(

FARROW'S

Military Encyclopbdia

A DICTONARY OF MLLITARY KN(OWLEDGE
HILUATRATED

WIth maps and about three thousand wood engravings

BY

EDWARD S. FARROW, U. S. Army, LATE ASSISTANT INSTRUCTOR OF TACTICS AT TIIE UNITED STATES MILITARY ACAUEMY, WEST POINT, NEW YORK

COMPLETE IN THREE VOLUMES. VOLUME II.

$$
\begin{gathered}
\text { NEW YORK: } \\
\text { PUBLISHED BY THE AUTHOR, } \\
240 \text { BROADWAY. } \\
1885 .
\end{gathered}
$$

Entered, according to Act of Congress, in the year 1884, By EDWARD S. FARROW,
Assistant Instrector of Tactics at West Point
In the office of the Librarian of Congress, at Washington.

DEDICATED

TO THE

NATIONAL GUARDS OF AMERICA

In Appreciation of their Enterprise and balor

AND AS A TRIBUTE OF HOMAGE

TO

GALLANT SOLDIERS.

PREFATORT NOTICE.

The design of this work is that of a Labieary of Minitary Kinowtembe mon the Peonse-not a mere collection of elaborate treatises in alphabetical order, but a work to be readily consulted as a Drotosatry on ewery military subject on which people generally reguire some distinct information-no article being longer than is absolutely neecssary. The sevoral topices are not hamerl with a view to the technical instruetion of those who have to make a special stuty of particular branches of military knowledge or art. The information given may be charaterized in many instances as mom-professionol, embracing those points of the several sulyects which every intelligent man or woman may have oceasion to speak or think about. It the amme time every fllort is made that the statements, so far as they go, shall be precise and scientifically acerarate.

Although about 30,000 subjects lave heen compiled from the various publications and records of the War Department, Foreign War Otices, and Dilitary Works of reference, more than 5000 original articles have been prepared by specialists in America and abroad. While the Tactics, Ordnance, Gun Machinery, Implements, and Equipments of all ages and of all militury powers have been fully described and illustrated under appropriate hearlings, a complete system of cross-reforences enables the military stulent to quickly locate several hundred articles pertaining to the general subject under investigation. Thus, umder the article Magazine Gun witl be foumd the following references: Boch, Butfington, Bullard, Burgess, Burton, Chuffe-Reere, Clemmons, Colt, Dean, Elliott, Fromlilin, Munt, Lee, Levis-Rice, Miller, Remington, Ruswell, Speneer-Lee, Sprinuftelel-Tones, TiusingTrabur, Whithey, and Wimmester Murgizine Grus. Thder each of these articles are references to articles descrihing amt illnstrating all other arms of the respective classes. The Compiler has made special effort to set forth in detail the numerons decisions, remtered by the War Department and Tactical Department at West Point, on the tactical points raisert ant submitted from time to time by the Otheers of the Army ant National Guard. 'fhe deserjptions and illustrations of more than 500 varictics of Gun IVachinery. Steam Ilammers. Cranes, etc., constitute a novel feature of the work to be appreciated by those wishing to investigate the subjects of construction, testing, etc.

The original plan has been strictly adhered to throughont; and if, as the work proceeded, there has been any change in the method or quality of the execution. it may at least be athirmed that the change has not been for the worso. After some experience, it
became easier to find the person specially qualified to write a particular kind of artiele, and thas the circle of contributors became widened, and the distribution of the work more special ized. It was also seen to be desirable, in regard to certain classes of suljects, to admit a rather ampler selection of heads. This has been effected without increasing the scale of the work, not so much by less full treatment of the subjects, as by inereased care in condensing the statements and oomitting everything superfluous. A great quantity of matter pertaining to Foreign Armies has been introduced in this work, so as to enable the military student to compare the organization, arms, etc., of all armies with those of his own service. The Eneyclopedia contains also descriptions of ancient armor, and of arms, lately in use, which have become obsolete, as it may be of some interest to follow the changes which have taken place in the mode and means of fighting from the earliest period down to the present time. The insertion of reterinary terms and of remedies for the common complaints of horses will be fond nseful under conditions where a Veterinary Surgeon is not available, as is often the ease in detached parties of Cavalry. A description of all tools and machines found commonly in workshops may prove acceptable to Departmental Officers on their first joining Government Manufacturing Establishments.

Of the Sciences, the least adapted to eneyclopedic treatment is Mathematics. All terms of common occurrence in Gumery, Reconnoissance, etc., however, lave been introduced, and a brief exposition of the snbjects given, as far as could be done in an elementary way. Natural Philosophy has receired ample attention, and all the leading doctrines and facts of general interest will lee found under their appropriate heads, treated in a popular way, and divested as far as possible of the techniealities of mathematies. Chemistry, some knowledge of which is becoming daily more indispensable in all departments of military life, receives a comparatively large space. Prominence has been given to those points of the subject that have either a direct practical military bearing or a special scientifie interest. During the progress of the work, several changes in the nomenclature and notation of the Science have come into general use; these lave been duly noted under the appropriate headings. The new and far-reaching doctrines of the Correlation of Forces and the Conservation of Energy have produced vast changes in the nomenclatnre and classification of the various sections of Military Physies; while the more complete investigations into the phenomena and laws of light, heat, motion, and electricity have created virtually new sections, which must find a place in any adequate survey of scientific progress. Mechanical invention has, indeed, so kept pace with the progress of Military Seience and the Art of War, that in almost every department of Physies improved machines and processes have to he described, as well as new discoveries and altered points of view. The manufacture of gunpowder and high explosives is a signal instanee of the extent to which in our day scientifie diseovery is indelned to appropriate machinery and instrmments of olservation am analysis. These extmsive changes in Physies involve corresponding changes in the method of their exposition. The scientific department of the work is conserquently treated in all its lranches in the most effugent mamer, and over 1000 very fine engravings are used for the purpose of illustration.

True to its projected plan as a Labbay on Muitary Kxowlenge for the Peoble, this Eneyclopectia will be fomd to he especially rich in notices of miscellaneous military matters. Some of the subjects introduced might perhaps he considered beneath the
dignity of a book anpiring to a more severely sciontilic character; but all of thern are, if not instructive, at least cmrious or contertaining, and likely to ocenr in the course of reading or conversation. During the progress of the work, the Compiler has rececived mumarous assumances from parents as to how highly it was prized, even thongh only partly issuctl, by their sons at Military Schonls, as arepertory of the kint of things they are constantly in search of and often puzzling their chlders abont. 'This use of the bineyeloperlia las becrn steadily kept in view; and it is gratifying to learn that it is found efficiontly to serve the purpose intended.

In eonclusion, the Compiler asks the indulgence of Military Crities wherever errors or diserepancies have crept into this work, and begs to acknowledge the valuable help obtained from the works of many authors, both military and seientific, through the courtesy of Messrs. John Wiley \& Sons and Mr. D. Van Nostrand, publishers, and the assistance he has received from various friends. To (iencral Stephen V. Benćt, Chiof of Orduance, United States Army, he is especially indebted for eourteons assistance in the preparation of the work. 'To economize in space and to avoid crowding up the text, the mame of the author from whom information has been derived has not been inserted after each quotation; but a list of all works wheh have been consulted, and from which extractions have been made, will be fonnd at the commencement of each volume.

It is intended, with the view of mecting the ehanges which are constantly taking place in the materiel of armies, new processes, military inventions, etc, to issue a supplement at suitable intervals, eontaining all alterations and additions.

United States Military Academy,

West Pount, New York, 18:5

LIST OF WORKS CONSLLTED OR EXTRACTED FROM.

Aide-Mémoire de lofficier d'État-Major. Mr. de Rourre. Aide-Memoire to the Military Sciences.
Almazach de Gotha, $18,6$.
American Universal Cyclopedia.
Ammunition, Treatise on, 1874. Published by English authority.
Analytical Digest of the Military Laws of the C.S. Scott. Aperçus em quelques Details de la Cinerre. Bugeaud. Arehives, German Military.
Armies of Asia and Eurone. Upton.
Arms and Armour. Bontell.
Arms and Navy Pension Laws. Mayo and Moulton. Army Circulars. Published hy the English War Offee. Art and Science of War. Wheeler.
Artillerist's Handbook of Reference. Well and Dalton. Artillerist's Manual. Gibhon.
Artillerist's Manual, IIth edition. Griffiths.
Artillery and Infantry. Kingshury.
Artillery, Dictionary of. Cotty.
Artillery Exercises, Field. Changes in, in 1sis. Phillpotts.
Artillery Institution Papers.
Artillery, Lectures on. Owen and Dames.
Artillery, Modern. Owen.
Artillery, Treatise on. Boxer.
Art of War. Graham.
Art of War. Jomini.
Astronomical Atlas. Milner.
A Treatise on the Law of Evidence. Greenleaf.
Baker's Elements of Mechanism.
Balfour's Encyelopedia of India.
Battles of the Revolution. Carrington.
Blue Books (Parliamentary).
Bourne on the Steam Engine.
Brande and Cox's Dictionary of Science, Literature, and Art, 1875.

Campaign in Germany, 1×60. Prussian Staff.
Campaigns of the Army of the Potomac. Swinton.
Cape's Mathernatics.
Cavalry Manual. Ainslie.
Chambers's Ençclopedia.
Change of Materiel. Puhlished hy the Eaglish War Office.
Chemistry as applied to the Arts and Manufactures. Mus. pratt.
Chemistry, Handbook of. Abel and Blosam.
Chemistry, Manual of. O'Shanghuessy.
Classical Dictionary. Smith.
Commentaries, with Notes. Blackstone.
Conférences du Ministre de la Gucrre (France).
Conférences Militaires Belges.
Construction of 1 welling-houses.
Consulate and the Empire. Thiers.
Courts-Martinl. De llart.
Courts Martial. Macomb,
Cross' and lletzel's Military Laws of the United States.
Cummer Steam Eagine.
Castoms of scrvice for Non-commissioned Offeers and Soldiers of the Army. Kautz.
Customs of Service for Offleers of the Army. Kantz.
Deferse of Military Cutposts. Jebb.
De la 'factique' des 'frois Armes; Infanterie', Cavalerie, ArtilIfrie. Decker.
Dietionary, llandy, of Military Terms. Knollys.
Inetionary, Military and Naval. Burn.
Ifictimary, Military and Naval. James.
Dietionary of Arts and scieges's. Francls.
Dletionary of Arts, Mamfactures, and Mines, Ure.

Dictionary of Every Days Difficulties. Shilton.
Jicionary of Greek and Roman Antiquities. Smith.
Dictionary of Military science. Campbell.
Dictionary of Science, Literature, and Art. Brande.
Dictionary of the English Lauguage. Jobnson.
Dictionary of the English Language. Nuttall.
Dictionary of the English Language. Sinart.
Dictionary of the United States Army. Gardner.
Dictionary, Philosophical. Hutton.
Dictionnaire Militaire Portatif. Le Grand.
Dictionnaire Portatif et Kaisonne. Conturier. Die Lehre Vom Neueren Festungskrieg. Rüstow.
Dienst-Torschriften der Königlich Preussischen Armee. Von Helliorff.
Digest of Lecisions of Federal Courts. Peters.
Ligest of Laws of the United States. Dunlop.
Digest of Laws of the United States. Gordon.
Digest of Military Laws. Mordecai.
Digest of Opinions of the Judge-Advocate General. Winthorp. Electro-Ballistic Machines. Benet.
Elementary Lectures on Military Law. Tulloch.
Elementary Principles of Fortification. Hyde.
Elements of International Law. Wheaton.
Elements of Military Arts and Sciences. Halleck.
Encyclopedia Britannica (1875).
Encyclopédie Militaire et Maritime.
Field-book of the Revolution. Lossing.
Field Exercise and Evolutions of the Army.
Field Exereise (English), $18 \% 0$.
Field Fortification: a Maunal of Military Sketching and Re-
connaissance. Published by English, authority.
Field Fortification. Nacaulay.
Field Fortifications. Mahan.
Field Fortifications. Wheeler.
Fortification and other Military Subjects as carried on at the
Royal Mditary Academy, Woolwich.
Furtification. Arnetti.
Frederick the Great. Carlyle.
French Revolution. Thiers.
Friend of All. Green.
Frontal Attack of Infantry. Laymann.
Geggraphic Phisique. Historique et Militaire. Lara.
Grand IIIlitary Operntions. Jomini.
Great Campaigns. King.
Grundzuge der Taktik der Drei Waffen, Infanterie, Kavallerie, und Artillerie. Brandt.
Gunnery. Hy̧de.
Gunpowder. Badeley, Anderson, Goodenough, Smith, and Morgan.
Gules on Mathematical and Surveying Instruments.
Hlandbook for Field Service. Lefroy.
Iamlbook for Military Artificers, 1875. Armstrong.
LIaudhook of Artillery. Roherts.
Hatadbook of Natural Phdosophy. Lardner.
Handbook of the Mechanical Arts. Burns.
Heather on Mathematical Instruments.
Heavy Artillery Tacties. Tidiall.
Ifeerwescmud Infanteriedienst der Koniglich Preussischen Armee. Witzlaben.
Ilistoire et Tactique des Trois Armes, et phas Purticulierement de l'Artillarie de C'ampagns. Favé.
History of the Dress of the British Soldier. Luard.
History of the I'eninsula War, Nuper.
History of the kebellion. Tenney:
Histony of the War in the Peninsula and in the Soath of France. Nupler.

Holtzapfill's Turning aus Mechanical Manipulation,

lndinn and Burman timbers. skimner.
Infuntry, Cuvalry, and Artillery 'Tacties, Unlled States Army.
hastructions for Armies, Licher.
Iustructions for Fidd Artillery.
lustructions in Silitary Linginecring. P'ubllaheal by Finglish anthority.
lustructions in the Dut ies of Cavaly recomoltring mu bineny, for the use of Anxiliary Cinvalry:
Instruments, Mathomatical, Meteorologleal. ite. Quen.
Jominis Treatise ou Gram Military Gperations, or a Critical and Military IIistory of the Wra's of lerederlek the Grent. Holabird.
Jonmals of the Royal United Sarvice Instilition.
Julge-Advocate nod Recorder"s Civide. Ikegan.
Knight's Mechanical lietionary.
Kriegsfeumwerkerei Zum Gebrauch fur die Kïuiglich Preussische Artillerie. Bath.
Kriegswörterbuch. Lochr.
Law Dictionary. Bouvier.
Law of Nutions. Vattel.
Liggislation et Administration Militaises, Guildot.
l.essons of War from the Great Mastars, Souly.

Life of Napoleon. Jomini.
life of the Duke of Marlborough. Cuxe.
Mamal for Engineer Troops. Duane.
Manual for Ritle Prnctice. Wingate.
Manual of English Artillery Exercises, 18%.
Mamal of Instructions for Testing the Defective Vision of Soldiers. Longmore.
Manual of Military Law. Pipon and Collie'r.
Manuel complet al losuge des Cavdidats au (irade doomeier d'infanterie. Turlin.
Manmel d'Administration et de Complabilité in lıusage des Offciers des Compagnies on Eiscadron des Corps d'Tufanturie et de Cavalerie. Ruffin.
Mannder's Treasury of Knowledge.
Maxims of War. Napoleon.
Maybew on the Horse.
Meclanie's Magazine.
Mómoire sur divers Perfectionuments Militaires. Cavalli.
Memoirs. Sherman.
Method of Horsemanship. Baucher.
Militair Conversations-Lexikou. Von der Lube.
Military Bridges. Cullum.
Military Bridges. Haupt.
Military Carriages. Close.
Military Carriages, Treatise on. Kemmis.
Military Catechism and Handhook. Walshe.
Military Commission in Europe. Heclellaa.
Military Dictionary. Duane.
Military Dictionary. Scott.
Military Engineeriug. Mahan.
Nilitary Gemmnastics. Farrow.
Military Law and Court Martial. Benét.
Military Law Authorities. Hough.
Military Law, Clode.
Military Miscellany. Marshall.
Military Schools and Courses of Instruction in the Science and Art of War. Barnard.
Military Sketching and Recounaissaute. Hutchisou aud MacGregor.
Military Telegraph during the Civa War in the U.S. Plum.
Motion of Projectiles. Owen.
Mountaia Scouting. Farrow.
Mutiny Aet and Articles of War.
Naral and Military Technical Dictionary of the Freach Language. Burns.
Naral Gunery. Donglas.
Naval Ordnance and Guaners. Cook.

Nis: B Bayonct Fxerelse, Kelton.
Operatlons of Whar, wand at edtions. Ilankey.
Orders and Cenverpendoner of Gens-ral Whateld Scou, Congreswional bexamarnts, elt.
Ordmane and Armor. Holley.
Ordmune ane (innuery: Benton.
ordmanes and Naval fiunuery. Simpenn.
Outpost. Maban.
Outpuasts. llamlary.
Pletorial Field-book of the War of 1912. Lasslag.
Proctieal froatise on Stack aurl Defense. Ithb.
I'reels of Modrom Thetices. 11 rome:
Principles of cimanery. slaven.
Quern's Kegulations, 1kis.
Regralations und lustructions for Encampuents (English).
Report on the Transport of siek and Woundrel by Pack Ans mals. Otis,
Beperts of the Chlef of Ordnance, U. S. Asmy, $18 \%=1881$. levan d'Altillatio.
Revoe Militaire de I'franger (Paris).
Kith Exereines aud Musketry Instructions.
Jithe Firing. Laidley.
Ritles and Rills l'ractice. Wilcox.
Royal Artillery, llistory of. 1huncan.
 sandlurst lapers.
Science, La, des Personnes de Cour, d'Fppe ct de Robe.
Shifts and Experljents of C'nmp-Life. Lord aud Banes.
Short Notes on Field Batteries. Browne.
Simmons on Courts-Murtial.
Simall's Veterinary Tablet.
Some Weapons of War. Bartlett.
Spectateur Hilitaire (Paris).
Steam Engine. Burns.
Strategy and Tactics, Ilufour.
Studies in Tacties of Infantry. Von Scherff.
Sur Ia Formation des Troupes pour le Combat. Jomini.
Tableau Avalytique. Jumini.
Tactical Deductions from the War of 1870-71. Boguslawski.
Tactics and Strategy. Twemlow.
Text-book for School of Musketry at Hythe.
Text-book of Gunnery. Mackinlay.
Text-book of the Construction aad Mnaufacture of the Rifled
Orloance in the British Service. Stoney and Jones.
The Administration and Organization of the British Army, with
especial Reference to Supply and Finance. Fonhlumque.
The Armies of Europe. HeClellan.
The Art of Travel. Galton.
The Uuties of the General Staff. Ton Sctellendorf.
The Elements of Dilita's Art and History. Dupareq.
The Elements of Modern Tactics. Shaw.
The Law relating to Officers in the Arms. Prentergast.
The Military Laws of the United States. Callan.
Theory of War. Macdongall.
The Soldier's Pocket-hook for Field service. Wolseley.
Tomlinson's Csclopedia of the Useful Arts and Manufactures.
Treatise on Cranes. Towne.
Treatise on Fortification. Leads.
United States Army Regulatious.
United States Bridge Equipage.
United States Revised Statutes.
Soyle's Military Dictionary.
Weale's Series.
Weapons of War. Demmin.
Webster"s Dictionary.
West Point; or, Information for those about to Enter the Acadeas. Farrow.
Wilhelm's Military Dictionary and Gnzetteer.
Woresester's Dictionary.
Youatt on the Horse. Skinner.

ABBREVIATIONS OF MODERN TERMS, PHRASES AND TITLLS EMPLOYED IN FARROIV'S MLITARY ENCYCLOPEDIA.

A.A.S. (Academice Americance Socius.) Member of the American Academy. A.B. (Artium Buccaloureus.) Bachelor of Arts.
A.B.CFM. American Board of Commissioners for Foreign Missions.
Abp. Archbishop
A.C. (Ante Christum.) Before Christ.
A. D. (Anno Domini.) In the year of our Lord.
At. (Etotis.) Of age; aged.
Al. Alabama.
A.11. (Artium Magister.) Master of Arts; (Ante Meridiem) Before noon: (Ammo Mundi) in the year of the world.
An. (Anno.) In the year.
Apr. April.
A.R. (Anno Regni.) In the year of the reign.
Ark. Arkansas.
A.U.C. (Ammo Urbis Conditoe.) In the year from the foundation of the city.
Aug. August.
Avoir. A voirdupois.
B. Book: (b.) Born.
B.A. Bachelor of Arts.

Bal. Balance.
Burt. Baronet.
Bbl. Barrel.
b.C. Before Christ.
B.C.L. Bachelor of Civil Law.
B.D. Bachelor of Divinity.

Bd. Bound.
Bds. Bound in boards.
Benj. Benjamin.
$B k$. Book.
B.L. Bachelor of Laws; Breech-loading.
B.L.R. Breech-loading rifled
$B p$. Bishop.
Brig.Gen. Brigadier-General.
C., or Cap. (Caput.) Chapter.

Cal. California.
Catm., or Camb. Cambridge.
Cops. Capitals.
Cops. Capitals.
Capt. Companion of the Bath
C.B. Companion of Court of Common Pleas.

C:E. Civil Engineer.
Cent. (Centnm.) Ahundred.
C.J. Chief Justice.
C.O. Commanding officer.

Co. Company.
Col. Colonel: Colorado.
Com. Commoflore.
Conn., or Ct . Connecticut.
Cor. Corinthian.
Cor. Sec. Corresponding Secretary.
Crim. Con. Criminal Conversation:
Adultery.
Cts Cents
Cret. Hundredweight.
$f_{\text {. }}$ or d. Jenny, or pence.
Duru. Daniel
H.A.Q.M.G. Deputy Assistant Quarter-master-fienera

1) f: District of Colmmbia.
J.e. L. Doctor of Civil Law.
I) 11 . (Divinitatis Doctor.) Doctor of bivinity.
flers. Ieacon.
Tric. Hefember.
Del. Selnware.
lrep. Ieputy.
Dept. Department.
Deut. Delaterniomy
left., wr dft. Wefemdant.
Jist. Distrlet
Hist. Athl. District Attornes:
dille, or do. Thus same.
I).M. Dixetor of Music.

Ihols. (\$) Dollurs.
10\%z. Dowen.
Dr. Inoctor: I hehtor; Dram.
D. V. (Dero Folvte.) God willing.

Dutt. Pennymeight.
E. East.

Ed. Edition; Editor.
Edio. Edward.
E.g., or e.g. (exempligralia.) For example.
Eliz. Elizabeth.
E.N.E. East-North-East.

Eph. Enhesians.
Esi. Esqur
et. al. (et alii.) And others.
etc., or atc. (et coetera.) And so forth.
et seg. (et sequentia.) And what follows
Erod. Exodus.
Expl. Explanation.
Ez. Ezra.
Ezek. Ezekiel.
Fuhr. Fahrenheit.
Feb. Februars.
F.G. Fine grain; Field-gun.

Fl., or Flor. Florida.
Fred. Frederic.
F.R.S. Fellow of the Royal Society.
F.S. Field-service.

Ft. Foot, or feet.
Fur. Furlong.
G.B. Great Britain.
G.B. Gocd conduct.
G.C.B. Grand Cross of the Bath.

Gen. Geperal; Genesis.
Gen. General; Genesis.
Geo. George: feorgia.
Geo. George: feorgia
Gov. Governor.
Gov-Gen. Gorernor-General.
G.S. General service.
G.S. Π° General service wagon.
H., or h. Itour.

Hab. Habakktr.
H.B.M. His, or Her, Britannic Majesty
H.C. House of Commons.

Heb. Hebrews.
Hhd. Hogshead.
H.L. House of Lords.

1I.M. His. or ILer, Majesty.
II.M.S. His, or Her, Majesty's Ship, or Service.
Hon. Honorable.
Hos. Hosea
Hos. Hosea.
H.R. House of Representatives.
H. F..I. His, or Her, Royal Highness.

Hicud. Hundred.
I., or Isl. Island.

Ib., Lhid. (Ibidem.) In the same place. Id. (Item.) The same.
i.e. (iel est.) That is.
I.II.S. (Iesus IFominim Salvator.) Jesus the Saviour of men.
III. Illinois.

In. Inches.
Incor. (Incognito.) Unknown.
fird. Indiana.
J.N.R.I Jesus Nazarenus, Rex Iudu-
orum.) Jesus of Nazareth, king of the Jews.
Inst. Instant (the current month).
It. Iowa.
i.q. (irlem quod.) The same as.

Is. Isaiah.
Jt. Italics. Justice: Judge.
J. Justice: Judge

Jent. Jamiary.
Jas. James.
Jer. Jeremiah.
Juo. Jolm.
fono. Jonathan.
Jus. Jose pin.
Jush. Josima.
J.1: Justice of the Peace.

Jr., or Jun. Junior.
Jutlof. flutges.
Jul. July.
Kırn, Kaisas
K.l. Knight of the Bath: King's Bench.
K.C.B. Knight Commander of the Bath.

K. G. Knight of the (vartup
K.G.C. K゙uight of the (irand Cross.

Ki. Fings.
Knt., or Kt. Knight
L.. or l6. Pound (weight).
L., l., or £. Pound sterling.

La. Louisiana.
Lat. Latitude.
L.G. Large grain.
L.1. Long Island.

Lieut Lientenant.
LL.B. Bachelor of Laws.
LL.B. Bachelor of Laws
LL. L. D. Doctor of Laws
$L . L . R$. Line of least resistance.
L.S. Laud-service.
M.A. Master of Arts; Military Academy.

Maj. Major.
Mer. March
Muss. Massachusetts.
Matt. Mathew.
MC. Member of Congress.
M.D. Doctor of Medicine.

Mid. Maryland.
Mille, or Mlle. Mademoiselle.
3.E. Mechanical Engineer.

Me. Maine.
Mem. Memorandum.
Messrs. Gentlemeu.
Meth. Methodist.
Mich. Michigan.
Min. or min. Ninute or minutes.
Miun. Minnesota.
Miss. Mississippi.
M. L. Mnzzle-loading.

M L. R. Muzzle-loading rifled.
MM. Messienrs.

Mme. Madame.
Mo. Missouri; Month.
Mons. Monsieur.
Mos., or mos. Months.
M. P. Member of Parliameut
M.P.P. Member of Provincial Parliament.
Mr. Master, or Mister.
Mrs. Mistress, or Missis.
M.S. Sacred to the Memory.

MSS. Mauuseripts.
M/t. Mount, or Nountain.
M.T. Mountain train.
M. Mus D. Doctor of Music.

Mus D. Doctor of Music. Nenter.
N.A North America.

Nath. Nathaniel
N.B. New lrunswick; (Notu bene) Note
well, or take notice.
X.C. North Carolina; Non - commissioned.
N.C.O. Non-commissioned Officer.
N.E. North-East; New Eugland.

Neb. Nehraska
N. F Newfoundanul.
N. H. New Hampshire.
N.J. New Jerses.
N.L. North Latitude.

N, N.E. North North-East.
N.N. V. North-Nortb West

No. (Numero) Number.
Non. seq. (Non serquifur.) It does not
follow.
Nos. Numbers.
Sor. November
N. P. Notary Pulic: New patteru.
N.s. Nova Scotia; The New Style (since 15R).
N.T. New Testament.
N. IV. North.W.est.
N.I. New Jork.
O. Ohic.
(1). (ohiit) bied.

Oh, or foult. Obedient.
fict. Octoher.
B.P. Old Pattem.
(1). Oregon.
O.S. whistyle.
O.T: Old Trestament.

Orf.. or Oren. (Oronia.) Oxford.
(oz. Ombe or onnces.
I^{2}, or p. I'age: Stehble.

P'a.. or Penn. Penusylvania.
I'rat. I'urlianeme.
ru. Pald.

ler ceot. (l'er coutum.) lsy the handred.
Ih. J. (IMitusephise Doctor.) Joctor of Thilusophy.
1hit. Philiphians.
lhitit. Philndelphia.
l'inc., or l'st. (l'izxil.) I'lased aftur
the painter"s mane on pietnres: ns,

Pk, peek.
17. L"umat

Ihf: linintife.
1:M. Postmaster; Past Master; (Post Meridicm Alternonm.
PM. M. Postmaster General,
IPO. Post-antece.
P'P.C. (Pour I'rentre Conge.) To take leave.
Pr., or' P . ($\left.\mathrm{I}^{2} \mathrm{Cr}.\right)$ By the.
Pres. l'resident.
1rof. l'rofessor.
Frotem. (Iro tempore.) For the time belng.
Irov. Iroverbs; province.
Pox. (Prorimo.) Next (thenextmonth).
S'S. (Pust Scrintum) Dosteripu.
1 's. I'salm, or Psahus.
1't. Pint.
I'ub Doc. Public Documents
prut. Pemyweight.
Q., of Qu. Quary; Question; Queen
Q.IF. Queen's Bench
Q. \because Qne en's Commeil
Q.s D. (Quod Erut Demonstrandum.)

Which was to be demonstrated.
Q.M. Qumptrmanster.
Q.M.G. Quartermaster-General.

Qr. Quarter (28 pounds); Farthing; Quire.
Qt. Quart: Quantity.
Ov. (Quart mide.) Which sem
R. (Rex) King; (Fegira) Quren
R.A. Royal Academy, or Acad+mician:

Rear-Admiral: Royght Ascension;
Rear-Admiral:
Royal Artillery.
R.C.D. Royul Carriage Department
R.E. Royal Engineers.
hec. Sec. Recording Secretary.

Ren Revelation; Ruverend.

R.I. Rhode lalama.
fi. Is. Koynl Laboratory
R.L. (i Hitle lursererain

Ris.d. Koynl Military Academy.

Ront. tamman: Romans
Rom. (ath. 18ntsjn Catholle.
R.K. Railromd

Kt. Hon. Right Honomble.

\&. South; signor shilling.
S九. S. Suth Aturtica: Small arms.
s.A.A. Small-arm aumunition.
\therefore ifr. Sombli Africa.
sat. Suturduy.
s 13 . Smoothtore
s.c: Soutl Chmban; Scrap-carriage
sc., or stutp. (Simpait.) Dlaced after
the "ongraver's munt on a picture
Seh, or stehr. Sclooner.
Scit, (1) sic. (Scilicet.) To wit; namely. script. Neripuare
sti. Suath-East.
Sec. Sueretary; Section.
sern. Semme: Senator: S'nior.
sep. or sput. sentember.
Serg. Seryeant
Serl., or servt. Servant.
S.J. Soerinty of jesus

S J.: Supreme Judicial Court
S. Lat. South Latitade.
sid. Sailed.

IIer. Imperial Majesty.
S.O. Stafl Olleer.

Soc. Society.
Sq. Square.
Sif. ft. Square feet.
Sy. in. Sçuate inches.
Sq.m. Squmre miles.
Sr. Sir, or Senior
SS., or ss. (Scilicet.) Namely
S.S. Sun-service; Sumday school
S.S.E. Sonth-South-East.
S.S.LF. South-South-West.
st. Saint: Strect
Stat. Statute
STID (sacre Theologier Doctor.) Doc tor of Divinity.

Sunz. or Smad. Kunday.
sult. Silf"rhilond.at
sif. Sonth.Wemt.
Trn., or Trum Temacssere.
Tre. Trxis.
Th., Or 'Thners. Thureday.
Thes 'Thwarar:
Tr. 'Iranslatlon; Tranfpose; Treasurer; 'J'rusthep.

E'tl. (lthimo.) Last, or l'ertalnleg to the last month.
U.S. Uniterl Statrag
U.S.A. Liniterl sitates of Amerlea; C"nitwa sitales Army
U.S.M. United States Mail ; Ľulted States Marine.
U.s.M.A. United States Miltary Acad.ony.
C.S.A. Ünted Staters Navy.
C.S. L Linted stutes Volnuteers.
C.1: Utah Territory.

Fa. Vrgina.
": V: Victoria Crosa.
Vice-I'res. Vice-l'sesident.
Vid. (Vide) kiee,
Tis., or l'isc. V'ismunt
Fiz. (Viulvicel.) Niamely; to wit.
Fr. Verts neuter.
For. Vocative.
or. ocative.
I. 1 . Vice-Pressdent
if R. (l'ictorid Ficyina.) Queen Vistoria.
Vk. (Versus) Agalust.
V\%. Vemmont.
If Week; West.
IVash. Washington.
Hed. Wednesday.
11. 1 . West India; West Indies.
if. Lon. West Longitude.
Thm. Willimm.
W.M. Worshipfil Master.

If,N.1F. West-North-West.
IV.S. \mathbb{H}^{-}West-South-West.

Ift. Weight.
Xmers. Christmas.
Y. Y̌par.

Sd. Yard.
Ir. Your.
Zach. Kachary
Zech. Zechariah.
Zeph. Zejhaniah.

FOREIGN WORDS AND PHRASES EMPLOYED IN FARROW゚S MHLTAARY ENCYCLOPEDIA.

Abante. (L.) Before; previously.
Abas. (Fr.) Down.
Ab extra. (L.) From the ontside
Ab initio. (L) From the beginuing.
Aborigine. (L.) From the origin.
Ab oro usque ad mato. (S..) From the egig to the apples; from first to last. Roman hanqueis began with eggs, and Roman wanquets witl apples.
Aburbe conditit. (L.) From the foundation of the city
A compte. (Fr.) On account
Ad infinifum. (L.) To infinity
Ad interim. (L.) In the mean while.
Ad libitum. (L.) At one's pleasnre.
Ad nateserm. (L) To disgust; till dis--
Ad patres. (1,) To his fathers: i e. dead.
Ad referendum. (L.) Till further consideration.
Ad valowem. (L.) According to; upon tlue value.
Affaire afomour. (Fr.) An intrigue: a love-affair.
Affoire d homevr. (Fr) An affair of lonor: i.e. a duel
A fortioni. (L) With stronger reason.
A gusto. (Ital.) To one's heart's content
A labonne heme. (Fr.) In happy time; at a gand hour
A ha Francaise. (Fr.) In the French manner.

A mome (Fr .) In fashion: frshionable A t'Anglaise. (Fr.) In the English manner.
A) fitsen (ltal) In the open air.

Alias (I) Otherwise; e.g. Jones, alias
Atirs (L.) Jolamnes.
Alibi count Flsewhere A legal defense iv. whe defendant attempts to br which the ahseut at the time show that he place of the conmmission and from the
of the crime
lllms. (Fr) Come on: let us go
Alma mater: (I.) A nourishing mother. A name frequentlv applied by stud.nta in their college.

A l'outronre. (Fr.$)$ To the uttermost, the last extremitr.
Alter eqo. (I .) A second self.
Alumnus (L.) A foster-clild: a nupil. The graduates of Amprican colleges are oftell callet alammi.
Amende lenorable. (Fr .) To make the ampude lomorobe is to make a thit abte anology for and confession of ante s กfferce.
Amor patioice. (T.) Love of country; natrintism.
А моию propre. (Fr .) Self-estpem.
Ancien rifime. (Fi.) The chl govern-
ment; the Firencit monarchy before the Revolintion.
finn Domini. (L.) In the year of our Lord.

Anno mundi. (L.) In the year of the world.
Annus mirabillis. (L.) The wonderful year.
Aute bellum. (L.) Before the war
Ante meridien. (L.) Before noon.
A posteriori. (L.) From the latter: the cause from the effect
A mieni, (L.) From the former; the fffect from the cause
A pronos. (Fr.) Appositely: seasonnbly; in regard to
Anmmentumad hominem. (L.) An argumernt to the man: i.e.. personal.
Audi wlerams fartom. (La) Hear the other part: both sides.
Au foit. (Fr.) Skilled; accomplished; conipetent
Au ford. (Fr.) To the botom; thoroughly.
An remir. (Fr.) Good by, till we meet agnin.
Into der fó (sp .) An act of faith: i.e. hurning heretics
dux armes. (Fr) To arms.
A potro sonte (Fr) To vour health.
Bas bleu. (Fr.) A bluestocking: a litarary momal
Beryl idial (Fr.) Ideal beauty. The mbsolut, beauty which exists only in the mind
Berar monde. (Fr.) The gay world: the wowld of fashion

Bel esprit. (Fr.) A fine mind; wit.
Ben trovata. (Ital.) Well found; "a happy thonght.'
Bête noir. (Fr.) A scarecrow; a hugbear.
Billet-doux. (Fr.) A love-letter; a sweet" note.
Bizarre. (Fr.) Strange; eccentric; fanciful.
Blase.. (Fr.) One who has spen and enjoyed everything. and upon whom pleasure palls, is called blosp..
Bond fide. (L.) Iu good faith; genvine: actual.
Bon-gre, mal-gre. (Fr.) With a good or ill grace; willy-nilly
Bonhomie. (Fr.) Simple, uยaffected goal-nature
Bom-jour. (Fr.) Good-day; good-morning.
Bom-mot. Fr.) A good word, i.e., a witty saying.
Cateris paribus. (L.) Other things being equal.
Cunaille. (Fr .) The rablble; the common multitude
Curte blanche. (Er.) Blank sheet of paper. To give a person carte blanche is to give him an unconditional discretion.
Casus belli. (L.) A case of war; an act which justifies war.
Cerlant urmes togre. (L.) Let arms yield to the gown; i.e., mulitary to civil power.
Celu ver sconsdive. (Fr.) That goes without saying: follows as a matter of course anil necessarily.
Chircun a son guît. (Fr.) Evers man to his taste.
Chitenuren Espagne. (Fr.) Castles in Chteonx en Espagne. (Fr.) Castles in Spain: air castles.
Chef d'wurve. (Fr.) A masterpiece; an unequale work.
Che somi, sard. (Ital.) What is to be, will be.
Cheralier dindustrie. (Fr_{r}) An adventurer; one who lives by his wits.
Chronique scendaleuse. (Fr.) A record of scandals.
Cicrone. (Ital.) A person who acts as guide to sight-spers.
Comme il faut. (Fr.) Neatly; properly;
righty: in "good form."
Compuynon de royage. (Er.) Companion of one's travels.
Compos mentis. (L) Sane; of sound mind.
Con amore. (Ital.) Earnestly; zealously.
Conspirito. (Ital.) Ir a spirited manner.
Corps Diplomatitue. (Fr.) The foreign ambassators.
Corpus delicti. (L) The body of the offense.
Coup d'état. ($\mathbf{F r}$.) A bold stroke in politics.
Comp cte grace. (Fr.) A stroke of mercs; a final blow.
Coup rle main. (Fr.) A bold, swift understandimg.
Coup iluil. (Fr.) A swift glance of the eve.
Conte qu'il con̂te. (Fr.) Let it cost what it mas.
Cui bowo. (L.) To what (for whose) grood.
Cum !pratas salis. (L.) With a grain of salt; not maqnaliliedly.
(curvente ectomo. (L.) Rapidly and fluently.
Drecripu. (Ital.) From the brginning.
De bowne griver (Fr.) Readily; with De houne tro
goorl will.
Thitur. (Fr.) One's first appearance in societs, or on the stage.
the fucto. (1,) Actual; in face.
7e mustibus nom est rispulautum. (L)
There is no dispmong uhout tastos.
Dre jure. (L.) Rightfully; lawfully; law finl.
be montuis nil nisi bouum. (Ta.) Say nothing bit grood of the deat.
Drinollement. ($\mathbf{F r}$) Tliecatastrophe of a plat.
Thenora. (L.) Anew; over again: afresh.
fron coldonte: (I) if it flease Goll.
Dermier ressort. (Fre.) The last wemeres.
1re tron. (Fre) In the wny; tum much.
Dirure mon drat. (Fre) rionl and my right.
Distingné. (Frr.) Distmguished in mauner.
Disfruil. (Fr.) l'reoccupied; absent minderd

Divide et imperu. (L.) Divile and govern.
Dulce fur niente. (Ital.) Sweet do-nothing: luxurions isleness.
Double antente. (Fr.) Double meaning: obscenity in disguise. (Often erroneously written double enteadre:)
Dumceur (Fr.) Sweetness: compensation: a gratuity.
Dromatis personc. (L.) The characters of a drama.
Dufce domatm. (L.) Sweet honne
Dum rivimus. viramus, (L.) White we tive, let us live; enjog life to the full. Eclat. (Fr.) Spleador: distinction: brildiancy
ElaM. (Fr.) A spring; fire; dash; impetuosity.
Emberras re vichesses, (Fr.) Embaruassment of riches: excess of anything. Embonpuint. (Fr .) Plampness of figure Empressement. (Fr.) Enthusiasm; eagerness.
En famille. (Fr.) In family; by themselves.
Enfant yfitr: (Fi:) A spoiled child.
Enfont terrible. (Fr.) A terrible child; making ill-timed remarks.
En urumde toilette. (Fr.) In full dress; torlet.
En masse. (Fr.) In a body
Eu reppert. (Er.) The communication En regle. (Fr.) As it should be: in rnle. En reculuche. (Fr.) to make up for il. En route. (Fr.) On one's war
Eu suite. (Fr.) In company together. Enteute cordiale. (Fr.) A curdial under-
standing.
Entourage. (Fr.) Suroundings; adjuncts.
Entre nous. (Fr.) Between ourselves
E pherebus uиum. (L.) One of many. Hotto of the Lnited States
Eryo. (1.) Therefore
Esput ile corps. (Fr.) The spirit of the hody: a feeling for the bonor and interest of an organization.
Espret fort. (Fr.) A skeptic; a freethinker
Et ceftrat, (L.) And the rest; etc.
Ex. cathedret. (L.) From the chair; with authority
E.relsior. (L.) Migher.

Expultomurs. (L.) They all go out. Ex nihito nihil fit. (L.) From nothing, notling comes.
E.t afficio. (L.) By pirtue of his office.

Es porte. (L.) From a part; one-sided Ex post furto. (L) After the deed is Ex post
done.
Ex tempore. (L.) Off-hand.
Ficile princeps (L.) Easily the chief.
Furilis est descmasus Arerni. (L.) The
descent into hell is easy
Fait accompli. (Fr.) An accomplished fact
Faux ins. (Fr.) A false step; a mistake. Fecit. IL i He, ur she, made. This word is put after an artist's name on a pic-
Felonde se. (La.) A felon of himself; a suivide.
Femme de chambre. (Fr.) A chambermaid.
Fenme sole. (Fr.) An mamarried woman. Fostim lentc. (L.) Nake haste slowly. Fr̂te chompêtre. (Fr.) A rnrul party; a barty in the ojen air.
Fruilletwo. (Fr.) A small leaf. The hottomis of the pares in French newsmapers are so called, being given up to mapersaresocal
Fint justitul, runt cor'hem. (1,.) Laet jusFicee be done, thongh the hoavens fall. Finis comoutit opus. (1.) The end crowns the work.
Flagramte aclicto. (I) In the act.
Fugit hore. (I.) The hour slies.
Giamin. Whes A streat-urchin.
forron, lkr.) A waiter
luerke du corps. (Fr.) A body-guard. Gorde medile. (Frr.) Troops liable for general sirvise.
ditsionnule. (fre) Boasting: bragging. Guncherie. (Fr.) Awkwardness; clumsiness.
Gendarme. (Fr.) An nrmed policeman. (ieminsloci. (L.) The genins nf the place. Gentilhomme. (Fr.) A gentleman; nobleman.
fienushoma. (I,) Tla homan race.
((hrria in excelsis. (1.) (ilury to dod in the linhers.
Flomin loffri. (Ia.) filory to the Father. Grund siecle. (Fr.) A great erntury.

Grossièreté. (Fr.) Grossness; rndeness.
Ifabeus corpus. (L) You may have the body.
IInutenr. (Fr.) Haughtiness; loftiness.
Hicet ubique. (L) Ilere and everywhere.
Hic jacrt. (L.) Here lies.
Homme détut. (Fr.) A statesman.
Honi soit qui mal " pense. (Fi.) Shame
to him who evil thinks.
Horribile dictu. (L.) IIorrible to say.
Hors de combet. (Fr.) Out of condition to fight.
Hôtel der ville. (Er.) A town-hall.
Ibidem. (L.) in the same place.
Ich dien. (Ger.) I serve. (Motto of the Prince of Wales.)
Ici on parle Francais. (Fr.) French spoken here.
Tdem somars. (L.) Sonnding the same. II est. (L) That is: i.e.
Ignis fatuus. (L.) A foolish fire; a delusion.
Ignobile vulgus. (L.) The ignoble crowd
Ignotum per ignotius. (L.) The unknown by something more unk nown.
Imprimis. (L) In the first place.
In articulo mortis. (L.) At the point of death.
Iudex expmorgorius. (L) A purging index: a list of works prohibited to be read.
In embryo. (L.) In the rudiments
In esse. (L.) Actual; in existence
In extremis. (L.) At the point of death.
In flagrante delicto. (L.) In the very act.
Infra lignitatem. (L.) Beneath one's dignity.
In firturo. (L.) In the future
In hoc sigm, vinces. (L.) In this sign thou shalt conquer
In loco (L.) In place; on the spot.
In medus res. (L.) In the middle of a subject
on proce. (L.) In peace.

In propmiâ personá. (L.) In one's owu person.
In re. (L.) In the thing: in the matter of In rem. (L.) Against the thing.
In soemia sacutorum. (L.) For ages of ages.
Instanter. (L.) Instantle.
In statu quo. (L.) In the state in which it was.
Luter alia. (L.) Among other things.
Inter nos. (L.) Between ourselves.
Inter se. (Lu.) Among themselves.
In tolo. (L.) Entirely; wholls.
In fransitu. (L.) In the passage; on the way.
In mino veritas. (L.) In wine there is trnth.
Ipse dixit. (L.) He said it himself.
Ipsis facto. (L) By the fact itself.
Je ne suis quai (Fr .) I know not what.
Jeu de mots. (Fr.) A play upon words.
Jour' de fête. (Fr.) A saint's day; a festival.
Jubilunte Deo. (La.) Be joyful to God.
Jupiter tonoms. (L.) Jupiter the thum-
derer.
Jwe divino. (L.) By divine law
Jure humuno. (L.) By hıman law.
Jus cimle. (L.) The ciril law.
fuss gentirm. (L.) The law of nations.
Juste milicu. (Fr.) The golden mean.
Lubor ommia vincit. (L) Labor conquers all things.
Luissez furre. (Fr ,) Iet things alone. Lapsus lingure. (L.) A slip of the tongue. Laies et penates. (L.) The houseliold rods.
Letus Deo. (L.) Praise be to God.
L^{\prime} 'armir: (Fr :) The future.
Le bean monle. (Fr .) The world of fashion.
Lisse majestr: (Fr_{r}) IIIgh treason.
Les hoci. (L.) The law of the place.
Lex seripta. (h.) The written law.
Lex talionis. (L.) The law of retaliation.
Litermitim. (1) Letter for letter.
Littéculcur. (Fr.) A liternry man.
,oress sigill. (h.) The place of the seal.
Wh wire. (Fr) My dear
Mu fui. ($\mathbf{F r}$.) My faith; upon my faith.
Ma!num bonm. (1..) A great good.
Mifisom de rille. (Fr-) The town Inomse.
Baitre dhutel. (Frr.) A house-steward.
hajom demo. (Ital.) Achia.f stewamal.
Walactie dupays. (Fr:) Jlome-sfichess

Afeter fiemilizs. (L.) The nother of a
family.

M！julice．（I．，）ln my fulgment

he remembereil．
 Hitul in a sommal boxy．
Wermett lisum．（1．）Mine and thbae．
Mlabtile dictu．（I．）Wimulurfisl to tell．
 sitage．
Murliss operandi．（L．）Thes method of Operiting
Mon ami．（F゙r．）My frlencl．
Mot alordre．（lir．）the pusisword；coun froskit．
Mullum in partoo．（L．）Mnelı intitti＂．
Netnine contrudicente．（L．）No one čon－ trurlicting．
Ni．phes ulfra．（I．）Nothing mose be Fond；the utmost．
Nil ralmirari．（L．）To wonder at no－ thing．
Nil disperandum．（L．）We must not de．
Ni Viun ni V＇autre．（ Fr. ）Neither the one nor the thther．
N゙impurte．（Fr．）It does not matter．
Nisi jmius．（ \mathbf{L}_{1} ）Unless bufore
Noblesse oblige．（ Fr ．）Nubility obliges； noble must act nobly．
Nulwins rolens．（I．）Willy－nilly．
Nolime tungere．（La）Don＇t tonch me hands off．
 cution．
Nom＂ap guerre．（Fl．）A warname
Nom de plume．（Er．）Ре山－шแни：нame assmmed by an anthor
Non compos mentis．（1．）Not in one＂s richt minal
Non est iutenlus．（L．）Me has not been fonsed．
Non multar，siथd mirltum．（L．）Not many thines，but mols
Nufre beve，（L．）Mark well．
Nisus cronts changé tort cela．（Fr．）We Have changerl all that．
Nous aerrous，（Fr．）W＇e sball see
Odium theoloyicum．（L．）Theulogical hatred．
Olla podride．（ $\mathbf{S p}$ ）a mixture．
Ommin rincit amor．（L．）Love conquers

null things．

On dit．（Fr．）Ther say；people say－
Ousts mobaudi．（L．）The burden of proof．
Oro pro nobis．（L．）Pras for us
O tempora！O mores！（I．）Oh，the times：Oh，the mauners＇
Otium＇um dignitate．（L．）Ease with dipuity．
Outis．（Fr）Extravngant；extreme．
For excellence．（Fr．）By way of emi－
nencr：in the bighest degmee．
Frerhrsard（Fr．）By chance．
P（bi possu．（L．）With equal step．
Parvenu．（Fr：）An upstart；a rich snob．
Puter familias．（L．）The father of a family．
Pater patrie．（L．）The father of his conntry．
Pur robiscum．（L）Peace be with you． Peceari．（I，）I hare simned．
Pendentr lite．（L．）While the suit is frending
Per atmami．（L．）By the year
Percripitto．（L．）By the head；on each person．
Per contra．（L．）On the other hand．
Per diem．（L．）By the day；every day． Per se．（L．）By itself．
Parsorenel．（Fr．）The staff；persogs in any service．
Petilio principii．（L．）Begging the ques－
tion．
Pelite．（Fr．）Small；little．

Girar de reskatamer．（Fr．）A johit or inloat

l＇is ullor＂．（F＇r．）A last exjuthornt．

Iorfa uresilur．nom fit．（l．）A poret is

Jould＇appui．（lir．）Polut of support． Posme comifulum，（1．）＇Thu＂juwer of thas emantry；thrs forer lhat may be sum－ נworal hy the Sherlft．
fonf（ restunte．（l＇r．）＇lob be left till called ［＂）
Prost maridiem．（I．）Afternoon
font mertem．（I．）After dereth
P＇usl whilum．（f．）After death．
low＂phater．（Fr．）A eomsultation．
four preudre contr．（ $\mathrm{F}^{\prime} \mathrm{r}$ ．）To take Jrave．
Pririruse．（Fir．）A bluestocking；a con－ coitbel woman．
l＇reur chevolicr．（F＇r．）A gallant gentle． mati．
Erimen doman．（Ital．）The flrst lady：the prineipal fenale singer in un Italian opera．
I＇imit ficio．（L．）On the first face；at Ilrst sight．
Primus inter pares．（L．）First among his juevis．
Pro lum publico．（L．）For the public good．
Irocis irvoral．（Fr．）Virbal process；the takisig of tostinnony in writing．
fors of cone．（1．）For and against
Pro firman．（1．）For the sake of form． Pru putrifi（l．）For one＇s conntry． fros tempore．（I．．）For the time． l’unicr firles．（ \mathbf{L}_{1} ）Puaic faith；i．e．， treachery
Gucoutrm sugficit．（L．）As much as is sufflejent．
Guelyue cluse．（Fio．）As if．
 Quiul pron qur，（L．）An equivalent．
Oui vibe．（Fr．）Whogoes there？
suod erif tromonstrandrem．（L．）Which was to lue lemonstrated．
Qumulam．（IL）At one lime；ance．
himat ouis．（l．）A rare birt．
hechuयfri．（rr）Wmmed oser：stale．
Recherchi．（ F° ）Choiee；Alegant．
Reductemr．（ N^{r} ．）An editor．
Fulivirus．（1．）Restored to life．
Rerloction ml alosurdum．（L．）Peduetion to an aliswildity．
Renfes．（Irr．）Public funds；national se． curities．
Mrmuiescrit in pace．（L．）May be，or she，
rest in peace．Things done．
Resurgum．（L．）I shall rise again．
Reveroms i nos moutoms．（Fr．）Let us return to our sheep；come back to the subject．
Kiwhe de chombre．（Fr．）A dressing．gown． Romé．（Fr．）A rake
hotige et woir．（Fr．）Red and black（a ganee）
Sanctum sanctorum．（L．）The holy of holies．
San！f froid．（Fr．）Cold blood；self－pos－ Session．
Suns culoffos．（Fr．）Without breeches ； red republicans．
Surtor resurtus（L．）The tailor patched． Sante uuipeut．（Fr．）Save himself who
can．foire（Fr．）Knowing how to do things．
Sovoir－xivre．（Fr．）Knomledge of the worlel．
Sempr＇idem．（L．）Always the same． Semper paratus．（L．）Always prepared． Sequifur．II．）It follows．
Sertiolim．（L）Iu order．
Sicitrer ad astra．（L）Thus men go to the stars．
Sic semper tyrunnis．（L．）Thus always with tyrants．The motto of Virginia．

Similite mimilibus curientur．（I．）Iiks Is curiod ly like
Sizw dir．Il．t Withmat a lay
צíne quie men．（1．）Whthout whlels，bot： an ind
Sin llisanf．（f＇r．）sulf－ntyled．
Spiriturl（Froi Witty
Stafur yu＊s．（1．）The ntate jn whlelh the formen matu．
Slcl．（1．a）lat it stanul．
swaviler in morlo．fortiter in re．（J．）

suts rosí．11，（＇nelor thr rosse：secorvetly
sui fonterte．（1．）GIIts own kime．
 reood．
Thhleau rirant．（Fr．）A livfng jlicturn．

dinntal ut a flxed jurice．
Tibulir rasie（1．）I smooth tablet；a blank．
Toul micux．（Fr．）So smbelt throwtler．
Tonl pien．（fre．）So matach the worse．
Te Jevm laudamers．（l．）＇Ilo＇es，God，we 1raise．

illis．（L．）Tines clange，and we change with them．
Tempus fugit．（l．）Time tlies．
Trome firma．（L．）Srilid sarth．
ت̈ern incogntat．（L．）An unknown conlutry．
Trite－iltéte．（Fr．）Head to head；iu pri－ vate conversatina．
Thrsilut．（Fr．）The thlrd estate；i．e． the conllmons．
Totidem rerbis．（L．）In just so many words．
Tour de forcp．（Fr．）A turn of strength．
Toul ansemble．（Fr．）The whole taken tognth
Gont lo monde．（ F_{r} ）Everybody
Trotlour．（Fr．）The paveinent．
Tu pus，
Tu fursike，Brate！（ 1, ， liritus．
Uhi libertas，ibi potria．（1．）Where lib－ enty is，there is my country．
Cbi swpra．（1．）As mentioned above．
Cltima Thule．（1．）U゙ttermost Thule； the eul of the earth．
Csque arl notiserom．（i，）Till it was，or is，absolntely sickening．
Citile dulci．（L．）The bseful with the sweut，
Ut infra．（L）As helow．
Ct suprm．（1．）As above．
I＇ade mecum．（L．）Go with me；A com－
panmoti．（I ）Wroe to the ranquished Fale．（L．）Farewell．
Trlet（le chambre．（Fr．）A servant
Feni，t＇ide，vici．（L．）I came，I saw，I coaquered．
Ferbolim et liferotim．（L．）Word for
word；letter for letter
Terbum sul supienti．（L．）A word to
the wise is suftlcient．
Tif．（L．）By way of．
Fide．（L．）See．
Tidelicet．（L．）N゙amely．
Vinculum matrimonif．（L．）The bond of natatrimony．
Fis it lis．（Fr．）Face to face
Fis inertio．（L．）The force of inactivity．
lis riva．（L．）Living force．
Firâ vooce．（IA．）By the living roice．
Five la bagatelle．（Fr．）Success to trifles．
Fitelo Reine．（Fr．）Long live the Queen．
Fite FEmpereur．（Fr．）Long live the
Vie EEmp
Eise te Rori．（Fr．）Long live the King．
Foild．（Fr．）See there：bebold．
Foild．（Fr．）See there：bebold．
Fox，el proterea nihil．（I．）A roice，
and notbing more．
Fox jomuli，rox Dei．（L）The voice of
the people is the voice of God．

INDEX OF MATTERS NOT HAVING SPECIAL ARTICLES.

At the close of Volume III. will be found an Index of Sobjects not haying Spectal Articles. It has not been thought necessary to repeat in this Index the titles of the many thousand articles composing the body of the work. A person consulting the Eneyclopedia is supposed, in the first instance, to look for the snbject he is in quest of in its proper alphabetical place. If it is not to be found there, or by a cross-reference, by turning to the Index he is likely to get a reference to it under another name, or as coming in for notice in connection with some other subject. It frequently happens that subjects, having articles of their own, are further noticed under other heads; and where it seemed of importance, a reference is given in the Index to this additional information. The title of the article referred to is printed in italics; and when the article is of considerable length, the page is given in which the information is to be found.

CONTINEED REVISION.

The process of revising Farrow's Military Exctclopedia is constantly carried on, thus keeping up the information to the latest possible date. These revisions and additions will be supplied every few years in the shape of Supplements. A few blank pages are inserted at the close of each volume for the purpose of noting the reference to the various articles in the Supplements, which would naturally find alphabetical arrangement in the respective volumes.

LIST OF MAPS AND FULL PAGE ILLUSTRATIONS IN VOLUME II.

India,			-	.		-								-		-	$\begin{array}{r} \text { PagK } \\ \cdot \quad 90 \end{array}$
Lndlans-American,		.	.		-		.								-		91
Indians-Mandans		Cher	okees.	.		-								-		-	- 92
Lreland,	.	.	-		-		.								-		126
Lathe, .		-	.	-		-								.		-	. 178
Magnetism, -	-	.	-		-		-								-		249
Mining,	-	-	-	-		-								-		-	. 363
New Zealand, .	-	-	-		-		-								-		412
Palestine,		-	-	-		-								-		-	. 472
Physics, . .	,	-	.		-										-		517
Pressla,		-	-	-		-								-		-	. 600
Pulley, .	-	-	-		-		-								-		604
Queensland, .			-	-		-								-		-	. 621
Roman Eifirie,		.	.		-		-								-		754
Russia,		-	-											-		-	803

 order in writing, signed ly the ludge whogrants the s:ame, seathed with the scal of the Court of which he is Judge, and issued in the mante of a sovereign lower where it is qranted, hy sulla comart or a Julge thereof having lawful anthority to issue the same, directed to any one laving it persom in his crasfoly or under lis restraint, commanding him to produce such prerson at a certain time and place. and to state the reason why he is held in custody or umder restraint. A state dulge las no jurisdiction to issue a writ of Hebeas Cormes, or to continue proceedings under the writ when issumen, for the clischarge of a person held under the authority, or clam and color of the anthority, of the C'nited states, by anotlieer of that Govermment. If upon the application for the writ it appars that the party alleged to be illegally restrained of liberty is beld under the anthority, or claim and color of the authority, of the ['nited States, by an othicer of that Government, the writ should be refused. If this fact do not thus appear the State Judge has a right to ingure into the sause of imprisomment, and ascertain ly what anthority the person is hede within the limits of the State; and it is the daty of the Marslazl, or other othicer having the custody of the prisoner, to give, ly a proper return, information in this respect. But after he is fully arprised by the return that the party is held by an ofticer of the United States, umber the authority, or clatim and color of the atherity, of the L'nited States, he can proced no further. These principles applied to a case where a Habeas Corpus was issued lyy a Court Commissioner of ont of the Counties of Wisconsin to a recruiting officer of the Lnited States, to hring before him a person who had enlisted as a soldier in the Army of the United States, and whose diseharge was sought on the alleged ground that he was a minor under the age of eighteen years at the time of his enlistment, and that he enlisted withont the consent of his father. The petition for the writ alleging that the prisoner had enlisted as asoldier and been mustered into military service of the Nitional Govcrmment, and was detained by the ofticer as such sol-dier-this Court hed that the Court Commissioner hatd no jurisdiction to issue the writ for the discharge of the prisomer, as it thas appearnd that upon the petition that the prisoner wats detamed under claim and color of authority of the Cnited States be an oflicer of that Gosernment : and that if he was illegally detained, it was for the courts or judicial offirers alone, to grant him release. Should a writ of Habens Corpus be served upon an Army offecer by a Civil Magistrate or Court of any State, commanding him to produce an enlisted man, or show canse for his detention, the officer makes respectful return that the man is a duly enlisted soldier of the United

States, and that the supreme (oburt of the [nited States has deceided in such case that at Masiotrate of a Court of a state has not jurisediction.

HABERGEON.- 1 short coht of mail, consisting of a jacket withont sleceres. In carly times, the habergreon was componsed of whin mail : but in the fourfemth equtury, a habergeon of plate-armor was worn over the haulurk. See llauberd:

HABILIMENTS OF WAR.- In ancient shatutes, armor, harness, utensils, etce., without which it wassup)posed there could be no alility to maintain a war.
HACHE D'ARME. - A batthratse with a natrow handle armed with a sharp, blade in the form of a crescent, very much curved, terminating in two points approacling the hatle on sue side: the other aide triminating in a point or hammer: when both sides were armed with a blale it was called Besogne.
HACHEE. - The ignominious punishment of carrying a suddle or dog, to which soldiers were formerly sulbjected in France.
HACKAMORE.-- A hater used ley parkers. It consists of a long leather or rope strapand hadd-stall. It is used when leading the prick-inimal, also to make the animal fast, usually to the aparejo, while preparing to pack. On the march, the strap is wrapped around the animal's neek and mate fast to the headstall.
HACK BUSH-HACK-BUSS.- 1 heavy land cannon, with hatt and serpentine lork. It lielongs to the second half of the fifteenth century. The match is no longer loose, but fixed to the serpentine. which springs back by means of a trigger. This sort of cannon is about 40 inches in length, and it is usually provided with a hook, so that when it is placed on a wall, it cannot slip back. Without the hook it is sometimes called -lrquebuse with Mutchlock. Sice Hak.

HACQUETON. - 1 stuffed coat or cloak, generally of leather, monted with metal, formerly worn in France ly rertain kinight- of the King's (iuards called Gardes de lu. Munchi. It came into nse during the reign of Charles V... and was tiscarded during the* Revolution of 1~89.
HACQUET-WAGON.-I fomr-wheeded wagon usal in the Prussian service to carry pontons. The underframe of this carriage is built like that of a chariot. by which meams it can turn without difficulty

HADDAN RIFLING.-This plan of centering agrainst the bore consists of 3 large and shallow idiptical grooves. which in the earlicr forms were about $1-6 \mathrm{in}$. deep and took away nearly two-thirds of the surface of the bore. The projectile is rotated hy 3 wings formed on the front of the shot. straight with its axis. In the carlier projectiles, the rear tapered. and had a shoulder for a ring-wad to stop the windage. The later projectiles have merely a wooten sabot. A stre

Wings are on the front part of the projectile，the rifling is carried only to within one caliber of the powder－ chamber，and hence is not a source of weaknesis at that point．
HADLEY FIRING－PIN．－I simple device for using rim－fire cartridges in rifles whapted for central－fire ammunition．It was invented for and specially ap－ plied to the llaynard rifle．This ritle is confined to central－fire ammunition in cach and all of the ealibers， excepting the sis：but by this device rim－fire cart－ ridges from 29 to 38 caliber may be used．The draw－ ing shows the nature and simplicity of the invention． It consists of a can attached to the breech－piece by

Böszörmény．The total population is about f3，000． all Magyars，and for the most part lelonging in the leformed Church．In 1876 this district was incor forated with portions of two adjoining districts into a new admanistrative division（called Maidekencomitut） with Debreczin for its capital．Jn course of the pre－ sent century，the name Haiducks has hegun to be ap－ plied in the Macers of IUngarian Courts and the IJal． herdiers of the．Ilangarian Magnates；also in the Lackeys and other Attendants in German Courts． Also written Ifrjduks，Haiduks，and IIaydukis．
HAIL．－A term in military parlance，meaning to ehallenge，accost，or salnte．A sentinel hails any one

Hadley Firing－pin．

two small serews，in which is a disk with a firing－pin projecting throngh the cap at such a point from the center is to strike the rim of the cartridge．This disk play freely in the cap，and is driven forwaril by the firing－pin in the lseech－piece．Touse the central－fire cartridges it is only necessary to remove the cap， change firing－pins，and insert the latter．

HAGBUT．－In arquebuse，of which the butt was bent or hooked，in order that it might be held more readily．Also written IIagg and Ioghebut．See Huck－bush．
HAGNER MAGAZINE．－Gencral Hagner proponsed that a projection be formed on the mader side of the stock，between the lower band and the guard，in which three cartridges might be placed，with their hould to the rear．This magazine liffers from the Benton fired Mragaine，merely in its location．and holding three eartridges instesid of five．

HAIDUCKS．－Originally al designation of cattle－ herde in IIngary．Ifterwards，the word came to signify a clase of mercemary font－soldiers ready to awopt pay from any one whos would employ their sorvices，fut displaying great gallantry on the field of battle．The remarkable constancey with whirl they stoonl hy Poeskai throurhout the Wrar of the Revohu－ tiom．Was rewarded by that Prince with a grant of a distriot as their own possession，and at the same time with the privileges of mobility．＂lhis grant was mate ly at publie decrece of Dece．12，1605，and eontirmerl by the Diet in 161s．Execpt the privilege of axemplinin from faxes，whith Clarles Jl］．took away，the 1lai－ fluckernjoy：all the rinhte of Nobles to the present day． Their resitlence，the Ilathack distriot，remains inde－ ［amelent of the conantry anthoritias．and is under the tirert aministration of the National fovermmont． The llathurk district lias within the comentry of North Bihar．betwonen the Theiss and＇Transylvania，has an arcen of about 50． dinck fowns．Tlur apilal of the district nsed to be
approacling his post between taps and reveille with，
－IVho goes（or comes）there？＂
HAIR．－A spring or other contrivance in a rifle or pistol－lock，which．being unlocked by a slight pres－ sure on the trigger，strikes the tumbler－cateln，and unlocks the timbler．

HAIR CLOTH．－I species of eloth made of horse－ hair，Jaid upon the floors of magazines and labora－ tories to prevent accidents．It is usually made up in pieres 14 feet long and 11 feet wide，eich weighing 36 poumds．

HAIR－TRIGGER．－ 1 trigger so constructed as to discharge a fire－arm by a very slight pressure，as hy the tonch of a hair．It is eonnected with the tumbler－ catuly by device called the Hatro．One of the latest improvenents in sporting－arms is the addition of a set，or hair－trigger．This differs from the ordinary hair－trigges，in that it can he used preciscly as if this triguer was not on the gum，if，as in hunting，it is mot wanted．For line shooting，as in target practice，it is made available thas：Sfer setting the lammer at full－cock，the trigerer shondal be pressed forward slightly，and it is thus set．If it is foumd on delieate， or not delicate emongh，it can he adjusted to suit the wishes，hy turning aset serew in or but．This screw will be foind by lhe side of the trigger．

HAKE－In old term for a lantl－gun，nsed in anciont times，ami nsually tired om a rest by the manalal application of a match．Whentle welith of these instruments wats reducod，amd at lock appended， so that that they might he firet］without a rest．Ahey Wero ralled ratiocrs．llamblems of this description are mentioned as having heen tirst used at the sioge of Irras，in 1414．An inquisition takem at Inmerer erombe，in Vorkshire，in lazt，the recomb being in the （hapter－house．Wesiminster，mentions the attack on Hanor－honse of Ilantercombe by 40 men armed， among olher weapons，with＂gomies＂－supposed to 1ットインnd－guns．

HALBERD-HALBERT, - \boldsymbol{A} weapon borme, up 10tho close of the eightornth contury, by ull serorints of foot, artillery, ath marines, and by companios of hatberdiers in the varions rogiments. It comsisted of a strong woulen shaft about f forel in lrogith, surmosunted by an instrument much resombling ab billloonk, constructod aliku for rotiline and thrtasting, with a cross-piore of sted, lews sharp. for the purpose of pushiner ; one end of this eross-pinece was durned down as a losok, for use in tearing down works against which an athark is malle. 'l'lue homor of invonting the labloced is contosted by the frises and Danes, hat probably eath produced something resombling it. Its name ujpears to be derived from the 'Toutonic hitd, battle, and burd, ase. 'The halbord appears first in Enghand abont the time of Jenry Vll., amb matatamed its position for uperarde of 1 wo conturies. Now it is rarely seonexeept on wrlain corcmonial oceations.

Old latheral is a damiliar term formorly usrat in the British Army, to signify a person who hat gone through the diflerent wrmations, and risen to tho rank of a commissioned ollicer".

HALBERDE. I I arm frequently given to the guis. armo, or tor one of its malifications, in the mildle uiges.

HALE WAR ROCKETS.-The general constrac. fion of tha 1t and et-pmomiers aro the same, difloring only in gemeral dinnensions and the momhor of vents ind curved shichls or walls, the 1Djrominder having 3 and the 24 -pornuder 5 . The rocket consists of fonr picces. I head. conoidal in shape, of east-iron, hollow for bursting. having a eylindrical loble in the base about $\frac{15}{10}$ inch diametor, with screw-thread for fuse: there is also a small hole in front, used for dilling shell with combustible material, closed by a serew, but into which can, if desirable, be titted anipple and cap for ignition ley perenssion; the head is turned down ate the rear $\frac{3^{\circ}}{}$ inch so an to moter the body of the case aboun 1^{3} inch, and to which it is secured by six pins or
swivel; fo the rlanin is illarborl the lifor-lins. "This
 which may he given may dresired elrvation. Is tho r-hath is hardly long (mongle to provent the burning olf of the roper ly the gats essaghing from thar veratk, it is safost io wrot aboul lwo fathome of thr rope next to the chang. Sio Rumble.

HALF-BASTION. A demij-hastion. Inforlifiontion that half of at hation (oun off lyy the caphtal。 consisting of one linse and one front.

HALF BATTA. An extri allow:ano which was granted to the whalo of the ofliorers levenginge to the British East Indian Army, except]bonegh, whon out
 the ulduer Provinces donble-batere was allownol. All above full was paid by the mative l'rimeres, athe troops stationcel in that fuartor are 1 onseiderod as Auxiliarios. Sure Jatte.

HALE-BLOCKS.-'I'hrse areof the same dimonsions as blueks, except that the remssexection is msually 4×8 inchues, in jurer of 8 inclaces syare. They are used for the same purjoses as whole blocks: but, when the distamere through which the pioco is to ho raised is only half of what it is when the wholo blowk is Hnetl.
HALF-CAPONNIERE. In fortification, itcommmini(ation in a dry ditch wilh onte side prophated for de= forme. having lat one parapet and glacis.

HALF-CHESS.-A short chrse or platform boart of a military bridige. See Ponton.

HALF COCK-Thr position of the rock of a gin when retanad by the tirsi motrle. tre hach.

HALF-DISTANCE-]lalf ther remblar intervial or space between troops drawn uI' in that ranks or standing column.

HALF DOUBLE SAP.-This is an ordinary line of sap) pusled forward in a posilion where it is neressary to give temporary cower on the reverse of the trench, from a slant tire ley gabions fillend with satudbags. The distance hetwern the two rows of gathons in this case, is only 5 feet tif inches. the single sup-

Hale War-rocket.
screws. A cylindrimel body of sheet-iron abont $\frac{1}{8}$ inch thick, with edges litpped, riveted, and brazed at the longitudinal joints. it thich: iron disk or anmular ring fitted in and fixed by serews or pins closes the base. A teil-piece of cast-iron containing the vents and shiedels or walls is screwed into the disk which closes the base. The vents themselves are conical, the apex pressing against the curved shields, each plated in the same relative position to one of the vents. keeps the rocket point foremost in its thght, and gives the rotary motion on the turbine principle. The composition which is sepmrated from contact with the iron ly pasteboard to prevent oxidation, eonsists of salfpeter, sulphar, and charcoal. in the proportions of 70,16 , and 23 , and is introduced into the case in successive pellets and pressed by hydranlic power; it is afterward bored out in it cone for about iwo-thirds of its longth. The war-rockets are fired from it trough monnted on th stamb. cither singly or in gromps of seven, by means of an ordiцary frictiom-tube and kinyaril.

The I]ale Life-Saving Rocket difters from the above only in that the head, instual of being of castiron, is of wood, and in the addition of a piece of chain about 3 feet long which is comerter to the center of the bottom of the tail-piere thy a double
roller covering in front this interval from enfilating fire. See Sap, and Wing Truzersps.
HALF-FACE.- I movement, in the Sellool of the Soldier, in order to take laalf the usual distance between the right or left fite and front, wive an oblique direction to the line, or to till up) is apl at the corner of i square.
HALF FILE LEADER.-The foremost of a rank entire. The Chef de Demi file in France.

HALF-FILES.-llalf the givern mamber of any body of men drawn ap two deep). Thes are so called in cavalry, when the men rank ofl singly.

HALF FULL SAP.-In siege operations. When the sappers have only a tlank fire (coming in a direction nearly perpendicular to that of the sipp) to foar. tha sap-roller may he dispensed with. The first sipper then covers himself witl the last-filled gabion whilst placing and filling the new one. 'lhis specios of sitp is called the half-full sap.

HALF-HITCH. - I form of lifell much used in mechanical manenvers, It is mate by pasinur the end of a rope round its standing part, ind brineing it upthronghthe light. See Corduge and hinob.

HALF-MERLON.-That solid portion of a parapet which is at the right or left extremity of a battery.

HALF-MOON. - ln fortification, an ontwork 1lat has two fares which form it salient angho. the sorge
of whiel resembies a cresent. It owes its original invention to the Dutch, who used it to cover the points of their bastions. This kind of fortitication is, however, defective, becanse it is weak on its, flanks. Ihaif-moons are now called ravelins, which species of work is constructed in front of the curtain.

HALF-PAY.-An allowance given in the British Army and Nary to Commissioned officers not actively employed in the rank to which half-pay hats reference. It corresponds to the French de mi-solde. or pay of non-activité. It has long been a disputed point whether half-pay is given to officers as a retaining fee, to keep them at hand for the time when their services may be again reguired, or au award on account of services already rendered: but whatever the terms of the original grant, there can be little doubt that, under the present regulations, half-jay, except when distinctly named retired half-

Officers.	Yearly Pay of Officers in Active Service.				
	$\begin{gathered} 1 s t \\ 5 \mathrm{yrs} \end{gathered}$	After 5 yrs.	After 10 yrs .	After $15 \text { yrs. }$	After 20 yrs 。
Major-gヶneral.	3\%.500				
Brigatier-gencera	5,500				
Colonel	3.000	8 3,680	S1,20n	\$ 1.2009	\$4.514
Lientenant-colonel	$3,\left[\begin{array}{lll} \\ \\ \end{array}\right.$	3,300	3,600	3.91011	4,000
Major.	2.500	2,750	3,009	3.250	3,500
Captain (monnted)	2,000	$2+200$	$\stackrel{3}{3}, 400$	2,600	2,800
" (not monnte	1.800	1.960	-2, 160	2,340	2,530
Ist Lieut. (monnted).	1,600	1, 130	1,923	2,080	2,940
". (not mounted)	1,500	1,650	1,800	1,850	2,100
?d Lieut. (monnted)	1,500	1,650	1.804	1,950	2,100
** (not mounted)	1.400	1.520	1,680	1,830	1.140
Chaplain....	1,5041	$1,6.50$	1.800	1.950	9.100
Officers.	Pay of Retired Ofticers				
	1st	After	After	After	After
	5 yrs.	5 y ${ }^{\text {a }}$,	10 yrs .	15 yrs .	20 yra ,
Major-general.	65, 60 5				
Lientenant colonel	$\begin{aligned} & 2,645 \\ & 2,250 \end{aligned}$	2,475	$\begin{aligned} & 8,150 \\ & 8,7100 \end{aligned}$	2,925	3.000
Major.	1,875	2,063	2, 230	2,43i	2,625
Captain (mounted).	1,5im	1,650	1,800	1,950	- 2,100
* (not monnted)		$1.3501,485$	1,1220	1, 055	1.890$1.6 \times 0$
1st Lient (mounted).	1.2 Hr 1.320		1.140	1,540	
${ }^{\text {* }}$ (not moanted).	1.125	1.237	1.350	1.462	$\begin{aligned} & 1.680 \\ & 1.555 \end{aligned}$
2d Licut. (monnted).	1.125	1.297	1,2501,260	$\begin{aligned} & 1,462 \\ & 1,365 \end{aligned}$	$\begin{aligned} & 1,555 \\ & 1,575 \end{aligned}$
* (not mounted).	1,030	1,155			$\begin{aligned} & 1,575 \\ & 1,470 \\ & 1,8: 0 \end{aligned}$
fluplame.	1.3.30	1.4×5	1.620	1,755	

may, is in the nature of a retaining fee. This allowanee is on quite a different footing in the Navy and Army. In the Royal Navy of Great Britain, officers are merely appointed to serve during the period a cortain ship is in commission; when this expires, their employment ceases and they revert io a state of nom-aclivity. As there are always many more Naval Officers than appointments for them to fill, a considerable number are at all times on the noneffective list. These are placed on half-pay matil again called upon to serve; the amount of such latf-pay lwing usually alout 60 per cent. of the full pay of cach grade. Half-pay is thons in the Navy a recognized condition for all ifficers not immediately wanted afloat. In the British Army, the case is diffrent: There, an othicer on juining, is postert to a jarticular regiment, with which, in theory, he is supposed to sorve matil removed from it on attaning the rank of (iencral. Consequently, fomal like the maval half-pay list is in any degree admitted Army halfopay is of two natures-temporary and (so(alle(i) permenent haffepsy. The former is limited
 Whos are without oecmpation, in conseguence of any reduetion of the eorps in which they were serving and to those serving in coptain staf appointments. Permuent half-pay con be demanded hy any onle or who has served dis years; it is also given to Majors
and Lieutenant-enlonels who, after serving for 5 years with a regiment in those ranks, are not $\mathrm{r}-1 \cdot \mathrm{~m}$ joloyed. Since the abolition of purchase and sale of commissions, this last class may be expected, for the sake of promotion in the lower ranks, fo increase considerably. The cost of half-pay is already wery great : in $18 \%-78$, it was $£ 315,500$ for the Army. Till lately, a large proportion of the recipients were nfficers placed on the list at the great roluction after the jeace of 1815 . There is a slightly diflerent system or practice in the United States. There is sometimes a distinction between ofticers on active duty and those awaiting orders. Officers on leave, beyond the time allowed by law, are jut on halfpay; and ofticers retired from active service receive three-fourths of their full pay. The salarios, at present, from Major-general lownwards are graded as in the above tables. See P'ay.
HALF-PIKE. - A short pike, formerly carried by infantry officers. See Spontom.
HALF-ROLLER.-This roller has the same dimensions as the long roller, but is rommd only on one side, square on the opposite side, and has no growve. It is used resting on the spuare side, when, instead of rolling the gin, the object is to have a firm support on whicla the gun can have its ends altermately raised, as in mominting a gun on its carriage by means of blocks.
HALF SUNKEN BATTERY.-A battery having its interior space or terre-plein sunk some inches helow the natural surface, and its parapet composed of the earth thms obtained and that taken from a narrow ditch in front. This description of battery admits of heing more quickiy constructed than any other, as the diggers can work both in front and rear at the salme time.
HALF SWORD.-A figure within half the lengtlo of a sword: a close fight.
HALF-WROUGHT MATERIALS. - In artillery, the several parts of gun-carriages in the rough, or partly shaped to the form required. Supplies of these materials are kept in every Arsenal, and are issued to batteries on indent. Eacla lattery in the ield in England, is allowed the following half-wroughts :-
\qquad
\qquad
Perch wagon........................ 1
Splinter-har.......................... 2
Shafts, spare........................
Felloes...............................12
Spokes............................... 24
But as a spare carriage is allowed. there is no necessity to carry such ponderous articles as beams, etc.; the officer commanding a troon or battery wint, therefore, use his discretion, according to the bature of the service on which he may be going, as to halfwronght materials he will carry, any in excess of the number allowed being provided at his own expense. On leaving a station where there may be an Arsemat, he can, if he thinks fit, return into store such halfwronghts as he may not wish to carry on the march, receiving from the Ordmance Otticer a receipt, which will be his voucher for oltaining others free of charge at the next Arsenal. The above instructions have referenee to the artillery in ludia, wherever the carriages are of the ohl pattern, viz., of wood. The new fied-carriages boing made of iron, the supply of half-wronglits as shown in the above list is not required, except for the wheols and nther wooden parts of the carriage.
HALLECRET. - Light armor much used in the sixlemth century by the swiss. Tt cousisted of hemstphate and russetw, oftern reaching to the middle of the Thight, and sometimes helow the knees.
HALOXYLIN. - The mane of a new kind of explosive material or hasting-powider which has heen invented in Styria hy two brothers, and is deseribed as incapable of spontaneous ignition. and as quite froe from smoke and noxions gases. 11 is componed of nom-resinous saw clust, charenal, niter, and ferro-

Cymmite of patassimm, ame is twice the bulk of granjoweler. hat ome-balf more perwerfal. F'or hasting
 to gunforwdr.

HALT.-lilurally, in stop; a term wrll known to soblicers. It is the word of reommanel given to a boly ol mon, or to at recinment or an army, on the mover. to discontinne ite marals. In tha matrela of a bouly of soldiers halts are very neressatry for the comfort of the mens fo andblo them io rest themselver. ()n the hatad daily march of a regiment in ladia, hatts are made balf-way, amol colliof is servent ont to
 ing how anty a regiment commencos its matrels in That cramery.
HALTER.- A beat-slal] and strap ly whicla an animat is hitelsed to a stanchison or' munger. 'Jow hattere was anciently nsed, and is shown in the sentpfurise of Nimmoud. The army is represented in the atel of arossinge a river. and the horsa*e are hatlered behind the sterns of lha loats, swimming in the wake.

HALTING DAYS. -The days in He week usially nllotted for repose, when tronpsis are upon the mareli. and there is not any particular necessity for exertion or displatc].

HALYARDS.-The ropes used in lusisting and foworing lages. Signal halyonds are romming cords of the best white hemp, bussing throurle atolley at the toj) of the flat-staff: the flage when attachote for them are polled up, and then hoisterd and expmomed to the wind liva jerk when the jroper monnent arrives.

HAMATA. I Hexible ruiras eomponed of motal -hains, and first worn hy eavalry soblicers in the time of Polybins. Sice riviras and ikail.

HAMES - -Two piceres of iron concirediner a loorse's collar, comected at the lutton hy an iron loop. and at the top ly a strap and huckle. Atadhed to the hames are iron hars 10 which the traces are linked.

HAMMER.-1. That part of a \&mo-lork which strikes the percussion-('ap) or firing-pin. lt works on : : ipriner called the hommer-spring. 2. 'lhac from is alao applied to justruments in very qreneral मse for driving and drawing mails, beatiner ont motals. cta. For many purposes. lammars are reguired of greater weight than man rombl widd]; and a eroat variety of power-lammers are used. These, for the most part, are masses of iron raised by steam or other power, and then allowed to fill hy their own gravity buon the work. "The helve or shingling hamontr, used for combressing the m:css of iron drawn from the puddline furnace, and the tilt-hommere, used in the manufacturing of shomr-steel, are important cxamples of suleh hammors. The first is a heavy har of castiron about 10 feet longr. weighing 3 or 4 tons and Ipwards. to which is attached a bead of wroughtiron faced with sterl. Weighing nearly half a ton more. It works upon an axis at the emb of the bar furthest from the he:d, amel is raised by eams attached to a herave whed sot in motion hy ste:m or water-jower: these cams strike or "Jick" a projection extending leyond the head, and thuz raise it about 18 or $20^{\circ} \mathrm{imehes}$ at the rate of 0 to 100 times per minate. The tilt-hammor is similar. but mucle lightor, and is atdaptad for striking above 300 blows per minute In order to nltain this velocity a short " hail" extends with a downwarl inclination locomel the axis, an the canss strike this downwards: aml thas lift the longer arm of the lever to which the head is attached. These, when worked by steam, as they usublly are in this country, are of course. steamhammors: lat when the term steam-hammer is used withont. qualifieation, it applies to another and nore elaborate machine of rery different construction, invented by Mr. James Sasmyth in 1842, and subsequcnlly modified amd improved in some of its minor details. In this. the hammer is attached to the bottom of a heary mass of iron, the "hammer-
block," (apable of rising and falling lutworn mpright bare or "guides"; this, again, is tixcell to the rotel of a piston, whirll works in a roglindar phated jer-
 anvil. As ihe piston riase in therylinder, it lifis the attaclaed mass, whirh is then allowal for fall from varying fajerlas, acrording to an mblutaneat whiola can be matle by an attombant simply fourhing as
 bue mate to crush a mase of ire no amel at the mext blow 10 rerack a mat held in the finerers willoont dinmaging rither kremel or linerers, or lo rack the
 the bow of a A porn. The merhaniman by which
 in datail. One novel contrivanco, viz., 1lı, "latala," which reverses the acetion of the steans walves at the

ity. Sow sterim-hammer.

HAMMER CLOTH. - Whan the aprarejo is phareod
 pirere of ranvas or matting, made to tit it. ralle tha
 incl! thick, 2 inches wille ${ }^{2} 0$ incles long, ronnd on
 phaced about is inclases from the end of the rlothe Dather capse are stitehed uner the ents of flae wood. Tou secoure the hammer-rloth, aparejo abal the bankets bencoith it to the animad, a widle rirth, fallotl it cincha or rinch, is used. It is made of hide or strong raturas, about if frot loner (at littur too short to gos around the mulde's hody ower thraparejos). from 15 to 20 imehes wide, and so folderd as former tho velges and stitching in the center. A seminecircular piere of beather, prowided with loole or a ringe is stitehed on ons emb, and two lomen of strong drather and as sider of hated wood on the otlare. The cincla is tightencel by drawing the two rembe together, by

means of what is known as the laticrostrap-made of strong bridle-leathur abont is fact lomg, an inch and one-half wide at one end and tiforring 10 onehalf inchat the other. When the strap is sutticiently drawn a loop is formed in the frate emb and the how is pulled under the fromt and back laslinges of the strap). To relar the cincla and set all free, it is unly necessary to pull on the free emel of the strap. For very smail animals a short cinch (one end furnished with a ring and the othor with a stick. hent into the shape of a hook), attached to a rope at the ring may be used. See 1 parrjo and Packing.

HAMMER-NAIL.-The pin securing the rock to the plate of the gum-lock. It is frequently called the lock-nuil.

HAMMER PIKE.- I Jong-shafted weapon. like the irar-hemmor. It was carried by the subalterns in eharte of the flag under the First Empire (18041814).

HAMMER SPRING.-The spring of a bammer in a gun-lock. Its parts are the play-side, the stud-xide. the turn, the foncer. the stud, and the eye; through the latter passes the rod of the spring-pin.

HAMMOCK. - A kind of bed suspentled on lind, betweentrees or posts: on hoard ship. hetween hoosks. Each soldier proceeding to sea on hoard a troop or transport-ship is entitled to have a hammock told off to him as a resting-place of a night. The hammock suspended forms a sort of bag capable of containing the soldier's matress, his blankets, and himself, as sonn as he has acquired the far from casy knack of climbing into it. The hammocks are taken betow at sunset, and hong in rows about 2 feet apart, in the men's portion of the ship. When done with in the morning, the bedding is carefully tied up within each, and the whole stowed in the hammock-netting. which is gencrally in the bulwarks of the waist. If the weather he not sufficiently dry, however, to allow of this, the hammocks are loft helow. Stowed thus in the netting, the hammocks form a strong harrier aurainst small shot.

HANAPIER. - The front palt of a cuirass, or iron breast-plate worn by lightarmen soldiers. Also written IIamepirr.

HAND.-1. The small of a gun-stork. 2. A measure four inches in length. The lueight of a horse is computed by so many latuls and inches.

HAND ARBALEST. - I portable balista nsed in ancient Grece, very much like the cross-bow of the Midtle Ages.

HAND ARMS. Hand-arms are usually hivided into three classes, depending on their mode of operation. Tst. Thrusting-irms, which aret by the point. 2d. rutting-arms, which act by the edge. 3d. Therasting and rutting-arms. which act either way. The object of all hand-weapous is to penetrate. directly, the jerson of an enemy. They may be divided into three elistinet parts, viz.: 1st. The point, or edge. Which attains the olnject: 2d. The body or blade, which eonstitutes tha mass of the weapon, and transmits the force of the hand to the object: and. Bu. The handle, or point of application of the motive force. The mechanical principles to which they may be refored, aro levor and wedge. With a given force of the hand, artiug against a given object, the penctration of a thrustiner-weapon lepenls upon the power of the wodge formed at its point. The effect will he modified, however, hy the position of the axis of the wedige, for if it do not roincille with the diraction of the impelling force. there will be a component foree which acts to tum tha point tor one sidr. The hate of a thrustingwospon shonld, therefore low straight, and shomit] taper to a point. To endile it casily, the center of gravity shomble fond in or near the handle; this may be ateomplished by erooviner the hade. by making the hamdle leavy, or by aldiner a eountro p)ice 10 it .
'The primeipal thrustimg-wapons are the atrenight son prd. lenwe, and bryomel. The strairlat swords as well as other swords. are composed of the blude. the litt, :med the guered. 'The thate is divided into the point. Whe midele, the peinforee, the shonleder, the fong, of portion which is inserted intor the hamdle. and the gromeces. the momber of whicelt is copial to the momber of faces, or, from two to foner. The longth of bade varios from 30 to $3: 3$ inchess the width is
 The lijl is divided into the knob, and the griper: the gripe is generally made of wool. cowered with leather or sheet-brosen and wrappod with wire to wive it roughness, :mel perevent it from slipping in the hand.

The guard is composed of the curead branch and erosspirce, and the plate, all joined in one picee. The objeet of the guard is to protect the hand, the plate to watd off the point, and the franch, the edge of the rnemy's sword. The aromeds mate by thrustingswords, particularly those with three or four coneave silus, are very dangernus, as they colose uperternally and suppurate internally. In experienced hands the straight sword is well ddapted to encounter one of its kind, lant it is too weak to parry the blows of a saber. It is now but little nsed in this country, exrept for omamental purposes: the saber being preforred as a service weapon, evon for infantry officers.

The lance, or pike, is composed of a sharp steel blacle, fixed to the end of a long and slemder handle of wood. The blude is generadly from 8 to 10 inches long, and, in order that it may combine stiffness with lightucss is grooved after the manner of the rommon bayonet, leaving three or four ridges. The base of the blade has a socket. and two iron straps. for securing it to the handle. Three small staples are sometimes fastenel to the lamdle, below the hade, for the purpose of attaching a pennon, which serves as an ormament, and to frighten the cnemy's horses. The hundle is made of strong, fight, wellseasoned wood. The lower end is protected with a tip of iron, and a leather loop is attached opposite the center of gravity, to enable the arm to carry and guide the fance. The total length of a lanee varies from 8 $\frac{1}{2}$ to 11 feet, and the weight is about $4 \frac{1}{2}$ His. On horseback, and when not in use, the lance may be carried in two ways: 1st. By placing the fower end in a leather boot attached to the stirrup. and passing the right am through the leather loop. 2 d. By plicing the fower end in the boot and strajping the handle to the pommel of the saddle. The first mode emablos the horseman to take his lance with him when be dismonnts, and is well suited to light lances. The socond mode is necessary to heavy lances. Th the first shock of a cavalry charge, and in the pursuit of a flying enemy, the 子ance is a 4uperior weapon to the saber, as it has a greater penetration, and attains itsobjert at a greator tistance: but in the hand-to-hand conflict following a charge, the latter is superior to the former. Jence, it has heen customary in certain services to arm a portion of both light and heary cavalry with the fance. In the Russian service, the front rank of the cuirassiers, a species of heavy cavalry, is armed with the lance, and the rear rank with the long twondged saber; and in meandy every European service. the lancers consititute an important part of the cavalry organization. It is also a favorite weapon with the monnted 1ndians of this country.

The bayonet is a pointed bade, attached to the end of the fire-arm, to convert it into a jika. The mode of attachment should be mela that the bayonet will not interfere with the lombing, aming, and firing of the piece : and it shomld be so secure as not to br diwengaged in conflict. 'The mustet-bryon net is eomposed rif a blute, a soctere, and a closp. Thes bade of this hayonot is made of stere, 18 inches long, amb, to wive it lightmoss amb stifmess, its three fares are grooved in the diration of the lemeth. The grooves are technically called tutes. The hlade is joined to the sockal liy the mech, which should be stronir, alld free from all deferels of workmanshij. The sochet is made of wronghtimon, "arefnlly hored out in fit the barrel of the pirce acisily and at the same fime elosely. It is secumed by a stmel (lrazed on the barrel), which fits into a crobked elammel, or growne, fat in tho solok't, and by a movable riag
 musketomm are sometimes furmishad with bayomets of suthodont longth to (mable these arms toresist a - नharge uf infantry or comblyg. Surlt layonets are cencrally mate in the form if a sword. The batek of the landle has a gronve which dits upon at stad on the harrel, and the cross-pieere of the handle is perforated so as to emeircle the marale-end of the

 towird the barrel, and the boty is bent ontward, troops the use of his arm, and inspirimg them with

Fig. 1.
that neither may intrefore with the lamd in loaling. confidence in it, for it very often decides the fate Its length is about 23 inches, and its brearlth $1_{\text {交 }}$ of inches. The sarmod-bagonet is too beavy to be carried habitually fixed to the barrel: ordinarily it is carried as at side-arm, for which purpose it is well object: a hate with a convex edire, will, therefore, adapted, as it has it curved ebttingetge, as well as have ereater penetration than a straight one. The: a slarp point. The regulation bayonet, when not effect of a cutting-blade will be moditien by the
manner it is applied to the surface of the object; an ghan of the Arabs, the shape of whicli is that of an oblique stroke, for instance, will make a dequer cut elongated letters. The facility of handing a sabrer. tham a direct oue If the edore of the sharpest blade be submitted to a mieroseope, it will present to the eye ummerous asperities. whiel give it the appearance of the entting-edge of a saw ; it is evilent, therefore, that the motive force should aet ohliguely to the cutting edge of the hbade, as that conables it to rupture the layers of tlesh upon which it acts, in de-
awd the elfeet of its blow, depend upon the relative positions of tha handle, the center of grevity, the point of eontact, and the etnter of perenssion. The nearer the center of gravity is to the point of comtact. the more powerful will be the blow: but the difficulty of handing inereases with the distance of the center of gravity from the handle. As the foree of

Fig. ${ }^{2}$.
tail. and withont expending its fore nom the clas thr blow is the important consideration in a saluer,

 the curvature of a hade is convex on the cotting- and the hamde lighter, in the former than in the
 what it js bushod from the hand lhat moves it, as will he the ease with the hlows delivered in in charge of eavalry. ()n the contrary, a couecterntingeedera, like that of a sickle, acta most fatorably when it is drawn toward the person using it; such is the gutef ever, depends upon the weight of the soldier's arm.
if motion lakres phace aromm the shoulder. and it therefore varies in partionhar cases. The princepal
 gencrally eonvex ; and the degree of jhe rourvature is the characteristio feature of the weapens. The nomenclature of the walser is mearly the same as for the sword, the principal difterenee beiner in the structure of the gramel, which is mande lighter ar heavier, as the sahor approximates the ehararter of a couthing or thrusting-wothen. There are two kind of sabers ussol in the I'nited States service, vi\%: the comatrys suber, and the light-ertillery subler. 'Tlos
 pointing ats well as cuttingo has only at moderate the gree of curvature, a long blethe (3 if inchocs), and a \because hasket-hilt "to proted the hand from the point of the enemy's swort, and to carry the ementer of eravity towarl the lanalle. The giaril is composid of the formet, midede, and bork branches. The gripe is covered with calfskin, am? lomme with wiri. Tha light-ertillery watber heine nact more partimbarly for
 more curved bade, and a lighter landle than the cavalry satmer. The grarel is compusid of a singro phece of brases, terminating in at erooll. The thates of all sabres are groused, to give them lightases. In certain scrvices it is customary to arm the heaviest cavalry, or curassicrs. with sworls which are (aplahe of coping with the bayomet or lance. The bankes are long (from 31 to 40 jielies), light, and straight, and they have a sharp point, and a single cottingeder. The lilt is heary and of the laisket form. The unly werpon of the thensting and cutting dass used in the Chited statess serviop ju the foot-artillery sword, which resembles the short lioman sworl in its character. The hade has two couting-edres, is lightencel toward the hamde, and is 19 inches lones. The eruard is a simple cross-pieere, formed of thie same pieere as the hamelle. which is mate of hrass. Firures ! and 2 represmi a variety of hand-arms. as mamuatured in the I nited States. Sier Small-arm.
HAND BARROW.-A wooden frume which is carried aromul by two men, instead of being relled for ward, like a whel-harrow. Thuse omployed in the Orlanace Department are very usefal in the erection of fortifications, as well as carrying shells and shot along the trenclles. The ends if the side raile are roumiled and form the handes. Roge metting passes through hobes in the side-rate and joins them. The weight of this barrow is abont 20 poumis.
HAND BOARD. - A hoard wad in the laboratory in rolling poitthre cases and similar work.
HAND CANNON. - 1 rudely made weapon of the fousteenth century. It was madeonf wronghtiron, an I fastened to a piece of rough wood, so that it could not be brought to the shoulder. It first. the touch-lole was on top of the canoon, and hatd a covering plate on hinges to preserve it from (lamp). A little later the bach-lmo was phacel to the right of the cammon. sice Hackbrest.
HAND CART. - A light hamd-truck used for the trameportation of light stores from one part of a work to mother. That for carrying powder, fuses, and such like articles has an arched lid-cover to keep off rain and prevent accidents from fire. The form mostly used in the United States service consists of at light body with shafte, mounter on two wheels. The shafte are joined together at the embs, and supported immediately in front of the body be iron lears. 11 weighs 180 pounds, and is very handy for the transuritation of light stores in siege and garrison service. The drawing shows a very convenient cart. having tyo main fixed wherls amil two heary castors. This form is mush used in tramsporting the heavier stores about the Armory and Arenal.

HANDCUFF. - A fetter to secire the hands together. Handeuffs are made of iron, riner-shaped. with a leck attachect. and just large enongh to keep on the wrists without harting them. An who have fleserted the service are nsually manaclen in this
manner whon being romeval from whe phat tran, 1 h.r.
HAND CULVERIN. I smatl Wril-natle (qumon of the liflemoth century. 'The matrh wis fastement to that
 of small lin-uerek.

HAND FEED MILLING-MACHINE, A Maiclnim*
 uf small work. in the fiburication of tire-armas. Ufe The machine is the same the the antomatic machinse,

Hand-fivel Mallivermachine.
with the excrption of the automatic-feerl being raphaced by the hand-feed, which is operated by a lever fastomed to the pinion-slatt, giving a very dirert mos. tion and quick roturn. Anjustable stops are placent on the table for regulatigy the motion. The machine

Hand-cart.
is usually furnished with a vise and a dividing-head. and is arrauged for foutting racs and pinions eitlar on centers or in a sprinc-chuck. The conntior-shaft hangers are generally aljustable and self-miling. Sed Jilling.

HANDFUL. - A term usmel tiruratively, in a military sense, to denot a comparatively smatl mumber: á. "A hamelful of men."
HAND GALLOP. - I very shw ant aasy (tillop, in which the hand presses the brialle to himber inerea-u of speetl.

HAND GRENADE. -IIand-grenaleciunsist of cman cylimdrical-shaped shells. with conical embls. titted with a plumger at the striking-enol, anot a diriotinsfeather at the other. "The piluner tiv- lonsely into the cavity in the forward part of the shell. and is made to projoct two or thes inches beyomid its facos. being retained in place by a limht spring: it has attached to its outar end a circular piaco of stat-iron several inches in diamoter. It the bentom of the cavity in which the phanger is platool an miplate is
fixed, communcating with the bursting-charge, on of the 13 -inch eqgine-lathe. lland-lathesswinging 12 which is placed an ordinary percussion-cap, which is exploded when the phanger is clriven in violently, thereby igniting the charge. Thore are three sizes of grenades, 1,3 , and 5 pounds, and are intended to be thrown by the hand. and may be very effect-
inches, are of similar constrmetion, with thre excep. tion that tle boxes are of the same material and styte as those of the 8 -inch. The holes throught the centers of the spindles are for 12 -inch lathes, $\frac{\pi}{16}$-inch diameter; 15 -inch lathe $\frac{9}{10}$-inch. Connterslafts should

ively used in repelling attacks by boats or by persons well sheltered arainst others completely exposed.

Ketchum's hand-grenate. which has lately been introbuced into the imerican service, is a small, whoner percussion shell, which explodes on striking a slightly resisting objeet. To prevent accidents, the "plinger," or piece of metal which commanicates the shock to the permission cap), is not inserted in its place montil the moment before the grenacle is to he thrown. See rirenule. P'rojertiles, and Ritm-part-grenume.

HAND LATHE - I small lathe mounted on a benols or table amd turned by a land-orank or by a bow. It is usually portable and may be seomed by a clamp to the bench. It is extemsively nsed in the Armory in making the small parts of small-arms. The drawing shows the Pratt and Whitney R-inch hancl-fathe, as amployed in most gun-factories in the Tnited statos. The cone las four aratles, for 1 timeh helt ; Hie spindle has extra large bearings, in gem-metal boxes. and hats at lobe through its centor $\frac{3}{8}$-inch in eliamoter. The bonas are seated in tapuring recesses, and are split. so that any possjble wear may be taken
 lininges, to prevent the inlroduction of clast, or of (1mery, when the lathe is used for polishing. A hand lever for achating the foot-stock spindle is furnishat. in addition to the hand-wherd and serew, or withont
 rereives 10 inches betworn renters, and weriens, with

 tuonc per minate. Larerer lathes of this pattern are aloo heed on tho liserer parts of smatlarms. A 15.
 Ther head-spindle has lariqe herirings, in atst-iron lexes lincol with lanhlit-metal of the best quality. The faceplate and centers interchange with hase
lave speed as follows For 12 -inch lathe fight and lonse pulleys fin 8 hy $2 \frac{1}{9}$ inches, 200 to 250 revolutions per minute: for $1 \tilde{r}$-inell lathe. tight and loose pulleys 8 or 12 by three inclies, 175 to 250 revolutions per minute. See Lathe.

HAND-LEVEL - I small anel portahle instrument for indicating a horizontal line, or cletermining the position as 10 horizontality of an object or surface to which it is applied. The drawing represents Locke's hand-level, a very arcurate and suitable instrument for general recomatsance-work. It consists of a brasis tuhe abont six incles long. having a small level on top and near the objeet end, there heing also an opening in the tube beneath, throurle which the bubble ean the seen, as rellected by a glass prism, immediately umber the level. Buth ends of the tul e

> Hand-level
are alosed by plain ghass settinge to exclude the dust, and there is in the inner end of the slidine or ('ye-
 matnify the frvel-hobble, and cross-wire molermeatlo, While it allows the object to be elarly seen throngh the "perthalf of the tube. The eross-wire is fastencel to al litle frame moving amber the level-tul) and atdjusted to its place by the small sorow, shown on the
 line with the eye of the obsemer is detiomined by sidhting toon it through the tule and brimging the airobubble of the lavel into a position where it is biserted by the cross-wire. A shory telescoge is some
times applice in pliter of the plain grave bling levels to be laken ut gredere distuner amel with

HAND MALLET. - I wooden lammorr will a hatndle, to drive: fuses, or pirekets, etco, in making fasrimes or gabion batlerics.

HAND RUBBING. - 'I゚h: manipalation which a loorse's legs modergo on the marell basd elsewhere, chacdy att feraliner lime, and which shombl be con-

HAND SLING CART. - I twowleceled rarriagr mate: contirely of iron, except tho polv, whish is of toak. The nixe-tree is arched to make it stronger,

> Hand sling-cart.
and comected with the pole by strong wrought-irnn straps and braces. In that rear of the axte a projection is wedded to receive the end of a strong hook. The end of the pole terminates in a forrule and an eyc. The eye serves the purpose of attaching to the carl, when nersessary, a limberor a berse. The diam-
raising laravy wrights and in moving grans intos perition for loating amd firing. The trailhambopes for tied rarriages is 5:3 inches in lourtho 1 Hue wane thering hamdspike for garrisent and wentenast warriages amd for gins is fifinches; fur siege and other havey work it is mater st inches bong and 12 lhe. wright; the whod handspike is particolarly nseful in the service of mortars and sasemate ambl harbette carringes; the ermek handspike for wasemate mar riages, of wromehtiron; the rolld handspike, for chatmate carriares. It is mathe of irm, 1 ineh rommet, the point coniral, whole leneth 33 inches.

HANDSPIKE RINGS.-The thimbles on the: trail transoms of erme, for the hamlapike; ly which they are mane wered.

HAND TRAVELING-CRANE. - The most satisfartory construction of this crans, as exhilnted in the engraving, hats the mechanism attacledel to one emd of the hiritere so that the operator is somb what removed from the load, thus adapting it espercially to foundry use. 'The loridere is arranced to 1 rabel lenethwise unon the longindinal tracks, and the trolley to move transverecty upon tha hridere, su that the centire rectangular spare betwern the tracks is covered by the cranc. (rames of this dexign are built of any desired capacity up to 10 tons, and of any span. 'The crab containing the operating mechanism is permanently secered to the under side of the bridge at one cond, and is beeated entirely betow it, so that the bridge rat be phaced elose to the

Hatel Traveling-rame.
eter of the whecl is six fect. The hand sling-art unterside of reoforecilime. The trolley trateds ughen is thesigned for moving light weights and siege-pieces tracks on top of the bridige, and its siches extend in the tronehes by hand. The weight is raiscel by downwarel close to the brider. with the flatin first altaching to it a sling, amd then applying fo the sheave coutangel betwern them, thas giving the sliug the hook upon the rear of the axle. by raising maximmm amome of hoist. The Weston tivedthe pole of the cart. The pole is used as a lewer, the axte and wheels heing the fuldrum. It may be nsided for any werghts not excerding 6.000 poinds. See Farriwon Nling-mert :und Sliny-rurt.

HANDSPIKE. - I wondeu or iron levar. flittened at one cand and tapering towards the other, used in cable system is rmpleyed to refecet the sefuaringe of the bridere and its longitudinal motion upon the overhad tracks. The travel of the trolley wom the bridge is effected by au imbepentent mechanism, oprerated by an endless hamd-clain from the thoor below, in a mammer simidar to that emplosed in the
jith cranes. Motion of the bridise js also effected by an endless haud-chatn or rope passing over another rope-wheel. Julling one side of this chain canses the bridge to move in one direction, and pulling the other connses it 10 move in the opposite direction. It each end of the crab, or housing eomatining the operatang merhanism, are similar rope-wheels, over each of which passes an ebdless rope or chain. Pulling either of these in one direction canses hoisting, and in the other, bowering. One is larger than the other. thus giving two speeds; while, by pulling hoth simultaneonsly, an additional speed is obtained. The several motions of hoisting or lowering, and of moving the bridge or trolley, may each be effected independently or simultaneously.

The hoisting-gear consists of cut steel worms engaging with cht worm-wheels, with provision for thorongh librication. The main lonsting-ehain is endless and passes over pocketed ulain-wheels, by which it is driven, the arrangment of parts heing such as to distribute the worar equally thronghomb the entire length of this chain. A safety devier, consisting of antomatic friction-ratchets in combination with the worm-shafts, is employed, so that the luad is always self-sustatned in any position and cannot run down. Lowering is effected by reversing the motion of the hoisting-chains. The location of the meehanisn at one cond of the bridge ramoves the operator from broximity to the load, which is, of conrse, desirable in handling lathles of hot metal, and in lifting large flasks, cte. While partimbarly designel for foundry use, this trpe of crane is equally suitable for use in forges and for many of the same purposes as other crancs. Sce ('mots. Pown Tro-reling-rorane, and Troceling-crane.

HANDLE. - The portion of a tool, or implement, by which it is grasped. As-helre of a hammer or axe ; the huft of a knife; the hilt of asword: the stock of a drill, bit, or erbin: the shaft of a spear, lance, or harpoon; the romite of a winch or crab: the pommel of at saddle; the trigger of a gum-lock; and the dolphin of a sun. In bronze guns of the old ronstruction handles were usually cast over the center of gravity of the piece, for convenience of hambling and slinging. These were made in the shape of a fish, and hence were called dolphins.

HANDLE ARMS. - In the earlier tacties, a word of command (when the men were at ardered urmas), by which the soldier was directed to loring his right hambleriskly to the muzzle of his fire-lock.

HANGED: DRAWN, AND QUARTERED.-The deseription of the capital sentence on a traitor, which consisted of drawing him un a hurdle to the place of execution, and after hanging hira dividing the body into guarters. This punishment was sulstituted. for the ancient more barlarons sentence of disemhoweling alive, but the Crown has power to reduce the sentence fo simple heheading.

HANGER - 1 term applied to a slort broadsword, incurvated towards tha point. The hanger was a 'lurkish sword formerly worn by the Janissaries.

HANG FIRE. -- The term is applied whem a gun is slow in discharging itself, from the Hame leeng rherket in ita passige to the charge, either from the vent beiner fouled or the eharge being damp. The former can scarcoly happennow, as the friction tubw ronvers the hame to the chares with groat cortainty.

HANTE. The French mame for an ornamental pike. haviner a bannor attaclocel.

HAQUETON. - 1 patched or quilted tunide worn lys armaed warriors in the Midalle A (res. It was worn lomeath the nail amol was slishtly lomerer than the

HAR. - A syllable usen in composition nasmally as

 [1f army

HARANES. Thae Frencll thesignation of tho Mangarian Militia.
HARASS.-In Ifw miliary, the ato of :mmotiner and
incessantly pursing or hanging on to the rear and thanks of it retreating force, so ats, if poscible, to prevent its attaining its object, and perhaps overroming the enemy altogether. Notwithstanding the disadvantage which a reirating army bas umfler these circumstances, history affords us examples that if the retreat he conducted los an able Commander, he has it in his pown hy his ingemulty and other military qualitios, to avoid the enemy, hy getting into inaccessible places or by so disposing of his troops as to make it hazardous for al pursining army to follow him up. or any longer to chlleavor to haras: him.

HARBOR DEFENSES. - The entrance to a harbor may be considered, and is in fart, a lefile, the defense of whieh follows the rules applicahbe to defilas generally. The means nsually employed to prewent the passige of hostile ships are divided into three classes. viz.: 1st. Forts and land-batteries: Dal. Submarine mines: 3d. Floating defenses. Whenever praticable, batteries shonld be well strung out in gronps, the strength of which should incrase as they are approacled from the ontside. This arraugement has a perulially diseouraging effect on an enemy. The first hatteries will at least clamage him and canse confusion, thus weakening his attark on the stronger, and when his discomfiture finally takes place, the bitteries alrealy passed will prevent his return and insure his total destruction. The island.s. heallands, and narrows usinally fomm at the entrances of harbors will generally, to a greater or less degree, enable this arrangement to he carried ont. Experience teaches that where the chamel is mobbstructed steam-ressels can run past shore batteries, however well the latter may he served. But, on the other hand, where ohstructions 10 their rapill transit exist, they hare not the endurance and aggressive power to effect much damage to lamd abenses. In the smoke of lattle and tideway of the channel they berome ummanageable, get aground, or collide with each other.

It is a wedl-scttled fact that a hostile fleet, hy concentrating its fire on an upen work, may temporarily silence its gums. For this reason the accumulation of guns in works exposed to sheh concentration shonld be aroided by distributing them in batteries, each containing but few pieces, due regarel heing had to their security from assault and capture by any force that may be landed for that purpose. The liest arrangement is to place them in detached batteries of say, 2, 4, or 6 piepes rach, well secured from the cuemy's fire by earthen cpanlmonts and traverses. This arrangempt makes it alitiocult for the enemy to discover the exiset position of the guns. ant every peculiarity of gromed shombl be taken at. vantaga of to increase thas difficulty. Whatever tonds to make potteries ditlicult to see, and consequently to lit, is as much if protection as that whieh makes them capable of resisting a hit when mate. Gims thus dispersed lave greatir freedom of latoral rance of fire, and do not interfere so much with weh other hy reason of their smoke as when concen-trated-a matter of no little importance with heary artillery, which emits such volumes as, in certain contitions of the atmosphere, to greatly interfere with accuracy of aim. Whan hattorios are oxamded, a laterer arat will be swept by their comverging fire than when the wims are alssionbled on manse. An addditional adramatare confured loy listributing the guns is, that while ohtaming concemtrated tiro on :nim inportant or derisive point, a similar fire canmot be tireoted in relurn. This armanemont would. fur-
 might have of tormings on a wide are of a circle, and moving slowly moler stoant, so as (1) romder the task of hittiner the individual ships more dithentt, throw a converwine tire upon the works on shore

Lutherlesign of such works, it is of prinary imfortance that comjoint action of the varions parts shombl be mathtained: and to prevon the individual

Imattrias from bring capturmi hy rone olf matin, sumall inclosied carth-works, heavily stordadeal to romist

 so as to have ramplate commanal over all land wio pronelors. 'Tlase earti-works should foontatin the: infantry supports. In this mamore most of the rexist ing soa-ronst forts may le utilizerl, making of them
 defonses of a harloor should, in every inwabere, be capoble of reprlsiner all attacks that the whery is likelse to make on them. 'The power atnd persistioney of these attacks will depend mon the importance to him of the whjoert to be gatued. latrge and opmont ritios, maval restablishmonts, and shiphatis are among the tirst prizes somght for. The ingeressive fower of modern mavies is suld ats tomake it quite impracticable bo cilecetually guard every hirthor on an wexnded roast. It is, therwfore bever farntirdy abandon thase that are mimportant to the conemy, for whatever nse he may make of them, than by feeby gumbing them to invite his attacks and this aflord him tho moral eftect and comsolation of cleap victorices, and to the conntry the mortification and disact vantage of defeat and lose of prestige.
'The mumber of troops required for the manning of a work erected for harbor defense? depends chiedly njon the nature and amoment of armament containect therein. Works of this naturearearmed principally with pieces of the heaviest caliher, lut. for remsons hereafter given, all kinds slomald gemorally find place. The amomint of armanent depends mpori the exterat of the work and the part it is to play in the solseme of defense. Threqe full detachments are necessary for cach piece. knowing the number of pieces in the work and the number of men required for the service of earlh, the entire strengtl rexuired is obtained. Three relief chetachments are necessary, for the reasons that the labor of manipulating and sorving leary artillery is very great, and when a rapial and continnons tire is to be maintained, strong fatigue parties are required in carying ammomition from the service maga\%ines to the pieces: damages done to the works during the day have to ber repaired at night. and casmaties ocemring. whether from the fire of the encmy or from aroidents, mast be provided against, so that at any moment an efficient detachment nay be at every piece. As a general rule, batteries shonda not be encmomered by an attempt to include mosketry defense within their limits. The place for this arm is on the flanks of the batteries. and in strengith sulficient to prevent an enterprising enemy from landing and assaulting the work, and from appronching to keep down the fire of the gans while his vessels run ly it. However well it may have answered with the old style of artillery to have the troops serving batteries charged, in addition. with musketry duty, it certainly is not advisable with the artillery of the present. Steam-propelled iron-clads, carrying guns of enormons power, range, and aceuracy. demand the undivided attention in action of those using the only wearons effective against such adversaries. The labor of handing and caring for the kind of artillery, ammunition. material, and machines now usch, altogether with the construction, preservation. amd rejair of batteries, will require all the time and the whole attention of the troops serving guns in war. The care of infantry arms and equipments, together with the drills and jarades incident thereto. have thendency to draw away the attention of oflicers and neen and prevent them from keeping in an etticient state of ratiness, the only safegnard that stands between an enemy and the ohject for which he may desire to cnter a harbor. Whon a work containing batteries for harbor defense is inclosed, the amount of musketry necessary for it is determined by allowing two moskets for cach lineal yard of parapet not occupied by the batteries. Artiliery being the nain feature in such works, the command sloudd be vested in an

 stituting a line of works, they shonld, for the jurposce of adminatration amel command, for mitad in grompes, tath gromp le of ajpropriate rank, amd the wholde econshined and
 By this mesins thorongh ro-(y) eration is suratred
 the weakroing efferel of divided responsibility, wato marinc mines, when cmployed in ronjunction wits a fort for the defornse of it cibamel, shomlef be onder the control of tho Commambant of tho fort, who whould select from lis rommand the proper number of oflocers amd men for the instrmeted in thra mothod of working this brancle of defonse. No mene tremps than are meresary 10 carry out the foregroine rales
 seressary casualides from the dire of the enemy will he adderl, stores consumed, and mbletalthiness ent Erendered: and, hesides, in time of war. whem troopsare not required in any one place, lacir serviess are gemerally meedod elsewhere "Jha high standard of practical gimnory required of artillery demands a preportional degree of intolligence and capacity for instruction in the imolividual soldier. Artillerymen should be selected with a sporial view to this, artisans and mordanies forming a large proportion. Sitam-pmwer amel the application of labor and lime-saving machinery sloshle. wherever prace ticable be introducel 10 assist in making the defeusive abilily of fortified places more perfect. In conducting the defonse of a work, too molle importance should not be athachod to the battoring of it by an encmy: for experience teaches that a place is formidable, if resolntely defented, long aftor it has lost all semblance of the form anol symmetry possessed lyy it when it came from the hands of the constructing engincer. See $/$ effons.

HARBORING AN ENEMY.- 1 erime prolihited in military law and severely punished under all cirrumstances. The irticlas of War provide that whosesever relieves the enemy with money. victarals, or amnumition, or knowingly harbors or protects an enemy, shall suffer death, or such other pumishment as a Court-llartial may dirfect.
HARCARRAH - ln India, a messenger cmployed to carry letters, and otherwise intrusted with matters of consequence that require seerecy and punctuality. They are very offen Brahmins, who are well acquanted with the beighboring countries: thes are sent to gain intelligence, and are used as guides in the field.

HARD-BREAD.- I component of the army ration, generally issued, insteat of flour, to troojes while campaigning. When hard-bread is pout in hoxes. (the best packages for field transportation). they should be made of fully seasoned wood. of a kind io impart no taste or odor to the bread. and as far as practicable of single plicces. When 1 wo pieces are used in making the same surface. they shonld lue longned and grooved together. I hox. $26 \times 1 \% \times$ 11 inches, exterior measure, is an average box for bard-bread. under the usimal circumstances of land transportation. The ends of a box of this size slould be made of inch, and the remainder of fiee-eighths stutf, the package well strapped with green hickory or other suitable wood. Hard-bread, after thorough conling and drving. shonld be pressed closely in itts packages, cach package eontaining anjform weight of bread, for the convenience of calculation. It can he redried in boxes without removal therefrom. ly heiug exposed for about forty hours to a temperature of 140 degrees Falurenbeit. Mard-luch, Pilot-brakd. and Su-brud are common names of the article. Sce Ration.

HARD-LABOR.-A military punishment frequently awarded by Courts-Martia). This pmuishment is now firmly estathlished in the Vniterd Kingrlom: and by express statute, the power of adding lard-labor
to the punishment of imprisonment, has been giveu in most cases, both as to indictable otrenses and the more disgraceful offonses whieh are punishable strmmarily. The kind of labor is preseribed by the rules of the jail or prison, where provision must be made of the proper materials for the purpose. Pickines rakum, working the treat-mill, etc., form part of this labor: and in general, the number of hours for such labor, unless in case of sickness, is ten hours haily.

HARDNESS. The hardness of a borly is measurnd by its power of scratching other substances. Variations in the degrew of hardness presented by different crystalized bodies often furnish a valuable physieal sign by which one minoral may be readily distingrished from others closely resembling it. Mohs selected ten well-known minerak, each succeeding one being harder than the precerling one, and thus formed the sertle of hardnexs, which has been generally alopted by subsequent Mineralorists. Each mineral in the following table is seratched by the one that follows it, and consequently by all the subsequent ones, and the hardness of any mineral may lie determined hy reference to the types just selected. Thus, if a hody meither seratches nor is scratehed ly felespar, its hardness is said to be 6 ; it it shomid seratch feddspar hut not quartz, its hardness is bestwem 6 and 7 -the degrees of harlness being mombered from 1 to 10 . The figures on the right indicate the number of known minerats of the same or nearly the same degree of hardness as the substance opposite to which they stand:

gCale of mardness of minenals.

1. Tale
 3. Calesparicleavabje varjety) 118 8. Timpid cuartz.
2. Fuorspar.33 9. sapphire or corvalum..
3. Apatite.........................43 10. Diamond........................

The eanse of the varieties of hardness observed in different bodies is not known. The same substance -as, for carample, a piece of steet-may, under the influence of differant circumstances, be so soft as to take impressions from a die, or may be mearly as harsl as a diamond. Without a certain clegree of harlness, the shape of the hore will be rapidly altered by the compressive foree of the powder and prosjectile, and the acroracy and safety of the piece will be destroyed. In ritte cannon bardiess is particularly necessary, to enable the spiral groowes to resist this action; at least, the surface of the bore should be relatively hariler than the projectile. Stech is generally hardened hy heating it until the seales of nxide are bosened (heat to about a elarry-red), and planging it into a liquid or placing it in contact with sone cooling substance which suddenly chills the metal, rendering it hard and brittle. The degree of hardness will depend mon the heat and the rapidity of conling

HARE CARTRIDGE-BLOCK.- A blook recessed for any ronvenient mumber of cartridgos in one row. (Sin one sille is fixed a leather stra], hetween which and the block, the left hand is to he passed, the baek of the hand being next to the block and holding it in a ronverisent position for loading. For comvenience the hork is curved, and the surface noxt to the hand corerel with shempsin. The rartrialos-holes are bushere is in the bonton-block. This block is permanent in its nature, and intemeded to form a part of 1hr" saldier"s "quiphm'ut.

HARMOSTES.-I ('ity (iovernor or a Prefeet if)painted by the Fpartans in the robies subjugated by thim.

HARNESS. - 1. The iron cobrring or dress which a soldier formerly wore, bud whibl was fasleled to the body ly strips amd buckles: the whole aterouterments, offensive and lefensive. 2. The repuipments of a franghoforse. 'The hest mothot of attaching horses to a carriage is that which combles rach ond to perform at givenamount of work with the least fatigut ; or, in other werds, no loorse should
be restraned by the elforts of another, and the direction of the traces shonk be most favorable for dranght. Besides these conditions, irtillery-larness shouk be so constructed that it ram be piit on and taken off promptly, by night as well as by day, in all states of the weather, and in cases of danger, when the drivers would be liable to lose their pres. care of mind. The fall of one horse should not interfere with amother: a dead or a wounded horse should be easily replaced, whatever may be his position in the team. The alssence of some of the borses, the unhitehing or cutting of some of the traces should not arrest the movement of the (arriage. Finally, the drivers, who are mounted for the better command of their horses, should not be incommoded by the pole of the carriage.

There are three general modes of attaching horses to artillery-earriages, and upon the employment of any one of which depends the construction of the harness. In the first method the wherl-horse is placed between two shafts, hy whieh he guides and regulates the motion of the carriage. The horses may be arranget in single or donble file. The former arrangement was nueh in vogue in artillery before the days of Cribeauval, but at present is only employed in the mountain service. This method has the merit of being well suited for drawing heavy louds over smooth roads, lut is not adapted to rapid movements over ordinary roads, as muel, of the tractile foree is lost by the continned change in the line of traction incident to long columms. The force thus lost is expended in a great measure on the shaft-horse, which by constant fatigue, is soon rendereal unserviceable. In the English light artillery the horses are arranged in double tile, the off wheelhorse being placed in shafts.

In the second method the horses are arranged in double file-a wheel-horse being plaeed on each side of the pole, which is attaehed to the first axle-tree. The pole is supported and kept steady by the pressure of the body of the carriage on the surerp-bar, whieh projects in rear of the front axle-tree. The leading horses are attached to the axing-tre which is fastened to the pole, and the wheel-horses are attriehed to a momable splinter-bar, the centrr of whith is in the axis of the pole. The object of making a splinter-bar movable is to equalize the draught between two horses, one of which works more frefly than the other. This system of attachment is ured in most carriages of commerce, and so far as the draught alone is concerned, is superior to all others. It is also used in all siege-carriages and haggagewagons of the military service, except that in the former the splinter-bar is fixed.

In field-carriages of late pattrm the suresp-bar is omitted, to facilitate attaching and detaching the rear carriage in time of action: and the pole is sulpported by two yokes attached to the collars of the horses. "The wheel-borses are attached to a fixed splinter-bar, which is strong and simple in its construetion; and the traces of the leading horses are attached direetly to those in the rear, giving it comtinuous line of iraction, commanicating diretly with the carriage. This method of attaching atif-lery-horses in lime is extremely simple, and at the same time it faltils nearly ald the comditions requisite for artillery larness. Its princijal defoet, however. is that, from the want of a swerp-lar the weight of the corriage-pole is borne on the neeks of the wheryhorses, whirh is a serioum inconvenioneq when matking long marches.

Irtillery harness is eompored of the hededefor. to guide and hold the horse : the sumble, for the transportation of tha driver and his valisa; the floughtharmess, which cmblas the horse to move the carriace forward: and the browhing. Which emables him to hold it hack, stop it, or move it to the reme. 'Thes collar provents the horse's shouldors from bring hurt by the two rurved pieees of iron ealled the himemes tio cach hame is fastencd a short leather tug moding
in an iron ring, fo which the front tracerebath is attached. The load is pulled by sirone leather straps

 rimg, atud makes the wheed-horse inderemelent of the horses in front; the rear trace-chain can be lemethemed or shortened nt will so as to atapt tho hurness to dilferent horanos. The pole-goke is suppertert be a chain attached to the lamerdaspand to a riner which
 are jointed to acollar near the cend of the pele in sumb a way that they can only play in a plane passince throngh the axis of the joble: this devioe emathes the horse to krop the pole sterdy without constraning his motion.

The brecthing forms a part of the whe J-harness only ; it completely encireles the horse, and is lumd up in the rear by a stray jassinge over the hijes. The traces of the whed-horses are usually hitehod to the splinter-bar: the traces of the lead and swing-horses are hitched to those of the hurses in 1la rear, giving a continuons line of traction from horsas to carriage. Whan wherd-lorses are hitelated to a splinter-bar trace, there is always an çual hearinus on both sides of tha collar: this saves their mecoks from at ereat deal of chating, particularly la claanging direction.
for pole-strats. Off wedille $(31$, inclating houli for roins, and rulike-strop (ise). I'nlise (isió). 'ompling. rim. Ithip, including atocle and luak. Lafogumial.
 Foxe-hag.

A storehense for harmess should he well ventilaterl
 ant artioles slaond be arranerol in lmadmos, aceorliner to kind and rlase, withont touching the watl or (earh whor. llarmess should low examined four times a your, at loast. The Joather parts are lornshed and greased with meatsfont oil as often as rondition repuirces: if they have a rodrlish bue, add at litte lamp-blatek in the oil. The hair side of the leather
 and the oil applied before the surface is ory. Tha iron parts which arc bot japamed shothla her "overed with tallow.

To IIurness.- Vancla wheel-driver places on and Imektes the collar of his uff horse, smoothing the mame under the [oblar and adjusting the robllar to thes shoulders: folds and puts on the suldle-b)anket. and then resumes his post in front of his harnoss. (2) lHe sejzes the simddle by the erirth-straps, his lotades "lose to the saddle: raises it from the pere: loblds it over his head, arms hatf extended; approaches the

As the limber has no swerpsbatr, the weight of the pole comes on the necks of the wheel-horses: this flefeet is somewhat lessened when the limber-ehest is loaded. its position over the axde being such as to decrease the weight at the end of the pole.

The following is the nomenclatnre of the harness. reference being made to Figs. 1 and 2: Hatter. composed of hect-stall and Fitrhing-xtrap (1); the head-stall includes, cromen-piece (3), checkostrop (3), broir-bend (4), mose-bened (5), rhin-strolp (6), throuetstrop ($\boldsymbol{1}$), and throut-lash (or thrmet-hand) (8). Bridle. composed of hecte-strell. chrb-bit, and remes: the headstall includes, crorn-pisef oherh-stratp, broms-bund, and theout-lueh; the (rurb-hit is of iron and brass-plated; it includes mouth-pirce. bremelors, cross-bare, curb-rlatin
 (9), inclurling sadeli-trei, suct, suddle-skirts, stirrups, and girth (10): the sadille-tree consists of pommed. cantle, and side-ban: the girth consists of two strups. of nuerpal length. Coller (11), including rim, belly. put, collar-straps, billets. Hicmes (12). inchuting brunches, dunble-joint loups for trace-tugs, link: for brestst-straps, hame-ringe, hame-rlasps, chain and
 (16). heme-verup (15). ind milat-strap (18). Trates (19): front-trete rhaisw (20): recer-trace chuins (21); trace-loops: trace-teggles (23) ; belly-band; loin-strup (23). Crupper, inclnding buek-strap (24), boely (25). and clerk (26). Brephing including bererk-strat (25). hip-stral' (28). breerst-strup (29), and stiding-loups (30)

horse on the near side, and places the saddle in its proper position, taking care not to rumple or displace the blanket, and kerping the right arm extended over the horse's back to andjust the girth and tracco. (3) Hu groes to the front of the horse: passes the hreast-strap carefully over the horse's head : adjusts the lames to the rollar: (-lasps them together at the linttom, and tightens the hamesstrap. (4) He groes to the near side of the horse; lifts the brecehing bver the cantle: steps to the rear, and pulls it orer the horse's croup: arranges the loin-siraj): and adjuste and buckles the crupper. taking care that no hairs remain between the srupper and tail. (5) He sces that the harness is properly arranged. buckles and timhtens the cirth, and then buckles the belly-hand. (6) Ile liritles the horse and ties the coupling-rein to the manger. L.eat and swing-trivers harness and unharness in the same mamuer as wheelIrivers, with such omissions as are required ly the difference in the hamess. If there be no stable tho horses are taken at the picket-line. and the harness from the rack near the carriage to whitels it belowgs. Each driver stands te horse ds soon as he has liarnessed.

To L'marrness.-Each wheel-clrivar ties the coup-ling-rein fast to the manger: takes off the lecgguard, and hangs it up: unbridles his near borse. and langs up the bridle. (2) Ite mubuckles and frees the irupper: raises the breching from the croup, and lays it over the cantle, resting jts middle
on the seat. (3) He goes to the front of the horse, draws the breast-strap well forward through the links, loosens the hame-strap, unclanps the hames at the bothom; passes the breast-strap up over the horse's head, and lays it and the hames over the pommel. (4) He unbuckles the belly-hand, and then the girth, takes off the saddle, places it properly on its peg or rack, and eowers it with the blanker. (5) He then removes and puts up the collar and secures the horse by the halter.
HARNESS-DRESSING.-A preparation for the care and protection of harness. and the leather parts of the accouterments. A varicty of dressings are in common nse, but the following (ingredients for two gallons of the compound) is mostly used in the service: 1 gallon of neat's-foot nil, 2 pounds of bayberry tallow, „pounds of heeswax, and 2 pounds of beef tallow. Pat the above in a pan over a molerate fire and let them remain one honr until thoroughly dissolved; then add : quarts of castor oil and stir well until the mass comes to a boil so that the ingredients may become thoroughly mixed: after which add-1 ounce of lamp-black and stir well for ten minntes: then strain the liquid while hot through a cotton eloth to remove sediment of heeswas. tallow, atol lamp-hlack, and pat aside to erol. Apply this misture to saddes and harness with it wolen cloth and leave until next day, when they should he wiped off with a woolen cloth to remove the surperflums lamp-black. For "rnsset" or fair leather. use the same mixture without the lampblack.

HARNESS PEGS. - In artillery stables, harnesspegs for each pair of horses are arranged in the walls of the harness-room, also in the heel-posts of the stalls. The peg for the off harness is above the peg for the near larness; a small peg for the bridles is placed heneath the near harness-peg. The following arrangement is observed: Pommels of the saddles agaiust the wall or hecl-posts; breeching hangiug over the cantles; breast-straps and hames over the pommels: traces, which are trussed, over the seat: whip on the hook of the off saddle; collars lying borizontally on the saddles, collar-straps against the heel-posts; bridles and leg-gnard hanging on their peg: the whole covered by the harness-sack properly secured. The blankets are kept by the drivers in their quarters, but may be put away in the harnessroom, or other safe place. A trace is trussed by passing the rear trafe-chain through the trussingstrap, from rear to front, and securing the trace by drawing down the sliding-loop.

HAROL. An Indian term signifying the officer who commands the van of an army. It sometimes means the vau-guard itself.

HARPE.-A species of drawhridge used among the ancients, and leriving its name from the musi cal instrument. This bridge, which fonsisted of a weoden frame and hang in perpendicular direction against the turrets that were used in those times to carry on the siege of a place, had a varicty of ropes altached to it, and was let down upon the wall of a town by means of pulleys. The instant it fell, the soldiers left the turret, and rushed across the temporary platform upon the rampart.

HARPOON GUN. Agin usid for shooting whates. It is frofuently employed to greal advantage whon mecessary to throw lines anrose rivers and tha like. th is very similar to the small swivel-guns, weighing with stork somplete fis los., 3 feet long in the harret and of $1 \frac{1}{2}$ incla loge. The elarge is very small, harely sufficient to project the arrow and line from the grim.

HARPY. - A falulons rreature in Greek mythology, concidered as at minister of the vengeance of the gorils. Varions aceounts are given of the mombers, and marantage of the harpics. Ifomer mentions but one Hesiod enumerates two-A ̈llo and Okypete, daughtere of Thamas ly the Oceanid Electra, fair-laired and winged maidens, very swift of tlight. Three are
sometimes recognized by later writers, who eall them variously daughters of Poscidon or of Typhon, and describe them as hideous monsters with wings, of fierce and loathsome aspect, their faces pale with langer. living in an atmosphere of filth and stench, and contaminating everything that they approached. The most celebrated tridition regarding the harpies is comected with the blind Phineus, whose meals they carried off as soon as they were spread for him; a plague from which he was delivered ly the Argonants, on lis engaging to join in their çuest. The Boreads Zetes and Calais attacked the harpies, but spared their lives on their promising to cease from molesting Plineus. A harpy in Heraldry is represented as a vulture, having the head and breast of a wousan.
HARQUEBUSE.-An old fire-arm resembling a mus. ket. which was supported on a rest by a hook of iron fastened to the barcl. Many of the Yeomen of the Guard were armed with this weapon, on the first formation of that Corps in 1485 . The harguebnse loing freguently fired from the chest, with the butt in at right line with the barrel, it was diffientt to bring the eye down low enough to take guod aim; but the Germans soon iutroduced an improvenent by giving a hooked form to the butt, which clevated the barrel. Soldiers armed with this weapon were designated I Iaqnebntters, aud were common in the time of Heary ${ }^{1} 111$
HARROW.-An obstacle, in fortification, formed by turning an ordinary harrow upside down with the teeth upwarl, and the frame buried. This implement consists of a frame of a square or rhombic form in which are fixed rows of teeth, or tinew. projecting downwards. The harrow is very ancient, having been in use beyond the dawn of history; but as in early times only the lighter soils were eultivated, it often consisted of buslies, or branches of trees, which merely scratched the ground. subsequently, we tind a wooden frame and woolen tines in use; next, the wonden frame with iron tines, a form of the instruinent very much used at the present day, and especially in favor for light soil. For heavy soils, the harrow constructed wholly of iron is most used, as it is heavier and does more execution: and of this sort the rigzag form made by Mr. Howard, of Bedford, is preferred.

HARSEGAYE.-A kind of demi-lance, introduced about 1114 . It is now obsolete.

HASKELL MULTI CHARGE CANNON.-The Lyman accelerating-gun, patented in 1857. is worked on the prineiple of giving to the projectile a gradnally increasing velocity while in the bore of the gun. Bomford's method of measuring powder-pressures at different points in the chamber of a cannon disclosed the fact that the great pressure on that part of the chamber occupied lyy the pow der-charge rapidy diminished as the shot approached the mizzle. and that lateral pressures were not dangerously great on the grun after the shot was under way, unjess something happened to wedge the projectile.

Lyman reasoned that if he could continue to increase the powder-pressure he might make the muzzle end of a gum as strong as the breech, and utilize the added strength to increase the velocity of a projectile in regular ratio up to the very instant of its leaving the muzzle. IHe accomplished something in this direction with his earlier gun, which wals a cast-iron picse with tubes lraneling from the bore at a point hetwern the breech and the trumions.

The Lyman gum, as improved hy J. li. llaskedl, is a cast-iron, stect-lined ritle, having a mumber of pockets, each formed in a hoek of stect, which is serewed into an enlargement of the cast-metal hoty of the sun. Orer each pocket there is a priming hole extending out throngh the upper portion of the gun. This hole is stoplped ly a bronze metal plag, which serews into place to close the lole entirely, making a smooth surfaer with the stee hore-tube when the phing are serewed home. The sted pock-
 bottom.

The pioce is loater] by placiner a projertide and
 n charge of quick-horning powalar in oarlh of the puckets. The projectile fits the bere tiehtly, wo lhat no mas ratu leak pist. Whori the bromen-charere is
,
 Pondiner armies in the late war in tho C"atod statom.

Haskelf Multi-charga (Gmom.

fired it starts the projectile at amocurate velocity. whirlo is mpiohy inereased after the shot pasises 1 he porkets by the explosion of the powder in the pork"ts, ignition being ctfected from the primary clurge.

The gran in course of construction at the soote Foundry, Reading, Pila, now nearly completed, was made umber Mr. Waskell's superimendence. The
 fons. The lining tube is $2 \frac{1}{2}$ inches thick to a point forward of the from porket; from there to the mazaln it is 2 inches. There are four pockets in the grun, each intemided for a clatge of 28 pounds of y litick powter. The breech charge will be alout 18 pumbs hexigomal powder. 1 projertile three catihors in lengith will weigh 100 dhe. -ame of fome calibure, $150 \mathrm{lhs}$.

Mr. Ilaskell cexpects to get an initial velocity of 3,000 feet per semmol with pressure nowhere excecting 30,000 pounds per inch, ami to ohnain a pane trattion ergal to $\mathrm{g}_{\mathrm{t}} \mathrm{i}$ iaches of iron. In virw of the result of past experiments there is little douht that very grond penetration wili be ohtained, and if such velocities can be had from the moderate pressures proposed hy Mr. Matkell, any ammor now in existrace can be piarecol by guns midh lightar that the 11-ton monsters used in the Italian or Britisl! Navy

HASTATI- [D to the time of Marins. hy whom the serm of the decalence of the military art among the Romans Was sown, a Consular Army consisted of two legiens; and of two Iling* composed of social tropls. The legion was composed of infantry of the line light infantry, and cavalry. The intentry of the line was divided into threes claseses. 1. The Ifostati. 2. Primeipes. 8. Trimii. These classes wore a very complete defenkive armor: they were all armed with the short straight Spanish sword; the Pilum, a kind of javelin, about seven feet in lenght. used equally to hurl at a distamere and in hamidohand engurement-, was added to it for the two tirst : and the Triarii carried the pike.

HASTY INTRENCHMENTS.-ExtaHjurizal welfers whels are fuickly constructed from materials foumd upon the spot where the shelter is neethed. In consequence of the effcctiveness of modern firearms a body of troops can not retain a close formation for a single hour even, if in the prosenceand expased to the fire of an enemy in torec. The man are forced to seek helter. by lying down on the gromol, or by crouching behimi any slight ine tuality Which may exist in the surface, or hehind some kind of creen which they may le albe torenstruct. The arcen may be wo or three loge rolled together; a hoap of fence rails, a slight momen of earth, or anything whatever its nature which will hide the soldier from the enemy's ritw.

The simplest forms of husty intrenchmentw, in an
orders. ewon. worw merssary for the men to heorin this work: thu main dillienilty was to make them delay enough to allow a prepuer trawe to lee markent. be whicla they might be guidel in the constration of their line. Instances are known, where the men, not having intwinching-tuols, wareated the formb with the bayonct or the tin comp. Theor slather trenches, thus rulety constructod, were deepenat and -trenurhaned matil they wera able to resist tiond artillery, if the pusition was to be ocrupion for :my length of time. Sight as thesedefonses weredurine the early stage of Their construction, they formod, when defended by grond troops. an obstacte dithendi to overcome: anil they were capured only by extracolinary effort, accompanion by a great loss of life on the part of the attacking forces.

It will freoperntly happen that cover van be speetlily oltained. and bositions rendered defensible in a viry short time, hy taking advantage of the helges, ditcues and wails, which may be met with, or of the olsstacles which may be prescoted by natural features of the grount. No fixed rules for procecding under all the numerons cir-

Fig. 1. cumstances which may oceur can be given, but the drawings will show what may be effected in certain cases, and indicate the claracter of the operation: usnally remuired. Fig. 1. represents the common hedge and ditch turned into it breastwork to be defended from the heige-sithe. If the hedge be thick and planted on a bank, as is gentrally the casa, and (specially if the ditch be toterably diep and contain water, the breastwork will be ronderad strone at the. expense of litule labor. 1 shallow tranch thomblat excavated behind the hedere, and the earth thrown up to raise the bank suthe iently to form a rough loreastwork some 18 inches thick at the top). Shovilit the hedge loe more thath of fot hith, it should be cut to that height. having the branches interwoven with the lower part to strengrthen it. I hedge to be defenderl from the ditcl-side
 Fig. ひै, is it really- Fig. .2. made trench amel breastwork, amsl will herome a convenient work ly a litle serapiner of the sille and witening and levelling of the hottom of the diecth. and by the addition of a bunquente. See $13^{\circ} \mathrm{all} s$.

HATCHET.-A small, light sort of aste, witl bevel edre on the left side, and a short hanelle. It is msed ly soldiers for cutting wood to make fascines. gabions, piekets, "tc. A brass slide and snap combined is slipped upon the belt, and has a suap on the onter sible, from which the hatchet ran he hung. There is also a safety attachment through which the hantle is passed, making a comvenient and secure way of carrying the implement. To twhe pp the Zutchet among the Indians is to declare war and commonce hostilities. Tobury the futobet, is to make peace.

HATCHMENT.-1. An ornament formerly much worn on the hilt of a sword. 2. The funeral esenteheon placed in front of the house of the deceased, or in some other suitable place, setting forth his rank with other circumstances. It is in the shape of a lozenge, and in its center are the arms of the cleceased, single or guartered, as the cast maty be. The achievement of a backelor represents his arms in at shield complete.accompanied with helmet, crest, mantling. motto.and various other external ormaments to which he may be entitled, on a black eround. In the achievemtat of an unmarried lady, her
 arms are placed in a lozenge on a black ground, but without external heraldic ornaments, except in the case of a peeress, when her supporters, role of estate, and coronet are alded.

The achievement of a hushand whose wife survives, impales his arms with his wife's in a shield with the external ornaments to which he is entitled, the ground of the hatchment being. under his side of the shield. black, and under his wife's, white. If the wif0 be an heiress, her arms are not impaled, but carried in an escutcheon of pretense. The external ornaments are appended. except the insignir of any order of knighthood having a circle or collar. with which heralds do net consider it proper for a knight to encircle his wife's arms. On this acconnt the achievement of a knight has two shiehls placet side by side, one containing the lusband's arms only, encircled by the collar, ribbon, ete., of the order. the other containing those of husband and wife: the gromnd is divided perpendicularly in the middle of the secomd shiedd, and painted hlack and white. When the wife is a peeress in ber own right, there are also two shields-the dexter containing the arms of the hushand. with the lady's arms on an escutcheon of pretense ensigned with her coronct: the sinister lozener-shaped with the lady's alone, and each aecompanied witl its proper external decorations. The ground is divided hack and white in the midelle of the dexter escutcheon. The arms of a wife whose husband survives are impaled with her hushand's arms in a shield. or, in the case of an heiress. borne on an escutcheom of pretense. There is no helmat. crest, or mamtling, but a pereress is entitled to her rolie of estate. The eromod under the Ifexter side of the shield is white, aml umber the sinister, black. The athievement of a widower ditlere principally from that of a hushand. in the ground being entirely black. The wehievement of a widow dif. fora from, that of a wifit both in having the erommat entirely black, and in the form of the esacoteheon, Which (of pretenw) is logange-shaped. The arms are ens aided hy a silver corilom or coraloliore, the symbal of widowhome. On the decease of the last of a family, a dathes luad surmounts the shiodi in plater of a rrest. The achinvement of at reigning king or Quent, whether marrion or mot, represents tha royal arm- complrta on atround entirely hlack. That of

impaled with his paternal arms, and the whole surmounted by a miter. and the gromd is per pale ar. amt sa. The Dean of a Cathedral or Collegiate Clunch and a King at Arms, also impale the arms of oftice with their family arms. In the achievencent of the wife of a l'relate, there are two shields-the first containing the impuled arms of the See and the bishop, surmounted by a miter ; and the second, the family arms of the Jishop with those of his wife. The ground is all white, except that part which is under the arms of the wife. The funeral escentcheon of Scotland, France, and Germany differs considerably from that in use in England: it indicates not merely the deceased's riglit to a coat-of-arms, but his gentility of descent. The hatchmont is mnch larger, consisting of a lozenge above 6 feet square; and the arms of the deceased, which occupy the center, are smrronnded by those of the 8 or 16 families from whom he derived his descent, the paternal quarterings on the right side aml the maternal on the left. The deceased is not entitled to an achievement unless all these families had a right to bear arms. On the four corners are death's heads and the initials and title of the deceased, the black interstices are powilered with tears. See Heraldry.

HAUBERGIER. - An individual who lield a temure by Knight's service, and was subject to the fendal system which formerly existed in France, and hy which he was obliged to accompany the Jord of the Manor in that capheity whenever the latter went to war. He was called Fief de Hanbert, and lad the privilege of carrying a halbert. All vassals in ancient times served their Jords-paramont as Squires. Haubergiers. Jancemen, Bow-men, etc.

HAUBERK. - A long hlouse-like garment, having short sleeves descunding to the middle of the upper arm, which sometimes was formed of interwoven rings, or chain work, but more gencrally was comstructed of a stout woven fabric, upon which were fixed rows of iron rings or plates of metal, in their form either square, triangular, or circular. This mail-shirt was fitted tightly to the person: and at the bottom it was divided, so that the wearer when mounted might wrap one division of it round each thigh, or when on foot might have his limbs covered hy the cleft extremities of his hamberk without any impediment to his free movements. The hanberk was used hy the Saxons, us early as the eighth centnry, as defensive body armor, and called by them the tunic of rines, but by the Formans the Fiunberk: Besides the hauherk of rings, there are some marked with transverse lines, so as to give the idea of heing quiltenl, or stiched in chequers. or covered with small lozenge-shaped pieces of stuel instand of rings. known about this period, A.s. $1066-108 \%$, by the name of mascled armor, from its resemblance to the meshes of a net. Other descriptions of armor were in use, and in some instances hauberks appear to be romposed of rings and maseles mised; in others. the body is diamonted, and the cowl and arins covered with rings. On referring to a work entitled "The Conuueror and his Companions," by Mr. .]. R. Planché, somerset herald. the hanberk is worn by William the Conqueror is thas spoken of : "In the Bayeux tapestry we behohel him armed in his hanberk. which was not the coat of clain-mail of the thirteenth econtury, but the geringhed hyrnie of thes cleventl and twelfth, consisting of iron rings, not linked together and forming agarment of themserves, lont sewn or strongly fastednetl that upon at thaic of leather or guilted linen, huckram, canvas, or some strong material desemeling to the mid-leg, and which, being opro in the skirts lolh hefore and behind for comveniomer in riding, gave it the apluarance of a jacket with short breeches attalled to it, if, indecal, such was not actually the ease in some instances. 'Thu slecers were loose. and reached only just bilow the ellow." The hatergeon of plate-armor was grnorally worn over the hatherk. See Mitbergum and Pleite-armar.

HAURIANT. - I torm in hwridury appiled to a thol pheed upright as if to refresh itself by sucking nir. Gukes. there lurine (the uncient name nf pikes) laurime in fess argent, the arms of a family of the mame of Lucy in leerfordshire. Sce Meratery.

HAUSSE. - A gradunterl jiece attached to the lmarel noar the breath, which has as stiding piece retuined in its plare by a thamb-screw, or ly the spring of the shinder itself. 'Ilais slider ought io have an opeming through which the ernen estu be ronvoniently nimed: nad is ravel to surh a hoirht as we think will givo the neeresary clevation for the distance. 'The thrm coarse sight means a large portion of the front sight, ds seen above the bottom of tha rear-sight noteh; nand a fine sight is when hat a small jortion is seen. The effect of a coarse sight is to increase the range of the projectile. The breech-sight, the tongent-verte. fnnl the pemdulnem-honasse are merdy dillerent forms of this device, the latter having a linath at the bottom which keeps it in a vertical position when the 1 wo whedes of the carriage are not on the same level. The tangent-scalo has steps, corresponding in lucight to the gruchations on the breech-sight for gums of the same caliber and pattern: and is only apslicd to the gun at the moment of sighting.

HAUSSE COL - An ornamental plate similar to the gorget. It was formerly worn by infantry otlicers.

HAUTES-PAYES-Soldiers formerly selected by the Captains of companies to uttend them persomally, for which service they received something more than the common pay. Hrente-pry hecama afterwards a tem to signify the subsistener which any body of men superior to, or distinguished from the private soldier were allowed to receive.

HAUT-LE PIED. - A term used to distinguish such persons as were formerly employed in the Fronch armies without having any permanent appointment. Comamisweries houtw-le-pied were known in the artillery during the Mouarchy of Frunce. They were usually under the Quartermaster-general.

HAVELOCK. - A light cloth covering for the heat and neck, used by solditrs as a protection from sumstmke. This eovering derived its name from llavelock, a distingnished English General.

HAVERSACK. - I lag of strong coarse linen, in which, on the march, each soldier carries his own bread and provisions. It is horne on the left sitle by a strup passing over the right shoulder, and is only used in the field and in eantomments. The haversack of the Roman soldier was an osier basket with a loner neck: sometimes, is on the colnmm of Trinjau, a wallet carried on the spear. Its contents were salt meat. cheese, onions, and olives. It held sufticient for three days. The term baversack is also applied to the leather bag used in artillery to carry cartridges from the ammunition-chest to the piece in loading.

HAVILDAR. -The highest rank of Non-commissioned Ofticer among mative troops in India and Ceylon. In the IIong-Fing Gun Lasears (a corps now disbanded), the IIavildar received 1 s . 3d. per diem: but in Indiat his pay is somewhat less. The Ifrerit-dor-mujur is the Sergeant-major of each native regiment of infantry.

HAVOCK.-A cry originally used in lunting, but afterward in war as the signal for imbliseriminate slanghter. The term foove is used in the sense of wide and general destruction, devastation, or waste. hence the origin of heroch.

HAWK.-The JIawk frequently nccurs as a charge in Iferaldry, and may be belled, jessered, and marected. The hiomh's bell, itself used ns a sejarate charge, is attached to the leg of the bird
 by jeswes or thongs of leather. Fitruels are ringa attiched to the end of the jesses. The hrefhts lure.
also a haraldic rlatere, rontist of two wing - joincel with the line, to the rad of which is attiveluol at rime. 'lhor lins is sometimes rement or knotletl.

HAWSER.-A ropne marlo of throestramls: it in coiled up, right-hamberl, or what is trormal " witla tha
 Sce Corvinger and hiopm.

HAXO BASTION SYSTEM. Tho airero of thics. of fortitionama is falronlatiod to last thfor dayivand there ard tive distinct periods of brearlinis latterjom: Iv Against the reduit of the suliont placer of arms and the liavelin. 2° Against the reeduit of the rew rontering place of armas, the compures and the reflat
 sharl. 4s Against the retrenchment. 5s Againe the bastion. "The front is 360 yarde lome. The pres.
 The thanks are perpendicoular to the limes of defen-e The hastions eontan interior retrenchanmen contirely separated from the rear loy a ditch. A clemeinedi rondes surmounts the scarp of the cheriente. The tenatle is not revetted, and it has flanks that can monnt three guns. The main diteh is tweaty yards wide. The ravelin is mate very salient, with acase mated traverse in caphtal, and coupures cont across its faces. In raar is a reduit of the ordinary outline, and behind is a cusemated caponiore or bastionet. the roof of which carries ten gums. The counterscarp of the main ditels is produced to within ten yards of this hastionet, and in front of it slants a glacis, which closes the diteln of the ratedin and that of the reduit. The bastionet sweeps the interior slaris and co-operates with the flanks of the inner Works to imprede the construction of the counterhatteries.

HAXO CASEMATE. - A work built inside the parapet, arehed and covered with corth, opening in the rear to the terreplein. The guns are protected from the enemy's fire, and ean lu entirely hidden by masking the cmbrasures.

HAY. - I very imporiant article of forage in most armies. The nanagement of the natural grases of which most hay consists is somewhat different, and the process is secn to perfection in Middlesex and various Counties about London. The great mattertoo generilly overlooked in Seotland-is to preserve the color and Havor of the grass; and this can only be done by keeping it constantly turned, and having it rapidly dried, if possible. without the deteriorating washing of repeated rains. Artificial drying hest attains this end. but is of course impracticalle on a large seale. In the hest style of English haymaking, the grass, after being cit with a scythe or machine, and as soon as the dew is off, is shaken and spread out by means of forks or of tedting-machine drawn by a horse. It is not allowed to lie long exposed to the sun, hut hefore evening, is drawn togrether by rakes into arind-romer, which, if there is any prosject of rain. are made up, into small heaps or coeks. It is argain spread out next morning, or on return of favorable weather: and when the operations are expedited by wind or sna, the hay Will be ready for the rick hy the second urihird day. There is, how coer, much ditlerence in the time during which the hay requires to lie out: the bulk of the erop and the puality of the land must be especially considered. When the grasecs are cut, as they should be when in hloom, and luefore their seeds ripen and their stems get rough and hard, they contain the greatest amount of moisture. and require rareful making, but produce a very nutritive and palatalble hay. A s soon as thoroughy dry, it shonlid be put at once into the stack or rick. intl well trodden down. A certain amount of henting improves the Havor, and renders the hay more palattable to everysort of stock. When, as is sometimes the case, it is imperfectly made or picked np tonsonn, it gets over-hrated, and becomes dark brown or black, its nutritive properties are diminished: it is. moreover, apt to disagree with both borses and
cattle, and can only be profitably used when mixed with straw aud cht into chaff. Hay put together when damp from rain or dew does not heat, as when it contains an undue amount of natural moisture, but speetily molds. When hay has been injured and weathered by repeated rains, it may be rendered more palatable by scattering a little common salt over the rick whilst it is. being built. Throughout Scotland eight or ten pounds of salt to the ton is very generally used alike for clover and grass hay. In the midhand and somthern districts of Enstand the hest hay is generally got up in Jnne; hot in Scotland, little is carried intil the middle of July. When the crop is grond, and everything done well, the cost of hand aud horse labor expended upon the haty before it is safely ricked will approarl 20 s. per ton. The crop averages from one to two tons per acre. Hay that has stood for seed is tongher and less nutritive than that cut carlier, for the sugar, grm. and glutten of the matured seed have heeal abstracted from the stems, which are then apt to he litule better than straw.
HAZAREE. - An Indian term sirnifying the Commander of gum-men. It is derived from thazer, which, in its literal interpretation, signitien a thonsand.
HEAD. - In gunnery, the fore part of the cheeks of a wnn or howitzor-carriage. The term hend is employed with other words, in varions militazy pharases as. the lovel of " "ron k, in fortification, or the front next to the enemy, amd farthest from the place; lead "f an army, or the front, whether drawn up in lines or on a march, in coliamn, etc.: heene "ff "e comp, or the «ronmd before which an army is drawn u]. The heref of a double tenaille is the salient angle in the center and the twonther sides which form the reentering angles.
HEADER.-In a revetment, a brick. stone, or sod haid with its end outward. See Sord Revetment.

HEADING.-1. The levice of the signal-rocket ; such as at str-hemeling, or a bomnce-haring. 2. In mining, the end of a drift or gallery ; the line of an intended tunnel, especially one of relatively small size. whirh forms a gullet in which the workmen labor: also a horizontal passage between the shifts or turns of the working partitw.

HEADING-LATHE. - 1 lathe uke $\begin{aligned} & \text { for turning down }\end{aligned}$ ginn cationgs, and for prepariag them for the boringmarchine. The cascaliel-bearing, hase of hreech, and a eection of the chase are all turned down to finished
muzzle is introdnced and projects several inches heyoud the face of the muzzle-ring. in which prsition it is approximately centered, and held firmly in place hy acljustahle serews in the chack and muzzle-ring; The breech is adjusted hy placing a sharp pointed instrument in the rest, and bringing it in contact with the surface of the casting near the base-line, and while turning the gum-which is dne by ma-chinery-the screws in the chack are moved until coincidence of the line around the gen is obtained. At the muzzle a bar of iron is laid upon blocks, so that it shall he just inside the bore, and nearly in contact with its interior surface. As the gun turns, the distance between this point and the metal of the bore is observed, and egmalized approximately, hy the screws in the mozzle-ring bearing. I woorlen disk turned to it the bore accurately, bearing a string attached to its center, is then pusized to the hottom of the lone, and made to assume a position in a plane perpendicular to its axis. The string from the center of the lisk is long enough to reach some distance outside the muzzle; the onter end being made fast to an upright the same height as the inner end or center of disk; the string is now hauletl perfectly tant, and the gun again turned, a square being plared upon blocks abont one foot in front of the muzzle, chose to the string; and as the gun revolves, the distance, if any, which the string deviates from the square, is opserved and corrected by asain moving the screws in the muzzle-bearing. When properly centercd. the string will remain in the same position in the square and lie the same distance from the interior surfice of the gum, throughout an entire revos lution, showing that the axis of the gin and lathe coincide. With the hollow-cast gun it is necessary that it inoma be centered from the bore, as it some times happens that its axis does not coincide with the axis of the casting, which is one reason for casting then ahove the true size, to admit of leing finished by the interior, or so that the axis of the cast hore shall coincide with that of the gun when turned. The gun heing centered. the turning eommences at the muzzle ; this is done by placing a tool in the rest, which is brought in contact with the surface at the desiral point, the metal heing turned off as the gun revolves. The rest, or support which holds the fool, is arranged to move intwo directions. one towards the gun, or at right angles to the axis of the lathe. hy which means the depth of cut is regulatel, and the other in line parallel with the axis,

Hoading lathe .
dimensinns while in this lathe, as the chase and
pombled bart of the cascobel-kons) form the lowings
 where the xinking-lued is to be hroken ofl. is also made in this hathe. The leraring in which this maz-
 which fite into eronves in the rack, an! can be moved to or from the (huck. lueing alliptable to bong or short eruns. To make the aitjustmont in the lather, 1her enen is lowered into phare the siguare knob in

that is from mozzle th hreend. Thar last movement is elfored by means of a $f^{\prime \prime}$, the motion being riven hy a fork atiachecl to one of the trumions, and at every revolution of the sum the rest is made to advance. The first cut is astailly an inch derep, eommencing at the muzzle where the sinking-head is to be "at oft and extendines 30 inclacs towards the trumions. The second and third euts are commened at the same point as the first, and are abont ome" and one-eighth incon's depp: increasing as the tool :ulvamers in the erm, other couts are mate until
 cott at the maz\%le, or the place whare lhe "sinkiner
 is usmally about serond inches, or for within three or
 from the lathe, aml Ha. "sinking-limal" hroken or

 form, und size of eryotals. texture, and whether shary
 gree of laremess and low the motal works maller the ionls, in tho alityerent stateres of its fabrication ; all of whidl slomble lie duly moted mad form juart of the record of the gun. S"Ce frillishing and bathe.

HEADLESS SHELL EXTRACTOR. -This implement, devincil by licutcmant-colonel A. IR. Buthmerton, Ünitel sitates Arosy, for the Šprinertiold rille and carbine consists of two parts of temperall sterel, the extractor proper, tig. 2, and small cylimbleal drilt, Fig. 3. for sotting cut the prongs, carricel serewod Into emb, A, of extractor. Fige I shows them together as they shomld be labithatly keph and used for atlextractions from the brom of theritle. Theextractor proper is athollow erelinder, ritled on the exterion to corresponal with the rithing of the rithe harrel, with four transbres grooves to the adpth of the rillines. Insitle it is slangeni at lue promgexidd to recoive the point. (', of elrift amel permit a limited expamsion: at the other emal it is tiapmed for the screw- 1 heradi,), of the drift. Three couts lonstitudinally diville one cond into "prongs. F, around whichl is a sorewthread. lb, for taking hold of the shall inhen in the cham. ber. The drift is at cylimelrieal pioce of threw diamoters: the luat, E, threat D. atnd point. ('. Thar hearl is sufticiently small to allow it
 vents injury to firing-pin. The thread secores it to extractor. The point, when driven letween the pronirs of extrictor as far as possihle, sets them out sufficirntly to remose a shell. but not far enongh to touch the walls when passed into the rmpty chamber.

The parts should be kept screwed together and never separated for use, in aryy casp, until after passing it as a whole-solid (dirift) cond formost through the bore from the mazale-and failing to remove the shedt. Passing it thas-using larger end of hammer fo doso-will remove any shell or part of shell in the lore, or slighty protruding into it from the chamber. Failng to do so, unserew the drift: insert the extractor, prontr end formasi, juto the chamber: close the breech: pass the drift, point foremost, into the lore at the muzzle ; follow it with the larger emal of rammer ; drive it gently" home" between the prongs of extractor: open the breech mud drive ont the shell. After the shell is out, the two parts cither separate or can le separated by the fingers, and the shell removed from the extritetor. The fronus beimer in the mouth of the chamber, the point of drift invariably enters hetween them if the ${ }^{\text {o }}$ drift lue passed thromerh the bore as directed. In casce of acrumnlated or hardened fouliner or art in the bore, the extractor as a whoble, as directed, may be pascol throurh it with adyantage cither ats a preliminary to cleming or wiping. or to remove the cans of swelled and burst barrels. In the latter case it should be used just before cach shot when at the target, or as often as convenient when buntIng or in battle. See spmingtield hifte.

HEAD-QUARTERS. - A term gencrally understood to mean the residence of the Commander-in-Clitef, whether in camp or elsewhere. It is also applicable to the place where the ofticer, commandiner any independent position or hody of troops. resides: bence.

Fid 2.
 the whone liritinh Army is at the llorar (inarels. whare:

HEADSTALL - 'lual part of the bridle which all commpasses the bemel ; the bridle minum the litit zum rein; the baltur minu- tho hitcoliner-strajo.

HEAD STOCK. - 'That jurtion of a latho whichatern. thine the manalrel or lien spindle on whiclo the work
 tinction to the frit-stork whirol rontains the doud
 dictullacial.
 hatml, whore the wimess states not what he himmalf

 be confined to stating what ho knows of his own personal knowlerlere, or what he lats loarneal by the aid of his own sonse : and as le is sworn io fle: truth, his truthfulums is thas socoured, ats tar as hat. man testimony ean le so. If evidener were once admitted at second-hand. there wonald be no limit tos its uncortainty, and there would be \{las introdureal Vituce tatements of absemt persoms. whor, not buing

theadless shell-extractor.
sworn when they mate them, are therefore incapabe of heing punisled if they speak falsely. and can not he crossexamined. Thougle such is the genaral rule, yet there are a few exceptions which are una voilable, owing to the nature of the thing. Thus. in proving pedigrees, the hearsay evidence of porsons commected with the family, and those only, is admitted in England: lot in Scotland it is admittod thongla the persons were not connected with the family. A remarkable exception also exists in the casc of dying declarations, i. e., statements matele ly persons mortally wounded and in the prospert of death: but in England such evidence is only ach mitted in criminal cases, on a charge oimanslatiolater or murder. In scotlimd surf declarations are admitted in all cases of violence. and though the party at the time did not believe he wats dring. There is another exception to the non-almassibility of harasy evidenee allowed in Scotland, but not in Englamd, viz., where the person who made the statement is dead. and therefore cannot he prodnced an a witness. In England there is no help for such a state of things, and the statenconts of the dead person camont lo athmitted ; lmt in seotland, if there was no reason to suppose the contrary it is presumed the deand wit-
 in evidence for what it is worth, hoth in cibil aml criminal cases.

HEAUME.- 1 word clerived from the German, which formarly significel ca*gue. or helmet. The heaume has heen sometimes called anong the Frenchs *ulude, armet, and celute from the Latin word which means engraved, on aceount of the different figures whiclı were represented upon it. The heaume corared the whole of the fire exerept the are's, which were protected by small iron hars haid erosswise. It served as an armamede or helmet in coats of arms and armorial buarings: it is sifl preserved
in Heraldry, and is a distinguishing mark of nobility.
HEAVE.-A command given when lifting heavy weights or moving gnns into position. The handslikes being in position aud manned, at the command, herece, all bear down or up on the handspike simnltaneonsly.
heavies. - The common expressinn for European heary cavalry. They receive their name in contra-di-tinction to the light cavalrs, from their equipment and weight being greater than the latter. In the British service there are 7 regiments of Healiex. viz.. the dragoon guards. The weight the horse of Heaties has to carry is over 19 stone. See Merry Troops.

Section of Parapet behind a Hedge and a Ditch in front of it.
HEAVY ARMED INFANTRY.-Among the early soldiery, such of the infantry as wore complete armor, and engaged with broad shiedds and long spears. They were the flower and strength of the Grecian armies, and had the highest rank of military honur. See Infintry.

HEAVY MARCHING ORDER - An expression applied to troops equippen for permanent field service with arms, acconterments, knapsacks, canteens, and haversacks.

HEAVY METAL.-Large guns carrying balls of a large size: akso, large halls for such guns.

HEAVY ORDNANCE.-Orlnance of great weight and caliber. In the United States the term is restricted in the land service to sea-coast ordnance. Sce ordmunce.
HEAVY TROOPS. - The tronps which compose the three priucipul arms are generally suldivided into two classes, henvy and light; partly arising from the nature of their weapons, and partly from their destination on the field of battle. This subdivision is less market in the infantry than in that of the other arms; for althouglt in most foreign armies, a portion of the infantry carries a saber with the musket. still this additional weapon is of rather questionalle utility; for the masket is the one which, under all circumstances of attack and defense, will be resorted to. All infantry now receive the same instriction; lint whether a portion of it ought not to be reserved especially for tha duties consigned to ligrst troops, is still a disputed pmint. As the fumetions of heary cavalry are to bear down all opposition, and present an impassable wall to the enemy's efforts, its duties are confined to the battlefield; there, placed in the reserve, it is held in hand until the decisive moment arrives, whan it is launched forth to deal a blow from which the enemy hopelessly struggles to recover, either to achicve victory, or in femd off utter defeat. Tolight cavalry are intrusted the important duties of securing from surprise the flanks of the heavy; to wath over the safoty of horse artillery, and to perform the serviecs reguired of them ly infantry divisions, and those of detachment service ingeneral. The artillery, which hat for a long prome and even still, proserves tho chamater of eminent respectability, has of late yours beerem to infuace a dash of elare-clevil spirit of the cavalier into its ranks. If it has not yet taken to charging literally, it has, memer recent ofctasions in our warvice, shown a well-considered rectilessucss of oh-tacles ant dangers, fally lorme out by justly desorvel sucres. 'The distinetion between light and heary in this arm arises. not mly from the difference of rather in the pieses, but also in a dinter. cace of their tactional amblication.

HEDGES. - 1 thin-set hedge caunot be phaced in a good state of defense, and should therefure be destroyed, to prevent its interfering in any manmer with the defensp. At the best this defense will only serve as a screen, the hedge holding the earth up. A thick-set hedge, if over six and a half feet high. should be cut down to this height, and the cuttinge be set into the hedge to bark the earth better; a small ditch is dug in front of the hedge, the eartls from which serves to form a hanguette and a slight parapet, which are thrown up against the hedge. If the hedge is less than six and a half feet high it is: cut down to the height of four and a quarter fect : a ditch or treneh, about three feet wide at bottom,

Section of a Hedge Defense with Trench in rear.

and two feet deep, is dug behind the hedge, and the earth is thrown up against it, as in the last case. A wiftlh of two or three feet should be left between the trench and the earth thrown against the hedge to serve as a banquette. A simple ditch behind a hedge will often serve as a good cover for light troops without any other preparation. See Wall...

HEEL.-That part of a thing corresponding in position to the human heel; the lower back part. or part on which a thing rests. In a small-arm it is the corner of the butt which is upwarts in the firing position. The heel of a sword is the uppermost part of the blade, next to the lint. It is generally larger and more massive than the rest of the blade.

HEEL-PIECE.-The armor for the heels: atso, the plate on the butt-end of a gun-stock. This is sometimes called the heel-plate.

HEGEMONY.-Leadership; jreponderant influence or authority; usually amplied to the relations of a Govermment or State to its neighbors or confederates.

HEIRESS.-In Ileraldry, a lady is accounted as au heiress if she has no brothers wholeave issue. The husband of an heiress is entitled to bear her arms in an escutcheon of pretense, i. c.. a small escutcheon in the center of his paternal shied. and the children of an heiress may ruarter her arms with their paternal coat. Neither practice is of very early introduction in Heratelry. See Marshating of Arms.

HELEPOLIS. - In the ancient art of war, a machine for huttering down the walls of asplace besieged. Its invention is ascribed to Demetrius Poliorcetes. Dindorus Siculus says that cach side of the helepolis was 450 cubits broad, and 90 in height; that it had nine stages, or thoors, and whs carried on four strong solid wheels, 8 culuits in diameter; that it was armed with huge battering-rams, and had two ronfs capable of supprong them; that in the lower stages there were different sorts of engines for cisting stones, and in the middle they had large catapults for laune hing arrows.

HELIOGRAPHY.-The name apliplied in the method of commanicating hetween distant points in which visual sigmats are notaned by refleting the rays of the sum from a mirror or combination of mirrors in the reguired direction. This methond can he only cmployed to advantage in phaces where the sky is free from clouds and the atmosphere clear for comsiderable periods of time, amb the fact that an atmospheric change may indefinitely delay the transmiswion of a message is an in-uncrable alyention to the establishment of permanemt heliorraphie stations in most elinater. In suitable localities, howerer, hellweraphy possesses important advantages for military
sirnalliner ovar othor mothorls, flee princibal briner the purtability of the apparatus, the gratat distaner to which messages ran be sont without retrnnsmissoon, and the fart that the signals are visilato for those only whos are on the direet lime of sigmalling. An interestiner and instructive paper rmtithed "Thas Elements of Hue lleliograph," ly Lientenant Fred-

Fig. 1.
erick K. Wiard. Conited States Army, las leon publisheal in Signal Service Nows, N゙○. XV: amd tothis patper we are indebted for the shlstance of the foll lowing tisenssion.
A complete instrument consists essentially of two plane mirrors and a sighting-rod, aml, when a "stand

Fig. ${ }^{2}$.
ing thash" is used, a sereen. The mirmorsare firmly supported, usually on a triporl, and are titted with vertical and horizontal tangent-screws. By means. of the tangent serews the mirrors con be thrned on their supports so as to face in any desired direction toward the sky. When a movable flash is nsed, one
any shakiner of the mirrors. lontamirrora are neiol whron tha signalman facing the rerorvingestation bat the sman in his rant. Whanthe man is in lis fron?, or uratly at his rioht or laft, only one mirror is nsed
 Hacel with the tingont-merows. (o) put and kiop) lhis mireors in such a jesilion that llo: Ha*h cont la thrown with eratimity on the recoivingestation.

The princophas involval in the heliograpla aro faw and simple: latt S, Fig. 1, represent tho sun, ame I/s a phain mirror. ('onsider first the lighe front the sun incoldent on . $1 / 8$ at a single point. C. Only two untsid. rays aro shown in the tixure. Sinc. intorek
 x^{\prime} is ryual to the angies, and it is apparcnt, withon: firrther (*xplanation, that the converginer cone" of light from s. incerlent at c, buromes, after reflections. a diverging cone of profisely the sime dimensions. A spetator anywhere within this diverging (fone will see the redected light on lonking toward a. Tha incialent come is a right come with a ceircular baso ; therelore a right suction of the reslecterl eone will he a circle whatever may be the angle of incidenco. The radius of the circlie will be equal io the natural taneront of $\frac{1}{2} x$, or the matural tangent of the sun's semionlameter to a radins equal to the rlistance from co the plane of the sartion. This witl be ajplaront from Fiug. 2.

Now, suppose il B io lu a synatr mirror, amd eonsider next the four conce of light reflectorl fronn the four corncers. "fhe ansfe at the sum suluended by the diametur of the mirror would be inappreciable, therefore the axes of these four cones are sensibly parallel. "The cones themselvos revirlenty detine the figure of illamination. Pass a plane perpendicular to the axes and they will pierce it in four points, defining a paralledogram, the sides of whirh wild not exceed those of the mirror in lencrlh. Thae axe procecel obliguely from the mirror. therefore the parallelogram will be obliguc. This parallelegrans is represented in full in Fig. 3. The ruttingeplane makes a right seetion of the conv surrounding rach axis, and we have alrearly seen that this section is a circle having a radins equal to tha natural tangemt of the sun's semidiameter to al radins erpual to the distamee from the cutting-plane to the aprex of the cone on the mirror. With these radii deserilne circles about the corner points, and join these rirclas by tangents. The resulting enelosed figure is a ríght section of the solid of illmmination. Now, since the axes of the fome cones are paralled, the dimensions of the parallelogram will be constant for all positions of the cutimer-plane. The rarlii of the four circles increase with the distance from the mirror. Thu mean valur of the semi-rliamoter of the sun is about 16 minutes. the natural tanfrent of which to a rarlins of one mile is ? 4 ! fert, very nearly. The mirrors ased in hedios graphs are nsually from 4 in 6 inrhes in diameter. Therifore at a distamee of one mile. the circles will overlap and the tigure of jllmmation will be sensibly a circle 49 feet in diameter. Ai a distance of 10 miles from the mirror to the entimerplans, or from the eend ing to the receiving-station. the circle of illumination is 490 feet in diameter. And. remerally, the diameter of the flash at thr raceiv-ing-station, in fert, is equall to $4!9 \mathrm{mmliplied}$ by the distancr betwern the stations in miles. As the diameter of the thash increases dirortly with the difforence between the stations the adjustment of the instrument is no more diftieull for a very distant station llan for one fomplaratively near, provideol, of eomrse, thas of the mirrors is so mounted that a motion of three fhere is vome distingushable bandmark to adjus by or four degrees about its horizontalaxis ran be given it inflepentently of the tangent-serew, an that the thash ean lw thrown on and otif the receivins-station at will, and quickly. The soreen, when heerl, is on a soparate smpport, in order, when workine, to avoll has been removed from a small circle represented
by $c d$. abont the couter of motion of the mirnor. so placed that the centers of the masilveral spot of The eenter of the motion mast lie in the plane of the the white dise, and of the receiving-station, shatl he silvered surfaec, and it is usually at the center of on the same straight line. This may be done by the mirror. Let $f^{\prime} \subset f$ and $g d g$, represent the cones looking throngh the unsilvered spot at the station

Fig. 4
of light reflected from c and d, respectively. Between ، and a very little light is reffected, and a dark cone represented by ofd is formed, the angle red heing equal to the diameter of the sum. To deduce a general expression for the length of the dark cone let ced. Fir. 5. represent the cone and me its axis, the length of which represent by L. From m draw $m n$ perpendicular to the reflecting surface. The angle i is equal to the mean angle of reflection or incilence. Let d represent the diameter of the unsilvered spot $c d$, and x the angle $r e d$. which is equal to the diameter of the sun. Then,

$$
L=\frac{\frac{1}{2} d \cdot \cos \left(i-\frac{1}{2} x\right)}{\sin \frac{1}{2} x} .
$$

Returning to Fig. 4. it isevident that the axis of the dark cone is parallel to the axis of the cone of re-

Fig. 5.
flected light, therefore the direction of the reffected light is indieated by the dark cone. The sightingrod has a small white dise at its uper end. Place the rod so that the eenter of the white dise slall he hetween eand c d on the axis of the dark cone as represented in Fig. 6. A dark spot will then be seen on the white dise. Leave the sighting-rod in this position. In about one minute the dark spot

F'ig. li .
will have moved to one side of the disc, beranse of Whe apparent motion of the sum. It can be returned to the center of the masiberal spot throught the conter of the white dise. Suthechent exactness in this adjustment is not ditlicoult to athain, for, as alroady shown, the circle of illumination at the receivingstation is quite large, ant the flasis is visible from suy pnint within.
Tonben commmication with a distant station, the mirror leing on its support. the sighting-rod mast he and placing the white dise to cover it. In practice, however, it is found easier to set the sight-ing-rod by looking into the mirror. so placing the eve that the unsilvered spot exaetly covers the reflection of the distant station, and then, withont moving the eye or the mirror, bringing the sighting-red into view hy reflection, and so adjusting it that the reflection of its dise is also covered hy the unsilvered spot. Then, if the mirror is turned ly its tangent-screws so ats to throw the refleeted sumbight past the sightiug-rod in sueh a direction as to show the lark spot on the disc, the flasll will he visible from the distant station. If the instrument gives a standing flash, the screen must now be placed so as to lide or ent off the Hash except when it is given to view by the operator working the screen. If the instrument gives a movable flash, the mirror must be so turned that the dark spot will appear on the white dise when the key provided to work the mirror is pressed dowu. When the key is not pressed down, the dark spot will be on the sighting rod a little below the dise, and the flash will not then be risible. No particular value of the angle of incidence has yet heen considered. It is beeessary to consider what would be the effect if the light from the sum should fall very oblifuely apon the mirror. It has already beeth shown that the dimensions of the flash are sensibly independent of the angle of incidence. But the case is different as regards the strength of the flash, and on this the ramge of the instrmment dejeads. As the ohliquity increases, the mirror intercepts less and less light, the reflected Hash becomes correspondingly weaker. and the maximum distance from which it ean be seen distinetly, that is, the range of the instrument. is decreased: and further, the expression for the length of the dark cone shows that the length decreases as the angle of ineidence inereases, beeoming practically zero when the angle of incidence is nearly ninety degrees. The dark cone would then fail to reach the sighting-dise and there would be no longer any means for keeping the flasl on the receiving-station. These difficulties are avoided by the use of a second mirror. Fig. rillustrates how the two mirrors are made to serve the purpose. The figure needs no explanation. The mirror which faces the receiving-station is usually ${ }^{\circ}$ called the second mirror. The preliminary adjustment with two mirrors is very similar to that with one. In the explanation for the single mirror, mention was made of cones of diverging reflected rays only. That there are also converging reffected rays will be evident by supposing the eve placed in front of the mirror and looking into it. There would then he visible an image of the sun (see Fig. 8). This imaginary sun takes the place of a real sum situated back of the first mirror on the straight line through the centers of the two mirrors. The first mitror gives the light to the seeond from a fixed direetion; therefore, after the preliminary adjustment of hoth mirrors is completed. the second should not he touehed. The tlash is kept on the distant station ly the tangent-screws of the first mirror.
With the sum at the zenith the angle of ineidence Would be atout 455^{5}. Slowht the angle of incidence with a single mirror approach 60°, the second mirror would be brought into thee to deerease it. bou then may be assmod as the maximum ancle of incidence. The maximum of the sum's semi-diameter is $1 f^{\prime}$ and 18". The diameter of the unsilvered sion is usually about 步 of an inch. These values in the expression for h. give 10 and fin inches as the lengeth of the dark cone. It follows that when the unsilvered spot is $\frac{2}{10}$ of an inch in diameter, the distance from the center of the mirror to the sighting dise, or from the center of the first mirror to the center of
the secomd, mast not rexeral nind inches, in orelor that thore shall always le ta lintinet dark port

It Haty lue of intorest to deformine the figury amd si\%e of jhane mirror repuisite (ow or the maximum
 mirror situated a short distancolrom the ryo at

F's
Jonking at the imaginary imuge of the sum, formed by retlections. The imste will secm to cover a part of the surface of J / F repremathel by mm. W゙ith a very small atorlo of incillene men will lw sensibly a circliofrom every point of which lierlat is reflecterl to

 reat more than twenty nilde. At the lather distano

 thren worls pur minute, hat thu latur of swiner ine is ly mos means light. A man wodl practiond
 fer minute, and no manimal labor in involvoil. It

 attention rembired and the strain mponthe ryos

 still, of aserext whicls will cut ull the grlaro uf the sky and ground without sobsructing any of the igulit from the elistant insotruncont. 'The Hash from atiold instrument (an bre sern with the nakeal rye from 35 to 50 miles, anel (hat from a larerer ine sirmanent having 8 or ! incla mirrors. cowld lur secen
 tons shombl be suphlied with both sizes. Tho dust of it commannd can low distingnished
 hash luing then dirown on the advatuere the command wonld lee almoset sure to sed it hofore having mosed acrouss and oht of it. for at a dispance of 30 miles it is nearly one-third of a mile wisle. It would most certainly be seern ly some one if tha whole command was instructed to be gemerally on the wateh for such simul.. With wach command there should be of conrse a helioerraph. By halting a slont time the Commanding Othierer might obtain information of the rreatest value, and at the same time trive for transmission to other commands or to hearlefuarters such information as lie might posses.s. In a secotion where the natural features aro favorable, it is easy to see how at fow per-
the cye. That portion of the mirror exterior to mu reflects no light totheeye. and therefore adds nothiug to the strength of the thash. The diameter of mue evidently depents npom the dimmeter of the sun and the distance from the mirror to the eye. The ande of incidence always has a sensible valut, and therefore ma would le an ellipse, of which the shorter axis wonld le domble the natural lanqent of the sun's semi-cliameter to a radins equal to the distance from the receiving to the sending-station. The longer axis would inerease with the ingle of iccilence. From this it appears that, at a distance of, say, 1i) miles, a mirror 490 feet in diameter would be reguirell for the maximm strength of tlash. Bnt that would be impractieable, amol indeed it would never le dewirable, for the thash from at 4-inch mirror has beenseen with the naked eye at at distance of over 35 miles, and that from a 10 -inch mirror lass been secn with the aid of a small telesenpe at a distance accurately determined to ho 192 miles.

The mirrors of a heliograph should be of grlass. Metallic mirrors would be hard to keep bright in service, and they are open to a still more serions objuction. It is necessary that mirrors should be as nearly plame as possible. If of metal they would Ine liable to becomo bent ur indented. The injury might he su slight as not to he apparent amd still be sufticient to make it impossinle to give a good thash to the receiving-station. Glas mirrors are free from thoseolyjections. and experience has shown that those of the small size neerled are not likely to be broken. And, too. in the fiedd it wonld be easier to replace a rlans mirror than one of metal. The heliograph. lyy the reason of its greater range, is a much more biluabe instrument for fied signaling
mancolt stations could eover a larere extent of territory and keep several eommands in commonication with each other, enabling them to operate in concert aml to accomplish what wonld otherwise have been impossible. Sce Iteliostut and Louking-glens s゙ignaling.

HELIOSTAT.-lteliostat and heliotrope are manes applied to instruments used by surveyors for render-

ing the distant stations distinctly visible. This is managed hy placing a mirror at the distant statiom. and adjusting it wo that al a particular hener of the (lay (arranqed beforchand), the light of the sun shall ler retlected from the mirror directly to the surveror's station. The survevor must make his (n)irration at the instant he sies the glancing of the mirror, as the constant change of the sun's po-ition in the heivens produces al corresponding change in the
direction of the rays rettected by the mirror. Ganss invented snch an instrument abont 1821 , which is much used in America, for Gerndetic surveys. and is said to possess such power, that a mirror 1 inch square is visible eight miles off, in average sunny weather, and appears as a brilliant star at a distance of two miles; while some heljotropes have been nsed so powerful as to be visible nearly 80 miles off. The term heliostat, applied by Captain Drummond to an instrument invented hy him for the same purpase, more properly belongs to an instrmment invented by s'dravesande, consisting of an equatorial revolving on its polar axis, so that the sum, when once accurately in the focus of the telescope, continues steallily fixed there. Drummond's heliostat is chiefly ased in Britain. The drawiner sloows the instrment as made by Fanth © Co., Uuited States, fos the Coast and Geodetic Survey. The telescope body is an iron tube; a wood screw with a joint is attached at the middle, so that the instrument can be serewed to any tree or post. Sce Heliogrophy.

HELM, HELMET-1. In Meraldry, the representation of a helmet over shields or coats of arms. From the early simple form known as the Forman, the helmet. at a later perioml, came to vary in shape

Helmet of the Midde Aser.

according to the degree of the person who wore it, and helmets were set over coats of arms to hear the erest, and indicate by their form the rank of the bearer. The part of the helmet which opens to show the face is called the visor or beaver (to allow
use in Continental Heraldry. A Helmet is never placed over the arms of any woman except the Sovereign.
2. A covering of metal or leather to protect tha head in warfare. The carlier Greck and Roman helmets, as shown in many extant sculptures. were summounted by plumes, but unlike their modern successors, did not proter the fare. During the Iliddle

Field Ofticers Helmet with Plume.
Ages, helmets were made of the finest steel, often inlaid with gold, and provided with bars and flaps, to cover the face in action, and to allow of being opened at other times. As the employment of tirearms became more general, helmets naturally lost their utility, especially as regardel the face. Those still remaiaing are in military matters limited for the most part to heary cavalry atford no protection to the face, and mnst be considered as rather for ornament than use. Firemen wear a heavy head-piece of leather and brass, to protect them as far as possible from falling rains at contlagrations. In Iudia

Linc Oftcers" Melmet, U. A. Army.

Privates' Felt Helmet, \mathbb{C}. s. Army

summer Helmet, with spike
of trinking. The following forms of helmet are in use in Forslish II arahley: 1. The helmet assigned to the kinge and Princes of the baod-royal, which is full-facud, connpersel of erold linted with erimson, and las the vi\%or divited by six projecting lars. 2. The helmet of the nobility. of steel, with five hars of gold. When placed on tha shiehe it is exhibited in protile. :3. Kinights and Baroncts have the full-faced stere herlmet with the vizur thrown hasek and withomt hars. 4. The helmet of Esquires, always representel in protile, of sted with the vizor 1-10scel. These dixtinctions are of comparatively recont date. A mach greater varioty of helmets is in
and other hot climates, helmets of white felt, with the additional sermen of robls of linem, are constantly worn hy military men, to protect them from the rays of the sum.

In the United States army, light lements of the following descripions are worn as a part of the full lress:

Ifelmets for Fïd Officerx-The body : of cork or other suitable material, covered with black eloth, or of black felt, at the option of the wearer. Trimmings: cord and tassels, top-picere and plumes-soreket. chain chin-strap and hooks. (agle with motto, crossed cannon. rilles, or sabers, all gilt, with the
number of the regiment on the shichl in white: plume of bitfalo-hair, white for infantry; yellow for convalry, and red for artillery. /Irtme te for uther"
 same as atove except that the enher of plame is

 trimmings atre as follows:-Ton-phece spike, chain chin-strat, with hooks and sidu luttoms, "acke with motto, crossed rittes or rammon, all gill, with the number of the reximent on the shibld in white.
 with white facing clotla: 1op-piece suike, chain chinstrap, amd hooks all gilt. The helmed cords are attacheld to the left side of the hedenet amd rome down to the left shomber. Whare they are held lagether ly at slite ; one cort then pasises to the front and the other to the rear of the meok, crossine nom the right shoulder and passing separately around to the front and rear of the right arm, where they are again mited and hedd tugether hy a slide moder the arm: the united cords then aroses the bre ast and are hoped up to the uppor lutton on the left sille of the coat.

Ifelmets fin all Mometed Trompo- Body: of black felt, with leather chin-staph large (rosed camoms or sabers, letter of company and number of regiment, plain side buttons, top-piece amp phanesocket, all lorass; horse-hair phumes and cords, and ban I with rings of the eolor of the arm of service. Helmets for all font Tromplobe same pattern and material as for mounted troops, witl leather chinstrap; and platin side loatons, top-piecer and spike, of hrass. Trimming-Commissary Sergants, a wes. cent of white metal; IIospital Stewarde, a wreath of brass, with letters U. S. in white metal; Engincers, a castle, with letter of company ; Ordnance, a shell and flame; Astillery, crossed camons: Infantry, crossed rittes, and letter of company and momber of regiment, all in brass. Cork hetmets are supplied only to tronss serving in extremely lot climates, in the first and third years of their enlistment, an! these only in lien of the campraign hat. The nefrssity for such issue must in all cases lue certified to by the Deprarment Commander. Sece (lvepecte Brai.

HELM-GUN.-A breech-loading small-arm, having a fixed chamber closed by a movable barrel, which rotates about an axis parallel to the axis of the barrel. The peculiar feature of this arm is the connection of the tumbler with a movable butt-phate. so arranged that by pressing the piece arainst the shoulder, in aiming. the hammer may be simultaneonsly cocked. The cylinder also can be conveniently removed from the side, and replaced by a loaded one, if lesired.

HELOTS. - The popmation of ancient Sparta was divided into four chasses, the lowest of which was formed of serfs or slaves. called Helots (probably meaning coptires. from hetrin, to capture). These Helots are generally supposed to have formed the original population of the combtry and to have been reduced to bondage by their Dorian conquerors, the numbers, however, being swelled from time to time by the conquest of enemies. They belonged to the Stute, which had the power to set them at liberty; but they toiled for individual propericiors, and were bromet to the sorib, i.e., they could not be sold away from the phace of their labor. They were the tillers of the land (for which they paid a rent to their masters). they sorved at the publie menls, and were nerapied on the public works. In war they surved as light tronps, each frecoborn Spartan who bore heary armor being accompanied to battle ly a number of them, sometimes as many as seven. On rare oceasions they were used as heary-armed soldiars. It is a matter of doulst whether after emancipation they combld ever enjoy all the privileges of Spartan citi\%ns. Thay were treated with much severity hy their masters, and were subjected on degradation
and indignitios. They wore whipped every year to kenp them in mind of the ir servile wate; they were:

 duronselvers ats at warning to the Sbartan youth; ams When multipliend to an alarming "xtwot, Hay were
 (1) ome werqsion, 2000 of them, who hat bebavera bravely in war, were encouracel to come forsard
 pat to death. The 'partans orsamized, an uftem an nocessity rerpuired it, Seret stervier Companies of vount men. who went abroad ovar the romery armed with daggers, and buth ly night and day assasionated the unfortunate IIdots, shecting as their sperial victims the atronges and mont vigo rous of the oppressed raco.

HELVE.-1. A tilt-hammer, nsed for shingling the balls as they come from the phdang-farnace: 2. 'The worken hamelle of entronching tools, - 2 old as axes (frelling and pick.) hatronets, kodalies. shovels, spades; also the hamble of certain artifierer tools, aves, and sledre-hammers.

HELVETII.- A ('dtic prophe inhahiting, ascoorling to Ciesar, the reqion betwoon the momatain- of Jura on the west, the Rhone on the conth, and the Rhine on the east and north, the region corre-pombling pretty censely with modern switworland. They had to towns and 400 villares. The areat and fatal event in their history is their attempted irraption into and conquest of Southern Gand, in which they were repulsed hy (iswat with frightul tanghter. The story of thif.s expelition is circumstantially marrated by the Roman Commander. They collected 3 months' provisions, burned their 12 citiess. 400 villages, and all isolated dwelliness, and made a gencral rendazvons by lake Leman in the spring of 58 в. c. Cresar hastened th Geneva, destroyed the bridge, raised two legions in Cisalpine (iaul, and when the Itelvetians sent delegates to demand a passage, delayed them until he had huilt a wall along the Rhone, 16 feet high and about. 19 Roman miles in length, flanked witls redoubts. Having vainly attempted to pass this harrier, the Ifelvetii took another route, but were followed and defeated with a terrible slaughter at Bibracte (modern Autm, in Burgundy), and the remnant ohliged to seturn tis their own country, where they beame subject in the Romans. Of 368,000 who left their homes, including 92.000 tighting-men, only 110.000 returned. In the commotions which followed the death of Nero, the Helvetians met with another terrible catastrophe. Remaining faithful to Galha, they were fallen upon by Cacina, a Gencral of Vitellins. who gave them to the rapacity of his legions. They were massacred by thousamds, matitudes were sold into slavery, and their towns pillaged and bonned, their Capital destroved, and their (invernor excented. From this time fhey searecly appear as a distinct people.

HEMERODROMI-In Grecian antiquity, rumners or couriers, who could hold out qu run all dar: In a country like Grece, where the ronds were few and had, the Hemerodromi were indispeusable for the rapid diffnsion of important news. Every Greck state made a point of training a number of these men who enuld travel great distances in an incrediby short siace of time, and at wery dangerous crisis they were stationed on commanding prints to obeerve and report at hemb-puarters what it wa* necessary for the authorities to know. In the -ervice of the Persian Kings, these men were called - luguri, aml the service - Ingreion. Among the Romans they were known as Cursures.

HEMP. -The tiber of certain plants grown boots in Furope and India, known a* the C'mmmbix sution and indicu, which have been promennced identical plant-。 In varions notices of Indian fibers, we frequently med with the word anen as indicating a particnlar kind of hemp. Sumetimes we tind it called Tndian
hemp, and we maty often see hemp coumerated as one of the exports from India, at other times we may see either the same or another fiber mentioned hy the name of brown hemp. These various names are sometimes applien] to the fiber of one or two different plants, or are employed to distinguish the fiber of three distinct plantsi, all of which ire grown for their fibers, and have been and miglat be exported from India: thongh only two them are now usually to be found among the exports from that country. Hence, to avoid ambiguity, it is necessary to notice the phants to which these several mames are correctly applicable. The true hemp) ('innullix sutiva). genju of the natives, is everywhere cultivated in the plains of India, net on accoint of its fibers, but for its intoxicating leaves and their secretions. In the limalayas. however, the fiber is separated for economic purposes, and was exported from India to Englam? buring the last war, and this has been the case for many years. The tiber of the waun or tang (raterlariajuncers) is often called Indian hemp, but ineorrectly. It is the kind most generally cultivated all over Imdia on accoment of its fiber, and is that usually mentioned in the exports From Calenta under the name of hemp, hut also as seme. The phant mave be distinguished by its fluwers heing of a brisht yellow color and of the form of the pea and of the laburmum, while the leaves are entire and lanceolate. The fiber alluded to is very valuable for cordaqe canvas. twine, etc. Madras and Bombay both export harge quantities of hemp.

HENCHMEN.- The name given to the woldiers who gruarded the King's person in the time of llenry Fill. The word, signifying a page or servant, is now obsolete or rare.

HENRY RIFLE. - This magazine-gun is now generally known as the Winchester. It maty be used as a single-loader or a repeater. As a repeater, the motion of the lever withdraws the spent shell of the previons charge, raises the hammer, recharges the grun, and relocks the breech mechanism. With single loading, the cartridge is placed in the carrierllock, and a single motion puts it in order for firing. See llimehester Rifte.
HEPBURN-REMINGTON RIFLE.-This rifle is designed especially for long-range target shooting, and for gencral use as a sportsman's and hunter's ritle, being constructed with a special reference to the use nf a relotaling-shell. It has a solid breecli-block
arto all made with pistol-grip stocks; which heretofore have heen furnished only with the higher priced ritfes. and are chambered for the straight 38 and 40 cal. and 45 cal. shatls. using either it patched or camelherd bullet. The sectional dratwing shows the arm with the hreech closed.
To take the grom apart: Romove the nopir-wirmo in the left-hand side, and the breech-blork may be taken out. To take out the hamemer, remove the next upper screw ind slip the hommer forwayd into the breech-hlock hole. To take ont the extrortor. remove the forward serew on left-hand side. The lever which operates the breech-hlock passes through the rofker-slepe with a square stud, and is hedd in phace by a set screw directly moter the fore-stach, which must he removed if it is ever desired to take off the lever. If necessary to remove the guard, it can he done by taking off the lutt-stuck, and taking out the side-scretrs in the nsual way. The burvel shonld not he unserewed from the frame. except by experienced hands and with proper appliances. When necessary to unserew the frome, the extractor shonld be taken out, and the breceh-bloek and guard put back in place, before putting on the wrench. If at any time the primer should be driven back into the firing-pin hole, so as to make the brech ofen stiftly, it can be relicved by suapping the hammer against the firing-pin. The military long-range rifte has been adopted by the National Rifle Associatiom, who recommend it to competitors for the American Team. It has a heavy barrel, with new system of rifling, chambered for $2 \frac{6}{10}$ inch, 44 caliber, straight shell, using from 85 to 100 grains of powder and wa-ter-pronf patched bullet 520 and 550 grains of lead. See Remington Rittr.
heppah, - A New Zealand fort, or space surrounded with stout palisades. Also written Himpa.

HEPTARCHY. -The name given to seven kingdoms said to have been estahished by the Saxous in England. The common idea is, that these seven kingdoms were contemporaneous: but all that can be safely asserted is, that England, in the time of the Saxons, was penpled by various tribes, of which the leading occupation was war; and that sometimes nne was confmered. sometimes another. At no time was there a counterpoise of power among seven of them. so that they could be said to have a separate, much less an independent existence. Still. seven names do survive (some authorities adding an

with dired rear support, side-lewer artion, and rehounting hammer, so that the arm always stands with the trigerer in the safety noteln, then remedering premature diwharere impossible, and is hedieved to fe the lant in use for the purpuse fleceribert. They
eighth). The king of the one that had the fortume to be most bowerful for the time being, was steled Bretwadda or Ruler of Britain, Int in most instainces the power of thic sujpused laber beyond the limits of his own Territory must have been very small.
 virtmally swallowe up the others.
HERALD.- An ofller whone duty comsists in the reguhtion of armorial bearinge, the matshather of prowesions, athl the superintombere of publir arenmonies. In the Middle Aere, Ha rable wore himply hamored, amd conjoyed important privilequas: thois functions also incleded the baring of mossare*.
 knightly persomages ; the superintonding and registering of trials hy bathe fommaments, jomsto, and all chivalric exercises: the computation of the shan after battle; and the rexerelinge of the valiant acts of the falling or surviving (conbatman. The oflece of Terald is probably ats old ats the origin of coatarmor. The principal heradide whicers are de signatod K゙ingsorf-Arms or Kings-it-Arms, and the movitintos or learners are styted Pursuivants. Heralde were origimally croated with mucl corcmony; Huvaro now appointed by the Earl Marshat in Encrant, and ly the Lyon king of-A rms in Southand. There are now in binghad three kinessof- Arms, named by their ollices Charter, Clarencions: and Norroy: six Ifaralds-somerset. Chester, Windar, Richmmal. Lameaster, and York: and four l'ursuivants. Roume Dragan, Porteullis, Bhe Mantle, and Rouge ('roix. There have leen at ditherent periods other Iterahds. whose titles are now lad aside: I (erabls ratranedinary have alson sometimes been created, as Edmonsin. by the title of yowhray, in lint. In scotlame, the
 there were till lately six Heralds-Snowdonn, Alhany Ross, Rothesaly. Marchmont, anl hay; amb wix Pursuivants-Ënicorn, Carrick, Kintyre, Ormmad. Dingwall, and Bute. Jecently the permanent momher of Ilaradds and Pursui rants in Soothand has heen reduced to three of each. Ireland has whe King-ofArms, Ulster: two Ileralis, Cork and Dublin: and two Pursuivants, of whom the senios bears the tithe of A thlones and the other is called the Parsuivant of St. Patrick. The otherial constume of a Herald consists of an embroidered satin tahard or surcoat of the royal arms, and at collar of st. So. college-off-

HERALDRY, - leraldry is properly the knowledere of the whole maltifarions datice ilevolvine on a Heratd; in the more restricted sense, in wind we shatl here consider it, it is the seience of armorial bearinge. After occupying for ages the attention of the learned, and forming an important branch of a princely education, the sturly of Heraldry fell. in later times, into negrect and disrepute. and was absudoned to eonch-painters amd madertakers, a Cheradation owing in part to the endless tixale of follie's and mystifications that hat been interwovern with it. Meidern eriticism has resened lleraddry from the pedantrigs and follies of the ilerales. and imparted to it a now interest, as a valuable aid in historical investigations. Thongh we have instancos in remote times of mations amd individuals distinguishing themedves by particular emblems or entign*. nothing that emproperly be ealled armorial bearings existed belore the middle of the $12 t^{2}$ century. The shields of the French knights in the First ©rusade presented a plain fare of polished metal, nor i there any evidence of heraldic devias hatring heen in use in the second (rusiade in 114\%. But the Anglo-Norman boet Wrace, who towrished in the latter part of the twelth century, mentions devieres or congizances ats boing in lise among the Normans, "that mo Norman might perish liy the ham of another, nor one Fremehman kill another ": and Witce is corionsly corroborated ly the bayems tapestry of the twelfth century: where there are tig ures of amimals wh the shiclde of the invalers. while the suxum shichls have only borders or cronses. Thee rute deviees on these shiclda have nothing appratelline to an armorial form or disposition. yet it is probable that setematic Heraldry sprang out uf them, but it is ditiocult in say when they assumed
 iloan of armerial baringe. Some sort of armorial insignias were depicterl on the shichlv ravel in the

 "if arms from father to son andos the has. bean fully recosmized in the thirtomberontery, and in the prace-
 niat on the. -urconat worn wer the hataberk or conat of mail, wrigimethe the expression cout of "rma. Armes were similarly embroiderent on the jupen, eyalan, and habard, which sumeeded the surerat, a pration. which eurvived till the time of Henry Vill.. When
 Haralks, who still comtinum 10 Wear on their tabarilu the lowal Arms. It was hy show dearese that thas usage of arms grese up intio the syctematized form
 writurs an 1Praldry. 'The principal existing datat for traciner its progeress are English roll- of armo yot extant of the times of Henry IIJ., Jolward I., and blwarel III. The arliom formal treatien date mo further hatk than thas "as of the fourterenth cemtury before whicls time the whole histurial part of the sulyeet hat heelt obsenred by a tisige of eratuitorn dictions, which hats minad mow -ubserguent writers
 wience represent the 1 leraldry of the tenth and fourIrenth centurios as empally harply defined with that of the fifteenth ind sixtemeth. Tha arms of William the Conqueror and his sonsare deceribed with all their differences; arms are ancribedto the saxon Kinare of England, to Charlemanee, and (even to half-mythical persons and heroes of chaswioal time . It is rather surprising to find this fietitious Iterakdry umbersteod and systematized rarly in the fourtecenth century The arms tratitionally (onnsidered to be thowe of Eitward the Confessor were soulpured in themiminster Abley in the reign of Edward II.
In the infancy of Iteraldry, every knight assument what arms he pleased. not comsulting the sovereign or king-at-Arms. Animals, pants, imatinary monsters, thinge artificial, and ohjectis faniliar to Pil. grims, were all fixed on; and whenever it wasposidbie, the object chosen was ome whose mame bore -atficiont resemblance in whand th surgest the name or title of the bearer of it. There is ramon to beliew that carly arms were trenerally urmax purblutex. thoush the allusion las oin many (atses reased (o) be intelligible from the ohl name of the object beina forgrotten. The charge fixed on wats mad with great latitude, singly or repeated. or in am way which the brarer chonce or the form of his sitied surgested. But as coats of arms berame mura mumerons. confusion often arose from different knight- adonting the same symbol and thas confusion was ine reased ly a practice which erept in of sovereigns or fontal chiefs allowing their arms, or part of them, the he borne as a mark of homer by the ir follower in hatthe. Hence different comats of arms come in many instances su closely to resemble ench other that it was innperative, for distinction's sake, that the fane of the hearer should be restrained, and regulations had down regarding the mumber and position of the (harges, and the attitules of the mimals represemted. This necessity led in the contre of time, to the sys. Iomatizing of Iferabdry, a process which the rolle alluded to show was whing on gradnally theronghont the thirtecath and fourteenth renturies. By tha time that lleraldry wiac consodidated intorasience, its true origin had been losi sighat of, and the eredulity and fertility of imarination of the Ieralds leal $14+m$ tis iwest the most common charges with mystical meanings. and to trace their original adoption to the Wesire of commernorating the alventures or achese ments of the fonaters of the fanilies who bore them. The leqemds ascribing an oriugin of this wort to the (arly armorial bearinge have, in bearly all instancew wherein it has heen pusible to investigate them,
turned out to be fabrications. It was only when Heraldry began to assume the dignity of a science that angmentations of a commemorative character were granted, one of the earliest known instances being the heart added to the coat of Douglas. in commenoration of the good Sir Jimes's pilgrimage with the heart of King Robert. After the science became thoroughly systematized, mgmentations and new coats were often granted with the reference to the supposed symbolical meanings of the charges. In England, the assumption of arms by private persons was first restrained by a proclamation of llenry V., which prohibited every one who had not borne arms at Agincourt to assume them, except in virtue of inheritance or a grant from the Crown. To rnforce the observance of this rule. Heralds visitations or processions through the countries were instituted, and continued from time to time till the reign of William and Mary. Jurisdiction in questions of arms is exceuted by the IIeralds. College in England, the Lyou Court in Scotland, and the College-of-Arms in Ireland. No one within the Enited lingdom is entitled to hear arms without a hereditary clam ly descent, or st grant from the competent anthority; and the wrongfal assumption of arms is an act for which the assumer may be subjected to penalties. The use of arms. Whether rightfully or wrongfully, suljects the bearer of them to an annual tax. It is illegal to use without authority not mby a cont of arms, but even a crest. Any figure or device placed on a heraldic wreath, is considered a crest in questions with the ILeralds' College or Lyon Court, as well as in questions with the Commissioners of Inland Revenue. It shows how deeply the passion for ontward distinetion is implanted in human mature, when we find people in comntries such as the United States, where all differences of rank are theoretically repudiated, assuming heraldic devices, each man at his own hand.

