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function of β and <0 (3.2). This approach is analogous to fixing γ to an arbitrary value that yields the
desired τ. Such a value may not correspond to that of the data generating process. Lastly, the
remaining parameter, <0, is subject to inference. We opt to estimate its inverse for a practical reason.
Taking into account the threshold phenomenon and the fact that all incidence reports exhibit
outbreak-like behaviour, any estimated value of <0 must fall within the interval (1, ∞). It then
logically follows that its inverse (<�1

0 ) spans over the range (0, 1). This transformation permits the
inference algorithm to operate in a much smaller parameter space, which enhances sampling efficiency.

We subsequently incorporate the redefined components (β and γ) into the SEiIjR framework to
produce an alternative set of four candidate models with three unknowns: <�1

0 , ρ and I10 . Similarly as
before, we estimate the posterior distribution for each candidate fitted to an incidence report. The
reader can find the complete set results in the electronic supplementary material, S2, §3. These results
once more highlight the intrinsic symmetry of SEIR formulations. Specifically, provided there is an
adequate configuration, any candidate structure can accurately match the observed incidence despite
differences in the infectious period distribution. Nevertheless, this alternative parametrization exhibits
a distinctive and crucial feature: the estimation of <0 is less sensitive to the assumed distribution of
the infectious delay. To support this claim, we present in figure 5 the results of fitting the four
alternative candidates to four incidence reports of dissimilar origin. Here, it can be seen that all
candidates recover (via 95% credible intervals) the underlying true <0, notwithstanding the origin of
the data or the fitting model.

Recovering the underlying <0 is not exclusive to this sample of four datasets but is generalized across
the 80 high-fidelity D1j datasets. To summarize this insight, we borrow a concept from the frequentist
tradition. Such a concept known as coverage [59] means that if one collects a large number of samples
from the same process and constructs the corresponding confidence intervals, then a certain
percentage of the intervals will contain or cover the true parameter. This percentage is given by the
confidence level. For instance, if one fits a model to 100 datasets and estimates an equal number of
confidence intervals at the 95% significance level, then 95 of those intervals will cover the true value.
Admittedly, it is implicitly assumed that our 95% credible intervals (obtained from posterior
distributions) are proportional to 95% confidence intervals. Indeed, estimated intervals for <0 and ρ
conform to this concept (see electronic supplementary material, S2, §3.3), where minor deviations are
justified by the fact that coverage is defined asymptotically (infinite measurements). However,
asymptotics does not account for the large deviance observed in the estimates of I0. We explain this
inconsistency in the section below where I0 becomes more prominent.

To conclude this section, we report the analysis of the low-fidelity datasets (right column in figure 2).
The reader can find the results in the electronic supplementary material, S3. Overall, we obtain similar
insights in comparison to those derived from the high-fidelity datasets. In the absence of structural
differences, it is unsurprising that the effect of larger noise in the signal (overdispersion) results in
greater uncertainty in parameter estimates. This decrease in precision (wider credible intervals) can
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obscure or accentuate features of the inference process. On the one hand, overdispersion masks biases in

estimates. For instance, noisier measurements cause I0 estimates from the alternative parametrization to
conform to the expected coverage, which should not occur based on the results obtained from the
high-fidelity datasets. On the other hand, overdispersion exacerbates identifiability issues. Under the
four-unknown parametrization, some <0 estimates reach values up to 40. This result is a reminder that
choosing an adequate number of unknowns is not a trivial decision. Setting more unknowns than the
data can tolerate renders models unidentifiable. In this context, unidentifiability occurs because the
incidence data does not provide enough information to update the prior distribution of γ. As
discussed above, many values of γ are consistent with the observed incidence, an insight that holds
for both levels of data fidelity. Finally, we note that overdispersion estimates are robust to the choice
of the infectious period distribution.