Besides individuals. Commmnties and States are entitled to the use of arms, and IIeradds lave classitied arms, in respect of the right to bear thems, under the following ten heads: 1. Arms of dominion; the arms borne by Sovereigns as annexed to their territories. 2. Arm* of pretension, which Sovereigns haveborne. who, though not in possession, chaim a right to the territories to which the arms belong. Thas. Englant bore the arms of France from the time of Edward III. till 1801. 3. Arms of community; the arms of Bishops' Sees, Abbeys. Universities, Towns. and Corporations. 4. Arms of assmmption; arms which one has a right to assume with the approbation of the Sovereign. Thus, it is said, the arms of a prisoner at war may be borne by his captor, and transmitted by hin to his heirs. 5. Arms of patroninge; added by Governors of Provinces, Lords of the Tanor, Patrons of Benefices, etc. $t=$ their family arms, as a token of supriority, right. or jurisdiction. 6. Arms of succession, borine quartered with the family arms by those who inlacrit fices or manors, cither by will, entail, or domation. Thas, the Dukes of Athole, as having lieen Lords of the Isle of Man, cuarter the arms of that Island. and the Duke of Argyle puarters the arms of the Lordship of Lorne. \%. Arms of alliance, faken up by the issue of heirseses, to show their materaal blescent. 太. Arms of adoption. borne by a stranger in blood, to fultil the will of it twistator. 'The last of a family may adopt a stranger to bear his name and arms and possess his estate. Irms of adoption an only be horne with permission of Sovereinn or linir-it-itms. !. Arms
 reign of part of hiq royal arms, as a mark of distinction, a ustier which, we have alreaty ohsierval, ohtained in the earliest days of IIeralilry; and hence the prevalence amoner armorial bearines of the lion, the flewede-lis. and the eagle the bearinges of the Sovereions of Eingland and Sentland, of Frimece, and of Cermany. 10. Patcrnald or liereditary arms, transmitted by the first possessor to his descentants. A roat of arms is composed of charires clepicted on an
escutheon representing the old knirlitly sliekd. The word escutcheon is derived from the Freuch écuswon, which signitied a shichl with armorial bearings, in contradistinction from éu, a shiela generally. The shields in use in England and France in the 11 th ant 12th centuries were in slape not mlike a boy's kite, a form which secms to have been borrowed from the Sicilians; but when they hecame the recipients of armorial bearings. they were gradually flattened and shortened. From the time of Henry IIl., the escutcheon las been most frequently represcuted on seals as of something approaching to a triangular form, with the point downwards, the exceptions being that the shield of a
 lady is lozenge-shapen, and a knight-banneret square. To facilitate description, the surface or ficd of the escutcheon has been tivided into nime points, as in (Fig. 1), technically distinguished by the following names: A, the dexter chief point; 13 , the mildle clief; C, the sinister chief; D, the honor or collar point; E, the fess point: F, the nombril or naval point; G. the dexter base point ; II, the middle base: and 1, the sinister base point. It will be observed that the dexter und sinister sides of the shicld are so called from their position in relation not to the eye of the spectator, but of the supposed bearer of the shield.

Coats of arms are distinguished from one another, not only by the charges or objects borne on them, but by the color of these charges, and also of the field on which they are placed. The field may be of one color, or more than one, divided by a par-tion-line or lines varying in form. The first tbing, then, to be mentioned in blazoning a shield-that is, describing it in technical language-is the color, or, as it is lieraldically calleal, the tincture of the fiell.

Fig. :
Tinctures are either of metal, color strictly so called, or fur. The metals used in Heraldry are iwo-gold. termed or, and silver, argent-represented in jainting by yellow and white. The colors are five-red, blue, black, ercon, and purple, known as gules, azure, whble, vert, and purpure. Metals and colors are indicated in uncolored herablic engravings by points and hatehed lines, an invention ascribed to Father Silvestro di Petrasancta, an Italian Ilerald of the seventeentlo century. Or, (Fig. . $)$ is represented by points; for argent, the fiede is left plain. Gules is denoted by perpendicular, and azure, by horizontal lines: suble, by lines perpendiendar and horizontal crussing each other: erot, by diagonal lines from dexter chief to sinister bast : purpure, by diagonal lines from sinister chief to dexter hase. The furs were originally but two, ermine and avir. 'The former is represwated by black spots resembliug those of the fur of the animal called the ermine, on a white gromml. V"ar. saind to have been taken from the fur of a squirrel, bluisla-rray on the back and white on the helly, is expressed by blue and white shituls, or bells in horizontal rows, the bases of the white resting on the bases of the blate. If the vair is of any othwr colors than white and blue, they mast be - pecified. Tarions moditications of these furs were afterwards introduced, among others ermines, or
rrmince with tha firdd sable and the spots argent rrminites, with a real hair on enchs siche ef the blatek spat ; pren, with the ticeld sathle. and lho sponts or counter-vair, or vair with the bells of one tincturn phaced base to base ; and proteres comber-potent, vair with arutehoshapord figures instemed of lolls. It is an extablished rule of Herablry that motal should not be plated on metal, nor color on rolor: a rale more rigislly adlered to in Emerlish thon in forej口 Jarahary. We lave one remarkable transervession of this in the arms of the kingelome of Jerusatem fommed ly the Crusalars, whichare argent, a croses potent between fone erosises or. A reangnizad exerpition exists wherever a charge lies nver at tied partly of metal and partly of color, or where an animal is (see Infore) attired, armoed, mongled, rowned. or chained with a tincture difforent from that of his bouly. Marks of ciderocy, chiefs, comtons, and bordures are also oceasionally exempted from the general rula, lieing, aceording to some lleralds, not haid ohl the shiclel, bat conser, or sewed to it.

Brerything eontaned in the tiehd of an acuteleon is ealled in cherge. C'harges are divided by lleralds into the three classes of honorable ordinaries, subordimaries. und common charges. Under the name of ordinaries or honoreble ordinarits are included cer-

tain old and very frequent hearings, whose true peculiarity seems to be that, insteal of being taken from extruncous oljects, they are representations of the wooden or metal strengthenings of the anciont shielas. They are ten in number, viz: 1. The chiff (Fig. 3), the upper part of the shield separated from the rest by a horizontal line, mod comprising, acenrling to the requirements of Heralsk. one-third of it, though this proportion is sedenn rigidly allered to. lts diminutive is the fillet, supposed to titke up onefourth the space of a chief, in whose lowest part it stands. 2. The pale (Fig. 4). a hand or stripe from top to bottom, said, like the chief, to ocerpy onethird of the shield. It las two diminutives, the pullet, one-half in breadth of the pale, and the indorse. one-lalf of the pallet. 3. The bend (Fig. 5), at similar hand crossing the shield diagonally from dester clicef to sinister Tase. Its diminutives are the bendlet or gerter, one-half of its breadth; the cost or cotise, one-half of the bendlet $:$ and the riband. onc-latif of the entise. The hend is sometimes borme between two cotises, in which ease it is said to be rotised, a term sometimes applied with doubtfin propriety to the other ordinaries when accompanied with their diminutibes. 4. The bend simixter, a diaronal bamd trom sinister chacf to dixter base. Its diminutives are the verorpe. ont hatf of the hend sinister: and the meten (Fits. 6), onc-lalf of the scarpe. The biton stops short of the extremity of the field at hothends, amd has heen considered a mark of illegitimacy. 5 . The fisw (Fig. 7) a horizontal bind in the midelle of the shield, said, like the ordinarios already emmmerated, to occupy one third of it. Its principal diminu-
tive is the har, rontanining the fifth bart of tha fir-ld
 thes burrulet, onc-lalf of the closot, the latter sollome
 two stripsdescembing from the renter of the shind in diagonal dircetions like the raftors wis a rowf. Jth diminutives are the cherronet of half, amd fle: ronplo close, one-fourth its width, the lathor borne, as its name inplics, in pairs, and gancrally accompunting the chevron-on each side of it. T. The cross (Fig.

Fige. 15-2:
9), uniting the pale and fess, an ordinary which was originally like the rest, composed of the clampsi necessary to the strength of the shicld, but had also the decper meaning of the symbol of the Christian faith. Besides its plain form, the cross was varied in numerous ways. most of these varieties being, however, rather common charges than ordimaries. Of the 39 lesser crosses mentioned by Guillim, and 109 by Edmonson, if few of the most frectuently occurring are the following: The cross moline (Fig. 10), with the ends turned round both ways: the cross theury (Fig. 11). of which each limb terminates in a fleur-de-lis: the cross patonée (Fig. 12). cach limh of Which has three points; the cross potent (Fig. 13), erutch-sliaped at the ends: the cross pattee (Fig. 14), small in the center, but widening toward the ends; and the cross crosalet (Fig. 15), crossed at the ends. The latter is the most freguent of all, und borne oftener in nombers than singly. Any of these crosses is sajd to be fitchee when the lower limb terminates in a slarpproint, as in Fig. 16. There is aloo the crows Maltese, whose limbs have cach two points. and converge to a point in the center of the eross : thongl not frequent as a heraldic charge it derives an importance from being the badge of the liniglits of Malta and of many other orders. 8. The weltior or St. Andrew's Cross (Fig. 17), formed by a junction of the lrend dexter and bend sinister. 9. The pile (Fig. 18), a wedge with point downwaris. A singla uncharged pileshould, at its upper part, occupy onethird the breadth of the shicld. but if chareced, it may be double that width. 10 . The quarter, consisting of the upper right-land fourth part of the shield ent off by a loorizontal and a perpendicular line Its diminutive is the centon (Fj g .19). Irmorial tigures may be depieted on any of these ordinaries. but not on their diminutives, with the exception of the canton.

We observed that the field of an escutcheon may lre of two different finctures. divided by a partitionline, whieh line may vary in direction. When divided by a partition-line in the direction of one of the ordinaries, the slield is satid to be pority per that ordinary: thus we may lave (Firs. 20) a shemed party per pale, bend, fess, chevrom, or saltire. An escutcheon divided as by a cross is suid to be equartered. A shield divided into any number of parts by lines in the direction af a pale. locod, or bar, is said to be maly. bendy, butry. the number of piecer being specified. is in the example Fier. 21.
harry of six, argent and gules. When the tiold is of
metal and color separated by any of the lines of
partition. and the charge placed on. it is said to be comenter"-chuenged: Hiss means that the part of the charge which is on the metal is of the color, and wice etorst, as in Fig. 22, the arms borne by Chaucer the poct, per paile argemt and gules. a hend commer-changed. The partition-line, or the houndary-line of an or-

~~~~~ invected
 ~~~Wavy
 20252 Ne8 ulé
 MMM indenter

MN dancertr

 Fig. dinary, is not always even. Fig. 23 shows the commonest forms of irregular partition-lines in nse, viz., the engrailed. incectere, reary, nebule embuttled, indereter, and donetté. An ordinary chgrailed has the points of the engrailed line turned outwards, and an ordinary invected. inwards. Dancetté differs from indented by the partition-line being marked with only three indentations. Tlas subardinaries, or subordinate ordinaries, are generally emmerated as the following, thongh there is no very broad line of demarkation between them and the common charges. 1. The gyron. Then a shichd is at once quartered and party per caltire, as in Fig. 24. the division is called gyronny of "ight (from gyrux a rircle), and one of the triangles, or at least that triangle in

Fix:s. 24-35.
dexter chiet is a gyron. Gyromy of six, ten, or twelve also occasionally occur, so called accorting to the number of the triangles. 2. The fret (Fig. 25) is a cognizance harivei from the banding or ornamenting of the shiell, and a shield covered with this lattice-work decoration (Fig. 2(3) is saic? to be firtty. 3. The bordure, or border (Fis. 2i) is at stripe encireling the shield. It is much used to distinguish ditterent branches of a family, and is often charged with small devices. m which accomat it hats sometimes been reckomed an honorable ordinary. 4. The orl (Fig. 24) difters frem a bordure in not tourding the extremity of the shifld. क. The erosnure, regardelas a fiminative of the ofle, is semerally borne louble. and Hory connterthory. as in the arms of Scothand, or a lion rampant within a tressure flory counterthory sulace (Fig. 2d)) G. Thue pull (Fig. 30), the archiepisetpal arnament of that name, ant from loome to metropolitans, and resembline in form the lefter tr. 7. The flenches (Fig. 31), the dexter and sinister sides of the shield cont ofll by a morved line. Fhandaes are always borne in pairs,
 of fonr equat sitles, with the upper and lower :mples
 32). honecr and more acoute than the lozenge. 10. The rustre (Fis. B33), a loware piereenl romat in the center. 11 . The maxtle (Fig. 34), at honge perfurated, and bowing a marrow horier. Masches were probably originally links of chain-armor. I
field is saiel to be lnzengy (Fig. 35), fuxilly or mextcally when divided by diagonal lines in the direction of these sumordinaries. A field divided by horizontal and perpendicular lines into spuares of different tinctures is said to be checky: in the case of a $f^{\prime} \times \mathrm{x}$ checky there are three such rows of the squares. Amoug the subordinaries are sometimes rockoned certain circular charges called romedele or roundlets. distinguished in English Ileraldry by very different names according to their tinctures. Whan of or, they are called branuts; of argent, plutes; of gules, tortenm: of azure, leurts; of purpure, golpes? and of sithle, ugreaspas, or petletx.

We now come to the third class of tigures occurring in armorial bearings. We have seen that the ordinaries and subordinaries are for the most part parcly heraldic figures, connected in their origin with the shichl itself; the common charges, on the other hamd, are representations more or less conventinnal of familiar objects, which have no necessary relation to the shiedd; bat are in some way emblematic as concerns farmily or individual history and character. The kuights, in the carly days of Heraldry, ransacked the imimal, the vegetable, aud the mineral kingdom, as well as the range of things nalural and artificial, for cognizances which would bedistinctive, and at the same time suggestive, of the name or title of the bearer of them. Wee can only enumerate a few of the charges of most frequent ocemrence. (of the beast, the dion reguires special mention. The king of beasts is one of the most frequent of heraldic devices, and is made to assume a great variety of attitudes. for which ree Lion. Lions and other beasts of prey are said to lie armed or langued of any tincture when their teeth and claws, or their tongue, is of that tincture. With some change of color or position, the royal heast came to he used by all who could claim kindred, however remote, with royalty, and lions were further multiplied by augmentations granted by the Sovereign to favorite followers. The heraldic lemperd, which has been the subject of much controversy, was originally but another designation tor the lima passant-gardant. Bears, hoars, mills, stags, are favorite heraldic beasts. A stag walking is said to be trippont; he is at graze when a lion would be statant-garlant ; he is attived of any tincture when his horns are of that tincture. The amimals that possess horns and hoofs are said to be armed and ponguled in respect of them. The heads and limhs of amimals are often borne as charges, and they may he either conferd, cut off in a straight line, or imsert. cut ofl with jagged edsere Of birds, we have first the engle. The sovercign of hirds. and symbol of imperial Jove, was, next after the lion, the most tavorite cognizance of royal persomages and was adopted by the Cerman Emperors, whe claimed to be successors of the Cixsars of Rome. The imperial eagle had at first but one head; the monstrusity of a second head seems to have arisen from a dimiliation of two eagles, to represent the Eastern and Western Empire. The eagle of 1 Ieraldry is mont generally dispheyrd, i.e., its wings are expanded; sometinies it is proying, or standing devoring its: prey. The clevion, the cormizance of the Duchy of Lovaine amd the family of Dontmonency, was originally hat a synonyon for the eagle assimed as am anagran for the word Loraine, hit modern Iferahts have thegraded it into a nondereript oreather withont ? a ak or claws. The mertle was originally a martin, a aperies of the swallow, which has also in rourse of time been deprived lyy heralds of its lenge and beak. The peliean, the swan, the cock, the falcom, the raven, the parrot or pepinjay, and the peacock, are ath of tolerably frequent eccurrence. The pelicum has generally hor wings indursed, or phaced back to hack, and is depicted pecking her hreast. When in her nest fording her yonmen, she is c:illed a pelican in ther phety. A pertork bome aflronste with his tail expantefl is said to be in his
pritle. Birds of prey are armad of the same color of whieh their beak und talons are represented. Surd us have no talons are beaked and momberol. The cork is said to be cermed, created, and jolloped, the latter torm referriner to his ermblr and gills. Birds laving the power of tlight are, in respect to their attitume, rlowe. rising, or culunt. Fishes and reptiles oce:ur ne charges: the former are said to be uniunt, if drawn in a horizontal, mad heuriant, if drawn in a perperndicular position; and the dolphin, in reality straight, is conventionally borne embenord or bernt. "thee esscullop shell is of frequent oceurrencer, and is said] to be the bablge of a pilgrim. Kometimes the conventional heraldie form of an unimal ditlers from its true form, as in the case of the ontolope of IIeralalry, whieh has the head of hat stag, a unicorn's tail, a tusk issuing from the tip of the nosse, a row of tufts down the brek of the neck, thel similar tuftes on the tail, the chest, and thighs. Of "animals phantasticall" we have nmoner others the grillh, wyvern, lragon, unicorn, basilisk, harpy. We have the human body in whole or part, it naked man, a savage, or widd man of the woods, also arms, lers, hearts, Moors' heads, Sarncens' hembls, and that strunge heraldic freak, the three hogs conjoined, carried in the escutcheon of the Iste of llan.

Of plants, we lave roses, trefoils, cingucfinls, lemors, gutros (sheaves of corn), trees, often promliented or fructucted of some other cotor, and, above all, the celebrated theur-le-lix, used as a bidge by Lomis V'II. of France, before IIeraldry had an existence. When a plant, or an animal, or other charge is bla\%one proprer, what is meant is that it is of its natural color The heavenly bodies, the sun, moon, und stars, are also pressel into the service of lleraldry, as are things inamimate and artificial without number, particularly such as were familiar to the warriors and pilgrims of the 12 th and 13 th centurics. Helmets, muckles, shields, hatehets, horseshoes, swords, arrows, hatter-ing-rams, pilgrims' staves, mullets (for spur-rowels). ann water-bougets, or bags, in which in crusading times water was carried a long distamee across the descrt, also the clarion or war-tramp, gencrally or erroneonsly called a rest. Even the letters of the alphabet have been used as charges. Charges may be placed either simply on the fichl ar on one of the ordinaries; in some instances, one of the ordinaries is placed over a charge, in which case the charge is said to be debruised by the ordinary. Three chares of one kimd are placed two above ant one below, unless blazoned in fess o: in prile. In the 14 th and 15 th centuries, the simplicity uf early IIerallay begam to be departed from by accumulating a variety of charges on one shicld, and in later times we have sometimes a charge receiving another charge like an ordinary. The"growing complexity of shields arose from the angmentations granted to distinguish the youmger branches of a family, or charges assumed from the matermal coat lyy the descendants of an heiress. In the end of the last and beginning of the present century, a practice prevailed for a time of introducing into armorial lyearings matter-of-fact landscapes, representations of sea-fights, and of medals and decorations worn by the bearer, setting all heraldic conventionalities at detiance, and dealjug in details not discernible on the minntest iuspection. Such charges are freguent in the arms of the beroes of the old wars: as, for an example, in the amgmentation granted to Sir Slexandor Camphell, bart., in addition to his paterual arms-viz..
chicf argent charged with a rock proper, subscribed filraltar, between two medils ; and on the dexter representing the silver medal presented to Sir A. Camplell by the Supreme Govermment of India, for his services at the storming of Seringapatam, in 1790; that on the sinister representing the gold medal presented to him for his services in the battle of Talavera." The arants proceeding from the present Kings-of-drms are made conformable to the usages of Meraldry, and do not stand in meed of such
longthener explanmtions in make them intelligible. l'ha urnas of the ditlerent mombers of a family have bern distinguishorl from once anotler, somelimas by the: nse of a loorlare or other ditlerence; and motnce times, espurciully by linglish ITemble, by the ance of certain tigures calloul morlion of comblecy, tho lulw l, com-

 und his descendunts-an invention originatins abont the: time of Monry VII., but which rammot consistently be carried thronarla all the ramifications of at family for a sureression of gernerations. Bazzuery is an essential part of the sciconce of armas. To blamon a cont is to sos deserile it that any ons with an ordinary knowledge of Iteraldry will le: able to depport it ear. rectly. In the language of blazonry, all tantolocy must be uvoided. There timeture of the tielol is first mentioned; the ordinary, if any, follows, molese it be a rhief; then the rliarges between whicls the ordinary is placed. The charges on the ordinary follow, and, lastly, we have a conton or rhicef. and marks of cadency. besides the herallice deviress drpicted on the shiela, there are the following borme external to it-the helmet, the mantle, the wreath, the crest, the motto and seroll, the supporters, and the coronet. The helmet, originally a piece of de. fensive armor, bechme in the course of time once of the usinal acerompaniments of the shiceld; and, placed over the arms, it eame loy its form to mark the rank of the wearer. For these distinctions, whichare of comparatively recent date, and applicable only to British IJeraldry, see IIelazet. The montling in an embellishment of scroll-work tlowing down on both sides of the shield, and originating in the cuintuise. or searf. wrapped rommd the body in the days of coat-armor. From the center of the lelmet, within a rreuth of two pieces of silk of the first two colors of the armorial bearings, issues the crtat, originally a special mark of honor worn only by heroes of grent valor, or advanced to a high military command ; now an inseparable adjunct of the coat of arms in English, though not in Contimental Meraldry, aud often assumed and changed arbisrarily without the projer authority. The sroul, plaeed over the crest or below the shield, contains a motto bearing in many cases an illusion to the family name or arms. sup. portris are figures or animals standing on vacla side of the escutcheon. and secming to support it. They were in their origin strictly ornamental devices which only gradually accuired a horahlic character. In England, the right to use supporters is contined to the Rosal Family, Peers, Peeresses, noll Peers by courtesy, Knights of the Garter, Kuiglits Graml Cross of the Bath, and a very few families whose ancestors bore supporters before their general une wis restricted. In Ncotland, supporters are also used lyy the Baronets of Fova Scotia and the chiefs of rarious families. The crown of the sovercign, the miter of the Bishop, and the coronet of the Kobility are adjuncts appended to the shield of those whose dignity and oftice entitle them to that distinction. The subject of murshating urms, or arranginor various coats in one escutcheon, is explained in a separate article. ILere it may snffiee to lay down a few general rules. I husbind is entitled to ingule the arms of his wife. i.e., to place them on the same shiold side ly side with his nwn. When the wife is an heiress, the husband bears her arms in an esputchoon of frote hax. or small escutcheon in the eenter of his own shield. and the descendants of the heirest may quarter her arms with their paternal coat. A sovereign also quarters the arms of his several States, and fonlal arms are quartered by sulajects. In elective IVing may place his herditary arms on an escutcheon of pretense ofer the insignia of his dominions.

HERALDS' COLLEGE. - I collegiate body, founded by Richard III. in 1493, consisting of the horaldic oflicers of England. who mere assigned a labitation in the Parish of Allhallows-the-Less, in the city of London. See College uf 1 rms .

HERBORT SYSTEM OF FORTIFICATION.-In this

 system, the angles of the polyeron are covered hy casemated reduits. surrounded by barracks bous-holed for musketry and artillery. These are flanked by two redoubts, covered by a glacis, hefore which stands a counter-gaard. The extromities of these eoursefaces form a low flank before the reilonlits. Defensive barracks conneeted hy an earthen parapet form a general retrenchment. An envelope of eounterinuards tanked by lunettes, which have also their Glacis, casemates, extra flanks, etc. surronnds the whole. The system is ingenious; but, the ontlay is enormous. The unrevetted parapets and the flanks rising in tiers would expose it to un attack of vive force, and it wonld also suffer much from rieochet.HERCOTECTONIQUE.-A term in fortification signifying that branch of military architecture which speeifically joints out the best means of defense and the surest method of providing stores. The word is derived from the Greek.

HERCULES POWDER. - A mixture of carbonate of magnesia with carbonizing and oxidizing materials, combined with nitro-glycerine in varying proportions, to produce different grades of explosiveness. Although sobrcro well established the fact that nitro-glycerine wis a powerful explosive-and about 1852 the French Acadeny made several practical tests showing it was an agent of great importance, and scientific men occasionally wrote upon the sub-ject-the article of glycerine had not yet been produced in large quantities, mostly on account of the expense attending its manufacture. which was still in its infaney; and hence the manufacture of nitroglycerine had remained wholly impractical, for common mining and engineering purposes, nntil about the year 1862. The Hercules Powder Company, well knowing that nitro glycerine had been used as mixed with gunpowder many years before, commeneed the manufacture of a high explosive, in 1868. compounded in that manner. But it was found that all these mixtures of the nitro-glycerine compounds were fanlty in two particnlars, viz:1 st. A tendency to decomposition when exposel to much summer heat, or long storage or use in very hot mines, etc.. in consequence of some small particles of nitric acid remaining in the nitro-glyeerine, rendering it more or less dangerous from decomposition. 2nd. The noxions fumes arising from this decomposition, both in storelouses and in the mines, causing nansea and headache and in some cascs weakening the quatity of the powder. As a remedy for the first, the carbonate of magnesia entirely nentralizes any free acid that may clance to remain in the nitro-slycerine, and eonverts it into nitrate of magnesin, whieh is explosive, and renders it so perfectly free from any liability to spontancous combustion that it may be safely stored, for many months, in the loottest weather or be transported through the longest voyages in the tropics, without tublergoing any chemical change. The remainder of the minture js eompounded upon strict chemical prineiples to neutralize noxious fumes that would otherurise be generated. See Migh Explosives.

HEREFARE. - In uld term from the Saxon, signifying the same as warfart.

HEREGELD.- A term derived from the Saxon, signidying : tax whicle was formerly levied for maintaininer an army.

HERESILIA. A term deriverl from the Saxon, signifying a soldiar who shandons his colars, or deserts the: service. Also written /Ie reslite.

HERETOCH. - Tlar ledular or the commander of an army. Tho term frepucntly matan a Constable or Marshal, and is sometimes written /tereteg\%.

HERETUM. - A conrt in which the ermaris or military retinus that wisally attomed the old British Fobility :mbl bishors w("Tr acoustomed to draw up.

HEROATE. A term derived from the Saxom signifying a tributo whieh was paid in mbeiont times to the [ortl of the soil, to conable hin to earry on war.

HERISSON. A formidable herlge or chevaux-alefrise. It is made of one stout beam fenced by a number of iron spikes, and which, being fixed upon a pivot, revolves in every direction upon its being touched, always presenting a front of spikes.

HERLIN SYSTEM OF FORTIFICATION.-This:ystem proposes an eneiente of detached hastions and javelins. and disides the town into quarters by double cavaliers erected behind the gorge of the hastions. The ramparts are eascmated witl a double parapet and a fausse-braye.
HERMANDAD.-An Association of the principal cities of Castile and Aragon, bound together by a solemn league and covenant for the defense of their liberties in seasons of trouble. These Confederacies were sanctioned by the Sovereigns, as agents for suppressing the increasing powers of the Nobles, and for maintaining publie security throngh the land with no cost to the Government. In Aragon, the first Hermandad was established in the middle of the 13 th century, and in Castile abont 30 years later; while in 1295,35 cities of Castile and Leon formed a joint Confederacy, and entered into a compact, by whieh they pledged themselves to take summary vengeance on every Noble who had either robbed or injured a member of their Association and refused to make such atonement for the wrong ; or uponany one who should attempt, even by the order of the King, to levy an unjust tax. During the long period of Anarchy in which the Cbristian Rulers of Spain were impotent to maintain order in their own Dominions, the Sonthe IIermundad, or Holy Brotherhood, bad presented the only check against the unbounded license of the Nobles; and Isabella of Castile, seeing the beneficial effects which an extension of the Institution was capable of producing, obtained the sanction of the Cortes for its thorough reorganization and extension over the whole Kingdom in 1496. The crimes reserved for its jurisdiction were all aets of violence and theft committed on the highroads or in the open eountry, and the penalties attached to each misdemeanor were specitied with the greatest precision in the codes of laws which were enacted at different times in the yearly assemblies of the depnties of the Confederate eities. An anmual contribution was, moreover, assessed on every hundred houscholders or vecinos for the equipinent and maintenance of the horsemen and the quadrilleros or oflicials of the Brotherhoond. Whose duty it was to arrest offenders and enforce the sentence of the law. Although the Hermandad was regarded with much disfavor by the aristocracy, it continued for many vears to exercise its functions, until the country was cleared of the banditti and the Ministers of Justice enabled to discharge their dnties withont hinderance from lawless disturbers of the peace. In 1498, the objects of the IJermandad having been obtained and publie order established on a firm basis, the Brotherhood was disorganized, and reduced to an ordinary police, such as it has existerl, with various modifieations of form, intil the present century. The laws enacted at lifferent times in the Juntas or AssemHies of the IIrmandad wore emmpiled, in 1485 , into : code, known as the Quaderno de las Leyes nuevas de la. Mermundud, which was first printed at Burgos in 1527.

HEROES. - In the Ilomeric period, Kings, Primees, Generals, Lenders, all brave Warriors, and men who excelled in strength, courage, wistlom, and expericoce. Many of these had, on acconnt of such yualitics a fabled origin, half hmman, lialf divine, and were homored, after death. with a kind of adoration or inferior worship. 'lluese heroes and demiarnls wore rocognized as the speeial matans or protectors of partieular combtries or cilies, and to them were raiserd temples umal altars. These examples of heroice character, beld mp constantly to the admiration and imitation of peoples, tended to strengthen their peculiar character, and to impress them with the greatness and glorg of conrage, contempt of elanger,
and nobility of parpose. Poetry ©xathed the heroic sentiment to suldimity; and pocms which coldernte. the deeds of horoms wre themselves termed herois. The imaginary time whern heroces anal other semidivine beinges lived on earth was eommonly called the Itarois: Age.

HERRISON.-In Jleraldry, the bedgehoge at charge allusively horne he fanilies of the name of harris.

HERSE. - In fortification, a kind of gate wr portcullis, with iron bars like a harrow, set in with iron rikes. pheed athove gates and lowerd, to imperf. the alvance of menemy. It is nowally hung by a rope amb is fastened to' it mentinet, which is cut in conse of a surprise, or when the first gate is forced hy a petard, so that it may fall like a portonllis and stop the passare of a gate ur my otherentrance of a fortress.

HERSILLON - A strong lam, whose sides are stuek full of spikes, which is thrown aeross the brench mate ly an enemy to renter it impassable. Sce IItrese.

HERULI.-A nomadic amal warlike Cerman triloe, who inhabited the morth shores of the Black Sean but afterwards divided into sections and wandered into different parts of Europe. They flest appear in history in the third century as taking part with the Gothe in the ir excursions against the eation prove inees of the Roman Empire. In the fourth eentury they acknowledged the supremacy of the Gothic King Ermancic, but when Attila, K゙ing of the Ihuns, made his descent upon (raul. they joine his st:mdard. After the overthrow of the hums, in which they suffered considerably, they established an organized and distinet Confederacy on the banks of the Danube, and under the leadership of Odoacer. assisteti in $4 \tilde{\sigma}^{\prime}$ in the overthrow of the Western Empire. Under their King Rudolph they, in the begiming of the sixth century, attempted the subjugation of the Longobarli, but were defeated and dispersed, some of them proceeding to Scandinavia, and others being ullowed ly the Emperor Anastasius to settle on the south bank of the Danube. In the time of Justinian some of them embraced Christianity. A large portion of them afterwards joined the cepide in their wars against the Eastern Empire ; but others fought with Justinian against the Vundals and East Goths. Towards the end of the sixth century they were merged intoother nations, and disappeared from historical records. The Heruli were bold. hardy, and extremely pugnacions. For a considerable period they retained their strong individuality, and presented a firm resistance to the influences of civilization. They are said to have offerel human sacrifices. Also writ-

shrke have, indued, retained theor lletman, and wem

 phayd a jremine at part in the wars with brance:
 pointed by the Coar and motimately the title wan made hereditary in the (irand buke. the heir 10, the Hironce. Also wrillen Atem"nn.

HEURTEQUINS.-Two pinco of iron resemplinge a knocker, which are phated over the trumions, or

HEUSE-An ironslowe, sonstimes called furlious. nttached to the yreaves of ancient armor, having an iron sole, and the uppere compossd of matil.

HEXAGONAL POWDER. - EXpriment: Wrore made at Fort Monroce in 8572 and 1×73 with what in knewn as hexagonalgrained powider. manufactured by the Messrs. Dupout © Co of Wilmingtom, Dul., which demonstrated its superiority for lacavy urdnance, giving low maximum pressures, with groul velocitions and great uniturmity of action. Sne of the emandes was selected for froof of the convertel A and :inch rifted guns in 18i4. Hexagonal powder has frecn employed since that date in trial and proof of all 8 -inch converted gums. The uniform size of grain, and their joblyhedral shape, insure great miformity in position and size of the interatices in the make-lup of the cartridge; this insures with a uniform density of grain a high degree of uniformity in pressures and velocities from given charges of powder and weights of projectiles. The drawing shows the shape mad dimensions of this pewder, the specitic gravity being 1. 2511.

The proportions if the ingredients of hexagonal powder conform to the United states standard, and up to the completion of the incorporation in the wheed-mill, it- manufacture is like that of ordinary powder. Meating-The whecl mill-cake is revolved
 teu Eruli, and Eruli.
hessians.-Troops belonging to Hesse-Cassel, Prussia. They have been fremently hired in Great Britain. particularly in the war of American Independence, when they were sold at $£ 40$ storling a head, ta of which was to be repaid if returned alive.
HETMAN. - The title of the Jead or Gencral of the Cossacks, now retained only among the Cossacks of the Don. From the earliest times the Hetman was clected by the roice of the assembled people: the mode of election heing ley throwing their fur-caps at the randidate they preferred. and the one who had the largest number of caps was dechared duly elected. The power of the Hetman was very great, and extended over life und death. Wheu the Cossacks in 1fitt, submitted to the Russiaus, the Hetman was permitted to retain his rights as formeris. The Empress Catherine entirely abolished the dignity of Hetman of the Ckraine, and substituted a Government consisting of eight members. The Dom Cos-
in a cylinder of wire-wove eloth, with woulen-halls, until it is mealed. Pressing-The mealed powder is then carefully pressed between horizontal metallic plates or dies. The powder comes wat in as theet or cake of polyhedral granules united alone their vertical edges. the dies being nearly porfect dodecahedrons. Graning-The preme-eake is paseed between rollers armed with hrass cutting teeth at an angle of from 60° and 120° to the axis. which (ont the eake into granules, their arosisection being almost lexugunil. whence the powder derives its name. (ilazing-The powder is the sent on the glazing-milh and glazed. Bruxhing-The poweler is next passed repeatedly througla the brnshing-machine. This consists of a frame with brusher revolving near an inclined phane along which the powder passes by the motion of the brushes. Dry-ing-The houshing ended, the jowder gres to the dry-honse where it is dried. The powder is now
minutely examined, its, specific gravity is taken, and a count made of the gramulation; a variation of two arambes to the pound being enongh to condemn the powder. Re-honshing und re-lrying-If satisfactory, the powder is again passed through the brushing-machine, re-dried, and then receives a third brushing. Pucking-The powder is finally packed in barrels and is ready for inspection. See Gumponciter
HIBERNIAN ROYAL SCHOOL - A School established in Great Britain for the maintenance of 350 children of military ofticers who are supported and educated at the School, at an expense of $£ 7,000$ per annum to the country.

HIDE-BOUND.-A term which, when applied to a horse, signities that his skin cannot be pulled up or raised from his ribs and hack; caused from bad keep, poverty, internal discase. The remedy consists in good grooming and diet, with gentle medicine and keeping the animal warn.

HIDES.-The skins of buffaloes. cows, bullocks, and other animals. Buffalo-hides are used in India for the manufacture of buff accouterments, belting of machinery, etc.i bullock or cow-hides for mending cartouches and priming-pouches, and a variety of other leather-work. Buffialo-hides which have undergone the process of tanning are used for covering the thoors of powder-honses and charge magazines.

HIERARCHY.-The essential element for the government and service of an Army is a military hierarchy or the creation of different grades of rank, to which different functions and powers are assigned, the lower in regular subordination to the mext higher in the ascending scale. It should be founded on the principle that every oue acts in an Army under the orders of a Superior, who exercises his anthority only within limits estallished by law. This authority of the Superior should he greater or less according to rank ind position. and he proportioned to his responsibilities. Orders should be executed without lesestation; but responsibilities should be confined to him who grives orders in virtue of the superior anthority with which he is invested; to him who takes the initiative in an order ; to him who does not execute an order that he has received; and to him who usurps a command or continnes illegally to exercise its fumetions. The military hierarchy is determinel and consecrated within its sphere of action ly: -1 . Grades of rank created by military laws; 2. By other laws regulating the exercise of razk ; 3. By military insignia ; 4. By military honors: and 5. By the military oath.
HIGH-ANGLE FIRE. - The fire from guns, howitzers and mortars at all angles of clevation exceeding 15\%. Sece Fire.
HIGH EXPLOSIVES. -The name given to the varioun nitro-glycerine componnds. The value of these
plosives in the United States, and the percentage of nitro-glycerine contained in the powder they rupresent. See Explusice Igent..
highland regiments.-The origin of the tust of these regiments, the $42 d$, has been given under the head Black Watel. The valualle services of this regiment encouraged the Government to augment the force; and accordingly seven other Highland Regiments have been raised from time to time -viz., the 71st, in 1777; the 72d, or Duke of Albany's Own, in the same year; the 74 th, in 1787; the 7 sith, or Ross-shire Buffs, in 1793 ; the 79 th, or Cameron Highlanders, in 1805; the 92d, or Gordon Highlanders, in 1796 ; and the 93d, or Sutherland Highlanders, in 1800. The uniform of each of these corps is the Highland dress, including a distinctive tartan. The soldier wears a coatce of scarlet, a kilt (in most, but not all, of the regiments), a plaid across the shoulders, a plume, and the other attributes of the Gaelic costume. In an army where otticers are appointed hy general competition, nationality is necessarily disregarded; but these Corps are those in which Scotch gentlemen most frequently seek appointments, and a large proportion of the officers are Scotch. Of the men. at least 79 per ceut. are Scoteh, 11 per cent. English, and 10 per cent. Irish. The regiments are recruited at Stirling, Aberdeen, Perth, Fort Genrge, and Lanark.
HIGH SEAS. - The open sea, including the whole extent of sea so far as it is mot the exclusive property of any particular country. The rule of international law is that every country bordering on the sea has the exclusive sovereignty over such sea to the extent of three miles from it- whore : but all herond, and which is not within three miles of some other country, is open or common to all comerics. The part of sea within three miles' distance is generally called the territorial sea of the particular country, or mare climsman. The distinction has little ciffect on the right of navigation, butas regards fishing it is otherwise. Thus, for example, foreign fishermen have no right to fish within three miles of the British coast without a license from the Crown, or unless some special treaty-as for example, the French and English treaty-has laid down other arrangements.
HIGH STEEL.-For the construction of canzon, steel may be divided into high and loon steel, the difference being that the former contains more carhon that the latter. High is very hard and has a great ultimate tenacity. It has but little extensibility either within or without its elastic limit; it is therefore too brittle for use in cannon, unless used in such large masses that the elastic limit will not be exceeded by the explosive force of the powder. It melts at a lower temperature than wronght-iron, and is difficult to weld ins its welding temperature is but little less than that at which it usually melts. See Stet

HIGH TREASON.-Treasnn against the State or the security of the Sowreign, whether hy imagination, word, or derd. In the United States, treaso: is contined to the actual levering of war against the

Onited states, or any wherine to their enemion, giving them aid mul confort. Sce: Traven.

HILT. -The hamdle of a rating instrmant, especially of it knife or sworrl. Mitad is aterm usiad in le ratiry, windicate he time ture of the hamdle of a sworl.

HINNY.-The hybrial protheral betwern at horse and a female atss. It is smaller thanamule, but the body is more bulky in proporiom to bere legs, and lis strength is inferior. It is less valuthe than the mule, although it is more docile. The himy is rare. It was described by some of the carlier maturalists ans a hylorid betwen the ox and the ass, and even Bution seems to lave cutertaineol this notion.

HIPPODROME. - Tha (ireck name for the place art apart for horse and charion races. lits dimensions were, necording to the exnmon opinion, half a mile In lengtla and one-eighth of a mila in limatth. In constraction and all important peints of arrangement, it was the commerpart of the Roman eirchs. with the exception of the armanament of the chariots at the starting-plate. lan tho hippordrome, the chariats were arranged so as to form two sides of an isonceles triangle, with the apex towarts the goal and a little to the rierht side. But as his Wonld have given the chariots on the left side a longer course than those on the right, the hippodrome was constructed with the right site fonger than the other. Tha start was effected be setting fre" the elariotson the extreme right and left, when they enme opposite the next two, by setting them frece also, and so on till all wre in metion. The hippodrome was abo much wider than the Roman circus, to allow rown for the greater mumber of chariots, for thongh we have no precise information as to the mmber that minally started in one race. we know that Alcihiades on one oceasion sent seven: Sophocles mentions ten chariots, as competing at the Pythian games; and the number at the Olympic games must have been considerably greater. There: is a beantiful description of a chariot-race in thomer (Ilinel, xxiii. 2f3-650). The golden age of the hippodrome was during the lower Grek Empire. The blue ant urean factions in the hipporme carried their animosity into all departments of the public service, and laid the foundation of that perpetual dismion which rencercd the Byzantine Empire a prer to every aggrasior.

Hícarrait. - In hudiau furm for a messenger, quicle, footman, or a spy. Sometimes written Fircarro.

HIRING OF DUTY.- lliring of duty is forbidden In all Armies. In the United States, the Articles of War provide that wo soldier, belnnging to any resiment, troop, battery, or company, shall hire another to do his duty for him, or be excinsed from duty, except incases of sickurss, disability, or leave of absence. Every such soldier found guilty of hiring his duty, and the perwn so hired to do another's duty, slaall be punished as a Court-2lartial directs. Every Nou-commission ed Officer who conniven at such hiring of duty shall he reduced. Every Officer who knows anel allows such practice's shall be punished as a Court-Alartial may direct.
HIRDINI.-A meple of Italy who inhabited the south portion of Sammium. They have heen onnsideted by some autiorities as morely a sammite tribe, while by others they are Iookel upon as an independent imtion. The country ther inhalited was the wild and monntanont district iraversed by the Sabatus, Calor, and Tamarns, tributaries of the Tulturnus, and on the east side of the Apemme ridere, the upher contse of the Autidus. In the eatly history of Rome the Hirpini are found didentifring themselves with their Simmito neighbors rigainst their common fones. They seem to lave becn snbdued in the carly part of the third century в. с., a二 in 26 b. c., benerentum, the key of all their military postions. was colonized hy Roman setters. They appear in history for the first time
 War. Ravalting frnin their odd Compurars, they joined the ('arthaginian Invalers, and thomerh they wire: unable: toratake the stronghold ot lianewor tum, they kept faithful to llamibal till rlefoat a the Metaurus restorod the Empire of Laly to his oppenents. In the yar of that event the Hirpinis mate: peace with their old maters by betraying into thoir hands the trarriwnons of their Allios. From this time till the outhreak of the Social War, the Itirpini secmed to have continucel seandfast in therir at legiance. On that orcasion, lowerver, they ert the (xample of rewolt to the Allion, ambl might have lwe conm formitahle rnemies, hat not ther rapin? -uwecsess of Sulla induced them tor repair their error hy a complele submisuion. At the chose of this war the: Hirpini ohtainel the franchime, amd lo, met asain appar in history as an independent forple. Their towns were bemeventum, Aoculamum. Equus, That cus, Trixieum. Murguntia, and Aquilonin.
HISTORY.-Military history may loe detined at a narrative or dewription of the several military tramactions, as campaigns, hattes, sieges, marehes. .etco. of armias. A thorongh kiowledge of this hranch of history is neecssary to make the military man ath in his profuscion, self-reliant, and capable of commant. It is inderd the secert of many a Commander's surcess in the varied positions he is placed in his carcer, as in the study of military history he times : procedent for esery stratogic emergency, and an so lution of the many dillicult prohlems in the art of was, whieh great Gemmals have overome. The study of military history further tomes to create high aspirations after military ghory, from the pernsal if deds of valor performed by imen who have devored and virtually sactificet their lives for the geose of their country.
HITCH.-The name givent to eertain knots, suchs as the timber-hith elme-litsh, and others. Thesw knots are very valuable for artillery and engincer purposes, the advantege being that, as Inug as the strin is kent upon them, they never give way Hitches may be described as orerlaying a part of it rope with itself in such a manner that a loop or loops are formed to jam on cach other. See hrute.
HITCHCOCK FORGING.-This system of forging is designed to insure sound welding in the fabrication of large cannon. The irnn is heated in a reverluratory furnace, to avoid its contact with sulphur and other impurities of conl. The gun is forgel of rings of wroughtiron, or low-steel made withoat welds, and upset or butted porether, as hy Ames's process. The rings are so formed an to be inited first in the center, that the superfluens cinder may he suluezod out. An anvil is seated on the pistoin of a lyydrostatic press. so ats to be lowered as the succissive rings are added. A furnace is situated between the: anvil and a steam-hammer, and so arranged that the rings project into it from below, and the hammer arops into it from abowe. The ring to form the: muzzle of the gun is latid upon the movable anvil and projected sufticiontly into the furnace to allow the flame to raise it to the welding leat. Meanwhike in another part of the furance, the rings are luated to wehting in the same time, ly proportioning the heat, by means of dampers to the relative bulks of the two parts. Without removing the parts from an atmesphere in which there is riery litthe if any naygen. they are hid together and instantly welded by a few strokes of the stam-hammer. The anvil is then lowared by the thickness of another ring, and the same process is repeated.

Althongh the gum may loe of any size, the parts actually zuited at one mperation, inay be made so light hy reducing tharir thickness, that the pre-wne: of a hamener of moderate weight will be-adespatco And when the whole operation of upacting is confined to one joint, exactly the requisite presure for that joint can be applied : and there is no fuar of injuring other parts ly atting it upounclly, herames
the mase of the gun below it is cold, and forms a rigid pillar-practically a continuation of the anvil. It would appear that all the combitions of sound Wedling may thus be attained, if the process can be practically carried ont. This proress was intemded especially for fabricating guns of low-steel, the rings to he macte withont welds, hy being originally cast in the form of small thick rings, and then rolled, in a nonditication of the tire-rolling machine, to a larger diameter and a smaller section. This treatment would develop an endless grain in the ringe, in the direction of the circumference.

HOBBLE-HOPPLE.-A fetter for horses, or other animals, when turnel out to graze-chiefly used in the plural. When in the vicinity of the enemy or horse-thieves, the stock may be permitted to graze,

and at the same time be secured by means of the hopples or side-lines. They are likewise of inestimable value for use on animals prone to stray far away from the camp or herds. The drawing shows the usual form of their construction, the fetlock straps being made of a thick leather, the inside smonth and soft, and the sewn edges uppermost when on the anmal's legs. For military purposes, it is deeidedly hetter to have the leglets made of steel, with a light comnecting lock and chain of the same material. Leather hopples deteriorate in sirength upon exposure to moisture and the weather. and may he readily cut and removed by the enemy or robbers. Steel hopples have the advantages of being less cumbersome, much more secure. lighter in weight, and can be placed on or taken olf the animal with greater facility, by those having the means of unlocking them. In the absence of this very important equipment, the soldier may successfully hopple his horse with a stirrup-leather by puting its middle rombl one fellock, then twisting it half-ildozen times, and finally buckling it round the other fetlock.

HOBILERS. - An inferior varicty of cavalry usent or raised in the reign of Elward II. They were stationed at Portsmonth and at other maritime places. and bound to keep a little flag for the purpose of griving notice of invasion. They wore an aketon or armor of pates, a hascinet. iron qumbleto, a sworel, knite, amd a lamees Also written Ifoheliom.

HOBITS.-small mortars of if ur $\&$ inches bore. mennten on gun-earrisues; they were in use before the howitzer.

HOCHE BOS- - ©ertain soldiers mang the anciants. who were so called from their hamdishing the pike. This 10rm has liknwise heen applien to the pike itself.
HODOMETER. An instrument for measuring the distance travelod over by any converanore and ronsisting of an arrangement of tonthed wherels, like (lock-work. lixed on whe side of a machine. 'mald commected with the axle, from which motion is commumiatell 10 it. An index :mal lisal show the exand distance the velicle lats traveled. See ofmeter.

HOG-GUM.-The name given m the West Indies to a resinous sulstance, which is there extensively used as a substitute for pitch to tar boats and ropes. also for strengthening plasters, etc., and internally as a diuretic, laxative and stimulant medicine. It is still disputed what tree prodnces the true hoggum : some ascribing it to moronobell coccinea, of The natural order guttiferep some to rhus motopium, a species of sumach of the order unucardincea; and others to helrigin bulsamifern, of the order amyriducera. The probability scems to he that all theseand perhaps other-trees yield resinous substances of very similar quality, and commonly designated ly the same name.

HOIST. - 1 . The perpendicular height of a thag, as apposed to the Hy, or hreadth from the stadf to the cuter edge. 2. A machine for boisting ores, metals, castings, workmen, etc., in mines and fomdries. A very primitive hoisting-machine, which resembles the modern capstan. is used in the Convent of St. Catharine, at the foot of Mount Sinai, to raise travelers to a donr in the second story. This is a somewhat inconvenient and tedious operation, but is used in a land where robbers go on horseback. It is also worthy of remark, that the people of the land have no idea of the value of time, and so set six men to help another in at the door. The obelisks in ancient Egypt may have been raised by gradnally lifting the apes and seotching up by introducing earth beneath them. The stonelienge blocks were very probably raised in the same way. When Chersiphon built the Temple of Ephesis. in the time of Amasis of Eerypt, he raised the architrave by surrounding the colnmms with bags of carth, which served as an inclined plane.

HOISTING APPARATUS. - In designing and milding machinery for hoisting and transferring light loads, many of the same problems are presented

Fig. 1
Which oceur in the construction of havy crimes, and the experience gamel in one is avalable in the other. T(a) much has heretafore been left to " rule of thamb" practice in the designing of light hoisting machinery, and frequent accidents of lifo and limb stili needlessly uccur frem continued adherence to
old types of mandines in whicle sufaty, luth of person and loml, hejrenden upon the car and intelligroner of the operator. It is prssible to st romstrom hambhoisting machinery that acrofome arising from rartlossmesa in its use ares prantionlly impossible: Such construclion involvos mo sarrifior of simplicity or etliciency, and no materinl incranse in cost. Yo atllare to the uld, therofore, is to assumb nombless riskes (t) property and mojustifiable risks to luman life. The risks reforred to arise rhindly from two rituses; firat, at deficianey of material in parts sulojert to
 the load suspented, and of mon-antomatir: lirakes 10
 kind or amont of matorial, arises from makilfal designiner and from the witlort after champness. The secomel is atherent in the flemonts of mestandisu
 mev and belter deviros, so ronstructed its to he antomatic in all functions where rarelesiness is pur tent to probluce harm.

The active operation of hovisting is usuably free from danger in any machine of sumberm strength. It is the deser ut of the loarl. whether by intant or ly aceident, that involves danger. During tha ate of Inosting the operator slowly expunds power, whireln is stored up as latent enerey in the mase he lats raised, und which, if expentider oriven lack sudlenly, is in falling, is (:lyblly of working serious mischief. The merhmism shomlal, therefore, ho so conatructed that the load, when lificel, slable be sustained imblopembently of the nperator, so lhat should he rease his etlorts, or even sublubitly let en the rope or hamdles, the load will simply rease in move and will remain suspemed. ['nder meir[omonstances shonlal the doand be permitted to descernd by gravity waided ly the comtrolling hand of the operator. This prindiple of construction, namely, the control of the luad, at all times and umber all combitions, by reliable atitomatic doviees. is embbodied in mill of the lonisting applianows deseribure in this work, dexigned and built by the Yule andl Towne Nanufacturing Company.

Winding-drums or barrels shankd have a diameter and length such as will enable them to receive the whole length of rope or chain to be banded in by winding it upon their surfare in one coil, withotit overlapping. In large eranes the loatl is usatally carried npon four, six, or even eight parts of rope or clain, so that the length to lewomm up amomats to four, six, or eight times the eflective hoist, and the dimensions of the harrel thus leenme very large. Moreover, this barrel must either lie ratased totravel longitudinally on its shaft. so that the rope or chain as it leads off slall be alwars in the center of the crane and hoisting mechanism (which methor of constraction involves a serious complieatime and greatly widens the space occupied by the gearing). or the rope or chain, as it uncoils. be permitted to vary in position from one end to the other of the barrel, in which case it is nearly ont of center, thms inducing objectionable lateral struins und citheing greater friction and wear. Fig. 1 shows a simple trrangement of gears and crank, winding the lifting rope on trum or eylinuler. It may he easily fastened on any post, or piart of a luiluling, or used in connection with a crame as shown.

Chain-wheels require a width only slightly qreater tham a single part of the clam. amb at diameter merely sutficient to give the proper engagement with it. so that both dimeasions become much amaller tham in a winding-barrel, and the total pace orenpied is but a small fraction of that required for the latser devies. The chumarherl is fixed in dirert line wita the cham, and all lateral strains are avoided. While the that bearings afforded for the chain by the pockets preserve the shape of the links and protect them from beading strains. The slack chain, after passing over the wheel. falls into a proper receptacle below. From this analysis of the facts is derlured

 (as contrulisuinguishol fron a winding harrol) is the: hest form of olevice for lambiner in and pisyiner ont the chain; and, therefore. that the lest methoul of rame

 mast lee male to suroure rhains of purferaly whiform pitch. (hain-making is ont" of the fuw rumanimir Hammal tralaw in which monlorn machanery has not
 imbivilual workman. Many allompts have Jemon mate (1) produce chains by matrlanory, mal alabongh
 -hatin lats yot horon prorluced having sulliribent reliability amd mifomaty of equality lo adaph it to nace in eranes. The all-imporiant operution in clatin-matking is the proresse of welling the links. and in this the persunal ement seens indisponsable to a perfirt result, wo machinw, howevor perfect, taking the place of the skill thal intelligenee of the workman.

As used in the Weston (ratucos, the pitclt-chains uf the smaller sizes are made antirely of Norway ircm, while for the larger sizes pither the Sorway iron or Ameriath iron of high clantionty and ductility. is nsed. Earla link is forged and welded with great

Fis. 2.
care, and much more time and dabor is expentod ous this part of the work than is the case with common clain. All of this pitch-chain is made nuter a patented process, which consists in forging the chain slightly under pitch, after which it is first cleaned ind briohtened by "rattling." amd then stretched in a special machine to the final rauge or pitch. The first process canses the several links to come into more perfect contact or bearing by removing the sale and other slight asperities from thasurfaces. The secoud process assists in bringing their adjacent surfaces into closer montact. tends to strengthen the sides of the links, and gives the iron a slight initial set br straining it to a degree snmewhat greater than that whieh will he cansed by the load which it is intended to carry. The final -t+p) in the process is a careful and rigid inspection of cach link of the chain and the removel of any which are at all imperfect. As a result of this triatment, a chain is obtained which is accurately uniform in
pitch, and which, when used within the intended limit of load, will not stretch oralter its piteh. It is helieved that the chain thus prodnced is more perfect and reliable than any made heretofore.
In determiaing the diameter of iron for the several sizes of chain, those sizes have been adopted which whll limit the stress upon the links of the chain to a maximm of from 9.000 to 10.000 llis. per square inch of cross-section when carrying the full load. As the pitch-chain was designed primarily for use in the Weston Differential Pulley-llocks, in which the load is always carried upon two parts of chain, the nominal capacity of the several sizes indicates in each case the maximum load intended to be carried upon tre ports of the chain. Λ siugle part is, of course, capable of carrying a load of one-halt the amount given in the table. The following table gives the dinmensions of the several sizes of the pitchclain above described.

*The upper line indicates the load which can be safely carrierd on two parts of the chain. i.e., ts uset in a one-sheave tackleOnlock. Each part of the chain thus carries one-half of the total lond. If the foad is to be carried by a single chain, sellect at lond If the load is to be carried by a single chain,
chain of a nominal capacity of twice the intended load.

Fig. ? gives a rectional view of a double-chain screw hoisting-machine.

Many indyantages acerue from the use of worm-
of antomatic brakes where necessary. In wall proportioned worm-staring with cht tecth, friction cannot be relied upon to hold a suspended load from ranning down, but a very moderate brake resistance applied to the worm-shaft will arcomplish this result. If a load suspended through a train of spurgearing be allowed to run down, it will do so at an accelerating velocity approximating to that of a falling boly. With the worm-gearing, however, very hithe acceleration takes place after certain speed has hecu attained, and gearing of this kind thus becomes a safcty device which prevents undue accelcration of the load even wher mming free, and i, a most valuable means of preventing aceidents, hoth to the mechanism and to thone operating it.
The ordinary ratchet-wheel is a dise with teeth or indentations on its periphery, and in practice it is employed in combination with a pawl or a dog arranged to engage with its tecth in such a manner that the ratchet-wheel, being attached to at rotating shaft is entirely free to revolve in one direction. luat, by the action of the pawh. is prevented from rotation in the contrary direction. Thus arranged i^{t} is generally attached to the primary shaft of a winch, or other hoisting-gear, so that, while it onposes an resistance to rotation of the shaft in the direction mecessary for hoisting. it effectively prevents motion in the contrary dircetion. When it is desired to lower the load the pawl is thrown out of engagement with the ratchet-mheel, and the load then lowered by turning the cranks backward, or by letting 5 of the cranks and controlling the descent of the load by a brake applied to the shatst.

Both of these arrangements are dangerous, and

Fig. 3.
gearing in the construction of histing machinery, are proluctive of serious accidents. Where lowerAuong the se may be montioned its compacturs as compared with spur-wering, the ability to oferate shafts at right angles wempls other without resort to bevel gears, and great lacility in the application ing is ellectecl hy turning the cranks backward with the pressure due to the load upen the m, it frepuently hapmens that a heary low overeomes the operator, in which eqse the cranks lecgin to revolve with great
vioknce, imd often strike the eiverator hefore law ran escape: From their reach. What te a hrake is uswal. there is less danger, hut even the safe deacent of the lonal is contingent unon the skill with which the hrabe is used. and ansy lack of skill or wathlouhers will result in a rapinl thesemt of the lomat. In this ease it the motion is not colerekent the lom mave descemt son rapiolly as in canse damare, whiln if its motion be subdenly arrated by the lrake, the shork and strain thereby induced are utt to danage the cranc.

A Iriction ratchet is one in which the action of Iriction is substituted for the treth sand pawh of the "ommon ratehet, so that the retaining action of the ratchot will take plare instantly and in all positions. A safety ratchet may le adotined ats ane in whind lowring of the loth is effected by reversing the motion of the shaft to which the ratele is athached without any disengagement of the patwl or its anditute, the construction beines such that so form ans this barckwad motion is continued the land will deserond. hat that when it is discontimed the load will antomatienaly come for rest, from which it follows that with a safety ratchet the cramke or hambles of at hoisting-machine may he "let go" at any time. "ther in hoisting or in lowering, the rathet thereupon antomatically hobling the lowd suspended and preventing " rmuing downe" on deserent of the toad. The areat desirability of wo importamt a result has fong leaterenceded, but most of the devices heretofore juvented for its acomplishment have beren so complicated, or so mecertan in ation, as to tind litLe fayme.
In cranes operaterl loy power one or mome chutches are essential to the conseniont operation of the mechanisin. Expericace has demomstrated that the
and war upon kevs and feathers. whirh is a wrimus defert in most hointine-enginer, can-ing the shatlo
 all hard daty, such ar pile-driving, habling loge hridere-huidding, am! many other kinde of work where mences are liable (i) be hroken bo suldom
 the ropes are safe at. and than will ship, and sabe Un wheme and eraring frombrakinge. Tha motion
 " ${ }^{n}$ werful strap-hrake we "an hold or bown rare-

HOLD. - A place of security ; a fortified place. fort,
 sion ter holed, is frergucntly employed to motan the fart of lreing in military poncestion of any place: whith toltold ont moans to maintain any plare. ground, we., against ant 4 memy.
HOLDALL - A portabla casp for holdinge cmallar. ticles repaired by soldiers. Leather buge or caston are oremerally used for carrying implements for the "ef(aipurent of guns, and arok known ans "off" and " wear." Earch has liaks at the hack for hamgine it on the sathale.

HOLDFASTS.-The most essemtial subjecte (o) her considered before any heary weight in moved or shaperuled, are the nature and comdition of the sormeng prints. togecther with the strain that will he brought on them. Natural holaffasts-such as the giors of chacrates, pintlos for guns of position, tre-s, wis. naty frequently be found, around which strajis mazy le placell. In such cuses all corners shoukd he prostectent by wowd. or the roje itself parceled tornevent chathag. In places where holdfasts can le driven or sunk, the ordinary ficket-post can be made use of.

Fis. 1.

Fig. 3.

Fig. 4.
best and most reliante clutel for this parpose is that invented and patented hy Mr. Thomas A. Weaton. M. E., and first fully described in a paper read by him before the British Institution of Meehanical Enciuecrs. The esseutial hasis of the Weston clutch or coupling consists of two series of frittion dises arranged aiternately with cach other upon a common axis, one series heing carried by one shaft, and the otherseries connected to the other shaft or wheed which is required to be coupled with the first shaft. The great aldantage arising from this alternate arrangement of the dises is that the frictimal wficet of any pressure applied to couphe them is repeated as many times as there are dises in the two serics, that is. the number of all the dises is a comstant multiplier for the friction promeded botwern a single pair of the rubhing surfaces hy any given presempo.
A most perfect aud sul effective hoisting-engine. made ly Messes. Frishie d Cro. of Philadelphia, is represented in Fig. 3. I distinetive feature of this eugine is the manner of connerting the spur-gearing to friction-drums by bolting directly to the rim of the drmm. This does away with alliorsion of the shanft

Fig. 5.

but only when light weights have to he clealt with. In seouring to a holdfasi from which it may leerome necessary to ease off, at least one complete turn must be taken before making fast : otherwise, when the strain is on it, it is difticult to cast off. Precise rules cannot he lain fown as to the deseription of hoblanast best suited for particnlar aperations. but it should be forne in mind that it will save much time and trouble to make it in the first instance ronsiderably more secure than seems to lue absolntely necessury, as when a hohdfast once hegins to give. it is diflicult 10 strongthen it. Whatever holdfast may he used, the strain slouk be taken hy the "ntire structure at moce: otherwjee it might give wat in detail when it woukd not do so as al whole. The drawings represent some of the methods of customary holdasts, using pickets, anchors, heave camom. cic. Whan the strain to he mstained is very great. the holdfast shown in Fig. 2. may he used io nulvantare : $a b c d$ is a trench from ion to fiftern feet long and two to four feet in width and depth. If is dug in a direction perpendicular of the strain. Several heavy makes are driven into the trench far
enongh from the side to admit jlanks heing priaced between them and the earth. A heavy beam, with the bight of al chain around it, is then laid on at the bottom of the rench against the stakes, the ends of the chain being brought up between the planks along a trench, rising gratually to the surface so that there will be no tendency to lift the beim up when the strain is on it. The whole trench is then filled in iud rammed.

HOLLOW BALLs. - In military pyrotechny, many varicties of balls are male, ditfering in purpose from lombshells. but, like them, filled with ignitible romposition. They are used either to give light, to produce very dense smoke, or to ditinse a suffocating odor. Some of them, although designated bails, are not ghombar in shape. Light-bulls consist of canvas stretched over il skeleton-frame, and phinted: the frame is filled with a composition of saltpeter, sulphur, resin, and linseed-oil, rammed dowin hird ; aud is provided with in fuse, the length of which determines the time that will clapse before the composition ignites. These light-balls weigh from is lbs. to 70 lbs each, according to their size. They are jntended to give ont a brilliant liglat, which may reveal the operations of the enemy, during nighit, at a siege or in the field. Smoke-bulls are made of severil thicknesses of paper, shaped by means of a crobular core or a monh. They are filled with gumpowiler, saltpeter, powdered sea-coal, Swedish-]itch, and tallow; and are calculated, after being fired off, to seud out a deuse smoke for nearly half an honr, in order to blind or incommode the cuemy. Stink-bulls are filled with a composition which, when ignited, diffuses an odor almost intolerable. Some of the contrivances of Captain Norton and other inventors at the preseat day, are extensions of the same principle as these inflammable balls. It may here be irlderd, that most of these projectiles, especially light-halls, and smokebaills, are fired from mortars rather than from guns. Sece Pyrotechny.

HOLLOW OF THE ARM.-An expression for the slight inclination of the axle-tree-arms downwards (when the wherels have dish), so that the lowest sjooke of each wheel may be vertical.
HOLLOW PROJECTILES.-Under the head of Hollow Projectiles are included shells for guns, howitzers. and mortars. These are usually male of castiron, and are classified according in the diameter of the bore of the piece or their weimht.

A shell is a hollow projectile filled with gumpowder, which is ignited by a fuse at the required moment, the bursting of the shell causing destruction by its explosive force and by the fragments and, if the object be combustible, by settiner it on firce. The thickness of metal must be such that the shell may contain as large a hursting charge as possible. but that it be strong enough to withistand the shock of the discharge within the bore of the gron. The thickness of metal in a spherical shell is abont onesixth of the diameter, and the weight of the sluell is about threw-fourths that of the solid shot of the same ralibur. The shell of a ritle-gum being elongated, is, by giving it a greater length than the shot, brought ial, to the same length as the latter.

Mortar-shells are fired from mortars at high angles, booing intended to fall upon and set tire to buildiugs, vessels, or other rombustible constructions; to disstroy viarthworks, or by their great penetration before bursting, to explode magaziases protected from othor projectiles. Thay are fitterl with two lugs, piaced one on rith side of the fu\%e-hole whicle sorve for attaching a pair of shell-honk. The fuzeholes of mortar-shells are larerer in diamotor tham those of other common shells, and they are not connter-smak or boucharl with composition, See ク'oojutiles and Shuls.

HOLLOW REVETMENT.- When arches are constracted from one connterfort to the next. the name hollom or conenter-arefled rexeturnt is given to the
disposition, which is both excellent and economical for hierh scarps.

HOLLOW SQUARE. - The form in which a lurly of foot is drawn ut] with an empty space in the middle for the colors, drams, bagrage, etc. A body of troops formed into a squad to resist the charge of cavalry on sritical occasions.
HOLLOW TOWER. - A rounding made of the remainder of two brisures, to join the curtain to we orillon, where the small shot are placed, that they may not be so much expored to the view of the enemy.

HOLSTER. - The leather case whiclı holds the pistol. IIolsters are either worn on the belts, or are affixell to the pommsls of the sarldles. In the latter instance, they are frequently covered with wool or fur, to prevent injury to the rimers in the evant of leing thrown forward upon them. The drawing

shows the form ind construrtion of the regulation holster. In the English service, lancers and Noncommissioned Oflicers of cavalry have two holsters ittached to the front part of their suddies. Wallets have been introduced in lien of holsters for the Staff and certain regiments of the service.

HOLY ALLIANCE. - I league formed after the fall of Napoleon by the Sovereigus of Russia, Austria, and Prussia, nomimally to regulate the relations of the States of Christendom by the principles of Christian Charity, but really to preserve the power and influence of the existing Dynasties. Nost of the other European Rulers aeceiled to it, aus? the treaty was formerly made public in the Frumbiord Journal, February 9,1816 . It was in virtue of this league that Anstrin, in 1821, crushed the Revolntions in Naples and Piedmont, and that France, in 1893. restored Absolutism in Spain. Subsequently, both France ant England suceded, after which it became a mure nominis umbro. A sperial article of the treaty exeluled forever the members of the Bonaparte Family from any European throne.

HOLY LEAGUES,-The name ingulied to certain political alliances in Europe ; the principal are as follows: 1. In 1511, between the Pope, Spain, and Venice, the object leing to expel the French from Italy. 2. In 1538, hetween Charles. V. and the Roman Catholic I'rinces of Germany in oppoosition to the leachu of Schmalkome. 3. In 15071, the Pope, Spain, and Venioe aqainst the Turks. 4. Of the Guise family, the Pope, Spain, and the Fromel larliament against the Huguenots. 5. In 160!), betwern the Pope and the Roman Catholic States of Sasalia and Baviaria. 6. In 1684, of I'olimed, (icrmany, and Tevice against the Thrlis.

HOLY SEPULCHER.-The Knights of the Joly
 thind. prohably, hy P'ope Alexander Vi., for the gharelianship of the Holy sepmleher, and the reliof and protection of pilgrims. The Pope was oriminally the Grand-mastur, bui ine subsequently ceded
 uleher. The Kinichos must, by the ruies of the Order, be all of noble desernt; they were bromel to
hear matss daily, forght, folive, amt to die for the
 linighte had the most mansual amel extraordinary
 from taxation, conld marry, and yet possarse remorels proproty, legitimize bastards, rma rent blown and bury tha botios of criminals who lamd bocel hanged. On the recobture of ilomsulem by the 'lineme, the Knights retired into ltaly, anel setthod at l'erneris. Sfer a temporary mion with the Hospitaters, tha* Oreler was reconstrueted in 1814 botl in France and in Polamo, amb is still in "xistonce within a vary small circle ol Kinights closoted by the Cruarlian liather from the most respectable jilgrims whan eome to dernsulem.
HOLY-WATER SPRINKLER - I mume applicel to the theil, loth 1rom its shap, and from thre drops of hood which starterl from those upon whom it was 115 (4).

HOMAGE-Tle survice or a show of resperit dace frum a knight or vassal tohis lorelin femdal times. The word is derived from the form of expression used in doing the service, which was-jon dereigup rostre home-I leeome your man. Since the almolition of fomures, the word has no shbstantial legral meaning in the law of lingland, exerept in a limited sense as to copylinleds, to denote the kind of acknowledement mande by a tomant tothe dord of the Manor. 'libe llomage Jiry consisted of the tenants who did homage, and their presence was necessary to attest some acts. Homaginem dedrlare was the expression, now ohsolete. signifying a solan renunciation of homage or foalty to the Lord, and a defiance of him. The word hosmage is not usad in Scoteln daw, though tha feudal system is not ohsolete in Soothal in many other reprets.

HOME.-In artillery, the term used to cexpress the position of a shot when the gon is lobded. Thus, "Is the shot wedl lome?" is a common expression amonarst artillerymen.

HOMICIDE, - The killing of one laman hoing lyg another either immocently or felomionsly. To say that there has heen a homicide does mot neceswarily imply that a crime has licen committed: for thonerls every morder is a homicide, every homicide is nut a marder. The law permits a man to kill amother in self-defense when his own life is assatiled or threatened ; but the danser must be real, or in good faith and for sound retasons deemed so hy the person threatened. I man may lawfully kill another, after due warning, in defanse of his property or to prevent the escape of one who has committed felony. In Otticer of Justice charged witl the duty of arresting a criminal or with the performance of any other lawful act, may kill al persun who resists or attempts to thwart him hy force. A person charged with felony, sceking to escape after arrest or any one flecing to avoid capture, may be lawfully killed hy an otheer if le cannot otherwise be taken, A person engaged in committing a felony may be lawfully killed by an eyowitness if there he no other way of preventinor ihe crime. The keeper of a prison may, if necessary. prevent the escape of a prisoner by inking his life. In all such cases, howerer, it must appear that the killing was resorted to as a last alternative. Justifiable homicide is the termapplied by law in all such cases. Where nue kills another by accident, without any intention to do him injury, and while exercising a proper degree of caution, the law deems it an cxcusable homicide; as, for example. when a man driving in the highway in the darkness runs over and kills another without knowing it, or, discovering the danger, has yet mo time or power to avert the calamity. The line between justitiable and exsusable homicide is vague and, in a legal sonse, not important, since neither the one or the other exposes a man to pumishment. In some of the States of the Luion no distinction is made between them.

HOMING PIGEON. - Tle result of flo juvoctieation

 lave been ased fo great advantars, aml whon tho.y have beron the only means of romanomicition, llare scem to be obstaciles to theor cortain ant systematio How in tho timu of actual hostilitios. It js a fuct that, despite 1 he greatest cirro in traininge tho jicernm somelimes fails at the ceritical momornt. When it sumereds, however, the stake is fenerally vory great. To attain onm sumeress it may bo wortla while to suffer many failures. For, this reitoon, perlialis, thume Nations who dovote most time amilmoncy fo the perfecting of their military systems, still sy: atically train large numbers of pigoms for inse in War. When laris was abont to be bosiecol in $18 \% 0$, the pigeon-fanciers in that rity surgestiol to the military anthorities that the pigeons within the dity limits be sent ont, and hat others from the prosvinetes be sent intos the city. The latter projensition Was acted upon, but the former was not, until batloons were used, when thare was an "pportumity 10 scoml ont pigenns in the ballowns, it being interiled that the birds shonld rifurn with masesseges. J'igeons had been drectared contralmald of war carly in the Franeo-] Tussian war of 18\%0. There was tiken out
 fifty-surven omly returned. These hore let1ors, photographed in finest characters upous arops of [aper su minute that 200 of them weighed maly one-eiglath of a grain. Newspapers, reducee! lyy plocotography to mieroscopical characters, were cuirried by then pigetons. The magic-lintern wasmade nse of to ent harer the letters, which, hirown upon a prepared surface. were read by the public. These ist biruls were not the only ones sent into Paris during the siege A pigeon post service was estahlished at Tours, for the purprose of convoying messages into the Capitol. The regular rates for this servire made it possible for one bird to carry $\$ 500$ worth of laspatches, but, during the latter days of the siege, the Germans introdnced trained loawks that were newd to destroy the pigeons. These instances show snf-

Fig. 1.
ficiently, that while the pigeon has been nsed for carrying messages. many caunea-some under-tobdl and others not understond-mite to make them uncertain and untrustworthy means of communication.

The reason why the pigeon seeks its home, the fact that makes possible its use a carrier, has never been satislactorily given, and its discussion involves the most interesting inguiry eonceruing the hird. Some have helieved the action of the biril due to instinet, others io training, while one of the most f X perienced and practical Frencl fancicrs has recently advanced the theory that the pigenn is guilend in its flimht by currents of electricity in the air, or by other atmospheric inthences; others again, ditfering frum all these, believe that instinet, intelligenee, and carefnl training, combined, accombt for the action of the birds. What is instinct? To this thete may be mauy answers, but when considered in connection with the thight of birds. instince is illnatrated by the stork, which, traveling only at night, flies Forth in the spring and returns in tho foll. Swallows and wiht greese, and many other bisds, nove Sorth and

South at the same seasons. They do not, howeves, confine all their movements to the night-time. All thate move by what we term instinct. Whatever that may be, it is all-powerful in its influesec on the birds. But it is not so with the homing pigeon. Experience shows that the flight of that bird is not rertain unless it has been irined, ind unless atmospheric conditions are favorable to its Hight. Notwithstanding this. however, there are sometimes eircomstances that give color to the theory that the bird tlies by instinet alone.

The message should be adjusted to the middle feather of the tail, first shaving both sides to within an inch of the end: then lash the mossage. With waxed silk, firmly, so that the bird canuot pick it off. Oue person must hold the bird to prevent it from fluttering while another attaches the message. Mes. sages should be written with lead pencil (ink runs if wet) on a very fine tissue or manifold paper, and folded very tight. Messages should be sent off on several hirds, and if of very great importance, on tem or fifteen, so that some will be sure to reach the fort. The messure on the middle feather of the tail will not amoy the bird, for when he is at rest it folds on top. It will not do to tie the message on the legs. as it is necessury for the bird, in lyying. to hide the feet in the breast feithers so as not to offer a resistance to the air. Fig. 1 shows the best mammer of holding the pigeon, when attaching the mesmage, of when lianding the bird for other purposes.

There are numerous varieties of looning pigeons remarkable for their powers of thight and their attachment to the lome in which thes have been reared and tirst flown. D'rominent amongst these

Fis. 2.
are the Dragon, the well-known flying Tumbles, and the Skimmer, or a mongrel race butween these two lireeds. Among the pure breeds that can be flown good disfances may be mentioned that called the Owl pireon. But the rarieties in whieh this homing faculty is developed to the highest degree is unguestiomably the different races of Belorian hirds. which are termed in England by the general name of Antworgs, and in Belgimmare known as Smerles. Cumulets. Demi bees, ite. Of these varieties the smerles are the most important. They are rather small birds. and kook very much as if they lad leeen originally bred from a rather eonrse blue owl pigeon, crosset with a Blus Rock. The hend is arched and the skull capacions, indieating a full development of brain, and offoring : striking contrast to the fat narrow skill of the Finelisil faney ('irrier. The most strikiner charateristic of these hirds is the dirmmoss amd erreat loreadth of the thiglat feathers of the winge. These overtap exach otborto a great patomt, and afford a strong tirm wing with which the thight is ured. 'Tlw keel of thw brenst-hone is deep and well covored with strong muscles: ant thore is altoretarer an abseme of any otlial or latge development of any part not used in theglt.

Of all the pigeon-tribe the Ponter, shown in Fig. 2 , in appearance perhaps the most strange, is the furtherest removed from the ancient dove or common typieal pigern of the universe. This remarkable variety of our domesticated pigeon seems to be the extreme, the very intmost point. the greatest streteh of latitude to which the fertile imarination of man can be carried, or, intecd, to which the almost inexhaustible resources of nature might be expeeted to sport, or enlture le extended. Here we hare a pigeon which is a pigeon. but does not look like a pigeon-an estimable variety whose merits lave heen extolled by its admirers-a kind whose peenliarities are the cause of frequent surprise, doubt, and even ridicule. There are nime recognized kinds, or rather sub-varicties of the Pouter, Viz.: black, red. yellow. blue, silver, mealy, creamy", hne-checkered, and white.

The Jacobin shown in Fig. 3, is a most popular varioty, amb its fanciers momber sonme of the most earuest and prinstaking breeders. It, as a bird. has proved to be a great bone of contention, and the various contestants have held so tirmly to their opin-

Fig. 3.
ions and ohjections that for a long time there existed sereral types. These differences the National Peristeronie Society fually aranged. Twenty years ago the name was not known ; it is an innovation and an eyesore to those who have seen the pure-bred hird.

The lome of the pigeon should le as conspienous as possible. Notwithstanding the fact that the flig at posts will gencrally make the home of the bires in the military service noticeatbe at a long distance, it is suggested that when it is jossible the Hagstaff be surmomeded hy a large spherieal reflector, or a large white batl. That their arrival from a vosage may he quickly known, they should anmomee themselres. This could be arranged ly comnceting, hy means of a light wire, the eloor of their honse or loft through which they enter with a bell in a room that is to be habitually ocenpied. The wire need only bu attached when messengers are expeetact. It therefore appears the Medical Department at posts shonld have charge of the pigeons in the military service, and that their loft he near the hospital. "Not only will they then be most likely to receive eonstant care. but judicions attention: abl in return may le ex. procted to interest and lo ber a direct bemetit to the patients in hospital. Althongh it is important to semd the sume messuge ly several hirals, they slondal not bre sent off together, but tossed up at intervals of tive or ten minutes. When thrown ofl together, "bpecially if in goon emblition, Hay sometime's play and biter. sici (inrier-pigeon.

HOMME D`ARMES.- A military phrase amoner tle Fromelh. signifyiner a gentlemen or catralier who brlonged to one of the old compunites who was arme ed Cip-a-pic, and ahways fought on horsehatek. In ancient times, every man of this daseription was accompanied by two horsemen independently of his
servants. One of the monuted attemdants was armerl with the cross-bow, and the othere with ol comman bow ar a battle-axe; so that 100 Homemes de. Irmes rompered a body of 300 horse. It was a specions of cavalry which existed from the reign of domis Kl., until the reign of Itenry 11.

HOMOGENEOUS. - 1 lem appliad to varions sultstaban's to denote that they consist of similar parts, or of parts of the sume nature and kinl; thas, the substance of a solicl shot may be waid to be homosgenems when the metal is of the same demsity ant texture throurlout. In my marferly homonemeons shot, the center of tigure and the rinter of gravity of the mats are coincident.

HONES.- I particular class of stomes usid for the purpose of sharpening all chere-tombs and wations. They are usually cut intor pieces abont a font in lengeth, and from ans inch to two inches thick, and either left separe or romedel, areording to their intended usis. The tinest kind of homes are those called bil-stomes: these are harel, empart, and so very silicious that they reatily wear down the harelest steel; they are viricties of slate, derived from the argillaceons schists of the paleostic period. The hest are those brought from Turkey; Bohemis is also celebrated for its hones; mill very excellent ones are discovered in l'ersia, in the Ilart\% Mommains, in Syria, in Ameriou, Spain, Peru, and in Siberia. In Great Britain several localitios yich honc-stomes of excellent quality, and none better than the selebrated Water-of-ayrstone, which is mucle nseed for polishing copper-biates, as well as for hones. The Welsh oil-stonce or ldwall stome, and the cutler's greenstone, are obtained from showion in Wales: and in the neighborhood of Tavistock the Devonshire oil-stones are procured. The hones used for sharpening scy thes, etc., are nsually mate of comarsegrained sambitone.

HONEYCOMBS.-Flaws or defects in guns resembling the celle made ly loes, worked in the metal Ubrough the attion of exploded gun powder. Thes spreal rapidly, and with eomtimums. firines, som cat into the metal tosuch an extent as to remicer the further nase of the gun dingeroms.

HONORABLE ARTILLERY COMPANY,-The ofdest existing voluntece corps in Britain. Four military borlies-the strithery Comprony. Hoe SorgenntatArmas, the yeomen of the riuterd, and the rientlemen l'ensimnore, were established as far lack as the time of the Thiors; all these organizations still exist, but mader greatly altered circumstances. In 15:37. Wenry Vili. granted a patent to three persons, "upointing them " Sversecers of the Science of Artillery," for long-hows, cross-bows, and hand-guns. They were to constitute a gruikd or a fraternity for this purpose, with power to appenint assistanta and sucecesors, to purchase lands, and to use a common seal ; and their formal otticial mame berance "The Masters. Rulers, and Commonalty of the Fraternity or chuid of Artillery of Long-bows, Cross-lows, anid Hamd-gms." The freemen of the guild or company were empowered to keep arms, and exercise themselves in shonting. In 160\% a patent was granted by James 1. intended chiofly to effeet the preservation of the shooting and practicing gromals aronod Lomdon for the Arillery Company In 1 tisi3 a Commission was appointed by (harles I., still further to insure this ohject. In 1688 the Corporation of the City of London presented to the comprany the prot of ground ever since called the Artillery Ground near Moortields, as a fied for military excreise. Royal Princes fremently enrolled themselves as members of the Company, usually as "Captain General." In 1719, George I. issued an wreder that all commission amd staff oiticers of the 'ity Tribin-bands (a metropoitan militia) should become meminers of the Artillery Company, and exercise with the other members at all convenient times. The worl \cdot artillery" had laretofore heen considered as applying to bows and arrows as well as to firearms ; put the
members of the Company, like other mark smen, had nlso ahmulonol archery, without, however, makiner nuy chang in their lexignation. In a summons th the Company to the for exercise on a partientiar chay in 16×2, it is sain: "Thase gentlomen that on that day hamble masits are demired 10) takre are that their arms are clequand well ixem, and that thay bring with then the dry powder, and evern mateh." The Company, like many other rity guilds, hass nearly outlived its original purpusio. In 1 iso , whon
 tropolis, the members of the Artillery Company of fretually protected the loank of England: in ixas, when Chartist riots were apprehembel, the Company was on the aldert to render gesent survice if nemine i; and in the sprine of [8:5, when an umotsy feeling prevailed in England cencerning the designs of France, the members polished their armis and looked forwarl to (wentualities ; bat the Company law never lecen angaged in an arthal warfare with an enemy. The Artillery Company consists of members clected by ballot, who pay one grinea anmal subseription, and supply themselves with dress, arms. and acconterments. These payments, tongether with the remtal received from is small amomint of rial property, constitute the fumb out of which the expenses are defrayed. The members learn ritheshonting as well as artillery practice; there are certain days of meeting at Morfields: and every summer there: are certilin days of drill and practice at Scaforl. The Corps comprises six infantry companies, a grenadier company, a light-infantry company, is riffe company, and an artillery company. Until 1849, the members (Ifected their own otlicers; but since that year the Crown has appointed them on the nomination of the Lieutenancy of the City of London. The Liemtenant-colonel appoints the Non-commissioned Othicers. See Irtillery (orpa.

HONORS OF WAR. - The term employed to express the privileges allowed to a garrison surrendering, either in considetation of a brave llefonse, or from some other cause. Nany degrees of homor may ba paid to a vanquished enemy, according to thr generosity or judgment of the victorious Commander. in-Chief. In some cases, the garrison is allowed to mavelı out with all its arms, drums lecatiner (oblors Hlying, etc: : at another time, the connueren force will only be permitted to advance silently to the fromt of their works, there to ground or pile arms, and then, faeing about, to return to their lines as prisoners of war. Occasionally, the capitulation will provide that the garrison shath deposit their arms ind warlike stores at some specifich sont, and then march on to their own territory on parole of not serving during the existing war against the rictors or their allies.

HONORS PAID BY TROOPS, -The following atheer: are received with standards and colors dropping, the ofticers and troops salutines, and the hands, trumpets, or fiedd-music playing, as is indicuted in cach case: 1. The President. Music: "The President's March." 2. The General Commanding-in-Chief. Husic: "The General's March." 3. The Lieuten-ant-general. Trumpets sounding the flourishes, or drums heating the ruttles. 4. A Major-general. Two tlourishes, or two ruftles. 5. I Brigadiergeneral. One tlourish, or one ruttle. Oticeers of the Nary are rocoiven with the honors due their assimilated rank, which is as follows: Actmiral, General; Vice admiral, Lientemmo-General: Rear admiral, Major-gencral: Commonore, Brigadiergeneral; Captain. Colonel; Commander, Lieaten. ant-colonel: Lientenant-commander, Major: Lieuteuant. Cuptain: Master, First Lientenant, : Ensign, Second Lientenant. Ofticers of Marines, and (oticers of Volunteers and Milisia in the service of the Enited States, receise the honors due to their relative rank. To the Vice President, the members of the Calinet, the Chief Justice, the President of the Senate, the Speaker of the House of leppresentatives
of the Lnited States, and to Governors, within their respective States and Territories, the same honors are paid as to a Gencral Commanding-in-Chief, American and Foreion Enrors or Ministers are recuived with the compliments due to a Lieutenant-gencral. Ofticers of a foreigu service are complimented with the honors due to their rank. The mational or regimental colors passing a guard or other armed body are saluted, the trompets sounding, and the drums heating a march. No honors are paid when troops are en romet. on marches, or in trenches; and no salute is rendered when marching in donble time, at trot or gallop. The Commanding (Otticer is saluted ly all Commissioned Ofticers in command of troups or detachmeats. Courtesy among military men is indispensable to discipline; respect to superiors is not confined to oberlience on duty, but extended on all oceasions.

All ofticers salute eacli other on meeting, and in making or receiving afticial reports. When under arms. the salute is inade with the sword or saber, if drawn; otherwise with the hand. A monnted ofticer dismounts betore addressing a sujerior not mounted. In all cases the junior first salutes. (on otficial occasjons ofticers when under arms indoors, do not uncover, but they salute with the sword or hand, according as the sword is clrawn or in the scabbard; When indoors and not under arms they uncorer and stand at attention, but do not salute. A Ton-commissioned Officer or private in command of a detachment without arms salutes all oflicers witli the hand. If the detactment be on foot, and armed with the rifle or carbine, he brings the pieces to a carry, and salutes as prescribed for a Sergeant. The Commanding Ofticer is saluted by all Commissioned Officers in command of troops or detachments. The Sergerent's Srelute is also used by privates out of ranks armed with the musket, and by sentinels in saluting all officers not cutitled to a present. Whenever a Noncommissioned Ofticer or soldier without arms passes an officer, he salutes him, using the hand farthest from the officer. A Non-commissioned Othecr or soldier being seated, and without particular oceupation, rises on the approach of an officer, laces toward him and salutes; if standing, he faces toward the officer for the same purpose. If the parties remain in the same place or on the same ground, such compliments are not repeated. If actually at work, soldiers do not cease it to salute an officer mmless anGressed hy him. A Non-commissoned Otticer, or soldier, with musket or elrawn sword, makes the prescribeel salute with the musket or sword hefore addressing an othicer ; he also makes the same salute after receiving the reply. A Non-commissioned (ofifeer, or soldier, will sword or bayonet in the scal)bard, and when umarmed, salutes with the hand. Indoors, a Kon-commissioned Ofticer or suldier, when mormed, uncovers and stands at attention, but does not salute : in all other cases, he salutes as just jurecrobed, withont ancovering. A mounted solfier dismounts lvefore addressing an uthicer not mounterl. An ofticer mounted dismomints before addressime a supcrior ofticer notanomated. WVhen an othecr enters arome where there are suldices, the word "rettention" is given by some one who pereerives him, when all rise, remain standing in the position of the soldior, and preserve silence buntil the oflicer leaves the room: if at meals, they do not rise. Soldiers at all times. bund in all situations, bay the same fompli. munts to olticers of the Army, Niby, ind Marinus. ma! to all othecers of then Volmoners and Militia in the service of the [nited statem, ats to otherers of their wwn particular regimonts and eorps. Ollicers in ritizons" (lress are saluted in the same mamer as when in uniform. Onlicers willat all timena ackowlcolege the contrtesies of entisted mom. When returning the salate of the ('nlistet uncon, otherers salate as preseribed in the tactic:s. When seversl othcers in fomb:ay are saluted, all whon are entitled to the salutce retirm it.

Ofticers arriving at Headequarters of al Military Georraplacal Division, or Deparment, or of any organized Military Command, or at in Military Post, as sonn thereafter as may be practicable, call upon the Commander thereof, and, if there he time, register their manes in the othce of the Assistant Adjutantgeneral or Adjutant of the command. If the visit ing ofticer be senior to the Commander the former may send a eard, when it will become the duty of the Commander to make the first call.

H00D. - A term applied to the leather cover for the stirrup, of a suddle. It is the same as the spanhish Tripurlerre.

HOOF-PAD- A device attached to the lionf of a horse to keep the foot, or the shoe of the foot to which it is attached, from cutting the fellow foot or the fetlock. A device to prevent interforing.

HOOFS.-The healthy soundness of the horse's foot is mainly preserred ly permitting it to grow uninjured ly the rasp and knifo (see IIonse-shoenci), whilst its toughness is secured, and undue drymess and cevaporation is prevented, by smearing daty the crust, sole, and frog with a little glycerine or a misture made by melting together a fuarter of a pound each of tar, honey, beeswax, and glycerine, with a pound of lasd. Softness aud brittleness of the hoof, which are frutful sonrees of cracks and corns, may be remedied by the regular use of such dressings, by placing the feet for several hours daily in thick woolen swals. kept cool and moist ly freguent applications of cold water. and by en. couraging a more liealthy growth of horn by occasional mild blisters round the coronary band. Cracks, or mand-cracks, as they are termed, mostly occur amongst horses much upon the road, canse lameness and constitute unsoundness. When serious and recent, poulticing, thinning away of the crust about the crack, and perfect rest are essential. After the earlier heat and tenderness are removed, a hot iron should be drawn at right angles to the crack, hoth ahove and below, so as to separate the diseased from the sonnd horn. Waxed thread or fine wire shomld be wound round the hoof, and a sound growth of horn stimmlated by a blister round the coronet.

HOOKS.-A small lont important elcment of the suspending apparatus of a crane or hoisting-machine is the hook which terminates it, and by which the hoisting mechanism is attached to or is connected with the load to be lifted. Investigation has shown that the strains developed in hooks are of an excedingly complex character, and the cletermination of the correct proportions of the several parts was only reached, after much study and aliscussion, by means of mathematical calculations of much intricacy and hased upon the results of numerons experiments. Without undertaking here to disclose the intermediate steps of the inverstigntion, we will simply give the final results in the form of the working formulx. The drawing represents, to a scale of one-sixth natural size, a 5 -ton hook of the dinaensions and shape determined hy the following formulas, which give the dimensions of the several parts of hooks of capacities from 250 lh . (or onc-cighth of a tom) uj $1020,000 \mathrm{lhs}$. (or 10 tons). For hooks of larger sizes the formale become slightly ditferent. the general proportions, howevor, rematning the same. For economy of mannfactare each size of hook is matle from some reardar commercial size of round-iron. The basis, or initial peoint, in cach case is. therefore, the size of iron of which the hook is to he made, which is indieated ly the dimension, Δ, in the diagram. The dimension, D , is arhitrarily assumed. The other dimensions, as given hy the formalice, are those which. while preswring a proper bearing-face on the interion of the hook for the ropes or chains which may be passed through it, give the greatest resistance to spreading amd to ultimate ripture, which the amome of materias in the origimal har admits off. 'l'be symbol $د$ is used in the formmbe to indicate the nominal rapucity of
tha lorsk in lons of 2,000 putmols. The formalar whelo deternine the lines of the other parts of the hooks wh the dillirgoll si\%ns are us follows. the measuremonts heiner all expressed in inclaes:
$\mathrm{H}=5 \Delta+1.25, \mathrm{H}=.01 \lambda^{2}+1.10, \mathrm{~N}^{3}-.33{ }^{3}+.85$. $I=1.18,1, I=1.331, J=1.20 \mathrm{~A}, \mathrm{~K}-1.133 \mathrm{I},(:-75 \mathrm{I})$,
 $.50 \mathrm{~A}, ~ N=.8013-.16, \mathrm{~L}^{-\cdots .8 f 6 A .}$
The elimensions, A, are metessarily botsed npont the orelinary merehant sizes of romml-iron. Then sizos which it has lurn foumd liest to seleret are the fols lowing: Ciapacity of ITowk, $\frac{1}{6}, \frac{1}{1}, \frac{1}{2}, 1,1 \pm, 2,3,4,5$,

 2. $2 \frac{1}{1}, 2 \frac{2}{2}, 2 \frac{7}{4}, 3 \frac{1}{4}$ inches. The formula whieh give the sections of the hook at the several points are all expressed in terms of A and cabs therefore le readily aseertained hy refermen to the foregoing scale.

Experiment has shown that hooks mate aceording to the alove formalie will give way first by opening of the jaw, which. however, wouhl mot ocene except with a loul much in excess of the nominal (":pacity of the howk. This yielding of the hook when loaded to excess becomes a source of safety, as it constifutes at signal of dauger which cannot very readily be over-looket, mid which must procetal to sume oonsilerable tistance before rupture will oceur and the load be Iroppeal. A comparison of these hooks with monst of those in or dinary use will show that the latter are, as a rale badly pro-
portioned. and freguently thangerously wak. Ilsoks proportioned hy the alove firmulat are nard in all the Weston cranes. Siee rormen.

HOOK SWIVEL. - A deviee intended for dispensing with the neeessity of the trimenalar bayonet in stacking arms. It is of great value in connection with the trowel-myonet, the nse of which in digeging. would deprive the muskets of the means of stacking them whes becessarily set aside for this purpose. The swivels are somtached to the upper bands, that it is ensy to insert each hook into the swivels of the two remaning guns necessary to emmplete the stack.

The proces of stacking is very simple. The men

HOOPER LIFE SAVING ROCKET.-This rucket is a moulitication of the Ilale rocket. The borly is eylindrical in form, and is of sheet-metal $0^{\prime 2}$. 16 in $^{\circ}$ thick. The point of the rocket or hetal is acrival in form, made of wood, ant has a cylindrical tenon $1^{\prime \prime} .1$ in length, which is inserted into the front end of the body. The head is hedel in position by several serews passing through the rocket-case into the tenon. The rear end of the case is closed by a metallic hase carrying a touble-swivel and perforated with five venta ur gas escapes, cach one-half an inch in diameter. On one sitle of these vents are fluted projections extending $2^{\prime \prime} .3$ towarls the rear, so
-urred as to leave the opposite sides open for the nnimpeded escape of the gases erolved by combustion. The object of this arrangement is to praduce a motion of rotation about the longer asis of the rocket, and thus secure greater steadiness of tight. This cast-iron base is held in position by pins passing through the case. To the swivel is attached a chain a little orer 3 feet long, to which the line is made fast. The rocket is fired by breaking the paper covering of one or more of the vents, and inserting a piece of slow match and igniting the onter end.

The following are the principal dimensions and weights of the rocket:

	Inches.	Cuntimeters
Lencth of body..... . .	14.5	36.63
Diameter of body... $\left\{\begin{array}{l}\text { Esterior } \\ \text { Interior }\end{array}\right.$	3.75	9.4)
Diameter of body... $\{$ Interior.................	3.42	8.64
Length of ogival part....	3.6	6.35
Head............. . Diameter................	3.15	9.40
Tenon: $\left\{\begin{array}{l}\text { Lencth } \\ \text { Dramet }\end{array}\right.$	1.1	2.79
Lencth of base onteide of case...........	2.7	6.86
Totill length of rocket.......	$19 . \tilde{1}$	50.03
Length filled with composition	12.0	30.48
Diarneter of vents..	0.5	1.27
Samber of reats.......	Five.	
Length of chain and awivel	Lbs.	\%6.65
Arerage weight of rocket and chain.	19.25	9.33

The following directions should be observed when using this rocket and its stand. 1. The elevation required for the stand to be ascertained by means of a small quadrant ; 25° will carry the line 300 yards with ease. 2. It is suggested, in order to save time, that every rocket-line should be spliced to a spring-swivel that it might at once be attached to the end of the rocket-chain. 3. In all cases three fathoms of the rocket-line to be wetted before being attached to the chain. 4. Place the rocket in the trough or stand with its shoulder against the small iron projection at its base, and have the chain hanging down through the slot. 5. To fire the rocket With a pointed stick break the oil-paper covering each of the flange-holes. insert into one of them a slow match, light and retire 41 an angle of 45° to the rear of the stand. See Lite-xazing Ruckets.
hoplital. - Foot-soldiers among the Greeks. who hore heary armor, and engaged witb broad shields and long spears. These took precedence of all other foot-soldiers, and never went into action except in their own proper positions in the phalanx.
HOPPER.-A device, employed in machine-gurs, very nearly of the form of a cartridge, and tapered downward. Its sides serve to guide the cartridges into the carrier singly, so that they can be removed one by one. The front end of the apertare is projected downward nearly into the carrier next the barrels, and thus serves to ent off the entrance to that particular barrel which is in front of it while in this position, and the cartrilge which lies upon the one already in the groove from sliding forward and prematurely entering the opposite harrel. Sce Gatling (ínn.

HOPPER-PLATE.- A component part of most ma-

chinc-rums. It is a brass-curverl plate, I, hinged in the frame-work of the gun on the right side. and covering the carritr-bloch. It is provided with a
hopper, K, through which the cartridges descend to their places in the grooves of the carrier-block; whereupon they are instantly taken possession of by the locks, forced into the barrels, and fired. A short distance in front of the hopper is an upright pin, I^{\prime}, on which the feendedrum rests and revolves. The upper side of the plate is flat and circular. See Gatling Gun.
HORDE. - A wandering troop or gang ; especially a clan or tribe of a nomadic people possessing no fixed habitations but migrating from place to place for the sake of pasturage, plunder, or like cause.

HORDEARIUM.-The money which the Romans gave their cavalry for the sustenance of their horses.
HORION.-A term which formerly signified a helmet, and which in the vulgar acceptation of it at the present time among the French, means a blow upon the head.
HORIZON.-The circular tine formed by the apparent meeting of the earth and sky: this. in astronomical phrase, is called the vensible horizon. The rutional horizon is the circle formed by the plane passing throngh the center of the earth, parallel to the sensible horizon, and produced so as to meet the heavens.
HORIZONTAL FIRE.- In gunnery, the fire of guns and bowitzers under low angles of elevation. See Fire.
HORIZONTAL RANGE-In gunnery, the distance to which a piece of ordnasce will project a ball on a horizontal plane. Supposing no resistance from the atmosphere, the greatest range would be when the piece is elerated at an angle of 45°, and in all other positions the hurizontal runge wowld be as the sine of twice the angle of elevation. In a resisting medium the maximum horizontal range requires the eleration to be less than 45°. It is found by experience that, with ordinary velocity, a cannon-shot ranges farthest when the elevation of the piece is about 30°.

HORIZONTAL VELOCITY.-A projectile's velocity at any point resolved in the horizontal direction. Thus, if V be the velocity of a projectile moving at an angle E to the borizon,

Horizontal Velocity $=V^{\top}$ cose.
HORN-WORK. - That work. in fortification, having one front only, thrown out beyond the glacis of a

Eorn-work, covering a Dastion,

fortress: with a view, 1. To strengthen any weak salient in the qeneral outline; 2. To occupy a plateau in adrance of the place, or in protect bilidings, the including of which in the original enceinte
womld have extended it to an inconvenient ilegrere: 3. To neeupy a tongre of land protected on ita sides: 4. Po lar a detile: 5. To rover the head of a bridge ; 6. To orebpy rising yromat, the possession of which womld render the enemy more than neecesarily dangerous. "The front of a loorn-work
 tain, und usually defended in front, as in the fortreas itself, by a tenaille, ravelin, und covertoway. Tise thanks, jrotected by ditches, rum straight ujont tho ravedin. bastion. or curtain of the main thencoss, se that the rlith may be swejt by the tire of the latior. The flanks shonld not be toolong for easy musketry range. In mast of the earlice works of this natnre, the ditch of the horn-work was mated with the ditch of the main works by being ent thromeh the glacis and covert-way. but in modern works the horn-wonk is constructed entirely beyond tha alacio. Uecasionally, horn-works arr very useful ; lut all modern Engincers generally prefer constructing detacherl and idvancerl works. See Cronere-cork.
HORS DE COMBAT.-The Fronch term, literally meaning "beyond the battle, "uscd to signify" a combatant, or body of combatants, so eompletely baten either by physical force or strategy, as to be incapable of further action in the straggle which is actually under considcration.

HORSE. - 1. I military term for a bofly of Cavalry. 2. We can go back 3 ar centurices, to Job the attlicted inhabitant of Uz , for the most womkerfully preetical fescription of the true horse. Solomon. later. does not hesitate to compare his "Love" to a company of horses in Pharabo's chariots. Homer portrays the horse as a sensitive heing, nud relates that the weredsof Achilles wept at the death of that hero. Virgil tells us that the charger of l'alhas followed the remains of his master to his burial, his eyes filled with tears. Pliny, the uaturalist, positicely asserts that horses often bewal the loss of their masters. Buffon, a hundred bears ago, said: "The noblest conquest achieved hy man is that of this proul and metthesome animal, which shares with him alike the hardships of war and the glory of a conflict. IIe likewise shares his pleasures in the chase, in tonrnay in the race: he glows with brilliancy and ardor." The native country of the horse is uncertais. Some contend for Asia, and some for Africa: some suppose that the horse was first domesticated in Erypt, and quote seripture in support of their opinion, but to no better purpose than to show that at a very $\mathbf{3}$. Forehead. early period it was in use as 3 . Throat. a domesticated and valuer] 4. Breast animal among the ancient
ing to different conntries, are qumetions also unrortain; amblablant of them is very similar to that which is sos morla aritaterl reforecting the rloge alo thongh it mast lue achmittred thast the diversition aro not sul horse alajet it for ceroppuing the short herlatero of dry platas or liblls, so that it timels aboumanere whore the
 are also adapteal to dry ratlar than tosoft orswampey grommi. On soft ground, ant only is the foot apt tio sink, not heiner very lorinal, lant the horny fornt is softernerl, and a disedserl stato of the feet is the result, as in the case of a great many dray-horsers in Iondona. restrerl in the allusial districts of the "ate of
 supply of water: and durine the dry a(asom, in tho bot phains of south American, \underline{y} reat trosejs of wild horses often rush furionsly to the rivers, and as they approach the drinking-plare, trample one anonla"r nmber foot. vast mumbers of skeletons remaining to blench in the sim.

Wild horses are fonnd on the plains of Central Asia. Some also inhabit monntainous or hilly djstricts looth there and in the north of Africa. "They ahound still nore in the grassy plains of North and Smath America, although tlaey were tirst intronlacorl into America by Europeans; and certain tribes of Indians, both in North and Soutls Dmerica, have become at least as equestrian in their habits as any of the Tartars of the Feast. Wribl larsem are almo fomm in the Falkland Islands, into whidh they were introduced by Europeans, and a peculiar brecel Egyptians: whilst othersadduce argoments not more has leeen found in a wild state in the Island of conclusive to show that it was originally domestica- Celebes. The races or varicties of the horse have an ted in the north-east of Asia; some think it not im- evident relation to the climate of the countrics in probable that Europe also, and eren Britain. Lad indigenous horses. Whether certain wild races of Central Asia and the north of Africa are indigenous to the regions in which they are found, or the offspring of animals which lave escaped from domestication. like those of America, and whether the origin of the domestic horse is to be referred to one oriorinal form, or to several forms somewhat different, and belong-

slender form of the race-horse or hunter contrasts almost as strongly with the ponderous solidity of the dray-horse, as the great size of the latter does with the diminutiveness of the Shethand pony. Wild horses generally eongregate in troops, sometimes small in number, but sometimes of many hundreds. The males have fierce contests for the supremaey, and males that have contended unsnecessfully are often driven off to a solitary life. On the appearance of danger, the chief stallion of a small troop seems to direct the movements of all, and even the largest troops seem instinetively to move in a kind of concert. so that when they are assailed, the stronger animals oppose the enemy, and protect the younger and weaker. Wolves, even when in packs: attack with suceess only weakened stragglers, and even the jagnar is repelled. In fighting, horses either raise themselves on their hind-feet, and bring down the fore-feet with great force on the enemy, or wheeling ahout, kick violently with the hind-feet.
The tarpon of Tartary is one of those races of wild horses which are sometimes regarded as original, and not as descended from domesticated animals. It is of a reddish color, with a very black stripe along the back, and black mane and tail. The ere is small and vieious. Tarpans are sometimes canght by the Tartars, but are with great difticulty reduced in subjection. In some of the steppes of Central Asia, are wild horses of a white or dappledgray color. The wild horse of Sonth Ameriea is there called the mustang. It exhibits considerable diversity of color, but bay-brown is the most prevalent. It is strong and active, and is often taken with the lasso, and employed in the service of man. A eurious method is practiced by some Indian tribes of promptly subduing its wild nature, and rendering it tractable, by blowing strongly with the month into its nostrils. . By other tribes, it is subdued more rudely. It is thrown on the ground, and ere it can recover, a man gets upon its baek, whom, when it rises, it cannot shake off, and who retains his seat until it is quite submissive. The kormrah of North Africa is regarded by Col. Ilamilton Smith as a distinet species. It has no forelock, but woolly hair on the forehead, is of reddish-hay color, without stripe on the back or any white about the limbs. has limbs of somewhat ass-like shape, and the tail covered with'a short hair for several inches at the root. It is an inhalitant of mountainous regions.
When full mouthed, the horse will have forty tecth, twonty in each jaw. The mare possesses only thirty-six. The age of the horse may be determined by olserving the teeth, the times at which they appear, are shed and replaced, and the alterations in their form and markings;-2 years, all milch teeth, which are easily distinguished from the promanent by being smaller, whiter, and loy having neeks:-3 years, two permanent teeth, central in-cisors;-4 years, four permanent teeth, central and lateral ineisors ;-5 years, all are permanent teeth. From this time on, the age of the horse is decided by the marks on the teeth:-6 years, the marks on the central incisors are worn out, and the points of the tushes are blunted:-7 yoars, the marks on the central and lateral ineisors are worn out, those on the enrner incisors still whowing:-8 years, all the (avities are fillend ul". Beyond this age the criteria are uncertain. For the inilitary serviee the horse should possess the general features shown in the above drawing, and should not be less than 14 nor more than 16 hands high ; woigh not less than riso, nor more than 1.100 libso; age not less than 5or more than \& yoars; head and ears small ; forehead broad: cyes large amd prominent; the shonders long and sloping well hack; fore-lows straight and standing well inder: chest broad and deap; harrel large. and increasing from girdle to hank: withers elevated; back whort and straight: loins and haunches broad and maseular ; hooks well bent and meder the horse; pasterns sumting; und•feet small and soumb.

In the matter of the freatment and qualities of the horse, we ean not do better than remember a few axions and aphorisms cnrrent among a people with whom the raising and training of horses are matters of religion, and to whom the Prophet has said, "Whoever raiseth and traineth a horse for the lord is counted in the number of those who give alms night and day." "Make your horses work, and make them work again. Inaction and fat are the great peril of a horse, and the main eause of all his vices and disease." "As you would shun the plagne so shun a horse with shrinken breast and straight shoulders. But one whose croup is as long as his baek and loins together take with closed eyes." "If you would know at a glance the value of a horse, measure him from the last joint of the tail to the middle of the withers, and from the middle of the withers to the tip of the upper lip. on a line between the ears. If the hind measure is the longer, the horse is of little worth; but if the forepart is longer, rest assured the animal has distinguished qualities, and the greater the difference the greater will be his value." "Never rnn your horse up or down hill if you can avoid it." "To prepare a too fleshy horse for fatigues make him thin by excrcise; never by withholding his food." "Do not beat your horses, nor speak to them in a loud tone of voice; do not be angry with them, but kindly reprove their faults; they will do better thereafter, for they understand the language of man and its meaning. If by chance yon meet with a horse insensible to kindness, hesitate not to employ the power of your spurs, but in such wise that he never forgets the punishment." "The man who gives not a steady walk to his horse exeites pity. The walk is the gallop of always." Sce Cavaliy-hurses, Ar-tillery-Iorses, Pach-animals, and Draught-animals.

HORSE-ARTILLERT.-A portion of the artillery which generally serves with cavalry. One of the mounted branches of the British service is Horseartillery. The formation of this branch dates back to the year 1793, when two troops were raised at Woolwieh. Each troop consisted of 4 guns, but in November of the same year 2 more troops were added, and each troop had 6 guns, Subsequently it was raised to 12 troops. This branch of the serviee has been further angmented to the extent, at the present day, of 6 brigades, of 5 batteries each, each battery having 6 guns. The present equipment of the Horse-artillery is made up of 9-pdr. M.L.R. gums. The gun is made of a steel tube with a wronght-iron jacket : ealiber. 3 inches: weight, 6 cwt.; length of ritling, $62 \cdot 3$ inehes; ritling, three grooves, with a uniform piteh of 1 to 30 calibers; charge, 1.75 lb The earriages for these guns are of wronght-iron.

The llorse-artillery is held in hand for all decisive moments. When launched forth, its arrival and execution should be unexpected and instantaneons. Ready to repair all disasters and partial reverses, it, at one moment, temporarily replaces a battery of foot, and at the mext is on another point of the fiedd, to foree baek an enemy's column. In preparing the attacks of cavalry, this arm is often indispensable and aways invaluable; lrought with rapidity in front of a line, or opposite to squares of infantry, within the range of camisur, its well-directed fire, in a few discharges. "pens a gap. or so shakes the entire mass, that the cavalien finds but a feeble obstacke, where, without this aid, le would in vain have exhansted all his powers.

HORSE GRENADIERS.-Tho Flying Grenadiers, who tight hoth on foot and on horsemack. They were tirst established in France ly Lonis XIV゙., in 1 (irto. formed in squadrons, and called Cirentedicr: Volans.

Horse guards.-1. The name applied to a large pulbic oftice in Whitchatl, appropriated to the departments under the General Commandiner-in-Chiof. The word llorse-gnards is nsed conventionally to signify the Military Authorities at the head of Army Mfairs, in contralistinction to the Civil Chicf,
or the Secrotary of state for War. S. Tha Royal Horse-gumads, or Oxford lihus is the howd hovivy cavalry regiment of tha Homsohold Brigade. The regiment was raiserl in lisibl from the remannts of the disbmaded Army of the late Comanonwialth. It bas ever proved a loyal rorps, ulthough it remblily I ransferred its allegiance from James II. (o) Wrillinan 11I. It look part in Jariboromgh's rampmigns; served mader the Duke of Werlingen in the Jran insula and at Wraterloo, and has always lown considered one of the finest heave cenvalry corps in the world. The GBarde of State for the Sovereign are taken either from its ranks or from those of tho Lifo-guards. The prosent miform consists of a Aleol helmet, with plames, an sterl enirass over a blus contere, leather breeches, and knee-bootes; the horses are black. The establishment of the regiment comsists of 1,302 of ull ranks, with 825 horses, (exclusive of ofllerers' relargers. See Pumelry und /Jmogmo.

HORSEMANSHIP. - Throughout history the art of manuging the horse ind riding on his lmek has ranked high among useful and gracefulacoomplishanents. According to Cesar mod Livy, the Numidians mad Manritanians rode their lorses withont rither bit or suddle, and guided them solcly by using a smatl switeh, which was applied to cither side of the nork, tweording us they wished to turn. The Persians trained their horses to kned to receple their riders. find were the first 10 introduce sathlles. Stirrups were used in the 5 th century, but were not common even in the 12th. The two essentials for riding ure a firm seat and a light hand, as without a combination of the two no one ean beeomeagood borseman. In every deacription of riding, the light or delicate "lund," just feeling the mouth of the horse, and playing the bit in accordance with his movemont, will insure success; and it is to this delicacy of wrist that we must attribute the ease and skill with which Iadies so often ride the most high-spirited animan, which, in rouglier hands would be ummanageable. The tirst lesson in horsemanship is to lourn to monnet safely and easily ; and theordinary and on the whole least objectionable way is as follows: Stand at the shoulder of the horse, looking towards his tail, aml taking the reins in the right hand, divide them by the niddle finger of the left till you feel the horse's
well down in his saddle, with his loroly cerert, the wat hoiner proserved usore hy balance than by a tight lokld by the leg or thigh. Jn rapid movanontc or whon ihatging over irrognlar tivelde, it vory firma wat

 stirrups. Whate otherwine womld lee ant to leve lome in jumping ; the logg from thigh to the knee well forward, and nonrly at right angles to tho nuper part of the booly inelined forward : the lege perpendienalar, the herol well down, and the tor perinting monely straightforward. 'This natat the trotsper has in dennimon with all agnestrian mations, at the Arabo. Tartars, P'ersians, Eifyptians, ('ossacks. Vagyars, and (ircassians, the bast memtioned nation carrsiner it to surla an extreme that the leog aswames the formof the lottor VF, having the knee for the now. In ricling at the bars or hardle "eoblere" the herse into the pure at whirla he grocs with most cose to himself ; kerep him straight at the fance till he rises; "enas" his mouth ly leming furward; take esperial coare not to confine it when he is making his reffort, or you will pull him into the fence as ha deseremds; lean well hack in the saddle, and gently take hodd of his month tosmparost him when landinir. ()on not frallop with a loose rein (rxere)t down hill, when the horsto reduires his head froo), for the boree will (e) with a straggling bace, which is very modesirable. For rapid movements, the resentials are a good and powerful seat, good " humls," a great knowledge of pace, and quickness to take adranture of any chanere of success.

As the strongest part of a horat, and also the center of action. is situated at *a point just belifnd his shoulder-blades, the nearer we can ride to this the better, and riding ratbar forward in the saddle in a relief to the horse, while loaning lark, as it bears npon his loins-his weakest part - is a canse of fatigue. The grip in riding shonld loe maintained by the knees, the thighs, and the calves slightly. The thigh is the most essential part of a good and strong sorut. Few riders whose thighs are short and romod, have agood seat; while, on the other hand, joekeys and tall thin men, whose thighs are long. and more or less bollowed on the under side, are fonerally very tirm. No one pretends to horsemanship without it knowl-

edge of the proper action for emerencies. If alnorse runs away, do not exhaust yourself by vain pulling. but guide him out of danger, and let him run till he is tired. A Bucephaluz noseband is a great sechrity against bolting. If a horse rears, loosen the reina. and lean forward : in lunting, the " art of falling " consists in getting (rlear of your horse. In rase of a horse kicking, keej his heid upas moch as possihlo. and sit firm in the saddle. The art of riding teaches and shows the position to he laken on horseback. so as to be there with the sreatest sornrity and ritce It at the sume time affords the means of leading and directing the horse with the ntmost of facility, and of ohtaining from him by the simplest method and with the leas fatigue the most exact and perfect obedience in evervthing which his strength and conformation allow. He is the good horseman, there-
fore. who, firm and easy in his seat, has acquired both the knowledge of what he may ask of his horse and the practice of the best means of enforcing obedience. And that is the well-trained horse which understands the intemtions of his rider from the slightest of his movements, according to given prin. ciples, and executes them with promptness, agility, and vigor.

HORSE MEDICINES. - In a military point of view. the medicines issued to an army or command for the treatment of diseased or disabled animals. A Supply Table is usually aththorized for an army, the medicines are all procured on requisition, and the Vrerinary Surgeons dispense them. The following
timates of most celehrated Engineers differ widely from each other: Boulton and Watt, hasing their calculations upon the work of Loudon dray-horses (working eight hours a day), estimated it at 33,000 font-pounds per minute. D'Anbuisson, taking the work done by horses in whims at Freiberg, estimated the work at 16,440 foot-pounds, working eight hours a day : under all similar circumstances, Desaguliers's estimate was 44,$000 ;$ Smcaton's 22,000 ; and 'Tredgold's 27,500 foot-pounds; 17,400 is thought to be near the truth. It matters little, however, what number is assumed, provided the same be always used: and accordingly the original estimate of Watt is still counted a horse-power. In calculating the

Name of Dring.	Action and Ure.	bore.	Antidote.
Aloer.	Laxative and Toatc.	\% to 108.	
Alam.	Astringent.	O	
Anice Seed.	Aromatic and stomachse.	1 to 4 dre.	Vinegar.
Aqua Ammonia. Arenic.	Alterative and tonic, used for Paralysis, Mange, etc.	1 to 5 grs .	Magnesia and oil.
	Anti-sparmolic, Coughe, etc.	1 to 3 drs.	
$\begin{aligned} & \text { Dicarbonate of } \\ & \text { Potakh. } \end{aligned}$	Diuretic and Antacid. Good for Rheumatiem.	3 to 5 drs.	Vinegar and raw Linseed-oil.
Bembith. Blacl. Intimony.	For Chroaje Diarrhea. etc. Promotes the secretions.	这 to ${ }^{\text {a }}$ dr.	Infusion of oak bark. Give also Lins'd-oll
Blue Vitriol.	Astringent and Touic.		Eage, Milk,
Calomel.	Cathartic.	$1 \times$ to 1 d	
Camphor.	Anti-xphemodic. Diuretic and stimulant	3 to 6 gre .	
Carbolic Acio.	Externally and Disiofectant.		Eggs ; soap; gruel.
Castor Oil.	Cathartic. ${ }^{\text {Stimulant and Carminative. }}$	5 to 25 gre .	
Сауепие. Chlorate of Potach.	Dinmoric. Given for bloating, etc.	1 to 2 dre .	
Copperas.	Tonic and Astriugent.	1.) to 1 /2 dre.	
Croton-oil.	Powerful purgative.	10 to 20 gre .	Stimulate.
lligitalif leaf.	Sedative and Dirretic.	z to siozs.	
Ether.	Anti-spasmodic. Used for skiu direases. See Arsenic. Toule		Hydrated peroxide of iron.
Gentian Root. Ginger. Glauber Salts.	$\left\{\begin{array}{l}\text { Tonic, stimmlant, and Stomachic. Used for flat-) } \\ \text { ulent colic, dyspepsia, etc. }\end{array}\right.$ Cathartic.	? to 5 dre. 6 to 12 ozs.	
Glauber saits.	\{Dinretic and Alterative. Employed for Rheuma-\} tism, Dropsy, Enlarged Glande, etc.	y to $11 / 2 \mathrm{drs}$. 1 to 2 pts.	Give very freely starch or flour, with wa\{ ter largely.
Linsted-oil, raw. Magnesia.	Cathartic and Nutrituve. For colts as an antacid and laxative. Used for sange, itch, lice, and other parasites.	$\text { to } 10 z$	
Nercurial Ointmeut Nux Vomica.	Used for Mange, itch, lice, and other parasites. Nervous stionlant-used for Paralysis.	15 to 25 gre	, saleratus, followed quickly by copperae, both discolved in water. Belladonna, strong coffee, brandy and
Opıum.	$\left\{\begin{array}{l}\text { Anodyge and Anti-sparmodic. Given in Colic, }\} \\ \text { Intlammation of Bowele, Diarrhoa, etc. }\end{array}\right.$	${ }^{14}$ to $1 \mathrm{dr}^{\text {. }}$	$\left\{\begin{array}{l}\text { ammonia. Dash very cold water on } \\ \text { aud keep the horse moving. }\end{array}\right.$
Prepmred Chalk.	Antacid.	36to 1 oz . 15 to 50 gra	Linceer-oil largely. Raw.
Quiniue.	Tonic, given daring convalegcence.	1to) 3 drr .	nseek-oil largely.
Sialtpetre. Sudu Bicarb.	Ihuretic and Febrifnge. Similur to licarb. Potarh.	$3 t 08.195$	
Koda suphite.	Antiseptic and Alterative, used for hlood diseasen.	\% to 10 oz	
Solution of Lime.	Antacid. used as an antidote to poironing by acide.		
spiritr of Chloro- forra.	Anodyne and Anti eparmodic.	16 to 1 gr .	Tobacco.
strychnia. sulphur.	Tonic and stimulant. Used for Paralyais. Alterative and Laxative. Used for Skin disea-1 i ses and Pheumatism.	$x / 10 \text { to } 2 \text { ozs. }$	Tobacco.
$\begin{aligned} & \text { swect sprite of } \\ & \text { Niter. } \end{aligned}$	Diuretic and Diaphoretic.	$\begin{aligned} & 1 / 6 \text { to } 1 \times \text { oze. } \\ & 30 \text { to } 40 \text { gre. } \end{aligned}$.
Tannic Acid. Tartar Emetic	Astringent. sordulive and Alterative	${ }^{2} 610$ ks. dr .	Tannic Acid.
Tinsture of Aco.? nite liwot.	sedative. Used forlong fever, cte.	15 to 35 drops	Give small doser of Nux Vomica, nee (stimnlants largely, and keep moving.
Tinctare of C'an-1 tharides.	stimulant and 'Touic.	1to~ozs.	
Tincture Ergot.	Parturient.		
Tinture Jodine. Tucture Iron.	Used externally. Tonic and Astringent. Trsed for Typhoid diseases.	\%e to 10% \% ato dire.	
Tr. Sux Vomicas.	Tonic. Stimulant in Paralysis and lyepepeia.	1 to doze.	See Nux Vomica
Titucture Opium.	Anodyne and Anti-spasmodic.		sce ориm.
White V'itriol.	Astringent. Asid for cuts, wounde, and sores,	5 to 15 grs .	Malk, eger, and flour.

For a colt one month old, give one twenty-fourth of the full dose for an adult horse as givers above; three monthe old, one twrifth: six months old, one-sixth: one yuir old, one-third; two years old, one-half; three years old, three fourthe.
doses for the horse, prescribed hy the eminent Vet(rinarian, 1)r. Kemdall, are found on all Army Supply Tables, and may be administered by any intelligent soldier, in the alsence of the Veterinary Surgeom. See leterimary Art.
HORSE-POWER. A torm used in expressing the foror of a motive power. It is hased upon the assumption that horses in gencrat porform a certain constant amount of work in asperificel time ; an assumption which is cvidently erroneous. The fundamental unit of work is the foot-pound; but in measuring the work of a horse by this unit, the es-
power of at steam-engine in terms of this unit, the general rule is to miltiply together the pressure in pounds on a sumare inch of the piston, the aren of the piston in inches, the length of the stroke in fret, and the number of strokes per minute; the result obtained by his opration. divided hy 33,000, will give the hirse-power. It is generally necessary to deduct about one-tenth of the whole, as an allowance for friction.
HORSE SHOE. - In fortification, a very small round or oval work, with a parapet; generally made in a ditch, or marsh.

HORSE-SHOEING. - The ordinary sysirm of lorirarshocing is ruche and irrational, hall is the main canse: of most lamenesses and of the matority of fatle in riding and driving. ('hicfamongst ils fandes ner the attompts to tit the forel to the shan enmernd of the shoe to the font, and the wholesalde cotting mal rasp. ing, ume conswefucont injury of the several parts of the foot. After thr cantions removal of the ohd show, the crnst on whifl it rested gumerally repuires to lo parad down witb a lrawingoknife, anal its cdereatterwards romadel with the rasp. Any ragged portions of the frow may also la thken aif, athl this includes the whole of the allowable parines or dressing of the horse's foot. "I"he horny solic inlended as a covering and profoction of the somstiva parts heroath: the tough chastie frome an insensibhe pad which obviates conoussion, and prasurves that foot wide and frece from combraction; the hars, an Involution of the prost, which lemp it 10 sulport weight, and wive it lateral sapport, are all toovalaable to be ruthlesely ent nway, and in afl ordinary cases must be scrupulously proserved from both knife and rasp. For somad healthy feet trated as advised, a blain shoe is proferable for sublthe or har-
 of an inch, must the the erust elosely and mocurately all the way romod to the herds, where its inner edge will rest upon the strong uncut luars. Nowhere must there he any overlapping which only renders the shoe more apt to ent the opposite dimb, and the lorn off in heavy groumd. 'To lessen the elanees of tripping, and make the shoe wrar equally, it sumbld for the fore-feot be turned uf) vory sliglitly, and its ground surface hollowed out a little at the toc, so as

Fig. 1.
to present the appearance of an ordinary shoe which has hern worn for a formight or three werks; and Whioh, as every one knows, is therefore rendered more safe and comfortable. By turing up) at the toe, these advantages are secured it once. For saddle. and light harness work three natids on the out-and? two on the inside will firmly secure any well-made. well-titling sloer. The nall-holes should be comersumk, be nearly in the renter of the web, and pass straight throngla it, thas giving the naits a firmer hold of the stout unrasped rerust. The points of the nails when driven home shonld be hroken over and laid down with the hammer, but not touched with the rasp. The rasping of the erust which smiths fondly regard actheir timishing and polishing stroke. is very injurims, removes the unctuons proteretine portion of the crast, and remers it weak, brittle, and linble to erack. Shoes should he replaced every throw wedes or a month at furthest. In shoneing the himb-feet the outsidre welsis gencerbly turned slightly down behind, whilst to give an equal bearing the insinde ledel is thickened. For heary dransht. both himd and fore shoes shombl have monderate tips and leeds: which enable the horse to exert his entire
powrors without an murd risk of sliphing. In-lama of the five mats thed fur the Jighter loorses, wiven or rimht are reptisite.

Figner 1 slows an exroblent form of front shame and the foroper [ositions of nai]-holos: of, are the herels, of the whate thicknese as the rest of the shoe : h, b, are the promes at which the hereds of the herof
 tions of nail-betels. Figure erepresents the errommal surface of the hoof prepared for the show ; a. " 1, "\%, show the front, inner, and oltar tor ; bl, be, tha ja-

 frog (h Leomg directly walar the asvicular joina); and $i_{0} i$ the bulles of the herels.

Horses with wank, forder, or braised solkes maty for a time rexuire leather or water-peroof parls, bat an the whle grows these shamblen diseontimand, and are never required in luathly fort, where llae solu, which is the best amd most natural [rotoction, is albowed to \&row umdisturbed ly the knife: Horsoms with corna shombl have their shors made with at wide incide wob, which rasts upon the hars, or have for a timua hareshor. The last mat on the inside shomblaine be disprensed with, and the suat of the rorn or bruise earofally pared out, hat without injuring frog or hars. iff. from constant cutting, the bars arm enfit to ain the cruat in corrying the showe it will offorn le: advisablace to show for a time with tijus or half-shores, keeping the burse as much an is poscible on soft grombd, and waiting tha healthy growlh of the fort. In troublesonnc cases of thrusis, such tips ase alse most serviceable, allowing the frog the natnral and

Fig. :
healthy pressure for which it is intended, and with astringents and eleanlinessoreatly expeoditing a cure. Groggy horses shond have the toe shortened, and turned uj, as already adviacd: the frots and sole must ho mondohed, and the shoes made dight and aicely titted. Over-reach. or cutting of the beel of the fore-foot with the shor of the hinal, is remedied by filing round the posterior edge of the oflonding tox, and keghing that shoe ats far back as possibur on the foot. For sperdy cut, which is common in horses with in-turned kneres, the shoe should ha carefully titted and wo projecoting portions be left: the clinehos must also be well hammered down. See Charlier. System af゙ Horme-shuming. Šrymont Elhor. and

HORSE-SHOE NAILS. - The nail for a horee differs matcrially from very other kind of mail, no* only in shape, lut also in the quality of iron from which it is made. as well the the process of manafacture. The slightest deviation from shape and quality of the iroti remelers the horse-shote natil romparatively useless. From the davs of Tuland (ain to the present time fire lats been the only elancent with whichiron could be properly wrought. Every other
method has resulted in producing articles of great inferiority where strength and durability are required, and in no place are these two requisites more necessary than in the horse's shoe-nail. The Ancients used only charenal in the working of iron, thus aroiding all sulphurous gase's. hence the supe-

riority of their weapons. The old Damaseus blades owe their superiority in part to the use of asphalt when being forged, thus avoiding the presence of sulphur, which is so ruinous to all kinds of iron and

steel. Profiting by this knowledge, the manufacturers of the Putnam nail avoid the use of coal and coke in forging. use only pure carbon gas made from petroleum, and therelsy obtain a much bigher tem-

B
perature in the working of the iron. This hot-forged nail, wheu made of pure iron, has no equal in the known world.
The first drawing shows a crossusection of iron from which the cold-punched and sheard-mails are

made by foreing blanks therefrom by means of a punch. These blanks are put through a series of rollers and drawn into the form of A. with an indentation on the thin end for the scarfed points, which conduct the nail out of the hoof. B represents the piece which is removed by shearing the blade of A . so as to leave the mail, C , complete.

()

The rolling of iron culd procluecs lamination, cansing the iron to separate in havers, as shown in D. biat ats the compression of sharing holds the edges torether, it does not show itself until driven into the hoof, when the horny filers catese them to separate while being driven, and one portion is foreed inth the foot and the other ont throngh the wall of the hofof, thas cansing lammess, lock-jaw, and beath, as the records of State courts, as well as the testimony of lonrse owners, abmdanlly show.

Wine of these nails made by the cold-ent process, and slivered whon being driven in by the shoer, is hown at E. The prain cansed hy a shight sliver of wood under the finger-mal will give one a slight idea as to how painful suelt a nail must be in the foot of the horse, there to remain until the shoe is
removed. If the shoer is so fortunate as to draw it out without hrenking, the lameness will disappear, but not until the horse has been laid up for a considerable time. Should the nail break, the result is far more serions.

It requires but litle observation and reflection to arrive at the conclusion as to the kind of nails to be used in the horse's foot, whether a mangled piece of

iron, reudered dangerous by the cold-rolling and cut** ting process, or one made from the rod at a welding heat. where all the fibers remain intact, and a perfeet oneness maintained, making it utterly impossible to sliver; likewise a greater amount of tenalcity and ductility is obtained. by which the shoes are retained on the feet for a much longer time.
Having selected the best nails, the shoer shonld drive as small and few nails as will hold the shoe firmly and seeurely to its place. He should see that the nails fill the holes and the heads the rrease. leaving little, if ary, to project beyond the ground surface when finished, thus preventing the clinch from rising when brought in eoutact with stones, and saring the injuring of the ankle. See Putnam Nail.
HORSE-TAIL.-Turkish Standard Commanders are disting uished by the number of horse-tails earried before them, or planted in front of their tents. Thus, the Sultan has seven, the Grand Vizier five, and the Pashas three, two, or one.
HORSFALL-GUN.-This gun is a solid forging of wrouglat-iron, bored ont. The trumnions are forged upon a separate ring, which is held in place by akey. The dimensions of the gun are as follows:-Length, 15 ft .10 in .: the diameter over the chamber, 3 ft .7 in.; length of hore, 13 ft .4 in .; diameter of bore, 13.014 in. The weight is 53,846 lhs. The usual windage is $\frac{1}{5}$ of an inch, and the gun is not rifled. The unequal shrinkage of the solid breech of this gun, during its fahrication, caused a crack, which was afterwards covered with a breech-plug, or false bottom in the chamber, to prevent the lodgment of any burning material. This gum is noted for its remarkable endurance, and terribte effect. at short range, in target practice at Shotburyness.
HORSLEY-POWDER. - An explosive agent, comm posed of ellorate of potassal and gall-nuts, in proportion by weight of three to one, used prineipally in charging torpedoes. Its disruptive action in relation to the best gunpowder, volume for volume, is about 15 to 1 .
HORTON LATHE CHUCK. - A chnck of the universai type variously employed in the Arsemal. The drawings present a view of the deviee torether and in its parts. The jaws are moved to and from the center simultaneously hy means of the geared screws and the circular rack, which is enelosed in the deep groove or recess in the batek-plate, the center faces of the front and back-phates making a perfortly tight easing for the gearing, so that mo dirt. chips. etc., can possibly get into them to elog and injure the chack. When the rack is taken out, especially from the fore-jaw, it makes a superior independent jawchusk, making two chacks in ones. Sice Chuck.
HOSE-TROUGH. - The hosc- 1 rothgh is a small wooden chamel, in which is phaced a linen hag termed the poonder-hase. dilled with powder. to tire the charge. 'The hag shonld he of close texture', and well sewed. Thes. tronghs are made $1 \frac{1}{2} \mathrm{in}$. spluare in the clear. The foner pieces of which they are composed, the sill, sides, and tom, or cover, are from $\frac{1}{4}$ to $\frac{1}{2} \mathrm{in}$. cach in thickness. A trough shond penctrate the powderease alont 4 in., and should exactiy fit the opening left for it. It is fastered to the tloor of the braneh

 tronerlario eontincel by piekrets to prevent it luming distarlarel. 'The different lengthes of the trouten shomltile cout to tit exacoly. Vath portion of the trongh shoulth lave its cober weil filtod matd scoured wilh one perg only, in order that it may readily lor removed to introthere tha powder-hose. The trongh is said to make an clbow whon it chatares its direre tion. 'The pieces forming an ellow shomlal lo solid. ly yet simply comonected. When weveral mines are to be lired at the same moment, it is necessary so to

propurtion the trains to explode them, that, starting from the same puint, the distances in time from lhat point to the charges may be all equal. The follow: ing eases show the manner of obtaining this result : For two charases place a trongh on the shortest line from the one to the other, mark the center of it, and let the principal trough join it at that point. For threc charges connect, as above. the two which are wearest. Tet a trough lead from the middle point of this to the third eharge ; biseet the whole length of trough betwoen this third charge and either of the others; then let the principal trough be joined to this last point. For four charges first connect them two and two, then join the central points and proceed as above. The elbows of a trongh imperte the communication of the fire, for which an allowance must be made when proportioning the trains, each elbow bcing valned at 3 in. Square elbows impede somewhat more than obligue nues.

HOSPITAL.--The principles of hospital construction were pointed out hy a Commission of the French Academy of Sciences in 17.8, and improved in several details by Miss Nightingale, Galton, and others, and in the late American and Franco-German wars. The gencral principles may be gathered from the following directions. The most important part of a hospital is the ward; that is, the special apartment. or system of apartments, for the reception and care of the patients. It shonld, if large, be arranged in separate pavilions of one, or at most not more than two storics. These buildings slould be about 25 feet wide, 14 feet high, and of a length allowing not less than 100 sfuare-feet per lied. In warm climates the height shomid be greater, and also the floorspace, allowing at least 120 square-feet per bed. No oue ward should contain more than 32 beds. The winduws should be opposite, reaching from 3 feet above the floor to one foot from the ceiliner. and or"upy one-third of the wall-sparce. The floors should be of hard pine or onk (Georgia pine in this com-
 Baltimorr, Hol., is somme Thats given as a mondel.
'This lats a mase dining.
 roone in ono of the rasliating buildinges, ratlar larger than the whars and offices and other ad-
ministrative buildimes ministrative buildings in the eonure. A bettor plan was carried ont in
fla hospital at Point pan was carried ont in
tha lospial at Foint loorkout. Ma.. in which the Administration A. parmments, lispensary. Wess roonis, ablel suri "reons: ($11 a r t$ (ers were placed in a large huilelinger wecoliying a sile amone the oflaer ribliat ting lumblings. Tha advartage is apparent in the open conirt that is nobobitructed in regard to currents of air, and in the great cheerfulness of such arrangement, which athints of a free view fron one warl to be that a plastoring of mortar over laths, whitowashed with milk of lime, in the lwht, on arcomme of
 edly disposioll of in this way hy usiatation within the porons spacers. A plan of Jospital was mot amusmal in the armias darime the lata. Wrar of the leclerlion in Americ: in whish the warde or pavilions weres
 from lof to 150 feet in diametor, accorrling to the size of the laspital. A phan of llicks llowital nootr all the others, allowing the eonvalesernt paticnts who may be sit:ing in their resperetive porticoes to irveet encla other; for wounded and siek soleliers. When they are able to be so, are a very sucial fraternity. The central court can then be laid out in plats of grass and flower-heds. in the care of which the pationts take great pleasure during their often long continement and absence from family. The plan of the Lincolu Hospital at Washington was the arrangemant of the wards in the form of an isoseedes triangle, they being placed en echelon, with the base of the triangle being left open. The triaugular space between the wards was vecupied by the rarious Administration Buildings.
In England there are sereral grades of hospitals. The smallest is the Regimental Hospital, under the Medical Officers of the Regiment; next. there is the Divisional Iospital, presided over by Staff Meelical Officers. for the benefit of all the Corps in the Division: and, lastly, there is the General Hospital, applicable to the whole force. In these hospitals the Nedical Otheces are responsible directly in the Secretary of State for War for all purely miedical funetious. With regard to dissipline, iuspections, and other military duties, the primeipal Inedical Offieer is responsible to the Commandant of the Reviment or Division, who in his turn is answerable to the (ien-eral-in-Chief for the state of the hospitals in lis command. Soldiers while in lospital are subjeroted to a stoppage of f d. a day from their pay, unlees in hospital on account of wounds received in action or on service in the field: but their whole pay is stoppet if detention in lospital be rertified to have beromo necessary from their own misconduct. There are some larece Military Hospitals at home. such as Netley, Fort Pitt, for lunatic soldiers. Wolwich. etc. In the French Irmy the service of the Fidld llospitals forms part of the intendance of the Irmy, the Medical Othicers in charte heing under the sujureme control of the Intendant-geveral.

HOSPITALERS.-C'haritahle brotherlıoods founded at various times and in different conntries for the care of the sick in hospitals. The vow to devote them. selves to this work of merey is, in all these brotherboods, superadded to the ordinary vows of poverty. chastity, and buedience, which ire common to all the religious orders in the Clmreh of Rome. One of the earliest recorded instances of a hospital served by snch a brotherhood is that of Constance in the 13th century. The linights of st. Jolin, of Jermsalem. as also the Teutonic linights were originally Hospitalers. The Hospitaters of our Latly of Choristian Charity were fomuded near Clabloms in the end of the 13th century by Guy de Joinville: a smaller body at Paris in 1294: and the Yospitalers of Our Lady Della scala about the sime time at Siena. 'The history of the Brethren of Meres, fomded by Sr. JoHs of God, will be found interesting. 'There are many other local institutes or congregations, all of which. however, reagnize the same general rules, and follow the same general organization.

HOSPITAL FLAG, - 1 Hag used to indicate the 10 . cation of a hospital or ambulance. These flage in the United States Army are as follows: For general hospitals, fellow bunting ? by 5 ft ., with the letter II, $2 \pm$ in. Jong, of green bunting, in center. For post and field hospitals, yeJlow lunting b hy 4 ft ., with letter] . 24 in. long, of green bunting, in center. For ambulance and guidons to mark the way to fiell hospitals, yellow lomting, 14 by 28 in., with a border, 1 in. deep, of green.

HOSPITAL FOR INSANE SOLDIERS.-The Insane of the military service are sent by Department Come manders, umber proper escort, to Washington, where the patients are reported to the Adjutant General of the Army to procure the order of the Secretary of War. The application for admission to the IIspaitall shonld be forwarded in time to reach the Adjutant General at least one day before the arrival of the pratient in Washington. The application sets forth a foll deseription of the pationt, and is accompanied ly a certiticate from a Medieal Otticer as to duration of insanity, whether developed before enlistment or employment in the military service and. if possible. a diagnosis of the case. If the patient be a soldier, his descriptive list and elothing aceoment is also furnished. On the departure of the patient from his station, the Commantling Officer gives sueh orders to the person in charge as will provide for the transportation of the necessary attendance to the Institution and back again to their posts, and for their subsistence, either in kind ur by commatation, during their absonce. To obtain the release of a patient when cured, or his delivery to the care of friends, application is made to the Adjutant General. accompanied hy the reconmendation of the Superintendent of the llospital. After a soldier luas, in the usual mammer, been reported at fit subject for admission to the (iovernment llospital for the Thsane, and is orderod to be sent to W"ashingtom, his C'ompany' ('ommancler forwarts. with his" descriptive list." certilientes of disulbility made ont and sigmed in the
 past, nor is the ordar ariven for his discharge by the Dopartanent Commandar, but his discharge is ordared from the Arljutant Trenerab's Otice, after his arrival at the llospital.

HOSPITAL FUND.-The saving arisint fromanecononnjoul use of the ratioms of the sicel and attendants in a hospital constitute the llaspital Fome. The amonnt is patemestothe senior Medical Otherer at the station. ant in acrommtod for amd expended hy him (xelasively for the beometit of the mon in the hospital. in
 vonience as thay be reguirwd, acoordine to instructions recoived from the surgern Commal.

HOSPITAL SHIPS. Shipstilled mat as hompitals in all rxperlitions beromal tha sod. for the ralo of the sick and womaledi: they have beren foma! invaluable in many foreign expeditions. In C'liana, in I860, four
were fittod ont, and ships for this purpose formed part of the experlition to the Ciold chast in 1sit. They serve either as stationary lospitals or, if sick accumnate, can sall home to the nearest station, discharge, and return to fill amain.
HOSPITAL STEWARD-- I Non-commissioned Ofticerof the General Staff whose dhty consists in making ${ }^{11}$ p preseriptions, administering medicines, and in a general supervision of the siek, under the instrm. tions of some Army Dedical Utlicer, In the Luited

States Army, there is one Hospital Steward for eaclu millitary post, and the Secretary of Warmay appoint from the enlisted men of the Army, or citise to be enlisted, as many Hospital Stewards, as the service may require. They are graded as 1st, 2nd. and ond class, are permaneotly attrehed to the Medical Corjm. under such regulations as the Secretary of War may preseribe. The ehevrou worn by the Hospital Stewards is shown in the drawing. The senior Medical Othecer of a hospital requiring a Steward may recommend arompetant Non-commissioned Officer or soldier to he appointed, which recommendation the Commanding Officer forwards to the Adjutant Creneral of the Army, with'his remarks thereon, and witl the remarks of the Company Commander. Ind, as the object of these more permament appointments is to procure the services of a more competent body of Iospital Stewards, no soldier nor citizen nust be recommended for appointment who is not knorn to be temperate, honest, and in every way reliable, as well as sufficiently intelligent. and skilled in Pharmacy, for the proper discharge of the responsible duties likely to he devolved upon him.

HOSPITAL TENT. - I large ten: used for hospital purposes. It is usually matle of lieary cotton-duck. In the United States scrvice it is 14 feet loner, 15 feet witle, and 15 feet high (center) : with a wall $\frac{1+}{2}$ feet high, and a Jly of appropriate size. The ridge-pole is made into two sections, and measures 14 feet when joined. This tent aceommodates from 8 to 10 persons comfortahy.

HOSPITAL WAGON.- I carriage on four wheels. having four or six springs. used for carrying the wounded of an Army. The Prussian hospital war. ons are fitted up with combination cases, in whicla are packed everything supposed to be netessary in a lospital for wounded, including bandages, splints, drugs and ansestheties, blankets, and an amputatingtible, besides an assortment of tags, on ont of which the surgenn writes his urders as to what is to he done in each case, attachers it to the pationt, amd laves him to the care of others. Five ambulanees. thee supply-wagons (chrrying fombl, Wodding, and (ronts), and iwo Surgoons wagoms romstitute a loos-pital-irain for a division, and will accommodate 200 patients, reinuring 18 surgeons and it men for their (are.

HOSPODAR.-ASlavonic tille oner very commomly Grivel to the (iovermors of Mollavia am! Wralacliai. whercis the Prince of linmmamia is mow known umdor the native Romataice title of Jommen. Another shavenic 10rm, Hojerod, wats nlso ariven to the Jospular, the lorm Wojewod signifsing the rigltt and dionity of lending the Arms (boine thas idrntical with Duke), while the Nospodar (Gospotar, Gospod,
（Gospontin，in the varions Shavonie dialoets）monans simply，Hastcr（Duminas）．F゙ormorly，tha Riflan． nian I＇rinces were likewise callool／／ospoulow，nat thuc I＇olish Kinges，down to the thme of sohioski．ascumorl this tille in thatir diphomatio nometiations with lins－ siat．Hosmder（ISaler．Monarcll）is＂vern mow the title of the fimpror of Rassiat，and in conversation sig－ nificu Hastrer．

HOSTAGE．－-1 person accepted ns at plodere for the performance of conditions．Whan it town rinpita． latos，victors and vantuishod usumbly give into tho．
 that choh party will daly rarry out the forms stipht lated．W＇ban the derms aro fultillenl，the hostanes are＂xchaned ：lut if the terms be avated．the ope－ pesite side holds the right to jut to death，or ather－ wise punish，the hostages in its posserssion．It is noedless，however，to ablel that，in modern civilized warfare，the circmastances wonlel hase to be very remarkuble indect to be held to justify so armel it monsure hs the execution of a hosiage．

HOSTILITIES．－I rupture betweren the matives of dillorent cometrios．The tirst hostife roord that is committed by either party is consinterarl the com－ moncemment of hostilitios．Betwerematives．the tirst anct of hostility presupposes at lecelaration of war．

HOTCHKISS BREECH－LOADING MOUNTAIN RIFLE．

 －Tinis gin，having been devised ésperially with re－ forence to the momitain serviere is made as light ats practicable．It weighs only 111.6 lbs．，amel we man is able io place it upon the hack of a mule．＇The weight of the carriage beiner but 2.20 lhas．the park－ ing，mpacking，and monnting of the sum and its carriage repuite only 1 wo men．F＂or tansportation the maturial is distribmed ass follows：Ont mule car－ ries the piece and two small chests containing acres－ sories：amother mulwearries the carriage and shaft，and others carry the ammanition－ chests．＇T゙向，（obnstraction of the Hotelikiss grm is based upon the use of a metallic cartridge．ly which tha ab－ laration of the breech is ate－ complisheml．＂The extraction of the cartridge－case is ellont－ dad atomaticully by therpen－ ing of the breech．T＇lie gun is made of ${ }^{1}$ hatworth steb？．compressed in the thairl state．The mecelanism of the breech consiste simply of a prismatic bolt，with a cam，entering a cavity re－ cessid in the lareech．It is operated by alever with fathdes．by which the boll is withdrawn，or the re－ virse．As metallic cartridges are employed，ia close fit of the breech－block is mmecessiry，and the bolt is adjusted frety to its slot，which is an adoantard over oblur brecheloading systems，which require erreat nicety in the fit of the breecheme hanism in order to insure a perfect obturation．The cartrifge－extractor is at simple prismatic picec of metal，bearing at its forward extremity a honk；it is ！uided in a cavity in the upper part of the lureech．paraflel to the axis of the piere：ou its lower fare is fittal a tenom．Which slides in a ernover＇ut in the upper fire of the breech－ block．The groose is straight on the sides towarls the handle，but curved at the othar extromity－tam warls the opening for charesing－sothat in withedraw－ inge the breach－block the tenom of the extractor slithes for a thme in the straight bart of the groove．but as soon tas the blark is so far withdrawn that the opell－ ing for charering comes arainst the face of the chinnher the temon beeomes eneraged in the inclined porion of eroove．and js suddenly゙drawn backwards． by which motion the empty case is thrown out of the gun．The movement of the breech－block is ar－ rested hy a stop－serew sliding in the rectsos upon the upprer fiee of the black．The ammanition is comm－ posed of a metallic case which contains tho powder． and is mited to the projectile－an explosive shedl by＂choking．＂in the same mauner as lae cart－
ridgas for mosidern small－arms．Tha cartridge is of
 reinforras．It is not primed．Int is ionntmi by tha wrtimary friction primor．In tho hase of tha（art－
 gas from tho primer ofrons the valse whirla vomos antomationlly．aftor tho igntion of tha rharere．ly

 caliburs in length；it fuiner fumblat with a mid－ 1llo baml of a soft brass．Whorla takos tho ritline．

 twon whirla are marow and shary riders．The hand covers this purtion of the projuretile，and at the moment of dirine the prossure of tho gas which＝nr－
 ＂pon the brass therorresponding errorses and riders that are wh the ratstoiron．＂hhis method of handing oflers the at vantage of seroringe a purfect adhareme Intworn the lorass hant and the projertila，and aloo promits recgulating with errat nicety thr forcing wherthy tha friction necessary to produre rotation may be rednceoll lo th minimumit．＂low hand of brans chvines the fouling of the bore．＂The piece can be tired a great many times withont any horomoisy for
 sionfuseg of the ibotchkiws pattro．The follewinge are the principal weights ant dimensions

1．6．7 incllam
L．angtly of bore
24．72 ralibero．
Weigha of piece
118．60 poums．
Wreioht uf corriage 220.00 pounds： Wreiglat of cartridge complete ．．．．．．．． 2 prounds 10 w\％ Efluctive range 4．2（n）yard．
Number of helicoidal grooves
Twist（to the right）
49.21 inclles 10

Depth of grooves（uniform）．
0.1 ：inches

HOTCHKISS MAGAZINE－GUN，－This 』nn．invent－ ed lyy Mr．I3．B．Holchliss，an American，lately re－ silling in laris，was first brouglat io this ronntry by him in the spring of 1866 ，and exhibited at the（＇ra－ tenninh，at Philadelphia．It wish fommed noreswary to make many changes in the armorigimally introthiond by Mr．Motchkiss，and for these improvements pat－ ＂ints have since been granted．The gan thas im－ proved has been approved be゙ two Boarda of（）thecre alyminted by the Chice of Ordanme of the Army， for the purpose of eximining small－arms．Is now offered，it was a secomd time recommemted fur trial in the hands of the troops liy the orduance board of 1881－82．It embodies the experiance of ix year mannfacturing，and the valuable suggestions of many experienced officers who have nsedt it in the field． It is a most simple and solid repeating－gun，capable of doing good service under the most disalvana－ geous circumstances．The drawing shows the work－ ing parts，with nomenclatuse of the latest improved mudel of 1883.

The operation of the gun is very simple．1．To （1）en the breceh－bolt：Hohd the stock firmly with the left hand a listle in front of the recciver：and with the right hamd raise the handle，and draw back the bolt，makins but one motion．こ．（loses the bolt by an inverse motion．This operation rorks the phece．3．To cock the picce withont withdrawing the bolt：Raise the handle as before and inmedi－ ately turn it down．4．To load the magazine：Raise the hamdle，and draw hark the bolt．Take a cart－ ridere between the thombs ado midelle finger．placing the point of the fore－finger on the bullet：insirt the heal of the cartridge in the recolver，jnat infonm of the point at which it narrows down，and prese it back in the magazine until a distant click－the luad prasing the rariridge－stop－is heart．Ropast the uperation until five rartriduces bave luen inserted． Another may then be placed in the chambur．

The magazine may be untorided in two ways

1. Raise the handle, and draw hack the bolt: the pull the trigger. Withdraw the bolt with the hack cartridge will be then thrown out. Holding the of the thanb as before, aud stop the cartridge commuzale of the arm well up, push forward the bolt (tho not turn it down), the thumb of the right hand pushing the knob of the cocking-piece, and pull the trigger. Draw back the bolt by the knob of the cocking-piece: and the cartridge will be pushed forward, and remain in the receiver. Remove the cartridge, and proceed as before. 2. Raise the handle: place the wrist of the right hand against the handle of the lock-tube, the thumb being extended across
 is such that no cobrtridgess ran escape from the magrazine to the chamber, and the weapon is practically a single loarler. The bolt-lock is placed on the left sirle of the recoiver, opposite the magazine cut-off, ind serves at the sume time to lock the bolt and the trigger in sucla a manher that the bolt cannot be turned or drawn back, nor the arm tired. To lock the bolt and trigger push forwart? the thumb-piecte of the bolt-lock; this can only be done when the bolt is closed and the gun cocked. To mulork the bolt, push back the thmmb-picere of the bolt-lock.

To dismount the mum:-1. Take ont the lolt. To do this, raise the handle, and draw hack the holt until the forward end of the cocking-piece just clears the rear end of the receiver; then after letting go the handle. take Inold of the cockingpiece, and turn it down to the riglat until the projection on the bolt-nead leares the groove under the front end of the locking-tube. The latter may then he drawn out at the rear, and the bolt-head removed at the front of the receiver. 'To return the bolt, the head must be incerted from the front, and the other part from the rear. 2. Take off the butt-plate. hy removing the two butt-plate serews. 3. Take out the magazine nut. 4. Take out the magazine spring and follower. 5 . Take out all the matrd sideserews. 6. Take out the guardscrews and the niphor tangserew. T. Take off the buttstock, hy drawing it lmekward from between the guard and upper tang. and off from the magazine tulie. 8 . Take out the guard. 9. Take out the bolt-lock and magazine ent-off springs. lt will aid persons nnacipuainted with the gun, when endentroring to replace these paris, to remember that the that sides of the springs lie neat the receiver. 10. Take ont the bolt-lock and matuazine (-ut-oIT. Whlile these parts rea. semble each other exteriorly, the bolt in front of the hamdle, and the fore-finger it will be ohserved that the holt-lock has an short resting upon the harrel. Draw batek the bolt (keep)- pivot, and is assembled on the right of the arm, ing the hand in the same position) hy pressing the whike the magazine cout-off has a much longer pirot, late of the thamb noar the wrist agianst the front and is assembled on the left. 11. Tinke out the

 Push forward the loolt (llo not turn it down), and and turning it slighty to the right, so that it may
pass the trigger. 12. Take ont the wiping-rod. 13. lake of the lands. 14. Remove thr tipsontorek. This is lues dome by separiting the tign-stock, or fore-arm, from the barrel ; tirst at llow forward 'ad of the lijostock, seprameling them matil the stad on the rereiver is withdrawn from the slat in the reaterme of the tips stork. \quad S. Thake out the Irigerer, by removing the triggor-screw. 16. Take off the barrel. This shomble be attemperd only hy persons provited with proper tools, as the barrel und receiver ure vory firmly as-
 dismomated from the gmart. ley maserewing the ente ritgrestop screw, and driving out, from the left to the right, the w(op-pint.

To dismonat the lireecdr-holt :- 1. Wemove thee
 in the left hand, and with the right turn down the hamelles as in the art of lowliner the boht. 'Ther lemad will then slip off. 2. 'Tum ont the liring-pin serew. 3. Slip the holt-head partly on the projereting end of the liring-pin, and use it as a wronclo to unserew the pin. 'The main-spring may thon be romoved. 4. Rembove the extrathor lys thpusing gently on its projectiner end with in piece of wool. To assemble proceed in the inverse orter of the eprerations given nbove. Sire M/rgazint-gun.

HOTCHKISS PERCUSSION FUSE.-This fuse consists of a metal body, A, closed at the front end wilh a serew eap, /b. It has a conient hole in the rear, which is closed with a bead pheg, (". (the safety-plug), presuad in very tighty, so that the pher projects a litthe throurla the hase of the borly-rose", foward the lnside. The phomer, $/$, is composed of lean cast into a brase casing to strengthen it, and to prevent the lead being upset hy tho shock of diseharge. Two brass wires, F, cast into the lead on opposite silles of the phonger, hold it suspended in the ease, the wires going throngla the hotes in the bottom of the case. and being loble securely in position ly the safetyphor: The phoneres has a nipple cast jnto the lead, and is primed with an ordinary peremssion-cap ; in

its axis it has a powder-clamber, G, which contains the ignitingcharge. The operation of the fuse is thas: The salfety-phus is shasluclact backward into the interior of the projectile ly the shock of D discharire ; the wires then being not leme so tight in thr hole, the plumger is disengagedand rests on the bottom of the fise case, and is freeto move in the lime of axis. Whan the flight of the projeetile is suddenly retareded by its striking an ohject, the phanger, in consequence of its inertia, is triven forward, and the primer strikes arainst the srew-cap, thus igniting the proweter in the chamel, and so tiring the bursting-charge of the projectile. See Fusp.

HOTCHKISS PROJECTILES.- Projectiles of this sy'stom, us shown in the drawing, are componsd uf three barts. The body. B, and the cup. (b , are of cast-iron. and the ring. R, of lead. The ring is locked into the body ant the ('up) by the grooves (b) and (c), all the partsheing thas held securely torether. The action of the rharge is in drive the cup forward, thereby expanding the soft metal into the ritling of the intm, and at the stume time lindine the lead so that it eannot revolve baon the projectile: this last is assisted by a few grooves on the cast-iron inter the leak. The amonnt of expansion is controlled liy the distance the eup can move before eoming in contact with the end of the bonle. Ill those projectiles with Whath thue fues are used have three longitudinal gronves on the ontsite, to insure the passige of the
flame to tha fuse 'lhe ring, bring placed moreh marer the arentro of gravity of the projertile than if
 athd incrense the neseraracy of tire. A llotelokise pro-
 of (ast-iron, in once pirore; a hamd of koft hrans, about once saliner long, is forreal into at rerase in the pros jectile, situated well over the renter of gravity; iwo Jongitudimal growves prevent the baral fronn thrnhag. Coen tha comside of the band is cont a momber of
 pression of the brass ass hat projeretile is forered imto the bore. Sice Expuewdiug I'rejertiles and Projertilex.

HOTCHKISS REVOLVING CANNON.- 'lh, Ilole.lıkiss revolving (ammon rannot breclacerd willa mitrail. brases in thr ardinary sense of tha lather term, as explosive shedls are dired with the former, amel it has a rangere "fand fothat of fiedel-artillery. Tharesyle mof this gan may be explatard as follows ; Five larerels, gromped aromad a common axis, are revolved in front of a solid breecol-blosek, which has in one fart anc suming to introllure the eariridges, and anothor opening thronth which to extract lhe empty arells, while the cartrideres are lired after boiner revolved and while motionless in from of the poblid portion of the breech. Fig. 1. The exterior aspere of this revolving comnom resembles the (iatling mitralle ense, it leing, on the other hand, entirely ditforem in its interior meslanism. The system is cobajoosiol of two distinet parts, vi\%., the barrels with their disks and shaft, and the frame and breech conlaininer the mechanisin. The tive harrels, mate of the tinest oil-temperal cast-stecl, are momnted aromme a fommmon axis, betwern two disks, on central shaft. The series of barrels are in this way jhaced in a reotimerular frame, which is aftached to the brewth. the near end of the shaft penctrating the same to roroive the rotary motion from the driving-genr. Fig. 2. The breech of the revolving annuon is emmposed of a solid (ast-iron breedh-block, weighing about 380 lhs. This absorbs the greater part of the reeobil. It has a cloor at the rear emd, whicle can be rasily opencol, su that the meelanism is frecely accossible, and can, if necessary, be dismomoted and put back into its place in a few minutes, without the aid of any special tools. A peruliar feature of this gun consists in the larrels remaining still duriner the dis. clarge, so that there is no movement of any kind io impede the accuracy of the tire. This stop or lost motion is obtaincel by the shaping of tho drivingworm, which is so constructed that the inelined driving-thread ondy covers half its circumferemee, the other half of the thread heing straight. The offect of this is that the barrels only revolve during half a revolution of the worm, and stand still during the other half revolution. The combination of the mechanism is so arranged that the loading, firing, and extracting takes place during this pause. This feature is of great imporiance for the afouracy of fire and the dirability of the system. The wormshaft projects thronel) the breech on the right side, and has a crank with which the whole system is moved; on the left side of the worm-shaft a small crank is attached, by which the loading and extraction of the cartridere-shells are effected in the following manner: On the interior face of the left side of the breech a eng-wheed is monmed. with iwo horizontal racks, the me being placed above the othor umber this cog-wheed, and paralled to the axits of the barrels, so that in moving either of these rack- tho other is movert by the cor-wheel in the opposito direction. Dart of the lower rack forms a vertical slot, in which the small erank on the left side of the worm-slaft works. The rolation of the latter ennserpuchtly gives an alternating and opposite movement in the two rateks, so that while the one is eromer forward the other nowos back, and reciprocally.

The umber rack forms the extractor: the apper ome mowes a piston which drices the cartridge into the barrels, the cartridge being placed before the
piston. in the trough in which it moves; and during the time the barrels are motionless it is introduced into the one standing before the trongh. The cartridge is not "driven home " eutirely, but its lead is in view of an inclined_jlane, cont intu the metal of
ridges are piled one upon the other, the opening of the introduction-trough is closed by a lit1le door, which grets down by the weight of the eartridges, the first of which drope into the trough and then the piston in moving forward, raises the same door

Fig. 1. side Elevation.
the breech, on which it slides when it is moved by the rotation of the barrels. This complates the introduction of the eartridge into its chamber. The piston itself is a simple cylinder connected with the rack. and rumang in a slot in the conducting-trough. When the racks are in their extreme positions they

Fig. .. Vertical Section throngh AB.
remain still a moment. This, st(y) is obtained by giving the slot in its remter part a circular shape concentrically to the shaft of the crank. This is necessary, becanse at the moment of the barrels arriving at the end of their course the head of the cartridge-case hecomes engaged in the hooks of the extractor, which would not be possible if it were in motion at the time. The extractor is a large fouble hook at the end of the bottom rack; it is very solid.
and allows no more cartridges to enter mintil at the proper time. All parts of the mechanism are very strong and durable, and hardly execed in number those of an ordinary small-arm, there being, besides the gromp of barrels, thirteen parts, viz. :-1, 2. The hreech-block. with its door for closing the rear ent. 3, 4. 5. The crank-slaft, with its worm for moving the barrels, and small crank for working the loader and extractor. 6. The crank. \%, 8. The firing-pin and spiral spring. 9. The extractor. 10.11. The loating-piston and rack for moving it. 12. The cog-wheel for transmitting the movement of the extractor to the loading-piston. 13. The door for rewnlating the feacl of cartridges.

The operation of the mechanism nay be described as follows, supposing the crank to be in contimal motion: A cartridge is placed in the introductiontrough, the piston pushes it into the harrel, then the barrels begin to revolve and the cartridge is carried on till it arrives before the firing-pin. which penctrates the solid part of the breech, and which has in the meantime been retracted by action of the cam. Fig. 3. Then, as soon as the cartrilge has arrived into this position, the barrels cease io revolve, and the primer of the cartridge is struck by the firingpin and discharged : then the revolution of the barrels begins again, and the fired cartridge-shell is carried on nutil it comes to the extractor: this, in the meantime, has arrived up to the barrels and the cartridge-head rolls into it. As soon as the head is laid hold of by the extractor, the harrels again cease to revolve, and during this period the cartridge-shetl is withdrawn and dropped to the ground. As during every stoplage of the harrels the gum is supplied with a new cartridge, and the firing and extraction is also performed, during this time a contimuous but slow fire is kept up. By supplying the grun in this manner with single cartridges. about thirty rounds per minute may be fired. Should rapid firing be required. the gum is then suppliet, not with single cartridges, but with "ferd casess," comtaining groups of ten cartridges each, and in this maner from sisty to eighty ronnds per minate can be fired, with only three men to work the ghm; viz.-one man to train the gum and revolve the and its proper working is curtain under all circum- crank: one man to place the ${ }^{\text {or ford-cases " contain- }}$ stamers. After the "artridge is "xtracted from the" ing the cartridges into the "feed-trough"; and a harrel it strikes arainst an ejector, which pashes it third man at the ammunition-chest to charge the out of the extractor, and it falls to the eromel throngh an epening in the uncer part of the brech. The firing-pin has an elongation. pointing downward. which, hy the operation of at spring, is pressed arainst a cam on the worma and as the worm rotates, the cam driven the firing-pin batk and compresses the spring. The moment the tiring-pin becomes liberated, il strikos the primer of the cartrider amd the dise harce takes plaw. To ohyiate the difticnlbies which exist in other symems, when the cart-
"ford-casus" and to hand them to the charger. Ittached to the frame is a turn-tablw wheh"emnects the "ammon to the " trumion-siddlle," arranged in such manner that withont dipplacing the carriage a cortain amount of lateral monion as well as of chevation may be eriven to the erm. Thas the gm is mate to swerp horizontally along a line by atjustmont, hetween cach single shet. or during rapid discluarge.
The ammmition for the revolving cammon romwists of a center-fire metalice cartridge of special con-
strution, holding in "ach one thr browere the prosjortile, and the Inbricating-wal, arranged lik" the mimilar ammomition gemerally userl for mmall-arms. 'Two dillarent kinds of projectiles are used, the onw an cexplosive shell and the ofloer ar ase-shot. Nothing need bre satid of the lattor, as it dowe not dittur from the common eqse or eanistor-shot used in cordihary cannon. The shell is of a novel construrtion: it is of rastaron, of a rylimiro-ogival matape, slighty roumberl at the rear end. The parcking consists of a brase coat of about one caliber in leneth, and placed equidistantly from the eenter of gravity. This eent is of soft brass tubing, contracted with great prossure over the body of the projectile, it being provited with longitudinal grobves, amt two grooves encircling it at the topand bottom conds of the pack. ing. The coating is forceal into these rrooves, and any disturbance of it on the body at starting is thus
jectile, und the rithing is impressed on the rilss onty covered by the luhing. Its alimensioms and weighta are as follows: Lenglt of lonly, 易.fif inchoss: entire lemgth with fasa 4,27 inclores; longth of brast comt ing, 1.5 inchos.
The varitialge-case is componatal of n spirally-rollonl
 an inside mat outside :oup. 'The lomel is pansloed thit of sheet-iron, and is fastenoel to the coups with
 the anvil, and is celosid at the botlonn ond by the ext rontaining fulmimate; it is titherl into athole which penetrates the head and hoth cops, aml it projerets throngh into the inside of the rartridgre-ake. This cartridge, which can be manufacurcel with great facility, on account of tis simplicity, has proved itself to he of a very durable quality, and it con be nsed repentedly. The construction of the body of

Fig. 4. Ilntelaiss Revolving Cannon, with Shoulter-piece, Pistol-grip Stock, and Firingotrigger.
olviated. These grooves sorve at the same time as the cartridge allows it to expand to the chamber of brataking-lines of the shell. After the coating is attached to the projectile, some small saw-tooth-like grooves are cut into it, to reduece the strain while Feing forced through the ritting of the barrel. These grooves ean be filled with a lubricating substance, and this is then earried perfectly between the projeectile and the bore of the larrel. The coating of the projectile is conical at is front part, eorresponaling with the cone in the projectile-chamber, so that it is exactly"centered in the bore as soon as the forward movement commences. Its rear end is cylindrieal to within about one-third of its length. The shell is turned smooth all over, and is nearly $0^{\prime \prime} .016$ in diameter less than the bore of the barrel. "his projertile is made with great care and cxactness, with only a very small deviation in dimension.

The fuse employed is that known as the llotehkiss pereussion-fuse. used in large fuantitios during the last war in Imerica, and described above. The improved llotchkiss shell is with its fuse it little less than three ralibers in length, or about sevensixteenths inch shorter than the one just described, from which it differs, with the above exoption, in the following particulars only: The new shell has four circumferential grooves scparated hy ribs about one-twerticth inch wide, and longitudinal cuts between ribs. The tubines, about one caliber in length and one-sisteenth of an inch thick, insteml of leing corrugated on the cxterior, as in the old shell, is perfectly smooth, and is contractiol into place by a slight pressure only. The gas from the discharge presses the packing so timmly into the grooves and cuts that it cannot sotate independently of the prothe gun withont the metal being stretchech, wo that after the discharge it contracts itself again to its previous diameter, thus leaving the fired case perfectly loose in the chamber for extraction. The lubricator consists of a wad of felt abont $0^{\prime \prime} .23 f^{2}$ thick, dipped in a solution of mixed tallow and berswax. I paper disk is placed between the lubricating-wad and the charge to prevent the powder getting damaged by the greasy surface of the horicator. The projectile is merely pressed into the neek of the cartridge and is not clenched, ns there is enongh frietion to hold it absolutely secure. Of course the ammunition is, as in the case of all of the moilern small-arm ammunition, which it resembles, rendered safe against influences of weather aml danger of explosion. The following ure the principal dimensions and weights, etc., of the gran.

Caliber.
. 459 inches.
Total length of bore
length of rifing
Rifing of rifing.
4 fect $2.23 t i$ inches iting, one turn in.............................
Namber of a depth of arne imiform.)
Namber of grooves.
Width of lands.
Depth of grooves.
Vumbet of barrels

Diameter of barrel ater powder-chamber...
Weicht of barrel at the muzzle
Radine of each barrel.
Tratical distance of the line of sight froun the common axis of the barrels.
Horizontal distance of the line of sight from the common axis of the barrels
Wevight of gun
Total weight of gun with traversibu appar-
For the revolving cannon a seecial earriage has

1,15\%.ts pmunds

12
0.050
inchas. 0.058 inchas ${ }_{5}^{0} 0.019$ inches
3. 4 tin inches. 2.40 inches T. 1 14 pounds. $\because 3^{\prime \prime} \cdot 04$
S. (Nxity inches.
6. 40 m inches 1,04\%.25 pounds.
been constructed. This was found necessary, as the ordinary field-gun rarriage is not provided with the means for proeuring an excellent and immovable rest for this gun. The trail of the carriage consists of two brackets of sted-plate, conneeted by three transems and bolts, the rear end being comected by the trail eye-piere. The brackets diverge against the trunnions. The trunnion-bearings, and the hearings for the axle-tree, are riveted to the outside of the brackets and are fitted in the ordinary manner. The axle-tree is of steel, the arms being slighty conieal. The wheels have metallic naves and ring-tires. The mave eonsists of two parts, the inside flange, with the pipe-box, and the ontsideflange. The spokes are ent in a conical form at theit "hub" ends, so that they fill the nave-flanges, and the two parts of the nave are bolted together with the spokes with six screws. These wheels are very strong, and have been found pratieal and conomical in service, and they allow spokes to be easily substituted for others when broken.

The rlevating arrangement consists of a screw working in a gun-metal nut, resting in the oscillating bearing. This nut is revolved by conical gear-wheels from the left side of the trail, the top-end of the serew being attached to the trunnion saddle-plate. The handspike is hinged to the trail so as to fold back in traveling. A tool-box is maced between the trail; this at the same time makes a solid connection of the trail-brackets. The carriage of the revolving cannon is usually provided with a light steel shield for the protection of the gnnmers from small-arms firc. This shield is of three parts, made to fold together, thus forming seats for two men. It can immediately, when coming into aetion, be unfolded. and only the muzzles of the barrels and the whecls of the earriage are exposed to the enemy. The steel plates are abont 0.236 inch in thickness. Two hoxes are attached to the axle-tree, each to carry three feed-eases loaded with ten rounds of ammunition. On the earriages not provided with a shield, these ammunition-boxes are protected by light steel plates in front, and have a lid of stcel. which. when raised, forms a smatl protecting-shiedd, and when closed they form seats for two gumners, sut that with two or three gunners on the limber a sufticient number of men to serve the piece would be taken into action with the gnn itself.
The gun shown in Fig. 4 is intended specially for use against torpecto boats, and is mounted on the rail of a ship, as shown in the elrawing. The recoil is taken up by the pirot, and the gun is so nicely balanced as to be easily trained by the gunner, who stamls with his left shoulder against the "eross" or breechextension, and with his right hand grasping the pistol stock at the right of the gin has as eomplete" eontrol of the wamon as if were a fowling-piece, or the grn may be held by the rack. See Machinegun.

HOTCHKISS SHELLS.-The first rariety has three
 walls, parallel, ornearly so, with each other and mited to a solid base. In producing it. the middle wall, is first cast by the ordinary process. This wall is then sucperderd upon a corepicer, whose dimensions are such as will leave a mate betwon its exterior and the interior surface of this wall, erfual to the thicknoss desired for the inner wall. This core and middle wall are thon suspendell in a mond of the common construction. which mold has an imer contemer the shape of the "xterion of the complete sha.ll. The metal porred into this mohd ("xednone the middle wall, and forms the whell as shown in Figure 1. The object of this perculiar form

Fig. 1. which will be broken into a larear number of piceres
than shells of the ordinary eonstruction. Near the forward and rear ends of the cylindrieal portion of the shell cannelures are turned to receive the packing or soft brass lands, which are pressell and erimp)ed into place. 'The hase of the shell is slightly chamfered.
The Hotehkiss field-shells of ordiuary pattern, as shown in Figure 2, are one inch longer than those deseribed above, and have greater powder capacity. They are east in the usnal way for easting shells, and have the same general thape as the triple-wall shells. The packing as origimally made consisted of a soft brass tubing about 4 inches in length, ruming for nearly two-thirds the length of the cylindrical portion of the shell ; it was pressed and erimped into a recess turned on the shell to reccive it. Cannelures were turned on the exterior of the tubing to diminish the bearing portion of the pracking to be cut through ly the ritling of the gun. Before these shells were fired, and to insure suitable rotation, Mr. Hotelikiss had added a smooth brass tubing about $1 \frac{1}{4}$ in. long, which was also pressed and crimped into the recess turned for it. In turning this recess two annular rings were left. Au ex-

Fig. 2. amination of the results of a recent experimental firing shows an average of 17.4 hits per shot for the triple-wall against 10.4 for the common sheils. The liability to premature explosion or breaking up in the gun seems to be about as great for one as for the other. Experiment fully demonstrates the superior destructive effects of the triple-wall over the common shell. See Shells.
hotel des invalides.-An Establishment in Paris, maintained at the expense of the State, where a number of old French soldiess are quartered. Its chapel eontains the tomb of the great Napoleon, and is an objeet of much attraction to all visitors. It was founded by Lonis XIV. in 1671, and during his reign and for a long time afterwards was a place of retirement for the aged servants of Court Fivorites as well as linvalided Soldiers: but this abuse was put an end to lyy St. Germain in Lonis XT:'s reign. In 1789 the Hotel had a revenue of $£ 68.000$, but during the time of the Republic its property was alienated and the Institution supported from the public revenue. The flotel can accommodate 5.000 men, and the actual number of inmates is not mueh below this. Sce Soldier, Homes.

Hot SH0T.- Hot-shot may be fired for the purpose of setting fire to vessels ur buildings, though they are rarely used. Shot of low gange should be ehosen for this purpose and with reduced charges. They ear be mader red-hot in from 15 to 30 minutes, but "are must be taken not to bring them beyond it bright rel. as they are then liakle to fuse and become misshapen. The part resting on the furnacebars heats more quickly than the unper part, so they mast frequently be turned. Shot expand is of their diameter wheni hought to a red-hat: therefore, (0) prevent any accidents, cach shot should be passed throngh a red-hot shot-gange before being taken from the fire-room. Should the shot jam in the bore it must be cooled ley pouring water in at the muzale; but if that falls, the chatre must be drownel before attempting to hlow ont the shot.
Junk and grommel-wads which have been soaked in water for two or threr hours, having the water pressed out of them, are to be nsed in loading. The: jumk-wads must be small enough to lit casily when swelled by teing suaked. The cartridge must be perfectly tigh. so that powder will not be seattored atong the bord. Shalliedent devation having
bern eiven to emable the shod to roll home, first (entur the rartridge, a dry junk-wad, and then at wat junk-wad, and ram them home. Bring the shot in a bearer and enter it, with 12 wet grommer-wad on tols: since it conls rapinlly, mo time shonk be lowit. Quantitios of smokn will coma up through the vant, but a rech-hot shot das mot burn more than the
 in the ertun till it beromes cohi. See firerortis ame I'rojectites.
HOT-SHOT FORK. - I fork mall of irm, fastoned tu at woten handle, aml is usal top pull the shot ont of the furnace. It has two promes, which curve inwards and upwards, so as to retain the shot between them when onew in pusition.

HOT-SHOT WADS. Whats for tiring hot-shot, and other like purposes, may be made of hay wrapper with rope yarn, and are made in the same way as junk-wadaj; or they maty be mate ratirely of hay, by twisting from the hay a rope of an inch or an inclo and at hatf in dammer, and then commencing at one cha and doblding it bug about one caliber in bongh, and twisting it all the time, until it becomes nearly harge emongl, when the rope is to be woms aromad the wad verpondicular to itsaxis, and fastened with a hiteh.

HOTTE.-A sort of hand-hasket, which is oftern mate use of in the construction of batteries and other works, and sorves to carry carth from une place to another. Honere the word herl, at wellknown contrivance for earrying bricks.

HOUGINES. Parta of anciant armor covering the thighs, legs, and arms.

HOUNDS.-1. I'iecer of wood nsed in the construction of limbers for gun-curriages to connect the splinter-hars with the axdes. is. The bloodhounds amployed for military purgo es The linssians have strengthened their army hy the novel addition to each company of a pack of powerfully and carefully trained dogs. These watchfulanimals are sent out with the sentinels on pieket duty, where their chary tar and still keener seent prove an impregrable barrier to the lurking spies of the enemy. The dogs nesel are a spucies of boud-hound from the Ural Moumtains. The doy is selected because of its habitual silence. It growls but never barks-a matter of the first importanee to soldiers near an enemy's camp. The tral hound is gifted with an excredingly tine sense of smedl, k cen cars, and is ever alert. Most comforting of all w the lomely picket the dog is said to be resperially courageous in defending its mastor. It is enrious that, with the example of the Fing Charles spaniels before ns, no one thought before of using these intelligent animals as sentinds. The value of the plan is self-evident. The Mascovites have gone further, and are training swift hounds as well as these same trat dows. to net as dispated bearers. much as the carrier pigeons were employed in 1871. They certanly wonld be hard messengers to catch, when stemling through the woods at night. See 13lmul-humend.

HOURGLASS. - A glass vessel filled with sand. and compressend and athemated at its conter into the Shape of the figure 8 , whereby the sand can only rum through the iomnecting orifier in a given time. This vessed is contained in a wooden stand. Formerly mach English regiment was furnished with this iosurglas: : and even at the present day native regiment: in Indialase it. A eommon mode of keeding the time ley native guards is by means of a metal bowl having a small hole in the bottom of it, which is allowed to swim on the surface of the water, and (1) bill in the space of an hour. This rough and ready mode of asertaining time, though not always correct. gives a neur approximation to the lapse of an hour. 'This nature of timentlock was the first instrument to measure the lapse of time independenty
of the sumshime. A simple time-kereper is alser kept, bat tha arragement is invertal, the best beeing tilled wita water, amb the water allowed to (0.atap
 a hole in the brotom uf the bewl.

HOURS OF SITTING.-Tha' lamers flaring which at tourt-Nartial is anthorized to hold ite answonn. The law provietes that the provecodinge of trials shatl be carried on only bet ween the hronre of wight in the morning and three in the afternom, "xceptime in rases which,in the oppinion of the (othicer appointing the (court, refuirw immediate example. In the latter case, the order appointing the (ourl-Martial mast rearly state that ". The Court is anthrizel to sit withom regard to lomis."
HOUSE.-A from anciently applicl to the broks of wood or frame structures. upon which the (arly bombards wre fixrol. Sire Freat.
HOUSEHOLD TROOPS. -Thos: troojs wheme rapecial duyy it is to attemi the sovereign, and to ghard the thetropolis. These foreses comprise there regiments of casalry the 1st and 2 al Life fimards, and the Royal Horse Guards, and three regiments of Foot Guards (which inchude severs batalions) the Grenadier, Coldstream, and the Scots Fusilier Guards. The cost of these corps, for pay amol allowances only, reaches the sum of e230, of(t) a y yar : and they number in all ranks 1,302 cavalry amel 5. 950 infantry, who are justly held to be the flower of the British Army
HOUSING. - The cover or doth over or under a horse's saddle, used for cleanliness or as an ornamotatal or military appendage, In the Cnited States Army, honsing is prescribed as follows: For General Officirs-To be worn over the saudde; wf lark bue eloth, trimmed with two rows of god lace, the outer row one inch and five-eighths wide, the inner row two inehes and one-fourth: to be mate full, sir as to cover the horscos hamehes and to bear on each flank corner the following ornaments, distinctive of

rank, to wit: For the General of the Army-A gold cmbroidered spread eagle with two stara aml "Arms of the Lnited States" betwern them: For Liwnenwht Generab-A gold embroidered spread (atyle and three stars: F゙or Vajor (rimerals- i gold embrnidered sureal eagle with two stars: and For lirigudier Gentrals- i arold ambroidered spread eaghe and one star. See Saddle-cluth.

HOWITZER. - From the earliest days of artillery there existed short, elnamberet pieces. which prijected stone balls under grat angles of elevation. In 14ix, an attempt was math to use in these jiecus. hollow projertiles filled with powder, to which wat attached a burning match to set the powder on fire; but it is probably that the aceridents which accompanima lueir use eatased them to be abondoned for the time. In 1634, howevr, means were devised to owereome this ditliculty: and. thus perfeetell, these pieces were introtuced into the French service as a class of cammun now known as mortars. In the reimin of Louns XIV., a great variety of mortars were used ;
and some of them, called Comminges, after their diameter than the rest of the bere, the mouth of inventor, threw bombe weighing 550 pounds. Early attempts were also made to throw hollow projectiles from perrieres and culverius, or guns: but great difficulties were experienced in loading them, and the accidents to which they were liable, as in the case of mortars, cansed them to be abandoned. Snbseguently, however. the Dutch artillerists conceived the idea of reducing their length, so that the
 which is completely closed by the sholl when rammed home. The Coehorn howitzer, much used in lndia for mountain service, is a small gun, light enough to be borne by a horse up hilly defiles, cte. See llouritzer, Ordnance. and Tirenty-firur-poumbler Mocitzrr.

HOB MORTISING-MACHINE.-A machine in which a wheel-hulb is held upon a mandrel or stake, so disposed that a reciprocating chisel may cnt therein the mortises for the spokes. The hub is dogged or clamped se as to prevent rotation while the mortise is being cut, and is then rotated at a determinate number of degrees to present the next spot. The drawing shows a power hul mortisingmachine used in making the wheels for gun-carriages and Government wagons. Those hubs to be mortised are held fast in a screw-chuck, one end turning in cups fitted to each size. The chuck has a dial attached to it, accurately spaced for $10,12,14,16$, and 18 spokes, thus olviating the necessity for setting out the mortises. The bed also has stops which regulate the length, and is arranged with a lever and stops, to give any required bevel or dish to the mortise. It is supported by a standard, bolted to the base of the machine. making it firm and solid, and is raised and moved for the mortise by hand-wheels. The chisel is reversed by hand, and brought down by the new double lever or tradle, which is very easy for the operator. The bit-shaft has the new arrangement of lever and weight for working it, and is driven direct from the counter-shaft. The machines are complete in every respect, and are made in the best possible manner. This size works hubs 12 by 16 inches and under. It can he fitted with a bed for common mortising, if desired. The counter-shaft has tight and loose pulleys, 12 inch diameter. 4 inch face, and should make 350 revolutions. The counter-shaft should be placed on al level with the pulley in top of machine, and 8 or 10 feet distant. Weight of machine, 2,600 lbs. See Mortis-ing-machine.
HUE AND CRY.-In Great Britain, the Official Gazette, which serves to advertise deserters from IIer Majesty's serviee. The phrase is derived from the old process of pursuit with horn and voice, used in English law to deseribe the pursuit of felons. Whoeverar-
projectile could be inscred in its place by hand: and, thas improved, these cannon rapidly came into use, under the name of howitzers, from the German, Hanthitz. The howitzer combincs in some degree the accuracy of a cannon with the caliber of a mortar: and, while erpually effective al short ranges, is far more portable than cither. That the powder, on its expansion, may act with full force on the shell. it is contined in a hemispherical chamber of smather
rested the person thus pursucd was so far protected that he required no warrant to justify the arrest ; and even if the party turned ont to be no felon, no action could be brought if the arrest was bont fide. But it was not only a ground of action, but an offense subjeel to tine and imprisonment, to maliciously and wantonly raise the hue and ery against a person. It was the duty of all persems to join in a late and cry, and if a person who had been robbed, or knew of a
roblery, failed to raise the hue and "ry, lat was lian ble to tinc or imprisonment, or, aceoriling to soma anthors. (0) indictoment. Hac and rery is now sulsstantially abolisherl.
 ("d in France, who was attarlored to the bonyal Ilousehold. Trhey were at tirst tistingrishod by tho mame
 were directed to bear the mare hefore the Kines during the day, and ohtained on that aroonnt tha: ajpere lation of /heissiers d'Ames: in later times they ware called the Iluissie. os. or Tipstatle of the Kiners Chamber. Others kejt watch in the Ninim's bedchamber dorin! the night, and werosworn (o expust their lives for the safety of his person, whence they obtuined the name of trehers de lu fiorelo. Whith lerm was changed to ficerdes du f'urps, or the Jondy. gitarils.
HULK. - A name given 10 any olel ship matit for sen-serviec, which is used in harbor as a hepot of some sort. In the great naval harhors, thore are coal-hulks, powder-hulks, runvict-hulks, and hulks to which the crew of vessels rejuiring are turned wver.
HUMETTY.- A term in lteralidry, applied to at cross or other ordinary which is cout off, and nowhere renches the edige of the shiedd. See Ilfraldry.

HUNS. - The name of a ronsilerable nation of antipuity, which, from time to time, male intrursions tuon the Roman Dominions, and whiche eventually. under Attila, the most renowned of all jts leablers. bromslat the Empires of both the East and the West to the very verge of destruction.
The JIuns were of Asiatic origin, and, in all prolbability of the Mongolian or Tariar stock : therefore akin to, and prerhaps to be identified with the seyth. iuns and Turks. Aceording to Je Guignes, whose theory has been accepted by Gibbon. the Il uns who invaded the Roman Empire wer dineally deserneled from the IIiongnon, whose uncient seat was an extensive hut barren tract of conntry immediately (0) the North of the great Wall of China. About the year 200 в. E_{i}, these people overran the Chinnse Empire, defortod the Chinese armies in momerons engagemonts, and even drove the Emperor Rao-ti himself io an ignominious capitulation and treaty. Diming the reign of Tou-ti ($141-87 \mathrm{~B} . \mathrm{c}$.), the power of the luns was very much broken. Eventually they broke into i wo distinet camps, one of which, amounting to ahont 50.000 families, Went Southwarls. While the other endeavored to maintain itself in its origimal suat. This, howeyer, was very difficule for them to do: and eventualf the most warlike and enterprising went West and Xorth-west in search of new homes. Of those that went North-west, a larue number established themselves for a while on the banks of the Folga. Then crossing tbis river, they advaneel into the territories of the Mani, a pastorit people dwelling between the Volega and the Don. At what jeriod this took place is pacertain. but probably early in the fth century. 'The Alani. who had long dwedt in these plains, resisted the incursions of the IIuns with much bravery and some effect, until at longth a bloody and decisive battle was fourght on the bunks of the Don, in which the Jlan King was slain, amd his army ntterly ronted; the vast majority of the survivors joined the invaders.

HUNTIAG HORN. - The Hunting ITorn or Buqle llorn is a frepuent bearing in Herabley: When adornerl with rings, it is said to he gernished. If the month and strings of the instrument are of dillerent tincture from the horn, "his must be namerl in hhazon. See Meraldry.
HUNT LIFE-SAVING PROJECTILE.-This apparatim consists of a projectile and a tin can known usthe shore-can. It is intended for life-sating purposes to be used in connection witls agun or mortar of suitalfe dimensions.

The body of the shot or projectile is composerd of a tin tube closed at the front end by a disk of iren.

 of the lobox, forming a thin romtinur for a dimtinowe of $3^{\prime \prime} .2$ from the plane of the lamel. 'Jhe diarnotor of the that hood is 2.5 inclues. but whon firmb ex-
 inforcerd for finchos of ita lemeth nbuqu the brand with it galvanized sheet-iron taba. 'lobre of,juct of this reinforce is to stronglhen the tome and privenal Hjesetting when tiret. Firar tha rear abd of that thbe fonr traperiform piecoesof tin, twrmand "winus"
 and equidistant viremofervatially for the jurperso of guiding tho projectila in its light after the mannors of the harles of an arrow. Ahomt zov yarile of shatall line is coilerd on a spindlo in at latho. aftor passing throbgh a saturating solation of paralime. 'This coil is wrappel with a thickioss of duboratory japur. mend as soon as withdrawn from the lathes-spinslo is
 is made fast to a wire loop whicla projuccts from that rear and of the tube. Thase wire is soldared to the tube. "lohe rear rad of the tube is then \cdot losed with a worlen plag she inch in thirgness und of the sume diancter as the insite of the evinuter. An axial labe one inch in diannorr serves for the dine tu pass throurla in escaping from the shot. A paper disk is pasted over this enil of the projectile, which must be removed before firing in order to seenre and withdraw the end of the lina.

The shore-can rontains the slore-lime and is made of tin. It is a short cylinirical tulue of greator diameter than the body of the shot. The lower end is closed by a bottom of the same material as the cylindrical body. 'To the hottom a ring is attheled in which is tied a line or through which a stake is driven, to prevent the can from being carried off infiring: IJoles are punched through the liottom over each side of the ring-seat, through which the cond of the line belonging to the outer coil is passed and tied to secure the dine to the can. This shorecan contains about 250 yards of small line, coilerl in a lathe and saturated with parathap in the same mannor as the line in the slot. After coiling, the line is placed in the can and the tin cover pint on. The cover has a central hole $1^{\prime \prime} .6$ in diameter through which the line is paid out. A sirip of laboratory paper is pasted aromel the can so ats to wverlap the janction of the cover and body of the can and prevent the removal of the former. I paper disk, which must be broken before firing. is pasted over the hole in the top.
The method of using this apparatus is as follows: Suppose the gun. projectiles, and shore-can platiod on the firing-groumd and the gan in position for firing. Insert the powder-charge, tear the paper cap from the rear end of the projectile. and draw out a couple of feet of the line : place the projectila in the bore with the flat leaden head first. Then tear the paper cap from the hole in the lop of the shore-can and pull out about 2 feet of line: tie the ends of the line together and hare the shore-s:an near the gun on the windwarl side. The proper elevation is then given to the piece. the primingwire inserted in the vent, a friction-primer put in, and the gun tired. See Iift - varing Rochets.

HUNT MAGAZINE GUN.-This grm bedougs to that system in which a fixed ehamber is closed liy a bult, liy directaction. The rucciver has a slot in its upper surface for the purpose of loadine the chamber cliredt when the piece is used is a single-dobler: it is also bored through at the rear for the recention of the: breech-bolt. The latter is composent of two parts, the boly and the locking-tube, whidlare commertod by a lefthand screw-thread. The bolt is locked by two lags, turning in corresponding cuts in the receiver. These lugs are so sliaped on their rear surfaces as to cam the bolt against the base of the cartridge during the locking. A cam on the inner surface of the rear end of the locking-tube forces the bolt.
slightly to the rear, starting the shell, during the unlorking. The opening of the joint in the breechboit (the thread being left-handed) during the locking aids in the camming forward of the bolt, while the closing. ly drawing the forward portion to the rear ails the starting of the shell. When the bolt is withdrawn the extractor, which is of the springhook pattern, pulls on the upper side of the head of the shell while the under side abnts against a forked post. By this means the shell is thrown elear of the gun. In order to insure the ejection of the shelt a quick motion of the bolt is necessary. The forked post acts also as a guide for the breech-bolt. A slot in the rear of the holt receives the nose of the hammer, allowing it to strike the firing-pin only when the piece is locked. A slide prevents the hammer heing pulled back by eatching of clothing, etc. It must be moved back before the hammer ean be cocked. The magazine, which is in the tip-stock, is toaded from the side of the receiver, or from underneath, by first raising the earrier by the withdrawal of the brecels-bolt. The earrier has two gronves, one on each side, on its inner surface. In these grooves projections on the brecch-holt enter. As the bolt is withdrawn the projections travel in the upper horizontal portion of the grooves antil they reach inclined faces when, by the pressure against them, the carrier is eompelled to rise, bringing a cartridge opposite the ehamber. When the bolt is returned, the projections travel in the lower horizontal portion of the gronves until they reach other inclined faces, when the earrier descends opposite the mouth of the magazine, so that eartridges cannot eseape until it is in position to receive them. No magazine cut-off is provided. As a magazine-gun, 4 motions are necessary to operate it, viz.: cocked, opened, elosed, fired. As a single-loader, 5 motions are neeessary, viz.: cocked, opened, loaded, closed, fired. The gun ealiber $0^{\prime \prime} .44$, earries 13 eartridges in the magazine, 1 in the carrier, and 1 in the elamber.

Mugazine-gun.

hurde revetment.-This kind of revetment is made by driving poles in the same direction as the interior slope, into the banquette, about eighteen

the ery. As an engagement at sea commences the erews of the English vessels send up deafening hurrahs; in a charge on slore, the English soldiers hurrah when they rush upon the enemy. There is something strangely exciting in this simple sound. and the combatants work themselves, as they shout, into a frenzied forgetfulness of danger.

HURST. - A charge in Heraldry employed to represent a small group of trees, gencrally borne ujou a mount in base.
HURTER - HEURTER - HEURTOIR. - A square beam placed at the foot of a parapet where there is an embrasure to prevent the wheels from iujuring the interior slope, when the gun is moved in battery: A short fascine or fagot is sometimes used as a substitute for the beam. A hurter is placed on the front part of a siege platform, under the wheels. The motion of gnn-carriages is cheeked, front and rear, by pieces of wood or iron, bolted to the top-rails, called hurters and counter-hurters.
HUSSARS.-Light cavalry. The name is derived from the Ifungarian words husz (twenty), aud ar (pay), because every twenty houses had to provile one horse-soldier. In the l3ritish Army there are 18 regiments. The men are armed with a saber, carbine, and pistol. The weight the borse of a lussar carries is about 18 stone. The dashing bold hussar, that epitome of military impudence and reeklessness at the tavern, should present those qualities in a very sublimated form on the field. Regardless of fatigne and danger, his imagination should never present to itself an obstaele as insurmountable. On the march, constantly at the enemy's heels; in position keeping him at all moments on the alert, harassing him either with fatigue, or apprehension for the security of his rear and communications: on the field careering with a falcon's speed and glance upon his quarry, however it may seek to elude his blow, such should be the hussar.
HUSSITES.-The followers of liuss. Honoring him and Jerome of Prague as martyrs, they despised the decrees and anathemas of the Council, and took terrible revenge on the Priests and Monks. The symhol of their Confederacy was the cup, the use of which in the Lord's Supper they extended to the Laity, as James de Mlisa bad already done with the approbation of Iluss. In 141% King Wencestaus was constrained to grant them the use of many churehes. After lifis death, August 13,1419 , the majority of the States refused to aeknowledge lis brother, the Emperor Sigismund, who had broken his safe conduct to Huss. And the papal instructions to the Cardinal Legate, Joln Doninico, requiring him to emptoy violent measures for
inches below the tread, and then forming a wiekerwork. by interlacing twigs bet ween them in a similar manner to basket-work. The poles should be nine inches apart, and their diameter about one-and-a-half inches. They shonld be secured to the parapet by loag withes. The drawing shows a hurdte revetment and fraise. See Revetment.

HURDLES.-Straight and flat rectangles of strong wicker-work, about $1 ;$ feet long, and 2 feet 9 inches high. They are nseful in many arays, both in military and (ivil life, either as feneing, as larrisrs, or in fortification, in the construetion of herdhebutteries. Thase last were the invention of Sir William Con greve, who devised them as the speediest means of throwing up earthworks; threc hurdles are fastencd at their cods in the form of a triangle, and the central space is filled in at short time with earth. These triangles (an be constructel to any erommd-phan, and with their aid, a boxly of soldiers cam intrench themselves in a Eew mimites. The hurdle is composed of wattes interwoven round stakes or pickets, the latter thring the mamfacture being fixed upright and tirmily in the ground.

HURRAK. I shomt of encourarement and applause, characteristically Linglish. It serves also as
the conversion of the Ilussites, an insurrection ensned, and the war began which is known in history as the Ilussite War. Convents and churelies were reduced to ashes. and Priests and Monks were slain. The llussites divided into two parties-the Calixtine and the Taborites. See Muss et la Guerre dexIIussites, by Ernest Denis (1879).
HUT.-A structure more or less rongh in its details, for the housing of troops. It is substituted very ofteu for the tent, when the sojourn in a eamp or cantonment is likely to be of consideration, as, for instance, throngh a winter-a hat, however rude. which is wind and water-tight, being as superior in comfort to a tent as the latter is to the open air. Iluts may be made of almost any size, and are som?times for one ofticer; at others for as many as one hundred men. The prineipat lint encampinents in England are Aldershot, Shorneliffe, Colehester, and the Curragh of Kildare ; in British North America. but-camps are situated at intervals of a day's marels on the route from New Brunswick to Quehee, and the troops who made that winter-mareh in 1861 to 1862 found their shelter truty welcome. The quartars os. (mpied by the United States troops on the Amerian frontiers, are very frequently huts made of timber
by the troops. A grood lut maty be readily connstructed on suitable grombl or hillside by wadenting und covering with a roof; but if timber is convonient, it is better to build a log hat, forering witls bark skins, lushes, reed mats, son-woods, or any suitable material proenrable. In building tho lut four poles are planted in the gromal where the corners are to rest. The loges are then piled one above unoller agrainet these poles, ts sloown in the drawing, being notched where they cross so as to bring their sides together. The space between the logs is then

made water-tight and air-tight by a stuffing of clay, wattles, sallows, or small bumblus of twigs. Within, the joints should be lined with laths, or the whole be supporied by a scantling, and may consist of overlapuing boards, or boards latid flush and shingled, or laths and shingles, or even birch-bark alowe. The door is usually ledged, and thereare one or two windows, with rlazed sashes and shntters. A hut thus formed makes a snug labitation, and will last for many years; exelusive of the sashes, two men can ercet in about a week, a hut of roughlogs which shall he sufficiently large for their residence-that is, with an interior area of ahout 15 fect. When circumstances permit the logs are oceasionally squared, which enables them to be fittol more accurately to each other, and adds, of comrse, to the solidity and finish of the whole structurn, as well as to its durability. In this case the corner loges, instead of crossing each other, are joined by a dovetail, or cutting the end of each to an angle of 45°. The framed hat has the advantage over the log hat of allowing more exactness of finish, and from its lightuess and portability beiner easily transported to any place where logs for lut-building may not be forthcoming. It consists of a strong framework of squared wool, properly fitted together, and covered with overlapping planks or weather-boards. The pieces should be sawn to the proper size, fitted to ench other, and numbered; then packed together in small compass for conveyance to the intended site, where the structure can soon be erecterl. It is usually estimated that one of these huts, 30 ferd long, 16 broad, aud 10 high, makes a good barrack-room for ≈ 0 soldiers. The camps at Aldershott and the Curragh are mainly formed of framed lints. Where extra warmth is desired, the spaces het ween the uprights are built up roughly with bricks, burned or unburned. Pise huts, common in the south of Franee, and very usefol where wood is searce, as well as very comfortable, are walled with hlorks of elayey eirth, and rammed with great pressure into wooden molds until they assume the forms of stones. These are laid one above the otherinuch as stones themselves would be by a mason, and the wall so formed is both durable and sightly. The most critical operation for the non-professional hutbuilder is roofing. This is usnally thateln, slingles, paper, or felt, if lightuess he an ohjoct; and of stones. brieks, or tiles, if the walls be calculated to bear their pressure. A ronf of split logs gouged out in the center, like a long curved gutter, is good. A layer is placed side by side, with the hollow side up. and a scond layer is put on them, with the hollow sille down. The roof should have a pitch of not less than 45° to kecp out the rain. All eracks should be carcfully filled with grass, mud, clay, etc. The luts of Indians and all Savages are gencrally round
or approximate to the reircular form, probably beranse of the maximan honse for a miniman rover. In huilding buts, it might be well (or remember thent loge split leetter from the crown or small adollownrl lle butt.

HYDER.-Tho Arabice Uersu for lion. Thhis title is frejumenty given to mun of rank in Inclia.

HYDRAULIC BUFFER. A rawil rlark, in connstruction viry similar to tho air-rylinuler, it liquid is uscol instcad of air, but the principlos of operation ure similar. Tohis bultor is, at prosent, furniwhorl only witls the convoreled grans in the \{nitud statos service. ln its usual form it ronsists of a rist-iron rylinder 78 inches long, with an intorior diameder of 8 inches, closed at cither emel by a cast-iron raty) Nour the rear end of the top of the cylimior is a halle for the purpose of dilling it with watro or some n n^{-} freczing liguid. A hole in the front and, rlosed with as serew-plug, permits the thitl tos be withurawn. Nine amll one-hatf gallons (procisely) of thid are reguired. A wronghtiron pistom-rixl passes throught the rear cap, and is secured to tho rear of the top carriage by a wrought-iron rosos-land. The pistonheat, of wronght-iron, 15 inches thick, is pieromd nenr its circumfer*nce, on opposite sides of the rorl. with two holes seven-righthes of an inth in diameter. These holes flare out both ways 25 inches, allowing free passage to the thind from the rear to the front of the piston, permitting the top-carriage to run back without strain. Epon the lop of the rear end of each rail of the chassis of No. 3 , is bolted a wetlge or incline, having a rise of 2.5 inche*s in 64 inches; near the rear end of this, is attached a brass angleplate, to which are secured three rubber counterhurters. A similar angle-plate with hurtors is attached to the front part of the classis. Water or any other free-flowing liquid answars for filling the cylinder. In cold weather a non-fremang liquid, as a mixture of glycerine and water, methyl and water, or some of the non-freezing oils, must be used. The greatest care mast be obscrved to have in the cylinder the exaet amount required. The difficuliy of properly regulating all of these matters makes the hydranlic buffer greatly inferior to the air-cylinders.

The recoil of the guin is controlled in all Prossian carriages for the land service by the JJydraulic: Buffer. As generally used, it consists of a wrouglatiron lap-welded cylinder, with cast-iron cover-cap and flange, and wronght-iron piston-head and rod, a packing-gland and emptying-cock of brass. The cylinder js 76.375 inches long in the clear. and 8.06 inches in diameter, and holds 12 gallons 5 pints. The cap closes the rear end, being screwed on. The flange is screwed on the front end. and the cover is bolted to the flange. Botli the dlange and cover are tlat on top, to allow the top-carriage to pass over them withont striking. To secure perfectly tight joints, a mineral composition is spreatl over the screw-threads of the cylinder before the cap and tlange are put on, and the same, mixed with choppen hemp, is lairl brtween the flange and cover before they are bolted together. Tho packingr used to make a tight joint around the piston-rod consists of a pirce of tow about 1.35 inches in circumference and 3 lect i inches long, greased with tallow, and wound round the rod and pushed into the recess in the cover. It is held in place by the packing-gland, which is made to squceze the parkin! by being screwed into the cover until the rod can be jusi mowed hy the strength of one man. A zine pan is suspeniled from the front end of the cylinder to catch any wil that may drip from the gland in firing.

A filling-hole is bored and tapped in the uppor surface of the cylinder near the rear cond, und is closed by a wrought-iron serew-plug, which is socured to the chassis by a short chain. An (mplotingcock of brass is provided in the lower part of the cover. The pistom-heal, 8.04 inches in diameter, has four holes drilled in it, cach 1.25 inches diameter, for the - -inch gun : 9 incli for the 9,11 , and 12 -inch,
and . \& for the 10 -inch, and . F for the 12 -inch of 25 tons. The piston-rod serews into the head, and is prevented from turning by a screw. The collar-nut surews on to the rod a few inches from the end, and the connecting-mut on the extreme eud. 'The crosshead is held between the two nuts with a play of about one-tenth of an inch, aml the hole in the crosshead for the piston-rod is made oval, to allow of the top-carriage being thrown on its truck-wheels withont bending the piston-rod. The eylinder is secured to the chassis by means of iron hands which pass over the cylimder, and are bolted down to the rear hottom-nlate at the rear cad, and at the front end to a bearing-plate which is bolted to the diagonat braces. The rear botom-plate and the lower flange of the rear trinsom are hollowed ont to form a bed for the end of the eyliader. The top Hange of the rear transom is cuit away from the cap of the cylinder. The cylinter before heing bolted down on the chassis, is brought to bear squarely against the rear transom, with the Hat edges of the Hange and srrewed into a pioce to which the cover is held by screws. There is a liole in the bottom piace for fillmor the eylinder: it is stopped with a serew and a eock in the cover for emptying it. The piston-head, with four holes bored in it, tits the cylinder closely, and to it the piston-rod of cast-steel is fastened, and passes through the cylincter-head, the joint being packed with hemp-packing and bronze macking-box. The end of the piston-rod is fastened to the crosshead, which is bolted to the bottom transom of the top-carriage. The Ifydranlic Buffer operates in this manner: The crlinder is filled almost full with glycerine. which is preferabie to water in that it does not evaporate or freeze. A certain amount of air is always left in the eylinder. In the recoil of the carriage the piston-head connected to it by the pistonrod and cross-heat mompresses the glverine in the

st cold, and has no action on the metals. In rases of emergeney the deficiency may be made up with pure water without ałtering its qualities sensibly, hut this addition of water shonld never exceed onefourth of the whole. In filling the cylinder the preseribed quantity marked in figures on the enul shonld under no circumstances be exceeded. In some varriages the proper height of the glycerine is marked by a screw. To prevent it from leaking. it is absolutely necessary, in the first place, to keep the filling-hole screw always tirht by wrapping it with a hempen thread. with white lead or tallow when necessary: secondly, to tighten the lump packing whenever the least leaking of the liguid is ohsurved, by serewing up the packing-ghand ; and, thirdly, to keep the emptying-rock always tight and well chosed. It is anvisahle to close it with a wooden plug. Before the firing, the carriage, and particularly the hydraulic buffer, should, as far as possible, be minutely inspected, the bolts, nuts, etc., which may have got loose tightened up, and the working of the different parts tested. See I'nowmatic IbHticr.

HYDRAULIC CRANES.-Wherever a large number of cranes have to be worked near each other, waterpower is hy far the most manageable, economical, and convenient method of working them. Sir W. Armstrong \& Co., oỉ Newrastle, have taken the lead in introtheing this kind of machinery. They have fitted up a great many railway goods stations with complete systems of hydranlic eranes.

The pressure usually employed in working the hydraulic cranes is greatly in excess of the pressure admissible in the case of steam. Six or seven hundred pounds to the square inch is usually employed as the working pressure. It is got up to this great pressure by means of an arrangement called an accummator, which consists of a large hydraulic ram of 16 ur 18 inches in diameter, carrying a wroughtiron eylinder. This eytinder is filled ip with stones or gravel to the weight of 60 or 70 tons. A powerful horizontal steam-engine forces water into a cylinder and slowly raises the ram with its enormons load. Pipes lead away from the cylinder to the cranes in the different parts of the station and are thus supplied with watermoder the great pressure caused by the loal forcing the ram into the cylinder. The load is constantly rislng and falling a little as these cranes draw their sumplies from the cylinder. If the cranes were supplied direct from the forceprmps of the steam-engine, without the intervention of this rear and of the cylinder. and ratuses the lignid tol accumalator. their action would be jerky and untlow rapidly throigh the Jobles in the piston-head, ermalatly bringing the carriage to a slate of rest. The air in the eylinder acts as at cushion when the gun is firod. and lessens the shonck which is then commonicated to the different parts. Theresistance of the lipuide to a slow motion of the pision-head being very emall, no tifliculty is axperienced in running the ernan slowly into batiors.

 aftor it las beras secored in its place in the shops. first, attontion shoulal be paid to the preservation uf the efyerino in the cylinder at its proper leciestat, which can the diveoverod at the filling-luole. If the grlecerine falls below the prescribed ilepth, it does not matster from what amse. 1 mmst bereplenishoed. For this purpose, take out the f:lling-hole serew and insert the funnel in the hole The purest glycerine is always to lue preferrem. of a density of 1.19 , which neithor evaporates nor freczes, even with the great-
steady. The accumulator actsasa reservoir of power, and when it happons that a great number of cranes are drawing off water at the same moment, and in excess of what the engine force-fumps can supply. the ram descends, keeping up the whild the foll \%00 lhs. pressure ; and then. when the cranes are demanding less aboudant smpplies, the engine overtalies its works, and semes the ram upagoin. When it arrives at the topit tomehes a lever conmmincating with the throttle-valve of the engine, and thas slows or stops the engine when the acemmalator has mounted to its maximum lutight. The moment it begins to descend. the leveris relieved, the throthe-valve ofens, and the engine goes on ugnin with such speed as the work demanda. Sec Frames.

HYDRAULIC ENGINES - Thase angines are frequemtly used in fommelries and arsomals, where water of a high pressure is whtaimable. They donot ditler in any essential particular from a steanmengint. As the jressure maler which they work is from live to
 gre mond smallir. A crmmon form is that of threx. small rylinders in whicle thre" plangers work. 'The water is selmitted into the cylimdirs ly menns of valves. and foreres the plungiors ontwarils. "lohes. plonegars are comaretod with a threc-throw crank. and when they have completed their outward traved, or working-stroke, the whter is allowted (on "scapre from the eylinder, the plumerer than slides inwarta. to be hyain foreed oul wards by a fresh rush of water admitted at the proper instant into the eylinder by the thetion of the valso.

Roots Rotary IIydranlic Eingine, extmasively used in the [fnited States and ahroal, is represented in the drawing. In ordor to realize the fall benetits that may la derived from this, or any othor llydranlie Engine, it is of the momost importance that the supply or foed-pipu be sullicoently harac to delive er the water to tha angine whon rumniner, at the same pressure as at the mains. Inylhing less than

this cripples the engine, and causes it to use an um neeresarily large amomat of water. In a longsorvicepipe of small size the pressure is so reduend lyy the friction of the water in passing through the pipes that thourla it may supply a sutliciant volume of water, it would be at such a diminished pressure that it would have but little power; for instance, if an engine used fifty gallons of water per minute. with forty pomols pressure per square inch at the mains. and yet loy the use of a small sarviee-pipe, reduced the pressure at the engine when rumning to ten poumds per square ineh (whiel is oftern done). it is evident that while the same guantity of water is used, that only onu-fourth of the nsefne etfeet would be oltatind from it. that would be if the same pressure was maintained at the engines as at the main. It is also plain that to do the work that conld be dome with the 50 gallons at 40 prounds pressure, that four times as mueh water would be reduired at 10 pommls pressure or 200 gallons; thus planny showing that with a given work to be done. much less water will he required with a larese pipe than with a small one hence the importance amd eeonomy of having the ferd-pipe amply large. This engine being a pressure-enginc. the water is confined and camot escape until it has exerted its whole force in turning the enginc. When the engine does not turn, no water is diseharged except from a slight leakage. It can only receive and use a sufliciont quantity of whter to fill the engine, each revolition. The engine is a water-meter as well as a water-engine. therefore the quantity of watcr wed is not delermined ly the size of the pipe, but by the number of revoluthons of the engine. If the pipes were ten times as large. the agine would mot use any more water per revolution than with a very small pipe, but the amonnt of power resulting from a siven gmrant of water would be in proportion to the difference in pressure, as shown hefore.

The engine slmuld he placed on a solid fommation perfactly level from end to and, and be firmly seeured, so that it will not gat out of position from the strain of the belt or other attachment. But care mast be taken to lave an equal bonring on the fommation; otherwise, when it is fastened down, it
will be on a strain and cituse it to work hard. ('aras Hust also betakern in theing on the ferolamel diachargerpipes, natl making the combertions, that they are but
 vause it to rum hard. Tha dischargo-pipue shomlel
 the: surer-pipe into which it clisclarares, for the purpose of kurping the diselareropipe fall of water. by
 sheth that, when all the marbimery is on that the ongine is to drive, amd romming at fill spere, thererern-lating-valqu slombl! he wide open. If thre spu"d is too high. the driving-pulley shembl be amlareat ; if (0) slow, it shomld be diminishan.

HYDRAULIC FORGING.-l"orging willı the lavdran-lic-prose instoid of the lammer and anvil. T'ian procose is malogons to that of rolling. The advanlames chamed for the process are that it is, in many opwrations, moro (expeditious than the ordinary mordes, and also that it produress a better structural eondition of the particles of the material, the foreo lering less superticial than the suthlen imparet of a hammor, and moving the particles of matter noar the contor to a greater cextent, thas rembloring the fored bar more homogemenas. Every forger and olnarvant proon has notiecel that in the ordinary monde of forming a bate of iron there is, when the har is thick ruoherin. at protrasion of material at the ederes, leaving a qroone in the middle of the thirekness. Bre:atis of the sulurficial portions of the iron bar lawing receivad the greatest spreacl. Rolling or forging by presentre aroids this. Forging by buelraulir presuire is prastieced in Europe. At Vionnal thare are several proseses in "peration, one with a piston 24 inclues in dianterer transmitting a pressure of 2.400 .000 ll s .

HYDRAULIC GUN CARRIAGE.-The romownel 35ton llydranlic Carriage was constracted at Woolwich, under the direetion of the ('ommandinge ()tlirer of the Carriage Department. A cletaikel description of this earriage will sutlice for all othars. The hydrambe apparatus with whicla it is provided is used to check the recoil in firing, rum the gun into battery or from battery, and also to traverse the carriage to the right or left. These diffurent operations are performme hy means of two hydraulie cylinders. O and J), and the double-aetion pump in tho reservoir, F, which contains a mixture of aleohol and water. The pump. worked by means of tha larake, G. drives the liguid into the distribnting-ehest, II. which semuls it flarough the mbes, I li la citluer to the front eud of the cylinkler 0 , or to one or othur end of the eylinder J. The desired position of the valve is given by means of the lever, λ. attacherl to the right side of the chassis. The cylinder, 1), has it pistou, the rod of which is fastened to the chain c, c, which engages a wherl mounted ou the same axle as the pinion that drives the bevel wheels. intended to give motion to the rear traverse-wlecels. The motion of the piston in either direction earries the elaan, c, with it, thus cansing the pinion to furn, and hy its means the traversewheels. 'To traverse the carriage to the right or left it is sutheient to turn the distributing-valve so ats to semb the liguide n onte or the other face of the piston, and then to work the pump by means of the brake. G. The elain mose* on the wheel with a velocity four times areater than that of the piston; a slisht motion. thereform, of the latter is sutheient to travers, the chassis throurla a considerable are. A piston is also fitter to the eylinder. D, which is used to elowe the recoil in firing, and to rim the gron into battery. The piston has a leathar packing on wither facto and the fromitarl if the rod is fastencd to the carringe. The iront (ombl of the cylimeler is placed in communiontion with the distributing-chest by a pipe. and the rear end by a passage. I, witha seembl reservenir, (). The passagu. li. can be contracted more or less by a comical valu*. which is regulated by means of the regulator. I. To nee the apparatus as a lydratulie butfor, close the communication of the frovit part of the eylinder, O,
with the pump through the distributing-valve, II, and reduce the section of the orifice for the stream aeeording as circunstances may require. When the gum is fired, the carriage as it recoils forces the pisfon in, and drives the liquid into the reservoir, Q, through the opening around the conical valve: the recoil is checked as in the ordinary hydraulic buffer. by the resistance that the Jiquid meets with in passing through the narrow orifice. The entire distance through which the valve may be moved is one inch, and the part of the valve-stem that projects is graduated into tenths of an inch. In firing with maximum eharges the valve-stem is turned in up to the divisiou of eight-tenths.

To run the gun from battery without firing, it is sufficient to open the communication of the pipe. I, with the pump, and to work the latter. The pressure of the liquid on the front face of the piston forces it into the eylinder, O, and draws the carriage, being attached to the roll, P. back with it. The liquid which is in rear of the piston escapes as before, lut without meeting any resistauce in its passage around the conical valve on account of the slowness of the motion. To run the gun into battery,
are of 54° is $t w o$ minutes, and the same for running the gun from battery $6 \frac{1}{2}$ feet. The loading apparatus is decidedly novel. It is composed cessentialsy of a eluain with the links construeted like the joint of a carpenter's rule, so that it ean turn only in one direction, while it is as stiff as a solid rod in every other. The links of this chain are made as follows: The angles of the links on top are square, while those underneath are rounded; two adjoining links thus ahut against each other when an effort is made to bend the chain outward. while it can be readily bent in the opposite direction. It is guided in its motion by a kind of tube inclosed between two sheetiron plates. A spur-wheel and pinion supply tho means of raising the tube ont of its hed, and raising the chain up to the bore of the gun. The tube is held at a convenient height by a pawl. A rammer or sponge is fitted to the front end of the chain according as it is wished to load or sponge the piece. and hy working the crank-handles the elain is forced down the bore as if it were a rigid staff. The trials with this arrangement have given satisfactory results. A still more original mode of loading. based on the usc of a pneumatic apparatus, has been ap-

the front of the cylinder. O, and the tube. T, are placed in communication with the discharge-pipe by means of the distributing-valve, II. The carriage then runs into battery of itself by reason of the indination of the rails of the chassis. Its velocity is checked by the resistance that the liquid meets with in passing through the tube, T. If it be wished that the gun shall run into battery more quickly, a special tube, r, is provided, of larger cross-sectiou. which allows the water to pass more quickly; it will be sufficient to open the valve, by means of the handle, to reduce the time of running in to a few seconds. By turning this handle the motion of the rarriage may be regulated at pleasure, and it may be even stopped at any point on the chassis by closing the valve altogether. The ordinary position of the values is that represented in the drawing, the apparatus being arranged for ruming the gun from bat trry. The lifuid which is forced by the pumps passes into the tube, T, while K, and L , eommunicate with the dise harge-pipe. If the valve be moved farther to the right, L , remains in conncetion with the dis-charre-pipe, N. T is elosed white one of the oritices of atmission comes opposite the outlet, K. If, on the rontrary, it is pushed to the left, I. and K. communicate with the discharge-pipe, and 1 , with the other opening. These two extreme pesitions of the value correspond with the traversing of the chassis in ente or other direction, and the last akso to ruming the grm into hathery anomatically. A directionplate is attaehed to the ehassis on the right side giving the positions of the lever, M, eorresponding fothose of the value for traversing the gum to the left. from battery, gun to the right, and intolattery. Gne man at he valve-lever and two men at the pumpsare satlicient tecexente all of the mancuvers. though it is preferable to have four menat the pmops The time reduled to traverse the gm through an
plied to a 65 -ton gun in the experimental casemate battery at Woolwich. This arrangement has the advantage of requiring only very little room. See Seacoast and Gurrism Carriages.
HYDRAULIC JACK.-A machine which often takes the place of the jack-screw for raising heavy weights. It is simply a form of hydraulic press, whieh may be placed beneath heavy ordnance, or any great weight which it is desired to raise, and generally consisting of a stout frame furnished with upright grooves, in which a follower may be foreed upward by a hydraulic cylinder. By proper appliances the power may he rendered almost immeasurably great. The enormons multiplying power given ly this machine has been employed fora great varicty of useful purposes suela as compressing babes of cotton, paper, etc., expressing oils, bending of iron plates and bars, and raising weights. This was the means employed for launching the (rreat Eastern, at Millwall, and for raising to their position the tubes of the Britannia hridge. The jackes as manufactured by Watson and Stilhnan. New lork, up to 30 tons eapacity appear to the eye, when depressed, a simple eylinder with a head; and when devated, like one cylinder sliding within another. The eylinder is from two to six or more inches in diametor, according to the power desired. The head (whieh is screwed on to the innor cylinder, cathed the ram) has a socket for the reerption of the bever hy whieh the force-pump is worked. The force-pump is contained inside of the ram, and consequently is not serm in the following drawings. The ram. with the head, contains only as much fluid as is regnired to fill the vacmesy in the eylinder, eansed by the raising of the ram in the aet of lifting, and when this is aeemplished, the lhind is returned into its original reservoir ly a value eperated by the fever that works the pump. The bever is detateleed, and may le put on at plasure. The claw attachment
is an iron tube, serewed into the lower side of the heat, and passing down to the botton of the jack outside of the cylinder, on the lower mat of whicll is a claw that shpports the weight to be raised. These jacks are light, portable, and of rasy applica tion-a jack to raise 5 tons weighs only a 0 lis., num one to raise 100 tons not more than 375 Hos. 'They are all worked by the labor of one man only, who is capable of raising 10 tons thromgh a space of one foot in one and a half minutes, or 100 tons the same distance in ten minutes. The hori\%omalal jueks haveanenlarged reservoir containing thad sullieient to run them out their entire length in a horizontal position. To use the jack, place the head (or if a claw-jack the claw or head) under the weight to be raised, place in the lever with the projection down-
it. working. Thacerylinder and bottom, on which it rests, are made Irom one piorec of terel, thons relieving the reservoiratasing of strain, and disurnsing with ohe wery troublemme packing ant making a jack st ronger and lighter than ome having a wronglafron rylinter. Thare is mohing difleralt of access. or whichan ordinary merchaic camot ke.p, in good orther. lig. 4 shows a double pumple jack, baving proms with pistons is inch and $1 \frac{1}{4}$ inch diameter, the larger giving about one-third the pressure of the smaller, and working three limes as fast. This sty]a of jack is userf whore there is a varioty of work, or whre the jack has to work unfler varying loads. Fig. fo shows the hydraulic pulling-jack, used for hoisting or pulling hravy wrights in 'ngine rooms, or in other circumseribed phares, setting up

Fig. 3.

Fig. 4.
ward, then work it perpendicularly until the weight is at the required height, or the number of inches the jack runs out. To lower the weight, jush the lever to the bottom of the stroke, take it out, turn it with the projection upward, and with a slight pressure of the hand, the weight may be lowered as slow us required, or stopped at any point. Sometimes it happens that another stroke of the lever would raise the weight too high; then raise the lever a little and push it down slowly, hy which the stroke will be missed. Should the valve stick to its seat, and privent the jack working, hy striking the lever a few sharp hows up and down, the valve will be relased.

Fig. 1 shows the style used when the jack stands upon the ground or light hoard. and can he placeal under the work, or where stemtiness is required. Fig. 2 shows the style used when there is not suffieient room to get the head of the jaek under the work, and is the pattern used for moving heavy guns, boilers, machinery, etc. Fig. 3 shows a form of lifting-jack used for dry docks, presing flanges on wagon wheel bubs. ctc. The priston is entirely enclosed. thus preventing all grit or forejgn material getting into the pump and cntting it or preventing
rigging, pile-drawing, etc. This jark appears like a plain cylinder with rings at each end. by which to attach the boty to be moved. They are three or more inches in diameter, and one and a half or more feet long, according to the power reguired, or the distance the weight is to be moved. It has a forcejump on the ontside. worked by a lever, which forces the thut contained in the cylinder to the opposite side of a piston, to the rod of which one of the rings at the end is attached. By this operation the jack is forced logether, drawing with it the boly to be moved. It will work vertically. horizontally, or at any angle. To use the jack, till it through the screw in the side of the cylinder with whiskey and a few drops of oil. To millor lift anything. make it fast to the jack ly chains or ropes through the rings at each end, having first extemded it as far as it will go. This is done by giving the thmmbscrew in the force-pmmp two or three turns inward, and pulling out the piston, then turn out the thumb-screw until it stops. Put in the lever and pmop as much as required. Soe Jack-sereur.

HYDRAULIC LOADING APPARATUS. -1 : of apparatus used when manewering heavy furret-
guns. This apparatus was thoronghly tested. in working the 100 ton guns, helonging to the Italian Government, in experiments at Spezzia. 1876 . The working of the gun, including all the operations of loading and sponging, is effected by the mean* of hydraulic pumps, which are all operatel by one small steam-engiue. The gun is placed with its trunnions resting on two heavy blocks of metal, which, being retained by guiles, slide on large beams or girlers built in the floor of the turret. In front and rear of the blocks are pistons, working in cylinders in the direction of the floor-beams. These pistons, nnder the influence of water-pressure, move the gun in and out of battery. The breech is raised and lowered by similar means. When the gun is to be loaded, it is run forward and the muzzle depreseed till it is in front of an armored hood, which shields an irou iloor in the main deck. The door sijiles back, a sponge appears on the end of a staff, which enters the bore and lengthens itself like a telescope till the bottom is reached, when, in obedience to the touch of a valve, a flond of water is ejected from the sponge to extinguish fire and wash the bore. The slot and eartridge next appear, lifted from below on a small truek, which is run ont on a trap-door. The eartridge is lifted in front of the muzzle, the sponge (now converted into a rammer) pushes it a shorit distance into the gun, is then withurawn, aud when the shot rises pushes hoth to the bottom of the bore. The sponge is withdrawn below leck and the trap cInses. Each of these movements is effected entirely by water-pressure. the course of the water anil the corresponding operation being deternined by manipulating the proper valve. The only defect in the principle was developed lyy the bursting of the English 38 -ton gun on the Thunderer, in 18 \%9.
If the slipping of a shot is to canse the bursting of a gun. anything that tends to produce this slipping is to be deprecated, and as the hydraulic load-ing-gear requires the gun to be inclinedf downward at a considerable angle, it would appear that the machinery was open to objection. But a similar difficulty presented itseif years ago with broadside guns. These were found to start their projectiles freely, not so much by the rolling of the ship as by the jerk of running the gun out. Wedge wads were employed expressly to prevent this, and guns are generally dependent on the effieicncy of these wads for the fixing ot their projectiles.
HYDRAULIC POWER.-The use made of hydraulic power is probably greater at Elswick than at any other Establishment in the world. This might natuirally be expeeted, when it is remembered that the world is indchted to Sir William Armstrong for the advance made in this direction. The system of hydraulies at Elswick extends to all parts of the groundis, reaching all the slops, wharves, and water-front. Pumping-engines are established at convenient in tervals, only one working at a time, anul the conncetion of pipes being continuous, the nniform working of the system is extublished by five or six aceumulators with 18 -inch rams. The working of the pumpingcnuine is male automatic. The accumulator nearest to it is slightly more heavily loaded than the others to give a lead in rising to the distant one and is "onnected with a stemm regulating valye to atet as a governer for adjusting the speed of the engine to the varying demand of the hydraulic mathines. The pricisure sustaineid throughont the system is $\% 50$ pomeds to the square ineli. The pipes are usalally 5 ind hes in dianteres, the largest lxeing is inchere. Ityitrailic power is usell for the forge and foundry(rimes, also for the movahle cranes which operate along ther water-fromb. For the accommotalion of thess hast, pipurs are run, in junction with the pressure main. with hydrants from 18 to saki fert apart, from which cemertion is made with the eranes ly ${ }^{\circ}$ me:chs of telescoplic tubse. Two or more ranes cain Whas lee brought into operation on any vessed at the
water-front. On the eastern end of the wharf are erected large hydraulic shears, worked by a directacting hydraulic cylinder, 40 feet stroke, lifing 120 tons. The back leg moves so as to bring the lifting cylinder ablout 30 feet out ; the foot is moved by a serew 50 feet long, with hydraulie engine and gear. The most notable hydraulic crane that has yet bectit produced from these works is one ereeted in the Italian naval arsenal at Sperzia, which is capable of lifting 160 tons through a range of 40 feet. It is carried upon a ring of line rollers supported by a pedestal of masonry, and the slewing is effected by an hydraulic engine applied to a pinion which gear: with a circular rack. The rake of the jilh or projertion from the center of rotation is 65 feet, and it: height from the quay-level is 105 feet. The cranc is counterbalanced on the side opposite to the lear. About the grounds at Elswick, partienlarly at the approaches to the shops, there are numerons smail capstans worked by liydraulic engines, which are of great service in hailing heavy loads into or out of shops, and in transporting them from shop to shop. It is almost unnecessary to add that it is at Elswick that the applications for working heavy guns by hydranlic power have been designed and nanuifactured. No foundry or gun faciory can be considered eftieiently equipped withont being provided with arrangements for the plentiful supply of hydranlic power.
Wie can but briefly describe a system of hydraulic supply within the limits of this work, although the subjeet is a very important one, and is, at present. receiving the attention of the United States anthorities in connection with the proposed estal) ishment of a Government foundry, for the manufacture of heavy ordnance adapted to modern warfare. The Holly System of Water Supply, an invention of Birdsill IIolly, of Lockport, New York, and the most perferted system of which we have knowledge, is designed not only to supply water for ordinary purposes, at any desired elevation, withont the use of a reservoir or stand-pipe, or any other contrivance for calling into requisition the principle of the hydrostatic eqnilibrium, but also to furnish the means of extinguishing fires at several points at the same time, if necessary, and all this without the nse of any movable engine for that purpose. This result is accomplished by placing a set of Holly pumping machinery, which is of peculiar construction, within a suitable huilding, iocated at a convenient point where the supply of water is accerssible, and from whence by a proper system of mains and pipes the water can be condneted wherever it is needed. The pumping machinery, which may be propelled by cither steam or water-power, minst be adequate to the service required, having a reserve of power for extriordinary occasions. To guard against contingencies the machinery is duplieated, or so constructed that the breaking of a part does not disabic the whole. In order to maintain steady pressure, the operation of the machinery is continuous; but as the demand for water is subject to constinat variatina, means are provided for the automatic regullattion and government of the pamps, so that the amount of water delivered is in exact accordance with the requirements of the monent. The meams of regulation which thus forms such an important feature in the llolly system is an excendingly simple mechanical device depending for its operation upon the degree of pressure in the mains. If this pressure falls, owing to an musnal drain, the regulator instantly acts in as to admit stem for a longer perion into the cylinalers of the engines. and ithe pmops are thas at once calused to operate more ripilly and powarfully. When the pressure in the mains increases, wwing to hut small Irafts lecing made on them, the reverse takes place and hoss water is punpect. The normal pressure is adjustod by fla mpinser in aceordance with average requirements. Thle fire protection afforded lyy the ITolly
systom is of the most wheiont elaracter. Wianer is not unerely distributed bo hyolrames, but sent there
 the hose and turn on the streant. The adjusiment

 work of an instant. Themere opening of a lydrant (anses sutliciont dimimation ol pressure in the pipes (0) operater a valve, whicl| in turn (*ombmanicatas with it whinlle, the sommbing of whind is the alarm for the enginecr to thra on the lire prossare.

 wh ome "ylimerer with the meathepipes of the threx.
 side valve moved by an eceentric in the nanal man-

Fig. 1.
The llolly fuatruplex pumping-engine is represont- ner and admittingsteam flaroughont the wholestroke ch in sectional celevation in kig. i. It las fonr steam- d double puppet-valve in the stram-chost rogulates cylinders inclined at an angle of forty-tive drogrees, aind four pumpr, one of which is in a directline with cach cylinder. Thes sam-cylinders and their mumpe are arranged in patirs on ojposite sides ol a healvy iron frame. the two cylinders of each pair being con nected to a common crank-pin, and the crank for one pair of cylindera beiner set 135 deresers in advance of that on the opposite side. The ringines are of the reciprocating piston form, with guides and connecting rods. i connecting rod alfixed to the back crank-pin actuates an air-punnploam, giving motion to two single-acting air-pumps and two boiler feetlpumps, one of which draws water from the hot well and the other from the steam-jarkets which surround the sides of all the steam-cylinders. The steam from the jackets passes fhrougle a feed water-hoator, sothat the temperatura of the feed can be raised to any desired point by increasing the amount of stean silpplied to the jackets. The connection of the pumps. with the steam-cylinders and the steam piston-rods with the pumpse is by means of kers, so that any engine or pump can readily be thrown out of action. Thesteam-piston is packed by cast-iron rings set out by springs, the set-screw of which projects hevond the face of the piston, and the re are bomets in the lower cylinder-heads. so that the pistom rings ran be atjusted without oprening the eylinder. The pumps are of the piston variety. donhle-acting, tha pump barrel being secmed in a chanter containing the valve by a rib which forms a partition butwect vines on the oppositwends. The pman valves are that dises of rubber. seoured to iron dises laving sems working iu gnitos. These irom dises ure of sutiociont waight to bring the valves to their seats promptly. and no springs are used. The valves seat on motal gratings. The stommad exhanst-pipe of the several stomm-cylimers are so arranged that stean from the boilers "an be almitted directly into all the eylinders and "xhansted into the" condenser. or live steam can
the point of cut-off, lreing actuated ly a revolviner spiral cam which can be moved in an axial direction. and thus rary the periods of admissions from zero to full stroke. The manner in which this cam is moved so as to reaulate the speed and power "serted, is an important peculiarity of tha Ilolly pumping-eugine. The adjustment is effected by means of a recrulator conuected with the water-main in such a manner that any change in water pressure is immoliatcly corrected by an adjustment of the cutaff, resultine in a practically unifornn water pressure under the most varyiny conditions of supply. If the water pressure tends 10 fall. owing to an unusual (raft upon the main, the eut-off is immediately langtheneal and the engines exort a sutricient powor to majntain the original pressure: if the consumbtion is suthdenly lessened so that there is a tenderey for the water pressure 10 increase. the cut-otf is at onero shortened dimmishing the power of the engine sutiociently to maintain the orional pressure under the reduced supply, ause if afl consumption of water suddenly coases the engine will imnealiatcoly stop. The regulator is represented in Fig. Д.

It is evident from the forcoroing description that the Uolly regulator acts in an esscutially different manner from the ordinary governor. whicll would increase the cut-off as the water proscure angmanted, and shorten the cut-off as the same diminishod. The details of the rigulator are brietly as follows: I small water-cylinder, containing as solin piston, is commetterl directly with the main, and a weight is attached to the piston so as to commer-babance the water pressure. This is effected hy suspendiner the weaght from a straj) which pases over a rany that rotates as the pressure changes, thus altoring the lever arm of the counter-balance, and kedping it in -quilibrian with the water pressure, howe ${ }^{\circ} 0^{\circ} \mathrm{r}$ much thatatter maty vary. The cut-off cams of tha steamcrlinders are moved axially. either to shorten or to
lengthen the cut-off when the regulator throws a friction-clutch into gear, which it does whenever the water pressure varies from a given amount. A weighted lever would maintain this friction-clutch in gear, were it not for the action of the regulator. The shaft on which the counter-balance cam rotates has an index-wheet, and the index can be set at any desired water pressure. So long as the water pressure varies from the figure at which the index is set, the friction-clutch is kept in gear by the weighted

Fig. 2.
lever. and the cut-olf is adjusted until the required pressure is reached. At thispoint the index engages with the weighted lever, and throws the frictionclutch out of gear. Whonever the water pressure viries, the friction-elutch is throwa into gear again. changing the entoof so as to mantain the water pressure constant. It will be seen that the cut-off is regulated by positive gear driven by the engine. and the only work required of the reculator is to connect or disconnect this gear. Shonld the pressure rise vory suldanly, however, it piston in the safety rylineler raises a lever to which the cout-off ercar is connceted, and throws the eut-off to zero instantly, if this is reopuisite.

Following the quadruple engine, the Company has bromght out a novel horizontal compound ront-alensing-engine, designod by Mr. Jlarvey l'. (iaskill. Einerineer and Siperintendent of the Works. It was the purpose of the Company in bringing oul
this engine to provide one less costly than the quadruplex, and better adapted for pumping larger quantities of water : also to stand in the first rank as to economy. Following is it description of the engine, reference leeing made to Figures 3 and 4. On a pair of iron bed-plates are monnted the two pumps, and in direct line therewith the two low-pressure steamcylinders connected to the pump piston-rods. Between the pumps and steam-cylinders are placed beam supports, which are firmly bolted to the bedplates, and also rigidly stayed by wronght-iron struts to the frumps and steam-cylinders. These beam supports carry the beam shafts and leems, the lowerend of the latter being connected to the cross-heads of the low-pressure cylinders by means of links. On the top of the pumps are placed the main shaft bearings, which support the slaft, Hywheel, and cranks, the latter being keved to the shaft at right angles to each other. On top of the low-pressure steam-eylinders are mounted the two ligh-pressure steam-cylinders, with their centers in the same horizontal plane as the center of the main crank shafts. The cross-lieads of the high-pressure stenm-cylinders are connected by means of connect. ing rods to the crank-pins. From the high-pressure steam-cylinders heavy cast-iron girders extend to the pillow-blocks. On the inner end of eacli of the beam centers an arm is keyed, from which the airpunips are driven. The valves of the steam-eylinders are operated by means of eccentrics on a shaft, which is driven from the main shaft through small bevel gears. The admission-valves to the highpressure steam-cylinders are of the double-beat puppet pattern, so arranged as to open at the proper time and to close at any desired point of the stroke. The exhaust-valves from the high-pressure cylinder are also the admission-valves to the low-pressure steam-eylinders, and are ordinary slide-valves, remaining open somewhat less than the time required to make one complete stroke. The exhaust-valves from the low-pressure cylinders are also plain slide valves, operating the same as the high-pressure ex-haust-valves. The pump-plungers are arranged to work through glands in the center of the pumps, and are accessible from the covers at the end of the machine. The pump-valves are placed on horizontal plates below and above the line of plunger travel. The glands above-mentioned divitle the valves of one end of the pump from those of the other end at the center of the valve plates. The operation of the machine is as follows: Steam is admitted through the automatic cut-off valves into the high pressure stcam-cylinders, urging the pistons forward under full boiler pressure until the point of cut-off is reached. The valve then closes and the remaining portion of the stroke is accomplished by the clastic force of the steam. When the piston has nearly reached the end of its travel, the exhaust valve between the high and low pressure eylinder opens and the strant remaining in the high pressure cylinder rushes into the low pressure cylinder and ngainst its piston. Which at that time is at the end of its travil and at the opposite of the high pressure piston. The low pressure cylinder-piston is then in turn urged forward by the ineoming steam, which is cexpanded to four times the volume it occupied in the high pressure eylinder at the time of its release therefrom: The release from the low pressure cylinders is aceomplished by mexns of the exhaustvalves in the return strokes. This operation is repeated on carla side and at carli end at proper times. The close connection luetween the fwo rylinders reduces the rlearance spaces to a minimime, which with thorough jacketing insures the most coonomical lase of steam.
This rorine is also lnilt to operate as a mon-compoumd engine, in which case the uperer or high pressure stambeylinders int fomeretions are omitted, and the lower steam-aylinders are provided with anfomatic cut-oll valves. Siteam is admitted into
these eylinders direet from the boiler and exhansted into the comlenser. This mote of eonstruction is adupted 10 smmill phaces, and to cities and villuges
 where the cheapmess of fuel renders the hirst cost a suecitic gruvity of metuls. It is constructed on the

Fig. 3.
of the machine a matter more to be considered than |urinciple of Nicholson's hyilrometer: having a bulb the ammal saving in the fuel. Although even when 7.5 incles diameter and 8 inches high, made of copconstructed as a non-compound engine, a duty of per, in one piece, withont seam, The eopper is . 03
 in. thick, and teposited on a mold, of low fusible metal, by the electrogalvanic process. A handic of hrass wire, with broad flanges at the enck, is inserted in the bottom of the mokl, before the copper is deposited. the copper eovering and uniting with boll. The brass cone is bored through its axis. and screw-threads are cut in it. After the bulb is formed. the fusible mold is metted, andwithdrawn throngl: the aperture in the lirass cone. The aperture is then elosed by a small serew and made air-tight by close fitting, and by sealing-wax spread overit. A solid stem of brass is then serewed into the bottom of the bult. A vertical indexstem, made of steel, is inserted in the upper part of the handle. The upper end of the stem reecives the wrightpan, which is supported in its place hy a conizal socket on its underside. The height of the hydrometer, from the loottom of the ball to the weight pan, is 21 inches. All of the exterior surface is protected by electro-gilding. The weight of the liulh, including the handle and brass cone, is about 15.850 grains: the lowerstem and hall weigh about 20.320 grans. and the weightpan is 660 griins: making the total weight of the hydrometer about 36.830 grains. Its general form, and the distribution of the metal within it. place the centers of gravity and boysancy so far apart that it readily takes a rertical position when immersed, and will deviate very little from it. lowever irregularly it may be loaded. Tha maximum hovancy of the hydrometer is 14.600 grains, ind. whern loaded to \%$50,000,000$ foct-pounds of work can be ohtaned from \mid ro. it dieplaces $51,430 \mathrm{grains}$ of water. The herv100 pounds of coal. See Stemengine. Thertho and ancy mat he reduced one-half hy increments of 500 Wuber-icheels. grains each, by placing one or more of the arljusting
weights over the ball, at the boftom of the stem. Sucli a reduction of the buoyaney is found convenient in practice, when weighing small samples, as it preventa the necessity for placiner and displiteing numerous weights on the pan. The index stem is .0\%1 inch diameter; a length of 1 inch displaces one grain of water. Four points of silver wire, made thin and sloping at the ends, are attached near the stem so as to form a scale of weights. in tenths of a grain. The two nearest opposite points are onetenth of an inch apart. When the instrument rests with one of those points ahove, and the other beneath the surfice of the water, it is at zero. When either of them tonches or is even with the surface, the load is cone-tenth of a grain too heavy, or too light, and if either passes through the surface, the crror is then two-tentls of a grain. If either of the two points which are more distant from the zero touches the surface of the water, the load is then deticient, or in excess, three-tenths of a grain ; and if the heel of either of these points passes the surface, the error is then four-tentlis of a grain. Careful observation of the position of those points, when the hydrometer is immersed and at rest, will serve to indicate the true balance. when the zero mark may he above or below the surface of the water, within a given limit. By this method. the inconvenience and jelay of brinering the zero to the surface of the water lis the clecimal
 parts of the grain wighte is thusavoided. The waterin which the hyelromoter isinnmersed is contained in a cistern of glass, 25inches deep, and not less than 12 inches diameter. If the lottom of the cistern is not level a flat plateshould be placed over it and supported horizontally on three legs. The height of the water in the ejstern should be such that when the bottom of the hydrometer desecnds to the plate the weight-pan should be onequarter of an inch above the surface of the water. This will prevent an immersion of the pan when overloaded. The weight-pan is attached to the index stem by an open socket, on itsunder side. in order thait it may be removed with its load from the hydrometer and placed on a table where the weights may be safely and accurately comented. As the weiglits often consist of many pieces. errors may oceur in count. ing, or in the record of them ; it is a good precation to verify them by a recount after making the record. A thermometer, with a scale of about 5° to the inch, sub-rlivided in quartors of it derron, is suspended in the water while weighing sumples and the tomperature should be moted at couch webling. The weighinge aro mate at temperatures varying with the state of the wenther at the time, and as the density of water varies with its temperature, the latter is noted in order that thar propor corrections may be made. The unit adopted is distilleal water at the temperature of (ie⿻ balar.

The hydromwtor may be rimployed to determine the relative density of ilistilled and any other kind of wator. The woight of the hyolrometer, adhled to its balance-wojght in distillet water, at tho tomperature of 60°, gives the waight of a duantity of pure standard water whiel is equal in balk tis the immoreen part of the instrument. 'Tlu woight of the hyelromotior, with its imai, when immorsod in like matuner in any other kind of water at the sinnd lem-
perature, gives the weight of an equal bulk of the latter: and this weight. divided hy the former, gives the multiplier for correcting the lensity when ascertained in any otler than pure distilled witter. Ran or river water may he asmi instead of distilled water, if its relative density be tirst accurately determined and the proper correction be made. It the fuundries, generally, river water is found to be sulliciently pure for use without nevding ans correction. In msing the hyolrometer, first load be jan with the grain weights until the instrument rests at zero, and record the sum of these weights as the Balance of the IIydrometro. Next. place in the pan the sumple. together with as many weights as will again bring the instrument to its zero, and record these weights as the Sample loblonce in A ir. The difference between these balances is tqual to the weight of the simple in air. Then place the sample on the bulls of the instrmment and immerse both until the hyirometer again rests at zero. and record the weights on the janas the Sample Balance in Brater. The difference hetween this bulance and that in air is equal to the weight of the water tlisplaced by the immersed sample. The temperature of the water at the time of weighing is noted, and if it is not at 60° divide the weight displayed by the the sample by that number in the following bille which is opposite the noted temperature, and the quotient will give the corrected displacement for the temperature of 60°. Then, the wejght of the sample in air, divided by the corrected elisplicement gives the density of the sample. The hydrometer may be employed in determining the Varying density of the same water at different degrees of temperature. The weight of the water it displaces at amy other temperature than 60°, divided by its displacement in the same water at 60°, will give the proportionate wejght of water lisplaced hy the same instrmment at olher temperatures. See Areonneter and Sprcific Gruvity.

HYDRO-PNEUMATIC CARRIAGE.- A hydro-pmeumatic carriage has lately been proposed by Jajor Moncrieff for the use of sifge-rirriages, somewhat (.n the system of his connterweight carriages for heavy guns. The object obtained is lightness, the facility of loading the gun when out of sight of the cnemy, and raising it en barbette without any difticalty, thus obviating the necessity of cutting embrasures in the parapet. The carriage is designed for slege purposes, and it seems not improbable that the development of its principle may altogether rev. olutionize that branch of military operations. Batteries of attacks have hitherto been protected by embankments lastily thrown up, while the guns have been fired through embrasures. But the deadiy precision of improved artillery sends shot after shot into the embrasures, while its penetrating nowar makes ordinary earthworks but very indiferent protection. Major Monerieff's idea is to adapt to the attack the srstem he has been elaborating for coast defenses. He digs a hole and buries his gun in it. The soil, when it is excavatod, is carricid to the rear, and the enemy las no mark to gride lis aim; after each discharge the gun sinks out of sight. and the indication of its precise whereahouts vanishes with the smoke. In the sieges in the late war, the Germans fomd that they must withdraw their batteries to immense distanes. whance the fire was varue and ruatively inclimetive. Major Moncriedl malertakes to place his guns within 500 yards of the rnemy's works. lby lis very widl-known inder of the
 the ghan out, and retarning it to cover, and so enabling the grumars to work in comparaliva safely by storing the force of the reobl. But the wheretion io aphlying the system to siege "perations was the me widly weright of arriteres filted with the connterwodicht, whare lighthess and facility of mosernent wore primary ronsiderations. The hydro-pucemmatie systen dispenses with this pomberome rounterWroght, replacing it very ingeniously with a sumple
cylimder omly containing air mad water, which ouri]lates lowwen the rhonks of the gran-ratriage. It is at feature in the carriage that it can be seenred on an improvised phatform whothen homy and eosily applisaces. It is fastencel by a chain passed boosely romed some balks of timber buriod in the gromal. amb the fastoning acts as armede pivot, on whirh it revolves. When in position for firing. the erm is raiscol to a lacight of some 7 feet upon a pair of arms or devators which day hold of the fromions, and theiraction is regulato ithy racks, whichare arranged to work in enmection with a radial comecting-rod. Betweren these is the heal of the piston which works in the hydro-pmematic: cevinder. With the dis. charge of the gem the lome of the eylimder sways hatekwarls, the piston is forecol down hy thare receil, anl, as the piston slowly goce thown in this cylinder. the gun descomets with it to the normal pesition for loading. The internal adjustments of the eylinder are, of course, the essente of the insontion. The piston descends in a tulow of water, communicating at the hottom of the evlinder with a erouple of side:chambers which are tilled with air. As the water is forced down in the central tube, it necessarily rushes into the side ones, and the wasticity of the air it violently compresses is the motive power that is to be stored for use. 'there is just snillicient water to fill the central evlinder and to cover all the valves and joints, and there is mothing but strong and solid metal in those parts of the sideerhambers in which the s:ompressed air is to be contined. At the bottom of the eylinler, hetween it and the air-valve, an I immediately in rear of the latter, is a "throttle-valve." The throttle-valve comsists of a small, circular, pere forated cylinder, revolving within a larger one and its purpose is to nentralize, by the application of water friction, any excess of energy in the recoil. Indeed, noxt to employing air and water, as light and convenient materials of enomons power to work those heavy siege gums, the idea is to use those clements so as to avoid friction and concussion. Insteat of the very violent recoil which threatened to shake the strongest carriage to pieces when it was arrested sharply by the resistance of serews and iron, according to this hydro-pmenmatic system the recoil is made to exhanst itsedf pon air-springs and waterenshions. The first shock is loroken upon the mass of water in the mi ldle cylinder and the throtle-valve disposes, as it were, of any of the subsequent wibrations. Theoratially, therofore if we may use the expression, the recoil should be all self-contained. It was very nearly so in all practice; the carriage moved slighty to the first shot, at the chain tightened that secured it to the balks: bnt the shot that followed made no perceptihle change in its position. It must be remembered that under the ohd system, an:l before Major Moncrieff had inventel his counterpoise, or thought of his hydro-pnemmatic eylinder, the gin would have wrenched itself away from such a rongh-and-ready fastening. When the piece is raised for firing, it is managed by a worm-wheed at the side. which regulates the angle of elevation and which turns easily to the touch. To snm up the merits of the invention, if it realizes the atwantages chamed for it -and as it confessed to be a mechanical success. We can scarcely spe how it can fail to do so -it will emahle siege-batteries to be estahbished and worked with comparative impmity at an extraordinary short distance from the formidable guns which are mounted on morlern fortresses: siege-guns may be secured in position anywhere with matcrials that are always ready to hand: and carrages on constant service will be exposed to the very minimum of strain. Moreover, Major Moncricff's new apparathe can be easily adapted to ordinary sidge-carriages. and a cart and a comple of horses will transport its extra weight. If it proves successful with the heaw $40-\mathrm{pr}$. siege-guns, if fintiori it must succeed with the 46 -pr. to be employed for coast batteries, as suggested in Major Moncricfl's pamphlet on defenses.

HYGROMETER. - An instrument for monaring the quantity of moisture in the atmosphere. 'Therarlier forms of hygrometar dioponden! won the propurty powsessed by some sulatane of readily aboroting monstare from the air. and being therelyy rhanged in dimensions or in woight. Of this kint wab the hair hygrometer of satusure, in whicla a hair, which cex. pands amd contracts in longth aceroding as the atr is more or less monst, was made to mover an malax: a similar instrument was llw whaldone instrument of Delue: but ans othere contses at worl at moisture atfect such instruments, they attored mor arenrate in-
 (ally, is that of J. F. I amichl. It consists of (wo bulles
 ing a thermemelor, ioge ther with sonne cther and the vapor of chacr, the air baving lean tirat (apember). This hygronneter was cmployed at the Royal (ob)survatory. Cisenwieh, from 1840 - tha commenerment of meterological ohservations- 1ill 1847, when it was superseded liy the more eonveniont in-trument, the Whe and Inry Bulh 'lhermometer of usual form, This instrument consists of two ordinary thermom-cters-nae has its buth bare, and thus shows the temperature of the air; the other lats its bintherowere with musdin, which is kept wor by a cotton widk dipping into water. The evaporation from the mus. lin, and the consernatent cooling of the bulb, being in proportion to the dryness of the air, the difference between the reatinis of the two thermometers is greatest when the air is Iryest, and \%ro when it is completely saturated. Thie readings of the thermo. meters then being taken, the alastic force of wapor at the dew-point is calculated by the formala of lor. Apjolın:

$$
\text { (1) } \mathrm{F}=f-\frac{d}{88} \cdot \frac{h}{30} ; \text { (2) } \mathrm{F}=f-\frac{6}{96} \cdot \frac{h}{30} \text {; }
$$

the first formula is to be used when the wet thermometer is above, and the second whenever it is below, the freezing-point (32"). In these formulw, F is the clastic force of vapor at the dew-point, which has been determined for different temperatures by Regnatt from carefully conducted experiments; f. the elastic force at temperature of evaporation (or read-

Fig. 1. ing of wet bulb); d, the difference between the dry and wet bulbs; and h, the height of the barometer. From this the quantity of moisture in one cubic foot of air, etc.. can he found as before. To dispense with these tronblesome calculations, the IIggrometric Tablew of Mr. Glashier may be nsed. Mason's hygrometer, represented in Fig. 1, is a very convenient and satisfactory instrument for practical use. "It consists of two thermometers, as nearly as possible similar mounted parallel upon a frame and marked respectively "wet "and "dry." The bulb of the one marked ret is covered with thin muslin or silk, and kept moist from a fountain which is usually attached. The principle of it action is, that unless the air is saturated with moisture, evaporation is continually going on. And as no evaporation can take place without an expenditure of the heat. the temperature of the wet lulls thermometer, under the evaporationfrom the moistened bulb, fails umila certain point is reacbed, intermediate between the dewpoint and the temperatare of the air, as shown ly the thermometer. Tu find the dew-point. the absolute dryness, and the weight in grains of a culbe fout of air, tables have been constricted empirically fromexperiments at Greenwich. combined with Regnault's

Tables of Vapor Tension. When using this instru- It consists of a thin and highly-polished tubular vesment, if the air be very dry, the difference between sel of sijver, A. having one end somewhat longer than the two thermometers will be great; if moist, less the other. A rather delicate thermometer is introin proportion, and when fully saturated, both will duced into the tube at the smaller end, 10 which be alike. For different purposes, different degrees end of the tnbular vesset, also, a flexible rubber thle of humidity are required, and even in bousehold use, with ivory mouth-piece is attached. A sufficient that hygrometrical condition of the atmosphere most quantity of etber to cover the bulb of the thermesbeneficial to one person, may frequently be found al- meter, being poured into the silver ressel, the ether together unsuitable for another. "Dry" bulb 70° is agitated by breathing through the flexible tube. and "wet" bull 62° to 64° indieate average healtb- A rapid evaporation ensues until at the moment the ful hygrometrical conditions; any other relative con-l dew-point is reached, the moisture is seen to condense

DEW.POINT.

	Difference between reading of Wet and Dry-bn														
会	0	1													
	$\begin{aligned} & +300 \\ & 31 \\ & 39 \\ & 33 \\ & 33 \\ & 34 \end{aligned}$			$\begin{aligned} +210 \\ 2,29 \\ 23 \\ 24 \end{aligned}$	$\begin{gathered} 1 r_{0}+ \\ 18 \\ z_{0} \\ 20 \\ 24 \end{gathered}$	$\left.\begin{array}{\|} 130 \\ 16 \\ 16 \\ 16 \\ 16 \\ 19 \end{array} \right\rvert\,$	$\begin{array}{r} +7_{0}^{0} \\ 11 \\ 11 \\ 13 \\ 15 \end{array}$	0		$\begin{aligned} & -3,20 \\ & -172017 \\ & -17 \\ & -7 \end{aligned}$	(-32 -23				
$\begin{gathered} 36 \\ 37 \\ 38 \\ 38 \\ 39 \end{gathered}$	+3536 38 38 39 39$\|$	$\begin{gathered} 323 \\ 33 \\ 34 \\ 35 \\ 36 \end{gathered}$	$\begin{aligned} & \left.\begin{array}{c} 29 \\ 30 \\ 32 \\ 33 \\ 34 \\ 34 \end{array}\right) \end{aligned}$	$\begin{array}{r} \text { ror } \\ 27 \\ 29 \\ 30 \\ 30 \\ 31 \end{array}$		$\begin{gathered} 4+30 \\ 20 \\ 21 \\ 23 \\ 23 \\ 23 \\ 24 \end{gathered}$	$\begin{array}{r} +16 \\ 19 \\ 19 \\ 19 \\ 20 \end{array}$	$\begin{gathered} +11 \\ 18 \\ 17 \\ 17 \\ 16 \end{gathered}$	14				-31		($\begin{aligned} & 35 \\ & 36 \\ & 38 \\ & 38 \\ & 39 \\ & 39\end{aligned}$
$\begin{gathered} +01 \\ 41 \\ 40 \\ 48 \\ 48 \end{gathered}$	$\begin{gathered} +01 \\ 41 \\ 48 \\ 48 \\ 48 \\ 44 \end{gathered}$	$\begin{gathered} \begin{array}{c} 35 \\ 39 \\ 49 \\ 41 \\ 42 \end{array} \\ \hline 4 \end{gathered}$	$\begin{gathered} +35 \\ 36 \\ 37 \\ 38 \\ 38 \\ 39 \end{gathered}$	$\begin{gathered} +3, \\ 33 \\ 34 \\ 35 \\ 35 \\ 37 \end{gathered}$	$\begin{gathered} +39 \\ 30 \\ 31 \\ 33 \\ 34 \end{gathered}$	+26 +27 28 20 30 31		$\begin{gathered} +18 \\ 191 \\ 29 \\ 29 \\ 24 \end{gathered}$	$\begin{array}{r} 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 20 \end{array}$	$\begin{gathered} 8 \\ 10 \\ 138 \\ 10 \end{gathered}$		$\begin{aligned} & -8 \\ & +8.8 \\ & +3 \\ & +3 \\ & +1 \end{aligned}$	- 21		40 41 48 43 48
$\begin{array}{r} +45 \\ +\begin{array}{c} 46 \\ 47 \\ 48 \\ 48 \\ 49 \end{array} \end{array}$	$\begin{aligned} & +\begin{array}{l} +46 \\ 46 \\ 47 \\ 48 \\ 49 \end{array}{ }_{4}^{49} \end{aligned}$	$\begin{gathered} +3 \\ 44 \\ 45 \\ 46 \\ 47 \end{gathered}$	$\begin{gathered} +40 \\ 48 \\ 44 \\ 44 \\ 45 \end{gathered}$	+38 39 40 42 42 4	$\begin{gathered} +35 \\ +36 \\ 36 \\ 39 \\ 39 \\ 40 \end{gathered}$	$\begin{array}{r} +33 \\ +33 \\ 35 \\ 36 \\ 37 \end{array}$	$\begin{aligned} & +29 \\ & 30 \\ & 38 \\ & 33 \\ & 34 \\ & 34 \end{aligned}$	$\begin{array}{r} +\frac{25}{25} \\ x_{2}^{2} \\ 30 \\ 30 \\ 31 \end{array}$		$\begin{aligned} & +17 \\ & 19 \\ & \begin{array}{l} 19 \\ 20 \\ 292 \end{array} \\ & \hline 2 \end{aligned}$	$\begin{array}{r} +114 \\ 16 \\ 16 \\ 18 \\ 20 \end{array}$	$\begin{aligned} & 10 \\ & 15 \\ & 15 \end{aligned}$	2		
$\begin{gathered} +50 \\ 51 \\ 52 \\ 53 \\ 53 \\ 53 \end{gathered}$	+50 51 52 53 54 54 5	50 51 52 53	$\begin{gathered} +\begin{array}{c} +6 \\ 48 \\ 48 \\ 49 \\ 89 \\ 80 \end{array} \end{gathered}$	$\begin{gathered} +43 \\ 45 \\ 46 \\ 47 \\ 47 \\ 48 \end{gathered}$	$\begin{gathered} +41 \\ 48 \\ 48 \\ 44 \\ 46 \end{gathered}$	$\left.\begin{array}{r} 38 \\ 40 \\ 41 \\ 42 \\ 43 \end{array}\right\}$	$\left(\begin{array}{c} +36 \\ 37 \\ 38 \\ 48 \\ 41 \\ 41 \end{array}\right.$	$\begin{aligned} & +33 \\ & 35 \\ & 35 \\ & 37 \\ & 38 \\ & 38 \end{aligned}$	$\begin{aligned} & +29 \\ & 32 \\ & 32 \\ & 34 \\ & 34 \\ & 35 \end{aligned}$	$\begin{aligned} & +267 \\ & 2727 \\ & 230 \\ & 30 \\ & 32 \end{aligned}$	$\begin{gathered} +\frac{93}{23} \\ \frac{25}{25} \\ a_{2}^{2} \\ 28 \end{gathered}$	$\begin{aligned} & +17 \\ & 19 \\ & 29 \\ & 29 \\ & 23 \\ & 24 \end{aligned}$	$\begin{aligned} & +13 \\ & 13 \\ & 16 \\ & 18 \\ & 20 \end{aligned}$	+ $\begin{array}{r}\text { + } \\ + \\ 9 \\ 12 \\ 15 \\ 15\end{array}$	(
$\begin{aligned} & 56 \\ & 59 \\ & 59 \end{aligned}$	$\begin{gathered} +55 \\ 56 \\ 57 \\ 58 \\ 58 \\ 58 \end{gathered}$	$\begin{gathered} +53 \\ 54 \\ 54 \\ 55 \\ 56 \\ 57 \end{gathered}$		$\begin{array}{r} +9 \\ 50 \\ 50 \\ 51 \\ 53 \\ 53 \end{array}$	$\begin{gathered} +47 \\ 48 \\ 49 \\ 50 \\ 50 \end{gathered}$	$\begin{gathered} +45 \\ 46 \\ 48 \\ 48 \\ 49 \end{gathered}$	$\left\{\begin{array}{l} +42 \\ 45 \\ 46 \\ 48 \\ 47 \end{array}\right.$	$\left\{\begin{array}{l} +39 \\ 42 \\ 48 \\ 438 \\ 43 \end{array}\right.$	$\begin{gathered} +36 \\ 39 \\ 39 \\ 48 \\ 42 \end{gathered}$	$\begin{gathered} +\begin{array}{c} +3 \\ 35 \\ 38 \\ 38 \\ 38 \end{array} \mathbf{3} \end{gathered}$	$\begin{aligned} & +30 \\ & +\begin{array}{c} 33 \\ 303 \\ 335 \\ 355 \\ 36 \end{array} \end{aligned}$	$\begin{gathered} +26 \\ +\begin{array}{c} 26 \\ 20 \\ 30 \\ 34 \\ 34 \end{array} \end{gathered}$			
$\begin{gathered} \begin{array}{c} 60 \\ 60 \\ 68 \\ 63 \\ 63 \end{array} \\ \hline 6 \end{gathered}$	$\begin{gathered} +60 \\ 60 \\ 60 \\ 68 \\ 64 \\ 64 \end{gathered}$	$\begin{gathered} +58 \\ \hline 59 \\ 69 \\ 60 \\ 68 \\ 68 \end{gathered}$	$\begin{gathered} +56 \\ \hline 57 \\ 57 \\ 58 \\ 68 \\ 68 \end{gathered}$	$\begin{gathered} +54 \\ 56 \\ 58 \\ 58 \\ 58 \\ 59 \end{gathered}$	$\begin{aligned} & 55 \\ & 55 \\ & 56 \\ & 57 \end{aligned}$	$\begin{array}{r} +50 \\ +50 \\ 58 \\ 53 \\ 54 \\ 54 \\ 55 \end{array}$		$\begin{gathered} +46 \\ +46 \\ \hline 48 \\ 50 \\ 51 \end{gathered}$	$\begin{gathered} +43 \\ 46 \\ 46 \\ 46 \\ 49 \end{gathered}$	$\begin{aligned} & \begin{array}{l} 41 \\ 48 \\ 48 \\ 48 \\ 48 \\ 46 \end{array} \end{aligned}$	$\begin{gathered} +38 \\ 39 \\ 98 \\ 48 \\ 48 \\ 44 \end{gathered}$	$\begin{aligned} & +35 \\ & 3696 \\ & 39 \\ & 39 \\ & 91 \end{aligned}$	$\begin{gathered} +33 \\ 33 \\ 35 \\ 36 \\ 38 \end{gathered}$		(60 61 68 68 64 64
$\begin{aligned} & 81 \\ & 68 \\ & 68 \end{aligned}$			$\begin{gathered} +68 \\ \hline 64 \\ 68 \\ 65 \\ 65 \\ 66 \end{gathered}$		$\begin{gathered} 58 \\ 59 \\ 50 \\ 60 \\ 60 \\ 60 \end{gathered}$	$\begin{aligned} & +56 \\ & 57 \\ & 58 \\ & 58 \\ & 59 \\ & 61 \end{aligned}$		$\begin{gathered} +52 \\ \begin{array}{c} 53 \\ 5 \\ 56 \\ 56 \\ 57 \end{array} \\ \hline \end{gathered}$	$\left(\begin{array}{c} 51 \\ 5 \\ 54 \\ 55 \\ 55 \end{array}\right)$	$\begin{aligned} & +48 \\ & \hline 9 \\ & 50 \\ & 50 \\ & 51 \\ & 53 \end{aligned}$	$\begin{gathered} +45 \\ 48 \\ 49 \\ 49 \\ 50 \end{gathered}$	$\begin{aligned} & 41 \\ & \begin{array}{l} 45 \\ 47 \\ 48 \end{array} \end{aligned}$	$\begin{aligned} & 39 \\ & 41 \\ & 43 \\ & 43 \\ & 45 \\ & 45 \end{aligned}$		
$\begin{gathered} 73 \\ \overbrace{4}^{3} \end{gathered}$			$\begin{gathered} +6 \pi \\ 69 \\ 69 \\ 69 \\ 70 \\ 70 \end{gathered}$		$\begin{aligned} & +63 \\ & +65 \\ & \hline 66 \\ & 6 . \\ & 68 \\ & \hline 8 \end{aligned}$	$\begin{array}{r} +62 \\ +63 \\ 64 \\ 65 \\ 66 \\ 65 \end{array}$		$\begin{aligned} & +58 \\ & 590 \\ & 6.51 \\ & 66 \\ & 63 \end{aligned}$	$\begin{aligned} & +56 \\ & \begin{array}{c} 56 \\ 505 \\ 50 \\ 60 \\ 61 \end{array} \end{aligned}$	$\begin{gathered} +54 \\ 56 \\ 56 \\ 58 \\ 59 \\ 59 \end{gathered}$	$\begin{aligned} & 56 \\ & 56 \\ & 56 \\ & 56 \end{aligned}$	$\begin{aligned} & 91 \\ & 53 \\ & 53 \\ & 53 \\ & 53 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	49	
					$\begin{gathered} +69 \\ 74 \\ 74 \\ 74 \\ 74 \\ 74 \end{gathered}$							$\begin{aligned} +56 \\ 505 \\ 50 \\ 50 \\ 60 \\ 60 \end{aligned}$		5	-
		+ 79	+i6	+i6	+i4	+i3	+ 71						$+60$	+58	
	0	1	2	${ }^{3}$			6		8		10				

dition regnired maty casily be foum hy experiment, I upon the exterior surface of the polished silver tube. and then, dispensing with calculations, or reference The realing of the thermometer at this precise motables, it is only necessary to see that the two thor- ment gives the dew-point.
mometersatandin the reguired relation to cach other. Lieutenat James Alten, United States Army, has The hygrodyks, shown in Fig. 2 , is on the principle made an ingenions and novel applieation of the hyof Mason's hygrometer, but is arranged with a dial grometer, in foretelling froxt ly the determination of and pointer so that the absolute and also the relative the dew-point. Lieutemant Allen uses, in his investidrymess and the dew-point may be real of without gations, a dry and wethuth hygrometer of a special calculation. Regnaultshygrometer, withaspirator, enstruetion, consisting of two mereurial thermonsis represented in lige. B. By means of this instru- eters, which, being placod side by side, will indiment instantaneousobservations may be readily made. cate the same temperature. The dry-bulb is but a
common thermometer, intended to show the temperature of the atr. 'lhe wet-bulb is also a comumon themometer, but lavine its bulb roveral wist al fieres of thin muslin, from which passess in few thremp of darning-cotton or murrow strip of muslin into a small vessel contaning rain-water. Wratar risas by (onjil. laty attraction from the vessel and thas kecops the moslia constantly wet. When the air is dry, evop-
 oration froma the maskin proecols rapidly, and on areorome of the hoat lose in this way, the wet-hulh indiontes a lower tempurature than the dry-bulh; when the airistampevaporation is slower, and the dillerence between these two thermometers grows less, and whare the air is (omplelely saturated evaporation ebases, and thes two thermometers indicate the samu temperature. Tokerp) thisinstrumont in working order, sceveral things requiraspescinatatention. The thermometers must be alike. for if ones should he filled with mercury and the other should contain suirit, or if they slould be filled with dilferent quantities of the same fluid, the reatings will be vitiated. All starch or forcign matter shomld be washed out of the thin muslin eovering and the coton wicking. The water used should lee pure; for if lime or other salts be dissolved in it, ther nus-

Fig. 3.
lin will soon be coated witly a calcareons or other inerustation. Rain or distilled water shonld he used. The muslin ought to be changed when covered with dust or other impurities, and care should be taken not to tonch the muslin with the fingers, otherwise it will get slightly greased, and capillary attraction will be thereby interfered with. The bulbs of the thermometers should be madi to joroject $1 \frac{1}{2}$ or 2 inches below the seates. The thermometers should also be a little apart from each other, and the vessel containing the water ought to be placed as far removed as prossible from the dry-bulb. The thermometers should be axposed to the air where thes circulation is unobstructed. They should face the north and be always in the shade. They shond be removed at least a foot from the wall of any bmildiug, and should be about ten feet from the ground. They should he protected against the heat reflected by the neighboring objects, snch as buildings or a sancly soil, and they should be sheltered from the rain. If the dry-bulb should become moistened by ran. the bulb should be carefully dried about five minntes before making the observation: since drops of water, by their evaporation, would lower the tem-
prontere of the morcury in the bulls. By means of this contrivane and the foregotane tablo, the dew
 nicuty. Toulctormine the dew-point, at any tima. substract the roading of the wet-bulb from that of the dry-ball); find the temperature of tho (1) ry-bull in the left hant columan of the Table oppesito Which in the colamm that is marked at tha lop with tho diffarence betwoen the dry and wet-lath, is to lre fomme the dew-point souglit.

Ilaving ascertaincil the dew-posint with crrtaint the ajpronch of low temperatures of of frost may be foresern amb providiod against. Thus, sumposi on a fine clearday, towardsevening, that the dry-lmalh is 50° and the wet-bull, 40°. the dew-point at the time

Fig. 4.
(per Table) is 2_{2}° F. Frost on the ground may then be predicted with certainty and no time ought to be lost in protecting the tender plants of the garclen. If, on the other hand, with a sky puite as clear, the dry-bulb is 50° and the wet-bulb 47°. the dew-point is 43°, and no frost need le feared.

Assuming the sky to remain perfectly clear of all haze or clouds, the raising or depressing of the dewpoint during the night, (usually with a change of wind), are the only eircumstances that can lappen to interfere with the pretictions founded on the hysrometer. Frequently the presence of any haze at highaltitudes during the night prevents the ratiation of heat from the earth and therehy the frost which otherwise would have oceurred. Hoar-frost is formed under the same circumstances as dew, with the single exception of a lower temperature. Whan the temperature of the surface of plants falls below 32° the moisture of the air is condensed upon them in the solid state and forms a dayer of snow-erystals. like spongy ice. Iloar-frost therefore is not frozendew. hut the moisture of the air is cleposited in the solid form, without having passed through the liquid condition. Hoar-frost, however, like dew. is deposited chielly upon those bodies which ridlate best, such
as plants and the leaves of vegetables, and the deposit is made principally on those parts which are turned foward the sky. Since plants sometimes become cooled by radiation from 12° to 15° below the temperature of the surrounding air, a frost may oceur although a thermometer a few feet above the ground, in an instrument-shefter, may not sink to 82. During a clear and still night, when a thermoneter which is six feet above the ground sinks to 30° or less, a heavy frost may be expected; and a sliglst frost may occur when the same thermometer sinks only to 47°. Whenever it is practicable, an instrument-shelter should be built. The stevenson pattern. shown in Fig. 4, is a very snitable one. The louvres are double. sloping in opposite directions, so that while there is access of the air to the inside, the radiant heat and rain are effectually excluyed. I single latick. however, will answer the purpose very well. This screen should be erected on legs four feet high, and should stand over grass on open gronind. It should not be momer the shadow of trees nor within twenty feet of any wall. See

Thermometer.

HYGROSCOPE.-Tbe form of hygrometer employed to determine the ability of powder toresist moisture. It is usually an air-tiglit box in which the powder is subjected to a damp atmospluere at a uniform temperature for 24 hours. It consists of a box lined with copper, with a space of two inches between packed with lair. The lid is double also, like the sides, in eonstruction; an India-rubber gasket covers the edges of the top, which is serewed firmly down with thumb-screws. Inside the box is a movalhe perforated tray of copper resting on ledges 8.5 inches by 8.5 inches. The intervening spaces have watertight trays on ledges filled with a solution of niter.

The powder to be tested is placed in circular cups of copper having fine wire-gatuze bottoms, affording free access of moisture to all the parts of the sample under test. The pereentage of gain is determined by weighing the fowder in carefully prepared bottles

 of the hatrometer, the hyorrometer, cexternal and maximum and minimum internal thermometers. Sere Gunpouder amel Inspection of Gunporder.

HYPERMETROPIA. In sinomaly in the rofraction of the ree which, by law, discualifies a recruit for enlistment in the Army. "lois defeet is depondent on at condition of the ego cxactly the reverse of myopia. It is the condition in whimerty from distant objercts eome to a focus b hind the retina. A ghaner at the drawing will explain this condition. Ilypermotropiat is due to a formation of the eye, which is pressent from birila. It is also hereditary, being transmitted through cotire families. IIypermetropice eves are usually flat and shallew in apperarance. Although present from birth, it is often, unless of
a high degree, not manifested until the duties of the school-room begin, and, in the slighter grades, it may not be noticed until adolescence or middle-life; mererthelesss the defert has existed all the while, but it has hern masked and overcome by the exartions of the little ciliary muscle. Distinct vision is one of the instincts of our senses, and our eyes unconscionsly adjust themselyes so as leest to secure it. Any change of the convexity of the lons is effertiod by the action of the ciliary muscle : now, since the focus for the rays falls behind the retina, the convex-

ity of the lens of the eye must be increased in order ti) bring the focal point on the retina, and hence the little muscle is called npon to do the work; but, since this condition of the eye is permanent, so also this museular contraction is almost constant while the eyes are employed. Besides this constant exertion, the muscle mist also act with vigor enough to give the ordinary power of accommodation for near objects.

In youth the ciliary is in its greatest viror, and it then overcomes this defect even when of consideraHe degree, but as age advances, the power of the museles diminishes and then it is that the defect begins to manifest itself. The great canse of all these symptoms is the overstrain and eventual exhanstion of the ciliary muscle. So long as it is able to accomplish its exeessive task, it overcomes, or rather masks the defect, but as soon as its power rives ont. the accommodation fails and indistinctness of near nbjects results, in addition to which we have the long ehain of distressing symptoms which arise from the overstrain; many an obstinate headache has its sound in an unrecognized hypermetropia.

Since in this state of the eye the focus falls belind the retina, the remedy is found in a glass which wil increase the refractive power of the eye, thus bringing the focus of the rays of light on the rotina: snch a result is obtained by the proper contex glass. As, lowever, the ciliary muscle is able to mask a certain amount of the defect, even after it has beeome apparent, the convex lens, which most improves distant vision, will correct but the portion of hypermetropia which is "manifest," and, inclecd, frequently the patient may reject all convex slasses as failing to improve his distant vision, and yet be hypermetropic 10 a considerable degree.

The mass which corrects the manifest defect wild often greatly conduce to the patient's comfort, yet to select the glass which will correct the antire defect, the acoramondation of the ere must he temporarily suspended by putiong the ciliary muscle at rest by means of a solution of atropia. whern the entire defect lecomes apparent and may be carofnlly measured by the oculist. See hecruits.

HYPSOMETRICAL THERMOMETER. It is gener-
 this is true only at the som-leved, maler a harometric preswure of 29.922, in latitude 45 , at at temperatura of 32° fahrenheit, and with chemically pure water. 'ihe boiling-point, therefore varjes with the latitude, the height ahove suth-level, the prossure of the atmosphere and the temperature. Thus, at Philadelphia, nuder the mean harometic pressure of that locality, of 29.922 at 32° Fahronheit, watur boils at a temperafure of 211.994 Fabrenlecit. As there is an evident relation between the hoiling-point and the elevation of a phace, as shown by the decreased baromotric pressure as we ascend, it would seem a comparatively
simple matter to measure the lacight of a mountain by the temperature at which the ebullition of water oceurs. The barometric pressure, bowever, for the same place, is contimally varying, and with it, the boiling temperature of thids. It follows, wherefore, that in order to determine clevations with any degree of accuracy, by moms of a beiling-point themometer, it is necessary in the first phac\%. that the thermometer employed should he most aceurate ly uraduated and compared with the realding of astandard barometer, reduced for temperature and latitude. It is necessary, also, that observations should be made, with as little interval of time between as possible at the lower point from which the elevation of the higher point is to be determined, as well as at the higher point itself, and that these observations be repeateally made. In relation to the necessity of a thoroughly acute thermometer, Admiral Fitzroy satys, in his "Notes on Metcorolory:" "Each degree of the boiling-point thermometer is equivalent to almost 550 ft . of ascent, or onetenth to 55 ft . ; therefore, the smallest error in the graduation of the thermometer itself, will affect the height dedueed materially." Ilaving prepared to make observations with accuracy. it will become necessary to ascertain the means of dechucing the height from the observations made. The following Table gives very nearly the elevations in fect corresponding to a fall of 1°, in the temperature of boiling-water. When the baroncter falls, or when a part of the pressure is in any other way removed, it boils before coming to 212°, and when the pressure is inereased the boiling-point rises. An elevation of 105 fect above the sea-level mates a dimioution of one
degree; at higher levels the differener of elevation corresponding to alderve of teraperature in the hoil-ing-point incrases. At the ('ity of Mrexien) 7 , (0) feet above the scat, water boils at 200^{3}; at Quito, 9.000 fere abowe the sea, at 194": and on Dankin Mombain, in the llimalayas, at the height of 18 orefe feet. Dr. Ilooker found it to hosilat 180°. The knowladge of the effect of diminishard pressure is largely turned to areonnt in procereses where the substancers are apt to be injured ly a high temperature.

It is assmmed that the boiling-point will be diminished 1° for cach 500 feet of ascent until the trinnerature becomes 210°, then 5.30 feet of eravation will lower it one degree until the water boils at 200° and so on, the air being at 32° Frabrombeit. As, according to Reguault, the air expands . 002026 of its volume at $3 z^{0}$ for cach degrep increase in temperature, it is necessary to find the mean temperature of the air between the two points, and applying the correction due to the dilferener between that and sea, the formula will lee as follows: Let h represent the vertieal height in feet betwern the stations: l and b the boiling-points of water at the lower and upper stations respeetively; and f, the factor found in the above tahle. Then $l l=f(\mathrm{~B}-\mathrm{b})$. Let $o n$ be the mean temperature of the stratum of air between the stations. Calling the correction due to the mean temperature of air C, its valne will be fonnd from the equation, $C=I I(m-32) .002036$. Calling the correeted leight $K K^{\prime}$, it will be found from the formula

$$
\begin{aligned}
H^{\prime} & =H+M(m-32) .002036 \\
\text { that is } H^{\prime} & =I I[1+(m-32) .002036 .]
\end{aligned}
$$

When an aceurately made and carefully compared thermometer is employed in accordance with the foregoing rules and instructions, very accurate and raluable results may be obtained with the hypsometrical apparatus. But it is manirest that with thermometers as ordinarily made, whose freezing-points have been fixed without regard to the condition of a true zero. and with observations which leave entirely ont of account many of the factors necessary to even approximate correctness, the results so obtained must often be of little valuc. See Burometer and I'hermometer.

IBERIAN SWORD.-A small sword somewhat resembling a dagger and much worn by the IRoman foot-soldiers, on the right side.

ICE.-In high latitudes, during the winter, rivers are frequently covered with ice of sufficient thickness to sustain the heaviest loads. This means of communication should be used with great circumspection. A change of temperature may not only suldenly destroy this natural bridge, but render the river impassable by any method for a considerable time in consequence of the floating ice. When from three to four inches thick, jce will sustain infantry marching in single file. With the thickness of 4.5 inches, cavalry and light guns can pass over it : with six inches, heavy field-pieces; eight inches will support sicge-guns, but, for greater security the wheels should be loeked and secured upon wayy-planks wheh slide upon the ice, the pieces bing noved by hand.
In very cold weather the thickness of the ice may
be increased bs covering it with a layer of straw or brush and throwing water over it, or two rows of logs may be laid at a distance apart equal to the width of the roadway : a layer of earth is spread between them and water is thrown on and allowed to freeze. This operation is repeated until a solid roadway is formed. Troops working in concert can alccomplish in this manner a very strong crossing in it short while.

Ice. when rery thick, and therefore difficult to remove, may be broken up by charges of powder in water-tight cans or bags. fixed underneath or placed in holes bored in it. Charges of from tive to ten pounds of the powder placed in ice two feet thick will break up an area twenty feet in diameter. Eight ounces of dynamite will produce the like or even a greater result.

ICENI.-A warlike tribe of queient Britain. ocenpying, as is supposed, that part of the country which
corresponts nearly with the present counties of Norfolk and suffolk. Under their (queen Boadicea they rebelled against the Romans.

ICH DIEN. - The motto of the Prince of Walles. Aecording to one theory of its derivation, the phrase was cmployed by Ectward 1. on presenting his newborn son, Edward of Carnarvon, to the Welsh, using the expression in its Welsh signifieation-Eich dyn,
"Behold the man." Another view attributes it to the occasion of the killing of John, King of Bohemia, by the Black Prince at Cressy, and asserts that the latter found the motto under the plame worn by the dead Kingr. and assumed it to imply that "he served un ler the lining. his father."

ICHNOGRAPHY. - The plan or representation of the length or breadth of a fortification, the distinct parts of which are marked out either on the ground itself, or on paper. A plan upon the correct principles of ichnogrephy represents a work as it would appear if it were leveled to its foundations, and shows only the expanse of ground on which it had been erecterl. The science does not represent either the elevation or the different parts belonging to a fortification. "This properly comes under the title Profles, which dues not, however, inchade length.
ICICLES.-In Heraldry, charges of the same shape as drops in the bearing called gutté, hat reversed They have also been called clubs, locks of hair, and gruttés reversed.

IGNITIBLE EXPLOSIVES.-Substances which on a match, tube, or detomating composition being ap plied to them, ignite, such as gmopowder, gum-eotfon, nitro-glyecrine, dyamite, and glyaryline, all of Which can lie used asexplosive agents, for sulmarine as well as land purposes.
IGNITION. - The act of setting fire to, or of taking fire, as opposed to combustion or hurning, whicla is the conserfuence of ignition. Gunpowder may be ignited by the electric spark, by contact with an ignited body, or lyy a sudden heat of 5720 Fahrenlecit. A gradual heat decomposes powler withont explosion by subliming the sulphur. Flame will not ignite gunpowder unless it remains long enough in contact with the grains to heat them to redness. Thus, the blaze from burning paper may be tonched to grains of powder withont iguiting them, owing to the slight density of the thame, and the conling effec: of the grains. It may be ignited by friction, or a shock letween two solid bodies, even when these are not very hard. Experiments in France. in 1825, show that powder may be ignited by the shock of eopper against copper, copper against iron, lead against lead, and even lead against wood; in laudling gumpowder, therefore, violent shocks between all solit boolies should be aroided. The time necessary for the ignition of powder varies according to circumstances. For instance, damp powder reguires a longer time for ignition than powder perfectly dry, owing to the loss of heat consequent on the evaporation of the water ; a powder the erain of which has an angular shape and rough surface, will he more easily ignited than one of rounded shape ant smooth surface; a light powder, more easily than a dense one; and a powder made of a black charenal, more easily than one made of red, inasmucll as the later is compelled to give up its volatile ingredients lofors it is acted on ly the niter. Soe Fxplosion ant Gimponneler.

IGNORANCE OF THE LAW.--Ignmantic Juris, or ignerance of the law, is held to be ne excuse for any breach of contract or daty, nor for crime or other olfogse. It is absolutcly neerssary to start with this maxim, otherwise it would be givite impossible to atminister the law, for if once a contrary maxim were allowed. it would not omly be a premium to igmorance, hut would had to cmalless and abortive impuiries into the interior of a min's mind. Ignorance of a fact, lowerer, is a different thing. Another kindred maxim of the law is that every man intends the consequences of his own acts.

Thus, if he shoot at or give poison to a person, it is presumed that he intended to kill such person. Sn, if he leaves a trap-door open in a strect or thoronghfare, it is held that lie intended people to fall into it and be injured. Thare is, however, a doctrine called bona fides, which, in the case of petty offenses punishable by Justices, often tempers the strict and rigid application of the maxim ignorentic juris neminem excusat; and even in crimes a Court always takes into consideration, when passing judement, whether the prisoner was an ignorant or intelligent person.
ilifates-eeliauts.-A momadic tribe of Persia and Turkistan, and mostly of Turkish, Arabic, or Kurdish descent. They are Mohammedans of the Sunni seet. They have no settled abode, but live in tents, moving from place to place, according to climate or season. They have large flocks and herds, and some tribes live by plunder. Each tribe pays tribnte in cattle for the inse of grazing ground, money not being known among them. Also written Eelicents.
LMAGINARY QUANTITY.-In the working of gunnery problems, it often happens that the root of a negative guantity must le extracted; if the root is odd, the operation can be performed, but if even, the ront can only be furmally extracted, and is in consequence called an impassible or imaginary quantity. For instance, the cilse root of - 64 is not an imaginary quantity, for $-4 \times-4 \times-4=-64$, and therefore $\sqrt{3 / 64}=-4$; but the square root of - 64 is an impossible quantity, for no possible quantity (whether it he + nr -) multiplied by itself can produce a negative fuantity : similarly and ì fortiwri, the fourth root - 64 is in impossible quantity, ant the same is true of all even roots. Imagimary quantities are, howerer, generally reduced to one denomination as multiples of $\sqrt{-1}$, in the following mamer : $\quad \sqrt{ }-64=\sqrt{ } 164 \times-1=\sqrt{ } 64 \times \sqrt{ }-1=8$ $\sqrt{-1}$; aut a gain, $\sqrt{\prime}-18 a^{5}=\sqrt{9 a^{4} \times-2 a}=\sqrt{9 a^{4}}$ $\times \sqrt{2 a} \times \sqrt{-1}=3 u^{2} \sqrt{2 a} \sqrt{-1}$. These forms very freguently necur in higher algelora.

IMBRUED.-An expression used in IVeraldry to signify bloofly, or dropping with blood. Weapons thus blazoned are drawn with drops of blood falling from them. Also written Embrued.
IMMORTALS.-In antiquity, the name of a body of 10,000 troops, constitnting the guard of the King of Persia : so called because they were always of the same number: for as son as any of them died, the vacaney was immediately filled up. They were distinguished from all the other troops by the richness of their armor, and still more by their bravery. The same term was applied to the life-guards of the Roman Emperors.
IMPACT OF PROJECTILES.-In order to arrive at a clear understanding of what takes place when the motion of a projectile is arrested by any resisting medimm, it is necessary to recall some of the elementary principles upn which these phenomenia depend. The maner in which a projectile acquires its veloeity, is a good illustration of the manner in which its motion is destrnyed. If the mean pressure. 1 ', of the gas be multiplied ly the space, s, passed nver by the projectile while acpuiring its velocity, the result. will be the measure of the work done by the charge of powder: and it will also be equal to the work of stopping the same projectile, no matter how or by what means it may be brought to rest. The same result is generally arrived at ly measuring the velority imparted to the projectile meder the circumstaners mentioned, and multiplying the square of the velocity ly one-lualf of the mass of the projectile; or, since the mass is eypual to the weight divided ly the foree of gravity, the expression for the work stored in the projectile, and which must W v^{g}
he expended in bringing it to rest, $=\frac{\text { where }}{2 g}$, wher
$W=$ weight of the projectile in pommes, $n-$ velocity of the projectike in feet, and $g=$ the forco of gravity in fect, or the velocity which a bedy will acpuire by its own weight in one second of time. This expression involves indirectly the same grantities as that first mentioned; manely, the mem pressure of the gas and the distance passed over lyy the projecetile : assmming this measure for the work stored in the projectile, it remains to consider low this work is expended.

The following are the different iffects produced by the impact of a projectile upon any solid body; some of these being so connected as to rember their relative importance extremely doultful.
fiompression - The first effort of impact is to compress or drive back those portions of linth projectikes and target first coming in contact upon those immediately behind them; the amount of this compression dejenting upon the materind and velocity of impact, as well as npon the form of the projectile.

Flongation-The greater part of the work of the projectile in penetrating wrought-iron and similar materials is expended in overcoming the tenacity of the material, or in clongating the fiber. This is evident when we consider that punching or shearing consists not so much in cutting the liber, as in bending it, and afterwards pulling it in two lengthwise.
Shearing-This, as just stated, consists chiefly in the two strains already mentioned.

Bending.-This also implics tension and compresaion; the back of the target being elongated, and the front compressed.

Pulverizing-a portion of the material. This takes place only in case of hard materials, as a stone or cast-iron, and it then absorbs a very great amount of work. Like bending and shearing, it involves compression and elongation, the matcrial being compressed uatil it yields laterally to a tensile strain.

Motion-While the work is being expended, a certain amonent of time is allowed for the force of the projectile to impart motion to the target, especially that portion immediately in front of the projectile.

Friction-The friction is very great, especially in the case of the more pointed form of projectile, and varies inversely with the velocity of the projectile.

Heat-This is due to friction, both external and internal, that is, of the projectile and the fragments against the target, and against each other during the distortion of the material, from compression, bending. etc. The suddenness with which this heat is generated is almost unequalled by any known source of heat. It is well known that the heat (leveloped in the interior of loaded shells, on striking violently a thick irou plate, is sufficient to ignite the powder, and this fact has been utilized in dispunsing with fnses for exploding armor-punching shells.

The effect of a projectile on striking a masa or target of any form or material, may be divided into two general portions, - one being entirely local, while the other is distributed over more or less surface according to circumstances. The former is the penetration, and the latter may be called concussion. See Penctration of Prejectiles.

IMPALE.- In Heraldry, to arrange any two coats of arms side by side in one shield divided per pale. It

Impaia. is usual thus to exhibit the conjoined coats of husband and wife, the hushand's arms nccupying the dexter side or place of honor, and the wife's the sinister side of the escutcheon. When a man marries a second wife, heralds say that he may divide the sinister half of the shicld per fess into two compartmonts, placing the family arms of his deceased wife in chief, and of his second wife in base. A husband impaling his wife's coat with his own is not allowed to surround the former with the collar or the insignia of any order or knighthood to which
he may belone. Bishops, Duans, Itomls of Collecereg, and Kinges of Army impale their arms withtheir insig. nia of ofllee, giving the dexter side to the former. Pa corly Ildraldry, when 1 wo ceats were represented in one shield side lyy side, , mely half of rarls was rexhibited, an arrangement which has hern ralle el dimidintion. Sometimes the one cosat only was diminliated. A reminiserence of dimidiation is preserved in the practice of omitting the borlures. orles, and tressures in impaled arms on the side brmutod by the lime of impalsment. Sow //eraldry:
IMPEDIMENTA. All the accer)mpaniments (1) an army receriver from the leomans the nane of ionpurimenta. They consist in is gencral sense of munitions, equipronts, provisions, hospital supplies, tents, enginerering tools, bridge "ipuipage boats, haggnge, cooking utensils, ete, neessary tor the usfo of an army moving against an enemy'. This requires the use of large numbers of wagons and dranght animals, or shipping, and necessarily impedes the movement of an army.
IMPENETRABILITY. - Onc of the essential properties of matter which implies that no two borlies (an at the same time oceupy the same space. If a nail be driven into a piece of wood it dues not, properly speaking, penetrate the wood. since the fibers ari driven aside before the nail can enter. If at wespel be filted with fluid, and a solid locely be then placed in it, as much water will run over as is cequal in bolk to the solid body, in this way making room for it. The lightest gases are really as impenetrable ats the densest solicl; although, owing to their compreasibility, it is not readily made apparent.
IMPERATOR. - Anold homan title signifying ('ommander, which was applied to the Rulers of Provinces, the Consuls, Pro-Consuls, cte., or to anybody who had an Imperium assigned hins. After a victory the Roman soldiers frequently saluted their Commander by this title. See Eimperor.

IMPERIAL CROWN.-Properly the crown borne by the German Emperor; it is in form a circle of goli, adorned with precious stones and fleurs-de-lix, bordered and seeded with pearls. and raised in the form of a cap voided at the top like a crescent. From the middle of the cap rises an arched fillet enriched with pearls, and surmounted by a globe, on which is a cross of pearls. The name Imperial (rown is, however, in English Heraldry, applied to the erown worn in times past by the Kings of England. From the 12 th century onwards, the Crown of the Enerlish Sovereigns underwent repeated changes in Iorm and enrichment. That of Belward II. was formed of four large and four small strawberry leaves, rising In curves from the jewelled circlet, and having eight small flowers alternating with the leaves. In the crown if Henry IV. eight strawberry leaves, and as many fteurs-de-lis utternated with sixteen small gronps of pearls, three in rach. Tinter Henry $\sqrt{5}$. the enriched circlet was for the first time arched owr with jewellecl bands of gold, and the apex of the arches were surmounted with a mound and in cross, while crosses patêes were
Imparial Orown substituted for the strawberry leaves, and roses or teurs-de-lis for the chusters of pearls. The arches, at first numerous and elevated to a point. became in later times. restricted to fonr, and depressed in the center. The Imperial Crown of Heraldry as now understood, is, in point of fact, the form of crown worn by the English Sovereigus from Charles 11. to Williani IV., as represented in the subjoined woorlcut. It has four croswes priées and four fleurs-de-lis set alternately on the circlet, while four pearl-stud. ded arches, rising from within the crosses, carry at their intersection the mound and cross. The state Crown of Queeu Victocia differs considerably from this, having a far more eariched character. It is
covered with diamonds and studded with gems, and the arches are wrought into wreaths of rose, thistle, and shamrock formed of brilliants. A charge, crest, or supporter, crowned with a regal crown, is said to be imperially crononed.

IMPERIAL GUARDS. - The name of a body of select troops, organized by the French Emperor, Napoleon I., which greatly distinguished themselves at Austerlitz.

IMPERIALISTS.-A designation chicfly applied to the subjects of, or forces employed by the House of Anstria, when opposed to the troops of other German Powers.

IMPETUS.-In gunnery, the altitude through which a heavy body must fall to acquire a velocity equal to that with which a ball is discharged from a piece.

IMPLEMENTS. - Artillery implements are em ployed in loading, pointing, and firing cannon, and in the maneuver of artillery-carriages. The implements for loading camnon are :-1st. The rammerheced is a short cylindrical piece of beech or other
siege and sea-coast cannon, as field and mountain cannon can be unloaded hy raising the trail of the carriage, which permits the projectile to slip out by its own weight. 4th. The norm, Fig. 2 is a species of double cork-screw, attached to a staff, and is used in field and siege cannon to withdraw a cartridge. 5th. The gunner's haversack is made of leather, and suspended to the side of a cannonier by a shoulder-strap. It is used to carry cartridges from the ammunition-chest to the piece, in loading. 6th. The pass-box is a wooden hox closed with a lid, and carried by a handle attached to one end. It tilkes the place of the haversack in siege and seaconst service, where the eartridge is large. 7th. The tube-pouch is a small leather pouch attached to the person of a cannonier ly a waist-belt. It contains the friction-tubes, lanyard, priming-wire, the thumb-stall, etc. 8th. The budge-burrel is an oak barrel bound with copper hoops. To the top is attached a leather cover, which is gathered with a string, after the manner of the mouth of a bag. It

Fig. 3.

Fig. 2.

Fig. 4.
tough wool, fixed to the end of a long stick of ash, is employed to carry cartridges from the magazine called a statt, and is employed to push the charge to to the battery, in siege and sea-coast services. 9th. its place in the loore or chamber of a eamon. 2d. The priming-wire is used to prick a hole in a eartThe sponge is a roollen housh, Fig. 1, attached to the ridge for the passage of the flame from the vent. It rad of at staff, for the purpose of cleaning the interior of canmon, and extinguishing any burning fragments of the cartridge that may remain after firing. In the field and mountain services, the rammer-head and sponge are attached to the opposite ends of the sam" statf; in the siege and sea-coast services they are attached to separate: staves. To protect the sponge from the weather, it should, when not in use, he enclosed in a rover made of canvas and painted. 3 d . The lutle is a copper scoop attuehed to the end of at staff for the purpose of withdrawing the projectile of a loaded piece. Ladles are only used for
is a piece of wire, pointed at one end, and the other is formed into a ring which serves as a handle. 10th. The thumb-stall is a buekskin cushion, atached to the finger to close the vent in sponging. 11th. The fuse-setter is a brass drift for driving a wooden fuso into a shell. 12th. The fuse-matlet, Fig. 3 is mado of hard wood, and is used in connection with the setter. 13th. The fuse-san is a 10 -inch tenon saw for cutting wooden or paper fuses to a proper length. 14th. The fuse-gimlet is a common gimlet, which may be employed in place of the saw to open a communication with the fuse composition. 15th. The fuse-
auger is an instrument for regntating the time of mont and its moke of apliestion are vory simple.
burning of a fase, by removing a certain portion of tho composition from the "xterior for lhis purpose it has a movable grambatod sonle, which regufates the depth to which the auger should pencetrite. 10th. The fusp-rusp is a conarse dile emploged in bittiner a fuse-plag to a shell. 171h. 'lhe finse-plug reamer is used to 'rnlarge the ravily of a fusc-phot. after it has laren driven into a projuctiles, to enable
 is a wool screw with a landle; it is used to cxirnet a plug from a fuse-hole. 19th. The fuse-rxtructor is worked hy a screw, and is a more powerful instrument than the preeeding: it is nsed for extracting wooderi fuses from loaded sleells. Woth. 'There mor-tar-scroper is a slemberpicce of iron with a spoon at one ent, and a scraper at the othor, for reaning the
 matle of hanmel or serge, and are intentsed to be drawn over the coat-sherves of the grmmer, and prevent them from being soiled while loarling a mortar. 22d. The founel is made of ropper, and is nsed in pouring the lursting charge into a sledt. 23l. "the pourder-metesures. Fig. 4, are made of coppur, of a cylindrical form, amd of various sizes, for the purpose of determining the elareres of shedle and cathnon, hy measurement. 24th. The latayarel is at cord, one cnid of which has a small iron hook, and the other a wooden handle. It is nsed to explorle the friction-tubes witl which cannon for the land service ure now firell. 2jth. The gunner"\& pincers, gionlet, and vent-pumeh are instrmments carried in the tube-pouch for removing ordinary obstructions from the vent. 20th. 'The shell-hooks is an instrument constructed to fasten into the cars of ashell, for the purpose of lifting it to the mazale of the piece

The implements for pointing are: 1st. The gunner's level is an instrument for determining the highcst points of the breech and mazzle of a eannon when the carriage-wheels stand on even ground. It is made of a brisw plate, the lower edge of which is terminated by two ateel points which rest upon the smrface of the piece. A spirit-bred is attached to the plate with its axis parallel to the line joining the points of contact. When the level is in position, the vertical slicle is pressed down with the finger to mark the required point. $2 d$. The tongent-scule is a brass plate, the lower edge of which is cut to the curve of the base-ring of the picce, and the upper edge is fornied into offsets which correspond to differences of elevation of a guarter of a degree. It is used in pointing, ly placing the curved elge on the base-ring, with the radius of the offset corresponding with the highest point of the ring, and sighting over the center of the offset and the highest point of the swell of the muzzle. Bd. The brefch-vight, is a more accurate form of the tangent-scale. It consists of a rertical seale graduated to degrues and eighths of degrees, and a curved base whichrests upon the breech of the gin. A slide is attached to the vertical piece, which has a small hole or notels cut on its npper edre, through which the aim is taken. The slide is tixed at any point by a thmoserew. 4th. The perdulum harisve is used to point fiedd-pieces, and at the same time to obviate the crror which will arise when the wheels of the carriage stand on noeven ground. It is composed of a scale arranged like a pendulum, a suspension-picce, and a seat which is screwed to the breech of the gun. A slot is cut in the suspension-piece into which the scale is inserted, and fastened by a pivor, which allows it to vibrate in a lateral direction. The scale also vibrates in a longitutinal direction, as the journals of the sus-pension-picce are free to turn in the grooves cut in the seat to receive them, thas assuming a vertienl position independently of the surface of the ground on which the carriage stands. 5th. The gunner's. guadrant is a woorlen instrument for measuring the angles of elevation and depression of canoon, and particinarly of mortars. The nature of the instru-
'lohe plamb-line amblobl when not in use, are carriod in a loole formet in the chil of the loner loranch, and covered with a hrass plate.
'The principal mancovering implements are: 1 世t. "lhe trail-hamespike, which is mande of woom, amd attucherd to the 1 rail of a fielobecarriage for tha pur pose of giving direction to the piece when niming. Whon the rarringe is limberod, the hamblepike is attaclaed to tlax chank hy momos of at ring and hook. 2d. The methenerectug-hentrpile is likewise marle of wood, but it is lomger amel shouter than thre prereet
 gins. Bel. The stond-hertolspile is mate of worsh, arned with an iron point, which is turned up in at Way to prevernt slipping on the platform. It is jar ticularly useful in the service of mortars and manconst rarriages. 4th. 'The truek-hurudxpile is matle of iron, and is cmployed to work the manenvering wheels of sen-enast carriages, hy inserting it in the holes formed in the circumferinore of the wheels. 5th. The recentrio-lutudxpike is uscel to throw the ecentric axis of the manchycring wheels of the seacoast carriages into and out of gear, for this parpose it has a hearl with a haxagonal hole which fits apon the extremitios of the ecoentric axle-tree. Gih. The roller-htendapike supplies the place of rear maneuvering wherels in crertain of the new sea-roast gun-carriages. It is operated by inserting the point of the handspike moler the heel of the carriage- hoe, aml pressing down the loner arm of the lever: in this way the weight of the rear portion of the carriaure isthrown upon the roller, whieh unose's upon the mail of the chassis. Tih. The problonge is a stont hemp rope, occasionally employed in tield-servine to conneet the lumette of the carriage and pintle-look of the limber when the picee is fired. It is terminated at one emi with a hook, at the other withat toggle, and has two intermediate rings, into whichathe hook and toggle are fastened whenever it is necessury to shorten the distance between the earriages. ithi. "l"he sponge-buchet is made of shewt-iron, and is attached to field-carriages: it is nsed for washing the bore of the picce. 9th. The tur-buchet is also manle of sheet-iron, and is used to carry the grease for the whects. 10th. The watering-bucket is made of soleleather, riveted at the seams, and is used to water the horses. The gutta-percha watering-huckets are sometimes used. 11 th. The vater-bucketw are made of wood, and bound with iron hoops. There are two kinds, one for the traveling-forge, and the other for the scrvice of the garrison-batteries. 1?th. The drag-rope has a hook at one end. a loop at the other, and six wooden bambles placed about four feet apart. It is used whencver it may be necessary to employ a number of men in lauling loads, or extricating a carriage from a difficult part of a road. 134l. The men's-harness is very similar to the drag-rope, except that the rope is stouter, and the handles are replaced by leather loops which pass over the shoulders of the men, to enable them to exert their strength to advantage. 14th. The bill-hooh, or hand-bill, is used for cutting twigs. 15th. The serear-juch is a liftingmachine, composed of a screw worked by a marabile nut supported on a cast-iron stund. It is useful in greasing carriage-wheels

IMPREGNABLE. - Jot 10 be stormed or taken by assat!t ; incapable of being redured by force; able successfully to resist attack; as an impreguable fortress.

IMPRESSION TAKER.- A device 'mployed for recording impressions of vents ant interiors of tones in the inspection of cannon. In its usual form. it consists of a wooden lewd. one-half of which is cylindrical, and the other half is of the shape of the chamber, both being rather smaller than the parts of the bore for whieh they are intended. The statf, tatened on its upper side and romaled on its under side to fit the curve of the bore, is mortised into the colindrical portion of the head. I mortise is cut
through the eloamber part of the head, extending several inches in the rear and the front of the position of the vent. Into this mortise a loose piece is fitted, capable of free motion upwards and downwards, the top of which is pierced with holes to secure the wax or composition which is spread over its surface. This movable piecerests on a wedge attached to a flat rod running through a slot in this rol about fonr inches long, a pin passing through it into the staff.

To use the instrmment, withdraw the rod as far as the slot will permit, which will allow the movable piece upon which the conzosition has been spread to drop below the surface of the head, and protect it. Push the liead to the bottom of the chamber and arrange the position of the staff, so that the movable piece will eover the vent, then press the end of the rod home. This motion will throw out the composition, and a clistinct impression of the vent and of fire-cracks (should there be any) will be left on the surface: draw the rod back as far as the slot will allow, and withdraw the instrument : the impression, leing protected thereby, will come out uninjured. Impressions of injuries or cavities in the bore may easily be taken by a similar contrivance. See Guttaperchet Impressions, Inspection of Ordnunce, and Vent Impressions.

IMPRISONMENT.-Ofticers may he sentenced to imprisonment by a general Court-Martial in any case where the Conri may have discretionary authority. General. Gurrison, or Regimental Courts-Martial may sentence soldiers to imprisonment, solitary or otherwise, with or without hard labor for varions offenses entmerated in the Articles of War. A Garrison or Resimental C'ourt-Martial, in awarding imprisonment, is limited to a period not exceeding thirty days. Whun a Court awards solitary imprisonnent as a pnnishment, it is necessary the words "Solitary Confinement" should be expresed in the sentence. The legal imprisonment in the United States is confinement, solitary coutinenent, and a confiuement on bread and water; the latter does not extend over 14 days at a time, with iutervals between the periods of such eonfinement not less thau such periods, and not exceeding 84 days in any one year.

IN BATTERY.- A command in heavy artilleryserrice for moving the gun forward into position, prior to aming and firing. For instance, at the siegehattery, as soon as the piece is loaded. Nos. 1 and 2 uuchork the wherls (if they lave been chocked), and with Nos. $3,4,5$, and 6 , all facing towards the epanlment, embar; Nos. 1 and 2 through the front spoke's of the wheels, near the fallies, umiler and prependicular to the cheeks; Nos. 3 and 4 under the rear of the wheels, and Nos. 5 and 6 under and perpenticular to the stock, near the trail. All heing realy, the gunner commands: Heave, and the picee 1. run into battery, Nos. 5 and 6 being careful to guild the muzale into the middle of the embrasure. As sonn as the wheels touch the harter, he commanls: Thato. All unbar, and Nos. 1, 2, 3, and 4 resums their posts.

INCAPABLE.-A term of disgrace, frcquently annexed to military sentenees, when an ofticer has been cashored hy the sentence of a General Court-Martial, and randered incapable of ever sarving his conntry iu cither a civil or military capacity.

INCENDIARY MATCH.-A preparation in pyrotorlmy, mate ly boiling slow-mateh in a saturated solation of niter, drying it, eutting it into pieces, and plunerine it into molted tire-stone. It is principally: used in loaded shells. Sie frimoorks.

INCENDIARY SHELL - A hullow brojectile charged with incentiary composition, amb designced for setting tira to buitalings. ships, and other olsjects. Jollow halls filled with tire, appear to be among the rarlicest projectiles used in warfare aftor the introthetion of the (ircek-fire, thongl these were not fired from camon: but deseriptions are griven of balls of fle ned by the Saracens in Sipain, which secm to
correspond elosely with nodern incendiary-shells. The use of incendiary compounds appears to lave gradually becone obsolete, as we hear little or nothing of their employment until toward the close of the 18th century, hot shot being used as a substitute. About 1797, Chevallier, in France, invented an incendiary compound, which seems to have been tried to a limited extent by the French Government, for filling shells. Since then, many inventors have exercised their ingenuity upon this subjeet, the prineipal objcet being to obtain an inextinguishable composition for charging shells, to be ignited either by time-fuse or by percussion. The only shells of the incendiary kind generally recognized in modern warfare are carcasses.

INCENSED.-The epithet applied in Heraldry to panthers and other wild beasts borne with flames issuing from their mouths and ears. The term Amme has the same signitication. See Meraldry.

INCLINF.-To gain gronnd to the flank, as well as to the front. Inclining is of great use in the marching of the liue in front, to correct any irregularities that may happen. It is equivalent to the quarter facing and to the ohlique marehing of the infantry. It enables us to gain the enemy"s flank withont exposing our own, or without wheeling or altering the parallel front of the company.

INCLINED PLANE.-The inclined plane is reckoned as one of the meehanical powers, because, by rolling it up a plane, a man may raise a weight which he could not lift. This principle is extensively made use of chiefly in the raising of weights and in road-making. It is here unnecessary to go into a mathematical investigation of the theory of the inclined plane, as it may be seen in the common books on mechanies,but the result is as follows: 'The force required to lift a body (viz., its weight) bears to the force required to keep it from rolling down an in-

clined plane, the same proportion that the length of the inclined plane bears to its height ; also the weight of the body luears to the weight which tends to beud or break the inclined plane, the same proportion that the longth of the plane bears to its base. Let us suppose a plane, whose length, AB, is thirteen feet; base, $A C$, twelve feet; and leight, $B C$, five feet; and let the weight be 880 pounds. Then the force, P , which can sustain 780 ponuls on the inclined plane, is 7^{5} the of 780 , or 300 pounds (i. e., a force which could just lift 300 pounds): also the force, l, which presses perpendicularly on the plane, is $\frac{12}{13}$ thas of 780 , or 720 pounds. When the weight has not ouly to he sustaind on the plane but drawn 11] to it, the resistance of friction has to be added to the power necessary to sustain the weiglat. In common roads, Fngineers aro agreed that the height of an incline should not exceed $\frac{1}{2}$ th of the length, or, as they plrase it, the gradient shonkl not be greater than one in tweuty. It may here loe mentioned that knjves, chisels, axes, wedres, and screws, are mere moditications of the inclined plante, hat the last two being generally elassed as distinct mocehanical powrors, will be treded each umer its own bead. Sce Mechanienl I'manerw.

INCLOSED WORKS.-Inclosed works are assailable on all sides, aml must, for security, present an unbroken line to the assanlt. They are usmally divided into three classe's, vi\%: Ist. Polygonal works or redoubta ; Dd. 'Tcnailled works or star forts; Bh. Baslioned works. The rerloubts may be inclosed on all sides of a square, polygonal, or coircular tignre. The
latter form is rarcly uset, lueing nusuitabla (0) gromml in feneral, and from the impossihility of giving thy flanking drfense to the ditch. Redoubts on levil gromed are gencrally square or pentagomal. ()n a hill or rising gromml their omtline will, in most cation, follow the contour of the summit of the hill. The: dimensions of all inclosed works should be propertionerl to the mumber of mon they are to contain. One fite, that is, wo men, are required for the defense of every lineal yard of parapet; the number of yards in the erest line of any redoult shambit not, therefore, exceet balf the mumber of men to be: emthined in it. Again, as every man in an incloseet work requires 10 spluare feet of the interior space, that spare clear of the hangucte mast mot rentain less than ten times ass many square form as the munber of men to be comaineil in it. Fiom these eonsiderations it follows: 1st. Tos tind the least mumber of men sufticient to man the paraper of an inclosed work, multiply the number of yarts in the crest line hy two. id. To tind the greatest mmber of ment that an inelosed work ran contain, find the area, clear of the banquette. in sphare feet, and divide this number ly 10 . When the work contains guns, $32 \cdot 1$ square fret must be allowid for each gun, and this puantity, multiplied bey the mumber of gime, mast be subtracted from the whole interior space. The remaining mumber of srpure feet, divided by 10, with give the number of men which the redoult can hold. The side ot a spluare redoubt should, under no circmastances, be less than 50 feet. The yreat oljections to small inclosed works are: 1st, the liability of their faces to be enfladed from without; : il, the diflicnlty of providing an effective flamking tefense for their ditehes: 30 , the weakuess of their salient angles, the gromed in front of them being madefended by a direet fire. In tracing ridoubts and all inclosed tichd works, care mast be taken to direct as much as possible the far fare upon inaceessible ground, so as to reduce to a minimum the effects of an enemy's enfilatle. while approado on the salients must be rondered difficult hy abatis, trous-de-loup, and obstacles of all avaitable descriptions. It will henceforward be very difticult to guard the interior of indosed works from the effects of distant masketry, Well-trained troops from a distance of 900 yards conld throw with eertanty every shot into the inturior of even a small redoubt: while the angle at which they fatl, some 15° to 20°. would enable them to sweep the whole interior and make every part of the redoubt too hot. It secms to be a question whether such a work can be protected by traverses from such a plunging tire. see Bastioned. Forts, Field Fortificution, Réelunbt, ant Star Forts.
INCOMMODER L'ENNEMI.-To get possession of a fort, eminence, etc., from which the enemy may bo harassed. or which is necessary to his security.
INCORPORATING MILL.-The incorporation, or grinding together, of the three ingredients that form gunpowder is by far the most important process in the whole manfacture, for unless the mimute particles of the three ingredients be thoroughly blented and hrought into the closest contact with each other, all subseqnent operations-however well perfurmed -will not compensate for the error. The incorporating mill, which is shown in the drawing, consists of two large and heary "hard chill" cast-iron edge rumners, revolving on a circular cast-iron bed ; the peculiar action of these rumers or rollers is well adapted for thoroughly grinding and incorporating the several ingredients; their great weight is for crushing the ingredients: whieh are also gromud together by the twisting action produced by the rollers traveling round in so small a circle. Each roller travels over the bed in a separate track, and is assisted by the plough (hereafter deseribed), which mixes the inaterial, so that it is sulbjected to crushing. grinding, and mixing by the one operation. Incurporating mills in a gunpowder factory are minally
groupd togember, and the motive power may rither br. waterorstem: in eithercase the power provided shomald be catmable if ciriving four or more paira of rimnors. Fach pmir is so arranged that it can be risengaged or put in gear at pleasure hy means of a frictiondhtels, without interforing with the strady working of the engine or water-where. When the latter is employed, the speed is regnlatiod by a gowernor in commettion with the slnice; by this menns the thow of water is cansed to immediately incroase or diminialn as a pair of rommers is put into motion or stepenal, and thas a regular sueed is always maintained. "lohe rumers travel romid the hed at the rato of 8 revolutimen per mimute; they ure 6 ' $f^{\prime \prime}$ in diameter by $10^{\prime \prime}$ broad on the face, and they cach weich four ions. Asalready stated, the two travel on different pathes, the one being near to the nutade rim or courl, of the berl, while the other travels near to the inside (aurb) or "cheese." A horizontal shaft ur pindle com-
 and betwern them is a crosshead, lixed on a vertiond shaft driven by meane of a bew whed and pinion, the latter being sorured on the main driving-shaft that passes unterneath the beel of coneth roill, and is common to all. The vertical shaft passes through

the crosshead. and is provided with hrass mushes, which allow the runners to rise or fall according to the irregularity in the thiekness of the material umder them. On each side of the erosshead and projeeting outwards is an iron bracket, having a plongh (made of a wedge-shaped piece of wool shod with felt and leather) fitted to it, and so arranged ats to sweep the bed and to keep the composition under the runners. The one plough sweeps agrainst the outside curb, immediately in frout of the runucr that travels round the larger circle, and the nther against the cheese or inside curb, immediately in front of the runuer that trateds round the smaller circle. The inside of the outer curb, as well as the outsile of the cheese where the plonghs work and rub against them, are covered with enpper or gon-metal. The composition attains a boty in about one lomur after the rumers are set in motion, and the action of the ploughs in moving the whole of the matcriat on and across the bed thoroughly mixes it and sub)jects every particle to the same amount of pressure. Each pair of rumers is provided with al tulltale dial, which shows the attendant the time that the mill has to run and enables him to judge the condition of the cake from time to time. From three to four hours is the period a charge shoulal he on the mill, providing the engine or water-whecl is maintained at its proper speed. This timiner of a charge is a very important point in the manufacture where powder of an equal quality is required. and
the attendaut has to watch for any change in the atmospliere, so that he may work the charge dry or moist, as the lamidity of the air leads him to determine. The ingredients, or charge, as it comes from the mixing-machine- 50 liss in weight - is spread equally over the bed of the mill, and moistened with from 4 to 8 pints of distilled water by means of a rose-ended watering-pot. the quantily being regulated according to the state of the atmosphere, and as the experience of the attendant shows him to be necessary. The cake should be of a black-ish-gray color, and, when broken, of a miform appearance, withont any white or yellow specks in it ; the presence of these would indicate insufficient incorporation or grinding. Further, it should not be more than half an inch in thickness, in order to be thorouglaly ineorporated, nor shomld it be less than a quarter of an incli thick to insure sufety, becanse if the rammers are allowed to come in contact with the bed. the friction caused by their twisting action is so great that an explosion would almost certainly be the result. At the expiration of three or four hours under the before mentioned conditions, a charge will have attained all the properties of gunpowder, nor will the powder be improved by heavier runners or an increase of speed. For fine sporting gunpowder, however, the operation of incorporating is continued in some cases for as long as 8 hours. and with heavier rollers, but it is doubtful whether the powder is much, if at all, improved thereby ; the pourity of the ingredients is of more consequence, inasmuch that on this the puality of powder depends minch more than upon a long or short period of inenrporation, for if regularity be observed and the runners are of one size and weight, and the charges are worked for an equal length of time and under the same couditions, a fairly uniform powder will be the result. I method used by some for testing whether the ineorporation has been well performed, is to take jalf an ounce of the cake granulated by hand and flash it off on a glass plate; if a slight res. idue only is left on the surface it is a sign that the attendant has clone his work thoroughly. It has already been stated that incorporating-mills are generally in gromps: it becomes necessary, therefore, to prevent explosions spreading amongst these mills. This is very etrectually done by the use of a drenching apparatus, which consists of a large board acting is a Happer, and placed horizontally over each pair of runners. This Happer is attached to a shaft rumning throughout the entire group of mills, and in counexion with $i t$, and immediately over cach set of runners, is a copper cistern holding abont $40 \mathrm{gal}-$ lons of water, so arranged and poised that when the tlapper is raised by an explosion the catch is disengaged, and the cistern overbalaneing empties its contents upon the mill. This, of course does not prevent danage being done to the mill in which the explosion tirst occurs, but as the whole are connected tw each other by means of the shaft referred to, all the cisterns of the group are emptied at the same time thereby drenching the charges in the other mills. and this contining the damage to that mill wherein it originated. In addition to this, an armagement is provided whereby the attendant can. in case of an explosion in any part of the works or in his immediateneighborhood, upset the cisterns of water from the outsinle, and thus prevent the explosion spreading. In a well-renstructed incorporating mill all the movable parts, suehas lools, nuts, eqco. are dilled with the greatest care and at "arch end of the ronomeshafi, and also over mad muler the
 dises or drip-pans are fittrel : these mot only prevent atay oil or greasy mattor tropping into the charero. but likewise any bolt, mut, or pin that may have brronm loose in the viremity of these parts, falling down into the charere, and possibly protucing an explosion, if the mill is at work, Fourther, wherestemm is conployed as the motive-power in a gunpowder
works, care must be taken at all times to prevent sparks being emitted from the boiler chimney; this may be effected in several ways, either by using anthracite coal, or coal and coke, for the boiler furnace, or by having a spark-catcber or arrester fitted inside the flue near the base of the chimney, or a number of baffle-plates being placed in the chinney itself in a zig-zag manner. If proper precautions are taken, and the Hues are regularly cleaned out, there will be no risk whatever in using steam-power. See Gunpozoder.
INCREASING TWIST.-For an inereasing twist, the edges of the angle-board must be curved accordingly, and as it is the property of the parabola to increase uniformly, it has been adopted as the curve of the ritling for those guns having an increased twist. When this system is adopted, the grooves start in a direction parallel to the axis of the bore, and the twist increases uniformly towards the muzzle. In the drawing, $\triangle B C O$ denotes the development of the bore, and OM that of a groove. The origin of the co-ordinate axes is laken at the commencement of the groove at the bottom of the bore; the axis of Y is parallel to the axis of the bore. The curve OM is tangent to $O A$ at O, since the projuctile starts in the direction OA. Let P denote the variable angle between OX and the direction of the curve OM. If the twist increases uniformly, tan P will decrease uniformly as the ordinate increases, and

we shall have $\tan P=\frac{-}{y}, m$ being an undetermined coustant.

But,

$$
\begin{equation*}
\tan P=\frac{d y}{d x}=\frac{m}{y}, \text { or } \tag{a}
\end{equation*}
$$

$y d y=m d x$; integrating, $y^{2}=\boldsymbol{2} m x+\pi$.
The constant of integration (\tilde{K}) is zero, since the curve passes through the origin. (a) is the equation to the parabola referred to the vertex and principal ares. In the figare, IIT is the tangent at M, and MM equals $A B=\pi c, c$ being the caliber of the grm. Also M"T is put equal to ne, n clenoting the number of calibers in which the projectile makes one turn after leaving the muzzle. To determine m, putting $l^{\prime \prime}$, for the value which I^{\prime} has at M we luve

$$
\begin{gathered}
\tan P^{\prime}=\frac{m}{l} \\
\tan P^{\prime}=\frac{n c}{\pi c}=\frac{n}{\pi} \\
\therefore \quad m=\frac{l n}{\pi}
\end{gathered}
$$

also,

Whence the equation to the eurve is

$$
\pi y^{2}
$$

$$
\begin{equation*}
x=\frac{2}{2 l n} \tag{b}
\end{equation*}
$$

By mans of equation (b) the curve is easily traced. Tha* mbandaco ("lamed for this mothod of ribing are, that the projecelile, mot locing forced to take the
whole twist of the ritling at once, moves more remtl. ily from its weat, and thas the initial sarain ujens the bresel, of the fon is ralacerl, thereliy prolonge ing ita lifo: also that the bearimer om the projuctile are mot liable to be torn off. Theorelianly it would serm that a system of rithang which permits the projectile (1) move dirmetly from ils sest, at the monnent of ignilion of the rharge, must la morte fitworable to condirnace than ond whitlo, by impeliner the tirst movement of the projertile in thi bore, marrows the space for the repandine gas, and conserfently lorings a greater pressure on tha breereh of the erun. But pritelieally this mothod toses not apporir to be suecessfal in the emormonas cimmen of recont construrtion. 'The greatest whecetion to the incrousing t wist is that it canmot bo used with a lone bearing of projectile. Incowl, the theoretical boaring, whether it is a soft metal ring, a strip, or at stul, is intinituly short it mern line-and practically, length of bearing only ohtained by a constant mokding of the pros. jectile to the new angle of ritlings so that the jertion of the projertile intemiled to take the groovers, must be slort and also solt, for if it ramot obtain, loy changing its limare, more bearing on the groowos than on a more lins, it will moloubterly cut tha groovers, thas incroasing friction, and soch ruining the hore. I_{n} the ahsome of furthere experims its, it would hardly be safe to couchude that lonis bearings will not prove indisponsable to the hoove projectilas and high velocities that are now retuired. A prow jectile, if habancod on weakeninge stuls in each groove, is liable to break up through tha stuch-holes. therehy injuring the gum. 'To rapilly rotate an irom cylinder, say twolse inches in diameter and there calibers in hengh, woishing nearly a thirel of at tond. by a ring of such points, is vory likely to botule a wehbling motion and unsteady movernonts in flight. with relured rame. Very rapid twist, although it combuces to stmatiness of motion, camnot be given because small hearings will not emblure the great effort necessary. See Groores. Ritling, and Tirixt.
indemnification. - In the French and English Armies, there is an indemnification established for losses in the military service, and other allowanees are also made in the nature of indemmifications; as for furniture ; fuel and light; forage; oxpenses of divine worship; command moncy to General and Ficld Ofticers; quarters; expenses upon routes; proxisions; grutuity nt the beginning of a campaign ; field allorances; mess ; carringe of baggage; bloud-money; permanent pensions; temprory pensions, or gratuities in lien thereof; remards for meritorions eonduet; and pensions to widows and ehildren of oflicers.

In the United Statos service, the law provides that if a horse be lost in lattle, an officer may racuive not exeeding two hundred dollars for his horse, ant allowances are made for quarters, fucl, fornge, provision and transportation of bagerage, and command money in certain cases.
INDENT.-A worl particularly made use of in Intla for the elispatel of military business. It is of the same import and meaning is to drom upon. It dikewise means an orler for military stores, ainms, etc.. as an intent for new supplics. ctc.

INDENTED.-In I Ieraldry, one of the partition lines of the shield, similarly notcled to thncetté, hut with the notehes mueln smaller, and not limited in number. See Heraldry.

INDENTED LINE. - In fortification, a serrated line, forming several angles, so that the one sille defends another. The finces are longer than the thanks. lndented lines are used on the banlis of rivers, where they enter a town. The parapet of the covered-way is also often indented.

INDENTER.-This active element of the chronoscope, as shown in the driwing in section, consists of the circular knife. G, fixes in the mainspring, 11 , which can he cocked by means of the eatell on the lever. I. On the breaking of the first circuit, the chronometer falls vertically; on the ropture of the
seromal the registrar falls in its turn, olepreseses the
 spriner ; the knifu juts forwaral, serikus tho falling
 shown belos, a vary simple relation buslale latiower the dent thas abtained und ther velority of the projeretile which cansed it. A moment's thondint will Rhow that the lower the velocity the higher a|s shall the revorler be indentod.

The eloronometer is used in leveling the chrontoscope ; for this purpose attach it to itcinagru-t. herring prerionsly corked the indenter; thern, by manne of the triporl-serews, bring it to its normal jun位om. In

leveling from front to rear. let thu levelad shoulder of the bob, opposite the numbered faree. rest liehtly against lhe jrojecting eviene, $r e$, of the triamornlar buse; in luweling laterally, align the right fare with the erlge $d a$, of the salient angle of the above pros. jertion. In cocking the indenter, be carcful not to disturb the level of the instrument ; the left lamel alone is therefore uset]: the fingors grasp the tubt. 1s, while the thumb pulls patek the spring until it ratches in the lever, I. 'lie serew, M. whidl is tapped throngh the lever and rests on the fulderummortise will regulate thebold of the catcols. Whicels shond be as light as possihle. The knife is at circular rowel of tempered east-steed fastumed in a slot of the mainspring by the axial screw, N, the loosening of which permits the presentation of a new edge, should the old one be blunted. Sce Le Boulengé C/aronograph.

INDENTING FORCE.-The comparative softness or hardness of metal is determined by the bulk of the eavities or indentations made hy equal pressure: the softness beiner as the bulk directly, and the hardness as the bulk inversely. Of the ditferent forms of cavity made by indenting-tools that of the jeramid is preferred, becanse of its simplicity and the case with which its volume may be computed. The indeating part of the tool is in the form of a jyramid. having a rhombus for its base, the diagronals of which are, respectively, one inch and two-teuths of̂ an inch, the height of the pyramid one-tenth of an inch. In late experiments the form of the promid has been changed aud improved somewhat by cansing it to make a longer line and mark minute differences nore accurately. See Rodman C"utter.

INDENTING PISTONS. - The indenting-pistons that are used in the service are found to viay in their diansters. The pressure of the gas is exwrted upon their inner ends, and raries directly with the area pressed. It is clesirable to have a scries of pistons adoptul which shall have the same arca of cross-section. In practice, the area of these pistons has generally been assumed to be one-tently of onespuare inch. The following Talble gives the diametcrs, areas, and jressures unon those pistons of which the dimensions are known, neglecting friction, and supposing the pressure per square inch to be 100,000 zounds.

Little is known in regard to the etfect of friction upon these short pistoms. "Thr friction of the grascheck against the walls of the hole would render the indicated, less than the actual prossures. A miform system of pistons and cutters should be established in order to render the results ot tained comparable. The more nearly the conditions are asimilated the greater will be the approximation of the
relative pressures to an agrecment. At the present spindle, etc., has a perpendicular movement of two time each piston necessitites a separate Table of inches. The upward and downward movement of Pressures, and when the length of the cats is re- the main slide, to which the vertical is attached, is

Pistons.

Pistons.				Remarks.
Orduance Mannal, 1861.	Incbes. .37	Sq. in. $.10 \% 521$	$\begin{gathered} \text { Lhs. } \\ 10752.1 \end{gathered}$	$0^{\prime \prime} .3 \pi$ given here becsuse this number has sometimes been used in calculating pressures.
Frankford Arsenal, (musket).	. 369	. 106940	$\begin{aligned} & 10694.0 \\ & 10636.8 \end{aligned}$	Made for National Armory. Vide "Experiments on Metals for Csnnon," and
Rodman........................				Wde similar writings.
Metcalfe	. 357	. 100098	100098.8	Made for use with "spiral chtters."
Theoretical.	. $3568+$. 100009	10000.0 9953	True diameter $=0{ }^{\prime \prime} .356824$ 43746.
National Armory circular cutter . . . 3 .	. 356	. 0099538	99353.8 10019.8	Also for Adame's cutter. Made at. National Armory for Frankford Arsenal.
National Armory rirenlur enter No. 3. Wrest Point intcrnal pressure-gauge.....		. 0959798	9897.98	

quired to determine the pressures, a Circular. C'utter
constructed for cach cutter. See Cin and Pressure-gange.
INDEPENDENT. - In a strict military sense. a term which distinguishes from the rest of the army those companies which have been raised by individuals for rank, and were afterwards draftei into corpis that were short of their complement of men. An Iudependent Compreny or Trorp, is one that is not incorporated into any regiment.
INDEPENDENT SCARP.-A wall 3 fret thick erected at the foot of the exterior slope, and when it is breached the parapet cannot fall. It is loop-holed and provided with a banquette. Its height should not he less than 20 feet.
INDEX MILLING-MACHINE.-A machine adapted to a great variety of work on metals, in the Armory. The small machines of this class, weighing abont 600 poumds, mill $10 \frac{1}{2}$ inches long and $7 \frac{1}{2}$ inches high, and will ent gears n p to 8 inches in diameter. The use of the inconvenient counter-shaft, with binder, weight, etc., commonly used with this class of machines, is avoided in the Armory, an ordinary overhead slaft being ased, and the compensation for rise and fall of mill-spintle and carrier obtained hy a splined shaft passing through the lower gear. When pot in use for cutting gears, the index-spinulle is solidly clamped, so that when using a vise, centers, or spiral-cuttor, no strain or injury can come uponn the index-plate or pointer.

The larger machines, weighing about 1,400 pounds. are perfect gear cutters within certain limits of size, culting fast and smoothly, and, in atdution, having provision for using a vise, centers, and spiral cutter willout injury to the delicate dividing meedranism, thus practieally furnishing two machines. They mili 18 inches in length and 11 inches in height; eut spur-gears up to 21 inches in diameter ; also worm and bevel-gears. An adjustable rim-rest supports the gear-llank while being cut, and prevents chattering. The mill-arbor has an outside center support, which can be removed if requiref. The cutterluad may be worked loy the screw in front, or by an adjustable lever, connected with rack and pinion at the lack, and is balanced ly a weight mader the mathine.

The inder-phte is 14 inches in diametur, has 3,800 lones. in 25 eireles, and divides all mmbers to 50 , all "vel numbers to 100. and every fourth momber to 200 .

The drawing represents the machine most commonly used. It is arlaphed to cutting mills, spur or b, wel-gears, up to 6 inclues diameter. The inclexplate is attacherd to the bottom of a hollow spindle having a graduated dise. The spindle is pivoted to at wrical slide, and with its attachments, ats vise or eenturs, may le moved and secured at any angle in a vertical plame of 180°, or 90° on viller side of an upright perition. This slide, carrying the inde. x^{-}

6 inches, and its side traverse 12 inches. The centers shown in the engraving as attacherl to the indexspindle, will receive work $3 \frac{1}{4}$ inches in diameter and $8 \frac{1}{2}$ inches in length. The spindle is of steel, and slides in a cast-iron sheath or shell, which runs in cast-iron boxes lined with Babbitt-metal. The horizontal novement of the spindle and the vertical move-

mont of the slides are made by adjustable hand-lewre, and limited by check-nuts. The head has a longitudimat adjustment by a screw to the extent of 21 inches. The machine weighs, with countershaft, vise, and centers, 6 go pounds. Fiped of countershaft, having 8 and 5 by 21 inch tight and bose pulleys. 100 revolutions per minute. Sere willing.
indian army.- The Indian Army in the days of Clive. which was composed of hoth the British and native troops, was comparatively small, harely suftidient to loold its own; but even in those days it did great deeds of valor, as the hattle of Assaye and other batthes testify. By degrees, as the East India Company incerased its territory, a larger Army was found necessary, and both liritish and mative troops
-

5
Indians, Amertcan. 1. Menitarl warrior, dressed for the dog-dance. 2. Dakota varrior. 3. Mandan e boingirl. \%. Buffalo dance among the Madans. 8. Assiniboin speil-mound.

ware adgmented. In 18.5 the montiny of the native Army took placr, which necossitatod is shange in the organization of the Army involving atarge incrense of the British force. lirom this ilate the Army of Hac East India Company becante a part of lace Majesty"s Jrmy, paid ont of the revomues of Inclin.

That Army of latia at present consists of $152,8,00$ 13ritish froops and 12S,500 juative tronjs. Nore than half the formor are stationed in the laengeal I'remidoncy, 38,000 men being in garrisonalong the vallay of the (Bumere, Ourle, and in the lounah, while the strength of the mative A rmy for the sanme Presidene's anounts to 49,000 . Bonget proper alone requires about 7,000 Einglish troops for its guarel, or nearly (anc-ninth of the (otal mumber of the laritisha conployad in lndia. Tle remainaler are diatributed amonerst tace North-west Provincess and in the Prospdincies of Madras and Bombays Sied biast India . Irmy.

INDIAN COUNTRY.- "The Indian comntry;" within the mathing of the 'lowde and latereornese Acts, may be detined in wencral us:

1. Indian reservations ocrapied by Indian tribes.
2. Other districts so occupled to whid the Imelian title ius mot been wxtinguished.

Furthermore the operation of the said Aets may be retained hy treaty or extemded loy Aet of (ongress over districta not in other resperts Indian commtry. If any special case shatl oceur which, in the view of the bepartment Commander, may not apmear to be embraced within the detintion above slated, le reports the case, with all its facts ant cirommstances, to the fiecretary of Wiar, jn orter that hae guestion whether the locality is "Indian comatry" may bereferred to the Secoretary of the Tuterior.

Where lamals are secured to the Indians. by treaty. against orempation hy the whites, the Military Connmanders keep intruders off, liy military force if neeessary, until such time ats Indian tille is extinguislect. or the lands are opened by Congress for sattlement.

There is no jurisdiction conferred upon State or Territorial Comres fotry an Inelian charged with the murder of mother Indian. S'ection $2 l-16$ of the Revisiod Statutas of the -nited Statos, as amenched by the let of February 18. 18Fs, cutitled" An Aet to correct errors and supply omissions in the Revised Statutes of the United siates." providesthat section 2145 shatl ant be comstrued to extend to crimes combmitted by one Indian against the persont or property of anotlier Indian, nor to any Indian committing an offense in the Indian country wholas been punished by the lucal law of the tribe.

When puestions arise as to the ownership of animals in possession of Indians, the Commanding Onlicer of the nearest military post is anthorized and directed to act in conjunction with tle Indian Agent in charge of the salil Indians in the inveestigation and determination of the nwnerslip.

Whatever may be the rule in the time of war and in the presence of actual hostilities, military ofticers can no more than civilians proteet themselves for wrongs commited in time of peace under orders emanating from a sourec which is in it-clf without authority in the premises. Ilence a milltary otlicer, sejzing liquors supposed to be in Indian country, When they are not, is liable to action as trespasser. The ditrarence between the value of the goods so seized, at the place where they were taken and the place where they were returned to the owners, is the proper measure of damages.
supplies, stores, or property of any kind. procured out of Army appropriations, are unt transferred, in any way or under atuy circumstaners, for the use of Indians, cxcept under authority first obtained from the Secretary of War. Any otherer violating the terms of this regulation is charged with the money value of the supplies, stores, or property transfered. and in addition is otherwise lucld accombtable, according to circumstances. No issues of arms, ammunition, or any other Orduance stores are made
to lachians mot in the employ of the War Datartoment as sroults.
'To carry into effect the joint resolntem andopled
 manition or metallie: cartridges, by any trader or wher person, in any district of the Indian country ocrupied lyy hoside limdians, or over whicla they roam, is prohibited: and all such ammannition or rartrjders introduced intos sad coountry by traders or other persons, and that are liable in any way or manner directly or indirectly, to lee racojved liy such hastile lindians, is always doomed contraband of war, atal *rized by any military oflicer, and confescated ; and the diserict of comintry to which this prohibition shall apply, during the contimunare of hostilities, is desjgrated as that which combraccos all Indian comotry,
 visits, lying within the Trariories of Montama, Dakota, and 16 yoming, and the states of Fiebraska and Colorado.
liy virtue of authority conferred upon the Presildont of the [niterl States in sortion 2132, lavisoll Statutes, the introduction inte the Indian eountry or district ocroupied by any tribe of lostile Indians; for the purpose of sale or exchange to them of arms or ammunition of any description, and the Sale orexchange there of to or with such lmbians, is prohibited. All military commanders are charered with the duty of assisting in the execution of this order, amd of Ex: "rutive Oriber of November $2: \%$. 1876 . the provisions of which are extended to inclutle all Indian country Within the Territories of ldaho, Ctah, and Washington, and the Sitates of Nevada and Oregon. Sue /ne duen Tervitory.
INDIAN FILE.-Single file: the arrangement of mon in a row following one after amother, is is customary among Indians when traversing the woodes or montains.
INDIAN FIRE.- A bright white signal-light, produced by burning a mixture of 7 parts of sulphur, 2 of realear, and 24 of siter.

INDIAN INK. - The cakes of this substance, which is it mechanical mixture, and not. like the true inks, a clumical compommd, are composed of lamplolack and size or animal gluc, witla a little perfume. The lamphlack must be remarkably tine, and is said to be made in China by collecting the smoke of the oil of sesame. A little camphor (uloout 2 per rent.) is also found in the ink matle in China, and is thonglat to improve it. This substance is used in that comontry with a brush both for writing and for painting upon paper of native mamufacture, while in this country it is extensively employed for desions in blackind white, and all intermediate shades of color. Wuch curious information on this pigment may be found in Merimée's ireatise, Ihe la P'einture.

INDIAN PONY.-The square-built larre-trunked, and short-legered pony used by the North American Indians and elsewhere. This pony゙. generally believed to be the result of a cross between the Sonthern mustang and a small type of the Canadian. is neverfed, stabled, combed, shod nor doctorma : amd when not under the sadder is left to shift for himedf. In the winter he is a mere animated skeleton. Mis proportions vary according to the localities in whicd he is found, but he seldom exceeds thirtwen hands in height. Ile is wonderfully sagacious and surefooted. JIe can climb a steej, rocky hill with assurance and activity, and rush down a precipitous declivity with mucl indifference. Ile will get over and through places, which appear utterly impracticahle, with case and rapidity, while the American horse would labor to travel at a walk. IIe particularly excels in the passage of suamps, marshy places, and sands perforated with goplser holes.

INDIANS.-The collective nar wow generally given to the various nations and tribes inhabiting Forth and Sonth Imerica, at the time of their discovery by the Spaniards, and to such of their descendants as survive at the present day. The name
of Indians was tirst given to the natives of America from the mistakeu uotion of the eariy voyagers. Columbus himself included, that the newly found Continent was in reality a part of lndia. This was soon shown to be an error ; but the name of Jndians, thus wrongly applied to the inhabitants. continued to be used in every narrative of voyage and discovery, and has descended even to our own times, only that we now qualify it iu some measure by speaking of them as Americin Indians. In the classification of Blumeubach the American Indians are treated as a distinct variety of the human race; but in the threefold division of mankiad laid down by Dr. Latham, they are ranked anong the Mongolidx. Other Ethoologists also regarel them as a brimeh of the great Mongolian family, which, at a remote period of the world's history, found its way from Asia to the American Continent, and there remained for thousauds of years separate from the rest of mankind, passing meanwhile through various alternations of barbarism and civilization. Morton, howcver, the distinguished American Ethnologist, and his disciples Tott aud Gliddon, elaim for them a distinct origin, une as indegenous to the Continent itself as its fana and flora. Pritchard, whose views generally differ from those of Morton, acknowledges that "On comparing the American tribes together, We find reasons to believe that they must have sub)sistod as a separate department of nations from the earliest ages of the world. Hence, in attempting to trace relations between them and the rest of mankind. we cannot expect to discover proofs of their derivation from any particular tribe or nation in the Old Continent. The era of their existence as a distinet and insulated race must probably be dated as far hack as that time which separated into nations the inhahitants of the Old World. and gave in each branch of the human family its primitive language and individnality." Dr. Robert Brown, in his "Races of Mankind," the latest authority on the subject, attributes to the American race an Asiatic origin. He says: "Not only are the Western Indians in appearance very like their nearest neighbors, the Northcastern Asiaties. but in language and tradition, it is confileatially aftimed, there is a blending of the people. The Eskimo, on the American, and the Teluktehis, on the Asiatic side, understand each other perfectly." In fact, modern Anthropologists incline to think that Japan, the kuriles, and the neimhboring regions may he regarded as the original home of the greater part of the American race. It is also admitted by Anthropologists that between these varions tribes, from the Arctic Sea to Cape IIorn, there is greater uniformity of parsieal structure and personal characteristic than is seen in any other quarter of the globe. The "Red Men," as they are called, of the Inited States and Canada, differ in many respects fron the Guranis of Paraguay, an:l both from the wild tribes of California, but all (*xhibit tha clearest evilence of belonging to the same ereat hranch of the human family (pom this point the testimony of a writer like Humboldt is very important. "The Indians of New Spain." says llumboldt. "hear a general resemblane to those who inhabit Canada, Florida, lern, and Brazil. We think we can perceive them all to he desemded from the same stock, notwithatanding the procligions diversity of their lanarnages. In the portrait drawn by Volney of the Candian Indinns, we recornize the tribe scattered over the Savamahis of the spure and the Carony. The same styte of features exists in both Americos." The Mongolian cast of features is most marken in the tribes nearest to the Nomrol coast, i e., on the shores of the l'acitic, and gets less noticeable as wr go Bastward. Their traditions, tow, indicate that the tribes on the castern seabard came from the West, and the western tribes aven came from rerions still further west.
(remerally the physical characteristion of the Amerisan Indians are as follows; a spuare head, hatving a
low, but broad forehead, the back of the head thattened. full-face, and powerful jaws: cheek-bones prominent; lips full: eyes dark, and deeply set ; the hair long, not absolutely straight, but wavy, something like a horse's mane, and like that, of a glossy hue; little or no beard-where it does appear, it is carefully eradicated with tweezers ; color of the skin reddish or eopper: the height of the men about the average, but lonking taller from their crect posture and sleader figure ; the women rather shorter, and more inclined to obesity, hut many of them with symmetrical figure and pleasing countemance; hands and feet of both men and women small. As before said, however, there being some hundreds of tribes among the American Indians, there are pany departures from these general characteristics, not oniy in individuals, but entire septs. "The Americans," says Pritchard. " are unt all of the lue denominated rerl, that is, of a copper color: some tribes are as white as many European nations: others brown or yellow: others are black, or, at least, they are described by travelers as very much resembling in color the negroes of Africa. Anatomists have distinguished what they have termed the American form of the human skull; they were led into the mistake by regarding the strongly marked characteristics of some particular tribes as universal. The American nations are spread over a yast space, and live in different climates, and the shape of their heads is different in different parts. Nor will any epithets derived from their habits of life apply to all the tribes of this department. The native Americansare not all huntwrs; there are many fishing tribes among them: some are nomatie : otliers cultivate the earth, and live in settled habitations; and of these oome part were agriculturists before the arrival of the Europeans; others have learned of their Conquerors to till the soil, and have changed the ancient habits of their race, which. as we may hence infer, were not the necessary result of organization or congenital and instinctive propensity." Dr. Morton's views on this subject substantially agree with those of Pritchard, and both concur in adopting the test of language as a proof of one common origin for the varions native tribes of both North and Sonth America. The linguistic conclusion, now generally acepuiesced in, is thes briefly stated by Mr. Albert Gallatin: "Amidst the great diyersity of the American languages, considered only in reference to their wocabularies, the similarity of their structure and grammatical forms has becti observed and pointed ont by the American J'hilologists. The result appears to contirm the opinion alrealy entertained on that subject by Mr. Du Poncean, Mr. l'ickering, and others: and to prove that all the langraiges, not only of our own Indians, but of the native inhabitants of America, from the Aretic Ocean to Cape llorn, have, as far as they have beeu insestigated, a distinct character conmon to all, and apparently differing from any of those of the other Continents with which we are most familiar."
The next question that comes und er consideration is: Whence does it arise that, with all this similarity of physical conformation and language, there should have been only two nations among so many millions -namely, the Jexicans and Peruvians-whothined to any high degree of cisilization? When the Spaniards entered Mexico they found in it a rich, powerful, and warlike nation, living in walled citics, in which were palaces and other sumptons residences. They were rulded over by an Emperor or King whose sway extended ower many other nations lesides his own. They worshipped the sum, and hat an organized lierarchy ; they had also dixed laws, were acfuainted with many of the arts and wriences. "speccially astronomy; they practicedagriculture, worked mines, and displayed consideralde skill in manufactures, both industrial and ornamental. The Nation Hhas disenvered was that of the Aztees, who professtel to hate among them widences of antiguity dating as far lack as the your 554 of our cra. it few
,

[^0]
vears later, in Perm, the Spaniares fombl another Nation, also execedingly ridh, numerous, and powerfal witha civilization fally as much extemederne that of tho Aators, yet difforing from that in many essential particulars. This was tho Nation of Quichans, frefinently termed Incas (more correctly Vneras), assoriiated with whom were tha \boldsymbol{A} ymaras, whose conntry had bren sulyjugatod by the Incost two or three centuries before the arrival of Pizarro, in Peru, Farli of these Nations-the Nexicans and l'eruvians -is supposed to lave slowly developerl its own civilization during a long procrss of ages. In every other part of America buropean settlors and rxa plorershave fouml only complete or semi-harbarism. Such was the case in Virginia; such in New Enghand, Canadia, the lladson's layy Torritory, California, and l'atagonit. In Central America, howevar, there bave been fomme extensive remains of architecture and other truces of civilization, which would serm to date back to even a more remote poriod than that of the Dexican or l'ernvian Empires. Immense artificial mounds also exist in the valley of the Mississippi and elsewhere throughout Ameriea, supposad to be the work of the ancestors of the present wandering tribes. If so, there may be some truth in the theory of Dr. Dartius, a distinguished Gernan Rthologist, "That the nations of the new world are not in a state of primitive lmorbarism or living in the origimal simplicity of uneultivated nature, lont that they are, on the contrary, the last remains of a people once ligh in the seale of civilization and mental improvement, now almost worn out ant perishing, and sunk into the lowest grade of decline and degradation." Dr. Pritchard appears inclined to the same view, adding: "Attentive observers have born struck with manifestations of greater energy and mental vigor, of more intense and derper feeling, of t more rellective mind, of greater fortitude. and more consistent porseverance in enterprises and all pursuits when they lave compared the natives of the New World with the sensual and volatile, and almost animalized Sarages who are still to be fonnd in some (Furturs of the Old Continent, They bave been coumbly impressed by the sullen and unsocial charactor, by the proud apathetic endurance, by the feeble influence of social affections, by the intensity of hatred and revenge, and the deep malice-concealing dissimulation so remarkable amid the dark solitudes of the American forests.'

Dr. Rolert Brown adopts a geographical classification of the American tribes, which is, on the whole, at least unsutisfactory. There are Arctic tribes: North-western tribes inhabiting the region west of the Rocky Mountains between California and Alaska; Californian tribes: Indians of the Central Plains; Prairietribes; North-eastern Indians; Camadian Indians; and Central American Indians. The chief existing tribes are ; Eskimo, Cowiehans, Tsongeistles, Nanaimos, Quakwolths, Nuchultaws, Koskeemos, Seshahts, Nittinahts in Vaneouver Island; Hydals (Queen Charlotte Islanders): Tsimpsheans, Bellacoolas, Chilcoatins. Shuswaps in British Columbia; Cayuse, Snakes, Klamaths in Oregon; the Digger or Californian Indians, the most degraded of all the tribes; the Comanches, Apaches, Navajos, IIual pais, Yampas, in the Central Plains: the Moqui, Pucblos, Jimas, Pipagos in New Mexico; Utalis, Pahutas, Pahides, Soshones, Loo-coo-rekalıs, Goships, Cheyennes, Arrapahoes, Kwivas, Arickarees, Poneas, Yunktons. Gros-Ventres, and Sioux or Dahcotahs Assiniboines, Blackfeet, Crows, Omahas, Ottoes, Piwnees. etc., are all Prairic triles; the Delawares, Mo-hee-conneughs (Mohicans), Oneidas, Tuskaroras Senecas, Shawnees, Cherokees, Choctaws, Creeks, Seminoles, Osages, Kaskias, Weeahs, Potowatomies, Quapaws, Peorias, Kanzans, Sanks, Foxes, Puncas, ete., in the North-eastern States; the Crees, Santeus or Ojebways, Chippewayans, the Sactiss or Shewhapnuch in Canada: Telanantepees, Hosquitos. Smoos, Twakas, Toonglas, Payas, Ramas, and Cookras in
 all tho Indians of אouth Amprira mader throre great groups, vi\%., the Andian gronap, the Dediterramean
 subdivirles into thirty-nime ristinct nations; viz., " 1 Quiclua; 2. Aymara; 3. ('hango: 4. Atacanaa; 5. Furacares; fi. Nocretomes; 7 : ']acama; 8. Naropa 9. Apolista; 10. Aram‘unanian: 11. J"ucgian; 12. 1'utagonian; 13. P'uclele; 14. C'harrua; 15. Dbocobi; 16. Jataguayo; 17. Abipones; 18. Langua; 19. Samuco; 20. C'hirfuitos; 21. Saraverat ; 2\%. (Onako; 23. ('uruminaca; : 4 . ('ovareea; 25. Curaves; 20. Tapiis; 27. Cururanora; 28. Pajroneca; 29. Crorabeca; 30. Joxo: 31. ('lapmeura: 32. Itonama; 3.3. Canchama; 34. Movinaa; 3". Cayuvava; 36) I'aeaghara; 37. Itenes; 38. Guarani; 139. I3otocudo.' Other classificutions lave heen attempted, but all imore or less arbitrary. Morton is content witl twogrand divisions, vi\%., the 'Tolt"ean Nations' and the 'Barlarous 'l'riles,' the former embrasiner the ancirent Mexieans and Peruvians, and the latter all the uncivilized or semi-civilized tribes from the extreme North to the extreme South. The 'loltecans are said to be the builders of the remarkable scries of mounds found througliont North America.
The Indians are yearly decrasing in numbers. A fair estimate would probably give Alaska 20,000; British Columbsa, 20,000: Vancouver's Istand, 9,000: Canarda, 5,000 : California, Oregon, and States north of it, 10,000 ; I'rairic-lands west of the llocky \$lountains, 10,000 ; otlier portions of the United States, 2.000 ; In New Mexico and C'entral America, 20.000 This would gives us a total of about 110.000 for the whole of North America, exclusive of balf-brceds, de. Some twenty tribes have become partially civil ized, and live by agriculture, under the protection of the American Government, on what are called 'Indian Reservations.' There are in these Indian communities many men and women whom education has developed into most valuable, intelligent, and even polished members of a highly civilized community. Two tribes (Choetaws and Cherokees) bave become wholly civilized, and have a settled form of government modelled on that of the United States. The Cherokees stand alone amongst modern nations in having produced a second Cadmus, one Sequoyah, or George Guess, who actually invented an alphabet It must be stated, however, that fully one-half of these civilized tribes are, like Sequoyah, hal f-breeds. Even the whites marrying Choctaw or Cherokee women are admitted, if they choose, into these tribes.

Both the early English and French settlers of North America were often at war witl, the Indians, either in self-defence or instigated by a desire fortheir lands. In Virginia the Indians who had combined to exterminate the Whites were subdued after a ten years war. In New England (1637) the Colonists of Con neeticut and Massmelusetts destroyed the warlike Pequods, und in 1643 the Narragansetts. The war of Phillip, king of the Wrampanoags, ended, 1676, in the almost total destruction of that tribc. The Dutch in New Amsterdam and the English in North and South Carolina sulfered greatly from the Indians. In the Seven lears War between the English and French the Indians were used by both sides and terrible atrocities were committed. In 1763 a number of tribes were united under Pontiac, the Chief of the Ottawas, in a general conspiracy to exterminate their Conquerors, but they were finally subdued. When the American Revolution began the lndians, who were Allies of the English, ravaged on the frontiers. The Cnited States, by the Constitution of 178\%. claimjng sovereignty over the whole territory, made treaties with the Indians for the purpose of obtaining their lands; but in 1790 the Miamis and other tribes conspired and defeated the army under Gen. Harmar, and the following year under General St. Clair. but were subdued br General Wayne. In 1811 they recommenced hostilities under Tecnmseh, but were defeated at Tippecanoe by Geberal Ilarrison, who also
in 1812, defeated the combined forces of the English and Intians, and killed Teeumseh. In the South the C'recks were conquered by Jackson in 1813, and the Seminoles of Florida in 1817 . In 1832 the Sacs and Foxes, under their Chief, Black Hawk, harassed the frontier Settlements, and from time to time the Sionx, the Comanches, and Apaches, often joined by other tribes have given the Government great troublr. In 1838 the Cherokeesand Creeks were removed from Georgia to the Indian Territory, West of the Mississippi, which the Govermment had established to be the permanent home for all the Indians. The Seminoles of Florida refusing to remove, a blondy war ensued, which lasted 7 years and cost \$15.000.000. After the removal of the Choctaws, Creeks, and other tribes to the Indian Teritory, other reservations were formed in several States. In 1871 there were on reservations 237.478 , which, added to 60,000 in Alaska, and about 50,000 others not yet placed in reservations make the total number of Indians in the United States, as estimated by the Indian Department, 350 ,000. The number in the British Colonies is estina. ted at 150.000 .

The five civilized tribes of the Indian Territory had under cultivation (1879) 237,000 aeres, on which they raised over $3,000,000$ bushels of cereals, and were engaged largely in the raising of stock. The lndians on other reservations had inder cultivation 154,056 acres, and raised over $1,500,000$ bushels, and all together about 205,000 tons of liay. The Indians are seattered over a large extent of country, and the difficulty of managing them is increased by the attempts of bold and unscrupulous white men to invade their reservations for trale, which often involves fraud, and for the sake of the mineral deposits known to be there. The Ctes in Colorado and Apaches in New Mexico, especially, have given the Government much trouble. The Utes are fierce and warlike and resist all efforts to induce them to abandon their wandering life and cultivate the soil.

Earnest attempts have been made at different periods by individuals and Socicties to Christianize and civilize the Indians, some have been remarkahly successful. The French and Spanish in connection witl their Colonies, had Missions among the Iroquois, Chippewas, Creeks, and othertribes. In Florida, Texas, New Ilexico, and California, they had prosperous Missions. In 1643 Thomas Mayhew labored with success for three years at Martha's Vineyard, Mass., followed in the same work by his father, and by othors of the fimily for five generiations. In 1646 the Legislature of Massachusetts passed an Aet for the propagation of the Gospel among the Indians, and in the same year John Eliot began his labors at Nonantum, churches were formed, and the Bible and other Christian books translated. The Brainards labored witly effect in New Jersey and Pennsylvania. The Moravians and Friends have been active in instructing the Indians. The various Protestant Denominations, through organized Societies have had for many years Missions among the Cherokecs, Choctaws, Ottawas, Chickasaws, Crecks, Dacotahs, and some other tribes, instructing them not only in religion, but also in the arts of civilized life. The Indian problem, always tronblesome to the \mathbb{U}.S. Government is now secu to involve erave, moral, and political issues not at first recognized. The govermmental poliey has been one of expedieney rather than of justice. Treaties have boren manle with the tribes as with sovereign nations, but have been set iside on easy pretexts. Indians have not beron consirlered as citizens ander the law: their ownership of property, as recognized, has leon tribal and not individnal. They have been allowed to be the pray of rapacious specnlators in land, and the vish traters. Of hate years the Government has souplat to apply a botter poliey, but the evil has leen found tou vast and derpp for misy reform ; and a wave of pespular feeling is now rising, bearing in upon the (bovernment with stroner demands in diflorent directions. There are signs that the diselassions will re-
sult in better processes of dealing witlo the lndians, and that the Governmont will find or make its way to a system that shall be wise and just. Sire /url an Torvitory.
INDIAN TERRITORY.- The home of rivilized or partially civilized remnants of once pow rfful aboriginal tribes, removed by the Government from lime to time from difleren parts of the ('nion, ant whith, upon separate reservitions and under forms of government established by themselvers, are living at peace with each other and with the United States. In June, 1830, Congress passed an Act setting apart \because All that part of the United States west of the Niss. issippi, and not within the States of Missouri and Louisiana or the Territory of Arkansas," to be known as the Indian Counnry. The region thus described formed a part of the Louisiana purchase of 1803 from France. Portions thereof have since been orgamized into new States and Territories, and only a remmant of the original Indian Country now remains. To it has been added, however, a narrow adjoining strip of land west of the 100 th meridian whieh was ceded to the United States by Texas. The Territory contains 20 rescryations, the names of which, with the extent of each in square miles are as follows:-Arrapaline and Cheyenne, 6,715; Cherokee, 7,861; Chickasaw. 7,267; Choctaw, 10,450; Creek, 5.024: İansas, $154 \frac{1}{2}$; Kiowa and Comanche, 4,369 ; Modoc, 6 ; Osage, 2,201 ; Ottawa, $28 \frac{1}{2}$: J'awnee, 442 : Peoria, 781; Pottawatamie, 900: Quapaw, $88 \frac{1}{2}$; Sace and Fox, 750; Seminole, 3121/: Senaca, 81 ; Shawnee, 21 ; Wielita, 1,162 ; Wyandotte, $38 \frac{1}{2}$; total area appropriated, 47,039 square miles; unassigned, about 29,000 sfuare miles. White speculators and adventurers have of ten attempted to enter the Territory and appropriate the lands not included in the reservations, but the Government of the United States, in fulfillment of its treaty stipnlations to the Indians, has preventel them. A late movement of this kind was made in 1879 , when the President issued his proclanation warning those engaged therein to desist, and informing 1hem that if they should enter the Territory they would be expelled, if necessary, by an armed force. A Bill was lately introduced in Congress to erect the Indian Country intoa regular Territory of the United States, thus, oprening its unsettled lands to the whites and subjecting the Indians to the very encroachments to avoill which they consented to go upon the reservations. It has been proposed in some quarters to make the Indians citizens, to place them nomer Territorial Government, and finally to admit them as a stite to the Union. But to this plan there are some serious obstaeles. not the least of which is the umwillingness of the Tndians themselves to sacrifice the autonomy of their respective tribes and the Governments of their own already existing. Though this may ultimately be arrived at, it is not easy to see how the Government of the C'nited States eould sudilenly force such a change upon them without violating the most solemn treaty obligations. The popmlation of the Territory, exclusive of white residents, is reported tonumber $\% 4,140$. The number of whites legally there is about 12,000, and hesides them there are 3.000 othors who would be excluded if the law was strictly enforced. Agents representing the United States live among the varions tribes, cxercising a paternal oversight of their affairs, and protecting them from (neroacliments. They are appointed President with the ennsent of the Senate, and, under the existing requlations of the Intian Burram, are nominated by the TReligions Denominations which have llissions among the tribes. Each tribe has its own inner government, but the [inited Sintes Conrts have jurishlítion in civil actions where a white man is a party, in eanes of crime against a white man, and of violations of the laws regnlating trade and interenurse with the Indians. Lece Indian (ountry.
INDICATOR.-1. An invention of Gennenl Goorge W. Wingate, of the New York llilitia, fur jnstrueting men in aiming the musket. A steel rod, passing
throngla it brass tompion in the marole, is presjecteat forwards by the liring-pin. The rond carrins a shary print in the line of the sights. Which punctures at miniature target a foot or so in front of the mazale.
2. In connection with the testing-machine it has been formd desirable to have an instrument when would give a contimusus curve representing the clongations and correspoading tensil. strains for spectimens of varions kinds, in oreder to arrive at the exact dymanical value of the metal. An instrument has been devised for this purpose, ats represented in Fig 1. It consists of a brass frame, Als, supporting a vertical cylinder, C, revolved by the endless serew, S; this serew heing turned by the tape, T, which draws around the pulley, l^{\prime}, as the weight,

Fig. 1.
W, is wound alone the scale-beam. When the chain was used as a weight, the cylinder revolved as the chain was paid into the scale. This arrangement canses the cylinder to revolve as the weight or strain upon the specimen increases or diminishes, and if the marker 11 , remains stationary, it will describe athorizontal circle mpon the papir with which the cylinder is covered. Starting from the zero-point of the seale, the longth of any are of the circle will represent the strain upon the specimen at the instant the marker has arrived at the cond of the are. If now the clongation of a given portion of the specimen carries the marker in a direction parallel to the axis of the cylinder, it is clear that the curve, NO, described upon the paper, will accurately and continnously represent the relation between the elongation of the specimen and the corresponding strain upon it. In order to move the marker in this mamner, it is connected with one end of the specimen by the clamp Q'. which fits into a center-punch-mark on the speremen, while the frame and eylinder are attached to the other codd, Q. of the specimen in a similar manner. The porticn of the specimen between the two center-punch-marks is evidently the only portion whose elongation will move the marker along the paper, and the space passed over ly the marker divided loy the original length of this portion will give the elongation per unit of Jength of the specimen, or the per cent. of elongation : and the area bounded by the curve. NO, and the co-ordinates, NR and IRO, measures the rork of breaking the specimen.
3. A steam-engine indicator is an instrument used to draw a diagram, showing, upon a reduced seale. the motion of the piston and the pressure acting upon it at each point of its stroke. It consists essentially of a small steam eylinder and a small drum upon whici is rolled the paper for taking the diagram. The cylinder is provided with a piston whose motion is resisted by a spiral spring. Steam may be admitted beneath this piston and cause it to rise, or a
varcuan createrl bemeath it and canas it 1o fall, the
 sure, as in a spring-balance. Notion from the pistom isconveyedhy a series of hevers io a jemeil, which is made to press against a slip of paymer roble ol upen the drum. Whenthe instrument is in nse, ite eylindar is connected 10 "ither cond of the large rylimater of the rengine, and the drum is ramble liy sibitable momes to revolve latek and forth, having at motion which corresponds to that of the congine piston, only it is on a much rempered scale. [ntil stean is andmitted to the indicator there is no pressure mpon its piston, and if the pencil point is then pressem acainet the paper on the drum, it will, as the datere moves back and forth, trace a straiclut line, which is the line of atmesplerrie pressure. Whensteam is allowed to enter, the indientor piston rises againat the resistance of the spring to a height correponding to the steam pressnre, and if this presure remains unchanged during a stroke a straight line parallel to the atmosplerie line will be traced; when release takes place the piston instantly falls and the peneil moves with it, and when a return stroke of the engine ocenrs, the pencil will trace a line correspond. ing to the hack prossure against which the engine piston is moving. This gives an ideat of the process of tracing a diagram whensteam follows fall stroke: when at cut-off is used, the perncil traces the same line as before until the cut-otf valve closes, when, as the pressures fall, there is traced a curve which gives the pressure at each point of the forward motion according to the law for expansion of steam. The length of a diagram drawn in this way represents on a smulla scale the stroke of the engine, and the line traced by the percil shows the pressures

Fig. 2.
acting upon the piston. These pressures are measured by the movement of the spring contained in the indicator, an inch of movement, or an inch of height above the atmosplacric line on the diagram. representing so many pounds pressure, according to the spring ased: this a 30 lb . spring womld be compressed, so as to give the prencil is movenent of one
inels for 30 lbs . steam pressure, and a 40 lb . spring, one inch for 40 lbs pressure, and so on. Llaving then. a scale, in which one inch is divided into 30 or 40 parts, or any other number of parts such as ordinarily used, we can readily measure any pressure dreetly from the diagram when once we are permitted to know what scale or spring has been employed.
Fig. 3 shows a neat construetion of the theoretical expansion curve, which should always be drawn upon the diagram in order to compare it with the actual line traced by the indicator. To make the construction it is necessary to know the clearance space so as to draw the clearance line, P V, from which expansion is reckoned, to draw BC . the line of boiler pressure and also $\mathrm{V}^{\prime} \mathrm{V}^{\prime \prime}$, the line of perfect vacumm. Then take any point suels as O, on the expansion line of the diagram this point must not be later than F, the point of release, because here the exhaust line begins; from O draw $O P$ at right angles to $B C$ and $O N$ at right angles to $\mathrm{B} V$, join V and P and at N, where V P intersects $O \mathrm{~N}$, draw N M parallel to 13 V . Then M is the theoretical point of eut -off. The space MI P ean be divided into any number of parts which need not be equal, and lines drawn from V to points a, b, c,etc., cut the line $M \mathbb{N}$ in points $a^{\prime}, b^{\prime}, e^{\prime}$, ete. From a and a' are drawn lines parallel to il N and O N respectively and where they intersect is one point of the curve. The same operation for h and b^{\prime} ', gives another point and so on. When a little skill is acquired these lines need not be entirely drawn in. but only so much as to show the intersection which determines a point of the curve, and it is thus a very easy and expeditious method for drawing the true curve upon an indicator diagram. Fig. S. is a sectional view of

Fig. 3.
the Thompson Indicator, which is eonsidered as the stamdard of this country and Europe. Sce Planimeter and Thumpsem Indicator.
INDICATOR RING.-A thin narrow ring of wrought iron, fitted on the breech-screw of a breech-Ioading gun, with a raised line of brass on it. which shows by its coineidence with a similar line on the top ead of the brecech-screw whether the vent is properly sorewed up.
INDIRECT POINTING APPARATUS.-Varius apparatus for pointing guns indirectly have been empleyed from time to time. That employed ly the Prus. sians in the sieges of the war of $18 \% 0-1871$ and represonted in the drawing is favorably endorsed ly all oflicers who have employed the method. The apparatus is composed, 1st, of a trapezoidal frame of ron athelhed to the axle by means of straps; under

the graduation of the first plate that coincides with the directrix, and then to shift the trail to the right or left until the difference between the graduations of the plates shall be equal to that originally noted. The graduation of the plate is arlitrary. In the Prussian artillery the principal divisions are 40 $\mathrm{m} . \mathrm{m}$. apart, and these intervals aubdivided into 10 equal parts. These graduated scales permit of maintaining to a great exactness and without renewed pointing, a line of sight once established, which is of the greatest importance in firing at an object concealed from the view; they also permit of varying, laterally, the point of fall for distances, by displacing horizontally the point of departure of the line of sight, an operation required in breeching masonry, for making the horizontalcut. This method of pointing was employed by the Prussians with great suceess at the sicge of Strasbours, in batteries without c'mbrasures, for breeching walls of masonry ly a phonging fire.
INDORSED.-A term applied in Heraldry to two animals placed haek to back. Two keys, two wings, ete., may also be indorsed, and a peliean is always drawn with his wings indorsed. The terms iddorsed and indorsed have the same application.

INDUCTION OF ELECTRIC CURRENTS.-The discovery of the power of electric currents to induce eurrents in neighboring conducting cireuits is due to Faralay. His resarches on the subject, named by him rolen-flectric induction. Were publishod in the Philosophical Transactions (1831-32). llenry (1832)
the lower side, and parallel thereto, is fixed a graduated plate of brass. When the frame is lowered, the graduated plate touches the platform; but when not required for use it is raised up and secured by hook. ing it to some rings on the under side of the cheeks. 2d. of a plate sinilar in form and graduation to the one already mentioned, which is attached to the butt

end of the trail; when the latter is lowered, this plate like the other, comes in contact with the platform. The plate turns on a hinge, and may be raised up and fastened to a spring-hook on the rear transom. In using this apparatus it is operated as follows: The fire being once suitably adjusted by means of direct observations, the difference which exists between the graduations of the two plates is noted, the reatings being made from the zero to the directrix, AB , traced upon the platform. In all the firing that follows it suffices, in order to point the piece, to read
observerl that when contact was broken in a long galvanic circuit a bright spark occurred, which did not occur when the cirebit whs sloort. 'Ihois was shown by Faraday ($18: 34$) to lo duc to the extra carrent indinced by the varions gares of ther rirenit in
 the superior action, in inhuction numaratus, of a fomdle of iron wires to that of a solid har of iron. Ilen-
 rents of different orders. De la liver dosignold, in 1843, un clectro-chemicenl comdenser, consistiner of a primary coil, which, by means of the cextris rourrent, could emable a single gatranic cell todecompono who ter. The same deromposition, however, land beren effected by Wright in 1840. Rnhmaoreli constructcd (1850 or 1851) the first so-culled indurtion rail, the excellence of which was chicfly athanerl hy tho proper insulation of the seeomlary coil. l"izenal (18.):3) inerrased immensely the power of the coil, ly providing it with a condenser. Of late yars coils of great power have been constructord, rivaling, if not excecdine the nost nowerful electric machines in length and power of spark.

The fomblumental lan of current imduction may be thus shown: "Two long copper wires are lixecl so us to be parallel and close to cach other. The extremities of the one are in connection with the poles of a galvanic battery, and those of the other, with the binding-screws of a galvanometer. 'l"he instant the eircuit of the battery is completed, and the corrent sent along one wire, a current in the opposite direction is indnced in the other wire, which is shown by the deflection of the needle of the gralvinometor. This induced current is only momentary, for though the current continues to circulate in the first wire, the noedle soon falls back to its original position of rest, and the wire then gives free jassage to other currents, and appears to be in no way atlected. If,
lowever, as the brimary wirr remains in any ond position, add evidenow of eleceririty in the secondary
 of the primary rurrent shomble be incerotard or dinainishemb, momentary emorrents in the serondary wire would again mark the ebanges in tho primary, tho incrase conasing tan inverser, and the deceronse at direct rorrent. Henee wo conclude, that a carrent arliche begine, a currout which apprederhos, or a curront arhich
 chrove in a wighturring comdorting sircait, and that s curvout arkich stejs, a currerat which ritires, ore a eurremt which decreases in stringth, induces "' livel momentary rurrent in a mighluming sirentit. F'or inverse, the word mogatiere. and for dirced. the word praitime, nre freducntly cmployed in reference to in cluced eurrents.

In rexperiments like the above, it is mnch more convenjant fo wind the primary and secondary wires side by side rommd a bobbin, so as to form a roil. The wires are insulated from cach other by it rovering of wool or silk. Not only clos such a díposition admit of very lones wires hemer used, hat it also disposes the wires cmployed to grater alvantage, for cach single thrn of the primary wire acts not anly on the corresponding turn of the secondary wire but on all the turns near it. The inductive effect of such a coil is much greater than that whiclı would be obtained by the sime extent of wires runnigg site by side in a straight or crooked line. It is not even necessary that the two wires he wound round togethcr, each may be wound on at separate loobbin, and the one placed inside the other. The primary roil is made of wire one-twelfth of an inch in dianctor, covered with wool: and the sccondary coil of silkcovered wire,one-cightecnth of an inch, mueh longer than the primary wire. With two such coils, many principles of induction can be given.

now, when the needle is at rest. the hattery circuit be broken, and the current stopped, another momentary current is indicated by the galvanometer needle but in this case in the same direction as the indheing current. The inducing wire and current are called primary, and so are distinguished from the indueed wire and current, which are termed secentary. The passive condition of the wirc while thus under induction has heen described by Fiaraduy as electrotonic. An electric throb, so to speak, makes the setting in of this state, and another its vamishing: the former in the opposite direction to that of the inducing current, and the latter in the same direction. If the primary wire be movable, so that it can be suddenly brought near to, and withdrawn from the secondary, while the battery current passes stemdily, currents are induced as in the former case, the approach of the wire being marked hy an inverse current, and its withdrawal by a direct one. As long,

Let us place the primary coil within the secondary ; Io the primary, along with the self-acting rheotom. be put in the circuit of a galvanic cell, and let the secondary coil be connected with a galvanometer. The interruption in the primary" current being effected ly the rheotom with great rapidity. the induced inverse and direct curcents are sent ont with corresponding rapidity through the coil of the galvanometer. If this last be of a short and thick wire. so as not to tax the tension of the curreat transmitted. the induced currents will not detlect the needle : or if they should happen, through the unsteady action of the break, to do so, it only oscillates round its position of rest. This proves that the quantity "f electricity transmithed ly the induced inverse and direct currentx is the same, for ther each exert the same influmere on the needles. But if the coil of the ratvamometer consist of a long fine wire. the neertle is kegt deviated in a direction which argues the action
of the direct current. This leads us to conclude that both currents, though rqual in quantity, are unequal in tension, the direct current heving the highest tension, for it has more power to force its way through the fine wire of the galvanometer than the inverse, Other proofs of the same principles may be easily furnished. The difference of the tension of the two induced currents, is accounted for in this way: when a change takes place in the primary current, the quantity of the electricity induced by it in the secondary wire is the same whether this change takes place quickly or slowly ; the tension, howerer, is very different. When the change takes place slowly the total quantity of electricity in circulation continues to pass as slowly, and there is little in motion at one time; but when the same occurs quiekly, it is sent with momentum, so to speak, and the quantity in circualtion at one time is as much greater, in comparison with the former case, as the time is shorter. It is this quick dispatch of electricity which constitutes the tension of the current. Now, as it takes some time before the primary current is fully established, the inverse induced current is slow and of low tension; but when the contact is broken, the primary current ceases much more suddenly than it began, and the direct induced current is quick ancl of high tension. This view of the matter is borne out ly experiment, for it is fomd, that whaterer firurs the sudtenness of the chunges of the primary currest, heightens the tension of the currents induced by these chunges. The break, from this circumstance, forms an important clement in the construction of all induction apparatns. The inductive power of the primary coil is imnensely inereased by placing a bundle of soft iron rods or wires in the center of it. The magnetism which begins and ceases in these at each passage of the current acts in conjunction with the inducing force of the coil. The center of the bobbin is hollow, to receive a bundle of this kind. The greater part of the inductive action is due to the iron core, and the induced currents got with and without it are not to be compared in point of energy. A solid bar of soft iron may also be used, but with much less advantage, for the induced currents which linger in it after the stoppage of the main current acting themselyes inductively, impair the suddenness with which the current disappears from the primary wire and magnetism from the core. The thin layer of oxide which forms on the rods insulates thein sufficiently from one another, and prevents the formation of such currents. It is partly for the same reason that metal tubes cannot be used for hobbins for either primary or secondary coils. If such were used, closed circuits wonld be formed in them, the reaction of which, however, would prolong the changes of the primary inducers and consectuently impair the tension of the secondary current. Iİetal bobbins would not be open to this objuction if they had a longitudinal slit, which would make the tranverse scetion a broken ring and circuit. The excitation of magnctism in the core is the principal aim of the primary coil, and as a stroner current is essential to that objecet, it is made of thick wire and of moterate length. In the secondary coil, the tonsion of the induced current alone is aimed at, and with this view it is male of as thin wire as can be made. so as to admit of as many turns as posssible being bronght within the influence of the core and prinary coil. The aldetric conformation of the serondary coil is sometimes looked upon in the same light of that of a gilvanic battery. The total clectromotive force of the coil is the stum of that of all the turns in it, in the same way that the electro-motive force of the battery is propertionate to the number of cells.

Not only does a galvanic current induce mectricity in a neighboring circuit, but it also acts indurtively on itself. When contact is loroken in athaterycircuit. the galvanic spark is seen. When the wire is short, the spark is fecble, but it increases in brillimey
with the length of the circuit, and this becomes particularly observable, when the wire is wound romd in a coil. This certainly does not arise from the current being strong with the long wire, and weak with the sloort one, for quite the reverse is the case, as might be shown with the aid of a galvanometer. The real canse of superior brilliancy of the galvanic spark with the long eircuit is to he found in the induction of the primary current on the various parts nf itself, exciting, as they are called, extrue currents in the primary wire. It has been fully attested ly experiment, that at the instant a galvanic current brgins and onds, extra currents are induced try the action of the seirral purts of its circuit upon acheh other, that at the beginning of the current being inverse. and that at the end direct. As the extra current inverse acts opposite to the main current, it does not appear as a separate current but only retards the instantancous passage of the main current. The extra eurrent direct succeeds the main corrent, and has consequently a separate existence. It is what is generally referred to when the extra current is spoken of. This extra current is of much higher tension than the original current. The effect of the extra current on the direct induced current of the secondary coil is to lessen very decicledly its tension. If a way be made for the extra current, the tension of the induced current falls prodigiously. In a large coil-machine, which gives frecly sparks of 1 or 2 in . in length, when the two portions of the break are joined by a thin wire, so as to allow the extra current to pass, sparks will not travel between the two poles, however near they are brought. When no such communication exists, a jortion of the extra current leaps over between the separating parts of the break, and in so far diminishes the intensity of the secondary current. The condenser of the coil-machine, to be afterwards described, has for its object the absorption or suppression of the extra current, but the manner in whieh it effects this is not yet properly explained. The prejudicial effect of the extra current on the induced current is easily understood, when we bear in mind that it prolongs the cessation of the magnetism of the core and of the current in the primary coil, and thos imparing the suddenness of this change, reduces the tension of the induced current.

The essential parts of the induction coil have been already described in detail. A primary coil with its core of iron wire, and a secondary coil exterior to and insulated from a primary coil, form the main portion of the instrument. The primary coil is connected with the poles of a galvanic battery, and in the circuit a rheotom is introduced, to effect the interruptions of the current essential to its inductive action. The only parts not yel referred to are the condenser and the commutator. The condenser consists of several sheets of tinfoil and oiled silk, laid alternately the one above the other. The first, third, fifth, etc., sheets of tinfoil are connected by strips of the same material ; so are the second, fourth. sixth, etc.; the whole forming a condensing apparatus like a Leyden jar, the odd sheets forming the one coating, and the even shects the other. Each set of sheets is connected with one of the wires of the primary coil. The condenser is generally placed in the sole of the instrument, and does not meet the eye. 'The commatiator consists of an ivory cylinder covrred with conducting plates on two sides, and is so constructed that it ran break contact, or transmit the current through the coil in either direction.

The drawing represents Queen's dissected Rummkorlf coil, which is mostly alopted for the operations of mines, torpedoes, ete. $\Lambda, \Lambda^{\prime}$, are himling posts, to connect with the battery; C is the Bertin commutator used in reversing the current; at 1 ', the battery current enters the primary coil; this latter ran be removed, as also can the core, r; at n, the hat tery current is antumatically loroken. The brass phats, p,p', comet the condenser with the primary circuit; the condenser is contained in a sliding draw-
cr, which ean be very easily removed. B, I' $^{\prime}$ are the tormimals of the secondary eonl. A "opper cendelur:tins wire, which is insulated log one or two conts of guta-percha, connects the charges willa tha galvanic ajparalus. The charge is exploted by pussing ut
 mercury inserterl between the amp of two copper wires, which are endosed within th shorl tule of gut-ta-perchan, coated within with sulphuret ol (onpper. The wires are bent near the curl of thee thbe mad iwisted around each other. A little meal powdre is thrown around the fulminate and the tube, which, with the tube and the bont part of the wire, is tiontly closed in a small gutta-prercha bag, to krej) ont monsfure. To fire a single mine, one end of the twist is foldered to the conducting wire and that other inser. fed into the earth to complete the "irele. For sevcrid mines to be exploded at the same time conducting wires commeet the mines, and the conds of the iwist are soldered one to each conductor, exerpt the cud one, which has one of its cuds inserted into the earth. By this combination the sories will be expioded without any sensible difference of time berwern the nearest and furthest mine. Sie Galvanism.

INERTIA.- A term expressive of that indifference to a state of rest or motion which is anmiversh prop)erty of matter, and may be exjressed by saying that a lorly in motion will continue in motion, and ia body at rest will remain at rest, unless a terl upon by some ex. ternal force. The latter part of this prineijule was known to the Aneionts, and by them attributed to a certain repugnance to motion, which was n characteristic of all matter; bnt it was shown by cialileo That the former part was equally true anel general. This property of matter has been called by Kepler vis inertio.

INESCUTCHEON. - In Meraldry a single shicld horne as a charge. When there are two or more, they are simply called eseutcheons, for an ineseutcheon, it is satid, mastalway occuyy the fess point of the slield. An inescuteheon is to be distinguished from an escutcheon of pretense, which is not a charge, but a separate coat. See ITeralelry.

INFAMED.-In Meradelry, tu epithet applied to a dion or other animal whicli has lost its tail, the loss being supposed to disgrace or defume it. Thofamed looking backirards occurs in ancient hazon for coun-ter-rampant regardant, the lion being supposed to be flying from an enemy. Often written locjamed.

INFAMOUS BEHAVIOR.-DISGBACE WITH INFAMY and infamous bebayior are terms in use in the mili. tary and oaval codes to designate conduct (and penalty) which is not onlyopposed to discipline, but also disgracefulin a social sense. As infamons behatior, have been always classed in all countrice descrtion of colors on the field of battle, failure to attempt to succor comrades in danger, cold-bloolod cruelty, and other crimes which are greatly subversive of morality. If a man is found guilty of any of these crimes by a Court-Martial, and not sentenced to death, the sentence is ordinarily discharge-or dismissal-with ignominy or infany. Sosevere an enactment greatly adds to the force of the penalty, und stigmatizes the offender for life as a disgrace to his coumtry and

his clotl.

INFANTRY.-The term mnfantry was origimally applied to a body of men collected by the Infiente of Spain, for the purpose of reseuing his father from the Moors. The attempt being succeessful. the term wns afterwards applied to foot-soldiers in general, as opposed to cavalry. Among the ancient nations of Europe the foot-soldiers constituted the chinf strongth of the armies. In the best days of the Grecian and Roman States, battles were won mainly hy the force and discipline of the phatanges and legions, and the number of the infantry in the fied far execoled that of the cavalry. The cavalry were then, as at present employed chiefly in protecting the wings of the army and in completing a victory gained by the infantry.

The ancoicht loranks, when they lroft the forcose of

 they lmal ohthined josssession of the rommtry of the

 Nobles: and the inturast inspiral hy tha archievonnonts of the K nights on those ocrasions was maturally followed by a high rogard for that order of mom. 【by degrows the cavalry, which was ernmposiol of persenns pessessing rank and joroperty, fand combuleq-ly armod, Hayuircl tha repatation of leting the principas arm; while the foot-soldirers, barlly armed amd liseiplined, were dell in combaratively small estimation. 'Thois
 pal ocerphation of mankind, military s.jonco frll into nerglect. l3ut Rnlers were forceol by the power of
 of foot-soldiors, mul in 1214 we lind that some of the German infantry was rerognized to be" very good, und trainerl to fight on the level "von acrainst coivalry." The cavalry of France was routcal at Courtrai ly ine infantry during the next century, mand the Austrims suffered defeat by the cetliciont work of the Swiss pike at Morgarten (li315), Sumpach (laqio), and Nifols (1388). At Cressy and I'oictiers (18.6-183)(i) the Finights of Engrand dismomented to fight beside the successful infantry: The principal weapons of the infantry before the invention of ginnofower werelongbows, lablucrds, cruss-bows, spikuel clubs, axes, pikes, staight-swords, sluchls, corselets, mail-jackets, helmrts and partisans. In the 1 lith century, however, these weapons were replaced by dire-arms, and in the 18th century, tlise musket was in general nse. It beeame customary during the Thirty I ears' War to form hattalions of infantry composed of 500 men, Which were massed into dense columns during battle in suite of the deadly rafect of the enemy's artillury and fire-arms. The absurdity of this formation was first exposed by Gustur Adoljh, who recogrizing the destructivencsis of fire-arms, arranged his battalions with a view to increasing the effectiveness of the fire of his troons, while avoiding exposure to that from the enemy. II is tacties were so sucressful at Broitenfold and Lutzen (1681-32) that they were soon afterwards universally adopted. The bayonet came into use in 1670, and the sockct-bayonet about 1609. Freclrick the Great made many improvements till then comparatively unknown. 'The rapidity with which his infantry troops performed theirevolutions during battle contributerl largely toward his famons viotories in the Seven Fears' War. In fact the Prussian infantry have ever since his tine servad as mochels for other European countrics. The supuriority of this arm consists in the troojs being abla to act ongronud where cavalry cannot, and it is cobvious that the latter must be nearly uscless in the attack of fortitied towns. During the War of the licbellion in this country skimmishing was in vogut in the northern and southern armies. It had been in uze dwring the leevolutionary Wrar, and was w(d) suited to the American character. Skirmishing has since bern adoptid in Prussia, and the skirmish line is recognizel as the proper formation in battle to aroid the destructive effect of the breech-loaders. The co-operation, however, of cavalry and infantry tronps was megiected by American Generals. Irtillery fire usually openel the battle, and was followed by the adrance of the whole line on the rim in a final charge. The lafantry Tacties in general use were those of Casey. founded on those of Scott. Cusey's Theties, how'ver, were abandoned for those uf Hardee. and in 18fin those of Epton were finally adopted.

INFANTRY COLORS.-In the E゙nited Siates, each Regiment of Infantry has two silken Colors. The first, or the National Color, of stars and stripes. as clescribed for the garrison flag; the number and
name of the regiment is embroidered with silver on the center stripe. The second, or liegimental Color, is blue. with the arms of the United Statesembroidered in silk on the center. The mime of the regiment in a scroll, underneath the eagle. The size of each Color is six feet six inches fly, and six feet deep on the pike. The length of the pike, including the spear and ferrule is nine feet ten inches. The fringe, yellow; cords and tassels, blue and white silk intermixed. See Colors.

INFERIOR. - A term signifying, in a military sense, junior in rank. Inferior ofticers are those of the lower ranks or grades.

INFERNAL MACHINE.- I term applied to various deadly contrivances; for instance. to the battery-gun with which the attempt to assassinate Louis Plilippe was made, ant the devices used on similar historical occasions. I moted infernul murhine was the tire-ship used by the English at St. Malo. This was a threedecker charged with powder on the first deck; shells. carcasses, ete.. on the second; and with barrels filled with combustihles on the third; the gun deek was covered with old guns overloaded. It was intended to destroy ships, bridges, ete.

INFLAMMATION. - Wheugrains of powder are united to form a charge, and fire is communicated to one of them, the heated and expansive gases evolyed insinuate themselves into the interstices of the charge, envelop the graius, and ignite them one after another. This propagation of ignition is ealled inflammation, and its velocity, the velocity of inflemmution. It is moch greater than that of combustion. and it should not be confornded with it. When powder is burned in an open train, fine powder intlames more rapidly than coarse; snch, however, is not the case in fire-arms, owing to the dimiantion of the interstices. If a charge were composed of mealed powder, the flame could no longer find its way through the interstices, and the velocity of inflammation and combustion would become the same. Now supposing one grain or particle alone be ignited, it will first be inflamed over its whole surface, and the progressive combustion will take place from the exterior to the interior. Its rate of combustion will therefore depend upon both its shape and size, leaving out entirely, for the present, the question of density and hardness. A particle of spherical or cubical form will expose less surface to ignition in proportion to its volume than one of an elongated or flat shape, and will consequently require a longer period for the combustion of its entire mass; the larger the particle, also, the longer will be the time required for its combustion. Looking, then, at one grain of powder by jtself, we may say that the larger it is, and the more nearly its form approaches a sphere, the longer will its combustion take, and the slower will be the evoIntion of the gas. When, however, we come to regard the action of an aggregation of such particles, as in the elarge of a gun, the rate ofignition of the whole charge is also affected by the size and shape of the grain. 'The part of the charge first ignited is that near the vent, and the remainder is inflamed by contact with the heated gas generated by the combustion of this portion, so that the rate of ignition of the whole mass will be regulated by the greater or less facility with which the gascan penetrate throughout the charge, which is itself dependent upon the shape and sioe of the interatices between the grains. Tf the grains be spherical and regular in form, the interstices will le comparatively large and uniform. and the gas will penetrate the mass with facility; again, the largor the grains, the laraer the interstices between them. If, on the other hand, they be llat or flaky and irregular in shape, the passage of the gas will be more (hillionlt, and the rate of inthammation of the charere reduced. We see, therefore, that the considerations which alfect the more or less rapid combustion of an individmal grainof gnmpowder, atso affect the rate of ignition of a charge of such grains, but in an opposite direction; so that a form
of grain which will individually burn rapidly may offer an increased resistance to the passage of the heated gas through the charge, and thereby retard its iguition, while a grain which will burn moreslowly may allow of the charge being more rapidly ignited. By varying the size and shape of the grain alone, a powder may therefore he obtained, a charge of which shall be ignited rapidly throughout, but hurn comparatively stowly, or one which shall be ignited more slowly, but when once intamed burn very rap= idly. It is necessary to draw a clear distinction between a rapidly igniting and a quickly burning powder. The heat developed increases with the charge, and as the velocity of the gases increases with their temperature, it is thercfore evident that a large charge is consumed quicker than a small one: it is also trme that the loss of heat absorbed by the surface of the bore is much less sensible when the charge is great than when it is small; that is, the quantity absorbed is proportional to the surface or the square of the caliber of the gun and the heat developed increases as the cube of the caliber. With proper data we car readily determine the density of the gascous products at any particular moment of combnstion. For this purpose, take the case in which the inflammation of the whole charge is considered instantareous, and let P be the weight of the charge; d^{\prime} the density of the composition of which the powder is made; V the space in which the gases expand; t^{\prime} the time of combus. tion of a single grain; t the time since the combus. tion began; d the density of the gases at a givenin. stant.

The weight of powder remaining after a time, t, will be equal to $P\left(1-\frac{t}{t^{\prime}}\right)^{3}$, and the volume will be equal to $\frac{P}{d^{\prime}}\binom{t}{1-\frac{t}{t^{\prime}}}^{s}$; the weight of gase.
ons products evolved will be equal to

equal to this quantity divided by the space, V, diminished by the space occupied by the powder unburnt at the end of the time, t.

$$
\text { Or, } d=\frac{P\left(1-\left(1-\frac{t}{t^{\prime}}\right)^{3}\right)}{V-\frac{P}{d^{\prime}}\left(1-\frac{t^{\prime}}{t^{\prime}}\right)^{3}}
$$

Let K, represent the ratio of the weight of powder which would fill the suace J^{r}, to the weight of the charge P, and D, the gravimetric density, or weight of a unit of volume of powder, we shall have the equation,

$$
\frac{D V}{P}=h, \text { or } \frac{V}{I}=\frac{h}{D}
$$

and the formula for the density of the gaseous products becomes.
$d=\frac{1-\left(1-\frac{t}{t^{\prime}}\right)^{3}}{\frac{1}{1}-\frac{1}{l^{\prime}}\left(1-\frac{t}{t^{\prime}}\right)} 1-\left(1-\frac{t}{t^{\prime}}\right)^{3}$

If the charge fills the entire npace $V, N=1$, and

$$
d=\gamma \quad \frac{1-\left(1-\frac{t}{t^{\prime}}\right)^{3}}{1-\left(1-\frac{t}{t^{\prime}}\right)^{3} \frac{d^{\prime}}{d^{\prime}}}
$$

When the erains are and if $h^{\prime}=1, \quad l=1$. eous products can determine the pressure exerted on the anclosine surfaces by menne of Jhmerorl's formulat

$$
I^{\prime}=1.841(005 d)^{1}+0.302
$$

This value of l^{\prime} supposes that the entire charge is intlamed at the sume time-a supposition that is not strictly correet, except for small amd liehtly-rammed charges. When the charge is large, and well-rammad, as in eannon, it is neeessary to take into consideration the time of inthammation.

In a majority of cases the proceding formmlas will give the relation between the density and expansive force of granpowter, without sensible arror; but when the grains ure small, and the charge is eompressed
 by ramming. the interstices are diminished in size, and the intlammation is comparatively less rajiel : besides, the size and form of the charge exert an inlluenee which inereases witl its length. It is joroposed to modify the formulas, and adapt them to the most general case, by eonsilaring the inflammation progressive. "Jake a charge of powder, of any form whatever, and consider it ignited at the point. A, the indammation will reach the surface of the concentric zone, $/ 3$, the radius of which is $t r$, in the time t, v being the velocity of inflammation. There will be portiona of the charge situated within this zone which the flame will not have reached; others in which the eombistion is completed: ami others, between these two, in whieh the inflammation is completed, but the eombustion is only partially eompleted, as represented.

The extent of the inflamedzones being determined by the form and dimensions of the charge, exerts a great influence on the development of the gases, and consequently on their density. If the velocities of inflammation and combustion be known, the ynantity of gas formed from each zone can be calculated, and the question becomes one of analysis. In this calculation, the integral limits which refer to the extent of the zones are determined by the surface of the charge;

and those which refer to the progress of the combustion of the grains will be the point of ignition and the surface of inflammation; or, if ϕ be the time necessary for the thame to reach the surface of the zone", the radius of which is x, tbe time of partial combustion of a grain of this zone will be $t-\phi$, and its complete combustion is expressed by the relation $t=t^{\prime} \dagger \phi$.

For this zone the density of the gaseous products at the instant of inflammation will be $d=0$, as wheri completely consumed $d=D$.
The intermediate values maybe determined by formnla (1)

$$
a=\frac{D\left(1-\left(1-\frac{t}{t^{\prime}}\right)^{3}\right)}{K^{n}-\left(1 \cdot-\frac{t}{t^{\prime}}\right)^{\frac{1}{n}} \frac{-}{d^{\circ}}}
$$

ly substituting $t-\phi$ for t, and supposiag $h^{\prime}=1$, should the rlarge completely till the mbere in whirla it is burnod. Intrgrating betworathollotermined liraits, we obtain the medn density of thr gases dr. veloperl. 'I'le solation of this quastion, in a genceral wemeso is very ditlenalt, and requires the aid of the difterential calcalus. "I"hreare particular cas", how wor, whore the solation is not dilllealt ; for instanco, where the charge is of rylindrical form and is platerlat the bottom of the bore of agum. Sece E゙rplosion and Viunpourder.

INFORMANT. - ln wase a civill jurson is the commplainant. he buromos the principal witmess hofore a Court-Martial, and after giving his (evidenere maty romain in ('onst, in ordor that tha Jurler--Alvocate' maty refor to him.

INFORMERS. - In the British servior, soldirors wha rave information of false masters, or of pay illcegally detained ; and were, for said serviees, antitled to their discharge.

INGAUNI.-. I tribe dwolling on tha monantains and seacost of Gemot in the first and seromel remturias B.c. They wrore very active in the wars betwern the Romans and Lientians, and were Allies of the t'arthaginians in the sceond l'unia War. 'They wore regarded as a distinet tribe in the time of J'liny amd Strabo, but after the battle with dimilius l’anlus. 181 ms . ©., in whicla they lost $15,000 \mathrm{men}$, vory little was lieard of them. The town dlbouga, then called Alhimm lng gurium, was their ('apital.

INITIAL TENSION. The systrm of initial terasion eonsists in making a grun of eoncontric tubes. by putting on eatch suce essive layer, proceeding outward from the conter, with an initial tusion :xomen ing that of those below it; in other words. so that each hoop shatl compress the one within it. The inner layer is thas in compression while the onter layer is in the highest tonsion. The inner layer is able to sustain the first and greatest stretch, and the onter laycr, altaongh stretehed less by the rxplosion of the powder, has alrearly bern streteleol into high tension, and thas has to do ath equal amount of work. The intermediate layors bear the same relation to the initial strain, and 10 the strain of the powder, so that, in short, all the layers contribute equally of their tensile strength to resist the strain of the explosion. Each hoop. or tube, has this alement of weakness, that its inner cireumference is more stretched than its outer one. Alsolnte perfoetion wonld nceessitate intinitely thin hoops and. practically, the thinner the layers the greater will be the strength, provided the meelanioal ditliculties in construction, and more especially in applying. a great number of thin strata with the proper tension (Jo not ontweigh the advantages. The two pincipal methods of applying the system are by whointing on, or by foreing on, the hoops. If the hoops are put on hy shrinking. two embarrassments arise: First. The hoop must be accurately hored, and after each layer has been put on, the grin must be put in a lathe and the outside turned. Great aceuracy of labor is required-labor of the most expensive elass. Secondly. The process of thrinking on is not to be depended npon: nowhere is there a difficulty in insuring the exact temperature required. but soarecly any two pieces of iron will shrink itentically. The fitting of hoops with nice adjustment wonk "he diftcult, theoretically: practically, it would not be clone. But the chief embarrassment is the uneoual cifect of reat.

In the first place, heating the layors over a fire to expand them subjects one part to more heat than another; the tomperature of the surface and interiss are unequal, thas cansing irregular strains. This may be remedied by boiling the hoops in oil. which wonkl toughen as well as expand the hoops. In the seeond place, the hoops are oflen heated to reteness, whan oxidation takes place. The intran dianctor of the lonop is inereased, and sribe is loft botween some parts and not between others. In the third
place, cast-iron and steel sensibly and permanently enlarge in proportion to the amount of carbon they contain when subjected to the heat.

Whitworth and Blakely advorite the method of foreing the hoops on with hydrostatic pressure. The foreing of a slightly conical ring over a corresponclingly conical tube obviates the necessity of great accuracy in the diameter of either pieces. The truth of the cone lepends npon the correetness of the lathe. The truth of the surfaces is also a question of good tools. The tension of the ring depends on the distance to which it is forced in the conical tube, and this may he regulated by the safety-valve of the hy-drostatic-press. With special tools, and when correctness depends mpon the mechanical appliances, whiel can be adjusted with the utmost nicety, an in expert workman could hardly fail to do well. See Built-up Guns, Cannon, Ordnance, and Varying Elresticity.

INITIAL VELOCITY.-In gunnery, the speed with which the ball leaves the muzzle of the gun. This was formerly calculated from the momentum as shown by the Ballistic Pendulum. A very great improvement of late years is the Electro-ballistic Pendulum, the invention of a Major Navez of the Belgian service. which actually measures the interval of time during which the shot traverses a short space of gromud. The apparatus consists of a steed pendulum falling at the side of a griduated seetor of a circle. Behind the segment is a piece of iron capable of being magnetised by a galvanic battery adjoining. The wires for completing the cirenit between the battery and the magnet are so arranged that they are in eonnection with two targets of paper or other thin material in the line of the projectile's fire. Solong as the cireuit is complete, and before the experiment, the magnet holds the pendulim at its highest point. When the shot pierees the first target, the circuit is broken, iron demalgmetised, and the pendulnm released; these effects being absolntely simultaneous. With equal simultaneity, the piercing the second target re-establishes the eirenit, magnetises the iron, and arrests the pendulum in its descent. The distance between the targets is known, and the acemmulating resistance of the atmosphere within that time; the sector being finely graduated, the distance traversed by the pendulum shows exactly the fraction of a second oceupied, and from these clata the initial velocity is a matter of simple computation. Of an ordinary smooth-bore camon, the initial velocity is near to 1600 feet per second. See Ballistic Pendulum, Chronoscope, Gun-pendulum. and lelocity.

INITAL VELOCITY OF ROTATION.-Let V be the initial velocity of the projeetile, or space which it would pass over in one second, in the direction of flight, moving with the reloeity with whiel it leaves the piece, and l the distance passed over by the proV
jectile in making one revolution; then - will be the
number of revolutions in one second, and
1
2π-the angular velocity of the projectile at the muz-
ale. The verncity of rotation of a point on the surface is given by the expression.

$$
r \pi=2 \pi r \frac{r}{l},
$$

in whieh r is its distance from the axis of motion, and ir is thor angular volocity. Sec Grootes, Rotation, and l'elucit! of Ratation.

INITIATIVE,-In offensive warfare, to take the initiation is the powrer of eompriling your adversary to make lis movements depenslent on your own, the rosult of which is to give the invater of a territory great advantage. It is also explained as the success obtained by the invader of a territory, suitable for military movements, and defended only by an army.
not by fortifications: not only is the advantage in his first onset, but in subsequent engagements, thus disconcerting and to some extent erippling his adversary so as to frustrate or cleprive him of the power of currying out offeasive measures.
INJURIES.-In the exercise of professional duty by military officers, injuries may frequently be necasioned to other ofticers, or to private individuals, whose lagal remedies are here eonsidered. As between officers themsalves, the language of the Articles of War is sufliciently comprehensive to bring most of such cases within the cognizanee of a CourtMartial; but a Court-Martial has no power to award peeuniary damages for injurious conduct. Its jurisdiction is criminal, and its judgments are penal. It may happen, too, that the common feeling of the serrice, to which the offending or the conplaining party belongs, would in many eases render an application to such a tribunal utterly fruitless; as the general sentiment of the members of a particular profession or class of society, respecting a matter of professional or eorporate right or conduct, is often found to be at variance with the public law of the land. Civil actions are therefore maintainable agaiust commissioned officers, for exceeding their powers, or for exercising them in an oppressive, injurious, and improper manner, whether towards military persons or other'3. Extreme difficulties, however, lie in the way of plaintiffs in actions of this nature, for no sueh action is maintainable for an injury, unless it be accompanicd hy millice or injustice: and the knowledge of this, while it can never eheek the contuct of good men, may form a check on the bad. Where an otheer makes th slip in form, great latitude ouglit to be allowed; but for a corrupt abuse of authority none can be made. It will be convenient to consider the law upon this subjeet; 1st, as it applies to wrongs committed by officers towards persons under military authority; and, adly, as it applies to persons not subject to such authority. Some of the decisions that will be quoted were pronounced in eases where maval officers were concerned; but the principle of the decisions applies equally to both services. I. H'rongs toonards I'erwons under Military Authority. - A notion appears to have at one time extensively prevailed that an oftieer could have no remedy against ill treatment reeeived from his superions in the course of professional duty, exeept by bringing the offending party to a Court-llartial, and subjecting him to the penalties of the Artieles of War. This opinion, however, was quite unfouncled in point of law; and such a state of things might often be produetive of the worst consequences. The point was distinetly raised in Grant v. Shand, where an action was brought by an officer in the army against his superior ofticer for oppressive, insultiug, and violent conduet. The plaintifl was directed to give a military order: and it appeared that he sent two persons, who failed. The defendant thereupon said to the plaintiff, "What a stupil person you are," and twife struck him; and although the circumstances oceurred at Gibraltar, and in the actual exeention of military service, it was held at the trial that the action was mantainable; and a verdict was found for the plaintiff. An application was afterwards made to the Court of King's Bench to set aside the rerdiet; and Lord Mansfield, the Chief-Justice, was very desirous to grant a new trial; but the Court, after argument, refused to disturl) the ver(iet. So also an action will lie for unjust treatmentunder the form of tiscipline. as in Swinton v. Mohoy, where the defendant, who was Captain of the Trident matn-of-war, put the l'urser into continement, kept him imprisoned for three tays without inquiring into the case, and then relased him on hearing his defence. 'The Purser brourlit his action against Captain Molloy, for all his unlawful detention in eustody; and, upon the evidence, Lord Mansthelı said, that such conduct on the part of the Captain did not appear to have been a discharge of his duty, and therefore that his justitication umder tho
disedpline of the navy latd failed him. The jury gave El, 0 of danages. In the foregoing rase nos want of uprightuess was attributed to (iaptain Molloy; and the deevision rested wholly on the eircomstane of hishaving committed an injustice, althomerh without a eorrupt intention. (rmelty or mmeressary severity, when wilfully committed in the esereise of smperior anthority, are also good cansiog of action. Thans in UFall 2 . Macnamara, the atotion was bromeht by tha plaintill, as Captain in the Afrienn (orges, agamst the defendant, Lieutenant Governor and Xilitary Come mandant of semegambin, for imprisuning the phantifl for the space of nine monthe at fambia, in Afriea. 'Then defense was a justification of the imprisonment under the Mutiny Act, fur the disobedience of orders. At the trial it apperared that the imprisonment of Captain Wall, whicll was at tirat legat, namaly, for lenving his post withot leave from his Sinperior Ohfer, though in a bad state of health, wasnggravated with many circunstances of cruelty, which were adereted toby Lord Mansticld, in the following extract from his clatrge to tho jury: "lt is atmitten that the plaintift was to blame in leaving his post. But thare was uos (memy, no mutiny, no danerar. His health was acclining, and low trusted to the bonevolence of the defandant to consider the pircumstances under which he acted. But supposing it to have been the defendants duty to call the plaintilf to a military account for his misconduct, what apology is there for denying him the use of the rommon air in at sultry climate, and shationg him upin a gloomy prison, when there was mo possibility of bringing lam to a trial for several months, there not being a sullicient momber of oflicers to form a ('omrt-Martial? Tless circumstances, independent of the direct evidence of malice, as sworn to by one of the witnesses, are sufficient for you to presume at bad, malignant motive in the defendant, which would destroy his justitiedtion, had it even heren within the powers delequtrd to the defendant by lis commission. Tlue jury there upom, after deliberation, found a verdict for Captain Wall. with $\mathfrak{C 1 , 0 0 0}$ damages. An undue assumption of anthority in matter not within the range of military discipline, is also a good ground of action against asuperior Ollicer. This appears from the ease of Warden 2 . Bailey, where the plantitl was a permanent $\mathrm{Ser}_{\mathrm{r}} \mathrm{reant}$ in the Bedford reeriment of local militia, of which the defendant was the Adjutant. In November, 1809. the Lieutenunt-colonel issued a resimental order for establishing an evening sclonol at Redford. Ile appointed the Sergeant-major the Master and ordered all Sergeants and Corporals, including the plaintift, to attend and pay eight-pence a week towards the expenses of the school. The plaintiff and some other of the scholars having afterwards omitted to attend, several were tried hy Court-Martial and punished. The plaintiff, howerer, was only reprimanded, and he promised regular attendance in firture. Shortly afterwards he was ordered to attend a drill on parade, when the defendant, who appears to have been a shopkecper, shook his fist at the Plaintiff, ealled him a raseal, and told him le deserved to be shot. The defeudant then directed a Sergeant io draw his sword and hold it over the plaintiff's head, and if heshondd stir to run him through; and, by the defendant's direction, a Corporal took off the plaintiff's sash and sword. The plaintiff was then conducted, by the defendant's order, to Bedford gaol, with directions that he should be locked up in solitary confinement, and kept on bread and water. He was thus imprisoned for three days. Je was then brought up liefore the Colonel and the defendant, and other ofticers of the regiment, and again remanded to the gatol. The plaintiff's health having bern impaired by the contimunce of this treatment for several weeks, he was afterwards conducted to his own house, and there kept a close prisoner mentil January 1810 , when he was escorted by it file of Corporils from Bedford to Stilton, to be tried by Court- Martial for mutinous words spoken on parade at the time of
his urrest, and for tharely exciting othars to disohediance. Ifo was tried acreorslingly, but liburated in Bardh, 1810. Cponthis laf broughthisaction ageinas the d djutant for the wrongful imprisonmernt, whern an objertion was taken that the gatostion of the brospricty of the arrost whe not withim the juriadicetorn of He Civil Comrts. "lhe Courts of Common Jlans, howevor, overruledthis olojection. Sir danams tanslidal, (.. l.; "Jt micht be very ronverniont that a military oflecer might lwe enabled to make the man under his command learn toread or writo, - it might be wary useful, but is not a part of military disajpline*. '7om, there is a tax of $8 d$. a week for larminge to read atad write. : . The sulsjeet eannot be faxerl, even in thr most indirect way, maless it originates in thro loower llonse of Parliamont" Mr Justjov] awronoen:
"It is no part of military duty to uttend at selaon, and learm towrite and read. If writiner is necessary to Corporals and Sergoants, the Sipserior Ofliewors mast select men who cort write and read ; and if they do arst contimue to do it well, they may be reduced to tha ranks. Nor is it any part of inilitary duty to pay for keepins a school liorlat and warm: this very far exceeds the power of any ('olonel to ordir." "In a subserfentstage of the sammerase, when it was attompered to justify or defend the molitinoms expressions usced by Warden on parado as ahove stated, on the gromed of the jllegality of the order which gaverise to them。 thc' ('ourt helel, that although Trarden had beren umlawfully arrested for disoliedience to that order, suctla a ciremmstance aforibal no warrant for insubordinate language on Warden's part, and therefore no exemption from military arrest and pmishment for the sames. "For will he (said Lord Ellenlooromglı, ($\quad . \quad$. .) be less an olujacet of military punimhment, because the order of the Jioutconant-colonel, to which this langnage referred, might not be a valid one, and such as he was strictly cempetent to make.