3.4. Misspecifying the latent period distribution
Thus far, we have conducted the inference process assuming that the latent period distribution (i) is
known. Lifting this constraint would strain our computational resources, producing a fourfold
increase in the pool of candidates fitting a single report (assuming i, j∈ {1, 2, 3, 4}). Instead of
undertaking such costly exploration, one could leverage the fact that the mean generation time
depends solely on the mean latent period rather than its particular distribution (equation (3.1)). To
test this idea, we compare the estimates obtained from candidate models with the right and wrong
latent period distribution. We illustrate this process with the 80 D3j low-fidelity (ϕ−1 = 1/3) datasets.
For each dataset, we fit eight candidates Mij from the traditional three-unknown parametrization,
where the latent period distribution can take the wrong (i = 1) and the right (i = 3) values, and the
infectious period distribution varies as before, namely, j∈ {1, 2, 3, 4}. The reader can find the complete
results in the electronic supplementary material, S5.

To facilitate the presentation of the results, we first focus on candidates M13 and M33 fitting one D33

incidence report. Figure 6a shows that both models predict similar, although not identical, latent
incidence dynamics. Further inspection reveals that the slight difference in the predicted incidence due
to dissimilar latent period distributions does not lead to variation in <0 estimates. To corroborate this
assessment, we expand the analysis to the eight candidates matching the same incidence report. The
right-hand side of figure 6b shows that <0 estimates are sensitive to variation in the structure of the
infectious period but are indifferent to the latent period distribution. In compliance with the literature,
the more dispersed latent period (i = 1) leads to an earlier incidence peak compared with the tighter
distribution (i = 3) in the context of identical <0.

Nevertheless, the mechanism that enables models with heterogeneous distributions to produce
analogous incidence dynamics remains unexplained. The left-hand side of figure 6b, which displays
I0 estimates, provides the first hint. This plot shows that instances with the wrong latent period
distribution (M1j) systematically underestimate (via 95% credible intervals) the actual value (vertical
line). To explain this phenomenon, we draw on a broader view of the posterior distribution. It is
commonplace to restrict inference analyses to one parameter at a time (i.e. marginal distributions),
neglecting the information provided by the full posterior distribution. To redress this shortcoming,
we visualize the full distribution via pair plots. Specifically, figure 6c corresponds to the summary of
the posterior distribution obtained from fitting M13 to one D33 incidence report. The upper
triangular elements of this plot indicate that the three estimated parameters are strongly correlated.
Especially β and I0, or more compellingly, <0 and I0. Recall that the basic reproduction number is
directly proportional to β. Therefore, although the mean generation time determines which <0

corresponds to the observed incidence, I0 (and ρ to a lesser extent) regulates the flexibility of <0 to
reach such a desired value. Interestingly, I0 provides such a degree of flexibility that unrealistic
adjustments in its estimates allow us to equate dissimilar model structures. Note that the only
discernible difference between figure 6c,d (M33 fitted to D33) is seen in the marginal distributions of
I0. In fact, this phenomenon explains the failure of the alternative parametrization to recover the true
value of I0.

In the view of these symmetries, it is not unreasonable to expect that candidates from the four-
unknown and the alternative parametrizations, too, are indifferent to the latent period distribution
once I0 and ρ correct for any misspecification. To verify this premise, we fit the parametrizations
mentioned above to the D3j low-fidelity incidence reports. As anticipated, the inference results
indicate that the four-unknown parametrization (electronic supplementary material, S5, §2) uncover
the linear association between τ and ρ due to the unidentifiability of γ. Likewise, the alternative
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parametrization (electronic supplementary material, S5, §3) recovers the true <0 irrespective of
the formulation of the epidemiological delays. Furthermore, we replicate these results using the D3j

high-fidelity datasets (see electronic supplementary material, S4).