There may be disorderly comdact 10 the prejudice of goorl and military discipline, in the manner and terms used and adopited by ons soldier in dissuading anothersoldier not to olney an order not strictly legal. If any crroneous order on the part if a Commauding Officer would not only justify the individual disobedience of it hy the soldier, but would justify him in making inflammatory and reproachful public comments upon same to his fedlow-sol. diers, crually the objects of such order with himself, is it poss ble that mîlitary orderand eliscojpline could be maintained?" The common defrence of ofticers, aguinst whom actions of this mature are lorought, is a justitication of their conduct as agreenalale to the dis. cipline of the service, and contributary to the maintenance of that discipline. And there catn he no doubt that where the conduct brought into question is not an oppressive, malicious, ormareasomable exercise of power, and does not amount to an excess or abuse of anthority, an action is wholly unsustainable. The principles ipon which the Courts of Law proceerl in actions arising out of the abuse of military power, will receive further illustration from the language of Lord Mansfield. in summing up the evidence to the jury in Wall v. Macnamara. ITis Lordship thus (xpressed himself: " In trying the legality of acts done by military officers in the exercise of their duty, particularly beyond the seas, where cases may oecur without the possibility of application for proper advice. greater latitude ought to be allowed: and they ought not to sufferfor a slip of form, if their intention appears by the evidence to have been upright. It is the same as when complaints are bronght against inferior Civil Magistrates, as Justices of the Peace, for acts done by them in the exercise of their civil duty. There the principal inquiry to be made by a Conirt of Justice is, hom the heurt stoud? and if there appear to be nothing wrong there, great latitude will be allowed for misapprehension or mistake: But on the other hand, if the heart is wrong-if eruelty. malice. and oppression appear to have nceasioned or ageravated the imprisonment, or other injury complained of
they shall not cover themselves with the thin veil of legal forms, nor escape under cover of a justitication the most techaically regular, from that punishment, which it is your province and your duty to inflict on so scandalons an abuse of public trust." It is no, legal objection to an action for the abuse of military authority, that the defendant has not been tried and convieted by a Court-Martial, for that argument holds in no case short of felony. The intliction of an nnjust or illegal sentence, pronomaced hy a Conrt-Martial. is a good cause of action by the prisoner, against all or any of the Members of the Court, and all persons concerned in the execution of the sentence; such a sentence, if it exceeds the authorized neasure of pumishment, being not mercly invalid for the excess, but absolutely void altogether. The most remarkalle case on record of this kind is that of Lientenant Frye, of the Marines, who, after on unnecessary previous imprisonment for fourteen months, was brought to trial before a Naval Court-Martial at Port Royal in the West Indies, and sentenced to be imprisoned for 15 years, for disobedience of orders, in refusing to assist in the imprisomment of another officer, withont an order in writing from the Captain of Her Majesty's ship Oxford, on board of which Licutenant Frye was serving. At the trial the written depositions of several illiterate Blacks were improperly received in evidence against him, in lieu of their oral testimony, which might bave been obtained and sifted by crnssexamination ; and the sentence pronounced was itself illegal for its excessiveness, the Act 22, George II., which contains the naval Articles of War, not allowing any imprisonment beyond the term of two years. On the return to England of Admiral Sir Chaloner Ugle, the president of the Court-Martial, Lieutenant Frye brought an action against him in the Court of Common Pleas for his illegal conduct at the trial, when the jury under the direction of the Lord Chief Justice Willis, gave a verdict for the Plaintiff, with $£ 1,000$ damages. The Chief Justice at the same time informed Licutenant Frye that he might have an action against all or any of the other members of his Court-Martial; and Lieutenant Frye accordingly issued writs against Rear Admiral Mayne and Captain Renton, upon whom the same were served as they were coming assore at the conclusion of the proceedings of the day at another Court-Mar tial, of which they wereacting members, for the trial of Fice Admiral Lestork, for his conduct in a naval engagement with the French fleet off Toulon, in the early part of the same year. This was deemed a great insult by the members of the sitting Court-Martial, who accordingly passed some resolutions or remonstrances in strong language, highly derogatory to the Chicf Justice, which they forwarded to the Lords of the Admiralty, by whom the affair was reported to the King. Mis Majesty, throngh the Duke of Newcastle signified to the Admiralty "his great displeasure at the insult offered to the Court-Martial, by which the military discipline of the navy is so much affected: and the King highly disapproved of the lehavior of Lieutenant Frye on the oecasion." The Lord Chicf Justice, as soon ans he heard of the resolutions of the Court-Martial, ordered every member of it to be taken into constody, and was procect ing to uphold the dignity of his Court, in a very decidecl manner, when the whole allair was terminated in November, 1746, by the Nembers of the Court Martial signing and sending to his Lordship a very ample writtem apology for their conduct. On the reception of this paper in the Court of Common lleas it was read aloud, and ordered to be registered amone the records as a "Memorial," satid the Lord chict Justice, "to the present and futnre ages, that whoneverset themselves up in oppusition to the laws, or think themsedves above the law, will in the end find themselves mistaken. 'The proceedings and the aporlogy were also prblished in the lamiden frazete of 15th Nowember, 1746. It may he uscful to mention here, as a legal point giving rights of zedress between
miliary men, that a Superior Officer cannot safely deal for his own advantage, in money matters, with a Junior Officer under his command. The influence which a Senior Ollicer can exercise over his Junior is such is to destroy, or at least to control. in the purview of a Court of Equity, that entire feeling Which is very proper and essential to the pertection of a bargain or contract; and if a Regimental Otherer phapes limself in a position where such influence may operate to the prejndice of the Junior, the transactions between them are hable to be set aside for want of fairness or conscientionsness. This is the rule appliced to deatings between a guardian and his ward, a physician and his patient, a landlord and his steward, a clergyman and a penitent, and all other cases where the existence of just and unavoidable influence may lead to abuse.
11. Wrongs toreards Persons not under Military I uthurity.-Injuries may be occasioned to persons not subject to military anthority, by officers mistaking or excerding their powers, or exercising them with malice, megligence, or unskilfulness; but for acts of this kind a remedy lies only in the Civil Cour's; the military tribumals, as already observed, having no jower to grant pecuniary compensation by way of clamages, and non-military persons laving no locus xtendi as prosecutors before such Courts, which are instituted solely for the maintenance of order and discipline among the armed forces.
In cases of the kind now nuder consideration, it is quite immaterial whether the cause of action has arisen within the realm, or beyond the seas; fhough this proposition was not finally established until the year 1774, when the great case of Fabrigas r. Mostyn was determined in the Court of King's Bench, and put an end to all further question or doubt upon the subject. The Plaintiff was a native of Minorea, of which Island the defendant, General Mostyn, was Governor. The deneral had by his own absolute authority imprisoned the plaintiff and banished him from the Island without a trial. The defence was, that in the peculiar district of Minorca, where the offence oceurred, no ordinary Court or Magistrate could have had jurisdiction. But the proof of this defence failed, and the jury gave the plaintiff $£ 3,000$ damages The olyjection, however. was taken that the action did not lie, by reason of the foreign locality of the cause of it, and the point was twice argued at great length; but judgement was eventually pronounced against General Mostyn, in accordanee with the verdict of the jury. It should be noticed also that as General Mostyu, happened to be a Governor, his apperintment gave him the character of a Viceroy, so that heully and during hisgucernment no civil or criminal action lay against him. On priuciples of public justice, therefore, it was necessary that a remedy should be had in England. The undue asisumption or mistrken excrcise of authority by officers towards non-military persons, is a clear ground of action against them in the Civil Courts, even though there be mo malice accompanying the transaction.
Captain Gambier, of the Navy, umder the orders of Admiral Boscawen, pulled down the houses of some sutlers on the coast of Noya Seotia, whon supplied the the seamen of the llect with spirituous liquors. The act was done with good intention on the part of the Admiral ; for the health of the sailors hat been affected by frogucnting these houses. Captain (iambier, on his return to England, incautionsly lorought home in his ship one of the sutlers whose houses had been thas demolished. The man would never otherwise have grot to England; hut on his arrival he was atvised to bring an action against Captain Gambiar. He did so, and revovered \&1,000 damages. But as the Captain had acted ly ihe orders of Ammal Bosawen, the representatives of the Admiral defended the aceion, and paid the damages and costs. This was a favoratbe, case, unaccompaniod ly any malirions fecling ; but the parties concerncel did not attempt to disturb the verdict. Admiral Sir llugh
lalliser was defendant in similar action for dostroying fishing luts on the Labrator enast. After the 'reaty of laris, thr Cumalians, carly in the swason, -recterl huts for lishing, und hy sucli mestis obsuinorl an alvantage over the fisherment who camm from lingland. It was a nice (fuest ion ujon the rights of the Canadians. But the Admirnl on the eromats of public poblicy, ordereal the huts to be lessoroved. An action was bomeght against him in bourland ly ond of the injured jartios, and tho (case ended in arbitration. But on the part of the A hmiral it wiss mevor rontended that the ardion dicl not be ly remson of the subject-matter of oexarremee berond the satis.
" I remember," sajal horel Hanstielil, "early in my"
 fer in the train of artillery anainst (iovernor cabine, Who was Governor of Gibiralere, and who lath buraly
 the phantint had becon tried and sentencerl to be whitsperl. 'The Guvernor was very ably wofonlod, but nobody wer thought the action woinll not lie; aml it being proved that the tradesmon whon followed the train were mot linhle to martial law, the Court wore of that opinion, ame the jury fomme the defemotat guily of the trespass, as liaving laste a pare in the sentence, and gave frou damages." The following (ensw, involving the samu principle, oceurred in Intia, amd was there tried before the suprcme (ourt of Mad ras. Mr. II. Smitl was arent, at Secombleratud, of a merantile honse at Midras, from whom hu received a wory handsome salary. IIe became intlehted to a soldier of I1. $11 .{ }^{1}$ s 33 d regiment for some work intrusted to him, and al dispute having arisem lutwen them as to the amount. this led to a vishent alheroationbet ween Mr. Smithand the Superintendent of the Bazaur acting under the local military resulations. Lientenant-colone! Gore therempon sent a file of men to arrest the Plantill, who was accordingly scized about six o'elock in the evening, and mariliod from his house through the streets of the cantommmit to the main guaril at Sucumderaload, where he was kept till twelve obelock the next day. In conswerner of 13we proceedings, he brought an artion against Colonel Gore for false imprisomment. Secumderatual was and open cantomment for a part of the subsiotiary force scrving in the Territories of the Nizam; the force consisting partly of British and partly nativetroops. It had harracks, and the men were hutted. It was also upon a fielal establishment, constantly roaly for immediate service. 'The Article of Wiar them in force, was thus intituted, "Of duties in cuarters, in gatrison, and in the field ; "and it enacted, " that all sutlers and retainers to the camp, and all persons whatsocver serving with forces in the pirht, though not enlisted soldiers, are to be sulyject to orders. hecording to rules and diseipline of war." Sir Thomas Strange, C. J.: "Thequestion was, whether the troops, lifing cuntoned, were in the state to which the cited Irticles of Winr applied. The Court thought they were not. It might have been a lichl force, being ipon a field establishment, so as to be reaty 10 move at the shortest notice. Thore might le great similarity in the arrangements adopted for anmy, whether in the field or cantoned. I respectable witness, Bri-gate-major Lyne, intimated as much. Still, so far as the Court conlel form a judgment upon a puastjon of this nature, there seemed to be a difterence tretween a camp and a cantomment, whicls appeared material. When in the fiekl, not only the army, but its appendages, mast be under the finmediate control of the Othecer Commanding it, according to the rules and discipline of war. So situated. the suther, who ehose to follow the cimp, identitierl himself in a mamer with the soldier for every purpose almost but that of fighting.

Thu plamfilf called upon the ('ourt to say, whether the force in question, under the command of the lefendant, was at the time in the field. It seemed imponsible to say that it was. without confomming ideas stparently very distinct.

The defendant appear-
ar] To have artml mandar a mintake of his anthority, for which be was liable 10 answor, as it hasl hor-1 promlưtive of serious injury to the plaintiff." fuclarment was threfore givenaginat (onlonel (iors, with fifty pmgorlus damages. In the foreconingr caso refor"Ace was madre to an atction brought by Mr. Kubart Bailio, an up-ronntry trador in the presvince of ben-
 issanlt and false imprisonment. Dr. Mailic lade resillel within the cantommonts of (itwnjore for many years, and denlt in Enropean urtielas, which bo principally disposer of on the miliary stationed there. In octohor, 1707, upon a (onmplaint mate: to lim loy one of the people of his Kamamh, he tion up and brory severrly flogeral wne of his rhomrhydrers. Jotor this act Major-tioural Sitewart orthrerl Mr. Wailie to he tricel ly C'ourt-Xartial ; and as ho ackuowloclgedl to hav* nsicol no less than six switrh whipa in the llouse ing: alloging as his reasom, last as thoy were new whips lue was afraid of breaking them ind spoiling thoir sale the Coart-i)artial sembencorl him (or five ditys imprisomment, mol to mak an apology th the ('ommanding Onicer. 'This sontence (ioneral Stewart, thourht he dinlnot approve of it, rentirmet] ; and issural orders for Mr. Bailie to depart the carmpas soon after hisumbargement as possible: The supreme ('ourt of Conleutta lackl Mr. Bailive to be a sutler within the meaniner of the Articlo.s of War. so ats to render lim amomable to military law. Jout in the above mone tioned action of simith 2 . Livutenant-ooloned forse,
 erncel ly the deceision in (icomeral Stowart's caser, as the note furnished to the Court did not elearly slow whether or mot the army was in the fiele when the transaction orctirert. An unrerswnenthe or watifines excrese of power will, in like mamarr, ronder an otticer liable to an artion for dammers. An instance of this occurred in the year 178\%, when an action was bronght against (fenerial Jurray, (fovernor of Minorea, for improperly suspending the Judle of the Vire-admiralty Court of that lsband. Yho General had professed himself realy to ristore the Judge on his making a particular apology: and on reforence to the Home Authorities, the King approved of the suspension, unless the Govermor's terms were romplied with. There was no doultia to Guoral Murray's power to suspend the Judge for proper eause ; yet, on the proof of his having imreasonathly and improperly exercised the anthority, and notwithstanding the King's approbation of his procerolings, clamages to the amount of $£ 5.000$ wore awarded against him by a jury; and, as Mr. Baron IVyre observed, it never oceured to any lawyer lant there was any pretence for questloning the verdict. Trgligenceor unakilfoulness in the exercise of an officeros duty may also be a cause of action for damages in respect of private injuries thus occasioned; and in sucla casess the approval of an oaticer's condract hy the Government, or hy the superior military anthoritis, will neither relieve him from liability to an artion, nor havo any intluence upon the alecision of the C'ourts of Westminstor llall. Thosetribunals investigate sucdumatters on independent evidence, according to their own rules. and pay no recard to the previous conclusions of ofticial functionaries, however ligh their rank may be.

It is a rule of English law, in unison with the law of mations, by whichall civilizud states arce governed, that no officer engaged in military operations in his country ${ }^{-1}$ eause. by the order or with the sanction of the constituted anthorities, shall incur any individual or private responsibility for acts lone by virtue of his commission or otlicisl instructions. Fuch transactions being of apulblic nature, redrese or satisfation for injuries to whichthey rive birth, is to ba sought by public means alone. from the soverejon power of the belligeront or offenting state, according to the principles of international liw, and the general usiges of civilization, which neversulfor such mathers to be litigated before ordinary tribmats. If. in time
of peace, the citizens of a friendly Foreign State sustain a private injury at the hands of a uaval or military onticer serving under the orders of the British Government, but unauthorized by his commission or instructions to do the act complained of, the ordinary tribunals of England afford the same redress against him as in the case of a British subject similarly aggrieved: and this rule applies even in those cases where the violated rights of the foreigner are such as the law of England denies or prohibits to its own subjects. But if the British Goverument have expressly instructed the ofticer to commit the act which constitutes or gives occasion to the grievance, the matter becones an affair of state whiclt is not cognizable by the Courts of Law, and must be alljusted by diplomatic arrangement between the two Governments concerned. In such cases also it is quite sufficient, if the ollicer's proceedings, though not originatly directed or anthorized by the terms of his instructions, are afterward sanctioned and adopted by the Government; for this renders them public acts, over which courts of law have no jurisdiction.
INJURIES TO CANNON:-With the exception of the bending of the trumnions of bronze cannon by long firing, the principal injuries to which cannon are subject, are internal. and arise from the sejarate actiona of the powder and the projectile. They incrase in extent with the caliber, whatever may be the aature of the piece. but are modified by the material of which it is made.

The injuries from the powder generally occur in the rear of the projectile. Tbey are, 1st. 'The cnlargement of that portion of the bore which contains the powder, arising from the compression of the metal. This injury is more marked when a sabot or wad is placed between the powder and the projectile, and is greatest in a vertical direction. 2d. Cavities, produced by the melting away of a portion of the metal by the heat of combustion of the charge. Bl. Cracks, arising from tearing asunder of the particles of the metal at the surface of the bore. At first a crack of this kind is scarcely perceptible, but it is moreased by the continued firing until it extends completely through the side of the piece. It generally commences at the junction of the chamber with the bore, as this portion is less supported than others. 4th. Furroons, prodnced by the erosive action of the inflamed gases. This injury is most apparent where the current of the gas is most rapid, or at the inner orifice of the vent, and on the surface of the bore, immediately over the seat of the projectile. The wear of the vents of bronze cannon is obviated by inserting a copper vent-piece. The effect of continuous firing on the vents of iron cannon is to produce a uniform en-子argement of the inner orifice, and to seriously weaken the prece. The appearance of a vent thus enlargcd, is irregular and angular, with its greatest diameter in the direction of the axis of the bore. To obviate the scrious consequences that result from this injury Captain Dahigreu has placed in his naval guns two vents, each a short distance from, and on opposite sides of the vertical plane, passing through the axis of the piece. One of them is filled with melted zinc, the other is used until it becomes so much enlarged as to endanger the safety of the piece; it is the're filled with zine, and the first one opened.

The injuries arising from the action of the projectile oceur around the projectile, and in front of it. Thoy are, 1st. The lodgement. This is an indentation in the lower side of the bore, prothered ly the pressure upon the ball by the escape of the gas through the windage, before the ball has moved from its seat. The elasticity of the metal, and the burr, or crowding up, of the metnl in front of the projees tile, canse it to rebound, and heing earried forward by the foree of the charge, to strike against the upper side of the bore, a short distance in front of the tramnons. From this it is reflected agranst the bottom, and re-retleeted amainst the top of the bore, and so on until it leaves the piece. The lirst inden-
tation is called the lodgement ; the other cnlargements. In pieces of ordinary length, there are generally three enlargements, when this injury first makes its appearance, but their number is increased as the lodgement is deepeued and the angle of incidence increased. Bronze pieces are considered unserviceable when the depth of the lodgement is .18 in., and the depth of an enlargement is. 16 in . The effect of this bounding motion, is to alternately raise and depress the piece in its trunnion-beds, and to diminish the accuracy of fire, until finally, the piece becomes unfit for service. It is principally from this injury that bronze gnns become unserviceable. Mortars and howitzers are not much affected by it. The principal means used to obviate this injury, are to wrap the projertile with cloth or paper (as the cylindercap of the cartridge used with field-gins), and to shift the seat of the projectile. The latter may be done by a wad, or lengthened sabot, or by rectucing the diameter and increasing the length of the cartridge. The last of these methods is considered the most jractical as well as the most effective : and it has an additional advantage of dinninishing thestrain on the bore, by increasing the space in which the charge expands before the ball ean be moved. The French bronze siege-runs, which formerly were rendered unserviceable in 600 service-rounds, now endure, by this method, 2.500 service-rounds. 2d. Srratches, or furrows made upon the surface of the bore by rough projectiles, or by case-shot. This is not a serions injury. Bd. Cuts, made by the fragments of projectiles wbich break in the bore. 4 th. Hearing array of the lands of ritte-cannon, especially at the driving edges. 5th. Enlargiment of the muzzle, arising from the forcing outward of the metal by the striking of the projectile against the side of the bore, as it leaves the piece. By this action, the slape of the muzzle is elongated in a vertical direction. 6th. Cracks on the exterior. These are formed by the compression of the metal within, generally at the chase, where the metal is thinnest. This portion of a bronze-gun is the first to give way by long firing, whereas, cast-iron cannon are burst in rear of the trunnion, and the fracture passes through the vent, if it le much colarged.

The principal injuries to which cast-iron cannon are hable are the wearing away of the metal of the bore above and below the projectile, and at the interior corners of the vent. In guns which have seen much service the enlargements thus occasioned have: been known to exceed one inch in botheases. It has been seen that the strength of cast-iron cannon is diminished by repeated firing, and that there is a limit beyond which they should not be used. For American cannon this limit has been fixed at one thousand service-rounds. The number of times which an iron pioce has been fired may be approsinately determined by the size of the bore, and vent if it be not busled. The first is taken with the "star sauge." and thesecond by an impression in wax. slight eracks in the surface of the bore, particularly about the seat of the charge, indicate the approaching fracture of a custron gin. The injuries to which wrought-iron cannon are most subject, are the enlargement of the bore by the extension or compression of the metal aromed it, and the rapid enlargement of slight cracks and cavities by the flame of the powder. Sce Cannon.
INLYING PICKET.-A body of infantry or cavalry in campaigu, detailed to march, if called npon, and held ready for that purpose in camp or quarters

INNER.-The name given toa certain part of a targot. A shot striking in this space (a circular ring). on the (renchmor target counts3. (n) the regulation target. the smallest circle, always painted black, is called the bull's-cye; the ring embraced between the bull's-cye and the circumference of the next larger circle is called the center: the ring between the second and third circles is called the inner; and the space ontside the lariser cirels is called the outer. In the target ropresented on next page, the swace between
the second circle and the vertiont lines is the immer, tuth the space ontside the vertiond lines is the onter.

INNEK FLANK. - I'hat which is nofrer thro peint on which a lino rests, or which js farthor from the commy. In drill, it is always that flank which is nearer the pront from whiels the line is dressed.

Inmer
INNISKILLINERS.-In the British service, oflicors and soldiers of the Sixth b)ragoons and the 'I'wentyseventh Font ; socalled from the two reginants havinm been originally raised at Inniskillen, a town of Clister, where the inhubitants distincuished themselves in favor of King William agrinst Jances II. Oftrn written Enmixkilliners.

INROAD.-The entrance of an enemy into at comtry with purposes of loostility ; a sudden or dessaltory ineursion or invasion; encroachment, notwitlistanting efforts to prevent it.

INSCONCED.-In the military art, when any part of an army has fortified itself witl a seonce, or small work, in order to defond some pask, "lc., it is said to He insconced. Enseonce signities in it general sense to cover as with a fort.

INSPECTION. -Divisions and brigales are inspected between the fifteenth and twantieth of eachmontly by inspecting ofticers designated for the prarpose. The Commanders of regiments and posts make an inspection of their commands on the last day of every month. Captains inspeet their compumes every Sumday morning, and no soldier is excused from Simday inspection except the guard, the sick, and the necessary attendants in the hospital. Medical officers having charge of hospitals make a thorongla inspection of them every Sunday morning. Troopsare inspected when mustered for payment. Besides these inspeetions, frequent visits are made during the month by the Commanding Ofticer, company and medical oftieers, to the men's quarters, the hospital, guardhonse, etc. Except when otherwise specially proviled for by the Secretary of War or the (ienceral of the Army, every military post, station, and command in the Army is inspected at least once every your by Division or Department Inspectors, under the direction of their respective Commanders. In addition to these inspections, post, station, and other permment Commanders, between the first and fifth days of September in each year, make thorough inspections of their respective commands, and forward reports thereof, Urough the proper military channels, to the Insueetor General's Office, at the lleadquarters of the Army, so as to reach that oftice mot hater than October 1st. These reports do not interfere or dispense with those of the inspecting officers.

Inspections are made under specific orders clearly acfining their object, which will be exhinited to the oflicers whose troops or affairs are to be examined. Commanding Ofticers are to see that every fincility is afforded for such examination. Inspectors give orders only when specially authorized to do so; and then orive them in the name of the ofticer authorizing it. They must report with strict impartiality all irregularities. They should refrain from informal conversation on the subjects of investigation, and from all expression of approval or clisapprobation. Inspectors take care that no injustice be done to organ-
iations or individuals by reports bot fully hustainert

 that oppertunity will he given any soldier to lay hofore hima a woll-yrommatol connplatint withont any of his olllecers bring prescont.

Tha* sishere of impuity of linsurators genore ally includes revory bramelu of military alfairs, and whother the military laws amb rogulattions ar" fully complical with. In anoritic rascos, it is clefimed amel limited by tho ordero thoy receive. finnerally. report is marla as to \%eal and ability of Commanding Otberers, and whether they posseqs the repuisito profors sional knowledig(for the proper faxpreiso of thair rommanal; whether they jureserve harmony and manimity in the command, amd obscerve the systom of instruction and Ircotment of smbordinates enjoincel by the lacermlations: whether the ofticers are juroperly instructed and eflieient. Special reportis also to low matle in case of any ollieer of intem perate or immoral hablits, or who has proper assosociates. wr whon is uddicted to gaming, or is unfit for active scrvier ly intirmity or any other rance; Whether the numbor of men in ranks at inspection corresponds will the returns, and how absentees are acentinted for; whether the band excerels the authorized number, and any men not musiciuns are mustered with it, as to the discipline military appearance. and bearing of the troups: their instrmetion in all military exrreises and daties ; the nature and frequency of exereises and recilations in tactios the target practice; whether they are practioed in mareloing with the full kit; the state of their luatteries, or arms, equipments, and aceouterments of all kiuds: the sutlicicney, uniformity, and fit of their clnthing; when the troops were last paid, and, if jayment be doferred, the canse of delay.

In the inspection of is post, it should be reported when and by whom the jost was last inspected; whether it be sufficiently garrisoned, and the armament and supplies of all kinds snftieient in kind and quantity; the strength of the garrison and its armament: whether the Commanding Oflicer is familiar with the design and eapacity for def (ase of the work, the ground in its vicinity, and the primeiples of lefense of fortified places; in case of fronticr and seneoast forts, whether the Commamders unterstand and properly execute the laws relating to neutrality, quarantine, etc., and the regulations prescribing international eourtesy; as to the cleanliness, state of repair, and sanitary condition of barracks ankl quarters; as to the kitchens and messes, the sutticieucy, variety, and preparation of food; of the guard-bonse, prisons, bake-house; of the hospital, and whether the sick are properly cared for; of the stables, harness, means of transportation and animals, the number unserviceinble: in the case of Cavalry and Artillery horses, as to their grooming, shoeing, veterinary tratment, and general condition; as to the capacity of the officers conducting the Administrative intl Staff services. the fidelity and conomy of their disbursements and whether payments and issues are made strjetly in accordance with law and the Regulations. The regularity of issues and payments; whether supplies reported on hand are verified; whetler the labor of the supply departments is performed by troops or by civilinns. If by civilians, their mumber, the cost, and reasons in justification of their employment : as to the condition of all public property and stores, and whether any is used for private purposes: whether mildings and property are properly sceured against fire, theft. exposure, and damage: whether forage, wood, and Subsistence supplics are properly protected and under sentinels; as to the neirhhoring Indian tribes, their mumber. disposition, and other information useful in a military riew; as to the population, resources, routes, and means of travel, etc., of the surrounding country.

INSPECTION ARMS.- A command in the Mannal of Arms, directing that the piece be placed in a preserilied position, preparatory to its inspection. The movement is executed as follows: The recruits being at order arms, bayonets fixed, the Instructor com-mands-

1. Inspection, 2. Arms.

Commencing on the right, the Instructor inspects the pieces in succession. Each recruit, as the Instrnctor approaches him, tosses his picece quickly with the right hand opposite the left eye, eatching it with the left hand between the rear-sight and the lower hand, the thumb extendid along the stock, the barrel to the right, and inelined slighty to the front, the hand at the lreight of the chin; he then passes his right hand quickly to the lock, placing the thumb on the liammer, the elbow raised as high as the hand, the fingers, closed together, extending in front of lock. (Two.) The recruit presses the thumb, on the hammer, lowering the elbow at the same time, and brings the hammer to the half-cock; then drops the right hand by the side; the Instruet. or takes the piece with the right hand at the small of the stock (the recruit dropping the left hand by the side), inspects, and hands it back to the recruit, whoreceives it with the left hand in the position prescribed in the first motion passes his right
 hand, as before, to the hammer, and the fore-finger to the trigger, which he pulls, at the same time pressing the hammer downward to free it from the hattcock notch, thus bringing the hammer to the safetynoteh; the piece is then lowered with the left hand, scized near the middle band with the rirht, and brought to the position of order. As the Jnstructor reinms the picce, the recruit next on the left throws up his piece to the position of inspection, and so throughout the squad. Shonld the piece be inspected without landling, the recrnit resumes the moder as the inspector passes to the next man, who immediately tosses up his piece.

INSPECTION MARKS. - All cannon are required to be weighed, und to be marked as follows, viz.: the number of the gun, the initirls "f the Inspectorssname, on the face of the muzzle-the numbers in a separate series, for each kind and caliber at cach foundry; the initial letters of the mame of the founder and the foundry, on the end of the right trunnion; the year of fabrication, on the end of the left trunnion; the foundry number, on the end of the right rimbase, above the trunnion; the reight of the piece in pounds, on the base of the breech; the letters U. S., on the upper surface of the piece, near the end of the reinforce. The natural bine of sight, when the axis of the trunnions is horizontal, should be marked on the basering and on the swell of the mnzale, whilst the piece is in the trunnion-lathe. Cannon rejected on inspection, are marked XC , on the face of the muzzle; if condemmed for erroneous dimensions which cannot be remedred, add XD ; if by powder-proof, XP; if by water-proof, XW. Converted guns are marked as follows: The number of the gun; the weight of the piece in ponnds; the initials ofthe Inapactor's nurme, and that of the fimmetry whore the gun is converted, and the yourof"the conversion on the face of the tube, in a circle concentric with the bore, in letters and firnres at least one inch long. The initials of the foundry where the tube is mude, and the number of the tube insmall type. on the fice of the tube, under the initials of the lnspector. The results of all tinal measurements and examinations are noted on the inspection report of the genn. Sire /nspertion of I Irduaners.

INSPECTION OF ACCOUNTS. - The Inspections of bisbursinus "flicers' acconnts, whichare retuired by law are matle (puarterly, or four times within the your, with at rasomable intrral belwern any two cxaminations. Divisionand Department Commanderensu-
ally provide for the inspection of Disbursing Officers' accounts through the Inspectors attached to their headquarters, or by detail of suitable officers within their commands for the purpose. The law provides, in regard to Imspection of Accounts, "that no officer so detailed sliall be in any way connected with the Department or Corps making the dishurscmen*." The lnspector makes a minute and thorough inspection of the accounts of Disbnrsing Officers, and compares the result in each case with the officer's balance at his place of deposit; and anch Inspector is held responsible for any defalcation or misapplication of the public money or property which may occur within the command to which he is assigned that an active vigilance on his part might have detected.

INSPECTION OF CONDEMNED PROPERTY, Inspectors are the only ofticers authorized to inspect public property with a view to condemnation. The final disposition of condemned property, except it be worthless, can only be ordered lyy Conmanding Generals of Departments. All surveys and reporis hitving in view the condemnation of public property, for whatever cause, shonll] be made by Inspector Generals, or lnspectors specially designated by the Commander of a Department or an army in the field, or by higher authority. Such surveys and reports having a different olyject from those of Boards of Survey, are required independently of any preliminary action of a Board on the same matter.

An officer commanding a Departınent, or an army in the field, may give orders, on the report of authorized lnspectors, to sell, destroy, or make such other disposition of any condemned property as the case may require-ordnance and ordnance stores alone excepted, for which the orders of the War Department must always be taken. But if the property be of very considerable value, and there should be reason to suppose that it could be advantageously applied or disposed of elsewhere than within his command, he should refer the matter to the Chief of the Staff Department to which it belongs, for the orders of the War Department. No other persons than those above designated, or the General-in-Clicf, can order the final disposition of condemned property, saving only in the case of horses, which should be killed at once to prevent contagion, and of provisions or other storeswhich are rapidly deteriorating, when the immediate Commander may have to act perforce. Inventories of condemned property are made in triplicate, one to be retained by the person accountable, one to accompany his accounts, and one to be forwarded through the Department, or other superior headguarters, to the Chief of the Staff Department to which the property belongs.

Officers inspecting public property canse the destruction, in their presence, of all property found to he worthless, and which is without any money value at the place of inspection. The action of an Inspector, on property of this character, is final, and his inspection report on the same is a valid voucher for the othecer responsible for the property. In the discharge of the duty devolved upon luspectors in this regulation, they are regarded as answerable that their action is proper and judicious according to the cireumstances of the case. Unserviceable arms and stores will be insperted and disposed of in like manner with other property. Their sule can be ordered by the Secretary of Wrar onls.

INSPECTION OF ORDNANCE. - The objects of inspecting cannon are to verify their dimensions, particularly those whicla affect the acouracy of fire, and the relation of the piece to its carringe, and to detect any defects of metal and workmanship, that would ha likely to impair their strength and endurance. Smonth-hore (mmonn presented for inspection and proof are placed onakids for the eonvenience of turning and moving them cusily. They are first examincd carefally on the exterior to asecrtain whether there be any llaws or eracks in the metal, whether they be timished as prescribed, and to judge, as well is prac-
ticulle, of the guality of the motal. They mast not be covered with paint, lackere, or any other fomposexition. If it be ascertained that ant netmph has bern made to conceal any hawe or cavilies lyy phatging or tilling them witherment or any substance, the gin is rejerted without farther examimation. After this proliminary examination, the Inspector procecels to verify the dimensions of the pince. "The int"rior of the bore is first examined by reflecting the sun's rays into it from the mirror, or, if the sim beolscured, liya lighted randle or a lamp phaced on the end of a roct and inserted into the bore. "Ihe cylinder-gatese serewed on the statl is then phased gently to the botom of the eylindrical part of the bore and withdrawn; it must go to the bottom or the bore is tor small. The bore of the piace is then measural with the stargauge, beginning at bottom. Mcasurements should be made at intervals of fineln to the fromt of seat of shot, and at intervals of 1 inch from that point to the muzgle. In rifled guns the measuremonts are taken from land to land, and afterwards from groove to groove, the head of the stur-gange being fitted with the suitable" snide" to insure the proper position of the measuring points. The position of the trumnons with regard to the axis of the hore and to rach other is next asedrained. To verify the position of the axis of the trmanions, set the trimnion-seluare on the trunnions, and see that. the lower chlese of its branches touch them throughout their whole length; push the slide down till it tonches the surface of the piere, and secure it in that position by the thmon-sirew; turn the gun over, and apply the trumion-square to the opposite side, and if, when the proint of the slide tonches the surface of the piece, the lower edges of the branches rest on the trunnions, the axis of the trunnions is in the same plane with the axis of the bore; if they do not touch the trumnions, their axis is above the axis of the bore by half the space between; and if the edges touch the trunnions and the point of the slide does not touch the surface of the piree, their axis is below the axis of Hre bore. If the alignment of the trunnions be accurate, the edges of the trunnion-square will fit on them when applied to different parts of their surface; their diameter and cylindrical form and the diameter of the rimbases are verified with the trunnion-gauge. To ascertain the length of the bore, screw the guide-plate and measuring-point on the cylinder-staff and push them to the bottom of the bore; place a half-tompion in the muzzle and rest the staff in its groove; apply a straight-edge to the face of the muzzle and read the leugth of the bore on the staff. The exterior lengths are measured by the rule or by a profile, the acentacy of which is tirst verified; the exterior diameters are measured with the calipers and graduated by a rule. The position of the interior orifice of the vent is found from the mark made on the rammer-head by the vent-gange inserted in the vent, while the ranmerhead is hed against the bottom of the bore. Two impressions are taken. The position of the exterior orifice of the vent is also verified. The vent is examined with galuges, and the vent-searcher is to ascertain if there are any cavities in it. All smooth-bore bronze ordnance should be bored under size from . 04 to .0 F inch, and after proof, reamed out to the exact caliber. Whitish spots show a separation of the tin from the copper, and, if extensive, should condemn the piece. A great variation from the true weight, which the dimensions do not account for, shows a defect in the alloy. In mortars. the dimensions of the chambers and the form of the breech may be verified with patterns made of plate-iron. After the powder proof the lore is washed and wiped clean, and the bore and vent are asain examined, and the bore remeasured. The results of each of the measnrements and examinations are noted on the inspeetion report against the mumber of the gun. A proper discretion must be exercised in the inspection of ordnance: such slight imperfections as do not injure at piece for service may be disregarded, whilst the in-
structions slonald be sidretty enforced with regard to defects which may innair ite mitity.

The duties of the inspertion of converted gunserommence with the inseption of the work, and the most important are proformed before the gun is amphet
 before it is serewed intesplate. 'The different shonlders and the shape and pith of screw-threads ares similarly ganged hefore the parts are united: diammters of tubses are veribiol, and the base of the: tole and reerss for the muzalareollar before the insertion. The dimensions of the rasing are also prown. When the gran is presemted for limal inspection it is phaced horizontally on the skids, and inspected as explained above for smooth-bore camon.

That the tinished bore of a bronze piece may not be injurad by the pronf-charge, it is boretl out under size, from 0.4 to .05 inch, and, aftur jroof, reamerd out to the truesize. When the powder-prosef is 1inished, the bore shouk he cleaned and examined: the vent should he stopped up with a grased wooden plug, the muzale raised, and the gnn tilled with water, to which pressure should be applied to foree it inte any cavities that exist; or the water should loc atlowed to remain in the bore twenty-four hours. The bore mast then bes. ponged dryand clean, and viewed with a mirror or candle, to discover if any water orges from cracks or cavities, amd also, if any enlargement has taken place. The cumantity that runs out of a crack or honey-comb will indicate the extent of the defect : and if it exceed a few drops, the piece should be rejceted, although the measured drpth of the cayity may not excered the allowance. After the bore has been reamed out to its proper size, its dimensions are again verified, and an examination of the bore and vent is made, to detect any defects whirh mav have been caused or developed by the proof. Ihhitish spots show a separation of the tin from the copper, and, if extensive, should condemn the piece. I great variation from the true weight which the dimensions do not account for, slows a defect in the alloy.
Bronze cannon should be rejected for the following sized cavities or honey-combs: Exterior. Any hole or eavity 0.25 in . deep in front of the trunnions, and 0.2 in . deep at or behind the trunnions. Interim. From the muzzle to the reinforce, any cavity 0.15 in. deep. Any cavity from the reinforce to hottom of the bore. In all other respects, the inspection of cast-irou and bronze cannon are alike. See Calipers, Cascabel-block, C'kamber-gauge, C'ylinder-gange, Disk, Impression-taker, Heasuring-statf, Wirror, Profileboards, Proof of Ordnance, Rammer-head, Searcher, Star-gauge, Template, Trunnion-gauge, Trunnionrule, Trunnion-square, Vent-gauges, Vent-guide, and Vent-searcher.
INSPECTION OF POWDER.-The Inspector of gunpowder should satisfy himself before its reception as to the purity of the ingredients employed by the manufacturer, and that their proper preparation and careful manipulation through all the various stages of manufacture have been rigidly observed. Before powder for the military service is received from the manufacturer, it is inspected and proved. For this purpose at least 50 barrels are thoroughly mixed together. One barrel of this is proved. Musket powder should be fired three rounds with service charges. Mortar and cannon powder shoudd be fired three rounds with heaviest charges in a field and siece-gun respectively. Mammoth, hexagonal, cubical, prismatie, or other speciad powders, three rounds with battering charges from guns in which these powders are to be used. The density and grannlation of the powder. as well as the velocity and pressure obtained in its proof, should conform to the Ordnance Regulation in these respects, for the particular service or piece for which the powder is required, within the aflowed limits of variation.

Gunpowder should be of an eren-sized grain.angular and irregular in form, without sharp corners, and very hard. When new, it slonld leave no trace of
dust when poured on the back of the hand, and when flashed in quantities of 10 grains on copper plate it should leave no bead or foulness. It should give the required initial veloeity to the ball, and mot more than the maximum pressure on the gun, and should absorb but little moisture from the air

The size of the grain is tested by standard sieves made of sheet brass pierced with round holes. Two sieves are used for each kind of powder, Nos. 1 and 2 for musket, 3 and 4 for mortar, 5 and 6 for cannor and 7 and 8 for mammoth powder.

A compact shape of grain approaching the cube or sphere, is desirable. Elongated flat seales are objectionable. The number of grains in the several weigh ed stmples should be counted.
Diam. of holes for musket-powder..No. 1, 0.03 ion ; No. 2, 0.06 in. Diam. of boles for mortar-powder...No. 3, 0.10 in.: No. 4. 0.25 in. Diam. of holes for caonon-powder. . No. 5, 0.25 in ; No. 6, 0.50 in . Tiam. of holes for mammoth-powder No. $7,0.75 \mathrm{in}$. No. $8,0.9 \mathrm{in}$. Iferagonal, Dimensions of these powders yary with the caliber Cubical. $\}$ of the gun in which they are need, and have not as Prismatic. jet been definitely determined upou in our service.

Gravimetric density is the weight of a given mea sured guantity. lt is nsually expressed by the weight of a cubic foot in ounces. This cannot be relied upon for the trne density when accuracy is desired, as the shape of the grain may make the denser powder seem the lighter. Its only value is a fair idea of the value of air space in a given wright. The specific gravity of gnmpowder varies from 1.65 to 1.8 . It is import ant that it should be determined with accuracy. Alcohol and water saturated with saltpeter have been used for this purpose; but they do not furnish accurate results. Mercury only is to be relied upon. LIardness is tested by breaking the grains between the fin gers: the hardness is judged of by experience. It is very necessary that the density or specific gravity of the powder should be most accurately determined. For this delicate operation a very ingenious instrument has been devised by Colonel Mallet, of the French Army, called a Mercury Densimeter.

Initial velocity is determined by any of the elec-tro-ballistic machines available: the Boulengé chronograph is one of the simplest and most generally ased for proof of powder. The strain upon the gun is determined by the liodman pressure-gange, or some suitable contrivance. The amount of moisture in powder is determined by drying samples in an oven with a water bottom. A vessel of tin, dou-ble-walled, except the face containing the door, is fitted at the top withan opening for the introduction of water; the door is double; the inner skin-lining has perforations at the top to allow the escape of moisture given up by the powder. Ledges on the inside of the oven support the powder-trays. Before use, the water space is filled with boiling water; a spirit lamp keeps up the heat; the supply of water is kept up to compensate for evaporation. The powder is subjected to heat as long as it loses weight, the loss indicating the percentage of moisture driven off. On being removed from the oven it should he transferred at once to perfectly clean, dry, and air-tight weighing bottles. The ability to resist moisture is determined by subjecting samples which have been dried to exposure, first in open air, then in a hygroscope contuining a solution of niter at 100° cooled to 80° Fahr.

On breaking the grains, a tine ashen-gray color thronghout should appear; the grain texture should be chese, without white speckerern when magnitiel. "Flashing" on glass or porechain phates, smatl copper measures for fine-grain powders inverted outhe plates, kepps the hap nearly the same at cach trial. The powder shenkt be in smatl comical heaps; if the incorporation is good, only smoke marks remain on the phate after flashing: if bad, sperks of underomposed niter and sulphur will form a dirty residue. The test requires experience to insure good judgment. The relative incorporation is determined lyy the bal ance; the greater increase of weight on the plate, the less satisfactory the powder in this respect. Hoist
powder flashes badly. The report of inspection should show the place and clate of falorication and of proof, the kind of powder aml its general qualities, as the mumber of grains in 100 grains, its specitic gravity; whether hard or soft, round or angular, of uniform or irregular size; whether free from dust or not; the initial velocities and pressures per square inch obtained in each fire; the amonnt of moisture absorbed; and, finally, the height of the barometer and hygrometer at the time of proof. Each barrel is marked on both hearls, (in white oil-colors, the head painted black), with the mmber of the barrel, the name of the manufacturer, year of fabrication, and the kind of powder, cannom, mortar, or musket, etr., the mean initial velocity, the pressure per square inch on the pressurepiston, and density. Each time the powder is proved, the initial velocity is marked below the former proofs, and the date of the trial opposite to it. See Analysis nf P'onder, Densimeter, Gunuponder, and IIygroscope.
INSPECTION OF PROJECTILES. - The principal points to be observed in inspecting shot and shells are to see that they are of the proper form and size; that they are made of suitable metal; and that they have nodefects, concealed or otherwise, which will endanger their use, or impair the accuracy of their fire. As it is impracticable to make all projectiles of exact dimensions, certain variations are allowed in fabrication. They should be inspected whilst perfectly clean, and before becoming rusty, so that flaws and imperfections in the metal can be detected by the eye.
Spherical Projectiles.-The inspecting instruments required for shot are one large and one small gauge and one cylindrical-gauge for each caliber. The cylinder-gange has the same dianeter as the large gauge; it is Constructed of cast-iron and is five calibers long. The large and small gauges are made with a difference in diameter of 0.02 incl for projectiles turned in a lathe, and 0.04 inch for those not so turned. All these ganges should be verified from time to time, and when they have become 0.01 inch larger than their truc diameter they should no longer be used. One hammer having a flat face and a conical point. One searcher of steel wire. One cold-chisel. Steel puncher. Figure-stamp.s.

The shot should be inspected before they become rusty; after being well cleaned each shot should be carefully examined to see that its surface is smooth, that the metal is sound and free from seans, flaws, and blisters. If cavities or small holes appear on the surfaee, strike the point of the hammer or punch into them and ascertain their depth with the searcher; if the depth of the carity exceeds 0.2 inch, the shot should be rejected. The discovery of any attempt on the part of those engaged in the fabrication of the shot to conceal sucin defects by filling up the holes shonld insure rejection. The shot must pass in every direction through the large gauge and not at all throngh the small one, and the mean of their diameters shonld be nearer that of the former gange than of the latter.

After having been thus examined, the shot are passed through the eylinder-gange, which is placed at an inclination of about two inches between the t wo ruds, and supported on blocks of wood in such a manner as to be easily turncel from time to time to prevent its being worn into furrows. Shot which slide or stick in the cylinder shonld be rejected. The average weight of shot of 10 inches and under is deduced from that of three pareds of 20 to 50 each, taken indiseriminately from the pile ; some of those which appear to be the smallest should be also weighed, and if they fall short of the prescribed weight of their caliber lyy more than one thirty-second part, they should be rejected. Shot of larger caliber than 10 inches should cach one be weighed by itself amb its weight stamped mpon it near one of the ears for the shell-hooks.
The dimensions of grape and eanister shot are ver ified by means of a large and small gatuge attached
to the same hamble. The surface of the shot should he smooth and free from semms and cavitios. Wor the inspertion of shells and case-shot, the following insperting instruments are required in matation to those used in inspectingshot, vi\%: 'alipurs for monguring the thiekness of the projuctiles at the side. Cinlipers for measuring the thickness at the bottom. Ganges for the diminsions of the fuse-hole , and for the thickness of metal at the fusc-hole. A puir of hemd-bellinos: moentert plugs to fit the fuse-bole and bored through to receive the muzale of the bellows.

The surface of the shell and its exterior dimensions are examined as in the case of shot, partionar attention being paid to the hanisplare opposite the
other indication of the somadnese of the mernt, as the parts containing cavitios will dry more slowly than the other parts. The man wright of slaclls of 10 inches and moder is aserertained in the sane manmer as that of shot, and larger ones shombld be weighe.d and stamped the same ass with ghot of like caliber. All projertikes rejerted in the insporetion shomblathe markel with an X made with a rold-chisel; on shot nome the gate: or, whon turned, nour one car, and on hollow projertiles nome the fuse-lable.

Elengrad Progectites - The following Table will show the points upon whish the lusperting oflicer must inform himself and repert lefore aceepting shot, and the variatioms he is authorizel to allow:

Sulject of measurement.

Profectile:
Lengeth of eylindrian portion of hotly
length of heat
Length of base for salont
Total length of projuctite
Diameter of cylindrical portion.
Diameter of hase over threats.
Piteh of threads.
Rarling of head.
Thickness of bottom.
Length of interior ravity
Thickness of walls at inelue fo......
Thickuess of walls at-inches from-
Eceentricity of axis of interior eavity. at-from lase.
Diameter of fuse (or screw-phog) hole.
Pitch of thread on fuse (or serew-phag hole).
Length of thread on fuse (or screwpling) hole.
Diancter of hole for shell-hooks
Depth of hole for shell-hooks.
Distance from loase of projectike.
Weirht of projectile, pounds.
Sabot:
Height of sabot.
Exterior diameter of sahot
\qquad
Interior diameter of sabot.
Maximum thickness of outer lip
Mininum thickness of outer lip
Depth of camelure.
Maximum width.
Weight of sabot.
Weight of sabot and projectile, pound

Allownd variations

 *แim'd. cepterl.No. rejected for erroneons dimensions of heat.

No. rejected for crroneous
dimensions of cylindric No. of sabots examined... body or base.

No. rejected for erroncous: dimensions of interior eavity.

Nog. of sabots rejected for erroneous dimensions...

No. rejected for recentri- No. sabots rejecterl for decity of interior cavity... $\pm .01$

No. rejected for defectsin material or finish.

Total rumber of sabots rejecterl.

No. of sahots accepted....

Weight of total number accepted.

Mean weight of sabot.
Weight of heaviest one ac-
cepted
Weight of lightest one ae-
cepted
Weight of total number of
fuse-hole. Cavities and inperfections in easting are generally found about 30^{*} from the top of the shell when in the position in which it was cast. Shells should be rejected for rongh casting, projecting seams, sand-flaws, a collection of dross, cavities or linner-combs of more than two-tenths of an inch in depth, whatever their dianeter, or a number of small holes giving the projectiles a spongy appearance.

The shell is next struck with the hammer to judge by the sound whether it be free from cracks; the position and dimensions of the ears are verified. The thickness of the metal is then measured at several points on the great circle perpendicular to the axis of the fuse-hole. The diameter of the fusc-hole. which should be aceurately reamed, is then veritied, and the soundness of the metal abont the inside of the hole is ascertained by inserting the finger.

The shell is now placed upon a trivet in a tub containing water deep enough to cover it nearly to the fuse-hole; the bellows and plug are inserted into the fuse-hole, and the air forced well into the shell. If there be any holes in the shell, the air will rise in bubbles through the water. This test also gives an-

The following instruments are required and used as indiclated:

1. One large ring-gauge, with handle: interior diameter $0^{\prime \prime} .03$ less than the diameter of bore of gun.
2. One small ring-gauge, with handle; interior diameter $0^{\prime \prime} .0$ t less than the diameter of bore of gun.
3. One cylinder-gange made of cast-iron and five calibers in length; interior diameter same as large ring.
4. Calipers for measuring the thiekness of the walls of the shot or shell and determining the cecentricity. This instrument consists of two parallel arms. formed by a contimous steel strap. One arm is terminated by a curved point, and is graduated into inches and quarters, from the end toward the center: the other arm carries a socket, at right angles to its length, through which slides a graduated measuring-roth. The zero of the scale corresponds to the position of the rod when it is in contact with the eurved point, and a vernier-seale on the socket permits measurements to $0^{\prime \prime} .01$. To use the instrunient, the arm with the curved point is inserted into the cavity through the screw-plug hole, and the elamp is serewed fast
at the required point. Two slort cylindrical arms on the clamp serve as bearers, and allow a motion of the instrument only on its own plane. The ecceatricity of a spherical projectile is measured by the distance of the center of gravity from the center of figure, In oblong shot, however, it varies directly for each cross-section from the seat of the eore, whieh is near the serew-phig hole, to the head of the cavity, and is measured by the angle made by the axis of the eavity with the axis of the projectile. To determine the axis of the cavity, the greatest and least thickness of the walls are measured at two or more tepths. Half the diflcrence botween the two will give the distance bet ween the axis of the cavity and that of the projectile for that particular section. It is ordinarily considered sufficient, however, to determine the eccentricity of but one cross-section near the renter of gravity and compare it with the known results of previous experiments.
5. The first intimation of ercentricity is shown upon the rolling-tehle, which consists of a heavy castiron plate, beveled witl great care, and two parallel rails attached to it and segarated from each other by a distance slightly less than the length of the cylinalrical part of the shot. When a shot is rolled upon the rails, the heaviest side must come to rest bencath, and a more or loss readiness to assume a particular point of rest indicates approximately the amount of ecerntricity.
6. Jenenuring-vel for determining the length of casity; made of steel and graduated into tenths of an ineh for a short distance on cach side of the point indicating the proper length.
7. Gange for length of screw-plug hole; made and graduated like the precerling.
8. Templet, for galuging the profile of the shot: made of steel: graduated to indicate the length of head, position of shell-hook holes. Jength of cytindrical part, and total length.
9. Gauge for the Butler sabot. This is made of steel and in two parts; the one screwed upon the other when not in use. The lower part ganges the sabot as regards pitch and length of thread, length and thickness of ring ; the upper part ganges the length and pitch of the thread upon the base of the shot. A small templet garnges the depth and width of camnelure and thickness of outer lip.
10. One hammer, weighing half-a-pound, having a flat face and conical point.
11. One seturcher of steel wire No. 20, with handle; steel punches and a cold-rhisel.
The shot should be inspected before it becomes rusty. It is first placed upon the rolling-table and examined with the eye for defects in material, which in shot cast with the head down, are apt to occur as eavities in and about the base. These, when discovered, are probed with the "searcher" or steel punch; if more than $0^{\prime \prime}$. 2 deep, or of such character as to siggest weak. imperfect metal, the shot is condemneth. The head of the shot is struck with the hammer at its junction with the celindrical part, for the purpose of detecting cracks liable to be produced there in cooling chilled shot. A dull soundindicates the existence of such a defect, whieh is further tested ly hammering with a sledge. It is then rolled. and, should the amount of eccentricity be considered doubtul as regards that allowed, is measured with the calijers. The length of cavity and of serew-phug hole are then verified, and the templet applied to the protile. Rolling it from the table, it is stood on end and the grage screwed to the base. The sabot is then serewed to its gallege, the dimensions of the canmelure veritiod with the small templet, and the character of the metal examined. The sabot and screw-plum are then filterk to the shot, and it is agatin stoon on its hoad and the ring-ganges are applied to it. The smalker should not passover the slot at all ; the larger should pass overits entire length. It is then passed through the cylinder-gauge, which is fastered, slightly inclined, to a block of wood; the
weight is finally determined and stamped at once upon the Dody of the shot near the sabot. Shot and shall rejected during inspeetion are marked with an X mate with a cold-chisel.

With each lot of shot, and from the same metal.iscast a cylindrical column about 2 feet higlo and $2 \frac{1}{2}$ inches in diameter in a sand mold, and the head of a projectite in the usinal irou mold. As soon as cooland brfore the shot have been sent to the "finishing shop" a test specimen is cut from the column, its pecitie gravity determined, then broken in the testing-machine, and its fracture examined. The ehilled head is split under a hammer to expose the depth of chill, and the results so determined are compared with an oceasional shot cut open along its axis. Should the tenacity, density, or chill be unsatisfactory the entire lot is condemned.
Chilled shot are intended for the penetration of wrought-iron plates, and were the result of experiments to substitute for the steel projectiles first used one of cheaper material of the requisite hardness.
A fracture of the head of a chilled shot presents the following appearance: The exterior layer is white, of erystalline structure, the erystals being dismosed normal to the exterior surface. The central part is dark, gramular, aud less compaet than the rest of the mass, showing the presence of considerable graphitic carbon, while the intermediate layers show less graphite and grow harder and denser as they approtirh and finally blend with the exterior.
Different metallurgic processes. and among them the repeated fusion of iron, qualify it for chilling. The desired result has been obtained in England hy adding to a mixture of gray iron and shot scrap four per cent. of ilmenite, an ore of iron in combination with titanic acid. and containing-
Ironoside (cquivalent to 45.3 metallic iron). 61.4 Titanic acid.
silica. .33.2
Tinoxide. 1.2 Manganese
\qquad
In consequence of the chilling process, the head is so hard as to resist even a file, while the cylindrical body is soft mottled iron. The head is not touched after easting in order to preserve intact the skin, which is the soundest and deusest part
The chilling power of the metal-mold, which depends upon its heat-conducting power, varies with its thickness and somewhat with its own temperature and that of the melted metal when poured into it. The specific gravity of chilled cast-iron is greater than that of gray or mottled iron, and this fact is used in discovering the depth of chill of a shot by weighing the shot first in air and then in water, and comparing the results with those obtained from a standard projectile of the same weight in air. The shot which weighs the less in water will be chilled to the less extent, since the discrepancy must be due to the lower density of its chilled liead. See Projectiles and shell-gange.
INSPECTION OF SMALL ARMS.-All the materials used in the manufacture of arms must be of the best quality, and they should be tested by the Inspectors according to the prescribet methots. The wood for gumstocks shoukd be seasoned at least three years and kopt in a dry place two years before being worked. It must be free from knots and sap, and no wool which is brash or light or worm-eaten, or in any degree decayed, or which is cnt across the grain at the hancle of the stoek, or which is kilndried, should be used or received. The following rules for insurecism apply to all small-arms, whether made at the national armories or by eontract at private establishments. The attention of the inspecting otlicers shonld be directed as much as possible to the operation of the workmen in the course of the fabrication of arms Jach component part is tirst insepected by itself amb afterward the arm in an finished state. The material and the forms and dimensions of all the patris must conform strietly to those of cotal) isheql patterns, the workmanshipiand finish
mast equal those of the model arms, tund hese several parts must he browned, hated, rase-hardemed, or polished, as in the standard morlel. 'The forms amd dimensions of the partsure veritied by momens standard ghugres.

Pho barrels are insucetod in each of tho foblowing stages: Rolled. lirst straightencel, first hored, sereomi bored, third turned, third borsd, second milled, gromme, proved, fourth hored, fifth hored, spormal polishod, ritled, second muzzle filed, sixth milled, seventh milled, fourth turnod, lifth tarmed, cut. pros filed, filed, and browned. In the se inspertions the Inspector will verify the harred with proper erunges for each stage. IIc will see that the thread for the recriver on the harrel is well cut and the bayonotstad well brazed on; that the exterior and interior dimensions of the barrel are correct; that there are no interior himmucr-matks, ring-lorres, cinder-looles, llaws, cracks, or other defects which will not disaplear in finishing.

The harrels rejocted for defects that can be remedied will be stamped on the Hpper sible noar the breech with the mark of condemataton, whicla is always the letter $($ B. If the deferet be of such a mature as not to prevent the use of the barrel for a shorter arm when cut olf, the mark will he male om the defective part.

The harrels will be proved in the gromat stage. They wlll be fired twice with the followingr charges:

First Charge.			Sucoud Charige.			Sizu of ball.	
Powder.	Ball.	W`ds.	Powder.	Ball.	W'ds.	Weight.	$\begin{aligned} & \text { Disme. } \\ & \text { ter. } \end{aligned}$
$\underset{\substack{\text { Grains } \\ \text { and } \\ \hline}}{ }$	$\begin{gathered} \mathrm{No} \\ 1 \end{gathered}$	$\begin{gathered} \text { No. } \\ \underset{\sim}{2} \end{gathered}$	$\left\|\begin{array}{c} \text { Cirains. } \\ 2.50 \end{array}\right\|$	$\left\|\begin{array}{c} \mathrm{No} \\ 1 \end{array}\right\|$	$\begin{gathered} \text { No. } \\ 2 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Cirains: } \\ & \text { } 5(\mathrm{~N}) \end{aligned}$	Inches . 43

The wad is formed by molline up a strip of paper $0^{\prime \prime} .01$ thick, $1^{\prime \prime}$ wide, and 12 lon!.

One wad is placed on the poweler and the other on the ball, and the charge is well rammed with a ropper rod. The wad ocenpies, when rammed, ubont $\frac{3}{4}$ in the lenerth of the birrel. The barrels are colosed for proof with proving-phegs, haviner vents in them. During the loading the vents are closed by leather thongs. The barrels are elamped down in asemicircular bed capable of holding about 40, with the pro-ving-plugs abutting against set-serews working thiongh a rim aronnd the bed. The barrels are prevented from moving forward, under pressure of the set screws, by collars screwed on the barrels at their rear ends, which abut against a rim parallel to the one mentioned. In order to prevent accidents, it is prescribed that each barrel as soon as loaded slath be carried to the proof-room and placed in the bed. When the bed is full the leather thongs are removed. A powder-train is laid in a groove containing the vents. The train is fired from the outside of the room by means of a percussion lock and cap.

Musket powder will be used for proving the bar. rels of rithes and carbines; the powder must he of the hest quality as regards the initial volocity ind pressure: it must be proved immediately before being used, unless it shall have been proved within one your and the Inspector las no reason to suppose that it has become deteriorated. The measures for the proofcharges shonld be of a conical form, with the mouth as small as may be convenient, in order that there may he less variation in the quantity of the powder. Before commencing the proof of barrels, the lnspeetor will satisfy hinself as to the quality amil proof of the powder, the size of the balls and of the wats. After cach discharge he will pass the ramod into each barrel, and those which have missed tire will he reprimed and discharged lefore proceeding to the proof of another lot. After each proof-charere the hnspector will examine the barrels which have hurst and note the canse if the defect, whether in the maerial or workmanship. He will examine those which
laner not harst, amal will condermany which are revi-
 concls roumel on revory burred which sucesess[an] y enttures tha tost. 'The leater is stamped on ther binder side of the bat rel and mear its loreceltatarl. 'To isvoid "rrors, the stamping is elone in the pronf-romon. Affor the serom! frolishing, the barrel recooves the fimal slamp. vi\%: V. for viewdel, l'. for proverl, and tho "agle's head muler them. placod on its upper left sidle jush in front of the reeoover. Afor tiriner, the harrols should be wathod elean in lot wator. Tlas examination is then mate. They shonlable inspereted in the interior and on the exterior.

The Insperetor will reject surch as arre too larere in the bore, and sutelas have holes, cross-ratacks, scales. seams, or ring-lures; hewill examine the brazingef the batonet-stud and see that the barred is not notidad too doeply or indented inside. "Jhe barrels hatving been reaboed to their nltinate dimencions,
 fally inspereted to varify the straightness of the luore, the exterior and interior dinnaters. and thoir weight, which should not vary more than one onneof fom the standard weight. "Thestrichatness of the harrel may be ascertained by holding it up to the light nat retlecting a straiglit vide on the different parts of the bore, hy which means an "xprorienceal cyo reatily tletects any inateuracy in the hore. The smatl or standard gatige should pase frecty thromerh the whole bengeth of the harrel, and the liore should not monit the large or limit alug. Tho groovess should be carefally cexamined to sue that they are formed according to the pattern, and that they are even and iniform thronghesut. The brocob-scrows and recetivers will be examined to see that they are of the proper dimensions, are sound in every pairt, and have good threads. "They are ease-hardenced. The sorew mast be tricd in the recoiver to see that it orenpios all the threads in the tap of the rectiver. Mark-Barreds condomned for defects detected after pronf, or at any time in the course of inspection, are marked with the lettar C, struck in decoly. The breecth-hloeks are stamped " [. S. Model;" also with the year of adoju= tion of model, just in rear of the hinge. The number of the gun is stamped on the upper rear portion of the receiver. The barred, roceiver, and brecelboek having been assembled, they are placed in a skeleton frame. One rombl is fired with 80 grains charge: "]"" is then stamped on the birrel, immediately below the eagle's head. The gin is then completely assembled, and fired fiwe rombds with servireammunition to see that all the parts are in perfeet working order. If all be found satisfactory, "P" is stamped on the under side of the stock, in rear of the guard-plate.

The locks having been put iogether the Inspector olserves; 1 st. That they are clean in the inside; 2d. That the sear works frcely when the sonr-screw is Griven as far as it will go, and that the nose is sulficiuntly strong and falls properly into the notebes of the tumbler; $3 d$. That the bridle has no eracks or Haws about the holes for the tumbler-pivot and serews; 4th. That the springs are well hent and of good proportion. that the fixed branches fit elose to the lockphate, and that the movalie branches swing elar of it withont having ton much play ; 名th. That tho slits of the serer-heads are not defective; 6th. That the arbor and pixot of the tumbler fit aceurately in their holos: Th. That the hook of the tumbler does unt fill below the edge of the lock-plate when the cork is drawn: 8th. That the notches of the tumbler are sound and smooth, and that the tmmbler fits and turns wedl; 9th. That the man-spring swivel is somed by suapping the hammer several times on the bare cone; 10th. That the hammer fits wedl on the square of the tumbler, and that it does not rest on the lock-plate when serewed up tight. and that it has the proper set in relation to the firing-pin: l11h. That all the parts work well together. Thebock is aljusted so that when cocked a scale attached midway of the finger-piece
of trigger will pull off at from five to seven ponnds. When momuted in stock the pull on the trigger should be not less than six nor more than right pommes. The place of fabrication is stamped on the lock-plate. with the letters " L.S." over it. Aneagle is slamperl just in rear of the formar stamps. The initials of the Master Armorer or principal Inspector are stamped on the stock opposite the rear end of the lock with italic letters.

The sommlness and freetom of the ramrod from flaws and cross-cracks are ascertained by the sonnd it gives when suspended by oue end aud gently struck with a piece of metal, and by hending over a curved piece of oak plank, $31 \frac{1}{2}$ inche's long anit 5 inches high at its middlu point, one end of the rod being held by a staple. The rod should be turned at the same time so as to present the different portions of the surface successively to inspection. The diametor and length of rod are verified by proper ganges. The titting of the groove is ascertained by drawing and returning the rod smartly several times to see that it holds well and does not stick too tight: the ramrod must bear on the rod-stop, and in that position its head should not project beyond the end of the barrel : it should fill the groove well ; the open part of the groove should be in the center of the stock, the covered mart in the middle of the thickness of the stock, between the outside and the bottom of the barrel-groove, and the rod shculd not interfere with the front sifle-screw.

The form and dimensions of the bayonet are verified with the propergauges. The temper is tried by springing the bayonet attached to a barrel, the point resting on the floor. The bayonet is also testud in the following manner: A curved piece of oak plank. 16 inches long, 3 inches high at cach end, and four inches at the midlle is securely attached to the workbench. A staple is fastened at one end of the curve, and a metal britge $\frac{1}{2}$ inch high at tho other. The point of the hayonethate is placed in the staple and the bayonet, fixed on a barrel, is bent, face and back altermately, over the plank. In this situation the blade is also examined for flaws and crosecracks. It shondd not remain bent after this trial. Thu Inspector then seizes the blade near the point, and strikes the elbow on the workbench to ascertain that the welding is somm. If the pronf shows no defects, he verifies the dimensions and bore of the socket and the accuracy of the channels. He examines the dimensions of the clasp to see that it fits well to the shonlder: that it turns evenl; withont hinding in any part; that the stop is well placed and firmly set: that the claspscrew and its thread in the stud of the clasp are well cit: that the elbow has the proper form and dimensions. Bayonets are markell on the face of the blade, noar the nock. Those rejected for detects that cannot he remedied are marked with the stamp of condemuation.

The cxamination of the stock is directed-1st. To the yuality of wood : that it has gool straight grain, is well scasoned, and free from sap and worm-inoles. The degree of seasoning is indicated ly the smell of wood: by the apparance of the lock and harrel, ete., when removed from the stock: they will be rusted by unseasoned wood: hy rolling a thin shaving between the fingurs it will crumble if the wooll be well seasoned, otherwise it will be tough and will bend. The medium weight of a well-seasoned rifle-stock is 1 poumil $4 t$ onnces: of a carbine-storls. 1 pound 11 bunces. Stocks made of goobl walnut will not weigh more than three onncer less than these weirhts. 2al. To the workmanship: that it is free from splits, especially about the barrel-aroove and hoding ; that the grooves and beds are of the proper forms and dimensions; that the roundings for the binds are smonthand accurate ; that the stook las the proper foll or arook, and is of the right length; that the holes are well alrilled, and that those for the wool serrws have good thrads. In examining the bod of the lock, see- 1 st. That all the edires are slarp, fand smooth; : What the bolls of the star-serew ind
sear-spring screw are not bored down to the trigger or to the brech-serew : Bd. That the beds of the main-spring and main-spring screw do not penetrate to the barrel; 4th. That the holes for the tang of the scar are as smallas possible, so that the sear shall not be wood-bound; 5th. That the wires fit well in their holes Marks-Thestocks inspected are markell on the left side with the stamp of approval (the initial of the Inspector's name), or of condemnation, as the case may be.

The front part of the trigger at half-cock should be nearly perpendicular to the surface of the guardplate; the slit of the trigger should be of the exact width, so that the trigger shall have no lateral motion. It is important that the guard-plate should lear firmly on the wood in every part, as otherwise by driving the tang-screw too hard the trigger might be brought too close to the sear. and the action of the lock be thus interfered with. The butt-plate should be well fitted in the center of the stock. The bands should fit smoothly at the shonlders, and closely to the stock and barrel, but not so tight as to

require a great effort to remove them. The bandsprings shonld not be too deeply set; they shond spring lack freely when pressed down; the holes for the wires should not interfore with the barrel or ramrod grooves. All the mountings should fitsmoothly to the stock. The stock should have the proper fall or crook. which is ascertained by applying the pattern, and hy trying the piece in the position of amint. By sighting along the barrel it will be seen whether it is well stocked; whether the lands, the front and rear sights, and the hayonet, are well set.

The Inspertor is not restricted to the particular "xamanalions above mentioned; he will make any bther examinations which he may deem necossary to ascertain the quality of any part of the arms and Iheir conformity to the standard motels; if ho discover or suspect any attempts on the part of the
workmen to cover or concoral sarious dafects, he will sulbject the arms to the mosi severe sorminy in order to debect suchataforets. In tho inspuretion of contract arms the Inspector will judqe of the quality of materials and workmanslojp lyy the ralow whirla gove Ern in like cances at the national armorits without 'xarting in any ease more rigid comditions than are enforced at those establishments. The Grebanore Ofleer charged with the inspection of arms. or tho Manter Armorer at the national armory, will emace at least one in twenty of each lot of arms patacol by ${ }_{4}$ Sinth-inspector to be taken to pieros in his prosernere,
 foregoing directions, bofore allixing his stamp of afrer proval on the finisherd arms, all of whinh must be examined by him. As a gencral rule, every part condemmet, on inspection, will lo imholibly narked
 with be marked with the initials of the laspectores mane. Care must be takon that the marks of apeproval are not stamped so deep as to be injurions. Finished arms approved in inspection will he marked on the loft face of the stock with the initials of the Hance of the prineipal Insperotor and the year of inspertion. The drawing shows the marking-machine used for stamping the letters ete., on the finishad work. It is so ronstructed that roller dies may ho usedi on flat surfaces, or that dies on work of eylindrical form. The die is fastoned to a sliding carriage, or rack, is madk to traverse the work ly a hand-lever, and is brouglit to bear on the work by an font-lever, the work heing hed on tha tables by a suitable fixture. The machine has both hori\%ontal and vertical adjustments, and is mounted on a column of convenient height.

The inspection of revolvers shond include" the following: 1. Blaing-Examine the polishing and biuing of the cylinder, barrel, and frame, und see that all sharp edges and corners lave bern removed. 2. opening-Bring the hammer to lalf cock, and open in usual manner. 3. Teating in "sheleton" protol"tr"Remove the cylinder from the frame and place it in a "skeleton" revolver carefully made for the purpose, and test the cylinder and ratchet to see that they will interchange. The cylmer is removed by turning the cylinder-catch-cam serew back ons-latif turn, thas liberating the cylinder-eateh. 4. Fxtraut-or-Exanine the extractor and extractor-spring; sce that the extractor is leds to place in cavity in cylindre: that the spline and steady-pin do not allow the extractor to project over the chambers of eylinder; and that the extractor fits the cavity in the eylinder, see that extractor-spring is properly wound and holds extractor to place. Test extraetor-stem, turning the stem back one-eighth turn by placing pin in the hole of head. Test the screw by bringing it back firmly to place. 5. Cylinder-catch-Cylinder removed, revolver at half cock. Test eylinder-catch-cam serew, turning to place; see that cylinder-cateln cam brings the eri-inder-catel to place, firmly holding the same, and that the mark on liead of catch-cam screw correspouds with the mark on the cylinder-catch. Teat eyl-inder-catch with frame and barrel-catel. Closing the revolver, holding the barrel-catch hack by thmmb of right hand, see that cylinder-catela passes over incline of frame freely, yet rides over same, having a bearing on rear surface; that tang of hared strikes on top of the post of frame, not allowing the cylin-der-eateh to rest on the frame except at incline. 6 . Burrel-catch. See that barrel-catch opens sufticiently, passes over cylinder-catel freely, and holds same firmly to place; that it is clear of the barrel-tang at all points except where it engages with hook on cy-linder-catch. Test the barrel-catch spring and har-rel-catch screw. \%. Action of barrel end cylinder cotch-es-Open the revolver, let the hammer down, and endeavor to close the revolver; see that barrelientah prevents by being forced back on hammer; bring revolver to lalf-cock: close it; see that harrel-atich is forced back by under side of cylinder-enteh hook.
broperly engaging with same ander the influrnce of
 Bring the lammer to full eork. Shay, olf. Examing nose of hammer and so. that it projerts sufliciontly Sire that the lowring for the rextrachor-stmi is rorrect
 tost stund with as surket-wromeli; lost rextractor with chambers of rylinder wilh a phag-gintge. 10, Jamb-

 manine hase-pin. 11. Adjustmort Sut the hamaner to

 inder and turn the ratcoleram scresw bark to plater. Close the revolvar. Sie that the rylinder is fres and properly adjusted with theryindrerateh; that is revolvers frocly on the lasso-ping that it rotatere in rither direction; that tho gas-ring is froo from the harrel; that the hand does not rest against the rateloct: that the extractor-stud is propersy atjusterl to ther recoilphatr, holding tha cylinder on ratl of has*-pin, allow. inur no longitudinal play. fature dictance of cylin-
 disiance of cylinker from recoil-plate which slomit
 of the barrel and frame, testing and adjusting it hy the joint-pivot screw. Sere that the frictionmonlar moves freely on the joint pivot. By working the joint of the barrel and frame. tost the extractor, "X-tractor-spring, lifter, friction-collar, pawl and pawlsprings. Sce that extractor worke freely, projects to the proper distance, and return* whon raleabod from lifter hy the pawl; that extractor-spring works freely, is of proper strength, returns the exiractor fuickly and holds it firmiy in its place; see that the lifter works freely on joint-pivot, engaging with pawl and is held by same under the intluence of pawl-spring until released. See that juwl works freely on jawipin, in frame; that the catch on the front end of the pawl engages promptly with catch on the lifter, nudor the influence of the pawl-spring at the rear end of the pawl, and is relased by front end of the pawl passing up the incline in front of joint; that the pawlspring is of proper strength. 13. Smears and pinsExamine and test the cylinder-eatel, hammer-stud, side-plate, guard and stockscrews. Try eachscrew, bringing it down to its boaring, if not down; turn hack one-eighth of a turn, then hatk to place: see if the parts come together. This veriftes the rommtersinking of the holes, thickness of head, and lrogth of serew. Examine and test pawl. stop, and trigger pins. 14. Stock-Examine material and workmanship. 15. Pull-Weigh the pullingotw, whichshoukd be 9 pounds, with limits, 8 pounds and 10 pounds. See that it cannot be pulled off when at lalf-cock. 16. Alignment of barrel and cylinter-This may be tested by placing steel "thimbles" in the elambers. bringing to full cock and inserting an mber-wate at the muzzle. The lower end of this gange has a tenon which fits the inside of the ". thimile." If the axis of the chamber does not coincide with that of the barrel, the gange will not gro down. The "'himbles" are similar in form to the cartridge-sholl 17. detion of revolver-To test: Grasp the revolver with left hand, near joint, barrel resting between thumb, and forefinger, the index-finger resting on harrel, the second finger arainst cylinder-cateh and on the eylinder with the third finger; thereby allowing the necessary amount of friction to be applicel to test the lock-work. Slowly cocking the revolver with the right hand, test the working of the hand and ratchet. hand-spring, stop and stop-spring. stop and stop notch in cylinder. See that stop leaves stop 1 notchin cylinder before the hand takes hold of ratchet: that soar enters the laalf and full cock-motehes of hammer promptly, and does not "ereep" when released hw pressure on trigger : that hammer works fretly in frame; that the mainspring has proper action on hammor and is correctly alljusted by the stran-screw. lest butt of revolver tirmly. cock rapidly, and see if
the stop noteh in eylintler is thrown past the stop bolt ; try each notch. 18. Sece that the armsare projeerly stamped and numbered. and that they have sustained no damage during assembling and inspection. See Fabrication of Fire-irms. and Small-arms.

INSPECTION OF TRANSPORTS.-In inspecting water tramsportation for troups, the Inspector must be governed by ciremmstances and necessities. Hilitary emergeney is not unfreguently a controlling considcration, bit should never cause undue risk to life. In an ordinary condition of things, and especially in voyages of any length, Inspectors are to see that the vessels provided are such as promise reasonable comfort to passengers. If there he anything to indicate necussity for a eritical inspection, the services of an expert are to be employed.

The Inspector should examine the contract and see that its stipulations are complied with, and ascertain how the vessel is rated at the unterwriters: the age of the hull and machinery, and their existing conditions, so far as he can judge. He should inguire when the vessel was last in dock, the condition of the boilers, and when last put in. He should examine whether the outfit of tackle. spare spars, etc., is sufficient: whether there is an ample provision of boats, life-buoys, and deck-room enough for guarters for offiecrs and enlisted men. and if the limit of the Act of Congress detining the relation of tonnage to pas. sengers is not exceeded. He shond see that the vessel's erew is large enough for her proper working, and inquire into the competency of the officers; that there are the proper instruments of navigation, compasses, etc.; report if the chronometers have been rated, and if there is a supply of charts. The water tanks and butts are to be looked at to see if there is water for passengers and crew. Ile should specially inspect the cooking arrangements, see that the vessel is clean, and that the portion ocenpied by troops is dry and well ventilated.

In order that the paddles may be secure from the action of the waves, in a side-wheel sea-going steamer, the projection on the sides under the guards, called the sponsons, should be covered up to make that portion as sold as any other part of the ship; the keel, stern-apron or inner stern, futtocks, floortimbers, dead-wood, stern-post, transom, inner post, frame and filling timbers abreast of the engine, the wales, the rudder and rudder fastenings, should be increased in strength twenty-five per cent. over those of river steamers. The weight of machinery shoudd he below the water-line. The vessel shoutil be ligh between decks and well rentitated by hatches, windsails, and side-liglits. Thereought to be water-closet and temporary bath arrangenents. Provision for sufficient masts and sails in the event of accident to the motive power, slould be made, and there ought not to be less than a fore and aft sail to each mast set upon a gaff, and a trysail to each mast to be set

in a storm. See Trunspurt:.

INSPECTION OF TROOPS. - I close examination of troops is generally made each Sunday morning and previous to muster. In the United States Army, a battalion is inspected as follows; Dismounted Troops. The hattalion being in line, bayonets fixed, the Colonel canses it to break into column of companies. right in front. and commands: Rear open order, D. March. At the first command. the right and left guldes of rach company step linee yards to the rear to mark the alignment for the rear rank. Each Captain hastens to the right, verities the joosition of the guides, and then places homself facing the left, three yards in front of the right tile. The Adjutant placeshime self on thet left if the color-guard, and commands: 1. Fermard. 2. Guider left. At the command mareh, the ranks are oprened in each company : the Adjutant conchacts the color-ruard to the head of the columm, posts it twelve yards in front of the center of the leatiinge empany, and then hrings it to rear opern order. The l) ram-major conlucts the band. passing by the right hank of the battadion, to the rear of the column,
and posts it, facing to the front, twelve yards in rear of the rear company. The Colonel next commands: 1. Field and staff to the jiront, 2. Marcr. The commissioned officers, thens designated, form in the order of rank from right to left, fieldothicers on the right, on a tine equal to the front of the colnmn, six yards in front of the colors, the non-commissioned staff form in a similar manner, three yards in rear of the field-oflicers. The Colonel, seeing the movement execinted, takes post on the right of the Lieutenant-colonel, and awaits the approach of the inspecting officer. Such field and stalf officers as may be superior in rank to the Inspector do not takepost in front of the colimm, hut accompany the inspecting officer. After inspecting the field and staff, the Colonel commands: 1. Order, A. Aisus. and the Inspector, accompanied by these oflicers, passes down the opeu columm, looking at every rank, front and rear. The field and stafí return their sworts as soon as inspereted. The Colonel now commands: 1. In place. 2. Rest. When the Inspector, commencing at the head of the columin, proceeds to make a minute inspection of the noncommissioned staff, color-guard, and the several enmpanies in sucerssion. The Adjutant gives the necessary commands for the insuretion of the color-guard. The non-commissioned staff and color-guard may be dismissed as soon as inspected. As the Inspector snceessively approaches the companies, the Captains command: 1. Company, 2. Attention, 3. Inspection, 4. Arms. The Captain, as soon as inspected, returas his sword, and accompanies the inspecting ofticer ; Lieutenants, when the Inspector begins the inspeotion of the front rank, face about and stand in place rest ; the arms, accouterments, and dress of each soldier having been minutely inspected, the Captain commands: 1. Open, 2. Boxes: when the ammunition and boxes areexamined. The Captain then closes ranks, stacks arms, opens ranks, and commands : 1. Front rank, 2. About, 3. Face, 4. Unsling, 5. Knapsacks, 6. Open, 7. Knapsaces. The men of the front rank having faced about take a short step forward so as to be free from the stacks. At the command unsling, each man unfastens his knapsack and, standing erect, holds it ly the straps in front of the knces, flap from him; at the command knapsacks, heplaces the knapsack on the ground, flap upward, the greatcoat six inches from the feet, and then stands at attention; at the seventh command, he opens the knapsack, turning the flap toward the feet, the flap resting on the great-coat; he then stands at attention. The Inspector laving inspected the knapsacks, the Captain commands: 1. Repack, 2. Kinapsacks. At the command knapsaeks, each soldier repacks and buckles up his knapsack, leaving it in the same position as before opening it, and then stands at attention. The Captain then commands: 1. Sling, 2. KNapsaces. At the command sling, each man grasps the umbuckled strap of the knapsack with the right hand, the buckied strap with the left hand, the right hand uppermost, and stands erect, the flap of the knapsack from him ; at the second command. he replaces the knapsack on his lack. The Captain then commands ; 1. Front runk, 2. Anout, 3. Face. The men of the front rank having faced abont, step forward to the tine of stacks; the Captain then closes the ranks, takes arms, and on intimation from the Inspector marcles the company to its quarters and dismisses it. In a long column, some of the rearmost companies after the inspection of dress and general appearance, may be jermitted to stack arns ant break ranks until just hefore the Insjuector ajuproaches them, when they take arms, and resume their position. The band plays during the inspection of the companies, and is brought to rear open order by the Irum-major on the approach of the Inspector. Each manas the Inspector approachacs him raises his instrument in front of the body, reverses it soas to show both sides, and then returns it to its former position. In column of severat companits. the inspection of dress and general appearance may
be dispenged with, the battalion lexing brought 10 an order, and in place rest, as soon as the flold amd staft have been inspeeted. At inspection of gumeters, the: Insprotor is accompaniod by all the oftcers, or by such of then as he may designate; the morn, with gloves and aceouterments, stand covered in front of their resprotive lomks ; in camp they wtamd in front of their tonts; the senior non-commissioned onllerer upon the upproach of the Inspector, commands: 1 , Company (or mquel), 2. Attentlon.

Mounted Froops. The latialion beine in line, the Major canses it to break into columan of (onmpanies, right in front, aml commands: 1. Firas opre onder, 2. Maben. At the first command, the Aeljutant phaces himself on the left of the grard of the standarl, if the standard be with the battalion, and ('onnmands: 1. Fimorard, 2. Guide left. At the rome mand march, the ranks are opened in each company; the Adjutant comblurts the gatard of the stamlard to the heabl of the column, and posts it six yarels in front of the oflicers of the leading company, (1) posite the center of the company. The band, if there be one, passes hy the right tlank of the battalion, to the rear of the column, and takes post, facing to the front, twelve yards in rear of the rear company. 'The trumputers of the battalion, if consolidated with the hand, return to their respective companies; the Mat jor's trmmeter places himself on the right of the trmmpeters of the leading company. The Major nexts commands: 1. Hield and seteff to the firont, 2. Maren. The commissioned ofticers, thus designated, form in the order of rank from right to left, tieldotlicers on the right, on a line equal to the front of the column, fifteen yards in front of the stamlarif; the non-commissioned staff form in a similar manner, six yards in rear of the field-officers. The Major, secing the movement executed.takes post on the right of the field and staff, and awaits the npproach of the inspecting otficer. Such field und statl oflicers as may le sinperior in rank to the Inspector do not take post in front of the column, but aceompmay the inspecting officer. After inspecting the tield and staff, the Inspector, accompanied by these ofticers, passes down the open column, looking at every rank, front and rear. The field and staff return their saluers as soon as inspected. The Inspector, having returned to the heal of the column, proceeds to make a minute inspection of the non-commissionerl staff, guard of the standard, and the several companies in succession. 'The Adjutant gives the necessary commands for the inspection of the grard of the stumbard. The non-commissioned staff and guard of the standard may be dismissed as soon as inspected. As the Inspector successively approaches the companies, the Caplains command: 1. Inapection, 2. Anas. The Captain, as soon as inspected, returns his saber, and accompanies the inspecting officer; the lientenants, when the Inspector begins the inspection of the rank, face abont and remain at ease, unless ctherwise instructed.
After inspection of dress and general appearance. if the Inspector desires to inspeet the companies dis. mounted. instead of monnted, the Major dismounts the battalion and forms rank. The horses of the otlicers are held by trumpeters. The inspection is conducted in the saroe order as before. At the command: 1. Inspection, 2. Arms, the men take the reins off the horses' neeks, pass the right arm through the reins, face to the front, and unsling carbine. The arms are then inspected as prescribed in the School of the Soldier Dismonnted. The inspection heing completed, the Captain, on intimation from the Inspector, causes carbines to be slung, then mounts the company, and dismisses it.

Inspection of a Battery.-The battery being in line, the Captain commands: 1. Prepare for inspection, 2. Action, 3. Front, 4. Right, 5. Dress, 6. Front. 7. Draw, 8. Salser. These commands are executed as prescribed for review, the trumpeters also drawins saber; if the inspection has been preceded by are-
view, the Captain may ranit the geventh and righth commands, rantioning the trumperters to draw aalme. The inspecting oblleor inswots thre (iaptain, and than the chicfs of platoon, heginning on the rieft; passing aromud the left of the latlery, ha insperts the chiof of coissons, then greess to the right and insperets the trmonetres and griden: the Inspectornext geses (o) the right seretion of the right platoon and inspurets the section ; beginnine with the chiof, who exrentes inspertion saloer, he bassess in front of the pirere. Along the right of the sercion, and in rear of the caisson, returning by the left of the secetion to the front ; he then goes to the laft seretion of the right phatoon and inspects it, as preseribeel for the richt soretion; he then insperets the other sections in like manner. As the Inspeetor supproaclaces exch limber, No. f; operns the lid of the ehoset so ata tor show its contonts; liew rloses the lid as soom as thr lnepretor passes the limber on its left. The caisson rorporal ojene and closes the lid of the caisson limbor-chest. ats exphaincel for No. 6 ; hualso, when so directed. ujeens and closes the lids of the otlere chests. The trumpeters. chicfs of suretion, first-sergeant, fuartormats-ter-sergeant, and the artibiors when mounter, execute inspertion whbr as the Inspector approacties twem. The Captain, assoon as inspected, returns saber and arcompanies the Inspector. Each chiof of platoon accompanies the Inspector during the inspection of his platoon; he then returns to his jost. fuces to the rear, and romains at ease. As som as the forge and hattery-wagon, after the commands artion, front, have taken their places in line with the limbers and caissons, the senior blacksmith opens the lial of the limberechest of the forge, and the wheelwright opens the battery-wagon; they then resume their post.s. If mounted, they dismount and sive the reins of their horses to the whecl-brivers of the forge and battery-wagon, respectively, and then conform to what has been just prescribed. The forge and batterywaton having been inspertel, each is closed by the proper artificers, who resume their posts. If they have horses, after closing the forge and battery-wagon they monnt, return to their posts, and draw saber. The inspection of the bat-tery-wagon being completed, the Captain returns to the front and center of the hattery, faces toward it. and commands: 1. Irivers, 2,Prepare to dismolent, 3. Dismount, 4. Inspection kNapsaces and vallses, At the command dismount, all the oflicers aml mounted men dismonnt : the horses of the Captain, chiefs of platoon, and chief of caissons, are held by the trumpeters, assisted by the guidon if necessary. At the fourth command, earh cannoneer takes his knapsack from the carriage, returns to his post. places his knapsack on the ground, flap upward. the great-coat six inches from the feet, opens his knapsack, turning the flap toward the feet, the flap resting on the great-coat, and then stands at attention; cach monnted man unstraps his valise from the saddle, and ulaces it at his feet in the position of stand to horse, opens his valise, and then stands to horse. The Inspector, accompanied by the Captain, then inspects the knapsacks and valises, passing throngh the battery as before prescribed, each chief of platoon accompanying him during inspection of his platoon. The Captain thencommands: Repace Evapsacks and fallses. At this command, the knapsacks and valises are closed amt strapped in their proper places; the camoneers then resume their posts and the drivers stand to horse. The knapsack of each cannoneer resis vertically on the foot-boards of the ehest on which be monnts, so as to be under his legs, the flap from the chest: the knipsacks are secured to the chest by means of a strap which is passed in front of the knapsacks, and is fastened to the ends of the chest. The knapsacks of the firstsergeant, quartermaster-seracant. chiefs of section, trumpeters, quidon, and the artiticers when mounted, are usually inspected in quarters: on the mareln their knapsacks, unless otherwise prescribed by the

Captain, are carried on the foot-boards of the limberchests of the forge and battery-wagon, and in the baggage-wagons. The knapsacks and valises having been inspceted, the oflicers mount; the Captain then commands: 1. Drivere, 2. Prepare to mount 3. Mount. At the third command, all the mounted men mount. The inspection being completed, the Captain, upon some intimation from the Inspector forms line, marches the battery to its park, and dismisses it. The battery is frequently inspected in full marehing order - the men in blouses, and equipped with haversacks and canteens; knapsacks and valises packed : overeoats, when not worn, rolled and strapped to the knapsacks or saddles; horses equipped witlonose-bags and halters; caissons loaded with a day's forage.

INSPECTION REPORTS.-Reports of the various kinds of inspections, for the information of the Inspector Geaeral. Inspecting ofticers. before transmitting their reports to their Commanders, indorse thereon the remedies that have been applied by the local Commanders for the correction of irregularities that may have been brought to their notice. All Superior Commanders in furwarding the reports. indorse them with their action, and suct remarks as may be of importance for the information of the Commander of the Army:

Copies of all non-contidcutial Inspection Reports are forwarded to the Inspector General, through the ascending channels of communication. Commancting Otficers only may forward copies of contidential reports.

INSPECTOR GENERAL.-Inspector and Inspeetor General are terms in military affairs, having a somewhat vague signification. There are Inspectors General of Cavalry, Infantry, Artillery, Engineers, Militia, and Voluntecrs, whose duties are really those which their names infer-viz., the periodical inspection of the several corps of their respective arms, and the pointing out of detieiences, the corps being under the command, however, of its own officers, and not of the Inspector General. The Inspectors General of Musketry and Gunnery Instruction in the English Army are charged with the direet superintendence and ordering of such instraction throughout the army. In the Medical Department, the Inspectors Gencral of Hospitals constitute the highest grade of surgeons, under the Director Geueral of the whole department. Inspectors are employed in many capacities. Inspectors of Volunteers are Staff Othicers charged with the administration and organizing of the detachecl corps of Volunteers in their several distriets. The post of Inspector General of Auxiliary Forces has hately been abolished, and his duties transferred to the Department of the Adjutant General, in order to bring the Militia and Volunteers more immediately under the supervision of the Com-mander-in-Chief.

INSPECTOR GENERAL'S DEPARTMENT.-In the United States, the law at present provides for one Inspector Geueral. with the rank of Brigadier General; two Inspectors General, with the rank of Lien-tenant-eolonel; and two with the rank of Major. Also, that the Secretary of War may, in addition, detail Otticers of the Line, not to exceed Eour, to act as Inspectors General. In the British service, the lnspectors Generals are otbeers appintcd hy the Jorse Guarls, with the exception of the Inspetor General of Fortifications, to carry ont, in the most searching manner, the duties of inspection in their respective liranches, and to bring to the notice of the Com-mander-in-Chief all points with which he should be madestequainted. They are assisted in their duties be Inspectory, who act under their instructions.

INSUBORDINATION. Disobediener to Jawful authority, under the folle, wing phases, viz.: 1. Striking asinurior Otherer; 2. Ư*ing or offering violence against a Superior Oflicer ; 3. Offering violence in a military prison; 4. Disoberying the command of a Suprior prison; 4. Disolabing the rommand of a suprior

For either of the above offenses an officer or soldier is to be tried by a General Court-Martial.
INSULT.- In a military sense, to attack boldly and in open day, without going through tbe slow operations of trenches, working by mines and laps, or having recourse to those usual forms of war by advancing gradually towards the object in view. An enemy is said to insult a coast when he suldenly appears upon it, and debarks troops with an immediate purpose to attack.
INSURGENTS.-Soldiers or people generally in a state of insurrection. The term, however, admits of one exception. Hungarian Insurgents ($T_{\text {man }}$. die (Ungarinchen) mean the Hungarian Militia, called out or summoned by general proclamation, as under the old feudal system,
INSURRECTION.-A rising of people in arms acainst their Government, or a portion of it, or against one or more of its laws, or against an officer or officers of the Government. It may be confined to mere armed resistance, or it may have greater ends in view. See Civil Itar and Rebellion.
INTELLIGENCE DEPARTMENT-A branch of the Quartermaster General's Department, presided over by the Deputy Quartermaster General. It has for its object the collecting, sifting, and arranging of all information on subjects useful to the Government or Army in peace or war. This Department in England is comparatively of recent date. Its functions com-prise:-Topography : Strategical and Tactical Questions: Concentrations: Collection of all data bearing on the organization of foreign armies; Ilome and Colonial Defense, etc. The information to be obtained on the above subjects is gatbered in time of peace. so that, when war breaks out. the General commanding an expedition may have put into his hands the most detailed information that maps can contain of the country in which operations are to be carried on, and all such other information needful for the vigorous prosecution of the war. Formerly, whatever information the General received was through the Quartermaster Geveral's Department, then imperfectly organized for obtaining such intelligence as is now alforded, and also by reconnoise sances a day or two in advance of the Army. Now-a-days, the General is made aequainted with the conntry he has to traverse before he sets out, and is thus often enabled to map out his future movements before commencing operations. To the Intelligence Department may be attributed. to a great extent, the success of the German arms during the war of 187071. Before starting on the campaign, maps of the country the Army was to invade were largely distributed. and also handbooks containing information on many valuable points such as railways. localities, power of districts to afford food, etc.-in short, all information tending to the successful issue of the war. The Intelligence Department of England is modelled after that on the Continent, but only for defensive jurposes; It is composed of Staff Officers, whose education and intelligence them well for the duties they have to perform. The Department may be said to be at present merely the nuelens of what will he, it is to be hoped, a still larger one. There is ample field for an increased number of Staff Officers, and in comparison with the Continental Department, the establishment is small. The following extract from a lecture given at the United Service Institution, in Fehruary 1875, by Major Brackenbury, R. A. , D. A. Q. M. G. an otheer of the latelligence Department, will put the reader in possessinn of the information to be acyuired. and the work to be performed by the Staff Ofticers of sucha Department, as carried out in P'russia, Austria and France:-
"1. A thorough military ae"puaimance with the topography and resources of all lands belonging to the nation and its neighborhood.

- 2 . An intimate acequintance with the armies and military institutions of foreign powers, as well as of the homi armies and institutions.
"i3. A seheme for movement of troops liy railway, rowd, or water, acrorting to probable cerontuatities This is based on a study of home and foreign momes of conmmication.
"4. Military history, which is atways a mine of information if honestly (lrawn in) according ti) ohllciat knowledre.
" 5 . Setections from the above items of knowlentg" carefully drawn up and pubtished for the information of the army. This requires frepuent uscof the print ing-press.
' 6 . In the three comentres the staff is colared with the issne of the requisite maps in casio of war, amel. for this purpose, is in close intimaty with the great math-making establishonents reppresented by the Ordnance Survey, which is a divil brandh, though conducted by oflleers of the Royal Eingiseers."
In time of war, the duties of this chepariment would be similar to those performent by that seretion of the General Stalf in Continentalarmies, with this exeep)tion, that in consequence of the paucity of olliows amptoyed in this branch of the serviec, it would have to be supplemented hy specist stall' (oflecers, in commection with the Quartermaster (iemeral's I) partment. Preparatory to the commoreconent of hostilities, atl the information concerning the comntry in which the operations are to be earrided on- coltected and collated by the Inteltgenee Department in time of pace-will be furnished to the (ieneral in command, who witl next have to obtain further information through this Department as to the cmemy's positions, moral, ete., by means of outposts, recommis. sances, spies, and emissaries. The mames of the enemy's (Generals, the organization and the dress of his troops can then be tearnt. as the capture of a single prisoner or patrol may show, been by his miform, buttons, or lace, the presence of a particular corns. Newspapers may furnish information of great value. During the Prusso-Austrim war of 18tifi, the first anthentic information the Prossians recerived of Benedeek's mareh from Olmlitz to Viemna was derived from Brackenbury's letters. 'The information obtained by the means of ontposts is of very great importance; and the first step taken by the staff of Continental armies, after the declaration of war, is to draw a cordon of light cavalry: th this fore one or two ollicers of the Intelligence Department are attacled. One sphere of aption is up to the enemy's outposts, whose movements must lowatehect, andald information concerning them beoltained throngla the videttes, recomoissances, etc., withont driving them in, to do which would need a reconnoissince in force a measure of doubtful value, as it often tomds to a general engagement. The Otheer Commanding an outpost is responsible for the amount, as well as for the correctness, of all the information he sebuls to the Othicer Commanding: he has, therefore to exercise his discretion as to what intelligence be sends in. and this should be rather too mush than too tittle. In tranmitting any knowledse he has acmaired, he must allicre as much as possibte to the worts of the informant; but if the information be of great vatue, the person from whom it has been oltainet, suelh as a prisoner, deserter, or patrol leater, slould be sent in to headquarters. The information obtained from prisoners, deserters, and persons from the enemy's side, is always valuable. The first two classes do not as a rule know much, hut travelers, and particutarly boys, are great sources of information, as they are close observers, and are less likely to be influenced by patriotism, and a small bribe will sullice as remumeration for the news suppited.
The real rank and file of an Inteligence Department, before and after hostilities have begun, are the regular paid spics. Ofthcers commanding outposts can make use of local spies, but the main horly of these men remain attached to the heakguartars, for specitic purposes, under an ofticer specially appointed for that duty, who should possess the following quatifications: -

1. 'Thomugir reliceracy
2. Kerem knowlodge of haman natio:
3. Distrust of all masupporterl information.
back of information is not ther lifliculty in war time for the shilting temblenco of men's fears is to rexug. gerate dangers; the murnluer of apies, therefore, may ba safely reducod. Thare are two dasses of simies as shown above:-1. Lareal Spies.-These are men accidentally employed, and whose business may take them into the "nomy's lines. 'They are to low trasted in gaining inteltigences mareover, ibe ir powers of information are maturalty (ontined to a small aroa, and as they are probably woll acopainted with that arm, and liow bring of business, they are mot so liablit to suspicion. 2. L'uid Spies.-These should always he kept apart and in ignorance of ench ot her. They should recedee liberal paty, according to the result of work. In fodia, the plan formerty adonerel in paying the native sjies was to part a lacketfal of geis. mohurs before the man, and to allow him to take away as many as his two bands coukd hold. Some military writers lay down that all the information ohtained ly the Intelligence Department should be published to the army, as expericnce has shown that. byacting thas, surprises amp panies have bern guarded arainst, great fatigue saved, and that the best marches have been made when the men knew the object of the undertaking. Waving eollecter the re'puirel information, the next point wili be the transmission of such inteltigence. This is performed in three ways:-
4. By the alectric telegraph.
5. By visual signalling.
6. By mounted orderlies.

Sometimes the three are combined. The electric tulegraph is applicable for long distances, between statiomary points and atong main lines; betweern camps at some distance from one another, tield tolegraphs may be laid down. Visual sigmatling is usefol in lroken grouncl, across onstacles. With slips at sca, and also for moderatedistances, where the points are not stationary for any time, suelias the outposts. It Was found particularty usefut in the Looshai expedition on the horders of Assam. For short distances mounted orderlies can be used, between points constantly moving, as well as for transmission of news in wooded countries. The following have been found good distances to transmit interligence by the modes indicated:-
Electric telegraph, above 8 miles;
Vismal signalling, $1 \frac{1}{2}$ to 8 miles;
Orlerlies, 1 to $1 \frac{1}{2}$ mile.
INTENDANCE. - In Continental Armics, an estabtishment corresponding to the English bramch of the Control Department.

In the German army it is a small Department, and the duties are more restricted and entircly civit. Until 1866. Prussia had no combatant onlicers attached to the Intendance. It has muclitess indeperadent responsibility, and clashes less with the Wiar Department, beeause it only refers to matters beyond generat control, and targe funds are atways phaced at its disposal by the military anthorities; mearly two-thirds of the army expenditure is paid by it. like the Cluthing Depariment. In France, the Intendance possesses the direction and control of everything that eoncerns pay, provisions (munitions de bruche,) contracts for the same, Clothing Deparment, etc. This Department is officered exchusively lyy officers of the army, of no lower rank than that of Captitin. and whose age does not exceed 35 years: they have to pass an examination before a Board of Othects. Therir functions are purely administrative, and they have no relative rank.
INTENDANT.-INTENDANT MILITAIRE.-Anotìcer in the French army charged with the organization and direction of ait the civil services attending a fore in the field. The othicers acting under his orders are those in charge of ailthe tinance services. the provisions, stores, hospitals, artillery train, and trans-
port departments, besides the interpreters, guides, and such like temporary services. The Interdont-en-Chief of an army is the Representative of the Minister of War; and, short of superseding the Gencral's orders, cin exercise, in case of need, all the functions of that high otheer of state. The Intendance is divided into Intendants, ranking with Geweral Offieers, Sub-Intendants with Coloncls, and Assistant-Intend ants with Majors; besides Cadets, who receive no pay, and constitute a probationary grade.

Intendant was the name given in France before the Revolution to the Overseer of a Province. Such permanent officers were first appointed by lIenry 11. (1551). Under the complete systemof centralization established by Richelien, these Intendants, as they were now called, became the mere organs of the Royal Minister, to the exelusion of all provincial action. To them helonged the proportioning of assessments, the levying of soldiers, ete. The National Assembly in 1789, established in each tejartment an elective administration. Napoleon virthally restored the Intendants, but exchanged the hated name for that of Prefict.x.

INTERCHANGEABLE.-The meaning of this word is selfervident, viz.; that which may he given abl taken mutnally. In military materiel, the term is used to express that an article which suits or fits any part of a machine, a lock of a gun, a wheel, cote. will fit corresponding parts of a like artiele ; and thms all parts of muteriel are for the most part made interchangeable.

INTERIOR ECONOMY-Applied to military affairs relates to the whole management of a regiment, the responsibility of which lies with the Commanding Ofticer, as he is the mover and director of everything pertaining to his command. It inchdes all duties in which the ofheers and men are interested such in the former case, as their mess, band, funds etc., and in the latter, to the messes of the non commissioned officers and soldiers, their amusements, libraries, in fact, everything tending to the good order and welfare of the regiment.

INTERIOR FLANKING ANGLE.-In fortification, the angle formed by the meeting of the line of defense and the curtain.

INTERIOR FORM OF CANNON.--The aim in all gun eonstruction is to obtain the maximum amonnt of work from a given charge and weight of piece, this within the linits of safety to the picce itself. To attain this, the relations hetween the interior dimen sions, the charge, and the projectile, have to be in each case studied and regulated with the greatest care. The dimeusions of a piece are also governed sonewhat by the mature of its service, and circumstances under which it is to be fired. The interior of eannon may be divided into three distinct parts ; 1 st , The vent, or channel which comnmnicates fire to the charge; 2d, The seat of the chorge, or chamber, if its diameter be diferent from the rest of the bore : 3 d . The cylinder, or that portion of the bore passed over by the projectile. See these parts under proper Jseadings.

INTERIOR RETRENCHMENTS.-When a breach is made in the enciente, although military usage and a point of honor require of the garrison to sustain at least one assault, the consequences of defeat are of tooserious a character to expect such an effort, unfess a place of safety lee provided, jato which the garrison may retreat after defenting the breach and oblain an homorable capitulation. On this acconnt, and also to lengthen the defence, interior retrench ments are mate in the bastions. These works may be either of a temporary or permanent character, bat it is gemerally coneeded that the latter chass alone offers a serious obstacle to the enemy. The former, moreover, requires that the retrenchenent shomili be thrown uf during the siege, an undertaking of great difliculty, both from the ammoyance of the enmiy's fire and the fationed state of the erarison, oecasioned by its orelinary duties. The works may be placed
within the bastions, which are the parts of the enriente usually breached, or in rear of their gorges. Those which are placed within the bastions extend across them either between the faces or between the tlanks. When placed at the gorge they connect the two adjacent curtains. They may be divided into four classes, viz.: 1st, those that rest against the faces of the bastions; 2d, those that rest against the flanks: Bl, those that rest against the two adjarent urtains; 4th, and those that comprehend several bastions. The plan of these works varies with their position, the size of the bastions, or the more or less openness of their salient angles. In small bastions with very acute salients, when the retrenchment rests upon the faces, it usually receives the form of a tenaille or an inverted redan, the angle of the tenaille being about 1008. When the bastions are large and the salient angle quite open or obtuse, the retrenchment may recrive the form of a small bastion front resting upon the faces. Either of these forms may in like manner be used when the retrenchment rests upon the flanks of the bastion. But as this position emables a retrenchment of the form of an ordinary redan to have its ditches swept by the fire of the thanks of the adjacent bustions, this form is in some cases used in preference. When placed between two curtains at the gorge of a bastion the plan of the retrenchment is always a bastioned front. See Interion Herks and Permanent Furtifications.
INTERIOR SLOPE.-In fortification, the surface connecting the superior slope with the banquette tread It is well to make the interior slope vertical (and it is oftentimes made so) for the reason that defenders in that case can stund close to the parapet in delivering their fire. A vertical slope would require a strong construction of some kind, to retain the earth in posi1 inn , and 10 resist the horizontal thrust produced by the prism of rupture. When the materials for making this construction are abundant and convenient, a vertical slope, or one nearly so, may be used. A steep slope requires a strong revetment, otherwise it is to be preferred. A gentler slope requires a slighter protection, but has the disadvantage of placing the soldier too far from the interior crest when he is in a standing position : and jt exposes him more to projectiles grazing the interior crest. The rarity of hand-to-hand eonflicts on 1le parapet, and the use of breech-loading weapons, allow the use of gentler slopes for the interior of the work than were formerly regarded as idmissible. Gentle slopes are accompanied, however, by the disadvantage of requiring the soldier to occupy a recumbent position when firing lis piece. See Field-fortification.

INTERIOR WORES. - Besides the works exterior to the enceinte, the olyject of which is to retard the assailant in his attempts to enter it by breaching, Engineers have placed within it other works, termed interior rorks. They are placed on such points as are exposed to be breached by the enemy's artillery and are intended to cut these off from that portion of the enceinte not so exposed. By them the garrison is enabled to make an effectual defense of the breach when the asault upon it is made. When intended for the defense of the breach alone, they are called interior retrenchments. They are of various forms, being adapted to the position they ocempy and the degree of resistance to be offered, and are usually constructed with a revetted searf and counterscarj to secure them against an open assambt. When at eonsiderable command is given to an interior work oter the one in which it is phaced witls the view of obtaining a plunging fire on points which the cnemy may wceupy on the exterior, it receives the name of a caralier. When an inturior work is delached from the encerinte anal is organized to reerive the garrison and rely on itsown resources after the main work has fallen, it is termed a citudel. See Interior Retrenchmento.

INTERN. - A term used in a military sense to express the act of giving shelter to troops which have
taken refuge on montral territory. On passing the frontier the men are disarmed bud sent to the different quarters alloted to them, fenomally in the in lerior of the country; they aro treated on the same footing as the soldiors of the country, nus the otli-
 gase, but have to give their parole that they will not attempt to cacolpe. "Towarits the cond of the war of 1870 71, Bomrbiakis Ariny, sorely pressuel by the (brmans took refure in swit\%orland, to escabe beenng taken prisoncers and were internod there
INTERNAL PRESSURE GAUGE. Viarious forms of the Intermal Pressurw-rinur hasp horn proposmal. That by bocetor W. S. Woonhrible is fommt satis. factory. It consisto asserntially of a pistom having a conical cavity, prosed by the powner-ghare agtinst a disk of eopper which ionters the eavity in proportion as it is crushed. 'lohe surface of the ravily is formed with a tine spiral thrend. continnons from the fare of the piston to the abex of the cone-i he tarns of their threads being divileod imto tenths by lines radiating from the ajux. These are impressed upon the eopper accordiner to the extent that the motal has lewern foreed into the eavity, and a readiner of the number of tarms of the syiral atlords an indication of the pressure to which the piston has beror subjected. It may be convidured to be: a moditication of a form of linternal Catuge proposed by Captain Ihenry Hetenlfe. Ordmance Department, the spiral cutter of which is convex. The cut on the disk is rivided for facility of reading the pressure. See I'resnitreodrinegr.
INTERNATIONAL DATE LINE.-The line at which dates change, being mate later by one day by those who cross the line from east to west, and earlicer lys one day by those crossing it from west to dast. If is person start at midday. that is, when the sun was shining perpendicularly on the meridian that passes through the place of starting, and travel westward. keeping pace with the sum, thus kerping the sum directly over the meridian of the blace at which he minht be, he would make a complete journcy aroumd the globe in twenty-four hours; and return to his place ofstarting at noon the next day. Twenty-four hours wonld have passed, but to the traveler the sun would have been shining perpendicularly is at noon all the time; and the question arises. whenor at whet point did the traveler change from noon of one day to noon of the next? For instance, if he shomlel start at Mondity noon and kee p the sum in the zenith, be would arrive at the place of starting flueshay noon-it would he noon-day to lim during the whole journey of Iwenty-four hours-Donday noon would change to Tueslay noon without an intervening night; where would the change oceur? It is 10 him apparently still Monday noon, and to obtain the corrert date he must drop a day. The reason for droppinge a day cin be more filly shown as follows:- Vemombering that the earth makes one complete revohution on its axis in twenty-four hours, and thas the sun in its apparent diurnal revolution moves over 360 degrees of simee in twenty-four hours, it thas movesover 15 degrees of space in one hour. from which it is evident that the difference in longitule which causes the difference in the relative time. may be estimated in time, allowing 15 degrees to an hour, or one diegrece to four mimutes. Therefore, suppose u man starting from any given point, travel one deerree west, his witch, instend of marking twelve oclock nt noon. according to the correct time at that place, would mark four minutes after twelve. Let him travel west 15) degrees, and he will find that 1 rolock by his watch will be noon-day by the sm. Let him go on to 120 degrees, and when thr sun is in ther $7 \cdot n i t h$ his watch will indicate eight oclock y . м. Completing his journey around the globe he will have gilned. in this manner, twenty-four hours. From this it will be seen that in order to obtain the correet date twen-ty-four hours must be subtracted from his time. On the other hand, if a person could travel eastward at
the sume sperel with which the sun Mpharemity travrls wast ward (the same rato of speroll with whith the enrth revolves (on its nxis), if ho should start ont his journey ut noonday, he would mo.et the mun whern existly on the opposite side of the arath frome tho phaco of starting, ami rentinniner sho jonrney womle herain meret the man at the place of starting, thas sare ing three moon-days within the twonty-four lomes, or apparcontly gainingaday. Thiswo know to be impossible. since only twonty fonr bours of time have passed. white in reality an extra [erjod of dight has be"n gramed, and thus io obtain the correct local datr
 that, for eviry time a preson travela aromm! therearth in rither direrotion. there is a ditference in time of onf day, and the result is the sume regardle:se of the rate of spered. "fo avoild the reonfusion of dates which must nereessarily result from this ronstant gain on one side amd loses on the other, it has leen juroposed to determine upon some line at which relstern lound travelers shald add one chay, and west ward bomml travelers shall drop a day from thoir rorkon irg, and thus prevent it disagreement in regard to the day of the were. "The lime at whind this atrlition or subtraction shalt be made is what is meant by the diate-line.

INTERNATIONAL LAW.--The body of rules. derived from consom, or treaty, loy which mations, either tacitly or expressly, heree to be governcol in their in tercourse with each of her. Somme of the rulo.s have existed from the begiming of history: their mamber has gradually inerensed. their scope widened. and theirquality improved. The Amphicelyonice Council, formed in very early times aml limited to Grecian tribes, required that aftor a batthe an exchange of prisoners should be matle, and at truce dedarid in order that the dead might be buriod. They also bound themselves not to destroy any city inchaled in the alliance, or to cut it oll from rumning water in war or peace. The Romans intheir early days established a College of lleralds for declaring war. and alhowed only sworn soldiers to take part in it. The indnence of Christianity, decharing the nniversal brotherhood of man as one of its fundamentat truths, has been great and beneficent in the sphere of national character and intercourse. Dany barlaritios fell at once before it, and many others have been gradaally mitigated and subdued.
International Iaw has two natural divisions- the one containing rules for the intercourse of nations during peace, ind the other regulating the changes made by war.

Righta and Duties of Nations During Peace.-1. Individuals cannot be parties to International Law; but may. if strangers, claim humane treatment under the law of nature broader than that of nations. Only independent, organized communities are nttions, and have the power of making troaties with other nations. Protecte ${ }^{3}$ or dependent Siates. Provinces and Colonies, the members of Confederacies. and separate Kingdoms made one ly a permanent compact. must conduct all their intereourse with other nations through that nation on which they are dependent. or of which they are a part. Nopirticular form of government and no diffarence of religions belief necessarily excludes a mation from the obligations and advantages of International Iaw. Independent Stateshave equal dutics and rimhts. without refercnce to their size or other relative differences, mblare sovereign in the sense of having no political superior. The individual States of the Imerican Union may be said to have a certain local and relative sovereignty; but with respect to other nations the Lnited States only constitute a SovereignState. International Law denls only with State do juctu. While a body, hitherto dependent or forming a part of a nation. is striving to effect its independence, other rations cannot help it. without creating a state of war with the parent State. A State camot evade its olhirations by change of Cosstitution. Demmark and Niorway, when
separating in 1814, each took its share of the delst of the United Kimedom; and the United States assumed the debts of the preceding Confederation. The independenec of a State implies. first of all, freedom in the conduct of its internal affairs. Generally there can be no legal interfcrence with them by anothre State. Yet when a State, by external alliances, is increasing its power in a degree that ondangers the welfare cr tranguility of its neighbors. the right of interfering in order to preserve the balance of power is claimed and las heen exercised; as, for example, in the war of the Spanish Succession, and after the French Revolution and the fall of Napoleon. On the other land, when circumstances do not require or warrant such an interference, there have been national declarations designed to forestall and prevent it. An instance of this was furnished hy what is called the Monroe Docirine-President Mouroe's declaration made in order to prevent European interfrence in what had heen Spanish America-that "The Inited Stetes wonld consider amy attempt on the part of the allied Enropean Powers to extend their system to any portion of our hemisphere as dangerous to our peace and safety." Also, when any great cruclty has been practiced by the strong against The weak the right of interference by other natiuns is claimed. A signal instance was furnished in 182\%, during the struggle for independence by the Greeks against the Turks, when the allied fleets of Great Britain, France, and Russia destroyed the Turkish fieet.
2. A State has a sovereign right to its territories and property. Its property consists of puhlic buildings, forts, ships, lands, money, and similar possessions. All private property, also, within itslimits is under its protection. Its territory includes all the surface of land or water within its limits; of harbors, gulfs. and straits within certain headlands ; and of the sea within a league from the shore. Outside of this limit the sea is free to all nations for commerce and fishing. But while foreigners are free to catclu fish in any jart of the ocean contiguous to the territory of a State-as on the hanks of Newfound-land-they cannot dry their nets or cure their fish on the adjoining coasts nnless the privilege has been granted by treaty. A ship owned by inhabitants of a country cannot be regarded as mational territory, but is simply private property under the protection of the national thag. la a foreign port it may be attached for debt, and its crew are aceountable to the laws of the port and of the country for any misconduce which they may commit. Rivers between two countries, unless a contrary provision is made by treaty, are common to both, and the houndary runs throngh the principal channel. When a river rises in one State and enters the sea in another, eacli portion, strictly speaking, is subject to the State within whose linsits it is contained. The dwellers on the upper shores lave no riglit, excrpt by eoncession, to descend to the sea throngh the lower territory: Yet there serms to be an equitable claim to the privilege almost amounting to a right; and within the present coutury almost all such navigable rivers in the Cliris. tian world have lieen opened hy treaty to the use of thone who live on their upper wat.rs. Among these may be montioned the Khine, Scheldt, Dantibe. La Plata and its tributaries, Amazon, and St. Lawrence.
3. Dutices which foreigners coming into a country owe to its laws and government. Aliens, sojourniner in a comntry, must sulmit to its laws unless released from their jurisdiction by special treaty or international custom. They are secure in the enjoyment of their property, the use of the Courts, and the transattion of lawfirl lusiness. They con dispose of their broperty ly will to persons residing abroad, or can transmit it to their own country. They have also the protection of Consuls and Imbassadors appointed hy their own country. Several classes of persons arespucially cxampt, in a méatoror less degreco, from the jurisdiction of local liws; as, for example, Sov-
erigns traveling through a foreign country, Ambassadors accredited to it, the ofticers and men of national ships in its ports, and foreiguarmies when passing througl it by permission. In England formerly no one bom a subject could lawfnlly expatriate limself, nor could any fordignar be naturalized except by Special Art of Parliament. But in 1884 provision was made for granting foreigners all the rights of native-born subjects except memberslip of the Privy Council or of Parliament. In the Unitedstates a foreigner may be legally naturalized afterfive years' residence, and three years after he has formally declared his intention to renome his former nationality and become citizen. Persons who have committed olfense against the laws of their country of ten Hee for refuge into another. If the offense be political only, the nations which are most free themselves generally allow the fugitives to remain: but if they have committed, or are charged with erime, they may be delivered up for trial to their own comery when demanded aceording to the provisions of treaties made for the purpose. An Ambassador in fory ancient times was considered a sacred person: and, as national intercourse and comity have been enlarged, there has been a proportionate increase in his rights and privileges. Ilis person, dwelling-place, proper1y, firmily, and attendants, are, in a great degree and as a ruie, exempt from the criminal and civil jurisdiction of the country to which he is sent. He las liberty of worship, according to the customs of his country and to his own choice, for himself, his household, and by extension of courtesy, for other persons belonging to his bation. In some countries this liberty las been restricted to worship in his own house. C'onsuls are agents who have no diplomatic character, but are sent to reside in certain districts to protect the interests, chicfly commercial, of the conntry which appoints them. "Their duties are imposed hy their own Government, and are performed by permission of the foreign power. They are honored and protected by the flag of their country; but their prive ileges are, in general, much less than those of Am bassadors, except in Mohammedan countries, where, having often been required to perform diplomatic duties, they have acquired corresponding rights. The modern office of Consul arose in the commerat times of the Mithle Ages, when companies of morchants, going to reside in the eastern jarts of the Mediterranean, had officers, chosen at first by themselves and afterward by their governments, to settle disputes that arose in conducting business affairs. Treaties arce compacts between mations for the regtolation of intercourse between botl governments and people. They comprise, in a great measure the histury of International Law. The power to make them is determined by the Constitution of individual States. In the Trited States they are negotiated undrer the direction of the President, and are ratiticd by a twothirds vote of the Senate. When they promise the payment of money it must be appropriated for the purpose ly a vote of the llouse of Representatives.
11. International Relations as Modified by War. 1. War is a contention hy force of arms between two or more nations. In order to be just it must he necessarily undertaken to repel an injury or to obtain a rightcous demand. The power of deciding for what purpose and when it is to be waged must be laft to cach nation, because there can he no other jutge. A nation that has heen wronged, or thinks it has. may take mon notice of that wrong, or employ only pearcoful measures to obtain redress, or accept the oflered mediation of a frisudly jower, or propose arbitration, or use armed force: In general, other nations have no right to interfere. Fet., in some casco. war betwern two nations may become to other nations a cause for war. Mediation ollers a way for esceping war which mat le equally honorable and advantaroons to both partios. Fit it can only give advice which may le rejected by one ar hoth of the parties. Arbitration, in special eases, nay besimple,
(atsy, and effective. The purlies agrere on tho Arha trators, the points 10 be (ansideremb, the time and place, and the law which is to govern the rase ; anme they bind themadyes to abobe by the dex.isinn. Thm sureerss which has, in mumeroms instaneres within the present centary, burn attained by arbitation, and especially in the recent important cane le wern the ['nited fitutes and (iroat Britain arising ont of tha war for the suppression of the Sinuthern Rabellion, Warrants the lope that war may often, in a similar way, be avoblowl. Aftor the happy sottlement in the instane last mentioned, the British House of Com mons preseaterl an stderese fo the (buern, praying that mensures might bre taken "Wiaha view to furth crempovemont in laternational law and the costab lishment of a general and permanent system of inter nationd arbitration."
23. War latween 1 wo nations inlerrapts all recognized intercourse betwoen the individutal nuembers of "ateh. The rehations of commeree, the right givent by treaty to reside in cithar comatry, and all eome manieation ly direct rimmelo betwern them, come to an cilll. Sometimes permission is granted to reman still inthe conntry ; and inemarally tine is grant er! to ramove with property and efforts. The treaty of 179) botweon the ['nited States and Great Britain stipalates that "Neither the dobts due from individ uats of tha ome nation to indivirlates of the other, nor shares nor moneys which they may have in the pultlie funds or in the public or private banks, slatl ever, in my event of war or matiomal difference, be seguestered or confiseated." According 10 ('hatncellor Kent. "As a gencral rule, the obligations of treaties are dissipated ly hostilitics." It is sad also ly another writer that "Great Britain, in practice, admits of no exception to the rule that all traties, as such, are brouglit to an end by a subsedpent war between the partics." The peace of Westphatia and the tranty of itrecht have been renewed several times when the mations conerrned in them, after having been at war, were making new trenties of peace.
8. The interests of bumanity demand that, during warlike operations on land, non-combatants slaould he molested as little as possible in the prosecution of their peaceful interests and in the enjoynent of their lomus. On the sea, ships bund cargoes belonging to encmies have, antil reantly, heen acoomed lawful proy; but in the colarecel conmacreial relations of the world much progress has been mate towards exempting innocent trafic on the seas from interruption durines war.
4. The forces lawfully employed in war are, on land, Regular Armies. Militia, and Volunteers; and, on the sca, mational ships and private vessels commissioned by national authority. But as privateur. ing is necessarily attended with groat evils, carnest efforts lave been made to restrict or abolish it. In 1850 the parties to the Declaration of Paris adopted four rules eoncerning maritime warfare.one of which dechares that " Privaterring is and ramains abolished." Other nations were asked to aceept them on condition that they would be bound by them alf; and almost all Christian States did agrec fo them. The United States wilhbeh their assent beonuse, as it is their policy to maintain only a small navy, the right to resort to privateering in case of war offers the only way by which they can cope with the large navies of other nations. They agreed, however, to adopt all the roles, provided the signers of the deelaration would eonsint to exempt from capture all innocent traftic of enemies on the sea. In 1861 the offer was made to two of the principal European powers. by the Secretary of State, on the part of the United States, to come under the operation of the four rules : but as it was made for the whole Republic the rebellious as wedl as the loyal States-it was declined.
i The rights and duties of neutral mations. In recent times the commereial intercourse among perople of different nations has become so general and
 at ronferlaracy so sis lo be entitled io sa voire in dre robiling whethar war lutworninclivalatil nations slatll, in any partirniar rase, bremermittod. Sonmetimos, in view of pronliaritiasin its position, atorritory is made permatnoutly boutral so that armion connot cross its bommaries nor can it engage in war. Switzerland
 1R30, Inve horn in this condition. Sinmotinnes servers Powars nuite inanarmodncutrality inorder lomaintain rortain maritime rights against butia hetligerents But sucha a league is liabla to result in war. A neastral Sint. mont fre impartial in itce dealinges with both lsdligeronts; must kerp itself, its torri(ury and sulbjecta, as detacheol as jussible from the war: and be 'rfuallylumane to botli jurtios whansorm, disastoror lumger casts them on its shores or withinitubaunds. By tho treaty of Washinglom, in 187], (ireat lorianin and the United States adopted throre rules to be ap plicel in settling difliculties then existing leetworn them, to be observed by them inthe future, and : of be ursed on the acerptance of other mations. "lowe rulesare-that " A moutral grovernment is bound firat, lu use due diligrace to provent tha titling out, arminer or equipping. within its juristiction, of any vos. sel which it has rasonable groumel to believe is intenderd to ernise or to carry on war aratinst a power with which it is at poace ; and also to nse like diliErone to prevont the rleparture from its jurishlietion of any vessed intended to crinse or carry on war as above, such vessd having been specially ndapterl, in whole or in part, within such jurisdiration, to warlike use; seand, not to permit or sutfer either belligrent to make use of its ports or waters as the base of naval operations against the other ; or for the furpose of the renewal oratagmentation of military supplies or arms, or the recruitment of ment thired, to exercisedue diligence in its own ports amd waters, and an to all persons within its juristiction, to prevent any violation of the foregoing obligations and duties.
6. Thu liabilities and rights of nentral trade. By the rules set forth in the Declaration of Daris. a "nentral thag covers the enemy's goods with the execption of contraband of war," and "nentral goode, with the cexeption of contraband of war, are not liable to capture under an conemy"stlag." The term " contraband of war" is ned to ilenote articles which directly aid warlike operations. According 10 a formula adopoted by the United States, the list includes all kincls of gins, fire-arms, ammmition, weapons, armor, military clothing, equipments formen and eavairy horses, and all instruments, of any materal, mannfactured and prepared for making war by seal or hand. The right of blockade in time of war is univerally admitted, but in general is available only for harliors, months of rivers, and limited districts of coust. Is a blockade begins and ends at definite times, previous notification, of both its beginning and embing, must be given to traders and nentral govermments. lo tre legal. it nust be maintained by armed force sulficient to show that it is actual, and to prevent all ordinary and open attempts to pass it. All moredy formal, or as they have been called, paper blockades, like N゙apoleon's Berlin and Dian Decrees, and the two comter l3ritish Orders in Council in 180%, are regarded by International Law as futile and void. When a vessel is captured and found guilty of attumpting to enter or leave a blockaded port, the penalty it incurs is the contiseation of itself and its cargo. In earrying out the international rules adopted concerning contraband goods, enemies. goods on enemies' ships, and hlockades, search is often neerssary to determine the netionallity of the vessel and the nature of its cargo. It must be submitted to by the vessel. but it must not be so conducted as to give mmecessary anmoynee. The right of searcil is a war rightapplicathe to merchant vesuels only in time of war, and to those suspected of piracy at any (ime. inasmuch as piracy involving attack on the peacefil and unarmed, is held as war against the human race.

INTERNATIONAL SALUTE, - A salute of 21 guns a leavy piece of iron placed on the short arm of the to a national flar. This salute is the only one which is returned, and this is invariably done as soon as possible. The time intervening must never exceed twenty-four hours. The fallure to return such salute is regarded as a discontesy or lack of friendship jusifying the other party in askince explanation. In the presence of the President of the United States, however, no salute, other than the national watute. and that specified for him, is to be fired. It is the custom for saluting vesselsof-war, upon auchoring in presence of a fort, to hoist at the fore the flag of the Comntry in whose waters they are, and to fire the first salute. A failure to do so is a proper subject for explanation. Notice of an intention to salute the thag is usuably given hy the vessel direct to the fort: but as giving notice inwolves delay. vessels frequontly salnte without it. Tessels mounting less than ten guns do not fire salutes requiring the guns to be redoaded. Surveying vessels, store-ships. or transports do not salute. If there be several forts or batteries in sight, or within six miles of eachother, one of them is designated in orders to retmrn international salutes. Either of the others receiviner notice from a saluting vessel of intention fo salute the Har, immediately notifies the one lesignated as the saluting fort, and informs the vessel of the fact. If a vessel salutes withont giving notice, the fort designated as the saluting fort returns it. United States vessels return salutes to the flag in United States waters, only where there is no fort or battery to do so. United States vessels do not salute UnitedStates forts or posts. Salutes to the flag are in no sense to be considered as personal. See Sialutes.

INTERVAL.-In drill, the lateral space between men or corps. The following are the usual intervals in line between the different branches of the service: 1. Between files when formed in squadron, 6 inches from knee to knee. 2. Between the guns of a battery in line, full intervals, 19 yards. 3. Between squad. rons in line. the breadth of a division, but never less than 12 fards. 4. Between cavalry regiments in line, or between cavalry and infantry in line, as for sufuadrons. 5. Between battalions in line, 30 paces. 6 . Between batteries in line, orletween artilleryand other iroops, פ8 $\frac{1}{2}$ yards. \%. Between cavalry regiments in contignous columns, as for stuadrons. 8. Between battalions in contiguous columns, $1 \approx$ or 30 paces, as ordered.

INTO GEAR. - For most pieces, the motion of the top-carriage to and from battery is regulated by a pair of truck-wheels, one on each side; which work on an eccentric axle placed underneath and a little in front of the axis of the trunnions. The wheels are thrown into gear by means of handspikes inserted into sockets upon the ends of the eccentric axle; the wheels then rest upon the top of the ehassis rails; and only the rear part of the soles of the top-carriatre rest on the chassis rails and have sliding friction. The wheels are thrown out of gear in the same manner; the entire soles then having sliding friction upon the chassis rails, thus cheeking recoil. In the 15 iuch crun-rarriage there are two pairs of truck-wherels, one pair being placed in front, as just describech, and the other pair near the rear end of the carriage: the rear wheels only are on eccentric axles, and when these are out of gear the soles of the top-carriage rest fairly on the chassis rails, and the motion is ons sliding friction. Whan the rear whecels are in gear the front whends also touch the chassis rails, and the tup-carriage moves on rolling friction. To prevent the rear wherls from working out of goter while the grun is bxing sun from the battury, or jumping in gear When the piece is tired, pawls are providul for locking the rear aske. When the rar wheels are in goar, motion is commminated to the carriage by means of a hamdapike on rable emd of the front axle. This hamdspike arrics a donbles pawl, whidh works in rateluts or rous on the truck-wheels. 'lhe handspike is arranged with a cobunterpoise. consisting of
a heavy piece of iron placed on the short arm of the
INTRENCH.-To secure a position or body of men against the attack of an enemy, by digging a ditch or trench. An army may intrench itself either by a romtinued or an interrupted line; in the former case, the line may be composed of parts so connected as to leave no uncovered space between them; in the latter, those parts may lie isolated from each other, and uneovered intervals left between them.

INTRENCHED CAMPS. - Troops, when within striking distance of the enemy, should, io a woid the consequences of a surprise, be encampedalways in order of battle. The modern practice of armies is to intrench, if encamped even for one night. Such intrenchmeats are usually of the slightest and most. hastily-constructed kind, merely suffieitnt to afford shelter against a night attack. The artillery in this case is only that usually accompanying troops on the march, and for it gum-pits will suftice. These are made by simply throwing up the earth in front of each piece so as to form for it a crescent-shaped epanment. If rails or any similar material are convenient, a slight revetment may be constructed to support the rarth on the side towards the piece. In dry weather the earth may be dug from the inside and thrown up in front, thos forming a depressed prosition or hole for the piece to stand in. The chest of the limber will hold sufficient ammunition for immediate use. To protect it, the limber is turned with its pole from the piece, and is covered with an epanlment similar to that for the gun; or, removing the horses. it may be backed up near to and on one side of the piece, occupying with the latter a portion of the gun-pit. The caissons, horses, and other material of the battery may be placed in some sheltered position a little way to the rear. The positions occupied by artillery on such a line ought to be those that would be selected for it on any well-arranged line of battle. When. in consequence of attack by the enemy, or of his threatening attitude, the Army stands upon the defensive, the slight intrenchments of a temporary camp are increased and strengthened until they become a strong intrenched line of battle. See Field-service, Intronchment, Line of Circumballution, and Line of 'omentervallation.
INTRENCHING-TOOL.-An implement used for in trenching. The value of a hasty intrenchment was well malerstood by the Roman legions, for they executed works of this kind, in the presence of an enemy, with wonderful skill and rapidity. "It was by moving earth that they conquered the word." Na polean said. "There are fivethings from which the soldier must never be separated; his ammmition. his haversack, his rations for four days and an in-trenchiny-tool."

Never has the utility of rapid ticld intrenchments been so clearly demonstrated, as in ourlast war, and never have they been used with grater suceess. Tlue skill shown in improvising serviceable intrenchments was really very astonishing : frequemty, for want of spades they used knives, cans, bowls-in one word, anything that came to hand. The art of ntilizing cover is of great importance, and the soldier who carries in compact form the means of erecting cover at will is indeed fortumate. Whether the soldier shatl carry his intrenching-tool, or have it carried for him; whather only a portion of the troops shonld carry tools, or whether each soldier shond farry his own. are puxstions now under discussion. See " litz Introurhing-tool, Inaromr h́nife-trorel and Tentpeg. Thourel Bayonet, and Zalinski Intrenching-tool.
INTRENCHMENT.- In a genoral semse an intrenchmenl is any work, consisting of not less than a paraprat and a ditch, which fortifies a prast aquinst the attack of an enemy. As a means of prolonging the defense in as regular work of permanemt fortitication, intrencloments are made in various parts, to which the defenders sucerssively retire when driven in from forward works. Bastions are ordinarily intrenched
at the gored by it breastwork and an ditch, forming "ither a reantering angle or a small front of fortitieation. Sncla a work aceross the gorge of the redan at Gebmstopol caused the repulse of the britisla athack in Seph. 1855. A eqvalier, with a diteh, is also an intrencioment. An army in the ticld ofien strenerthens its position hy intrenchanents, as by a routimure lime of parapet and ditch. loroken into redans and curtains, or lyy a line orith intrroles, consisting of ano tarlaed works of more or less pretention llanking each other.

INTREPIDITX.- In Wuphalifiod montempt of denth and inditherence to fortume, as far as regarde personal safoty; a farlessuess of heart. and a daring raterprise of mind. Aceording to Rochefonctult, intrepitlity, especially with regard to military daring, ime plios firmurss of character, irrent confitine of mind, and extraordinary atreroth of soul. Buoyed ups and supported hy these qualitios (which ure sometimes naturaland sometimes açuired), men become superior to every emotion of alarm, and are insensible to those perturbations of the leart which the prosisect of imminent danger almost always engenders.

INUNDATIONS.-This obstacle is formed by damming back a shallow water-course, so as to make it overtiow its valley. To be effective, un inumbation should be six feet deep. When this depth cambot be procured, trous-de-loup, or else short ditches, placed in a fuincumx order, are dugt, and the whole is covered with a sheet of water, which, at the diteloes, must lie at least six feet in dopilh. The dumes used to form an inmolation are made of good binding earth, or of erib-work of logs filled in with stone, gravel, and carth, or of successive lavers of fascines and gravel. If the dams are to stand for some tine they maty be finced on the upper side with boarils. They cannot, in general, be raised higher than tenfert; they need not be thicker than five feet at top, unless they are exposed to a fire of artillery, in whirla case they shoulal lie regulated in the same way as a paraput. The slope of the dam down-stremm should be the nutural slope of the earth; hut up-stream the slope should have a base twice that of the natural slope. Slaires are made in the dams, in a similar manner to the sluices of a mill-dam, for the purbose of regulating the level of the water in the pool above, in rase of leeavy rains. Wrestemeirs are also serviceable for the sume purpose, but unless carefully made they may andanger the safety of the dam. The distance of the dams apart will depornd on the slope of the stream. The level of each pool should be at least eighteen inches below the top of the dim, and the depith of water below cach dam should be ut least six feet. These data will suffice to determine the center line, or axix, of each dam.

Artificial inundations seldom admit of being turned to an effective use, owing to the difliculties in forming them, and the ease with which they can be drained by the enemy. But when it is practicable to procure only a shallow sheet of water, it shoula not be neglected, as it will cause some apprehension to the enemy. In some cases, by damming back a brook, the watermay be raised to a level sufticicont to be conducted into the ditehes of the work, and render some parts massailable. The ditches in such tases should be made very wide, and to hold about a depth of six feet. During freezing weather the ice should be broken in the middle of the ditels, and it chamel of twelve feet at least be kept open, if prac. ticable. The ice taken out should he piled upirregularly on each side of the channel; and, as a fartheo prectution against a surprise. water should be thrown on the parapet to freeze. In a system of immintions the dams should, as far as practicable, be built at points the least exposed to the fire of the assalled. The heal of each dam on the side of the enemy should be secured from surprise by a redan, stoceade, or other defense, and the clan itselfand its approaches should be swept by musketry and artillery.

Inumdations must be made witl great care and
forethought. The nature of the soil and the time neressary to elfoct the requirod inumbation wats low particularly notioed. Whan the sulply of water is whall, (vaporation and filtation may become very prejurlicial. The quantity of water f furnished per second by a stream is found from the formalas, $F=$ in $\times d \times v$; and $V=-.07+\sqrt{ } .00 \pi+32 ; ; \frac{r d i}{u r+2 d}$; in which on reprosents the wictll of lrel], d the mean depth, e the monan volooityperserond, ithe fall. Tho volume of water may also he ralrulaterl lyy measuring the serelion of the bed, and multiplying it by the mean velocity. The mean velocity $l^{\prime \prime}$ is found from 1he formula $V^{\prime}=\frac{I^{+}+(\sqrt{r}-1)^{2}}{2}$, in whiche V represents, in inelaes, the velocity at the surface. In ordinary weathor, the evaporation varies from r 1 to $10{ }_{1}^{1}$ of an inch per day, and tiltration in crommon soil may be reckoned at oue incoln in 12 hours. It is quite dangerons in winter time to fill the ditches of fieldworks witl! water: und when g garrison is compelled to remaina long time in an innodnted country, fevar does more dammer than the enomy. See ice

INVALIDES.-Wounded veterans of the French Army, maintanel at the expense of the State. Many of these old soldiers are guartered at the llotel des Invalidns, an Establishment in Paris. See IIotel des Invalides.

INVALID ESTABLISHMENT. - An Establisment in the Judian Irmy for the transfer of offierrs wlo may be declared to be unfit for further service. It consists of -1. The Invalid Battalion: for ollicers wlo, although disqualified for furthor active service, are still equal to the discharge of garrison thties. 2. The Invalid Pension List: for officers disqualified for botla active and garrisou duties, either from age, wounds, or decline of health. They are transferred to this list, as stated in the government order, "Provided their conduct and habits are such as not to affect the character of that Institution, whicle is designefl as an honorable retreat to the worn-out or disabled but deserving officers." The several orders issued on the subject of this Establishment will be found in the regulations applicable to the European ofticers in InClia. part IIf. by the late G. E. Coehrane. Assistant Dilitary Secretary, India Office, and in the orders issued by the Govermment of India.

INVALIDING. - A term signifying the return home or to a more healthy climate of soldiers or sailors whom wounds or the severity of forrign service has rendered incapable of active duty. The man invalided returns to his duty as soon as his restored liealth justities the step.

INV ALIDS.-Worn out or maimed soldiers, or those who from permanent sickness are unable to remain in the Army. There are some invalids who from change of climate recover their health: those men join the ranks arain. In the British service, disabled men are periodically invalided and sent home from India and the Colonies. Besides Chelsea Ilospital, for the reception of worn out and disibled men. the Corps of Commissionaires is open to peusioned soldiers : whilst so attached, they can add to their livelihood by giving their services as messengers or watchmen. Many invalicls, known as Ont-pensioners, are allowed to reside where they choose. See Soldiers' IImmes.

INVASION. - The hostile entrance or attack of an enemy on the dominions of another: the passing of the regnlar line of frontier of any country: in order to take possession of the interior.

INVENTORY OF EFFECTS OF DECEASED OFFICERS AND SOLDIERS. - In the C'nited States Scrvice, in case of death of any otheer, the Major of his regiment, or the officer doing the Major's duty or the second ofticer in command at any post or garrison, as the case may be, immediately secures all his effects then in camp or quarters, and makes and
transmits to the office of the Department of War, an inventory thereof. The Artieles of War also provide that in case of the death of any soldier, the Commanding Officer of his troop, batiery, or company shall immediately secure all his effects then in camp) or quarters, and shall, in the presence of two other officers, make an inventory thereof, which he shall transmit to the office of the Department of War.
INVERSION. - In tactics, the subdivisions of the unit have their habitual position in the order of batthe. This is necessary, in order that the mechanism of the unit may have that simplicity and uniformity in which there will be no difficulty in its being compreloended and retained by ordinary minds, to the end that every movement may be executed with promptitude. Still cases may occur in which the requisite rapidity to meet an attack, or to move in a given direction, cannot be attained without changing the habitual order. Such cases are provided for by what are termed inverseons. in which the subdivisions temporarily change places and parts.
Inversions are very important in the field, and they offer such great advantages, that Bonaparte strongly advised their employment in many circumstances. Our tactics admit the employment of inversions in the formations to the right and left in line of battle, and also in the successive formations, except in that of faced to the rear into line of battle.
INVESTMENT.-The mainobjects of this operation are to cut ofl all communication between the garrison and the exterior; to prevent succors of every kind from being thrown into the work; to sweep off every thing in its vicinity that might, in any way, be serviceable to the garrison: and, finally, to cover a close recommissance of the defenses by engineer and other oflicers. For a successful attainment of these ends, the investing force, which slould be mainly if not solely composid of cavalry, moves upon the work with celerity and seceecy; and, after surrounding and securing all avenues to it, sends out detacliments to scour the environs up to the very gates of the work, if practicable, and briug off with them, or destroy, all persons, cattle, provisions, etc., met with. A chain of posts and sentinels is in the meantime established in the best positions to prevent all access to the work, or egress from it ; care being taken to select for the posts points which are not exposed to the artillery of the work, or are beyond its range. The posts oceupied by the troops during the day-time, and termed the Maily Cordon, are shifted at dark, and points nearer the work are taken up, to form the Nightly Gordon and hem the work in more closely. The posts and sentinels for this purpose should be pushed as far forward as they ean find shelters from the musketry of the defenses: and under their protection the recomoitering officers should spare no efforts to gain an exact idea of all the ground exterior to the work, and of the character of the defenses. The main body of the besiegingarmy, with the engineer and artillery siegef rains, follows closely upon the investing corps, to prevent the line taken up by the latter, which, from its extent, is necessarily weak, from locing forced either by the garrison, or by strong detach. ments from without. The positions for the camps of the varions corps are designated by the Commanding General, after a careful reconnoissance. These are placed beyond the range of the leaby artillery of the works, with their color fronts facing from the works: ancl, as far as practicable, on points favorable to the health and comfort of the troops, and the defense. Whenever natural obstacles, of marshes, rivers, ete., occur between the camps they must be crossed by good lines of commumication, so that no imperliment mity be offered tothe speedy concentration of the troops mpon any point threatened from willout. Scestirge.
IRELAND. - Thic insignia of Irehand have been variously given by "arly writars. In the reign of bil ward IV., a commission appointed to ingaire what
were the Arms of Ireland found them to be three erowns in pale. It has bern supposed that these crowns were abandoned at the Reformation, from an idea that they might denote the feulal sovereignty of the Pope, whose Yassal the King of England was, as Lord of Ireland. However, in a MS. in the Merald's College of the time of Henry VII., the Arms of 1reland are blazoned azure a harp or. stringed argent; and when they were for the first time placed on the royal slield on the accession of James 1. they were this delineated; the crest is on at wreath or and azure, a tower(sometimestriple-towered) or. from the port, a hart springing argent. Another crest is a harp or. The national flag of Ireland exhitsits the harp in a field vert. The Royal Badge of Ireland, as settled by signomanual in 1801, is a harp or, stringed argent, and a trefoil vert, both ensigned with the Imperial ('rown.

IRISH BRIGADE.-A body of men who followed the fortunes of James II. and were formed into regiments under the Monarchy of France.

IRON,-This most important netal in ordnance constructions will be most conveniently considered under the two following lieads: 1. Chemistry of Iron. Chemically pure iron is of so little general interest that we shall confine onr remarks on the properties of this metal to those which are exhihited by bar or wronglit iron. Its color is gray or bluish-white; it is hard and lustrous, takes a high polish, is fibrous in texture, and when broken across, exlibits a ragged fracture. It requires a very intense heat for its fusion, but before melting passes into a soft pasty condition. in which state two pieces of iron may, by being hammered together, be united or welded so completely as to form. to all intents and purposes, a single portion. At a red heat. it may be readily forged into any shape; but at ordinary temperatures it possesses very little malleability, as compared with gold and silver. In ductility, it stands wery ligh, being barely exceeded by gold, silver, and platinum : and in tenacity. it is only exceeded by cobalt and nicket. Its susceptibility to magnetism is one of its most remarkable characteristics. At a high temperature, it burns readily, as may be seen at the forge, or (more strikingly) when a glowing wire is introduced into a jar of oxygen. In dry air, and at ordinary temperatures, the lustrous surface of the metal remains unchanged; but in a moist atmosphere the surface rapidly becomes oxidized and corered with rust, which consists mainly of the hydrated oxide of iron. At a red heat, iron decomposes water, and liberates hydrogen, the oxygen combining with the iron to form the black or magnetic oxide $\left.\left(\mathrm{Fe}^{3}\right)^{4}\right)$, which oceurs in minute crystals. This is one of the ordinary methods of obtaining hydrogen. The aftinities of iron for most of the non-metallic elements are very powerfnl. The chief of the iron compounds are-
a. Oxides of Iron-Iron forms four detinite compounds with oxygen-viz. (1), the protoxide (FeO), which is the base of the green or ferrous salts of iron: (2), the sesquioxide or peroxide $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$, which is the hase of the red or ferric sults;; (3), the black or magnetic oxide $\left(\mathrm{Fe}_{3} \mathrm{O}_{7}\right)$, which is regarded by some ehemists as a compound of the two preceding oxides; and (4), firrio acid ($\mathrm{F}_{\mathrm{c}} \mathrm{O}_{3}$). The protraide cannot be on)tained in an isolated form, hut it forms the base of various ferrons salts, and combines with water to form it hydrate (FeO,11O), which. on the addition of am alkati, falls in white llakes. The most important protosalts of iron, or ferrons salts, are the carbomate, the sulphate, the phonsphate, and the silifate. Cierbonate of Iron ($\mathrm{Fe}^{(O, C O}$) exists naturaHy in various minerals, and may be obtained artificially hy precipitating a soluble protosalt of iron with carlionate of potash or soda. when the carbonate falls in white dakes. On exposure to the air, it absorbs oxpren, and gives off carlonic acid, and is thms converted into the hydrated peroxide. Sulphate of iron (For), $8 O_{3}+7110$) is obtained by the solution of iron, or its sulphide, in dilute sulphuric acid; in the former cases,
.

there is an cenlution of hydrogen, and in the latier, of sulphureted hydrogern. Wh "vaperation of the sorlution, the salt isolitained inclear blush-gre\%n rhomboidal cryatals, containing severn atoms of water. This salt is commercially кnownas copperas or greern vitriol. Phosphate of iron is oltained by precipitat. ing a solation of a protosalt of iron with phosphate of soda, when a white precipitate of phosphate of iron is thrown down. All these salte, resperially the carbonate and sulphate, are extensively used in mend. icine. Siliente and phosphate of iron oce nar naturally in several minerals. Thu permide of iom, termed also sempluioxide, red oxids, or forric oxide, is (h)tained in an anhyerons form lyy igniting tha proto. sulphate, and isknown in the arts under the names colcother, crertus of Murs, or romge, according to the degree of levigration to which it has been submitted. It is employed for polishing glass, jewelry, etc., and is also nsed as a pigmont. It werurs both in the anhydroms mat in the hydrated form in varions minerais. The hyelreted porrxitle ($2 \mathrm{Fe}_{2} \mathrm{O}_{3} .3 \mathrm{JI}(\mathrm{O}$) is obtained by precipitating at solution of a persalt of iron, or of a ferric salt, with an excess of potash. atmmonin. or alkaline carbonate. It falls as a yellowish-brown floceulent precipitate, which when dried forms a dense brown mass. This liydrated paroxide of iron. when freshly prepared and suspronded in water, is regarded as an antidote in arsenical poisoning. lust, as has heen already montionech, is a hydrated peroxide, comhined with a little ammonis. The most important of the persalts of iron, or ferrice salts, are the nentral and the hasic sulphate, whose formule are $\mathrm{Fe} \mathrm{O}_{2}, 3 \mathrm{SO}_{3}$ and $\mathrm{Fe} \mathrm{C}_{2} \mathrm{O}_{3}, 3.3()_{2}, 5 \mathrm{Fe}_{9} \mathrm{O}_{3}$ respectively, the nitrate ($\mathrm{Fe}_{2} \mathrm{O}_{3} .3 \mathrm{~N} \mathrm{O}_{5}$) the phosphate, and thr silicate. The nitrate which is ohtained by the solution of iron in nitric: acid, is a nseful uselicinal agent. The black or magnetie wrike ant forve acid, which has not bern obtained in a free state, and is only known as a constituent of certain salts, must be passed over without comment.
b. IIaluit sults of iron-the chlorides, bromides, and iodides-nest require notice. There are two chlorides-viz., a protochoride (Fe(l) and a perchloride or sesquichloride ($\mathrm{F}^{2}{ }_{2} \mathrm{Cl}_{3}$). The latter may he obtained by dissolving peroxide of iron in hydrochloric acid. The tincture of the sesquichloride of iron is perhaps more generally employed in medicine anan any other preparation of this metal. The protionlide is an extremely valuable the rapentic agent.
c. There are probably several sulphides or suiphuerets of iron. The ordinary sulphide is a protosulphide FeS). It occurs in smail quantity in meteoric iron. It may be obtained artificially by the direct mion of the two elements at a ligh temperature, or by the precipitation of a protosalt of iron by sulphide of ammonium. It exists in glistening masses, varying in color from a grayish yellow to a reddish brown. It is insoluble in water, but in moist air becomes rapidly oxidized into protosulphate of iron. With acids, it develops sulplureted bydrogen. The bisulphide of iron $\left(\mathrm{FeS}_{2}\right)$ is the iron pyrites of Mincralogists, and the mundic of commerce. Under the latter name, it it used extensively in the preparation of nil of vitriol. There are also other sulphides of less importance.
2. Manufacture of iron-The increasing use of iron is a promineut characteristic of the present age, and every day sees some new application of it in the arts of life. Although the most useful of the metals, it was not the first known. The difficulty of reducing it from its ores would maturally make it a later acquisition than gold, silver, and copper. The reduction of the ore known as the black oxide of iron, however, has been carried on in lndia from a very early time. In Europe the rich specular and other ores of Spain and Elba were much used during the Roman period; in Greece, also, iron was known, though, as among the lomans. its use was subsiquent to that of bronze. We are informed. 100 , ly the Roman historians that this metal was employed by the ancient l3ritains for the manufacture of spears
and lances. The liomana, rlurine their owoupation of Britain, mamafactured iren te a considerable: "x 1ent, as is eviteneed by the coinder-heaps in the forest
 in use left se muth iron in the cinders that thesere of Wean forest furnisherl the chiref smply of ore to ${ }^{2} 4$
 rarly times, the iron ores were redacerel in a simple
 the tow of a hill. in order to olfain the greatest blast of wind. The furnaces wore subsergurntly andargend and smpliofl with an artificial hasi. (hatroal was the only furd nsed in smalting till 1 fis, when Lored Dudley introducod comal for this parpose: but the irom-masters being manimonsly opposed to the change, ludley's improwernent diod with himself. It was not reintroduced till Alarabum Dorhy, in 1718, cmployerl it in his furnace at (omblorook b)ale. lint an this method was mot properly ineldrstood, the production of English iron declined with the change of fuel, ill, in 1740, it was only three-fourthe of what it had formerly lucen. Alout 10 years after this, however, the introluction of eoke gave reneworl vigor to the iron-trade, and then folleswed in rapid sureession those great improvements in the manufacture which have eriven to the history of iron the interest of a romance. The introduction of Wiatt's stemmengime in 17ro, the processes of phoflling and rolling invented by Denry Corl in 1744, and the employ-
 have each been of incstimalibe service. The groatest improvement introduced into the iron mannateture in recent times is the procoss of Mr. Bessomer for the production of sted, patented in 185\%. The "Siemens-Nartin" mothod of making steel has also of late come into extonsive use.
Iron ores are abumdantly distributed all over the ghone : the chicf kindsloring- 1 . Magnetic iron ore; 2. Red hematite, specular, or red iron ore; 3. Brown hematite, or brown iron ore ; 4. Carbonate of iron, including spathic ore, clay ironstone, and hackland ironstone. The ore richest in the metal is the may. netic, or black oxide of iron. When pure it contains nothing but oxygen and iron, its chemical formmla being $\mathrm{Fe}_{3} \mathrm{O}_{4}$, which gives 73 per cent. of iron by weight. It occurs in dark heavy masses of black crystals, and is found in the old primary rocks. Sweden is famous for this ore, and for the iron produced from it, which is estcemed the best in Europe. The celebrated mines of Dannemora, in that country, have been constantly workedsince the 15th century: I?ussia, too, has great iron works in the Iral Mountains, which are supplied with this ore. So, also, have Canada and several of the American States. as Virginia, Pennsylvania, New Jersey, etc. The rock formations in which magnetic iron ore occurs very rarely contain coal, hence it is almost always smelted with wood-charcoal, which, as it contains no sulphur, is one great cause of the superiority of the iron produced from it. Red hematite differs froms the last only in containing proportionally a little more oxygen, its formula being $\mathrm{Fe}_{2} \mathrm{O}_{3}$, that is to say, 70 per cent. of iron by weight. There are several varieties of this ore, but only two need be referred to. The first of these, specuiar iron, so called from it, bright metallic loster. occurs in large and beautiful crystalline masses in the Lsland of Elba, where it has been worked for more than 2.000 years, and is likewise found in many other parts of the world. It is of a steel-gray color, assuming a red tint in thin frasments and when scratched. The other variety is kidney ore, whose origin is still a curious problem, as its deposits occur sometimes in veins and sometimes in apparently regular beds. Its characteristic form is in large kidney-shaped nodules, with a fine radiated structure. This shape, however, is only assumed in the cavitics of massive deposits. Red hematite is sometimes called blood-stome. It is used for polishing metals, and yiplds a bleol-red powder. used is a piigment. This valuable irou ore is found
in many Countries, but in few places in greater abun-

dance than at Whiteharen and Ulverstone, in England, where splendid masses of it oceur, 15,30 , and even 60 feet in thickness.

Broirn hematite, or brown iron ore, is hydrated peroxide of iron, and has the same composition as red hematite, except that it contains about 14 per cent. of water. It is generally found massive, more rarely crystalline, and a variety occurring in small rouncled notules is called pea iron ore. When mixed with earth or clay, it forms the pigments yellow ocher and brown umber. Brown hematite is now an important ore in Great Brithin, about 2,000,000 tons being annmally raised. It occurs in different geological formations, chiefly in Devonshire, the forest of Dean, South Wales, and in Antrim, in Ireland; also in an earthy form in Northamptonshire. It is the ore chiefly smelted in France and Germany: Bog irom wre is a variety of brown hematite, usually containing phosphorus, which oreurs in marshy districts of recent formation. Carbonate of iron, when found in a comparatively pure crystallized state, is known as sputhie, spathose, or spurry iron ore ; bnt when impure and earthy, as cliy ironstone and blackband ironstone. Spathie ore was little worked in England previous to 1851. soon after which it was discovered in Somersetshire. It forms monntain masses in various parts of Prussia and Austria. and is now much in demand to yield the spiegeleisen required in the Bessemer process. In its purest form it contains 48 per cent. of iron; and in color it varies from white to buff or dark brown. some specimens of it taking a beantiful polish and looking like marble. The elay and blackband ironstones are essentially mixtures of carbonate of iron with clay, blackband having ako a eonsiderable proportion of coaly or bituminous natter. These dull earthy-looking ores occur abundantly in Great Britain, and form, after coal. the greatest of her mineral treasnres. Fully one-third of all the ore mined in the country is obtained from the coal-measures, where fortunately both the fuel and the limestone, indispensable for the reduction of the iron, are also fonnd. The ore oceurs as balls or nodules in the shales, or in continuous heds. Some of these seams are full of fossil shells, and the ore is then called " musselhand" ironstone.

Iron ore is still reduced to some extent in Europe by the old and imperfect process of the Catalan forge, not unlike a common smith's forge. In America. however, as well as in all other Countries whereiron is largely smelted, the blast-furnace is now universally employed, by means of which the metal is obtained in the state of crude or cast iron. For the finer kinds of iron, chareoal is the fuel employed, because, unlike coal or coke, it contains no sulphuret of iron or other injurious ingredients. The Russian and Swedish furnaces smelt with charcoal, and on this, as mucli as on their pure ores, depends the high reputation of their iron. A solitary chareoal-furnace at Ulverstone in England, and another at Lorn in Scotland, are still working-the only relics of times past, when this was the culy fuel cmployed.

As a preliminary process to the actual smelting in the blast furnace, clay and blackband ironstones are generally roasted. This is accomplished by breaking the ore into small pieces, spreading it in open leenps on the ground, and mingling it more or less will small coal accorling to the mature of the ore. Blatelnut commonly contains enough of carbonaceons matter to burn without the addition of eoal. The pile, which may contain from one to several thousand tons of ore, is lighted at the windward end, and burns gradually alomur, aided by oecasional fires in the sides, until the whole heap has undergone folleination, the time required for this purpose being generally about a month. Sometimes the operation of roasting is performed in close kilus instad of opren lueaps, a mote by which the ore is considered to be more miformly roasted, and with consiteribly less fael. Of late years, the kilna are often leated by the waste grace of the blast-furmate liy caleimation,
day ironstone loses from 25 to 30 , and blarkhand from 40 to 50 per cent, of its weight, the loss romsist inge chietly of corbonic acid and water, lout sulphur and other volatide sulstmees are also dissipated in the process. The ronsting alsu converts the grotenside and corbonate of iron into proxide, which prevents the formation of any slage of silicate of iron, sueh slags, owing to the dhaticulty of reducing them, causing a loss of iron. In England the rich ores like the marnetic or red lematite are not subjected to calcination, but they are so in swoden. The older type of blast-furnace consists of a massive tower of stone or brick-work streusthened with jron limders: the newer plan is to buik! it of comparatively thin l,rick-work, and surround it entirdy with strong iron phates. In eithor case an innor lining of rofratory firc-brick is given to it, which is siparathen from the onter portion of the wall by arrow space tilled with sand. Internally they vary wery much in form, but perhaps the barrol shape is the most prevalent, und inost of them contract towards the bottom in the shape of an inverted cone. Recent ones have been built from 80 to 100 feet in height. instend of not more than 60 as formerly. The blast-pipee, with its tuyere-branches, surrounds the hearth, ant on one side there is a recess and opernings for runing off the metal and slag. Fig. 1. shows the ronstruction of the Bigelow furnace or cupola, and will serve to illustrate the modern ad vancement in this line.
The operation of smelting is thus performed: The roasted ore, coat and time (flux) are cither hoisted, or, if the nature of the ground permits. moved along a phatform or gangway to the gallery near the tolp of the furnace, and fed into it at intervals through the openings in the side. when the mouth is open, or by lowering the cone, when the month is closed. We may here state that the furnace is kept continually burning except when under repair. The materials are of course raised to a very high heat, and gradually fuse into a softened mass. The clay of the ironstone then unites with the lime to form a coarse glass or slag, the oxitc of iron at the same time gives upits oxygen to the fuel, and allows the metal itself to collect on the hearth at the bottom of the furnace, united with from 3 to 5 per cent. of carbon, which it takes from the fuel, forming the variety called cast-iron. Every 12, and sometimes every 8 hours, the metal is run off from the furnace, by means of a tap-hole at the bottom of the hearth, into rows of parallel molels, called pigs, which are formed in the sand, hence the name "pig-iron." The slag which floats on the meltan iron is run off by an opening at the top of the hearth. If the furnace is working well, the slag should be of a light-gray color; any dark-brown or black color shows that too moch iron is passing into it. The fuantity of materials necessary io yit la a ton of pig-iron may be taken ronndly as follows: 2 tons of caleincd ironstone; $2 \frac{1}{2}$ tons of coal, of which about 8 ewts. are taken for the blowing-engine and hot-air pipes; and 12 to 16 ewts. of broken limestone. The proportions, however, vary in different districts according to the nature of the fuel and ore. The weckly produce of a single blast-furnace varics extremely -from under 100 to more than 500 tons in some of the larger furnaces.

Dilferent districts classify their pig-irons in slightly different ways, but, as a rule. No. 1 to No. 4 are known as gray iron. No. 1 is largest and brighest in the grain, brings the highest price, and is best adapted for fine castings. Nos. 2, 3, and 4 become successively less in the grain, of a duller luster, and lighter in eolor, but up to No. 3 are known as foundry pigs. After No. 4 the metal ceases to be gray, and though higher numbers are sometimes eniployed, the other qualities are more usually known as forge, mottled, and white pig-iron. Gray iron has its carbon partly in the chemically combined. but chictly in the uncombined or graphitic state, and requires a higher temperature to melt it than white iron, though very fluid when melted. White iron
has its earbon wholly in the combined kitate, and is chictly available for eonversion into malleable iron Ilematite pigeiron smitable formaking Bersemer sto. has an exeeptionally high value. The het-blast proncess which has lower deseribed hefore was introduced in 1830 by Mr. Tances 13. Necilson, of (ilasgow, and has been productive of wary remarkable ciliorels on the iron trade. The whole invention consiats in simply heating the air bown into the furnace, and Yet the saving of fucl loy this is about one half, and the production of iron, since it came into use, has "normonsly increnserl. The "cokd-hast" is still, however, doa limited extent enuployed, and prorheress the strongest iron, though nacessarily at a much higher cost. The difference in cuality appars tole cansed by the grater heat in the case of the hot blast facilitating the passage of impurition into the fron. (or late years mudattention has been given to phans for saving fucl in the blast-furnare. I'revions to the introduction of the hot-blast as much as ϕ tons of coal. at eoke, were consumed for every ton of pig-iron made. Even when this is reduced to mo der 3 tons of raw cobal per ton of pig-iron, fully three-fourths of ald the heat preduced is still wasted in open-mouthed furnaces. The method of saving the waste gases by closing the mouth of the furnaree, now generally adopted when coke is used is attendad with so much economy, that, in the Cleveland district alone, over 600,000 tons of coal yearly are saved by adopting it. There being a dithoulty in closing the month of the furnace when raw eral is used, Mr. Ferrie, of Monklimht, a short time ago, patented a self-coking blast-furnace, by which, among other advantages, the gases can be saved. It has now been in use for some vars in scotland. and produces a ton of pig-iron with 34 instead of 53 cwts, of coal previously required. IRaising the tem-

Fig. 2
perature of the blast from 100° to $1000^{\circ} \mathrm{F}$. has also been attended with a saving, and so likewise. in some districts, has an addition to the height of the furnace.
It will be readily understood that there is a rartain degree of heat necessary to be maintainedi in a cupola to melt the largest amount of iron in the shortest time, with the least amount of fuel, as a ton of eonal might be consumed without melting a single pound of iron if the temperature is not sufticiently clevated. It will be equally apparent, that any departure from the proper temperature, will just to that degree occasion loss in all these respects. To secure the best results, the proportions between the amount of iron to be melted. the fuel used. and the quantity of air supplied in a given time, should be fixed and unvarying. This can only be done by a machine giving a force blast, as with Blowing Cylinders, or Root's Rotary Blower, which measures and forces
forward a definite quantity of air every revolution. so that when by experiment the maximum result is obtained. it can always be maintained at that point without any variation whatever. As a fan does not give a fore blast, the quantity of air delivered varies with every change of condition, with the manner of charging the cupola. the kind of iron or fuel used, and the amount of stock in the supola-but, more than by all other causes combined, the slag or cin-
justment whatever. This arrangement obviates the necessity of taking the blower apart to renew the journal-boxes, as was necessary with machines built at an early date, thus saving moch trouble and exnense. It will be observed byan examination of the interual parts of this Positive Blower. as shown in Fig. 2, that it does not operate at all on the prineiple of a fan, that is, by imparting momentum to the air ly running at a great velocity, but by a regular dis-

Fig. 3.
ders in the cupola. As it becomes foul, and the tuyeres become obstruetect, the blast constantly diminishes, until melting in many cases entirely ceases. aull it becomes necessary to drop the bottom. Thus the conditions absolately necessary to secure uniform results can never be obtained with a fan blast. as no certain supply of air can ever be predicated upon the operation of a fan. A force blast, on the contrary, helps to keep the tuyeres open and free from olistruction ; but in case of their being ohstructed. the pressure is increased by the obstruction, and the same amount of air still continues to be forced through the diminished openings, and must continue to do so, or the machine must stop. With a fan this is not the case. Only a limited pressure can be obtained, and when this is reached, diminishing the outlet does not in the least degree inerease the pressure but rather the reversc. The Piston Blower undoubtedly gives a force blast, and, when properly arranged, is far superior to any species of fan whatever, but not nearly so good as the Rotary Blower for cupolas, for the following reasons, viz. : The blast is irregular and comes in puffs with every motion of the piston, and requires a large receiver to equalize the blast; this is both bnlky and expensive. In addition to this, the machinery and fixtures are heavy and cumbrons, requiring a large amount of power to operate them. Besides, their cost is so great as to place them beyond the range of the large majority of establishments.
The importance of a force blast will be more fully realized when we consider the enormons amount of air required in the combustion of coal in melting iron. Accurate experiments have shown that about 33,000 cubic feet of airare consnmed in melting a ton of iron, which, if reduced to a solid, would weigh about 3,600 pounds, or 1.200 bse more than both the iron and coal. The melting point of cast iron is about $2,800^{\circ}$, and a considerably ligher temperature than this is required to render the iron perfectly fluid. Root's Rotary Blower is shown in section in Fig. 2. These famons Blowers have the improved arrangement for journal boxes, shown in Fir. 3. The box consists of two parts - the thimble or bearing, and the box proper. The bearings are made of phosphor or carlonbronze. The thimble or lining is boral out to fit the journal with perfeet accuracy, and is also turned of on the outside so as to be precisely concentric with the slaft. The bow which holds the lining or bearine 18 also bored out to the exact size to recerive the baring, which is held from turning by set-serews in the cap. 'The advantages of this arrangement are that, if from gross neglect or inattention the jourmalboxes have bere allowed to cut or wear, and need reaewal, it is only necessary to remove the cal and pusla the lower half of the bearing out, inserting the upper half or a new one in its place. Thishrings the shaft cxactly in its original position, without anyad-
placement of the air at each revolution, whether it runs fast or slow. When the air enters the case at the opening for induction, and is closed in by the wings of the revolvers, it is absolutely confined, and positively forced forward nutil brought to the eductinu pipe, where it must be diselarged or the machine stop if perfectly tight, as there can be no backward escapement of the air after it once enters the case, the contact boing kept up at all times in the center of the blower between the pistons, or revolvers, thus preventing any escape of the air in that direction.

We pass now to the consideration of malleable or wrought iron. It differs from cast-iron in being almost free of carbon. The great object in the processes adopted for the conversion of cast into malle. able iron, accordingly, is to deprive the former of its carbon. But it is also very desirable to get rid of deleterious ingredients, snch as silicon, sulphur. and phosphorus, which latter are generally present in minute quantities in the cast-iron The ordinary processes for the mannfacture of malleable iron are refining, puddling, shingling or hammering, and rolling. The refinery consists of a tlat hearth, covered with sand or loam, and surrounded with metal tronghs, throngh which a stream of water is constantly flowing, to keep the sides from melting. The cast-irm is melted with coke on the hearth, and a blast of air kept blowing overit, which causes its carbon to unite with the oxygen of the air, and pass off as carbonic oxide gas. Oxygen also unites with silicon to form silica, and with iron to form the oxide. The silica of the sand uniting with oxide of iron, produces a slag of silicate of iron. The refined metal is finally run ont in cakes on a bed of cast-iron. kept cool by a stream of water. Being only partially decarbouized by this process, it is next broken up) for the puddling furnace. About 10 per cent of iron is lost in the refinery.
White pig-iron, or at least such kinds as contain carbon in the combined state only, are best suited for pudding. because they become pastr, and so more easily worked than gray iron containing graphitic carbon, which does not soften into this conditionprevious to fusion. It is only in some districts that the "refining" process is muclu used, in others a portion only of the puddling furnace charge is refined; and in making inferior kinds of mallable iron, the pigiron is not previonsly refind at all. There are two ways of putchling now proctiond: the first or older way best aplipable to retined iron, is called dry meddling, and in it the decarburization is produed chiefIf ly a strong current of air passing through the furname: the secomi or newer process, is called wit putaling or boiling, in which case the oxidizing of the carbon is effected chiefly hy hematite, magnetic ore. basie slags, and other easily reduced materials, but to some extent also by the ai-. The operation of
pudding, though differing in details arcording th circumstances, is in a gencral way comblueded as fol. lows: A charge of from 41 to 5 cewts. of metal, inchuding some hammer shag and iron scale, is platerol on the bed of the furnace while still hot from previons working. In about hatf an hour, when the furnare is in working order, the charge is molterl, and is then stirred or "rabbide" for a considerable: time, when it begrins to "boil" by the formation and escope of carbonic oxide, which forms jets of blue thane all over the surface. Grmbatly, as the carbon of the pig-iron is more and more oxidi\%nd, phty masses of malleable iron separate, and these are remsened in latls commomly weighing about 80 bbs. but sometimes larger. About an honr and a half is remuired to work oll a eharge.and it takes from deto dif "wts. of pig-iron to produce a ton of malleable iron. Siemen's regenerative gas-furnace, in which inferior fuels can beutilized, is applied to puddling as well as to other metalurgieal processes; and the more recent revolving puddling furnace of Mr. Danks is the most promising of any of the attempts yet made to paddes iron by onchanical means. 'Theprocess immediately following the puddling or boiling is called "shingling." and consists in haumering the puddied hails with either the helve or stemm-hammer, or in passing tham throngle a squeezer till they are sulliciently eonsolidated, and the greater part of the einders forced out. For a description of the steam-hammer, whieh is much used for heavy forgingsas well as forshingling, see that head. Pudded hatls whind have undergone the process of shingling are callet slabs or bloom. These are next passed through henvy rollers tormed "forge" or "puldle-bar rolls," amil redued to the form of a flat bar. For all the hetter kinds of iron the bars thas treated are cut intoshort lengths, piled together, releated in a furnace, and again passed through the forge rolls. Once more the iron is eut, piled, and hented, and is then passed through the " mill-train," consisting of what are termed the "bolting" or "rough rolls," and finally through the "finishing rolls." Both these sets of rolls in the case of plates and shects are plain, but in the ease of bars are grooved, so as to form them into the required shape, such as flat, square, round, oetagonal, or 'Tshaped iron.
There is still another important variety of iron, viz., steel, the manufacture of whieh remains to be deseribed. Strel differs from malleable iron in containing a varying proportion of carbon, usually from .5 to 1.8 per cent. When rich in earbon, it closely resembles east-iron in composition, excent that it is more free from impurities. Steel can be made by alding carbon during the direct reduction of a pure iron ore in a furnace or erucible. but the results of this method are scarcely ever uniform. The finer kinds of steel are still made by the old cementation process-that is, by the roundabout plan of first eonverting cast into malleable iron, by depriving the former of its carbon, and then adding carbon again by heating the iron with ehareoal. In making any kind of steel, however, the getting rid of sllicon, phosphorns, and sulphur is as important, and a mattor of more difficulty than the seeuring of any reguired proportion of carbon. As blistered stecl is full of eavities, it is necessary to reader it dense and milform, especially for the finer purposes to which steel is applied. By one method it is converted into what is called "shear steel." This is done by breaking the bars of blister steel into short lengths, heating them in bundles, and partially welding with a forgehammer. The rod so formed is heated again, and now brought under the action of the tilt-hammer. tlere, by a succession of blows, it is formed into lars, which are much more eompact and malleable than hister steel, and consequently better fitted for ealge-tools and the like. If the single-shear strel is doubled upon itself, and again welded and drawu into bars, it is ealled double-shear steel. By another method, viz., tbat of melting the blister steel in tire-

Thy "ruciblas, and casting it intoingots. "ratht-steop" is made. This is the bost kimb of stera, bring timely grambar, homogromons, denser, and woll adaphed for the fincst cutting instrumems.
Stere is now largely madedirestly from pig-iron by muddlinge, much in the samu way as that promese jes npplied to the produrtion of mallabalde iron. By another plan (Crhatins's procerss), pig-iron is gramatatrol and beated in arerucible with the oxides of iron and mangansese, and tires-day, the resald being cast. sted This procesen has surecedod well in hwerans. The Siemens. Martin prowesc monsists in meltme pigeiron along with mathealle iron and bussemer stact acrap, about 7 por rent of spingeleisorn beiner adderd towards the end of the proerses. Thar operation is ronducted in the sicurns repronerative furnarr, and the product in this case is also cast-stecl. There are: also severul modes of manfiaturing steed direet from the ore, such as hy the ohl way in the ('atalan forge. und by Chenot's profess, in which hydrnearhons ars: used. It would appear from the resulas of rewent experiments made on the large srale at Midilusborongh, that Hessrs.'Thomas de filehrist have sucereedcal. ly a comparativily simple duvice, in practically climimating the phosphorns frem Cleveland pie-iron fluring the eonversion of the latter imo sterl in the Bessemer converter. The great importanec of this diseovery will be at once understord when we state that the Cleveland iron is the cheapest in (ireat Britain, and that the Cleveland ore yields ons-fourth of all the iron made in the Country. Hitherto it has not been remunerative to make steel from this pigiron on account of the exceptionally high perceatage of phosphorns it contains, and the dilliculty there has been of removing an ingredient so deleterisus to steel. Success, however, hasat lenghthern adherved by obtaining. throurh the use of lime and oxide of iron, a basie slag in the converter, and hy linine this vessel with bricks made chictly of maguesian limestone, fired at a very high heat. A hasio lining is given to the converter insteml of the ordinary siliceous one, which is aeid, and so a hase is furnished with which the phosphoric acid can combine withont the certainity of the lining being eatern away hy the basic slag, as would be the case when thislinigg is siliceous. It is only as respects the nature of the slag in the converter, and the kind of lining used for this vessel, that Thomas \& Gilchrist's mote of making steel, as far as it has wet heen tried, differs from Bessemer's; except that for the hatter a high-priced pig-iron is required. Of course steel can be made by the new process from other low-priced irons besides Cleveland.

We will now take a glance at the properties of eael of the three principal kinds of iron, and thr purposes to which it is chiefly applied. C'ast-iron. as the crudest, cheapest, and most fusible, is used, as a general thing, for the heary portions of all engineering and ordnance work, such as the bed-plates for machines, cylinders, columns, cisterns, low-pressure boilers, water and gas pipes, rollars, girders, and a large variety of the like. A large guantity is also consumed in the manufactnre if "hollow-ware." which includes pots, pans, and othercooking vessels. For all kinds of ornamental objects, again, it is almost exclusively used, because laere its property of being readily cast into molds gives it a great adyantage on the seore of cheatpmess. Jalleable iron differs considerably in its properties from cast iron. The latter is practically incompressible, hut it can be comparatively easily torn asmder. Malleable irm, on the contrary, possesses great tenacity ; it is, moreover, very malleable and ductile, especially at a high temperature, so that it can be rolled into sheets as thin as paper, or drawn into the fincst wire. Further, it possesses the valuable property of weldingthat is, two pieces can be completely innted ingether by hammering at a white heat. Nalleable iron is largely employed for the innmarrable variety of articles included under the general term "hardware,"
such as locks, keys, hinges, bolts, nails, screws, wirework, and the so-called tin-plate, which is merely sheet-iron dipped in melted tio. It is the mainstay of the railwaysaud the electric telegraph, and has almost displaced timher as a material for steamships and saifing-vessels. It is also much used for roofs aud? bridges of large size. Rolled armor-plates for warships and fortitications are now made of malleable iron from 5 to 22 inches thick. Steel possesses several valuable properties which do not belong to either cast or wrought iron. It is harder, denser, and whiter in color. It is also more elastic, takes a higher polish, and rusts less easily. Like malleable iron, it is also weldable. Butits most characteristic property consists in its admitting of being tempered at will to any degree of harduess. If, for instance, a piece of steel be heated to redness and plunged into water, it is made hard and brittle: but if it be again heated and slowly cooled, its original softness is restored. By gently reheating the stcel it will acquire a gradation of tints iudicating various degrees of hardness, beginning with pale straw color, and passing successively to full ycllow, brown, purple, and finally blue. The straw color is the resuli of a temperature of 440°, and the blue $570^{\circ} \mathrm{F}$., the former being the hardest and the latter the softest tempering. The use of steel is no longer confined to such small articles as files, edge-tools, knives, etc. By means of improved machinery and processes, steel is at present manufactured on a scale that was little dreamed of thirty years ago, so that such objects as field-guns, heavy shafting, tires, rails, armor-plates, and the like are now being made of this material. The superior tensile strength of steel, which is about double that of malleable iron, gives it a great advantage where lightness is required. Large numbers of steamships are now building of steel. See Cannon-metals, Castiron, Metallurgy, Piling, Puddling, Rolling-mill, Smelting, Steel, Helding, and Hrought-iron.
IRON-CLAD OATH. - An oath of allegiance prescribed by Statute of the United States, for those taking office under the National or State Government, in accordance with the provisions of the 14 th Amendment to the Constitution. The oath as administered reads as follows :

I, \qquad residing at \qquad do solemnly swear that I have never voluntarily borne arms against the Cnited States since I have been a c.tlzen thereof ; that I have voluntarily given no aid,

I take this obligation frcely, without any mental reservation or purpose of evasion; and that l will well and faithfully discharge the duties of the. offlce on which I am about to enter. So help me God."

Sworn to before me, this -_day of -_,
U. S. Commissioner.

This oath is still administered to officers under the U. S. Government, but its applicatiou has been restricted by special Acts of Congress, relieving, in certain instances, classes and individuals from the effect of its provisions.

IRON-CLAD TRAINS.-Trains were utilized as a means of reconnoitering during the American war of Secession, and during the war of 1870-71, in Europe, but no heavier guns than those usually employed as field artillery were mounted on them. Recently, however, it has been demonstrated that guns as heary as a 40 -pounder may be mounted and fouglit on trains with satisfactory results, there being little or no straining in either the trucks or rails. Experience has shown the following to be the best way of making up the train: 1st truck, empty, so as to guard against the ine being mined. 2d truck, a machinegun in front, spare rails for repairing the line. $3 d$ truck, spare rails, bowls, chairs, etc., for repairing the line. 4 th truck, 40 -pr. gun aud crew. 5th truck, ammunition wagon. This is protected all round by thin iron, and the magazine is covered in front by a pile of sbort railway iron a little bigher than a pow-der-case. On each side is a baulk of timber, and on top a layer of rails, three or four of which are bolted down. The powder is in half metal-lined cases. This truck also contain fuses, tin cups, tools, four cases of Wet and one of dry gun-cotton, Bickford's fuse, detonators, lantern and candles, slings for lifting the guns and carriage, bearers for the gun, a collapsible boat, stretchers, and arm-racks for the covering party of twenty-eight men. 6th truck. protected with thin iron plates, carrying two Gatlings with their crews. 7 th truck, two 9 -prs. with their limbers, two 7 -prs. and their crews. 8th truck, steam-crane. 9th engine, protected with railway iron laid horizontally along the boiler, $\frac{1}{4}$-inch and $\frac{3}{4}$-inch iron plates round the working parts, and sand-bags. 10th truck, proteeted by iron plates, carrying the covering party, and with a Gatling in rear. A reserve engine always followed, usually on the other line, and if necessary brought up another train with a battalion,

commtenance, coursel, or encouragement to persons engagerd in armed hostility thereto; that I have neitht: sought, nor accepted, norattempted to exercise thu functions of any ollice whatever under any authority or pretended authority in hostility to the United Statos; that I have not yichled a voluntary support to any preidended goverument, authority, fower, or constitution within the United States, hostile or :nimical thereto. And 1 do further swear that, to the berst of my knowledge and ability. 1 will sup. port and defend the Constitution of the United States against all enormies, forign and domestic; that I will bear true faith and allegrance to the same. that

During the recent Egyptian Campaign, the English mounted a 9-inch Armstrong M. L. R. gun in the manner described, and shewn in the drawing. A truck, which had becin constructed some time back to transport a 26 -ton hoiler from Alexandria to Suez, was found in the store and appropriated. It was longer than the ordinary trueks, and much stronger built, ruming on eight wheels close together, and with especially constructed springs. Three baulks of timber were placed across the front part of the truck, and bolted through the floor. A inch iron plate, two feet wide, was bent over these, and bolted to the bottom of the truck, and in the center fo this
platform the pivoting bolt a was placed, Λ sa support apiece of ${ }^{3}$-inch iron, four inches wide wastixill to the top of the bolt, whon the bars were in position, and also bolted under the carriage, b. 'I'les slide, which was of the land survice juttern with high rollers, hal to be eut down so as to bring the weiglat as low us possible. The rollers were taken off and the axeltrees eut. An extempore rear-axle was male out of a lar of iron, and the rear rollers of a lo-inch gen carriage ware used as rear-slide rollers, the fore part of the shide working withont rollers, on un iron skid plate. 'The rear rollers were so far forward that the slicle wis very liable to tip up when the gon reeoiled -in fact, several gnons wore disabled in the forts during the bombardment in this mamur. An arrangement was therefore titted to the fore part of the slide which prevented this, anl, at the amme time, allowed latera! motion to the slide for training. In rear of the rear-slisle rollers a lnalk of timber was placed, projecting about two feet on either side, with bolts for the training tackles, c. When the gun was ont and the training on, a werlge was driven in betwern this banlk and the rear of the slide, so as to take some of the weight of the gun on reeoil olf the rear axle, which was rather weak, and also to distribute the weight more evenly ovar the truck. lu order to run the ern in, some sort of a purchase was necessary, and nothing could be found to answer the purpose better than the erab of the Moncricff gun at Fort laseel-tin. The gun was then mounted by a crane, and everything worked satisfactorily. Aloont 58 of training was obtained on either side, which in this case was sufficient to cover the principal works at Kafr-Dowar, particularly as there wus a sharp bend in the line, and avery much larger are conld be covered by a judicions selection of points to tire from. See Railicay Communications?

IRON CROSS. - A Prussian order of knighthood, instituted on Mar. 10, 1813, by Frederick William 111. and conferred for distinguished services in the war which was then being carried on. The decoration is an iron cross withsilvernomming. The grand eross, a cross of clouble the size, was presented exclusively for the gaining of a decisive battle, or the capture or brave tefense of a fortress.
IRON CROWN. - The crown of the ancient Longobardian Kiugs, given accorcling to un ununtlenticated tratition, by Pope Gregory the Great to Queen Theodolinda, and preserved till lately in the Cathedral of Monza. Henry, in 1311, is the first German Emperor who is known to have worn it. It was removed by the Austrians to Viemmafter 1859, lut was presented to the King of lialy in 1866 . The onter part of the crown consists of a golden hoop, with enameled flowers and prceious stones, in form like an ancient diatem, withim which is a thin plate or tillet of iron, which is declared by a tradition long opposed by the Church at Milan, but adopted by the Congregation "deisacri riti" at Rome, to have been hammered from one of the nails of the true cross. When Napoleon I. was elveted King of ltaly in 1805, he took this relic and crowned himself with it, disdaining to receive it from the hands of a Bishop; and at. the same time he founded an order of knighthood, taking its name from the lron Crown. 'The orderforgotten after the fall of Napoleon-was restored and remodeled in 1816 by the Emperor Francis I.. who gave it the name of the Austrian Order of the Iron Crown.

IRON CYLINDER GAUGE.-Au instrument adapted for testing the body, sinds, and piteh of rifling of muzzle-loading projectiles, at one operation. When

	Dimmeter over loudy.	Diameter over stnds.	Diameter low over stude
	Inchis.	Inches.	Inches.
1 lipm	3.58	3×12	$3 \% 95$
9 -pr.	- 2 dr	$2{ }^{2}$	-
\%-рг	. 29	312	. $3 \cdot 165$

the present number of this nature of gange is used up, iron ring gauge* will be introducet for general is.
suc: the eydinder ganges lueing restrictod tostations of inspertion. Tha forvening are the dimensions of thre \&atiges for ritledt theld guns.

IRON FILINGS.-Small portions or particlas of iron rubbed off by the net of filing ; they ure usal in the manufacture of tireworks and for ohler purposes.

IRONB.-Sharckles of iron into which tho anklos of a prisoner ure fixed, and whioh slide on a long iron bar. Refractory soldiers, whorevince viohnt belanv. ior, and beeome nomanageahle, art: (ommondy put in irons. several being placed side by side along the: sume har. In cases of extreme violonee tho wrists may be similarly treated, but instances of this latter punishment are rare. The punishment of "putting in irons" is more common in the Navy than in the Army. Commonly called /illoses.

IRONSIDES.-- I Curassiar. The ferm is specially applied to C'romwell's C'avalry. As Cuptan of a troop of horse, Cromwell exbibited astonishing military gewins; and against the men trained by limanelf - "Cronnell's lronsides"- the lattle-shiork of the ficry Rupert, which at the begiming of the parliamentary struggle none else conld withstand, suent itself in vain.

IRREGULAR FORTIFICATION. Thosein which, from the matare of the grommel or other fanses the several works have not their the: propeortions acenrding to rule; irregularity, hownere, does not neeressarily imply weakness.

IRREGULARITY.-A violation of the renstoms of service-a cleliqueney which is subject io consure, hut not serious enougla to be brouglat before a Court-Martial.

IRREGULAR SITES,-'The problem presented for solution to the engineer in irregular sites is freguently one of no ordinary complexity; demanding a minute and laborious study of the nutural features of the position in their relations to the defense; connected with a tentative process of which the object is so to modify the plan, relicf,and details ordinarily adopted, as to adapt them in the best manner to the given position. No rules but of a very general charactur can be latd down for the guidance of the engincer in such eases. The more plunging the fire of the work, the more efticarions will it prove to be. The efticieney of this tire will depend upon two causes: 1. The command of the work over the point to be atiained. 2. The direction of the ground with respect to the lines ly which it is swept.

As to the command of the work over the exterior ground, it has already been shown that motives of economy restrict it, in most eases, within rery narrow limits, where, to olfain it, artificial embankments have to be employed.

To augment, theretore, in the greatest degree this element of the defense, advantage should be taken of the natural features of the locality, by placing the principal lines, from which the exterior ground can be seen, on the most commanding points of the site.

If. with this position given to the principal liues, the ground swept falls or slopes towarils them, a most favorable combination for an efficacious plunging tire will be obtained; for, with this direction of the ground, the enemy will meet with far greater difficulty, 10 put himself under shelter by his works, than where the ground falls or slopes from the line by which it is swept; as the surface, in the latter case, descending in the rear of the cover thrown up by the enemy, will be sereened to a greater extent than in the former, where it rises in rear of the cover. When this, however, cannot be eflected, the next best thing to be done is so to place the principal lines with respect to the surface to be swept that it shall be seen by in part of these lines, thus bringing io bear upon it a flank fire from these parts.

The general rule, therefore, which the engrineet is to take as a guide, in order to satisfy the condition of bringing the exterior ground under an eflicacious tire from the work, is:

1. To place the principal lines of his work on the
most commanding points of the site, and in such directions as to bring the exterior gromed to be swept in a position sloping towards these lines in such a manner that they can bring their eutire fire to bear upon it. or else bring a portion of it tosweep it in front.

This will generally lre best effected by placing the salient points of the work on the most commanding and salient points of the site; as, in this position of the salients, the faces, which are usnally the principal lines bearing on the exterior ground. will occupy the salient and commanding portions of the site. whilst the re-enterings, being thrown on the reentering and lower portions of thesite, will be in the best position for sweeping the gromod immediately in the advance of the faces by a flank fire: and at the same time these re-enterings will be masked by the faces from the enemy's view, and thas preserved from serious injury up to the moment when theiraction may be rendered most effective: that is when the enemy, despite the fire from the faces, has succeeded in planting himself upon point on which this fire cannot longer lie brought to bear. To carry these precepts into practice, a widle margin is left to the engineer's judgment in which he will tind it necessary in some cases to extend the lines of his works beyond what a strict regard to economy might pre scribe, so as to include within his defenses ground from which he can best sweep what is pxterior to it, or which, being occupied by the assailant, might make his own position less tenable in this way necessarily foreing him to extend out his lines so as to embrace all the crests within them that overlook the valleys beyond them; and in very many catses to throw his own lines further back in order to avoid enfilading or plunging views from points which are too, far to be brought within his defenses. 2. The condition of leaving no dead spaces, that is. no point of the defenses unguarded by their fire, will depend in a great degree for its fulfilment on the same rule as the preceding. But whare both conditions ramot be satished, the distant difeuse should be sacrificed to the near; as upon the latter the more or less of obstinacy of resistance depends: since the fire of the work and the artion of the garrison are the more effective as the point to be guarded is the nearer to the defenses. 3. The condition that the troops and materiel within the defenses shall be sheltered from the cuemy's fire from all commanding points withont, will depend upon the relative positions of the principal lines and the exterior commanding points; and as far, therefore, as it cau be done, withont sacrificing either of the preceding and more important conditions, the plan of the work should he so arranged that the principal lines shall present.themselves in the most favorable direction to the exterior ground to avoid planging, enfilating. or reverse views unon their terrepleins from any point of it. To effect these objects, when the work is in the vicinity of commanding heights within cannon range, and the crests of these licights, as seen from the work, present a mearly horizontal outline, the principal lines of the work, frouting the beights, should receive a direction as nearly parallel as practicable to that of the commanding crests. Whem the outline of the crests presents a nearly continuons line, but one which deelines or shopes towards the site of the work, the principle lines towards the height should receive a direftion converging toward the point where the line of the crests, as seen, if prolonsed, would join the site. The reasons for the positions assignce to the principle lines in these cases respertively, may not, at a tirst glance, be ohvions ; but hy examining the relative positions of the crest of the heights and of the principal lines, as hare laid down, it will withont dilliculty be seen that they can be brought in the same plane, and the latter be so placed as to give a nearly uniform eommand to the parapets of the principal lines over the site: und that by keeping the terregleins of these
lines in planes parallel to the one in which the crests of the heights and those of the parapets are held, and at suitable levels below it, the parapets will be made to cover the terre-pleins from the tire of the heights in the simplest nanner. The foregoing general methods for determining the direction of the prineipal lines fronting commanding heights, so as to cover from direet fire, in the easiest manner, by their parapets, the space to the rear, oceupied by the troops and materiel, present, at the same time, the simplest cases of the adaptation of the plan of a work to the features of the locality, to sulserve the object in view. In most cases, all that can be done is to avoid giving such directions to any of the principal lines, as shall he favorable to entilading or reverse views of the enemy; which may be effected ly so placing them that their prolongations shall fall on points where the enemy cannot establish his works; or those which, if occupied by him, will afford disadvantagenus positions for his batteries either for entilading or reverse fires. As the attack derives its great advantage from its enveloping position, ly which entilading views and a concentrated fire can be hrought to bear on the assailed point. so, in the general disposition of his defenses. the engineer shoukd endeaver ro reduce these salient and assailable points to the fewest number, and to accumulate upon them sueh surplus strength that in spite of their natural weakness they will cost their assailant a great deal of time and a large sacritice of means to get possession. This consideration has led engineers to propose for the general outline of their defensive polygon a triangle in which the principal development of their work being a number of fronts on a right line, they can moither be enveloped nor their principal lines be enfiladed by the assailant's trenches, thus leaving only the three angular points as assailable, and whicli they propose to strengthen by an accumulation of works upon them. See Fortifcation, and Permanent Fortification.

IRREGULAR TROOPS.-Tronps whicln, though in the pay of a mation. do not belong to the regular forces. In the British army there are no such troops. In India there are two or three irregular forcos, composed of cavalry and infantry, for the protection of native states. The present nativecavalry regiments in her Majesty's lndian army were origimally raised as irregular troops. They foumd their own horses, arms, clothing, ctc., for which they received a certain monthly sum: but this has been modified of late years, and they are no linger styled irregular cavalry.

ISABELLA. - The Order of Isabella the Catholic
 is a Spanish Order of Knighthood founded by Ferdinand V1I in 1815, as a reward of loyalty, and for the defense of the possessions of Spanish America. It is now conferred for all kinds of merit. The Sovereign is the head of the Order, which is divided in to the three classes of GrandCrosses, Commanders. and kinights.

IHSOCHRONISM. - A pendulums is isochronous when its vibrations are performed in cqual times, whether these vibrations be large or small; but it can ouly possess this property by being eonstrained to move ina celoidal are. This is managrd ly cansing the string to wrap and miwrap itself romel iwo efual cycloidal cheeks, the diameter of

Order of Isabella the Catholic. whose gencrating circle is equal to half length of pendulum. Isochronism is closely approximated in practice hy cansing the pendulum to describe a very small circular are.
ISOLE.- A word used among the French, to expross any thing which is detached from mother. It is variously applied in fortification: As, for instance, a
parapet is sated to be isule when there is an intorval of 4 or 5 frot existing betwron the rampartand its wall, which interval serve's as a path for the rommels.

ISOMERISM. - Isomeric lowhes may be consiflered
 eal ixomers. The plysiral aro more strictly or perferety isomerie than the chemienl, and on aceonnt of their similiar molecular or radical composition when they are suhjoreted to the action of different forrexsor reagents exhibit the sande hebavior. Thans there are several hydrocarhons kaown as terpenes, laving the eomposition $\mathrm{C}_{1} \mathrm{II}_{10}$, as the oils of lemon, berpanot. and turpentine, which show the same reactions hulder the inthence of rhemical agente, exeept their difterenee of odor amdaction or polarized light. Chemical isomers merely, do not cary their isomerish so far, for although they may have the same proportion of elements, and also the same molecular werght, they do not exhibit the same helavior maler reagents. Thus, tha molecular formula, (: $\mathrm{I}_{1}()$, representsthare different bodies which decompose ditforently when acted upon by canstic alkalies, proprionic reid. C° $1 \mathrm{H}_{5} \mathrm{O}, 110$, heing converted at common tomperatures
 of methyl, $\mathrm{C}_{2} \mathrm{II}_{2}(), \mathrm{CH}_{3} \mathrm{O}$. is not changet at ortinary temperatures by canstic potish, hat whem heaterl with it, acetate of portassimm and methylic alleohol are jornducerl. Again, formate of ethyl, CHO $\mathrm{C}_{2} \mathrm{H}_{8}()_{\text {, when }}$ heatod with enustie potash, is changed into forate of potassimm, CIIO,KO, and ellyyl aleohol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{H}$ O. These elimmical isomersare the motameres mentioned in the preceding article, their behavior depending upon the manner in which organie radicals enter into their composition. Another class of these hodios are ealled polymores.

ISOMETRIC PROJECTIOM. - A kind of drawing used by engincers for purposes of construction. It is an orthographic projection in which one plane or projoction is employed, and therefore the mensurement is without segaral to the rules of persperetive, the plate of the drawing being supposed to he at an infinite distance from the eye. It is used to delineate structures whose principle lines are parallel to threc rectangular axes, and the plane of projection makes equal angles with these axes, which are called coordinate axes, mul the planes, taken two and two, are called co-ordinate planes. The plane of projection passes through the point of inferserction of the three axes, and this point is the renter of piojection. The projections of the co-ordinate axos are the directing lines of the projection, tud form equal angles of 1208 with each other.

ISSDE.- I term applied to the distribution of rations and supplies. In the lbritinh service, iswuesare certain sums of money which are, at stated periorls, given to public accountauts for public service; nnd for the honest distribution of which, every indiyidual so intrasted is responsible to Parliament. Regimental issues are moneys paid ly regimmutal agents, aetiag under the antliority of their respuetive Colonels, for regimental purposes.

ITALIAN ARMY. Italy, like most of the Continental Nations, has adopterl the compulsory systemin rasing her Army, similar to France and Germany. The yearly coutingent is put down at 100.000 men , 60.000 of which serve in the tirst category or active army. In this, they remain for 3 years (in the cavalry 5 -jears); 5 in the rescrve of the antive Army, and 4 in the mobile milizia. The length of service therefore is altogether 12 years, and the age of joining the colors is 18 years. The men who have not been called to do duty in the active sarvice form the second category. in whieln they have to serve 5 years in the reserve of the active army and 4 in the militia. They are only assembled for a few months every year. By the law of the 30th September. 1873. Italy is divided into 7 military eommands or army eorps. five of which have 2 and two 3 military territorial divisions. Each military division consists of from 1 to 6 military districts, giving a total of 16 territorial
divisionsand ria military distriots. F'urthrer, the kingdonn is divileol into firommands of artillery, of 1 or 2 divisions citch (total 12) amd into 6 commande of
 ritorial forces comprise the formuturnt army and the: mobite milizin. 'The permaterut army eonsiats of thw staff, the artillery, and engineers, ilue infantry, the Chvalry, a (o)rps of gendermerip, and the civil alepartmonts (combmissariat, modical arlminist ratives, cote.) The mobite milizin comprizes 23D lattalions ot infantry, 2l companios of rilles, 15 companices of bergaglirif, and (1) companies of field and 20 hattorios of siege artillery, torether with 10 companows of eneincers, l3y this systom, it is commputerl that ltaly can phace morker arms the following numbers: Active trmy, 305, 151 ; Resorve, 148 , 004; IMobite milizin, 279,872; totul, 823.827 mpr . Thesk forces in whr timu arr organized into 20 thivisions, forming 10 (orps d'Armér.

ITALIAN SXSTEM OF FORTIFICATION, - systern of fortiliation construrtuld on the intorior polygon. The front, fronn 2iso to 300 yarela, was divirleolimto six eftual parta: the thanks perpundicular to it wroe equal to $\frac{1}{6}$, and the contain to $\frac{2}{3}$ of the whole longth. The flamks worejorpenticalar to the fortain beranse fortressess were not unfrefuently attacked on the courtain before the invention of the ravelin; and the fares of the bastions were directerl so as to rerroive thank defense from the curtain. The ditelors were derep and wirle, with counterscarp parallel to the fiere of the bastions and marking part of the flank defense. The revetments were high, from 49 to 50 fret, ratlawr massive andmuch expencal, since the besiogers conld see from 15 to 17 feet of the masonry from a distance.

ITINERARX.-A rougls sketely of the country through which troops lave to march; griving the roads and villages; noting the number of inlaboitants and houses, whether of stone brick or wood; und conveying as much information of the conntry as can be gatibered in a short suatee of time.