Table 1. Scenarios.

scenario <0 τe <0 recovered? (high-fidelity) <0 recovered? (low-fidelity)

1 2.5 4 yes yes

2 2.5 8 yes yes

3 2.5 13 yes yes

4 9.0 4 no yes

5 15.0 4 no yes
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3.5. Sensitivity analysis
So far, model candidates have been amalgamated with the appropriate measurement component. In this
section, we explore the implications that can arise from ignoring overdispersion. That is, equipping
model candidates with a Poisson measurement component. We perform such exploration by inferring
<0 from M1j candidates (alternative parametrization) fitted to the D3j low-fidelity datasets discussed
in the previous section. As expected, the results indicate that employing the Poisson distribution (see
electronic supplementary material, S5, §4) leads to overconfident (too precise) and biased (inaccurate)
estimates in the context of overdispersion. We observe these features with narrow uncertainty
intervals that do not cover the true value. This result implies that the wrong choice of the
measurement component can offset any gains in accuracy due to the alternative parametrization.

On the other hand, the synthetic data used for the analysis presented in the previous sections stems
from models configured to identical <0 and similar mean generation times (variation due to the
infectious period distribution). Naturally, one wonders whether the usefulness of the alternative
parametrization holds in other conditions. To answer this question, we repeat the workflow described
in this paper for additional scenarios of τ and <0. For simplicity, we restrict this sensitivity analysis to
datasets derived from models with an exponentially distributed latent period (D1j). Additionally, we
equip the fitting candidates with the appropriate measurement component. The complete set of
results is presented in the electronic supplementary material, S6. We present these results in terms of
scenarios (table 1). For instance, the base case scenario, Scenario 1, corresponds to data generated from
SEiIjR configured to <0 ¼ 2:5 and τe = 4 (results presented in §3.3), where τe serves as a scenario
identifier and denotes the mean generation time obtained from an exponentially distributed infectious
period ( j = 1).

For Scenario 2, we increase the reference mean generation time (τe = 8), while keeping <0 at 2.5. First,
we focus on the high-fidelity datasets. Overall, the greater the divergence between the fitting model’s
infectious period distribution and the distribution that generated the data, the greater the loss in
accuracy; namely, lower coverage. To provide an example, the 95% credible intervals constructed from
M14 candidates fitting D11 incidence reports only attain coverage of 30% for <0. Closer inspection,
though, reveals that such accuracy loss is more statistical than practical. To support this statement, we
calculate the average relative difference between the actual and estimated <0, finding that
misspecification of the infectious period distribution leads to a maximum average relative error of 2%.
In contrast, we would obtain discrepancies up to 15% if we adopted the traditional approach. Simply
put, it is costlier to misspecify the mean generation time than the mean infectious period.
Furthermore, such slight differences in the alternative parametrization are erased by overdispersion.
That is, overdispersion masks minor misspecification in the process component. Moreover, in Scenario
3 (<0 ¼ 2:5, τe = 13), we observe that further increasing of the mean generation time does not lead to
significant drops in the coverage of <0 under both levels of data fidelity. In a nutshell, it is reasonable
to suggest that the alternative parametrization is robust to various levels of the mean generation time.

Conversely, we cannot maintain the same assertion for various values of <0. Indeed, figure 4c
provided the first hint. This plot shows that the straight lines do not overlap as <0 reaches relatively
high values. Consequently, in scenarios 4 (<0 ¼ 9, τe = 4) and 5 (<0 ¼ 17, τe = 4), we test the
implications of larger transmissibility levels. The results indicate that as we increase the underlying <0

for generating the data, the equivalency among fitting models dissipates and misspecification in the
infectious period distribution leads to biased estimates of <0. The size of such bias is proportional to
the misspecification of the infectious period and the underlying <0. This feature is primarily seen in
the estimates derived from high-fidelity datasets, where coverage levels are low, and the average
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relative error between actual and estimated values cannot be overlooked. However, when we examine the
posterior distributions obtained from fitting the low-fidelity data, it is seen that, once again,
overdispersion masks misspecification in the process component, as evidenced by the high coverage
levels. This is not to say that overdispersion is a desired feature in the data, but rather to emphasize
that its presence hinders the attainment of precise estimates. Undoubtedly, having this understanding
is of practical importance, given that it allows us to discern the necessary effort in data collection and
model improvement.
4. Application to influenza A
Leveraging the knowledge gained from the synthetic data, the last step in this work consists of exploiting
the relationship between the basic reproduction number and the mean generation time to update the <0

estimate of an outbreak of the 1918 influenza pandemic. The reader can find the full set of results in the
electronic supplementary material, S7. In particular, we focus on an outbreak that occurred in the city of
Cumberland (Maryland) during the autumn of 1918, for which the US Public Health Service organized
special surveys [60] to determine the proportion of the population infected. Previous studies [12,22]
employed the default heuristic of adopting an SEIR with exponentially distributed epidemiological
delays whose means were configured to values reported in the literature. Moreover, in these studies,
the SEIR was coupled with the Poisson distribution resulting in a 95% CI [2.5–2.6] for <0. However,
adopting a more realistic measurement component, such as the negative binomial distribution,
produces lower and wider estimates: 95% CI [2.2, 2.4]. Further, if we jettison the assumption of an
exponentially distributed infectious period for a more realistic distribution, such as the gamma
distribution, we obtain even lower estimates. For instance, a gamma-distributed infectious period with
four stages (SEI4R) returns a 95% CI of [2.0, 2.2]. As noted earlier, the estimates obtained from this
default heuristic or traditional approach are sensitive to the uncertainty in the infectious period
distribution. On the contrary, when we fix the mean generation time in the SEIjR (alternative
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parametrization) to a value (2.85 days) obtained from the literature [5,61], we derive nearly identical <0

estimates (95% CI [2.0, 2.1]) regardless of the infectious period distribution (figure 7). Notice that this
estimate is similar to that obtained from the SEI4R, bolstering the fact that the actual infectious period
is far from being exponentially distributed.
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5. Conclusion
The misspecification of various assumptions within the SEIR framework can negatively impact the
estimation of <0. In recognition of this risk, we ran a simulation study comprising approximately 1000
synthetic datasets and 8000 model fits, whereby we identified the relative influence of some of those
assumptions. Specifically, we found that fixing the mean generation time to a reliable estimate is of
paramount importance. By contrast, one can be more lenient on the specification of the latent period
distribution and the mean infectious period provided that other estimated parameters (I0 and ρ) redress
the misspecification. We leveraged this knowledge to formulate an alternative parametrization that is
more robust to the uncertainty of the epidemiological delays. However, there is a caveat with this
alternative formulation. Although it exploits a local symmetry (incidence dynamics) of the SEIR
framework, such symmetry does not extend to the other states of the system. Therefore, the usefulness
of the alternative parametrization is confined to the estimation of <0, and it is not a substitute for other
kinds of analyses. For instance, if, on the contrary, our variable of interest were I0, we would obtain
unreliable estimates. Furthermore, the alternative SEIR with exponentially distributed delays will be as
overoptimistic as its traditional counterpart in predicting the critical vaccination proportion or the
effectiveness of an imperfect HIV treatment in the context of within-host dynamics [56]. Therefore, the
alternative parametrization is a mitigation strategy in the absence of complete information. Furthermore,
its usefulness is abated by highly transmissible pathogens (§3.5). Nevertheless, biases in the estimates
due to large <0 are only detected with high-fidelity data. That is, data with little or no overdispersion.

Despite the significant computational effort of simulation analyses, a single study cannot offer
overarching statements. Further work is required to test the validity of these insights in stricter or
more elaborated contexts. For instance, we assumed the complete availability of the incidence time-
series throughout this study. This assumption restricts the validity of the approach to retrospective
analyses. However, other situations exist where only fewer incidence measurements are available to
the modellers, such as the early phase of a pandemic response. Hence, it remains to be seen the effect
of various levels of data availability on the performance of the suggested approach. Furthermore, for
simplicity, we ignored age-related effects in the dynamics of the infectious disease as well as process
stochasticity (demographic and environmental) and time-varying contact rates. We expect that future
research builds on the findings provided by this study and addresses the aforementioned challenges
to construct ever more reliable inference approaches.
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