In the United States Army, the Commanding Ofticer of every body of troops ordered to marcla seleefs a competent person-jreferalily a Commissioned Othecr-to whom is intrustrod thespecial slaty of making the field-notes and sketches, and koeping the journal necessary for the preparation of a map and report of the routetraversed. The person so selected is, if possible relieved of a part of his routine duties to enable him to give due attention to this sulyect. The Commandiag Ofticer alaily, or more frequently if necessary, inspects and verifies the notes and jourwals. If there be no compertent subordinate to perform the duty, the Commanding Othicer himsilf makes the notes and keeps the journal. When a detaclment leaves the main column, the point on the "route" is noted, and the reason given in the remurh.. The Commander of the Detachment sees that the uotes and journals are continued over his new line of march, and after its completion transmits them to the Commanding Ofticer of the main boty. On the completion of the march, the notes and jouranls are sent, through the regular channels, to the I lepartment Ilcadquarters, where their contents are embodiedupon the maps in conrse of preparation there. The notes and journals are then forwarded to the Chicf of Engineers at W゙ashington. Suitable instruments and note-books for nse in keeping itincrarjes of march are obtained throngh the otticer on Engineer duty at the Headquarters of Geograplical Departments, who from time 10 time renews his supply by requisition on the Chicf of the Corps of Engincers.

The name Itinerary was given by the Rom:ns to a table of the stages between two places of importance. with the distances from one to another. The itineraries of the ancients contribute much to our acquainance with ancient geography. Of these, the most important are the Itineraria Intonimi and the Itinerarium Mierosolymitanum. The Itineruria Antentini are two in ummber, the Itinerurium Provinciarum and the

Itinerarium. Marinum, the former containing the routes through the Roman provinces in Europe, Asia and Africa: and the latter the principal routes of navigators, who then sailed only along the coasts. They take their name from Antoninus Caracalla, by whom they were published. as corrected up to his
time, but they seem to have been originally prepared at an earlier date. The Itinerarium Ilierasolymilanum was drawn up 333 A . D., for the nse of pilgrims from Burdigala (Bordeanx) to Jerusalem. Of these itineraries, various editions have been published. See Juurnals of Murch.

J

JACARANDA WOOD.-A very hard, heavy, brown woorl, also called rosernood. from its faint agrecable smell of roses. It is brought from South America, and is produced by several trees of the genus jacuranda, of the natural order bignoniacea. Several species of this genus are called caroba in Brazil, and are there accounted anti-syphilitic. Several species of the nearly allied genus tecoma also have an extremely hard wood, as.T. pentaphylla, a native of the Caribbean Islands. The Brazilian Indians muke their bows of the wood of T. toxiphora or pumatares. All varieties are very rlesirable for gun-stocks, ete.

JACK. - A pompoint, or quilted tunic, made of leather and well padded. It was worn by foot soldiers in the 14 th century. Also written Jaque, and the name of a form of habergeon worn in the $16 \mathrm{th}^{2}$ century.

JACK BOOTS.-Tall boots of tough, thick leather, reaching above the knee, and formerly worn by cavalry. In some instances, as an additional protection against sword-cuts, they were lined with thin plates of iron. The only regiments in the British service which still retain these handsome but cumbrons boots are the Life Guards and Royal Horse-Guards.
JACKET.-1. In the manufacture of ordnance, a tube inclosing and reinforcing another tube. 2. A short and close military coat, extending downward to the hips. Commonly called Shell-juctet.
JACK IN THE BOX.-A handy engine, consisting of a large wooden male serew turning in a femate serew, which forms the upper part of a strong wooden box, shaped like the frustum of a pyramid. It is used, by means of levers passing through holes in it. as a press in packing, and for other purposes in the arseual and laboratory.
JACK SCREW. - A machine for raising heavy weights, chiefly buildings of various kinds, as houses and ships. It has various forms, the most powerful being a differential screw. The most convenient form, however, is a single screw and net, the inelined plane of the serew being as near a horizontal as is consistent with the thiekness of the thread and diameter of the screw. Other devices of the kind are employed, as the liydraulic jack. The drawing shows what is known in the arsenal as the "Rapid Moving Screw Jack," so called, beeause the screw, when the load is off, can be raised immediately to any desired point, and when up can beasguickly let down; thins saving the tedious operation of turning the screw up and down as in all the other serew jarks. To raise the screw to any desired height for the work; it is only necessary to lift the same by taking hole of the lever; to lower it, take hold of one of the handles with the left hand, and inclining the jack to an angle of abont 45 derrees, with the other hand loodting the laver,
 let the serow down. Tha two sergmental nuts are made of gun metal, and are supported on steel pins
moving in angular slots so as to allow them in and out of the gear. The frame, lever, ratehet and cap are made of malleable iron, and the pawl of cast steel. The following sizes and weights are usually employed for ardllery purnoses:

No.	11 eiebt.	Rase.	$\begin{aligned} & \text { Bar. } \\ & 2 \mathrm{in} . \end{aligned}$	Weight.		Cascity	
24	22273629	11			lbs.	\%	tons,
25		15	21/3	90		30	
24		24	$21 / 2{ }^{\text {c }}$	137	"	30	*
26		14	3 "	210	"	50	"

No. 26 is provided with a detachable hook for ground lifting and luridge-work. See Mydraulic Jack:

JACK TREE.-A well-known tree in lndia. It yields an excellent timber, first yellow, fading to brown, fard and brittle, resembling satin; warps if not properly seasoned. A cubic foot of unseasoned wood weighs 50 lbs . The timber is used in the Bombay arsenals for packing-cases. The fruit of this tree is very much estecmed by the natives in the southern parts of India.
JACK WAMBASIUM.-A sort of coat armor, formerly worn by horsemen, not of solitl iron, but of many plates fastened together, which some persons by tennre were bound to furnish upon any invasion.

JACOBINS. - The members of a political club which exercised a very great influence during the French Revolution. It was originally ealled the Club Bretor, and was formed at Versailles, when the StatesGeneral assembled there in 1789. It then consisted exclasively of members of the States-General, all more or less liberal or revolutionary, but of very different shades of opinion. On the removal of the Court and National Assembly to Paris, this chub began to acquire importance. It now met in a hall of the former Jacobin Convent in Paris, whence it received the neme of the Jacobin club, which was first givem to it by its enemies; the name which it adopted being that of the Society of Friends of the Constitution. It now also admitted members who were not members of the National Assembly. and held regular, and public sittings. It excreised a great influenee over the agitation, of which the chict seat and foeus was in the capital, and this influence was extended over the whole country by athiliated societies. Its power inoreased until it became greater than that of the National Assembly: It formed branely societies of clubs turoughout France, of which there were soon not less than 1200. When the National Assembly dissolved itself in September, 179t, the election of the Legistative Assembly was mainly aceomptished under the influence of the tacobin Club. Amost all the great events which followed in rapid suceession were determined by the voice of the Club, whose defiberations were regarded with more interest than those of the Legislative Assembly. It reached the zenith of its power when the National Convention met in sept., 1ata. The agitation for the death of the King, the storn whinh destroyed the Girondists, the excitement of the towest chasses against the bourgonivie or mithte classes, and the reign of terror over all France, were the work of the Jueobins. But the overthrow of Robespierre on the !th Thermidor, 1794, gave also the deathblow to the Jacobin Chab. The magic of its name was destroyed; and the Jacobins sought in vain to contend against a reaction which increacc:
daily both in the Comwonion and among the prople.
 on Nov. 9, 1794, the Jacohin ('lula was tinally fosed. lis phace of meeting was soon after demolished.The term Jaeohins is oftern employed to desigmate permons of extrome revolutionary sentiments.
JACOBITES. The mame given to the adlierents of the male line of the llmase of Sthart in 4 irent Britain and Ireland after the Revolution of 1688 . Nany of the most devoted royalists followed James 11 . inte, France; but the greater part of the Jacobites remaining in thar mative lamel made a greater or leas shas of submission to the new government, while they secertly supported the camse of the J'enember. Their intrigues and conspiraries wore indessant till the mid. the of the 18 th century. 'Their hostility to the llomse or Itanover broke out in rebellions in 1715 and 10.15, in consquence of which not a few of them lost their lives upon the seatrold, titles were attainterl, and esstates conliseated. After 1745 their rause became so obviously hopeless that their activity in a great mensure ceased; and it was not long till it crased altoget thar, and those who still retained their attachasent to the exiled family acquieseed in the orter of things established by the Revolution. In Scotland, the ioppes and wishes of the dacolite l'arty were expressed in onany spirited songs, which form an interesting part of the national literature. The Jacobites of Eincland were also Tonies. They were gemerally elistinguished by warm attachment to the Church of England, as opposed to atl dissent, if they were not members of the Chureh of Rome, and hedily very strongly the doctrine of noll-resistance, or the duty of absolnte sul). mission to the King. The Jacobites of Scotland were also generally Episcopalians and Roman Catholies. Macaulay, however, points out that the Highand clans which espoused the Jacobite canse did so on other gromids than the English Jacolnites, and were far from having previously received the doctrine of nonresistance. In Ireland, the Jacobite cause was that also of the Celts, as opposed to the Saxons, or the native race against the English Colonista, and of the Roman Chtholies against the Protestants. These diversitiew prevented a complete union, and greatly wrakened the Jarobites.
JACOB'S LADDER.-1. A term originally applied on shiphoard to a short rope-ladder with wooden steps, to give casy access to the shrouds and tops, but lattorly applied to any short ladder of similar coustruction used in fortification for passing from one level to another, in the absence of ramps, itc. 2. An apparatus for raising light weights a considerable height. One form much used in arsenals and lah)oratories is shown in the drawing and consists of ath endless chain of buckets, filling themselves at the bottom of the chain, and emptring at the top.

JACQUERIE.-The name given to the insurgent peasants in France in the middle of the 14th century, in the reign of Jolan. The insurrection of the Jacquerie broke ont in the year 1358, when the French King was a prisoner in England, and France in a state of the greatest disorder and anarehy. The immediate occasion of it was the enormities perpetrated by Charles the Bad, King of Navarre, and his adherents; but it was really cansed by long-contimued oppression on the pari of the Nobles. Suddenly rising against their Lords, the peasants laid hundreds of castles in ruins. murdered the Nobles. and violated their wives and daughters, practicing cvery enormity, and acting, as they satid, on the principle of doing as had been done io them. The insurrection broke out in the neighbornoorl of paris. but extended to the banks of the Marne and the Oise. For some weeks this part of France was entirely at their mercy; but the magnitude of the danger induced the quarrelsome Nohles to make common cause against them, and on June 9 the peasants were defeated with great slaughter near Meaux by Captal de Buch and Gaston Phelus. Count of Foix. This put an end to the insurrection.

JADE. - A mame some what vagnely applied to a number of minerals not very dissimilar- nepherite, uxestone, serpentine. "te. Noplatite: und axtstons: apparar to be the mincrals of which jute ornamacnts are generally made. But log, or 'hinese jate, of which very beuntiful vases and other articles are: made in Chima, is supposed to be prebinite. Jable of all kinds has a gremish colar, and whon polished, has a rather duli and grensy arpert. Jade is morda nsed in l'oland and 'Turkey for the handles of swords and sabers.

JAGHIRE, - An Indianterm, signifying the assignment of the revemaes of a district to as servant or debendent of government, who is called Jagherdar. Jaghires are frequently given in india to persons as a reward and comprosation for their mintary services. Jaghire ishom is a term signifying land granted for the support of troeps.

JALONS. - Long poles with wisps of straw at the top. They are tixed at diferemp places and in different roads, to serve as signals of observation 10 advancing colums, when the country is inclesed, we. They are !ikewise used as camp, colors to mark ont the around on days of exercise.
Jambea ux.-Armor for the legs, made of waxed leather or metal, and much worn in the Middle A ges. Commonly wriltun Jambers. Sire Creatra.

JAMES OF the SWORD. -The Military Order of Saint James of the Sworl was first instituted in spain, in the reign of Jerdinand 11. King of Lecon and Gallicia. In the tirst instance it was organizel with a view to stopping the inroads of the Moors, and its memhers phedged themselves to secure the safety of the roads. They entered into a leagne with the Jircthen of St. Eloy, and the Order was confirmed by the l'ope in 11\%5. The highest rank in the Order is that of (irand Master, which is united to the Crown of Spain. The Knights were obliged to prove their moble descant at least four gencrations back, and to show that they momberd among their ancestors no Jews, Saracens, or llereties, and had never been cited by the lnquisition.

JAMES PROJECTILE.-A cylindro-conoidal missile of cast-iron, having a compound envelop of canvas-sheet-tin, and lead, called packing, encircling nearly the entire length of the body of the cylinder. The canvass being the external portion of the packing, is well saturated with a tallow lubric, which renders the loading easy, and cleans the gnn at each discharge. The head of the projectile may be solid, or, if it has a prepared cavity, the missile then becomes a shell. The average weight of the projectile for a 42 -pounder gun is, if a solid, $81 \frac{1}{4}$ lbs., if a shell, $64 \frac{1}{1} 16$ s., of which in either case (10 los. is the weight of the packing. Its length is 13 inches, of which $6 \frac{1}{3}$ inche's is the measurement of the conical head, and $6 \frac{3}{3}$ inches is the length of its. cylindrical body. The diameter of the cylinder is designed to be 6_{3}^{3} inches, or $\frac{1}{4}$ of an inch less than the bore of a 42 -pounder gun. It retains its full diameter with aceuracy for $\frac{3}{3}$ of an inch of its length at each end; then for the intermerliate space, the diameter is shortened half an inch. thereby forming a recess round the body of the cylinder, between the ends, Fig. 1. The shortening of the diameter, and consequent loss of iron to the circumference of the body of the cylinder, is replaced by the before-named packing, when the projectile is prepared for use, Fig. 2. The solidity of the conical head is continned into, and forms the solid end of the cylinder. The base, or opposite end of projectile, has a central orifice, of $3 \frac{1}{4}$ inches in diameter, which extends $2 \frac{1}{2}$ inches into the cylinder; and from which ten rectangular openings diverge (like the mortises for spokes in the hub of a wheel), through the body, to the periphery of the cytinder, in the recess of its circumference. The packing is formed by a plate of sheet tin, of the length of the graatest circle of the cylinder: and in width, equal to the length of the recess cansed liy the shortening of the diameter.

This plate of tim is laid on a piece of strong canvas, which is twoinches wider, but of the same length of the plate; and the cunvas is folded over the side edges of the plate, and firmly secured by cross sewing. The tin plate, when so prepared, or half coveren, is folded round the body of the missile in the recess, and retained in position by an iron collar clamp. The space between the inner surface of the envelop and the body of the eylinder is fillerd with melted lead, whieh, adhering to the tin and iron, forms a compact mass round the body of the projectile. When the charge is fired, the power or gas generated by the burning of the powler, in its effort to expel the projectile and to escape from the gun, is forced into the orifice in the base of the missile, and through the ten openings against the pucking,

fig. 1. Brfore the applica tion of thepaching.
a. Band 3uch wide at ends of cylinder.
b,c,d. Recess round body of cylinder.
m. Rectangular openings throngh to recess.
n. Orifice in base. leading to the recess.

Which is thereby pressed into the gronves, in the gun's bore, and by its tirm hold in them the rifle motion is imparted to the projectile.

When the projectile is a shell, its fuse-orifice is in its head and axis. The length of the orifice for a 42 -pounder shell is $2 \frac{1}{2}$ inches. For two inches of its length, its diameter is 1 inch, and for the remainder of the length, the diameter is rednced to $\frac{a}{4}$ of an inch: forming a shoulder in the fuse-orifice, to prevent the fuse-plug from being driven into the cavity of the shell, when, by firing, the missile is expelled from the gun. The threads of a female serew are cut in the head of the fusc-orifice for the reeption of the body of the fuse-orifice cap. This cap is of brass. Its diameter is an inch, its length half an inch; its head is convexed, and has a slot cut in it for the reception of a screw-driver; the base end is deeply cupped to admit the nipple of a musket cone, anil to give more play to the fuse-plug. The fuse-plug is of wronght iron, surmounted by a musket eone; and its action in the fuse-orifice is like the ortinary working of a piston. Its length is $1 \frac{1}{4}$ inches of which the tuarter is the leagth of its shonlder. The diameter of its shoulder and body, is very nearly the same as the two diameters of the faze-orifice. Its vont is in its axis, and in size to recelve the male screw of the musket cone. The threals of a female srerew are rat in the heded end of the vent of sufficient lougth to recuive the screw and of the said rone. Whan the sheil is loaded, care shonhl be taken not to wertill its convity, and thereby prevent the working of the fuse-plig. The powdershonlel br eleanct from the fuse-oritice ; the pluts should be oiled to ensure its free and sure action. Its rone slomid be capped, hat hefore the appliention the purcussion eap shoudd he rarefally examined to see that it is jerfeet, and of the best (ןuality. The fuse-plug, when so prepared, is then insurted into the fuse-oritice, and it should enter fredy, lut not by its own weight until the shoultlers of the fuse-plig and orifice are in
contact. The cap for the fuse-orifice should be then firmly screwed in, which completes the charging of the shells. If after the shell is loaded the fuse-plug should be disturbed by handling; that is if the plig has slidden forward, it will be forced back to its proper position by the impulse given to the missile. by the firing of the gun charge; and it will so remain lluring the flight, until the shell impinges against any hard substance; as ground, woorl, rtc., which, by obstrncting the progress of the missile, canses the finse-plug to slide forward with violence, and by the collision of the cone's point against the bottom of the fuse-orifice cap-plug, the percussion cap on the cone will be exploded, and the bursting charge of the shell firell. See Expanding Projectiles.

JAM-NUT.-A nut of frequent oceurrence in the coustruction of artillery carriages the elevating gears, cte. See Lock-nut.

JANGAR.- A kind of ponton construeted of two boats with a platform laid across them, which is used by the natives in the East Indies to convey horses, supplies, etc., across rivers.

JANISSARIES-JANIZARIES.-A Turkish military force, originally formed by the Osmanli Sultan Orklan, about 1330 , of young Christian prisoners conpelled to embrace Mohammedanism ; and more perfectly organized by Siltan Ammrath I. after 1362. when the number was raised to about 10.000 , and especial privileges were conferred on them. They were for some time recruited from Christian prison ers, but their privileges soon induced many young Turks to seek admission into their body. There were two classes of Janizaries, one regularly organized, dwelling in barracks in Constantinople and a few other towns, and whose nmmber at one time amounted to 60,000 , but was afterwards reduced to 25.000 ; and the other eomposed of irregular tronps, called Jamaks, seattered throughout all the towns of the Empire, and amounting in number to 300,000 or $400,-$ 000. At the head of the whole Janizary force was the Aga of the Janizaries, whose power was limited only by the danger of revolt, and extended to life and death. The Jimizaries were always ready to break ont into deeds of violence if their pay or perquisites were withheld. In times of pence they acted as a police force. They served on foot; generally formed the reserve of the Turkish Army, and were noted for the wild impetuosity of their attack. The Sultan's hody-guard was formed of them. The Janizaries, however, soon began to be very unruly ; and their history aboumls in conspiracies, assassinations of Sultans, Viziers, Agas, etc., amd atrocities of every kind; so that, by degrees, they became inore dangerous to the Sultans than any foreign enemies. The attempts of the Sultans to reform or dissolve them were always unsuccessful, till Sultan Malımond M., in 1826 , being opposed in some of his measures hy the Janizaries in Constantinople, displayed the flag of the prophet, and suecerded in arousing on his own belalf the fanatical zeal of other portions of his troops. The Janizaries, deserted by their \mathbf{A} ga and other prineipal offieers, who remained faithful to the Sultan, were defeated and their barracks burned, when 8,000 of them perished in the fames. A proclamation of June 17,1826 , declared the Janizary force forever dissolved. All opposition was defeated with bloodshed. Not fewer than 15,000 were executed. and more than $20,-$ 000 were banished.

JANUARIUS.-The order of Saint Januarins was founded by King Charles of Sieily (afterward Charles III. of sbain), on July 6,1738 . It was abolished after the French Invasion of 1806 , and reintronluced in 1814. The hatge is a gold octagonal white and refl cnamoled rass, with gold lilies in the upper and side angles. 'The obverse represents St. Januarius in cpiscopal robes, with an open book. The round middle of the reverse shows a golden open book, and two phials partly filled with blood. The Kinghts are cither Covelicri ali Giuatizia, who must count four moble gancrations, or Camalieri di Crrazia.

JAPANNING - A laboratory process, giving a coat ing of varnish and other materials to certain mann. factures, hy which a resemblance is produced to the beantiful lacefured wares of Japha and China. The term is more generally upplien in this comntry to thetal works upon which a dark-colored varnish is applied with heat; but the process is quite as cxternsively applied to patpier-mache works. The japanning material consists of anime or copal varnish, alonce or mixed with ivory-black, to promlace ab black jupath; or with asphalt, to protuce a dark or light brown, according to the quantity used. Fior tinned wares, a single coating is all that is usmally given. After beeing varnished they are put into a horated overn for :t time, after which they are ready for use; but in the case of more substantal articles several coats of varnish are applied, wah lowing triod in the oven prevous to the appliontion of the next, so that a conting of sulleient substance fo bear polishing is thus obtained. Rotten-stone and Tripoli powder arr used by the polisler, and a beautiful surface is obtained, in no respect inferior to that of polisherd jet. 'The polishing powders are at dirst applied with leather, but the finishing is kone by women, who use the palms of their hames only, with small quantities of Tripoli.

JATS-JAUTS.-The name of a people of IIindustan, first mentioned in history at thebeginnlug of the 11 th rentury. They opposed the invasion of Malnmond the Gazne Vide, and are said to have gathered a flect of as many as 8.000 boats in the lndas, where they were attacked by the invader and completely defeated. In the reign of Auruugzehe, the Jats aprpeared as luanditti in the mountains in the interior of India. They increased in strength and daring, until they finally became formidable, and under their Chitef, Sooraje Mull, evan dietated the policy of the Mogul Court. The invasion of northern India by Almed Shali, Sovereign of Cabul, put an end to the prestige of Sooraje Mull, who. after allying himself to the Malirattas, deserted them before the battle of Panniput, and joined Alamed Shalb. Ilis services on the oceasion of this battle were rewarded loy the pos. session of A gra and its district. At the time of the establishment of d3ritish power in northern India, the since celcbrated limnjeet Singh was liajah of the Jats, and hy a treaty with Lord lake, was permitted to remain in control of his territories withont paying tribute. Disagreement between the English authority and that of the Rajal bronght abont a conflict. and early in 1826 the almost inipregnable fortress of Deeg, the stroughold of the Jats. was invested by a large force of British soldiers under Lord Combermere. On Jan. 18 the fortress was stormed and captured, and the power of the Jats was at an end.

JAVELIN. - A short and light spear used for darting against an enemy. In the Joman legion. the first and second lines (the hastati and the principes) were both armed with two javelins to each man. Each javelin was in all abont $6 \frac{3}{4} \mathrm{ft}$. in length: the shaft $4 \frac{1}{2} \mathrm{ft}$. long, of touch wood, an inch in diameter; and the remainder given to the barbed pyramidal head. In action, the legionary hurled one javelin on the enemy at the first onset; the second he rotained as a defense against eavalry. The Goths and other barbarians used a javeliu. At present, javelins are used in Europe in hunting the loar. and ly many savage nations in ordinary hunting. The assegai of the Caffre is a javelin of native iron.

JAZERAN.-A coat of scale armor, first worn in the Middle Ages. This garment was sleeveless and somewhat lighter than the hamberk. Commonly written Jazerant.

JEFFREY POJECTILE.-In this projectile, the lead is aftixed to the rear of the projectile by dovetatils. into which it is cast: a hollow, resembliug that of the Minnié bullet, is left at the bottom, for the purpose of calsing the lead to be driven into the rifling. A wad or covering. consisting of flannel coated with soft soap, is wrapped around the rear of the projec-
tile, to facilitate loading, decrease windage, and labricate life bore.

JELOUDAR.-An East Indian term, signifying to brlong to thre train or ectuipage.

JEMADAR. - A native ollicer in the Indian Army, whose position corresponds with that of as sulatiorn in a company of Europana infantry. The name is also given to the herad man of a native establishenent in a factory, and indecd to any man whos exereises authorily over n number or gang of men.
JE MAINTIEDRAI. - 'I'luc motto of the llousce of Nassau. Whacn William III. came to the throne of England, loceontinued this, but added the" "liberties of England and the l'rotestant religion, " at tho same time ordering that the old motto of the royal urnes, "Dien et mon droit" should be retained on the great seal. 1689.
JENIZER-EFFENDI.-An appointnaent among the Turks, which in some degree resembles that of l'ro-vost-Marslal in European armies. The only functions which this officer is permitted to exereise are those of judge to the company. Ile sits on particular days for the purpose of liearing the complaints of the soldiers, and of settling their differences. If a case of pecaliar difliculty should oceur, he reports the ease to the Aga, whose opinion and determination are fimal.
JENNIFER SADDLE.-A gaddle very extensivaly used in the United States and other comntries. prior to the invention of the Whitman saddle. While considered one of the best saddles in its time, it latl the scrious defects of being too short in the seat. too short in the bearing, and too much ronnded on its under side, inclining it too "rock" and sore the back in the center; also sharp pommel and two straight in cantle.
JERKIN.-A buff military coat, on which was worn a light collar. The jerkin took the place of ammor towards the end of the 16 th century.
JERRID.-A slender jarellin used as a dart by the soldiers of the East, in the Midde JIges.

JESSANT, -In IIeraldry.springing forth.a term frequently used as synonymous witl ? ssuunt, rising. as a demi-lion is often represented doing. from the bottom line of a field, or upperline of an ordinary. Jes.

Jessant-de-lis, sant is sometimes used improperly for naissant, or rising from the middie of an ordinary. The phrasejes-sant-de-lis is used with respect to a strange heraldic device depicting a leopard's head affronte witll fleur-de-lis passing through it. The family of Moreley, Hants, bears sable, a leopard's head argent jessant-delis; and gules, three leopard's heads jessant-de-lis or, are the arms of the family of Cantelupe. See Meraldry.

JET.-1. A term signifying the motion of any body that is urged forward by main force; it likewise means the space which is gone over by any propelled body: and sometimes the instrument from which anything is thrown or shot; as the cross-bow, etc. Jet des bombes is a plirase used instead of tir. Which formerly expressed the course that a shell took when it was thrown out of a mortar by the power of gunpowder. 2. In pyrotechny. jets are rocket-cases filled with a burning composition; they are attached to the circumference of a whech, or the end of a mov. uble arm to set it in motion.

JEWELS.- $13 y$ an egregiously absurd and unneces. sary complication of nomenclature, introduced by way of adding dignity to the science of IIeraldry. the tinctures of the arms of peers have sometimes been designated by the names of precious stones: argent is pearl or crystal ; or, topaz; gules, ruby: azure. sapphire: sable, diamond; vert, cmerald; and purpure, amethyst.

JEWEL TARGET.- A canvas target. luving framework and machinery made of iron. The mechanisen permits of the use of at target of ayy class br taking
out the frame and legs of one target and substituting therefor those of another. A framework supporting the target works upon a center-pin or spindle (12 inches long) securely fastened to a heavy timber at the back of the pit, and revolves the target to the right or left snch distance as may be required. When a shot strikes the target, the marker by suitable contrivances pulls the target over, and hangs , disk, denoting the value of the shot, in the shot-hole, patches the last hole (if any), and swings the target back into position ready for the next shot. The marker for this target is provided with small disks made of wood, tin, or iron, with hooks in the center and each side of them, and painted to represent certain ralues.

JIB-CRANE.-The mode of operating the hoisting and traversing mechanism of the larger sizes of the Weston jib-cranes is fully explained in the article Trollers. The details of the gearing whereby these several motions are affected are as follows. Fig. 1 is a cross-section taken at the foot of the mast of a large jib-crane. A is the mast, to each side of which is bolted a housing containing the gearing for operating the two parts, X , and Y . of the main hoisting chain. Each of these housings is provided with a horizontal shaft, revolving upon which is the worm whee! P, the hub of which covers the entire length

Fig. 1.
of the pin or shaft between its hearings. Over the hub of this wheel, is the pocketed clain-wheel K, with the chain stripper V , and a chain guide, s The chain wheel is made separately from the worm whed to admit of casy removal and renewal when worn out. Referring now to the right hand housing in the drawing, O is the crank shaft extending throngh the honsing at right angles to the worm whecl shaft ahove. Q is the worm, itted upon the shaft, O, at its center, and gearing into the worm whed, P'. K. is a spur pinion, titted to one end of the shaft, 0 , and capable of shding longitudinally thereon. T is a small guide sheave over which the slack of the chain falls after passung around the lower semi-ciremmferener of the chainwheel. R. The arrangement of the opposite
or left hand housing, and its contained gearing, is the same as that just described.
Fig. 2, is a detail view of one of the chain wheels, R, with the chain guide, S, and stripper, V, showing

Fig. 2.
the manner in which the chain is guided during its contact with the wheel, and the provision, by means of the stripper, V, for compelling it to leave the wheel, K, at the proper point in whichever direction the whecl is being turned. The slack part of the chain, after passing over the guide sheave, T, falls into a receptacle between the housings at the foot of the mast. The chain being endless, the two parts, X and Y, come together in the receptacle just referred to, and are there united, the amount of slack chain contained in the box varying with the position of the running block.

Fig. 3 is a horizontal cross-section taken through both housings and the mast of the crane, the several

parts being designated by the same icters in Fig. 1. M is a shaft parallel to the crank slafts, O and N extending through the mast and carrying at one end the large spur wheel. L. The pinions, \hat{J}, and K , as previonsly explained, are arranged to slip upon their shafts so as to hring theminto or out of coincidence with the intermediate wheel, I_{4}, and the pinion, J, is disengaged. If now the crank be applied to the shaft, N, and turned in the proper direction, the chain, X, will be laaled in and the load raised. The same effect will result from rotation of the shaft, 0 . If both be turned simultaneously, hoisting will be effected at double speed. By applying the crank to the shaft, M, motion will he communicated throngh the wherl- L, and pinion, K, to the shaft, O, and hoisting will or- $u r$ at a rapid speed proportionate to the relative dameters of the wheels, 1 and k. Three spects are thus ohtained for looisting, all of which are equally applicable to lowering by reversing the motion of the cranks.

Po effect the proper travel of the trolley. both pin- L with its two pinions. The worm wherls and worms ions, Jund Ki, nre slipued into engugemant with the whecel, $L_{\text {. }}$ Sy thenturaing cithor of the shaftes, Nor O, in the proper direebion, one part of the hoisting chain, X , for exanple, will be handed in, and the ojpposite part, Y, paid out at equal spereds, the GTact of which is to canse the trolley to move loorizontally won the jib. Jy applying the rank to the shati, M, these motions are morelerated, and a rapinl movement of the trolley results.

Two cranks are furnished with "ach rrane, und it is to be noted that the eonstrustion atmitsof therme ployment of botlo cranks upon uns one of the shafts M, N, or O , so that the conire energy of all the mon amployed upon the cranc is transmitted through that shaft, while, if more rapid action is dasired, one of Whe cranks may be pheced upon the right hand end of the shaft. N, and the other npon the opprosite or left land end of the shaft. O. In either case the iwo shafts, beiner on opposite sides of the erame dos not in any way interfere with one another, and are thos
uper parts of which lattor arearranged to lift onf to give arerse to the gearing. Fiach of the worms rung in an oil woll, thas insuring perfect labriontion, and each of these wells is providerl with atrainger-hnp at the hotton to draw off the lubricant when desired.

Fig. I represents a jibecrance of medinm size, ench nember of the framo ronsisting of two parts, separated so as to promit ther chain mal block to prass between them, so that the loat can la. mosed elose into the mast. 'The hoisting merehanism is attarlorel to the mast noar its foot, and the rmming block which carrios the lond, is susprented from at trolley travelling on the jib and rapable of movernent in and out by morns of indepoment gearing athehed Io lhe jih at its intersection with the mast ("ranes of this design are hailt of any desired rapacity from 1 ton to "t tons. The frame eonsists of wroneht iron channel benns, each of the three mombers of the frame

Fig. 4.
always avallable for the full number of men who can being composed of two suclichanncl irons, The di-
eSectively be employed unon them
The compactuess and simplicity of this mechanism will be apparent from the foregoing description. The entire operating mechunism of the crame consists of two worm wheels and worms, and of the spur wheel
mensions ure such as to give the accepted factor of safcty, and the several parts are very securely con nected together at their intersections by riveling.

Hoisting is etlected through a irain of spur gearing operated by crank in the usual way, and provided
with an antomatic safety ratchet. Lowering is effected by a separate mechanism consisting of a turned worm wheel and worm, operated by a light hand wheel, as shown in the cut, this mechanism being also available for raising light loads. Thus arranged, the machine is self-snstaining and can be left at any time witly the load in suspension without danger of the lond running down or the handles flying back. The construction gives three changes of speed, and embodies the endless chain system, which insures an even distribution of wear over the entire length of chain.

Rotation is easily effected by pushing or pulling the suspended load, the pintles in top and bottom bearings being of steel and turning in bronze boxes. Motion of the trolley on the jib, in either direction. is effected by gearing operated from below by an endless hand chain, as shown in the cut. The selfsustaining construction of the hoisting gear holds the load suspended at any height while the trolley is moved in and ont on the jib.

Cranes of this type are adapted for use in arsenals for handling and monnting heavy guns, in foundries, forges, rolling mills, ete. See Crmes and Trolleys.

JIGGER.-1n mechanical maneuvers, an apparatus consisting of a strong rope with a block at one end, and a sheave at the other, used in maintaining the tension of-or, technically, in "holding on" to --the cable as it is thrown off from the capstan or windlass, around which it only takes two or three turns.

JIM CROW.-One of the tools used by railway platelayers for bending rails, and forms one of a sct of platelayers' tools attached to the royal engineer siege equipment. It is suitable for bending the 24 lb. rails of the trencle railway.

JINGAL.-A small, portable piece of ordnance to be fired irom the gronud or on a wall, resting on a long, slender butt-end, and two legs. This piece was commonly used in India. Sometimes written Jingall. See Gingals.

JOAR.-An East Indian term, signifying a general massacre of the women and children, which is sometimes performed by the IIndoos, when they find they cannot prevent the enemy from taking the town. When this dreadfnl and unnatural ceremony is to take place, a spot is selected which is filled with woord, straw, oil, etc. The victims are inclosed and the wholt is set on fire.

JOHN BULL.- A familiar synonym for the English people. Its origin is attributed to Dean Swift, but Arbuthnot first gave it literary currency in his Mistory of John Bull (1712), a political allegory intended to satirize the Duke of Marlborough, and to increase feeling against the war with France. In art John Bull is well known as a bnrly country squire, impetuous, honest, narrow-minded, dogmatic, and easily imposed upon.

JOHN OF JERUSALEM. - The Order of Inights of Saint John of Jerusalem, otherwise called Kingarts of Reodes, amd after of Malta is the most celebrated of all the military and religious orders of the Diddle Ages.

It originated in 1048 in an Ilospital dedicated to St. John the Baptist, which some merchants of Amalif were permitted by the Calif of Eaypt to build for the reception of the Pilgrims from Europe who visitul the Iloly Sepuleher. The murses were at first known as the IIospitaler Brothers of St. John the baptist of Jerusalem. The Seljuk Turks, who suroceded the Egypitan and Arabian Saracens in Palestine phamerud the Ilospice, and on the Confouest of Jorusalem by the Crusaters undre Geoffroy de bouillon in 1099, the flrst Superior, Cérard, wais found in prison. Released from durance, he resumel his duties in the llospice, gave material aid to the sick and wounded, and was joined ly several of the ('rusaders, who devoted themst)ves to the service of the poor Dilgrims. By advice uf Gerard, the lorethren took vows of poverty, chastity, and obedience

Infore the Patriarch of Jerusalem. Popee Pascal II. gave his sanction to the Institution 1113 . Raymond du Puy, the successor of Gerard in the office of Superior, drew'up a body of Statutes for the Order, which was contimned by Pope Calixtus II. To the former obligations was afterward added those of fighting against the Inficlels and dofcoding the Holy Sepulcher. Various Hospices, called ("m. manderies, were established in different maritime towns of Europe as resting places for Pilgrims, who were there provided with the means of setting ont for Palestine. The Order having lewome military as well as religious, was recruited by persons of high rank and influence, and wealth flowed in on it from all quarters. On the Conquest of Jerusalem hy Saladin in 1187, the Ilospitalers retired to Margat in Phenicia, whence the progress of infidel arms lirove them first in 1285, to Acre, and afterwards, in 1291, to Limisso, where Henry II., King of Cyprus, assigned them a residence. By the Statutes of Kaymond, the Brethren consisted of three classes, Kuights, Chaplains, and Serving Brothers; these last being lighting Squires, who followed the Kinights in their expeditions. The Order was subsequently divided into eight languages-Provence, Anvergne, Frunce, Italy, Aragoa, England, Germany, and Cas tile. Each nation possessed several Grand Priories, nnder which were a number of Commanderies. The chief establishment in England was the Priory at Clerkenwell, whose head had a seat in the Upper House of Parliament, and was styled First Baron of England.

In 1310, the Inights under their Grand-Master, Foulkes de Villaret, in conjunction with a party of Crusaders from Italy captured Rhorles and seven adjacent islands from the Greek and Saracen Pirates by whom it was then occupied, and carried on from thence a snccessful war against the Saracens. In 1523 , they were compelled to surrender Rhodes to Sultan Solyman, anl retired first to Candia and afterward to Vitebo. In 1530 , Charles V. assigned them the Island of Malta, with Tripoli and Gozo. The Kinights continned for some time to be a powirful bulwark against the Turks; but after the Reformation a moral degeneracy overspread the Order, and it rapidly declined in political importance; and in 1798, through the treachery of some French Knights, and the cowardice of the Grand Master, D'IIomspech, Malta was surrendered to the French. The lands still remaining to the Order were also about this time confiscated in almost all the European States; but thougln extinct-as a Sovereign Bodyr, the Order has continued during the present century to drag on a lingering existence in some parts of Italy, as well as in Russia and Spain. Since 1801 the office of Grand-Master has not been filled up : a Deputy Grand-Master has instead been appointed, who has his residence in Spain. The Order at tirst wore a long black habit witl a pointed hood, adorncal with a cross of white silk of the form called Dlaltese on the left breast, as also a golden cross in the middle of the breast. In their military capacity, they wore red surcoats with the silver cross before and behind. The badge worn by all the Knights is a Maltese cross, cnameled whit and edged with gold ; it is suspended by a black ribbon, and the embellishments attached to it differ in the different commeres where the Order still exists.

JOHNSON LOADING-APPARATUS. -The aim of the inventor in planning this apparatus hats bern to pro. dnce a loarling device which may be applied with ont altering the present style of gum-carriages, and which may be nperated from a position consiberably bulow the muzsle of the gun. I staff-carriage is supportod by rods which may be raised or lowered by racks and pinions. The staff-carriage carries a short shaft, upou which there is a pinion fordriving the sponge staf or rammer staff. also two drums for receiving the rope liy whieh it is rotated. The tirst operation in cleaning the gan is to faise the staflecar-
riage; the sponge staff is then run through the carriare an liar as converniont; the from omd of the staif is then raised by momes of arod tilled witha fork for the purpose. As soon as the fecth of a rack with which the sponge stall is provided, cogage the ter tha of the pinion in the carrigese, the pinion is turned by means of the ropers, forcing the sponge into the bore of the gun. "The sponge statf caries a drum by mems of which it may he revolvod when the spenge reachers the emil of the bore. The sponge staty is withalrawn by reversing the motion of the pinion in the carriage. A cartridge rest receives the cartridge shed, or shot, and carries it to the maz\% of the erim. The rammer staff is then inserted unt oprotad in muels the same manure as the sponge statf. Aftor loming, the statf-carriage and the cartridge-rest are lowered out of the way to permit of the ready aldustmornt of the gun. This very ingrenous apparatus is the invention of lientenant Davicl l). Johnsom, United states Army.

JOHUR DE RAJAH. An Inclian swort used early in the sevententhi century.

JOLN.- A trelmical worl used in the servise, signifying to "ffect the jumetion of one military boty with another. In a more limitell sense, it mans the accession of an individual, voluntary or otherwise, to a corps or army. If an ofticer, oin being ordered to join, omits to do so wiffully, lu is liable to trial by a Ceneral Court-Martial, or to be peremptorily suspended for bring absent without leave.

JOINTEE-JYNTEE.-A wood whose charcoal has been muchused in the Governmont powder works at Ishapore, near Caleuta, in the manufacture of gunpowder. The jointee grows from send, and howers aftur the first year; it then increases in size till it becomes a small iree; at threc or four years old, it makes the best elareoul, the fibers being then large and defined, and well separated : the chareoal is of a lightisheolor, and is not dense to the eye or touch. The tree flourishes best on the banks of small mullahs or water-eourses. Jointee clareonl is not so soft as that of the urlur or dhall stalk, hut it is more (lry, brittle, and harel. An averaged-sized tree of three yrars' growth will occupy about is square yards, and produce about three mamels of word, which will yicld about 30 fls. of charcoal, the gatintity required for two $100-3 \mathrm{~b}$. harrels of sumpowier. Therefore 10. 000 barrels would recquire ahout sixty bergahs of land under constant cultivation, one-third to be cut each ycar. The average specific gravity of jointee wood is. 765 , and sp. gr. of the chareot produced from it $2 \pi 5$; and it yields 25 per cent. of charenal. Experience has shown that this woot is not so geod for gunpowder purposses as the dhall bush, and therefore should only be used in case of a failure of that crop.

Joints. -This is a very important point in connection with a system of miues. In many instances it will be found necessary to join cither two langths of cable, or an insulated wire and a cable, together, in both of which cases great care must be used in making the joints, so hat the insulation and the continuity of the circuit may be perfect.

As oxides of metals can scarcely be considered onductors, all joints in a wire, over which an eldetric current is to pass, slonded. when formed, be perfeetly clean. In making a splice in a wire conoug of the two ends to form a joint should first be brightened. and then each wire should be firmly wound around the other, as shown in the drawing, the different

evolutions touching one another, and passing. as near as may be, at rightagles with the wire which they surround. A wire, in being spliced. must never

Ife hent bark and womnd upon itself, forming at loose lowp, which, for telegraphic purposes, is rather narebiablo. Th making a joint umder water, a great of). ject is to totally exclurlo the ingress of water, or even mosisture, which would at onceraford a jath for the.

Hints.

JONES GABION.-A narfal galion mate of ten bands of gatvanised shewt-fron, worked owar twelve: wond pickets, the emels brenght tesether and eonnected by two buttons at one rmal litling into two
 inches wide, of No. 20 gatage, or about (0) (0) ind
 ton-londes are raturirel to stamel a waight of diad Hos., the band itself will support about 1.500 hos. ; (aich band has four lioles to armit of combination (o) form brilges, bels, stretchors, and for othor incitcental applieations: little or no instruction is required for making these gabions.

Two expert men can make a galyion in five minutes.
jooday perraput.-An Last Imdian torm, signjfying a slave taken in war.

JOSLYN TOMES GUN. - A breech-loading rifte having a tixed clamber closed by a movable breech-black which sliedes in the line of the harrel by dirert action. It is opened by cocking the hammer. In sorloing a hook-shaperi whoulder on its forware portion is disengated from a corresponding recess in the receiver; and the whole bole containinir the hammer and lock, is free to move back ward to its full extent. The tir-ing-pin being linked to the hammer is also positively withelrawn from the face of the bolt. 'The piece is closed by reversing the motion of the boht. It is hedi closed by a spring-catcla (friction-piu) on its side. It is loeked by the descent of the liooked portion of the hammer into the recess of the receiver, when the piece may be fired by a back-action lock concealed in the bolt, the trigger alone being thached. The tiring-pin descends with the hammer along an inclined groove in the face of the bolt leading to the site of the fumintace in the center of the cart-ridge-head. Extraction is accomplished by a springhook recessedin the side of the bolt, and riding ower the rim of the cartringo when the piece is closed. Ejection is caused by the cartridge-shedl beige quickly withdrawn on two longitudinal guides, one on each side of the receiver, and ejected hy the hearl striking first a stop on one guide; and then almost simultancously a stop to the rear of the first, ou the other guide.
JOURNAL.- A public record or general orderly book kept in the French service, and in which every transaction that occured daring a siege is entered loy the Governor of the town. for the insurction of a superior Anthority: The General Officer who carriet on the siege of a place likewise kept at docnment of the same kind, amd minuted down every thing that hap, pened onder his command. So that the donrmal Which was kept in this mannor was a circumstantial detail of what oceurred, day after day; during the attack and defense of a town.
JOURNAL OF ATTACK. - In actual sicge operations a daty record is made by cach Engineer Ofticer on duty in the trenches, of the amount of work done. the time required, the means of excution, etc.. with any observations that may seem of value. These recordsare transmitted to the headquarters of the Commas ling Engineer. where they are filch away for reference, and from them the progriss of the trencless is carefully laid down upon the original directing plan of the athek. From the data furnished by such records, and from the results obtained in the schools for training engineer troops, the average time reynired for executing the various portions of the siege works, meder ordinary circumstances, during the different epochs into which they have been dividecl, Jas been laid down by writers on this subject. This mode of calculation has also been applied to test the relative
value of different systems of permanent fortifications, by submitting them to a fictitious siege, and estimating from the time, as shown in this way, required for their reduction, how much longer the one syrstem would hold out than the other. However ingenious this method may at first appear. it affords no real practical test of any importance; the duration of sieges depending upon moral and physical laws, as their whole history has shown, that no mode of calculation can reach. The immediate successors of Tauban, who made use of these calcnlations in theoretical sieges, have nsually allorved nine days, from the opening of the trenclies to the completion of the 3d parallel; estimating that all the batteries, along the front of the 1 st and 2.1 parallels, would be
completed on the sixth day and the fire of the defenses be brouglat under in twenty-fonr hours after the batteries were in full play.
JOURNAL OF DEFENSE.-In the American service, during war, the Commander of a place and the Cliefs of Engincers and of Artillery are required to keep Journals of Defense, in which are entered in order of date, withont blank or interlineation, the orders given or received, the manner in which they are executed, their results, and every event and circumstance of importance in the progress of the defense. These Journals are sent after the siege to the War Department.

JOURNALS OF MARCH.-Commanding officers of troops marching through a country little known,

Journal of the march of [here insert the names of the regiments or companies composing the column], commanded by , from [here insert the point of departure] to [the stopping place]. pursuant to [here goie the No. and date' of order for the march].

Kerp jourmals of their mareles neeoreling to som laid down in Army lecenhtions. At the end of thr matela aropy of the journal is retained at the station where the troops arive, and the original is forwart ed to the lleathotarters of the Department or ('orjes d'Armáe. Thence after a copsy has bean taken, it is transmitted, lhrough the 1 lembefunters of the Army, to the Adjutant General, for tha information of the War Depmetment. The drawiner represemts Ketcham's contimous peotile-book, which is mostly used for route-skrtchimg und groneral lichd notes, Whan this camoot be olotained, a boos made of sheets of paper folided to half the le:ter size will unswer. Thar rerord should rum from the bottom to the top of entrlatign.
lisferring to the form on page 14 , it is malerstorel that the distance, in milo.. botwom earla of the horizontal divisions, will be notrel in the eulbum lestuled " /histumer"," which will lwe summed a], at the enp of earla collumm, and the sum carriod to the botton of the mext column. The notes within reach horizontal division are to show the general directions of the murch, and every oblecet of interest ohserved in passing over the distance tepresented thereby; and all remarkible foatures, such as hills,
chrrias the felt, the other Haw woot-work. Thare are fonar separate parts in its strurture: 1. Tlare dower. Tray, at molid pioce of ornathental carpontrring, that
 sist of lengths of woocl-work, that shat 1 o on the [rineiphe of the lazy-tongs. "3. "Thes roof-rils. "Thes bottom or cachaf ofose is tied to the sithes of thes jurrt, und its top tites into as socket in - 4. The roufring, whicle is at hospof wood strengthener! hy trabse verse bars. © wer this framawork broat slaetts of felt are thrown ; thoir own waight makes them lin stradily. for they are quito an inch in thiokneses; however, in very sotmey weather, thoy are werighted with stones. 'there is me metal in the stracture.

JOUSTS Jixarcises of arms aml loorscomanship, preformod in the Didule Ages hy liniehts and Nobles.
 ly, rach against his antagonist, and not in atroop, as in the tomenament. The momber of courses to be run and strokex to be \&iven was generally three, but sumetimes a hagre number. The weapon most in use in the joust was the lance but sometimes the battheave ambsword were employerk. To diract the bance anywhere but at the bodyo of the antagonist was reckoncil fonl play. In the jonst of peace or joute

streams with their mimes, fords, springs, lmuses, villages, forests, marches. ete.. and the places of encampment, will he sketeluedintheir relative positions. Thre" Remarks," correspes:ling to eich division. will berpon the soil, pro liations, fuantity amel qual. ity of timber, grass, wat and fords, nature of the rialds, etc.. and imporiat : incilents. They should slow where provisions, , rage, fuel, and water can lee ohtained: whether tla stremos to be crossed are fordable, miry, have quicksamds or steep banks,and whether they overtiow their banks in wet seasons; also the quality of the water ; and, in brief, ererything of practical importance. When a letachment leraves the main colamn, the point on the "route" will be noted, and the reason given in the Remarks. The Commander of the detachment will be furnished witl a copy of the journal up to the point, and will continus it over his new line of march.

JOURNEE.- - term used amonir the French to express any particnlar engagement or hatlle as fa jomoree de Jfarengo. Wí freguently alopt the voral in the same sense ; thas. a hard-fought day signities a haril-fought battle.

JOURS. - The tours of luty which are done in the enurse of a day and a night. Eitre de jomer is In le Otheer of the Day, of to command a body of troops at a siege or otherwise in the capacity of a General Olieer, ete.

JOURT.-The Kirghis-jourt is a capacious, solit, warm, and fire-proot structure, that achmits of being pitched or taken to pieces in an hour, and withstinds the cold and violent winds of the steppes of Central isia, in a way that no tent or combination of tents could pretenil to elfeet. A jourt of from 20 to 25 , or even 30 feet in climmeter, forms two camelloarls, or about half a ton in weight. One camel
de plrivance, a foot encounter preceded the mounted combatl. In the loth rentury the usages of jousting had come to differ in different countries to such an cxtent that an claborate treatise was written in explanation of the various modes distinguisking the characteristic ditferences.

JOUTE.- A elose fight between two individuals. It likewise means an engrigement at sea.

JOVES. - In fortification, the two sides in the epaulment of a battery which form the embrasure.

JOWHER. - A kiml of watering in Oriental swordblates and Damascns gun-bartels.

JOYEUSE. - The name given to the sword of ("harlemugne.

JOZERAUNT.-Ancient armor: a jacket strengthened with plate. Also written Jozerine.

JUDGE ADVOCATE.-The title of an official attacheal to Military Commissions or Courts-Martial, whose duties are analagous to those of Prosecuting Attorneys in Civil Courts: but whose functions in relation to military law, are also similar to those of a District Attorney, or Corporation Counsel, in being of an advisory character. The appointment of JudgeArlvocates for special Courts rests in the authority which appoints the Court. whether that be the I'resildent, the Secretary of War, or the Commander of the Army. But there is also in the United States Army a Corps of seven Julge Alvocates with the rank of Major, who are under the general direction of the Judge Advocate General. and who can be cletailed on Courts-Martial or Military Commissions, but are usually stationed at the Ileadquarters of the Military Departments. where they act as learal advisers to the D.jariment Commanters, and may be appointerd by them to Court-Martial duty. The ofticial duties of a Judge Advocate during a trial by Court- Iartial
or Military Commission, or examination by a Court of Jnquiry, are as follows: Preparation of the case for the prosecution, procuring of witnesses, administering the oath, opening the case for the prosecution with the necessary argument, questioning the witnesses, and submitting the case to the Court. But besides these duties the Julge Advocate has still an-other-seemingly anomalous in this connection-that of protecting the witness from improper or leading questions, and to that extent also acting as counsel for the accused. In the English military sarvice the duties of the Judge 1 dvocate have been so far modified that he does not act as Prosecutor, but solely in his advisory capacity in connection with the Court, and as the Recorler of its proceedings.
The Articles of War are silent on the subject of the Judge Aclvocate's essisting tbe Conrt with his counsel and arlvice as to any matters of form or law ; it nevertheless is his duty, by custom, to explain any doubts which may arise in the course of its deliberations, and to prevent any irregularities or deviations from the regular form of proceedings. The daty assigned the Judge Advocate is more especially incumbent on him in cases where the prisoner has not the aid of.professional counsel todirect him, which generally happens in the trials of private soldiers, who having had few advantages of cducation, or opportunities for mental improvement. stand greatly in need of advice under circunstances often sufficient to overwhelm the acutest intellect, and,embarrass or suspend the powers of the most cultivated understanding. It is certainly not to be understood that, in discharging this office, which is prescribed solely by humanity, the Judge Advocate shond.in the strictest sense consider himself as bound to the duty of counsel, by exerting his ingenuity to defend the prisoner, at all hazards, against those charges which. in his capacity of Prosecutor, he is. on the other hand, bound to urge and sustain by proof; for, understood to this extent, the one dnty is utterly inconsistent with the other. All that is required is, that in the same manner as in Civil C'ourts of C'riminal Jurisdiction, the Judges are nuderstood to be comsel for the person accused, the Judge Advocate, in CourtMartial, shall do justice to the cause of the prisoner, by giving full weight to every circumstance or argument in his favor: shanll bring the same fairly and completely into the view of the Court; shall sug. gest the supplying of all omissions in exculpatory evidence; shall engross in the written proceedings all matters which, either directly or hy presumption, tend to the prison"rs's defruse; and finally, shall not avail himself of any advantage which superior knowledge, ability, or hisintlucnce with the Court may give him in, entorcing the conviction, rather than the acquittal, of the person accused.

When a Court-3lartial is summoned by the proper authority, for the trial of any military offender, the Judre Advocate being reguired to attend to his duty, and furnished with articles of charge or accusation, on which he is to prosecute, must, from the information of the accuser, or other sonrces, instruct himself in all the circumstances of the case, and by what evidence the whole particulars art to be proved against the prisoner. Of these, it is proper that he should prepare, in writing, a short analysis, or plan, for his own regulation in the conduct of the trial, and examination of the wimesses. It orght then, if it las not been done by some other functionary to give information to the prisoner of the time and place appointed for his trial, and furnish him, at the same time, with a copy of the charges that are to be axhibited against him, and likewism it correct detail of the Members of the Court. The Jurfac Advocate ourlat then to hame in to the Alljutant © Ameral, or staff oflicer charged with the ilctails, a list of witnesses for the prosermition, in urbar that they may be summoned to give their attendance at the time and plase appointed. It is proper, likewise, that he should desire the prisoncer to make a
similar application, to insure the attendance of the witnesses necessary for lis defense. These measures ouglat to be taken as early as possible, that there may be sufticjent time for the arrival of wituesses who may be at a distance. When the Court is met for trial, and the menlers are regularly sworn, the Judge Advocate, after opening the prosecntion by a recital of the charges, together with such detail of circumstances as he may deem necessary, proceeds to examine his witnesse's in support of the charges, while at the same time he acts as the Recorder or Clerk of the Court, in taking down the evidence in writing at full lengtly, and as nearly as possible in the words of the witnesses. At the close of the business of each day, aud in the interval before the next neeting of the Court, it is the duty of the Judge Advocate to make a fair copy of the proceedings : which he continues thas regularly to engross till the conclusion of the trial, when the whole is read over by him to the Conrt, before the Meribers proceed to deliberate and form their opinions. The sentence of the Conrt must be fairly engrossed and subjoined to the record copy of the proceedings; and the whole must be authenticated by the siguature of the President of the Court and that of the Judge Advocate.
It is required by the Articles of War, that "Every Judge Advocate, or person officiating as such, at any General Court-Martial, shall transmit, with as mucb expedition as the opportuuity of time and distance of place can admit, the original proceedings and sentence of such Court-Martial, to the Secretary of War; which said original proceedings and sentence shall be carefully kept and preserved in the office of the said Secretary, to the end that the persons entitled thereto, may be enabled, upon application to the said office, to obtain copies thereof." The Judge Advocate sends the proceedings to the Secretary of War throngh the Adjutant Genéal. See Court-Martial.

JUDGE ADVOCATE GENERAL.-In England. the Supreme Judge, nuder the"Jutiny Act and Articles of War, of the proceedings of Conrts-Marial. This officer is also the adviser, in legal matters, of the Commander-in-Chief and Secretary of State for War. Before confirmation the senteuces of all Courts-Martiai, with the evidence adduced, are submitted to him; and it is for him to represent to the Com-mander-in-C'hief any illegality of procedure or other circumstance rendering it undesirable tlat the Queen should be advised to confirm the Court's decision. The Julge-Adrocate-General receives a salary of $£ 2,000$, and is a member of the llouse of Commons and of the Ministry-clanging, of course, with the latter. As it is essential that the Judge Advocate General should have an intimate acquaintance with the military law, as well as with the general law of the land, he is provided with an assistant or Deputy, whose office is permanent, and who is selected from amoag barristers of eminence. The Deputy Judge Adoweate is an officer holding a temporary commission as Public Prosecutor in every Court-Martial. He must be an officer of intelligence, as it is part of his duty to examine and cross-examine witnesses, to warn the members of the Court of any illegality in their proceedings, and generally to fultith, in the limited area of the Court, the functions which belong to the Judge Advoeate General.

In the Crited States the Judge Alvocate Gelleral is the Clief of the Burean of Military Justice at Washington with the rank of Brigadjer General. To lim the procedings of all Courts-llartial, Courts of lnquiry, and Military Commissions are forwarlecd for revision and record. In England the Judge Achvocate General is the final legal authority for the Army, and the adviser of the Crown in cases where any action of the Sovereign is required. His power is supreme as to reviewing the procedings of CourtsMartial, etc. Se Burem of Military Juntice.

JUDGE-MARTIAL.-In former years the Supreme Jadge in Martial law, as to the jurisdiction and powers of Military Courts in the British system.

JUDSON POWDER. - A low grathe hight-explosive, invented by lighert Judeson, of Ran Francisor, California, and patented in 18%, since whide thene it hay been manufactured in large quantitios at Barkley, California, and has grown rapidly in favor with all who have nsed it, laking the place of black powder in hosvy work. It is not a high rexplosive and cannot be uscel for such work as is intomidel for Giant, Atlas or lerenles poweler, lut wherever hack powder is in use Julson powinr can be: sulsstituted tograt advantage As this powder contains nitrogerecerine it lecontes latrd in cold watther (at about $45^{\circ} \mathrm{F}$). When in this state it reatily breaks up into grains by a litle pressure and ran then be poured like sand into the smallest "revics. When using fromen powder, it is necessary to use a priming cartridge of Giant, and toalways lave His cartridge soft. For libasting or guarry work, Judson powder is put up in water-pmof paper-hags, containing $64,12 \pm$ and 25 pounds cach, and 8,4 and 2 bugs respectively are put in wooden boxes hodding 50 pounts. It is ulso put up in water-proof cartrilges of any size desired for special purposes. See High Explosines.

JUMP. - A gun-barrel mate of a ribbon of iron, or laminated iron und steel, coilded around a mandrel at a red heat, then raised to a welding leat and julaced on a eylindrical rod, which is struck leavily and vertically on the ground, is said to be jumpal. The effect is to eanse the edges of the ribion to unite, a junction which is completed by the hammer on an anvil, the mandrel retaining its position. Such barrels are said to be toisted. The twist is stub, sire, or Ditmascus, aceording to the mode of manufacture of the ribbon. Sce Giun-barrel, und Tivist.

JUMP OF A GUN.-The incrased angle of departnreat which a projectile leaves a gan, after the gun has been truly levelled at the target or object to be struck. The mothod usually pursued to ascertain the "jump" of a gun is to place a target at 120 feet from the gun which has been truly levelled. so as to be horizontal. On firing the gun, the position of the hits on the target delormines the "jump" as, if above the level on the target, it shows that the projectile las left the piece with a certain amount of elevation; if it had not beeu so, gravity would have brourht the shot helow the lavel on the target. This "junap" is due to the tentency the gun and carriage have to rotate on tho truil. bixperiment has shown that the "jump" which the system makes before the projectile leaves the muzale is muela affected by the nature of the rifling. A breech-loading gun in which the shot is forced through the bore, "jumps" more than a muzzle-loading gun of the same weight and length.

JUNCTION-BOX. - In submarine mining, when it is necessary to employ a mnliple cable, a junetionbox is used to facilitate the connection of the several separate wires diverging from the extremities of such a cable. In one angle of such a box the maltiple cable is introduced, while the cables make their exit on the opposite sides and pass to different mines. The ends of the cables are sceured from pulling out by hooked nippers. Each multiple eable is composed of seven cores, and each of these is connected by means of joints with the mine cables within the junction-box. The boxes are usually made of cast metal and must, us an essential condition, be perfectly water-tight. They are of various forms, depending upon the object for which each is to be nsed. They should be supplied with the other apparatus for laying mines.

A junction-box shonld be placed in suele position as to be casily attained, even in the presence of an enemy, and its buoy shonld, if possible, not be scen. It is also very essential that it should be in a safe and guarded position, for any injury to the junctionbox or maltiple cable would be fatal to the group of mines in connection.

JUNIOR.-Any one having a lower rank. W"hen the

Hrmbe is thre same, the janior has the more rarent commajasion or warrant.

JUNK. - 1. Ijerees of old rable rit cordage, userl for making proints, gaskets, wte. W'hen pioked to piores, it is murll nsod in the arsemal instratl of rakman. 2. A familiar thrm in thr liritish Army anel Savy for the sate meat shpplad for long trips- the natno le ing

 cially styled junk.
JUNK WADS. - HFads usal for proving (annon. W゙ad-molds for arch caliber, consisting of two castiron eylindors of dillerent diametors sot in oak, or of two strong picoes, strapped with iron, and joinerl hy at hinge, are employed in their mannfarthre. The junk, after liaving been jurked, is rompressod loy being beaton in the smaller mold with a movel and cylindrical drift-the latter nearly of the size of the mold-until it assumes the requisith: dimensions ; it is then tuken ont by raising the nuper part of tho mold, and closely wrapbed with ropesyarn pasacel over it in the diruction of the axis of the rylindrer. and fastrned by u few turns around the midelle of tho: wad. It is then placed in the larero mold, and again beaten with the mand and drift until its diametrr is increased to that of the mold; wheri it is taken out and its diameter verified hy a wooden gaucre corres. ponding to the large shot-gange of the calitrer.

JUPON - JUST AU CORPS.- A surcoat. The name jupon is chiefly applicel to the short, tight form of that military garmont in use jn the 14th eentury. It was a sloweless jackel or overcoat, composiol of several thicknesses of material sewed througlt, and faced witlı silk or velvet, upon which were embroid"red the arms of the wearer. It fitted elosely to the body, sum. descending below the hips, terminated in an euriched border of various patterns.

JURISDICTION. - Al] otticers, conductors, gumbers, matrosses, drivers, or other persons whatsoever, receiving pay, or hire, in the servipe of the Artillery, or Corps of Engincers of the United States, are suliject to be tried by Courts-Martial, in like manner with the officers and soldiers of the other troops in the service of the United States. The otheers and soldiers of any tronps, whether militin or others, hoiner mustered and in pay of the United States, are at aill times and in all places, when joined or acting in conjumetion with the regular forces of the United States, governed by these Rules and Articles of War, and are subject to be tried by Courts-Martial, in likemanner with the officers and soldiers in the regular forces, save only that such Courts- Martial are composed entirely of militia olticers. No person is liable to be tried and punished by a General Conrt-Xartial for any offense which shall appenr to have been committed more than two years before the issuing of the order for such trial, unless the person, by reason of having absented himself, or some other manifest impediment, shall not have beeu amenable to justice within that period.
Can Courts-Martial and Civil Courts have concurrent jurisdiction over offenses committed by soldiers? Or, in other words, if a soldler is gruilty of an offensi which renders lim amenable for trial before the Civil Courts of the land. can he also be tricd for that offense (if its specification shonld establish a violation of the Rules and Articles of War) by a CourtMartial? By the Constitution of the Lnited States Congress is authorized "To make rules for the gorermment and regnlation of the land and naval forces:" amd Congress, pursuant to this authority, las e'stablished Rales and Articles for the government of the armies of the United States. These liules are an alditional code, to which every citizen who becomes a soldier subjects himself for the preservation of good order and military dicipline. The soldier. Iowever, is still only a citizen of the United States. He las not, by assmming the military character become, as is the case iu wery many European countrics. is member of any fully privileged body who may
claim trial for all offenses by Courts-Martial. He is still amenable to the ordinary Common Law Courts for any offenses against the persons or property of any citizen of any of the Cnited States, such as is puishable by the known laws of the land. An examination of the Rules and Articles of War will show that the offenses therein described, and against which punishment is denounced, are purely military. 'They are crimes which impair the efficiency of the military body, and even in eases in which they wonkl be recognized as offenses by the ordinary Common Law Courts, they conk not be considered the sume of fenses. Take,for instance, Article 21, whieln inflicts the pnoishment of teath, or other punishment, according to the nature of his offense, upon any afficer or soldier who shall strike his Superior Ofticer. Here is an offense punishable under the known laws of the land as an assault and battery, and, as such, il could be tried by the Common Law Courts. But such trial would not prevent a Court-Martial from afterwards taking cognizance of it under Article 21 ; for the of fense before the Common Law Court would be striking an equal, while before the Military Court it would have essentially changed its character. Again, suppose an officer had been guilty of stealing, he might be prosecuted before the Common Law Court for the felony, and afterwards charged with conduct unbecoming an officer and a gentleman, and dismiss. ed the service. It can hardly be contended that the offenses in cither of the cases cited would be the sume before the different Courts : and if not, the Article which forbids a trial a second time for the same offense, could not be pleaded iu bar of trial. Recognizing, then, the principle that the soldier, as a citizen, is subject to the Common Law Courts for offenses committed against the well-being of the State, it must also be recollected that he is subject to trial by a Court-Martial for any violation of the Rules and Articles of War. In the case of "Eels, plaintiff in "rror, x. the P'eople of the State of Illinois, " it was urged that the Act of the State of Illinois under which Eels was tried was void, as it would subject the delinquent to a double punishment for the same offense, the crime with which he was charged being actionable under a law of the United states. The Supreme Court decided that, admitting the plaintiff inerror to be liable to an action underthe Art of Congress, it did not follow he wonld be twice munished for the same offense, and gare the follow ing detinition of that term :

An offense in its legal signification means the transgression of a law. A man may be eompelled to make reparation in damages to the injured party and be liable also to pumishment for a breach of the public peace in consequence of the same act, and may be said, in common parlance, to be twice pumished for the same offense. Every citizen of the United States is also a citizen of a State or Territory. He may be said to owe allegiance to two Sovereigns and may be liahle to punishment for an infraction of the laws of cither. The same act may lee an offense or transerescion of the laws of both. Thus an assault upon the Marshal of the United States and hindering him in the execution of legal process is a higln offense aquinsi the United States, for which the perpetrator is lialble to punishment ; and the same act may also be atgross breach of the pare of the State, a riot, assault, or a murder, and subject the same person to a pumishment under the State laws for a misdemeanor or felony. That either or both may, if they see fit,
punish such an offender cannot be doubted. Yet it eanmot be truly averred that the offenter has been twice punished for the same offense, but only that by one aet he has fommitted two olfenses, for eath of which le is justly punishable. IVe could not plead the pumishment by one in bar to a conviction by the other.

JUSTAUCORPS.-An ancient tight-fitting coat, having a military appearance and constructed of rords. A simple primitive jrototype of mail-armor.

JUSTIFIABLE HOMICIDE.-The killing of a human creature withont incurring legal guilt, as where a man is duly sentenced to be hanged; where ont, in self-clefense, necessarily kills another to ureserve lis own life, etc.

JUTE.-The jute of commerce is a tiber jroduced from two species of tiliacte, the corchomis olitorius and comehorus capsularis, two plants, alike in qualities, thongh slightly different in appearance, and sown indiseriminately: the first having round seed-pods and reddish stalk, the latter long sced-pods and loright green stalk. From the fiber, which is the cheapest known are produced gunnies, gunny-cloth and eordage, and from the finer qnalities, earpets, shirting, coat-linings, etc. are made. It is extensively need for mixing with silk, cotton, and woolen fabrics, and also in paper-making, while the leaves are eaten in many places as food. The first mention of the word jute is in 1796, in the manuscript conmmereial index of the C'ourt of Directors of the East India ('ompany. It is the Bengali name used by the natives of Cuttack and Balasore, where the first European manufactories were established in the middle of the last century. In 1829 the total cxport from ('alcutta was 20 tons, value $£ 60$. In 1833 it had inereased sixteen fold, and ahout 1864-65 the increased demand calsed jute cultivation to extend to other districts, the exportation in 1872-*3 reaching the enormous amount of 300,000 tons, value $£ 3,500,000$. England, Bombay, and America originally divided the exports of jute, and up to the time of the civilwar North America took the largest share of the gunnies. Jute and gunnies are now exported from Bengal largely to France, Anstralia, and other parts of the world. Jute grown in England is not remunerative. It has been suecessfully grown in small quantities in America, however Gunnies are classed as Nos. 1, 2, and 3. No. 1, thick and close woven, is used for sugar, fine grains such as linseed or rape-seed. and similar products; No. 2 , also close woven, but thinner, for rice and all the laser grains; No. 3, very thick, coarse, and open, is principally suited for the outcr covering of double bags. The manufacture of gunny with primitive looms is a common form of convict labor in Bengal. Near the llimalayas, in north-eastern Bengal, the nalives wear a fime cloth of their own manufactmre, made of jute, or of jnte and cotton. Increased demand has lately induced jute production in Burmah, laly, Queensland, and Ameriea, ete; and a European Company has been started to enltivate jute in British Burmah on a large seale. The manufacture, again, is largely carried on in Great Britain, and is the elief industry of Dundee and Belfast. In Bengal jute ralurd at abont a million sterling is annually manufactured, mostly for local consumption, the hulk being turned ont by the English mills. of which there are several near Calcutta, cmploying thousands of hamds, the Gauripore and Barnagore mills being the principal.

JUZAIL. A very beavy rifle used by the Afghans.

K

KABBADE.-A military garment of the Moldrn It was also frequently worn by both the Romans and Grecks. It was generally anale of wool, withont Gauls. See saqum,

derived from that of (hosar, bermithed hy Dincletian and enrk: much of it however, consists of oxintize to be used by the governiner Jrince of Dalmatia, Croatia, and the line of the Damber, who wats Iledit Presimintive to the Jmperial 'Thronce. The f(rm was employed by tho German Emperors of tha Minlla. Ages, and later by the Jomperors of Austriat. In 1871 it was assumed hy Willian l., of Prussia, on his being crowned Emperor of (armany
KAJAWAHS.- An lndiun term, larme pmaniors, plated across a camel's loack, in which campkellles, pots, cete, are rarriod on the march. "f"he pramiers are large enosurh to curry disabled mon with much case mol romfort.

KAKTOWDA.- A term appled in the lasi Indies to the fine mold used in making butts for urclacry pracilec.
KALAI, - -1 Turkivh fortresa. The 1 erm is rallerer partienlarly applied to sioccales or very similar structures.

KALMUCKS.-The Falmucks, or, as they eall themsclves, the lerbern-Cirat (the four relatives), andat. so designated by the mame of blentes and khatimik (apostates), are the most mumerons and colehrated of the Monsol Nations. They are divided into four tribes. the tirst of which, the h7wsiots (warriors) number nearly 60,000 familis.s, and inhahit the country romud the koko-nur, which they consider the native country uf the race. One portion of this trile migrated to the banks of the Irtischand became suhserquentIV incorporated with the serond tribu, the lozimears; another portion migrated to the banks of the Folga, in the 1 th rentury, and is foumd at the pressent day in the goverment of Astrakhan. The serond tribe are the Dzingais, who give the name to a large tre ritory (O \%ungaria) in the west of Chinese 'Jartary: at the prescnt day they monber ahout 20,000 families. The third tribe are the Dirbete or Tchorow, who deserted Dzingraria, and finally, to the number of $15,00 \%$ fanilies, removed a few years ago on the plains of the Ili and the Don, where they are being ratudly incorporated with the I on Cossacks. The fourth great tribe of the Kitmorks are the Torgots, who, about 1660, separated from the Dzungars, and settled in the plains of the Volya whence they were ealled the Kiralmucks of the Jolgu; but finding the Russian rule too severe, the majority returued tol) 7ungaria.

No Monyol or Turkish race presints such characteristic traits as the Kialmucks; inderd they :nnswer exactly to the description given of them by Jornandes 13 centuries ago, whon, under the name of Hums, they devastated southern Europe. The Kalmuek is short in stature, with broad shoulders and a large liead; has small, black eves, alwas appearing to be half slut, and slanting downwards towards the nose, which is flat, with wide nostrils; the hair is blaek, coarse, and straight, and the complexion deeply swarthy. The lialmuck is considered as the original type of the Nongol and Nanchur races, and his ugliness is the index of the purity of his deseent. They are a nomad, predatory, and warlike race, and pass the greater part of their lives in the saddle. Their usual food is barley-flour soaked witlo water, and their drink is the "koumiss" (made from fermenterd mare's milk). In 1899 Russia established a Kislmuck lrstitute for the training of interpreters and government officials for the kralmucks of Russia, ard she lias since been making great efforts to introducecivilization among them. Nost of the Fialmueks are Buddhists, but a few have adopted Mohammedanism or Christianity.
KALSA CUUTCHERRY.-The room of business, where matters pertaining to the Indian Army are transacted, and all matters of litigation on that branch of service are determined.

KAMPAK.- 1 kind of hatchet saber of the Middle Ages, without a hilt or cross-gnard. The lamelle is made quite straight, and it forms with the blade a Latin cross.

KAMPTULICON.-The name given to a kind of floor-cloth, which is said to be made of india rubber
insecol-nil mud cork "Therork is reducen tox rerembling very line suwfust, and kneadod up with the real catontrowne, or with the artilicial kimimade of oxilizel linsocal-ail, the whole being krent very soft hy heat. The mass is then mate into sherets hy puscing threugh cylinder rollers heated witls stoman. The sheets, when enld, are rearly for use, when no ormatmontal surface is required; but very "xecellent dresigns may be paintod ujoon it, the satne as mon ordinary Huor-floth. K゙amptulierom, botwithstanding the rase with which it is matra. is more expensive than fooredoth mate by paiming hempen or limen fabrices; it has, however qualities whic•le rencler it very valuablo for sperial jurposess its olasticity to the tread nost only makes it arromble to walk on, bont it is noisoloss, and is conserpuently well adapeed for hospital pansugis abd other posilions in whi hatate is dowir. able; it is also impervious to damp, and thereby wioll suited to dannps stone lloors. It is also vors shitable for lloor-cloths in jow wher-houses, but is not so durablor as leather hides.

KANAUT.- 1 term used in India to desionato the wall of a ennvas tent. Sometimes writon fanat.

KANDGIAR.-A Turkish sworl very mucli like the yulaghans and llissas. It is generally single-edgedl, withont guaris. It is very often ornamenterl witl diamonds and other precious stones. Also written hinngier.

KAPIGI-BACHI.- The oflicer in celarge of the gates of the Sultan's I'alater. The name is also ajplied to a Turkish warrior. Tlee name Farauly is given to the Sultan's body-guards.

KARTTIKEYA.-The Ilindi Mars, or god of war, a being rejresented by the Purinic legends as sprung from Siva, after a most miraeulous fashion. The germ of Karttikeya having fallen into the Gancres, it was on the banks of this river, in a mendow of Sura grass, that the offspring of Siva arose; and as it lappened that he was seen bysix Nymphs, the hrittikis. (or Pleiades), the child assumed six faces, of recolve murture from each. Grown up, be fulfilled his mission in killing Taraka, the demon king, whose jower, accuired by penances and ansterities, threatened the very existence of the gods. IIe accomplished, besides, other heroic deeds in his battles with the giants, and becane the Commander-in-Chief of the divine armies. Inaving been brought up by the Krittikas, he is called h"nttikeya, or Shunznitura, the son of six mothers; and from the cireumstances adverted to, he bears also the names of Cringrya, the son of Gangâ ; Sarabhâ, reared in Sara grass; Shanmukha, the god with the six faces, etc. One of his common appellations is Fumara, youthful, since he is generallyrepresonted as a fine youth; and as he is riding on a peacock, he receives sonetintes an epithet like Sikhivihinu, or "the god whose vehicle is the peacoek."

KATAITYX. - I Greek casque, of the 8th century, B.c. It was made of leatlier and provided with a chin-strap, but liad no crest.

KATAN.- J Jajanese sword. Commouly called Cattan.

KATZENKOPF.-The Gcrman name for the zrheel. lock and mortar pistol of the eleventh centurs.

KAVASS, -In Turkey, an armed Constable. The term is also applied to a government servant or courier.

KECHERKLECHI.-Guards attached to the person of the King of Persia : they are armed with a musket of an extraordinary size and caliber. The Keclaerkleehi were enlisted and formed into a regular Corps about the middle of the 18 th century

KEENE REMINGTON MAGAZINE-GUN.--This gun is now made for the United States military cartridge. forty-five caliber, seventy grains of powder, but can be adapted to the use of other forms of military cartridge, such as the Spanish and Inssian. The magazine is located under the barrel, thereby cnabling it to carry the greatest jossible number of cartridges

Within a given weight and length of barrel. It is be- ing the finger from the trigger; in this last respeet lieved that this is, for many reasons, the best posi- differing from other magazine-ghans, which can only tion in which to earry the cartridges of a magazine- be cocked by removing the land from the trigger. gun.

All of the motions are direct and positive. The cartridges are held securely in position while passing from the magazine over the carrier to the chamber in the barrel. in which respect it has a deeided advantage over other magazine-arms. The cartridge does not pass on to the carrier until the gun is opened for the purpose of loading, so that there is no danger of a cartridge being exploded in the carrier in case a defective cartridge is fired in the gun.

The parts are all large and strong, and can be readily removed and replaced for the purpose of cleaning or inspection. The magazine is so arranged that it can be charged while the breech is closed, thus avoiding the entrance of dirt into the working parts of the gun. The gun may be held either barrel up or reversed for this purpose. The drawing exhibits the parts with the nomenclature.

To charge the magazine.-IIold the arm in the left

The arm is always left at half-rock, and the brecch cartridge between the thomb and the forefinger of lorked so that it camot be jarred open and the cart. right hand, and press it forward, mallet tirst, into the rifgelost ont: From the halferock it can he lorought magazine with the end of the thmmb, which may he to the fult-eock readily and quickly while the arm held sideways for that purpose. The magazine may is being carried to the shoulder, and without remox- be eharged with the breech eitheropenor closed, aud
with the cut-off lever in its forward or hack ward position; lut it is more convenient to do so with the: hreech clessed and the entooll lever hack.

To lowd from the magarine, -First. If the arm hat lowe fired or the hammer is down, mine and and aw back the brepelh-bolt quickly and with sublein nt force to bring it elen buck, thereby rasing and lowking the (arrier and bringing ap a aratridge. Showe the bolt forward and lock it ; the hammer will remain at half.
umder the barrel, and is operated by a lever, the tarkward and forwarel moverient of wheld eorks the hammer, "pers the lirerelh, theows ont the empty shell, ane brings a new eartridge intes place, reatly for discharge. The Irawing shews the action.

There following maty he noted as the atvantager uf this arm:-It has all the reoplirements rectuisite to a firsterlass magazinc-gun. It is of simple construction, and has fewer parts than any other magazine-

1, receiver;2, bottom tang ; 3, leves; 4, brech-bloch; 5, top cover; 6, ejector; 7 , carrier-block; 8, botom plate; 10, bammer; 11, main spring: 13, side-loating spring cover, as meen from the back: 14, trigger: 15, carrier-block ciamp: 16, carrier-block spring; 1%, brech-block pian; 18, carrier-block screw.
rock. If it is desired to fire, the hammer may be brouglt to full-eock while the arm is being lifted to the shoulder. the ferefinger remaining on the trigger. seconcl. If the arm has been closed and left at halfcock, lower the hammer and then profeed is before. After the eartridge has been transfered from the magazine to the ehamber, it should either be fired or removed from the gun before another cartridge is passed through the carriar.

To use the arman a single loader, with the magazine in reserve, push the coutooti lever forward. 'Jlhis cuts off the passage of the cartridge from the magazine. The arm may then be used as a single loaker. This gun is se male as to bee left at halferock after loading: but if it is preferred to latee it left at fullcoek, it is only necessary to remove the hammer Hy, No. 37. whicls is let into the tumbler to carry the trigger orer the full-coek notrh. See Magrzine-gun.

KEEP.-In medieval fortification, a keep was the central and principal tower or buideding of a castle, and that to which the garrison retiret, as a last resort, when the outer ramparts had fallen. A fine specinea of the aneient keep is still extant amid the ruins of the Rochester castle. The keep was similar to what the elassical ancients called the citable inner fort. See Custle, Fortificationatud Sufity Redoubt.
KEIR-METAL, -An allen patented in Englame which differs from sepror-metel mainly in having un tin. This alloy consists of enpuer 100 , zine 55 , iron 10.
KELT,-A very early war-axe. It seems to have been spead in every direction, and to have belonged to no eountry in particular. It was also ealled folt.

KENNEDY RIFLE.- A novel ritle developed and introduced by the Whiney drms Company: It is a repeating or magazine-rille, with the magazine placed
ritle operated by a lever. It is strong. The parts are of such size and form as not to be liable to break or get out of order. It is mate of the lecst material. wronght iron or steel, as is most suitable for eaeli part. It is very easily manipulated, amel can readily be understood ly any person who is at all familiar with fire-irms. It is safe, accidents from premature discllarge being impossible. The resistance to the discharge is in direct line with the bore of the barrel. The firing pin camnot reach the head of the cartridge until the breech is fully closed-consequently. the piece can only be fired when the breech is loeked. The curtringe ussed is the 4ir-caliber conter-fire. ['nited Stutes Government standerd, contuining $\bar{i} 0$ grains "f poorder ant 400 grainsof lead. When a lighter eharge is desired, the [nited states carbine earlridge-the same length as the above-but loaded with only 5 m grains of poweler, may loe used. The magazine is chargel through the side of the receiver when the breeeh is closed, and the rifle can be used as a single loader, the clarged magazine being held in reserve.
The arm is nade in three styles:-The muskit weighs $\}$ lbs. 4 oz . The barrel is 33 ineh. It carries when loaded, 11 eartridges. The carbine recighs o $1 \mathrm{bs} .80 \%$. The barrel is 22 inch. It earries when loaded, $\%$ cartridges. The sporting rifte weighs 910 10 tbs. The barrel is 24 ineh. It earries when loaded. 9 eartridges. Sue: lhuertix and Whitney liftle.
KENT- BUGLE. - The key-bugle invented by Logier early in this century, and named after the Duke of Kent, the father of Queen Vietoria. It has six keys. and is the pretecessor of the grat tribe of cormets. It will traverse elromatically a compass of more than two oetaves, berinniug from B flat beneath the stave uj to the C above. The bugle with pistons or with evimders has a lower compass than the preceding.

KENTLEDGE.-Old east-iron articles which have become unserviceable, snchas condemned guns, shot and sliell, ete.

KERANA. - A long trimpet, similar in shape and size to the speaking-trumpet. The Persians use it whenever they wish to make any extraordinary noise, and they frequently blow it with hatboys, kettledrums, and other insirmments, at retreat or sunset, and two hours after mid-night.

KERN.- I name ipplied formerly to lrish and Gaelic infantry soldiers. The men in those days were armed with a sword and :i dart or javelin, which was tied to a small cord. so that after they had thrown it at the cnemy they could instantly recover it, and use it in any way they thonght proper. The javelin was called stene which is also the Trish for a knife.
KET'S REBELLION.- An nutbreak Which took place in England, in 1549, mader the leadership of William Ket, at tanner, living in Wymondham, Norfolk. IIe is said to have had 20,000 followers ; but the rising was suppressed by the Earl of Warwick, after an engagement in whien more than 2,000 of Insurgents werekilled. The leader, Ket, with others, sulfered death on the gallows.

KETTLE-DRUM.-1. A drum formed by stretching vellum over the circular edge of a hemispherical yessel of brass or copper. This instrument, which gives forth a sharp ringing sound, is used by regiments of cavalry and horse-artillery in lieu of the ordinary cylindrical drum, which would, from its shape, be inconvenient on horseback

The small military drum is frerpently called by this name. They are still used in pairs, in the English \&nd Prussian armies, and elsewhere, slung on each side of the withers of a cavalry-horse. One

Arum is tuned to the keynote, and the other to the fifth of the key. The tuning is hy a hoop and serews. Kettle-drums are not used in the United States military sorvice, but are mueh used in orchestras sulsported upou a tripod, as shown in the drawing. 2. Kettle-drim, as applied to a social gathering, originated in the British army in India. It sonetimes happened in the comergencies of camp life that in an entertamment givem by officersand their wives there was a lack of refpuisite furniture, and the heads of ketiledrums wore made to serve in place of tables to hold thac clopsof tea. Soby metonymy lhe article used gave name to the necasion on whicell it was uscrl. The nams" "ame to mean an informal party, and specifically an afternoon party, in which chaborate dress and contly viands gave place to every-day attire for ladies and business suits for gentlemen, with very simple side-table refreshments. This kind of visit was introduced into Fingland at a time of general limancial lepression by some who wished to meet their fricuds socially, yet could not, as before, dress expensively and conteriain smmptuously.

KETTLE-DRUM CART.-A four-wheeled carriage drawn by four horses, which was used rxclusively by the British Artillery as a pagcint. The Ordnance flag was painted on the fore part, and the drummer. with two kettledrums, was seated, as in a chair of state, on the back part. This cart, which is finely engraved and richly gilt, has not been in the field since 1743 , when the King was present. It is at present kept in the Tower of London.

KETTLE-HAT.-- A cap of iron worn by lnights in tha: Middle Ages.

KEY.-1. A bolt used on artillery carriages to secure cap-squares and for analogous purposes. A lieychain, is attacled to the key to prevent it from being lost. 2. A common heraldie bearing in the insignia of sees and religious houses-particularly such as are under the patronage of St. Peter. Two keys in saltire are frequent, and keys are sometimes interlured or linked together at the burx-i.e..rings. Keys indorsed are placed side by side, the wards away from each other. In secular IIeraldry, keys sometimes denote office in the state. See \dot{h} t-point.

KEY-POINT.- A point the possession of which gives the control of that position or country. Great care must be taken to always clirect an assault upon the key-point of the position in order that the matr attack, when successful, may produce a lasting benefit. When about to commence the operations of a siege, the Gencral is called upon to decide the following: 1. Which part of the position is easjest to carry ; 2. W"hich part, carried sgives possession of the rest ; or, which part is the $h=y$-point; 3 . Which side of the part sclected is the best on which to make his approaches; and. 4. Which part selected would be the best, taking into consideration the establishment of his depots and lines of supply, and the probabilities of an altempt to relieve the besieged. 'These questions ale partially answered before the posting of the besieging army is completed, as it would be bad policy to have the ircops encamped too far from the ground where the main operations of the siege are to be conducted. See Print of letreck:

KEYSERLICKS. - A name commonly applied to the Austrian troops. The term was indeed common among the British soldiers, when they did duty with the Austrians, ind invarled France in 1794. See Imeprovialists

KHALASSIE. - An Indian sailor. This race of men come chiefly from the Chittagong distriet. Besides a sea life, k talassiestake service on sloore, and form a large portion of the mative establishment attached to arsenals in India, bordering on the seaside. During the march of a regiment in that comntry, they are employed in looking after the eamp equipage.

KHAN.-A title of Mongolian or Tartar Sovereigns and Lords. A Whanate is a principality. Ǩhagan means "Khan of Khans," but has seldom been applied. The word lihan is probably of the same origin as king.

KHEDIVE. - One of the titles of the Ruler of Egypt, a tributary prince of the Nublime Porte, who, since 1867, has exercised absolute power within his own dominions. The first Khedive was Ismaïl, Sovereign of Nubia, Soudan, Kordofan, and Darfour, son of Ibrahim Pasha (eldest son of Mohammed Ni Paslaa, founder of the dynasty), was born in 1830 , and succeeded his mele, Saild Pasha, in 1863, as the fourth Viceroy of Eigypt. ITe traveled through the Capitals of Furope, informing limself concerning their manners and customs, and these he introduced into his own dominions on lis return. He fell under the displeasure of the Sintan, through the jealons fears of the latter regarding European aseendeney in Egypt, but succepded in ohtaining from him important coneessions. By a tirman dated May 21 , 1866, he gained the right of the succession in the direct mascouline line in lis bramely ; by that of Junc 8 , $186{ }^{\circ}$, the title
 limman of Sept. 29 , 1872, he obtained the right to increase his army and navy at his pleasure, and to bor-
 right to conclable treatios of erommeree, with the full athonomy of the arministrat ion of the ('onntry, lít
 disposition of the Government in ligypl, sincre, in
 dispose Ismatil in favor of his uncle, Italin l'asha, the rightfal heir. 'Tlas proposition was mot reeeris.
 was linally indures to jssum a tirman deposing lsmail in favor of his som, Jrince, Mohammon 'lovik. "This was on dune 2f, and the liman amolishat that of 1873, and deprised the Kherlive of tho powar torenclula treatias with looreign Powers, atolla maintain a standing army. famaill Pashat acerordingly duittiner
 ther title of 'Tervilk 1.

KHODADAUD SIRCAR, The Fovirnment or linler blessed or belowd of Cotl: it was at tille asesmated by Tipuon Sahib, the Soveroign of the kingalom of Mysore, who full in defense of live (injital, Suringaphtam, when it was stomond, Inty 4 , 1 fors, by the Gritish forees umber Lieutenant leneral llaiarri.

KHOP. An varly Eerybian iron weapon, about of ineles long and remghly formed. from stont, in the shape of a sceax.

KHOUTTAR. - 1 llindon weapun, having a large hate like the Jtalian emplace, tixed on to a spmare handla, into whicla the land is slipuod, and thas prose terted as far as the wrist. Thare are K/boutcers in Which the blame is divided into two points, hat they are not commono. Sucla are callat serpent-tongumil.

KHYBER PASS. - The most practicalse of all openings. four in mumbur. through the Kliyber Dountains, and the only one hy which cannon ere envered hetwern the plan of Peshawar.on the right hank of the upper lndas, and the plain of delababail, in northern Afglanistan. It is 30 miles in length, leeinglaere and there nerely a marrow ravine betweren aboost jurpundienlar rockis of at lest 600 foet in height. It may le said to lave beon the key of the adjacent regions ineither direction from the days of Jlexamer the Great to the Afghan Wars of 18839-42, during which it was twice forend by a British army, in spitu of an olstinate defonse by the natives. The first fightiner in the Afghan 11 ar of 1878-79 wats in forcing an chtrance into this phas, over which, as was stipulaterl

- in the combit:ons of peace, the Anglo-lndian anthoritics are hemeeforth to have full control.

KIBEE.- 1 Haw prodnced in the bore of agna by a sloot striking against it.
KICKING-STRAP.- Astrap used indranght to control a violent horse. One or two shombl be attached to each horse battery. It is fastemed to the shafts, and passes over the proup of the horse thercby preventing him from kicking.

KIDNAPPERS. I name formerly applied to parlies who by improper means decoyed the umwary into the army.

KILLA. -The Imdian term for castle, fort, or fortress. The Governor or Commandant of a killa is known as Killether.

KILLESE. - I mame commonly given to the groove in a cross-bow.
KILMAINHAM HOSPITAL. -An institution near Dublin for the reception of wommed and pensjomed sobliers. It was originally founded by ling Charlos Il. and is conducted on similar principles to the sisfer lustitution, Chelsea Hospital. Kilmatuham IIospital is matintained by aunual larliamentary araut, and provites everything necessary for the comfort of upwards of 250 veterans and officers. Tlue General Commanding the Forces in Irelamp for the time brung is ex offecio the Master of Rilmainlamm Mospitil, avil has his residenee on the catatr.
KILN. - I name applied to varions kinds of fur. nares. ovens, or other levices mate of stone, lorick. or iron, or of the material itself to le operated upon. They may be divided into intermittent and continuous, or perpetual : or into furnace-kilns, oven-kilns,
amd what maty lee fermed monamel-kilns, surlo as are wsol in making charemal ; and alve a kinul which
 rortain kiads of lorick-kilns, whore tha raw-briak is a part of the kiln, and forms a structare which camnot hestricily cablert an overn. "J"he furnatroliolu, for borming lime-stones, may loe of an intermittont or of a proptusal kint. An inturmittont kiln is onu in whiclo the fire is lat to eto sht aftur the rlatere is bumad; a contimatos kiln is ond whicll is so ar-
 one ful in while the lire is krent lurninge, and the furnater kept at its raducing heat. An intermittent furnace-kiln may he mate of heoneor briek of an msal form, like an "grig stanting on cithar emt. 'l'hat form resembling an creg stmeling on its larerer corl is merhaps the most fommon, although somes lime-kilns are shapeel more like shrpp bowlo, withont mand fon1raction at the tops. W'herre wool is vors plentifal and clacap. and the lime is burned for aigricultaral
 (omanom bowl shaper is fwrlajos proforallas, leeramse it is rombly relargeol with both limestome and wored, and a mase of woot may le placed upon the tope in adelition to what is used in tha charera. ley whirls thorongh burning will be secosern. In a furnaco-kiln, a grating of iron is platered at the hottom, ror an areli of (1)non brickwork, and then the chatere is incentomsly pataced, first with fuch, and then with the loroken masses of limestons in such a manner as to allow tho Hame to pass through and thorourhly porform the wosk of buting. These kilns may be from 10 to :30 feet high, or even higher, lntermittent ovalkilns are used in burning Jorfland and other kinds of hederanliceroment, and they are 40 to so feet high, and anphoy coke or coal for finel. The charge is usinally composed of one part of coke or coal und two parts of raw cement. There ase, lowevor. several kinds of coment which do not repuire so prolomged high heat as Jortlaml cement, amb these might be burnell in a kind of kiln so constructed as not to require the fire to go ont when the burned contents are removed so freipuently. 'These kilns are evlindrical. 'xeret at the buttom, where they have the slape of an invertet cone, and at chamber below and a kind of spout labling into it from the bothom of the come, so that the charge when burned may be raked down from time to time with a suitable apparatus, and removed, while it may be renewed at the top. Cement-kjas should be lined with fire-brick. A prefrrable form of continnons kiln is one in whieh the kiln-cylinder is charged only with the material to be burned, and a current of flame or heated gas is introdncen] at the side mear the botiom. The heat thus passing up thromgla the material reduces it to the proper condition, without iddling any por* on of the ashes of the fuel to it.

KILT - A dress worn by men living in the Jlighlamols of Scotland, and by a few regiments in the Brit jsh Army. It consists of a loose pettiruat extrmoling from the waist to the knees. The kilt was worn ty Britisl chiefs as carly as the beginning of the Th century; it was made of skin, but striped kilts wore common, and it is said that, in all probability, the Scottish kilt was known amomer the Britisle earlior than is generally supposed. from the inhatsitants of North britain being on intimate terms with their neighbors, and likely to have assmmed the dress.
KING.-The person vested with supremb power in a State. According to feudal usages the Finur was the source from which all command, houor, and authority flowed; and he delegated to his followers the power by which they excreimel subordinate rule in eertain distriets. The kineralom was divided into separate Baronies, in each of which a Baron ruled. Lord both of the lants, which he leld under thre obligation of rendering military service to the king, and in many cuses also of tho jeople, who were thasals of thr soil, and his licue subjects. In modern time's the kingly power often represents only a limited
measure of sovereignty, varions constitutional cheeks being in operation in different countries to control the royal prerogative. The King may succeed to the throne by descent or inheritance, or he may be elected by the suffrages of some body of persons selected out of the nation, as was the case in Poland. Even when the kingly power is hereditary, some form is gone through on the accession of a new King to signify a recognition by the people of his right, and a claim that he should pledge himself to perform certain duties, accompanied by a religious ceremony, in which anointing with oil aud placing a crown on his head are included as acts. By the anointing ia certain sacedness is supposed to be thrown round the royal person, while the coronation symbolizes his supremacy. There is now no very cloarly marked distinction betweca a King and an Emperor. A Queen-regnant or Princess who has inherited the sovereign power in countries where fenale succession to the throne is recognized, possesses all the political rights of a king.

In England it is said that the King never dies, which means that he succeeds to the throne immediately on the death of his predecessor, withont the necessity of previous recognition on the part of the people. . He makes oath at his coronation to govern according to law, to cause justice to be administered, and to maintain the Protestant Church. IIe is the source from which all hereditary titles are derived, and he nominates Judges and other Ofticers of State, Officers of the Army and Navy, Governors of Colonies. Bishops, and Deans. He must concur in every legislative enactment, and sends Embassies, makes treaties, and even enters into wars, withont consulting Pardiament. The royal person is sacred. and the fing cannot be called to acconnt for any of his acts; but he can only act politically by his Ministers, who are not protected by the same irresponsibility. A further control on the royal prerogative is exercised by the continual necessity of applying to Parliament for supplies of money, which practically renders it necessary to obtain the sanction of that body to every important measure. The crown now in use as the emhlem of sovereignty differs considerably in form in different countries of modern Europe; but in all cases it is distinguished from the coronets of the nobility in being elosed above.
KING-AT-ARMS - KING-OF-ARMS.-The principal Heraklic Officer of any country. There are four Kincs-at-Arms in England, named respectively Garter, Claremeieux, Norroy, and Bath, hut the first three only are members of the College of Arms.

Garter Prineipal King-of-Arms was instituted by Henry Y., 141 A. D.. for the service of the Order of the Garter. II is duties include the regulation of the arms of peers and the linights of the Bath. In the eapacity of king-of-Arms of the Oreler of the Garter, he has apartments within the Castle of Windsor, and a mantle of blue satin, with the arms of St. George on the left sloulder, besides a badge and seepter. IIis official costume as Principal King-of-Irms of England is a surcoat of volvet, richly embroidered with the arms of the Sovereign, a crown, and a collar of ss. The insimnia of this oftice are borne by Garter impaled with his patcrnal arms, the latter on the clexter side of the slimbl. These are irsent. St. Georqe's cross, on a chibef gules a ducal coronet cncireled with atgarter, hetwom a lion of England on the rexter side and at flemede-lis on the sinister, all or.

Clarencieux and Norroy are Provincial KingesofArms, with jurisalictiom fo the Sonth and North of The'Trent respectivaly. Thay arrange aremistor, abone or conjointly with (Varter, the arme of afl lrolow the rank of the pecrace. 'The oflicial arms of Clarencieux are aresent St. Georere's cross, on a chief gules a lion of Emgland ducally (rowncil or. Those of Norroy are argent Si. (ieorge's eross on a chice por pale a\%ure and giles a lion of Enghand ducally crowned between afleur-de-lis on the dexter side, and a key,
wards in ehief, on the sinister, all or. Both Provincial Kings have a crown collar and sureoat. The rown is of silver gilt.

The crown of a King-of-Arms is of silver gilt, and consists of a circle inscribed with the words, Wiserire mei Deussecundum magram miscricordiam tuam, supporting 16 oak leaves, each alternate lenf higher than the rest. Within the crown is a cap of crimson satin turned up with ermine, and surmonnted by a tassel wrought of gold silk. Kings-of Arms were formerly entitled to wear their crowns on all occasions when the Sovereign worehis; now they assunse them only when peers put on their coronets. The installation of Kings-at-Arms anciently took place with great state, and always on a Sunday or Festivalday, the ceremony being performed by the king, the Earl Marshal, or some other person duly appointed by royal warrant.

Bath King-of-Arms, though not a member of the College, takes precedence next after Garter. Ilis office was reated in 1725 for the service of the Order of the Bath. On Jan. 14, 1726, he was constituted Gloucester King-of-Arms (an office originally created by Richard III., in whose reign it also became extinet), and principal IIerald of Wales. He was at the sametime empowered, either alone or jointly with Garter, to grant arms to persons residing within the prineipality.

The chief IIeraldic Otheer for Scotland is called Lyon king-of-Arms, who since the union las ranked next to Garter. His title is derived-from the lion rampant in the Scottish royal insiguia, and he holds his office immediately from the Sovereign, and not as the English King-at-Arms, from the Earl Marshal. Ilis official costune includes a crimson velvet robe embroidered with the royal arms, a triple row of gold chains round the neek with an oval gold medal, with the royal arms on one side and St. Andrew's cross on the other; and a baton of gold cnameled green, powderel with the barges of the Kingdom. Ilis crown is of the same form with the imperial crown of the Kinglom, but not set with stomes. Before the levolution he was erowned by the Sovereiga, or his Commissioner, on entry on office.
There is one ling-of-Arms in Ireland, the U]ster. In the 14 th century there existed a King-of-Arms called Ireland, but the office seems to lave become extinct, and Edward VI. ©reated Clater to supply the deficiency. IIis arms are argent, St. George's conss, upon a chief gules a lion between a harp and a portcullis, all or. The royal ordinance relative to the Order of St. Patrick, issucd May 17, 1833, declares that in all ceremonials and assomblies L'lster King-of-Arms shall hav" place immediately afterthe Lyon. See Herald.

KINK.- A twist in a rope or cord, caused by the tightness of the coil, and a relaxation of pressure in the direction of its lengtl. The best rope, however, rarely kinks. In uncoiling a new coil of rope, pass the end at the core to the opposite side and draw it ont; the turns of the rope will then run out without kinking.
KIRK RIFLE. - A brech-oading small-arm having a fined chamber elosed by a movable breech-block, which rotates about a borizontal axis at 90° to the axis of the barrel, lying below the axis of the harrel and in front-being moved from below hy a lever.

This piece is a modification of the well-known Spencer repeating rifle, containing in an unwirlely butt-stock, six magazine tubes instead of the single one usually carried. These are connected on a central spindle and revolved into place by land.

KISSELBACHES. - A name commonly applied to the soldiers of India.
KIT.-1. A cement for stufting canvas to place over the vents of carcasses to keep out the damp. 2. In military lamenage, the equipment in necessaries, such as shirts, hoots, brushes, ete., of a soldier, but nost applicable to his uniform, arms, or accouterinconts. J'ormerly, a high bounty was given, and
then severely cheroached upon, by making the re cruit bay for his kit. The fairer principle is now adopled of issuing a frer kit to rash recornit, with : smaller bounty. 'lowe soldiar lass still to replare mecessaries, worn ont or lost, at his own (experase, hat he obtains the articies at wholesate, and very low prieres. As these nocessarics are so chemply procured, it is held a very heavy military offense fo make away with them.
KITCHEN CART.- A 1ratciling-kitchan to accom pany troops in the firdi. These (firts are asmally supuliced at the rate of one to athatalion for 1000 somps. They shonded be prowided wibls losilers a la Papin with an interior ilse-place. Thesp constitute the body of the cart, the superior part of which is farmishod with phate to he nesed as athble. It the extremity of the cart there are two foot-hoards npon which the eooks may rest while working thering the march. l'apin's divester is casential to cook well and rapidly: The interior arrangement of the tircoplace which is suited to baking is very (connom ical in furd. Ser Traveling-fitelich.

KLICKET. - A small postern or gate in a palisade for the passigge of a sallying party. Also written h"lintet.

KNAPSACK. - I bag of canvas or skin, containing the soldior"s uocessarios and worn suspended by strijes between the shoulders. 'Those used in the

British army are ordinarily of batk painted canvas but some other mations, ats the Swiss, make them of thick goat-skin, dresiod with the hair on. "The knapsack affords by far the casicst way of carrying light personal lugegare during it march or walking tour.

KNEBELSPIESS. - A (iermin lance nsel about the begimning of the 9th century
KNIGHT BACHELOR. Thic lowest grade of knighthond, now only conferred in the United kindom. Originally, like all knighthood. a military distinction, kniglithond of this description came to be often hestowell on civilians, and in recent times it has frequently been eonferrel for wo weightier service than carrying a coneratulatory address to Court. It is generally confered by the Sowereign by a verbal declaration arconmpanied with the imposition of the sword, and without any patent or insimment. The person who is to receive the honorkneels down before the Sovereign, who touches himon the shoulder with a naked sword. stying, in French: "sois cheralier an nom de Dien" (Be a knight in (God's name) and then adds: "Rise, Sir A. B.". In exceptional cases, persons have日becu male kinights Bachelor by patent. The Lord Lieutenant of Ireland ocensionally exercises a right of conferring knighthood.

KNIGHT-ERRANT. - A waudering knight ; or any knight who traveled in seareh of adventures, for the purpose of exhibiting military skih, prowess and generosity. See línight.
KNiGHTS.-Originally Nen-at-Arms bound to the

Prrformaner of "criain clutios, among ethers to at tond their Sowercign or formal suparior on horseback in time of war. The institution of knighthood, as conferred ly investiture, and with corlain onth and ceremonies, arose gradually thronghome Burope as an adjune of the frudal system. Thes rharacter of the knight was at once miliary and religious. 'That defense and removery of the latly sapulcher, and the protection of pilgrims, wre the ohidects to which, in the carly times of the institntion, he especially devoted himself. The systrmef knight-serviee, introduced into Einghaml by William the Compueror, "mpowered the King, or ewen a Sinperior Lord who was a suljoect, to compel every holder of a certain extent of land, callod a henighe's Fre, to become a momber of the knightly order; his investiture being accounterl proof that he possessesed the refuisit. knightly arms, and was sufficiontly trained in their use. "The "Statute of Kuights," of the first year of bidward Il., reghlating the canwess that were to be hedd valid to excuse a man from knighty scrvice, shows that in the t4th eentury the knighty onlice was not always eagerly coveted; set its social dignity was very considerable, for ven Dukes, if mot admitted into the order, wre obitrend to yield precedence in eny royal pageant or pubilic curcmony. la time of war, cacli knirht was fomed to attend the king for 40 days, computed from the day when the enemy arrived in the comentry. Ifter the loug war between France und England, it brcame the praction for the sovereign to rerojec money compensations from subjects whe wern unwilling to receive knightheod, a system ont of which grew a serics of gricuances, leading eventually to the total abolition of lanight-service in the reign of Charles II.

Kinighthood, originaly lout a military distinction, came, in the leth contury, to be occasionally ronferred on civiliansas a reward for valuable services remderal to the Grown or community. The first civil knight in England was sir William Walworth, Lord Mayor of London, who won that distinction by alaying the reliel Wat Tyler in presence of the King. Since the abolition of the knirht-service knighthood has been conferred without any regrard to property, as a mark of the sovereign's estum, or a reward forservices of any kind. civil or military In recent times it has been bestowed at least asoften on scholars. lawyers, artists, or citizens, as on soldiers, and in many cases for no weightier service than carrying a congratulatory address to Courl. The ceremonies practiced in conferring knighthome have varied at different periods. In general, fasting and bathing were in carly times necessary preparatives. In the 11th century, the ereation of at knight was preceded by solemin confession, and it mannight vigil in the church, and followed ly the reception of the Eucharist. The new knight offered his sword on the altar, to signify his devotion to the Church, and determination to lead a holy life. The sword was redemed in a sum of moner, had a benediction pronounced over it, and was irirded on by the highest ecclesiastio present. The title was conierred by binding the sword and spurs on the (amdidate, after which a blow was dealt him on the check or shoulder. as the last affront which he was to receive unrequited. Ite thentook wh oath to protect the distressed, maintain right against might, and uever by word or deed to stain his character as a knight or a Cliristian. A knight might be degraded for the infringement of any part of his oath (an event of very rare occurence), in which case his purs ware chopped off with a hatchet, his sword broken, his escutcheon reversed. and some religious observances were added. during which cach piece of armor was takin off in succession, and cast from the recreant knight.
It has heell said that knighthood could originally be conferrell by any person of knightly condition, but if so, the right to bestow it was carly restricted
to persons of rank, and afterwards to the Sovereign or his representative, as the Commander of an Army. In England the Sovereign now bestows knlghthood by a verbal declaration, accompanied with a simple ceremony of imposition of the sword, and without any patent or written instrument. In some few instances, knighthood has been conferred by patent, when the persons knighted could not eonveniently come into the presence of royalty, as in the case of Gorernors of Colonies, or other persons oceupying prominent situations abroad. The Lord Lieutenant of Ireland also oceasionally, but rarely, exercises a dolegated power of conferring kuighthood. The monosyllable "Sir " isprefixed th the Clristian names of knights and baronets, and their wives had the legal desiguation of "Dame," which in common intercourse becomes "Lady." Persons who are simply kniglats without belonging to any order are called in Englaud, knights bachelors, a name probably corrupted from bres cheralier. Innighthood of this kind is מow only conferred in Great 13ritain. A degree of knighthood called bun nevet formerly existed in England and France, which was given on the field of battle in reward for the performance of some heroic ate For the mode in which that dignity was conferred, spe Barneret. No knight-Jumnerei has been created in the field since the time of Charles I., when that honor was bestowed on one Sir Joln Smith, for rescuing the royal standard from the hands of the rebels. George III. twice conferred the title on oceasion of a review, but the proceeding was considered irregular, and the rank of the knights not generally recognized. The form of hemet which the requirements of the later Heraldry lave appropriated to knights, entitling them to place it over their arms. is full-faced, of steel, decorated with hars, and with the visor a little opes. For the different orders of knighthood, see separate articles, under their appropriate headings, in this work.

KNIGHT-SERVICE.-A tenure of lands held by knights on eondition of performing military serviee. lt was abolished in the time of Chartes II. of England. See Inights.

KNIGHTS TEMPLAR.- A celebrated Religious and Military Order, founded at Jerusalem in the begin-
ning of the 121 h century, ly Hugues de Paganes quired from the Abbot and Camons of the Charch and Convert of the Temple, whence the Order obtained the name of the "Poor soldiers of the Temple of Solomon," afterward abbreviated into Tenıplars. The knights were bound by their rule to hear the holy office every day, or if prevented by their military duties, 10 say a certain number of paternosters instead: they were to abstain from flesh four days in the week, and from eggs and milk on Fridays. They might have three horses and an esquire each, but wete forbidden to huat or fowl. In the earlier period of their history, the Templars made a great show of poverty, contrasting much with their later condition. After the conquest of Jernsalem by the Saracens, they spread over Europe; their valor became everywhere celebrated; immense donations in money and land were slowered on them; and members of the most distinguished families thought themselves honored ly enrolment in the Order. In every country where they existed, they had their Governor, called the Master of the Temple or of the Militia of the Temple. The Templars had settlements in England from an carly period. The first was in London, on the site of Southampton Buildings, Holhorn; lout from 1185 their principal seat was in Fleet Street, still known as the Temple. The Round Chureh whieh bears their name was dedieated by Heraclius in 1185.

The Templars were at first all laymen and of noble birth. Pope Alexander IlI., however, in 1162, authorized the admission of spiritual persons not bound by previous vows, as Chaplains to the Order, who were not required to adopt the military vows. A third elass was afterward introduced, consisting of laymen not of noble birth, who entered as serving brothers, some of them being attendants on the knights, and others exercising trades in the houses or lands of the Order. Eventually, many persons became affiliated members without taking the vows, for the sake of the protection afforded them. As the power and prosperity of the Templars increased, sodid their luxury, arrogance, and other viees, which gave the Freneh Kings pretext for endeavoring to suppress them, and lay hold of their possessions. Aceusations, many

Regular Jewels-Knights Templar.
Geoffroy de St. Omer, and seven other French of which were absurd and incredible, were brought knights for the protection of the Holy Sepulcher, agrainst them by two members of their own body. and of l'igrims resorting thither. Baldivinll., King of Jerusalem, bestowed on this order theirfirst phace of residence; and an additional bnidding was acPlheir principal encmy was Philippe IV. of France, who indiced Pope Clement V. to arceede to a seheme by which the whole members of the Order were seiz.
ch and imprisoned, thejr landa confiseated, and many of them tried, conviretod, and execoled] for capital crimes. 'l"her Finglish 'Templars were arrested by eome mand of lidward 11., and a ('ommoil ladel in lomen in 130 !) having (onvicelal them of various erimes, most of whiel were probably imarinary, the King seizud thar possessions. In 1312 the whote Order throughoul Europe was suppressed by the ('onmeil ol Vicmar, and its property lowstowed ou the Kiniglts of St. John, to which latior Order their binglish possessions were formally transferred by a Sitatiste of
 white, whil ated cross of cight points of the Maltese form worn on the left shomber. "Their warery was "Beant siant;" and their banmer, which hore the same namo, was parted per foss sabla and argent. They also displayed abowe their lances a white bmmor charged with the Cross of the Order. 'Their baderes wree the A gunes thei, and a representation of two Knights momed on one horse-indicative of the oriminal poverty of the Order.

KNOTS.-]. Knots of dillerant kinds are borne ly dilferent families as heradic ladges, and are oceasionally introduced as charges in shiclds. The forms of somic of them appear to be suggested ly the indtial letter of the mame or title of the bearer. In the Wake and Ormonde knot it is not dillicult to trace a If and two Os. The Bourchier knot, as seen on the tomb of Archbishop Bourchier, at C'anterbiry, leears a resemblance to two 7 Ba, and the Stafford knot to two Ss. The Laey knot contains within it a rebus on the four letters of the name Lacy.
2. A twist or loop in a rope or cord, so made that the motion of one piece of the line over the other shall be stopped. 'The knot owes its power of passive resistance to the friction of the rope. The uses of linots are infinite; in the eommonest occasions of life one or two simple knots are indisprensable; in building. mining, and moving ordnance, knots of curious form are employed; while on shiphoard, they may be mombered by the dozen, and each is approprialed to a specific duty. The following are the more important knots cmployed in mechanical mancuvers:

Tino helf hitches- Pass the end of a rope round the standing part and bring it up threwgh the bight. This is a half hitch. Take it round again in the same manner for two half hitches.

A cloce hitck- Pass the end of a rope round a spar, over, and bringing it under and round belnind its stamding part, over the spar again and up through its own part. It may then, if necessary, be stopped or hitched to its own part; the only difference between two half hitches and a clove hiteh being that one is litched round its own standing part and the other is hitched round a spar or another rope.

Renud turn and tico lulf hitches-Take a round turn around the stakes or posts, and secure the cnd by two half intclesaround the standiner part. This is useful in securing the grays of the gin to the stakes.

A bovline knot-Take the end of a rope in your right hand and the standing part in your left; lay the end over the standing part, and with the left hand make a bight of the standing part over it; take the end under the lower standing part up over the cross, and down through the bight. This is very useful informing a temporary eye at the end of a rope.
s̆quare knot-Tike an overhand knot round a spar; take an end in cach hand and cross them on the same side of the standing part upon which they came up; pass one end round the other, and bring it up through the hight. This is. sometimes called a reftk not. If the ends are crsssed the wrong way, sailors call it a granny knot.
-1 timber hitch-Take the end of a rope round the spar, lead it under and over the standing part, and pass iwo or more round turns around its own part; pass the first turn over the end part instead of through the bight, as in a half hitch. Used in sccuring the ends of the tracc-ropes to the mancurering bolts.

A rolling litrh-l'ass the: rad of the rope ronnd a spar; take it round the sereond time, nerrer to the standing part; thon carry it across the standing part, over and romind the spar and ap through tho bight. A strap or a laib-lofork is fasterned to a rope: by this hitels. Used in shifting the fall from one embl of the windluss to the other.

A blurkirall hitik- loorm the bighat hy putting tho cond of a rope across and under the stamding part ; put the hook of a tackle through it, the rerntor of the bight resting against the back of the loook, and the rand jammod in the ligght of the hrook ly the standing part of the rope.

A catw-pat- Take a large bight in thac ropes, and spread it open, futting one hand at one: part of the bight and the otber at the other, and letting tho standing part and end come togrother; turn tha biglit ovar from you three timos, and a small lite will be formed in chels land ; bring the two small lites tom gether, and put the hook of a tackle through them both. This is very useful in applying a purclase or tackle to the fall of another.
it shet bend, (weaversknot)- lass the end of a rope up through the bight of another round both parts of the other, and under its own part.

Carrich bend-Form a bight in the rope and day the end across the standing burt; stick the bight of another sope up through the loop thas formed, and carry the end over the end of the first rope under the standing part, and througll the loop formed by its own bight; stop eacls cad to its own standingpart:

Fisherman's bend (anclior lnot)-Take two turns around the gun-sling or spar with the end of the rope; hilch the end around the standing part and through both lurns, and then pass the end over the second and under the first turn.

A sheep shank-Make two long bights in a ropo which shall overlay one another; take a half hitch over the end of cach bight with the standing part which is next to it.

A marlinspike hitch.-Lay the marlinspike upon the scizing stuff, and bring the end over the standing part so as to form a bight: lay this bight back over the standing part, putting the marlinspike down through the bight, under the standing part, and up through the bight again. Very useful in putting on lashings etc. Stopping is fastening two parts of a rope together, as for a round scizing, without a crossing or riding. Nippering is fastening them by taking turns crosswise between the parts to jam them, and sometimes with a round turn before each cross. They are called racking turns. Pass riders over these and fasten the end. This is a eonvenient way to secure a fall while it is being shifted on the windlass. A scred is applied by weaving a light strap through the different parts of a fall, bringing the two ends together, and serewing the whole up tight by incans of a stiek or bar passed through the bights.
strap, or sling, is formed by knotting or splicing iogether the ends of a short strand or rope. It is used for hooking tackles into.

Pointing-- Unlay the end of a rope and stop it; take out as many yarns as are necessary, and split each yarn in two, and take two parts of different yarns and twist them up taut into netlles; the rest of the yarns are combed down with a knife; lay half the nettles down on the seraped part, the rest back upon the ropes, and pass three turns of twine taut round the part where the nettles separate, and hitch the twine, which is called the warp; lay the nettles backward and forward as before, passing the warp, each time. The ends may be whipped and snaked with twine, or the nettles hitched over the warp and hauled tant. The upper seizing must be snaked. If the upper part is too weak for pointing. put in a picee of stick. This is an clahorate way of whipping ropes, and requires considerable practice.

Seizing a rope is connecting the two parts with smaller rope, or spun-yarn. Take a piece of spun-
yarn and double it; pass the bight under the two parts of the rope to be seized; put botheads through it and haul taut, using a level applied with the marlinspike hitch; separate the ends, pass them around the rope in opposite directions until enough turns are taken, hauling each turn taut, and seeing that they lay close and smooth. Cross the seizing by passing the ends in opposite directions between the ropes and around the seizing, and finish with a square knot.

A lashing is applied on the same principles. After sufficient turns have been taken, the lashing is frapped by taking the ends around the turns, hauling them close together, and making the lashing tighter, of course. To pass a shear lasking.-Middle the lashing and take a turn round both legs at the cross: pass one end up and the other down, around and over the cross, until half of the lashing is expended; then ride botll ends back again on their own parts and knot them in the middle; frap the first and riding turns together on each side with sennit. This will be useful in rigging shears for hoisting guns, when a gin is not available. Any two spars that will support the weight can be used.

The knots most frequently used and the manner of forming them are described under the appropriate headings.

KNOUT-KNUT.-A scourge composed of many thongs of skin, plaited, and interwoven with wire, which was formerly the favorite instrument of punishment in Russia for all classes and degreces of criminals. The offender was tied to two stakes, stripped, and received on the back the specified nmmber of lashes; 100 or 120 were equivalent to sentence of death, but in many cases the victim died muder the operation long before this nnmber was completed. If a culprit survived this punishment he was hanished for life to Siberia. The whipping was inflicted by a criminal, who preferred this office to exile to Siberia, and who was constantly kept in prison, except when his services were required. The nobility were legally exempt from the knout, but this privilege was not always respected. In earlier times the nose was slit, the ears were cut off, and the letter V for vor (rogue) was brauded on the forehead; but this ag. gravation was abolished by Alexander I. The knont was abolished by the Emperor Nicholas, who substituted the pleti, a kind of lash.
KODALLIE.-An Iudian term. A tool used by the natives of India in digging all kinds of earthrork. The face of the tool is shaped like a hoe, and has a short handle nearly parallel to the face. It is used in a kneeling or sitting position.
KONKRI.-A sword of the Middle Ages, without a hilt or crossguard. The handle is straight and forms with the blade a Latin cross.
KORAZIN.-A short hanberk or jacket of scales. It is frequently called Jazeran. The term is also applied to a large imbricated hauberk, covered with overlapping plates, somewhat like the small hauberk of the 8 th century.
KOT DUFFADAR. - A non-commissioned officer in the East Indian Native Cavalry, corresponding with a troop Sergeant Major. See Duffatar Major.
Koul. - A soldier belonging to a noble corps in Persia. The kouls constitute the third corps of the King's Household Troops. They are men of note and rank, and no person can arrive at any considerable post or sitnation in Persia who has not served among the Kouls. The Commander of the Kouls is known as the Fouler-Agasi, and is usually Governor of a considerable Province.
KRANKENTRAGER.-A special corpsorganized by the (ierman Army; its duty is to carry the sick and wounded. The men are mostly taken from the Landwehr, but some are students from hospitals and universities. The former are in uniform, and the kater in plain clothes; but all wear the red eross on their arm, and are under the protection of the Geneva Convention. They are men of two years service, intelligent, of good character, and have received some
the oretical instruction in surgery and medicine. The instruction imparted to these men is directed by Superior Officers, assisted by Surgeons. They are taught to give the first care to the wonnded; to carry them on stretchers and to form the stretchers, from any improvised material ; to transport the wounded to the ambulance wagons; to prepare the wagons for that purpose; and to perform all such duties as shall be required of them during a battle.
KREBS. -A complete suit of armor, combosed of imbricated plates.
KRIEGSSPIEL.-This German war game was contrived by a Prussian, Councillor Reiswitz, in order to follow with greater facility the campaigus of Napoleon I. IIis son, an artillery officer, found it, by reproducing the campaigns on a map, an easy method of studying the different movements of troops, and caused the game to be adopted in about 1824 by Feldmarschall von Multhing. The friegsspiel eventually became familiar with the Army and was finally introduced in the military schools as the best means of stndying strategy and tactics. This game was not only astudy, but a favorite pastime, of VonMoltke's, Bhimenthal's, Prince Frederick Charles, and of other German officers, who took a prominent part during the war of $18 \% 0-\% 1$. It is stated that they carefully studied for years, by means of this game, the ground on which they carried out their operations in France. The Friegsspiel was first introduced in England after the Franco-German war ($1870-71$) and is now frequently played in all the large garrison towns of this country. A club has been formed at Aldershott for that purpose. The necessary apparatus for playing the hriegsspiel is composed of maps carefully prepared on a scale of 6 or 8 inches to the mile: of wetal blocks, made to scale, as nearly as possible, representing all the different branches of the service, from regiments to skirmishers; and strings of beads, for cavairy reconnoitering. The number of persons taking part in the game consists of the officers commanding the two armies, of a judge or chief mopire, supported generally by two or three umpires. The umpires alone see the ground ocerpied by the two forces. Instructions are given as to their positions; the time of the year, the length of the days, the state of the roads, etc., are settled beforehand. The losses made on both sides are calculated by means of tables carefully prepared; they form a large volume, and were published, in 18.0 , by Colonel von Tratha. Other circumstances, such as troops sheltered by earthworks, artillery firing out of range, arc taken into consideration ; those that have not been laid down in the rules are decided by a throw of the dice. Thus the action gradually develops itself as each Army advances on the contested ground, till victory is declared for one side or the other. The principal utility of the game appears to be in the arrangements previous to and during the carly condnct of an action. When the troops get to close quarters, the element of chance enters so largely into the game that it destroys to a very great extent, the dependence that may be placed on the issue of the battle. The game, howevery, affords great practice in the drawing up of the order of march of columns previous to an action, and the development of the columns of march into formation for attack. In the hands of men having some military experience, this game becomes a certain means of acquiring and perfecting a Science which in time of peace camot be easily acquired. It raises puestions which are strategical problems of great interest. See Strategos.

KRIS.-Adagger or poniard, the universal weapon of the inhabitants of the Mabayan Archipelago. It is made of many different forms, short or long, straight or crooked. The hilt and seablard are often much ornamented. Men of all ranks wear this weapon; and those of high rank, when in full dress, sometimes carry three or four. InJava, women sometimes wear it. Also written Creese and Ĺrees.

KRNKA GUN. - The system of altered hreecelsloading muskets of the Russian service is the: invention of Sylvester Kroka, a regimental armorer of the Austrian army. Its chief features are simplicity and compactness. The drawing represents the breech system with the breech-block removel. The following are the principal parts, vis: $s \ell$, is that portion of

the breech-frame or reesiver into whirla the larral is serewed; r, is the slot or well in which the breechblock rests when the chamber is closerl; m is the hole into which is serewed the point of the lingerpin aroind which the breech-block rexolves; l s t, is the lug in rear of the breach-block throngh which the hinge-pin passes; c, is the groove by which the cartridge is inserted into the chamber; $r \& t$, is the lug which serves as a support for the breceln-block and a stop for the hammer. h; e. represents the extraetor in position; k, is a small eatch-pin actuated by a spring which presses into a small indent in the front face of the breach-block and holels the block in place with slight friction; $d g$, are brolirn lines, showing the position of the thumb-picee of the breach-block when chosed but not locked down by the hammer.

The lower portion of the hlock is semicircular in form, and has a groove, into which fits a raised band or rib, r. The object of this arrangemant is to inermase the strenglh of the parts to resist the force of the charge. The rear corner of this rib is rounded off tis prevent it from interfering with the inserlion of the cartridge; the firing-pin is pusherl back, when the block is opened by the obligue surface of the notch, and also in closing the block, by the chamfered corner of the receiver, \& t. The extractor is a lever of the first order, and is operated by opening the breech smartly, in which case the shell is thrown out clear from the receiver. The cartridge belongs to the cen-ter-tirestystem of Berdan. The shell is made of brass; the head is folded and strengthened with a re-en-foreing-eap. The caliber of the Russian altered arms is 60, or $0^{\prime \prime} .6$. See Smatlearms.

KRUPP GUN.-The fabrication of cannon is the matter of chief personal interest to Herr lirupp, who watches with the closest interest what governments in every part of the world are doing, and proposing to do, in relation to their armaments. Nearly every government, except England and the United States, has been a purchaser of Krupp guns, and there seems to be no cessation in the demand for them. At present ltaly and China are his best customers, and the 125 -ton guns for the Italian government which he has now in hand are the most prodigious pieces of ordnance which have ever heen made. Nrupp's preeminence' as a gun-maker is unquestionably due to his early perception of the fact that steel must supplant iron in the fabrication of ordnance, and to his possession of such unrivaled facilities for the mamufacture of steel in his own works. Jew ideas in the construction of ordnance I Ierr Krupp does not elainn to have developed, but he was one of the first to perceive that breech-londing cannon would eompletely take the place of muzzo-loaders. It was this change which definitely forced the abandonment of iron in the construction of cannon in Europe. Krupp satisfied himself that the wedge system of breech-closing was the best, and in spite of the conclusion of the French and English anthorities that the French in-
 shows no sign of giving up the syotem with whirh
 cruns are 3 3. calibers in bonoth-that is, over fon feret. The immer tuhe is covererl with sterl ringes to tha maz\%le, and the matrer jacket at the breeeh in whir-h the breechedoscre is placed is an comormous piese of sto. Nol. asinglo part of theso extraordinary gans conld be producod by any establishment in the Inited Sitates, for we lave no means in America of hammering or working such anormons masses of metal. "The largest raliber is 40 rontinueters, or somothing over 16 inches, and the boring of a tube of this size is an important operation. The erore, when the boring is combleted, is still a ponderons cylimer, which can itscle low hored amel used as a tube of it smaller gum. The cutting of the rifle grooves in a large gron is a very simple operation and not a protractodonr, as these grooves are cut simultancously, and the work is done by the machines with mathematical accuracy. Eivery grm is testrod on the grounds near the shops by being fired iour times, and the large guns are then sent to Neppen, in morth Germany, to be tested by the agents of the governments which purchase thrm--if surli tests be Clesirud. Krupp often eonducts experiments of his own at Meppen, and occasionally large numbers of foreign ollicers are invited to be present. The drawhack to sueh claborate experiments is the enormous expense which they entail. Considering that the butts are wholly artificial structures of sand and masonry, and that the largest camon are here dired at close ranges, it will be seen that great strengthamd security are required. The workman in charge is pointed ont as a person who has " fired more cannon" than any other man in the world. The trials at Meppen are all for the purpose of testing the range of the gun. those at the Works to test the strength of the gun. Near the firing-grounds at Essen is the Ordnance Museum, where are retained specimens of everything that Ilerr krupu has accomplished in the devclopment of artillery:

The principal feature in the Meppen programme of 1879) was the trial of Kirupp's 40-centimetor (15.75) inch) breech-loading gun, weighing about $\% 0$ tons 17 cwt., known commonly as the rlotongno. The trial was specially important for three reasons: 1 st. It ixthe first breech-loader whose power approaches that of the 100 and 80 -ton gruns made in Enctand: 2d. It is a steel gun; 3d. Its proportions are based on results oltained during the last few years.

All these questions are intercsting, and deserving of somuch attention that it would be difficult here to deal fairly with all. For the purpose in hand, however, it is not necessary to discuss the question of the respective metals of the guns, becanse it can casily he shown that there was nothing in these experiments that bears upon this point beyond the negative fact that the stecl guns in no respect exhibited any fault. We may safely say that the Woolwich guns would have done edually well, as far as the material is concerned, for the pressures in Krupp's guns were by no means excessive. The 71-ton gun, for example, was not subjected to as high a pressure as the English 80-ton gun has borne. A test which tries neither gun obvionsly furnishes us with no means of comparison, and hence the Meppen trials in no way furnish data for the discussion of the relative merits of wronght-iron and steel guns, but bear eutirely on the two other questions, naniely, that of breechloading and proportions-the former, as concerns ease in working, and the latter power, and good shooting.

The 11 -ton gun \boldsymbol{T} as mounted as for coast defense, on a traversing platform, and a carriage nearly of the Encrlish pattern in all respects. The brackets were made of wrought-iron, the gun being elevated by multiple gear. acting on elevating arcs, fixed on the gun. Beneath the carriare were two hrdranlic buffers. A modified form of Cunningham's chain
gear, was used for traversing the platform, which ran on trucks on three conceutric racers, the pivot being about six feet infront of the earriage when run up. 1 lifting eraue was attached to the platform, fixed on a sort of axle, with a comnter-lever with powerfal spring, which required consideruble foree to compriss it by bending down the crane, and which decreased the work of lifting the projuctiles lyy the same amount, thus dividing the labor of lifting the projectiles into two operations.

The gun was easily worked by a detachment of fifteen men. Teu rounds, with chilled projectiles were first tired; the timeoceupied ly the last five rounds was twenty-four minutes. The loreech piece moved easily. A good deal of oil was nsed on it. The breechloading certaiuly saved the men much labor, not only in the actually ramming home but also in bringing np the projectiles, since it was not necessary for them to cross of the racers or the Cunningham ehaiu. The charge was made up in four cartridges, each containing 110 pounds of prismatic powder. The least satisfactory part of the service of the gun considering everything, was the diffienlty experienced in the irnition of the charge and in remedying miss-fires. The vent was in the axis of the piece, aud a disk of ealico was torn off the bottom of the cartridge last entered, to expose tlie jowder to the flash of the tube. The latter was of a bad pattern, short and weak. No stress is to be laid on this, as the remedy is obvious. A primer or a stronger tube would rectify this fanlt. A more important question is the shooting of the gun as regards power and aceuracy. The clilled projectiles had 0.0 r8 in.windage, which is about the same as that in Woolwieh projeetiles, uamely, 0.08 inch over a copper rim. The commou shell subsequently fired, however. had the unpractical windage of about 0.01 inch over an iron body. The target aíagrams show a remarkable degree of acenracy, ehiefly iu the vertical direction, which argues well for the regularity of the charge, which surely must be attributed to the prismatie powder employed. It stands to reason that a eharge composed of a fixed number of prisms of uniform size and density gives promise of greater uniformity being attainable than when pebbles are employed; and there seems no reason to doubt that, whatever difficulties were at first experienced, this has been achieved. Surely if two attempts are made to obtain regularity in powder-one by employing prisms each uniform in size and shape, and if possible pressed uniformly, and another by means of pebbles of an aceidental shape from uniformly pressed powder-cakes-the former, though it may be diftienlt, offers promise of ultimate success in the higher degree. As to the wiudage, stress can hardly be laid on the grat reduction in the case of the common shell; the two kinds of projectiles made pretty nearly equally good practice.

Lastly, as to the proportions of the bore andrhamber. The bort of the 71-ton grun is only 20 inches shorter than that of the 100 -ton gun and 55 inches longer than that of the 80-ton gun. The chamber in length is 60.6 inches, that of the 100 -ion gin heing 59.7 and of the 80-ton gum 59.6. The ealiber of the filton gun is 15.75 , against 16 in the 80 and 17.72 in the 100 -ton grun. Consequently, the bore of the 71 -t on gun is 21.8 calibers long, agaimst 18 in the 80 ant 20.5 in the 100 ton gin. The diameter of the chamber of the 71-ton gum is 17.32 inches, that of the 80 aud 100-ton guns being 18.0 and 19.7 inches, respectively-that is to say it is 1.5 inches greater than that of bore, as compared with 2.0 inclus increase in the 80 and 1.98 inches in the 100 -ton gun. Speakiug generally, then, the bore of Krupp's grun is relatively rather longer and the chamber less enlarged than in the 100 -ton gim, while in the 80 -ton gun the bore is actually the shortest and the enlargement of the chamber actually the greatest of the three. On these proportions manly depends the power of the gums. To be able to nake a comparison between them, discrimination is necessary. It would not be right to take cequal or
proportionate charges as the basis of the comparison, beeause the principle on which a long gun is advocated is that any greater result can thus be got from a gun with a givenstrain on it , but at the expense of some waste of powder. It is clear, then, that looking to the endurance of the gun rather than the expenditure of powder, the basis of comparison should be propurtionate pressures. It would scareely be right to say equal pressures, because the thicker gun can fairly be expected to bear a greater strain than the thinuer one. Now, the best results obtain. ed from these three guns are as follows: The 80-ton gun at Woolwiels, with a proof-charge of 445 pounds, giving a pressure of 21.5 tons, discharged a projec. tile weighing 1,728 pounds with a velocity of 1,657 feet per second-having 32,938 foot-tons stored up work, or 658.37 foot-tons per incls cireumferenceequivalent to a penetration of a 32.34 inches plate of wroughtiron. The 71 -ton gun at Meppen is reported on one occasion, with a charge of 485.1 pounds, giving a pressure on the gun of 20.92 tons, to have discharged a projectile weigling 1,715 pounds with a velocity of 1,703 feet per second-having therefore 34.489 foot-tons stored-up work, or 697.02 foot-tons per incls circumference-equivalent to the penetration of a plate 33.5 inches tbick. During the public trials in Angust the 71-ton gun was not tested so severely, aud it is therefore right to elass the above in the same category as the Woolwiels proof round above metioned. In August the average weight of the chilled projectiles was $1,712.6$ pounds. The firing charge was 452 poumds, the initial velocity was 1,648 feet, the stored-up work was 32,241 foot-ions, the work per inclı circumference 651.59 foot-tons, equivalant to a penetratian of 32.12 inelies. The pressure on the bore was 19.85 tons. The highest result hitherto obtained with the 100 -ton gun, of 17.72 inches ealiber, has recently been furuished by Captain Noble; it is as follows: Charge, 573 pounds: projectile, 2,000 pounds, about; velocity, 1,725.5 leet; stored-up work, ibout, 41,300 foot-tons, or 742 foot-tons per inch circumference, which is equivaJent to a penetration of nearly 35 inches of armor. The pressure on the bore was about , 18.0 tons. It is quite clear, from the above, that the 71 ton gun is a much better weapon than the 80 -ton gun, inasmueh as it beats it in every respect. It fires a beavier projectile with a higher velocity, which bas therefore more energy or stored-up work and an inell and a half more peuetration, and all this is done with less pressure on the bore of the gun. The reason is that it is a better proportioned gun, its main advantage being its greater leugth. The 100 -ton gin compares much more favorably with Krupp's gun, but, nevertheless, would do so better if its leugth were greater. The main difference in the guns depends on the diference in length; and the question naturally arises with those investigating, how is it that the English Government is now completing and issuing 80 ton guns só inferior in power to Krupp's 「1-ton gun, which las already achieved the results we speak of. The answer is, that the guns were designed for the "Tuflexible," and that, being muzzle-loaders, the vessel had to be made with portions of the deck corresponding to the length of the gun, to make provision for its loading. All this was determined years ago. Since that time incestigations have shown the desirability of gratly increasing the leugth; but the gun being a muzale-louder, it is impossible to do so. For the ship in question, a muzzle-loader is limited as to its length by inflexible conditions; and all that can be done is, by enlarging the chamber, to utilize to the fullest extcut the disproportionate thickness of metal. Apart from the trying instance, however, it is elear that every increase in length is in favor of the breechloader, beanse the labor and inconvenience of mu\% \%le-loading increase in an incrasing ratio; and, in the case of turret guns, and probably in some guns in cascmates and cupolas, muzzle-louding becomes eventually almost impossible.

Very remarkahle results were ohtained with suatlr. guns. An rxeedent 51 ton li-inch gun was tried, the behavior of which closely resemblad that of the Th-ton gun, including the method of working, wecasional miss-fires, and the like. An 11 -inelt (2x-erentimeter) howitzer, a 4.13 -inch (10.5 centimetor) sicere gun, and a 3.78 -inch ($9.6-$ centimuldr) wre tire which did well but need not be here notieed inderatil.
 sorvir\% carriage with oil huiler pave good results; also an 8.27 -inch (2l-centimeter) howitare, ant a 5.8) inch (15 ecntimeter) mortar, were fired at dummy guns in a battery with good effect, notwithstanding that some of the fuses failed to act. Two remarkably "haracteristic: guns, 3.4 -inch (8.7 -econtimeter), wert fired, fixed on pirots, one with little, and the other with absohutely no provision for recoil. With these is naturally comencted another non-recoil arrance ment of kruppls, now well known, consisting of fill inch (is centimeter) , man, mazale pivoling, the mu\%\%le heing ball-shaped and working in a socket in un armor-plate. These three guns possess peraliarities deserving of attention.

Onc piece, 3.4 inches in catiber, was 14 feet $3 \frac{1}{1}$ inches long. lis chamber was entarged to an extrat ordinary extent, being 5.9 inches in dimucter. The cartridge was a long bars, yery lonse on the powder. male so as to admit of being adjusted in the chamberby hand. The charge was 7.7 pounds. Two kinds of projectiles were fired-long ones, 12.5 inches in length, weighing 22 pounds, and shorter ones 9.5 inches in length, weighing 15 pounds. The initial velocities of these projectiles were 1,829 and 2.098 fect respectively. The maximmm pressure was 11.6 toms. During this extraordinary performance the gun was held rigidly, being fixed on a strong vertieal sted pivot, and son steady was it that small coms placed on its barre] were not shaken off on fi ing except near the mumale. Eventually a Dutch stheer displayed sulleient confidence to sit astride on the gun while it was fired, with the projecelite shooting between his legs at the rate of alont $\$.000$ feet per second. The second 3.4 gun somewhat resembled the above, but had provision for slight recoil, the pivot moving on its lower cend as a center, the gen forcing the upper end back against a piston or buffer. The muz$\%$ le pivoting 6.1 gan was worked casily, the armor absorbing the shock of recoil, and suffering in mo way apparently beyond the structure appearing to spring a little in the earth. A man laid it while riting on a saddle placed on the chase of the piece; he employed sights directed throngh a small hole at a convenient height above the gun, and he fired the gun himself by pulling the lanyard while still sitting on the piece. This system bas been tried by one Goverment experiment, but has not hitherto found favor. It certainly appears as if a heavy gun so fixed to a shicld, and impressing its work on it every round, must soon destroy the structure; but apparently it would take a very long time for a medinm gun to do so, and it is possible that a gun so ('ompletely protected and able to fire with such great rapidity might perform admirable servier before it failed in this way, so that, under some couditions, such a gun might be very valuable.

The ball portion of the muzzle can be readily unscrewed, and so can the disk containing the socket into which it fits in the plate. This operation can be safely performed, a shatter being rim ap which completely covers the openting from the enemy. It still appears possible. however. that a hlow from a very heavy shot might distort and jam the serewed portion of the plate. Against ordimary siege guns such a gun working with all the speed the to nonrecoil, and with such an extraordinary measure of sccurity, might effect much. Two trials against armor took place, one to show the comparative effects of firing against chilled and soft hammered iron structures. As both were mannfactured by lifer lirupp, the trial camot be regarded as a represent-
utive one of the system lice opposes, and it womlet be a mistake to discuss it here. The other wats the fir-
 of 145.3 pombls and a stee projection weighing 3 -18. pounds, at atarget which consisted of a front la-inch wromghtiron phate, a wowl layer of 2 inclas, and at hack wrought-irom phate of \& inches. The plates wore rolled at Jillingen. "Tha" shot had a striking velocity of 1,8 off fect. which would give 8,4 did forttons chergy or storet-mp work, a penctrating figure of 288.5 foot-tous per inch circumference, and it penctation of 19.82 inchacs of irom. The projertile, prowerver of cach of tworounds fired pass.d completoly through the entire 20 inclaw of iron and grazed about 2,000 meters farther upthe range. The plates wore indiflerently rollod, and contained semene phosphorns, it is said; but the prometration of the shot was. after making all allowances, (xaratordinary. They were scarcely deformet in apparance when recoverea. The sterl was weellent. 'They had geval points, the heads being struck with a radias of two diameters.
To sum uj, the features.whiche chicfly conerrn us in these extraordinary trials are-1st. The suceress of the breech-loaling system. 2t. The great resnlts obtained as to power and acruracy of fire. Bd. The mukale-pivoting and non-reooil systems. Although these have berin noticed in the short relation already given, one or two words may le useful to lead a disenssion. First, it must not lixe supposed that equally good results lave not becu ltained as to power when guns have been made in accordance with the conditions arrived at by recent experiment, as may be seen from the following examples: Two yearis ago the new type Elswick (6iucll gum was fired with a charge of 33 pounds and a projectile of 82 pounds. the initial velocity being 1,902 feet, and the total energy 2,05 foot-tons: the same grun, with a charge of 37.5 pounds, discharged a projectile of 82 pounds weight with a velocity of 2,031 feet, having 2.96 foot-tons total caergy. With this may naturally be compared Krupp's 5.9 -inch gun, fired at Meppen, with 33.1 pounds charge, and with projectiles weigl1ing 88.2 and 112.5 polmds, giving velocities of $1,835$. 3 and $1,668.7$ fect, and total energy of 2.060 and $2.1-$ Il foot-tons respectively. On one occasion it is recorded in Krupp's printed tables as having fired a shot of 69 pounds weight with a charge of 37. D 5 pounds with a velocity of $2,13 \overline{3} .8$ feet, havine 2,183 foot-tons encrgy. In these comparisons the Elswick gun has slightly the adrantage. It can scarcely fail to lue observed, however, that to rival the resilts of lirmpp. Elswick achievements, and not of Government guns, are instanced. In some measure this may be accounted for by the fact that private manufacturers are umtrammeled by routine, und a master of the question seizes lessons taught by experiments and works them as he judges best. The Government does not encourage the minufacturing departments to aim at taking the lead in experimental investigation. There are however, one or two serious lessons that we might learn from foreigu trials. Take, for example, the three eases of brech-loading guns,breech-loading small-arm rifles, and prismatic powdre All these have been taken up, tried, and discarded, while they were steatily worked out to a successful issue by Germany. About 1853 the acedle-gun was tried and rejected in England. Prussia.acting on her own judgment, patiently worked at it, and in 1863 or 1564 the entire superiority of breech-loading arms became indieputably proved and they were universally adopted. About $18 \dot{60}$ the English tried prismatic or pellet powder, and rejected it; and afteradopting breech-loading guns about 1858 , they gradually superseded them about 1866 by muzzle-loading ordnance: and now, after Germany has steadily worked out these questions to a successful issue they are trying both one and the other again. and those who lave weighed the results obtained by them, as compared with those of their own guns and powder, can hardly doubt
that both will he eventually adopted. Until recently. the Italians and English were the main supporters of muzzle-loading guns. These gins were characterized also by being made of wrought-iron, which complicates the eomparison we now wish to make. Still, the fact remained that Eugland and Italy had muzzle-loading guns of 100 and 80 tons weight, and of a power that no brech-loading ordnance could rival. The Meppen trials have cxhibited a gun which entirely surpasses the last-mentioned piece, and, for its weight, compares well with the former. Instrad of dealing with a theoretical gnn existing only on paper, then, we have one in thorouglily good working order, loading and firing ly hand with a rapility, and shooting with a power and accuracy, far beyond the achierements of the 80 -ton gun up to the present time. This result is not due to a want of knowledge but to the impossibility of applying knowl edge to the case of the 80 -ton gun. With muzzleloading guns on the present English system they have greater labor in loading, and have to commit themselves to the length of their gnn three or four years before they bring it into service. To argue that breechloaders sloould be at once adopted would be to commit the fault we havecomplained of above, but surely we have sufficient reason to give them a trial on a large scalc. If breech-loaders have the advantages of ease and rapidity in working, of the possibility of changing their length without revolntionizing the surrounding structure of the ship, and of affording greater cover, especially when nonrecoil carriages of any kind are employed, they surely deserve a full trial even at the cost of laving both breech and muzzleloading guns in the service. See Krupp Sea-coast Carringes, and Krupp Steel Works.
KRUPP GUN-LIFT.-It consists of two quadrangular pyramidal pillars 23 feet high, made of angleiron riveted together and strongly braced, as shown in engraving, resting each on a solid hase of castiron. The pillars are connected at the top by a cross-

the chain being double between the pulley and block. It is easy to see how a limited number of men, operating on the cranks of the windlasses on both sides, are able to raise as heavy a weight as a 12 or 14 inch gun. See Gun-lift, and Prussion Gun-lift.
KRUPP SEA-COAST CARRIAGES. - The top carriage is composed of two cheeks connected together by a front, rear and bottom transom. The latter, of biler-plate, extends under the bottom of the cheeks their entire length, and is shod on the under side where it comes in contact with the rails with brass shoes screwed fast to it. The checks for the 6 -inch gnn are made of a single plate 1 inch thick. For the larger calibers they are made of two plates riveted together, with a wrought-iron frame between them: in the upper side of the frame the tronnionbeds are formed to receive the trunnions, which have bronze friction-rings fitted on them. Cap-squares are used for all carriages. Both cheeks are provided on their outer faces with an apparatus for giving the elevation. It is composed of a cog-wheeloperating a circnlar rack fastened to the gnn by a bronze stud. The rack is held in place engaged with the leeth of the cog-wheels by a small roller with its axis in the cheek.
To elevate or depress the gun there is a wheel on the left side, with holes in its periphery to take a handspike; and on the right side there is a wheel with handles. In carriages for heavy guns this wheel is not on the same axis as the cog-wheel, but works in a pinion to gain power to raise the gun. The gun is held in any desired position by turning a checkscrew which presses the wheel against the check. In firing, the top carriage rests on the chassis rail throughout the entire length of the shoe, in order to distribute the pressure arising from the discharge over a greater surface. To run the gun into battery the top carriage is provided with four trnck-wheels. The rear pair are on eccentric axles, and can be thrown in gear by turning the axles part way round; this brings the front wheels in play, which turn on fixed axles. In the 6 -inch gun-carriage each pair of wheels has a common axle, which has its bearings in the two cheeks, and the wheels are close up to them on the inside. The bottom transom has two openings left in it to allow the rear wheels to bear on the rails. The lever of the rear wheels on the left end of the axle is kept in position by a latch on the cheek. In carriages for heavier guns, beginning with the 6.7° inch gun, the truck-wheels are placed between the two plates of the check, in front or rear of the frame. Eacla wheel has itsown axte.

An automatic arrangement is made to run the gun into battery after firing, without any action on the part of the gumner. This device consists of two wedge-shaped pieces of iron screwed fast to the top of the rails in rear of the top carriage. When the gun recoils, the rear wheels run up these inclined planes, the rear end of the carriage is raised till the front whecds are brought to bear also, and after the recoil the carriage runs down the inclined planes into battery, ready for the next tire. The eccentric axle is kept from turning by a key in the check. To run the earriage from
beam $19 \frac{1}{2}$ fet long, made of two prineipal trussed beams strongly secured by cross-ties, and carrying at the middle a double pulley, and at about 4 feet distant, on either side, a single pulliy. A long chain issecured at its ends to the windlasses, g, passing over the pulleys and around the triple boek, which is provided with a double hook to receive the ends of the sling-ehains. The abphabetical order of the betters indicates the manner in which the wheels and pinions achate each other. The chain thas makes a half turn on "ach single poilley, one turn on the double pulker, and one and a half turns on the triple block, as slown in the drawing, the ends of
the battery this key is taken ont, and the wheels may also be thrown in gear by turning the axle with a handspike in the handspike-soeket. To provide for the possible wear of the front wheels, and preserve an "'fual and quick motion when ruming into battery, the front wheels are also mounted on axles with ecentric hoxes, whieh are kept in position loy a small serew in each. To make his adjustment, remove the serew and lurn the box, which, om aceonnt of its cecentricity, will lower the axle; it is held in the now position by the serew phated in a second hole. Two angle-irons are fastemed to the botton transon to guide the top carriage in its re-
coil; and two guide-hooks which pass under the rassais is transmitted dirmetlyto it. Therar wherels flange of the rail prevent the top curriage foom bal. have severalboles borid radialty into them torereive loting on it. India-rubber harters and counter-burt the end of a handspike to traverse the rarriage in ers are provided to limit the reenil both to the front and ran. In the finch carriage the hartors are replaced by the curve of the end of the ungle-irons which join the bottom transom to the checks. Two rings are fastened to the rear end of the cheedss, near the bottom, to hook the ropess to for pulling the top carriage from battery.

The bydraulic bulfer is used to regulate and check
giving the proper dirmetion to the gan. IInrtera and counter-hurters are placed on the front and rear ends of the rails, or the front and rear transoms, to stop the carriage rumning into or from battery. Thess: hurtors are male cach of a stom piston, fitting in fos box, and holding betwoen the head and box at number of India-rubber disks, separated from cach other by slecet-iron rings.

the recoil of the gin. It ronsists of a forged caststeel cylinder bored out and turned. Its rear end is closed by the bottom, serewed on and fastened to the rear transom of the chassis by screws. The front end of the cylinder is also serewed into a piece to which the cover is held by screws. There is a hole in the bottom picce for filling the eylinder; it is stopped with a serew and a cock in the cover for enpptying it. The piston-heud, with four holes bored in it, fits the cylinder closely, and to it, the piston-rod of cast stcel is fastened, und passes through the cylinder head, the joint being packed with hemp-packing and bronze packing-box. The end of the piston-rod is fastened to the cross-lieal, which is bolted to the bottom transom of the top carriage.

The chassis is composed of two rails, connected together by transoms. The rails are wrought iron, I-shaped, rolled in a single piece for the smaller guns, and built up for the 11 -inch gun, and all of lirger caliber. The front transom is composed of two plates, the upper and lower joined together in the middle by cross-pieces of the same profile as the rails. The rear transom is also composed of an upper and lower plate, united by two cross-pieces riveted to the plates with angle-irons. The rear end of the hydraulic cylinder is bolted to the front one of these cross-pieces through an intermediate piece. The middle transom, composed of a plate, re-enforced with angleirons, supports the front end of the cylinder, which is secured to it by its brace. The front and rear transoms of the 6 -inch carriage are made of single plates, placed vertically, and re-enforced at top and bottom by angle-irons. The traverse-wheel forks are made fast to a front and rear bolster, which are bolted to the chassis. Each bolster is composed of two vertical side plates, one horizontal plate and one vertical plate, with the necessary angle-irons to unite the parts together. The rear bolster is made enough higher than the front one that the four wheels may be all of the same size, notwithstanding the inelination of the chassis, which is necessary to make the gun ruminto battery after firing. The traverse-wheel forks, composed each of a front and rear branch are bolted to the under side of the horizontal plate of the bolsters.

The traverse-wheels are of cast steel, with a deep semicircular groove cut in their periphery to fit orer the traverse-circle, which is nearly semieircular in cross-section, so that a large part of the recoil of the

A hinged tongue, bolted to the front transom of the chussis, connectsit to the pintle in front. A windlass, attached to the rear end of the chassis, is used to run the gun from battery. It has a drism witl raised sides for the rope, and is operated by a crank turning a whecl and pinion. For guns of very large caliber a double set of wheels and pinions is added between the crank and drum. All of these parts are fastened to a stirrup, which is secured by means of a tenon to the rear end of the rail. To run the gun from battery, hook the ropes on each side to the rings in the top carriagetake a turn around the drum, tighten the ropes and work the cranks. In the carriage for the 6 -inch gun the arrangement is replaced by a simple block-and-tackle, which is hooked in the rings in the rear end of the chassis.

In the other carriages these rings are fastened 10 the windlass-frame, and are also used in traversing the carriage. For this purpose, commencing with the 8 -inch sea-coast carriage, a windlass is used, fastened to the rear end of the chassis by a boiler-plate frame, strengthened by angle-irons, to which all of the moscable parts are attached. The principal part is the drum, around the circumference of which the chain works, fastened at its two ends to rings outside the platform. A pair of horizontal and vertienl leading wheels on each side prevent the chain from leaving the drum. If the drum be turned by means of the crank which communicates with it through the wheel and pinion, the drum moves on the stationary chain, traversing the chassis withan easy but rapid enough motion. In case the chain breaks, the chassis may be traversed with handspikes. A crane is provided for the heary carriages, commencing with the 8 -inch, for elevating the projectile. It is placed on the right side of the chassis, on a direct line with the breech of the gun, when it is in battery. It consists of a cursed iron wpright, which is held in a vertical position by a pillow-block and collar, and is readily turned by the handle. The drum is near the foot of the upright. By turning the crank, motion is griven to the sope, cither dircetly or by a wheel and pinion. One end of the rope is fas. tened to the drum, and thence it passes orer two fixed pulleys on the upright. The other end bas a hook fastened to it. This book is inserted in the upper ring of the shot-cart, which, holding the projectile. is hoisted up, the tongue being first taken ont. The crane is turned until the carriage touches the gun, to
which it is hooked. The shot being rammed home, the erane is turned, and the empty cart is lowered. Steps are attached to the chassis at several places for the convenience of the gunners (angle-irons are fas:tened to the rails, and oak planks, secured to them), as the step for the gunner in pointing in rear and across the chassis, on both sides of the chassis, and between the rails, for the men serving the gun, inserting the projectile, the charge, etc.
The fond dation of the platform is of brick masonry, from 3 to 6 fert thick, according to the caliber of the gun. The stability of the foundation being the essential condition of the continued gooll working of the carriage. the masonry should first of all have a solid bed. If the soil be not firm, as often happens on the sea-const, the foundation should he made by driving piles, on which a good bed of conerete should be laid. and may be made still more solid by pieces of railroad iron.

The following implements are supplied for the earriages: Two wooden handspikes (ish), having ends shod with iron and made to fit in the holes of the ele-yating-wheel, in the rear truck-wheels, and rear trav-erse-wheels; one wreuch for the packing-box; a wrench for the cock and the filling-hole screw in the hydranlic cylinder; a screw-wrench, and a shot-cart. The body of the cart is a piece of curved sheet-iron, on which the projectile lies. It is held in place by an iron strap passing over it, through which two screws pass and press against the shot between two bands. An eye-bolt and ring is providen on the top of this strap, into which the hook of the crane-rope is passed to hoist the shot. The front end of the cart has a flange, with two hooks to hang it to the breech of the gun, where it rests and serves as a guide in loading. The axle and two bronze wheels are placed a little in front the center of gravity, and a sheet-iron propat the rear end, and also the pole, which can he taken off, but is held in place when in nse by two hooks below and two studs above.
To load the cart, the projectile is first placedon its base and the cart over it; the screws for hodding the projectile are turned down ; the cart is then righted and the pole put in place. For every battery, or in large batteries for every three guns, there is added a pair of windlasses like that already described and used in running the top carriage back, and a funnel with a graduated seale inside giving its contents in gallons. Its bottom orifice is closed be a cock, and is ned in filling the cylinderwith glycerine. An extra bleck and tackle is added to those carriages which have no windlasses.

The carriages laving been all mounted and proved in the Shops by firing and working them, it is only rectuired for mounting them in battery that the corresponding parts should he secured to the platform, which should be level and firm. The pintle-plate should be laid down so that the pintle shall be exactly vertical. The rear traverse-circles should he placeid on the are of a circle deseribed with the pintle as a center, and a mean radius of 15 feet, for all seacoast carriages from 6 to 11 incla caliber.

The 12 -inch carriage is similar in its genera. construction to those alone described, It admits of an elvation of the gron of 1%, and a depression of 7°. The axis of the trumion-lects is 93.7 inches thove the platform. The clevating apparatus is provided with a whed on cither side of the carriage, having radiad handles with which to operate it. This wheel carries a pinion, which is commected ly an intermediate wheel to that which works the ciremar rack, thus gaining power to raise the brecelt. The rails have a depth of 17.7 inclees, a width on top of 6.29 inches, and an inclination of 4°. 'Phe piston-heat of the hydraulic eylinder is piereed with 4 hobes. is inch in diameter; lan gallons is the maximum cquanlity of glycerine that should be put in the cylinder. The weight of the top) carriage is 12,456 pounds; the chassis, 33,842 pounds.

The 14 -inch carriagedifiers from the 12 -inch only
in some minor details. The axis of the trunnionheds is 10 inches ahove the platforn. The carriage arlmits of the grn being fired over a parapet of 78 inches in heiglit, with an elevation of 19° and a depression of 6°. A dial-train is attached to the circular rack of the elerating apparatus, and shows to the gunner working the wheel the degree of elevation given to the gun. The hydraulic buffer has two cylinders 9 inches interior diameter, in place of a single one. They are placed close to the rail on each side of the chassis. Three traversc-circles and three sets of traverse-whecls are used instead of two.

A graduated are of a circle is traced on the platform in rear of the chassis, with a pointer fastened to the end of the rail to give direction to the gun When the object fired at cannot be seen on account of tarkness, smoke. or fog. Weight of the top carriage and chassis, 74,961 pounds. See Hydraulic Buffir, Krupp Gun, Platforms. Sen-coast and Garrisin Carriages, and Sirge Carriages.
KRUPP RIFLING.-In this system the grooves are quite shallow, their sides being radial and forming sharp angles with the bore. The rifling has a uniform twist of one tura in 45 calibers generally. The grooves are wider at the bottom of the bore than at the nuzzle so that the compression of the lead-coated projectile is gradual, and less force is expended in changing the shape of the projectile. This change of shape is effected by making the whole groove of the same size as at the mnzzle, and thencutting away gradually on the loading-edge of the groove. Of course, as the twist is uniform, the driving-side of the groove cannot vary. The outer surface of the lead coating of the projectile is in raised rings with grooves be. tween, to allow space for its being drawn down in passing through the bore. The advantages of this, or the compressing system, are that the projectile is centered during its passage through the bore, which prevents balloting ; the angles of departure and the initial velocities are therefore more uniform, and the stability of the axis of rotation on leaving the bore is better assured; from which result great reqularity and precision of fire. There is little or no dithiculty as to erosion of the metal caused by the gas forcing its way between the projectile and the bore. The lead jacket of the forced projectile does not prevent the employment of heavy charges. Forcet projectiles do not wedge in the bore. The regularity of the movement of these projectiles does not wear or injure the bore. The soft metal coating prevents damage to the lands. The bursting of a projectile covered with soft metal has comparatively no baneful effect on the gun.

The objections to the system are the severe strains on the gun by suddenly stopping windage, by fonling, and by forcing the projectile into a bore of smaller diameter. The eompressed projectile must be fired from a breech-loading gm, and the increasing-t wist is imprarticable from the great length of the soft-metal bearing. The soft coating of the projectile is liable to injury in handling and in store; also to be stripped on tiring.
KRUPP STEEL WORKS - The widespread reputation of the steel produced in the great works of Herr Krupl, at Essen, in Prussia, has indinced us to give it a brief notice. II manufactory, always a large one, has bern gradually increasing in size during the fast half century, untill it now covers nearly 1000 acres, and gives cimployment to some 14,000 persons. For large metallurgicil works, Essen is favorably situated, being in the center of a coal-bearing arat, where coal of the purest kind can be comparatively cheaply procured. There is also at hand the manganiferous iron ores of Prussia, which have been found so excellently alapted for the manufacture of steel; hut it is believed that the admirable organization of cvery part of his manufactory has conduced, as much as anything, to the great suceess of Krupp. Will laborirs and mectanies who have passed the regu-lation-time in the l'russian army, overseers trained in the German technicat schools, and a small staff of
experienced amalytical chemists, he hat obvionsly at great advantage in condueding operations whro order, system, und skill are of paramomat, importaner. But even with thase benctits, Krupp's productions womht not have gained thair relebrity, were it not for the serupulous care with which he performs "very manipulation. In the article lnon we lave daseribed the manufacture of stect by the cementution and liowsemer processes, hat there are several other methode of making it, and onc of these is hy the decarburization of cast-irom in the puddling furmace. 'This is the process by which Krupp makes his stom, in the first instanere; and the material he most largely (rmplow is spiegeleiven, or specular cast-iron, a highly crystalline variely, usually containing about 4 pro cont of manganese. This iron is almirably suitad for conversion intostect. The pudiling process for sterl is similar to that employed for iron, execet that the formor is conducted at a kower tomperature, and requires nicer mamagement; but in the case of sterd, the cast-irom to be operated upon is never previonsly rotined. Cuctiron to the extent of about 4 cwts. is melted in the purdline furnace, mixed with a quamity of shar or cinder (chiefly siliente of irom), and stired with a rablle. During this operation, the carbon in the castiron (usually about 5 per cent) is gradually oxidized by the oxyern present in the cinder; carbonic oxide is producet, und as it escapes, what is technically termed "boiling" takes place. When the ebullition beeomes active, the temperature is raised until the appearance of incipiont soliditication oecurs; the heat is then lowered, and the ordinary process of balling procecded with. Steel thas produced usually contains from 0.5 to 1 per cent of carbon; but if the temperature is not skillfully regulated, the carbon heommes wholly burnerl away, and malleable iron instend of steel is produced.

Puldhed steel, although useful for most purposes in the arts (exeept cutlery), nevertheless wants homogemeity, on account of a certain intermixture of cinter, which is difticult to get rid of without fu-sion-a defect which is apt to prevent it from welding perfectly. In Krupp's Works the pudded steel is remelted into cruciblus, in order to convert it into castastecl ; and it is the wonderful unifurmity of quality with which he manufactures this in very large masses, that constitutes the superiority of, and gives so great an interest to, his productions. The crucjbles employed are made with extreme care, mainly from tire-clay, to which a little phanhago is added; their capacity varies from 50 to 100 lbs , and it is reported that as many as 100,000 are kept drying at the same time. After being once used, the erucibles are broken up, and mixed with other material, to make new ones. In the casting-house, where the large ingots are run, the furnaces. which contain about 1,200 crucibles, are arranged along the sides of the building: and in the central portion the stecl molds, varying in capacity from 100 lbs , to 50 tons. are disposed in line between 1 wo pairs of rails, upon which runs a movalle crane. It is in the casting of such an enormous ingot as 50 tons of steel (the largest yot produced) from crucibles of small capacity thai the perfect organization of Krupp's Establishment becomes more strikingly apparent. At a given signal, one gang of workmen remove the crucibles from the furnaces, while another seize them with tongs for the purpose, and pour their contents into narrow canals of wronght-iron, lined with fire-chay, which converge into the opening ly which the mold is tilled. This is the critical stage of the operation, the diftienlty being to deposit in the mold a continuous stream of melted steel of ahout the same dogree of heat, so as to cool uniformly, and to solidify into a perfectly homogencous mass. Of such uniform soundness are some of Krupp's large steel ingots, that one-sinown in the London Exhibition of 186 . 9 feet high, 4 inches in diameter, and weighing 21 tons-when broken across did not show the slightest thaw, even when examined with a lens. In
order to manipulate thrse extranelinary mashers of stece, there is a steel hammer, wrighing 5t) tonsthe mechanical marvel of the Wiorks at Essen-Whicla hans a ceylinder mearly six fert in diamener. It has a Eh-tom wame at cach of its four cerners, and behima cach of these again there are four heating furnacers. A movable brocle on low maseive wherels serves io remove a large ingot from any of the furnaces, which is then, by neans of the juwerful rances, and it system of puilleys and craths, placerd on the anvil, mall worked into any desired shapro. Tharanvil-fare wrighs 18.5 toms.

The cuantity of sted manuffelured by Herr Krupp ammally amounts to about 125, (0) (of tons, Joprecenting n value of about $\mathbf{E 3}, 000,000$. It ronsists chietly of rails, tires, crank-ixleq. shafts, mining pump-rocls, and guns- the proportion of ordnance bring abont two-lifths of the whole. (iuns have been made at Essen for the I'russians, Austrians, Belgians. Hutch, Ltalims. Turks, Japanese, and also for the 'inglish, athough not directly ordered by the fovernment. In 18 it the works included 1,100 smelting and otlaer furnaces, 2π coke-overns, 264 forges, 300 steam huil ers, 71 steam-hammors, 2sf steam-engines of 10,000 horse power, 1 , def machinc tools, 30 miles of railway, 80 telcgraph stations a chemical laboratory and photographic, lithographic, printing, and bookhinding
 besides 166 watchmen. In 1876 the comsumption of conl and coke togrother amounted to fil2.000 tons: that of gas, $7,300,000$ cubic metters in 20.342 burners. Krupp has built good houses, hospitals, etc... for his men. Besides the works at Esson, the firm jossoss es several mines and smelting works. In the Paris Exhihition of $181 ; \%$, Krupp showed a huge gum intended for a const battery to liefend the attacks of phated ships. It was made entirely of cast-steel, weighod 50 tons, and could propel a shot weighing 1.040 lbs . It took 16 months , working day and night without interruption. to manufacture. The price of the gun alone was $£ 15.250$. and of its carriage and turn-table, which weighed respectively 15 and 2 , tons, $£ 6,000$ more. In the Vienna Exhibition of 1873 . Krupp showed, in a parilion hy themselves, a mumber of most interesting objects in steel. Among them were a huge gun like that shown at Paris, about 4 feet is inches in its greatest diameter ; an octagonal ingot, weighing fully 50 tons: and a marine-engine shaft. 15 inches in dianeter. He also exhibited at Philadelphia in 1876. See Krupp gum.

KSHATRIYA. - The second or military caste in the Bralmanical social system.
KU-KLUX-KU-KLUX KLAN.-The title of a Secret Association wbich existed in the Southern States from 1866 to 1872, and which terrorized that section of the country during the period in gnestion. It was first made known as an active agency in Tennessee, in 1867, when the Gorernor of that Statc, William G. Brownlow, called upon the [., s. military authorities to suppress violence and public disturbances in the State, which were traced to this organization. The history of the Ku-klux shows that at the close of the war various Sucieties of a political character were formed in the States of Alahama, Arkansas, Georgia, Kentucky, Mississippi, North and South Carolina, Tennessce, and Texas, under the names of the Knights of the White Camellia, White Brotherhood, Constitutional Union Guards, Pale Faces, luvisible Empires. Invisihle Circle, etc., all of which were eventually lost in the broader scope and more powerfill and permanent influence of the Ku-klux Klan. From the evidence afforded it would appear that the origin of these Secret Societies, and more particularly of the one we are specially considering, is to be found in the disloration of poltienl and social intarests in the Sonthern States consequent to the aggressive influence of a long and devastating condition of warfare. In explanation of their fomdations, ex-Confederates claim that they were preceded by organization of loyal
leagues, which, as they allege, were formed among the Negroes in the South through the efforts of "Carpet-baggers," so-called radical leaders intriguing in the interest of the perpetuation of the power of the Republican Party in the Southern States. It is also claimed in behalf of the Southern people that, through the action of the 14 th and 15 th Amendments to the Constitution of the United States, the Southern white population was greatly endangered both in its homes and its social relations, the emancipated Blacks being generally considered in the light of a race ancered by long and bitter servitude, now armed and equipped by law and public sentiment, and only waiting opportunity for an uprising and to grasp the balance of power among the highspirited people to whom they had been slaves for more than two centuries. This is the Southern explanation of the rise of the Ku-klux. Whatever may be the measure of truth contained in it, this in no wise militates against the justness of public condemnation of its acts. By Joint Resolution. dated April 20, 1871, the two Houses of Congress ordered an investigation into the condition of affairs in the States recently in a condition of insurrection. For three years the press had been filled with detailed statements leseribing acts of atrocity atuributed, to the secret and terrible Ku-klux Klan, which rivaled the worst instances recorded against the Spanish domination in the Netherlands, and the bloody scenes of the French Revolution. In every Southern Statecxcept Virginia, West Virginia, Delaware, Maryland, and Florida, assassination of Negroes and white Republicans were of daily occurrence. The gift of suffrage to the colored man bad been nullified in its outcome as a political influence through the system of terrorizing which utterly precluded the free suffrage of the emancipated Blacks. Besides instances of special massacres covering large numbers, and of which there nccurred many in South Carolina, Louisiana, Mississippi, Texas and Tennessee, the daily and nightly assassinations, whippings, burnings, and other outrages were innumerable, and were never recorded. In reporting the state of society in Texas, the evidence given is to the effect that the Negroes were murdered with such frequency that there was no possibility of keeping an accurate record of the details. On the basis of reports of this nature, and stimulated, doubtless by the intense public feeling in the North, ereated by the gradually spreading conviction of the lamentable deficiency in the power of the daw as applied in the South, Congress, through its Committee, proceederd to the investigation ordered by the Joint Resolution to which we have already referred. The result of this investigation appears in the 12 octavo volumes reporting the testimony taken and published among the official documents (Senate) of the year 1872. In immense mass of evidence displays the nature and acts of the Fu-klux, and fully justifies the title "Conspiracy," which Congress bestowed upon that organization. While the Ku-klux may liave originated for a minor purpose, it is difficult to believe that this tremendous association of men sworn to fidelity; having its ramifications in every Southern State, and the power of life and death in most of them: with a ritual, oath, grips, pass-words, and all the other seceret and systematic machinery necessary to the carrying out of the most hidllen and dangerons purposes-it is difficult to believe that the real motive and intention of the Order were not the subversion of the Government of the Lnited States, and the relabilitation of the leaders of the Rebollion. To this rad, the negation of the suffrage in the South, and the efforts to defeat reconstruction, may rasonably be supposed to have tended. And whatever diverse opinions may be held regarding the good sense, judgment, and patriotism displayed in the Reconstruction Aetsand the methods adopted to carry then into effect, it is impossible to view without the severest censure the nature of the opposition
to them, as conducted by a bloody and revengeful association of exceedingly cruel and implacable men, intensely erazed by the facility with which murder and incendiarism could be made to do duty for what its members chose to consider retributive justice. Following is the oath of the Ku-klux Klan, as it was offerec in evidence before the Investigating Committee of Congress: "I (name), before the great immaculate Judge of heaven and earth, and upon the holy evangelists of Almighty God, do, of my own free will and accord, subscribe to the following sacred binding obligation. I. I am on the side of justice and humanity and constitutional liberty, as bequeathed to us by our forefathers. II. I reject and oppose the principles of the radical party. III. I pledge aid to a brother of the Ku-klux Klan in sickness, distress, or pecuniary embarrassment. Females, friends, widows, and their households sliall be the special object of my care and protection. IV. Should I ever divulge, or cause to be divulged, any of the secrets of this Order, or any of the foregoing obligations, I must meet with the fearful punishment of death and traitor's doom, which is death, death, death, at the hands of the brethren.' This sufficiently theatrical obligation becomes impressive when one reflects that its various sections were carried out with absolnte rigor, and that disobedience of the orders of the Chief of a klan was actually visited with instant death. Thns were the customs of the Carbonari paralleled among so prosaic and conventional a people as the Americans so late as 1871. The members of the Order were obliged to deny their membership, even when answering as witnesses in a Court of law, and were obligated to clear each other by their testimony in such cases or when acting as jurors. The Ku-klux gradually died out as an active organization after the investigation of 1871 ; and although certain of their methods continued to obtain during the progress of elections in the South, the return to sounder sense and better feeling on the part of the people of that section, and the improving condition of the relations between the North and the South, gradually died away with the passions in which the organization originated. It is reported that there were at one time 550,000 members of the Ku-klux Klan in the South, of which number 40,000 are said to have been in Tennessce.
KUL. -The Turkish word for slave to the Prince. The Grand Vizier, the Bachas, the Beigler Beys, and all persons who receive pay or subsistence from situations dependent npon the Crown, are so called. This title is in high estimation among the Turkish military, as it authorizes all who are invested with it to insult, strike, and otherwise illuse the common people, without being responsible for the most flagrant breach of humanity.

KULLUM. (Nauclea parviflora).- A wood used in the Bombay Presidency for fuses. It is a very light, soft, close, and even-grained wood, of a light brown color. not very durable, and will rot when exposed to wet.

KUNDA DE RAJAH.-An Indian sword of the 16th century, $3 \frac{1}{4}$ feet long, and entirely made of iron. The blacle is clamascened, and the liandle, guard and hilt are beautifully engraved.

KURROL. -The ludian term for the advancedguard of a main army.

KURTCHI. - Tlue Persian name of a Militia. It consists of one body of Cavalry, whicli is composed of the first Nobility of the Kingdom, and of the lineal decondants of the Turkish Conquerors, who placed lsmat Sophi on the throne. They wear a red furban of twelve folds, which is made of particular stuff. This turhan was originally given them by lsmace, in consideration of their attachment to the religion and family of Ali . In consequence of their Woring this turban, the Persians are always called hy the "lurks hitiblavehi or Red-heads. The Kiurtchi compose a body of nearly 18,000 men. The Com-
manding Oflicer of the linrlel:i is known as fiurtchio baschi, whos formerly lath the identical sumbority that was origimally posseased liy fle (omatalnle of France.

KYANIZING. A procers ior pronerving ordatnee
timber, cotco., from dry rol or decaty. I'hiamost raflracioms method, which consists of injrecting into the pores of the wood a solution of corrosive sublimate, war invented by Ioln 11. Kyan, who was borm in Iublin, Nov. $2 \tilde{7}, 1774$, und died in 1850.

L

LABAETM. -The inmora standard of the Roman Emperor Constatipe, designed to commemorate the mirneulous vision of the cross in the sky, which is said to have appeared to him on his way to atarck Maxentins, and to have been the moving canse of his conversion to Christianity. It was a lone pipe or lance, with a short transverse lar of wood attached near its extremity, so as to form something like a eross. On the peint of the lance was a golden crown sparkling with gems, and in its center the mysterious monogram of the cross and the initial letters of the name of Clarist, with the oceasional addition of the Greck letters Itpha and Omegn. From the crossbeam depended a purple banner, decorated with precious stones, and fully surrounded by a rieht border of gold embroidery. The cross was substituted for the eagle, formerly depieted on the Joman standaris, and there were sometimes other emblems of the Saviour. Between the crown and the cross were heads of the Emperor and his family, and sonsetimes a figure of Christ woven in rold. Sie Standard.

LABEL-LAMBEL. In ITeraldry, the mark of cadency which distinguishes the eldest son in his futh. er's lifetime, familiar to us from its enterine into the composition of the arms of the l'rince of Wales and other members of the royal family. It consists of a horizontal stripe or fillet, with tlirce points depending from it. When the mark of cadency itself is designated a file, its points are called lebels. It is said that the eidest som's eddest son should wear a labed of tive points in his grandfather's lifetime, and, similarly, the great-grandzon a label of seven points, two points heing added tor eacls generation. The label extended originally quite across the shield, and sometimes oceupied the upper, thongh now it is always placed in the lower part of the chief; the points, at first rectangular, assumed in later times the form called pattée, dove-tailed, or wedge-shaped, and more recently, the label ceased to he connected with the edges of the shield. Edward 1., in his father's lifetime, bore the arms of England within a label not of three, but of five points azure, joined to the head of the shield, and interlaced with the tail of the uppermost lion. Edward II., when Prince of Wales, used indifferently the label of three or five points as also did Edward III.;but from the time of the Black Prince downwards, the eldest son of the King of Eugland has invariably differenced his arms with a label of threepoints argent, and the practice has been for the younger sons also to bear labels. whieh are someimes of other colors and more points, and differenced ly being charged with fleurs-de-lis, castles, torteaux. hearts, crosses, etc., as directed by the Sovereign by sign-manual registered in the College of Arms. The practice of differencing by the label which is thas in viridi observentio in onr own and other royal families, is less used ly subjects. Like other marks of cadency, latuels are sometimes borne as permanent distinctions by a particular hranch of a family. Sce Heraldry.
LABORATORY.-This term is generally applied to establishments for conducting chemical or physical investigations, or for chemical manufacture. ('hemical laboratories may be for purposes of instruction. as are those which areattached to colleges or other ligh schonls. These institutions also sometimes have special laboratories for researel. All large
private manufacturing establishments where chemicul processes are employed, to a considerable extent bave laboratoriow attached to them in which investigations are carricd on; many of them in the nature of preparatory triala of processes, to facilitate the process of manafacture. A government manufactory is sometimes called a laboratory; and so are many smaller private establishments, as metallurgical laboratorics, telcgraph laboratorics, ctc. The following tixtures and farniture should be frovided for a government latoratory.

1. Cortridge-lu u. - A table for making cartridges for small arms, Id lect long and 2t fect wide, for 12 men or boys to work at, and the lemerth in that proportion for any greater number: 1ables for cutting pmper and lamel, and for rolling cases on: clooker for roeket-cases; press for rocket and port-lire cases ; benches for cartridge-tables: stools. (losets should be partitioned off from these rooms and furnished with cases, drawers. racks, and shelves for materials and tools. 2. F'illing-henese-A shelf, 2 feet wide, for weighing on; other shelves with closets under them; tables with raised borders for filling, folding, etc.; budet-barrds. or powder-barrels, with copper hoops and covers; stons for seato; footstools; a stepladder; stands and gutters for emptying powder-barrels. 3. Packing-fimuse.-Tables, bencles and stools. 4. Store-house.-Shelf for weighing on the shelves, drawers, and closets; tables, seales, stools, seats, stepladder. 5. Dricing-hmese.-Blocks set in the ground or pavement; benches and stools. In favorable weather, a porch attached to the building, or a tent, may be used for a driving-room. 6. Wixing-henese.-Tables with raised edges; sieves, ete. 7. Furnace-house.Furnaces; work-benches;; platform-halance or large scales; a tinner's bench and tools, with a vise, an anvil, and a chest for tools, a smith's forge, shovel and poker, stools, etc. 8. 'rurpenter-shor.-Turninglathe and tools; carpenter's benches and tools. 9. Mrgazine. -Shelves and frames for boxes and barrels.
Two kinds of furnaces are used in the laboratory : In the first, the flame circulates around both the bottom ind sides of the kettle; in the second, it comes in contact only with the bottorn ; the latter are used for compositions of which gunpowder forms a part. Furnaces are luilt of bricks. Tbe kettle is of cast-iron, about 2 feet in diancter at the top, having a rounded bottom and a flange about 4 inclees wite around the top, or else strong handles to set it by. The bottom is . \% ineh thiek, and the sides .5 inels. $13 y$ setting it in an iron plate piereed with holes, encircling the bottom, a furnace of the first kind may be converted into one of the second kind by stopping the holes.
Furnuee fir reducing the oxide of lead or drosx.-This furnace is built in the open air, on at stonc or trick foundation. It is composed of a cylinder of sheetiron, 16 inches by 30 inches, lined with refractory clay from 2 to 3 inches thick. The interior has a form of an inverted frustum of a cone, terminating helow in : basin. the lottom of which is inclined toward a tap-hole. The fire is made in the furnace, and the dranght supplied hy a bellows, the nozzle of whieh enters at the top of the reservoir. The dross and the charcoal intended for its reduetion. are thrown on the fire from the top of the furnace. The metal, as it is reduced. llows moto the basin and escapes
through the tap-hole into an iron vessel and is cast into bars or pigs as desired. In the field, furnaces may be built with solls. or sunk in the earth, if bricks cannot be readily procured.

Furnase built with sorlx. - Let the kettle rest on a trivet, the feet of which may stand on any piece of flat iron, such as the bottom of a shot-eanister, or stand for grape, the bottom of the kettle abont 1 foot from the ground: build round it with sods. The door of the furnace is 10 inclies square; the flue of the chimney, opposite to the door, 6 inches square, and commencing abont is inches from the ground; the first part of the flue inclined at an angle of about 15°, the rest vertical, and placecl, if cireumstances permit, against a wall: the top of the door and of the flue may be supported by small bars of iron.

Furnare sums: in the entroth. - The edge of the ketthe should be about 1 inch above gromed, and the bottom 12 to 15 inches above the hearth of the furnace; the carth is dug down vertically 1 foot from the kettle for the front of the furnace, and the door is cat 10 inches square. The earth is removed and sloped out, so as to give access to the door: the flue is bored out on the opposite side with a crowbar; it commences 6 inclaes above the hearth, and cones out of the ground 18 inches from the furnace, whence it is carried horizontally about 13 feet.

In furnaces of the seeond kind mentionerl alove, the trivet may be omitted, and the kettle may rest on the sod or eartli for about 1 inch all romnd, aud the carth rammed in against the sides of the kettle.

It is important to observe the following precautions against accidents :

Awoud as much as possible, the nse of iron in the construction of the buildings, fixtures, tables, benches, boxes, etc., of the laboratory; sink the licads of iron mails, if used, and fill over them witl putty, or paste several thieknesses of paper over them. Before the nen go to work eover the floor with carpets or panlins, which are taken up carefully, after the men leave, and carried at least 50 yards from the buihling, and there shaken thoroughly and swept. During the work have the earpots frequently swept. Place the stores in cloth bags in the windows exposed to the sun. Prevent persons from entering with sabers, swords. or canes, cte. or with matches about their persons. Direct all who work where there is powder to wear moccasins or socks, and to take them off when they leave. Direct the men not to drag their feet in walking. Make the doors and windows to open and close casily, without friction; keep them open whenever the weather permits. Never keep in the laboratory more powner that is necessary, and bave the ammunition and other work taken to the magazine as fast as it is finished. Let pow-der-harrels be carried in hand-barrows made with loither or with slings of rope or canvas, and the ammmation in boxes. Let everything that is to be moved be lifted, and not dragged or rolled on the floor. Never drive rockets, port-fires. etc., or strap shot or shells in a room where there is any powder or comm position exeept that used at the time. Loiding and unioading shells, driving rockets, pulverizing the materials, the preparation of eompositions requiring the nse of fire, ind in which the compenents of gunpowdee enter, onglat to be done, in all cases when possible, in the nuen air or under a tent far from the
laboratory and magazine. Never enter the laboralaboratory and magazine. Never enter the labora-
fory at nislat, monless it is indisnensable, and then nse a rolose lantarn, with a wax or oillight carofally trimmed. Allow no smoking of tobaceo near the laboratory. In moling leat, be sure that it contains mo moisture; put the pigs in carefully, and do mot use more than will fill the pot two-thirels full. I'se the same preatution in melting all fatty substances. See
 tory.

LABORATORY MATERIALS.- Laborthory matcrials may be classified as follows: 1st. Those for prohnc.
ing light, heat, and explosion. 2d. Those for coloring flames and producing brilliant sparks. Bd. Those used in preparing compositions. 4th. Those used in making tools. cases, cartridge-bags, and for miscellaneons purposes.

Materials for Light, Heat, and Explosion.-Potaxsinm nitrate (niter), HNO_{3}. - For use in the laboratory, niter should be freed from all foreign substancos and be reduced to a fine powder or else to very minute erystals. It is best pulverized hy hand in the rolling-barrels at the powder-mills; but it may be pulverized by hand in the laboratory as follows: Put into a rolling-barrel 50 pounds of dry, refined niter and 100 pounds of hronze balls; turn the barrel for two lours and a half at thisty revolutions a minute, striking it cantiously at the same time witl a mallet to prevent the nitur from adhering to the sides. Separate the balls by means of a brass-wire screen, and the foreign substances with a hair sieve. Niter may also be pulverized by pounding it in a brass mortar, or by solntion as follows: Put 14 pounds of rofincl niter with 5 pints of elear water, in a broad and shallow copper pan, over a slow fire, and as tife niter dissolven skim off the impurities; stir the sulution with a wooden spatula montil the water is all evaporated, when the niter will be very white and fine. Shonld it boil too much, the pan must be lifted from the fire and set upon wet sand or earth, and the niter shonld be stirred until it dries. to prevent it from adhering to the pan.

Potiswium chlorute, $H C l O_{g}$, is a white salt; erystallized in white scales; anhydrous; not altered by exposure to the air; soluble in water, more in warm than in cold; insoluble in aleohol; density, 1.989 ; decrepitates and fuses at about 500°; at abont 820° it is decomposed into oxygen and potassium chloride. This salt is one of the most energetic of oxidizing bodies, because it parts with its oxygen so readily. of which it contains a very great quantity (. 3915 of its weight). Thrown on burning coals, it melts quickly. It explodes by simple coutact witla sulphuric acil; inixed witl a combustible body, the mixture may be exploderl by friction or by a blow. It shonld be purcliased crystalized, and should not contain more than one-thonsandtis of its weight of chloride of sodium or potassium. Its purity is tested by means of the nitrate of silver dissolved in distilled water, 73. grains in one-quarter of a pint. Dissolve a grains of the ehlorate in 300 grains of warm water, and let the solution get cold; the chlorate will be preeipitated iu crystals Add to the liquid about twodrops of the solution of the nitrate of silver. After filtering, the liquid onght not to give a prexipitate by the addition of more nitrate of silver.

Mercury fulminato, $\mathrm{CAC}\left(\mathrm{VO}_{2}\right) M g$. is a gray salt, reystallized in fine silky needles; soluble in water, more so in wam than in cold water. It is an extremely dangerous substance to operate upon in a dry state, owing to the readiness and violence with which it explodes, It cletonates strongly when struck by a hard body; but sometimes tritting frietion may scrve to produee this effect, even when employed in a moist state. Ileated to 300° it explodes, evolving an exeeedingly bright flame. It is deeomposed, with explosion. by the electric spark, and contact with strong nitricand sulphuric acids. The products of detonation are carbonic acid, nitroqen, and vapor of mureary. It should always be manipulated moistened with at least 30 per cent, of water.

To mepare fulminute of mercury.- Dissolve in it glass retort capahle of holding about a half-gallon, 10 oume of pure meroury in five pommes nitric acid (arpa-fortis), of the speceific qravity of 1.40 . 'J'he'solution is mate by placing the retort in a water or samd bath of about 120°, or exposed to the sun's rays on a warm day. The vapors which come over are very deleterions, and should not be inlaled. It refuiles about eight hours in thoroughly diseolve the marenry. When the solution is complete pour the liquor into a wide-mouthed glass vessel capable
of toidinge 8 to 10 gathons, into which 5 .bin peomusts of atcohol (whys), about bit pints, of the epecitir gravity of .8is have bern previonsly parad. Care mast be taken to paner the nitrate of imeremy'y the alohot, as the reverse mode of mixine the componm is very dangerons. Great bont is reolved during the effervescence which ensurs from the mixture, ams the ergase vessels nased should bre well ammented, ami of at form to bear a high hata without hreaking. (arboys of hain flint-glase, without month-rings on any alirupt change in lhickness, are best. The operation should be performed at a safe distane from the fire, as the vapors of of her disengaged are highly inthammalde. When reddish fuma's berin thappear, they must be reduced hy addine alcolool in suall ghathtities. 'Tbe propertion of alcohol usel in the what operation variesaccorilines to the strenerth of the acid and aleohol, and also with the state of the weather. The proper guantity is that which is just sufliciond to kerp down the reddishs fumes, and is detormined ly trial with the materials used. When the offerves remer has sensed, the fulminate of meremey is foumd at the bottom of the vessel as a brewnish precepitate. A small gumbity of water is ponred in, and the comtonds transferred to the washing-tult, where it is repeat edly watherl in soft water, until the water no longer reddens litmus-paper. The fuhminate is in the form of very small erystals, of a lieght eray color and bri diant surface. If the operation be well and carefully proformed, mo metallic mercury will be reproblueerd The werielat of the folminate when wedl dried will be ahout 14 per cent. greater than that of the mareury used. If the proper proportions be not nsed (or if the materials be not of good quality), the probuct will be, instead of fulminate, an impalpable y.illow pow ler which is incombastible. Whan this is ols served, the result may generaly be corrected by varying the proportion of alcobol in the mixture Thu fulminate of mercury is kept unter watar, in stone jars, which sloould be preserved from frost. Roll brimstone is ased for madting, and tlowers of sulphur may be used instead of roll sulphur pulverized. The purity of the thowers is mure to be depended upon than that of the roll sulplur. When mised with potassimm ehborate, however, it shouht be washed to remove suphburie ach. Sulphur fatisitates the ignition aml combustion of eompositions to which it is atdend.
Crenporiler--For eompositions, gunpowider is meulad. either by rolling it for two hours with once and at half of its weight of balls, or by beating it an equal length of time in a leather bag, or beyrinding it with a muller on a mealing-tible. Mailed powiter, and pulverized saltpeter, chareoal, and sulphur are generally obtained from the powter-mills

Intimony (regulus of antimony) is a grayish-white metal, very bridiant, witha highly lamellated structure. Specitic gravity, (9. $\boldsymbol{\sim}$; melting point, 8090. It is ensily reduced to powder, and hy its combnstion with sulphenr protuces a strong light and heat, with a blue or white thame. Antimony is never found pure in the shops; that which is sold under the mame of regulus of antimonyalways contains a little sulphuret of antimnyy, arsenic, and sometimes the sulphuret of iron.

Lampbla k is the result of the incomplete combustion of resinous substances. It is composed of 80 parts of carbon and 20 of impurities. It is employed to quicken the combustion of certain sulstances: but before it is used it should be wasled with a bot alkaline solution, to remove all traces of empyreumatic oil.

Coloring Materials. A flame is colored by introducing into the composition which prochuces it a substance, the particles of which. being interspersed throngl the thame and rendered ineandescent, give it the reguired color. Coloring substances do not generally take part in the combustion, and their presence more or less retards it. It is for this reason that potassium chlorate, a more powerful oxidizing agent than
nitar, is nsed in lixn of it in compositione for conderabl fires. 'Therce are a groat varioty of substancers which give color to thanes, the principalof which are stomtima nitrate and sulphale for redd, barime nit rate for arem, the bienrlonate of somba for pellow, "opprer sulphate for purple, onoper carbomato and aretate for blar. Lamplatack is comployed to give a train
 glase for whito flamos. Sparks aro producad by mtroducing intothe composition tilings or thin chipsus wrought or cast iron, xinf", sterl, coppur- or fragments of chareons.
Irone Pilinges and very thin chips give most l, rilliant sparks and stars, the affects of whicla heremert almot entirely on the sike of the particles nasel|. The filings mast be made when wantad, or be very care fully preserved from rust.
 sparks, in fireworks (Chiness fire). sifect the whits: cont-iron, or take the pirers of utentils with thin: sides. 'To pulverize it more casily, leat it to a real heat and dorow it intor cold water.
 the most brilliant sparks.

Zine is a bhish-white metal, usually brittle, am its fracture shows a erystullinestructure. Speritio gravity, (6.!) ; melts at (5N00; is volatilizel at a red heat, and takes fire in the air, burniner with a lieht thame. At 400° it is easily reduced to a powder in or mortar. Granulated \%ine is used to protuce a blaislo thame. An altoy of \%ine and antimons bulerized gives beatiful bue drops. The oxite of zine (ftome-
 It mught to be purchased in salases, not in a powder. an in this hatter case it may be mised with foreign smbstances.
('upper filings are used to give reddish sparks and a greenisi blue flame.
Preparing Compositons.-Turpentine, spisits of turpentine. Venice turputine, tar. pitrh, and rosin. are chietly employed in the propation of empensitions for proclucing light. Alcohoh. whisky bramby, or vinegar is used in mixing compositions into which niter enters, as it don's not dissolve niter. It should be strong. To prevent it leeng drunk, mix a little asafetida with it. Beeswax ami matton tallow are employed in mixing compositions intended to procluce heat and light.

Gium arabieskould be transparent, yollowish-white, brittle, insipid. inodorous, soluble in water and vinegar, insoluble in aleolool. It is used in sohution to give borly and tenarity to compositions, or to make them burn more slowidy. It should be prepared as required, for when in solntion it undergoes a decomposition.
Maseellaneous Materials- Copprois a red, brilliant metal, possessing great tunacity, ductility, and matleability. Specitic gravity, 8.9; fusible at abont 1980°. Copper, being but slightly acted on by saltpeter. is employed for powder measures, utensilif for retining saltpeter, etc. Coppervessels should not be exposed to a great heat, or used for heating compositions containing sulphar, as the copper womld be rapidlyoxidized.

Bronze is used in the laborntory for ntensils and implements whel receive blows or act by pereussion, and replaces stecl and iron wherever there is danger of an explosion from a blow or from friction.

Freses is an alloy of about two parts of copper and one of zinc. llass wire is used for ligatures, for screens and sieves.

Shet-iron-Select the soflest and most pliable. When it is substituted for tin, in strapping projectiles, it should he first anmaled by heating it to a dull red heat, and letting it conl very gradually under warm ashes, not exposed to the air.

Lent is a Lluish-white metal, bright, but tarnishes quickly in the air. Sperific gravity, when pure 11.48: melts at 600 , and volatilizes at a red heat. The purity of learl is julqed of by its specitic gravity. To determine this, after having weighed the pig,
suspend it with a wire in a vessel of water. so that it shall be completely immersed. without touching the sides, and weigh it again. The weight in the air, divided by the difference between the weight in air and water, will give the specific gravity, which ought to be 11.35 for lead of commerce. Lead melted in contact with air is soon covered by a coat of gray oxide, which rapid!y inereases in thickness. The formation of this oxide, or dross, is prevented by covering the lead with powdered charcoal or rosin.

To reduce the axide of lead-Put in a kettle about 50 pounds of lead, with $\frac{1}{10}$ of its weight of powdered chareoal or grease ; cover the kettle, and raise to a red heat ; stir the mass, and add gradually more coa?., as it assumes a yellow color, using in all $\frac{1}{6}$ of the weight of oxide; dip out the lead with an iron ladle, and pour it into iron molds or pans. After having obtained in this way two-thirds of the weight of oxide, in lead, throw the dross into a tub of water, and wash it, to separate the ashes and coal; dry the remaining oxide and grains of lead, and put them in a ladle with $\frac{1}{20}$ of their weight of rosin ; raise to a red heat, set fire to the rosin, shake the ladle and pour off the lead. A further addition of rosin will produce more lead; $\frac{1}{17}$ of the weight of dross is generally used. Tallow may be used in place of rosin. When the quantity of dross is considerable. it may be reduced, in a simitar manner, in a small cupola-furnace.

I'lumbers' solder is an alloy of lead and tin, in the proportion of two parts of the former to one of the latter.

Paper.-Paper for cartridge-box wrappers should be homogencous, and without any trace of stalks; well sized, even, pliable, with a sood body without being too thick, free from folds or rents. The sheet when moistened ought to present a uniform lue. without spots or marblings. Taken ont of the water and snspended for a momeut by the extremities of the short sides, it ought not to tear from its own weight. The sheet crumpled in the hand or piuched with the nails, onght not to tear in the folds, and when toru the rent should be fibrous. A strip of paper 4 inches wide ought not to break under a weight of 40 pounds, in the direction of its least strength. In testing the strength of paper, the two ends are held by two vises of hard wood. Each vise is composed of two reetangular jaws, which can be brought against each other and held firmiy by means of serews, or by tenons on one jaw passing through the other and keyed firmly to it. A strip of paper 4 inches wide is eut and inserted in the vises, so that the length between thom shall be exactly 12 inches. The jaws are closed tightly, and one vise is shspended from a fixed point by means of a cord or hook, and to the other is made fast the

Size and weight of paper.

	Inches.	Weight, pounds.	Proof werght, pounds.
So. 1. For musket-cart ridg.s..	$13 \times 163 / 2$		40
Now. For musket-cart ridge wrupper.	18×20	36	101
	(16) $\times 14$	21	
צo. 3. Wrapper for Cart-ridge-box	$\left\{\begin{aligned} 18 & \times 16 \\ 20 & \times: 9 \end{aligned}\right.$	$\stackrel{27}{37}$	30
	124×0		
No. 4. Rockets and Port	19×24	65	180
No. 5. Fixed ammuntion	2316x44	60	225
No. 6. Cunnon-cartritLue	19×10	70	315
No. \%. Fireworks.........	13×164	20	K.

pan of a ladanee. It is loaded gradually, with care until the paper gives way. The strips should not be taken from thi edges of the sherets only, but from shl parts, aml from the length and breath suceressively, for in these two directions the strength is vory difcrent. laive sheets are generally taken from each ream, in which only one shect can have
less strength than that allowed. If this condition be not fultilled, the ream is rejected.
The other papers are tested in the same way, and sheuld possess the same general characteristies.

Tono should be entirely of hemp or flax, clean.dry, sound, free from stalks and foreign substances.

Merino or serge, for cartridge-bags, should be made entirely of wool; it should be strong, closely woven, twilled, and not frayed; the width should be ceven in the same piece; that $\frac{\overline{3}}{4}$ yard wide is convenient and the most common. The colors are to be preferred in the following order ; green, gray, yellow, blne, red, white; reject black, which is almost always burnt and weak.

Ganvar sbould be the strongest and closest woven; it is used for the sacks for fire-balls.

Troine should be strong, smooth, and well twisted .03 inch thick for sewing fire-balls, etc.; from .06 inch to .08 inch for fixing ammunition, etc.
Rope should be even and well twisted. pliant without being soft, made of hemp of good quality, waterrotted, and entirely freed from stalk. Its size should be uniform throughout its whole length. The rope most commouly used in the laboratory is whitelemp rope, from 1 inch to 1.5 inch in girtb.

Thread-Saddler's thread, of flax, three strands; used with paper boxes for revolver cartridges.

Qlue should be hard, dry, trausparent, of a brownish red eolor, and free from smell.

To Prepare Pastes and Glue.- Flour paste-Sift the flour and mix it with $8 \frac{1}{2}$ times its weight of water; heat it gently, stir it, and let it boil for three-quarters of an hour: when it becomes ropy pour it into bowls and pass it through a sieve before it is quite cold. The flour yields 7 times its weight of paste. Time required to make it, one honr and a half. It is best made of rye flour.

Starch paste.-Mix wheat starch with twice its weight of water, pour it gradually into $6 \frac{1}{2}$ times its weight of boiling water, and let it boil for ten minutes, stirring it all the tine; then proceed as before. Starch yields 8 times its weight of paste. Time required, one hour.
Paste for pasteboard.-Mix the flour or starch with 12 times its weight of water; this yields ? times the weight of flour and 11 times the weight of starch.
P axte mixed with glue--The addition of $\frac{1}{18}$ of glne makes the paste fit for pasting sheets of parchment together or for pasting paper on wood. Dissolve the glue separately and pour it into the cold water with which the flour or starch is mixed.

Chesse paste is made of fresh white cheese and also quicklime. Pound the cheese in a mortar with boiling water; let it stand and decant it; repeat this operation three or four times. Pound together 3 parts of this cheese thus prepared and one part of quicklime, moistening it with pure water till the paste ropes like honey. Propare only a little at a time. It is used iu pasting parchment and parchment paper. These different kinds of paste should he used cold. A supply for not more than two or three days should be made at one time; but it may be preserved longer liy adding alum iu the proportion of $\frac{1}{10}$ of the weight of flour. The depredations of rats may be preveuted by dissolving a like proportion of colocyuth in the water with which the paste is made.

No. 1.
(50 meshes in 1 inch, or 2.500 in

Hair siens
for mixing compositions.

No. 2. (one direction, 2 in the other. (25 meslies in 1 inch or 625 in a square inch, 2 hairs side by (side in each direction.
(12.5 meshes in 1 inch or 156 in

No 3.
one stuare inch, 3 hairs side (hy side in each dircetion.
No. 4. (180 meshers in a square ineh,
The sipves for the laboratory are made of brass wire, hair, or silk, aud may be square or round.

Jrass sicves ought to be nased only for dry materi. als. A silk sieve of 120 meshes to the lineme inch is used in preparing glass dust for priming composi. tions.
dhue is dissolved in its own weight of boiling water. A glue-pot with awater-hath should be used to avoid burning the ghas. Remove the pot from the fire as som ins lad ghe is found to be entirely dissolved. See Firmortis.

L'ABORER. - In a military swnes, any dircet and concentruted cifort whith is matle to destroy a fortification. The term likewise applies to the working of a bomb or shell, which excavites, plows up, and seatters the enrth about wherever it bursts. Saborer un rampart, signifies to brins several pieces of ordmance diseharged from two oblique directions 10 bear upon one center. Shedte are femerally wede on these oceasions, and the: chiof design is to secoud the operations of the miner in some particular part from which the explosion is to take plater.

LAC.- A sulstance obtained from incrustations made by an insect (Corcus lerea) on the branches and twigs of many trees in lndia. The lite is formed by the insect into cells, momewhat resembling a boney. comb, in which the insect is generally found entire, and owing to whose presence stick-lac yiedds by proper treatmont a red dye nearly, if not quite, as bright as that ohtaincel from coclineal, and more permanent. Lac is found encircling the branches of these tres in the form of a tube; the broken branches with incrustations at various distances are called in commerce stich-lar, whicla ourht to be semi-transparent. The coloring matter exhibitedlyyrinding stick-lace and then treating it with water, constitutes real-la", which, when melted up into masses, is called lump-lee. Shell-he is obtained by further purifying the seedlac. Late dye consists of the coloring matter cxtracted from the stick-luc. It is met with in small squares similar to indigo, and is used as red dye instem of cochineal. Lacdye is largely manufactured in India and (exported to England. In Bengal, lac is chictly produced in the forests of Sylhet and at Burdwan; it is also procurable in the Decean; but Siam and Peguafford the hargest supplies. Shell-lac is used for the manufacture of sealing-wax, ulso as varmish; in the latter form it is applicel for setting the fulminating rharge in gun-caps, and in conting loxer's fuses and friction tubes.

LACAY.- A name formerly given to an old French militia. The word is found among the public documents which were kept by the Treasurers belonging to the Dukes of Britany in the 15 th century.

LACE. - An ornamental fabric of linen, cotton, or silk thread, made cither by the Jands, somewhat after the manner of embroidary, or with machinery. The manufacture of lace by hand is an operation of exceeding nicety, and reguires both skill and patience of no ordinary kind, and the best productions of this fabric surpass all other tpplicatious of textile materials in costliness and beanty.

Whether the ancients reilly had any knowledge of lace-making, cxcepting gotd-lace, which will be mentioned at the end of this article, is not known, nor is it known with any certainty when this art came into practice in Europe; but there is good reason to suppose that point-lace, the oldest varioty known, was the work of Nuns during the latter half of the 14 th and the beginning of the 15 th centuries. This pointlace is very characteristic, and is truly an art production. The artistic character of the patterns, and the wonderful patience and labor shown in carrying them out, places them, as female productions, on a parallel with the decorative works in stone, wood, and metal of the Monks. They indicate no tiresome efforts to copy natural objects, but masterly coneeptions of eraceful forms and tasteful combinations. It will readily be supposed that an art depeuting so moch on individualskill and taste, would be likely to vary exceedingly; nevertheless, all the varieties esolve themselves into few well-marked groups, un-
der three distinet classes. The first class is the fouipere, which comprises all the truc necolle-workw] lace, whether ancient or monern; its varioties are: hose-point, in which the flgures are in high relicf, having arichcombossed appearance; I'enclianopoint. P'or-tugurse-point, Ifaltese-point; in dll of these the pattern is thatter than in the Rese-point, I'oint \mathscr{C} A lenem, and Bruserls-point. The lust two arestill made, the modcrn l'oint d'Alencon quite ergualing in beauty and value that male in the mirdle of the 17 th eentury, when its manufacture was introduced by the celelirated Colbert, Chief Minister of Louis XIV. The loint d'Akencon has very distinctive characteristics. When the pattern is once" lesigned, each portion may be worked by a separate person, and the various figures are then connectid loy a ground work of thereads, which are so passed from one ligure to another as to represent a wels of wonderful deliency and regulari-

ty ; small spots or other figures are here and there skillfully worked in where the thends cross each other; these are called modes, and not onlyadd much to the strength of the fabric, but greatly increase its richness of elfect. In all these varicties, but two kinds of stitches are employed, and these differ chiefly in the grater or less closeness of the threads employed. First, a series of threads are laid down all in one direction, so as to cover the pattern, and then a certain number of these are taken up and covered by loops of the cross-stitches, or are more lightly held together. The second class is pillor-lace, sometimes ralled cushion or bobbin lace, from the pillow or cushion being used to work the pattern upon, and the various threads of which the figures are made up, each being woumd upon a bobbin, usually of an ornamental claracter, to distinguish one from the other. The pattern, on parchment or paper, being attnched to the pillone or cusbion, pins are stuck in at regular intervals in the lines of the pattern, and the threads of the bobbins are twisted or plaited round them so as to form the net-work arrangement which is characteristic of this class of lace, the patterns, or figured portions, being worked out by a crossing of threads. which, although actually plaiting, gives the effect of weaving. The varicties of this lace are: Spanish, grounded Spanish, Saxony Brussels. Flemısh Brussels, Mechlin. I ctenciennes, Dutch. Lisle. Chantilly. silk and cotton blonde, Limerich, Buckinghamshireand Honiton. The last has of late jears luecome the most heautiful of all the varieties made in Great Britain. The Irish or Limerick lace has also taken a high position. The third class is machine-madelace, which, by its wonderful improvement and rapid development, has worked a complete revolution in the lace trade, so that the prices formerly obtained for handmade lace can no longer be commanded, whilst machine lace, of great beanty, has become so cheap and plentiful as to be worn by all classes. The lace-ma chine, or frame, as it is technically called, is so complicated that it would be hopeless to convey any really intelligible appreciation of it without a voluminous description of all its parts. One or two points of chicf importance may, Jowever, remove any difficulty in understanding its general principles. "First, then, as in the loom, there is a series of warp-threade, phaced, however. perpendicularly instead of horizontally, and not so close as in ordinary weaving, the space lyetween each being suthoiently wide to admit of a shilling passing edgeways between them. Behind these threads, and corresponding to the inter-
spaces, is a row of ingeniously constructed flat bobbins or reels resting in an arrangement called a combtar or bolt-bar. These are so placed that, with the first movement of the machine, each bobbin, which carries its thread with it, passes through two of the parallel and perpindicular threads of the warp, and is lodged in another and similar bolt-bar in front of the warp. But this frout bolt-bar, besides an adFanciug and receding motion, has another movement called shogging-from right to left. When it receives a bobbin by its forward motion, it draws back,bringing the bobbin and thread throughtwo of the upright threads: it then shogs or moves to one side, and goes forward again, taking the ihread through the next two warp-threads, and lodging the bobbin on the back bolt-bar again, one distance beyond its last space; this it recovers by the next movement, and it again passes through the first space, to be again received by the front bolt-bar. By these movements the bobbin-thread is twisted quite round one upright thread of the warp; anothermovement then shifts the bobbin, so that it will pass through the next pair of upright threads. and so carry on its work, the warp-threads moving at the sane time, unwinding from the lower beam. and being rolled on the upper one. There being twice as manr bobbins as there are threads in the warp, each bolt-bar having a set which it exclanges with the other, and all being regnlated with great nicety, a width of lace is made in far less time than hav been required to write this short description. The various additions to, and variations upon, these operations, which only apply to bobbinnet, for the production of patterns, are so numerous and com. plicated-each pattern requiring new complications -that it will be useless attempting to describe them; suffice it to say, they all depend upon the variations which can be given to the movements of the flat, disk-like bobbins. The history of the lace-machine is not very clear ; it is said to have been originally inveuted by a frome-cork knitter of Nottingham, from studying the lace on his rife's cap; but it has continually received improvements, among whicb those of Heatheote, in 1809-the first to work snccess-fully-Morley, in 1811 and 1824; those of Leaver and Turton, and of Clark and Marl, all in 1811. The manufacture of lace by machinery is chiefly located in Nottinghan, whence it is sent to all parts of the world; but we have no means of knowing to what extent, for, with that strange perversity which distinguishes the statistical administration, only threadlare is mentioned in the lists of exports, whilst the vast production of cotton-lace is mixed up with the returns of calico and other fabrics of that material. - Gold-lace and Silver-lace, properly speaking, are laces woven, either ly the land or by machinery; from exceedingly fine threads of the metals, or from linen, silk, or cotton threads which are coated with still finer threads of gold and silver; but in this country it is too common to designate as gold or silver lace, not only that which is rightly so-called, but also fringe made of the materials, and also gold and silver embroidery, such as is seen on trappings, and upon some ecclesiastical dresses, etc. Gold-lace is mule in London, lut considerable quantities of that used for decorating uniforms and other dresses, etro, in this couutry, is ohtained from Belgium, where it is an important hranch of manufactnre. France supplies much of the gold and silver thread used. tadedexels all other countries in its production, in some of the more artistic varioties of gold and silver lace and embroiklery. Italy has lately shown wroat taste and skill. The works of Laigi Martini of Milan attaned great eflebrity, and wore recently said to produce about $: \$ 6,000$ worth per amum.

LACERNE. -The shost woolen military rloas of the liomans.
LACHETE.- An opprobrions trrm which is froquantly used among the lerench, and appliarl in all instances of cowardice, want of spirit, cote.

LACHICHE SYSTEM OF FORTIFICATION.-This system las a front similar to that of Cormontaigne, except that the perpendlenlar equals $\frac{1}{4}$ of the front, and that the salient places of arms have fleches for reduits. In order to avoid the effects of ricochet and vertical fires, the artillery is placed under casemates. The curtain, the reduits of re-entering place of arms, and the faces of ravelin have casenates open at the rear. The lower gallery serves for musketry, and facilitates the ventilation of the upper casemates. The glacis las a sutficient command to mask all the masonry. The fleches protect the coveredway against entilade.

LACRERS-LACQUERS.-Varnisnes prepared fer conting metal-work, The formula usually employed is for gold color: alcolnol, 2 gallons: powdered turmeric 1 pound; macerate for a week, and theu filter with a covered filter, to prevent waste from evaporation; to this add, of the lightest-colored shell-lac, 12 ounces : gamboge, 4 ounces : gunt- sandarach, 32 pounds. This is put in a warm place until the whole is dissolved, when 1 quart of common turpentine varnish is added. A red lacquer, prepared by substituting 3 pounds of amnotta for the turmeric, and 1 pound of dragon's blood for gamboge, is extensively used.
The following -ackers are used for iron ordnance: 1. Black lead, pulverized, 12 parts; redlead, 12 parts; litharge, 5 parts; lampblack, 5 parts; and linseed-oil, 60 parts. The mixture is boilecl gently abont twenty minutes, luring which time it is constantly stirred. 2. Umber, ground, $3 \frac{3}{4}$ parts: gum shellac, pulverized, $3 \frac{3}{4}$ parts; ivory-b]ack, 3_{4}^{3} parts; litharge, $3_{\frac{3}{3}}^{3}$ parts; linseed-oil 78 parts; and spirits of turpentine, $7 \frac{1}{4}$ parts. The oil must be hoiled half an hour. The mixture is then boiled 24 hours, poured off from sediment, and put in jugs, corked. 8. Coal-tar (of good quality) 2 gallons; and spirits of turpentine, 1 pint. The turpentine to be added in small quantities during the application of the lacker. In applying lacker, the surface of the iron must be first cleaned with a scraper and a wire brush, if necessary, and the lacker applied hot, in two thin coats, witls a paint-brush. It is best clone in summer, when the metal is heated by the sun's rays, with gloves made of sheep-skin, the wool turned outwards, cut 0.4 inch long, the thumb alome being free. Ohd lacker should be removed with a seraper, or by scouring, and not by leating the guns or balls, by which the metal is injured. Ibout 5 gallons of lacker are required for 100 field-guns and 1.000 shot; about 1 quart for a sea-coast gun.
The lacker for small-arms is composed of beeswax, 13 pounds; spirits of turpentine. 13 gallons; and boiled linseed-oil, 1 gallon.

All the ingredients shonld be pure and of the best quality. Heat them together in a copper or earthen vessel, over a gentle fire, in a water-bath, until they are well mixed. For holsters, scabbards, ete, the following is used: Prussian blue (in lumps), 4 parts; sugar of lead. in parts; agua-fortis, Tio parts: linseed oil, hoiled, 70 parts; and spirits of turpentine, 24.6 parts. This mixture is used for the first and second coats. The ingredients, except the furpentine, are boiled together in an iron kettle eight hours, when the mixture will assume a brilliant black color. When the varnish is nearly cool, stir in the turpentine. The kettle in which the varnish is made should be of a capacity to lold double the quantity of varnish to be boiled. For the third or finishing coat, the following is used: (inm copal (in clean lump), $26 \frac{1}{2}$ parts; boiled linseed-oil, $42 \frac{1}{2}$ jarts; and spirits of turpentine, $\$ 1$ parts. 'T'o make this varnish, put the copal in the vessel, set it on a charcoal tire for one hour, in which time it will melt, and all the watery particles will evaporate. Add the oil whila the copal is warm, but not boiling hot. When nearly cool add the torpentine. Fors pounde copal and the proper proportions of oil and turpentine the vessel should nold 6 gatlons. Sce P'uints.

LACS D'AMOUR.-In llaralilry, it cord of rumning knots used as an external decoration to nurronmal the arms of widows and mamarried wontor ; the Fortrlier, which differs lut slightly from it, being used sionilarly with the shichle of married women.

LACUNETTE, - An carly turn in furtitiottion, sig. nifying asmall fosse or ditch. 'Tla' word fiemite: has since bern mdopeck.

LADDER BRIDGE. I (tompurary brifge furmed by rumniner a cart or gam limbor into the strenna antl secoring il there, with the shafts in a berticat pasition. by ropes from both siales of thererer. ome romp of is lather from cacla bank resting uponit, and covering thas slops or ruligs willa plathks.

LADLE.-1. J'ur rarrying the shot to the picees, there" are two kinds of latlech. The tirst consiste of ating amb stom of inon, fastaned to a woolen landla two twe longg. The inncre top eige of the ring is growser out to recerve the shos. The other latle. for carrying the barsost shot, comsists of atmilar rine, lo which stems are fixcel for comatering one single and one doulble latade, so that two men can be cmployed to carry the shot, the damble hamelle being to prevent the latle Prom taminig ower".
2. An implentent for remowing the powler or projecetiles from gums, when it is not desired to disrharge them. li consists of at lithle-beath, mathe of the same kind of wood antl in the same way as a rammer-head, and the latle: proper, which is of sheet-brass or copper, fastened to the head with coppor nails.

LADY OF MERCY, OUR.-. The Spanish Oriles of Kniohtlood, founded in 1218, by James I. of Aragon, in fultillment of vow made to the Virgiu during his captivity in lirance. The object for which the Order was institutet was the redemption of Christian captives from among the Moors, eacli knight at his jnauguration vowing that, if necessary for their ransom, lie would remain himself a calptive in their stead. Within the first six years of the existence of the Orler, no fewer than 400 captives are maid folave bern ransomed by its means. On the expulsion of the loors from spain, the labors of the knights were transferred to Africa. Their badge is a shield party per fess gules and or, in chief a cross pattee argent, in base four pallets gules for Aragon, the shicdel erowned withaducal coronet. The Order was extended to ladies in 1261.

LADY OF MONTESA. OUR. - Order of K niglithood, founded in 1317. by King James I1. of Aragon, who, on the abrogation of the Order of the Templars. urged Pope Clemont V. to allow him t, employ all their estates within his territory in founding a new Knightly Order for the protection of the Christians against the Moors. His recunest was acceded to by the following Pope, Jolin XXII., who granted him for this purpose all the estates of the Templars and of the Finights of St. Joln sitnated in Valencia. Out of these was founded the new Orler, which King Jumes named after the town and castle of Moutesa, which he assigned as its hemdquarters. The Orler is now conferred merely as a mark of royal favor, though the provisions of its statutes are still nominally observed on new creations. The batge is a red cross edged with gold, the costume a long white woolen mantle, decorated with a cross on the left breast, aud tied with very long white cords.

LAIDLEY PRACTICE-MUSKET.-In the construction of this gun the same form and motions of loading and firing as in the service-ritte have been retnined as nearly as possible, consistent with a molerate expenditure in its prodnction. An old smooth-bore nusket is taken, reamed out for a length of eleven inches, for the reception of a coil ribbon-spring, on one end of which a closely-fitting piston is placed. laving a stem of about five inches athached to its conter; a hole is bored throngh the breceh-serew and a cut made on its under side to receive a spring; a circular disk with a flaring hole through its center is
sercured in the birrel just in front of the ernel of the brecols-screw; a short laver erossers the ("1uc] of the luarrel just in front of this disk, atad is lowl in fosifon by the spring alronty referred to; fle lorse in the conce is conlarged and recoives a smatl spinclle witl is coblar at its mildle, which preverits it from rerning ont. Alont twaly incloses fromble breerha horizontal cut is mate thromgla ilte top of the larral. lataviner an ousening of two inclas in leneth: atylinelriosl phar, haviner a boble thromen its axle is insertoral in the harrel at this plater. athla hancila sarewod inn. In
 of 17 incloce, its unper emd ecounter-lumed, is inserte:d in the larrel and secured by a screw; the length of the blork is such as tor close the space betwern the chandiered recoss and the end of the immer barrel. A hole is lored through the silfe of the stack to connmanicate with the hole through that bremell-screw. T'o lond tha piece, loring the hammer to the latf-cork and compress the springr. 'l'his is most comvenjently done by fixing the ramerd in a cast-irom block at an aurle of alaont 45° with the liorizon. Seize the munsket as at charge bayonet, insert the end of the ram. mer in the murole, and press the musket down matil the spring is caught; withdraw the musket, hold it in the left hand near the lower band. the muzzle inclined downwards; scime the handle with the right land, turn it, and draw it back; takea dart between the thumb and fore-tinger, insert it in the hore, and push it well home with the thmmb. Je sure that no part of it projects; close the bruech-block and secure it by turning the landle. Cock the piece, and it is realy for tiring. 'The men in firing stand at a distance of 15 paces from the target. T'wo men use the same gim, firing alternately. Each man after fring goes to the target, extracts the dart with a claw tool, and records the value of his sliot. The other man Joads und tires as soon as the preceding dart is removed and the target is drar. In order to give the soliber the benefit of practice-firing at objects at long ranges, the difticulty increasing greatly with the distance of the target, owing to the blar on the sight wheu the eye is mjusted to the proper foeus to see distant oljeets, place a target at 500 or 600 yards distant, or as far off as convenient, so that it can be seen through the open window; place a target 15 paces from the firing-stand, at such a height that the distant target may be seen 4 or 5 inches below the middle of its lower edge ; mark on the floor the position for the feet of the man when firing, raise the longer leaf of the sight, aim at the distant bull's-eye, and fire; the slots will strike the near target if correctly placed, and the accuracy of aim will be sllown by the score thus made. The lueight of the target may lave to be adjusted after the first few shots.

LAISCHFS. - Thin metal plates which the ancient Gauls placed upon the buff-coats of infantry between the buff and the lining.

LAMBEAUX.-In lleraldry, a cross formed in the

Iambeaut upper like a cross pattee. but with the lower limb not widened, but terminating in a label of three points, "having," according to Sylvanus Morgan, "a great leal of mystery in relation to the top, whereon the first-born Son of God did suffer, sending out three streams from his liands, fret, and sides."

LAMBOYS.-In ancient armor, laminated skirts of snall overlapping steel plates. These took the places of both the taces and tuilles of the somewhat carlier times.

LAMBREQUIN.-1. A word used in IIeraldry in three senses: 1. The mantling attacherl to the lielmet, and represented as depending over the slifeld. 2. A wreatli; 3. The point of a label. See Label.
2. A leathern strap or flaphanging from a cuirass, which is often highly ormamented and made to reach as far as the thighs. Lambrequins frequently cover the helmet to protect it from wet and heat.

LAMPION DE PARAPET, A lamp generally used on a parapet or elsewhere in a besieged place. It is a small iron vessel filled with piteh and tar, which is lighted by the troops as occasion may require.

LANCASTER GUN.-A species of ritled cannon, which has been partially adopted in the British service. When the great difficulty of rifing leeavy ordnance to an extent to give a sufticient rotary motion to the projectile hecame apparent, Mr. Lancaster devised a plan by which grooves might be dispeused with altogether. Instead of a strictly circular bore, he gave his gun an elliptical bore, the elipse being of very small eccentricity. The major axis was not in one plane from end to end of the gun, but was made to revolve in the length, until it had moved round one-fourth the periphery of the elipse. The projectiles are, of course, elliptical also; elougated, and somewhat pointed in front. When the shell is projected, it must follow the twist in the bore, and the rotary motion thus imparted is retained to the end of the range. Several Lancaster guns were employed at the siege of Sebastopol, and some of them burst. But these were scarcely fair specimens, being service 8 -inch guns (with circular bore) bored to Mr. Lancaster's elliptical standard, and therefore weakened. The wrought-iron guus on his special model have given, however, more certain results. The special advantage clained for the Lancaster gun is that it fouls less than any of the other gnons in use. See Ordnance.

LANCASTER HERALD.-One of the six Heralds of England, ranking second in point of seniority. His oftice is said to have been instituted by Edward 111 ., in the $34 t^{\prime}$ year of his reign, when he created his son, John of Gaunt, Duke of Lancaster. Menry IV. raised Lancaster to the dignity of a King-at-Arms. Edward IV., after reduciug him back to the status of a Herald, abolished his office, which was revived by Henry VIJ.
LANCASTER PROJECTILE.-The earlier projectiles of this class, were made of wrought-iron, simply oval, but without any rifle-twist upon them; but more recently the shot have been bent to the shape of the bore; some of these had a wrought-iron casing put over a cast-iron projectile, and this, projecting four inches to the rear, carried a lubricant which the wooden wedges at the bottom sent out whileexpanding the casing so as to fill the bore. The weight of this projectile was 44 pounds, and its capacity for bursting charge, $4 \frac{1}{3}$ pounds. It was thick in the rear, and thin in the front, taperiug to a point.
LANCASTER RIFLE. - A small-arm having a sliglitly oblate bore. The twist, as found by experience to be most advantageous, is oue turn in 52 inches. The approved diameter of the bore is .498 inch, the length of the barrel being $3:$ irches. An eccentricity of .01 inch in loalf an inch is found sufficient to make the bullet spin on its axis to the extreme verge of its fight. The length of the hullet found to answer best with these rifles is $2 \frac{1}{2}$ diameters in lengtl with a windage of .004 or .005 of an iuch.
LANCASTER RIFLING.-This plan of centering the shot was used with partial success by the Euglish in the Crimea. The gin is rifled with two rounded
 grooves, each about one-third the circumference in width, so that the cross section of the bore is oral. Only a trace of the origimal bore is left int its minor axis. The major axis in the 30 -ponnder is 6.97 in. , and the minor axis 6.37 in., so that, considered as a two-rronved rifle, the grooves are 3 -iuch deep at the centers. The alsenceofshoulders to the two gronses converts the two plates of contact of the prejecotile with the rifling, intor rircular wrelges tending to burst the gun or to compress the projectile.

LANCE.-1. A weapon of war composed of a sharp steel blade, from 8 to 10 inches long, grooved liki : common bajonet will a socket at its base and two
iron straps for attaching it to the handle. The hanclle is of strong, light wood, with a tip of iron at its lower end and a leathern loop at its center of gravity to support and guide the lance. It is usually from $8 \frac{1}{2}$ to 11 fect long, and weighs about $4 \frac{1}{2}$ lbs. This weapon is not used in the United States service. The Russians lave their regular and irregular Cossacks armed with the lance. The Austriaus, also, have Lancers ; but the Polish cavalry use the lance better than any other people. The lavee, when not in use, rests in a leather boot attached to the stirrup, the right arm being passed throngh the leather loop of the lance; or by putting the lower end in the boot and strapping the haudle to the pommel of the saddle. Lancers are more formidable than other cavalry because they are able to reach further. Skill in combating a lancer consists in keeping to his left. in order to shun his lance. Pressed too nearly, the Lancer must have resource to his saber and let his lance rest upon his arm. The momeut in which he attempts to seize his saber is dangerous to him. The Mexican caralry are generally Lancers. 2. An iron rod which is fixed across the earthen mold of a shell, and which keeps it suspended in the air when it is cast. As soon as the shell is formed, this rod must be broken, and carefully taken out with instruments made for that purpose. Shells ought to be scrupulously examined with respect to this article, as they could not be charged were the lauce, or any part of it, to remain within. 3. An instrument which conveys the charge of a piece of orduance and forces it home to the bore.
LANCE A FEU.-A species of artificial firework which is made in the shape of a fuse, and is used for various purposes. Its composition consists of 3 parts of best refined saltpeter, $\boldsymbol{\sim}$ parts of flour of sulphur, and 2 parts of antimony; the whole being pounded and mixed together. The chief use of the Lance i feu is to throw occasional light across the platform, whilst artificial fireworks are preparing. They likewise serve to set fire to fuses, as they can be taken hold of without dauger. Lance de feu is a species of squib, which is used by the garrison of a besieged town against a scaling party. See Lances.

LANCE A FEU PUANT. - A stink-fire lance prepared in the same manner as a stink-pot, and used by miners. Whew a sapper or miner has so far penetrated towards the enemy as to hear the voices of persons in auy places contiguous to his own excavation, he first of all bores a lole with his probe, then discharges several pistols through the aperture, and lastly forces in a Lance a feu puant, taking care to close up the hole ou his side to prevent the smoke from returuing towards himself. The exhalation and stinking hot rapor which issne from the lance, and remain contined on the side of the enemy, infect the air so much, that it is impossible to approach the quarter for several days. Sometimes, indeed, they have had so instantaneous an effect, that in order to save their lives, miners, who would persevere, have been dragged out by the legs in an appareut state of sullocation. See Lances.

LANCE-CORPORAL.-The assistaut to a Corporal ; a private performing the duties of a Corporal. The Lance-corporal ranks above a private in the line, and usually performs the duties and possesses the authority of a Corporal, but does not receive a Corporal's pay
LANCE KNIGHT.- A Germanfoct-soldier ; originally one of the serfs who followed the camp in the scrvice of the common soldiers. See Lansquenets.

LANCE-REST.- A projection like a bracket, on the right sicle of a breast-plate in armor, to aid in bearing a lance.

LANCERS.- A deseription of cavalry soldicrs who are armed with lanecs. The type and perfection of Lancers are the Russian Cossacks, whose long lances anable them to combat with enemies at a distance from, which they themselves take little harm. The lancers were brought into Luropeau notice by Nia-
posicon, who friatly reliad pipon soms Polish regiments. After the peate of 1815, the urn was atopte ad in the English sorvior, hot it is thourht by many that the british lanorer has a watuon too short to conablu hinn to charge on an infantry spaare with any chance of sureess.

The lamer, like liae Poet," is born not fashioncel." In the lamds of the Jole the lamere, whether used to charge in line or in the blispursion of pursuit, is a traly farful wrapon; lout to those to whom loner practice in its use has not made it a sacombl mature, it is only cmbarassing, and more to be avoluled ly a commale than by a fooman. Still the apprebasion of being rian through has a powerful moral effect upon a man; and there is no sombld more appalling to at llyine chomy than " IJore come" the Lancers."

LANCES -Small paper cases, . 2 to .4 inch diam. eter. thlled with one or more compositions, ancla burnino with u flame of a particoular color. They are used to mark the ontlines of digures, and are attached to light frames of woot or sticks of bamboo. T'o make the cases, ent the paper into rectangles of a length equal to the required length of the chase and of such widthes as to make the case three thirknesses of No. 7 papor. The lougth of the case is generally about ten finses its exterior diameter, deperabling on the composition with which it is to be tilled and the timue it is required to burn. Daste the reetangle and roll it on an iron former with the land. When the cases are dry, cut them to their proper length.
lyace the cases in holes bored in a block of laard wood, the looles .02 inch lirger than the case, and their depth .25 inch less than the lenghl of the case. Drive in the bottom of eacla case a ladleful of clay. Insert in the top of the case a small funnel; pass the drift through the funnel into the ease; fill the funnel with eomposition; raise the drift one inch above the top of the case; press it to the bottom and give it three light blows with arocket-drift; continne in the same way, raising the drift above the top of the case between eacli volley until the case is filled to .25 inch of the top. Prime the lance with mealed powder, moistened with gummed water, and dip the "nd while moist in rifle-powder. When the case is to be filled with two different compositions, drive the case with the first composition till it is about .2 inchabove the required height; remove the surphas to the exact height with it gatge, and procecd with the sceond composition as with the first.

Bore holes .02 inch larger than the lanees, and . 5 inch deep, from 2 to 4 incles apart, according to the size of lince. The holes should be bored so that the lance shad be horizontal when the frame is in position. Dip the end of the lance in glue, and press it firmly in the hole, arranging the fances parallel to each other. Or they may be fastened to the frame by means of sharp nails or tacks, driven into the frame and projecting about 4 inch. The end of the lance is pierced with an awl, dipped in glue, and thrust on the point of the mails arranging them berpendicularly to the frame. See Firenorkis.

LANCE-SERGEANT.-An acting Sergeant. This position is given t Corporals when additional Noncommissioned ollicers are required to assist the officers of troops and companies in the discharge of their futy. If the Lauce-scrgeants prove themselves efticient, they are usually promoted as vacancies necur.

LANCES LEVEES. - Uj)lifted lances, indicating that the enemy was leaten. and that the Chevaliers or Gemarmes shond close the day by giving a final blow to the disordered ranks.
LANCE-SOCKET.- 1 leatlier socket which supports the butt of the lance when carried on horseback: called also lance-bucket. See Lance.

LANCE WOOD.-A wood valuable for its great strength and elasticity. It is prodnced by the small Iree guatteria virgata (natural order anonacea). Another species, F. laurifolin, yiedds the wood called white lance-wood. The later is not much used. Lance-wood is of great value in catriage construc.
lions, whert it is usme for shafts ant carriage-porates, for which it is espercially litter]. Thor part used is the main trank of thr tras. which is vary straight, and
 on. It commes in small fuantitios from thr Wirst Indias, chictly, however, from Intnaios.

LANDGRAVE. I (ierman mobleman of a rank forrosponaliaro to an linglish Darl. 'The wife of a lamdgrave is known as lundgravine.

LANDING. - In fortiticition, the portion of tha floor of tha gallary, botwere the framacs that bomal the onf-
 incr is in all cosors lori\%ontal, as well as that portion of an obligue return botweon the oblique frame amb the one next sumerofing, whioblast slomald not be placed farther than an ordinary interval from that furthest point of tha obligue frame. Siew Fallory.

LANDS, - In ordnance, the spares lotween the furrows or grooves in the barrel of a ritled gran. Sr. Barrel.

LANDSBERG SYSTEM OF FORTIFICATION.--This system consists of three unrevelted encirntes: the tirst of tomailles of 60° with small reflans in the reentering angles; the second, of a fatusse-braye, with bonnets at salient; the third of an ruvelopet of 125 to 205 yards faces replacing the eovered-way. In the main ditch there are casemated redonlots for musketry and artillery. The ramparts are much exposed to enflate; and all the mort so sinee there is 110 traverse; the absence of a covored-way exposes the place to an attack of vive force; the relict being small, escalate may be resorted to ; there is no provision made for sorties ; and the spare left for houses is very limited. Landsberg calculates that the ontlay will be much less than for Vinban's hexagon,and that a vigorons defense may lue expected from a garrison of 20,000 men and 60° guns.

LANDSTURM.-The Thild lieserve of the German Army, The German soldier, after remaining '3 years in the Active Army, 4 in the Reserve, and 5 years in the Landrehr, is drauglited into the Landisturm. which owes its origin to the wars of the First Empire, and was formerly a fore raised for home defense only. But, in 1874, a bill was passed by which the Emperor can summon that force of his own anthority in case of urgency, and the men of the Third Reserve can be draughted into the Landucelor if their services are needed. It is computed that this new organization will increase the strength of the German Army up to nearly two millions of men.
LAND -SURVEYING. - The measurement of the area of a portion, whether small or large, of the earth's surface, is an important application of mathematics, and involves a thorongh acquaintance with geome. try, trigonometry, and the theory and use of the instruments employell for the determination of angles. Fields or portions of ground of small extent are meinsurcl easily and with sufficient accuracy by a chain (for distances), and a box-compass or cross-stilli (for angles). For larger areas, the use of the surveyor's table is requisite; and for those of still sreater extent, in which the greatest accuracy is requisite in the determination of the angles, the astrolabe, theodolite, sextant, circle, reflector, micrometer, etfo are used. The surface to be measured is livided into triangles, which are separately measured and calculated; but when a large extent is included in the measurement. it is not enough to proceed from one triangle to another, in which way an error at thwoutset may be propagated with continual increase; but a lase line, as long as circumstances admit of, must. in the first instance, be accurately measured. upon which, by means of the measurement of angles, all the subsequent calculations are made to deprobland lines subsequently measured are only intended to be corrective of the results olstained by calculation. When the extent of surface is still greater, as when a whole country is to be measured. points here and there are astronomically determined, their meridians are accurately laid down, and a complicated system
of triangles is employed to insure aceuracy. This is called triangulution.

LAND TRANSPORT.-A branch of the Control Department. It comprises men of the Transport Companies, and cattle for the draught or otherwise of the stores and baggage of an army. Carts or wagons of the lightest nature should be used, and the horses employed to draw them should be driven and not ridden. Pack animals should only be used on emergency, when a sufficient number of carts cannot be obtained. In mountainous countries, resort mast he had to this kind of transport, is was the case in Abyssinia. But, as a rule, pack animals are to be avoided as being the worst and most dithenlt transport to manage. In India, the transport eonsists of houlock carts of the country, elephants, and camels. See Military Train.

LANDWEHR. - 1 military foree in several of the German States; somewhat forresponding to the militia of Great Britain. It is not always retained under arms. During peace. its members spend most of their time in civil pursuits, and are called out for military service only in times of war or of commotion -care being takeu, however, that they are sufficiently exercised to make them ready for such service when necessary. The name Landwelrr was first applied to the Tyrolese, who rose against the French; and in 1805° a similar force was raised in the other German Provinces of Anstria, which, however, the Emperor has recently abolished. By far the most elahorate and complete system of landdefense was the Prussian, which was called into existence in 1813, when all Germany rose against Napoleon. As early, indeed, as 1806, or earlier, Marshal Knesebeck, ihen a Major in the Prussian Army had proposed such a thing; but it was not till the opening of the campaign of 1813 that the Prussian Landwehr was organized according to Scharnhorst's plan by a Royal Edict, dated Mar. 17. At first, it was designed solely as a land-defense, properly so called, and not, what is now the case as an integral part of the regular army. It was called out in two separate levies, the first comprising all men from 26 to 32 , and the second those from 32 to 39 . The old men up to 60 belonged to the Landsturm. Which was called out only for the defense of house and hearth. After the second peace of Paris appeared the Landvehrordnung (Landwehr-regulation) of April 21, 1815 according to which the country was divided into 104 districts, each of which had to furnish a battalion of Landwehr. To every battalion of Landwehr was attached one squadron of Uhlans; three battalions formed a regiment; two regiments, a Landwehr brigade. which, along with the brigades of cavalry and infantry, was placed under a General of Division. By the Constitution of April, 1871, the Prussian obligation to serve in the army was extended to the whole German Empire. Every German capable of bearing arms, after serving in the standing army for seven years, has to enter the Landwelhr, and remain in it for another five years.
LANE. The term applied to a'body of soldiers in two ranks standing face to face, forming, in fact, a street, passage, or lane. The Freneh call this formation haie, or hedge. It is used when troops form a guard of honor for persons of rank to pass through.
LANGREL.-A villainous case-shot made up of var ious fragments of iron of irregular shape and size, so as to fit the borc of the cannon from which it is to be discharged. It was fornierly much used for disabling sails and rigging of shijs. Also written Langrage
LANGUED.-In I Heraldry, an animal whose tongue is of a different color from its lody, is said to be langred of that color. It is understond in Eingland that unless the blazon direct otherwise, all animals are langued gules whose tincture is nof gules, and an animal gules is lamenclazure. This rule does not hold grood in Scotish Heraldry, where "when the tongue, tecth, and claws are of different tinetures
from their bodies, they are to be mentioned as armed and langued of such a tincture."-Nisbet. When a least or bird is represented without teeth or claws, this is expressed in blazon "sans langne and arms." The term Lampasse is used in the same sense.
LANGUE DE BOEUF- - A sword of the 15 th century, with a tapering blade, about 25 inches long and 5 inches wide at the handle end. It was double edged, and very much resembled the paruzonium or small sword, of the ancient Greeksfand Romans, which they carried on the left side.
LANGUET.-A small slip of metal on the hilt of a sword, which overhangs the scabbard: the car of a sword.
LANSQUENETS.-German foot soldiers raised towards the end of the 15 th century. They eulisted voluntarily, and hired themselves out as mercenaries to any power that was willing to pay them. Charles VII. of France first added them to his infantry. After the 16 tho century the name fell into dis-

LANSQUENETTE.-A short, wide, two-edged, and pointed sword of the 16 th century. The handle was like a truncated cone, and flattened at the end to form the pommel.
LANTERN.-A contrivance for the parpose of giving light: it is made of glassor any transparent matt.r. There are two kinds of "lanterns, dark and Mus. cmy, which are ased at night in batteries or on the line of march.
LANTERNE.-1. An implement made of copper, resembling a round spoon ar ladle. It is fixed to a long pole and serves to couvey gunpowder into a piece of ordnance. 2 A Swiss cannon rammer, on a long shaft, the end of which contains a wadding screw. It was first used in the 15 th century.
LANTERN SLIDES.-Contrivalees used in transcribing microscopic despatches sent byearrier pigeons in time of war. The negatire should be very delicate and full of details; rather thin witbout being flat, and clear in the shadows. Intensification should be a voided, except in the case of line work. Especial care should be taken in adjusting and focussing the camera, as the subsequent enlargement greatly magnifies all defects. The slide is simply a positive taken from the uegative and may be of the same size, though it is generally reduced. This operation is best performed in a darkened room with a wooden shutter in the window. An opening in the shutter, of the proper size, is arranged to hold the negative, and the camera is so adjusted that the positive will be of the proper size for a slide. In this case, transmitted instead of reflected light is the active agent, and the length of exposure is very much reduced. The same care as before is necessary in the adjustment and focussing of the camera. The light passing directly through the negative should come from a clear sky. In case the horizon line is near the prolongation of the axis of lens, the negative will be unequally illuminated, and the positive will not be of uniform density. H'et plates are preferable for both negatives and positives, as the most skillful and careful manipulation will not insure clear glass for the highest lights of the latter when sensitive dry plates are used. The Collodion should be of a shiny color and the negative bath only faintly acid. Give free cxposure, and rather under-le velop with an acid develsper in order to obtain the requisite density. Use 45 minims of glacialacetic acid per ounce of Instantancous Developer. After the plate is fixed, should the lights be found veiled, the plate may be cleaned by flooding it with the following solution:
Potassium Cyanide........................... 20 grains.
Water.
. .1 ounce.
Saturated with iodine until cluar. Toning is best done with a 10 -grain solution of platinic chloride. It will frequently be necessary to use dry plates for lantern slides intead of wet phates because of the inconvenience attending the use of the latter. See Photography

LANYARD.-- A strong corct, one ent of which lats a small iron hook, and the otber a wooten handle. It is used for exploding the friction-primer when a picee is to be fired.

A new form of lanyurd has a sliding landla, which strikes a dixed lution on the cord, and thas cexplorles the primer. The farthere cond of the lamyard is lepled loy the left hand at the beight of the lireast, while the right hand slides the lamdle matil it strikes the button, usually opposite the right side.

LAPEL.-The facings of a comat. C'ntil the intro. duction of epmulettes in 1812 , the white lapel was gynonymons with a Licutcmant's commission in the British service. Commonly written Sapelle.

LAPITHAE.- I wild race inhabiting, in ancient times, the mountains of Thessaly. They derived their nane from anythiend ancestor, bupithes, a son of Apollo, and the brother of Centanros, the efpailly mythieal ancestor of the Centaurs. I bloody war is said to lave been waged between the kindred races in prehistorie times, whieh ended in the defrint of the ('ontants, but the Lapithe were in theirturn sul)dued by ITercules.

LAPPING. - 1. The process a gun undergoes aftor being rilled, also after "proof," for the purpose of removing any little burrs which nay be thrown up
 onthe edge of the grooves by the pronf rounds. The dgond. The ature of rope depends on the work o tensively used in erovernment arsends and irmories for grinding thin, flat pieces that cannot well be clamped for milling without retaining their winding Irregrarities. Witly this machine au unskilled work-
man can grime atrige surfuce at murbla lege expense than milling would cost. Diancter of lap, 18 incla(es: weight of marline 600 potants; spered of lap, 1,500 revolutions preminute; qued of countrershaft, G hy 's inch tight and loose pulle ${ }^{\circ} \mathrm{s}$, for revolutions per minute. 2. The wearing sway the latol-surface in a rilled ginn to case the entrance of the projectile.

LAP8E. - An expreqsion formarly used in the Ibritish Army to signify thr reversion of any military property: Thas, Hu(bit the sale or purchase of on (enmmission at the regralated difference, another (where there ate two) is athil to lapse in government. ('omminsions lapse or fall into thr patronace of govcroment, when vacumeios happen by death, by oflicers being supersedred, or where oflicers apply to sell who have only purehased a jart of their commissions. and have not survet longenongh to be entitled to seld the whole; in which ease they are only permittod in sell what they actually purchased, and the remainder is the gift of the grovirmment.

LAP.WELD.- A weld in which the welding relges are made thin, lapped one over the other, and welded.
LARGESSE-Money which, in early time, it was the practice to grant to Iteralds on certain state oceasions, for proclaming the style and title of the Sovcreign amd his Nobles. The regular ters, as recorded in one of the Ashmokean MSS. were: "At the coronacion of the king of Eugland 5100 apparalled in scarlet. At the displaying of the kinge's banner in any campe. 100 markes . At the displaying of a duke's banner, 土 $^{2} 20$; at "a marquis', 20 markes; at an carle's, 10 markes. The king marrying a wife, efo, with the gifts of the kinge's ind (fuecnce's uppermost garments; at the birth of the kinge's eldest son. 100 markes; at the birth of younger children, £20. The king being at tuy syge with the crown on his lueitl, £5."

LARIAT.-A long cord or thong of leather with a noose. The term is now commonly applied to a rope $1 \frac{1}{4}$ inches in circumference and 30 feet long, made of lialisu hemp, which ismuch used in the United States Cavalry service to picket the horses while grazing. See Lasw.

LARMES.- A term employed in Heraldry. When the field is bestrewed with an indefinite number of drops of a blue color, it is said to be gutte di larmew, a nomenclature peculiar to British IIeraldry.

LASCAR.- In the Easit Indies, a term signifying properly a camp-follower. but generally applied to native satlors on board of British ships. The Lasears make good scamen. but being of au excessively irrita-- We and revengeful nature are generally kept in the minority in a ship'screw. Such
 ployed in some of the Indian arsemals. At Hong Kiong and in Ceylon there are companies of Lascars in the pay of the British Government.

LASHES.-Formerly General Court-Martials comld seutence a soldier to roceive a certain number of lashes. It present this mode of punishment is prohibited, and no person in the military service is pumished by flogging, or by branding, marking, or tattoong on the borly.

LASHING.-The secnring together any bodies by means of ropes; there are two modes generally used, viz. square and dithat require to be fixed, lashing is resorted to. There are three kinds of rope used forlashing-log line. seizing line, and Hrmbri line. Lashing ised in monnting and dismounting gunsare of differcnt dimensions.

LASHING RINGS.-Rings fixed on the sides of artillery traveling-earriages, to lash the tarpaulin, as also to tie the sponge, rammer, and ladle.
LASH-ROPE.-A roje used in packing. The packs or loads are made fast and retained on the animal's back by means of a cinch and lash-rope. The cinch is made of strong canvas, about cleven inches wide and one yard long, donbled so that the edges are in the middle. Strong pieces of leather are firmily

stitched on both ends and on both sides, with the canyas cinch between, as slown in the drawing. A three-inch iron ring is mate fast at one end, and a hook of hart wooll at the other. Natural shapers are usually selected for the hooks. The laslu rope is of $1 \frac{1}{4}$ inch liemp rope or rawhide, about 35 feet long, with one end spliced to the cinch-ring, the other end served. See l'acking.

LASSO.- A loug stout cord or thong of skin. with a leaden ball at each end, employed by the Soutli Americans in capturing wild horses, nxen, etc. It is thrown in such a manner, that when it strikes the neek or leg of the animal to be captured, the impetus of the batl causes the cord to coil round the limb. The hunter's horse is furnished with a saddle having a high pommel, so that the hunter may coil his end of the lasso round it, or even fix it, if he chooses, though this latter practice often leads to dangerous consequences. The lasso was frequently used against Europcan soldiers duriug the contest of the South American Republics for Independence; and, though with very little success, by the barbarians of the Russian Army against the French sentinels during the Crimean War. Similar in its name and application is another implement consisting of a stout thong of hide with a slip-nonse, used in many countries; but chiefly among the Sonth American and Mexican hunters. It requires mnch greater address to use it successfully. In Mexico the lasso is called a lariat.

LASSO HARNESS. - A harness consisting of a brown leather surcingle and one trace. The surcingle is rather wider than a common girth, and is composed of two pieces (joined together by rings), one of which is placed over the saddie, and the other round the belly of the horse. There are also rings at the end of the surcingle, which is drawn very firmly cound the horse, and fastened tight lyy lipping a white leather thong (fixed at one end of the surcingle) through these rings. There are two descriptions of traces. one being 8 and the other 12 feet long. They have hooks at each end, and when the lasso harness is made use of by cavalry, ctc., to assist draught-lorses in moving bery heavy earriages, or in dragging guns, ete., up steepr hills, one of these hooks is fastened to ${ }^{2}$ ring in the sureingle, antl the other to the carriage. When fwo horses are in dranght, the traces mast be inside, and each rider shonld keep his horse's croup a lithle outwards.

LATCH CROSS BOW.- I form of crosshow, sjeerially alapted for sieges and for shooting at a mark. This was the weapon nsed lyy the (bucese at derincont in 1420 .

LATERAL COMMUNICATIONS. - In warfare, communianlions which should be kept up betwern the different portions of an army when moving from on common base lyg fliterent romds towards an ememy, so that, in case of a conematation being required on .any particular point, instructions and orders cou be
readily carried out, and the different portions of the army brought together with ragnility. To prevent any obstruction to communications being kept up, especially when advancing towards the enemy, the several roads on which the army marchess should not, if possible, be separated by rivers, morasses, or a mountain ridge; rivers would not be so objectionable, as they miglit be forded or crossed by bridges. Several roads tending in the same direction, with easy means of concentration, is the most satisfactory way of moving an army.

LATHE.- A machine in which the object revolves white it is shaped by a cutting tool applied to it. The art of turning is of great importance in gun-coustruotion and is extensively applict in mechanics, the most delicate articles of luxury and ormament, equally with most ponderous machineries being produced by it. As an art, it dates from a very early period, and Theodorus of Samos (about 560 B. c.) is mamed by Pliny as its inventor; but long before this perind, the potters wheel, the earliest and the simplest form of turning machine, was in general nse, as is evidenced by numerous references in Holy Writ. The inmense variety of work performed by lathes or tuming machines nccessitates great variations in their construction; lut their mode of operation is always the same, and consists in fixing the work in position by two pivots or otherwise, causing it to revolve freely round an axis of revolution, of which the two pivots are the poles, ond holding a chisel or other cutting tool so as to meet it during its revolution, taking care that the cutting tool be lield firmly and steadily, and moved about to different parts of the work till the required shape be obtained. Lathes are generally dividet, with respect to the mode of setting them in motion, into pole-lathes, foot-lathes, hond-icheel lathes; and poncer-lathes; with respect to the species of work they have to perform, into center-lathes, which form the outside surface, and spindle, mandrel or chuck lathes, which perform hollow or inside work, thongh this distinction is for the most part uscless, as all lathes of good construction are now fitted for both kinds of work. Bed-lathes are those used by turners in wood, and bar-lathes for the best sort of metal work; and the sinall metal center-lathe employed by watchmakers is known as a turn-bench. The primitive and most simple form of lathe for wood-cuttling is the pole-lathe. It consists of two planks or beams placed horizontally side by side with a narrow space between them, which, being firmly supported at a convenient height, coustitute the bed; of two uprights or puppets rising from the bed, one of them stationery at the left eud, and the other sliding along over the slit between the beams, and capable of being fastened at any required point by a projecting tenon and wedge beneath; of a treanle below and marallel to the bed: and of an elastic pole or lath (whence some derive the uime lathe) fixed to the ceiling above. This form of lathe is well adapted for turniug long thin cylinders of wood, the piece to be turned being held fast at each ent by the conical iron or steel point projecting from the inner face of each pmppet. Motion is communicated to the work by a cord which is fastened to the lathe overhead, wonnd twice or thrice round the work, and then attached to the treadle below. When the workman presses lis foot on the treadle, the work commences to revolve rapidly, unwinding the cord towards the treade, and winding it up on the side next the pole, causing the latter to bend considerably: During this period, the workmau has been loling his mutting-instrument to the work; lut after the triadle has been quite pressed down, he removes his foot, and the ration of the bent pole eanses the work to revolve in an opposite direction, till the pole has straightened inolf; and during this hater revolution, no cunting is done. When the whole piece is to he turned, the cord must be moved from an untinighed to a finished part of the work. For the pole, an clastic stecl bow and string are substituted

(ieabing, hathes, ate.], Foot-lathe. 2. Sorew-entting lathr. 3. Spindle-lathe, 4. Lathe with two drills
pivot-lathe. 1:. Wood and metal-turner's tools. 13. Copying turning bench. 11. Turner's tools. is VI-49).

ier-lathe. G, Small power-lathe. \%. Wheel-lathe. S,9. Cross support. 10, Spindle-lathe. 11. Jeweler's support.
when the work is light or fine, the cord being attached to the middle of the string, and the how fase tened to the ceiling by its center. Tlas advantage of the pole-lathe is that it never aequires in inmetus in the direstion of the entting motion, for whenever the pressure on the treadke is removed the reaction of the pole takes effect; but the grat wastr of time during the straightening of the pole and rising of the treade has caused the abandonment of This machine for the foot-lathe. The foot-lathe, the most common and gencrally useful form of lathe, dilisers from the former in having a head-stoch or fiastheced in olace of the feft-hand stationary puppet. 'This
large, coarse, conical screw for holding lirmly any hargen piece of woden work; the holloserchuck, a strong. (irenlar cup) with perpendicular sides, inter whirla ene and of the work is firmly fastened by is mallet, or, if (oc) small, by four sorews working inward throngh its sides; the drill-rhuek, of a rylindrical form similar to tha last, hat with a square cavity for lodedine drills, the instrument, and not the work, loring made to rotate in this instance; and the comerneric chuck, a most. ingenions piece of mechanism-a lat plate with two slits almost to the center, and in lin* of a diameter, within which slits works a spindle, with serew-ende carrying two steel studs, whose hads project through

Fig. 1.
head-stock, consists of two supports or puppets the slits above the surface on the right side; these firmly connected at their base, and fastened at right angles to the bed by means of serews. The outer puppet is pierecd for a screw and the inner one is sopplied with a steel collar, within which the mandrel carrying the speed-pulleys turns. The left end of the mandrel is concave, so as to allow the stecl point of the screw to fit ctosely. A rest, which slicles along the slit between the two beams of the bed, and which may be clamped at any point, and elevated or depressed as is found necessary, is used by the workman for the purpose of leaning lis cutting-tool upon, in order to afford it a greater stcadiness. The pulleys on the spindle and mandrel are of different sizes, and so arranged that when the endless band is heads carrst two curved pieces, which serveas dampa to hold the work; and as the spindle-screws are of the same fineness, and with right and left threads. the revolution of the spindle either removes both further from the center or brings both nearer to it; hence, when the studs are once set at equal distances from the center, they always remain so, and the work may be removed and replaced without danger of destroying the adjustment. All these chucks are of metal, and are mostly employed for heavy work; turners of wood or ivory preferring wooti. chucks, which can be altered as required, and secured by an iron ring round the outside, to prevent split, ting. The cutting-tools employed are various; goug-

placed on the left-hand pulleys, an extremely rapid motion is communicated to the mandrel, the motion heing reducedmore and more as the band is transferred more to the right, till, at the extreme right, the rotatory motion is much slower than that of the spindle. When the foot-lathe is required for centerwork, the inner end of the mandrel, is furnished with a point; but when hollow or inside work is to be done, it must be armed with a screw. In this latter case, certain contrivances, known as chuchs, for holding the work, are serewed on to the end of the mandrel. Some of these most commonly used are the screa-chuck, which shows on its right side a flat circular surface, from the center of which projects a
es are used to rough out the work-if soft wood -after which chiscls with a straight obligue edge are employed: the instruments for harder materials, sach as ivory' or bone, are smaller than the former, and have their sharp edges "better backed:" for in-side-work. drills are first employed to make an operning, and then cutting-tonts of various shapes are eniployed, according to the form which is wished to be given to the interior surface. Fig. 2 represents a frill set of twelve tools for use with the lathe. To aroid the imperfections in the workmanship arising from unsteadiness of hand in the workman, the side-rext is emploved. This valuable addition is furnished with two motions, one toward the work, and the
other along, paralles, or at any inclination to it, according as cylindrical or conical figures are required; there is a socket for the chisel, which is tirmly held in its place by a sercw; and after the slide-rest has been adjusted, the operator lias only to move the rest forward or sideways, as may be required, the motions being effected by two screws and winches. The hanel-arhel dathe is similar to the former, but so much larger as to require two workmen. one of whom is employel in setting the instrument in motion by turning a wheel. The porer-lathe, represented in Fig. 1, is similarly set in motion by horse, water, or steam power, and is used for heavy metal-work, as pis-ton-rods, iron columns of various kinds, wheels, artillery, etc. This machine differs from the foot-lathe cluety in the substitution of rack-work, and wheels and pinions, for the eudless band, and for mamal labor, in the various adjustments of the machine. sueh as in moving forward the tail-stock, ete; and in the mandrel being supported by both puppets of the liead-stock. Fis. 3. shows an improved shafting attachment, and when fed in connection with the lathe, makes a convenient arrangement for turniur a large amount of slafting. The latest patented device in this line is the Pond shaft turning attaclument with a rotary force pump. It consists of a reservoir bolted to the sliding rest, luaving strong housings to be bored to receive plain split rings for size and steadying, or fluted rings that will mill to size. Three cutting tools precede and one water polishing tool follows above rings, aud are all on front side of slaft to be turned; on hack of shaft opposite the cutting tools is an adjustable support. The pump attachect to reservoir
circuar figures is by screwing on to the mandrel an apparatus, by means of which the work can he thrown ont of the center of rotation at regular intervals: but as each different class of form requires a separate kind of apparatus, it is impossible lecre to describe the operations in detail. One specics. however, known as rose-engine turning, and employed for producing involved curvilineal figures, such as appear on bank-notes ayd on ormamented gold, silver, or gilt work, is so peculiar and ingenions as to call for more special notice. In this species, the standards which support the mandrel are no longer fixed at right angles to the bed, but are capable of oscillating backward or forward in a plane parallel to the plane of rotation of the mandrel, and are so acted on by a spring that when pushed to one side they are at once restored to their former position on the pressure being withdrawn. Suppose, then, a metal wheel with its rim waved or indented, fastened concentrically on the mandrel, and the mandrel. pusled aside by a fixed steel point or roller, applied to the rim of the where; the reaction of the spring agatnst the pressure of the roller will keep the latter in close eontact with the waved rim througlout, and will produce a definite oscillatory movement of the mandrel of the cluck, and the work fastened on it, and consequent-ly-the catting or graving tool being firmly held by the slide-rest-definite deviations from a circle in the lines marked on the face of the work. The waverimmed wheel, called a rosette, may be replaced by another, and that by a third, and so on till a snfficient number of different waved lines are obtained. A number of rosettes are generally strung at once on

Fig. 3.
driven from lathe-counter, forces water on to cach the mandrel, and the fixed gnide is brought into cutting tool. Pressure of cach stream can he regulated as desired. The reservoir is so constrncted that it catclies the falling water which is pumped again without waste. The reservoir may be readily removed, leaving regular lathe for general work.

In wood-turning. the wood is prepared by an axe and rasp, must be lightly though firmly pressed against by the eutting-tool; while metal-work must be cleaned from the sand of the mold or scales of the forge, and in turning, requires less care. Soft woods must be made to revolve with great rapidity; very hard woods and brass reduire much less velocity; wrouglat iron and ropper, still less; steel, a further diminution of specd ; and cast iron, the least velocity of all. After the work las been duly shaped, it reguires to be polislued; and this is effected while it is still in the lathe and rotating, by applying shark's skin to wood, pumierestone and chalk to ivory and horn, and emory, tripoli, or putty powder to metals. 1litharto, we have suplosed that the axis of revolution of the work is fixed, and conseguently that ald work was turned to present a transverse circular scetion; but other forms of section may be easily obtained. The gencral mode of obtaining these non-
gearing by means of a steel band called a rubber, witl one rosette after another. Similar concentric curfes of greater or less perimeter are obtained hy removing the slide-rest from, ol bringing it nearer to, the axis of revolution. See Axle-lathe, Enginelathe. IIand-lathe. IIeading-lathe. Shafting-lathe, Spin-ning-lethe, and Turning.

LATIGO STRAP.- A strong strap of leatlier used with the aparejo-cincha to tiglaten the aparejo. It is about 6 feet long, $1 \frac{1}{2}$ inches wide at one end and tapering to $\frac{1}{2}$ inch at the other. See H ammer-cloth and Packing.

LATRINES.-Conveniences for soldiers in campls and Jarracks. Muchattention lias of late been devoted to their construction, a large percentage of the army sickness having been traced to their defective and impure condition.

LATTE.- A struight saber used by the cnirassiers "

in France.

LATTICED.- latticed, or Treille, in Ieraldry is a term applied to a shieli covered with a decoration resembling fretty, but difforing in this respect, that the pieces do not cross ofer and under each other: those directed from dexter chicef to sinister base are
placed uppermost and clomé, hat is hatve mails inserted nt the joints. See /heraliely,

LAUNCH, -To launch u gen or other ohject forward or lanekward is to move it in the diecetion of its axis. If the weight is such as to repuire levers or handspikes, they are placed, usunlly, on opposite sides, nand the power applied by bearing down, it the same time carrying the free end of the lower in a direction contrary to that in which the object is to be mover,

LAUNDRESS. - A cam]s womun, usually the wife of a noldier, employed to wash soldier's plothing.

LAUREL.-By the anciont (ireeks, the laurel was called daphne; it was sacred to Apollo. Berrybearing twigs of it were wound round the forehend of victorions herors and poets; and in later times, the degree of Doctor was eonferredwith this c'remony whence the term Latureation; and. acrording to some the term Bachelor. And to this alay a harel crown is the emblem of honor to which pocts, artists and warriors aspire.

LAVURE.-The grains, dust, or detached piceess of metal which fall in casting eamon.
LAW.-l3lackstone says Law means the rules of human netion or conduct. This detinition is too wille, for it is confined only to sueli rules ats Courts, supported by proper anthority, will enforce. 'l'he Jaw of Nature consists of those laws which are common to all mankind, and are supposed to be, as nearly us can be eonjectured, independent of the aecidents of time und place. The Civil or Municipal Law of a nation is what is commonly understood ley the term Law, when applied to a particular country. The "Civil Jaw" is also sometimes used par" perelfence to denote the old Roman Law as embodied in the Institutes of Justinian, the Code, and other parts of what is commonly called the Corpus Juris C'icilis, Many of the leading doetrines of that taw have been adopted by modernnations. England is the civilized country which Jans adopted the Jeast from the Code of Law, while Scotland follows Continental nations in uloptiug the Roman or Civil Law to a large extent, and on many subjects in adopting it entirely. The Law of Nations is subdivided iuto Public International Law, and Private International Law, or the comitas gentium. Law is often used ia Fingland as contradistingnished from equity, but this is chictly due to the accidental circumstance that there is a subdivision of Courts into Courts of Law and Equity, according to the nature of the remedy given. Law is also often in popular parlance distinguished from Justice, the latter being supposed to be perfect in its nature, or as near the standard of perfection as can be supposed; whereas there are numberless cases of injury, hardsbip, and oppression which, owing to human infirmity, no system of hmman laws can adequately redress; and this is often adduced as confirmation of the doetrinc of future rewards and punislaments. Law is also sometimes subdivided into Criminal Law, Constitutional Law, etc., accord. ing to the particular subject matter. See Articles of Har, Execution of Lanos, International Laic, Martial Lan, and Military Lar.

LAW OF ARMS.-Certain acknowledged rules, regulations, and precepts, which relate to war, and are observed by all civilized nations. The Jaw of Arms also shows how to proclaim war, to attack the enemy, and 10 punish ofienders in the camp, etc.

LAW OF NATIONS.- Luch general rules as regard the Embassies, reception and entertaimment of strangers, iutercourse of merchants, exchange of prisoners, suspension of arms, ete. See International Iaw.

LAWS OF WAR.-The recognized rules for the conduct of civilized warfare. These rules relate to the treatment of prisoners, non-combatants, spies, traitors, ete.; the disposition of private property, the rights of capture, occhpation and conquest, the establishment of blockades, the rights and obligations of neutrals, ete.

LAPETTE. - A three-sided tray or bos without a
cover, used to chary powder from one mortar to another in powder-mills.

LAYINO A OUN. In grmancry, pointing is gidn so that the projerotile shall strike the objeret aineed at. This is cifectud by bringing the top of the notrla of the hind sight, the apex of the foresiglat (whether muzale or trimnion), and tho objeet in line. In laying a ribled gnon, the sorales for elevation and dallocetion must be lirst idjusted. This being donre, No. 1 of the gun's rocew jroeceals to lay the gun. Ile places himself in reme of the gun, loringing his ege to a lovel with the toj) of the hind sight, amb about of incloes in rear of it, and, when laying grans where it is necessary to stoop, blares hia feet so that the borly is well batancod, stestlying himself ly Jeaning on the grn with his arm, and gives the nerossary orders for clevating or traversing, until the ghat is lajel as shbove: with diedd guns lo himscelf clevales or fee prosses. With ghnes fitted witla a trav゙ersing bar, the final adjustment is griven by No. 1 himself. In laying a gran, it is well to avoid putting the bark of the mail on the top of the sight, the hand to cower the eye, hohding the tangent seale, wr wher jomularity. In brecrlo-loading and muzal loading riflod guns, provision is mate in the sighting to meret what is known as the constant efffection of such guns ('aumed ly rifling. To provide also against defleetion by wiud or other inaccuracies, such as one wheel hoing higher than another, a cletleetion seale is attached lo catel gun. Formerly, guns which had no tangent scole were elevated by merms of the quarter sights or quadrant.
LAY TORPEDO. From the date of the destruction of the rebel ram J lbermarle. in 186t. by a sjair torpedo invented ly W. W. Wond and John J. Lay. Col. Lay has devoted his entire time to the invorntion and construction of submarine torpedoes. Seve eral forms of Jay spar torpedoes to be operated on ship-board are in use in the Russian Niavy. The torpedo or explosive charge, usually of dynamite, is fixed to the end of a long spar, and is thrust out from a swift torjedo boat, or armor-clad slip, under the liull of a vessel sought to bedestroyed, amil there exploded. The electrical self-propelled torpedo boat of Lay's invention is in extensive use in Europe, especially in Russia; and two sucla boats are owned by the United States Government. Some of the lussian boats were built in the Uuited States. The bout is a spindle; in length, some twelve or fifteen times its diameter. The boats are built from 600 pounds to $2 \frac{1}{2}$ tons in weight, and cost from $=3.000$ to $\$ 15,000$ cach. Each boat carries a propelling engine, the motive power being usually carbonic acid gas, retained in a chamber or reservoir, under a pressure of 600 to 1,000 pounds per inch when the reservoir is first charged. The throttle valve is opened and closed by a magnet, or by a gas cylinder actuated by a magaet. The boat carries a coil of telegrapll cable, of about the specitic gravity of water. As the boat adrances, the cable is reeled off. and passes out of the boat through a jupe, which couveys it back past the serew propeller. When the cable reels out. sca-water is permitted to enter the cable compartment, and so maintain the specific gravity of the boat. The rudler can lee set to port or starboard, or held amidships, by means of an eugine controlled by a maguet in councetion with the telegraphic cable.

The boat will usually run just under the surface of the water, butcan be raised or lowered in the water by the admission or ejection of water-ballast, the water beiug forced out of the ballast chambers by the pressure of gas from the gas reservoir when a cock controlled through the wire is turned; or the boat may have rudders to deffect it upward or downward in the water, these rudelers being controlled in the same way as the steering rudder. The sight rods. or target rods which project above the watcr have the forward side painted of a color such as not to be casily distinguished from the water: the side toward
the operator is bright colored. These target rods may be fixed on the boat, or may be made to turn down or to telescope into the boat, the movement being coutrolled in such ease by a gas cylinder controlled by a magnet. The firing-pin when thrust in, by encountering an obstacle, cuts out a resistance
crease of speed is obtained is not yet divulged. The Whitehead fish torpedo, of English invention, is somewhat like the Lay torpedo in the fact that it is of spindle shape. is driven by a serew from a gas engine inside, and carries a bursting charge. Here the resemblanee ends, as the torpedo, when once pointed

The Lay Torprdo (Longıtudinal Section).
A. Dynamite Chamber.
B. Gas Reservor Compartment.
C. Cable Compartment.
D. Propelling Engine.
F. Steering Engine.
G. Propellers.
H. Cable Tube.
I. Firing.pin.
coil and closes an electric circuit through the cable to firt the clarge, which is in the front part of the boat; or the operator on shore or ship-board who direets the boat through the telegraphic eable may fire the charge by a touch of the firing key on the key-board. The shore or operating end of the cable is connected with an electrie battery through a switel. board. Suitable keys on the switch-board control the throttle-valve, steering-gear, and all other operative mechanisms on the boat, by a current through a single electric wire. The ingenious electrical devices by which so much is accomplished, are the inventions of Mr. George Haight, Colonel Lay's idea having been to have a separate wire in the cable for each machine on the boat. The front end of the boat, which earries the charge, is sometimes made detaclable, and is thrown off from the boat before firing: generally, however, the boat is to be sacrificed with the enemy which it seeks to destroy. The operator, by watching the sight targets through a telescope, is enabled to guide his boat to the enemy with certainty, or, if the evemy is beyoud his reach, he ean direct the boat back, and by cutting out the tiring circuit on his switch-board the boat can be safely handled, as it carries no percussion firing mechanism. The lay torpedo boat can be eontrolled at a distance of more than a mile and a half. As recently improved, it will ron for distances of nearly a mile at the rate of about thirteen knots. The dithiculty in olstaining higher speed has been the tendency of the compressed gas to freeze by expansion. Dr. Kellogg, of Hartford, Com., and Mir. llaight have each devised apparatus to utilize the heat of seawater to prevent freezing, and with the san at summer temperatures, very good results have been oblained, in increasing the speed of the boat. Mr. G. M. Reynolds, of the Delameter Works, New York, has also matle valnable improvements. Mrssrs. Geo. Haight, W. 1I. Wood, and William Winsor, of New York, have re. cently invented an improvement by which the danger of freezing of the gas is substantially done away with, and a speed at the rate of sixteen knots is said to have been attained, with a probability of still further increase. The meehanism ly which this in-
and started, is no longer under control, but must go its course, wherever that may tend. As it has less speed and is much more expensive than a rocket of equal size, it would seem to be much less desirable. See Torpedoes.
Lazards.-A military Order formed at Jerusalem by the Cliristians of the West when they were masters of the IIoly Land. They received pilgrims under their care, and gnarded them on the roads from the insults of the Mohammedans. This Order was instituted in the year 1119, and was confirmed by a Bull of Pope Alexander IV. in (1255), who gave it the rule of St. Augustine.
LAZY TONGS. - Before the lazy tongs, or pantograph, as it is now known, was introduced much time was spent in contriving some ingenious make-shift to properly transmit the reduced motion from the crosshead or trunnion of the engine. Fig. 1 shows how the Bacon pantograph attaclmment is applied to one of the adjusting nuts which steady the cross-head on the brass ways, while the cross-head lies in a horizoutal plane, as in many of our old-fashioned horizontal engines. One of these adjusting screws is lifted a little, the two long links are shut under each side of the serew underneath the head, and the head then serewed down upon them, making it perfectly rigid, but at the same time not altering any adjustment of the engine. Here alittle point must lie borne in mind by the party who is applying this device. It will he seem, by reference to Fig. 1, that we have attached the device to the back end of the cross-head ou the outsite of the guide, and that we must allow the crosshead to travel precisely as far one way as the other, and must take the end of that side of the eross-lucad to which we have made the attachment for our center line, and not calculate from the center nut shown on that side of the cross-head. Now the post, the top of which is shown in Fig. 2, which supports the other end of the pantograph, mast be exactly square with the portion of the cross-head to which we have attaeleal the pantograph, when the eross-head is in prerisely the center of its travel. In other words, we must allow the difference between the contral nut and the Ione on the end, as shown, from which to obtain our
central line. The arms of the pantograph are shown shut up as much as they can be when attached prop)erly. The support of that end of the pantograph from the post, which is shown at its outer nrms, hand the cord-screw in the short cross-bar, must be precisely in line when the pmotograph is in this position.

Fig. 1.
else the diagram is worthless. The end of the post must be high enourh, so that the pantorraph lies perfectly easy and without any cross-frietion or draught. Fig. 2. shows the applieation of the atthehment to a

Fig. 2.
perpendicular guide or cross-head, which is vertieal. In this partieular ease the two links are rum under the connection between the cross-head proper
and the brasser or guides. The bead of the post is also shown in Fig. 2. In Fig. 3, we have the Conliss guide where the links are put under the wijnsting scerew at the top. This may be done hy boring a hole into the cross-head and screwing in a piece of three-eighths romnd iron, the outer end of which is Hattened, and has nn "ye drilked throngh it, then drop, the tapering stud on the out end of the pantos. graph inte the cye whenever it is desired to use the pantograph. Fig. 4 shows the whlfashioned pendulum atached to a vertical guide or way. In this case, a litte: slot in the lower emed of the pantograph

Fig. 3.
is nccessary; the links may not nefessarily be nsed in the positions shown, hat may be brought up at right angles, leaving the slot to make allowance for the circle described. This attaehment avoids drilling, tapping, taking out the screws that contine the gibs, or defacing the engine anywhere. On slowmoving or condensing engines these attachments can be applied so that the pantograph can at any time he hooked on while rnnning, and diagrams can be taken from the high or low pressure cylinder, from the prmps, standpipe, or anywhere that is necessary. It is a simple little convenience, and, as has been

Fig. 4.
so clearly and frequently shown, it saves a great deal of vexation and delay, and ensures more aceuracy in the work, if only a little pains are taken. One point must also be observed in using the panto-graph-that is, to allow a little leeway between the carrying pulleys of the indicator and the cord-per. This attachment is solely maunfactured and for sale by the American Steam Gauge Company, of Boston. It costs very little, and it is certainly a labor-saving and an annoyance-preventing device. See Pantograph.
LEAD.-1.The slight forrardinclination of the asle-tree-arm is ealled the bend; the hollone of the armand leal together are termed the let of the nrm. 2. A Huish-white metal of considerable brillianey, which soon disappears on exposure to the air. owing to the formation of a thin film of oxide. It is so soft that it may be cut or beaten into thin sheets, lut in ductility and tenarity it is low in the scale of metals. It is readily fusible at a temperature of about 625°, and at a higher temperature it absorbs oxygen rapidly from the air, and the oxide thus formed volatilizes in the form of white fumes. The combined aetion of air and water ou lead is a subject of great practiend importance. in consequence of the metal being so frequently employed in the construction of cisterns and water-pipes. The lead becomes oxidized at the surface, and the water dissolves the oxide: this soIntion absorbs the carbonic acid of the atmosphere, a film of hydrated oxycarhonate of lead (Pho.ilo $+\mathrm{PbO}, \mathrm{CO}_{2}$) is deposited in silky seales. and a fresh portion of oxide of lead is formed and dissolved.and in this way a rapid corrosion of the metal ensues. This action is materially increased by the presence of some salts and diminished by the presence of other salts in the water.

Pure lead is of very rare occurrence. Almost all the lead of commeree is obtained from galena, the native sulphite of lead, by a process to be presently explained. The lead thus obtained is often nearly pure, and to obtain it perfoctly pure it should be reduced with black flux from oxide left by igniting pure nitrate or carlonatc. The compounds of lead with oxygen are four in number--viz., a suboxide $\mathrm{Pl}_{2} \mathrm{O}$, which is a black powder of no importance; a protoxide, PbO , which is the base of the ordinary salts of the metal: a binoxide, PbO_{2} : and red lead, which is a compround of the two last-named oxides, and is usually represented by the formula $\xlongequal{2} \mathrm{PbO}, \mathrm{Pb} \mathrm{O}_{2}$. The protoxide is commonly known as Litharge. It is obtained on a large scale by the oxidation of lead in a corrent of air, when it forms a sealy mass of a yellow or reddish tint. If the oxidation be effected at a temperature below that required for the fusion of oxide, a yellow powder, termed Massicot, is obtained. Litharge is much used by the assayer as a flux ; it enters largely into the composition of the glaze of common earthenware, and it is employed in pharmacy in the preparation of plasters. A mixture of 1 part of Massicot with 10 of brickdust, made into a paste with linsced-nil, forms the compound known as Dhil Mastic, which, from the harduess with which it sets, is frequently employed to repair defects in stone-facings.

The most important of the salts of the protoxide of lead are-1. The Carbonate ($\mathrm{PbO}, \mathrm{CO}_{2}$) which occurs native as a beautiful mineral in transparent needles or fibrous masses, and which is prepared under the name of White Lead on a large scale as a pigment by a process to be subsequently described. The carbonate is insolnhle in water. nnless it is largely charged with carbonic acid. It is quickly blackened by exposure to hydrosulphurie acid (sulphureted hydrogen), either in the form of gas or in solution, and his is a serions draw back to the use of the lead salts as pigments. 2. The Sulphate ($\mathrm{PbO}, \mathrm{SO}_{3}$), which occurs native in white prismatic crystals, and is formed as a heavy white precipitate on addling sulphuric acid or a soluble sulphate to a soluble lead salt. 3. The Nitrate (PbO.NO- $)_{5}$, which is formed by dissolving lead or its protoxide in dilute nitricacid. 4. The rhemmetes, of which the prineipal are the neutral chromate or chrome Yelloin $\left(\mathrm{PbO}, \mathrm{CrO}_{3}\right)$, and the dielaromate or Orunge (Mirome. These are much used in pigments, and in calico-dyeing. 5. The Acetates. The ordinary or neutral acetate ($\mathrm{PbO}, \mathrm{C}_{4} \mathrm{II}_{3} \mathrm{O}_{3}+3 \mathrm{aq}$.) is prepared on a large scale by the solntion of litharge in distilled vinegar, and evaporation, when the salt is obtained in foursided prisms, or more commonly in a mass of confused minute white crystals, which at 2100 lose their water of erystallization. From its appearance, and from its sweetish taste, it derives its name of Sugar of Leatl. It is much used both in medicine and in the arts. Basic acetate of lead, regarded ly some clemists as a diacetate, and her others as a triacetate. and commonly kuown as Goiltard's Extract, is prepared by boiling a solution of sugar of lead with litharge, and adding alcohol, when the salt separates in minute transparent needles. It is the active inaredient of (ioulerre Water, which is imitated hy the Ciquor Plumbi Diacetatis Jhilutus, and of Goulard's. C'erute, which is imitated by the Ceratum Plumbi (ompusitum of the London pharmacopocia. The best tests for solutions of the salts of lead are the forma. tion of a black sulphide with hydrosulphuric acid, or hydrosulphate of ammonia, insoluble in an excess of the reagent; of a white insoluble sulphate with sulphuric arit, or a soluble sulphate; of a vellow chromate witl chromate of potash: and a yeliow iodide with indide of potassinm. All the salts of leard, insoluble in water, are soluble in a solution of potash. Before the blow-pipe on charconl, the salts of lead yield asoft, white head of the metal, suroumdcd ly a yellow ring of oxide.

Lead was largely worked liy the Romans in Great

Britain, and pigs with Latin inseriptions lave been frequently fonnd near old smelting-works. The mining of lead in England was formerly regulated by curious laws; some places, such as the ling's Field, in Derbyshire, having special and pecnliar privileges. It was the enstom in this district not to allow the ore under any circumstances to leave the mine till it was measured in the presence of an official called a bar-master, who set aside a 25 th part as the King's cope or lot. Ip to a comparatively recent period, persons were allowed to scarch for veins of the ore without being liable for any damage done to the soil or crops. Lead ore is pretty generally distributed. but by far the largest supply of this metal is obtained from Great Britain and Spain, the former country yielding some 75.000 tons per annum, and the latter probably an equal supply. Nearly a fourth of the total British produce is procured from the Northumberland and Durham district, where there exists, at Allenlieads, one of the largest mining establishments in the world. Seotland and Ireland furnish only a very small quantity. With the exception of a little from the carbonate of lead, all the supplies of this metal are obtained from the sulphide of lead or galena. The lead ore, when taken from the mine, is broken up into small pieces, "hotched." and washed, to separate impurities. Sulphide of lead, whon tolerably pure, is smelted with comparative ease. It is first roasted in a reverberatory furnace. From 20 to 40 cwts . of galena are put into the furnace at a time, either with or without lime. In about two lours the charge becomes sufficiently roasted. During the process, the larger portion of the ore (PbS) takes up four equivalents of oxygen, and becomes sulphate of lead ($\mathrm{PbO}, \mathrm{SO}_{3}$), a little oxide of lead (PbO) is also formed, while anotler portion remains unaltered as sulphide of lead. After it is roasted the ore is thoroughly mixed together. and the heat of the furnace suddenly raised. Thiscauses a reaction between the unchanged and the oxidized portion of the ore, and reduces much of the lead, sulphornus acid being at the same time evolved. In the third stage, lime is thrown in and mixed with slag and unreduced ore. When this becomes acted on, the whole of the lead is practically separated from the ore. and is then run off at a tap-hole.

In some districts, the roasted ore is smelted on a separate ore-hearth called the Scotch furnace, where the heat is urged by bellows. Peat and coal are used as the fuel. This is a slower mode of smelting than the last, but yields a purer lead. During the operation of smelting, a considerable quantity of lead is volatilized, and carried off as fume or smoke, which. when allowed to escape into the atmospliere, not only involves a loss of lead, but destroys all vegetation for some distance around the works, and poisons cattle and other animals feeding near them. Much attention has of late been paid to the obviating of these evils, and several plans are in use for the purpose. Where it can be done no method is more effective than simply conducting the smoke from the furmaces through a long horizontal fluc-say a mile in length-to a vertical stack. The fume condenses on the sides, certain openings bcing left for the purpose of collecting it. About 33 per cent. of the frome thus recovered consists of metallic lead. When lead contains antimony and tin as impurities, they are separated by fusing the netal in shallow pans, and allowing it to oxidize at the surface. In this way the antimony and tin form oxides, and as such are skimmerd off.
Lad is an important metal in the arts. Rolled out into shects, it is largely used for roofing houses for water-cisterns, and for water-pipes. It is also of great service in the construction of large chambers for the manufacture of sulphuric acid. lis value for the mannfacture of shot is well known. Alloyed with antimony, etc., it is largely consumed for type-metal, and with tin, for solder. Nucl lead is also required for the manufacture of pewter, Britannia Metal, etc.

Of the eompounds of leatl, other than alloyg, which orour largely in commerce, the following are the princijul: White Lead or ('urbomerte uf leme, a sub) stance very extrosivaly used as whito paint, and also to form a borly for wher eonlors in painting. As muelt as 16,000 tons of it ure anmandy mande in Vingland. White leat is still largely made hy the ohl Inteh process which consists in trating metallic: lead, cast in the form of stars or gratings, in such a way as to orently facilitate the absorption of carbonice neid. These stars of lead plared in earthenware vessels, somewhat liks llower-pots, and containing a litta wak teetic acid, are built up in tiers in the form of a stack, and surroumeled with spent tan or horsealung. The heat given out from the dung volatizes the acid, which, along with the air, oxidizes the Jead. The acetio arid changes the oxide into the acetate of lead, and this is, in turn, convorted into the carlomate ly the carlonice acid given of from the lothed. liy this process, metallic land requires from 6 to 8 weeks for its conversion into white lead. Several less tedious processes for the manufacture of a white paint from lead lave bern tried at varions times, but the only one now practiced is that for the prodnetion of an oxychloride of lead, by acting on raty galena with lyilrochloric acid. Minium, Fied Level, or lird oxide of hemet, is murh consumbed in the manmfacture of thint-glass nut porcelain, and to some extent as a pigment. It requires to be matle of verypura leat, as a slight trace of copper would impart it color to glass. Minium is prepared by heating Mavsimot, or protoxide of leard, to a temperature of $600^{\circ} \mathrm{F}$. in iron trays, in a reverberatory furnace carefully avoiding fusion. Nore oxygen is thas gralually ubsorbed; and a compound of the protoxide and the peroxide of lead is formet, having a bright red color, which is the red lead of commerce.-Litharge has bern already noticed.

LEAD COATING PROCESS. - The process of Jent. coating projectiles, chemically, as adoptod by Ordnance Oticers, is as follows: 1. The projectiles must be turned oll smoothly and brightly. ©. Ḱerp) them in a pickle or solution of zinc and vitriol (proportion three pounds of zinc to each pound of vitriol,) until they slow a metallie appearance; about 20 pounds of vitriol to 100 shells of nine pounds, and enough water to cover the surface to be coated; the projectiles being set upright in a wooden box lined with lead. The zinc prevents the acid from acting too violently on the iron. 3. After the pickle. immerse them in clear water, and then in a bath of one pound of lime to $2 \frac{3}{3}$ gallons of water. 4. Juab the surface with rags and sand nntil a clear metallic appearance shows itself; wipe dry with rags and saw-fust ; brush off the saw-dust. 5. Ileat the projectiles to that degree that a drop of water thrown on them will hoil at once. 6. Dip them in a solution of one part of sal-ammoniac to four parts of water (bot.) T. Then cover them with a thick layer of powdered sal-ammoniac. 8. Being perfectly dry, dip them into the molten zinc until they have the same temperature as the zinc. 9. Wijue off the dripping zine with gloves previously saturated with the solution of sal-ammoniae (6). The gloves must haye dried without being wrung. 10. Cover them again with powderedsal-ammoniac. 11. Dip them into molten pewter for about half a minute. (For projectiles of hardened iron the coating with zine is dispensed with.) 12. Wipe off the dripping pewter with the sal-ammoniac gloves. 13. Cover them again with the powdered sal-ammoniac. 14. Put them in the mold and pour the molten lead in. The process to the zinc coating (δ) is the same or similar to the galvanizing, only more caution is taken to huve very smooth surfaces. The process from the tin coating to the casting must lie done quickly. The mold for the final casting is of cast iron, matle of two halves, working on a heavy lainge, and conpected to a heavy botton plate, and opened and shut by a pair of long handles. The inside must be pol.
ishad. Its intorior edamotur must be a littla Jonger than the dianmetcr of the thished conted projectile The menla, prior to casting, is warmed so that r|rops thrown on will boil at onco, and reco-ives a romitige of grease, which shomlol low allowerl to riry lefore: casting. Tha casting is tcestod by making inrisions which will show wherther it ablacers firmly to the iron or will pere off. The projectile is tinishod by turning off in the lathe the load coating th the disered dimensions; prowe them, ind serew in the bottom or heab-serews. Scee ('uatral I'rojectites.

LEADERS.- Jong paper tubes of small diancters inclosing a strand of quick-match. "lhey are nsed to commanicate fire rapidly from ond point to another. 'The velocity of rombustion is fronn 1 to 2 yards per second, depenting upon the size: of the tube, being more rapid as the tube is smaller.

Jealars are mate by rolling a strip of thin paper, 25 inches wide, as ololifately as posscilble, on a ram. rord, or cut the paper into trape\%oids 4 inclaes widro at one base and $2 f$ at the other: paste the edges of the strips 0.95 inch, and roll them on a ramrod so that one end shatl be renlarged, funnel-shape. When dry, pmss it strand of quick-matels throngh, and led it project about an inch at each ernd.
'lo unite then into a long line, insert the end of one into another a distance of . $\%$ inch. and lie thern with a thread. If the line be long, first streteln a piece of twine, and attach the beader to it every few fect. See Fireumiks.

LEADING.-The clogging of the grooves of a rifle with lead from the bulhet; one of the principal colsstacles agrainst continuous accurate shooting. It is obviated by covering the bullet with a paper patels or by using a lubricant in the canellures.

LEADING COLUMN. -The first collumn that advinces from the right, beft, or center of any army or battalion.

LEADING FILE.- The first two men of a batta]. ion or company that marches from right,]eft, or center, by files. Ser Filf-leader.

LEADING FLANK. -When a Jine breaks into column in order to attack an enemy, the Leading Flank is that which most always preserve the line of apmi in all movements in front. The first battalion, or company of every column which conducts, is called the head or Jeading flank of that column.

LEADING QUESTION.-In the proceedings of Military Tribunals, a question to a witness which suggests the desired answer. Such questions are objectionable except under cerluin conditions.

LEAD OUT.-A command in the mounted service to cause the horses to be taken from the stable or picket line preparatory to mounting or harnessing.

LEAF SIGHT - A form of elevating rear sights, consisting of several hinged leaves of different heights. It is usually attached to the tangent sight, and is often called a Sliding Lerlf-head. See sight.

LEAGUE.-1. A measure of length of grest antiquity. It was used by the Romans, who derived it from the Gauls, and estimated it as equivalent to 1500 Roman paces, or 1.376 modern English miles. The League was introduced into Englanal by lle Normans, probably before the batt]e of Hastings (1066), and had been by this time lengthened to 2 English miles of that time or $\boldsymbol{2}_{10}^{9}$ modern Engliah miles. At the present day, the League is a nantical measure, and signifies the $20 \mathrm{th}_{\mathrm{h}}$ part of a degree-i. e.. 3 geographical miles, or 3.456 statute miles. The French and other nations use the same nautical league, but the former nation had (until the introduction of the metrical system) two land-measures of the same name, the lega] posting-league $=0.42$ Eng. miles and the league of 25 to the degree, which is = 2.76 statute English miles.
2. The term generally employed in the 16 th and 17th centuries to designibte a poljtical alliance or co= alition. The most famous Leagnes were those of Cambray, Schmalkald, Nürnberg, etc. But the name has a peculiar importance in the Listory of France,
as applied to the opposition orsanized by the Duke of Guise to the granting of the free exercise of their religion and political rights to the Hugnenots. This League, known as the Tloly League, was formed at Peronne, in 1576, for the maintenance of the Roman Catholic Religion in its predominance; but the object of the Guises was rather to exclude the Protestant Princes of the Blood from the succession to the throne. For an acconnt of the civil war that ensned, see Histoire de la Ligue (5 vols., Par. 1829).
LEAGUE OF MARBACH.-Under the rnle of Count Frederick of Hohenstaufen and his successors, Suabia became the most rich, civilized, and powerful country of Germany, and the Ducal Court was the resort of the Minnesingers; but the wars of the Guelphs and Ghibellines, and the quarrel with the French respecting Naples, put an end to the Dymasty in 1268. The Ducal Vassals in Suabia rendered themselves almost independent, and professed to acknowledge no lord but the Emperor. During these dissensions arose the Lordships of Würtemberg and Baden, with mumerous lesser States, holding direct of the Crown, and opposed to them the Cities, which strove also for an equal independence, and at last, in reward of important service, obtained in 1347 great additional privileges. A number of them united to make common cause against the neighboring Feudal Lords in 1376 (known as the First Suabian League); an opposite leagne was formed between Würtemberg, Baden, and 17 towns in 1405 , called the League of Marbach; and both took part in the war of Swiss Independence, the former in support of the Swiss, the latter of the Austrians. At last, the towns, which had been rapidly increasing in wealth and power, decided at C'lm, in 1449, to form a standing army, and a permanent military commission, for the forcible preservation, if necessary, of peace and order: and the Count of Würtemberg, the most powerful of the opposite party, having joined them, was appointed Military Clief of the League, which ultimately grew up into the Great Suabian League, and exercised both administrative and judicial authority over the whole country, effectively repressing feudal quarrels. In 1512, Suabia became one of tire tencircles into which Germany was now divided, received its complete organization in 1563, and retained it almost without change till the dissolution of the Empire in 1806. But during this period, the wars of the towns with Würtemberg, the Peasants' War, of which Suabia was one of the foci, the Thirty Years' War, and those between France and the Empire. destroyed the democratic constitution of the towns, and with it their energy, and then their prosperity disappeared, leaving now no relic which could suggest thẹir former great political importance.

LEAGUER.-1. The camp of a besicging army ; less often a camp in general; a siege or beleaguering. 2. A confederate, or one who unites in a league.

LEAST SQUARES.-The method of Least Squares, in astronomy and problems of motion, is the best mode litherto discovered of obtaining the most correct result from the number of observations upon any phenomenon. These observations are assumed to differ slightly from each other, and to be all of equal value, that is, taken under equally favorable conditions, and with equal instruments. The ordinary and long established mode of approximating to the truth in such cases, is by finding the arithmetic mean, and accepting it as the correct result ; but in all cases where the result required does not come directly from ohservation, but reguires to be discoverrd by calculation, this simple and useful method is inapplicable, and that of 'Least Squares,'which gives more proballe corrections, is adopted. The method is founled on a theorem which was first propounded by Legendre in 1806, more for the sake of insuring uniformity among calculators than from any belief in its intrinsic value; but it was afterwards thoroughly discussed and proved by Gauns and Laphece, that "if the mean of a number of dlstinct observations be
so taken. that the sum of the squares of its differences from the actual observations (rencrally desiguated errors) shall he a minimum, this mean will be. under these circnmstances, the correctest obtainable value." The process by which the mean thus oltained is shown to be the most trustworthy approxima tion is too long for insertion here; but it may not be undesirable to give an example of the most common form of the method as occurring in astronomy. Let there be a series of equations-

$$
\begin{aligned}
& \mathbf{X}=x+y+2 z \\
& \mathbf{X}_{1}=3 x-2 y+5 z \\
& \mathbf{X}_{2}=4 x-y+4 z \\
& \mathbf{X}_{3}=-x y+3 z
\end{aligned}
$$

where the unknown quantities are x, y, and z, connected by various (the more the better) equations with $\mathbf{X}, \mathbf{X}_{1}$, ete., quantities which must be determined by actual observation. Suppose the value of the quantities thus found to be $3,5,21$, and 14 , then since by hypothesis all these four observations are erroneous, the errors are $3-\mathbf{X}, 5-\mathbf{X}_{1}, 21-\mathbf{X}_{2}$, $14:-X_{3}$, or

$$
\begin{array}{r}
3-x-y-2 z, \\
5-3 x-2 y-5 z, \\
21-4 x-y-4 z, \\
14+x-3 y-3 z
\end{array}
$$

The squares of these four errors are now added together; and, to find the values of x, y, and z. which will render this sum (call it S) a minimum, we must differentiate S with respect to x, y, and z in turn, and putting each of these partial differential coefficients equal to zero, we olbtain the three equations, $-88+27 x+8 y+30 z=0 ;-76+8 x+$ $15 y+25 z=0$, and $-157+30 x+25 y+54 z=0 ;$ from which the most trust worthy values of x, y, and z can be found by common algebra•

LEATHER.--The skins of animals chemically altered by the vegetable principle called tanuin, ortannic acid, so as to arrest that proneness to decompose which is characteristic of soft animal substances. Its invention reaches beyond the dawn of history and was probably among the earliest germs of civilization; for as the skins of amimals would naturally be among the first articles of clothing, any means of preserving them more effectually than by drying would be highly prized. The discovery that bark had this effect was doubtless the result of accident. The principle of its action was unknown up to the present century; and the same nnvarying method has been employed from the earlicst times until the last few years, when the invention of new processes has much faciliated the manufacture.

The skin of all animals used in the production of leather consist chiefly of gelatine, a substance which easily enters into chemical combination with the tannic acid found in the bark of most kinds of trees, and forms what may be termed an insoluble tanno-geletin. This is the whole theory of tanning, or converting the skins of animals into leather. Formerly, oak-bark was supposed to be the only taming material of any value; but lately very numerous additions have been made to this branch of economic botany.

In addition to the process of tamning in making leather, there are other modes, one of which is tazeing, another dressing in oil. The following are the skins which form the staple of our leather manufacture: ox, cow, calf and kip, buffalo, horse, sheep, lamb, goat, kid, deer, dog, seal, and hog. These are consumed, in a great degree, in the construction of military equipments and apphiances. The term pelt is applied to all skins before they are converted into leather. When simply made into leather in the state we find in shoe-soles, it is callect, " Jough Leather;" but if, in addition, it is sulmitted to the process called currying, it is termed "Dressed Leather." The following trade-terms are in gencral use: hides or rrop-hides, butts and hacks, bends, oflal, and skins. The complete hide when rounded, with the cheeks, shanks, and belly-pieces, ctc., pared off, is called a
butt; the pieces cut off constatute the offal; and skins in large quatitirs from Australia and tho (ape of are all the lighter forms of leather, such as sheepr, forol llopr. Thre lattor with thr capre skim, are goat, deer, etc.
 kid. A great portion of all sorts of lambs and sheep are tawed and used for aprons, sewing harness, plaster-skins, tying up bottles, lining shoes, and other Sheep and lamb skins are imported (in the wool) jobbing and inferior purposes. Dter-skins are dress-
ed by the oil process, and form a great portion of the so-called shamoy leather, which derives it name from the chamois of the Alps, from the skin of which it was formerly made. Dog-skins are tanned or tawed for gloves, and for thin shoes and boots. Seal-xkins. are manufactured into the so-called "patent leather," by varnishing their upper surface. The manufacture of this kind of leather has of late become of great importance to the London, Edinburgh, and Newcastle tanners. Hog or pig skins are imported from Russia and other countries, and many are supplied by Scotland; their use is chictly in the manufacture of saddles, ete. Nalrus and fippopotamushides are tamed in considerable numbers for the use of cutlers and other workers in steel goods, "buffiing-wheels" being made of them often an incll thick, which are of great importance in giving the polish to metal. Lately, belts for driving machinery have successfulIy been made from them. Fanguroo-skins of various species are tanned or tawed in Australia, and form a kind of leather in great favor for dress-boots.

The first process in making tanned sole leather is to soak the skins or hides in water for a greater or less time, to wash and soften them; they are then Jaid in heaps for a short time, and afterwards hung in heated rooms, by which means a slight putrefactive decomposition is started, and the hair becomes so loose as to be easily detached. This process of " unhairing " is mostly followed in America; but in Great Britain milk of lime is used for soaking the hide till the hair loosens. Hides or skins intended for dressing purposes. such as shoe, eoach, harness, or book-binding, after the hair is taken off by the lime, have to be submitted to a process called "bating," for the purpose of reducing the thickening or swelling oceasioned by the introduction of the lime, and for cleansing the skin from grease aud other impurities. This is effected by working the skins iu a decoction of pigeons' or dogs' dung and warm water, and no dressing-leather is ever submitted to bark or shumac without undergoing this process.

The first attempts at improvement in tanning,were the method invented by Mr. Spilsbury in 1823, and the improvement on this method by Mr. Drake, of Bedminster, in 1831. The primciple consisted in causing the aoze or tan-liquor to filter through the hides under pressure. For this purpose, in Drake's process, the ellges of the hides were sewed up so as to form a bag. The bags being suspended, were filled with cold tan-liquor, which gradually filtered through the pores of the hides, and impregnated them with the tannin. The processes by infiltration, however, lave been entirely abandoned for heavy leather, as they have the effect of rendering the leather porous and defieient in firmmess.

Various patents for improvements in tanning have been in operation of late years. Ilerepath and Cox, of Bristol, tied hides to each other to form a long belt, and pressed them between rollers, to squeeze out the partially exhausted tan-liquor from the pores, so that is stronger liquor might be absorbed. Messrs. J. and G. Cox, of Gorgie Mills, near Edinhurgh, made an improvement on this mode by attaching the hides to a revolving drum, so that the hides press on each other on the top of the drum, but hang suspended in the tan-lifuor from the lower part; and thus, by the hides being alternately in and out of the liquor, the tauning is quickly effected.

Treing consists in dressing the skins with antiseptic matcrials, so as to preserve them from deriy' ; but by this operation no chemical change is effected in the gelatine of the skins; hence, tawed leather can be used in the manufacture of glue. In tawing. the tirst process is careful washing. next dressing them with lime, then removing the lair or wool, and lastly, steeping them in some onc or more of the various mixtures which are used for converting skins into leather by this method.

Besides tunking and turing, many kimels of leather require the currier's art to bring them to the
state of completion required for military purposes. The currier receives the newly tanned skins, and finds them harsh to the feel, and rough on the fleshside. He removes all the roughness by carefully shaving with a peculiar knife. After soaking in clean water, he then scrapes the skin with considerable pressure upon a scraping-tool or slicker, and thus removes any irregularities. The moisture is then removed as much as possible, and oil, usually cod oil and tallow, are rubbed over the leather, which is laid aside to dry completely, and as the moisture leaves it, the oil penetrates. When quite dried and saturated with the oil, the skin is rubbed on a board with rounded ridges, by which a peculiar grained appearance is given, and the leather is rendered very pliable. In currying, almost every variety of leather requires some variation in the processes employed, but the currier's object is in all cases to give a supplentess and fine finish to the skins.

Morocco Leother, formerly an article of import from the Barbary coast, is now prepared in large quantities in this country from goat-skins; sheep-skins are also used for imitation. It is always dyed on the outer or grain side with some color, and the leatherdresser in finishing gives a peculiar ribbed or a roughly granulated surfaace to it, by means of engraved boxwood balls which he works over the surface.

Russin Leather is much valued for its aromatic odor, which it derives from the peculiar oil of the birch-bark used in tanning it. The fact that this odor repels moths and other insects, renders this leatber particularly valuable for binding documents; a few books in a library, bound in Russia Leather, being effective safeguards against insect enemies. It is also said to destroy or prevent the vegetable evil called mildew, to which boeks are so very liable.

The drawing represents a side of leather, and is made to the scale of one inch to the foot; the marks show the size and shape of the specimens testcd, and the figures give the strain in pounds at which each picce broke, the permanent elongation in fractions of an inch, and weight in ounces and drachms. The pieces were each $11 \frac{3}{4}$ iuches long by 2 inches wide, and were taken out of the exact portion of the hide on which they are marked.

These test were made by Messrs, Riehlé Brothers, at the testing department of their works, for the obvious reasons of determining by actual experiment, the tensile streneth of the different portions of a side of leather.

These tests have been the means of awakening new interest in important investigations, as to the comparative value of sides of leather for special military purposes, and as to the best means of producing the best results. Until comparatively lately the testing of iron and other metals, excepting by the crudest methods, was almost entirely neglected, but now testing has become a necessity, and the ralue of metals is determined between bizer and seller by their endurance under certain tests that are brought to hear upon them, and that correspond to the special use that they may be required for. This, no doubt, will also be the method of determining the value of leather, especially that used for belting, ete., and the comparison of tests made with patented and rubber belting is interesting and useful. See Testing Machinex.

LEATHER CANNON. - A variety of cannon introduced by (iustavus Adolphus into the army on account of their mobility. Undeniable evidence, however, of their earlier existence, though of a smaller size, is found in the "Landeshuter Tharnisch-Kimm-mer-Invontarium " of 1569 , iu which mention is made of a "Jange lederne Bueluse mit Kugel-Modell." Although Gustavus Adolphus improved and perfected the leather cannon which he introduced into his army in 1626 , and used in the siege of Wormditt, yet unither he nor the German Freiherr Metchior von W urmbrindt, nor the North British Baron Robert Scot, can be regarded as the inventor. The
invention is cevidently of mancherarer data. A benther mortur for firing shells, on exhibition in the Arsemat at Venice, was, the Venetians assurt, mude in libl! ; it is very likely, loowever, that its origin is sombe what earijer. One is luere reminded of the mang sul, stitures formetal ordmance, expucially or the woshen (ammon (rntirely bound with iron hoops), which are frerpuently mentioned in the [xeriox from 1505 to 1530.

The leather camon variod from a 1 -pr. to a 4 -pr. Ther bore consisted of a copper revinder, of the thickness of threx-fourthos of the dimmeter of tha bati userd. The length of the ryblindar was sixamen calibers ; caseable and brecth were sorewed intos the cylinder. The vent, of (of)per, was screwed into the breech. The rentire length of the bore was covered with iron loops, over which a number of ropes were wound, which, in turn, were covornt with several layers of varnish. Over these layers unother round of ropes was woumel and over this was spreas a layer of cement. This process was repeated until the coat was of the: hlickness of two catibers; the last coating consisted of tarred leather, which grve the canmon its name. The charge umounted to one-fourth, rarely one-third, of the weight of the babl the cammon was loanded only with canister. Canister-shot, until that time only ised in sieges, was introtucerl by Gustavas Adolphus into the field service, and consisted mostly of musket bullets, thonarh old pieces of iron were very often used. The shot were put into wooden and tin boxes, linen bags, and somelimes only in rude wicker buskets. The leafler cannon, of 90 lbs. weiglat. withits light carriage, was easily drawn by two men. This cannon, however, by no means met the high expectations entertained of it. Already in 1631 the Swedes ceased using this natthre of gun, bocause at the battle of Breitenfeld it not only became so overbeated that the clarges ignitod of themselves. but it also gave a very short and unreliable rance. In 1699 , a certain Lieutenant Wolf Mulb r, of Chemnitz, circulated the report that he was in possession of a secret for the construction of leather canuon which liadmany and decided advantages over metal ordaance. The Elector of Saxony orderexl Colonel von Schwalbach to inveatigate and to report the to its worth. The report of the C'olonel was found to be favorable, and expressed in these words:-"Owing to their light wejght, easy' trinsportation, and siving of powder, as well as the adyantagos they offer in the field against the enemy, and in momotanous and swampy regions, in which latter places heavy cannon can seldom be used at all, such pieces cannot be too highly regarded," etc. The Elec. tor ordered the construction of t wo leather cannon, for which were given " fifty-seven florins three groschen ready money; seventecn fiorins three groschen for sixty pounds pewter ; fifty-one florins three groschen for two and one-fourth hundred-weight refined copper. Of the copper, the coppersmith received two hundred-weight, with which he made a tube four and one-half etts long, weighing nincty pounds, and used twelve pounds for muzzle and vent. The waste in melting twice amounted to sixteen pounds, the remainder was left to the smith as pay for his work." The trial with these leather guns could not have been very satisfactory, if we may judge from the following item in a record of weights of the Armory at Dresden, June 14, 16i30: "Inventory of the weights of copper and pewter of the burat lenther pieces in the Elector's Armory at Dresiden :- Copper, one-half hundred-weight. twenty-six pounds: pewter, thirty-fonr pounds." No nention being made of these guns at a later period, it is taken tor granted that this one failure was thought sutficient to cool all enthusiasm for leather cannon.

LEAVE OF ABSENCE.-The permission which of ficers and soldiers of an army obtain to absent themselves from duty. In the British service, in applying for leave, the War Ottice form is used. The General Commanding lias the power to grant leave within
monthly returns. Foror spercisi] dutios, the ofllecerwhon is to prorform the work in tho intr-rim is to lo namrod in the upplication for loave. Tla applicution of at Hedical (otlecergoes first ter the principal Dredical officer in the division or gurrison ; that of a l'aymastar to the W"ar (ofllec, aroompaniod lova rertitirate fronn a Doard that his neconots are satisfactory, cash Dalane correct, acting Jaymastor rengaged, and dorlaration maste that the real l'aymaster is answrobale for substitute. The application of an ofllecer proceeding on wick lerene must loe accompaniod by a medical cortificate. If the ollicer is unt likely tor rejoin soon, it is usual for the Medical Board to ask the Gencral to assemble the 3 bard, or to get him to itpply to the Jorse Guards, should the rogralations print ont this to be the course to be pursuret. In the Indian military service, leave of absencer includes three kinds:-1. Jurlough in or out of Inrlia on sick or general leave: 2. General louve on privatu husiness, or on sick certificate in India, or short leave to sea; ; Privilegre leave. In the rules which governan onficor's furlongh in or out of Indis, there is no distination luetween sirk and general leare with respert to allowances, hitherto drawn, both being included under the general term, furlough; provision, lowever, is mate for the obtainment of leave under medical certiticate without all the restrictions applicable to furlough when taken without it. In the rules under the head of furlough, it is shown that an ofticer of the Indian Ariny must serve six years after his return from Eng. land or elsewhere, after taking furlough, before he is entitled to any more leavecounting as service: but should the oflcer in question have accumalated leave, so that after two years' absence he has still one or two years leave due him, hewill be permitted three fears after his return to proceed again on leave without loss or appointment. Short lfare, not exceeding three months, may be taken to sea on certain conditions; but absence from India for any longerperiod istreated as furlough. Pricilege leare for sixty or ninety days (depending upon the part of the country an officer is cantoned in), in each year, is granted to all officers in military employ without lose of allowances; should this time be exceeded, it must be converted into general luave, unless sickness has been the cause of detention.
In the United States service leares of absence are not granted so that a company will be left withont one of its commissioned officers, or a garrisoned post without two commiswioned officers and competent medical attendance; nor is sucli leave granted to an otficer during the season of active operations except on urgent necessity.
No leave of absence exceeding seven days, except on extraordinary occasions, when the circumstances must be particularly stated, is granted to any officer until he has joined his regiment or corps, and served therewith at least two years. In giving permission to apply for the extension of a leave of absence, the term of the extension is stated. The term of the extension approved by the Department Commander is regulated by the season and the usual opportunities for reaching the officer's station, so that he may not be absent during the time for active operations. Leaves of absence are granted for periods specified as "one month," "one month and ten days," " two months," etc., instead of so many days, and comnences on the day the otticer departs from his proper station. The expiration of his leave must find him at his post. Leave for one month, beginning on the first day of a calendar month. expires with the last day of the month, whatever may be its number of days. Commencing on an intermediate day of a month, the leave will expire with the day preceding the same day in the next month. The day of departure. whatever the honr. is connted as a day of absence; the day of return, whatever its hour, as a day of duty. Tỉe Commander of a post way take leave of absence not to exceed seven days at one time, or in the same month, reporting the fact
to his next Superior Commander; and in time of peace the Commander of a post may grant leaves of absence not to exceed seven clays at one time, or in the same month. A Department Commander may grant leaves for one month, or extend to that period those granted by Post Commanders : a Military Division Commander, for two months, or extend one month a leave granted by a Department Commander under him; the General of the Army, four months, or extend to that period a leave already granted. Applications for leaves of absence for more than four months, or to offieers of Encineers and Ordnance, or officers of the General Staff or serving on it (Aides-de-Camp excepted), for more than one month, are referred to the Adjutant General for the decision and orders of the Secretary of War. Officers are not permitted to leave the United States, to go beyond sea, without a special permission from the War Department. Ofticers of the army traveling or stopping in foreign countries, whether on duty or leave of absence, are expected to avail themselves of all opporthaties, properly within their reach, for obtaiuing information of value to the military service of the United States, especially that pertaining to their own arm or brancla of service. Verbal permits for less than twenty-four hours are not counted as leaves of absence. But for every other absence of whatever duration, the date of departure and return is noted on Post, Regrimental, Department, and Division Returus against each officer borne thereon. Permission to hunt is not considered as a leave of absence or charged as such if the officer, on his return to his station, files with his Commanding Ofticer a certificate that his absence has been solely empluyed in hanting, and furnishes as complete a description of the country passed over as circumstances permit. Othcers when absent on account of sickness or wounds, or lawfully absent from duty and waiting orders, receive full pay; when absent with leave for other causes, full pay during such absence, not exceeding in the aggregate thirty days in one year. and half-pay during such absence excecding thirty. days in one year. When absent without leave, they forfeit all pay during such absence, unless the absence is excused as unavoidable.

By an Act of Congress approved in 1876, an officer may permit his leave to accummlate for a period not cxceeding four years. Ile may, moreover, enjoy five months' continuous leave on full pay, if the fifth month of such leave is wholly distinct from the four year period. In officer on leave over this time receives half-pay only. When an officer is absent under certificate of disability duly accepted, on account of sickness or wounds, he is entitled to the same pay as if an order liad been issued granting him a sickleave. Officers absent on certificate of disability should so arrange that the certificates may cover entire ealendar montbs, and not monthly periods commencing with intermediate days. The pay-account of cvery officer on leave should, throughout the period of his absence, exhibit the date of commencement of leave, the authority for his absence, and in case the account is for the month in which the absence terminates, the date of return to duty. In all eases the day of departure or relief from duty is counted as a day of absence, and the day of return as a day of duty. In determining the portion of a leave of absence for which an otheer is entitled to full pay, no time is considered outsicte of a period of four successive lave years, including the leave year or years in which the absence is taken. The leave year is reckoned from June 20tl to the following June 19th inclusive. In estimating the period of absence during any one leave year, each and every day's absence is included. Every officer who is dropped by the l'resident from the rolls of the Army for absence from duty three months without leaver forfuits all pay due or to become due. See Furlough and Sick-leare.

LE BOULENGE CHRONOGRAPH. - In this instrument the time between two events is ascertained by
noting the distance of the free fall of a heavy boty during the interval, the beginning and end of this distance being made to accord with the occurrence of the events by means of the galvanic current. It can be used not only as a micro-clironometer, but directly as a velocimeter. The drawing show's the instrument ready for use, for taking velocities, and for measuring minute intervals of time To obtain velocities at once, two etectric circuits are established, a fixed distance, say fifty meters, apart, in such a manner as to be successively broken by the projectile in its flight. The first current circulates throngh the electro-magnet A, whose armature is a long cylindrical rod C, called the chronometer, furnished with two enveloping zinc tubes, D and E, (alled recordfres. The second current passes by the electromagnet, B, whose armature, the shorter rod, F, is called the registrar. The third active element of the instrument is the indenter, consisting of a circular knife, fived in a mainspring, which can be cocked by means of a catch on a lever.

On the breaking of the first circuit, the chronometer falls vertically; on the rupture of the scond the registrar falls in its turn, depresses the free end of the lever, and thus releases the mainspring; the knife juts forward, strikes the falling chronometer, and indents the upper recorder. As shown below, a very simple relation holds between the dent thus obtained and the velocity of the projectile which eaused it. Even with this brief description, a moment's thought will slow that the lower the velocity the higher up shall the recorder be indented.

The above succint account of the action of the instrument is sufficient for a comprehension of its theory. As an arigin of reference for the falls of the clironometer, we take the dent imprinted on the lower recorder, when the knife is "let off," while the chronometer is suspended. Let h be the lieight above the origin of the dent due to the shot; then, as the chronometer followed the law of falling bodies from the beginning of its movement up to the time it was struck by the knife. we have $\mathrm{T}^{\prime}=\sqrt{\frac{2 \mathrm{li}}{\mathrm{g}}}$ as the time corresponding to this fall. It would also be the time of the trajectory between the targets (giv50
ing a velocity of $-\frac{\text { meters to the projectile } \% \text { provid- }}{\text { t }}$
ed the chronometer began its fall at the precise instant the first, and the knife struck it at the precise instant the second current was broken. But this is, in reality, not so; for, after the breaking of the first current, a certain interval, ϕ, elapses before the elec-tro-magnate is sufficiently demagnetized to permit the fall of the chronometer, which will accordingly be returded by this time. and the observed duration of trajectory will be too small by the same quantity.

On the other hand, from the breaking of the second current up to the instant of the knife striking the ehronometer, the following inturvals elapse: o^{\prime} for the sutheient demagnetization of the electro-magnet, B. t^{\prime} for the fall of the registrar to the disk of the indenter. $t^{\prime \prime}$ for the release of the catch. $t^{\prime \prime \prime}$ for the knife to clear the horizontal clistance to the falling clironometer. The observed time ' T ' is then too great by the quantity $\left(u^{\prime}+t^{\prime}+t^{\prime \prime}+t^{\prime \prime \prime}\right)$, and too small by ϕ. For the true time of light, T, we liave, therefore, $\mathrm{T}^{\prime}-\left(\omega^{\prime}+t^{\prime}+t^{\prime \prime}+t^{\prime \prime \prime}-\phi\right)=\mathrm{T}^{\prime}-t$. For $T=\phi$, we have $T^{\prime}=t$, whence to obtain the value of t we have only to break both circuits simultancously, and note the resulting time of fall; since after this common rupture, there passes the time ϕ lefore the chronometer falls, and ($0^{\prime}+t^{\prime}+$ $t^{\prime \prime}+t^{\prime \prime \prime}$) before it struck ; until it is dented there clapses thun the lime (t $^{\prime}+t^{\prime}+t^{\prime \prime}+t^{\prime \prime \prime}-\phi$) or t. As will be shown presently, the instrument can be so adjusted as to sive t a constant value, say $0^{\circ \prime}$.15. Whenever desirable, we can very readily ascertain whether the apparatus is thus adjusted
or not, by using the digjunctor, which is in both rircuits. If the resulting dent is 110.29 mon nbove the origin (Hw lacight correspending to $0^{\prime \prime}$. 15 at W゙atertown Arsemal), then the instrament is properly set. Wrpendent upon this contition, wo ean dix in atvancer the height correspomding fo any given velocity of projectile. For exnmple, with stm initial veloedity of 500 meters, the projectile will passover the 50 metiors interval betwern the circuits in 0 " 1 , and the insirnment will record $0^{\prime \prime} .15+0^{\prime \prime} .1$, or $0^{\prime \prime} .25$, and the lieight will therefore be

$$
\mathrm{II}=\frac{9.8037 \times 0^{\prime} .25^{2}}{2}=306.36 \mathrm{~mm}
$$

Reciprocally, if tha shot gives a dent 300.36 mm above the orisin, we conclude that the projectile was moving with a veloejty of 500 moters. The lorights corresponding to all velocitios within the orelimary limits of experiments lave been calenlated and iuscribed

on a metal rule, furnished with a sliding inder, mhich thus aifords a simplo means for directly measuring the relocity of the projocotilofired. The shot laving given the indent, we atjust the rule to the chromometer, slide the beak of the index into the noteh, and read ofl the velocity.

As has already been stated, when it is desiral to measure velocities directly, two targets must be set up 50 meters apart. The eharonometer eircuit passes through the first, and the registrar through the s.cond, the disjunctor being in both. Should local diffieulties intervene to prevent the targets being set up exactly 50 meters apart, multiply the velocity read D
from the seale by the constant ratio $\frac{-w h e r e}{} D$ is the actual space in meters. For transport. the different parts of the instrmment are packed in a box, wheh
also surves as a sland for mommong it. Afternaparkfing the box serew on the aretional iron tripenl, then stumd it independently of the Hoore, so that it may bee sulbject to as little viluration as possible, and fasten surorely in its place the trinngular plate that enrriog the indenter nond colnomn. I'he electro-mangnets ure commomaty athallod lyy passing tho threadred stons through the folumin, and thes tightoniur with the: milled muts. The disjunctor ghomlal be placed very nowr the insirmanent, within casy reach of the operator. Ordinarily onde seven-inch choromic potashe cup will he found sullicient for the registrar circonit, and three emps for the chmonometer. As su little power is reguired, we wonld reenmmond, if chsily attainable, that Daniell's or llill's hatteries be used ns giving most constant action. Tworecorlers are put on the elironometer. These thbers shonld be lighty tapperl, before beius slippet on, to insure a sumg lit. Care must be laken that the lower recorder Iests closely against the bob.

The currents being properly cstablished and sufficiently strong to enable the magnets to maintain the rod-armatares, the next step is the adjustment of the apparatus, which comprises these three operations; 1. Leveling the instrument. 2. Regulating the power of the electro-magnets. 3. Fixing the Ineight of the disjunctor-reading. The instrument is set up for firing in the same manner as for taking a disjunctor reading. To avoid confusion, numbered ink-marks, about one-sisteenth of an inch apart, are made around the bases of the two recorders, and cach mark is successively brought in line with the cut on the ring as the firing progresses, by which means the dents are made on cquidistant straightline elements. The zincs can thus receive about twenty dents, and then be turned end for end and receive twenty more. The shot having given a dent, apply the rule to the elironometer in the manner
deseribed for tracing the disjunction circle, bring the vernier-knife agrainst the edge of the noteh. elamp it, and read of the velocity. The experiments for the day being over, the date is inseribed on the proper recorder, and, if deemed necessary, it may be filed for future reference, If the foregoing directions as to the setting-up and adjustment of the instrument are carefully followed, not only will there be no appreciable variation in the disjunetor-readings before any shot, but they will, remain constant from round to round. See Breger Chromograph, Chrono scope, Dixjunctor, Indenter. aud Micro-chronomettr.

LEE.-A term employed in target practice to denote the quarter to which the wind is dirceted, as distinguislied from windward, or the part rehence the wiud comes. Also written Lefererd.

LEEK. - The Welsh emblem, in consequence of a command from Dewi, or David, afterwards Archbishop of St. Davids', in 519. On the day that King Arthur won a great victory over the Suxons, Dewi is said to have ordered the soldiers to place leeks in their caps.

LEE MAGAZINE-GUN.-This gun, patented in 1879 in Europe and Ameriea, is entirely novel in principle and not only obviates all the objections found in tubular magazine systems, but has mumerous and marked advantages pecnliar to itself. The arm is of the bolt class, which years of use in the armies of Pussia, France, Italy, Prussia, and other great powers, has proved to possess all the essential qualities of a military weapon. The drawing gives asectional view of this gun with the magazine in place, and it will be noticed that the parts are few in number. The resistance in this gun is direct, and is taken on both sides of the receiver; a lug being constructed on the lower side of the bolt and opposite the shoulder on the bolt handle, which loeks its If tirmly into a reeess made for that purpose in the receiver, thereby affording an equal bearing on each sicle instead of on one side only, as in most other bolt systems. The extractor, also, is of new design, having direct action and great power.

NOMENCLATURE.
A. Receiver. 13. Pull.
C. Firing-pin.

1. \ain-spring.
E. Thumb-Piece
F. Wer-riece.
G. Exiractor.
II. Sere.
notch cat on the extractor-spring next the shoulder of the bolt handle, the extractor-spring, Q, is pressed forward, releasing the hook on its under side, from the pin with which it engages when in place. This releases the extractor-spring and the extractor, and the bolt may then be drawn out of the receiver. By pressing forward and downward on the lug of the key-sleeve, F, it is released from the bolt, together with the thomb-piece, E , the firing-pin, C , and the mainspring, D. To assemble the bolt and its parts, the pieces, E, C, and D , are placed in their proper position, and the lug of the key-sleeve, F, is pressed npward into its loeking-noteh in the bolt. Returning the assembled bolt into its place in the receiver, lay the extractor in its noteh on the bolt and place the extractor-spring in position, giving the bolt a sharp push forward, and the hook will engage itself on the pin on the bolt-rib ereated for the purpose, and the arm is ready for use. For simplicity, strength, ease of manipulation, rapidity and certainty of fire, this system is not excelled as a single fire breechloader by any other in use.

To change this single fire breech-loader to a magazine arm, consists simply in introducing through a slot or opening cut through the stock and receiver, forward of the trigger guard, a magazine made to contain five (more or less) cartridges, which insertion or removal can be effected more quickly than a single eartridge can he loaded into or cjected from any ordinary single breceh-loader. The magazine isheld in place by the magrazine catch, K, which engages into a notch or depression in the rear of the magazine, as shown in the drawing, and can be released in a moment by an upward pressure on the magazine catch, K, at its lower end, where it projects downward into the trigger gnard. The magazine is retained so firmly and secnre in pesition that it is impossible for it to become accidentally released, no matter how roughly the arm is used or how severe a shock it may reccive. These magazines are pressed into shape from one piece of metal, and are strengthened by a ribmade on their rear and bottom interior,
I. Trigger.
K. Magazine-catch.

1. Nere-apring.
M. Magazine.
N. Magnzine-spring.
O. Triget r-guard.
O. Triget
2. Tang-screw.
S. Ginard- serew.

The arm can be carried while loaded with perfect in a nearly horizontal position, the flange or head safety hy witherawing the thamlu-piece, E, to the half-cock noteh, which operation fixes the bolt dirmly to its closed position, and locks the tiring-pin baekward elear from the cartridge unti! the thamb-piewe is drawn hate to full-eock, when the picce may be firet. The case ind rapidity with which this arm can be dismounted and asscmbled is noticeable. By inserting the point of a knife or screw-driver into the
in a nearly horizontal position, the flange or head
of each being io advance of the one below it, as shown, rendering it impossible for anything to im pinge upon the primer of either cartridge, and thas olviating every possible danger of premature dis charue in the magraine. The cartridges are fed apwari into the system by the magazine spring, N, as reduired, and le'ing held strongly in position, no deformation of the bullet is possible. By actual ex-
periment, tha bullet of cartridges so helol, and itxposed to the recoil recedved from one lamilred shots tired in the arm, showed no diminution in lengrth.

The simplieity of the magazine mechanisn proper of thim arm is mequaltod and remarkable, eonsisting only of three pices - the magnzime, H, the maga-\%ine-spring, N, and the marimme-catels. ki, and inciulentally, a small spring which operatos in a klot in the side of the recerver, and projacts over the opening through which the cartridges pass upward from the magazino, forming a bottom to the recerver, while the armis bejner ased as ansingle louler. The romploxity of the magame merhanism in most repenting arms, with the consequent liability to breakuge or derangement, has been one of the objections of fered to their adoption for militury purposes. When the magazine is put into place (aceomplishad vilhar hy pressure or by a sharp tap of the hamd; the homd of the upper cartrilge is relieved of its tension aganst the inclined flanges on the rear and ири" part of the magazine, by its pressure agninst the under
 relieving its front rod from the lapmiaplareicest depression in whielo it rasted; the paringe, \mathcal{N}, lifte the bulle end of the cartride nipward, und freq forn the
 to allow its front rind to pass in rear of the larad if the cartridge, which head, thas reliceved, rises by thes pressure of the piring, N, sublle iently to engege the and of the bolt. The forwarl moveracent of the boit then carrics this ratridige into the comamber of the harrel. On opening the systen and withdrawine the holt, the extractor ejerets with certainty thre exploded shell, and the same operations apply until the magazine is exhmustred.

It is intended that two or more maynzines shall be furnished with ench arm, which ure to be eurrioel, chargied, in the eartridge box ar peoket of the sol dier. The magrames can br fharemed with cartrislges (live is the namber recommented that they shall contain). cerch in less han tive seronols. It is quit. practicable that ad ammanition issued to troops be

side of the bolt. 13 (the upper edge of the roar wall|contained in these magazincs, which may be made, of the magazine being slighty hoblowed to the shape if required, wry light, of skeleton form. and of such of the bolt). The rearward motion of the loolt in
being dropped and left on the field, as are the exhausted shells of expended cartridges. The arm can be used as a single loader until the need of rapil firing becomes apparent, when at the word of command, the chared magazines may be inserted and used. The least inteligent soldier can ohey this order without looking at the arm. While removing or inserting the magazine. the arm should be licld firmly at the grip by the soldier's RJGHt hand, in a vertical position. It is believerl that the feature of detachuthility, as arranged in the Lee system, will particularly commend itself to the minds of military authorities. The ease, rapidity and certainty, with which the eharged magazines can be inserted into, or removed from the arm, places it in the power of the officers of disciplined truops to positively control the expenditure of ammonition. The soldier may use his arm as a single lothler until the vital moment when a rapid fire is needed. At the order a inaded marazine can in an instant be inserted, and a volley of tive, to be immediately sueceeded by five, ten, or fifteen more shots (if as many as four magazines be supplied) , rapidly delivered. It will require lat little alrill to teacli the ordinary soldier to deliver twentyone well directel stots from this gnn in forty seconds. E :perts at the Armory fire that number easily in thirety s conds. Trind the detachable magazines, the necessity of all rut-off appliances is obviated, and the danger of the soldfors becoming so confused in the heat and westement of action as to ere in the proper adjut inent of the cut-off, need not be fearnd.

This amm possesses evilfent advantares over all magazine-run having fulmar magazines, placed under or albuve the bairel, or in the butt-stock. In such magazines the cartridges ride leugthwise. one following auntler: the bullet of one coning directly in contact with and resting on the primer of the airtridire next it. All of the cartridges are forced toward the breech mochanism by a spiral spring. which must be of suthrient strength to support the weight of the colum of cartridses. and force them into the receiver or brecel of the arm as fast as required, and of necessity it must have very considerable stiffuess or strength. A French ariny cartridge, which is about the average weight of military cartridges in use, weighs more than $1 \frac{7}{10}$ ounces. The weight of a colmmn of tire such cartridges would be seven ounces, four-fifthe of which weight would in a tububar marazine, rest upon the point of the bullet of the last cartridere, and which bullet comes directly in eontaet with the primer of the cartritge in advance of it. Add to this compressive force the possibility of the cartridge having extra sensitive primers, and the soldier or marksman may reasonably slirink from the possilhility of an accident which wonld probalbly kill. or maim for life. It is hardly necessary to bllum to the demoralizing effect a single instaver of promature explosion of a rartridge contained in the tubular magazine of a military weapon womld Have upon the soldiess of a rommand armed therewith. Sush an accident would probably at least sorionaly wound the operator, and the knowledere that surb cosualties are possible would cause the men to shrink from bringing their arms to the shoulder, and if fired at all, their guns would be held at arm's lenerth, as far as possilule from the person, without aibu or probable effert.

Anothor scrions disadvantage pertaining to all thbular matemine systems is the mavoidable deformation of all cartridge bullets carriod therrin. In the drawing. 1 , shows perfect cartrideres (with insille proners), as in peosition while contained in a luhblar matgazint-rifle, it "Ordar Arms": B, shows one of thr cartrideres with its head depressed, the fulminate of "he inside primer cempressed, and the bulhet thattemod, (., slows perfert cartridges (with outside primers) as in pration while contained in a tulmar madazine-rile at "()rulur Arms": and 1), shous one n^{\prime} bhe rartridges with its bullet flattened and comfrosaded (100 of an inch), and the primers deformed;
the deformity in each case being due to the recoil of 100 rounds. Eren the ordinary jolting incident to an infantry march, greatly aggravated in the case of cavalry. will in a short time so batter and defaer the point of the lead bullet-thus increasing its diam-eter-as to materially impair its accuracy in light, besides rendering it ditlicult to force it into place in the chamber of the barrel, and with the possibility of wedging the enlarged bullet so tightly into the chamber-the cartridge being ondy part way lomethat any attempt to withdraw the charge may separate the bullet from the cartridge case, leaving the lead jammed into the chamber, removable only by use of a sammer introduced throngl the muzale. The soldier, baftied and coufused by any failure of his arm-which failure is liabie to oceur at the supreme moment which decides the fate of battle - will he less efficient than if armed with the obsolete muz-zle-loader, which, althougla slow, is supposed to be tolerably sure. A final objection to all nhbular magazine systems is that the balance of the arm is constantly being clanged. Each cartridge expended from the magazine alters the relative weight which one extremity of the arm hears to the other, and must radically affect the accuracy of the soldier's h:m. See Magazine gun.

LEFAUCHEUX GUN, A breecl-loading gmn of peculiar merit. The meder-guard of the barrel formed of two pieces of iron having a joint, is maintained in a right line by a rigict phate which supports it. This plate may be made to revolve on its axis with a horizontal hackward and forward movensent, by the action of the hand, when it withdraws its shpport from the under-guard, which forthwith yields and severs the breedi from the rest of the barrel. The chamber which is to receive the cartridge thus is exposed and the piece is loaded. The cartridge itself at its base is provided with a large cap. from whieh projects a fin or small nail; this fits an opening in the breech of the gun, and the hammer strikes it and so fires the piece. To breech-loading military rifles constructed on the Lefandienx system it would be impossible, or at least impracticable, to add the bayonet; for the use of the bayonet in actual conflict would be almost certain to lead to a complete separation of the two parts of the piece.

LEGATE-LEGATION.-As commonly used in modern times the word Legate is applied to the person charged by the Pope of Rome to represent him, or the Toman Church, at the seat of Government of a formign conntry, or at the seat of a bishopric of the Churl.s. But the word need have no such restricted use. It was employed ly the Romans under the Republic, before the Church controlled Dome, to indicate any person sent by the Govermment on in special mission of importance to another Govermment, or "ven to a Conquered Province; when il Legate frefuntly became acting Governor lyy virtue of such commission. legretus among the liomans was is synonym of Ambassador. Envoy Extraordinary, Legate, Ambassador. are three words signifying nearly the same thing : the first two iudicating a fresh or special appointment for a specific object, and the last a more permanent mission. The term Legation incindes all that appertains ofticially to the position of a Legatu, an Ambassador, or an Envoy Extraordinary, viz., his Secretarios, Attaches, Family, and lessidenere. We speak of the Residence of the American Legation. lut by "A call at the Leqation" one may mean a call on any otheer or any of the familioc of the othcers of the Legation, meming then by Leeration the stat of residenee of its members.

LEGION.- A legrom in the Ronam military system, corresponted in force and organization to what in
 frrad in constitution at diferent perioda of Roman biotory: In the time of the Repmblic, a legion com-
 perienced troops; 1,200 primeipes, or whll-1 rainud soldiers; 1.200 relites, or skirmishers; 600 triarii, or piltr-
ni,veterans forming a reserve; mad 300 equites, knishts who acted as cavalry, and belonered to familie's of rank. During this period the legions were formeed for the season, standing armies belige of hater arowth. The hastati, principes, unt trinrii, formed three separate lines, erach divided into lo maniples ore eompanies, 120 men such in thac ense of the two front lines, and 60 men in the triarii. . I maniple was com. manded by a C'enturion or ('aptain, who hat at he comi Contirion, or licutemant, and two Suls-ollicers, or Sergeants, under him: as non-commissioned otli-
 or tent of ten men. The sonior (entarion of aitcls line commanded that lime, and had therefore finne tions correspunding to a modern Lientenantacolonel. The priminilus, or senior Centurion of the Iriarii, was the most important regimental oflerer, and eommanded the legion in the abserice of the Tribunes. The 300 cavalry formed a reginent of ten turmor, or troops of 30 horsemen, enel under three Derntions of whon the senior had the eommand. 'The velites wre light troops, not forming jurt of the line of battle ; had apparently no olbers of their own; and were attached to the 30 maniples in efual proportions. The Stafl of the legrion consisted of six Jribmmes, whomanaged the gaying , quartering, provisioning, etco of the troepss, and who eommanded the legion in turns for a period cach of two months. 'lhis command, althongh inconvenient, lasted till the times of the civil wars, whena Ligatus, or Lieutemant-genoral, was appointed a permanent Commandant of the jegrion. "the offonsive weapons of the hastati and principes were two barhed iron-headed javelins, one of which was hurled at the enemy on the tirst onslaught, while the other was retained as al defonse agitinst eavalry. The triarii hat long pikes. In addition to these arms, every soldior bore a very short, strong, eut-and thrist, two-edged sword. The legionaries' defensive armor consisted of a plamerd hemblet. breastplate, irom-bound boot for the rioht leor, and a semicylindrical shicld 4 fect long by $2 \frac{1}{2}$ hroad. The velites hal no defensive armor, were lighty armed, and in action nwually operated for llanking purposes. Each maniple bore an ensign aloft, and each legrion had its distinguishing earle. Uje to the time of Marius, service in ulegion was songht as honorable ocerpation, aud men of some means were alon* eligible; but Marius enlisted slaves, and turned the legions into corps of a purely mercenary army. At the same: period, the manipular formation was abolished, the three lines were assimilated, and the Jegion was divided into 10 cohorts, each of three maniples. Soon the colorts were raised to 600 men. making the legion 6,000 infantry, besides cavalry and velites. It was ranged in 2 lines of 5 cohorts each ; but Caesar altered the formation to 3 lines, of respectively 4,3 , and 3 cohorts. During the latter Empire, the legion becane complex and ummanageable; many sorts of arms being thrown together, and bat istro, catapalts, aml onagers added by way of artil. lery. Ilaving so degenerated from its pristine simplicity and completeness, the legionary formation was soon overthrown amid the incursions of the victorious barbarians. Sce Thundering Legion.
LEGIONARII. - The second of three classes of soldiers in the Roman Army ; the soldiers of the legions.
LEGION OF HONOR.--In Ordar of merit instituted under the French Jepublic in 1802 by the First Consul, as a recompense for military and civil serviees. It was ostensibly founded for the protection of republican principles and the laws of equality, and for the abolition of differences of rank in soriety, every social grade being equally cligible; lut fits real aim doubtless was, by popularizing the idea of personal distinction, to pave the way for establishment of the Empire and of the more exclusive titles of nobility that were to accompany it. The proposal for its institution was at tirst violently opposed by the legis. lative body and the tribunate, on democratic grounds, and carried eventually ly a very narrow majority
'The Oreler originablly comprised tharee classses- (iramel
 (iranel oflicers was, on tha (oromation of Napoleon) I..
 (${ }^{\text {bases }}$), and (iramd (oflserers. On the remuration of thes Boarbons, the legion was retained, fut remedelend so as to jose much of its original character. 'Jhas fagla was called a cross, and the efligy of lianry IV . re-
 Engle became Grand Crosses, the Leghionarios wart tranaformed into knights, and the numorous eductitional institutions, founded loy Napobeon for the chaildren and relatives of the members of the Oreler, we.F. much reduced in seale. In 1837 a now military class calleof onljeers was admitted. Vmber the jresident. ship of Lomis Napoleon, jart of the property of Louis Dhilippe, whichbat heron restored to the State, was set apart as an endownome for the loorionn, and now regulations were made regarding the pensions of the different classus. The original furn of decoration was reintroduced, which under the siocumd Empire was somewhat moditied. As worn then, it consistod of a cross of ton points of whit" cnamel ederol with gold, the points connecterl with at wreath of laturel proper, athl in the center, witls an azare circle charged with the words "Nippoleon 111.. Eimperenrdes Fran"ais." was a heat of the Emperor. Flocerros is ensigned by the impriall crown of France, and worn attacherl to a real ribbon. The Grand Ollicars also.as a general thing, wore on the riatht hreast a silver star charget with the imperial angle. "lhes samme star was generally worn on the left breast by the Kinglats Grand Cross, and their cross was attached to a broad red ribbon which passes over the right shoulder. The vast numbers of this Order, and the msigniticance of many of the persons om whom it has been conferred, lavie detractod mach from its value. The number of members in $18 \mathrm{~B}^{2}$ was 69,179 ; bot the latw passed in that year, that only one new member slould be added for every two vacancies. reduced the membership in the next five years (18.7) to5!),208. The revenue of the College of the legion bas heen augmented by the addition of property belonging to Louis Plilippe. Ont of this Iund pensions are paird to those members of the Orier who have served in the Army or Navy; the civilian members receive no pension. By the existing statutes, candidates in times of peace must have served in some military or civil capacity for 20 years; exploits in the diclif or severe wounds constitnte a clain in time of war. Two distributions take place in the year. The nomimation of military persons takes place on parade. and of civil in the Courts of Justice. Noignoble pranishment can be inflicted on a member of the Order so long as he belongs to it. Torise to a superior rank. it is indispensable, at least for matives of France, to have passed through the inferior grades.

LEGS.- Human legs are not unfrepuently borne as charges in Heraldry, sometimes naked, sometimes booted, and they may be coupled, i, e., cut evenly off, or erased, cut with a jagged edge. and that either at the thigh or below the kner. The kuee when represented is always embowed. A romarkable deviec of three legs in armor, conjoined at the thimhs, and Hexed in triangle, forms the insignia of the ancient Kingdom of Man, with the appropriate motto, Quecunque jecerisstabit. 'llhe clasical symbol of the Island of Sicily (Trinacria) was formed of three palied legs similarly conjoined, and the triple-mountained Isle of Man miglathave awakeac 1 inits Norman Sov. ereigns some recollections of their Mediterranean conquests.

LELEGES. - An ancient and warlike jeop)le which peopled the Islands of Egean, and is mpposed to have been of Pelasgiv origin. Anthorities differ as to its exact identity, some having confused the leleges with the Carians, with whom they are said to have mited in support of the Trojans. Homer represunts Altes. King of the Leléges, ns having been the father-in-law of Iriam. Pausanias consi lers le.
lex, the founder of this race. to have been a foreigner from Eegypt. and that he brcame ling of Megara. Aceording to this authority, the grandson of leclex. Pylus by name, fonnded the city of ?ylus in Messenia with a eolony of Megarian Leléges. The last that is recorded of the Leleges is that they joined the Carians in colonizing the west coast of Asia Minor.

LENGTH OF BORE.-The slom rate of hurning of mealed powder, whieh was originally used in eannon. led to the belief that the longest pieces gave the greatest ranges. In spite of much experience to the contrary, this belief was entertained, even after gunpowder received its grannlar form; and several pieces were made of enormous length, with the expectation of realizing corresponding ranges. A culcerin was cast during the reigu of Charles V. which was 58 calibers long, and fired a hall weighing 36 lbs, but on trial, this piece was found to have actually less range than an ordinary 12-pdr. gun. The experiment of reducing its length. by snecessively cutting it off to 50,44 , and 43 cullibers, was tried, and it was found that the range increased at each reduction until it gained 2,000 paces.

That the bength of the bore has an important effect on the velocity of the projectile, will be readily seen by a eonsideration of the forces which ae. celerate aud retard its movement in the piece. The "ccelerating force is due to the expansive effort of the inflaned powder, which reaches its maximum when the grains of the charge are eompletely converted into vapor and gas. This event depends on the size of the charge, and the size and velocity of combustion of the grains. With the same or eonstant accelerating force, the point at whicis a projectile reaches its maximmm veloeity depends on its density, or the time necessary to overeome its inertia. The retarding forees in action, are-1st. The friction of the projectile against the sides of the bore: this is the same for all velocities, but is very different for all the different metals; 2d. The shocks of the projectile striking against the sides of the bore: these will vary with the angle of incidence. whieh depends on the windage, and the extent of the injury due to the lodgment and halloting of the projectile; 3d. The resistance offeral by the coltumn of air in front of the projectile: this force will increase in a eertain satio to the velocity of the projeetile and length of the bore. As the accelerating foree of the charge increases up to a eertain point. after which it rapidly diminishes, as the space in the rear of the projectile increases, and as the retarding forecs are constantly opposed to its motion it follows, that there is a point where these forces are equal, and the projectile moves witla its greatest velocity; it also follows that, after the projectile passes this point, its velocity decreases until it is finally brought to a state of rest, which would be the case in a gun of great length. The length of bore which eorresponds to a maximum velocity depends upon the projectile, eharge of powder, and material of which the piece is made; and taking the caliber as the unit of measure, it is found that this lengtl is greater for small-atms which fire leaden projectiles than for guns which fire solid iron shot, and greater for guns than for howitzers and mortars, whieh fire follow projectiles. It may be broadly stated that with suitable powders, the following relations shonld wxist becweren the clarge and the lengtlo of loore, in oreler that there may be a profitable use of the charge:-
r'large.
Length of bore.

Abont 26 calihers. 30
35
In earla rase a groater length of hore would give increased velocity, but it would be obtained at the expense of additional woight, which can be letter ntitized uisewhere in the gran. See Cannon.

JENGTH OF CANNON, -In smonth-bore ginns, the distance between the fear of the base ring and face
of the muzale. measured in a line parallel to the axis. The length of B. L. R. guns is measured from behind the brecel to the face of the muzzie, the breech screw not being included, and the length of M. 1. 12. guns from the neck of the cascable to the face of the muzzle. The length of a mortar is the whole distance from face to breech, measured along the axis. The length of guns is sometimes expressed by their calibers; but this, except with smooth-bore guns, is a very inaccurate method of comparing the lengths of riffed guns. To say with smooth-bore guns that they were so many ealiberslong, was sufficiently aceurate, because the weight of charge and shot was always in proportion; but with rifled guns, which not only differ in this respect very greatly from smooth-bore guns, but even among themselves, to speak in this manner is very misleading. A 68-pr. gun has about the same kength of hore as the 8 -ineh rifled grum, and is conseguently the same length in ealiber; but, as the charge of the latter is double that of the former, the mumber of expansions with an 8-inel gun is only half of what it is with a $68-\mathrm{pr}$. The more scientifie way, is to designate the length of bores by the number of expansions of the clarge.

LENGTH OF FUSE.-This expression has reference to the period a fuse is required to burn, the time being determined by the range. Fnses (time), sueh as are used with M.L.R. English guns, burn a certain number of seconds, viz., 5,9 , and 20 seconds respectively. The use and objeet of these different fusces are as follows: The 5 -second fuse is used with shrapnel shell (G. S. gauge), up to the 80 -pr. inchasive. This fuse is very necessary for F. S. shrapnel shell, which must be burst with great aecuracy to develop its power. The 9 -second fuse is used with common and shrapnel shell (G. S. gange), up to 80 -pr. inclnsive, at long ranges. The 20 -sceond fuse is used for common shell (G. S. gange, garrison service), up to the $80-\mathrm{pr}$. inclusive, at long ranges. It is only used in the F.S. for high-angle firing from the 7 -pr. gun. It is not arailable for shrapnel, as it has no powder-channels. B. L. R guns use fuses of the same lengtlas as above. The following will be found, as a general rule, nearly correct for getting the length of fuse with muzzle-loading rifled guns. Divide the number of hundreds of yards in the range by 2 , and add 1 up to 1,000 yards, 2 up to 2,000 yards, and so on, for length of fuse in tenths of inches.

LENGTH OF PROJECTLLES.-This lengtl necessarily varies in the different descriptions of projeetiles for the same gun, inasmuch as it is to some extent suhordinate to the consideration of bringing them all (with certain exceptions) to the same weight, but it has been decided that a length of two ealibers at least is necessary for very aceurate shooting, and it is desirable for good vis riva, or destructive etleet on impaet, at any but very short ranges, to have the weight great in proportion to the caliber, or in fact to the surface of resistance, and of course this is favored ly an inereased length of projectile.

LENS.- A circular scetion of any transparent substance, luaving its surfaces either both spherical, or

one of them plane and the other spherical. A ray of light in passing throurg a lens is bent towards its thickest part : hence lenses are either convex (thickest in the midile) or coneave (thiekest at edges). The former make the rays more convergent than before, the latter make them more divergent. The point to which the rays converge, or from which they diverge, is called a focus-principal focus when the rays atre
parallel. The focus for a convex lons is rala, i.e., the rays aetually pass through it, and form an invorted imaige: smatler or larger than the objeet acooroling as tha objort is at a distance grantor or loss than twire the primeipul focal lengils; but the imnge is aroct and magnified if the ohjoet be within the primeipal focal length, For a concave lens the foons is virtual-tho rays suan to come from it and form an wrect image smaller than the objeret.

The lenses in the drawing, though they may be of the same focal length, have peculiar propurt ies which ramber them suitable for particular optical instruments; thus, the convexo-plane lons has only onefourth of the aberration of aplameconvex, or twothirds of an equi-conver or requi-coneave of the stame foeal length; but, in general, the repui-convex is the most desirable form. Aberration has been to opticians what refraction is to the astrononer, an umwel. come intruler, which spoils his timest therories, and limits the ateroracy of his results. This aberration las, indeed, been destroyed by combining lenses of equal and opposite aberrations, as for instance, unitjng, ly means of Camada balsam, a donble convex with a double concaver. A still bettor method would be the formation of lenses having one side splarerab, and the other of an cllipsoidal or a hyperboloidal form ; but this has not yet been successfully aromplished. Convex lense's of giass, roek-salt, ice, cte. may be used as "burning-glassen," since rallant hoat is refracted aecordiner to the same laws as lisht-the hot focus being nomrly coinedent with the laminous onc. Platinum, golil, ete., have been fused in three or four seconds by this mexns.

LEOPARD. - The loopard has been deseribod by some Iloralds as the issue of the pard amd lioness: and the circumstance that such hybrids are unproduetive, is assigned as a reason for appropriating that animal to the armorial ensigns of A bbots and Alobesses. However, the representations of leopards, at least in English IIeralary, are so exactly like those of the lion passant gardant, that it has heen made a guestion whother there is any difference between the two, ant it las more especially heen a keenlycontested point whether the three animals in the royal escuteleon of England were lions or leopards. In early times we find them blazoned in looth ways, and the trne solntion of the quastio rexata seems to be, that at one period the heraldic leopard came to be considered as a mere synonym for the lion passant gardant, though the two animals were originally regarded as distinet. In the infaney of lleraldry, before distinctive appellations wore invented for the different attitndes of nnimals, it was pustomary to draw a lion in the attitude since called rampant, and a leopard as passant gardant. This difference of position suthciently indicating which animal was meant, they were otherwise similarly represented, and no attempt was made to exhibit the spots of the leopard. By and by, as coats of armor were multiplied, it became necessary to difference them by varying the position of the animals depicted; and the blazoners of those days, thinking more of attitule than of \%oology had recourse to a compromise in their nomenclature. The lion was naturally supposed to be rampant and in profile, the leopard passant gardaut. When the conventional animal that might stand for either was passant and in profile, he was designced a lion-leopardé : aud when rampant gartant he was a leopart-lionne. The king of beasts was very early assumed as his appropriate insignia by the Sovereign of England, as well as by the Sovereigns of other countries in western Europe. The lion was at first borne singly, and his natural attitude. like that of other lions, was considered to be rampant. But when a second and third lion were addel, it beeame less convenient to draw them in the rampant attitude, and the lions luecame lions-leopardé or passant, as seen in the seal of King John: a further change of position to passant gariant made them heraldically leopards. Edward II., Edward the Black I'rinee, and Rielard
II., spenk of their corest of the lronpard. Nirlorghes Sirchy was designated laropard Ilarabl in the reign of Ifronry 1 VV. i annl it was mot till lho midrllo of tho 15th contory that tho lions of Fingland regained their vriginal mame. Thongrh looparole, projerly so ralled. harelly occor in longlimh herablary, having pashorl into
 sionally borme. If nos part of the wock is slaw wn, the proper hatam is a leopard's fare ; if a portion of the nock is rlawn, it is a leopard's horad, rrased or comperl, aceording as it is cont off evonlyor witha jugererl netge.
LESGHIANS. A boly of : 300 o(0) pu:onlo, inhabiting the momatains of westermJaghestan in the ('rumasus (Asiatie lhassia), and speaking various langunges. For many yoars they male a lirave resistance to lánssimn aggression. Since 1859 thry have been jeacrable Their religiom, a morlifination of lslamism, is crilcd Muradism, and was fomaded about $18: 30 \mathrm{by}$ a mative l'rophrt.

LESSE. I machine aroverol with rawhirles, used] as a mantelce by the ancient Groeks for lifirerent jurposes.

LETTER BOOK.- A book rontaining the entry of all othiotal letters written hy the ('ommanding ofleer, or under his slirection, to the public alcpartments, and to individuals, on regimental busimess. It contains an alphabetical index. and a separate index for the publie departments. It meed not le preserverl lio. yond threr years, after it is completed, carc being taken to keep ropies of such lutters as may be likely to be ropuired for refurenco.
LETTER OF MARQUE.- The commissinn authorizing a l'rivatecer to make war mpon, or soize the jrojerty of another nation, lt must he grantell by the Lurds Commissioners of the Admirulty, or liy the Viee Admiral of a distant Province. Vessels sailing undur suell commissions are commonly spoken of as Letters of Marque. Making war withont Letters of Harque by a private vessel, is piracy. Letters of Marque were abolished among European nations at the Triaty of l’aris, in 1856.

LETTRE DE PASSE. - A paper which was formerly signed by the Kings of France, authorizing an ofticer to exclange from one regiment to another.

LETTBES DE CACHET, The ame given to the famons warrants of imprisonment issued by the Kings of France before the Revolution. All lioyal detters (Lettres Royaux) were either Lettres Putrntes or Lettres de Cuchet. The former were open, signed by the King, and countersigned by a Minister, and liad the great Seal of State appended. Of this kind were all ordinances, grants of privilege. ete. All letters Patent were registered, or enterinuted by the l'arliaments. These ehecks on arbitrary power did not exist with regard to Lettres de C'achet, also ealled Lettres Closes. or sealed letters, which were folded up and sealerl with the King's little seal (cachet), and by which the Royal pleasure was made known to inilividnals or to corporations, and the admistration of justice was often interfered with. The use of Lettres de Caehet became much more frequent after the necession of Louis XIV. than it lad been before, and it was very common for persons to be arrested upon sueh a warrant, and confined in the Bastile, or some other State Prison, where some of them remained for a very long time, and some for life, either beranse it was so intended, or, in other cases, hecause they were forgotten. The Lieutenant General of the Police kept forms of Lettres de Cachet ready, in which it was only necessary to insert the name of the individual to be arrested. Sometimes an arrestment on Lettres de Cachet was a resonrce to shield criminals from justice.

LEVEE. - This term originally meant visits of ceremony paid in the morning among persons of rank. It is now understood to mean an assembly at Court. on state occasions, of those of ller Majestys subjects whoare entitled to the privilege of presenting themselves before the Sovereign. The privilege of Ioldiner levees is also accorded to Wer Majesty*s representa-
tives at home and abroad to the Field Marshal Commanding in Chief, and other high Functionaries
LEVEE EN MASSE. - A general rising of the people of any country, either for the purpose of self-defense, or to answer the intention of its governing powers. See Lory.
LEVELERS. - A party which arose in the army of the Long Parliament, when it overawed that body. and sent the King to Hampton Court in 164\%. They determined to level all rauks, and estahlish an equality of titles and estates throngout the Kingdom. Several of the ofhcors belonging to this party were cashiered in 1049, and on the departure of Cromwell for Ireland. at the elose of that year, they raised mutinies in various quarters, and were put down by Fairfax with bloodshed. They were not only treated as traitors by the King, but persecuted by Cromwell as dangerous to the State. In politics their fundamental principles included: 1. The impartial authority of the law; 2. The legislative power of Parliament; 3. Absolute equality before the law; 4. The arming of the people for securing the enforcement of the laws, and the protection of their liberties.

LEVELING.-Lcvel is a term applied to surfaces that are parallel to that of still water, or perpendieularto the direction of the plum-line; it is also applied to the instrument employed in determining the amount of variation from perfect leveluess. The instrument ordinarily is a cylindrical glass tube very slightly convex on one side, and so nearly filled with water, or what is better, with alcohol, that only a small bubble of air remainsinside. The level is then mounted on a three or four legged stand, with its conrex side upwards, and by means of a pivot and elevating screws, is made capable of assuming any required position. If the level be properly consirneted. the bubble should lie exactly in the middle of the tube when the instrument is properly adjusted, and, at the same time, the Jine of sight of the telescope at tached to the level should be accurately parallel to the surface of still water. In ordinary levels, this first enodition is seldom seen. and, instead. two notehes are made on the glass to mark the position of the two extremities of the bubble when the instrument is level. The tube and bubble slould be of considerable length to insure accuracy. A very handsome level of precision, constructed by Faith and Company, United States, for the Coast and Gendetic Surver, is employed for the most exact work. It can also be used as a gradienter, the micrometer screw for raising or depressing the telescope heing made with the utmost exactuess, and being providd d with a graduated head. The telescope has an aperture of $1 \frac{1}{2}$ inches, and 16 inches focus, with two astronomical pye-pieces, magnifying 40 and 60 times respectively. The pivot-rings are of phosphor-bronze, and rest on agate. The stridiner ievel is chambered, and one division' equals 3 scconds of are. The horizontal circle, of tive inches diameter, divided on silver, reads to 30 seconds: the center is of steel; clamp and spring tangent motion.
Custom has established the measurement of absolute levels from the averare surface of the oceanthe mean between high and low water-as the zero level: when reckoned from any other zero level. they are relative levels. Leveling, or finding the dificrence between the levels of two or more points. is designated by the term hypsomedry in geodesy. There are three prineipal and independent methods of leveling. The first depends upon the fact that the surfaces of flude at rest are perpendienlar to the direction of the force of gravity : upon this is basert the common lawel. In the seemd method, trigonounetrical feveling, we must know, first, the wenith distance, or the angle lietween the zonith of the slation and the object whose haght we wish to tind (making a correction for the (elfect of refraction.) and. second, we must know or accurately detcrmime the horizontal distanee from the station to the obs ject detcrmined usually by trianguation. In accu-
rate work a careful adjustment of the theodolite, the instrument used in this method, is necessary. Local attration sometimes canses a deflection of the plumb-line, thus affecting measurements of zenith distance. Atmospheric refraction is a more important clement of uncertainty. for which reason the horizontal distance should not exceed 12 or 15 miles. The coefficient of refraction is irregular, and varies with the temperature and pressure of the atmosphere: it is most steady and nearest its minimum between 10 A . m. and 2 p. m. From the above lata, the difference in level is easily calculated. The weight of the atmosphere bearing upon a unit of surface diminishes in a geometrical progression as the heights inerease in an arithmetical progression; therefore, by the third method, heights are determined with the barometer. Physicists have constructed numerous formulx embodying the law of hariote, and introducing corrections for temperature. expansion of air. and the effect of latitude and height upon the action of gravity. It is believed that considerable aceuracy can be attained by this method, particularly if the annual means of temperature and pressure for the stations whose difference in level it is desired to find are snbstituted in the formulæ. Aneroid barometers have been graduated to indicate heights up to 12,000 or 16,000 feet; they give only approximate results. If a delicate apparatus for determining the boiling point of water be used, the corresponding heights taken from a table will give the reading of the barometer at that point, so that the instrument itself can be dispensed with. This depends upon the fact that the boiling-point of water decreases as the pressure of the atnosphere becomes less. Ses Theodolite and Y Level.
LEVELING BAR.-A square steel bar with parallel faces, somewhat Jonger than the distance between the sights on the largest gun. The rear end is bevelled at an angle of 60°, the angle at which the sight is placed. It has a central line marked on it throughout its length, on the nader side, and

along the bevelled end. It has also marked on its sides, near the forward end, the distance at which the sights should be placed for each class of gun. It is also fitted with screws for bringing it to a level. The leveling-bar being laid on the front sight, and it bevelled end taking against the rear sight-bar, bring it to a level with the spirit-level and screws. This will give the true guide for angle of rear sightbar, and the latter's proper plane. As sonn as rear sight-box is fitted, bore hole for same through rear sight-mass. The hole is bored with the rear sughtbox on, and the latter is kept down in its place by a sling around cascabel set up by a handspike. The rcar sight being fitted true as to the levelingbar again level the arm of sighting-tompion, and treteh the thread back over the gun, this time bringing the thread to the exact middle of the rear sightnoth. Now, in theory, the thread ought to come directly over the inital point of the base-ring, and over the mark already accurately laid off on the front sight-mass; but practically this is never the casc, as it is almone imponsible to fit a rear sight-box so true as 10 bring the middle of the sight-noteh in the exact line of sight alrady laid off. It will be found, upon streteling the thread the second time. that it will fall a trille one side or other of the initial point an base-ring. So, virtually, it is necessary again to lay off a line of sight. With a measure take the distance that the thread falls to one side of the initial point on base-ring. Take this same distance that the thread is out, and lay it off horizontally on the cross-
liar of the vertioul sighting-urm. Of course when Her thread is also moved this distanee on the sifght-ing-arna, the thrent will fall the sume distancee to one side on the front sight-anass: thereforre bask this last point where the throatl falls over the front sight-mass, and thas is establishared the seromal and final line of sight. Also mark the peint where the thread now crosses the buse-ring, and this is the timal initial point to be marked for a fuld due on the basering. Whare the threat corosses the frome sightmass, hold the front sight itself tirectly under the throid. WHan the front sight mass was lincel out. at tha same time with thr rear sightemass argralation distance was givon from haserime to renter of front sight-mass, and from this ceotral jomint the mase whs marked out and cut. See ('thnons sights.
LEVELING RODS. - The various leveling-rods used by American enginerers are mate in two or more parts, which slide from each other as they are ex tended in use.
these depresserl surfures arr painted white, divided into fert, tenths ami hamiredthe of in foot, and the faret
 bettonn apmarel to seven foret, the fort tignter being red amd un incla longe the lentla digures black, and right-tenthe of an inelt long. When the roul is rextrmided to full length the front surface: of the rear lualf reads from seven to thirtern foet, and the whole
 is self-reading rod thirteron fort long. The back surface of the rear half is tienterel from seven to thireron frot, rending from lle top down: it has a srale also hy whicla the rod is remd totwo-hundredthes of a foot tis it is coxtomed. The turget is rommol amd marlo of shoet-frass raised on the perimeter to inerease its strenirth, und is painted in white and red guadrants ; it las also a scollo on its chamfered edere, reading to two-lamalredtlis of a foot. Whan a level of lece than seven feet is desired ilse target is moved up or down the front surface, the rod being closed together and

The Philadelphia rod, shown in Fig. 1, is made of clamped; but when a areater height is required the two strips of cherry, each about threc-fourths of an target is fixed at seven feet and the rearhalf slid ont. inch thick by one and a half inches wide and seven the scate on the hack giving the radings like those fect long, conneeted together by two metal slecses, of the target to two humdredths of a foot. the upper one of which has a elamping-screw for fastening the two parts together when the rod is raised for a higher reading than seven fect. Both sides of the back strip and one side of the front one are planed out one-sisteenth of an incla below the edges;

The Troy rod slown in Fig 2. is a self reading rod up to six feet, or ean be read by a remier on the rear piece to thousamitis of a foot as usual. It has two targets as shown, both fastened to the front half of the rod, the lower one having its center
line just threc-tenths above the end, and the target exactly six feet above the lower. There is a clamping piece with serew on the back of the rod below the target, by which the two parts are clamped together when desired. The face of the front piece is recessed like that of the Philadelphia Rod, painted white, divided to feet and hundredths, and figurel as represented. The side of the front half is divided to feet and hundredths, read by a vernier on the top of the rear half to thousandths, and figured from the top downwards, beginuing with three-tenths, that being the height of the center line of the lower target. When a level of less than six feet is taken on the rod the observation is made by the lower target, and the reading is direct as given on the side; but when a greater height is taken the upper target is sighted upon, and six feet added to the reading on the side in every instance, and thus a reading up to twelve feet readily obtained.

The New York rod is made of maple, in two pieces sliding one from the other, the same end heing always held on the ground, and the graduations starting from that point. The graduations are made to tenths and hundredths of a foot, the tenth figures being black, and the feet marked with a large red figure. The front surface, on which the target moves, reads to about six and a half feet; when a greater height is required, the horizontal line of the target is fixed at the highest graduation, and the upper half of the rod, carrying the target, is moved out of the lower, the reading being now ohtained by a vernier on the graduated side, up to an elevation of twelve feet. The mountings of this rod are differeutiy made hy different manufacturers. We shall give those which are mostly used. The target is round, made of thick sheet brass, having, to strengthen it still more, a raised rim, which also protects the paint from heing defaced. The target moves very easily on the rod, being kent in any desired position by the friction of the two flat plates of brass which are pressed firmly against the two alternate sides, by small spiral springs, working in little thimbles attached to the band which surrounds the rod. There is also a clamp-screv on the back, by which it may be securely fastened to any part of the rod. The face of the target is divided into quadrants, by horizontal and vertical diameters, which are also the boundaries of the alternate colors with which it is painted. The colors usually preferred are white and red; sometimes white and black. The opening in the face of the target is a little more than a tenth of a foot long, so that iu any position a tenth, or a foot figure, can be seen on the surface of the rod. The right edge of the opening is chamfered, and divided into ten equal spares, corresponding with nine-lundredths on the rod; the divisious start from the horizontal line which separates the colors of the face. The vernier, like that on the other side of the rod, reads to thousandths of a foot. The clamp, which is serewed fast to the lower end of the upper sliding-picee, has a movable part which can be brought by the clampscrew firmly against the front surface of the lower lalf of the rod, and thus the two parts immovably fastened to each other without marring the divided fice of the rod.

Fig. 3 represents another form of this favorite rod, introllnced by the Messrs. Gurley, United States. In this rod, a third or fourth piece is added to the two of the old rod, giving thus a rod of greater length, and at the same time making it more compact and portable. The divisions, the vernie es, readings, and target are the same as those of the old rod. There are two varietios of the threeparted rot, one sliding to allow a reating of thirteen foet and the other extending to fourteen feet; the first when closed is only five fere long, the last but a litthe over five and a half fect. 'The four-parted rod is, when closed, but five feet in length, but cou b° extented to sixteen fort.

The Arehitetes rort is avery light and simple
sliding rod made of maple, in two parts, each seveneights of an inch square, and when closed, about five feet six inches long. As shown in Fig. 4, the front lualf is divided on two sides to fect, tenths, and hundredths, readiug by verniers on the target and side to thousandths of a foot. The target is smaller than those of the rods already described, but of sufficient size, and moves on the closed rod when levels of less than five feet and four-tenths are to be taken. When a greater height is needed the target is fixed at the highest division, the front half earried above the rear part and clamped at any point desired, by the elamp-screw, as shown, the height being now read off by the vernier on the lower half up to ten feet. This rod is adapted for use with any level, and is so light and efficient that we believe it will come into general use; when it is to be used by an architect, the divisions are made in feet, inches and sixteenths, and no verniers are then required.

The Boston rod, shown in Fig. 5, is formed of two pieces of light mahogany or baywood, each about six feet long, and sliding easily by each other in either direction. One side is furnished with a clamping picce and serew, and a small vernier at each end, the other or front piece carries the target and has on each side a strip of satinwood inlaid upon which divisions of feet, tenths and hundredths are marked and figured. The target is a rectangle of wood fastened on the front half, is painted black and white, and has its middle line just three-tenths above the end of the rod. Eacli tenth of the rod is figured decimally in three figures or to hundredths of a foot, and by the verniers is read to thousandths. The target being fixed, when any hieght is taken above six feet, the rod is changed end for end, and the divisions read by the other verniers; the height to which the rod can be extended being a little over cleven feet. This kind of rod is very convenicnt from its great lightness, but the parts are made too frail to endure the rough usage of this country; and therefore American engineers have generally given the preference to others, made heavier and more substantial.

In addition to the above, there is what is termed a Telemeter rod, formed of two pieces of pine, each three and a half inches in width, seven-cighths of an inel thiek, and six feet long. Both sides of the rods are painted white, the inner surfaces deing also recessed to protect the divided surface, with divisions in black of feet, tenths, and hundredths, and figured, the feet in red, the tenths in black. The two pieces are connected by a strong iron hinge, and folded in transportation; when in use, they are opened, laid flat, and joined firmly in line by a wooden bar, about eighteen inches long, held to each piece by two strong brass screws, which enter into metal sockets secured in each part of the rod. This is a self-reading rod, and is often used in conneetion with the micrometer wires to ascertain distances by a simple observation in the same manner as the Pliladelphia rod.

A rod of English make is sometimes used, in which the two smaller upper parts slide out of a larger and lower one which answers as a case; when closed the rod is five feet long, and extends to fourteen feet. It is livided on a recessed face to feet, tenths, and lundredths, the divisions being painted and figired like those of the Philadelphia and Telemeter rods. This is also furnished with divisions in meters, decimeters, and in centimeters; leagth when closed one and a half meters, and sliding out to four meters. Soe \bar{Y} Lievel.

LEVER.-This, the most simple and common, but, at the same time, most important of the seven mechanical powers, consists of an inflexible rodstraight or bent, as the case may be-supported at some point of its lengih on a prop which is called the fulcrum, and having the reight to be moved and porrer to move it applied at other two points. In the accompanying illustrations, $A B$ is the dever, F the
fulcram, A and 13 the points of applieation of 1 and W, the power (or prequare) und weight respertively. If the arms $A l^{4}$ and $13 \mathrm{~F}^{\text {b }}$ be equal, the juwor P and the weight W mast alses le eerpal tas prosluce erguilibrinm ; if the arm of the power, A 5 , be longer than the arm of the weight, $13 \mathrm{l}^{\text {, }}$, then, to prondace equilibrimm, the power P mast la. lass thatn the weight W, and viee verwi ; if AF" he double the length of TBF, then 1', to prothee equilibrium, munt be half of W ; and, genernily, as is shown in the elemontury treatian's on merchanics, the poncer ant weight are in the inverse ratios of their distences from the fithcrum. This is equally true for straight or loent levers; but the distance of the power and weight from the fulcrum is not, in all cases, the actual lengeth of the arms, but the lengt hy of perpendiculars from the fulcrum ipen the directions of the power and weight. The principle holds good, whatever be the relative positions of the power, weight and fulcrum; and as there can be three different arrangements of these, we thus obtain what are called "the three kinds of levors." The first kime (Fig. 1) is where the fulcrum is placed between the power and the weight ; the bulaneer spade (when used for raising earth), the sec-sum, etco, are examples of this; and scissors and pincers are examples of double levers

Lavers of the third kind are nsed when velocity, or a large extent of motion, is rerpuired at the expense of power, and we emocipuently lime this form mueh ased in the structure of the limbs of animals. The merncture of the homan arm (Fig. 4), is a very grow "xample of this; the fulermm is the socket (f) of the - lbow-joint, the power is the strong masele (tha bio erpos), which passes down the frome of the lemmerves, and is attached at A to the ration (as shown); tho weight is tha weight of the forearm, togrothore with anything hold in the hand, the two bring suppoumb to be combinel into one weight acting at 3. By this arrangement, a large extent of motion is gainool. ly a slight contraction or extension of the muscle.
When a large morhanical advantage is required, this may be ohtained, without an inordinate length. ening of the lever, by means of a very simple com. bination of them. Here the levers have thair arms in the ratio of 3 to 1 , and a little consifieration will make it plain that a powar (P) of 1 h . will hal ance a weight of 27 lhis.; hat in this instance: the particular defect of the lever as a mechanical power slows itself prominently; for if the wright has th be lifted 2 incles. the power requires to be depressed (2×27 or) 5 inches; and, as the extent of the power camot be largely increased without inconvenicuce,

Fig. 1.

Fig. 2

Fig. 3.
of the same kind. Levers of the spond kind (Fig. 2) the advantages of this machine are confined within are those in which the weight is hetween the power narrow himits. Sce Mechenical P'oncer:s.
and the fulcrum; examplea of this are the erowbar, when used for pushing weights forwarl, the oarthe water being the fulerum, and the row-lock the point of application of the weight-and the wheelharrow: and of double-levers of this kind we have the mut-crackers as an ortinary cxample. In levers of the third kind (F1g. 3), the power is always between the weight and the fulerum. Fishing-rods, whips, umbrellas, and most of the instrmments used with the hand alone, are levers of the third kind: and shears, tongs etc., are examples of double levers of this class. It is evident that, to produce equilibrium in levers of the first kind, the powermay, according to the ratio of the lengths of the arm, be cither greater or less than the weight; in the second kind It must always be less; and in the thirel kind, always greater. This is expressed in technieal phrase ly saying that the first kind of lever gives a mechanical adeantage or disedvantage, the second ahways gives a mechanical advantage, and the thirl always a meeltanical disadvantage. Levers of the second kind, having the same mechanical advantage, are, when

worked by man. iwice as powerful as those of the first kind, beeause in one case he uses his muscular force as the power, in the other case only his weight.

LEVER HITCH. - A knot similar to the drag-rope knot or woolting-stick hitch. It is used for tightening ropes, but instead of turning the wooldingstick round, it is applied on the principle of the lever.

LEVER-JACK.-An adjustable fulcrum with a lever fifteen feet long, nsed chiefly for greasing the axles of traveling carriages. It consists of a wooten stand, made of two uprights and framed into one bed. Two lever-plates (cast hriss) are fastened to the large end of the lever by screws, and prevent the lever from slipping on the fulcrum-pin. See Mechanical Mo.

neverers.

LEVER-RING.-A wrought-iron ring, fitting on thr circular part of the breech-screw of the Armstrong gun. It is kept in place by two split keep-pins which work in a groove round the breech-screws, The ohject of the lever and tappet arrangement is to give a powerful momentum intightening up and releasing the wint-piece from its seat in the gun.

LEVER SHEARING-MACHINE.-It is evident that in all punching or shearing-machines, driven by a belt, theremust be a conversion of the rotary motion of the ariving pulley into a reciprocating motion of the punch or sbear blade. To obtain the requisite power, many revolutions of the driving pulley must occur to onestroke of the punch. In erank machines. the whole pressure of the ent comes directly on the crank pin, which must perform a good portion of its revolution under this heavy strain at whatever speed the crank shaft mar be runnong. This limits the power of such machines to the practical pressure sustainable on a given surface at a given velocity. When the vertical slide which carries the punch is operated by a lever. the sliding motion of the part of the lever in contact with the rertical slide is al. most inappreciable: the pressure extends over large surface with little motion; so with the fulerum pins over whicll the lever works: with very little and very slow motion of these parts much pressure is admissible, while the long end of the lever is operat-
ed upon by the lifting cam acting under compara tively light pressure. Added to this economical use of power, with the very greatly diminished frictional resistance, comes the possibility of so shaping the cam which is designed to lift the lever as to cause the motion of the punch to be about uniform through the whole length of the stroke, to return quickly, and then to dwell during any regnired portion of the revolution of the cam-shaft at the top of its stroke. Therefore, in comparing machines using the crank or eccentric with those employing the level and cam, if in both cases the same pulley, belt, and gearing is used, running at the same rate of speed, and making the same length of stroke at the punch or shear blade, it will be found that there is a capability of punching larger holes or of shearing thicker plates when the cam and lever are used than when the crank or eccentric is employed. On the lever punch and shears is arranged a four-toothed clutch on the main shaft, to be used instopping and starting the plunger. This admits of quicker work than when the cam is shifted on the rain shaft. The tail end of the lever is made to drop on a block of wood held in a box at the back of the machine, and the adjustment of the length of block to limit the fall of the lever enables the stroke to be controlled, and in thin metal to carry the punch close to the plate with less drop than when thicker iron is being punched, so obtaining a longer dwell for setting the plate.

In the Seller's machine, the heavy wronght iron lever in the housing easily raises the blade by its own gravity, and the cam which moves the lever is so shaped as to cause the motion of the blade in cntting to be at a uniform rate of speed. Returning quickly it dwells for some time at the top of its stroke, thus giving ample time to shift the plate for the next cut. In the earlier machines, the lifting-cam was moved sideways from nnder the lever when it was desired to stop the machine. This could only be done when the cam was free from pressure at the end of the stroke, and in starting again the cam could only be pushed in when in proper position in regard to the lever. The cam is now kept in position under the lever and is attached to or detached from the shaft by means of a four-tonthed clutch, which, while it can only be withdrawn at the completion of the stroke, yet at the same time will permit the starting again to be effected in any one of four positions of the driving wheel in relation to the cam, thus saving much time, and also preventing the damage to the machine likely to arise from working the cam only partly under the lever.

The shear blades are placed so as to be right for thimming edges of plates, not for cutting har iron. Operated by a heavy wrought iron lever within the hrousing. Independent stop motion by means of a four-tonthed chitch in the honsing. Blades rest open when clutch is out of gear. Vertical motion of blades $1 \frac{1}{2}$ inches. Can be used to shear plates of iron $\frac{15}{15}$ inch thick. Fast and loose pulleys on the machine 36 inches diameter, 7 inches face, which should make 114 revolutions per minute. See Angle Shearing-machine, Purer Shears, and Shearingma hine.
LEVER SHEERS. - A contrivance consisting of a long. heavy spar, with one end resting on the ground, and the nther supported on two sloort spars, crossed and scenrely lashed together. The butt-end of the spar is heavily weighted, and is usually sunk a little in the ground, resting against a board or slah of wook, to prevent the earth from yielding to the pressurce of the force acting in a direction parallel to the spar, and tending to forec the end of it into the ground. A rear guy is also employed, to prevent short cross spars, or sheers, from falling to the front. The pressure of the spar or lever at the point where the whort spars cross prevents them from inclining to the rear.

LEVET. -1 bast of a trumpet probably that by
whicu soldicrs are called in the morning. This term is now obsolete.

LEVIGATION.-A process of the laboratory for converting different substances to a smooth, uniform powder by grinding them between two flat surfaces. The same process essentially is used in grinding paints, printing inks, and drngs.

LEVY.-The compulsory raising of a lot of troops from any specified class in the community for purposes of general defense or offense. When a country is in danger of instant invasion, a lecie en mave is sometimes made-i. e., every man capable of bearing arms is required to contribute in person towards the common defense. On less urgent occasions, the levy may be restricted to a class as to men between 18 and 40 years of age. At other times, a levy of so many thonsand men of a certain age is decreed, and the districts concerned draw them by lot from among their eligible male population. In armies sustained by volunteering, the levy, which is a remnant of harbarous times, is unnecessray; but the system was frequently resorted to in France before the enactment of the Conscription Laws: 1862 has shown great levies in the United States of America; and in any country where great danger is apparent, and volnnteers are not sufficiently nnmerous, recourse must at all times, be had to a levy of the people.
LEWIS.-Au ingenious mode of lifting heavy weights. It consists of three pieces of iron, two of them wedge-shaped, and the third straight. which, when placed together with the straight piece in the center, form a dove-tailed wedge. The wedge is inserted in a hole of similar shape, cut either in stone or in metal. To the end of earh of the pieces a ring is attached, throughw hich a horse-shoe ring is passed, and to this the rope or chain is securely fastened.

LEWIS HOLES.-The boles, in which the shellhooks work in the 10 -inch and 13 -inch, mortar shells. They take the place of the early lugs, which are objectionable because of being knoced off in transport or piling.

LEWIB-RICE MAGAZINE-GON.-This gun belongs to that system in which a fixed chamber is closed by a moveable breech-block rotating about a horizontal axis at right angles to and below the axis of the barrel; in front, the lock is conaled. The breechblock is operated by a lever, and is locked by a cam. The cam is held in position by a spring, one branch of which serves as a trigger-spring. The breech-block is simply a box containing the firingpin, a bell crank lever, one'arm of which controls the motiou of the firing-pin, the mainspring, triggerspring, etc. The box is closed by a cover, in a slot in which is situated the extractor. In operating the lever, so as to open the block, a point bears against the surface of the cam, presses it forward, and unlocks the piece. During the unlocking, the lower arm of the firing-pin lever is so moved by the nose of the cocking-lever as to cause the upper arn to retract the firing-pin. When the leverhas been rotated sufticiently, the trigger-spring canses the nose of the trigger to enter the full-cock notch; at the same time the shoulder of the cam rides over the point of the trigger. The piece cannot then be fired until the cam is in its seat. The extractor is a flat hade, turning on the same axis as the lever, and operated by the shoulders of the slot in the cover of the breech-block in which it lies. The magazine is in the butt-stock. It is loaded at the side, near the rear, by tirst withdrawing the magazine-tube nearly its full length. When the brecti-block is opened, a cartridge is forced by the magazine spring against the cartridge-stop As the bloek is closed, the stop deacends, due to its arm working in a slot on the inner surface of the recoiver, and the cartridge enters the chamber. A fork on the upper surfice of the receiver prevents the cartridge boing thrown out when the block is closed and also guides it into the chamber. A cut-off is situated on the left side of
the receiver. It may be so set as to prevent the brecch-block opening far enough to allow cartridges 10 feed from the magazine. The phece may then be used as a single-lomder. As a marazine gun, :3 motions are neccesary to operate it, viz.: opemed, closed, fired. As a single-loader, 4 mations are necessary, viz: : opened, lomed, chowed, tired. This gun carries 5 cartaidges in the magazme andone ia the chamber. If the breceh-block be opened, the six cartridges may be loaded directly in the magazine. See Magn-zint-gun.
LEYDEN JAR.-The primeple of the leyden jar was lisenvered by Muschonhrorck at layden in 1745, hence its mane. Grulath, in Germany, 1544, continned the cleceric batery by combining a surios of jars; and timally 1)rs. Waison and 1hevis, by covering the outside of the jar with tinfoil, brought it to the eomplete state in which we now have it. The month of the jar is generally closed loy a wooden stopher, through which passes the stalk of a brass knohur lall, surmounting the' whole. 'Thee connection betwern the inside: comting and the hall is completed by a chain extending from the stalk to the bottom of the jar. If this jar be put on an insulating stool, so that sparks can pase from the prime conductor of a mathine to the knob, when the jar is thas insulated, one or two sijarlis pass, and then the charge secms complete, for mo more sparks will follow, thonght the action of the machine is continued; or if they do, they are immediately dissiputed from the knoh in a lorush discharge. if then, however, the knuckle of the experimenter be brought near the outer coating, sparks hegin again to paiss freely; and for every spark of + deetricity that passes betwern the machine and the knots, a corresponding spark of the same mame at once passes between the knuckle and the outer coating. This continues for some appreciable time, and then the jar appears to be again eompletely saturated. It is now said to he fully charged. The outside of the jar can, in this state, be handed freely, and if it be still on the insulating ston, so may also the knob, although when the hand firstapproaches, it receives uslight spark. But if, when the experimenter has one hand on the outer eonating, he bring the other hand to the knob, before it can reach it, a straight, highly brilliant spark passes between the knoth and his hand, and he experiences a shock of great violence. If he try the same thing again, a feeble spark and shock again ensuce, and the jar in now thoroughly discharged. As it is highly inconvenient, if not dangerons, to discharge the jar through the body, discharging tongs are used for that purpose, which consist of two brass arms ending in balls, and moved on a hinge by ghas handles.

A very instructive experiment may be made when the coatings are fitted to the jar so as to be removed at pleasure. After the jar ls charged, it is put on an insulating stand. The inside coating is lifted out by the knob, and a slight sjark is got by the hand in doing so. The jar is now taken up by one hand. and the outside coating is removed hy the other, and, as before, another feeble spark is got. The whole is now built uj_{j}, in inverse order and discharged. When the spark is nearly as brilliant as when it is discharged at once withont such dissection. From this it may be positively argued that the charge of the jar lies in the glass and not in the coatings, and that it is very likely that in all cases it is in the dielectric the charge resides; that the conductors, which are usually looked upon as the seat of the charge, are morely the limiting surfaces or exponents of it. A portion of the total charge may reside in them, but no more than is found on two similar contiguous dielectric surfaces. Taking this for granted, it is casy to explain the action of the Legiden jar. The electrifying power of the charging machine is exerted on two dielectrics-the glass of the jar and the air-the external limit in botb cases being the surrounding objects which constitute the
ground. The action on the air through the inside coating or the knob) is quite similar to what we: find in the case of any bexdy to low chargeol. Thas: action throngh the ghas is perculiar, bermuse we are shat ont from it. The limits of this artion are the inside surfaces of the inside mal outside comings. The air charge we participate in as we move in it. We arr, however, guite extrmal to thr action on the glass; but if we copld move about in it between the coatings, we should tind thinge there exactly similar, so far, at least, has kind of action is concerned, to What we tind in charged air. Sicreing that the glases of the jar is a thin and goosd dielectrice, and tha air mach thicker and more lifflente to polarify, the charging power of the machine is excred for the enost part in the glass, the polarification in the air heing comparatively sighot. Assuming alectricity to be a polaritieation of modecules, the electricity of the: jur resides thas in glass, and to a much less cextent inthe air. The potential at the inner coating is the: same as that at the knol, for any comected systom of good conductors must be at the same potential. We judge of potential byithe air charge, and thas we take the potential at the knob as the potential at the inner conting. The spark got from the knob of the insulat ed jar is small compared with that of the charging machine, and as sparking distance is, generally spaking, proportional to potential, the potential of ine jar is much below that of the charging machine. Thus, a Leyden jar is a contrivance for aceumulating large quantities of electricity at a bor potential. The thinner the glass, the greater will be the aceumalation of celectricity, but the feebler will be the potential of the jar. When the clectric field is limited, as in the glass of the Leyden jar, it is sometimes said to he breund, as distineruished from the free charge of an ordinary air fiedd. When the knob of the insulated jar is touched, a spark is got, and if the tinger be then removed to the outer coating, another spark, but of the oppositc name, is obtuined. and the knob is again prepared to give a spark, and this alternating process may be continued till the jar is emptied. When the inner coating is touched, the outer coating becomes insulated, and hus the potential always shifts to the insulated coating with an opposite name to what it had before. Each spark ohtained by the tinger in going from one to the other consumes so much of the energy of the charge, and so the potential is gradually lowered. When the jar is discharged by the tongs, the charge of the dielectric glass is thrown into the dielectic air. The particles of the glass, though more easily electrified than those of air, having a higher specific inductive capacity, offer a much greater resistance to discharge than those of air. At the same stage of polarification, the air gives way, while the glass still keeps polarified. Mence a jar with glass only a fraction of an inch in thickuess can give rise to an air-spark of several inches: besides this, the charge in the glass is somewhat uniformly distributed. In the air, with the tongs, the force of the charge is concentrated on a certain region of it. aut the breaking down of the conductive resistance of the air is more casily effecterl. The feeble residual spark from the jar, after the first main discharge, is due to what is called electric absorption. Somehow, the elecericity given to a dielectric is not immediately available when a circuit is offered, the diclectric taking some time to recover itself. This is observable in all solid dielectrics, but no trace of such action is found in air. The sparking or striking distance of the jar indicates the potential of the charge. The quantity may be measured by the turns of the charging machine. It is found that when the same quantity is given 'to 2 wo jars, one double the other in point of covered surface, the striking distance of the large jar is only half that of the small jar ; and that to clarge the large one so as to obtain the same length of spark, iwice the quantity must be given. If two jars be taken of the same size, and one of them be
charged, we find that, on conneeting their outside coatings, a spark passes when their knobs are brought together, and that, when now the double jar is discharged, the spark is only half as long as was got from the single jar discliarged directly. The quantity discharged finally in the donble jar was the same as in the single jar. but the potential was half. The spark occurring at the participation of the charge accomnts for the loss of potential. For great power, large surfaces are necessary. This can be obtained either by constructing a large jar, or by uniting several small jars together so as to act as one. The latter method is preferable, as we can vary the surface according to the number of jars employed.

A combination of small jars united together as one is called an electric battery. A very concenient form of electric battery is shown in the drawing. 'The knols of cach jar conmmoneate with a large central one by arms of brass moving on linges, and the outer coatings are putin a conducting connection, by being placed on an insulated stool covered with tinfoil. The interior coatings are conveniently charged by a long projecting arm from the central knob, and the exterior ones by connecting the stool with the knob of the unit jar, or by a wire with the ground. Any jar can be thrown out of action by throwing back its arm. See Electricity.

LIBERTY, EQUALITY, FRATERNITY.-For nearly a century, these three words have been accepted as embodying the creed of those who maintain the rightful supremacy of the numerical majority; and they have been sounded as the watchword of that formidable movement known on the Continent of Europe as "The Jevolution," of which the object ras to assert this supremacy by overturning the existing fabric of society. When contrasted with the democratic crecd of antiquity, the only novelty which the modern symbol exhibits consists in the proclamation of "Equality;" for " Liberty," in the widest sensemeaning thereby the nltimate extension of political power to the whole body of the citizens-has been the object of the most enlightened politicians of all ages: whilst the protest in favor of "Fraternity" is a mere sentimental commonplace, about the spechlative soundness of which there never was any real difference of opinions.
The first state document of impontance in whiclı the cloctrine of "Equality" is set forth is the American Declaration of Jndependence of July 4,1776 . This celcbrated document proceeds thus: "We hold these truthe to be selfevident : that all men are criveted equal; that they are endowed by their Creator with certain unalienable rights; that anong theseare life, liberty, and the pursuit of happiness," eve. This, as we lave said, was in 1776. But as a specollative oprinion, the doctrine of "Equality" had been procdaimed by Hobbes more than a century before, and from lis time down to the period at which it thus received practical recognition, it lad never been lost sight of by the class of speculators to which llobsesselonged. Under different forms and
from various points of view, it had been reasserted hy Spinosa, Rousseau, Ilelvetins, and nltimately by the class of political declainers whose works were simultaneons with the American, and immediately proceeded the French Revolution.

LIBRARIES-Military Libraries are either garrison or regimental. The former comprise large collec. tions of books, with newspapers, games, lectures, etc., in commodious rooms, and are iniender to win soldiers from the gin-shops and vicious haunts which are ever prevalent ingarrison towns. Altempts liave been made to provide the soldiers with books, both for instruction and ammsement : but statistics prove that the men patronize few besides fiction and fravels, and religions books, not at all. Regimental Libraries are smaller collections of books, which accompany regiments in their various movements. The charge for Military Libraries in the British Army was, for $1876-7 \%$, the sum of $£ 4,085$.
LICORNE-An improved howitzer introduced by the Jussians in 177T. Short, light cannon intented to throw large projectiles with comparative small charges were used by the Dutch in the early part of the 17th century and came into almost general use during that century, prior to the introduction of the licorne. See IInritzer.

LICTORS.-Among the Romans, the ofticial attend. ants of Hagistrates of the highest rank. They carried the fasces before the Magistrates, clearing the way, and enforcing the use of the appropriate marks of respect. It was their duty to execute the punishments ordered by the Magistrates, such as scourging with rods and beheading. They were originally free men of the plebeian order, Fand not till the time of Tacitus could the office be held by freedmen. Slaves were never appointed Lictors.

LIDE.-A warlike machine which was formerly used to throw large stones against a fortified place, or upon an enemy.

LIEUTENANT. - A term applied to a variety of offices of a representative kind. Thus, in military matters, a Lieutenant-general personates with each division of anarmy the Gezeral-in-Chief. A Lieutenantcolonel commands a battalion for a Colonel in the latter's absence. But the title Lieutenant, without qualification, denotes the second officer and deputy. or locum-tenens, of the Captain in each company of cavalry or infantry. A lientenant in the British FootGuards ranks as Captain in the Army, and exchanges with a Captain in another regiment. Captain-lieutenant, an obsolcte rank, was the subaltern who com. manded the "Colonel's Company" in each regiment. - A Second Lieutenant is the junior suballern of a company, and corresponds to what formerly was an Ensign. In the United States Army and Marine Service, the Lieutenant ranks next after the Captain and there are two grades, First and Second Licutenant, the latter being the lowest commissioned offeer. These grades rank with"those of Master and Ensign in the United States Navy.

In the British Navy, Lientenant is a misnomer in the case of the officer bearing that title. Mis functions in all respects correspond to those of a Captain in the Army, with whom he ranks, and with whom lie also nearly matches in regard to pay. A Lientenant's full pay' is 10s. a day; and his half-pay ranges, according to length of services, from 4 s . to 7 s . a day. Six yars' scrvice afloat are requisite to qualify an officer for the rank of Lieutenant, and the candidate has also to pass a satisfactory examination in seamanship and general professional knowledge. As learers in all minor enterprises, such as boat expeditions, cutting out,etc, Jicutenants in war time carry off most of the laurels awarded to actions of singular personal daring.

LIEUTENANT-COLONEL.- The rank in the U'nited States Army next above Major and next below Colonel, and answering to that of Commander in the Navy. In the British Army it is nominally the second officer in a regiment : but virt'ıally a Lieu-

Irnant-coloncl commands every battalion of infantry and regiment of eavalry, the jost of colonel beiner merely an honorable sinecure, with nsmally $\mathbb{E l}, 000$ a yenr attached, awarded to soms (icneral OHicor. 'lobe Lientemanteolonel is respmosible for the discipline of his hat talion, the romfort of his men, and ultimately for every detail monected wilh their organization. Ifce is assistod by the Dajor und Asijutunt. In the artillery mud engineers, where the rank of Colonel is a sulstantive rank, with tunerihls regimental duties, all the fumetions of liontemantColonel are more limited, one laving charge of every two batterjes of artillery, or two connmanios of encrinects. The pay of a lientemant-colomel varies
 in the hnfantry of the Lince live yors' regimental service us Licutenant-colonel contithes an oflicer to brevet rank us Coloncl, which, while improving his position in the Army, does not, however, bllect his status in his regiment.

LIEUTENANT-GENERAL.-ln the United Stules army the rank next bemeath that of General; the latter under the President, being Commander-in-Chicf. It was lirst anthorized by Congress in 1798, and bestowed upon General liashingtom, in view of the then anticepated war with France. After Washington's death the rank remained in ubeyance until 1855, when it was revived (in brevel) by Congress for General Wintielel Scott, at whose denth it again lapsed. In 1864 it was again revivod by special Aet, und conforred on General U.S. Grunt, on whose promotion by the ereation of the grade of General in his behalf, Major General William ' 1 '. Sherman becane Lieutenant Genornl; and, on his succession to the rank of General, Major General PhilipII. Sineridan was promoted to be Lientenant General, and so romalns until the present time, 1884. See General Officer.

LIEUTENANT DE LA COLONELLE.-The Second Ollierr, or what was formerly styled the Captainlieutenant of the Colonel's Company of every infantry regiment in France. Sce Lieutenant.

LIEUTENANT DU ROI.-During the Monarchy of France there was a Deputy Governor in every fortified place, or strong town, who commanded in the absence of the Governor, and who was a check upon his conduet when present. This same person was called Lieutenant du Roi. Lientenants des Gardes Francaisos rt Suisses bore the rauk of Lientenant-colonel, and took precedence of all Captains. Jieutenants Provinciaux d' Irtillerie were certain officers belonging to the old Erench service. and immediately at thehed to the artillery, who bore the title or name of the particular Province in which they werestationed. Several of these Lientenants, who had military employ ment under the Board of Ordmance received the rank of Lientenant-general in the Army from the King. and could rise to the most exalted stations.

LIFE GUARDS. - The monnted body-gnard of the Sovereign. In the British Army there are two corps so designated. They never leave the comery except in a very great emergency. These regiments were ungaged in the Peninsula, and were present at the lnate of Waterioo, where they greatly distinguished themselves. The two regiments of Life Guards wear a cuirass over a scarlet tunic. Their headpicee is a steel hehmet. The remainder of their dress consists ol leather breeches, long gauntlets, and jack-boots. Their weapons are the sworl and the carbine. See Gimards.

LIFE OF PIECE. - An expression denoting the length or time or the number of rounds a piece of ordnance will stand before it becomes unserviceable. This is estimated in smooth-bore ordnance at from 1.000 to 1.200 rounds with service charge and one shot. Experience, however, has shown that it is not so much the number of rounds fired which dustroys a gno as the high elevation given to it to obtain extensive range. Guns fired horizontally, or at no greater elevation than 5° or 6°, do not ex-
perionee the great strain which a gun dired at 300 wombl, amb the roason is obvions, as guns fired at a low clavation reonil in proportion to the rolntive wright and friction of the projoctile: wherous. when relovited to 30°, that gisn chnnot rexoil, the foree, therefore, is cexerect lownwards, and the gan inhuinges on its supporl, which is comparatively hamovable: thas the force which displaced the gran in the first instaner is now exerted on the sides of therern. 'lhe initial seleceity is ntso increased with the angle of projection, whireh comases the shot to press more upen the charese and thus to increase the resistance of the expansion of tha gases. This incrensed resistunce also adels to the strain mpon the gun. Sullicient experionce has not yet beron hatl of riflerl guns to state what number of roingads the different rlasses of such ortmance can bear, but it may be inforred that their eminrnuce will be considerable.
LIFE ROCKET DEPARTMENT, -That brancolo of tire Marine bepartment of the Boarchof 'rade which has the mamarement of life-rockets, mortars, lines, bunys, and belts, divirles with the Nutiomal Jife-boat lnstitution the labors connected with the prevention of shipwreck, and the rescue of shipwrecked persons. This has been the arrangement since $18 \sigma_{5}^{5}$. Until that year the life-mortars in use were partly under the control of the Aclmiralty, sometimes under the Board of Customs, partly under the lnstitution just mamed, and partly helonging to private imlividuals. The Merchant Slipping 1 let, passed in 1854. and put in force the following year, placed the whole under a diffcrent organization. To work out properly the rocket and life-saving system, a topographical organization is in the first instance adopted. The coasts of the United Kingdom are classified into 59 coastInard divisions or wreck-registrurs' distrjets; and the coast-guard Inspector of each division or district has control over all the rockets, mortars, buoys, belts, and lines kept at the various seaside stations in lis district. There were in 1854 about 300 such stations; some supplied with mortars, some with rockets as well as mortars, but the greater number with rockets only. Most of the mortars are Boxer's improvement on Manby's ; and most of the rockets are Boxer's improvement on Denactt's. Boxer's rockets, found Diore effective than mortars, are made at the Royal Labratory, at Woolwich, and are supplied by the War Department to the stations, on requisition from the Board of Trade; as are likewise mortarshot and shell, fuses, portfires, signal-lights, gunpowder, etc. At each station is kept a cart. expressly made to contain all the repuisites for the rocket apparatus, ready packed. Eighteen rockets are supplied with each apparatus; and a new supply is obtained before these are exhausted. Between 1874 and 1880, the system has extended year by year in the number of stations and of mer; but while the details of organization have changed, no new principle has been introduced. Simlper apparatus, consisting of life-belts and life-lines, is kept at a much greater number of stations. The system is worked by the coast-guard, the men being paid for periodical drilling, and for regnlar service. Special services are rewarded with gifis of money, medals, ete.
LIFE-SAVING ROCKETS. - When a life-boat is not at hand, or a raging sea and a sloal coast renders its use impracticable, a distressed ship may often receive help from shore, provided the distance be not too great for the throwing of a rope. A small ropo may draw a thicker, and that a hawser, and the hawser may sustain a slinging apparatus for bringing the crew on shore. For short distances, Captain Wrard's hearing-stich has been found useful: it is simply a picce of stont cane about 2 ft . long. loaded at one end with 2 pounds of lead. and at the other end is securely attached to a thin line. It is whirled round vertically some 2 or 3 times, and then let go ; but it cannot be relied on for more than 50 yards. Kites of various kinds have been employed, but are not found to be certain enough in action. The firing
by gunpowder of some kind of missile, with a line of rope attached to it , is the method which has been attended with most success. In 1701 Sergeant Bell. of the Royal Artillery devised a mode of firing a shot and line from a distressed ship to the shore. It was afterwards found to be more practically uscful to fire from the shore to the ship. In 1807 ('aptain Manby invented his lifi-martar, an ordinary $5 \frac{1}{2}$ iu. 24-poinder coehorn, fixed at arertain angle in a thick block of wood. The missile discharged from it was a shot with curved barbs, something like the flukes of an anchor, to catels hold of the rigging or bulwarks of a ship. IIow to fasten the shot to the rope was at tirst a difficulty: cha*ns wre unt found to nnswer: but at lengtl strips of raw-hide were found suitable. To assist in descrying the exact poosition of a distressed ship on a dark night, in order to aim the mortar-rope correctly. Manby used it chemical composition as a firework, which would shine out in brilliant stars when it had risen to a certain height. A third contrivance of his for replacing the slot by a shell filled with combustibles, in order to produce a bright light which would render the rope visible to the crew, was not so successful.

Many variations have been made in the line throwing apparatus. Coloned Boxer has recently substituted a bolt for the shot, with four holes at the end; fuses thrust into these holes shed a light which marks the passage of the bolt throngin the air. Trengrove's rocket-apparatns, invented in 1891. consisted of an ordinary 8-oz. sky-rocket. Certain practical difficulijes, however. affected it. and it did not come much into use. In 1832 Dennett's apparatns was invented. It nearly resembled the old sky-rocket. but with an iron ease instead of a paper one, and a pole 8 ft . long insteal of a mere stick; it weighed 23 lhs. was propellerl by 9 lbs of composition, and had a rang4 of 250 yards. A ship's crew laving bern saved by the aid of this rocket at Bembridge, in the Isle of Wight, the Boarl of Customs caused many of the coast guard stations to be supplied with the apparatus in 1834. Carte's apparatus, brought forward in 1842, depended on the use of a Congreve rocket instead of an ordinary sky-rocket. It does not appear that this apparatus was ever adopted by the authoritics. Mr. Dennett next songht toimprove the power of his apparatus by placing two sockets side by side, attached to the same stick; and it certainly did increase the range to 400 yards: but as the simultanenus and equal action of the rockets could not be always insured, the scheme was abandoned. Colonel Delvigne, of the French army, invented a life-arran, to be fired from an ordinary musket. It is a stick of mahogany, shaped like a billiard-cue; the thicker end presses on the powder; while the thinner end, loarled with lead, is fitted with loops of string; a line or thin rope is attwehed to the loops, aud the thin end of the stick projects beyond the barrel. The jerk, when the arrow or stick is fired. causes the loops to run down the stick to the thick end; this action has an effeet like that of a spring, preventing the stick from darting forward so sud denly as to snap the line. The apparatus will send an arrow of 18 oz , to a distanco of 80 yards. with a mackerel line attached. Another French eontrivance, Tremblay's rocket with a burbed head. Was soon allopterl for the Emperor's yachet but as it is to be lired from the ship to the sliore, it partakes of the same defects as surgeant labll's original invention. The most effective apparatus yet invented is ('olonel Boxer's. Finding that Dennett's parallel rockuts on one stick do not work well, he sucueeded after many trials in a moxle of placing two rockets in one tube, one behind the other. 'The head is of hard woold there is a wrouglitiron chac. with a partition hetween the two rockets. When tired, the forcmost rocket carries the case and the atheherl line to its maximum distane ${ }^{\text {and }}$ and the rearmost rocket then ribes these a further impertus. "lhe effeet is found to be grester than if the two rockets
we re placed side by side, and also greater than if the quantity of comprosition for the two rorkets were made up into one of larger size. The rocket is fired from it triangular stand, and is lighted by fuse. port-fire, or perenssion-tube; the elevation is determined ly a quadrant or some similar instrument.

The lines nsed with these several projectiles have varied greatly; but the best is found to be Italian hempr, spun lonsely. It is very elastic, and when thick cuough for the purpose. 500 yds. wrigh 46 lbs . In Boxer's rocket, the line passes throngl the tail of the stick. then through the head, where it is tied in a knot, witl India-rubber washers or buffers to lessun the jerk. The line is carefully wound on a reed, or coiled in a tub, or faked in a box provided with pins ranged round the interior-to enable the line to run out quickly without kinking or intangling. Dennet's faking-box for this purpose is the one now gemerally adopted.

Life-belts, jackets, and buoys of various kinds art used, made of cork, inflated India-rubber, etc.; but one apparatus now employed in conjunction with the life-rockets is known by the curious name of petticoat-breeches, or more simply, aling life-buoy. It is not strictly either a belt or a buoy, but a garment in which a nan may be slune clear ont of the water. When a rocket has been fired, and a line bas reached the distressed ship, signals are exchanged betwern the ship and the shore; athicker rope is pulled over the ship by means of the line and a hawser by means of the rope. When all is stretelied tant by fasteuing to the masts, etc., any articles can be foxdily slung and drawn to and fro. 'The petticoat-hreemc, was originally invented by Lieutenant Kisbee, and consists of a circular cork life-buoy forming the top ring of a pair of cancas breecles; one of these is havled over from the shore to the ship; a mau gets into it, his legs protruding below the browhes, and his armpits restlng on the bnoy; and he is hanled ashore by block-tackle. The erew of a wrecked ship can thus one by one be rclieved. To prevent losing the hawser and other apparatus. when the last man has left the ship, an apparatus called a hawser-cutter is used working in the ship, but worked from the shore.

After the destruction of the Northfleet in 1873, off Dungeness, an cxhibition was organized at the London Tavern, to which the inventors of new life-saving appliances were invited to contribute. Among the apparatus were Hurst's lifi-raft consisting of a double pontoon, bridged over, stowed outside a ship. and lowered hy simply cutting the lashings; Christie"s life-raft, a large. rectanguler framework, rendered buoyant by numerous airtight spaces.some of which are available for stowing water and provisions: and I'arrott's tubular life-ratt, composed of cylindrical air-bags made of painted canvas, supporting a fooring of sail-cloth and netting, and rendered rigid by poles fixed in various dircetions. Many other novelties were displayed at the London Tavera, and also at a similar collection in the anoual Intermational Exhibition, in the forms of lifeloots, rafts, garments, belts, buoys, ete. See lurhor-rocket, Bumer Lifesaving Rocket, Chandlor inchor-shot. Hilrigne lifewaing Gun, German Life-saving Rocket, IVouper Lifc-aving Rochet. Hunt Ifife-saving Rochets, LyleEmery Grapple-shot, Manby Shot, I'arouth Lifi-astring Mortar. Rockite, Rusxian Life-suning Rocket. Shotlints, und Signal Rocket.

LIFTING JACK.- A geared serew, with a project. ing foot or hook at its lower end, for lifting loeavy weights. This jack,as used at military josts.eonsists of the following detailed parts: 1 bed; 1 handle; 2 ri-ret-bolts No. 2 A , to strengthen the lred; 4 rasherw; 2 muts; 2 eye-plates for the braces, let into the inds of the bed, and fastencel by 4 seretrs. 2 inch, and 1 wrem, 1 inch, No. $16 ; 1$ stomil (cast-iron): 4 xtertyingpointw, serewed into the bottom of the stand; 2 breces, fast coned to the stand at the upperi end by 2 bolts No. $2 ; 1$ screin, same size and pitch as the elevating
 ed to the foot by '3 sroves, 1 b-inch, No. 14: 1 wut; I
 pinion for lise boisting-strew (lirass), like llase for the rasemate. Alovating sar"w: I shoft For pinisun, kept in flatere by ons. serem-juin lat in the stand; 1 crenk, lich to the shaft lyy 1 nut No. 4; 1 wosodran hatide, fastomed by 1 meakher 1 wint No. 2: amil 1 rapophlete, but into the head of that stand oneeightlo of un inch and fustromel by 4 bolt-aremass No. 1. This jurk is now quit. superseded by the hydranlic--jack. The jatek represented in the drawing isused for gencral purposer, is simple, compart and power. ful. A frond substitute for in juck aro two hamdspikes placed nuder the axle-dres, when, with the aid of two robust gumners, tho rarriage com be rajsed to take ofl the wheed. 'llere jack known as ' 'fook's is the common serew-jack of the service, in a cast-iron conical box, with metal top and trimumbar hase. This jack is of grent power, and nsell for heavy carriages in lien of the " tooth and pinion" and "screw-jack." There are othor jacks in the service, such as the ruck atud piaion, lifting 3 tons: Meloy's, which varios in power from 210 '20 tons: and F'ingye's hylurdulie, capable of lifting from 4 (0 20 tous. See deck-wereme, and Mechanicnl IVementers.

LIGHT.-Optics ranks next to dynamies in the category of nomely exact soicnocs-that is, of scionces whose fumdamental primeiples are so well known, that the result of almost any new experimental combination can be prediatod mathemationbly: Given the foressacting on a hody, the laws of motion enables ns by purely mathematical processes, to determine the conserquent motion. Though we have not as yet arrived at equal perfaction in oplices, we are certainly far on the way, abd probably have now attained nearly all the progress (indepentent of improvements in our mathematical methods) which will be made mall the next great step) in moleconlar physics shall give us the chae to the mature of the minute motions on which light, heat, electric corrents, and magnetism depenil. The most extraordinary and almost incredible predietions of theory have been verified by experiment, and at present the dilferenees between theory and experiment may be divided into two chasses, corresponding to the above exceptions. The first are those depending on the imperfections of mathematical processes, where, becanse, for example, as we are ye: amatyle to ob, tain the exact solation of a certain difleremtial equation, we have to content ourselves with an approximate one. But every improvement in orre means of approximation is found tointroluce a closer angreement hetwem theory and experiment. This dithenalIy may safely be left tomatheuaticians. It is otherwise with the second ditionulty. This dependes on our ignorance of the nltimate nature of matter, atnd our consequent inability to apryly mathematical reasoning in a perfectly correct and sufticiently comprehensive manner. Ilere, the experimenter's work is still required, and it is in this direotion that we must in all probability now dook for important estensions of our knowledge. Ophies is divided into twe parts physicul and geometriot'. Of theses the latfer eomtents itself with assmming certain obvions experimental truths, such as the fact, that light in a uniform medinm moves in straight lines. the ordinary litws of retlection and refractiou, ote.. and making these its basis, employs mathematies fo derelop their further conserfucnces. It is thas that theory has shown how to carry to their utmost perfection
hand marroscopes of the prosent day. lbist these investjpations, :Hel thoir bractionl applionaton, are wholly inderbenlont of the renture of light, andl cannot be aftectorl by diseoverios in that direction. It is of herwime when we conne to physical optices. This "ommencers with the \{urestion: " Il"hat in light?" and then endenvors to deduce from the: nature of light the experimental laws which, as we laves seen, are assumed as the lusis of geonnetrical optices. JBy two
 ifons-aherration and the eclipsess of dupitere's satrol-lites-wo know that light talkes time to pass from one bonly to mother-the velocity beine "anomonsaboul 200,000 miles per secont. Hence it follews, that rither matter or chergy wast he transferred from a body to the eye before we can see it. Hore wo lave at once the rival plysical theories of light, which have alternately had the advantage of one another in explaining observed phenomenat. It is only of late yoars that an exprrimuntum erucim has finally decided betwers then-hy showingr on* of then to bo whraly incompatible with atesule of obstervation. Newton menperd the eorpuerular theory, in which light issuphosed to consist of material particeles-i.e.. Tre adopterl the first of the two possible liverothenes ; and he gave the tirst instunce of the solntion of a problem involving mobecular forces. ly dedacing from this thery the laws of rellection and single refration. Whathall see immediately that this beantiful investigation led to the destruction of the theory from which it was deduced. But, indepondent of this, there are many grave and obvious objections to the corpuscular theory : for it involves cessentially the supposition of material partirles impinging on the eye with the astonnding relocity of 200,000 miles per second. If such particles weighed but the millionti of a pound, "ach would have something like ten 1 imes the momentum (i, r_{0}, the battoring power), und wix million times the vis viva or kinetir (eneres (i. e., the penetrating power), of a rifle-bullet. Suppose them a million times smaller-yet as millions of millions of them must ever be supjposed to cotcr the cye at once, coming from every point of the surface of evory visible objert, it sucms impossible to reconcile suelı a hypothesis with the excessive delicaey of the organs of vision.
li is not pretended by the advocates of the rival hypothesis, undnlatory theory of light, that thoy nuderstand exactly the nature of the transferenco of energy on which they suppose liyht to depend; but they take from the analogy of sound in air, and of waves in water, the idea of the existence in all space of a highly clastic fluid (or quasisolid), provi*ionalIy named the ether, and they snppose lightio consist in the propagation of waves in this thuid. Huygens has the credit of having propomuder, and aldy developed and illnstrated, this theory. As we lave seen above, no third hypothesis as to the nature of light is admissible. Many strong argumentsagainst the trath of the corpusciblar theory had been furnished by experiment, especially in the early part of the present century ; and as they were alway met hy further and more extratordinary properties whith lad in be attributed to the lmminons corpuscles, the thenry land hecome complicated in the mast feenrfal mamer: and this of itself wiss in almost complete rlisjronf. Still, it held its ground, for Newton's old abjection to the rival theory, viz.. that on the umdulatory lypothesis there should be uo shadows at al! (withess the analogy of someds heard roumd a corner), was as fot manswered. This dithentey was overcome by" Yomge 10 whose suracity we are indebterl for the inlea of interfernece, which completely explained the apparont diserepaney. But the question hetween therival theories wastinaliy setaled by Fizeat and Foucault, wlo, by processesentirny different. but agreeing in their results, determined the veloreity of light in air and in water. Now, Newton had shown that refraction. suchas that of light by
water, if predicated of moving particlss, requires that the front of a plane wave which is passing in thedithey should move faster in water than in air. Huygens. again. had clearly shown, that if such refraction be predicated of icuces. they must move much slower in water than in air. Fizeau and Foncanlt found. by direct measurement. that light moves slower in water than in air. Ilence, it is certain that light consists in the transference of energy, not of rection CD ; i. e., suppose all particles of the ether in the plane AB (perpendicular to the plane of the paper) to be similarly and equally displaced. According to Huygens, we must suppose every particle, P, to be itself the source of a wave, which, from the uniformity of the medium, will spread with the same velocity in all directions. With center P, and radius
mutter and the undulatory theory is based upon this fact. But, as to the manner in which energy is thus transferred, we are entirely ignorant. The common assumption is, that waves of distortion are propagated in the ether. The nature of this motion will be described under Wave. But mauy other modes have been suggested, one of the most notable of which is that of Rankine. Mere the particles of ether are not supposed to be displaced. but each is mersly made to turn an axis as the wave of light passes it: the particles having polarity by virtue of which they arrange themselves in similar positions when mo light is passing, and by which, also, any rotation of one particle produces a consequent rotation of those in its neighborhood. For the explanation of most of the common phenomena of optics, it is quite indifferent which of these assumptions we make. ind, indeed, theory has not yet been carried far enough to enable us to devise experimental methods of testing which is the more likely to be the case in nature. It cannot be too strongly insisted on that all we know at present is, that light eertainly depends on the transference of energy from one part of the luminiferous medium to another; what kind of energy is transferred, vibratory or oscillatory motion, or rotation, e1c., is a problem which may possibly forever remain unsolved. But vibratory wavemotion being that with which weare most familiar, as in earthquakes, sound, waves in water, etc.. we naturally choose this as the most easily intelligible basis of explanation and illustration. And we slatl now briefly show how the laws of linear propagation, reflection, single refraction, interference, diflraction, dispersion, polarization, and double refraction may be accomnted for.

We assume, then, that light consists in a succession of waves, and for our carlier inquiries it does not matter whether they lie (like those of sound) waves of condemsation and rarefaction, in which the vibrations take place in the direction of the ray. or (like those in water) waves of distortion or displacement withnut condensation, in which case the lnminous vibrations must be assumed to take place in some direction perpendicular to the ray. The phenomena of polarization and double refraction show us that the former of these hypotheses is very untenable.

Propagution of Light in a Uniform Jsotropic Mredium
(An isolropic medium is suel that if a eubieal portion be taken, it possesses preeisely the same propertias whatever be the directions of its sides. (ilass and water are isotropic, rockesalt and ice are $\left.n^{o t}.\right)$-Suppose $A!$ (Fig, 1) to represent at any time

Fig. 2.

the space which ligbt passes over in any assigned interval, t, describe a sphere represented in section by a circle in the figure Do the same for adjacent points, P_{1}, P_{2}, etc. Let p_{1} be the intersection of the circles whose centers are \mathbf{P} and \mathbf{P}_{1}, p_{2} that of the circles whose centers are P_{5} and P_{2}, and so on. Then, as p_{1} is equidistant from P and P_{1}, and (approximately) from all points of a small circular space between P and P_{1} on the wave-front ΛB, all the separate wave-disturbances coming from these points to p_{1} will be in the same phase, and will therefore combine so as to strengthen each other; while in other directions they will be in different phases and combine to destroy each other. The locus of all such points as p_{1}, p_{2}, etc., will therefore, at the end of the time t, contain all particles of the ether equally and similarly disturbed, and will thus be the new wave-front. But it is obvionsly a plane parallel to AB. Also the disturbance at P has passed to $p_{\text {, }}$; and, when the distance $P P_{1}$ is taken as very small, $\mathbf{P} p_{1}$ is perpendicular to the wave-front AB. Hence, in such a medium, it is readily seen that a plane wave remains plane, and always moves with uniform velocity in a direction perpendicular to its front. [There is a difficulty as to what becomes of the disturbance, which, according to Huygen's assumption, onght to travel lack into the dotted portions of the spheres; and it is not easy to account for the absence of this on mechanical prineiples. But we are content here to take for granted that no

Fig. 3.
waves are propagated backward from the main wave, as a fact clarly proved bjexperiment.] Since a small portion of the surface of any eurved wave may be considered as plane wo now see low any such wave will be propagated in an isotropie medimom. Erecting perpendiculars at every point of the
surface of the "urved whve, and laying ofl floug theses lines the spater which light pussers ower in a given interval, and the extremitios form anew surface, which is the wive-front after the lipsere of that interval. Weftertion at a Jhome Surgoter. Kuppose

 the redecting surtace, and lat the imbrawetion of the plane of the wave-front with the reflating surface he a line throngh i perpembendar to tha paper. IV'hen 13 has arrival at b, A womid hasu arrival at 13 , and l' at q (whorebls is parallol (1) Bid. und l'g and Als to 13b). hatd it not beers for the retherting surfacea llonee, when IS is at b, A lasis divererod into usphere of radius $A / \%$. l' from p into a sphere of radius, $p y$; aud su for ench primt of the whw
beron suill, it may be mantioncal tlat on threrorpus
 nanture with the larst artiont, while on tlac arablata tory theory it passas in thas Jast time. Ilmaileon's grand principla ot maryines urtion includlos both of
 this plamomonon (wlase diseovery, as lsefore Faid is (lue to Sommer) is very simple lum striking. In inoscelos prism of shase, with an angle very nomrly 180°, is plared (1 itr . 4) in front of a brillinnt point (the imate of the sum formaed by alaras of very
 is Clat light which pheses from () throughther portion QR apprars to have ronue from wombe joint such as I (the imatge of () as sectu through the apper half of the prism). Similarly the light whirh has pasised throngh P'(Quparars lo (o)me from some point 13. 'Tlie lizht whirls has passed therongly ther prisu is to lw received on a white sereron St'. At the point T, whirlı is in the prolongration of the line ()(2. the distanews 'T'A and T'B are (qual : but for no other point. as Uin the line SiT, are ['I und C'ls ecpual. Suppose U and V to lec surh that LA and lils diftur in langtle ly latif a wive-longth of some particoular color. VA and VB
front. Now, the apheres so daseribod ahont \mathbf{A} ind p as centers obvionsly tomel the phane $b / 3$; consequently they tonel the other plane bet, whiclu makes the angle $A b a$ equal to $A b b$. Now, $b \pi a$ is the front of the reflected wave, and Are is the direction in which it is proceeding. Hence, obviously, the ordimary laws of reflection. Sere 'atoptriss.

Refraction at a Plane Surfare into ctn Isotropic D/el-itm-IIere we take accomnt of the rlamge of velociIy which light suffers in passing from one modium to another. In Fig. 3, A, 1’, 33. b, p, q, and $/ 3$ represent the same as before-but suppose A/ now to represent the space throbigh which the wave travels in the second medium, while it would travel froni 1 to b in the tirst. With center A, and rindius $A n_{\text {, deseribe }}$ a sphere. Let batomel this splere in a. Then bed is the front of the refracted wave. For, if $p \pi$ he drawn perpendicular to ba, we have $p \pi:$ A $a: b p: b \mathrm{~A}:: p q: A B$. Hence, while A travels to $"$, and 13 travels to $b, 1$? travels to p, and thence to π. And the sines of the angles $B A b$ and $A b a$, whicls are the angles of incidence and refraction, are to each other as $13 b$ to da, i. e., as the velocity in the first medinm is to that in the second. Soe Diontrics.
It is quite obvious from the above figure that the less the velocity in the seeond medium the more nearly cloes the refracted ray enter it at right noglag to its surface. As a contrast we may introdace bort a sketch of Newton's admirable investigation of the same problem on the corpuscular hypothesis. Let U and V be the velocities in the two media. and $l s$ the angles of incidence and refraction. Then the forces which act on the corpuscle being entirely werprondicular to the refracting surface. the velority purallal to that surface is not altered. This wives

$$
V \sin \cdot a=V \sin \cdot 7 s
$$

Also the kinctie energy is increased by the loss of potential cnergy in passing from the one medium in the other. Hence, the square of V exceeds tlat of U' by a quantity which depends onsy on the nature of the 1 wo media and of the corpuscle. This s'obws that V is the same whatever be the direction of the ray, and then the first relation proves that the sines of the angles of incidence and reflection are imerery sis the velocities in the two media, i. e., the refract ing ray is more nearly perpendicular to the rufracting surface the grecter is the velocity in the second mediam. It is very singular that two theories so widcly dissimilar shonhl eatela give the true laer of refraction: and in conncetion with wlat has just
by a whole wavelength of the same; then wates griving at T, as if from A and 13 , lawe of needesity passed over equal spaces, and ersameduently their crests must truly coincide, so that at they reenforee each other. but at U a hollow from A is met by a crest from 3, so that darkness is the resnit. At V,again, erest and crest coincide. Andeso on. II nence, if we are experimenting with one definite color of light, the effeet on the srreen is to produce at T . V , cte. bright bands of that eolor, all parallel to the edges of the prism PQIR. It points like U there are dark bands. And the length of n wave can casily be caleulated from this experiment; for the lengthis of $O Q$ and $Q T$ can be measured. and knowing the angles of the prism and its refractive index for the particalar color employed, we can calculate the positions of A and B . We have then only to measure the listance TV between the centers of the two adjoining bright bars, and then geometry enalbles us to calculate the difference of the lengths of VA and V13, which, as we have secn.is the length of a wave. The results of this experiment show low very minute are these wave-lengths for visible rays. Thas for

Incli.
Extreme Red, the wave-length in air is ...0.0000266
 inch. Secing. then, that light describes $200,000 \mathrm{~m}$. persecond, the number of waves which enter the eve per second are :

Extreme Red........ 460 millions of millions.
These mumbers, compared with those of sonorous waves show the extraordinary difterence in delicat'y between the optic and auditory ucrees, But whereas the range of the ear is somewhere al out 1 oftaves that of the eve is less than ont.

Disperwion.-We have just seen that, by Fresnel's interference ${ }^{\text {axperiment. waves of differont length }}$ nre separated (for in the last fisure the pmations of the bright line. V. depends on the lengeth of the waves which produce it). But tla* different colors are also separated by common refraction, as in Newton's celehrated experiment. This shows of conree. that in refrarting media, waves of diflerent colors move with different relocities: and, as the violet are more refracted than the red, it appears that the slonter waves move more slowly in glass or watter than the longer ones. In free space waves of all loneths travel with equal speed. dere all stare onghe (1) appear drawn out into spectra. in conscqueure of
the earth's annual motion. Also, a star suddendy breaking out, or suddenly vanishing (a phenomenno several times observed), slould flash ont in the flrst instance ral, and gradually become white, or it sbould gradually decay from white to violet, whiel is not, however, observed to be the case. These facts are, ineced, the most diftienlt to explain of any to which the unduatory theory has as yet been applied. Fresnel, indeed, appears to have been in possession of a solution of the diflienlty, but the appendix to one of his papers, to which he more than once refers as containing this explanation, was not found among lis MSS. Camchy and others have, lowever, by very delicate investigations, shown that, if the fimces exerted by the moleculesuta refructing body on the ther ave exerted throngle distances commaruble with the lfngth of a rave, the velocity of light will then tepend on the wave-length. The velocity is, in fact, show to be represented by a formula such as this:

$$
A-\frac{\mathrm{B}}{\pi^{2}}
$$

where A and B are constant quantities for a given medium, and A is the length of a wave. The larger t is the less will be the second term of the formula, and therefore the velocity will be the greater. A very singular result follows from this same formula-viz., that the velocity wil] becone
disturbances which give rise to this ray are propagated in spherical waves in the crystal. He showed also that the other ray conded be accounted for if the disturbances to which it is due were propagated in the form of an oblate spheroid toueling the sphere with the extremities of its axis, that axis being parallel to the erystallographic axis of the mineral. The following diagram (Fig. 5) when carefully examined will make this apparent:- P is the point where the ether is disturbed. Two waves spread from P in the form shown in the cut, the line ABP being the axis of rotation of the spheroid, and parallel to the axis of the crystal. Thus, let rays ad. cte. (Fig. 6), of which $A B$ is the wave-front, fall upon the surface $A b$ of such a crystal; and let $A C$ be the direction of its axis. Draw, about A as a center, the 8jhere and spheroid into which the disturbanee at A spreads in the crystal while light in air passes from B to b. Then if planes be drawn throngh the line b (perpendicnlar to the paper) so as to touela the sphere in l_{1}, and the spheroid in B_{2}, these planes will touch respectively all the intermediate spheres and spheroids produced by disturbances at points hetween A and b. Thus, $b B_{1}$ and $b B_{2}$ are the new wave-fronts and the ray a_{A}, falling on the erystal, is divided into the two $A B_{1}$ and $A B^{2}$. Of these $A B_{1}$ is the ordinary ray, and being produeed by spherical waves. has all the properties to be looked for in the case of a ray ordinarily refracted. It obviously

Fig. 5.
more and more noarly equal to A as the wave length is greater. Tlence, waves of low radiant heat. which are merely waves of light which are incapable of jumblueing vision, must be erowded together toward it limit, not very far leyond the ret end of the spectrum. Pulatrization-We now come io a set of phenomena which give us sone further information as to the nature of Jminiforous waves. When two beams of light, such as those in Fresucl's experinsent. are polarized in planes perpendicular to each other before they meet, they de not interfere. This is in accordince with the asomption required for the explanation of the existence of polarization itself-riz.. that the vilurations of the ether take place transerersely to the direction of the ray. Domble Refortion-Our assumptions, forced upon us by experimental results, are now so far complete that we may procerel, after fresuel, to abply them to the explanation of double refraetion. "This explanation is extremely beantifnl and when jubslishef. was justly hailerl as the greatest step in
 ton derharerl the facts of physical astronomy from tho law of eravitation. As we late secon aboere, in treatiner of simple $\mathrm{refl}_{\text {ection and }}$ refraction, that that form and volecaly in and with which a disturbance sproals from any point of a wave is all that is required for the delermination of the course of a ray, we mast cmblenver to find the form in whish a disthrbabere sperals in a domble refrationg crovial ; and this shomble lat us to a constraction for each of the two rays. llaygens had already pointed out that one of the two rias prodaced hy fereand spar folows the ordinary law of refraction. Hence the

Fig. 6.
moves forward perpendieularly to its front, as $A B_{1}$ is perpendieular to $B_{1} b$. But it is otherwise with A B_{2}, which is, in general, not perpendiculur to its front, $B_{2} b$. Again, if AC , the axis of the crystal le not in the plane of incidence, the ray $A B_{2}$ is not in that plane; so that here we have refraction out of the plane of incidence. The exact aceordance of this construction with observation was proved by the careful experiments of WVollaston. We have only to add. that the two rays $A B_{1}$ and $A B_{2}$ are, in all eases, completely polarized in planes at right angles to cach other. The experiments of Brewster showed that in by far the greater number of minerals and artificial crystals, both rays are extraordinaryi.e. neither of them can be accounted for by disturbances propagated spherieally in the erystal. But no tentative process could lead to the form if the wave-surafee in this most gencral case. Here Fresnel's genius supplied the necessury eonstruction. lle assumes that the ether in a crystallized hody is possessed of ditherent rigidity or dilferent inertia, in diflerent directions; a sipplosition in itself ex. tremely probable from the mechanical and other properites of crystals. Th the general ease there are shown to be three principal slireetions in a "rystal, in any ont of which, if the ether he disjuacen, the restling elatstie force is in the direction of the displasecment. Nemeh of these is, in all cases. perpromlioular to the others. Any given displacement of the elher corresponds to partial caleulable displatemonts paralld to each of these lines, and thas the elastio force consequent on any displacement whatever is known if we know those for the three rectangular diredions. All the ealenlationa are
thus dependent on three mumbers only, for each substance. It would unduly lengethen this articke, amd hesides would lead us into disenssions far too recondite for a work like this, to entar upon the "purs. tion whether the vibrations in polarizel light are perpendiculer to or in the plane of polarization, a subject which has recently been wedl investigated by Stokes; or to consider the proctucelion of ciliphieally polarized light by rellowtion at the surface of metals, thamond, ete.; and various other mont important points of the theory. We ant only mention that Green, Canchy, Stokes, and others, who have entered deeply into the merhanian guestion of luminiferous vibrations, have fomme themselves obliged to take into accomnt the nomerl wave, which, as we have suen, Fresnel neglected. Fluorescence, spectrum analysis, aud various other important reeent additions to the theory, must be mocly mentionel; as also the very romarkable observation of Maxwell, which apprars to connect light and clectricity, and was derived from a theory which assmes the ether to be the vehicle of electricity and magnetism as well as of light and heat. and by which it appears that the volocity of light is expressible in terms of the static and kinetic units of electricity.
LIGHT ARTILLERY BATTERY.-A mounted Battery of field-guns. In the United States army, for the purpose of diffusing instruction, the Lientemants of the five artillery regiments are passed through the School of Light Artillery in their respective regiments, so that no Lieutenumt will be in that Sehool more than two years at any one tour. From this rule may be excepted Lieutenants in command of companies the Captains of whichare indefinitely absent, Adjutants. Regimental Quartermasturs, together with such others as from afcidental causes may he unable to ride. If a vacancy happen in the grade of Captain of a Battery designated as LL Light Battery, it will he tilled by the order of the Sceretary of War, on the recommendation of the Colone!, who usually Dume the Captain best qualified for the service. Every Battery of Artillery actually armed and equipped as a Battery of Nlorse-artillery or a Light Battery, and serving as such, is allowed, for ammal practice, as many blank cartridges and friction-primers for instruction and drill as may be deemed necessary hy the Battery Commander, and approved by the Post Commander. Suel Batteries are also permitted to expend in target practice, annually, twenty-five projectiles for each gum of the command.

LIGHT-BALLS. - Treparations in pyrotechny, made in the same manner as fire-balls, except that there is no shell in them, as they are used for lighting up our own works.
They continue alight from 9 to 16 minutes according to the caliber. Light-balls are of four different natures, viz: 10 -ineh, 8 -inch, $5 \frac{1}{2}$-ineh, amd $4 \frac{2}{5}$-ineh. Their form is ohlong, and about $1 \frac{1}{\mathrm{t}}$ caliber. The skeleton frame is male of wrought iron, and is partially covered with canvas, and filled with composition which burns with a brilliant light.
The proportion of composition is as follows :-

See Fire-Falla and Firenomtr.

LIGHL-BARREL.- 1 common powder-barrel pirreefl with numerous holes, and fillecl with shavinge that have been soaked in a composition of pitch and rosin: it serves to light up a breach, or a hottom of a ditch. See Fireworks,

LIGHT BOBS,--In the British serviee, the familiar term used for the light infantry.
LIGHT CAVALRY.-Regiments of mounted soldiers who, from their light equipment and active horses, are especially adapted for making lone marches, performing ontpost duties, skirmishing,
cote. The experionce of the wars of 18 eff and $18 \% 0$ 71 has shown, eloarly and monvincincly, that the splandid charges, which in the days of lereleriok and Napoleon frefuently decided the fate of battles, have pasued away, and that, in the future, it in before an action that the main role of the cavalry will be fomme to lie. Since the introduction of arme of preamion, the duties of this branch may well be cencidered purcly strategical, as eavalry can seldom be emplen: ed to take is decisive part in a bathe. Upontliis hranch mow devolves the task of preparime the way for an engagemont, by reconovitering the prasitions of the enemy, and giving, as to his mowements, as much valuable information as possible. Light cavalry can thercfore be nserd as a sorern to mask the movements of the adrancing or retreating army, amd lika a swarm of spies, to scarch the commtry of the encony, gather information from all quarterc, facilitate and often renter unncessary an armed attack, and, tinally, bewilder, hy harasing the for. Em ployed as écluireners or feelers in every direction, they make a ring of mystery around the ir own army. The enemy toes not know the whereabouts, while ther carry back valuable information to their chiefs. The cluties now thrown upon the light eavalry soldiar demand much increased intelligence, and a knowclige of the operations of war. The value of geond information is so important, and the evil of barl so great, that it would never be safe to trust anybody of ordinary trained mento fulfl these daties. Tight ravalry form an important branch of the Intedligence Department, and it may he well said that "They are the eyes and ears of an army." The hussar regiments form the light cavalry of the Irritioh army ; but the dancers ant the lragoons, althougl: classed as medinm cavalry, are often employed in the same duties.

LIGHT HORSE.-All mounted soldiers that are lightly armed and aceoutered for active and desultory service: such as dragoons, lussars, mounted rifiemen, etc. Sce light Caralry.
LIGHT-HOUSE BOARD.- A body organized in the United States, in accordance withan Act of Congress approved Aug. 3I, 1852, and having the control and management of all lights, buoys, beacons, etc., ou the consts of the United States. It consists of eight persons, viz., two officers of high rank in the Navr, two ofticers of the Corps of Engineers, two civilians of high scientifie attainments, an officer of the Navy. and an officer of the Corps of Engineers-the two latter serving as Secretaries. The Board as thus constituted is attached to the office of the Sccretary of the Treasury, who is Ex-officio President of the sam:. A chairman, elected by the members from their own number, is chosen to preside in the absence of the President Ex-afficio. The Board is required to meet four times a year, and the Secretary of the Treasury is empowered to call it together whenever. in his judgment.the exigencies of the servicemar require a meeting. It actually meets almost every reek in the year. The coast and the waters of the conntryare divided into districts, each of which is served by an ofticer of the Army or the Navy in the capacity of LightHouse Inspector, and other ofticers are employrd from time to time, according to the eximencies of the service. The different subjects rertuiring attemtion are first referred to standing committees, whose duty it is to investigate and report to the Board what action, if any, is required. The two Secretaries perform all routine and general administrative duties under the orders and regulations of the Board.
LIGHT INFANTRY.- I body of armet men selected ant trained for rapid evolitions. Tha service of Light Infantry often demands great individaal address, intelligence, and quite well developerd physica: powers; a combination of qualitios not teasily fomd. and seldom. indeed, withont carcful, habitual training. Whereas in Infantry of the line, the qualities of the individual are of less importance as results here depend almost solely upon the action of the mass.

The habitual order of battle of Light Infantry is the dixpersed order; and whether acting olleusively or defensively, it depends for its results upon the effect of its fire, resorting to the close order, and using the bayonet, only excentionally. As each individual, although immediately supported by his own filecloser, and those on his right and left, is still often thrown upon his own resources, being obliged to take cover where he can most conveniently find it, he must be a good marksman, cool, deliberate, and circumspect; since it may become necessary to keep an encmy occupied hours, and even days together, pressing on him at one moment and yielding to him the next, or holding with tenacity, and disputing inch by inch some particular point, as it may suit the views of the General in command. In Infantry of the Line,as success depends unon the action of the mass, ensemble, judgrement, coolness, and, determinaion should always eharacterize all its movements whether it delivers its fire in line, forms in column to attack with the bayonct, or throws itself into a square, to await the charge of the enemy's cavalry. The duties of Light Infantry are to open an engagement, aud, after it is fairly under way, to keep it golng; inrning it to advantage if successful, otherwise breaking it off. In its relations to the Infantry of the Line it should cover the flanks of the latter: clar the way for its advance by rooting the enemy out of all covers, and then holding them if requisite. Upon it devolves all advanced-post, detachment, aud advanced and rear-guard service.

LIGHT INFANTRY COMPANY.-In the British service, a company of active, strong men carefully selected from the rest of the regiment. It always occupiesits place on the left of tbe battalion untilcalled for. When the call sounds, the Light Company orders arms and unfixes bayonets without word of command, and remains in readiness to move.
LIGHT MARCHING ORDER.-A term applied to troops lightly accoutered for detached service-usually paraded with arms, ammunition, canteen, and hacersack.

LIGHTNING CONDUCTORS.-The following points and precautions should be carefully observed in the construction of powder-magazines and factories, in localities visited by lightning : experience shows that metal in a building, whether disposed of in the form of a conductor or otherwise, never attract: lightning. That, provided the surfaces of metals are not interrupted by bodies possessing a less conductingpower, a bnildingentirely of metal will be the safest of all, and that such buiddings require no further lightnine-conductors than connection with the earth over the masonry foundations on which they are often laid. That, with regard to a building of brick or stone, the object must be to establish a suflicient number of lines of electrical condnctors extending from its most elevated and prominent points to the ground : and, further, bring the building into a condition similar to that of a metal building ly means of other eondinctors generally attached to more promiwent lines of the building itself, such as the riclges, angles, and caves. There is no advantage but the contrary, in endeavoring to insulate the conductors from the building.

The bost material for conductors is copper, either in tubes $1 \frac{1}{2}$ to 2 inches diameter amd .105 inch to .2 incli thick, or a wire rope. All motal surfaces, whether lead. eopper, or iron, on ridges, roofs, gutters, or coveringe to doors or windows to be eonneeted by plates of copper with the eondheting sysfom. Isedrl, on atceome of its low conduceling power, eamot be altogrdher depended upons. One or more solid coppor rode to project freely into the air, abont 5 feet above the highest points of the buileling to which the main eonductors are applice. The sumbit of the rod to be pointed ; lat grold, gilt or plate inum topes are unnecesears. The tormination of the ronductors below to be led into champ or porons soil, when the buikling happens to stand upon it; but,
when the soil is dry, two or three trenches to be cut, radiating from the foot of the condactor to a depth of 18 inches or two feet, and 30 feet in Jength, and either the conductor carried along the bottom of the trenches or old iron chain laid in them. carefully connected with the foot of the conductor. The trenches to be then filled up to one foot in depth with coal-ashes or other carbonaceous substance, and afterwards with earth or gravel

If it be possible, in regulating the surface drainage to lead a flow of water, during the rain which gen-

erally accompanics thunder-storms, over the site of the trenches, it will be an additional precaution. Tanks are useless, except where the water flows freely into them from the surrounding soil, and even then they are superfluous as appendiges to the conductors.
The conductors for brick or stone magazines with slate roofs should' consist of a sheet-copper strip 4 inches wide and .125 inches thick, covering tbe ridge, and securely fixed to it by wrought-copper nails. At each end of the ridge a solid copper rod .5 inch in diameter is securely fixed to the conductor on the ridge: and projects about 5 feet above the higbest point of the building. Upper end of this rod is carefully pointed Copper strips about 3 inches wide, or copper tubes nearly one inch in diameter, pass down the angles of the hip, and are firmly secured to the copper caves-gutter. The descending water-pipes, made also of copper, and fastened to the face of the building by copper holdfasts, are connected at their lower end to the underground conductor by a piece of copper, 3 inches wide, wrapped around the Jower conl of the water-pipes and riveted to the underground conductor. The underground conduetor runs out from the building 4 feet, and then brancles into two parts, each 8 feet long, a inches wide, and .125 inch thick. These conductors are about 2.5 feet from the surface of the ground at the lower end, and are covered with coal ashes and earth. The coppor sheathings on the doors and windows are connected with the lower end of the water-pipes lyy that copper strips, 2 inclies wible, tixed to thr water-table by copper nails driven into wooden phags about 10 feet apart. Whacn tubu-
 one piece, tary arce conncotod by at wion joint, and strengthened by a smaill pipe or farrule, about it inclues long, inside the tabre, und riveted to euch cond. Builolings which have the eaves-gntters and flowno pipes made of tin or rime should have a main ronductor rommunicating dircetly with the gromat ; it should also be connerteil witlathe erverg-gutters, amel the down-pipe should connect by ametallice commanication with the gromul, rmming out some distunce from the building. Incase of hildings sitnated on a dry or rocky soil, resperial pains mast nlways be taken to lay down old chains or other conductors in various dircetions, for at least a distance of 10 to 15 yurds, and from 1 foot to 1.5 feet ludow the surface of the ground ; and, if possiblo load at How of rain weer the surface of the ground abont or near the condinctor. Let the conduetor terminate in at large surface of moist eartla whencever it cun be ef fecterl.

If copper be not used for condinctors, rinc is the next hest material of which they 'an be made. If iron bo nsed, it shonla be in tha slapes of gulvanizod wronght-iron pipe, not lesstlan 2 inclues in dimmeter, firmly serewed together in joints of extra thickness.

Copper tulse of a thichness of from . 125 to .2 inch is mways to be preferreel: it has more than dive times the rapacity for conducting electricity that iron has, and more than three times that of zinc. See Poirder liepots.
LIGHTNING MAGAZINE-GUN.-The inventors of this rille, Hae Colt's latent Firearms Mannfacturing Co., have adopted the left-handed method of handling, which enables the breech-action to be much simplified and lightened without detrating from its strength. The cartridge used is the sume as that of the 44 caliber Colt revolver; it contains 40 grain of powder, und the bullet weighs 200 grains. The drawing shows the arm and its parts in position ready for firing.
To load and fire, oring the jiece to the shoulder in the usual way; grasp the handie of the slide A, with
ovor tha cartridgentarad befine the magazinu-gato will allow anothor rartriok tos loe fad tos the eqrrier. thus preventiag blackiner of the broerchasetion. "1"la firing-jin is löd hark positively motil the: rartridge

 mor (is antomatically lookrd and unlockod by the hook on the rear rent of the magroine-gate. IBy this arrangecment tha rifle may low loaded and dise charged by the reciprocating motion of the slifla. kerebing the trigerer ronstantly prosmed barek during the motion by tha forefinger of the right hanel. Thas magazine can only bo clarger when the slide is drawn to the rear.
"lon take apart the rible, take out the tang-serew. Draw ofl the butt-stosek. Thke ont the magaxince serew at the front ond and remove the magazine. Take out the two side serews, rock the jurce, Jraw the slide about half way to the rear, and withatraw the trigere-jbiate. Sliele the bolt clear larok, insert at [minch in the small hols on the left hand sicle, and push out the locking-brace pin, amd slide ont lhe lock. The other parts ean be remover] without spereial dircetions, To assomble the rille, replace the parts in the reverse order from that given for taking the ritle apart See Colt Mraguzine-rijle.

LIGHTS. - In pyrotechny, lights are made dyy presming lance or similar composition in shallow verssela, or in cases of large dianuter. The lourning surfaco being large, the light attains a great intensity.
Shallow enrthern, wonden, or metal vasis or paper rases are used. The vase or case is filled witl dry composition, slightly pressed in ; or composition, moistened with guinmed water may be used amd pressed in the case more compactly. It is primed by powdering the surface first with a mixture of equal parts of the composition and mealed powder, and then with powder alone. Cover the top over with paper, pasted on the sides of the case. 'Plorough the center of the cover pass several strands of quickmatch, spreading them over the suface and uniting them on the exterior in a single strand.
When the light is made with dry composition, the

the left hand and draw it to the rear. The first part of this novement raises the locking brace, B, from the abutment, C, acts upon the firing-pin-lever, D, with draws the firing-pin, E, and releases the magazinegate, F. causing it to hold back the cartridge in the magazine. Continuing the movement, the bolt, θ, movis to the rear, ejects the cartridge-shell, cocks the hammer, $I I$, and raises the carrier, \bar{I}, so that when the movement is finished, the cartridge is in proper position to enter the chamber. The slide is then drawn forward. This movement carries the bolt forWard, drives the cartrialge into the chamber, throws down the carrier into position to receive another cartridge, and the rille is ready for firing.

A feature peculiar to this rifle is, the lock is brought clear forward and the extractor is hooked
case must be placed in a vertical pusition. It may be placed horizontally if moistencil composition be used and firmly packed.

Torch-lights for funcral ceremonios are made by impregnating large strands of cotton with a thim aicoholic pap, the whole arranged in vases like an oillamp, the pap replacing the oil. See Firerorks.

LIMBER.-To suit a gun-carriage to the easy and rapid transportation of its load. it must be convertcol into a four-wheel carriage, which is done loy atthehing it to another troowheel carriage. called a limber. The field-limber is composed of an -reletree (1), a fierk (2), two hounds (3 3), a splinter-bar (4), two fuot-boardx (5 5), a prele (6), a pintle-howk and key (1), two pole-yukes (8), and is pole-pad (9). A side view of the limber is shown in the article (casson,

With the manner of attaching the rear carriage to the pintle-hook. The limber axle-tree is made of iron, monedded in a body of wood, as in the case of the gun-carriage. The fork constitutes the middle por-

tion of the limber, and is the portion 20 which the pole is attached. It is formed of a single piece of wood one end of which is mortised into the axlebody, and seenred by the pintle-hook bolts, and the otheris cut into the shape of a fork, to receive the tenon of the pole. The hounds are two wooden rails which are bolted to the axle-body and splinter-bar. They serve to support the ends of the limber-chest and foot-boards, and also for the purpose of transmitting the draught of the horses to the axle-trec. The chest is firmly secured by a stay-plate which is situated at the bottom of the ent in the fork, and two stay-pins, which pass through holes near the rear ends of the hounds. The splinter-bar is a piece of wond placed cross-wise with the pole, and is firmly secured to the fork and hounds. It has four hooks, to which the traces of the whee) horses are attached. The pole, or tongue, is employed to regulate the motion, and give direction to the carriage. The point of attachment of the rear carriage being bear the axle-tree, and there being no sweepbar, the weight of the pole is mostly supported by the collars of the rear horses; it should therefore be made of strong, light wood-ash is generally used for this purpose. As the pole is liable to be broken in ordinary service, the method of attaching it to the fork should always be such that all of the fragments can be promptly removed, and a new pole inserted. The foot-boards are secured to the fork and hounds in a proper position for the feet of the cannoneers to rest upon, while riding upon the lim-her-chest. The pintle-hook is a stont iron hook firmly fastened to the rear of the axle-tree, for the purpose of attaching the rear carriage. This motle of attachment is simple, strong, and flexible-cualities which are essential to rapid movements and great endurance. The point of the hook is perforated with a hole for the pintle-key, which prevents the carriages from separating while in motion. In the ndd system of ficld-carriages, the operation of limbering and of unlimbering was so difficult, that a rope, called a "prolonge." was nsed to conncet the gun-carriage and limber in action. This implement is still retained, but the same necessity does not exist for using it. All fiehderariages should admit of heing turned in the shortest possible space. This depends upon the size of the front wheels, the distance letween the front and rear axle-trees, the position of the pintle, and the thickness of the stock at the point whare the front wheel strikes it. Notwithstanding that the front wheels are made higher in the present system of field-earriages than the (iribeanval system, which preceded it, the carriages of the former have prater facility of turning in ronsergucnce of the diminished thickness of the stock. Ser crun-corriages.

LIMBER CHAIN. - A keep-chain whieh goes round the pintle aml contines the trail to the limber, preventing its flying off the limber-hook.
LIMBER CHEST. -The ammmition or tonl-cherst helonging to the limber of an artillery carriage of any description. Those of the ghn-warriage and (atisson are fitted up as ammunitionechests, whike those of the forge and battery wagon contain re-
spectively tools and stores for llarksmithe, and for carriage-makers' and saddlers' nse.

LIMBER HOOR.-The hook on the limber to which the trail of the gun is attached.
LIMBERING-UP HOOP.-A stirrup-hantle on the trail of a gun by which the piece is moved in limbering and unlimbering.
LIMBER PITS.-Artificial cover provided in warfare for the limbers of gans. They are asually 12 feet long, $5 \frac{1}{2}$ feet wide at bottom, 7 feet at top. 3 feet deep, and provided with ramps at each end. A pit of this size can be executed in two hours by eight men. Eaels pit should cover a limber and two horses.

LIMENARQUE.-An office of distinction, which existed in the Roman Empire. The persons invested with it were directed to watch the frontiers of the Empire, and they commanded the troops that were employed upon that service.
LIMITARY.-The guard or superintendent placed at the confines or boundaries of any Kingdom or State.
limitation of time of prosecution.-In the United States Army, no person is liable to be tried and punished by a General Conrt-Martial for any offense which appears to have been committed nore than two years before the issuing of the order for such trial, unless, by reason of having absented himself, or of some other manifest impediment, he shall not have been amenable to justice within that period.

LIMITES ROMANI.-The name of a continuous series of fortifications, consisting of castles, walls, earthen ramparts, and the like, which the Romans erected along the Rline and the Danube, to protect their possessions from the numerousattacks of the Germans.

IIMITS.- The importance of the notion of a limit in gunnery cannot be over-estimated, since many branches of mathematies, including the differential calculus and its adjuncts consist of nothing clse than tracing the consequences which flow from this notion. The following are simple illustrations of the idea: The sum of the series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+$ etc., approaches nearer and nearer to $\stackrel{2}{2}$ as the number of terms is increased; thus, the several sums are $1 \frac{1}{2}, 1, \frac{3}{4} 1 \frac{2}{7}, 1 \frac{1}{16}$. etc.. each sum always differing from 2 by a fraction equal to the last of the terms which have been added; and since each denominator is doulle of the preceding one, the further the series is extended, the less the difference between its sum and 2 becomes; also this difference may be made smaller than any assiguable quantity-say, $10 \frac{1}{10} 000$ -by merely extending the series till the last denominator becomes greater than 100,000 (for this, we need only take 18 terms; 3 terms more will give \& difference less than $\frac{10000}{}$; and so on); again, the snm of the series can never be greater than 2 . for the ditference, though steadily diminishing, still subsists; under these circumstances, 2 is said to be the limit of the sum of the series. We see, then, that the criteria of a limit are, that the series, when extended, slatl approach nearer and nearer to it in value and so that the differencecan be made as small as we: please. Arain, the area of a circle is greater than that of an inseribed hexagon, and less than that of a cireumseribed hexagon : but if these polygons be converted into figures of 12 sides, the area of the interior one will be increased, and that of the exterior one diminishect, the area of the circle always continuing intermediate in position and in valuc: and as the mumber of sides is inereased, each polygon approaches nearer and nearer to the circle in si\%e: and sinee, when the sides are equal, this diftrrence can be made as small as we please, the cirele is sad to be the limit of an equilateral polygon the number of whose sides is increased indefinitcly; or, in another form of wordscommonly used. "The polygonapproaclees the circle as its limit, when its sides increase without limit," or again. "When the
number of sirles is infinite, the peslyeron breonmes a circle". Whan we use the trrms " intinite" and "\%ero" in mathematires, mothiser more is mennt tham that the quantity to which the trom is applion is incrasing irithout limit or diminishinginelojinitely; and, if this were kept in mind, there would be much lose comfasion in the ithas comecterl with these terms; from the same canse las ariaen the discrassion eonforning the possibility of what are ralled vanishing fractions (i. e., fractions, whose numerator and dr. nominator beconce Zeros simultanconsly) laving roel
values; thus $x^{2}-1=0$ when $x=1$; but hy divi-$x-10$
sion we find that the fraction is c"pund to $x+1$, whach $=2$, when $x=1$. Now, this discussion romal never have arison had the question heren in.

$$
x^{2}-1
$$

forpreted rightly, as fullows : - arpronches to $x-1$
2 as its limit, when x comtimually appromehes 1 as its limit, a proposition whicle can lic proved true loy sub.
 when the corresponding values of the fraction are $4,3,2 \frac{1}{2}, 2 \frac{1}{4}, 2{ }_{10}^{1}, 2, \frac{1}{n \pi}$, etc. '1he doctrine of limits is employed in the dilferential calculus. The best and nust complete illustrations of it are found in Newton's I'rimijea, und in the chapters on maxima und minima, curves, smmmation of series, and integration generally, in the ordinary works on the ealenlis.

LIMITS OF FIRE. - Within the limits of the rones of thater, positions ate found for front, for reverse, und for enflading fire. If the two faces, for example, of a work be prolonged to intersuct the extreme limit of dangerous ground, the sector which they embrace is termed the limits of direct or front fire: sinece from every position that can be laken up within this sector, a dieect fire alone can be brought to bear upon the two faces. The two sectors which lie aljacent to this are termed the limits of lateral, of reverse fire. since they afloril positions from which a reverse fire can be obtained against one of the faces, and a front fireupon the other. It is also only within these last limits that positions for conflating the terrepleins of the faces can be obtained. Sce Defilement.
LINCH-PIN. - A pin through the cod of an axie-arm of an artillery carriage to keep, the wheel on. A hook attached to the head of the pin and (mblating the askearm prevents the pin from being jolted out. A ring agaiust which the linclapin rabs is called the Linmb-pin Havher.
LINE.-1. In fencing, an imaginary line opposite to the fencer, wherein the shoulders, right arm, and the sword shonld always be foumd, and wherein are also to be placed the two feet at the distance of 18 inches apart. 2. In tacties, a body of men in either one or two ranks; genorally a body of troops drawn up with an extended frout. 3 . Au expression used in the British Army to distinguish ordinary Cuvalry and Jnfantry from the Guards, Artillery, and Eugineers. It obvionsly takes its origin from the fact that the troops in puestion coustituted the usual "Line of Battle." 4. The Line Otticers of the Nary and Army in the United States are livided intocleven grades, and their comparative rank on the active or retired list is as follows:

The Admiral of the Navy ranks with a General of the Army.
The Vice Admiral of the Nayy ranks with a Lieutemant General of the Army

10 Rear Admirals of the Navy rank with Major Generals of the Army.

25 Commodores of the Navy rank witl Brigadier Generals of the Army.

50 Captains of the Nayy rank with Colonels of the Army.
90° Commanders of the Navy rank with Lieutenant Colonels of the Army.
 Majors of tha Army.
deve licutemants of tho Navy rank with Contains of the Army.

100 Iastors of the Nayy rank witl d'irst fisutene ants of thr Army.
100) Vinsigus of thr Nitvy rank with second Livers. mints of the Army.

Minshijuncn of the Nive.
Atl Statr onlocers aro ajurinted by the Prosident
 for vossels in actmal service all Warrant (othe"rs, such as boutswains, gumners, sal-makrors, and carpenters, that may be requirell. All ollierers mot antitlad to hold warrants are callod Pretty onlorers. All cllicers of tho Army above the grade of Sorgoant holel their anthority hy commissions, and are therefore termed Commissioned ()thicers, (1) distinguish them from Non-commissioned Otlicers.

Iresident Jiillmore in Gencral Orders, No. 51, of 1951, has given the following satisfartory exposition of the use of the word Lime in our Statute Book: The 122d Article of War provides that "If, upon marches, ghards, or in quarters, differcot corrs of the Army shall happen to juin, or do daty emgether, the otticer highest in rank of the line of the Army, Marinc Corps or Militia, ly commission there on duty, or in quarters, shall command the wlald, and give orders for what is needful to the service, maless otherwise specially directed lyy the I'resident of the United States, according to the nathre of the case." The interpretation of this Art has long been a subjeet of controversy. 'lhe flilliculty arises from the vague and uncertain meaning of the words "Line of the Army," which, noither in the binglish service, (from which most of our military termes are borrowed), nor in our own, have a well-defined and invariable maming. By some they are understood to designate the Regular Army as distiuguished from the Militia; by others, as meant to diseriminate between officers by ordinary commissions and hose by brevet; and, fimally, by others, to clesignate all officers not belonging to the Staff. The question is certainly not without very great difficulty, and it is certainly surprising that Congress should not long since have settled, by some explanatory law, a ques tion which has been so fruitinl a sonrce of controversy and embarasment in the service. The President has maturely consiclered the question, and finds himself compelled to differ from some for Whose opinions he entertains a very ligh respect. Il is opinion is, that, although these words may sometimes be used in a dilferent sense, (to be determined by the context and subject-matter, in the 122 d Article of Wir, they are used to elesignate those ofticers of the Army who do not belong to the Staff, in contradistinction to those who do, and that the article intended, in the case contemplated by it, to confer the command exclusively on the former. The reasons which have brought him to this conclusion are briefly these: 1st. It is a well-settled rile of interpretation that in the construction of statutes, words of doubtful or ambiguous meaning are to be understood in their usual acceptation. Now it must be admitted that, in common parlance, bothin and out of the Army, the words "Line"and "Statए" are generally used as correlative terms. 2d. Another rule of construction is, that the same word ousht not to be understood, when it cau be avoided, in two different scuses in different laws, on the same snbject, and, especially, in different parts of the same law. Now in another article of this same law. the words " line and btatf of the Army " are clearly and beyond question nsed as correlative and contradistinctive terms. The same remark applies equall: well to almose every case in which the words " line "and "Staff" occir in the numerous Acts of Congress. On the other hand, there is but one Act of Congress in which the worls "Line of the Army" have been purposely employed to designate the Regular Army in
contradistinetion to the Militia, and none in which they have been manifestly used as contradistinctive of brevet. Bd. If Cougress had meant 1, a $^{\text {these }}$ words to diseriminate between officers of the Regular Army and those of the Militia, or between olficese by brevet and by ordinary commission, it is to be presumed that thes wonld have emphoyed those terms, re spectively, which are unequivocal, and are usually employed to express those ideas. 4th. If we look at the policy of the law, we ean discover no reasous of expedieney which compel us to depart from the plain and ordinary import of the terms: on the contrary, we may suppose strong reasons why it may have bren deemed proper, in the case referred to by the Article, to exclude officers of the Stalif fromeommand. In the first place, the command of troops might frequently interfere with their appropriate dnties, and thereby occasion serious embarrassment to the service. In the next place, the officers of some of the Staff Corps are not qualified by their habits and education for the command of troops, and al. thourli others are so qualified, it arises from the fact that (by laws passed long subseqnently to the Artiele in question) the officers of the Corjs to which they belong, are required to be appointed from the Line of the Army. Lastly, officers of the Staff Corps seldom have troops of their own Corps serving under their eommand, and if the words "Officers of the Lime" are understood to apply to them, the effeet would often be to give them command over the officers and men of all the otlier Corps, when not a man of their own was present-an anomaly alWays to be most scrupulously avoided where it is is iu auy manner possible to do so. 5th. It is worthy of observation that Article 25, of the first

Rule's and Articles," enacted by Congress for the goverument of the Army, corresponds with Article 122 of the present Rules and Artieles. except that the words " of the Line of the Army" are not contained in it. It is evident, therefore, that these words were inserted intentionally with a fiew to a clange in the law, and it is probable that some inconvenienee had arisen from conferring command indiscriminately on officers of the Line or the Staff, and had suggested the necessity of this change. It is coutended, however, that Sec. 10 , of the Act of 1795 , emunerates the Major General and Brigadier General is among the Staff Officers, and that this construetion of the Article would exclude them from command, which would be an absurdity. No such consequence would however, follow. The Article in question was obvious ly designed to meet the case (of not unfrequent occurrence) where officers of different Corps of the Army meet logether with no officer among them who does not belong exclusively to a Corps. In sueh a case, there being no common Superiur, in the absence of some express provision conferring the power, no officer, merely of a Corps, would lave the right to command any Corps bnt his ow ; to,obviate this difficulty, the Article in effect provides that, in such an event, the Officer of the Line, highest in rank, shall ronmand the rest. But if there be a Major General or Brigadier General present, the case contemplated by the Article does not exist. No question can arise as to the right of command, beeanse the General Ofticer, not belonging to any particular Corps, takes the command by virtue of the general rule whichassigns the comarand to the officer highest iu rank. See Brecet. '"ommand, and Rank'.

LINEAL RANK. - The rank of a line-officer in his particular arm of the service. The lineal promotion of a Linesolticer is his promotion aecording to seniority in the arm of service, as opposed to promotiou in the regiment.

LINE OF BATTLE,-The formation of an army for hattle. In all actions it is necessary to place troops in such a formation previous 10 making the assault, or in showing front to the adversary, is shall (xpose then as little as possible, and yot place them in the readlest mode to carry out the orders of the C'om-
mander Ithas been the custom from a very ancient flate, coming to us from the Romans, and an aceepted principle by most pations, that an army. when drawn up for battle, should lee formed in threc distinet lines; the first line, to commence the battle ; the second, to support it, aud to fill up the gaps; the third which is in rear of all, as a reserve.

This triple formation, though modified, remains much the same at the present day; but instearl of deployed lines or liues of heavy eolumns, the tioops are placed in lines of balf-colnmu formation. This has beeu rendered necessary from the withering tire and long range of the present arms of precision, whiel necessitate the reduetion of the front of battalions. It has also become neecssary, whether taking the offensive or standing on the defensive, that shelter, uither artificial (such as shelter-trenelies) or natural, sliould be taken advantage of to sereen the men as muelı as possible, and so not to expose then (in the ease of an attacking party) more than can be helped before the moment of formation previous to the tinal rusli in upon the enemy's position.
LINE OF CIRCUMVALLALION, -The front and the rear of camps around a besieged place are seeured by lines of tield works. The exterior line of works, termed the Live of Circumvallation, should form an unbroken line of intrenemments composed of the most simple elementary parts, as temailles, redans, ete., with a slight profile; its chief objeet being to prevent succors of small detachments from slipping into the place. The interior line, termed the Line of Countervallution, is composed of detaclied works. which, if the garrison is strong, should be in defensive relations. The main points which should be occupied by these works are the prineipal avennes to the defenses, and the positions seleeted for the parks of the siege-train: to secure these points from the attempts of the garrison, and to reuder the entrance of large convoys iuto the defenses imprac ticable. The lines are so placed as to leave a space of about 200 yards between then and the front and rear of the camps.

When the great extent of ground that must be taken up by a besieging force, in the investment of any considerable position. which requires to be entirely surrounded to cut off all communication between it and the exterior, is taken into consideration, partjeularly now when rifled guns have acguired sueh long ranges, it will be seen that combplete lines of circumvallation will be seldom practicable, and iu most eases must be of too weak a character to serve as an intrenched defensive position for the besieging foree to receive battle within them. Accortingly, in the later sieges in Enrope, continuous lines of cireumvallation have been seldom resorted to; the besiegers contenting themselves with occupying only the main points of their position lyy field works, and giving the intervening space such protection as could be afforded hy strong patrols aud posts 'lhis departure from former practice arose in most cases, froml the want of strengtl of the besieging force, aud was frequently attended by the very events against which lines are chicfly effectual in guarding. As a field of battle agaiust a succoring foree of sufficient strength to cope with the besieging army, a position taken behind a line of cireumvallation is but iu rare exceptions eligible, a maxim that apulies 10 all exteuded mal weak lines: and in almost every case, where a serious effort has been made against such positions it has proved sueressful, and has entailed heavy loss on the besiegers. But, it must be repeated, as this is not the ohjeet of these lines, they are not open to this objoction; and, as they hatre berau found serviceable for the sole purpose to which they should be applicd, they ought to be thrown up in all cases where the means of the besiegers will athnit of it. See Intrenolied Comps.

LINE OF COUNTERMARCH.- A sort of a trench which the besicged make, and push forward from
the glacis, for the purpose of counteracting the moemy's works.

LINE OF OOUNTERVALLATION.-The line of tield worke constructed in fromt of the rampus, and on the side next to the besjegeri pensition, to defent the camps. parks, and trains agrinst any attarks which might be made by the lo siogred. See liue of fircumrallertiou.

Line of defense. - A line representing the light of at rithe-hall from the place where the soldieres stand, to weour the face of the bastion. The line of dofense shoold never exeeded the range of the rifle. It is aither firhernt or retyeme. 'The first is when it is drawn from the angle; the last, when it is drawn from a point in a curtain, ranging the face of the Imstion in fortificntion.

LINE OF DIRECTION.-In gumnery, the line formerly marked upen grans by a short point upon the muzale, and a cavity on the base-ring, godirect the ey in pointing the grun.

LINE OF FIRE.- 1. In emmery, the proxhetion of the axis of the gen diescted upon a point which is at a vertical distance above the olijece to be struck, corresponding to the time of flight rembiren for the rance, amd at the emi of which time the shot will be brought to the object by the forer of gravity
2. In fortithention, this 1 (rm admits of two distinet nccepmations: first, when it is foumd uncessary to give an hatea of the manner in which at rampart or an intrenchment cowrs any space of ground by the diselarge of ordnatace or muskerry, lines must be drawn to represent the distances traversed by the shot, ete. - these lines are called lines of fire, being representalinns of the actual ranges; serond, all that extent ol a rampart or intrenchment from which the projectilo of ordmane or masketry are discharged.

Line of least resistance. - The shortest distance from the center of the charge of a mine to the openair. Assmming the crater to be of the form of a truncated cone, as is usual, the radius o d, of the lower circle, being also assumed at one-half the radins r b, of the upper circle, then the radins P b, of the upper circle, is termed the crater rudius, and the liae of p, drawn from the center of the powder

perpendicular to the surface where the explosion takes place, the line of lenst resistente. The line o b, drawn from the same ceater to any point in the cir. cumference of the upper circle, the radius of explusion. A mine with al line of least resistance not greater than nine feet, formed by sinking at shaft from the surface of the gromal and placing the charge at the bottom of it, is termed a fougasse. - See frater.

LINE OF MARCH. - The arraugement of troops for marching: also, the course or direction taken by an army or smaller command.

LINE OF METAL.--The profile cut from the upper surface of the piece hy a vertical plane passing througl the axis of the bore. When pointing a piece. the line of metal is accurately determinerl, and the piece is so maneuvered as to bring the line of metal into the plane of tire.
Line of metal elevation.-In gunmery, the visual line commerting the front and back sight when the latter is at its lownst point. i. C. connecting the notch on the swell of the muzzle, or dispart sight, when the trimnions are perfectly horizontal.
LINE OF OPERATIONS, -All lines of communication leading towards an cnemy's base do not outr r equal advantages to an army acting on the offensive. Some lead more directly and offer more security than others in an alvance on the enemy ; some may offer greater advanfiges than others when our superiority lies cither in infantry or in catalry: : some
are more favorable astosubsisting an army, or afford ine it more convenient transportion, or in emabling us tu turn the enemy's pusition: whers again receive better support from the lase of operations, atc. 'lline talont of a Commanding (xanoral is charfly shown in weighing the advantages and lefectes of earh of thase circumstancos. and sollecting from thoto the best. A lime of operations is saicl to besimuple when the army corps moving agminst the enemy are knon together, or at least are not mo farsmated as to low beyondmuthal supporting distances. These criphes conserpuently must all move on roads nararly paralled, and not too fur apart, and without any impasable obstruetions betweren Hem. A lime of dperations is said to be domble when an army divided into two parts follows two sensinly paralid romde whichare an far asumder that the two portions cannot be remuited "ipon the same day on the sum. tidel of buttle.
Unluss we are superior (1) the enemy on cach line, both in mumbersand the moral qualities of our troopsa double line of operations is purely disadyantugenes to us; and partiontarly so if the two lines diverge as we alvance; for the emomy, by throwing himself between the two fractions of our army, may beat each of them separately, and find himself in at attitude to interecpt our eommumiations. The moro rapidly the double lines diverge, the greater will be danger and the cortanty of surcess to the enemy.

Here we find a marked differnee between what may be termed a strategical and a tactical operation. In the latter the greatest clanger that an army can rim is to be surrometed on the tield of battle; whereas an army that throws itself, by a strategical morement, between several fractions of an enemy's army beyond supperting distance of each other, may, ly superior artivity, ilefent them all in surcession.

The only case in which-the armies on the two sides being sensibly of equal strength. and control. ling reasons calling for it - double line can be followed, in the face of a concral of respectable abilitios, is when the latter has also adopterl double divergent lines, or lines very far asumder. But in this case our clouble line must be an interion one, or lie between those of the enemy, so that the two fractions may, in case of need, support each other if attacked; or be suddenly concentrated so as to attack one of the fractions on the enemy's exterior line, the other in this case being beyond supporting distance of the one attacked. This principle of interior lines, particularly when they converge as we advance, as a matter of fact, is only a modification of the one of a single lins. It only amounts to keeping the fractions of our army in such distances from each other that they are nearer together than those of the enemy, and can be concentrated on any one of his before it can lee reinforced by the others. Still, it must be observed, that it is always safer to mancuver on a single line than upon two, althongh they may be interior.
it is important not to confound double or multiple lines, with the various lines of communication over which fractions of an army are necessarily marched, in order to coneentrate on a particular point. In this rase the movements of all concur to the same end : the army corps are momentarily separated only to march with greater convenience and rapitity; to recomoiter the ground more thoroughty over which they move; and to live more comfortably. This momentary separation of our forces, to be again united at the moment of battle, when well exeented, is the wery acme of good generalship. It is nne of the beat meins of keeping the enemy for a long time nucer tain of our real intentions als to the point of attack. To know when, in turn, to scatter our forces to embrace a greater extent of conntry, when cireumstances permit or call for it, and then to concentrate them, in order to strike a decisive biow, is one of the most marked features in the qualities of a great Captain. No General of modern times has shown this trait in as high a degree as N゙apoleon.

When. by the eventualities of a campaign, we find ourselves rather forced to abandon our primitive line of operations and tatse up some new one, the latter generally receives the appellation of an accidental line of operations. This term is not properly applicable to a line voluntarily taken up, to march upon a point which the enemy may have weakened by withdrawing from it troops, under the apprehension that he was threatened on some other. This change of line. so far from being an accident, is the legitimate frunt of profound combinations, and may be the cause of important successes. The primitive line was, to some extent, a feint; and the line apparently but secondary the true one; it cannot therefore be termed accidental; it will be thus simply the ner line of operations

In like manner in a retrogade movement an army may abandon its natural line of retreat and take np another, leading off laterally from it. for the purpose of enticing the enemy into a district of country less favorable to him, and at the same time to throw lim further off from his main object. The line of retreat in this special ease will be sensibly parallel to our own frontier instead of being, as it is generally, perpendicular to it. This new line of retreat also cannot be classed under the head of accidental lines, since it is one voluntarily adopted, and presents advantages over the matural line of retrat. It has received the name of the paralled retreat, a term sufficiently expressive of the thing itself. To be successfuliy executed the retreating army should not be too inferior in force to the cnemy, and should run no risk in being eut off from its own frontice by moving too far from it. The local features are particularly to be taken into consideration in such "perations. If they are of a broken claracter, the movement will be the less perikous: if, on the contrary, the country is open, and without stang natural points of defence, the safest pian will be to regain our frontier by the shortest line.

When a choice between several lincs of operation is offered, it will be best to adopt the one where the army ean be most easily subsisted, and in which. aceording to the kind of troops of which it is composed, the army will be most sceure from the enemy"s enterprises. If the army is superior to the enemy in cavalry, it will naturally prefer to move over ar open district aml country; if, on the contrary, its main strengtl lies in its infantry, it will prefer to skirt along the foot of a mountainous range, or to match through a broken country. A line of operations parallei and near to a river presents the advantare of having its wing nearest the water course perfertly secure from attack, whilst the river itself fornishes an excellent communication for bringing forward men and the supplies. The defensive position taken "up by the enomy also has great weight in determining the dircetion of the line of of operations. If lie ocrupies cumtomments axtending over a consid. erable line, the most natural line will be the one by which the army can florow itself into the conter of the enemy's isolated corps, and thus separate them and beat them in detail. By attacking one wing of a position of this kind we should, in allilikelihood, force hatek one corps after another upon the neighboring one, antil in tha and the whole would, in this way, be concentrated in their natural order of retreat. If, on the contrary, the enemy's corps are in proper supporting distance of each other, the natural point of attack is certainly one of his wings. provided that, in making thes said movement, the line of operations of our own army is not left exponerl; for the first of all necessities is nevortop place either oner lase or our lime of operations in jeenardy. The elloice to he made will also depend upon the claracters and military talents of the enemy"s Generais, the quality of the forces, their moral comelition, cte.. cte.: these are points which carry such great weight with able Commanders that the lave often beon known to have adopted plans the very re-
verse of what they would lave done undar contrary circumstances, according to their lueing in front of one or another General. Turenne, having for his opponent Condé, did not allow himself to do things which seemed to him as casy and a matter of course before the Archduke. On one occasion, in 1654, he lost some men while passing within the range of grape in front of the Spanish lines, which ralled forth remarks from some of the nllicers acenmpanying him. To these he replicd: "The march we are making would be very imprudent before Condê's josition; but it is very important that I should examine thoroughly this position; and I am so well acquainted with the Spanish service, that I feel assured that before the Archduke has been informed of it, has"sent word to Condé, and called together his council, I shall have completed it and returned to camp." "See," said that Captain who more than the other was eapable of pronouncing a judgment on such points, "here is something that pertains to the divine portion of the art." In truth, military genius manifests itself in just such subtic distinctions and delicate shades. See Base of Operations, and Objective Point.

LINE OF SIGHT. - In gnmnery, the right line passing througli the notch of the tangent-scale and tip of the trumbion-sight (at any (alevation), and the ohject. Ste Pointing.

LINE OF WORKS. - When it is necessary to liold for a time a line of considerable extent by a force inferior to that which may be brought against it, the line should be fortified by intrenchnents, consisting of a series of works laid out according to the approved principles. The kind of work for any particnlar position on the line will depend mpon the mature of the locality it is to occupy and the manner in which it will combine with those adjacent in securing mutual support throughont. Such lines are freguently from fitteen to twenty, or even thirty miles in length, extemding over every variety of country, and in their construetion call for the highest skill in military engineering. They are constructed, usually, either for the protection of important towns, citics, and depots; or 10 make secure the base of operations and lines of communications of any army maneuvering in the fick: or, by stretching across peninsular regions, to restrict the theater of operations of the cueny ; or for surrounding and besieging a place: or for the purpose of holding the enemy in position with a part of an army while the remainder makes a flank or other strategic movement. The rivil war of 1861-65 afforded numerous instances of each of these conditions.

The same general principles apply to lines as to other fisfl-works; but, from their great extent. they usually receive only a sliglit reliof, and the simplesit angular tigures are adopted for thcir pian. In laying them ont, advantage should he taken of all the natural features presented, by the position, so as to diminish the labor of precting artitiocial ones. The thanks of a line or positionare generaliy wat points. When possible, one or hoth shonid rest on matural points of support. A lank not so supported must ho serored hy strong works cespecially well garnished with adtillery. A point that las not a clater field of fire is a weak point, and should be strongly intrenelied. so llat the enemy may not lave advantage of hills, ravines, or other slielters in approaching the lime. Care shonld be "xereised in determining the kind of urtillery for such nositions. The lield of
tire being contractud, long rango is not of mot matels
 shedter, or to throw a great mass of projeatiles in a limited times. Mortars, howitzers. madmatehino-gruns will be found servicmble. la establishinge a line of works, the most important olgere should be lor"ove "r every portion of tha front within fair range with dirext or cross fire. To accomplish this, all prominent points atong the line are fortilied, eareh witl a work havinis a trace most suited to dan conformation of that partiaularsite. The most important of these shondel be inclosed works "pon the bastion-front principle, and of considerable: si\%e, capable of cuduring an independent attack. Smaller inclosed works, such as redoubts and star forts, oromy the secomelury points. Between the works thas locatede extent! rifle-trenelos, eapable of shelterines mfantry. The line is therefore composed of a scries of works mutually smpporting eathother amo eovering every avimue of appronch.

The artillery, of which there slould be an abomdance, will naturnlly be placed in the works orecupying the most commamdiner and salient positions. 'These works should never be so far apart as to be out of mutual Hanking range of the artillery with which they are trumed. It is the duty of cillicers of artillery to eo-operate with those of engineers in selecting the positions of the works that are to be armcd with artillery, and to determine the kind and ruantity to be phaced in esth. As infantry troops constitute the chicf garrison of works of this nature, they will be reguired to eonstruct thenr, leaving to the artillery the construetion of marazines, embrasures, and the other accessories pertaming to their special arm. Generally these works are theown up very latstily, and often when an immediate attuck is apprehended; this, to a considerable extent, deeides not only the nature of the works, but the parts of them that reopire the itst alfention. Subsecpuently, if time permits, they are strengthened, improved, and worked into better shape. As far as practicahe, the line should be eomposed of inclosed works, for the renson that should the encury coneentrate and break through at any joint, he will not be able to swoep the line to the right and left by taking it in Hank and rear. To storm and capture each work in suceessjon would be an operation too costly for hin to molertake.

It is alvisable in most instances to have in from
forcing his way througla the main line, from obtaining rasy posses.ason of them by the rear. Sitces for them should be seleretod with atow of ohtaining frem thern a searshing fire of the front line in revarse: This line of works, although apparently inoot in roar, must be kept fully armed and manmed, reftly io drive the enemy from any jart of the main line that ho may suceced in obtaining peossox.aim of. Jrominont salients in the main line are especially inviting
 prepared, so placed, if pessible, that should the ememy obtain the main line be will lo within masketry runge of the werond, and be forced with wearied tropps to undertake the capture of it. See feirlu I'ortificrition.

LINES. 'The firld-works known as lines are divided into several claskes. ateording to the olyjece for whicll they ure construeted : or, according to some pecouliar arrangement of their parts, or some othor characteristic guality. They nre most gencrally chassidicd as continned lines and lines with intertals. 'There are no ojeenings in a continned line, except those made for the tise of the defense. Continned lines bave heren much used in just military operations. and will, in all probability, be ustd in the operations of the future. They may be usefolly employed where at passive dofense only is to be made, and where the position to be drefended is limited in extent, and not exposed to flank attacks. They are not titted for an artive dofense, and they have the serious disadvantage of being untenable. when any mart of the line has been laken by the conemy. "llucy require a large amoment of labor to comsiruet: and it is a very fombind fuestion, whether the advantages they give compensate for the time and labor employed in their constration.

Jines with intervals differ from the continated lines, by leaviner intervals along the front of the pesition, which intervals present no obstructions to an chemy moving throurl them. excepting so far as they may he defended by the fire of the works, or may be obstructed by nathral obstacles, or by artificial ones, placed along the front. The works ferming the line may be placed so close to coteh other as io be in defensive relations; or they may be so fur apart. fis to admit only of their defending the intervials le"tween them.

If an obstinate defense is to be made, a second lime should be used. It should as a general rule be

Plan of a Line with Intervals of Lnnettes,or Square Redoubts thanked by Retired Redans.
of the line. within easy musket rance, a line of smatl radaus or jumettes at intervals of abont 1.500 vards. Each of these should be capable of holdine fromone to two landred infantry and four to sis field-pieces. This line of outworks would form, as it were, a sjecies of pieket-line. Keeping the enemy from elosely observing aml harassing the main line. and would constitute an advanerd lime of battle, against whieh the first shock of the enemby is partially thrown away, and he dare not attempt to neglert them; for an eudeavor to peactrate through the intervals wonld expose his flanks to a close and deadly fank and cross fire. The redans being open towards the main line. could not be held if emptured by the enemy. A somewhat similar line of works shonld be established in rear of the main line. They shonld. however. have their gorges stockaded or otherwise closed to prevent the enemy, snould he suceced in
placed behind the first. and distant from it, about one-fourth. and certainly not greater than ome-half, of the distance between the works in the first line. When artillery is used in the second lime, a good position wonld be about six hundred vards distant. from the first. This phees the scond line just out of range of aimedmusketry tire, but in close range of artillery fire. A third line of fied-works is sometines built. The reneral arrangement of the works of this third linewith the works of the first and seennd, conforms to the principles employed in arranging the work in the second line. A third line might be uscful. in case of an active defense. since the works placed along this line can be utilized as sereens for the reserves and for bodics of cavalry. A fourtl line would evidently be of no pracisalservice in the defence of a position. A force.mable to retain possession of outer lines, cond not hold the fourth.

The number of lines, whether a single one, or two, or three in number; the kinds of works to be used on eacla line; the distance apart of the works on each line; the distance apart of the lines; and the details of their construction, depend upon the natural features of the ground, the numbers and kinds of troops which are to occupy them, the range of the arm used in their defense, and the time disposable in which to construct them.

Certain advantages are claimed for lines with intervials. 'These advantages may be briefly stated to be as follows 1. The lines with intervals admit of either jrassive or active defense. They are peculiarly fitted for the latter. 2. Lines with intervals are more casily adapted to the natural features of the ground than continued lines. 3. For the same extent of front, they require fewer men to defend them, and the works require less labor to coustrict, than other kinds of lines. 4. They admit of a better use leing made of raw and inexperienced troops. 5. A line with interrals may still be defended, even"after ${ }^{2}$ part of the line lias heen captured, or after the eneny has broken through the line.

The main defect inherent in lines of this class, is the sub-division of the defenders into several independent commands, by which unity of action of the whole command is impaired. This defect is reduced somewhat by a proper disposition of the works. A few capacious mind strong works are better than a large namber of smal] ones. Experience has shown that a body of one thousand men, in a single, wellconstructed work will offer a more effective resistance to the attacks of an enemy than the same number would. when scattered among three, four. or more, sinaller works. The diftieulty which a General would meet,in obtaining experienced oflicers tit for these independent commands, and in having these oflicers to ant in unison with each other, gives sufficient grounds for such a result to be expected under ordinary circumstances. See Bastioned Line, Cremaillere Line. Multiple Lines, lidan Sine, Rogniat Sine, Serrated Line, and Tennaille Line.

LINESMEN.-I term frequently applied "in the British service to the infantrymen of the Regnlar Army.

LINES OF COMMUNICATION. - A term applied to all the practicable routes and roads connecting the different parts of an army occupying the theater of war. Therefore, as the army moves from its base, the lines of operations become lines of communicutiom. and since these lines of operations are geierally the longest and most important lines of communicu. tion, it is to them that the simple term communications generally refers. All the routes used by the trains employed in provisioning an army, form a part of the communications. The most inportant, kafest, and most convenient of these routes, all other things being equal, will be the central one, or the one loaling from the center of the army back to its buse. This jarticular route is sometimes designated as the line of supplies.

LINES OF RETREAT.-The roads passed over by an army when arlvancing are ordinarily the roads taken when the army retires or is driven back. In the latter case they are known as Lines of Retreat, ant] are Single, double diverging, ctc, according to their number andejosition. Siv Retrat.
LINES OF TORRES VEDRAS. -Famons lines of defunge within which Wellington took rufuge in 1810 , Whan le fommel it impossible los defend the frontior of Portugal against the Froneh armies: aml from which, in the year followine, he issumed on that carcor of slow and hard-won victory, which ended in the expulsion of the French from the l'eninsula. The first, or outermost of these lines, extending from Albanclra, on the 'lagus, to the montlo of the Sizandro. on the sea-const, and following the windings of the hills., was ed miles long ; the serond (and by far tha most formitables from if to 10 miles belind ithe dirst, strcthing from (quintella, on the Tagus, to the month
of the St. Lorenza, a distance of 24 miles; the third, situatell to the sontluwst of Lisbon, at the very month of the Tagus, was very short, being intended to cover a forced entbarkation, if that had beeome necessary. The entire ground thus fortified was equal to 500 srjuare miles.

LINES WITH INTERVALS.- When the front to be defended is covered by a number of field-works, scattered along this front, and placed near enongh together, to sweep the intervals with their fire, the whole arrangement forms a disposition called a bime with Intervals. Field-works placed so near to each other, that each one can bring its fire to bear upon the ground in front of those adjacent, are said to be in defensive relations with each other. See Lines.

LINGERER.- One who pretends to be indisposed, in order to avoid his tour of duty. Nence the expression malingerer, or a soldier who avoids duty in a disreputable manner.
LINKED REGIMENTS.- In localizing the forces of the British Army, it is laid down that in each of the sub-districts of the country two regiments slald be permanently selected (whether absent or present) to be so localized, and the mode of selection is of rugiments having any comection with the county. These regiments are termed linked, and in the case of one of the reginents going or being on foreign service requiring men to make up its numbers, soldiers are drafted from the regiment remaining at liome.

LINKED SHELLS.-Admiral the Ilon. Arthur A. Coclirane has recently devised a novel metlond of marine attack and defense. Its very novelty may tend to prejudice against it those who are saturated with the conviction that nothing now which is also good can be devised in warfare; but the whole scheme is at once so simple. so ingenions, and so easily and cheaply tested, that it commends itcelf to impartial minds. He proposes to strew the line of approach of a hostile ironclad preparing to ram, or the wake of a ship when retreating, or the course of an enemy engaging on the broadside, with floating or partly submerged torpedoes, through which the pursuer dare not attempt to pass. These torpedoes could be thrown to some distance from the ship by means of mortars, which would fire very small charges of powder. Thus the 13-inch service mortar, at an eleVation of 45 degrees, has a range of 850 yards with 3 ponnds of powder, and with half a pound of powder a range of 180 rards when projerting a shell of abo it 180 pounds weight. The shells would have a charge of high-class explosive, say, of 35 jounds weight, surrounded by an envelope, whether of thin metal or other material. of sufficient capacity to buoy the bursting charge and of strength to resist the projecting clarge of, say, $1 \frac{1}{2}$ pounds of powder. The shells would be connected by a floating line 100 feet or 200 feet in length, of small diameter, but of great strength; such coujled shells could be very readily fired from two mortars simultaneously by electricity: they could be placed quite close together; or the mortars, of which there would likely be six or right on a large ship's deck, might be placed at a distance apart of 50 or 80 feet on the line of keel or otherwise, the rope still connecting the shells. The action of the air on the connecting line when the shells were fired would be to draw the shells together; but it is not anticipated that this would be a practical difficulty ovar the ranges expected, viz., from 200 to 1,200 yards as the mortars would be shightly deflectfil from each other. It is proposed to use suche sledes against ships on their noar approach hy firing them arross and just abead of the ship. It is clear that if the hostile shipstill jrocerded, whe would, by fouling the rope, draw the shells alongside and be blown up, and as the sholls would be coneussive and tited with time-fuses, they would doubtless not fail tor art. Should the ship stop in time to avoid the shells. others conld he thrown astern of or ower her, so as to hamper hor movernents. GYader any circunstances,
the bosite ship canlel not ram her (rmenny, and by
 whe therown on her deeks, and for artill ry dire.

It is proposeal to empley sleblls of serveral riassas: "I" shells charged with rxplosives, chathle of thothing on whter, cased in metal or other material, numb
 of ships, or chropped across ships or ports in at ibleWay. "l3" shells, charged with "xplosives, of shisht ly greator specitie gravity than water: such to lw regulated as the the depllithey shall sink in wator by moins of an lndia-rubber tille or oflocr matarial; such tube to be securely attacelacel to the shell when it is tired, or hy a line for the shedl when it is moressary, filded with air and attached to the slocll. In tha cose of lamd services, such a tulo conle be ansily fillod with explosive, and surb tuhe could be attacheal to andeond shell, for clearing parapots, Irenches, ete. underspecial circmastamees. " A" shalls would be useful to cloar hostile ships out of rivers, tideways, and to blow up buttressus of bridges floating-lorideres, such ass those litedy used in the Dumbe, preventings shijs antering the Datranclles. ete. "B" shells, on beiner thrown near the ships and buoyed by a practically invisible tube, at a depth of say, 15 feet, would be very fatal on explorling. " B " shalls could be thrown on the line of advance of a torgedo; ind when contering a losstile port. defended by summerged torpedoes they coruld be thrown in alvance of shijse entering, and regulatocl by moans of the buoy line, to explote at any depth, or on the bottom, thus clearing the chamel. The shells conld be cased in metal and mate in sections, or condd be made of paper suitably prepared. Shells from mor. tars are now considered to be etlicient in proportion to their falling weight. The shells suggested would be eflieient in proportion, not to their weight, but to the charge of explosive carried. From lle sman! wright of the mortars, very small charge and small recoil, they conlal be most readily fitted to any ship almost withont strempthening litments, and in the case of mmerons river steaners would add but litle to the dranght of water. It will be seen that the sucerss or fillure of the whole seheme depends on the possibility of tiring linked shells, so that their line of thight would be nearly parallel, und on the ennstruction of the shells. Nothing lout direct experiment fan decide the first point; but it might be settled in alday for an outlay of a few pounds. The constraction of the shells obviously presents some difticulties. Achmiral Cochrune das proposed severial designs for shells intended to overcone these difficulties. It may be faily assumed that fire from mortars, whose shetls would be, or might lie, conaceted by a slight lime would be very inacenrate, particularly in high and cross winds. "But if one is driven to make comparison of efficiency, the arourary of artillary tire in ships in high cross winds may be serionsly questioned, and the accuracy of action and atm of torpedoes fired from or at ships in motion may he very much more seriously questionto particharly if fired at more than so0 yards distance. The bows and the sterns of ships are, as a rule, now the fiwored points for projecting the torpedoes, and compressed air, steam, steam pistons, and gonpowder, are being tried to endeavor to obtain at sat isfactory means of projecting them into the watur. after which they have to find some yet undiscovered process of makimg them gostraight to the object to be struck. a result which, when there is any seat on, or the boat or vessel is in motion, will never be accomplished in any degree to be relied on. I comparison may be miale between the effect of sity, al 100-ton sun, 30 fect long, hurning 400 or 500 pocinds of powder, and projecting a shot of haree-finarters of a ton, agitinst a 26 -inch armor plate, and that of one of the shells proposed by Ailmiral Cochane, falling when charged with 20 pounds or 30 pounds of guin cotton, on the deck or into the barbette bittery of a 10,000 tous ironelad. Further, when the
cost of the $100-10 n$ gun, the jow der mind alsot litmonts,

 lar, wioighing perlaps 12 handrid-woight, and ropuiring, so to say, nos science to work it what ever, tho: alvantage socoms notally in favor of nater tars as the primeipal arm. It may be observod that
 its shall, lomedel, abont 200 poundo, carryiner at burnt ing charge bf some lo jommuls, amd whentired at an angle of 45 degrees, with :3 pouncle of powilor, range: 850 yards: but, as at present, delmiral (ivelarame only suggests shalls of a weight of, saly. 100 jomind a, and that to be projereted to a distunc* of, siy, 1,200 yares, and that as the mortars should be made of phosphor-bronze, 12 (:wt. might, it is assumat, sufs lire for the woirht of the mortar. "The s. ぶ, morturs have to face the firinge of 200 -puand shells up) to u range of 4,000 or 5,000 yists. Mortar firing and susthined efforts to improve: mortars havelueen but littlz considered. Kifled mortars are hardly known ; and the suspended mortars- liohwrts' patunt, on turntablas for \&at scrvice and nsol in tho Joatie in 1×54 -have dropped out of sight, thongls they wore stated 1o oller many at vantages in principle, while fanlty metal and construction were quatcid against them.
LINOLEUM. - A peraliar prejuration of linseced-oil. which is variously cmployed for military purposes. In 1849 Nicles und Rochelder inelependently discorared that chloride of sulphur will solidify sil, and render it usable in many new ways. In 1859 M. Perra communicated to the Acadenie des Sciences the details of a mode of eflecting this by mixing and melting the ingredients and pouring the mixture ont in a thin layr. J3y varying the proportions the resulting substance assumes varying degrees of consistency. Thus, 100 linseed oil +25 chloride of sul. phur produces a hard and tough substance; 100 oil +15 chioride a supple substance like India-rubber; and 100 oil +5 chloride, a thick pasty mass. This third kind dissolves well in oil of turpentine. Mr. Walton afterwards found that, by the application of Jeat, linseed oil will become laril withont the addi. tion of chloride of sulphur. He conceives that it is not a mere drying, lint a real oxidizing. Linsecd-oil, first boiled, is applied as a layer to a surface of wood or glass, then dried; then another layer; and so on till the required thickness is produced. The sheet is then removed, and is fonnd to be very much like India-rnbber in elasticity; in fact, the production of a layer by this means is analogons to the smearing of clay-molds with caontchoue juice to produce India-rubber, as practiced in South America. The drying is a little expedited by adding a small portion of oxide of lead. The solid oil is crishled, and worked thoroughly between lieated rollers: and when treated either with shellac or with naphatha, it becomes applicable in various manufacturing forms. The term Linoleum properly applies to the hardened or the oxidized oil itself. but is cheilly used as a designation for one of the substances made from or with it, a kind of lloor-cloth. When the oxidized oil is rolled into shects it becomes a substitute for Jnclia-rubber or gutta-percha. When dissolved as a varnish or mastic and applied to cloth it is useful for water-proof textiles, felt-carpets, carriage-aprons, wagon and cart-sheets, nursing-aprons, water-beds, tank-linings, table-covers, etc., according to the mode of treatment. When used as a paint, it is useful for iron, for wood, and for ships" bottoms. When used as cement, it possesses some of the useful properties of marine glue. When vulcanized or rendered quite hard by heit it may be filed, planed. turned, carved, and polished like wood, and used for knite and fork handles, moldings, etc. When brought bs certain treatment to the consistency of dongh or yutty it may be pressed into embossed molds for ornamental articles. When used as a grinding-wheel, tonshed with emery, it becomes a good cutter. Lastly when mixed with ground cork, presed on canvas by roll-
ers, the canvas coated at the back with a layer of the celcbrated winged linn of St. Mark, adopted by the same oil in the state of paint, and the upper or prin- Republic of Venice. The lsland Republic hore, azure, cipal surface painted and printed, it becomes the a lion winged or sejant, holiding betwern his foreLinoleum floor-cloth, for the production of which a paws a book open argent, in which are the worts. factory has been established at Staines. Dunn's pat- Pax tibi Jrarce Evangelista meus. 'l'wo or morv lions ented fabric for similar pmrposes has no oil in it; it is a mixture of cork-shavings, cotton, or wool fibers. and contehoue, spread upon a cotton or canvas back, and embossed with patterns; it is a kind of kamptulicon.

LINSTOCK.-An iron-shod wooden-staff used in gunnery, for holding the lighted linstock in readigess to be applied to the touch-hole of the cannon. In old pietures, the linstock is seen planted in the ground to the right rear of each piece. with a mateh smoking at each of the ends of the fork in which it terminates.

LION.-The lion holds an important place among the animals borne in coat-armor. As early as the 12 th century. the king of beasts was assumed as an appropriate emblem by the Sovereigns of England. Scotland, Norway, Denmark, the native Princes of Wales, the Counts of Flanders and IIolland, and various other European potentates. Lions occur in different positions. 1. The earliest attitude of the heraldic lion is rampunt (a), erect on his hind legs, and looking before him, the head being shown in profile, as he appears in the Arms of Scotland, and originally did in those of England. This was the normal position of a lion; but as the royal animal came to be more generally used by all who claimed to have any kindred with royalty, and to be granted to favorite followers by way of augmentation, some diversity of attitude was adopted for distinction's sike. 2. Rampant gardant

(b). erect on the hind legs, and affronte or full-faced. 3. Rampent regardant (c), ereet on the hind legs, and looking lackwards. 4. Pussant (d). in a walkinr position, witl the head seen in profile. 5. Passant gardant (e), walking, and with the head affronté. 6. Passent regardant, walking, and with lead looking belind. \%. Statant, with all four legs on the ground. 8. Saliant, in the act of springing forward on his prey. 9. Spjant (f), rising to prepare for action. 10. Sejant affronte, as seen in the crost of Scotland. 11. Couchant, lying down, but with his head held well erect, and his tail beneath lim. 12. Dormont, asleep, with his hoad resting on lis fore-jums. 13. Pomard or Coué, with his tail hancring betwerell his legs. 'lhe lion passant gardant is often blazoned as the lion of Eingland; and at a time when terms of blazonry were comparatively fow, it wats eonfonnded with the leopard. and bence the lion passant and rampant gerrdant came to be called respectively the lion-leoparde, and lpopard-lionné. Twolions may be depicted rampant comblatant-i. e., face to face-or rumpunt addosse. placed back to bnck. Among leomine monsters, we lime twoheaded lions, bucorporate and tricorporate lions, lion-Iragona and lion-poissons. There is also the lohemian lion, with two tails, and the more

LISCHINE TENT.-A Russian hospital tent of peculiar construction, and well endorsed by military men. The frame is of iron, and is covered with thin pieces of board 10 feet long and 1 foot wile, overlapping each other like Tenetian blinds. The ridgro is of canvas. The iron frames are four in number. It has the advantage of being cheaper, more durable. warmer, and capable of better ventiation than the canvas tent. See Tents.

LISSBERGER FUSES.-The 'Lissberger perenssion fuse, shown in Fig. 1, consists of a copper tapering body, A, with enlarged head, but closed at the rear by a brass serew-plag. which is hollow nearly its entire length. Fitting this screw-plug is a brass hollow eylinder filled with a friction composition; the

Fig. 1.

Fig. 2.
lower part of the eylinder is closet. A wire, whose lower end is serrated and twisted, [asses througlt fentral holes in the screw-plug and the solid cylimdrical plunger; it has its upper end looped to form a shoulder agamst the plunger. Betworis the plunger ant the end of the screw-plug is a disk of leather.

The lower mof of the serew-plig is elosed by a small quantity of rifle-pow der, and a disk of leather pressed in. 'The fuse-body has about the same tapor rearward, and is inserted in the slefl tho sume as the ordinary paper time-fuse: when inserted in at shell whose ilierlit is suddenly arrested, the surrated wire is drawn forward hy the plangre, igniting the friction composition, and setting fire to the charge.

The time-fuse is an ordimary paper fase λ, shown in Fig. 2, which is ignited by mans of :min intia ieniter. The igniter, lb, consiste of four parts: I hrass solith-hemed shell, whighty taperiner on the rax. (erior, laving holps in the head amb side-openings for the oseape of gas; throumh the head of the harly, A. is introndaral a hollow brase cylinele re whese lowur eme is fat and elosed: within this evlineter is a lead planger and a friction-pellict. At the instamt of discharge: the frietion-pullot is forceal bark and throngh the rongh-closed and of the eylinder by the phonger and the time-fnae is thas ignitiol. Sree Fuse.
LIST.-1. A line inclosing or formine the externity of a piece of grom ad, or tield of rombat; lience, in the plural, the gromed or tied condresed for a race or combat. Toenter the Lixts, is to areept a challenge. or engage in a contest. 2. To rograge in the public servier by emrolling ones mame as soldiers: 10 inclose for combat. 3. A roll or aratalogne; ats the Army List, the Peyb hishe atr.
LISTENING GALLERIES.- The gralleries of it fortifieation, leading outwards from the counteresear) gallery: Sue Cûllery.
romparatively seallamount and in bal proportions. Nicither dows the presence of these sulgatanoes suld any thing to the safety of the mixture. 'They tomat (o) lower its firine-puint, amblember it more achily exploded. dis chatracteristics ats compared with dy-

 the explosion always rontain rarlornic oxisle from the marbon in the comperand; 4. For crpat wolumas it has the loserer axhinsw power. See Ingumite, Lirplosiar Algents, and Vito-glyerrion.
LITTER-A sort of a strutcher or hardle-lation which the womaded are carriel olf the firld of battle. It is especially nesel for the hatly wouncled, whon cent muly brariod lyiner town. In 1859 at Madial Boarl was convenod to examiace the sulijert of hospital transport. Besides varions recommembations regarding the kind of velueles suitithe for the conveyance of patients aud of supplias, the Board atlvised that houbherse litterse should be constructed and issued to the fronticr posts. This recommendation

LITHOFRACTEUR. An explosive mixture having the following composition :

Nitro-gly ${ }^{\text {cecrim}}$	52.10 pur cent.	
Kieslgnhr	30.00	"
('oa].	12.00	"
Sorlia-saltueter	4.00	'
Sulphur.	2.00	*
	100.00	"

Sometimes, insteal f the sodimm nitrate, the potassimm of barium salt is used, and variations made in the quantity of nitro-glyerine contained in it. Like all tha nitro-glyecrine proparations, it has no necessarily definite omposition. it being marely a mixture mate ancorling to the caprice of the manufacturers. This preparation is mate by Krebs Bros. \& Co. in Colngne, amd has been used to some extent in Europe. It is clamed by the makers that the other substances (coal, saltpeter, and sulphar) mixed with the nitro-glycrerine increase the quantity of gas deliverd, and, therefore, the explosive force also. This is not however, orrect."Nitro-glycer-
was approved, and the specifirations for the comstraction of such litters wers incorporated in tha Regulations for the Army. The form of litter rocommended appenrs to have been dorived from experiences in Florila and Mexico. The (lrawing slows the manner of its construction and its differemt parts. It weighs 88 pounds: the poles are 2_{3}^{3} inchers in diameter and 1 th fect long; the sections are $4 \frac{1}{2}, 8$ and $3 \frac{1}{2}$ fect respectively from front to rear. Nimierous improvised litters, constructed on the same general plan. have been extensively employed in Inclian Campaigns and in travel over very rougl comutry. During the late war in this comitry, a number of persons. actuated by motives of patriotism, hmmanity, or interest, devised and bronght to the notice of the War Department forms of conveyance for the sick and wounded, in localities impracticable for wheeled velsicles. Several of these were apparently suggested hy the descriptions of Delafiedel and MaCleilinn of the horse-litters ard cacolets they had observed in the Crimea. A number of sets of these litters and cacolets were purchased by the L-nited

ine is so sudden in its explosion that nothing can be added to it from the slower burning of any of the Gther combustible ingredients, which are present in

States Government, but were never used with success. The drawing shows the British Crimean mulelitter, also the very easy position of the wounded soll-
dier when ready for transport, and the equipment. In the litters and cacolets now issued in the French Arny there are improvements providing for making

A mode of transporting sick and wounded by litters that at one end rest on the ground, so that the patient is drawn, but only partially sustained, by the pack-animals, is mentioned by early travelers amoner the North American Thtians. Parkman indicates that in the war with Pontiac, in 1763, the Colonists earried their wonnded liy this contrivance, amd, in a later work, refers to the travee msed by the Oregon Indians; and Lewis and Clark resorted to it in 1805, to carry it wounded hunter of their party. Latterly, this method of transport has received much attention from medical ofticers. as well adapted to the exigencies of frontier service. Assistant Surgeon McGillycuddy, Lnited States Army, has made the accompanying drawing of such an appliance attached to a horse. A sacking bottom is lashed to two poles that are separated by traverses, and seeured to the stirrup-leathers of a cavalry lorse equipped with the regulation saddlle. The soldier's pack makes a pillow, and a blanket is thrown over him. In this contrivance the utmost limit of simplicity has been attained. This form of litter is drawn, while the two-horse lit-
the sections of the litter rigid, so that it can be nsed temporarily as a stretcher, for reduction in weight, and for greater compactuess in packing. The milechairs and litters now issned by the British Royal Carriage Department are lighter and more conven-
ter is carried, it being substantially a stretcher, either lorses or mules being substituted for the men who act as stretcher-bearers. In the latter, one animal is harnessed between the poles before, and the second between the poles behind; the patient being

ient than those nsed in the (rimea. The drawing placed on a piece of canvas or other material, stretchshows the British Army mule litter attaehed to its park-saddle. It weighs 84 pounds, without bedding or park-saddle. With the paillasses and pack-saddle, the weight is 167 pounds. The weight of a pair of English litters, nsed in the Crimea, was 138 pominds and 12 ounces, without the pack-saddle. So far as experience las gone, every form of litter and cacold has been disapproved for one canse or another by the United States War Department. Although used in European services and in Algoria, with satisfaction and under faroralle circumstances cither on plains or on open rolling comentry in our momatainons comery, they are only a troiblesome amd barbarous cocumbrance, cruclalike to the woundcol amd the pack-animals. This aversion to sick-transport ly caeobets and double lithers is doubtless due te defeets in administration rather than to any demerits of the system, without "dicient amimals and parkors it is wain to anticipate uscful results from the hesterontriwd appliances. Lesed with the greatest advantage in Algeria, and in the Crimen, the Fernch cacouets and litters ware adopted by the British Ar niy Nedical Department with satisfactory resuins.
ed between the polesin the intermediate space. Such a litter was extemporized by Assistant Surgeon A. IIartsuff. United States Army as shown in the drawing.
This litter possesses the disadvantage of accident in case the two animals do not work well together ; also, if the animals keep step. The litter hegins to yibrate, from the regularity of the motion, and inereases to such a degree as to almost throw the patient ont. Again, the litter colting off the sight of the erround from the rear anmal, makes him particularly liable to stumble. All thines considered, it would appear that the one-horse litter is far superior to this form, and tha experience of all having had oceasion to nase both contrivances, contirms this opinion. The aparejo is the favorite pack-sadelle for gemeral purposes in Ameriea, and it is believed that ambulance-chairs and litters can be adjusted with farility to these sudulles; what is essentinl is that there sloobld he traincl amimils and skilled parkers. L'ntil those indispensable adjuncts are provided the contrivances found useful in Liuropean armies camot be advantagcously employed in our
service, and medient oflleers will bre compelfed to resort in emerpencies to the travie or to the two-horse litter. See Ambukence, Cucolet. Stretcher :nd ITracie; also Cluery, Docene, Gireertusf, McFilderry, and Thixtle lithers.
and till the leform liall in 1832, they hat the ex. clusive privilege of voting for Members of larliament for the rity.
LIVE SHELLS.-Shells loaded with their loursting charges ranly for service.

LITTLE FORTIFICATION.-The name given to the first division of the tirst system of Vaubin, when the exterior side of the fortification does not execed 350 pards. It is nsed in the construction of citadels, small forts, crown-works, and horn-works. See Fortificition.

LIVE HEAD.-The herde-stock of a lathe, whicll coontains the live-spindle ; in contradistinction to the dendhend or tail-stuch, which contains the deted-spimelle.
LIVERY.-A word applied in its origin to the custom which prevailed under the Merovingian and Carlovingian Kings, of delivering splendid habits to the members of their houscholds on great festivals. In the days of chivalry, the wearing of livery was not, as now, confined to domestic servants. The Duke's son, as page to the l'rince, wore the Prince's livery, the Earl's son hore the Duke's colors and tradge, the 300 of the Esquire wore the livery of the Kniglat, "1 the son of the gentleman that of the Esquire. Cavaliers wore the livery of their mistresses. There was also a large class of armed retainers in livery attached to many of the more nowerful nobles, who were engaged expressly to use the strong hand in their master's quarrels. By the colors and badge of the retainer was known the master under whom he served. The livery colors of a family are taken from their armorial bearings, being generally the tincture of the field and that of the principal charge, or the two tinctures of the field are taken instead, where it has two. Tney are taken from the first quarter in case of a rjuartered shield. These same colors are alternated in the wreath on which the crest stands The royal family of Eng. land have sometimes adopted colors varying quite widely from the tinctures of the arms. The 'lantagnets, for instance, had scarlet and white colors. the Honse of York, murrey and blue; white and blue were adopted by the IIouse of Lancaster; white and green by the Tudors: yellow and red by the Stuarts, and by William Ill.: and scarlet and blue by the Honse of llanover. An indispensable part of the livery in former times was the badge. The Chureh of Rome has its liveries for Apostles, Confessors, Martyrs, Virgins, and Penitents. The Freemen of the 91 guilds or corporations which embrace the different trades of London, are called Liverymen, becanse entitled to wear the livery of their respective companies. In former times the Wurdens of the companies were in use vearly to deliver to the Lord Mayor certain sums, 20 shillings of which was given to individuals who petitioned for the money, to enable them to jrocure sufficient cloth for a suit, and the companies prided themselyes on the splendid appearance which their liveries made in the cuvic train. The Common Councilmen, Sheriffs, Aldermen, and some other superior officers of the city are elected by the Liverymen of London ;

LIVING FORCE. - That force of a borty in motion which determines the work of which it is capable. It is measured by the product of the mass and the square of the velocity. Sice Force, and Wirk.
LIZIERE. - The berme or narrow jath round fortifieations between the parapet and the diteh, to prevent the earth from falling in.
LLAMA.-This animal was in general use as a heast of burden on the Peruvian Andes at the time of the Spanish conguest, and was the only beast of burden used by the natives of America before the horse and ass were introduced ly Europeans. It is still much used in this caparity on the Andes. the peculiar conformation of its feret enabling it io walk securely on slopes too rough and steep for any other animal. The working of many of the silver mines of the Andes could scareely be carried on but for the assistance of thamas. The burden carricel hy the Hama should not exceed 125 pounds. When too heavily loaded the animal lies down and refuses to move, nor will either cading or severity overcome its resolntion. It is generally very patient and docile. Its rate of traveling is about 12 or 15 miles per day. See l'ack Animals.
LOAD.-1. A word of command in the Mamal of Arms, executed as follows: The lnstructor com-mands-1. Squad, 2 Load. Execute the first motion of about face, the left knee slightly bent : at the same time drop the piece into the left lhand at the lower land, elbow against the body, the small of the stock two inches below the right breast, the barrel sloping downward at an angle of about twenty-five degrees, the right hand at the small of the stork. (Two.) Look toward the chamber, open it, remove the car-tridge-case if necessary. take a cartridge from the cartridge-box, and hold it near the chamber, hetween the thumb and first two fingers. (Threce.) Place the cartridge in the bore. pressing it home with the thmb, close the chamber, cast the eyes to the front: carry the right hand to the small of the stock, and raise the muzzle to the height of the chin. 1. Carry, A. Ams. Resume the carry with the right hand, at the same time face to the front. (Two.) Irop the left hand by the side. With cartridges. the commands for loading, prewiom to the first are: 1. 11 Fith ball (or blank) cartridge, 2. Load. 2. The term "load" is also applied to to the charge of a fire-arm. See Lonading and Manual of゙ 11 rm.. Fig. 14.
LOADER.-An instrument used with smooth-hore siege howitzers fo steady the shell in the passage down the lore. The fixed iron band which crosses the hollow hemisphere of the loader has a hole in it which embraces the fuse and which on raching the bottom of the bore can be ensily disengaged.

LOADING.-In loading gnns and lowitzers, the powder is carefully put up in a cartridge-bag of woolen cloth, which is either attached to or carried
separate from the projectile. depending on the weight of the projectile. In ramming a charge, only a sufficient force should be nsed to sen It home, as the space which the powder occupies affects the initial velocity. In loading mortars, the powder is poured from the cartridge-bag into the chamber. and leveled with the hand; the shell is then carefully lowered upon it with the hooks. After a piece has heen discharged the bore should be well sponged, to extinguich any burning fragments of the cartridge that may remain; and to prevent the current of air from fanning any burning fragments that may collect in the vent, it shonld be kept firmly elosed with a thumb-stall in the operation of spouging. Experience shows that the use of a wet sponge is dangerous, as it contributes to form, from the fragments of the cartridge-bag, a substance which retains fire. It may be sometimes necessary to fire projectiles that are either very much smaller or larger than the bore. If it be dexired to use a gun-shell, or solisl shot, which is very much smaller than the bore, it should be very securely strapped to a stont sabot which fits the bore; if a mortar-shell. it is placed in the center of the bore by means of wedges, and the surrounding space is filled up with earth. Mortar-shells are fired from guns and howitzers, hy digging a hele in the ground about 20 inches deep, and placing in it two pieces of stout plank inclined at an angle of 45°, for the support of the breech; the chase is supported on a moveralbe wedge, which rests on skids firmly secured with platform stakes; the charge of powider is theu inserted in the bore, and the projectile is placed on the muzzle and secured by pasing strings over it, and tying their ends to a rope. Which encircles the neck of the chase. Pieces fired in this way should be elevated 40° or 45°; thus situated, the fuse of the 8-inch mortar-shell takes fire from very small charges; but the 10 -inch fuse should be primed with strands of quick-mateh. which are allowed to hang over the sides of the shell.
LOADING-BAR.-A more convenient implement than the shell-looks for carrying and loasing the shell. It is simply a bar of round iron about two feet long, fashomed into a ring at one end for a handle. and baviag a serew ent on the other end, which screws into a slallow hole tapped in the shellat a short distance from the fuse-hole. When the shell is lowered into the bore and adjusted, the bar is unserewed and removerl.
LOADING SIDE OF AGUN. - The side of the gronves of a gun, by which a projectile passes down the bore of a rifled gim from the mazale. The studs of the shot press against this side when being loaded, hut on lesing forced out by the explosion of the charge. they press against the other side. termed the driveng sille.
LOADING-TONGS.-Tongs for placing in the charges and shells of siege howityers. They are formed of two arms, so hinged together that the bent ends of the short arms will enter the ears of the shell. and the grooved and widened ends of the long ones will clasy, between thent the cartridge. The implement is made of such a benptla that the carridge can be thrust into the chamber ly reaching in one hame holding the tongs with the cartridge in pesition.
LOCALIZATION. The act of establishine troops, dopots, magazines. cto., in any appointed place, dipiding them into a number of small centers inderpendent of cach other la case of mobilization of an army, "ach appointed town forms at pace of rembezvons. where men on furlough and those belonging to tha resarye med to whain their arms and "quipment, and 10 be drilled until they are dranghted into the regiments in the ficlld, or join the army of reserve.

LOCAL RANK. The rank given to an otheer in Her Majesty's serviow scrying in a forcign land with wher troops, whorwy ho is phaced in his proper position, ns regards "quality of rank, with those oflicers whoud first commissions are of the same date, but
wh h have been more fortunate in promotion. For instance, a British officer located in India, with his regiment and with troope belonging to the Indian Army, may tind himself jnuior in rank to an Indian officer, though his first commission is of the same date; to equalize their standing in the country, what is termed lural rank is conferred by the Commander in-Chief in India.

LOCATI LITTER.- A single mule-litter designed by M. Locati, of Turin, for the passage of the narrowest defiles, avoiding as far as possible obstructions from tree-branches overlead or impediments on either side. It is looked upon with much favor in Europe.

The drawing shows a cross-section of this litter. with its frame, braces, and cover. C. D. E. F., at:aehed to its saddle, A. Ser litt r.

LOCHABER AXE.-An axe with a curved handle and very broad blade. It was the ancient weapon of the lYighlanders, and was carried by the Old (ity Guard of Edinburgh.

LOCHAGE.-In Greek antiquity, the title of an ofticer who commanded a colort.

LOCHOI.-The desiguation for a file in the elementary tactical formations of the Greeks. The composition of the gramd phalans was as follows: Tetraphalangarchia $=4$ Phalonxes $=16$ (hilistrchiop $=$ 64 c'yntagmata $=256$ Tetrarchice $=1034$ hochoi or files $=4006$ Enomitior of 4 men each. It is thas seen that, in the varions formations, one division of the whole could be matle by the powers of 2 or 4 .

LOCK-1. In fencing, to seize, as the sword-arm of an antagonist, by turning the left arm around it. in order to disarm him. 2. That part of a fire-arm by which the powder is fired. Muskets, in their earliest use, were fired by the hand applyine in slow match to the tonch-hole. Towards the end of the

14th century the first improvement alpeared in the muthuch: This consisted of a crooked iron lever. in the end of which the match was fixesl. By a pingear of a simple nature, pressure on the trigger brouglat the match acenrately down on the powder pan, of which the lid had previonsly been thrown forward by the hand. This mode of tiring in volved the carrying of several yards of slow matcilh, usually wound round the body and the piece: rain extinguishod the mateh, and wind dispersed the powder in the pan, so that the match-lock, clumsy withal, wats bal an merrtain apparatus.

Superior to the matcli-lock was the whel-lench, in(romben at Nuremberg in 1517, in whicle fire was produced by frietion betwern a piece of thint or iron perites and a toothed where. The michanism which ginerated the sparks simultancously uneovered the
pan, so that the dangers from wiml and rain were atorede ; lat hefore firing, the apparatus required ta foe wommel up like at clock, mad therefore the chargess conlel not he frefuent.

The whed-lock continused for a long period to be nsed in (bermany, amd partially in loramer. In the Sumish dominions, however, its plate was sumplied hy the simpler combrivane ratlod the sumpe hamore, sumpphation, or the asmaphan tock, of nemory eontemperancons invention, whicha, actine by mentas of at mpring ontside of the lack-plate. prochaced dira through the concossajon of athent acranst the ribherl tops of the powater-pan. lts pensitions of labif amd full-cork were ohtained hy the insertion of a pin to stay the operation of the maninspring In the mithdio of the lifle eentury the flint-loch was invented, combininer the artion of the whecl-luck and thrs snapphanmee, while it was incontestably superior to either. After combating much prejudice, it was umiversally adoped in the armies of western lurope by lise commencement of the l8th century. Muskits cmbracing it obstaned the name of "fasils," a lirencol wdaptation of the ltalian word forite, a flint. With surcessive improvements, the flint-lock continued in general use until the introduction of the percussionGoek almost in our own thy; ant amony castern and barbario uations the flint-losek is still extant. Its great superiority over the snaphanceconsisted in The " tumbler " (of which presenty) and also the "scear," appliances still retnined in the percussionlock, which eughled the positions of half and full cock to be taken up without the intervention of juios, always uncertain in their action.
The principle of the jereussion-lock is the produce tion of tire by the falling of al hammer upon some detomating jowdar, the explosion of which penetrates well into the eharge in the barrel of the gun. The first practical application of this principhe to fire-arms is due to the Rev. Ar. Forsyth. of belhelvie in Aberdernshire. Tarions forms in which to ignite the detonating jow ler have been devised, but that generally accepted uotil within the last few years was the copper cap, fitting tighty on the nipule of the gum, chargerl with a detonating compoumd, und exploded iy the hammer fulling ujon it. The mainspriag commmonates through the swived with the fumbler, which concentrically with the hammer moves on the tmabler-mil. After the hammer has delivered its stroke, its further prog: erss in the direction rexpuired ly the spring is haired by the nipple. On pulling back the hammer tos the position of half-roek the tumbler turns wist it, and the pointed end of the sconr (which meres on the scear-nail as center), inthaconced ly the actar-spring falls into a notch in the tumblor. On forciug buck the hammer to full-cock, however, the seear will move down to a shallower notch: and on the lever end of the scear being raised by the trigger, it brings down the hammer with a heavy blow on the rap. To keep the works firmly in their sevral places, a "hridle" is screwed over them which inclutles the pin through the tumbler in its widtio. Sines the adoption of hreech-loading arms, the action of the lock is so far variod that the hammer nsablly falls on a movable pin, which is impelled against a detomating charge placed in the body of the cartridge itself. A spirad sjoing around the juin brings it back to the position necessary for muther blow. The advantage of this arrangenent is that one operation of londing is substituted for the donble process of loatiug and ralsping.

The conditions to be fulfilled in the construction of an milatary lock, are-1st. The production of tire, and its commmication with the charese, should ho certain, aud under the perfect control of the soldier. 2d. The caj) should be placed upon the cone with facility, and it shonld not be disphaced in handling the piece. 3d. Fragments of the cap should not incommode persoms near by, nor should the gas gornerated by the explosion of the (ap) corrode or injure
the eroor, barrel, or stock. 4th, 'l'lure floould bee no rlangrer of ueridental explosions. The orelinary perans*ion lock as ronmmonly ennstructed is erme possod of, the lurlephete, to which the gevoral jarts areathacherl, stme by whic:ls tha lork is fastomed to thestork; the hatmmer, whirll strikes ajom thre emp,
 which sels the hanmer in motion; the tumbler. or axle, by whicls the power of the maiuspring is commonicated to the hammer; the sear, or bever, the peint of whicds fits into the nebleloes of the.
 tion; the notches are designated as Jue foll-romk noteh, and xajoty-noteh; the suer-sprinty. whir:ls pros. ses the proint of thre sear well into the tombler motels; thw bridhe, which is juercerl with 1 wo holes for the innur juivats of the sanm and thmblor: the surime which joins the mainsuring ancl tumbler. The forvgoing comstitute :luc essantial jurts of an ordinary poreussion-lock; in whlition to thesen the new servire lock is supplied with Maymard's self-primong apparatus. The primer uscd in this inpmratus, is at long strip of japer containing abont fio charges of fereussion-jow der, distributed at uniform intervals. The strijs is wound inj, in the form of at coil. and inserted in a cavity cut into the exterior surfare of the: lock-plate, called the magazine. One emal of the coil protrides through an opening in the margazine, so that the center of the first charee of jureussionpowder is directly over, but nont in contact with, the top of the cone. When the lock is sprung, the primer is accurately ent ofl by a kniferdere located on the lower side of the farse of the lammer. carrisd forward and promptly exploded om the toj) of the cone. A fercling-finger, rounerted witli tho tumbler, pushes ont amother primer, when the ham. mer is brought to the postition of "fallerock." (other methods are used for solf-i rianins. in some of whicl: the primer is enclosed ist the cartridge itself: but few are found, under all fircumstances, to be as reliablo as the common pereussion lock. In the lark-action lock, the mandepirge is jlaced in rear of the tambler, and the scar-siriag, as a separate part, is dise pensed with. The thoitise, which forms a bed for this beck, scrionsly affects the strengeth of the stock at the hendle; and, for this reason, the front-action Icele is ganerally preferved for military arms. The drawing shows the larker lock at fullocock. Sec Smingfiekl Mifle.

LOCK CYLINDER.--A component part of most ma-chine-gims. Behind the carrier-bunct the shaft carries another cylinder, called the lock-cylinder. in whose surface guide-grooves are formet. which are in line with the barrels, and in which slide long brecech-plugs or locks, called lock-tubes or phungerx, loy which the cartridges are thrust into the barrels, and whichelose the barrels and resist the reaction of the charges when they are fired. This cylinder is called the lechecylindre. because cach plug or lock contains a spiral mainspring acting on a firing-pin or hammer, by which the charge is fired, so that the glug performs all the functions of a gmolock, as well as of a breecli-plug. Sere (řalling rrun.

LOCKET, - I name sometimes ajplied to the clape of a sworl-scabbard; the metallic juart put on the end to prevent the poiut of the sword from piercing throngh it.
LOCKING ANGLE. - The turning ancle of carriages. or the angle formed between the gun-carriawe and limber, when the wheel of the latter comes in conbact with the trail.

LOCKING-CHAIN. -The work of holding back a carriage, on desenteling ground, devolves on the pole-horses. When the descent is very stecp and the lond large, they are relieved of a portion of this work by attaching a chain to one of phe roar whecls. in such in manner as to prevent it from turning. and thereby changing the friction on the axle-simi io friction on the ground. In field-arringes, one end of the lockiog-chain is secured to the stock by an as-
sembling-bolt, and the other is passed around the felloe, and secured to itself by a key. In sjege-carriages, where the load is much heavier, a shoe is attaelked to the cham, upon which the wheel rides. This prevents the tire from being worn and the wheel from being strained; at the same time, the op"ration of locking and monking ean be performed without stopping the carriages. The lock-chains on raissons are fastened to lock-chain bridles under the front ends of the side-rails, and are held up by lockchein howis fastened to the outsitle of the side-rails

LOCKING-PLATE.- 1 plate of metal tixed on each side of the trail of a wooden field carriage, at that point where the wheel of the limber, when it is turned round, comes in contact with the trail, ealled the locking angle. The plate being thus placed, the trail can rective mo lamase, as the plate acts as a fender.

LOCK-NAIL. - One of the pins by which the parts of a gun-lock are seroured to the lock-plate. In the oble form of lock, they are the tumbler-pin.mainwpringsererr, sear-pin, bridle-sereer, hammer-nail. and hrtu-mer-spring seren.

LOCK-NUT.- A mut placed in contact with the main nut. on the same shaft. to keep the main nut from thrning. It is of frequent occurrence in the construction of artillory carriages, the elevating gears, etc. It is also callorj jom-mut or check-nut.

LOCK-PIECE.- 1 hoek of metal at the outer opening of the vent for the attachment of the lock. Is friction-tubes are now used for firing cannon in the land serviee, this part is omitted.

LOCK PLATE. -The plate in a small-arm which covers the loek, and to which the mechanism is attached.

LOCKSPIT. - In fied fortification, the sinall cut or trenchmade with a spade, about a foot wide, to mark ont the first lines of a work.

LOCK STEP. - A mode of marching by a body of men groing one after another as elosely as possille, in which the leg of each moves at the same tine with, and closely follows. the correspouding leg of the person direetly before him.

LOCOMOTIVE CRANE. - Crames of this type consist of a rotary erane, usually of the pillar variety, mountfd upon i suitable ear or truek, and provided with an independent hoilerand engine, the power of which is ntilized for hoisting, lowering and rotating the load, and also for propelling the car upon its tracks. Locomotive cranes are of a great convencence in large works of all kinds where the buildings cover much ervund and are connected bymeans of ritilroad tracks, By means of these tracks the erane ean le transferred from one place to inother, to suit the requirements of the work, and (an be utilized also for transferring heay loads from one building to abother. They are useful also upon freight wharves, where, by means of a track laid near the edge of the wharf they ean be utilizm for unloading tessels, and also for transferring hespy loath from one vessel to another. The construction of cranes of this type is raried according to the rafuiremeds of the work to be done.

Gep (romues

LOCOMOTIVE TORPEDOES.-- During the war be1 warn (ireat Britain amd tur Cniterl States in 181814. this mame was applied for certain mysterious boats inventod hy Fulam and other Americains for tle purpose ol mavigating bencotla the surface of the water, and injuriner the bottoms of hostile vessels. In those days of lamb-to-land naval war, ald those designs (whireh, by the was, wert fallures) were looket upon as linta loses than diabolieal. The progross of dee st ructive w'eapons daring half a century has removed this aversion. The modern torpendo is of two kinds - first. tho beomonive turpecto, whicle is in varions ways projereted arainst the side of a hostile viesser ; seromdly, the fixet torpedo, a kind of stationary bumb-shed intemided to explonte amber the bottom of the encony's ship. 'Ten these tixed torperdos it is now more usuad to grive the appropriate name of subnatrine mines.

Of locomotive torpedoes there are threce clases: (1.) The Whitelead 'fish torpedo,' whieh has a tisllshaped case and is propelled in a straislat line under Watur by means of a small screw-propeller elriven by compressed air. It is discharged from a carriage on the deek of at man-of-war, and explodes on im. pact against the object aimed at. The seeret of the construction has been sold by the inventor to the Austrian. Russian, and English Navies. (2.) The Jlarvey etowing torpedo, which is towed ont at an tugle from the side of the attacking ship, and manenvered so as to come in contact with the botom of the ship athacked. It is exploded either mechan. ically on contact. or by means of an electric fuse. the wire being inserted in the towing line. (3.) Bonm, or outrigger torpeoloes, which are earried on loug booms in the bows of boats or steam-launches, and thus driven against the side of a hostile ship and exploded. Torpedo boats are heeoming a special feature of European Navies: they are swift steamers unt more than 60 feet long, lying low in the water, and steaming up to 19 knots in bour. The Polytho mux. added to the English Navy in 1881, is an armored ram, expressly and emoningly desioned for torperlo warfare (carrying Whitehead torpedocs) and is a formidable vessel, 240 feet long. See Tory dones.
LODGE ARMS. - In old word of command. which Was used on guards and pickets for the men to flace theirarins in front of the guard-house or quarterguart.

LODGED. - I term in Heraldry. A beast of chase, as a stag, is said to be lodger] when lying down with its head erect; a beast of prey in the same position is said to be eouchant.

LODGING-MONEY.-An altowanee in the British Army, granted to officers and others, for whom suitable quarters cannot be provided in barracks. Married Sergeants and private soldiers who are married " with permission." are entithed to lodging-money at various rates up to 8 s. a week. when sepmrate rooms in barracks cannot be spared for the accommodation of each conple. The total charge for lodging-money in the Army Estimates amounts to about $£ 100.000$.

LODGMENT.-1. In gunnery, the hollow or cavity in the under part of the bore, where the shot rests when rammed home; it is formed in smooth-bore ordnance, after much firing, from the elastie foree of the pow ler acting upon the upper surface of the projectile, and foreing it down, so as to occasion an rlipticalinulentation. 2. In fortification, an intrenehment hastily thrown up on a captured breach or outwork, in oriler to maintain the position against recapture. See sirge.

LOGARITHMS. - A series of nmbers having a certain relation to the series of natural numbers, by means of which many arithmetical operations are made comparatively easy. The nature of the relation will be understood by consilering two simple scries suel as the following. one procteding from unity in geometrical progression, the other from 0 in arithmetieal progrission:

Geomstrien surice-1. 2, 4, \&, 16, 32, 64. 128, 956. 512 , etc
Arithmetic:al series-1), $1,2,3,4,5,6, \quad 7,8,9$, etc
II re the ratio of the geometrical series is 2 , and any term in the arithmetieal series expresses how oftern 2 has born malipbied into 1 to produce the eorrespondiner form of the geometricat series; thas, in proceoding from 1 to 32, there have been 5 steps or monliplirations hy the ratio $2:$ in other words, the ratio of gis 2 to 1 is romponated dive times of the ratio of 2 10 1 . li was his conception of the relation that bed 10 giving the name of logurithme to the arithmetiealmerits the word logarithm meaning " the number of the ratios." As to the nse that may be made of such sories, it will he observed that the sum of any two logarithms (as we shall now call the bower
 $(=3+6)$ is the :ngurithm of $512(=8 \times 144)$. Simi. latly the dillereme of any two forarithmes is the fogirithm of the quotent of the numbers: a molt-
phe of any logarithm is the logarithm of the corresponding mmber raised to the power of the multiple; $0 . g^{\circ} .8(=4 \times 2)$ isthe logarithm of $256\left(=163^{3}\right)$, and a submaltiple of a logarithm is the lognrithm of the corraspondiner ront of its mumber. In this wat: with romplete tables of mombers amd thoir correspemding logratiloms, uddition is marde to take the place of multiplication, subtration of division, maltiflieation of involution, and division of evolution. In order to make the sarios above given of practiond user, it womld be neressary to (onnjlete tham hy int torpohating a set of menns betworn the several forms, as will be explaned below. We have chosen 2 as the fundamental rutio or base, ats luing most conveniont for illustration; hat any othor mamber (integral or fractional) mirfit be taken; and every different base or radix, gives a ditierent systom of lognrithms. The system now in use has 10 for its lase; in ather woris, 10 is the number whose logarithm is 1. The iden of making nse of scrios in thes way would serem, upon inguiry", to have hern known to Archimedes and Enchid, withont, !oworor, resulting in any practical scheme; but by the end of the 1tith century, trimonometrichl operations hadhecome so complicated that the wits of several mathemati. cians were at work to devise mems of shortening them. The real invention of lograthms is now universully ascribed to John Napior, Baron of Merelislom. Who in $16 i 4$ printed his (hnon Mirabilis Lagarithmorum. Ilis tables mly arivelogarithms of sinus, cosines, and the other functions of angles: they also lator nuder the threce defects of being sometimes + nund sometimes -, of decreasing an the correspond. jng naturnlmumbers increase, and of having for their radia (the mumber of which the logarithm is 1) the number which is the sum of

$$
1+1+\frac{1}{1.2}+\frac{1}{1.2 .3}+\text { cte. These }
$$

defects were, however, soon remedied: Jolm Speidell, in 1610, amenderl the tahkes in such or maner that the logarithma became all positive and inereased along with their corresponding natural mumbers. IIe also, int he sixtlo edition of his Whark (1624)."onstructed atablo of Nopier's logarithms for the interer momburs, $1,2,3$, ete.. up to amd inchading 1000. with their dilferences and arithmetical complements, besides the numerous other improvements. Speidell's tables are now known as hyperbolie logurithms. But the greatest improvement was made in 1615 by Pro. fessor Henry Briggs, of London, who sulstituted for Napier's inconvenient "ratix" the number 10 , and succeeded before his death in calculating the logarithms of 30,000 natural mumbers to the new radis. Brigg's excrtions were doubly sconded; and before 1628 the logarithms of all the matural numbers up to 100.000 had been computed. Computers have since chieflyocenpied themselves rather in repeatedly revising the tables already calculated fhan in extending them.

The following is the simplest method of construct ing a table of logarithms on Brigres system. The log of $10=1$: the log. of 100 (which is twice compommed of 10$)=2 \cdot$: the \log. of $1000=3 \cdot$, ete.; and the logarithms of all powers of 10 ean be found in the same manner. The intermediate logarithms are fownd by continually computing geometris means botween two numbers, one greater and the other less than the number required. Thus, to tind the log. of 5 , take the geometric mean betweren 1 and 10 , or $3 \cdot 162 \ldots$, the corresponding arithmetic mean (lhe log. of one being 0 . and that of 10 heing 1 ") beine " 5 : the geometric mean betwen $3 \cdot 1$ w... nnd 10 , or $5 \cdot 163$.. corresponds to the arithmetic mean between :5 and 10 , or $\cdot 75$; in a similar manner the geometric mean between $3 \cdot 162 \ldots$ and $5 \cdot 6 * 3 . .$. or $4 \cdot 216 \ldots .$. has its logarithm $=\frac{1}{2}(-75-5)$, or 625; this operation is continued till the result is obtained to the neeessary degree of aceuracy. In this example, the twentyfirst result gives the geometric mean $=5 \cdot 000.003$,
 which is in ordinary ralcolations usud as the logat rithm of 5 . Sincu division of mambers corresponder (o) subtraction of logarithms, and since 2 - $\frac{5}{6}$, the log. of $2=\log .10-\log .6-1 \cdot-608970-30103(0$. 'Tho logarithas of all prime mambers aro found in the same way as that of 号; those of (0) bers are obtained hy the atdition of the logerithons
 $=\cdot 3010: 30 \cdot 477121=\cdot 778151$. This methoul. tanorlı simple in principule, involveg an fonormous anmont of ralculation; anel the following method, which depende on the mondern alerdoraic: analyonis, is mond to be proferred. According to this methoul, lngerithms are considered as indiees or powers of tlas ratlix; thus, $10^{\circ}=1,10^{-8010 s 0}=2,10 \cdot+27121-3,10^{2}=100$, cto. ; and the laws of logririthas them become the same as those of indiecs. 1 .ot r represent the ramix / the natural mamber, x its logarithan: then $y=r x$, or, jutting $1+a$ for $r, y=(1 f a)^{x}$; and it is shown by the binomial and exponential theorems (see thes ordinary works on algehra) that $y=1+1 x+$ $A^{2} x^{2} \quad A^{3} x^{3}$
$\frac{-2}{1.2}+\frac{1.2 .8}{1.3}+$, rto. where $A=r-1-\frac{1}{2}(r-1)^{2}+\frac{1}{3}$
 momber as the sum of dillerent multiphem of its lewa ritlum and the radix.

before mentiontel. is N゙apicr's radix. and is gencrally 1

callede; then $r=e$ or $r=c$, or . 1 is the logarithm of r to the hase of radix e. Them, referring to the ahove mentioned value of 1 , we have \log. to (i.e.. logr of r to the base of $e)=r-1-\frac{1}{2}(r-1)^{2}+\frac{1}{3}$ $(r-1)^{3}$ - etc., or, as before, mating 1 ta for r. $\log \cdot a(1+a)=a-\frac{u^{\circ}}{2}+\frac{a^{3}}{3}-$, cic.; a serius from which log. " $(1+a)$ cannot be found. unless the fractional. However, if we put - " for ". lng. $c(1-a)=-a-\frac{\iota^{2}}{2}-\frac{a^{3}}{3}-\cdot t \cdot \cdot ;$ and subtractinds this expression from tho former. log. e($1+\pi$ ($-\operatorname{lng}$. e(1 - a) or log.

$$
e\left(\frac{1+u}{1-u}\right)=2\left(a+\frac{a^{3}}{3}+\frac{a^{5}}{5}+\right.
$$

cte.), and, for the sake of convenience, putting
$\frac{u+1}{u}$ for $\frac{1+a}{1-a}$, in whieln ease $a=\frac{1}{2 u+1}$, we
$\frac{u+1}{i u}=2 \frac{(1}{(2 u+1}+\frac{1}{3(2 u+1)^{3}}$
finally obtain log.
©

$$
\left.+\frac{1}{5(2 u+1)^{5}} \cdot+\text { etc. }\right) \text { or } \log \cdot e(u+1)=\log . \text { e } u
$$ + , cic. If 1 be substituted for u in this formula, the Nupicrian logarithm of 2. is at onee very readily obtained to any degree of aceuracy rebuired: if \sim be put for x, he wipurrian logarithmi of 3 can be calculated. ete. Now, as logarithms of anysystem have always the same ratio to oneanother as the corresponding logarithms of ang other system, no matter

what its base, if a number can be found which, when multiplied into the logarithm of a certain number to one base, gives the logarithm of the same mumber to another base, this multiplier will, when moltiplied into any logarithm to the first base. produce the corresponding Jogarithm to the otber base. The multiplier is called the modulus, and, for the conversion of Napicrian into common or Brige's logarithms, is equal to-4349944...; so that to fird the commun logerithon if any number, first find the Napierian logurithen, end multiply it by ${ }^{4} 4342944 \ldots$ As in Brigg's system the logarithm of 10 is 1 , and that of 100 is 2 , it follows that all numbers between 10 and 100 have, for their logarithms, wity + a proper fraction, in other words, the integer jortion of the logarithms of all numbers of two figures is unity; similarly, the integer portion of the logarithms of all numbers between 100 and 1000 is 2. and. in general, the integer portinn of the logarithm of any number expresses a number less by unity than the number of figures in that number. This integer is called the characteristic, the decimal portion being designated as the mantisxa.

As the logarithm of $1=0$, the logarithms of quantities less than unity wond naturally be negative; thas, the logarithm of $\frac{1}{2}$ would be--30103, but, for convenience in working, the mantissa is kept always positive, and the negative sign thens only applics to the characteristic: the logarithm of $\frac{1}{2}$ or 5 would thas be $1 \cdot 6989$. the characteristic in this and similar cases expressing, when the fraction is reduced to a decimal, the number of phaces the first figure is removed from the decimal point; thus, tine logarthm of $\cdot 0005$ is $4 \cdot 6989 \%$. Logarithms are of frequent application in the solution of problems of gunnery, ete.

LOGEMENT.-Any place occupied by nilitary men, for the time being, whether they are quartered upon the inlabitants of a town, or are distributed in barracks. When applied to soldiers that have taken the field, it is comprebended under the several heads of luts, tents, etc.

LOGISTICS.- Bardin considers the application of this word by some writers as more ambitious tban accurate. It is derived from Latin Logista, the Administrator or Intendant of the Roman armies. It is properly that lranch of the military art embracing all details for moving and supplying armies. It includes the ojerations of the ordnance, quartermaster's, subsistence, medical, and pay departments. It also embraces the preparation and regulation of magazines. for opening a campaign, and all orders of march and other orders from the General-in-Chicf relative to moving and supplying armies. Some writers have, howerer, extended its signification to also embrace Strategy.

LOG LINE.-The cordage used for lakhing to gunaprons, sponge and muzzle cajns, etc. There is also a log-tine mate in India whicla is used for choking rochets; for handes for case-shot, ete.

LOG PAPER.- A thin drawing paper used in the mamfacture of paper fuses, etc.

LOG REVETMENT.- A revecment made of trunks of small trees or saplings laid horizontally one on the otherand supported by posts sets into the bampuette. At fropernt intervals tie beana are dovetailed hetweenthe logs.and, extending six or eight feet into

the parapet, are serured to horizontal anchoring logs. For intrenclments hastily thrown up, this is the most nsual form, rails or timber of any kind being ased. Sec Revitment.

LOMBARDS. - A (rerman people of the Sinevic family, not very numerous, hut of distinguisluct valor, who phayed an important part in the early history of

Europe. The name is derived from Longotirardi, or Langoburd. a Latinized form in use since the 12th century, and was formerly supposed to have been giver with reference to the long beards of this people: but is now derived rather from a word parta, or trarte, which siguifies a bat1le-axe. About the 4th century they setm to have begnn to leave their original seats (on the Lower Ellee, where thie Romans seem to have come first in contact with them about the he giming of the (liristian era), and to have fought their way sonthward and castward, till they rame into close contact with the Eastern Roman Empire on the Danube, adopted an Arian form of Christianity, and having been for some time tributary to the Ileruli. raised themselves upon the ruins of their power, and of that of the Gepide. shortly after the middle of the 6th century, to the position of Masters of Jannonia, and became onc of tbe nost wealthy and powerful nations in that part of the world. Under their King Alboin, they invaded and conquered the north and center of laly (568-56:1). The more comjlete trimph of the Lombards was promoted by the accession of strength which they received from other tribes following them over the Alps--Bulgarians, Sarmatians, Pannonians, Norici, Alemanni, Suevi, Gepidæ, and Sixons-for the numbers of the Lombards themselves were never very great. 2. Cannon of peculiar form in former use, and originally employed by the Lombards. See Brmbard.
LONG-BOW.-A bow of the beight of the areluer, formerly used in England for war and sport. The term is now synonymons with bore, and nsed in contradistinction to Cross-bore. See Benr.
LONGE.-The training ground for the instruction of a young horse, to render him quiet, tractable, and supple ; to give him frce and proper use of his limbs, to torm his paces, and to prepare him in all respects for the cavalry service.
LONGEVITY PAY.-An extra rate of pay for long service. It has recently been decided by the Supreme Court that service as Cadets must be taken into account in computing Longevity I'ay. The service performed as enlisted men of Regulars or Volunteers is also to be counted.
Under secton 1284, Revised Stathtes, a soldier who completes a term of five years' continuous service, and re-enlists within thirty days thereafter, is entitled to an additional allowance of g_{2} per month; and for cach successive and continuous re-enlistment under the same conditions lie is entitled to a furtleer ad, dition of st per month. Sce Pay.
LONG ROLL. When the troops should form suddenly to meet the enemy, the sigual "to arms.," is sounded or the "long rule" is heaten. The troops after assembling on their company parades, form rathidly in front of their camps. In the cavalry, if the troops are to form mounted, the signal "to horse" is sominded.
LONG-ROLLER. - A round piece of wood, 6 inches in diameter, and $3 \frac{1}{2}$ feet long. having a groove cut round it in the middle, for the reception of the gun when placed upon it. It is used to move a gun in the direction of its axis, on skids, on a hard smooth surface. such as a platform, ctc. Two of them are used at once, nud the gun moving upon them, gains twice the distance passed over by the roller.

LOOKING GLASS SIGNALING.-A method of signaling invented and extensively need ly theNorth American Indians, looth on the Plains and in the regions west of the Rocky Mountains. The reflection of the sm is flashed from a small piece of a mirror held in the hamd. and in this mamer a Chief is frequently enahbed todireet the movements of his watrriors with the greatest ease and certainly from a distant point overlooking the fich. This method of signaling, moditied hy the resourees of science, has bern lately introduced into the linglish service, and used both in India and honthern Afram. A great advantage of this method over the ordinary signal system is that the apparatus is me re portable, bua it
can low sucersfully usad only in regrons where tho atmosphere is chear of elouds thronghe consiflerathe periods of time. Anybuly who has any idea of tho oretinary method of telegraphing ly reforioity with the "atr alphabet. will maldretand how spares of time may be employed to imdieste lellars and worde by means of the eye. 'There aretwo mothoms: thereIliator may be whatured exerebe when the serem is temporarily remosed to produce a llash or letler; or the rellentor may be kept exposed exerpt when it is ohseured to prowhere a tetter. "Thae dirst mothod is suid to be the easior for the herimmer. lum the seedmal bess fatigning to the eye. 'Thedistance throngh whieh this monde of communiention may be carriod on varies with the size of the mirrors and the eldarness of the atmospbere. From the Vimalavas a foincla mirror lus coommmmeated distimet signals 60 miles. 'The instrument could be used with goond sucress on the Ansis. When the sionaling station forms an anerle greater than a right angla betwa'n the sum and the rerciving station, two mirrors are ased to pravelt too great a loss of rays ly oblighe retleetjon. The mirrors atre mounted on triponds, and ure helil hy a socket, or a universal joint. Besides its we as asigmang inst rument. the helogeraph has survod to detine distant points in a survey, abd for this purpuse was embployed in the triangulation of latiat. It was also used ly the late dstronomer- Roogn of binglamd at the ('ape of tiond llope in verifying the are of the maridian. S'ヶ. Meliography.

LOOPHOLED GALLERIES. - Vmulted passages or ascemates, usmally placed behimel the comoterscar! revetmont, and behind the gorgee of detached works, having lowles piereed through the walls, to enable the defenders to bring a musketry fire from unseen positions, upon the assailants in the diteh. Loopholes, however, are not confined to salleries. In modern fortiticutions, the revetments, both soarp and robunt crsabip, are very generally pierced for a moskelry fre.
LOOP HOLES - Infortification, loop-holes are sman apertures in the walls, through which sharp-shooters may tire. The loop-hole slondil widen towards the outside, that the shooter may have asweep with his ritle; and it is of importunce, on that account. sen to fashion the sides that a bullet may not penetrate, mo less firedstrajght into the center. For this purpose, the stomes are enenerally lad stepwise, althongh other forms are frequently resorted to. Walls are veadily made avaikble for purposes of defense by looploliug them, the mode of doing it varying with their height and situation. It is a gemeral rule that loopholes must he so placed that an entriny, if he succoeds in rushing up, shall not he able to make use of them. To prevent this they shonld be 8 or 9 feet above the grombl on the outside: lout on the inside the banquette from whiclt the defenders are to fire shosuld not be more than abont 4 feet f inches below them. A portion of the wall not less than 18 inches high should be left above the loon-holes to sereen the men's heads when firing. These points are attanahle in several ways: if the walls are high, the loupholes may be madle near the top, atod at temporary stage or earthen banquette might be placed insidle: if the wall is not over 6 feethigh, the loop-loles may be made at 4 feet \mathbf{f} inches above the inside level.and a diteh made outside. The quickest way of making a loop-liole is to break the wall down from the top for about 2 feet, and then to fill it up at the top with a stone or sand bug. If the wall should be low, a pisce of timber supported on it rouple of stones wonld be a ready expedient. If "xposed to the tire of artillery, a wall will not afford guod cover, hat it may be improved by sinking at trenel in rear ant throwing the earth aganst the wall, or by digging a diteh in frout and throwing the earth over the wall.

LOOSEN. - To open ranks or tiles from dose orifer. To loosen is, in fact, to lose that firm continuity of line or perpendicular adherence, which constitutes the true basis of military operations. The lock-step,
 misf hiferous efferty of loose marching, lunt it pro-
 breon latadsiste. The: rquat pher and marked time rarract buth.

LOOTEES. An F゙ast lnclian torm for it loody of ir-
 romotry, and harass the menty in their march. "lla* word is derived from bout, plunder or pillage, und is frequently writton Lantiox and lomly h"allemen.

LORAIN SIOHT - (Owing to the groat range at which rithod guns are nsed, and of the meenracy of fire kemanteat of them, it is important that flory should le provided with aiming apharatus more per-
 posed to lo sutlicient for arlillery parposes. 'The Lorain sight, of which the following is a brief deseribtion, combines the propurtirs most desirable in a sight for lacavy rilled guns. This instramant is ess sentially at ransit withat vertical and horizontal limb, the former tosive the required elevation or depressionand the latter to give proper atlowance fur trift. "the telescope (1) has a top, a fromt and rear opent sight (a), nsed to bring the object aimed at within the fied of view. The vertient limls (B) is grublated to degrees. The least comnt of the verniter is six mimutes. The tangent scrow (C) elosates or dopresses the teleseope. "The horizontal limen, (D) has a seale of 20° on cacla side of the \%ero, which is gratuateol to dergrees. Thestandards (E E.) are supported by the horizontal limb. The timernt screw (F^{*}) moves the horizontal limb to right or left. The base of the

instrument (G) lias on it the vernier (g) of horizontal limb, the least connt of which is six mimutes. When in use, this instrument sits jn a arit (II)whishs is screwed on to the right trumion of the gmn. This scat is so placed that the plane of its top is parablel to the liorizontal plane throngh the axis of the bore. When the vertieal limb is at zero, the axis of the telescope will he parallel to the axis of the borre if thee zero of the horizoutal limb coincites with the mark (i)on the seat. The mark (i) is on a movable pitce (k) and athached to the seat, and its position is easily dotermined. Thu elevations given with this sirlat and With it quadrant do not agree, the lattor being measured from the horizontal and the former from the line from sight to objert. In firing from above an ubject. the telescopic sight remuires more elevation than the guadrant. ff from below an objert, it requires less elevation than the quadrant. When the piece is to be fired, the instrument is lifted ont of its seat. One instrument suftices for three or four gans. it being carried from piece to piece as they are prepared for tiring. For short range and rapid firing. the pieces should, in addition, have the ordinary sighting arramements. The proper place for the sight is on the left trummion; hut as, with carriages now constructed, it would be interfered with by the crane, it is placed on the right trumnion.

LORARII.- Imong the Romans, oflicers whose business it was, witl whips and scoureses. 10 eompel the ghadiators to engate. The Lorarii also punished slaves who disoberidd their masters.

LORD. A title given in Great Britain to porsons noble by birth or by creation. Peers of the Realm are so styled, including such Archbishops or Bishops as are members of the Honse of Lords, who are Lords Spiritual. By eourtesy, the title Lord is given to the eldest sons of Dukes, Dlarquises, and Earls, prefixed to an inforior title of the Peerage, and to the younger sons of Dukes and Marquises, prefixed to their Christain name and surname. The following persons bear the title Lorel in virtue of their employments: the Lord-Lientemant of Ireland and LordsLientenant of Connties, Lord Privy Seal, Lorrls of the Treasury and of the Idmiralty, the loord lligh Admiral, ford Great Chamberlain, and Lord chamberlain, Lord Jigh Constahle, Lord High Almoner, Lord Iligh Stevard, Lord Steward of the Ilonsehold, Lords in Wrating, Lords of the Bedehamber, Lords Justices, the Lord C'hief Baron of Exchequer, the Lord Chief Justiee, the Lord Lyon, the Lord Mayor of London, York, and Dublin, and the Lords Provost of Edinhurgh and Glasgow. The Committee of the Seottish Parliament by whom the laws to be proposed were pretared, were called Lords of the Articles. The favored beneficiaries, who, after the Scottish Reformation, obtained in Temporal Lordship the benetices formerly held by Bishops and Abbots, were called Lords of Erection. Persons 10 whom rights of regality were granted in Scotlant, were termed Lords of Regality. The representative of the sovereign in the General Assembly of the Church of Scotland is called the Lord Jigh Commissioner. The Judges of the Courts of Session and Justiciary in Scotland have the title "Lord "pretixed to their surname, or some territorial designation assumed hy them; and throughout the three kingdoms Judgres ire addressed "My Lord," when presiding in Conit.

LORD LIEUTENANT.-In Great Britain, the Lord Lientemant of a comnty is a permanent Provinciad Govronor appointed by the Sovereign by patent under the Great seal. The oftice, in England, arose from the occasional Commissions of Array issued hy the Crown in times of danger or disturbance, requiring experienced persons to muster the inlabitants of the cominties to which the Commissioners were sent, and set them in mijitary order. The right of the Crown to issue such Commissions was denied by the Long Parliament, this question proving the immediste cause of the breach between Charles I. and his subjects. Their legality was established at the restoration by a Declaratory Act. The Lord Licutenant is now the permanent local Representative of the Crown, who, on the recasion of an invasion or rebellion, has power to raise the militia. form regiments, tronp. and companies, and give Commissions to ofticers. The history of the oftice soems to have been somewhat similar in Scotland. The "Jientenant" is commanded to "raise the Connty" whenever it may lee necessary to bring the rebellious and unruly poscessors of castles and fortalices into smbjection: ant though his powers wore exceutive rather than judicial, he seems sometimes to have had authority (o) "xercise the functions of the Sheriff, or overrule his thecisions. The Jord Lientenant of a eomnty is at the head of the Magistracy, the Militia, and the leomanry; he nominates oftieers of militia and volunteers, ind is the Chief Execontive Antlority, forming the sutted chmnel of commmniration between the Government and the Magistracy for the preservation of publie tranquility. Inder him are permanent beputy-Lieutemants appointed by him.

LORD LIEUTENANT OF IRELAND - The Viseroy or f) (e)uty of tho Sovereignto whom the Govermment of lreland is committed. The oflice las existed from at remote porioul, the appointment having beon madl. under fifferent desjgnations. llis powers were in carly times very extensive, almost regal. For the last half century followirg the Revolution the Lord Licutemant resided little in lrelind, visiting it only once in two years to hold the session of Parliament.

Sone Lords Lieutenant never went to Iredand at all, and occasionally, insteat of a Yiceroy, Jords Justices were appointerl. The Lord-lientenant is appointed molar the Great Seal of the United Kingdom, and bears the Sworl of State as the symbol of his vice-regal oftice. Ile has the assistance of a PrivyComncil of 58 members, appointed by the Soveroign, and of Officers of State. Ile is commissioned to kecp the peace and the laws and customs of Ireland, and Io see that justice is impartially atministered. He las the control of the police, and may issme orders to the General commanding the trons for the support of the Civil Anthority. the jrotection of the pmblic. the defense of the Kingdom, and the suppression of Insurrection. 'He may confer knignthood. and. previons to its disestablishment, had the disposal of chareh preferment, as well as all the other patronage of the country. The granting of money, and lands, and pensions, of all titles of honor except simple knighthood, the appointment of Privy-Councilors, Judges, Law Othicers, and Governors of Furis, and the appointment to military commiscions, as a common thing, are rescrved to the Sovereign, acting, however, on the Logel Lieutenant's advice and recommendation. No complaint of injustice or oppression in Jreland is entertained by the Sovereign matil first made to the Lord Lieutenant, who is in no case required to execute the royal instructions in a matter of which he may disapprove until be can commmicate with the sovereign and receive further orders. Yet, notwithstanding the dignity and responsibility of his office, the Lord Iieutenant acts in every matter of importance under the direet control of the ('ab). inct of Great Britain. The views and opinions of the Cabinet on all the more important questions connected with his government are communicated to him by the Home Secretury, who is held responsible for the Government of Ireland, and with whom it is the duty of the Lord Lieutemant to be in close correspondence; on matters of revenue lae must be in emstant communieation with the Treasury. On his occasional or temporary absence from Ireland, I ordJustices are appointed. who are usually the LordPrimate, the Jord C'hancellor, and the Commander of the Forees. Jis salary is $\pm 0,000$, with a residenee in Dublin Castle, as well as one in Planimx Park. His temure of oflice depends on that of the Ministry, of which he is a member. A Roman Catholie is incligible for the Lieutenancy of Ireland.

LCRICA - A curiass. or coat of mail worn by the Roman soldiers, made of various materials. "The ordinary kind consisted of a skin, or a piece of strong linen covered with small plates of iron, which resembled, both in their shape and in their manmer of overlapping each other, the scales of a serpent or fish. Sometimes enirasses or hatuberks. composed entirely of iron rings linked together, were worn by the Roman IIastati. A less flexible but more impervions defense was the cuirass made of hard leather or of metal, and consisting of two parts (the one covering the breast and abdomen, and the other the back), united by hinges and leather thongs.

LORIMER. - A maker of bits, spurs, stirrup irons, all metal mountings for saddles and liridles, and generally of all artieles of horse-furniture. In Jon don, the lorimers, who had previously formed part of another guild, were incorporated by"leticrs patent in 1712 ; in the Scottish burghs they lave been com. prehended as a brameh of the corporation of hammermen. Catlurs, lorksmiths, and brass-foumders have bern eonsideredas in the exereise of branches of the lorimer art, and therefore bommd to enter with the corporation. The Court of Sessions in 1830 ladd it to be a gross violation of the exclusive privileges of the lorimer eraft to mambacture lits, stirrup-irons, and other motallic articles of horsefurniture, with a view to silver-phating them before selling.

LOSSES.-1. Killed, wounded, and eaptured jursons, or captured property. 2. In the Jritish Army
there is a regular provision made for indematleation for losses by lire; by shipwreek; in ustion wilh the enemy; by capture at seat; by elastraction or raperme: of a public storr-funse; hy the destruetion of artioless or horses, to prevint their falling into tho hands as tha enemy, or to prevent the sprembing of an infere tions diveralier. In the United Sitates it wenkl seem just Hut (iongress shonld estathisly sonme gemeral rules regralating such mators. The prinojple of nettling all such clams by sperial learislation connot lut brat latally on ammer of indivielata, athel also probably in the end imposies erreater lurdens upon the reasiry.
LOUP DES ANCIENS.-- An iron instrumant, marle in the slape of a tematle, ly monas of which the ancients grappled the battering-rams, amd broke them in the middle.
monnted with four barrels arranged in a circle. After firing from ome barrel matil it may beeome hoatorl, it is moved susde loy a simple: movement, and another frought into action, and so on. "Ila" first barral beromaes conoled before it is again brought into use, so that a contimums tire ran low maintaimed for Hay longth of tine. 'The harrels bring hang upen trimions maty be diseonneretorl from the mathine or tilted npwards, allowiner then to bo readily inspectcol or celeaneat, also) facilitating tho (extraction of may whstruction.
"ho working parts are exomedingly simple numl strong, rectuiring but a fow secomds for their romove al or replacoment, and can be manipulatol by any man of ordinary rapacity. 'The firing is from the conter of the machine, and therefore is not divorteri from its aim by the recoil. Thelock has two extract.

LOUIS. - The name of a Military Order in France. instituted by Louis XIV.. in 1693. Their collars were of a thame color, and passend from left to riatht. The Kinir was always Grand Master. Commonly written K"ughtw of st. Lmuis.
LOVER'S WAR.-In Frencli history a name wivell to a civil war in the year 1580 , during the reigu of Ilenry IV. It was so called beramse it arose from the jealousies and rivalries of the leaders, who were inviled to meet at the Pilace of the Queen-llother.
LOW BLAST FORNACE,- I metallurgid furnace in which the air of the blast is delivered at moderate pressure.

LOWELL BATTERY-GUN. This gun is of the Mitrailleur order. It may be mounted with one or any number of barrels, but the firing is confined to one at a time, and requires but one lock. It is generally
ors, which are not dejendent upon springs, but operating positively, insure the extraction of the empty shells noder all circumstances. The cartridges are ferl into a hopper from which they are taken by two carrier-rolls and deposited one by one between the plamger and opening in the barrel. The plunger then forces them into the chamber of the barrel, fires them and extracts the enpty shell, learing it in the nosition which it occupied before firing. The next motion of the earrier-rolls throws ont the sleell and brings another loaded cartridge into position to be foreced into the barrel. It is impossible for the empty slud in be carried around a second time, by whicli the gun might be clogered.

The drawing shows the ern mounted upon its improved gun-carriage. The merhanism of thas carriage is so arranged that the gun cau be level-
ed, adjusted or trained to be effective in any position, either at clevation or depression. When operating upon rough or uneven ground and when frequent changes of position are necessary, this arrangement is of much value, as it enables the gunner to bring the gun into any desired position in a very short time. Attached to the carriage are two skeleton cages or crates, where four thousand cartridges can be deposited and carried with the gun, and at the same time be within easy reach of the operator and fed directly to the magazine, requiring no transfer of the ammunition after it is packed at the place of mannfacture. Three men can work the gun steadily and contimuonsly when the "arriage is used.

The following points should be noticed in connection with this gun: The firing being from the center of the machine, the barrel is not diverted from its aim by the recoil, whereas in most machinc-guns the firing-barrel is located some distance from the center of the machine, and the barrel is conseduently soon diverted by the continued recoil. The firing being confined to one Barrel at a time,other cool and clean barrels are kejt in reserve so that a continuous fire may be maintaned. It is well known that the barrels of a rapid firing machine gun become overheated after a few hundred shots, and thereby become practically inoperative until cooled. As the firing is confined to one barrel at a time the gun is not rendered inoperative by the bursting of a cartridge shell or other obstruction in the chamber, as the obstructed barrel may be instantly moved aside,
oceupying but little space, and requiring but a few seconds for its removal and replacement. it can all be taken from the gun and packed in a close loox: by which it can be kept in condition for use at all times. In making long marches over dusty roads the mechanism of some guns is liable to be clogged by dust and found inoperative when called into action. The Lowell Battery Gun requires no feed case or any preparation or transfer of the ammunition whatever, but the cartridges are fell directly from the packages as they are prepared at the factory into a trongh which conveys them one by one to the carrier rolls. By this arrangement two men can keep up a continnous fire for any length of time. It is well-known that when feed cases are reguired for working ma-chine-guns, a large force is required to fill and apply them. Frequent jams also occur in transferring the cartridges from the feed-cases; to the hopper. and the feed cases being necessarily of delicate construction they are liable to injury.
The plunger of this gin is provided with two strong extractors, operating positively and not depeuding on springs. These extractors are arranged to grasp the cartridge shell at opposite sides and remain locked until the shell is fully withdrawn. Extractors operated by springs are liable to slip over the flange of the shell when it sticks in the chamber of the barrel, preventing the further operation of the gun until removed. The ejection of the empty shells does not depend upon gravity, but is absolutely torced out by the positive movement of the carrier rolls. This feature will be appreciated by those who have exper-

and another brought into position. Most machine guns become more or less disabled when one harrei is olstructal hy the non-extraction of the empty shelland in some cases emtirely so until the obstruction is removed. The harrel and working parts may be removed and replaced in a few seconds. allowing them to be readily inspertid and cleaned or removed for protection or other purposis.

In most machine gums, the barrelsare made fast to the frame work, rendering inspution and cleaning quite differelt. and, the working parts heing encased. considerable time, and serviees of an expert are re'quired to extract any obstruction. The inethanissu
ienecol the diflienty attending the failure of the ejection of a shell. The larrels are firmly fixed in the breech plate and require no adjustment after the tiring has begun, But few tools are required to dissect the machinery, all of which and :s sjare plunger are packed with the gun, rofuiring no spare article or tooi box to be carried with it. The lateral, oscillating or traverse motion is very simple, and can be operated by the gumer whild firing, and be made to cover any desired space at any distanee and returncd to a fixed position without cressation of firing. This gun an be worked and fired by two men steadily and continnonsly 400 slots per minute; and, by the
assistance of a third man to feed. it can be worked at the rate of fote perminute, taking the cartridges from the boxes as they come from the factory. By the addition of a second phanger the mumber of shote per minate can be domblet. The fork is cometracted upon a new principal, is wery simple, and wot liable to le injured or disabled by wear.
The drawing shows the gun mombed on a tripod and rendy for firing. linssia, after thorongh inves. tigation ly its naval ofleeres, bought twenty bowell Battery Guns. The United States Navy has adopted it. Citiformin has purchasell there for its State prisons. Ohin has one, and other States are in negotiation for them for use ly militian companies stationed in cities.
temacity, and a lower range of ourtility deporling on its propurtion of carlom. It has less extersibibility within the clastic: limit than high stecl, hat greater beyond it; or, in other woride, greater dnctility. Its groat alvantage over wrought-iren for gemerat parposes is that it can be meltod at a practicathe lacat and run into large masses, possessing somolness and temarity. Its advantages for rammon are greater elasticity, tenacity, mal hardnesis. Its temacity when suitable for cannon is about !of,o(s) ltso., of three times as much as cast gan-iron, and 50 per rent. more than the best wronght-iron. The: dilleulty in the use of steel for larger, homogenemos guns is the great size of the hammers required to work thes Diforks into which it is cast. Sere steel.

LOYALIST. - Λ person who adheres to his hover-

A comparison of this gun with rival guns detracts nothing from the Loweth. While the Gatling gun has ten locks and ten harrels, all revolving at each shot. the Lowelt Battery gun has lut one lock and uses but one barrel at a time. The disabting of one lock or barrel of the Gatling renders it useless until repaired by a skillful mechanic. A disarrangement of the Lowell ean be remediect by the renewal of a lock or change of the harrel. which can be done in five seconds by any person of ordinary capacity. Sce Machine Gien and Buttery fruns.
LOW STEEL. -This varinty nf steel is often known as "mild steel." "soft stecl," "homogeneous metal." and "homogeneous iron," and is made by fusing wroughtiron with carbon in a crucible, aftir which it is cast into an ingot and worked under a hammer. As it contains less carbon than high steel, it hats a greater specific gravity. It can be wellded wihhont ditheulty, although overheating injures it. It more nearly resembles wrought-iron in all its properties, although it has much greater hardness and ultimate
eign, or to the constituted authority: esperially one who maintains his alterinnce to his Prince or (iorernment. and defends his cause in times of revolt.
LOZENGE.-In Ileraldry, a charge generalty emumerated among the sub-ordinaries, in the shape of a rhombus placed with the acute angles at ton and bottom. The horizontal diameter must be at lenst equal to the sides, otherwise it is not a lozenge. lomt a fusit. The term lozengy is applied to a field dividet by digaonal lines crossing one another at rewular intervals so as to from at diamond pattern, the comparments being of alternate tinctures. See leraldry.
LUBRICATION. The application of a smbetance to a surface for the purpose of making it smooth. This sulustanee, which is culted a thbricant, may be cither a liquid, a semi-liquid. (or a solit. I'lumbago. or back-lead. is in most common use as a solid lubricant but powelered soap-stone or tale, is used for many purposes, as, for instance, by sboemakers upon the inside of the heels of boots and shoes to facilitate the pulling on. When it is desired to have a
rope or cord slip over a hearing, as a pin, or a pulley which refuses to turn, it is usual to smear it with lard. Grease is the common lubrieant, lut for machinery, or the bearing of axles gencrally, other substances may be adeled which will materially reduce the friction. Mineral oils, particularly the thicker portions of petrolenm, have valuable lubricating properties, and may be used either alone or added to lari], tallow, or animal oils, according to the size. weight and velocity of the revolving shaft. Oilsare used for high speed; pasty lubricants for large and heavy bearings. There are a great varicty of lubricants used for the axles of artillery carriages, many of them patented. Perhaps the most favorite lu. bricant forlight, fine road carriages, which are furnished with tight hoxes, is castor oil. Whan the box is not tight, mixture of lard and rye flour is used to advantage.
It las the proporty of lasting. whan mixed in the proportion of abont 4 parts of grease to une of tour. Black-lead may be used in combination with laril and flomr, or it may alone be mixed with lard or oil. Some velicles aremate with wonden axles, ame for these common pine tar is an feonomical, lasting, preservative. and etheient lubricant. Its application may be alternated with Jard, or a mixture of lard and tallow, or lard, tallow and flour: hut it is well to lave some tar always present. Wherever great delicacy of motion is required, as in watches and other time-picces, the lubricant must be very fluid. The lubrication may be performed by manual application, or mechanical devices may be employed. Thore are nany kinds of lubricators. They are in the furm of reservoirs, which diseharge their contents, the lubricants, as fast as they are consumed by the revolving shaft or piece of moving machinery. A simple and often a very efficient lubricator is an inverted oil-can suspended over the bearing or blace which requires lubrication. Whena pasty lubricant is nsed. it may he applied on a sponge or brush, if the situation favor such application. The ingennity of the operitor is often alyantageously exercisel as well as that of the inventor.

LUGS.--The ears of the ordinary bomb-shell, to which the hooks are applied when lifting it.
LUNETTE.-1. An iron ring at the end of the tral of a field-piece, which is plated over the pintle-look of the limber in limbering up the gun. The term is also applied to the hole through an iron plate on the moler side of the stock of a siege-piece, into which the pintle of the limber passes when the piece is limbered. 2. A field work consisting of two faces forming a salient angle or one projecting towards the enemy, and two flanks, parallel, or nearly so, to the capital or imaginary line bisecting the salient angle. In shape, it is like the gable end of a honse. lt is intendel for the defense of avenues, farmloouses, bridges, and the curtains of field-works. The term is specially applied to a snall work beyond the ditel of the ravelin, to supply its deficiency of saliency, and formed at the re-entering angle made by tle ravelin and bastion. The Junette has one fice perpendicular to the ravelin, andthe other is mearly perpendicular to the bastion. The term bunettoms is applied to a smallersort of limettes. See F"ield H'urls.

LUNETTES D'ARCON.- ln order to bring the lnnettes further off the place and diminish the defeet of their gorge, (bemeral IOAreon has constructad Janettes which bear his namo, and which aresup posed to be capahle uf defenting themselves. "This work has thr same dimensions as an ordinary fanette, except that the salient angle may be made as open as dermed neressary. The gorevo is choside by a loop-holed wall 18 foot high, and a round lower 1.5 feed in diameter scpurated from a terreplein by a diteli 12 fect wide.
LUNGE.- An extruded thrust in fencing and bayontet excreise. The lunges are used the samme its the thrusts, and dilfer from them only in ind wanding
the left foot, so that the left leg, from the foot to the knee, shall be vertical. In both the thrust and the lunge, the body must be covered on the side of the arlversary's precr. See Bayonet Excercise and Thrust.

LUNT. The mateh-cord formerly used for firing camnon.

LUSTRATION, -In antiquity, purification by sacrifices and various ceremonies. The Greeks and Romans purified the people, eities, fields, armies, ctc.. defiled by crime or impurity. This was done in several ways, viz.: by fire, water, sulphur, and air, the last by fanning or agitating the air around the thing purificel. When Servius Tullius had numbered the Roman people, he purified them as they were assembled in the Campus Martins; aud after wards a lustration of the whole people was performed every fifth year before the Censors went out of oftice. On that occasion the people assembled in the Campus Martius, when the sacrifices termed Sulucetauriliu, ronsisting of a sow, sheep, and ox, after being carried thrice aronnd the people, were offered up, and a great quantity of perfumes was burned. 'lhis reremony was called huatrum. It was instituted by Sprvius Tillius, 566 b.c., and per. formed for the last time in the reign of Vespasian. The term Shatratm was given also to the period of five years between the lustra. The army was purified before a battle by catusing the soldiers to defile before the two guivering havves of a victim, while the Priest was engaged in offering certain prayers. The establishment of a new Colony was preceded by a lustration with sacrifices. Rome itwelf, and in fact all the towns within its dominion, ald ways underwent a dustration after being visited by some great calamity. The lustration of fields were performed after sowing was finished, and before reaping began. The lustrations of flocks, designed to keep them from disease, was perforned every year at the festival of the Palilia, when the shepherd sprinkled them with pure water, thrice surrounding the fold with savin, laurel, and brimstone set on fire, and afterwards olfering incense and sacrifices to Pales, the tutelary goddess of shepherds. Private houses werp purified with water, a fumigation of laurel, juniper, olive-tree, and the like, a pig being offered is a victim. Infants were puritiod, girls on the third, boys on the ninth, day tfter birth, then named and placed under the protection of the god of the family. The lustration of a funeral pile was by having the spectators march round it before a fire was kindled. Whatever was used at a lustration was cast into a river, or some other inaccessible plice, as to tread upon it was consilered ominous of some great lisaster.

LUTE. - A term employed in the laboratory to wenote a substance userl for effectually closing the joint of apparatus, so as to prevent the escape of vapor or gases, or for coating glass vessels so as to renfler them more capable of sustainging a high temperature, or for repairing fractures. For ordinary purposes, lutes male of common plastic clay or jipeclay with an admixture of linseed-meal or almondpowder, or, for conmon stills, linseed-menl and water mate into a paste, are quite sutlicient : for more delicate experimunts, fut lute, covered over with moist ened bladder, is nsed. Lutes for coating glass vessels are gemerally composed of Stourbridge clay or Windsor loam, mixed with water; but the most simple methot is to brush the glass retort over with a paste of pipe-clay and water, dry it quickly aud repeat the opration till a suflicient thickness of coating is obtained. Onher lintes in frepurnt use are $H^{\circ} \mathrm{i}$ lis's lute (? paste composed of a solution of borax in boiling water with slaked lime), varions mixtures of burax and way, of limes and white of egeg iron erment, moistened blinder, paper prepared with wax and turpentine, aut eaoutchoue. The use of the last mamed lute has on acroumt of its llexibibility ami eonserfornt mon-liability to acoevent, leen rapidly (xtending.

LUZERNER.-A nama mivan to tha pole-lwhmmer in firmany and Switzrland, it lueing afuvorite arm of the perople of Latererne.
 tha Ilungarian light infaniry.

LTING OUT OF QUARTERS. - In the ['nitre] Nitates army, any ohlicer or soldier who lics ont of his गuartors, gurtison, or (anmp, withont leave from his sue
 direct

LYLE EMERY ORAPPLE SHOT.-This projuctile whe devised by lientemunt 1). A. byle, lonited situtes Army, and Mr. (\% Vi. Vmery, dramghesman at the National Armory. It is intemed for use in commere
 poses. It is an chongated, solid, cast-irom, smonthbore projectile, with a wrought-iron base and slank. In form the shot is cylimbro-ogival. Tha ratins of the ogival lacal is munal to the dinmeter of the jure joction. An axial cavity, 1.25 inchs (3.175 centimetars) deep is bored in the rear (emb of the shot, then whose interior celinelrical surfere is rat a female serew-thread to ingrge the serew on the wrought iron base. 'Tha hase has a cylindrient axial envity drilled through it, witla rounded groove on one side io uceonnmodate the stop amb stopsespring. The front. end of this ravity is crnlarged by connter-horing, to a.low the necessary longitudinal phy of the shank-liead in operning and closing the flukes. The serew on this end fits accenrately that in the body of the shot. At the rear cutl of the hase are formed five sectoral slots, copuidistant ciremmferentially These slots receive the heads of the flakes, whichare fastencel to the base at these points by rivets. Circular groovesaremilled out betwern the slots to allow the insertion of the rivets. The shank is of forged wronght iron. The front ond of this bolt lats a serewthread. "poon which, after insertion in the uxial cavity of the base, a mat is placed. This and of the bolt is riveted after serewing on the nint. A rectanger lar groovo on one sile of the shank re ceives the stop and spring. Fivelugs, placed equitistantly around the shank near the forward end, serve as pants of allachment for the links that extend the thakes. The rear end of the shank contans an eye-bole for attachine the lime in tiring. Each link is composed of two that pieces of Troy stecel, with holes at each end to receive the rivets that conneet them with the shank and thake. The flukss, five in nomber, are als made of Troy steel. Earls thake has a rounded motch near its buper or forward end to accommodate the corresponding lug on the slmak when closed. All edges or angles are carefully rounded. The details of form and construction permit the use of the jrojectile in the $2 \frac{1}{2}$-inch gun already in the service. and frevent the entanglement of the line as much as possible in firing. The projectile is inserted in the gun point tirst, with the flukes closed, as shown in the elrawing, and the line tied in the eye-hole of the slank. In this position the base of the shot is toward the mazzle of the gun; the thakes partially ('nter the bore while the shank extends beyond the muzzle. In firing, the projectile describes the tirst part of its trajuctory base foremost; the strain upon the shank leeing loward the rear, the tlakes are kept closed: but, as soon as the projectile reverses,
thr fasion on the lime (raws ent the shank lo the
 their full extent. Whlan the heat of the shank reatels. ('s the bothom of the rombler-hore in the latse of the shot, the stop is thrown oul hy thr artion of the htup

 shoulder is disongraged, and then phola in the shank gronly till its hoad strikes the front cmel of the ronnntcrabore.

When vessels are stranded the erews somnetimes fatera a line or rope to atank. spar, lanoy, or raft, and have it overhoard, lopinge lhat the wins amo wites will hrow it on the shome oblo sej\%ed by prorsons there, thus atablishang commannication lee wern the wrexk and beach. It frerfarntly ofernes, howneror, that there is an inslonere current that corrios the jleating olijert along jaralle (t) the coast, in whirls case the object desiral fuils bo lo attained. This projertile was deviscel for the purpose of tiring over the line thas paid out from the strandeel vessel, wo as (1) passabove that line at some (lesirwd poim between thre sask or buoy and the vessel, ind then by hanling ins the athached shot-line, the fluke:s grapple the shipis line, and emable the life-saviag raw on shore to land the buoy and secure the line from the vessel. There are other uses to which it may le' put that will rearlily suggest themselves to those familiar with the service

The following are the principal dimensions of the slot:

neth of orival luma	$13.541-34.24!$
Lentius of head.	2.17
T.cheth of cylindrical part	$0.83=24.41 \%$
Diameter of cylindrical part.	2.50 -1.85%
Axial cavity-Lengt	1.20-3.19.5
Basc--Total length	
Shank-Total lengt	13.25-33.15.4
Tonul loneth of shot and-ha	
Total length of shot and shat	动岳 6\% 483
datice of celiter of gravity	5.44-13.\%

The weight of the shot is $18.218+113$. $=8.204$ kilos. See inchor-rothet, Chandter it uchermhet, and Liffosaviug Ruchets.

LYON KING-OF-ARMS.-'Thtr titis lrornt since' the first half of the 15 th ecentury by the chief leraldic oflicer for Scotland. Ite is tha l'resilline Judere in the Lyon Court, and appoints the llaralds. l'ursuivants, and Messengers-at-Arma. Lnlike the English Kings-of-Arms, de bas always exereised jurisdiction independenay of the Constable and Marshal, lolding office directly from the sovereign by ('ammission under the Great Gral. In Gcotand ho takes precedence " of all Kinightsand Cientlemen not being ofticers of state. or Senators of the College of Jnslice." In England he ranks after Garter, and before the Provincial King of-Arms. Since the revival of the Order of the Thistle, he has heen linerof-Arms of that Order. So saced has his pervon been hedrl lhat, in 15ly, Lord Drummond was declared grally of treason, attainted, and imprisoned in Blackness Castle. for striking Lyon. Prior to tha Jevolation, Lyon was solemnly crowned at llolyroud (11 intrring on oftice by the Sovereign or his Commissioner, lis crown being of the form of that royal rrown uf Seonland, but enameleal instead of being set with jewels. Tbe crown is now only worn at coronatioss ; and that actually supplied onnceasion of the last four appointments has leen similar to the crowns of the English King-uf-Arms. Lyon's barlge or mexdal, suspenderl by a triple row of gold chains, or on common occasions by a broad green rihhon, exhibits the Arms of Geothand, and on the reverse. St. Andrew on his cross: and his batom is of golel enameled green, powrlered with the hatges of thakingdom and witheodd fermules at cach end. Jursides the velvet labaral of a king-of-drms, he has un (mbroidered crimson velvet robe: and as ling-of-drms of the Thistle, a blue satin mantle, lined with white. with at St. Audrew"s cross on lee left shoulder.

LYMAN CARTRIDGE.-The object of Mr. Lyman is to supply a cartridge which shall huru with a emn. stantly increasing fire-surface so that nearly uniform pressure shall be exerted apon the projectile until the powter is about all consumed. When the cartridge is suited to the length of the barrel, the strain will be distributed equally throughout the principal part of the barre], whatever may be its length. It consists in forming powiler into a solid cake within the eartridge shell, which eake, il for small-arms, is pierced by a central perforation fromend to end, and is protected from the fire by the shell on its outer surface and rear end, so that only the small surface of the perforation and the front end of the cake can be exposed to the igniting thame. After this suall surface is ignited the burning proceeds in a radial direction toward the surface of the cake. thereby continuous. ly enlarging the burning surface in a constantly increasing ratio and increasing the development and heat of the gases, and exerting a nearly uniform pressure upon the projectile throughout the princeipal part of the length of tite barrel.

The character of this powder cake is very important : it should be solid and compact, none of it granular: it should have a uniform density so that it will he burned evenly on all sides. To make it, powder meal which is reduced very tine may be moistened until it becomes somewhat plastie or of a consistency idapting it to to be molded and compressed into a solid mass, and while 1 m this soft or plastic condition it is properly eompressed in the cartridge shell. When dried the rapidity with which the powter burns dejends upon the porosity of the cake, and this depends upon the amount of water contained in it wheu being compressed as well as upon the pressure.

The frawings show a longitudinal section of the breorch of thr gun containing a cartridire in position for tiriner, aten cross sertions of motified forms of the cartridera. In the ehamber of the ermall is the brecelh-block which holds the cartridere in place, (" is a wodige for sworring the breerclo-block. whireh part may be of any suitable construction, I) is the cartridge shall or ease, and F is the powder cake packed
n the shell which protects its onter evtindrical and rear end surfaces from the action of the tire, of represents holes running through the jowder cake and through the head F of the cartridere, 11 is a firing tube passing centrally through the powder cake, and is designed to dirert the igniting flame to the front end of the cake. This tube projects rearwardly from the cartridge head, and bears against the lireechblock, leaving a shace 1 between them. The cartridge head is alsolocaterl somewhat within the shedt, so that the shell may bear upon the breceh-block, as shown. To fire the cartridge a flame is forced through the firing tube and ignites the front end of the powder eake and flashes back down the perforations in the powder cake, igniting the surfaces of all the holes at the same instant.

The particular object of the chamber I behind the cartridge head is to permit the perforations through the powder cake to communicate with one another to insure their being instantly and simultaneously ignited throughout their whole extent. If these holes were closed at their rear ends some of them might possibly become more or less filled with air and gases upon the first of ignition which wonld prevent their cutire surfaces from bring instantly ignited and thereby prevent the intended uniformity of the ra dial burning and inerease of the burning surface along the whole length of the hole; but when these channels open into a common space as shown they cannot become so filled or obstructed and their entire surfaces are instantly ignited and the progress of the radial burning is practically the same in all parts of the powder cake. The distance of the perforations in the powder cake from each other determines the time of the burning of the cartridge and this distance should be proportionate to the length of the gun. The holes should meet some time hefore the projectile reaches the end of the bore. When the walls of the powder cake are burned throngh. the burning and raving of their remaining fragments may raise the pressure slightly ; hut the space into which the burning gases expand has now become so large and the rapid onward movement of the shot increases it so rapidly that such increase in pressure is not material.

Trials of the eartridge in a ${ }_{x}^{3}$ incla ritle show initial velocities of 2080 . 2247 , and 2312 , 2, s., although these experiments are the first, and naturally do not show its capabilities when everything is jurfect. The shot thrown at these velocities was seven ealihers long, and with a twist of $4 \frac{1}{2}$ inches. The cartridge as adapted for cannon has the following specifications: 1. A cartridge consistiug of a shell charged with a solid cake of powder or other material heving longithdinal holes running through from end to end, ind protected by said shell from the action of the tire upon its outer surface. 2. A eartridge consisting of a shell charged with solid cakes of powder or other explosive material packed in the shell and exteoding from end to end of the shell, and each provided with one ur more holes jiercing them longiturlinally, and being protected from the action of the fire upon their onter surfaces. 3. A cartridge consisting of a shell charged with is soljd cake' of powder, which is protected from the action of the fire upon its outer surface by said shell, and at its rear end by the head uf the shell, said cake and the head of the shell being piomeed by longitudinal holes. 4. A cartridge consisting of a shell chareded with a solid eake of powder piereed from end to emd by boles extending also throngh the head of the eartridge, the cartridge fieing provided with a projection extending rearwardly and adapted to bear against the grm, and thereby form an open spacr batck of the head of the eartridge. i. A cartridge eonsisting of a shell charged with a solid a ake of powder pierced from and to dind with holes extending also through the eartritge head, and provided with a firing tube arranged to dirert the igniting-llame to the front end of the jus-der-cake.

LYMAN HASKELL MULTL CHAROE CANNON. -
 accommalalion of velobity or power ley a sucs"ession of whares of powder expleted behind the projertila as it passes alonar the bore of the grm. There inertia of thr shot is first ovareome by it moderate charge of c"atreegrained, slow-harning powher, and then reperated charges of quicok-buruing powner are ape pleak in surcession watil a greally incraserl velority is athined. Crenoral Newton, l nitmatates Army, says the penetrative power of this gime is not inferior
 The thinks tho 10 -incha areveratiner gron womld be as
 as the $100-1$ on gran, and that the 12 -inch incrolerating gitn wonld be more powerfal than the lon-tom gind No doubts are cutcraincol ly experts that the gas

 gans, at comparatively materato rost are at least as etheirnt as the lewt in Eurojee. Fece Heskell dinltio charge ('innon.

LYMAN SIGHT. - Tharoptis"t] principle involved in this most excellemt sight is untiraly new in its applicatiots. When amine it has the appearance of a ring or hoop, which shows the front sight und the object aimed at, without intererpting any part of the view. The drawing alows the manner of its construction. "The aperture of the sight. being very near the eyes, is greatly magnition as compared with the noprli in the common open sight. This foature givers many the impression that an apertare which fooks so large cannot allow of accorate aime wherens, the larger this small aperture looks, the more aceurate the ain. Furthermore, the distance from the Lyman sight to the front sight is nourly twice as much as from the ordinary open sight to the front sight which, in itself, clomblew the aceruracy.

Thu rim of the sight can be instantly changed to grive it a large aperture with anarow rim, or a suall sperture with a wider rim. For all quick shoooing the large aperture should be used. Wha sight (:annot shat sut the vic'w of the front siglat, nor the ohject to be aimed al : while witle any other raar sight the charf difleculty in aiming is to bring the sights and objects quickly into line withont interferiner With the view of the front sight or the object. It possesses the following additional advanagese, viz., it allows an instantaneons aim to be taken-the object being sighted as quickly as if only the front sight were used: it readily permits one to shoot
moving nlojecta, with both the egres in nam; it is alson very areurate, simple, sunt stronir. Any kiad of front gight maty low used with it, and it may be put on inny rifle in tho same way that st perp) sight is attacolod. and atjostod for shooting any (listance 11p to l, (f) yurils.
'T'い ipplaty the sight :o any rille. screw the lase tirm. ly on the tang of the picee. sime that the gpring uotch

in the sight-joint is filed so that the sight stunds perpendicular when in use. Jemove the midrlle siglat, $i, e .$, the rear open sight from the ginn. Ablank pioce can be put in the slot on the barrel, if dosired. It is recommended to use the Beach front sight, in conjumetion with the sight, and for most slootinus, we the large aperture of the rear sight: and for very quiek shooting, aim with both eves open.

M

MACADAMIZED.- 1 term applied to roads covaral with broken stone. The principles of the Macadam system of road-making are as follows: For the foum dation of a roath, it is not meressary to lay a substratum of large stonos, pavement, etco, as it is a matter of indif(rence whether the substratum be hard or soft; and if any preference is tue, it is to the latter. The metal for roads must consist of brokern stonex (oranite, flint,or whinstone is by far the hest) ; these must in ho case exceed (F oz. each in weight, and stomes of from 1 to 2 oz. are to la preferred. The latre stomes in the road are to be loosened, and removed to the sitle, where they are to lue broken into pieres of the regulation weight a and the road is then to bre smonthed with a rake, so that the earth may settle down into the loless from which the large stones were romoved, The broken metal is then to carefully spreal over it; and as this operation is of grant imporanae to the future quality of the road, the metal is not to be leid on in showedfuls to the requis-
ite depth, but to be seattered inshovelful after shovelful, till a deptls of from 6 to 10 inches, atcoording to the quality of the road, has been obtainesl. The roas is to have a fall from the middle to the sides of about 1 in 60, and ditches are to be dug on the fiedd side of the fonces to a depth of a few inches below the level of the roul. This systm. which at one timm threatemod to supercode evory other, is calculated to form at hard and inumermeable erust on the surface. thus proteeting the soft warth below from the action of water, and so preveuting it from worsing up through the metal in the forin of mud. Strange to suy, it has succeded admirably in cases whure a road had to be constructed over a boer or morass, that in some other circumstances, it has been found deficiont.

MACANA.-The war-club of the South American Indians.

MACCONNELL CARTRIDGE-BOX. -This box, iuvented by Captain (. C. MacConne $]$ of the [..s.drmy.
is square-shaped, made of leather lined with tin, and has eompartments to hold 40 cartridges. There is an opening at the bottom, working by means of a spring, and by which one eartridge ean be taken out at a time. The cartridges are placed in the box on lop by raising the dlap. The box is worn on the waist-belt.

MACDONALD'S HALE ROCKET.--Tine (ise of this improved rocket is of steel of great strength, at the end of which is soldered a collar, to the center of which is screwed a wroughtiron tube: this thbe unites the head to the body of the rocket and allows tine gas to escape throngh the upper vents. The head has a cavity, communicating with the exterior by five openings directed toward the rear. These vents or openings, as in the llate rocket, lave semieylindrical flanges; the gas eseaping acts against
to b : hurled at an enemy when he approaehes near the wall, is in sealing, undermining, ette. Suclu defunses are very eommon in castrlated architecture, especially over gateways, towers, ete. For the purpose of attaining, by mosketry, the font of a scarp wall without flank defenses, resort must be had to a machicoulated arrangement at the top of the searp. The usual mode adopted for this purpose, is to form a parapet wall which rests upon a solid horizontal band of stone, near the top of the searp, which is smpported on corbels or projecting blocks, firmly built into the wall. The back of the parapet wall is placed a few inches in advance of the sarp. leaving room for the slanting loop-holes picreed in the horizontal band through which the fire is to be delivered an the foot of the searp. The top of the parapet wall is also arranged to admit of tiring on more distant

the concave face of the flanges and imparts a motion of rotation to the rocket. The lower end of the case is elosed by a dise, also pierced with five vents corresponding to those in the head, and furnished with similar fanges. This construction applies the motion of rotation to the head as well as to the rear part of the rocket, and remedies the eonsiderable deviation of the Ilale rocket due to the motion of rotation heing applied to the base only; as its center of gravity is quite considerably in front, the head describes very large and irregular spirals. The rocket composition consists of 70 parts of niter, 16 parts of sulphur, and 23 parts of elarcoal. It is pressed into the tnbe with a pressnre of 90 tons. As it is bored throughout its whole length by the elannel, the surface of inflammation is much more considerable than in the llale rocket, and its velocity much greater. The liead has at its front part, in front of the cavity, a shell with a bursting elarge, which is ignited by means of a fuse, either percussion or time. The rocket thus perfected has given results very superior to those obtained by war-rockets of other systems. Five 12 -nounder rockets thrown under in angle of $8^{\circ} 15^{\prime}$ lad a mean range of 1.870 meters, with a lateral deviation of 2.74 meters only, while llate rockets of the same ealiber, nuder the same angle of clevation, had a range of only 1,200 meters with a lateral deviation of 34 meters. See Romketa.

MACE. - 1 strong, short wooden staff, with a spiked metal ball for a head. It was a favorite weapon with knights, with the cavalry immediately succeceling them, and at all times with fighting priests, whom a canon of the chureh forbade to wield the sword. No armor could resist a well-delivered how from the mace. The mace is now borne before magristrates as an ansign of authority. The varioty known as Morgonstern, or Morming-stien had generally al long handle, and its luede bristled with wooden or iron points or spikes.

MACEDONIAN PIKE. - A spear or lanco of erreat length used in wirfare by the (irceks. It is commomJy called sirrisum.

MACHETE, - I large heavy knife resmmbing a bronisword. often 2 or threa fort in length, uside ly the inhabitants of Spanish America as a hatchet. io ent their way thromgh thickets, and for varionsonther purposes.

MACHICOLATION. - "lhe act of hurling missiles, or pouring various burning or melted substances upon aswalants throush Mrativolatioms.

MACHICOLATIONS. - Jhe upertures loctween the eorlels supporting a projecting paraput. 'The machicolations are for the purpose of allowing projectiles
points. Where, from the irregularity of the site, the ordinary machicoulis cannot be made eflicient, resort may be had to small polygonal chambers of stone, open at top, and having the sides and bottom pierced with loop-boles and machicoulis. Tbese construetions may be made just of sufficient size to hold a single sentinel. They are placed at the angles of the works where they will not be exposed to artillery, and are supported on a corbel work orojeeting from the top of the scarp wall.

MACHICOULIS GALLERY.-To place a house in a defensive attitude, the doors and windows of the lowest story should be firmly barricaded, and loopholes be made as in the case of a wall. A tambour should be placed before the doors, both for their protection and to procure flanking arrangements if roquired. The windows of the upper stories should be partly barricaded, to cover the troops within, and loop-holes should be arranged as in the lower stories. The roof, if not fire-proof, should be torn down, and the floor of the upper story be covered

with earth or dung, moist from the stable, to the depth of about two fere. If it is intemeded to defend the upper stories, shombl the raemy sucreced in forcing the fower, the stairs shomble bern down, :und slight larlurs be used in their stead; holes shond be made throngh the floor to fire on the enenuy in the low or story, or 10 throw heary artiedes, or hoiling water, cotr.. on him. If there are batconies to the winlows of the upper stories, or an apper gallary, they ean radily be phaced in a defensive state by phatimer thick boards as at shedter un the outside and ('utting suitable holes through the thoor to defend the doors and windows of the lown story. If there should be no convaniences of this natire, a temporary structure termed a lan

Nimme of Gimn on Trias.	$\begin{gathered} 8 \\ =1 \\ 8 \end{gathered}$						
Inothkiss.	5	1.45	2	10	i	Gill	ghted:
Nordenfeldt.	4	1.00	4	24	,		
diarduer.	,	. 45	2	100		Firins	at rate
Pratt ${ }^{\text {d }}$ Whhithey	\because	. 4.5	8	100)	$6{ }^{\prime}$	"	-
Giarimer...	2	. 4.5	10	100	51	،	**
Nordenfeldt.	10	. 4333	3)	100	59	"	sow,
Montigney .	30	. 433	16	100	40	.	filis.
Gitlingr...	10	.45)	15	100	106		time 3 ?
(ritling.	fi	. 42	15	100	45		fist.

Trial No. 3. For Aceuracy. Range 1.800 moturs: 100 shots; two rows of targets.

Name of Gun.

Gardner,
Pratt de Whitney.
Gardmer.
Nordenfeldt.
ciatling.
Gatling,

Trial No. 4, one mile.

Name of Gum.

IIotchkiss.
Norlenfedt.
Giardner.
Pratt \& Whituer, 。 $\circ . \quad 30$
(rirdner, 30
Nordenfeldt, 30
Gatling.
Gatling, 30
Pratt and Whitney gun fired 3.266 shots in $9 \frac{1}{5}$ minutes, with four changes at the erank: two barreled Gardner, 1,446 in $4 \frac{1}{4}$ minutes; 100 shots tired at 70° elevation in $3 \frac{1}{4}$ sconds by the Gatling.
chicoulis Gallery, may be formed ly placing stout pieces of seantling through holes mase in the wall. on in level with the floor; these pieces being contined to the floor on the inside, either by nailing them to it or by tying them with rope to the joists; they should project from three to four fect beyond the wall on the exterior, and vertical pieces of smaller scantling. about four feet loner, should be pailed 10 them, on Which boards are nailed to cover the trons from the wnemy's fire; these boards should be at least threr inches thick. The flooring of the gallery is laid on the horizontal pieces, and holes are made througl it to fire on the enemy, or th throw grenades, stones. ett... on him. Any similar arrangement which will shelter a man, in the act of firing from a window on the foot of the wall, or in throwing over stones, ete., will serve the same purpose as a Machicoulis gallery. A table might casily be arranged to answer the end in view. The drawing shows a section of a Machicoutis. I) is a flooring joist : A is a horizontal support : B is a cross timber: and C is an upright in front. See Tambintr.

MACHINE-GUN.-1 gun designed to deliver against animate objects a strong, rapid. continuous and accurate fire of small projectiles at all ranges suited to infantry; to be served by the fewest possible number of men, and also to give a fire that may, in many cases, be as clfective as the discharge of canister from artillery. The conditions to be fulfilled in the construction of such guns are: simplieity and strength of mechanism; lightness; freedom from sensible recoil: endurance: and interchangeability of ammunition with that used by the troops generally. A variety of machine guns, having merits, will be foumb noticed under Battery Guns. Prominent ibmong the American battery or machine guns are the Gratling, the Lomell, the (fierluer, and the Hotchkiss

Fig. 1.
The Gardner machine-qun, shown in Fig. 1.0 is an "xemedinely simple machinc, with al (apacily for rapid fire jerohably as great as is consistont with the reonomieal experiditure of ammunition. and its extreme lightness of construction makes it very easy io hamdie. Several forms of cartridge-dolders and feed-cases to feed cartridues to the (iardner sun have beren duved by Mr. Jarkhurst. In one of thase tha cartridges are beld by the bulleteme in a block, leaving the lianges expersed. The feed tulse or guide of the ernin recrives all the daneres in a block. The block is then pulled off. 'Ihe Lowedl machine grm, manufactured at loweli, Mass., tires a single harrel. formert.
but is provided with two, three, or more barrels which can be rapidly turned into position for firing as nue or another hecomes heated. The cartridges are hedd in fueding-tubes above the gun, and pass down the tuhes into the carrier-rolls. These are two cogged wheels placed side by side behind the barrel and on axes parallel with the barrel, the cogs abutting instead of intermeshing, and the space betworn the cous being just large enough to receive a cartridge. A planger carries the eartridge forward from this receptacle while the wheels are at rest, fires, and then withelraws the sliell, when a further rotation of the cog-wheels ejects the spent shell and brings another into line with the barrel. The gon is made with an aunomatic traversing mechanism whicla may be thrown into or out of gear, so that the clirection of fire may change slowly or rapidly over a sector of considerable extent in front of the sum, or the fire may be coufined to a single line of direction. The rapidity of fire for the 45 caliber is ahout 300 shots per minute.
The carriage, nsually employed in the United States, for the machine-gun is at wo-wheeled vehicle. drawn by two horses placed abreast ; the off horse works in shafts situated so as to nccupy the proper position; the carriage is guided by this horse, and lee supports the portion of the weight that is not horne by the axletree. The near horse is ridden hy the driver. When firing, the horses heing detached, the shafts scrve as a trail. The gum is momed over the center of the axletree on an iron bed formed of two plates, one of which moves over the other about a vertical axis, to give the desired horizontal training to the gnn. On each side of the gun is a box opening to the rear; the conterior is divided into spaces, cach of which carries a ferd-case. These bowes scrve also as seats for the gumers. Boxes of additional am. munition and tools and spare parts are carried in a compartment bencath the gun bed in rear of the axletree. Fig. 2 , on the opposite page, shows the form of light gun-carriage urod with the Lowell Battery-gum when making long marches over very rough country. It is a suitable pattern for all machine-gums. and is, of very simple construction.
The trials of machine-guns at Turin, Italy, commeneing October 10. 1883, and tabulated on page 241, will serve to show the wonderful phwers of these weapons.
MACKAYGUN.- 1 wrought iron gun dis. tinguished from the Whit worth and Lancaster guns by the following characteristies: The Whit worth has a hexagonal bore in a tube of homogeneons iron, strengthened with hoops forced on by hydranlic pressure; the Lancaster is without grooves, but the hore is oval; the Markay has numerous grooves, but the projectile does not, as in other guns, fit into them. its rotation being imparted by the rush of gases through the spiral groovesaround it. In every case the groove or oval takes one turn, or portion of a turn, within the grun.

MACKAY PROJECTILE. - The distinguishing feature of this projectile consists in the application and use of several diagomal grooves formed in the interior surface of the gun at a great angle, whichare to act as wiudage grooves so that the powler and gas passing down such gronves. emeireling the projectile. shall have a longer distance to travel than haf projortile, and also ranse the projectile to revolve round its longest axis at a high rotation as it passes down the gim. The projections are not allowed to enter or tit these grooves as in rifles. hat simply to pass duwn the sumoth surface in whirh the gronves are

MACKENZIE CUPOLA FURNACE.-This pattern of furmer is extensively used in working eamon metals, and in the fahrication of projectiles. The body of the cupola, which is oval in shape. consists of it
lining of fire-brick inclosed in a wrought-iron raisson, contracted at the top to form the stack, amd resting on a castiron botom phate, whid is smpported on iron pillars. The peculiarity of this cupola. as compared with others of the many varietion in use, exists only in the shape of the tuypre, or in the method employed for introlucing the blast, a contimnous air-chaniber inclosed between the cassen and a wrought-iron apron, which projects inward, ame in bated by a cast-iron riner, whicham casily be repaced when worn out. The tuyere itself is the stor beneath, through which the air, almitted to the chamber from the blast-pipers, ghases into the ("upola. The bottom is a cast-iron drop-door made in two linged parts, and supported, when closed, by a prop). This bottom is covered with a layer of sand, arranged witl a gentle slope towards the spout: the latter. through which the melted iron runs to the ladle, is of iron coated with tham, and painted with cokewash. The charging-door is situated at the rear of the furnace, and the stock is generalty lifted to it on an elevator. To charge the furnace most expeditiously shavings are placel in the bothom, then light wood, and cord-wood sawed into lengths of from ten to ciglateen inches, a part of it beings stond on end aromid the sides to protect them, and the whole bed being built up level. In this last respect care is used through all the subsequent stages of the eharging. On the top of the wool is placed the "stock," which, for a No. 8 furnace, convists of abwut 2,100 pounds of (Lathigh) lump conal. The fire is then

Fig. 2.
placed evenly on top: then alout 900 pounds of eqg or grate coal, followed by five tons of irm. This \because huilding up" of the charge can be continued as long as the material can be handed through the charging-door, the ordinary capacity of sucla a furnace as described being about fifteen tons. In clarging the iron. it is usual to first put in pieces of plate and light scrap iron to protect the lump coal from leing broken as the heavier portions of the charge are added. As soou as the eupola is
"charged" the blast is put on, and in about twenty minutes the iron is "d down," and ready to he drawn oif. Warned of this by the melted metal ". blowing" through the ". tap-hole," the melter closes it sccurely with a "bot" made of sand mixed with clay-wash; he has prepared in advance also a number of other "bods." which he uses for the same marpose wheneve it may be necessary whle drawing the metal. The "iod" is lightily attached to the end of an iron or wooden rod. and being shored
into the tapping-hole. sticks to it and closes it up. To "tap" the eupola, the melter shoves into the "hod" an iron bar with a square point, and enlarges the hole by turning the har around. The ladles into which the metal is run are lined with a mixture of molding sand and clay-wash, or with loam, and thoroughly dricd before heing used. When all the metel is drawn off, the cupola is "dumped" by removing the prop and allowing the doors to fall. The " "hmp" is then extinguished, and the picces of iron and fuel picked and sifted out. After each day's casting, the furnace has to be repaired by picking

ont the slay which has formed within, and by daubing witha mixture of clay and fire-sand the parts of the lining where the fire-briek has been burned out. Ahout once in six months the entire tire-brick lining hat to be replaced. Sce Coupoke Furnace, Foundry, aud Iron.

MACLED ARMOR.-Armor of the Middle Ages, composed of small lozenge-shaped plates of metal, sewed on a foundation of cloth or leather, and sometimes overlapping each other half way.

MACOMBER GUN.-A gun, the peculiarity of which consists in its stated extraordinary strength. The chamber for holding the powder and the breech of the gun are formed of dises of wrought iron, composed of three different qualities of the iron, the softest forming the center and the hardest the outer circumference of the dise, which are thoroughly welded together, leaving a hole in the center. After at sutticient number of these are prepared to form the gnn, they are roughly encine-turned to bring them to a uniform thickness. These discs arc then submitted to a process of " setting " by steel punches (each dise separately), by powerfnl blows of a steamhammer, beginning lightly, and increasing gradually until the soft and hard metal have been forced (in a cold state) from center to circumference to the point of endargement of the latter which commencement of the enlargement is proof that every portion of the dise mill bear its equal proportion of a future strain or concussion which it may be subjected to and which, in the use of gunpowder, cannot exceed the test thus supplied. After the discs are set, they are welded one at a time upon a mandrel; by the proces known to smiths as "jump welding." "Suhsequently, the mandrel upon which the dises were forged will be entirely takeu ont by the process of boring the gnn, leaving only the metal which has lieen subjected to the steam-hammer and punch. The breech of the gun is surrounded with steel rings, which are forced over it, in a cold state, by a powerful hydranlic press. The gas-cheek is Mr. Macomber's own invention. He uses Dyer and Sons' friction-primers, and makes use of the strongest jowder and of a fine grain; but he states that he would have no oljection to use gum-cotton. The weight of the gun is 12 ewt ., caliber $1 \frac{3}{4}$ inch, weight of shot 3 lbs., initial velocity about 2000 feet per second. The inventor states that at an clevation of 380 the shot attains the very remarkable range of $9 \frac{1}{4}$ miles.

MACROMETER.-An instrument by means of which the ranges of distant objects can he determined with rapidity and accuracy. It consists of two mirrors, disposed somewhat similarly to the mirrors of a marine sextant, the observations being taken much in the same way. One of the mirrors is movable, and is fixed to an arm on which the several distances, from 20 to 2,000 yards, are marked. The arm moves over a peculiar curve placed on a part of the instrument called the "fan." and indicating the distances answering to any given inclination of the mirror. The arm, moreover, is fitted with a slide so as to be capable of being set to any length of hase. and this base may cither be measureil hy a chain or may be paced, the slide being set to the line marked "yards" or "paces," as the case may be. The result is always given in yards. When it is required to make an observation, iwo men take up a position so as to form a triangle with the objuct, the distance of which it is desired to aseertain. One of the two observers, by means of an optical shuare. places himself so as to be at right angles with the distant objeet and the second observer, by whom the macrometer is used. From experiments made with this instrument, the distance of moviner objects has been ascertained with very great accuracy, and in the case of stationary ohjects the error has heen fomed to be less than 1 per cent. The notation of the instrument admits of the units being taken to represent chains and links; thus 835 would lee 8 chains and 35 links.

MADIGAN AMMUNITION-BOX.-These boxes, also adapted for use as a medicine or mess chests, are packed in pairs on either an aparejo or ordinary park-sadde. They medt all the requirements of aclive service and by means of them, troops in line of
batte or skirmishing may be quickly suppliced, amd are notobliged to lose valuable moments of time, while unparking, unserwing cowers, ate. Tha drawing shows the boxers packed on an atpate.jo, and the manner of naing them. Thecir construction is such that all or any purt of the comtente may here"moved, whenever degired for immodiate use, without miloading, slacking the lash-rope, or even latting the maimal carrying them. These are oertanly impurtant advantages in rase of asarprise or sudden atack won the pack-train, or the mexpereted tise eovery of the chemy; or, if used for molical or sub) sistence stores, and in case of sudden illness, or the

necessity of cating a meal under the various circumstances forbidding a halt. Many instances will doubtless recur to every ollicer or soldier of experience in field service, where disashers lave resulted from not having been able to quickly roplenish the supply of ammition.
The devies hy which this box is made available for sudden emerigencies, ure essentially thre in mumber, viz: Finst, and most important:-The anule castings or corner-lamds in the center of each side of the top of the box, cach of which has a diagoma) circular opening, or socket, for the lasis rope. Sec-ond:- The center partition, $1 \frac{1}{8}$ inches thick, on the top) of which is serewed a center strip, $2 \frac{1}{2}$ inches in width, with two lids hinged thereto, apioning from the ends. Thrad :- The sub-division of the interior of the box, by adjusiable partitions, into compartmerta, adapted in mumber and arrangement, to the mature of the contents, and shape and size of the packages. These compartments prevent the shaking or damaging of the packages ly the motion of the animal, which would occur with an ordinary box after being partially emptied: and permit the lond to be kept practically balanced ly taking out of each box, alternately all or part of the contents of one or more compartments-thus obviating any ne-

No upecinl ittinges or attachments (t) the ordinary aparejo or pack-wadde, are required; the boxesare remplote in themselvers anst in rase of emorgency may be pareked with very litele in the way of soltit
 of cinclues and a piere of rope will answer. The annmanition boxes in present nse in the [inited States are very unsuitable for parking; two beine too light for a proper lomd while there are awk ward ho handle, very diflicult to lash so as to be kept in place (on an nparcjo or pack-sadelle, and are liable to chafe and strain the animal's back.

MADRIERS. - lang blanks of broad wood, ised for supportmg the earth in mining, carrying on a sap, mitking colfers, caponicrs, gilleries, and for warions other purposes at a siege; also to eover the momll of petardsaftur they are lomded, and are tixed with the petards to the gates or other places designed to be forced open. Whon the planks are not strong enongh they are doubled with phates of iron.
MADRINA. - The a mimalpreceding a tronp of mules, nswally an ohe mare, in south Amorica, to the meek of whelta little bell is attaclact, the sound of wheh the mules follow with the greatest decility.

If sereral latge troops ares turned into one ficld to graze, in the morning the muleteer has only to lead the madrinas a little apart, and tinkle their hells, and although there may be 200 or 300 mule together, conch immediately knows its own bell, and separates itsilf from the rest. 'lhe affection of these animals for thejr malrina saves intinite trouble. It is nearly impossible to lose an old mule ; for, if detained sevcral hours by forec, she will, by the power of smell, like a dog, track out her companions, or rather the madrimat for, acording to the muleteer, slae is the chicf object of affection. The ferling, however is not of an individual mature; for any animal with a bell will serve as a madrina.
MAGAZINE.-In a literal sense, any place where stores are kept; but as a military expression a magazine always mesus a poneder-megozine, although arms may at times be kept in in. A magazine nayy br a depot where vast quantities of gunpowder are hedd in reserve, an entrepost for the supply of several advanced works, a hattery magazine for the wants of a fortress duringa sicge, or mercly an expense magazine for the daily reguirements of the sperial battery in whicla it may be sithated The last is usnally temporary, and hollowed out in the back of the rampart ; but the other forms require most careful structure. They most be bomb-proof, and therefore necessitate very thick walls; they must be guite frce from damp: and they should admit sufficient daylight to render the use of lanterns within generally unnecessary. The drawing shows cross sections of fascine, copper, and grabion magazines. Magazines

cessity for monding, or touching a rope duringthe march other than the usual adjustment of the lasis ropre. $13 y$ filling only a portion of the compartments, when the jatekages are musually heary or when the animal is not in good condition, the weight of the load may be adapted to the circumstances of the case, without danger of rattling. shakings, or breaking the parkages; for hard hread or other stores of light weight. the boxes may be made larger, if desired: or if necasary. four boxes of the usual size can be packed on one animal.
are commonly built of brick, the solid masonry being arched over within, and a thickness of earth sometimes added above the brick-work to insure impermability toshells. The entrance is protected by shot-proof traverses, lest an opening slowld be forced by ricochet shots. Within. the magazime is divided into hins or compartments, and one of the he should always be kept empty in order that the barrels of powder may frequently be moved from one place to another, a process necessary to keep it in good condition. The battery magazine commonl
contains 500 rounds for the guns dependent on it. Depot magazines should, wheu possible, be limited to 1000 harrels of powder.

In 1870-71, the German Army Corps had supply trains generally attached to the divisions of each corps; these fistributed food to the troops-they earried 4 days' rations for meu. Then they lade a certain number of supply wagons, containing food for meu and horses for six days; these kept in rear of the corps. and could commnnicate with the magazines. When traveliag by rail, the troops were fed at certain stations, or took in their food at these stations. The whole management of supply appears to have been admirably carried out, and, when so performed, it considerably facilitates operations. The subject of the formation and position of magazines is one of such vast importance that military men will do well to study the listory of past campaigus, when they will observe-to take only one example-how Nipoleon, in the Wars of the Republic, was careful to accumulate vast magazines and tokeep his communicutions open, notwithstauding that his troops helped theuselves pretty freely off the comutry they invaded; nevertheless, no General ever realized more than he did the necessity of having accumulated supplies ready to fall back upon, and to keep his commmnication to the rear carefully guarded. See Lightning Conductors, Powder Ihepots, and Pucder Magazines.

MAGAZINE-GUN. - A breech-loading small-arm, having a magazine capable of holding a number of cartrilges which may be fired in quick successiouthe empty shell being ejected aud another cartridge conveved to the chamber from the uagazine by working the mechanism of the picce. There are several types. 1. Those in which the magaxine is a tube below the barrel, as in the Winclicster, the Ward-Burton, etc. 2. Those in which the magaziue is in the stock, as in the Spencer, Meigs, and others. 3. Those in which the magazine is a separate piece attachable to the gun when required, as in the Lee, Elliot, and Gatling gun. The following is a general classification of magizine-arms, founded on the method by which cartridges are fed from the magazine:
sity of providing troops with arms that will give every possible superiority of fire in battie. Rapility of discharge is certainly an essential element under all circumstances. Should equal detachments be opposed, there can be no cloubt but that the one able to fire ten effective shots per minute, each man, more than the other, wonld have a great advantage. lapidity of fire aloue can compensate for an inferiority in number of men engaged. In magazime or repeating arms, the cartridges are fed automatieally into the chamber of the barrel, by the manipulation of the breech mechanism. It is only necessary to elose the breeeh when the arm is ready to fire. This obviates the necessity of handling and charging each cartridge, besides preveuting the considerable loss of ammunition, occasioued by soldiers dropping cartridges while transferring from the ear-tridge-box to the arm, which, in the excitement of battle and rapid firing, are seldom recovered or saved. The principal objection offered to magazine guns, is that their nse causes a wasteful and unnecessary expeuditure of ammunition. The same argument was largely used, when only a few years ago, the merits of breech versus muzzle-loaders, were being discussed, and is as ueak nou as then. With officers and non-commissioned officers thoroughly impressed with the necessity of an economical and judicious use of ammunition, the question becomes one ouly of discipline and drill.

No valid reason can be given why, other essentials being equal, the same men should not aim as well, firing rapidly, as slowly sighting requires the same time whatever may be the time used in loading; and if increasing the time expeuded between the firing of one shot and sighting for the next, increases the effectiveness of the min, it follows, that to shoot accurately, a certain amount of time must be wasted in operations other than aiming the weapon-a theory that could hardly be sustained.

The drawings show the positions at "order arms," of cartridges contained in tubular magazine-guns, constructed with magazines under the barrel and in the butt-stock. All the cartridges are forced toward the breech mechauism by a spiral spring (as partly

The question of the comparatice merits of miga- shown in Λ), which spring must be of sufficient zine enns and single lureech-londers, for miliary surength to support the weight of the column of carpurposes, has lwen so ceshanstively discused by the tridges, and foree them into the reciver of the arm military anthorities of the word, that there wonld seem to be no longer any doubt regarding the necesans fast an rexuired, and of necessity it mast have very considerable stiffness or strength. The weight of a
colammof tive ordiary servier caririderes would be inte the receptacele helow, It is readily geren, then, about sevon onnees, at least four-lifthe of whirh that the nee of surb aspiral spring makes premature weight would in a tuhular matazince, rest fairly When the point of the bullut of the hast eurtridere and which bullet comes directly in rontuce with the priner itself of tha esartridge in ulvanes of
 turars remlize lise dilliconlty experienced in prepariner fulminate of mereury (used for primers), that will in bratical use. always have a miform tlegrec of sansitiveness. It ram be made so sensitive that the "xplosion not only jumeible, bat rory problable and there is 10 way to prevent it, exerpht by dincarding it, as
 of the Rabrellion, gans using the spiral spring have heen known to explote when the cavalry were ofs at marelh. (of conrse sucls arans ware discarded: but the same thing may happen to any arm of recent inven-
 spring in feceliner the cartridge intes the chamber.

A
13
Where the cartridges are fed from the butt-stock byy a spiral spring the bullet is liathle to strike the commer-bore of the tharral, making it notel in the butlet and rendering it useless for accurate work. When the cartringes are brought up hy a carrier on an ancrle the same thing will huppen- the counterbore of the barrel pither stops the bullet or cuts off a piece snfficiently large to make it impossible that its flight be accurate and make a good targat, becanse of its irregular shape made by such contact. It is well maderstood that a good shot, when using any of the marazin - runs in which the cartridges are felup by a spiral :pring, uses it as a single-loader;
and the reason is, that the bullet is generally so mutilated by striking the counter-bort, that its flight is not to be depended upon for aecuracy.

MAGISTRAL GALLERY.- I name frequently applied to the gallery immediately behind the countersearp wall, in contradistinction to the Emploping (fallery, which is parallel to the counterscarp gallery, and at some thirty or forty yards in advance of it. Sir Cuillery.

MAGISTRAL LINE. - The trace or outline of a work as the plan of its guiding or mogistral line. In field fortifications, this line is the interior crest line. In permanent fortifications, it is usually the line of the top of the escarp of each work.

MAGNA CHARTA. The great Clarter which was grantod by King John of England to the Barons, and las been viewed hy after-ages as the basis of English liberties. The oppressions and exactions of atyrannical and dastardly Sovereign called into exintence a Confederacy of the Barons or Temants-m-Chief of the C'rown, who took up arms for the redress of their grievances. Their demand was for the restoration of the laws of Heury l., laws which might probably be characterized as an engrafting of Norman Fendalism on the "ancient custom of Englant," or previously existing siaxon and Danish Free lnstitntions, in which "ancient custom" were comprelsended the laws of Elward the Confessor. A conference between the Sovereign and the Barons was lield at Rumnymede, near Windsor, a place where traties regarding the peace of the kingdom had often hefore been made. King and Barons encamped opposite each uther; and after several kays of debate, John signed and sealed the Charter with great solemnity. ou lune 15, 1215.

MAGNESIOM. - Althongh the discovery of the met al magnesium was made by Sir H. Davy in 1808. it was looked upon as little more than a chemical ruriosity for about half a century. In 1830 a French (rhemist,] Bussy, obtainet globnles of the metal by fusing globules of potassitum, in a glass tuhe, with amhydrous choride of magnesimm. Bussy's labors were followed by somewhat improved methods, adopted by Bunsen, and subsequently by Matthiessen, who succeeded in pressing some grains of the metal into wire. The first great aldvance was in 1856, when Deville and Caron effected the reduction of the pure chloride of magnesinm by mixing it with fused chloride of so limm in clay crucibles, using fluoride of calcium as a thrx, and throwing in fragments of solium ; they thus obtained magnesitum on a larger scale than any of theirpredecessors. The most important part of their investigations Was the discovery of the volatility of the metal. All these were, however, mere laboratory experiments. In 1859 Bunsen, of lleidelberg, and Roscoe (now of Manclsester), published a memoir on the great importance of magnesium for plrotographie purposes, owing to the high refrangibility and the great actinic power of the lignt emitted by burning mignesinm-wire. The study of this memoir led Mr. Sonstadt to consider whether, the magnesian salts being so abmadant, the metal might not lu obtained. on a comparatively large scalin, at a monderate price. After a prolonged scrics of expensive experiments he succurded, in 1862, in producing very satisfactory spocimens of the metal varying from alomet the size of a pin's lead to that of a han's eirg. Althongh it burned freely enough, it was still wantine in whetility anm malleability, in consequene of the presence of ecrain impuritios: hat hy May, 1863 , these ditlicultiss ware overeome by a proeeses of purifieation by distillation; and by the elose of that Vear he considered it safe to begin manuftoturing. "The Marnesinm Metal (ompany was consequently organized, and soon opmations commenced at Manrhester, where matgiesinm is now matle on a Very comvilerable stale, as well as by an Imerican Magnesian Company at l’oston. iond erreat melvantage of Sunstadtes method is its simplicity ; it

Cin be accomplished by the hands of ordinary workmen ignorant of all ciemical knowledge. The process of manufacture may be thus deseribed: 1. An anlaylrous chloride of magnesium is prepared by saturating lumps of rock-magnesia (carbonate of magnesia) with hydrochloric acid, and then evaporating the solution to dryness. 2. One part of metallic sodium cut in small pieces is placed in a iron crueible, and covered with five parts of the chloride. The crucible is covered, and heated to retness, when the chlorine laves the magnesiam and unites with the sodinm, for which it lias a stronger affinity. When the crucible las cooled, aud its contents are removed en musse, and broken, the masnesium-in that state known as crude magnesium-is seen in nuggets of various sizes, varying from granules to masses as large as a hen's egg. 3. The distillation of the cruble metal is effected in a crucible through which a tube ascents to within an inch of the litl. The tube opens at the hottom into an iron box, placed bencath the bars of the furmace, where, on the completion of the operation, magnesimm is found in the form of a heap of drippings, which may le melted and cast into ingots or any desired form. 'The difficulty of obtaining a metal with solittle ductility in the form of wire-the only form that was originally used for yielding lirht -had still to be overcome: and after various partially snecessful attempts to press small quantities into wire by Matthiessen and some other chemists, Mr. Mather, of Salford, devised a piece of machinery by which the metal is pressed into wire of various thickness. Mr. Mather also was the first who obtained the metal in ribbons, in which form, from the larger exposed surface, combustion takes place more completely. The apparatus for making the wire and ribbon is very ingenious. The chief feature of it is a small lollow cylinder, adapted to receive a ram at one end, and covered at the other by an iron sercen perforated with twoor more lioles opposite the chamber. This press. as the cyinder is calletl, is subjected to the action of gas from a blow-pipe, and the heat employed is only snfficient to soften the metal in the press. The pieces of magnesimm are thrust into the clamber, the ram is placed in the mouth of the press, and a pressure of between two aml three tons-obtained by hydraulic apparatus or by steamforces the ram agalinst the softened metal, and the latteroozes in continuous strings of wire thruagh the perforations already maned. To make ribbon, the wire thus ohtained is passed betwen two hollow heated rollers, and is received in a flattened state upon a reel. To Mr. Mather is also clae the credit of having constructed the first magnesinm lamp, in which the and of the wire or ribbon is presented to the llame of a spirit-lamp. A concave reflector sent the light forward, aind protected the eyes of the op)erator.

The first time that a photograph was taken by this light was at Manchester in the spring of 1864 , by Mr. brothers and Jr. Roscoe. That the matneximm light, in a more or bess modified form, must prove of extreme value to photograplyy, canost be called in question. Besides overcoming the ubstacle of unsuitable wouther for the rmployment of sunlight. it may be applied both for the exploration and the photography of various alim strnctures. malerground reirions, ete., such as the interior of the pyramits, of catacomba, natural caverns, ete. which coula mot otherwise be examined or photographed.
lts color approathes vary mach nearer daylight than that of the light from oils, comblles, or coath-gas. As compured witlithe sum, its luminous intensity is - $\frac{1}{2}$, lul its chemieal intonsity is an and this ligh actinic power makes it percially valuable for photographic purposes. Althonorli it does not mearly "qual the cloctric light ata an illuminaling arent, like it tha magnesitum light rives oll mo nosions vapors. But while it buras, white rlouds of the vapor of tuggesilam are formed whieh would be more or less

The Compass, Magnetism, Ponarity, etc. 1, Magnetic poles. 2, Magnetic rod (suspended). 3, Mag inagnetic polarity. \%. Magnetizing iron, 8,9 , Natmal magnet, with ammature. 10. Horse-shoe tion. 15. Apparatus for cleterminims the degree of declinatiou. 16. Magnetism of the terrestri variation of inclination, 2s to 21. Magnetometer, 2s, Magnetic variations or disturbauces.

4. Magnetic needles with marked poles. Magnetic staff, broken at rarious points, 6, Illustration of Maguet armature. 12. Action of a magnet at a distance. 13. Magnetization by friction. 14. DeclinaMap of declination, 15. Magnetic inclination, 19. Inclinatorium. 20, Map of inclination. 21. Diurnal
tronblesomt is privite romms. 'This objection is said to be to some ratobt ramoverl, without diminlshing the brilliancy of ; the lieht. ly alloyiner with zine; and at any rate it womad srareny at all interfore will its usi in large publire buildineres still less would it do so when thr liart js burned in llae opron air. Thers: is, howevar, not moll longe of the matrasinn light suroessfully compering with the electric light for the illumination of large builalines, striots, or even of ocean steamers. Recemt trials with the electrice light ut the British Musemm and ohler places have now proved fonachasively that wherever a great deal of light is repplired. \&as is beaten out of the tirld on the seore of economy. As resperets the maintomanco of an cqual ambentat of light, gats is twenty times more eostly, a dillierene e which will sperdily anorer the arigimal expense of the neocessary elecorical apparatus. "The magnesimm light, on the other hand, is murh more costly than gate; and althourla the oros which conlal he hised as a source of magnesimu are very abomelant, yet any probable chapuning of the process of extracting tha metal from thase is mot likwly to make the limpt a very eremomateal one. Silll, for anyo purpose whare. for a connparatively brief time, a very intonse lisht is repuired, matuesimm wire or ribhem has abont it almost the simplicity of a was taper ; nor are the lamps att all complex by which the metal may be burned for hours contimusasiy
'l'wo kinds of matimesium lamps are made. In one of these kinds, wire or thin riblon of the metal is coiled about a reed or bobleng. From this real the ribhon is drawn by means of two smatl rollers amd projected throngh a tube to the focus of a metallic reflector, where it passes throngh the thame of a spirit-lamp to insure its continuons combastion. These rollers are kept in motion cither by an operator thrning a small wheel, or in the more expensje forms by clock-work. In the other kind of hmat the mannesium is useal in the form of clust, which is mixel winl fine dry simel in the proportion of one of the former in two of the litter. This mixture is placed in a funnel-shapeed reservoir, and conducted. by meathe of a narrow fube provided with a stopcoek, to the flatnte of a spirit-lamp which serves to ignite and matintain the llame of tha powitred maghesium. If nitrate of strontial be substituted for sand. a splempid red lifht is produced, and in this way, by using other chemicals, various colors can be obtained. It was about the your 18ft that magnesinm was first made on a commor"ial seale, and it is found that the demand for it, although mot decerosinge, is soarcely at all extending. It is almost. wholly hased for burning in photographic lamps, for fash lights, and for fireworks. It has been attempted to make magnesium useful for other purposes. Various al loys have been made with it and other metals such as leat, tin, zime, cadminm, and silver; but they are all brittle anci liable to change. It is very donitful, therefore, if any of these alloys will hecome useful in the arts, and the metal itself is scarcely likely to be arailable in the construction of objects of ormament or utility, since, when exposed todamp, it snon becomes coated with a film of hydrate of magnesinm.

MAGNETISM. - The power which the magnet has to attract iron. Magnets are of two kinds, uaturel and rerificiet. Nathral magnets consist of the ore of iron called magnetic, familiarly known as loadstone. Artificial magnets are, for the most part, straight or bent hars of tompered steel, which have been magnet ized by the action of other magnets, or of the galtranie eurrent. The power of the manget to attract iron is by nomeans equal throurhont its length. If a smanll iron ball be suspended by a thread, and a magnet be passed along in front of it from one ent to the other. it is powerfmly attractel at the rends. but not at all in the middle, the margetic force increasing with the distance from the midtle of the hatr. The ends of the mannet where the attractive power is greatestare called its poles. By causing amagnetic needle mov-
 parts of a magnet plated virtionally, umd conating the mamber of vilorations, toverate of inerease of the matro netio intersity may le exactly fomme.

A matget has twor poles or cronters of matraretio forc\%, rach having ma rgual jow or of attrarting irone. 'lyis is the whly broperity, howrever, whir-ly they prossess in common, for whon the poles of oner matguet are mate to act on thense of another. a strik ing dissimilarity is brourht to ligho. It might lav
 thouglit that, by divicliner a magnet at its renter, the twa poles could bre inculated, tho war half containinir all tho north polar marnetism, and the other the sombla Whern this is done, however, loth hatver herome separate maty nets, with I wo pole-s in rall -tle oriqimednorthand -outh polos standing in the same relation to the other two poles called into $\times x$ istenco by the separation. He sun theregors cormintly revera lere one kind of morgne tism woithent lereing it ussariatrd in the same maturt with the sume amoment of the opponsite magnetism. It is this coouble monifestation of force which remstitutes the polarity of the mas-
 IIp : fixed position has lad to the theory that the carth itself is a huge magnet, having its north ant south magnctic poles in the neriphorrlaosel of the poles of the axis of rotation, and that the mannotic nevelle or suspended magnet turns to thern ats it does to those of a neirlaboring magnot. All the manifestations of terrestrial magnelism give decided confirmation of this theory. It is on this view that the leranch eall the north pole of the masnet the south polde (porle relatral), and the south the north pole (pule borétl); for if the earth be taken as the stamlard, its north magnetic pole must attract the somit pole of other magnets, and bice vorwr. In Vingland amd Germany the north pole of a magnet is the one which, when freely suspumbed, points to the nortl. and no reference is made to its relation to the magnetism of the eartl. All artificial magnets are either bar mage nets or else lorse-shoe magnets. (See Fir. 1.) Whan powerful magnets are to be made, several thin hars are placed side by side, with their poles loing in the same way. They end in a piece of iron, to which they are boumd by a brass screw or frame. Three or four of these may be put into the bumble, and all these again into bundles of three and four. Such a collection of magnets is called a magnetic magrazine or battery. A magnet of this kind is more powerful than a solid one of the same weight and size. bucanse thin bars can be more strongly and regnlarly magnctized than thiek ones. A goodform of magnet is a parallelopiped of matgnetic iron ore, with pieces of soft iron, honmd to its poles by a hrass frame cucircling the whole. The lower ends of the soft iron bars act as the poles, and support the armature. The magnetic needle is amall magnet nicely balanced on a fine point. When a short har of soft iron is sumpended from one end of a magnet it becomes for the time powerfully magnetic. It assumes a north and south pole, like a regular magnet. as may be seen hy using a small magnetic needle : and if its fower end be dipped into iron filnors, it attrocts them as a magnet would do. When it is taken aw:ay from the magnet the filings fall off, and all trace of magnetism disap. pears. It neel not be in actual contact to show matrbetic properties; when it is simply brouslat near. the same thing is seen, though to at less extent. If the inducing magnet bestrong enomah. the intureal matrnet, when in contact. can indure a bar like itself. placed at its extremity, to beoome a strong masnet: mat this second induced magnet may also transmit the magnetism to a third, and so on. the action being, however, weaker each time. If a steel bar
be nsed for this experment, a singular difference is observed in its action; it is only after some time that it begins to exhibit magnetie properties, and, when exhibited, they are feebler than in the soft iron bar. When the steel bar is removed, it does not part iustantly with its magnetism, as the soft iron bar, but retains it permanently. Steel, therefore, has a force which. in the first instance, resists the assumption of marnetism: and, when assumed, resists its withelrawal. This is called the coeveitive force. The harder the teniper of the steel, the more is the coercitive force developed in it. It is this force, also, in the loadstone, which enables it to retain its magnetism. The induetive action of terrestrial magnetism is a striking proof of the truth of the theory already referred to, that the earth itself is a very large magnet. When a steel rod is lield in a position parallel to the dipping-ncedle, ithbeeomes in the course of some time permanentiy nagnetic. The result is reached sooner when the har is rubhed with a piece of soft iron. A har of soft iron held in the same position is more powerfully but only temporarily affected, and when reversed, the poles are not reversed with the bar, but remain as before. If when so held it receive at its end a few sharp blows of a hammer, the maguetism is rendered pernanent, and now the poles are reversed when the bar is reversed. The torsion caused by the blows of the hammer appears to commnnicate to the bar a coercitive foree. We may understant from this how the tools in work-shops are gencrally magnetic. Whenever large masses of iron are stutionary for any length of time they are sure to give evidence of magnetization, and it is to the inductive action of the earth's poles acting through ages that the magnetism of the loadstone is to be attributed. Dlagnets, when freshly magnetized, are sometimes more powcrful than they afterwards become. In that case they gradnally fall off in strength till they reach a point at which theirstrength remains eonstant. This is called the point of saturation. If the magnet has not heen raised to this point, it will lose nothing after magnetization. We may ascertain whather a magnet is at saturation by magnetizing it with a more powerful magnet, and sceing whether it retains more magnetism than before. The saturation point depenels on the coercitive force of the magnet, and not on the power of the magnet with which it is rubbed. When a maquet is above saturation, it is soon reduced to it by repeatedly drawing away the armature from it. After reaching this point, magnets will keep the smme strength for years together if not sulijected to rough nsage. It is favorable for the preservation of magnets that they be provided with an armature or keeper. The power of a horseshoe magnet is usually tested hy the weight its armathre can bear without breaking away from the magnet. 1läcker gives the following formmla for this weight: $H^{r}=a \mathrm{v}^{3 / m^{2}}$; H^{r} is the clarge expressed in pounds; a, a constant to lee ascertained for a particular quality of steed; and me is the wright in pounds of the magnet. Smatl magnets, therefore, are stronger for their size than the laree ones. The reason of this may be thus explained: 'Two magnets of the same size and power, acting scparately, support twice the weight that one of them does; but if the two be joincel, so as to form one magnet, they do not sustain the double, for the two magnets being in colose proximity, act inductively on each other, and so lessen the conjoint power. Similarly, several magnets mate up into a battery lave not a Eorere proportionate to their momber. Coulomb discoverod, hy the osedlation of the magnotic newdle in the presence of magnets, that when magnets are wo placed that two adjuinuing poles may act on canh other. rithome the interfirenef of the "pposite poles, that is, when the magnets are large compared with the distance hotwon their conters, their attractioe ore repulaice forse zuries invorsely as the square of the distarece. Gamss proved from this theoretically, and
evhibited experimentally, that when the distance between the centers of two magnets is large compared with the size of the magnets, that is, orlen the action "f both poles comes into play, their action on erek whther caries inversely as the cube of the distance. When a magnet is heated to redness it loses permanently every trace of magnetism; iron, also, at a red lieat, ceases to be attracted by the magret. At temperatnres below red heat the magnet parts with some of its power, the loss increasing with the temperature. The temperatures at which other substances affected by the magnet lose their maguetism differ from that of iron. Cobalt remains magnetic at the highest temperatures, and niekel loses this property at $60^{\circ} \mathrm{F}$.

Electro-magnotiom inclurles all phenomena in which an electric enrrent produces magnetism. The most important result of this power of the current is the cleetromagnet. This consists (Fig. 1) generally of a ronnd bar of soft iron bent into the horse-shoe form, with an insulated wire coiled round its extremities. IVhen a current passes through the coil, the soft iron bar becomes instantly magnetic, and attracts the armature with a sharp click. When the eurrent is stopped, this power disapears as suddenly is it came. Electro-maguets far ontrival permanent magnets in strength. Small electro-magncts have been made by Jonle which support 3,500 times their own weight, a feat immeasurably superior to anything performed by steel magnets. When the enrrent is of moderate strength, and the iron core more than a third of an ineh in diameter, the magnetism induced is in proportion to the strength of the current and of the number "f turna in the com. When the bar is much thinner than one-third of an inch, a maximum is very soon reached beyond which any additional torns of the wire give no additional magnetism; and even when the core is thick, these turns must not be heaped on erach other, so as to place them beyond influencing the core. It follows from the above principle, that, in the horse-sloe magnet, where the inductive action in the armature must be taken into account, the areight which the magnet sustains is in proportion to the squerces of the strengths of the currents and to the squaries of the number of turnse of the vire. This maximum is in different magnets proportional to the area of section or to the square of the diameter of the core. The electro-magnet, from the ease with which it is made to assume or lay aside its magnetism, or to reverse its poles, is of the ptmost value in electrical and meelianieal contrivances. The action of the electro-magnet is quite in keeping with Im pere's theory, as the current of the coil. acting on the varions currents of the individual molecules, places them paralled to itself, in which condition the soft iron bar aets powerfully as a maguet. The direction of the current and the nature of the coil being known, the poles are easily determined by Ampere's rule. Buikers of magnetic engines take advantage of the facility with which the poles of an eleetro-magnet may be reversed, by which attractions and repulsions may be so arranged with another magnet as to produce a constant rotation. The forms in which they occur are exceedingly various. Fig. 2, shows a simple and common construetion, whereby at double-beam engine of much power is obtained. Powerful machines of this kind have been made with a view to supplant the stemmerngine; but such attempts, both in respeet of economy ind constaney, have proved nt1er failures.

Magncto-electricity inchutes all phemomena where magnetism gives rise to afectrieity. Vnder fuduction "f Electrir ("urorents it was stated that when a coil, in which a current circulates, is quickly phaced within another coil umonnected with it, a contrary inducul corrent in the outer eoil marks its entrance, and when it is withelrawn, a direct induecd earrent attende its witherawal. W"hile the primary coil remains stationary in the secondary coil, thomsh the current eontines to llow steadily in the primary, no
current is indmeed in the secondary wil. It is alsu in the latest form of the relertromagnetic marhine by shown, that if, while the primary coil is stationary, Grmmme, of laris. In it, instoand of at mind armature

Fig, : : of iron, a ring is employral on which is grast number of boblins of wire are: sct. Astonishing as wrove the ellerets produced hy Wifle's marlhine, hame rhtained from firamme's seen puite to velipes: them. In comparing two matgnetueleceric machines, wo mast take into aceront the kind of wire nued for the revolving arinature. For tono sion purposes, a thin and long wire givers the best results; for quantity or heating parposis. a whort and thick wire <lores hest. Tors compare at temsion with at !uantity armature, the sam, test "ven in the sume: machine wonld give most contralictory results. But comparing, so far as prissuible, machines intemterl for the same purpose Gramme serms to have the adsantage of all others. In the first place, the sperd of revelution seldom exceeds soo revolations
the strength of its current be incerased or diminish. ed, cuch ?ncrense and ljminution inluce oppositw currents in the secontary roil. Change, in fact, whether in the position or current strength of thi, primary eoil, intuces currents in the seconctary wil, and the intensity of the intucel current is in proportion to the amountand subterness of the change. In singular contirmation of Ampere's theory, a permanent bar-magret may he sulstituted for thre primary coil in these expriments, and the same results ohtained with greater intensity. When a har-magnet is introduced into the secondary coil, at current is indicated, nod when it is witherawn a eurrent in at contrary direction is observed, and these ('urrents take place in the directions required ly Ampere's theory. A change of position of the magnert is marken by a current, as in the former case. If we had the means of increasing or lesseming the magnetism of the bar, currents would be induced the same as those ohtained ly strengtheoing or weakening the current in the primary coil. It is this indurtive power of from at the noment that a change takes place in its magnetism, that forms the hasis of magnetorectric machincs. Of late years quite a new era has arisen in the construction of magneto-ctectric machines. The compactness, simplicity of construction, anct marvelons power which the new machines prosisis. give them quite a novel importance in practical electricity. The names chicfly associated with the new improvements are Widde of Manchester, Siemens and Wheatstone, and Gramme of Paris. Mr. II. Wilde. in 1866. patented a magneto-electric machine. founted on the priaciple that a current on a magnet indefinitely weak cen be made to induec ue current or a megnet of indefinite strength. I Wilde's machine $1 \frac{1}{2}$ ton in weight, measuring ahout 5 feet in length and height, and 20 inches in width. driven by a steamengine, produces a most brilliant electric light, aud exhibits the most astomishing of heating powers. Wheatstone and siemens gave a new interpretation to Wilde's principle.
The great drawback of all the forms of the machine is the cuormons velocity at which they rotate some 2,000 or more revolutions in the minute. At this speed a machine sonn wears itself out. Another disadvantare is the heating of the armatures in Wilde and Ladd's machive. Ferguson's has never been tried on a large scale. It is fomd necessary to keep the armatures cool by a flow of eold water. This heat, however removed, is manifestly a mere squadering of the energy of motion, and a loss to the current given off. A third objection is the loss that always takes phace when the side-springs change from the one ring to the other, sparks more or kess bright accompanying the clauge. For the clectric light.hnwever, the afternate currents are usech. and this source of loss isnot experienced. These defects are removed
pre minute; 300 is sullicient for most promones. A (iramme machine driven by the hame will melt 10 inches of an irn wire ${ }^{2}$ sf of and inch in dimeter, a frat not accomplished by any other arrangement. The electric light got by a B -horse-power ragine working a machine a ton in weirgt is cequal to upwards of $8,000 \mathrm{sperm}$ candes. A signal-light of this. kind has bern constructerl for the llonse of Lords, mater the superintentence of the minent engineer Comral W. Cooke, who has remedered no smaill service in perferting the machine. The carbons romsmocel last four hours, and when burned out are instantmeonsly replaced. A Gramme machine adaptd for electro-plating. aml worked by a 1 -horsepower engine, deposits nearly $2 \% ~ 0 \%$ of silver per hour. an achievenent far transcending the similar performance of other machines. Among the heating wonders of the Gramme machine we are told of a file hatf an inch in diameter le ing lurned up in 5 mimates, of 15 feet of Nor. 18 platimm wire being brought to a glowing heat, and of \& foct of iron wire . 0 :1. See Electrieity and Gelcanism.

MAhratta helmet.-An Indian (asque, hawing a long movable nose-piece of a singular shapes: a large mail hood which protects all the heat, and a neck-guard which descentes to the loins.
MAIDEN. - A name given to a machine for beheading criminals, which was in use in Scothand from ahout the middle of the 16 th? century to nearly the end of the 17th century: It is said to have been introduced into Scothand ley the Regent Morton. who had seen it at Jhalifan, in Yorkshire, and was himself the first to suffer by it. Whence the proverh. "He that invented the mailen first handselled it." Morton, for anything that is known to the contrary, may have introduced the mailen; but he certainly was not its tirst victim. Fifteen yrars before he was put to deall hy it (1581 A. D.) it was employed io behead Thomas Scott, of Cambusmichael, one of the murterers of Jizzio ($1560 \mathrm{~A} . \mathrm{D}$). It wonkt seem at tirst to have been called indifferently "The Maiden" and "The Widow"-both names, it may be conjuc'tured, having their origin in some such pleasantry as was glanced at by one of the maiden's hast victims, the Earl of Argyle (1681 A. D.). when he protested that it was "The sweetest madiden he had (ver kissed." A frightal instrument of punishment used in Germany in the Middle Ages was called " The Virgin." But it had no resemblauce to the maiden, which was exactly like the French guillotine. cxcept that it had no turning-plank on which to hind the criminal. The maiden which was nsed in the scottish capital is now in the Museum of the Antiquaries of Scolland at Edinburgh. The term maiden is also applied to a fortress which has never been taken.
MAIL.- A term signifying a metal net-work, and ordinarily applied to sueh when used as body hefen-
sive armor. Well-made mail formed an admirable defense against all weacous except fire-arms, and its pliability and comparative lightuess gave it favor over the more rumbrous plate-armor.

MAILLET.- A kind of mallet formerly used by the ${ }^{2}$ French in their engagements. The maillet wasused at the famous batte "Des Trente" in 1331. Under the reign of Charles VI. a Parisian mob forced the arscual, and took out a large quantity of mallets, with which they armed thenselves for the purpose of murdering the custom-house officers. The persons whonssembled on this oceasion were afterwards called Maillotins. In the days of Lonis XII. the English archers carriod mallets as offeusive weapons.

MAILLOTIN.-An old Frencliterm whicli signified an ancient weapon that was used to attack men who wore helmets and cuirasses. I faction in France was also distinguished by this appellation. See Maillt.

MAIN. - A term signifying first in size, rank, or importance. It has many useful compounds at tached to it, such as: Mrein body of an Army, the body of troops. other than those forming the advanced or rear guard. Nain guard, a body of men generally of the strength sufficient to guard a perwon or place from injury or attack. It remains on duty 24 hours before being retieved. Large forts or fortresses have a main guard chosen from the troops garrisoning them, under which guard all disturbers of petce. Arumkards. ete., areplaced, as well as all people who cammet by night give anaccount of tbemselves, or who do not know the parme. Main magazine, the principal magazine in a work or battery, in which there is more than one magazine. Main wonk, in fortification, the principal work as distinguished from the outworks.

MAINADE.-The French term for a body of maranders commanded by a chief.

MAIN-GAUCHE- 1 digger of Spanish origin especially used in duels in the 16th century. On one side of the hilt it has a guard, which is curved and carried up to the pommed in the form of a half shell; from the talon, or heel of the blade, on the opposite side. is a hollow indent, intended to hold the thumb. The weapon was held in the left hand, with the thamb above and the guard bedow : and it was used, while making an attack, with the sword beld in the right hand to ward off the blows or thrusts that the adversary might make with his sword. See Pennuted Dagger.

MAIN PIN.-A strong cylindrical bar passing vertically throngh a hole in the front bolster of the wagon body, and throngh one in a corresponding bodater in the fore carriage. The pull of the traces is conveyed from the fore carriage to the body solely through the muin-pin. This means of connection between fore earriage and body allows the former to turn horizontally independently of the latter.

MAIN-SPRING.-The spring in a gunlock whiel drives the hammur. see took.
MAINTENANCE. - The Cap of Maintenance, sometimed ealled ritp of hignity, a cap of erimson velvet limed with ermine. with two points turned to the back, originally maly worn by Dukes, but afterwards assigned to varions families of distinction. Those families who are entitled to a cap of maintenance blace their erests ou it instead of on a wreath. According to Sir. John texarue. "the wearing of the cap hatl a beginning from the Duke or (ienoral of an army, who, having gotten vietory, cansed the chiefest oftlo subduct comemes whom he led to follow him in his trimmph, beariag his hat or cap after him, in token of subjection and raptivity." Sost of the roigning Dukes of Cormany, and various familias belonging to the perarge both of bouglatnd and of seotland. Dear their crests ona cap) of matintemane

MAISON DU ROI.-"Th* King's llounchold. C'rrtain selece bodies of troopss were so callul daring the Monarchy of France. and consisten of tho Gurder-du-Corps, the Gendarmes, the Cheveux-legirs, the

Wousentaives, the rembarmorie, the Arenadiers is 'he crel.the regiments belonging to the Fremeltand the Swiss Guards, and the C'tht Suisses. The Maison-du-Roi was not considered a separate establislument from the rest of the Army until the reign of Lonis IV. This establishment was snecessively formed by different kings out of militia companies, which they took into their body-guard.

MAITRE D'ARMES, - I term in general jee among the French, signifying a Fencing Master. Every resiment has a Maitre d'Armes attached to it.

MAJESTY.- A title of honor now usually bestowed on Sovereigus. Among the Romans, Mijipstas was used to signify the power and dignity of the people; and the Senatorial. Consular, or Dielatorial Majesty was spoknon of, in consequence of these functionaric's deriving their power from the people. After the overthrow of the Republic, Majestas became exclusively the attribute of the Emperors, Dignitas being thenceforth that of the Majestrates. The Majestas of the Emperors of liome was suppased to descend to those of Germany as thejr suceessors; but the adoplion of the attribute by other Emropean Sovereigns is of comparatively late date. Its use began in England in the latter part of the reign of Henry Vlli., up to which time, "Your Grace" or "Your "Highness" had bern the appropriate mode of addressing the Sovereign. Henry 11. Was the first King of France who was similarly styled, and Louis XI. and his successors became cutitled, in virtue of a papal bull, to call themselves by the title of \cdot Most Christian Majesty:" Ferdinand and Isabella of Spain similarly obtained for thomselpes and their successors the title of "Most Catholic Majesty;" and Stephen, Duke of Ilungary, and Maria Theresa, of "Apostolic Majesty." The Emperor of Austria is now styled His Imperial Royal Majesty; in German. "K.K. (abbreviated for Kanserliche Konighehe) Majestat" Emperors, Kings, and Queens are now generally addrussed as "Your Majesty" not including the Sultan of Turkey, whose proper style is "Tour Highnoss." The Sorereign of the United Kingdom is personally addressed as "Your Majesty," and letters are atdressed to "The King's" or "Queen's".. Most Excellent Dajesty." In Meraldry, an eagle crowned and holding a sceptor, is blazoned as an "Eagle in his Majesty."

MAJOR.-1. An officer next in rank above a Captain and below a Lientenant-colonel. He is the lowest Field Ofticer. Since the reorganization of the English army, the Major is a selectedman, and his term of survice in this rank is for five years, after which, if not re-employed, he is put on halfpay. This does not relate to Majors of the artillery and engineers. The duties of it Jajor depend upon the nature of the service on which he is employed, In the line, whilst with his regiment, he has to sce to the drill and equipment of the men in conjunetion with the Adjutant. Being a Field Otticer, he is monnted on all parades and in action. In the artillory ind cugineers, the rank of Major has been recently reintrodured, and single batteries of artillery are now commanded by ofticers of this rank, instad of by a Ciptain, as hitherto. It was in the year 1827° that the rank of Major in the artillery was abolished, its tonders being made Licutenant-eolonels. It appears that this class of Field Officer did not cxist in the army motil the sevonternth century. 2. Useld aljectively, the word Mrijor, in the army significs a superior chass in a certain rank, as SurgeantsMajor, who are supurior Sergeants ; exerpt in the ease of Genoral (otlicers, in which is signifiention is arbitrarily limited to Major-general, the third of the fonm chasses of Gencrals.

MAJOR GENERAL.-The rank next below that of Lientenant-general, sud above Brigadier-gencral. Ife matally Commands a Division. it Major's come mand in peace lime in England is that of a District ; in ludia, a Division of the Army. A Brigarle of the army is properly a Major-gencrabl's command, Thus,
on service with a large army，a（domeral womld come
 vision，and a Major－general a lobigade．

MALABAR OUNS－Ileavy pieces of ormanee， which wore mate：in the Jahabar comatry，ame wore formed hy matas of iron bars joincel together with boops．＇They were very long and extromely un－ wioldy．

MALCHUS．－A sloort sword of ltalian origin，used
 lo $\%$ ．

MALINGERER．－A soldicr who feigns himself sick． Any soldier convicted of matineremg，foigning or prowhosing disease，or of intentionally protractines his cure or aggravating his disease is linhbe to be tried hy a Court－Martial for＂Conduct prejudicial to good orter and military diseipline＂and to sutfer the pom－ ishment attached to that ollense．Sce Feigning of liserise．
MALKIN－－Isponge with a jointed staff for cannons． MALLEABILITY．－Theproperty which certain met－ aly fossess of beiner redurible tolhinleaves，wither by hammering（hencetine corrapponding German word hämmerbarkeit）or by lamination between rollers．＂Tlae ordur in which the malleable netals exhibit this prop－ urty is as follows：gold，silver，copper，platinum， palladimm，iron，aluminiam，tin，zinc，lead．cadmi－ um，nickel，cobalt．（iold far surpasses all other met－ als in malleability，being capable of reduction into films not exereding the 200,000 th of an inclitin thick－ ness；and silver and coppermay be reduced to lanves of great temuity．Athough gold and silver also pre－ sent the property of eluctility in the highest degree， there is no constant relation hetween the two prop－ erties ；for example，iron，although it may be reduc－ ed to extromaly thin wire，is not bearly so malleable as gold，silver，or copper．

MALLET．- －wooden hammer．it is nsed for a varicty of purposes in the fiekd，such as driving pic－ kets，tent－pins，etc．The head is made of elm，and the helve of ash．Mallets vary in size and shaproand are made in ladia of babool or soondry wood．Mal． lets are also very generally used by mechanics，such as joiners and carpenters，conpers，tinmen，cte．

MALLET＇S MORTAR．－A monster mortar mamafac－ turcul some years ago by Mr．Mallett．It comsjsted at the lower end of in solid cast－iron breech，abutting on which were a series of wrought－iron boops，fol－ lowing each other in succession up to the muzale； these wore inserted into each other by rebntes，and were firmly secured by six iron staves，at cqual in－ tervals，about its surface，extending longitudinally the whole length of the mortar．The total weiglt of He mortar was 50 tons $13 \frac{1}{2}$ ewt．；the diameter of the shall ${ }^{2}$ feet，and its weight，when untilled， $26 \frac{1}{2}$ cwt．From the experiments made with this mortar， it appears that there was a tendency to separation between the trumions and the cascable，and con－ sequently there was reason to think that it never cond be employed on service．This piew of ord－ mance is mot in the service but a model of it may be seen in the lRoyal United Service Institution． Whbiteball．fomdon．

MALTA．－The most ancient and celebrated of Mil－ itary Orders is that of Saint Johnofferusutem，which owes its orisin to the Iospital of St．John，foumded in Jernsalem in the year 1048．It became in 1118 a Redigious Order of Finghthood，and from 1：30：the Knights were called Kinights Hospitallers of Rhodes， and from 1530 hnights of Mallu．The representative of this Order in England was the Prior of Clerken－ well，who had a seat in l＇arliament，and was styled the First Baron of Kingland．This Order is now al． most extinet，no Grand Master having been eleeted since 1805 ．The badge worn by all the knights is a Maltese cross，enamelled white and celged with gold． suspended to a back ribbon．Some members of this Order did duty during the war of $18.0-71$ with the sick and wounded，the order thus appropriately end－ ing，as it lad begun，in hospitals．

MALTESE CART．－A rast which rim be used with rither single or combledraught．＇The twoside pieres of the rart form the shafts，and are boltod awrosh and Hxlo－trece lral，and connected alsr，by a hind mar－bed， splinter－bar，and axis slats．The cart is formed of wool，mad is mapted for man draught．Its wejght is under 7 ewt．

MALTESE CROSS．A cross of right prints，of the form worn as th decoration by tha llospitallers and oblure Orilers of K nightloorl．

MAMELIERE－Armor for the breast，from which doperited two rbains，ond attacherl lo tho promenel， and the whber to the scoabhard of the sword．

MAMELUKES－MAMLOUKS－MEMLOOKS．－AnAr－ ubic word signifying slaver，thr name given in bigy fo to the slaves of the lobys．brought from the C＇ancon． siss，and who formed their armod Iorce．Whene （ionghis Khan desolated gront part of Asia in the Bish C＂entury，and carrimd away a multitude of the inhabitants for slaves，the Sultan of ligypt bought 12，000 of them，partly Dlingrelians and Teherkusoces， but mostly Turks，and formed them into at bory of troops．lint they soon found their own power so great that，in 1254，they mande one of their own mom－ ber Sultan of Egypt，founding the Iyyusty of the Baharites，whicli gave place to another Mamelake bymasty，that of the Borjites，in 1882．The Cunca－ slan elenent predominated in the tirst Iynasty，the Tartar elemont in the seromel．In general，they form－ ed able and energetic rulers，and Jirypt under thrir sway arrived at a degrce of prosperity and power to which she hat been a stranger from the datis of se－ sostris．Selim I．，who overthriw the Mancluke Kingdom in 151% ，was compedled to permit the con－ tinuance of the 24 Mameluke Buys as Governors of the I＇rovinces．This arrangement subsisted tial the midalle of the 18 th Century，when the mumber and wealth of the Mamelukes gave then such at prepon－ derance of power in Egy＂t that the bashanamad by the Porte was reducet to a merely nomina！ruler． The number of themscattered haronglant all Egypt was betwern 10,000 and 12,000 men．Their number Was kept up chietly by slaves brourht from the Can－ casus，from among whon the Beys and other Otti－ ecrs of State were exclusively chosen．Their last brilliant achievements were on the occasion of the French Invasion of Egypt，and during the time inn－ mediately following the retirement of the French． At this ime Murad Bey stood at their hoad．But in 1811 they were foully massacred by Mohnmmed Ali．afterwards Viceroy of Egypt．

MAMMOTH POWDER．－I variety of powderform－ ed by breaking up mill cake．Exact uniformity of size and shape of grains does not therefore exist． The average granulation is 85 to the pound．The diameters of the holes in the testing sieves are ． 55 inches and .90 inches．Sce trunponviler．

MANACLES．－Handeulfs or mippers for prisoners． The two pieces of metal are hinged togither，the upper portion of which is curved so as 10 fit the wrist，and the lower portion is straight except at a point near its outer end，whare it is slishtly bent．

MANBY SHOT．－M ithout entering upon adctatled description of the different plans proposch，from time to time，for establishing commmication be－ tween a stranded vessel and the shore，it will，per－ haps，be well to mention that Manby＂s＂ppatatus is not the only one which has been used for this pur－ pose．Kites have also been singested as a simple means of carrying a line from a wreck to the shore， and are mannfactured for this purpose lyy the＂Ship－ wrecked Mariners＇Socirty，London Bridge．＂The board of trate employed．to a great extent．until 186．5，Dennett＇s rockets，in preference to Manby＇s shot ；and therecan be no question that the balance of advantages inclines strongly to the side of the rockets．
In 1865 a rocket proposed by Colonel Boxer，R．A．， was adopted by the board of trade to supersede Den． nett＇s rocket，to whichit is preferred because－－1st．

The range of Colonel Boxer's rocket is little, if at all, inferior, and in every other respect it is mueh superior; ${ }_{2} \mathrm{~d}$. The combination of Mr . Dennett's two rockets is very objectionable, and from their velocity they frequently carry away the line, and sometimes both do not ignite. They are also donble the expense. These rockets are fast superseding Manby's shot at all stations, and the latter may shortly be expected to becone entirely obsolete.

There are two natures of Danly's shot in the service, the 24 -pounder oblong or "cylindrical," shown in the drawing, and the 6-pounder spherical shot. They are designated 24 -pounder and 6 -pounder, re-

spectively from their calibers, not from their weights. The 44 -pounder oblong or "cylindrical" Manby's shot, is a cast-iron cylindro-conoidal projectile, with a slightly rounded base, and about $1 \frac{1}{4}$ calibers in length. The" shot is drilled down its louger axis for the reception of a wrought-iron loht, which passes completely through the projectile from end to end, and projects about five inches leyond the base, terminating in an ere, to which is attached a plaited hide thong 2 fect in length. Four holes, for the reception of "fuses," are drilled into the shot at the base, equidistant from one another and from the center of the base, and slightly inclining inwards. These holes are conical in form, and are about the same diameter as the fuse-holes of the 13 and 10 inch mortar shells. They are about $3 \frac{1}{2}$ inches in length and are roughed in the interior to atford a better hold to the fuses. The hide thong, or "strop," whieh is fastened to the eye-bolt, is made of four strips of raw horso-lide doubled throngh the eye and tightly plait. od, the phat being further sceured ly heing stitelned in several places with hide. The end of the thong is formed into a loop which is tightly woolded with fine tarred spun-yarn. These projectiles weigh (with thomgr) about $80 \frac{1}{2}$ pounds.
The fi-pounder spharical Manhy's shot is rarely demanded, and is scarcely to beromsidered as a service jrojectile. It consists of a diaphragm shell fillecl with lead, and having an iron loop thed into it, to which is attached a thong similar to that of the oh-
long wrojectile. This shot is without fuse-holes. It weighs about 8 pounds.
The action of a ollong shot is as follows: The end of the line is made fast to the loop-hole of the thong, the rest of the line being carefully coiled "ither in a basket or upon the ground or cleck, and a fuse is placed in eaclu of the four loles made for the purpose. The froses being ancapred, the projectile is carefully placed in the piece with its base toward the muzzle, and upon the discharge of the piece earries out the line, one end of which heing retained, agood communication is thus established hetween the vessel and the shore. The use of the hide thong is to remove the line from the immediate flash of the discharge, and so prevent it from being hurned. The fuses serve, by the bright light which they give forth, to indicate the path of the shot and guide the firing party in laying the piece. The strength and direction of the wind must be considered in determining the direction to be given, the trajectory being affected by them to a very great extent, owing to the influence which the wind has upon the line. With deep-sea line, and with the ordinary charge of 12 ounces, the range varies from 400 yards downward, according to the strength and direction of the wind. The 6-pounder is used in the same way, with the exception that, having no fuses, the operation of fixing and uncapping them is dispensed with. These projectiles are manly used to establisha communication between the shore and a stranded vessel, but the principle is applicable to a variety of other purposes, etc.
The maximum charge for the 24 -pounder ohlong Manby's shot is ouly 12 onnees, giving, with 45° of elevation, a range from 400 yards downward, acerrling to the strength and direction of the wind. If a higher charge is used, the line is generally broken. See Life-waving Ruckets.

MANCH MAUNCH. - A frequent charge in English Heraldry, meant to represent a sleeve with long pendant ends, of the form worn by ladies in the reign of Itenry I. Or, a manch gules, has been for a long time the arms of the Ilastings family, one of whom was steward of the houshold to lienry I.
MANDARIN.-A term applied to Chinese officers of every gralle by foreigners. It is derived from the Portnguese munder, to command; the Chinese equivalent is fuch. There are nine ranks, each distinguished by a different-colored ball or button placed on the apex of the cap, by a peculiar emblazonry on the breast, and a different clasp of the girdle. The balls are ruby, coral, sapphire, a blue opaque stone, crystal, opaque white shell, worked gold, plain gold, and silver. Theoretically, these grades are indieative of relative merit, but as office and titles are sold to a great extent, the competitive examinations, which are the only legitimate road to distinction, have lost much of their value. A Mandarin is not allowed to hold office in his Native Province; the intention being to prevent intrigue, and to draw to Pekin the ambition and talent of the country, where temporary employment is given in subordinate offices, prior to appointments to the Provinces. He is not allowed to marry in the jurisdiction under lis control, nor own land in it, nor have a near relative, holding office under him; and he is seldom continued in otlice in the Station or Province for more than three years-a system of espionage which serves further to strengthen the Imperial Government. It is incumbent on every Provincial Otheer to report on the character and dualifications of all under him, which he periodically transmits to the Board of Civil Service; the points of character are arranged under six different lieads. viz., to those who are not diligent, the inefticient, the superficial, the untalented, superammated, and diseassed. According to the opinions given in this report, onferes are elevated or degraded so many step in the seale of merit, like hoys in a class. They are requred to accuse thenselves when remiss or guilty of crimo.
 outcr garment withoul slewes.

MANDREL. - An arbor or axis on which work is fomporarily placoid to beturncel. 'lhas arlour whith revolves inthe lomatstork of at lathe and ratrios the upper pullery und also the coluck or face-plate, if ond tre used. Traversing mandrelsare nsed in enmmede tion with lathos, and an driven by grariner from a
 forginge tuderota a rod used to jreserve the interior form of hollow-work.

MANEGE. - 'He art of hersemanshipo or of traming

 Mrnorye.

MANEUVER - I tirm from the lerench, vommomly writton moturnrer, and signifying "hanty-work, is somewhat vagudy usod in Enchlish dimiliary and
 openly 日jparent, of bodies of men or stutaderos of slaps, by which in 'momy is cocereed, or by which it iskonght to comped him to take some ("isurse adveren lo his interrets.

MANEUVERING WHEELS.-The e'cerentric truck-
 the undion to and from battery. When it becomes
 wheres are thrown ont of gear hy means of a hathelspike inserted in the surket attached to the embl of the axle-tree, and the carriagemoved on slinling friction. Whhen the gron is to be moverl into hattery, the wheds are thrown into ervar in at similar manmer, and the front al the carriage moves on rolline frice tion. In the 15 -inch earriage there are two pairs of maneuvering wherls one pair being placed in front and the other pairnear the rearend of the carriage.

MANEUVER MARCHES. Hardes made to gain a position, the possersion of which compeds the enemy to lawe tha position he is occupsing. When stich marches are mader tha ohsorvation of the enemy, they are termed. Matomores. An example of
 difinent corps of the jreneh Army in 1805, from the time they (rossed the lhime until they eroswed the banube, since by their execution, the Anstrian position at L'm was turnod amd was no longer tenable by the Austrian army. Seve Conerntrution Mumches, Marches and Tirtiril Morrbes.

MANEUVER OF HEAVY GUNS. - The intrudurtion of iron-clad vessels of war, and of harger camom using projectiles of wreaty increased pewer, has rendered it necessary that more complete protection for the gran and for the cammoniers shonld be provided than that furmished in the batteries of the present day. This want has brought forth at syam of Depressing Carriages, by which the gun, after locing tired, fo drawn below the paraped and there loaded. (Of these carriages the "Moncrieft" in Eurofe", and those known as the " King " and "Buttington," invinted in the [rited States, have met with the most favor, but the general alaptatibly for service of mone of them has yet been estahlished. The only plan proposed, with the view of oflering inereasaf jrotection in manemvering heary cumuon on the rarritges now in our service, is that of the late Coloned Benton, of the Ordnance Department. In this System the movements are ellected by teno chains or ropes, worked bÿa rindlosw placed within at casemate in the parapet or iu a traverse, between two guns,

The power being situated to the right of the gun. "rope No. 1 " passes from the windlass to a prilley in the axis of the platform, thenere to a palley at the left of the platform, back over a puldey attached to the fork of the left rear traverse wheel, up wer a pulley on the rear transon of the chassis. thence forward under a pulley at the front trinsom of the tope carringe, and the end of the rope is athached to at staple on the under side of the gum in frome of the 1 rumnions. "Rope No. 2 " groes from the windlass oves
a pullay athachocl to the fork of the rierlat rear trave

 nlication of forme to ${ }^{10}$ No. 1 " will alopress tha mu\%-

 spike ami prissing over a pulloy at thas upjere part of
 to plate tharar truck whrels. " in garai and allows the gim to rem "inte buttery" by the forcte of gravity, the wimlass lacinus out of erour.
 :o the pulley at the front of the fope carriake Dosement to the eft will then low acornithlished by " No. 1," the forer boing exerterl at the" palloy at ine left fork, mal to the rierht by "No. 2 ." whic閣 will exert its force at the right fork. To bund the gan, the mwo\%le is deprexsal bolow the parajet: the projoctiles
 veniontly transfarred to tha jiere on a corrotuge, whirh is worked by atope and pulley rmoning on ta movatile inclined tramw:y. A speteontel or élexropir. sjonge ame rammer must he usel, and the carriage: may he employed to fore the proderale leome. The ghunars, whilst loading, are protedod from shot and shedl by a piece of boiler plate set in the face of thw parapet. "Thes sights are placeal on the umberside of the gan as mear as convanient to the cheek. Thre clevation may be givan by̆ an are, a pointer bexing on the trumaios. The gun is monnted with the rotit domen, which emelnes it to be fired with the lestice exposure to the camonicrs. Each windlass js capahlas of maneuvering two ghns. Sce Mechenicul Dhate cimers.s.

MANEUVERS. - In ull (hanges of josition that de. mand a disturbance of the fundimeatal order of bantle of the mit, it is broken into its sulmivisions, which are placed in certain relative positions with resprect to rach other, necording to the object in view. These comblinations are termed manchers, and their chief object msinlly is to comange the direction of the front of the mit, areording to the particular exigency. Haneurers. like all the rest of the mechanism pertaining to the mit, shonld he stamped with simplicity and uniformity. The tactios of the present diny present, in this respect, a remarkable contrast to those of the period anterior to it; which is owing, in no small matsurs, to the little seope left for individual fancy ; every propusal being submitted to the formal examination of an enlightened board. Siage sereacles alone now occasionally furnish some notions of those whimsies of olden times; so happily hit off in the wedl-known artiche of Salmagandi, where the street-pump figuras as an almost impassable obstarle to the show soldier of that day. See Eivolutions.

MANGAN.-In ancient war machine The term Mungan was gemerally adopted to signify any species of warlike machime : but it more particularly moant the larges and most powerful mathine that could be used for warlike purposes-whether it was practieed to throw enormons stones against huserged places, or to cast javelins, cte. This machine answernd the double parpuse of defending or attackiong fortified places, and it was somotimes nse. it seat. Also written Mangon, and Mangomel. The Mangemel proper wits a very slrong and powerful croswobtof from 15 to 20 feet long, used for throwing arrows, darts orstones. The Trobuchet, Ribrulequin. etc.. were only a variety of the above.

MANGANESE.-A metal resembling irm in its colamical properties, and seddom if ever absent from catstiron. It is commonly found in iron orics aml the same operation which reduces the iron in the blatfurnace also rexluces the mangmese and this metal
hecomes alloyed or closely mixed with the melted iron. The influence exertid by the mangenese upon the character of the cast-iron is very decidend, tent. ing to the prodnetion of the white variety, the manganese diminishing the tendency of the carbon to separate in the form of graphite. White cast-iron, thercfore, is found to contain the largest proportion of manganese. The spathic iron ores yield it cast-iron containing a particularly large guantity of manganese, sometimes exeeeding one-tenth of the weight of the east-iron. Suel an iron is capable of containing upwards of one twenty-tifth of its weight of carbon in combination with it, and the compond thus formed chrystallizes in large andshining plates, whence it is named by the Germans Sipigeleisen, or mirrur-iron. It is largely employed in the manufacture of Bessemer steel. The presence of manganese in iron increases the flnidity of the slag, and eneomrages the paseage of phosplorus, sulphur and silicon into the slag, thus reflucing the proportion of those injurious impurities in the metal. Its most important property, however, consists in its affinity for oxygen, pre. venting the formation of oxides of iron. See íast-iron.

MANGE. - An infections disease which attacks horses when neglected. It results from the attacks of minute mites, or acari, which burrow in the skin, "specially if it be dirty or scurfy, cause much irritation, heat, and itching, and the eruption of minute pimples, with dryness, scurfiness, baldness, and even beaching of the skin. The treatment eonsists in destroying the oucuri and insuring the eleanliness and health of the skin, both of which ohjects are effeeted by washing the parts thoronghly every second day with soft soap and water, and dressing daily
ten persous, each termed a Manipulus. The velites were attached to these by equal portions. The cavalry were divided into ten troops, termed Turma. To (ach manipulus there were assigncel two centorions, and two file-closers: and to each turma two dernrions. The velites, although forming a part of the manipuli, had centurions assignet to them, to lead them in battle. The normal order of battle of the Romans. prior to the time of Marius, was in three lines; the hastati in the first; the principes in the second; the triarii in the third ; and the cavalry on the wings. The manipulus, which was the mint of force, was trawn up in 12 files, with a depth of 10 ranks, in the line of hastati and prineipes; in the line of triarii there were only 6 files. The right and left files of the manipulas were leel by a centurion, and elosed by an officer file-eloser. The manipuli of the three lines were disposed in quineunx order; the manipulus of one line opposite to the interval between the manipuli in the one in front, this being the same as the manipulns frome. The intervals between the lines were the same as the depth of each line. An interval of about 3 feet was left between the ranks and the files of the manipulus. The same order of battle was followed for the social troops on the wings. The two legions occupied the center ; but what interval was left between them, or between the center ant wings, or luw far the cavalry was posted from the infantry, is not well ascertained.

MANN GUN.- The breech meehanism of this gun belongs to that system in which the breeeh-block remaining stationary, the body of the gun is made to revolve upon its trunnions the necessary degree fo opeu and close the brecch. It may be generally des-

with sulphur or mild mercurial ointments, or witha solution containing four grains either of corrosive sublimate or arsenic to the ounce of watur. Castoroil seeds, bruised and steeped for twelve hours in buttermilk, are very suecessfully used by the native Indian farriers. Where the heat and itcling are great, a few drops of tincture of belladonna may be abled to the nsual fressing, or applied along with a little glycerine. Where the general health is indiffurent, as in chronie eases, the patient should be libcrally fed, kept clean and comfortable, have an oc(acional alturative dose of any simple saline medicine. such as niter or common salt, and a course of such tonies as iron or arsenic. Cleanliness and occasional washing and brusking maintain the skin in a healthy state, and thus prevent its becoming a suitable indus for the areri.
MANIFAIRE.-Armor covering the mane and neek of a horse.
MANIFESTO.-A public delaration issáded by a Sowerign Prince, or by a (iowrmment on some state enerrency, "xpressive of intentions, opinions, or of motives. Jmmediately before entering wia a war, a Manifesto is issued containing a slatement of the reasons which have been held to justify the sowerrign or Government in taking uparms. In case of a revolt, a Manifesto is sometimes issuct to recill subjects to their allegiance.

MANIGLIONS. -The two handles on the bate of a piecer of orinamere.

MANIPULARIS.-The ehief olliece in a Manipulues of the leman infantry. This oflice was likewise ordinary.

MANIPULUS. - In the tacties of the Jomans, ench class of the infantry of the line was subdivided into
cribed as consisting of a breech-block atached by straps to the trunnions, with suitable devices for securing, first, the reguisite closeness of contact with the breech of the ginn to produce the necessary revolution abont the trumnions. To describe more particularly: In the drawing, A represents the castiron body of the gun, re-inforced about the breech with forged-rings. B, of wrought iron, shrunk on. The mass of metal C D, closing the botton of the bore, consists of two pieces. The piece C, in front, constituting the breech-bloek proper, is loosely recesserl upon the piece () in rear, and has a slight play hack and forth, so as to admit of being puslied up in close contact with the breceln when the grun is prepared for firing. The means of probucing this movement in the block is furnished by the screw N, which, passing eentrally through the fixed breechpicee D-the latter leing hored and threaded to receive it-abuts against the rear fare of the movable block. The outer extremity of the screw is fitted with a weighted lever or hantle, having "lost motion" checkedl by a lug, M, attathed to the ciremmference of the serew shoulder. A point of support for the breech-alparatus is suphlied by the cle wating device. This ronsista of two serews of the same pitelh, one on elthar side on the brecel, connectal ly a worm-gearing and onerated by eranks which extend beyond the rarriagr. The rimbases are concontrie witl the trumions, but project suftieciently beyond the surface of the gun to acemonate the loops of the brecel-strape. In order toonen or close the breech, the raising or lowaring of the breefl of the gun is effected by means of a crank and pinion, erntared upon the side of each breeds-strap and working in a large-toothed segment, E, the eramk-
shaped axde G of which passes unter the gun and through a slotted lag, Fr, and thas eommanicates tha motion protueal by the arank to the brewth of the gin. The tised breedi-piece 1) and the straps are of wrought iron; the movable block C is of rist iron.
'The cun is rilleal with cheron lands and gronews, carll of copual width, and of a miform piteth of chu turn in 60 fect.
Width of hands and errowes,
Depth of gremes,
$1^{\prime \prime} .1550 \cdot 4$ $\left(0^{\prime \prime} .125\right.$
The chandmer is conecontrie will the leore, and of a dianeter slightly greater than that of the bore be1 ween gronves; its capardy is sulliciont to comatan an charge of 30 poumds of piowder amd at sho of 170 promds, the latter being inserted in the bore as far ass ite front bancl. 'The top of rach land is comereterl with the cylindrical surface of the chamber by it - suitable ramp or bevel. Thas gun is conter-fine Harough a vent in the brecelablock. This womt makew a turn at nearly right angles, so as to make its exit on top of the erin. He interior opening is flatemgh at sted dise. The gas-eherk (etesigncel by the inventor) ased in this grn is cup-shaped, and is piereat with a hole 10 admit the flame from the vent. It is necessary to remove this chark before and replate it after loading. Gas-checks of this patern, but of different alloys of eoppere tin, zine, and letel, were pmos pared with the view of determining the most suitable material. The projectile for this grm comsists of it cast-iron boaly, having at front and rear band of soft metal-lead and antimomy-cneirding it. The iron body of the projectile allows the ustal windage, bat the lead bands exceed slightly the dianeter of the bore, including grooves. The weiglat is from 150 to $1 \% 0$ pounds.
The gun is loaded as follows: 'The breerla-serew is loosened, and the camk-handles tumed until the gun, revolving on its rumaons, assumes a position in which the chamber is sullicimily exposed ahove that breech-black for the insertion of the pharge. The gas-check is then removed, and the projectile inserted by sliding it along the trongh T in the top of the lwofl-block, and pushing it forward mont tha front hand stops arainst the ritling. The charge then follows, the gas-check is replaced, and the crank reversed until the gun is restored in line with the breech-block; finally, the brecch-screw is tighatomed by means of a wo-hambled lever. The gm is momated on a $10-\mathrm{inch}$ carriage, wielened to acemmodate the increased length of the rimbuses, with suchother altorations as are reguired log the nature of the clo-vating-devices. The recoil-cheek is of the larrott friction clamp-patteru. The following are the principal dimensions:-
Exterior diameter of gum at muzzle. Maximmm diameter,
Diameter of trumbions,
Diameter of rimbases,
15.00 inclus.
10.00 threads,
8.50

Diameter of hore. 8.40
Diameter of chamber, S.100
Radias of breech, (trmuions to leretela) 51.25
Distance from trunnions to muzzle, !日. 5
Total length of gun, 144.00
Length of breech-strew, indurling
nut.
$2 \times .00$
Thackness of breech-straps, . . . 4.51
Depth of breech-straps at trumions, ?5.00
Depth of breech-straps at breech-
block,
di.00
Depth of breech-strap) : at middle point.
11.00

Length of chamber, including ramp, $\quad 24.00$
Total length of bore. 144.00
Number of grooves, 11
Depth of grooves, 0.12. inch.
Width of grooves and lands,
Pitch uniform; one turn in,
1.185: tinches

60 feet.

Total longethof gion overall,
178.50 inches.

Total wrinlat of guan,

Gre Gorducture.

MANOMETER. I'rojurly un instrmmerit for mefas nring the rarity of the air or of other gasus; lat the
 inticating the clatict frofe of gases which is always invoracly jumportionall to thojr rarity. 'Tho anveral kimen of larometers ure really manometers, and to is the steam-ghage of 4 stanhainginc.

Fig. 1.

$11: .8$

Fi!̣. 3.

The various forms of manomoter may be clasefified mader three latadu: 1 , the aperatior manometer, on the princeipal of the laroneter: : 2. the eontine d-itir masmater, on the principle of Marioten's instrument; and 3, the metallic-spring manometer. A wimple openair manometer consists of a glass tube, open at both
 the bottom of wheh comtand merchary. The tabe passes throngh it tight packing box in the neck. In the upper part of the bottle there is an orifice which admits eompressed air, acted apon by steam or vabur, whose tension it is ilesired to measure. But this furm cannot be used for high pressures. Thn mul-tiple-bandeh manometer is a monditication of the simple open insimment, and is constracted by bendiuer a long tube, "pern at bothe conds, in a series of V-shaped flexures of from 20 to 40 inches in height, the mmber of thexures heproling upon the pressure the instrmnent in liable to be subjected to. Columms of mercury of equal height, being placed in the lower halive of the V-shaped leas, will indicate the presshare rexited at one end of the thbe. by the shm of the exceste of height of the mereurial colnmms in altorate leose or by multiplying the excees of height in one lere by the number of lars containing sueh excos. Ther sestem is fastened to a board or metallic plate, which at one side. near the last branch, is furnished with at gractuated scalce. The compressed-air manomecter is simply a strong V-shaped tube elosed at one cond. Whibe at the other is attached the pipe commmicating wilh the gas or bapor whose teusion it is desired to imensure or ascertain. A portion of the flexure of the 1 contains mereury, aud the space between it and the closed end is filled with common air. Now, according to Boytes or Mariotte's law, a pressure excercd on the colum of mercury sutlicischt to force the atir into half the space it oceupies at the mormal atmonpheric presure, must beome doubled, or 15 th s. to the siquare inch mast be added. Arain, to comprese the air into half the remaning space. 30 lbs., or doulble the pressure required for the reduction to the first half, must be added, mak-
ing in all al pressure of four atmospheres for the reduction to onc-fourth the original volmme. It is. avident. therefore, that a grathated scale, to cxhibit the degrees of pressure must lave its spaces dearease from bolow mowards. The graduation is accomplishod hy me:ns of an open-itir multiple mamometer. The metallic-spring manonseter consists of am index trawersing ingraduater are, and laving applided to a wripe comected with it-which may be in the form of a spiral-il piston actuated hy the forese of the was on yapor in the boiler or steam-rhamber. Fir. 1 represemts the common open manometer ; Fig. 2 is a compound open mammeter: and Fig. 3 the dillerential manometer. The latter is uscest to register sery small differences in pressure. It consisto of a bent glass tube. placed pripht and having al " lindrical buib and a stor-cock on mallarm. Wow bulb and both tuhes, as far as zero of the scale, are filled with a mixture of alleohol and water. The other loulb and the remaining part of the corresponding tulse are tillet with a colored oil, of exactly the same specific erravity as the former mixture. A very slight ditierence in pressure is thas strikingly shown.

MANOMETRE A POUDRE. - An apparatus, designel by M. N. Korshunofi, of Paris, and embonlving an application of the reverach hydranlic press to the mansurement of powder pressures in gunnery. For the conversion of unwieldy weights and strains into amonnts conveniently measurable, the inversion of the prineiple of the hydranlic press possesses the
but i, graplice record of the juressures, durine the passarge of the projectile throngh the bore, is Traceed in a moving band of paper. Thw apparatus is suitable for resolving the following pronkms: 1. Tos determine the force of expansion of powder, thas permitting the comparision of pewelers diflering in their chemical composition and form. : To Thtermine what is the best charge for a given caliner. according to the nature and guality of the powder. 3. Ton ikformine the different pressures of the gases in the bore durine the departure of the projectile. and thas to decide mon the best dimensions for : camon according to its charge and the nature and weight of its projectiles.
lieferring to the drawing. we may make the following desrription of paris: "- A rylinder carrying a scerew plag, which serves watach the apmaratur to the breech of the gun. b-Cover of the rylinder. s - Shect of phatimum forming the cylinderat its upper portion. d-Nut* securing the cover of the erinder. e-Tubes for the escape of the gases which may be abuer the fittings. f - Tery thin wapsule of platium, inserted in a central aperture of the "ylinder, fitting into the ammar comelures. with which the wall oll the aperture is furnishet. and chinched upon the lower fate of the cover. gA small button resting on the capsule, actuating the spring l, and having it fork for the support of tho lever h. h-Steel lever hinged at the priat v, and carrying at its extremity y, a pin for rasing anuther

same adyantages of compactmess and simplicity that lever k. h-Steel lever hinged at the peint i, and

work giving motionto the larese toonhert-where whirds
 compresing evinuter, which effects the unrolling of

 of the eylinder. L Screw clowing tha orition which
 the eapsule f, as wedl as between the cover and the shate of phatinumas.
('alling P'the presture unoma mith of surface (ax rrised by the gasis of the powder; show surfare of the pinton rereving direct persum of the gaws; s the surface transmiting the pressure to the lignit ; p the resulting presume nomen an of ourtare of the liquid, we shall lave:

$$
p=\frac{\rho_{k}}{n}
$$

It is evielem from this formmat that the value of p can be reduced to any dreirable smount by varyine the ratio of the surfaces that is tosely, hy increasing Sor diminishing s.

Let us assume exerual to a rireld of om,006 din-

 to the seguare centimetre.

$6.500 \mathrm{k} \times 0.191035$

$p=-$ - or 16 fk . 25 jer stuare (4.11i78.54
metre. It beromes evident that the immense prese sure of the gases of the pow der that manifets itsilf by n greathy reduced and jeefortly measurable juressure: moneover, the spae trabersed by the pistom is, in cllert, almost nothing; the volume of liquid Which penetrates into the capsale, sulposing that Wme gint in contaet with the button rises one millimetre, will bedulatent in volume to a cone hatring for hase at circle of atont athom diancter and Imm in lecight ; so that

Thes surface s of the piston undar the sheret of plat-

104.22
for the alove dieplacement of volume will the-
78.54
or 0. mom 018; that is to say, a trifle over one bumdreth of a millimetre.

The apparatus is fixed upon the breeth of the cannon, in a hole taped for the purpose, commonicating with the interios of the piece by an aperture of Whe same diancter as the piston x. The juresisure of the powder gases acts upon the biston 8 , amel diantributes itsedf by the surface os upen the sheot of platimum, which transmits it to the liquid rontained in the capsube f. This presume canses the nper purtion of the capusule to rise in a epherical lorm, raises, by this movement, the button g, which raises in its turn the lever h, thus making it lescribe an are of a cirele about the point r. In order to serify the pressurcs of the curve, it is necessary that, for
it is neresesary, at a previons experiment, to arrance
 phere of the cylinder. Thin tulur, tilleal with ligutid,
 box, traveracel by is sicm, buen which graduatoris

 peint, should press agnell the Ham, amal fhemble be
 sive Wrights comespentimer to the pressure whith it is (fraired to rexrerises unem the piston.

Each pressure hoing maintaincol for an instant, the pencil I races daring that time : harizontal line indicatines the hatirht which correspenats to that pres. sure. Thesedillorentheights, when commared, with
 dariner the departure of the prejectile at is combensphatcol that in all the alowe mentioned \times xleriments
 Which shall moutralize the elfert of recoil; suche, for
 parathe max however, be emplone $\}$ for the following

 plications it winl be desirable to increase the diancher of the pistom a. and to diminioh that of the pis. tons. The shaed of blatimm maty be replaceel hy a diaphragm of guta-perchat, thas reducing the cunt of the machine, amd, in fact, the relockwork. The: paper and the bencil may he omitted, thoir blace being supplied by an index moving upen il dial-phate, as is rejresentel in the drawing of the hydranlio: mamometre.

MANTA. - 1 water-jroof manas, five fert sprare
 in transit, (luring damy and ramy wather: and is used for the shelter of the stores and the patkere. whan in camus.
MANTEAU.-A term, literally signifying a choak, hat frequmtly nsed among the French to expresthe cow ring thai hassars or hight hufantry carry for the double burperse of whebling thatir bexties from the inclemeneics of the weather in ont jonste, otco, and for spreading over their heals, hey means of poke, when they orcasionally balt, and take a position. The
 during the fifteenth amd wistomla centurios.

MANTILLIS.- A kind of shich1, ancicontly tixed upon thes tope of shaje as a cover lor aredurs.

MANTLE.- 1 lons fiowing rube, worn in the Vialdie Ages owerthe armor, and fatencel hy a tibula in front, os at the right shombler. Whe mantle is an important gart of the oflicial insignia of the varions orders of knighthood. Latdies of rank wore similar mantles, in many instances deceraled with heraldif: charges, in which "ace the mantle borm of her the imphed arms of the lady imm her hashamd of her hanband's arms omsy. ínmber of eximples may be. seen in mommental calligies.
MANTLET,- I shiede phacel ower the month of an embrasure to prevent masketry bullets and frawments of shells from flying throrgh and injuring

Fig. 1.

Fly. 2.
reference, horizontal lines be previonsly traced by those serving the piece. A hole in the lower part the peneil under e'flerent pressures, eachmantained ablows the muzale of the pheer to puss through into, constant for a fleterminate time. For this purpose the embrasure when it is to be fired. The size of
these openings will depend upon the dimensions of the piece. Rope is the best material for constructing mantlets. The usual size of a mantlet is 5 feet high, 4.5 feet across, and 4 inches thick. For siege guns the npening is 1.6 fect high by 1.3 feet across. Threeinch rope is a suitable size, it is lajd in three or five thicknesses. each of the two outer layers being in one piece bent vertically.

The imner layers are bent and laid horizontally, and the whole well tied together. The mantlet is hung on a horizontal pole supported by forked uprights set in the ground, on each side of the emhrasure, at the foot of the interior slope, as shown in Fig. 1.
The elasticity thus afforded by the supports greatly increases the jesistamee of the mantlet. A smail hole or slit is pierced in the mantlet to allow the piece to be aimed.
Mantlets of this size weigh about 400 pounds.
A small ring mantlet of rope, shown in Fig. $\stackrel{\sim}{\text {, }}$ plared upon the chase of the gun is sometimes insed.

When rope cammot be obtained. one of similar shape may be made of wood.
Jiantlets may be made of wood or of iron, or of wood and iron combined. Those of the latter kinl furnished for the siege of Yorktown were made of two thicknessess of $\frac{1}{4}-$ inch wrought-iron spiked to 3 inch oak plank. On the head was a 2 -inch square iron bar riveted to the edge of the iron plates, against which the oak planks abutted. The ends of this har projected 6 inches, and were rounded, serving as supports to rest upon upright stakes or timbers standing against the interior slope of the parapet. See (run-xheltur.

MANTLING. - 1 heraldic ornament dejicter as hanging down from the helmet, and behind the escutchenn. It is considered to represent either the cointise, an ornamental scarf which passed round the body, and over the shoulder: or the military mantle, or robe of estate. When intended for the cointise, it is cut into irregnlar strips and curls of the most capricious forms. whose comtortions are supposed to indicate that it has been torn into that ragged condition in the field
of bactle. When the mantling is treated as a rolue of estate, the bearings of the shicld are sometimes embroidered on it. A mantling adjusted so as to form a backgronnd for the shield and its accessories, constitules an Achievement of Arms. It is not till the later end of the 14 th century that the mantling appears as a heraldic ornament on seals. In British Heraldry, the mantling of the Sovereign is of golel lined with ermine: that of Peers, of crimson velvet lined with ermine. Knights and gendemen have generally crimson velvet lined with white satin; but sometimes the livery colors are adopted instead, as is generally the practice in Continental Herahdry. See Lambrequin.
MANSLAUGHTER. - The unlawful killing of another without malice, express or implied. Manslaughter is either moluntary, i. e., where there was an intent to commit the injury; or involuntary, where there was no such intent. It differs from murder in its absence of malice, and, as it is supposed to be committed in hot blood, no person can be an accessory before the fact. Among cases of homicide which constitute a manslaughter may be mentioned killing a person by gross negligence, though in the discharge of a lawful act : killing a person who has given great provocation; and killing an officer acting without or beyond his authority, though this may also be excusable homicide. The killing of an ufficer acting within his legal authority is murder. The provocation above-mentioned mist be immediate, not remote : and though proof of provocation sutficiently repels the presumption of matice which the law attaches to every case of homicide, it is not sufticient to lower an offense from murder to wanslaughter, if express malice be made out. In most of the United states manslanghter is divided into different degrees, punished with longer or shorter terms of imprisonment.

MANUAL.- A prescribed exercise by means of which soldiers are taught to handle and use their weapons. The Minual of Arms, the Manual of the Piect, the Jranual of the Sirord, etc., are explained in detail in the Tactics and Regulations of an army.
MANUAL OF ARMS. - An exercise with the musket

1

2

3

5

6

7

4

8

9
or rifle, through which reorıits are drilled, to give them a froe uso of their limbs, and of the weapon rogarded merely as a pike it renuprises the first conrse of instruetion nfter the rille has been phated in the learner's lamds.

In the Unitmed States surviere, the piorere is in the rieht hand: the lurrel marly fortionl, and resting in the hollow of the shouldere, the ganal to the front: the arm hamging nearly at its fall longlh, uear the bady, thethomb and forefinger embracing the ghard, the remmining tingers alosed logather ant graspiner the stock just mutier the hammer, which reats on the litto finger. 'This is the pesition of curry armen, the josition is representer in lig. 1.

Recruits often lave clefeectio in the conformation of the shoulders, breast, and hipse On dirst bearing arms they are liable to arange their positions. by lowering the right shoulder and the right lamel, in by sinking the hip and spreating the abows. The linstrator endeavors to correct thesw fanlts, so that the position of the pireces in the same line may be uniform, without const raint to the men.

The Instructor sces that the pirce at a carry is noither too high nor too low; if,too hierla, the right elhow will spreat nut, the soldier will oceupy too moch space in his rank and the piacre he unstenty; if too low, the files will he too mmele chosed, the soldur will not have ronm emourg to handle his prise with ease, the right arm will become fatigucd, and will draw down the shoulder.
cruits prorrosaively, after lureoning familiar with humbling the piorere. As thre motiens rolative to the cart rider", the tixing and monfing of the hayonet, can-
 a miforan swiftnoss, they are not subjecotod tos the cas-
 fions to lue cexeroted with prombletmes ant] with ro-

 nately with and witlont the humbrese in order tor atain tho proper caldonce, and to luefonme proforet in tha mochanisho. Tho pioce is hahitually carried at half-corck.
Tonvoid ropetition the following ralag in the Wan1an of Aras nre of neral:

1. In resuming the "carry" fromany pusition in thes mamma, thr motion next lo the last romelarles with tho loft hand at the height of the shombelor. linerorsex-
 basck of the lamal to the front. the albow roses to the bonly, the right latme embracing the gruard witla the thumb and forctinerer.
2. In all positions of the left hand at the lower band, exacept charge boyonut athd arms pert, the thambs is extemed alourg the barrel, the end of it tourbing the lower band. In rherge beyomut anal armes porte the thomb clusps the picce immerdialely loolow the lower band.
3. In all positions of the pieres in fromt of there ern ter of the body, the barrel is to the rear, and vertical.

The Manual of Arms is taught to fourmen. placed at first in one rank, elbow to elbow, and afterwards in two ranks. To make the mechanism letter known, the execution of eall command is divided into motions. The rate or swiftuess of each motion in the mannal of arms, with the exceptions herein indicated, is fixed at the ninetieth part of a minute. The same intersal of time should separate the eommand of excention from the preparatory command. The Instructor at first looks more particularly to the exeention of the motions without requiring a nice observance of the cadence, to which he brings the re-

The drawings show the various positions of the sol. dier and piece in executing the 3analal of Arms, anthorized for the C'nited Stites Army. Sce - 1 im. 1 imis Port, Cierry Irms, Charge Bayoniet. Fix Bayonte, Lorat. Onder Arme, Parade Rest. Present irms, Reat on Arms. Recerse Arm.. Right shumbler Armis. Siecure -18 ms . Sumpart Irms, Truil atrms, and C'ufix Baymet.

MANUAL OF THE PIECE.-The term picce, as here used. applies to cannou, whether gun, howitzer, or mortar. As a matter of convenience, it is also used to designate both cannon and carriage when the can-
non is mommted. The men ('mployed in the service of artillery are calleat artillervmen. Those for a single pieer comstitute a gnonfletuchment, and vary in number with the size and kind of pieed. The detarhment is composed of two non-eommissioned otheers, and from two to ten privates. The senior non-commissionerl officer is called chief-of-detuchment; the other grmmet. The privates are called cennumfers. The detarhment is formed in donble rank, and told off from the right as follows: No. 1 is an the right of the rear ramk; No. : 2 in front of No. 1 ; Nro. 3 on the left of No. 1; No. 4 on the left of No. 2 ; the othar umburs follow in the same order, even mombers in the front, odil in the rear rank. When, by facing abont. the front becomes the rear rank, the numbers of the cannomeers do not change.

The survice of the piece consists of all the operations required in loatling, pointing, and disclarging it.

To avoid repetitions, the following general rales are noted collectively:

1. The implements and equipments required for a picce are taken to it by the detachment when going to the exerrises, or they may be placed there previons to that time. They are removed, at the conclusion of the exercises, hy the same means, and returned to their proper places in the store-louse. It is the especial duty of the chief-of-detachment to see that all that appertains to his piece is complete and in grood srder.
2. When the equipments are distributed, the gonner buckles the strap of his pouch aromml his waist, wearing the pondl in such position as to inferfere as little as possible with his movements. The camonerer Who wears it, buckles on the primer-poucls in like manner. The gunner removes the bent-cover, and clears the vent with the priming-wire. Cartridgeponches are carried suspended from the left shomeler to the right side.

In sponging or in ramming, the knee on the side toward which the effort is mate is always bent, the ather straightened. The weight of the body is added, as much as possilile, to the eflort exerted by the arms. When the sponge fits sotightly as to be ditlicult to move in the bore. Nos. 1 and 2 may use both lands in inserting amd withdrawingit. Camridges are inserted into the bore bottom foremost and seams to the sides. All projectiles having fuses are inserted into the bore so that the fuse shall be towards the mazzle.
4. A primer is prepared for insertion in the bent by holding it hetween the thumb and forefinger of the left hand: the lanyard, wound upon its handle, is held in the right hand, the loosk by the thumb and forefinger : the hook is attached by passing it upward through the eye of the primer; the hook and primer, thus attached, are held by the thombsad forefinger of the right land ; the primer is pushed into the went by the thmmb. After the primer has been insarted in thes vent, the caunouece who tires the piece drops the handle. allowing the lanyard to uncoil as he steps back to the busition from which he is tofira: holde the hantle, with the corl slighty stretched, bassing betwern tha midele fingers of his rierh hand, lack up, and breaks to his left and rear a funl pace with the left finot, the left liand hatnging naturally loy his side.
5. In aiming erms and howil\%ers, the grance places the breech sight in itssuat or sonket, and aims thromgh it ; wives the proner direction hy ransiug the trail to be mownl, commanding bot or right, lippuns, at the stane time, on the rioght side of the breerels for the trail to be moved to the Jeft, ant on the Jeft side for it to be moxad to the right. "1"he atmmoncers at the trat will elosely ohaerve the motions of the gumacr. With mortars, the ermmer signals, with his hamds, the direedion in which ho wislaes the carriace nuored. Whan the pieqo is promede the gmaner ratise bents hamds ats at signal! the cammemers moving the pioce then unbar and resimuc- theil posts.
(9. It the command fire, the eamoneter who dis.
charges the piece turns his face from it, pulls the lamyard quickly, but steadily, and tires. Immediatdy after the discharge he resumes the erect position, rewinds the lansard poon its handle, returns it to his ponch, and resumes his post. The gumeer, after pointing, goes where le can olswre the effect of the shot; when he resumes his pinst. At the command, ctase firiug, pieces that are loaded remain so umtil further orders; those that are partly loaded-if with the cartridge only-the cartridge is rammed home ; if the projectile has been inserterd, it likewise is rammed home. In botly cases the priming-wire is left in the vent, as an indiration that the piece is loaderl. If the piece is not loaded it is sponged ont. All the cannoncers resume their posts.
7. The habitual post of the chief-of-cletachment is facing the piece and two yards in rear of the plat form or rearmost part of the carriage. He has, under the instruetor, or offiece immediately over hinn, general supervision of all duties performed by his detacliment. During firings lae looks after the supply of ammunition, and sces that those engaged in preparing and serving it to the piece perform their duties properly. All anmmation must be prepared for firing at the service magazine. Projectiles shonla be carefnlly cleaned of all rust, dirt, or protuberances liable to cause them to stick, or injure the bore.
8. In the service of a battery of severil picces, the pieces are desiguated Nos. $1,2,3$, etc., from right to left : these numbers are independent of the perminenent numbers assigned to piects in a work. In directing the pieces to be fired, they are always designated by their lattery mumbers: as, Tumberone-Fike ; Itmonber tiro-Fire, etc. Whhen the wind comes from the right, the firing should commence on the left, and reciprotally. [inder the fire of the enemy, the men are directed to cover themselves by the parapet or traberses as much as may be consistent with the execntion of their cluties.
9. Previous to procceding with any exercise with the piecess, and frequently at other times during the exereises, the instructor,assisted hy the other ofticers, will explain to the men the monenclature of everything appertaining thereto ; the application and use of the various parts, machines and implements used; the names and use of the different parts of the work adjacent to the picere: the kinds of ammmition used; charges of powder ; kincls of fire; and, generally, all matters that assist in making the men etticient artillerists.
10. In aiming, first get a clear view of the olject, and see that the piece is approximately in the line of fire before looking through the sights, and if the objert be not in the line, instantly give the command to move the trail to the right or laft. Ilwaty aim quickly, as the eye will not then become wearicd. The prop apone which the sponge and rammer are sup)ported is a low trestle, or simply a block of wood sutheienty higl to prewent the sponge taking up dirt from the gromed. The rammer is alwas's lad on the side nearest the pice. To prevent the projectile from starting forward, guns should he givem at least dive (legrees elavation previous to being rum into battery, and rmming intobittory shomla be done so as to prevent suldan jar against the harters.
11. In all excreises for instruction, dutios shonld be performed as nearly an possible as in actatl service, and not by pretense only. 'To do this, in ther service of the pince a dammy earlridge should be used, togrother with actual projertiles. 'The cartridge may tee mate of fanvas or stout rrmmy-saleling filled to the proper waight with coal broken to the size of the powder nsed for the pince. I worms sirves for withdrawing the cartridge. A strong lanyard athtarded to the fuse-plug will serve to withdraw the मrojectik. 'Tha froc end of the lany:ad remains out of the mazale is the projertile is phished home. Soe 1rillery.
MANUAL OF THE PISTOL.-- Todraw the pistol the [nstructor commanals: 1. Diaw ; 2. Pisiol. At
 with the right hand. and ervasp the stork, the back
 draw and ratiar the platol, Nor hamd lablinge the stock with tha thombaml last three lineras, the furctinera wer the grand. gratiol to the front. harre? vortionl. Whow near the borly, the wrist as high as the right shombler and six inches in frome of it.

 nesessaty) : grasp the stock with the right lamd.

- (artriderasanses, take at artrialen from the arartidgebos with the right hand, and hohd it mar the chambor botwern the thamb and rirst two fingers.

 -hamber, carry the right hand to the stock, and resilme the position of mise pristel.

It tha rommanald Reany, cock tha pistal with the llamb of the right himed. To Ars, Jower lae juistol to the Front, He arme about thror-fourths ixtended, foretinarer tupon the triperer: fosi the
 press the forctinger aganst the irigger fire amal 1ake lbe position of mise pistub 'To ruturn pistol. the instructor commandes: 1. liotirn, \&. P'rscol. Drop the muzale, insirt the pistol in the lonktor hard of the hamel to the body: button the tlaps, athe drop the hame by the sithe.

The squad being in the position of raise pistol. He inseructor rommenals: 1. Inspertiom, :2. prstol, pasiow along the rank. and examines the pistols. To inspere the pistol minutuly, he takers it in his hamds, and then revurns it io the recruit, who graspe it at Hhe stock abel takes the position uf raise piatul.
MANUAL OF THE SABER. Tho manual of the salher is tanght in the following order, and hy the following commands: 1. /Pruen, ©. Sabers. At the command drete. whook the sabier with the thamb and first two dingars ol the left hand, thmmb on the mad of the hook, fingers lifting the upper ring : pass the right hand through the saber-knot, amd push the sliding loop upto the wrist with the lofthamd: wrasp the seabbard with the lift hand at the upleer band, bring the hilt a lithle forward, seize the eriye with the right land. and draw the blate six indoce ront of the sobbbard, pressing tho scabhard agatist the thigh with the left hanel, figy. I. It the command sether. Hraw the saber puickly, raising the arm to its full ce tent, at an ancle of alhout forly-five decreces, thes sabur in at staght line with the arns, and make a slight

panse: hook up the scabharil with the thumb and first fwo fingers of the loft hanel, thmabl throush the mper ring. fingers supporting it: and drop the left hand by the side: at the same time brine the back of the lidade against the bollow of the shonlder,

Whe hlarde werlical, the arm mearly extobituret, the Jeft
 Ifre little timerer on the latrek of the ariju. Thien in the

 vertically 10 the front, raining if hami at high sts

 "l"wos.) 'TArn thre wrict ontwart (o) show How oflarer siche of the blacle the ellage th the right: anake it

 at the same inus manouk and lowar thererahbard with

 tumb sis inclues from the left shondeler: lower the blater ant] [ass it across and alosper the loft arma, the puin to the rear ; turn thre hame slightly to the left,

 leathrn the hlathe, and fros the wrise from the salere knot; turn the leead (o) the front and drej) the right
 salacr with the left hand. \{urning lla sabor oow ard the borly. ertaral to the rear, amb drop the left hamd by lar side.

MANUAL OF THE SWORD. - Tho Mantal of the Sworl in the lonited siates Army, is as follows: 1.
 the ehord with the thmmb and tirsl two tingers of the Jrft hamel, thumb on the end of the hook, tincrots liftintr the bupar ring : qrasp the soabbart with the left haml at the milum lanm, bring the bilt a litilo fore Ward, sciza the gripe with tho right hamd, and drow the blate six imeles ont of the scabbart, pro-siner the scabbarel agranst the thigh with the left hamel. At the command serme, draw the sword quickly, racing the arm do its full extent, at an ange of aborit forly-five dearees, the sword in a stramptit line with
 s(obhard quickly will the thamb and tirse two fingers of the left hand. thumb through the upper ring, fingerss supporting it , and atops the left hand h, y tlie side: at the ssmm time bring tho bark of the blade arainst the shombler, the blade ferticull, batk of the Ir it pe to the rear. Hos arm nowly evencleth, the thomb: and forefinger cmbraciner the eripu* the heft side of the gripe witls the thmmb, arainct the thigh, tha nther timerers extemetrel and joined in rear of the gripe. This is the poxition bof curry smomel. Otherers momited mbook the sworil lwfore mountiner. amt, in the first mution of dravernord. rearls with the right hand over the bridlehamal, ame withons tha aid of the bridle-latnd traw the swors ats bofere: the riotht hand in the merry rests on the right thish. Whath the sworl-kuot is worn, the riglat wrist mas be placeal in it in the tiret motion, hefore erracpinis the wripe. 1. Ireant. .2. Swomd. At therommmand mesent. carry the sworl vertioally, amel bromplly to the front, raising the hamel is ligh as the wedi and six inclaes in front of it, the thmmb on the batek of the gripe back of the gripe to the right, illoww elose to Hre boty. It the eommand siromt. atrop the proint of the sword ly extending that arm. so that fler richt haud may be hroueht to the side of the girnt thigh, the latek of the hand down, the blate inclining downward aud to the front.
 the first motion of the sallute at the commatme proswe ut, the second motion at the conmmand erme. "The -word is returned to the corry at the command. 1. (inerg, D. Aras. When arms are orveted. the cothicersand bon-tommissjonted staff droptle point of Their swords, the batc of the hamd invarialbly up. It morctife rost. thes (lasp) tha hamals directly in front of the inntre of the body the luft hand wjpermost, the point of the sword betworl the fece.

In marching in double time, the sword is carried diagonally across the breast, edge to the front, the point in front of and at the height of the left shoulder; the left hand steaties the cabburd. At funeral ceremonies, the sword is reversed under the risht arm, the left hand chasping the biade behind the back. When the escort rests on arma, the oftleers stand at parade rest, inclining the head. Ohlicers on all duties under arms, draw and return sword without wating for any command. All commands to soldiers under arms are given with the sword drawn. In route marches the sword is carried in the scobbard. The non-commissioned statif and sergeants with swords drawn salnte by the first motion of met sfatsarom, as explanimed for othecrs. This position is taken at inspection, and the wrist turned outward to show the flat of the sword townd the face. 1. Return, 2. Sword. At the command return, take the position of the first motion of present sicord; at the same time unhook and lower the scabbard with the left hand, and grasp it at the upper laind. At the command strond, carry the right hand opposite and six inches from the left shonlder: lower the blade and pass it across and along The left arm, the point to the rear ; turn the head slightly to the left, fixing the eycs on the grening of the scabbard, and insert the blade six inches in the scabbard, (Two.) Return the blade.free the wrist from the saber-knot (if inserted in it), turn the lezit to the front, and drop the right hand hy the side; at the same time hook up the sword with the left hand, turning the sword toward the body, the guarel to the rear, and drop the left hand by the side. Ofticers mounted return swords without using the left hand: the swort is hooked up on dismonnting

MANUBALLISTE.- A cross-bow. There weretwo kinds nsed in the reign of Ilenry Vill. viz., the lutch which was used for quarrels and the prodd for bullets.

MAP.- I map is a delineation, on a plame, of some portion of the surface of a splere, celestial or terrestrial, on whicli the objects intended to be shown are traced, whether stars or towns, mountains, etc. Terrestrial maps are termed geographical. when they refer to the land: and hydrographical maps, or charts, when they delineate the shores of the seat. A perfect representation of a country, with all its parts in trne proportions and relative positions, may be made on a grobe: but since the surface of the earth is spherical, it is not possible so to delineate any large portion of it on a plane as to retain these properties. Hence geographers resort to different methods of representation called projections, which are of two kinds-cither real perspectives from diflerent points of view, or approximate developments. The five principal projections are-the orthographic, the stereograplic, the globular, the conical, and the eytindrical, or Mercator's In the first of these, the flat surface on which the map is drawn is supposed to pass through the center of the earth, and according to the clistance of the eye, the projection is cither of the first, second, or third kind. In the orthengaphic. the eye is assmmed to be at an intinite distance from the center of the carth, so that all rays of light proceed. ing from every point in its surface are parallel and perpendicalar. From the nature of this projection, it is evident that while the contral parts of the hemisphere are ahmost arcurately represented, towards the rireumferche the conntries are crowded together and diminished in size. On this account it is of little nse for areographical, thougl of consitlerable value for astronumical purposes. In the stereograption, the: ereor point of projection is assumed to be placed on the surface of the sphare opposite the ones to be delimeated. If the globe were tramsparent, the eye would then see the opposite concare surface. Comtrary to the orthograjbise this method contractes the centor of the map, and cnlarges it lowards the circumference. Owing to the uncrial areat of the divisions, and the dilliculty of tinting the truc latitud.
and longitude of places, this projection is not much employed. In order to rectify the opposite effects of the two preceding, the globular projection, a modification of the two, is generally adopted. If we, suppose the eye to be removed from the surface to it distance equal to the sine of 45° of the circnmscrib)ing circle, the projection is called globular. In other words, if the diameter of the sphere be 200 parts, it must be produced 60 of these parts in order 10 give the point of projection. All meridians and parallels in this projection are in reality elliptical curves, but as they approach so nearly to being circular arcs they are very rarely shown otherwise.

Fig. 1.-Globular, or Equidistant Projection of a Hemisphere.
The construction of the globular or equidistant projection is as follows (Fig. 1). Describe a circle NESW, to represent a meridian, ad draw two diameters, NCS and WCE. perpendicnar to each other, the one for a central meridian, the other for the equat tor. Then N ind S will represeut the north and south poles. Divide cach of the quadrants into 9 equal parts, and each of the radii CN, CE, and C also in 9 egtaial parts. Prodnce NS both ways, and find on it the centers of circles which will pass throngh the three points 80×80. $70 y \% 0$, etc., and these ares described on both sides of the equator will be the parallels of latitude. In like manner, ind on ITE produced, the centers of circles which must passthrongh a, b, c, and the poles. Having selected the first meridian, number the others successfully to the east and west of it. A map in this way may be constructed on the rational horizon of any jhare. The impossibility of getting a perfect representation of special parts of the sphere by any of the previons methods, led to the desire for others less defective. Of all solid bodies whose surfaces can be accurately developed or rolled out upon a plane without alteration, îhe cone and cylinder approach nearest to the character of the sphere. A portion of the splucre between two parallels not far distant from eachother, corresponds very exactly with a like conical zone; whence it is that conical developments make the best projections for special geographical maps,and "ven with some modifications for large portions of the globe.

Since all meridians on the globe wre great circles passing through the polis, the north and south points at any places corrospond with the poles of the carth. The east and wist points, however, are indicated by a line at right anglos to the meridian, and do not, cxeept it the equitor, correspond with those of the carth. In all the projections litherto deseribed, the direction either of the northand south, or of the fast and west points, is represented by a eurved line, so that on sush a map the conrse of a rissel wonld almost always le latid down in a curve, which cond only be described by continually laying off from the meridian a line at an angle equal to that made with the meridian hy the point of the compass at which the ship was saling. If the vessel were to steer in a direct N. E. conrse by one of the previous
projections, sace would, if land did not intervence, Unereribe as spiral romme and altimately arrive at the north pole; therefore, the marimer rapuires a chart which will cmahto him to ster his course by compass in strathe linesonly; 'llois valable instrument is supplied hy Mremoters chats. in whith ath the meridians are stratigh lines mopendiculare to the equator, and all the barathols straight 'inces purallel

Fis. © - Mercator's I'rojection.

to the ergator. It is constructol ats follows (Fig. 2): A lina AB is drawn of the reduired length for the 'quater. This line is divided into 湤, 24, or 18 "phal parta, for meridians at 100°, 15°, or 20° apart, sand the moridians are then successively drawn throngh these points perpendicular to AB. From at table of meridimal parts (atable of the mamber of minutes of a degree of Jomitude at the equator comprised between that and cery paralled or latitude up tos so $)$, take the distanees of the parallels and of the trop iocs and aretie circles from the equator, amel mark themoff to the north and south of it. Join these pointsand the projection is made. Thisprojection, of comerse, docs not aud is not intented to give a natural representation of the carth, its effect heing to exargerate the polar regions immensely. The distortion in the form of countries and relativedirection of places, is rectitied by the degrees of latitude beius made to incrase proporionably to those of bongitude. This is the only map which gives an mbroken view of the whole surface of the earth. The torm map is specially applied to representations of land, or lancl and witer together; while that of chert is limited to the coast and water surface only, showing currents, rocks, anchorage, light-louses, harhors, soundiags, and other objects of importance.

A gengraphical map proper is a gemeral map of the world, or of a large extent of country. A topographical map differs from it in being limited in area, and much more detailed. The ordnance surves of Britain is a good example of a topographical map. Besides purcly geographical and topographical maps. others are constructed for special purposes, which may be physical, political or rivil, military, statistical, historical, ete. In order to construct a mapand to determine accurately the positions of phaces on it, a knowledge of two elements is essential-viz.. latitude or distance from the equator, and longitute or distance east or west of the meridian adopted. Every map, whatever its dimensions, is in some beffinite relation to the actual size of the globe. This relation is indicated by a scale - a graduated line showing, by its divisions, the number of miles corresponding to any space measured on the map. The sealt's of geographical maps range from about 800 m . 10 an inch (for maps of quarters of the globe) to 10 miles to an inch; those of topographical maps range from 1 :nch to 25 inches to a mile. the largest topographical maps we have, admitting of the most minute details. The
ordnance survey of (ireat liritain is on the seale of

 ink, making the roraraphy and skeldon of "wery romitry sama omt in clear reli.f. thans atodidine tha comanton rrwatine Irom ald the limes beine black.
MARAUDING. - This worl mommon, wider wethographie variations, to mose of the Eurapuean hangratges, aml, probably, of idmetiral roct with the: wrob "to mar" mans irregular phander or viole meces offered to the inhabitants of a ernmery by the indivirluals of an army. In all armise where dicerpline is mantaned, matrating is, at legast profosuedly, pmishal by dath; the Prowost Mar-hal having power to intlice that proaty smmarily on all of fenders taken in in the act.
MARCASITE.-sulphurous pyritus. Which supersoded the matel, in diocharging firmarms. The jey rites when struck, ignitwl. and flred the 'harere.
MARCEL-DEPREZ REGISTER. In wrlar tor rellare the induction-spark ats mand of registration, Mr.

 Was furnished with a 1 den which resterl on the sur-
 ing so arrangeal as to be displacert in the direction of a generatrix ilurine the movement of harmatmer. As a result of this arrangement, the jen traced on the

Fig. 1.
crlinder in motion a given circumference so long as the current passing in the elfectromagnet of the reas. ister kept the armature attractel: when the current was lorken, the beu. drawn latrally ley the armalure, traced a howk. and comereded with the preceding circumference by a enrve. the form of which degented on the relative velocities of the eylinder rand the pern, and finally, the armature heing arrested by a catch which limits its course, the pen tramel a new circumference a little distant from the precedine: Fig. 1. If the current was re-establisherl at the end of a certain time, the armature was attracted anew. the pen traced a second hook. and was replaced on the original circumference of whicll it continued the trace. The two hooks obtained indicate thu instants when the breaking and the clening were protuced. The cmployment of electro-macheqs as remisters was not ner-: these devices had wen applied since 1 sut to the Wheatstone and Breguet (hironograp)hes.and Reguault comployed them also with the chronographe that he used in his celebrated experiments in the measure of the velocity of sound. If wh were limited to the reproduction of the arrangements alopted by these different experiments, it would be imposible to obtain a precision susceptille of competing with the employment of the induction-spark. The usual electro-magnets, similar to those need in telegraphy, have in fact, a functional retardation which is far from unimportant. If we sork for these apparatus, emphoying. for example, the time that clapses between the moment when the current which ario
mates an electro-magnet is broken and that when its armature is set in motion moler the artion of the connteracting spring which retracts it, we find that this time, which may be callecl retardation of disconnection, attains and often exceeds a moulredth of a second. The time that mapes between the moment when the corrent is re-established, and the armature returned to its origimal place is arcater still; it may be called retardation of commection. The smm of these two retardations forms the time lost between two suecessive sigmals, and limits the number of signals to be required in aseend by a given electromagnetic register. Ilence. we see that an ordintry electro-maguet conld searely give more than 40 sig. nats in a second.

In order that we might count on the precision of these signals, it wonld be neressary, besides, that the fumctional retardations, or at least the retardations of disconnection, slould be absolutely constant for the same resister. If this condition was fultilleal, we could. in faet, notwithstanding their slow artiom, obtain a great precision of measure in the vallation of a dilference of durations: we could alsomeasure. with equal precision. portions of time smaller than the time lost by the apparatus, hy using two electromagnets for registering the two signals which detormine the timae to be incasurod, providec! that we hitd the means of deternining extetly the sulposed constant retardation of earh apparatis. This means exists, as we shall see further on: but the retardation of disconnectiou is unfortumately not constant in the ordinary electromatignets. This retardation, is composed ol twoparts:a retardation in the cessation of the magnetic attraction, which retardation is owing to the phenomemon msually designated by the mame of remaining magnetism, and a retardation owing to the setting in operation the mechanical organs of registration: this latter retardation can le mande constant, but it is not the same with the retardation of denatorntization, which dopends on several varions circumatances, and especially on the intensity of the current, which may vary with the resistauce of the

Fig, :
rirebit orthe activity of the battory ; the retarlation depends also wh the manner in whiclathe eurvent is broken. The variations of the rebardation or dothagnotization, althongh very fritling in themselves. would, by using the wimal electro-matgons, have ittainall limits greater than the deagrex of breasion solleht would allow: it was netexsary, then, to tind the means of regulatine the working of the devires. 'The comers 10 phasube maturally presented itsell': it
 latw value, the retardation of demarnatization, be-
 reduced in the same jroportion, while at the sume fime the apparatus eonuld be made suthe icently rap id in its operation tos coliow, in mosi casers. Uhe sureerssion of the plemonema in be observed. The employment of the en sumble reaticters. larmed al eliminutive cheremomatueds, like those whilla are now msed in
 in r . Trouve , musi, aftor what is knowno of the workiag if these toys, scoure the first improvement. An-
other motive led to the employment of very small apparatus, or at least of very small movable jieces; it was the necessity for accelerating as muchas possible the movements of the tracing-pren.
In ordinary electro-magnets, where the counteracting foree applied to the armature, ats well as the attractive force which is opposed to it, are comparable to the weight of this armature the latter moves with only a very feeble acceleration, at the disconnection as well as the connection. The result is that if the rotatory movenuent of the cyliniler on which the pen, gulled by this armature, makes its trace is a little fast, the traces ontained unite tangentinlly by a lensthemed curve with the firamferences described by the pen in its two extreme positions, so that it is very dificiont to catch the line at tho prerise moment when the pen is sut in motion. If, on the contrary, the pen is animated by thapid movement, so that its velocity is promptly vomparable to that of the cylinder, the lines that it leaves are cleanly detached from the extreme circumferences and give signals casy to distinguish with precision. Now, this result can be obtained by employing very small armatures, so constructed that the incortin of the movable pieces devolops only a very feeble resistance to the movenuent, and on arranged that the energy exerted on them by the conntertcting spring that imnels them may be considerable in proportion to the masses set in motion. These considerations induced Mr. Marcel-Duprez to establish vers small electromagnetic registers, furmisled with still smaller urmatures, that the magnatic attraction might be relatively grat in proportion to the mass of these armatures, an! to cmploy long and light pens, placed, as well as the movable nasses, as near as posible or practicable, to the axis of rotation, in order to reduce to a very minimum the moment of inertia of the systam. Joreover, in order to dininish the retardation of disconnection, Mr. Marcel-Depri\% provided his registers with a means of regulating the countewcting force applied to the armature in such a minner as to canse this force to form nearly an coquilibrium with the magnetic attraction, so that disconnection takes place as soon as the attraction becomes slightly relluced and instantly after the rupture of the plectric courrent. The forms siven to the Marcel-Deprez registers, in departing from these prineiples, were very variable, and we will content ourselves with describing sume especially applicuble to the chronograph and other ballistic apparatus.

Fig. 3.
Fig. . Toprescents onf of theregisters phareal against the eylimare of a modificel Schultz chronograph, and Fig. 2, represebts the regisurs aratered sible ly sibe 10 in number, an a horizontal form fixed in front of the revolving evlindar: thay are nommed ratch on at little serew-sialo on bhicli al countoracting spring
 tact with the cryluder or to withdraw from it at will.
 will all the pens at the sume time,or, onthecontrary,
hrines them torepher in ronlact with the coviminer.

 cally in a phatce normal totse eylinder, and finmishod with polar massact, relatively sironge futworn then is fixed a small ammature of prismatiof form, whith

 sible, and which lase at one rextremity at smalk, very shomber steel pen, and at the other a small lever, dile
 whose extrmaity, homi into a laook, beokes into tha

 with procision to aty derroce desired; tha fowor part

 this screw it doqumined weight ath lue suspernderl at the: cestremity of the flaread; the tonsion is allowed to
 clasp is tightrued and the woight (berome uschess) is remover. Thats the thered is a rapesitory of a tornsion exactly motasured by the weight, and which accondincrly ean be reprodiced at any instant.

In order to esablish an "puilibrinn between tho tonsion thas producod and the athrutive forece of the elecetromationet, at small atditional piece of soft iron is cmployed, placed on the electro-magnet in comblet with the polar mass, in proximity to the armature atm on the side opmosite to the axis of rotat tion, Fig. 1. This mass can be displaced ermatally by mumas of an adjusting serew: by setting it nearer to or farthar fronn the armatare tha athatetive foree is diminishoul or angmenterl, and this force maty thas

 removed a little farther otr hy a fory slight move ment of tha ser"w, the attraction is atigncontel in at morasure jusi, sulliciont to maintain the armatnore, so thatt the lexas redurtion in inturnity of the carrent sumbers to liberate it, and conserpurntly it is sot in motion as soon its He: curbont is broken, or at latso with a relardation execedingly smatl and very ronstant. The armangemont repreanded by loig. ©, and which shows the working of 10 registers phaterd sibe by side arainst the chromograph rylinder is esper (fially applicel to the mexsuring of the durations of phomomena following earh wther in loo rapid suce'sssion lo permit the combertom of at regisior betwen (achle signal. In this casc, in fiel, it is necossary to employ ats many registers and dinitncl vironits as there are signals to observe, requiring for citrle ragister only ont signal, for the hecersity is thes disphased with of making the registers connoctors, that is to say, of remulating the course of the armature in such a manmer that they might be reoalled by the maternetic atraction at the time of the re-establichment. of the corrent. 'This latitude farilitates in at singular manner the employment of the apparatus. beratuse it allows of eriving to the beene al comese latree
 whating the position of the additional mass so as to romder the reatro-magnets very sensitive whicla cobld not be done to the sambererger if an exerss of foree mast be lefl tothe attratotive force in order to restore the irmature from al distaner. This is the arrangennat which it wothl he most proper to atopet for the clorotro-matornetalnast exrlasively, if the lated of employing ditlerent electrio circonts did not. on the other hand. inatroluce ("unses of macertainty and diflientijes in their use oflem vory ereat.

Thbe cmployemont of clectro-mitinets, also, simply ats diseonnoeters, has been reserved in praterice for the cetse where the intorvals of the shecossive sior nuls sure so short that it is not possible to timd re-
 prondertion of thes-s sighals. "lohe limit is now very

At the time whon his lirnt invortigetions wrore exoculcel, in cobleret with the marine artillery st Tvier
 of disconnaction was redncol fo less than offe twothonsamdth of aseronds, and whicll, platerd in the vircuit of at fork sumbinnod by eloctririty and giving l,
 [ollowe tho movernorn of this fork, ind thas prombere
 ond, hy loinvintron the revolviner eylinder of a charonegraph traces which indicatod that tho reqistar reo mather still at rost for at appreceiable time in the inkerval belweron the twosignals.

Bat lowever rapiol ?lace roeristers mierht bre, thoy would not. latve viven the losifnals which it was the object to shtain in catse of neood during the elowsolotsment of the pressure's in the bore of at gen from the monnent of therinlammation of tha charege of the moment of the maximmon pessure which, it is known. ("ansearecly botwo or thare thousandiha of :a seromel in duration, so that the sumessive signals rand ondy le twoton thomsandthsof a secondapart, and ovondecs. It would also brenooessiry to adopit for these sueciad

For other rescearehes, such its the studice of exterior batlistios, or "ven that of the law of tho mewo mernt of the jrojectile in the bores , reconnecotingrergistars condid be employed.

Fig. :3 shows a register with large, witle helices arrillged with ragard to cath other in such it mannמor as to collse the osciltation of amall armathare momated symmetricially on : hori\%ontal isxis, which is trmminated at one end by a small lever, to the cxtremitios of which can be fixtal the lharends of oxtended canotchouc, two in momber. The armature can omly reccovo a vory slight osciblatory movement, which is regulated in case of need lyy displating the cores of the"heliecos, and a great foree of attraction is thus obtained to induce the reconnection. The movernent of the inmature is commanmicaterl to the pern which is on the extremity of a small parallol axis. placed on the unfor part. by muans of a very light lever, secured in a small fork, and which proditus a notable amplification. In anotlar mande of construction mmel) used, wo registers momuled side hy side so as to be simultanconsly utilized, are arrange"d

in suela a mannor as io jroduee two traces very near stull othur, so as the better to wilize the avialable space on the cylinder. In celch of the er revistere the ludiens are platedl end to chad. borthwise to one another. and their polec placial in juxtaposition are ant *o ats to serve as a lodernent for a small pri-matic armature which is thas immorset in the magnetic tidld. The axes on which tho two armatures are
 the beft ant the other on the right, in such at manner
as to bring the pens near to each other; these axes have each a pen at ont of the extremties and support, in their midalle. a small plate of spring-steel placed fertically, against the extremity of which rests a horizontal screw, that can be worked with a key, so as to proiluce a counterarting offort adjustable at will. A vertical supporting screw, whose position can be regulated with the same key, serves to limit the conrse of the armature, so as to make the connection possible, allowing at the same time a sufficient course for the pens. In order to obtain the connection in these registers, it is necessary always to give to the magnetic attraction an excess of force over the tension of the counteracting spring, which does not permit the retardation of demagnetization to be reduced to the minimum which it would be possible to attain without this necessity; but the excessive reduction of the dimensions of the liclices. which in the last apparatus figured did not exceed 5 nillimetres (0.1968 inch) each in diameter and $\%$ millimetres 0.2756 inch) in length, permits the reduction of the retardation to a value extremely small and makes the variations in it altogether insignificant. We are assured, in fact, by the arrangement which will be described farther on, that the retardation of disconnection of these registers can be reduced to one three-thousandths of a sccond, and that the variations of this retardation, from nne disconnection to another do not attain to one fifty-thousindth of a second.

In the apparatus sketehed, which was arranged for mounting by means of a collar with a clamp screw, on a rylindrical shaft placed before the chronograph cylinder, one of the registers was monnted stationary on the common support, the other was sustained by a small movablestide which a squareheaded serew permitted to move backwards or forwards, by means of the key already used for the other adjusting screws: this regulated the two pens so that they might rest equally on the surface of the eylinder of the chronograph. Fig. 4 represents another type of register, frequently employed. It is adapted to a nomber of mechanical arrangements. especially when it is desiered to combine side by side, as we shall see upon investigation, several indedependent registers. The helices which in this case measure 7 millimetres (0.2756 inch $)$ in diameteram 9 millimetres (0.3543 inch) in length, are placed vertically as in the apparatns, Fig. 1. The employment of: prismatic armature longed between two polar masses is abandoned on account of the difficulties in construction and adjusting which it involved, and a flat armature is substituted which acts diructly on the poles and approximates the arrangement of the ordinary electro-magnets; this armathre is hollowed nut, however, outside of the poles, in order, thereby, to diminish the mass, and it is made movable aroumd an axis parallel to its length, and as near as possible to diminish the movement of inertia. The resistance due to the inertia of the lever on which the eounteracting spring in the register (Fig. 1,) is applied is also avoided by apmling direetly on the armature the effort which is here produced by a small spiral spring. This spring can be extemeded at will hy a mill-hemeded button, fitted very tightly, and which acts upon a crank to the extrenity of which it is fastencel. An adjusting screw, whose point touches agranst the armature. limits at will the course of the pen which is soldererl on a smatl pipe dilted on the extremity of the shaft. By looseniner this seruw the course can be made sos grat that the register camont naturally connect ; in this rase, at tension may begiven to the rounteraceing spring slightIy inferior to the attrative fore so ats to reduce as funchas pessible the retardation of disemmertion. On the contrary, by revolving and tightoning 1luc serew so as to diminish the romerse, and by reducing also the tonsion of the counteracting spring, a preponderance may be reatored to the attractive furce, great enough to produce the connertion of the はpla-
ratus which is then in a condition to give numerous successive signals, but the retardation of disconncetion is, in this case, slightly angmented. according to the intensity of the current.

These registers are each secured to a ring-shaped mounting with its under part open. By these rings they are fitted side by side on a cylindrical shaft; they constitute so many clasps susceptible of being each tightened on this shaft, in any position whatever, by means of a mill-headed screw. To each of these registers may thus be given an individual movement of rotation around this slaft, by which movement the pens are brought on the same line, and a general rotary movement of the shaft afterwards removes them iltogether, or makes them bear equally and at the same time on the surface designed to receive the registry. By what precedes, we see that the property of connecting automatically can be given to a register only on the important condition of limiting the course of the pen and in also reducing the connteracting force which determines the rapidity of its movement of disconnection; the magnetic attraction, exerted on the armature, diminishing according to the sguare of the tistance, we imagine that, in practice, in order to preserve a course sufficiently rapid, we may be led to reduce, to a very small quantity, the amplitude of the displacement of the pen, which renders the readings difficult. A remedy was sought for this defect by the employment of organs for multiplying the movement like those represented by Fig. 3. Mr. Napoli also construeted registerssurhas that represented by Fig. 5. it which the anplitication of the movement was produced by

the medium of two eams restung one on the other, with surfaces arranged in such it manner as to vary, at pachinstant, according to a proper law, the relation of the arms of the lever and conserpuently the action of the comeracting spring acting then directly on the shaft which contains the pern: this is the, arrangenomt known ly the name of "distributer of Robert Howdin." Mr. Marecel-Deprez also sought to overeome this ditlienlty by asing alectro-magnets, rombined in pairs and of diferent foreps. working sumersively by the same action of the disconmedion; the attraction of the armature, in ordinary cireumstamees, was produced hy a vory small ind very senstive electromagnet, whose retardation of disconnection eonlad be matle small, and, at this time of the discommection, the armature estiblished contact which introdnced in the cirenit a larger electro-magnet suserptible of acting will foree on the: armature in order to return it to its platere. Whaon the current was resestablished, it was this serond electro-magnet which cansed the commection, and when the armature

Was thas brought into rontact ath hiners wereres stored antumatiently th their place: the current was then sent arain into the small efectro-magnet.

MARCH. - A (crmapplind 10 a piore of masie composed chicelly for military hamds, to acemopany thw marching ef troops, to belp, them to preserve time
 art phacel on wind inswrumber or hy the lifes and drums, and are gencrably some simple pepular air. Each regimant in the british service has its sperial matrel for marehine past: Whe Fusiliers am athwed to phay on that werasion the" "British (iremadior."

MARCHANDS. - Potty suldors who follow an army on its marelt. As they encmerally doal in artielos which are required by the oflicers and sohdiars, it is the busi-
 to insure their safoty, and to permit them, buder certain regulations, to hate necess to the cmap).

MARCHES. 1. The beundaries betwen England andsendam, adsu betwen England and Wales. The term signitied primarily the mark of a country's limits (the merch) : and hene was applied as adesigmation of the boraler countries or distriets of the (ierman Empire. conquered from moighboring nations. Thans, we read of the merhe of Alastria, of Northern Saxomy or limalenburs, Iansutia, Moravia, Steier mark, cte. The gevernors inarusted with the charge of these border districts, or mathe, were callent merkgrefts, corresponding to the Enerlish and Scotiont Ilandens of the Jfarthes. 2. The movements by which a body of troops is conducted from one place to amother. They should he well directed amb shonld be ordered so at to combene the troops to their destimation with the least anount of privation and fatigne compatible with the oljeet to be attained. The art of direwting properly a marcla belongs to "Stratcey.", while the art of arranging the detaile of its execution is at part of "Logristics." As the success of many military operations depends almost entirely pon their execution marches form a most im portant element in the Art of War. Marchess when mate at a distance from the enemy and where it is not. necessary to take precautions to guard against an athack are known as route marches: hose made in the theater of grerations and where the enemy may at any moment make his sudden appearame, are called stretegien marchoes: those mate in the immediate vicinity of the curmy and so near, that they may be observed by him, are called tartical marches. Bexides these threr chasses of marehes which are based upon the position of the enemy writers use varfous other classifications, based moon the object to be athaned, or upon some other characteristic feature. These are knowne merchex. founcentrution, manuever marches, rel reates, fthenk-merches, atc.

Although the object of the movement and the nature of the ground determine the orter of march. the kind of troops in cath colum, and the number of "olumms, the commander must so ate as to present his men in fightug order at any monent. With this in view, it will he necessary to observe the following peints: 1. All things to be arranged in the same order in whicl they are likely to be retuired. 2. The cherefniness anil etticiency of the men to be secured. carefully considering the proper indulgencos. the wother. the physical features of the country, and important hygicnic priaciples. 3. The animatis to be herded. lotaded. driven and guarded with the ereatest care. When distant from the enemy, or when in broken or dusty country. certain considerations of the tirst order may very properly give way to ease aud comfort, but, ats a general rule, the transportation (kept wedl chased up) should follow elosedy in the rear of the main command.
The simple morements of the troops, like that of forming into line of battle from a cohmm formation. or the ennerse, or a change of position in the actual presence of the cnemy, form a part of tactics; but the following gencral rules are applicable at most times
and plares:-Bathries an artillary and their caissons mowe with the corphs to whirlo they are attached; the fichl train and ambulances mareh at the ratar of the colimm, and the haggage with the rear guard. ('avalry and infantry do not march together, malose the proximity of the emomy makes it necersary. In cavalry marders, when distant from the enemy, earla regiment, and, if pessible, "acls mpladron, forms an separate colmonn, in corler to kewp "py the same gait from fromt to rear, and to tret, when desirable, on gexel gromul. Insurll casis, the ravalry may leave (amplater, and can giwe mere rest to the loorase, and more attention to the shoueing aml harnws. [forsors ate not bidfed until the time to start. The oflicers fund nom-commissicmed oflicers of cavalry companies atteme personally to the packs and girths. Wharn necessary, the orders speclfy the rations the mon are 10 cary in their haversacks. The loideld Ondicurs and C'aptains make frequont inspections during the march; at halts they rxamine the knapsacks. valises, and haversarks, and throw away all articles not anthorized. When it can be avoidect, troops slonhd not le assembled on high-roats or other places where they interrmpt the communication. Gererals of divisions and (ommanders of detached corpos sebrl a Staff Oflicer to the rande\%ous, in atvance, to receive the (roops, who, upon arriving, take their place in the order of battle, amb then form in close rolumn, umkess otherwise orderet. Artillery, or trains lated on the roady, forme in file on one side. The execution of marching orders must mot le delayed. If the Commander is not at the leat of his troops when they are to marelh, the next in rank puts the colum in motion. If possible, each columa is preceded loy a detachment of pioneress to remove ohstackes to the march, aided, when necessary, by infantry. 'The detachment is divided into two sections; one stops to remore the lirst obstacte. the other moves on to the next.
In night marches, and at bad places en the line of march, when practicable, and at cross-roads, if neceswary, intelligent non-commissionced officers will be posted to show the way, and are relieved by sureessive details from the regiments as they come up. The Sergeant-major of each regimunt renaius at the rear with a trumpeter er a drummer, to give notiee when darkness or ditficulty stops the march. In cavalry, a rumpeter is placed in rear of each Squadrom, ancl the signal is repeated to the heat of the regiment. 'The General and Field Othicers frequently stop), or send officers to the rear, to see that the troops mareh in the preseribed order,and keep) their distanees. To (puickca the march, the General warns the Colonels, and may order a signal to be sounded, which is repeated in all the regiments. In approaching a defile. the Colonels are warned; eacla regiment passes separately in columm of fours in the order designated be the Commanding Officer, two battalions, when possible, marching abreast; on emerging from the defile, the battalions form line under the immediate direction of the General, the flank battalions being so posted as to prevent the enemy from passing between them and the entrance to the defile. Ilalts to rest and reform the tronps are frequent during the day depending on the object and length of the march. They are made in preference after the passage of detiles. Led horses of officers, amel the horses of dismounted men, follow their regiments. The baggage wagons never march in the column. When the General ordors the fied train and ambulances to take place in the colum, he designates the position they shall 1ake. If two corps meet on the same road. they hass to the right, and both continue their march. if the road is wide enough; if it is not. the tirst in the order of hattle takes the road, the other hatts. A corps in march must mot he cut by another. If two corps meet at cross-roals, that which arrives last hates if the other is in motion. A curps in march passes a corpsat a halt if it has precedence in the order of batthe, or if the halted corps is not ready to move at once.

A column that halts to low another eolmon pass restmes the marcll in advance of the train of this column. If a column lias to pass atrain, the train must halt, if necessary. till the colmon passes. The colnman which has preeredence must yic!d it if the ('ommander, on sueber the urelers of the other, finds it for the interest of the service.

The rate of march ordinarily for different trongs is as follows:-lnfantry, 23 miles an hour: field-artillery $3 \frac{1}{2}$ miles an hour : horse-artillery or cavalry, 4 to :5 miles an hour. These rates only apply to smail bodies marching independently. Practically, infantry in large bodies can moly mareh at the rate of 2 miles an lour. Infantry, being the slowest marehers. necessarily regulate the pace of mixed columns. $1 t$ is computerl that a division of infantry of 12 lut talions, of soo men, barching in fours, will necypy about $\mathrm{F}, \mathrm{f80}$ yards. lts artillery (two batteries), without watgons, and marching by divisions, oceripies about 400 yards. A division complete, incluting the advanced and rear guard, will cover ahout if miles. To detormine the time of march (T) of a column: Let $\mathrm{D}=$ the distance (in fect) to be passed over: $L=$ the length of the column in fect; $D)^{\prime}=$ the distance (in fert) passed oser in one minete hy the colnmu, inclurling halts: and $\mathrm{T}^{\prime}=$ the time of de. lay (in minutes) due to the elongation of the column in jusang defiles. the physical condition of the command and all the irregularities of the ronte; then, L.
$=$ the time (in minutes) for the column to puss D^{\prime}
over al distance eqnall to its lengtla, and T (in minutes) $=$

$$
T^{\prime}+\frac{I}{D^{\prime}}+\frac{1)}{D^{\prime}}=-\frac{D^{\prime} T^{\prime}+\mathrm{L}+\mathrm{D}}{D^{\prime}}
$$

Thus, for a column of troops 860 feet in deptlu, moving at the rate of 100 yards per minnte (including halts) and delayed eleven minutes. to pass over six miles.

$$
300 \times 11+860+31680
$$

$\mathrm{T}=$

300
The arerage march for infantry is from fiften to twenty miles per day. When troops move in larce bodies, and particularly in the vicinity of the enemy, the march should be conducted in several conhmens, in order to diminish the depth of the colummestand tor expedite the deployment into line of battie. The order of marels should state the time for each division to commence its movement, so as unt to interfere with the march of the division preceding or following. and to prevent fatigne from keeping men longer ander arms than is necessary. In ronte marches, regiments usually allormate in leading the brigatle; in like manner brigarles altermate in divisions, and divisions it corps. In large commands, the roals, if possible, are left to the artillery and trains. The orteq of march shonld state whether the tronps or trains shonld have the right of way. Each brigate is provided with a corps of pionesps under charge of a commissioned offirer. 'Thu pioneers precede the rolume for the purpose of removing obstacles and preparing the way for the troops. Whenever fences. fordecs, walls, diteloes, or small streams, are coneountered, a passuge-way jomade wite enough for four men, or rigit men if in double colnmin of fours, to march abreast withome obstruction. "lhis will prevent the eolumn from leagthening ont, amd alve prevont the fatigue and delay of regabining distances. On long marchess, a haslt of half or threeduarters of an hour shomble be mato for the
 mate in the vicinity of womd and water. When long distances late to be overrome rapidly, it is dome hy changing the getits; the donble time is nsed for ter or tifteen minutrs, and the fuick time for live minntes; the most fayorable erround is selereted for the double time; special care flould be taken not to ex-
hatest the troops immerliately before engaging the enemy. Whemever belays ocrour in front, the brigarles may form in column of battalions, and stack arms. It is the duty of all Commanders, within their commands, to investigate, porsomally or loy means of staff-
 be frowuently sent aheatl for the purpose of gaining any information that might shorten the march, and lossen the fatigue of the tronps.

When eavalry and artillery form part of the eolumn. Commanding ()fifers must bear in mind that their efticieney depents almost cutirely upon the comdition of the horsex. which alone makes them able to get over long distances in slort spaces of time. The horses must, therefore be mursed with great rare in order that they may anture the utmost fatigue when emergencies demand it. When near the conemy, the artillery always marches with the bulk of the troops, its place being near \{ju conter or rear of the infantry or cavalry, never at the head of the column. In campaign, if a battery does not march with troops of the other arms, it sufficient escort must always be provided.

When an acrident happens to a carriage, it is pulled ont of the colnmn, if possible, so as not to interrupt the march: otherwise, the carriages in rear pass it by the most convenient flank and close to proper distance. The disahled carriage resumes its place as soon as the damage is repaired; if the road be narrow, it must fall into the first interval it finds, and regain its proper place as soon as the ground permits. The eaisson of a disabled piece remains with it : a piece, howevr, does not remain with its disabled caisson, the caisson eorporal, and men to assist him, if necessary. being left behind.

When a piece and its carriage are overturned, it is better to disengage the piece hy letting the breech rest on the ground, or on a block of wood, and by then raising the muzzle with a handspike, while the eap-squares are taken off: the earriage is then right(c) and the piece mountet. To risht the carringe without disengaging the piece, letach the limber, serure the cap-squares, and lasli the knob of the cascabel to the stock: place the midalle of a rope over the mave of one wheel, pass the ends of it downwarl between the lower spokes of that wheel, then nuder the earriage, through the correponding spokes of the other wheel, and then apward over the wheed and across the top of the carriage to the side where it was first attaclied; the end of the rope and the wheel to be raised are then manned, and the carriage pulled over. two men beiner required to stearly the trail. If necessary the encls of the rope may lie fastened to the limber, amd lorses used to assist in rightinge the carriage. A piese and its carriage may also be righted withont disengaging the piece as follows: detach the limber: fasten two prolonges, or the middle part of a picket-rope, to the trail: chock the whecels: and dir an ohlong hole under the muz\%le about two and a half feet deap; pass one of the prolonges, or one and of the piaket-rope, over the carriage to the front; man the emels of the prolonges, or picket-rope; then raise the trail and pass it over the axle to the opposite side. Ofher methods may be rosorteal to, depending upon the circumstances of the case, and the applianees at hand. light carringes may be righted by hand withont nsing a rope.

Aftor pulling up a short. stecp hill, the horses should he hatted to recover their wind; when this canmot be done they will move very slowly. In going up a ditheult hill, the earrisges may he halted to rest the loorses, by bringing then atoms the lecelivity and locking the limhors or chocking the wheres ; for this pmrpose, it may be expedient to start the seretions, or plathons, from the buttom in suceression. loaving a distanca of 1 wemy or thirty gards between the diflerent portions of the column. "If the dratught be so diflicult that the teanse aro liable to stall, somue of the carriages in the rear are laterl and their leaters hitched to the teams in front; on completing the

 may lar requited. As it is very hatiol lo make tho
 histched with edfuel to a simgle carriage. folm drivers

 very shart: the other drivers hately stretels thacir tracess. If the hill heste"p, the wherds may he locked;

 only rematn hitched to the "arringe, the allars lwing

 there be a ditely or wher danewernes place on ther romal-side, the whar toward that sitr is Juckive in preforeme to hac other. If a carriare lave to mote
 tumit, a prolonge is fisctomed to tho low er sirle ut

 patses wer the arriage. When crossing a dilob, if it lo wille and deep, ihe prolonge is dixed amb the
 and the preere ran he hamd dose to the limber which
 fom of the ditalh, whon it mover grickly until tho piace is out. If the ditely he deop and marrow, it
 back with probonges: slombl the trail sink intos the ground in hassing over. it is divengragod wiala abandanike, or by fastening a probongeto it. In passing shithow ditchex, drains, or dorep furmows, the rarringe must cross them oblignely. When moving ovit marshy ground atch rarriage moves at a dis. tame of ton or 1 welve yirts from the one preceding
 sioned ofticers, are posted at the worst phares to instruen the drivers how for conduce the cir teans. The horsas must puall freely and quicken the gat ; if the
 With probonews. or evion to nise them ntone. ble thams crossing sepparatedy.

When about toross a forl, if il bo not wabl known. it monst be examinal, and the dangerous flaces marked, bofore the rarriages attempt 10 cross. II tho water be deep and the enrrent strong. great oare is nereessary. "lhe men are instructed to ketp therir "yes fixed on somo olijece om the oryosite bank which niarks the phace of exjt: they must not book at the stream, and mow rathor against thr eurent, so as 10 better resist itspower. If the ford have ab bad bollom. and the banks be difticult, the teams arestemethemed by atding pairs; an oflicer or mon-oommissionod otlirer, is posted at the ent ramee to perulate the distance between carriages, and toinstruet tho drivers low to proceed : a second ofticer, or mon-commissioned ofticer is posled at the exit to direet the elrivers how to leave the ford. The management of the lean is the same as in crossing marshy grouml the horses monst not be allowed to halt, or trot. cither in passing the furd or in leaving it. unless the stream be meither derp nor very rapicl; in this case, the carriages may bu halted to let the horses drink, or at lasist to sive then a mouhful of water. Cpon reaching the opposite bank, the leading carriages are halted after they have moved far emongh furward to leave room for the carriages in roant. If the chosis las wot watertight, and are at the 1 anal height of 1 wo fow ten in--hes above the gromat, a ford deeper than two feet four inchos cannot be erossed withont danger of wot ting the ammonition. If the ehests be water-tight, or means have boun taken to raise than high enomath, a depth of three and one-third feet maybe wafely attempted. When the ford is derper than this. the cammoneers must carry over the carlriders. fuses and primers in poucles which they hold onove the water. The chests are sometimes removerl and takenover in

 -rally bic male for take the water withont momels

 swims casily and safoly wilh aman thatiny aml Joblinge to the manm or tail. In tha pasesure al at military bridere, when at the enhrauce of the liridere, the leali amb swing alrivors dismoment and load thoir patirs. A histance of twodre gatils jo lakembelabom
 drivers korp thar (abriatese as notar tha mintllo of the Booring :as jussiblo, and mu-1 not halt: if the lirjuere
 get orer as fat as jocsibla. If the thoringr le wot. Jatlons should be matod arrose it toketp the horees from fabling. If the bridere boerins (1) rorko the jus
 Hying bridere, all the drivera lismommt and hold their
 horses out ; and in lonforrons weathor, or at night, 13w wherels mas be Jocked.

 attemeling the samo bedong, as wo have alroddy obsarved, to the bractical details of theprofesaion, for
 and with which it is presimed that every man whe arereghts the resposilnility of a (ubural's pusition has
 meal nj, in a few worls. First, the tranis of every descriph ion mast be cosvered by thetronges, for whirn furpose they must, in an aclvane movernont. lou (ither in the rear. or on that llank where thoy will br laist exposed to the buemy. In a retreat they mast be in advance. Whan in army moves in seve - ral nearly paralled columans, the combination mase be such that in jmposine force cansoron be contrentratofl on any point threatomedl. The divisions of aach columm inust, in like pammer, he in supporting distance of cand other. hat. for comveniences, not erowndald on the mareh. As to advanced grards, ilankers, and rear sumats, both their stremeth and compontion must depund on tha' Generat \times juctament. foume ad on the forer, charactar and position of the rmemy. and of the mature of the cometry through whith this maroh is madr. Just in proportion as Ju has reat, Jas retlected, has lad opportmitios for action, will his fudgmont lead him to take right moalsures: whils still more certainly, if he has wanted these aids to forming an endirlitencol juberoment, will he take wrone one. Soe fómeenturition Marolux. Flarek
 'gieald Marchev, and T'ectient, Marches.

MARCHING.- Ono of the tirst neceswitits to dis. tinguish a body of lisioflimed tromps from at more aruwa of men, is a regular catencedt stel], taken by every individual at the same time and will the same foot: The necessity of this for harmonions action is obvions. The ancient Poman berions latd mizitary music to beat the time for that marcla. In the fobilal ages, when infan1ry fadl into disroputc, cadenced mareling was umaitended to, and seemsunly to have bem thoroughly revival hy darshabl sasu. The best masic for a mareh is fomm to be some simple tunce such as can readily be performed by drums and fifos. The music, hesibus proservine the time. arts as a preventative of fatigue.

In the british servire there are the slow mareh of Tis paces, eacll of 30 inches, in a minnte-only used on parade: the quitek march, of 110 paces, in which all evolutions are performed : and the donble-duick. of 150 runninur patees, with the knees raisell hioh. This last cannot be sustaned for any orroth distance,
and is employed in a charge, or in suddenly occupying a hill or some commanding position, and in a few short interral movements of regiments.
In the United States service, the length of the step in common and quick time is 28 inches, and the caldence is at the rate of 90 steps per minute for common time and 110 for quick time: in double time, the length of the sten is 33 indlues, and the cadence at the rate of 165 steps per iminute, but it may be increased to 180 . When troops are to march a bong distance, the route step is mployed, the men keeping their proper places in the ranks. See 1 larches.

MARCHING MONEY.-The additional pay which others and solliers receive for the purpose of covering the expense neressarily incurred when marching from one place to another.

MARCHING ORDER.-I soldier is said to be in marching order when he is fully equipped with arms, ammunition, and a portion of his kit. In the English service this equipnaent weirgs from 30 to 35 pomals. In sertice murching orter, by the addition of provisions and some campaigning necessaries, he carry nearly 50 pounds. The hretiy marching order. which was jet heavier, is now happily abolished,
MARCHING ORDERS.-The orders issued preparatory to troops marching. In these orders, the routes, the orders of march, and detailed instructions for the different arms of the service are clearly set forth; and in the British service the marching orders are intended to cover at ledst wix days.
MARCHING REGIMENTS.- I terin given in England to tbose regiments having no permanent quarters, but liable to be sent to any part of Great Britain or to any part of her possessinius abroad. Although the word marching is insensibly confounded with those of line and regulur $\%$, it was originally meant to convey something more than a mere lialility to be ordered upon any service; for by marching the regular troops from one town to another, the inhabitants, who from time immenorial have been jealous of a standing army lost their antipathy to real soldiers, by the occasional absence of regular troops. At present the English guards, infantry, ete., may be considered more or less as Murehing legimentw. The marines and volunteers have stationary quarters.
MARCH PAST. - An expression made use of when al regiment or any larger body of men pass in review order before the suvereign or lieviewing Officer. It is usually performed in column or quarter-column at quick marel or at the double, and with the monnted branch, when so ordered, at a duick trot, canter, or gallop). In England, the " march past" of large bodies of troops is carried out after the completion of the autumn maneavers or simmer drills.
MARCOMANNI.-An ancient German people who, in the time of (recar, lived along the hanks of the Rhine, but afterwards. as appears from Tacitus and Strabo, settled in Bohemia, from which they expellad the Boii. Their king, Maroboduus, centeref into an alliance with the tribes living around them to defend dermany arainst the Romans. The combined forces of the alliance mmbered क0.000 men, and the Empror Tiberius signed an treaty with them 6 A. D. : but the Marcomannic Alliance was bealen 11 fears later ly the Chorusei and their allies, and in 19) the Gothic Catualda drove Maroboduns from the throne. and himself usurped the sovereignty. But he was soon overohrown, and tho mative dyasty extablished, under whose rule tha Sarcomanini extembed their territory ul, to the Damube, till their rnoromehments alamed the lionams, whattacked them in the time of Domitian. 'lhis war, which subsided for a time in the reigns of "Trajan and hadriam, hroke ont atrain umder Marcus Aurelins, amb was carricd on with bittermess fron $16 i 6$ to 180. when it was emper by the peace of Commorlus. The Mareonami comtinned to make raids into the Provinces of Noricum fond latatia, and in $2 \pi 0$ invaded Jaly as far as Ancona. From this time they are little leard of ; ind
their inentity fiually disappears among the followers of Attila.
MARDI GRAS.-The French designation for what is known as shrove Tuestlay in the calendar of the English Church, the Festival held upon the Tuesday preceding Ash Wednesday, the first day of Jent; with the exception of Mi-Careme or Mid-Lent Thursday, the last of the prolonged festivities known as the Carnival. It is most extensively celebrated in Rome and Paris. In the latter it las been the custom for many centuries to lead in procession a fat or prize ox (Bifuf Grus whence Mardi Gres). followed in a triumphal car hy a child called the Butchers' Kins. The entire day and night is spent in the widinst revelry, sometimes degonerating into unrestrained licensi'. In the United States the only celebration of Mardi Gras wortlyy of note is that of New Orteans, where the first display was given in 18.57, and since the end of the war the observance has been carried ont with great pomp and splendor. For the preceding week the gayety has been universal, and on Mardi Gras the whole city is turned over to the rule of King Rex, who enters the gates on the previous day. On Tuestlay the mimic monarch passes through the streets, escorted by his bodyguard, the "Mystic Krewe of Comus." Knights of Momus, and varions military and visiting organizations. To him are costided the gates of the city; minor police regulations are suspended, and matil the dawn of Ash Wednesday the air is filled with mucic ; in every street are dense throngs of merrymakers, and the glare of illuminations. In the evening occurs the great strect pageant of the Mrstic Krewe of Comns, in which are displayed elaborate tableaux. placed on moving platforms and brilliantly illuminated. These represent noted seenes of history, poetry.or fiction, and are constructed at great expense and with artistic elegance. All the arrangements of the parades and accompanying balls are under the control of societies composed of the most noted professional and business meu of the city. The olsservance is gaining ground also in Memphis.
MARECHAL, -A Major General. This word is varionsly compounded in forming military terms. Marechal de Bataille is a military rank which once existed in France, but was suppressed before the Revolution. or rather confined to the Bolly-Guards. An officer belonging to that corps received it as an honorary title. Its original functions, etc., with respect to general service, sank in the appointment of Muererthel de ''artp and Major General. It was first created by Louis XIII. Jareshul-Général des Logis d- he Curaterie took place under Charles LX. in 1544. He had the chief direction of everything which related to the French cavalry. Marechal des Logis pour les Jicres was a person belonging to the Quartermaster General's Department in the old French service. The person invested with the rank of Marichal de Ciomp was a General Officer and ranked next to a Lientenant General. It was his duty to see the army properly disposed of in camp or quarters, to be present at all the movements, to be the first 10 mount his charger and the last to quit him. He commanded the left in all attacks. The appointment under this distinction was first created by Ih'mry IV. in 1598. Wherechal-fiénéral des C'iompas et Armérs du Rui was a post of high dignity and trust, which during the Fronch Dlonarcliy was anmexel to the rauk of Maréchel te Prance. Military writers dilfer with respeet to the privileges, etc., which helonged to this appointment; it is, however, gencrally acknowledged that the Gencral Gilicer who hode it was intrusted with the whole management of a siege, being subordinate only to the Constable, or to any other Mure chal a, France, who was his senior in appointment. Murichat-Gimiral des lengis de bitmere was an appointment which existed during the old French gov(rmment, and has since been roplaced by the Chef de l'Eut-1tujor, which corresponds with that of Quar-termaster-Gizeral in the British service.

MARECHAUSSEES DE FRANCE．－I itary police whicell formendy（existed in franco．Dur－ int the Vrench Monarehy there ware 8！combuntios
 These rompanias were formed for the ourpose of pre－ serving public：tampulity，and ware disiributed in
 body of amen was first formad undor Philipl 1．In lorio；
 lishod in 1720 ，ats comstitnting a yart of the（iendarm－ erio of france＇There wire onhor companios of Warbohatusseros，who were parliontarly distinguishan from the 31 athove mentioncel：surls，fur instaner，ats that of the（＇onstables，called the（iombammoric
MARGRAVE，I（termatn Nobleman corresponl－ ing in rank to tha linglish Marquis．Margracime is the wife of a Jargrele Se Se Jarguexs．
MARINE FORTIFICATION．Harine fortificition dif． fors from land fortilication in that tha＊approntrhas of the enemy whichare to be resisted tako phace
 withont having to ovareome the fangerons slope of the rlacis．T＇ite combat is simply one between 1 wo powerfnl batteries，and the question to be deceided is whother the ship or the fort will first bo：platerl hors de combat；the ship having ordintrily the lare nist number of gums，while the fort hits more solid batthments，and its fewer gams of groat ealiber can be lired with a steadiness unatainable masoshifting a bitse as the oeenn．Unter these ciremmstances，the less relief a sea－fortress has thathettor，as by so much the less is it likely on he lit from the shipping．Its walls are usablly built perpemelieular，or nearly so． The magazines and quarters for the men are bomb－ proof，ats also are the casemates，from which the gums are usually firel，althongln sometimes，as in the martello－tower，the gun is worked on the toy of the structurc．Sea－fortifications may be of various im． portance，the simplest being the battery consisting

of a mere parapet formed in a eliff or on a hill，and mounted with grons to command the sen：these are generally built in such conceaied situations that it is hoped the hostile ships will not perceive them nn－ til they actually open fire．They are numerous all around the British coasi．Next greater in import－ anee is ilae martello－tower．More jowerful still are the beali－forts，such as those which on cither sloore defend the entrance to Portsmouth harbor：these are constructed of the most solid masonry，faced with massive iron plates，and armed with grins of the heaviest ealiber，sweeping the very surface of the sea，so as to strike an approaching ship between winl aml water．The guns are usually in lomb－ pronfeasemates，and the fort is often tefemdend on the land side if the coast be level；if．lowever，high－ er ground le behind，this would be useless，and then the sea－front alone is defensible．Nost terrible of all sea－forts，however，are the completely isolated forts，with perpendienlar faces and two or three tiers of heary gums．Such are the trementons hatteries whicl render Cronstadt almost inapproathable，and by which Spithead and Plymouth sound are now fortified．These forts are generally large，with all the requisites for a garrison to maintain itself； against them wooden ships stand no clance，and in the American Civil War fort Sumter，at Charleston． showed itself no mean antagonist for ironsides．In such forts iron is employed as the facing．in plates of such vast thickness and weight that it is supposed
nor ship（an cever phasess any romparable resinting jow ror ；athl，as thoy aro armad williguns tho sthallasi
 red that they will he ablle oes hestroy any Ha．．t that rosuld be samt against them．At the pressons day the
 Viossils may fats them with impunty maloss the ar－ tillury in the fort loce sos lu＊ay as to dentroy tho ar－
 ＂jpariont that thw furt（oin commatnat the grator

 ers，aml，on the whor hamb，tho limit is tho size of artiblery mast le sommer roachord in athipthan in a solitl athl stationary fortross．
MARINES－I＇rorps whos scrve nt navalstations， and on beard shipse of war．Tha mone are dribled in all respects as soldioss（light infantry），and therofore on shore are simply ordinaty land－forces．On brast ship，the y are trained toscaban＇s dutise，but still pre－ srerving their miliary organization．＇lherir ordinary functions are as sharjushoters in time of action and at other times to furnish sentries for gratrding tho
 ing a good control wor the lass riginlly discijulinat sailors，and laving atways firemrms and hayoncts reaty，they have oftem been instrumental in sul）－ pressing the first outioroaks of matiny．＇The intros daction of drarines into the American Army took place ly Act of Congross，patsed N゙ov．10，Jing．by which two battalions of this arm waredirected to be organized．Again，by Aetafouly 11．1798，＂estab）－ lishing anm organizing a Marine＂（orjs，＂this body became an established element in the naval force of the Enited States，liable to do duty either on board ressels of war at sea，infortsorotherwise aponshore as might be directed hy the l＇resident．＂The（＂om－ mamlant of the Corps has the rank and pay of Col－ onel．It has no regimental orianization，however， but may be formed into as many companies or de－ tachments as the President may direct．When em－ ployed on naval service the Narines are subject to the laws and regulations which govern the Navy；but if engaged on shore daty，they are amenable to the an－ thority of the Aricles of War．The United States Harine Corps consisted in 1880 of 86 oflicers aud 1，－ 500 enlisted men．Narines were first established in England，as a mursery from whence to obtaju rea－ men to man the flect，by Order iu Councilof Oct． 16 ， loft．Their utility becoming conspicuous，other reginents of Marine Forces were raised，sothat by 1741 there were 10.000 men ，and in 1759 as many ins 18，000．During the great French war the number rose above 30,000 ，but a erreat reduction took place after peace was eoncluded．Py reeent Navy Esti－ mates， 14,000 Marines were provided，including $2,-$ 400 artillery，at a yearly eost of 4040,417 ．Their irovern－ ment rests solely with the Arlmiralty．The leoval Marines are divided into threc divisions of light in－ fantry and one of artillery．Promotion gous by senior－ ity throughout the artillery aul infantry respective－ ly．In rank，Marine Officers correspond with Army Ofticers of similar grades aceorting to seniority：as a corps the Marines take plaec between the 49 th and 50 th regiments of Infantry of the line．Every ship， on being commessioned，has her complement of tha－ rines arafted into lier．The uniform is red，with blue facings and white belts．（）n their eolors the men prontly bear the word＂（ibluralar．＂in the fis－ mous defeuse of which fortres they bore an heroic part．

MARIOTTES LAW．－In empirical 3aw deduecd by Boyle and Mariotte from two independent serics of experiments，thongh．strangily enowifl，r（ablued by both at abont the same time．It is gencrally ex－ pressed as follows：The temperature remaining the wime，the volume of a given mass of gas is in incerse ratio to the pressure which it sustains．This law may be held to besubstantially correct within a consider－ able range of pressure．But the labors of Regnault
have made it evident that atmospherie air and most other gases, especially under vary high pressures, are really more compressed than if they followed the law. This deviation is most marked in the case of gases capable of being liquefied, as they approath the point of liquefaction.

MARK 1. A German geographicat term, which signitied primarily the morti of a country's limits (the mareh); and lenee was applied as a designation of the border conntries or distriets of the German Empire, contuered from neighboring nations. Thms, we read of the marks of Austria, of Northern Saxomy or Brandenhurg, Lamsilia, Moravia, Steitrmark, ete. The Governors intrusted witl the charge of these border districts, or the maris, were callet Mart-grafs, corresponding to the English and Scottish H'arifus of the morches. See Marquess. D. That toward which a missile is sent: the part of a target aimed at.

MARKER.-1. The soldier who forms the pivot of a wheeling column. 2. A person, whose duty it is to record the number of hits and misses made ly soldiers at target-practice. 3. In maneuvers, for the purpose of indicating the direction of lines of battle the hatalion is proviled with four markers, who are habitually bosted in the line of file-closers, one near each flank of the right and left companies when in line, thel the leading and rear subdivisions when in columm. It parades and inspections, two markers are required, who retire, after the line is formed. belind the Hanks of the color-company. At inspection they accompuny the color-guard to the front and are inspected with it taking post two vards from the rear rank, in rear of the right and left files.

MARKING MACHINE. - A tool for impressing textual or emblematic designs into finishod work at the armory or fonndry. The drawing shows a handy machine of this class, which is mucla used. The de-

sign is formed on the fitce of a cirentar die, whith ravolves with an arbor that is held in a carriage sliding in uprights. and is bronglato its work by it footJover (not shown in the driawing), tha device being impressed on tha pioce to be marketh, as it is moverl. with the lable lo which it is scerured, by hamplequer matler the die. Piecos of varying diamelers maty be marked in the same maxdtime. The marlane is monnted on logs of conveniont height, and weighs abont 300 potands 10 gamon arre required to be marked with thw weight in poumels. the mumber of the piece, the initials of the lnsperetor's name the initials or mame of fommdryand yatr of fabrication. All
pieces manufactured in the United States, since 1861 have these marks on the face: those of previous date have them distributed on the euds of the trinnions. the face, the breech, and the top. The mumbers tor early kind and caliber it each toundry are in separate series. Cannon that have been inspected ams condemmed are marked on the fuce $X\left(\begin{array}{c}\text {. See } \\ \hline\end{array} \boldsymbol{r}\right.$ spection of Ordnunce.
MARKSMANSHIP. - To become skilled in martismenstip, onc must possess a thorough knowletge of the rifle. the principles of its construction, its capabilitics. and the care reguired to press re it always in a condition of greatest efficienty, the laws governing the flight of the bullet, and the causes which tend to inipress upon its motion certain irregularities; un understanding of the best positions for firing ; a reudiness for estimating distances; and the experience required to make allowance for the force of the wind, or the motion of the object aimed at. The actuirement of the reguisite skill to fire aceurately is one of the most important daties of the soldier; not only his own sufety but that of his companions may often depend upon his ability to deliver his fire with effect, and the greatest proticiency in the manual of arms camnot atome for a want of dexterity in this particular. Any man having perfect vision ean, through perseverance. become is fair marksman. Long practice with cartridges is not necessary; but a sirict compliance with the rules for pointing and aiming, an:l a careful study of the causes moditying the areuracy of tire, will be sure to lead to more than average skill in firing.

When firing in vacuo, the trajectory is easily traced and its properties simply discussed. Considering ite position with reference to the line of sight it will be seen that near the muzzle it is below the line of sight for some distance, then it ruts it; beyond this point it risesabove the line of sight for some distance, then falls and cuts it again. This sceond point of intersection is the point-blank and determines the point-blank-range. With a rifle, up to 175 or 200 yards, the line of firewill not cut the line of sight ; or. in other words, will not shoot ligh. Now, as it is neeessary, in order to hit an bbject within or beyoud the point-blank, to aim below or above it certain distames, it is realily scen low indispensable are the coutrivances (sights) which will so alter the pointblank as to make it coincide with any object direct2ry
ly amed at. The range in vacuor empals in which I
x ind y are the horizontal and vertical components of the impulsive force, and g the acceleration due to the force of gravity. From this we see that (velosity being constant) the range will be the same when the angles of fire are equally distant from 45°; thus, angles of tire 36° and 54° will wive the same range. It is also seen that the range will be a maximum when $x y$ is a maximum, or when $x=y$, or when the angle of tire is 45°

The motion of a bullet is groatly modified when the movement is through the air. The progressive velocity of fall of the bublet being so much less than its initial velocity, the air resistance opposed to its slescent will the imappreciably small in comparison with that in the direction of its motion of translation (the resistances being proportional to the spuares of the velocities). Ilenec when the ballet would have beren at certain points, in facuo, it will in reality be at points bolow and in rosur of them, by distaneces inrrasing from the point of eleparture (since the resistance of air comses the spaces passed over in equal times to berome progressively smatler and smatler), thas cumsing the trajectory in air to be constantly below and in rear of its plate in vacuo and changing its curvature, so that the laft branch pressents a that. tened form while the right branel approincles the verticet. From thas destroying the symmetry of This enrwo there results that the angle of fall is greator than the angle of aseont, and more eonsiderably
sos as it is distant from the origin, Hat the point of culanimation is loweroel, amd that tha rancer is orratly dinimished. "Tomako proper allowan"oss. tla' sights must be carofully manipulatod, and when tiriner at lomg range an delicate costimation of distance is moros Haty 10 obtain acenracy of lire, reme whon using the: lest mad most acourately gracluatod sights. Ary ordinary man can ba driflad to retimatle distanores ap
 the reye alone. Instraments may be asool for erroiter distances, bat their nse is of no pradical valae in
 to on the drill ground as an atid where time is an innportant elenacim.
Taving thoromghly mastered tha princifilds of aiming, experience only ean tonela the best positions unter various conditions and circumstancers. P'he
when the fire is in two renks, the front rank kneel. mot only 60 obtain at stendirer feation, bult to eret thorat ont of the waty of the rears rank, and thas me come a more raplat and areopate fire.
'l'br favorite position for loner-ange firing, partions. arly with a military rillo, is that of the skirmiaher loying. In taking this pessition, the leass sloond lo worl scparatod, life fors boing turned outward, so as to

 How wist), and the burrel grasped formly with thw left buns!. 'lyar right elbeme should ix placed a litto. 10 the right. 'To prevent the abows ew parting, as they are natarally inclined io do on hard grommot, a depiression maty be made in the: grenma! with the loeed of the boot, or somethiner soft platerd under elann.

regulation position, "firing standing." is gencrally prelerred. Many tind an casier and tirmer pusition by lringing the left shoukder well to the fromt, and resting the rilhe over the lower part of the left thamb. The adrantage of this position is that it brings the left elbow directly under the harrel without iny strain on the muscles. Its disadvantage is that, in a side wind, the body is foo apt tos sway sidhways, which must the avoded by placing the feet further apart. The Hythe School directs that the rithe be pressed agninst the shoulder with the left hand, the right bolding the stock lightly; bus most marksmen prefer, while grasping the barre firmly with the left hand, so ans to keep it steady, to hold it well against the shoulder with the right." .In

The hins should be twisted to the freft, and the rimbt shoulder wedl raised, w kece the collar-bone nut of the way and afford a lirm seat for the rible-hatt, whicl must be held elosely agrainst it. Hany of the best shots at Crecdmone aind Wimbledon shosit, lying on their backs. Some lie slighty on the right sider resting tha rille-harrel wer the left Beys, the left hamil grasping the pioce at the small of the stork, amt pressing it against the shombder. In this ponition, the distame of the rear sight from the ere requires a larger ifperture than usinal. The following is a favorite back position:-

The marksman lirs om his back, his legs (rosuod. the left leg muder the right knes, and firmly heled lo: the right calf, the mazzie of the ritle resting in the

all cases, it will be found that the pull-off of the trigger will be lightened by a firm grip with tha right thumb. The standiag position depents so mach on the personal equation of the marksman as to prevent that extreme nicety of aim required in long-range firing. It also renters the riffeman liable to be swirved by the wind, and offers the enemy a better target. It is selfom used before the enemy or at long range. Kinceling is open to the same olijections, but to a less extent. In the Englisharmy.
eroteh between the knees. The left arm is plaectl behind the head, the lame firmle eraspiner the but of the rifle, the back of the heal resting on the left forcarm. and the right cheektouching the side of has butt. The right hand holds the smith of the stock with a firm grasp, the elthow resting on the ground. In this position, not only the picere, but the entire person of the slionter is perfectly supported, and athsolute steadiness is secured. Gildersleere Coleman. and other Amerieans have adopted this position. and

Sir I Ienry Talford andothers at TVimbledon concede its advantages. It is doubtful whether any advantage is gained by lying on the back, in shooting with military rifles. The position, Freme Donenorarda, is certainly preferable for military reasons, enabliner the sollier to rapidly advance or retreat, to shelter himself behial cover or to entrench himself. Whether the-riffeman shoots standing, kneeling, sitting, or lying after having once tested and become satisfied is to the position oust suited to himself, he should practice it until it becomes perfectly natural and casy.

With a steady aim and position, the circumstances which canse the bullet to deviate from the spot it which it is aimed are so mumerons, that it is rather the exception than the rule when a mas can aim directly at the objuct to be struck. It is, therefore, necessiry that the soldiev should know how to make allowances for these eathes of deviation; to know where he slould aim in order to strike the object. I frequent cause of deviation of the bullet is a false ur lefective barrel, short swells and long depressions being often found on its interior. These swells or ridges, by increasing the friction, may so affeet the recoil as to have in injurious effect on the fire, or so affect the exterior form of the bullet as to produce an irremularity in its motion. The swells and depressions, noreover, change the interior lines of the piece and give the bullet a false direction. Another catse of cleviation of the bullet is the vibration of the barrel when firing eatsed by the want of a lomogeneous distribution, of metal about its axis, and often to binding hands. These vibrations tend to alter the elirection of the bullet as i i leaves the muzzle. Recoil canses the frer to turn to the side from which he fires and produces deviation in that direction. It is supported by pressing the butt firmly against the shoulder, and is ditferently felt according as the position of the rifle, relatively to the horizontal, changes. The shock of the recoil aroinst the shoulder is diminished by the bend in the stock, serving to decompose the force into two componcots, one acting throngh the stock against the shoulder, the other in the direction of the axis of the barrel, ten ling to raise it. Whatever lessens the recoil, theoretically, increases the range. The recoil is only 95 lbs for the liemington rithe ($\% 0$ grains powtler ant bullet of 450 grains), while in our service rithe, caliber 45 , it is 175 lbs .

When the bullet raches the muzzle of the ritte, it will revolve about its axis nearly 800 times in a second, and a point on its exterior sile surface will have an axial velonity of about ninety feet per second. This, in connection with the resistance of the air produces a lateral drifting of the bullet in the direction in which the grooves have a turn. This is known as drift, an \mid is greater in the descending than in the ascending hranch of the trajectory. It increases as the diameter of the bullet, the angle of fire, the velocity of rotation and the range intreate, and as the velocity of translation decreases. The drift in our servier riffe, at 500 yiurls, is two feet. The prull of the trigger slould not be too great, a three-pound pull beiner the minimmm. It should be prassed by a stendily increasing pressure of the finger in the direction of the axis of the barrel, without communicating motion to the rifle, the breath being held until the hammer fills. If the trigger is ton hard and is pulied convolsively, the muzale will he turned to the right. There should be a quick and decided connection hetworn the mind amblinger. Few men can pull off the trigger of the scrvice rille with the first joint of a single finger. I defective position of the line of sight or incorrect grabluation of the rear sight will canse at deviation of the bullet. If the front sient be to the right of its proper phace, the bullet will go to the left, and vice verser. The bullet will alsober rilisec! (range increased), since the top of the sight is lower than it is when in its proper position. If the rear sight be to the right or left of its true place, the bu:-
let will go to the right or loft, and will be lowered (range diminished), since the top of the sight will be lower than when in its true position.

I scrious raluse of inaccuracy, originating with the firer, is the fanlty position that he gives to the musket in firing, by inclining to the right or left, which teuds to carry the bullet to the side to which the rifle is inclinel, and to diminish the ange. Whenfiring at long ranges a tritling inclination to the right or left will throw the bullet very wide of the target. The condition of the atmosphere noticeably affects the course of the bullet. The more moisture there is in the air, the greater the elevation required; hence it is that the bullet is frequently noticed to fall immediately after a rain. Warm air offers much less resistance to the motion of the lmblet than cold air does. even a fall of 20° in temperature causing the bullet, ordinarily, to lower ten or eleven inches at 300 yards range. In firing over water, the devation must be increased, in consefuence of the lower temperature of the air over tise water. In ascending in mountain, the air becomes more and more rare, and consequently the resistance to the bullet is less on the mountain than at its base. Mirare, an optical illusion, occurring in level districts on very warm days, causes the target to apparently raise in the air and become distorted in shape. This materially affects such objects as are near the ground, and engenders a teudency to shoot ioo high.

The influence of liglit and sliade on the effect of firing is remarkablc. On a bright day the target is refracted so as to apparently stand ligher, and will, theoretically. require a lower elevation than on a very dull day. When the light shines directly on the target. when the turget is against a light background (so that the details are better brought out); when the sun shimes on the firer's back, when the atmosphere is clear, when the ground is level and uniform in appearance or when it gradually rises toward the target, the same will appear much nearer, and will theoretically requare a higher clevation. The best shooting is invariably done on cloudy days when the sun's light is evenly diffused. It is ve:y diffienlt to shoot well when passing clouds intercept portions of the sun's light and beat. It is readily seen how this disturbance might set up currents in the air which would tend to earry the lumlet from its course, and how the rilys of light deflected from their course be fore reaching the eye would cause the target to apparently occupy a lalse position. It will be well to diminish the elevation should the sun surldenly appear and light up the target while the firm still remains in the shatle, and to increase it should the tar. get remain in the shade while the sun shines on the firer. Bright sights and barrels are obviously objectionable. The reflection of the sun's light on the sights canses them to appear as brilliant points and prechudes the possibility of an accurate aim. If the sun's rays come laterally, the trouble will be still greater inasmach as they will brighten the rear side of the front-sight and the opposite side of the noteh of the rear-sight, and cause a tendency to shoot away from the sim. The refraction of the sum's rays from a polished barrel canses the taret to become indistinct and to assume the appearance of motion. The sights and barrel about the mazzle shomld be blackenel with smoke if nothing better is at hand.

The edfect of wind on the trajectory and the allowamee to be made for it are most tromblesome guestions for the marksman. Ilis hest skill and judgment mast be taxed when firing in windy weatler, or in momatanous districts where there are many crosseurrents with which to contend. All winds, except toward the target, retard the hallet and romber a higher elevation necessary. A wind from the rear helps the hullet and temuls to high shooting. Experience has shown it necessary to alter the windgange twelve or more feet between two consccutive
shots over a ramer of 1,000 yards, in order to make a hull's rye each time, when how wind was vory high or varialoe, In Busk's 'Jamd-book for Ilytho'jt is stat-
 ing-drill will, in a few wereks, make at mathatirstochass shot." This is tris", for the position athe aimiag drills ronstitute the very fommation of any systom of protice It is an absurt mistake in any sarvire to hatie recruits fire off-hand at at farat one handreal yards listant, whon they searcely know the difference
 duor when thirty onces distant with either. Ser difte l'ru'tir.

MARK TIME.-I ronmand in tha Sclool of the Soldior. It is exornted hy moviner comele low alternate-
 This movement is frequently practices! when it front lime or colmman las "pemet too masth, in order to afford the rear an opportunity of g'titing ap; and sometimes to le the head of a colnman disengrge it self, ur a body of troops dila by, etc.

MARLINE SPIKE, - 1 ponderous irom pin, with it farge load and a bapor goint, naed fore separating the sirands of roper preparatory tos splieing or knoting ; also cmployed as a lever in tiephtening rigesing, cere.
MARLIN' REPEATING RIFLE. In Inwriean ritle having notable advantace over most rejucating arms. It belongs to the bolt class, so long used by many of
 it, ind plases thr sithbe in line wilh thas chamber of

 the simm motion, and liclal there loy the atction of the

 (o) move forward, jushoss the ratrtritgen intes the "hamber, lowers the carriar-block bo roceve a fresh
 Lovas tha arm ready to liro.
"The matazine is loated throngh an opmonimer in the sithe of the rucoiver, which oforniner is clowal by a
 placod in the barmal. The cartridges can the insertiol
 Whaon tha bolt is withorawn the cartrinlere at the bottom of the masta\%ine enture the c:arrier-b) lock groul-
 gimes by the sudden jumty of the whole rechuman of ciartridges with a monmentam, in somme rases, bufli"icont to explonhe a sensitive primer. Sll the ath viantages of a single breerb-loaler are alse contained in this rille: it can be usord with aroat raphidity, thaceartridere heing incarted in the harrol insteant of in tho magazine, and cartridees speeially loadod wjth pateln © 0 bullets for target shouting can be ascol in this waty. The rille is made for two sizes of cartridges:

the European Govermments; but instead of operating the bolt by a cumbersome and ungainly handle projecting from the side, it is operated by a strong and powerful lever, on the under side of the arm. thms making a handsome model, casy of manipulation. The bodt comes solidly up to the base of the cartridge, covering it entircly: in this way all danger is avoided, peen though ad defective cartridge should happen to be used. A premature explosion camot occur, and the greater the recoil, the more firmly the bolt is held in ths place. The operation of the gun is of the simplest kind, and yet the action is the strongest that can be made. The drawing shows the rifle with all the operative parts in open position. Throwing forwart the lever, Λ, withdraws the firingpin. I, unlocks the bolt, 13, and canses it to recode. carrying with it the extractor, C, which extracts the shedi of the cartridge just fired, while the ejector E, attached to the lower section of the bolt, eject: the same from the receiver. By the same motion, the carrier-block, D , is raised from its natural posi-

40 cal. 60 grains powder, 200 grains lead, straight shell ; and 45 cal., 70 grains powier, 420 grains lead. being the regulation Government cartridge. In the 40 caliber we find a heavy charge of powder behind a comparatively light bullet, thos attaining a high initial velocity and very flat trajectory: with excel. lent results upito 800 yarts. The barrel is octagonal in cross section, is 2s inches long, and the weight of the arm is $9 \frac{1}{2}$ pounds. Sce Ritte.

MARLINS. - Tarred white skcins or long wreaths or lines of untwisted hemp dipped in pitch or tar, with which cables and other ropers are wrapped round. to prevent their fretting and rubbing in the blocks or pulleys through which they pas. The same serves in artillery upon ropes nsed for rigrang gins, usually put up in small parcels called strins.

MAROLAIS SYSTEM OF FORTIFICATION.-This system adopts the fansseblare, and the flanks are retired and casemated. It is a very fair sample of the Dutch Schou. See Fortifintion.
MARON.-A piece of brass or copper, about the
size of it crown, on which all the hours for going the rounds were marked in the old French service. Several of these were put into a small bag, and deposited in the hands of the Major of the regiment, ont of which they were regularly drawn hy the Sergeants of Companies, for the officers belonging to them. The hoars and half hours were engraved on cach Marum. These pieces were numbered one, two, etc., to correspond with the several periods of the night: so that the officer, for instance, who was to go to the 10 o'clock rounds, had as many Marons marked ten as there were posts or guard-honses which he was directed to visit. Thns on reaching the first, after haviag given the mot or watch-word, to the Corporal. he delivers into his hands the Varoon marked one. These Murons being pierced in the middle are successively strung by the different Corporals upon a piece of wire, from which they slide into a box called Boite anx Rondes. This box is carried next morning to the Major, who keeps the key; and who on opening it can easily ascertain whether the rounds have been regularly gone by connting the different Marons, and seeing then successively strung.

MAKOONS.- A name given in Jamaica and Dutch

 Guiana to runaway negro slaves. The term was first applied to those slaves who were deserted by their Masters, the Spaniards, when the British conquered Jamaica (1655), and who took refuge in the U'plands, where for 140 years they maintained a constant warfare with the British Colonists; but in 1795 they were sublued, and a portion of them removed to Nova Scotia, and afterwards to Sierra Leone. The remnant fraternized with their manumitted brethren in 1834-35. The Maroons of Dutch Guiana form a number of small independent communities.MARQUEE. - Au awning or cover of canvas forming an officer's tent; a tent complete. Marquees are of two kinds, viz., Dining and Sleeping Marquees: the former being used as officers' mess tents. Also written Markipe.
MARQUESS-MARQUIS.-The degree of nobility which in the peerage of England ranks next to Duke. Marquises were originally Commanders on the borders or frontiers of countries. or on the sea-coast, which they were bound to protect. In England, the title of Marquis was used in this sense as early as the reign of Henry the 111., when there were Marquises or Lords-marchers of the borders of Scotland and Wales: and the foreign equivalent of Harkgrat was common on the Continent. The first English Marquis in the modern sense was Robert de Vere, Earl of Oxford, who was created Marquis of Dublin by Richard II., to the no small offense of the Earls who had to yield him precedence. The oldest existing Marquisate is that of Winchester, created by Edward VI. in 1551. The title was first introduced into Sicolland in 1599 , when the Marquises of Iuntly and Itamilton were created.
The Coronet of a Marquis, as worn in the United Kinglom, is a circle of gold, with four strawberry leaves (or cak leaves), and as many pearls altornating with them, and placed on pyramidal points of the same lecight with the leaves. The mantle is scarlet, with three and a half doullings of ermine. A Martuis is styled "The Most llonorable;" his wife is in Harchioness: his eldest son takes ly courtesy the next lower title in the perange, execept where that is identical with the tithe of the Marquisate, in which case he must take the next lower still, as in the case of the Marquis and barl of Salishury, whose delest son bears the courtesy-title of Viseonint Cranbornc. The younger soms of a Marguis are styled 'Lord.' and danghters 'Lady,' with the aldition of Christian mance and surname.

MARRIED ROLL.-A registor kept in cach regiment. troop, battery, or "stathlishment, in the English Irmy, and in whichare insertel the manes of all non commissioned ollicers and soddiers who are
married with permission. All non-commissioned officers lrolding the rank of Staff Sergeants of eertain grades are permitted to marry, and also Sergeants of troops, batteries, or companies, dec., in a certain proportion, as laid down in the Regulations. Of the rank and file, 7 per cent. in England and 10 per cent. in India are allowed to marry, and are entered on the married roll; these numbers are calculated upon the establishment of the corps, except in the royal artillery, in which the calculation is made upon the establishment of each battery. No noncommissioned olficer or soldier is entitled to have his name placed on the married roll without having obtained the consent of his Commanding Officer before marriage. In the case of a sollier below the rank of Sergeant wishing to marry, he must have completed 'years' service and be in possession of at least one G. C. badge. If he has a balance in the savings-bank of $£ 5$ or npwards, it will be considered a desirable fualification. The fact of the name of a non-commissioned officer or soldier appearing on the married roll cnsures him and his family certain privileges which are not accorded to men marrying without the conseat of their Commanding Officer.
MARRONS. - Small cubic boxes, made of pasteboard, filled with powder, and wrapped with strong twine. They are used to give a loud report, or the effect of cannonading. To make a marrou, cut the pasteboard into rectangles, whose sides shall be 3 and and 5 times, respectively, the length of the side of the marron required. Divide the rectangle into 15 equal squares; cut out the squares forming the four corners of the rectangle, and divide the three remaining squares on the long side from each other by a cut the length of their side and perpendicular to the long side of the rectangle. Form a small cubic box with the pasteboard thus cut ont; paste the squares together which cover each other, and paste a band of paper around the box, leaving the cover open. When dry, fill the box with powder, paste down the cover, and envelop it with two or three layers of strong twine. Cover the marron with glue or kit. and prime it with quick-match inserted in al liole punched into the powder at the middle of one of the taces. Sec Compositions and Firecorks.

MARRUCINI.-Au ancient people in central Italy, on a narrow tract of land along the right bank of the river Aternus. Their territory extended from the Apennines to the Adriatic: between the Vestini on the north and the Frentani on the south; and between the Peligni and the Alariatic on the east and west. They were an independent ination, said to be descended from the Sabines, and generally were in alliance with their neighbors, the Marsi and Peligni. They entered into alliance with the Romans in 304 в. c, but rebelled at the beginning of the Social War. Their only place of importance was Teste, now Chieti, on the right bank of the Aternus,now the Pescara.

MARS. - The Roman Mars, who as a war-god is surnamed Gradicus (= grandis divus, the great god), also bore the surname of Silaquus, and appears to have been originally an agricultural cleity; the propitiatory offerings were presented to him as the guardian of fields and tlocks; but as the fierce shepherds Who founded the city of Rome were even more add dicted to martial thatin to pastoral pursuits, one can easily understand how Marss Silcamus should have. in the course of time, become the "Goxl of Wirr." Mars, who was a perfect personification of the stern, relentless, and wen crucl valor of the ofd Romans, was held in the highest henor. He ranked next to Juplar; like him he bore the vencratble epither of Father (Mars-piter); he was one of the three Tutelary Itivinities of the City, to each of whom Numa appointed a flanen; may he was said to be the father of Romulus himself (by Khea Silvia, the Priestess of Vist:), and was thus believed to be the real progenitor of the Roman people. Te had at sanctuary on the Quirinal ; and the lill received its name from his
surname, (onivimes, the most probable mosmines of which is the spertererm d. It was mblar this designation that he was invoked its the proterotor of the Guirites (citionns) in othur worles, of the sitate. 'The primetal animals sacered to him wore the wolf
 mosi celchorated of whiclo was that outside the /'urtu ('upmat, on tho Appian lRosul. I'he ('umpus Ifurtiux, where the kommos practiecel athletife and military exercisse, was mamed altor him; so was the monti
 year. The: hati Ifartinlev (games held in his homor) were exlehrated every your in the cirens.

Imes, the (irock gold of war, was the son of \%eus and Itera, and the favorite of Absorlite whe bore him surveral chiletren. 1 to is robresunterlin Greck poctry as a most samguimary divinity, dolighting in War for its own saka, and in the deatruclion of men. Bofore him into hattle gocs his sister Evis (Sirife); along with him are his sons and companions, Thimes (Iorror) amd l'hebos (Fear). He does not always allacre to tha same sille, like Hae great . Itherat, lint inspires now the onte now the other. He is not itlways victorious. Diomede womuld dim, and in his fall, says llomar, " he roned like nine or ton thousand warriors together." Sucharepresentation would have becen leemaed basphemons by the ancient Roman mind, imbued as it was with a solemm IVebrew-like reverence for its gods. The worship of Ares was never very prevalont in frecee; it is lelieved to have been imported from Thatee. There. and in Scythit, were its great seats, ant there Ares was believed to have his chicf home. If hath, how"bor, Temples or Shrines at lihens, Sparta, Olymbia, and other places. On statues atal reljefs, he is represented as a person of groit museular power, and cither naked or clothed with the chlanys.

MARSEILLAISE. - The name by which the grand songe of the first Frencle Ruvolution is known. The circumstaness which lefl to its fomposition are as follows: In the begiming of 1709 , when a columin of voblantecrs was about to leave strasbourg. the Mayor of the city, whe gave a banduet on the oceasion, asked an oflicer of artillery named Roneret rlo Lisle, to compose it song in their honor. Ilis request was compliced with, amblteresult was the Merseitleise both verse and music being the work of a single night. De lisle embited the piome chant ele Guerre al bidmee du Rhin. Noxt day it was sung with rapturous conthusiasm that only Fromelomen can exhibit, and instead of 600 volunterors, 1000 marched! out of Strasbouter. Soon from the whole army of the north resombded the thrilling and fuery words unx armes unx armes; nerverthelessithe song ivas still unknown at Paris, and was first introbluced there by Barbaroux when he summoned the youth of Marseille's to the Capital in July, 1702 . It was recoiven with transports by the Pirisians. who-igrorant of its renl anthorship-named it ITymne tes Merssillnise. which name it has ever since borne.

MARSHAL-- Iterm which origimally meant a groom or manager of the horse, thougheventually the kinges Marshal became one of the principal Otbecers of State in England. The Soyal Farricr rose in dignity with the increasing importunce of the Chealerie, till he became, conjointly with the Constable, the judere in the C'uria Martiules, or Courts of Chivalry. An Earldom is attached to the dignity, and the oflice of EarlMarshal is now hereditary in the family ol the Duke of Norfolk. When the King leaded his army in feudel tires, the assembled tronps were inspected by the Constable and Marshal, who fixed the siat for the encampment of etch noble, and examined the number, arms, and condition of his retaimers. With these duties was naturally combined theregnation of all matters conneretel with armorisl hearimes, standards, and ensigns. The Coustable's functions were virtually abolished in the time of lleury VIIT., and the Marshal beeame thenceforth the sole judge in questions of homor and arms. The Earl-Harshal is

 Tho Jlarslanl's functions worn formorly rexareisiol in

 paintal droputies in the new contre; hences aroure the

 of persons commithed to thair eusiong ly the monte.

 Marshal of the King's Bumble holet two dilforent courts, which have hoorn alteredhar diveontimued
 admirably is an olliecer whose rluty it is 10 atet minimterially under the orelers of the court of momitalty in sconring pri\%es, rxwoulner warranta, arresting crimimals, and atteraling their excention.

The dignity of Marslat existerl formerly in Sornhamb, where it differnent orthogrtulyy was adopterl. and the ofliae of Mariscolal wats lervelitary in the
 was bine of the most distinguishefl warriors in the army of Robtert the Browe ; and his deseemblant, the
 on lim with no other title bat that of Earl- $>$ arisclatl 'There is little doubt that the Lyon Kine-at-Irms was, like thu bonglish Kingo-at-Arons, wrigimbly subject to the Marisehal, but his dependence reased at a very berly periond. and the leraldice fumetions discharged by the Farl- Narshal in lingland devolvod in Seotland on the Jord Lyon, who heltr allice directly from the crown. Scotland had no K nightMarischal till 1633, whon ('har)ces 1., at his coronation, created the oflion. In 17lif(reorgra. lenth EarlMarischat, was attainted ineonsiophenee of his share in the reberlion of the previons year, and the oflice has since becon in aboyance. In France the hiorlowt military oflieer is called a Marshal, a dignity which originat ed carly in the 13 th century. There was at tirst only one Marerchel de: France. and there were but two till the time of Francis 1. Thair number afterwards became unlimited. Originally the Marshat was the lispuire of the líiner and commanded the vangunrd in war; in later times the ermmand becamia suprome, and the rauk of the highost military importance. From the title of this elass of Friferal officers the: (ermans have borrowed their Feld. Marsehall, and we our Fidel-Marshal, a dig. nity bestowed on commanders distinguished cither hy elevated rank or superior talents. In the United states the word is wied in three significations: 1. To denote the Dinisterial Oticer of the Lnited States Courts, there being one appointed 10 estels judicial distriet. The duties of this olliener resemble thosu of a Sheritl in the State Courts; he opens and closes the sessions of the District and Circonit ('ourts, sorves warrants, and with his deputios conforces the exerution of the internal revenue and other T.. statutes. 2. To denote a leader or director of car-(-monies, festivities or proeessions. B. In many states of the south and west the Narshat in the head of the municipal police force, and is to be dis. tineruislsed from the oflicers of the county called Sheriffs. aud from the otlicers of the justic' (ourts called Constables. In a few northern cities. formerly the name was applied with doubtful propricty to specia? police ollicers.
MARSHALLING OF ARMS.--The rombining of different coatsoof-arms in one eseutcheon, for the purpose of indicating family allizace or ontion. In the earlior herablry, it was not the practice to cxhihit more than one coat in a shiold, but the arms of hashand and wife were sometimes placml uccollie. or sile by sille, in separate excutchoons: or the principat shited was surrounded bis smaller ones, eontaining the arms of maternal ancestors : amd we mot monequently fimd maternal desent or marrage indicateal by the atolition of some bearing from the wifes or mother's

was parted per pale, and the two coats placed side by side, half of each toing shown. By the more mionlern custom of impaling (Fig. 1), the whole of encll coat is exhibitent, a reminiscence of the ofler practice being retained in the omission of bordures, urels, and tressures on the side bornded by the liue of impalement. The most common ease of impale-

Marshalling of Arms.
ment is where the coats of husband and wife areconjoincod, the hushand's arms occupying the dexter side of the shield, or place of hounr, and the wiff's the sinister side. Bishops Deaus, Heads of Colleges. and Kings-of-Arms, impale their arms of othee with their family coat, giving the dexter side to the former. A man whomarries an beiress (in heraldic sense) is entitled toplace her arms on a small shield called anescutcheon of imetence, in the center of his achievement, instead of impaling (Fig. 2.). Quarter Hg (Fig. 3), or the exhibitine different comts on a sield dividcd at once perpendicularly and horizontally, is the most common mode of mirshalling arms. a practice which, however. was unknown till the middle of the 14th century. The divisicus of the shield are called quarters, and are mumbered horizontally, beginning at the bexter chicf. The most common object of quartering is to indicate descent. The coats quarterced in in escutcheon must all have been brought in by successive heiresses, who have intermarried into the family. In the case of a siagle duartering the paternal arms are placed in the first and fourth quarters and the maternal in the second and third. The third and fourth quarters m:ay, in after generations, he oceupied by the arms of a secoud and third heiress. Sometimes an already quartered coat is pluced in one of the four quarters of the escutcheou, then termed a grand quarter. We occasionally find the shield divided by perpendicular and horizontal lines intosix, nime or even more parts, each ocenpied by a coat brought in by an heiress; anct in ease of an odd number of conts, the last division is filled by a repetition of the first. In the course of generations, al shield may thus be inponveniently crowded by the aceumulation of coats. inclurling the several coats to which each heiress may, in a similar way, have become entitled, and in Germany, sometimes twenty or thirty coats are found marslialled in one escutchcon; but in British Heraldry, families entitled to a number of quarterings, generally select some of the most important. Quarterings, at least in Seotland. are not allowed to be added to the paternal coat without the sazation of the heraldic authorities. Sorerigns quarter the ensigns of their several States, giving precedence to themost ancient, umbess it be inferior to the others in importance. In the royal escutcheon of the United Kinglom, England is placed in the first and fourth quarters. Scotland in the second, and lreland in the third; the relative positions of Scotland and England being. however, reversed on the oflecial seats of Scothand. Spain bears the groms of leom in the first and fourth 'quarters, and Castik in the seconl amd thirl. An elected King gencrally phaces his arms surtout on an escutcheon of pretence.

MARSI.-An ancient tribe of central Italy, inhabit ing the district aromul the bake Fucinus (hagi) dio ('flenos). Their origin, like that of other lialian trikes, is involved in olscority and tietion. They wreperobably of sabime origin. They are worthy of notiore chiedy on arcomat of their warlike spirit. Thre Marsians wore at onctime altioss of the Romaths, but, in 308 s . c., they revolted and joined the sam-
nite:. After lxing subbued thry again, 301 в.c., shook off the alliance of lome, but were beaten in the fichl, and lost several of the ir fortresses. From this time thay continued the firm allies of fome, contributing ly their valor to her frimuphs antil the Italians were aronsed in 91 в.c.. to demand a "odress of their wrongs ant 2 share in the privileges of Roman eitizens. A war ensued, generally knov uas the Social War, lut frequently call d the Marsic War, hecanse the Marsi were prominent among the maleontents. Their leader was Silus Pompedins Though often defeated, their perseveranse zauned the object for which they had taken up arms in 87 b.c. The Marsians, inhabiting a mountainous thistrict were simple and temperate in their habits, but hardy, brave, and unyielding. So markedwas their valor that there was in proverbial saving recorded by Aplan, "That Rome had achicvet no triumph oner the Marsi, or without the DIarsi." The an zient Marsi were represented as enchanters, able to tame serpents and to heal their lites: and it is worthy of note that the jugglers who now amuse the people ly haudling serpents are natives of the region in the vicinity of Lago di Celane. Their only important town was Marru um (San Benedetto) the ruins of which are visible on the east shore of the lake.

MARTEAU D'ARMES.-.An offensive weapon, yocalled from its resemblance to a hammer.
MARTEL DE FER. - An offensive weapon in use at the beginning of the 13 th century. It was in the shape of a pointed hammer or small pickaxe. It is stated to have made sat lavoc in mail or armor, and left fatal openings for the passige of the sword or lance.

MARTELLO TOWERS-are round towers for coust defense, about 40 feet high, huilt most solidly, amd situated on the beach. They occur in several phaces romnd the coast of the Uuited liinglom; but principally opposite to the French coast, along the somb ern shore of kimt aut Sussex. where, for many mil s, they are within easy range of each other. They were mostly esected during the Freuch war as a defense against invasion. Each had walls of $5 \frac{1}{2}$ feet thicknes's, anl was supposed to be bomb-proof. The base formed the magazine: above were two rooms for the garrison, and over the upper of these the flat roof, with a $4 \frac{1}{2}$ feet brick parapet all round. On this roof a swivel heavy gun was to be placed to command shipping, while howitzers on each side were to form a flanking defense in counection with the neighboring towers. Although the cost of these little forts was very great. they are generally considered to have been a failure; their armaments have mostly been removed, The name is sand to be taken from Italian towers bnilt near the sea, during the period when piracy was common in the Medit. erranean, for the purpose of keeping watch and giving warning if a pirate-ship was seeu approaching. This warning was given by striking on a bell with a hammer (Italian Martello), and hence these towers were called torri da marteilo.
MARTIAL LAW.-An arbitrary law, procceding drectly from the military power, and having no immediate constitutional or legislative sanction. A place, district, or country occmpied by an enemy stands, in consequence of the occupation, under the Martial Law of the invading or occupying Army, whether any prochamation declaring Martial Law, orany publie warning 10 the inhabitants, has been issued or not. Nartial Law is the immediate and direet effert and consequence of occupation or conquest. The presence of a hostile army proclaims its Martial Law. Martial haw does not cease enting the hostile oceupation, except hy eperial proclimation, ordered by the commander-in-chlief ; or by special montion in the treaty of pace concluding the war, when the orectpation of a place or territory continues beyond the conclusion of peate tas one of the conditions of the same. Martial Lew in a hostile comery consists in the suspension, by the occupying military
anthority, of the criminal and rivil latwe and of tho domostic atministration sund gexernment in the ace enpicel phace or torritory, and in the sulatitution of military rule and forer for the satme, ats woll as in the diodation of gemeral laws, as far as military me
 tationt. The commanaler of tha formes mat porndaim that the mhministration of all civil and pernal law shasll contimur. citlore wholly or in bart, is in times of peare, muless otherwise ordared hey tho military anthority. Jartial law is simply military anthority
 war. Dilitary oppression is mot Martiat haw; it is the shuse of the power which that law confers IN Marlial law is cxorated hy military foreo, jt is incombent mpan these who admanister it to bestrjetly guthed hy the principhes of juctice, homor, amel hus mataity virtues adorning a soldier (evolt more than other incer. fur the very reason that lar possorssts the power of his arms against ther matmond. Nartial

 severity may be rexreised in places or reerions whers artual hotilities axist, of are experdod aml mast bre prepatered for. lta mosis completrowaty is allowed"ven in the comananiters own cobutry - whenface to face with the ementy, hereatuse of the abosolute raterestities of the case, ant of the parmanomi duty fodef med the conntry agatas invasjon. To sime the comatry is paramomat on all other considerations. All rivil and ponal laws continu" to taky their nsual conrsce in the enmónterritory umber Hartial law, unless interrupted or stopuxed by order of the ucroptinur military power ; lut all the fonetions of the lestile orov
 whether of a gencral. provineial, or local elaracter, case muldr Nartial law. or eontimue only with the saterion, or, if Jemed necessary, the partiojpation of the ocrouptr or invidur. Hartial law extende of property, and to persons. Whether ther are subjocts of the entemy or aliens to that government. Consuls, amone Americam and Enreperan mations, are not (lip)lomatic arents. Nrvortheless, their otlieres and persons will be subjected to Martial Law in cases of

 charing the war, but also the breaking of stipulations
 perter, and asowrelly jutemled to ratain in force in cas. of war hetwoon the contracting powar. It dis.

 ha arvorrely punishocl, atal rsperisilly so if ronrmattod
 rícd cat in cases of judividual oflouders loy Dilitary
 with tho atprewal of the whicf rexertive, provideal the wrorency of the eate does not rerfuire a sperelier execolion, and then only wilh the ajp)roveal of tha elifef conmmander. Sicq Military harer.
 rian. It is *Hymanel to hatwe taken its origin from an Arlutant of lhal namm*, whon was in higly repnotr in the l'rench army as a drill oflierer durine the reign of Tomis NTV.

MARTINGALE - A thono of leather, fasioned all the cmel of the grirth mulder the belly of a horse and at the ofler end tothemusal; to krop himfrom rearing.

MARTINI HENRY RIFLE. This rille. adoplat it-
 loadinur apparatus on the Martini systom united to a
 Scotlaud. Martini, is swiss, deriviod lis system of breecleloadine from the peebody fystem of this conntry. by dispensing will dre indepernlent outside lock imd substitutiner therefor at spiral-spring firing-bolt ur striker, inclesed in the lwerels-hlock. The breceh-lading apparatus, the formof the rifling, and the fartridereare slown in dotail in the ate companying soction taken through the axis of the barrel. with the breeds rebed. 'The recepper is at solid frame of iron, miting the harrel and the front and roar portions of thes stock. The harrel in shown at L. the tip-stock at VS. and tho butt-stork at K. The point of the butt-stock is shaped to fit into the

urgant necessity only; their property and business are not exemped. Any delinquaney they eommit nganst the establishod inilitary rale may be punished as in the rase of any other inhabitant, and surh punishment furnislucs 20 roasonable ground for infernalinmal complaint. The fumctions of Imbassadors. Ministers, or other cliplomatic arents, acereditcod by neutral powers to the lostile government, cease, so far as regards the displaced govermument: but the eonquering or neennying power usually recognizes them as temporariby areredited to itself. Martial Jaw alfects chiefly ho police and collerotion of public revemacand taxes, whether innowed by tha expelled goverument or by the invider, and refers
rear end of the receiver. which is emped to receive it: it is fastened to the rerover by the longitudinal screw-bolt. If S,in the manner shownin the (lawing The seseral parts of the breech system may be dividl ed into two groups. viz: 1. The falling hreech-block and the firing apparatus contanind in it: 2. "]he trigger and other parts attached to the trigreer-plate. and the extractor. The breech-black is pisoteri at its rear and uppur portion. and in uncorering the elmanber of the bartel for the purpose of loading, its front portion fall. The axisopin, $p s$, around which the hlock turns is mide of hard bronze. The portion of the collar surroumding this pin is enibcdied in the receiver and coustitntes the principal recold
heariner surface of the block. As this surfice is above the axis of the bore, prolonged to the rear,there is a downward pressure of the block at the moment of explosion. This pressure is resisted hy the short arm of the lever, $b h$, and the block thereby secured in its place. This lever, called the block-lever, is composed of two arms, and turns round the pin, n v. The slort arm of the block-lever is divited into two branches. The long arm serves as a handle by which the block is worked, and when closed its point enters a countersink, and is held in plare by a small catch-pin. The short arm of the hlock-lewer works in a cut on the lower sicle of the breech-block. This cnt is so shaped that the points of the branches of the short arm working against its sides raise and lower the block and lock it. The drawing shows the block in the locked position. The lever-pin passes through both cheeks of the receiver, and is socured to the left cheek by a small screw, the head of which enters ingroove in the point of the pin.

The firing-bolt, or striker, lies in a bole extending nearly througl the center of the breecl-block. It is composed of its point, which projects through a corresponding opening in the liead of the block; a collar, which serves as a shoulder for the spiral manspring to press against, and the body enveloped by this spinal spring. The rear portion of the striker has a vertical slot, in which works,the point of a lever to draw back the striker to the position of full cock. This lever is called the tmmbler. The rear end of the striker lias a slot in it, that it may be adjusted by a screw-driver to reccive the point of the tumbler. The striker is kept in pace by a nut screwed into the rear end of the breech-hlock. The tumbler is pivoted on the same axis-pin as the locking. lever, n on, and is placed between its two branches. To show when the striker is at full cock, the end of the lever-pin, n m, has an index-arm, which lies on the right side of the receiver and turns with the tumbler. It is for this purpose that the portion of the pin on which the tumbler fits is made square. The tumbler, when at full cock, is supported on a rocker, called the tum-bler-rest. The nose of the trigger,in turn supports the tumbler-rest at r. The tail-piece of the tumbler-rest bears against the back of the trigger when the latter is pulled. The trigger-spring is shown in, $d f$. To present accidents when the picce is carricel londed, the trigger is secured in place by the trigger-bolt. which is slid back and forth by pressing on the fin-ger-piece. When locked, the holt fits into a noteh, and is kept in place by a spring.

The extractor, ϵ, is il bent lever pivoted ates. Its vertical arm is composed of two branches with points which hook under the rim of the cartridge to extract the slicll. The horizontal arm is shaped to receive the downward pressure of the breech-hlock on its point and start the shell from the chamber. As soon as the shell has moved slightly the point of the breech-block strikes the arm near the fulcrum, and ejects the shell with force from the piece. The form of the ritling is shown in the drawing. The number of arooves is severl: in slape thay are flat at the bottom; the lands are narrow, having the appearsuce of sharp ribs, which are designed to take at firm hohl of the bullet. It is melerstood that these grooves are made somewhat derper at the brepeh that at the muxale. Twist is one thrn in 20 incles. There is a brass collar aromad the head of the ramrod to prevent injury to the bore in wiping out. The 1 riangre lar bayonet is issued withall arms to private solliers. "the swort-hayonet is issumed to non-commissioned ofticers.
'l'ue weight of the Martini-lleury rille is $8 \frac{1}{2}$ pounds: of the prisent bayonet list manees ; of tha new buyont, 14 whaces; of the ohd scabbard, founcess ; of the new scabbard, $4 \frac{1}{2}$ onces. The weight of the rifle wilh a new hayonet attached is: jounds 11 onnces; will the whil loyomet, pounds $11 \frac{1}{2}$ ounces.

The cartride alophod for the Martini-1lenry rifle
is made of wropped metal, after what is known in England as the Boxer system. Each cartridge is composed of some fourteen distinct pieces,as shown in section. The body of the shell is made by wrapping a tripezoidal piece of thin sheet-brass around a rylindrical former, making a tube. One end of this tube is turncal inwarl to form an interior lange for securing the shell to its head, the other end is reduced in diameter to fit the cylindrical portion of the bullet. A piece of thin paper is rolled up with the brass sheet for a lining to the shell to protect it arainst the artion of the powder. The head of the shell is made of a perforated shect-iron disk, t, two re-enforcing cups of thin sheet-brass, k, the anvilpocket, g, made of copper, and a paper wad, c. The relative positions of these picces are shown in the sectional figure, and they are hedrl together by the anvil-pocket and the paper wath, which is pressedinto its place with great force under the head of the anvil-pocket, while the open end of the pocket is riveted to the disk.

The shell is primed by mserting into the anvilpocket from the outside a primer composed of a per-cussion-cap of copper, z, aud containing an anvil, a, $_{\text {, }}$ also of copper. 'lhe bottom of the anvil-pecket laas a small hole for the passage of the flame from the fuminate of the primer when it is exploded.

The bullet, c, is of cylindro-conoidal form. made of lead bardened by in admixture of one-thirteenth part of tin. The ballet is sliglitly copped at the base, and has around it a slight groove, r, r, or cannelure, into which the cartridge-shell is choked to loold the bullet in place. The bullet is enveloped in a patch of thim paper, similar to that used for bank-notes. Thelubricating material is a bee's-wax wad, a d, lying between the powder and bullet. This wad is separated from the powder by a stont paper disk (jute), and from the bnllet by two disks of the same material. The weight of the bullet is 480 grains , and the powder is similar in quantity to that known as No. 6, Curtis and Harvey's make, and weiglis 85 grains. These cartridges can be reorimed and reloaded.

Since the Martini-Henry rifles have been placed in the hands of the troops certain defects have been developed, and the necessary alterations have been made to correct them. The most serious defeet apbears to have been the recoil, or "kick," of the arm, extending, according to the newspaper accounts, so far as to disable soldiers after firing a series of not more than one hundred shots. The canse of this severe recuil is attributed to the great weight of the charge (powder and bullet) in proportion to the weight of the arm. The prominence of the stock in rear of the brecch-frame contributes to the inconvenience of the recoil by striking against the face of the firer, if care be not taken to lobld the piece properly. The injurious effect of the recoil is found to be the greatest with soldiers not acenstomed to the use of the new arm, and diminisles as they borome more accustomed to it. To remedy the pvil as far as practicable, it has been decided to lengthen the butt of the stuck. Orisinally the distance from the trigger to the middle point of the lutt-phate was 18 and 14 inches, and the two kinds of ritles were issued to the tromps in the propurtion of two of the furmer to one of the latter length. The corresponding distances now are about it inches and 14 inches, and the ehamere is satid to lave gone quite tar toward remedying the evil. To prolect the left hand from the lucit of the harrel in rabid firing the portion of the harred embracod by the hand is covered with a leather shieldstrapped and buckled on. The buttplates were formurly roushed by coose-hatching with a file to give a firmer hold againes the shanaler. This las beren dispensed with as hunecossury, and the surface is now left smootls. The locking-holt has also been dispensed with as muncerssary, mod the hook axis-pin is combtersmek and made of steel instated of hard bronze. The strikers having been
fomme to lireak, lave heen materially atrenithemed. The plan of serewing in the peint if the ramerol to bohd it in ita plate has bern ehanged to a slanditer resting against a stopl, which is stronuly seronre(t) to the stork below the tip, somewhat after the Ameriean plan.
'lobe carhines of the avalry and arlillory patherns
 have also the sanme twist and form of rilling, bat the barrels are only $1!$ ineles in lengelt. The weight of the cavalry exirbine is \bar{T} pounds, 8 ounces, and lat of the artillery carinine is 't pountls, 102 mances. 'To.
 "Paborly-ifartini Rijle, and hoyal, Simall "rams.

MARTIN SHELI. - A vory ingenious substitute for a red-hot shot, to which, as far as experioneco lans gone, it is much superior. It is an ordinary shell furnished with an iron serew stopper. Molten iron is ponred into the saell. the stopper screwed in, und the missile discharged for incembiary purposes.

MARTLET. - In II raldry,abirdre-

Martlet. sembling ta swallow, with longwings. very slort beak and thighs. atil no visible legs, given as a mark of cat? eney to the fourlh son. It is also otherwise used as it rharge. The martlet was orbinally meant for the martin, and in the carliest Iteraldry, it is not deprived of its feet.
MASCLE.- In IHeraldry, a lozengeslaped figure perfornted :und showing a very anarow border. 'The term mexece'ly is as a general. thing applied to any ficlel that is divided by diagonat lines into lozenge-shapred compartments of alternate tinctures, eneb luying its conter voilled of the opsposite tineture. Lozt ngy-mascally is a field compoosed of lozengres ambl mascles altermately. In the varlier Heraddry, mascally was used for what whs after wards cillen lozengy. Crosses and other ordinaries may he formed of maseles, in which case they should begin with half a masele. See Heraldry.

MASCLED ARMOR.- A kind of armor sometimes worm lyy the Norman soldiers, composed of small lozenge-shaped plates of metal fastened ona leathern or quilted muter-eoat.
MASK. -1 . In a permanent fortitication, a rasemated redoubt, one or two stories high sud 12 yards in

Fig. 1.
Width at the capital, which is sometimes added in front of the cuponier: a ditch 10 yards wide may he
formed in front and rear of it. Its salients beringe matle circophar and looplos)ed, a close and ponerfol fire can be brought to bear upen the enemy if he rusreceds in establishing himself in the raselin. "fla" name maxde is given to this redoubt, as it acts as an
 A wirr (age to protert the face in foncing. Fige I r"presentstho ordinary fonsing mask, furmisharl with ears and fronts. Fig. 2, roprosents the han rempior moske paddech. 3. As a military expression, menk, is used in severall senses. A mastren lattory is one mo constructel, with a grassy gheis, we., ats to be hidelen from the view of the encony until, to his surprise, it suddenly oprns firre unsu lim-on his thank. berlatps. The tire of a battery is munked when some

Fig. 2
other work, or a body of friendly tronps, intervenes in the line of fire, and prechades the use of the guns. Ifortress or an army is mestive when a superior force of the enemy holds it in cheek. while some hostile "volution is being carried ont
MASON AND DIXON'S LINE. -This line riginated in the difficulties which occurred in tracing the lomatary line of a tract of land granted to William Penn in 1681 . This land lay west of the Delaware and north of Maryland, and a part of its southern boundary was defined to be "acircle drawn at 12 miles distant from Neweastle nothwards and westwards into the beginning of the 40° of northern latitude." Lator. Penn received another grant, aud, his agent being unable to agree with the authorities in America at to the just boundary, he eame to this country himself in 168° to establish his claim and take possession of his land. He was opposed by Lord Bal. timore, the matter was referred to the committee of Trade ard Plantations, a clange in the reigning monareh of England took place, and it was not until 1760 that the final deed was issued to the heirs of lenn. elosing the controversy. But even then the fuestion of surveving the disputed territory with a view of detining the boundary-line opened new disagreement; ind it was to arrange this that Charles Mason ant James Dixod. "Mathematicians and Surveyors," were mutually agreal unm by the contestants. Thomas and Richarl Penn, on the one part, and Lord Baltimore, the great grand-son of Cecilins. the first patentece on the other, "To mark, run out, settle, fix and determine all such parts of the circle. marks, lines, and boundaries as were mentioned in the several articles or commisions. and were not completel." The two surveyors commeneed their work in 1664 and did not tinish it until lisid: the delay being partly owing to Indian tronbles, involv-
ing negotiations with the Six Nations in their settle－ ment．The line as finally drawn．has heen pophlar－ ly supposed to have betm the diviting tine between the Free and the slave States：but this is an error， as slavery existed throughout Delaware，which is both easi and uorth of the line，until abolished by the $14 t h$ Amendment to the Constitution．To this line is owing the peculiar tract of land known as the Pau－haudle，＂where a part of Virginia runs up be－ tween PcunsyTvania and the Ohio River．Very little is known of the two＂Surveyors of London．＂as they were styled．Mason was an assistant of Dr．Brad ley at the Royal Observatory at Greenwieh；both were members of the Americau Philosophical Soci－ ety：both were sent hy the Royal Society to the Cape of Good 1 lope to olserve the transit of Vemus in 1569．Dixon died in Durham，Eugland，in 17斤斤；and Mason died in Pemusylvania in 1 万sí．

MASONED．－In lleraldry，a term used to lescribe the lines formed by the junction of the stnues in builling．
MASS．－1．In Statics，the amount of matter con－ tainet in a boty．In Dynemics，that measure of the matter in a body which determines its relation to force．The accepted measure is the weight dividod by the force of gravity． 2 The formation of troops in column at less than half distance．To metss troops，is to concentrate them by this arrangement on a certain point．A column is closed in mass when the sulb－divisious have less than half distance．

MASSACRE．－The killing of human beings by in－ discriminate slanghter，murder of mumbers with cruefty or atrocity，or coutrary to the usages of civitized people．is an example，we may cite the Momntain Me：tdows Massacre，atu atrocity committed by the Indians in 185\％．in Monntain Meadows，Santa Clara Co．Utah：as is supposed．under the instigation and direction of the Normon leaders．A party of 120 cmigraut settlers，on their way throngh U＇tah to Catifornia hat in some way aroused the suzpicions of the Mormons，and at the place named were sur－ rounded by Indians under Mormon control，and bru－ tally massiered：only a few children of the party survived．In $18 \dot{4} 4$ an investigation into the affair was ordered by the U．S．Government，and John D．Lee， a Mormon Bishop，and others．were indicted，tried， and condemmed．Lee was excented on llareh 22， 1874，by being shot on the very spot where the mas－ sacre took place．

MASSAGETAE．－A nomadic people who inhabited the brond steppes on the northeast of the Caspian sea．to the northward of the river Araxes or Jaxartes． Ilerodotus says that they had a community of wives；that they sacrificell and devoured their aged people；that they worshipped the sun，and offered horses to him；that they tived on the milk and flesh of their herds，and on fish：and fought on horselack and on foot with the lance，bow，and double－edged axe． Cyrus is said to have lost his tife in fighting against them， 530 в．c．Niebulir and 3 öockh are of opinion that they belonged to the Mongolian，but Itumboldt ant others to the Indo－Germanic orAryan family．

MASSE．－A species of stock－purse，which，during the French monarety，was lodged in the hands of the Regimental Treasurer or Paymaster，for every Sorgeant，Corporal，Drummer，and Soldier．The mnomit retained for cuch scrgeant was eingt deniers per day，and dix deniers for each of the other ranks， aecorling to the＂stablishment，not the effective number，of each battalion．Ont of these stoppages a settled and regular maske，or stock－purse，wis made up，and at the cend of every month it was paid into the hands of the Major or Oflieer intrusted with the interior management of the corps，and was then appropriated io defray the expense of chothing the different roximents，amblodged in the hands of the Diructors or Inspuctor－temeral of Clothing．

MASSE D＇ARMES．－A warlike weapon，which was formerly used in France．It ronsisted of a long poth with al farge iron hean．

MASSELOTTE．－A Frencla term used in the foundry to signify that superfluous metal which remains after il canom or mortar has been cast，and which is saw－ en or filed off to give the picce its proper form．
MASSIE．－A short stick or rod，used by artificers in making cartritges．
MASSING GUNS．－The best mode of succusfully sitencing the enemy＇s artillery，or of destroying some special position of his，is by means of a mmber of guns brought to hear on that point．This system was first introduced by Napoleon at the battles of Wagram，the Moskwa，and Liutzen，and subsequent－ ly was employed with great effect by the Germins luring the war of $18 \% 0-71$ ．

In the concentration of artillery in action it is not necessary that all the guns should be formed up into one gigantic battery．With pieces commanding a range of 3,000 yards，a huudred guns might grneraily： direct their firenn to one spot，without heing crowded together，and it is hardly likely so mayy gums wonld be required to concentrate their fire．It is further shown that it is important in massing guns，es－ pecialty under the tire of an enemy，that the guns should come into action as nearly simultanconsly as possible；otherwise each hattery may be erushed in its turu as it comes up，from the enemy having got the exact rance of the battery which first got into position．
MASTER GENERAL OF THE ORDNANCE．－An Offi－ cer formerty at the hearl of the Board of Orduance． Before the present regimental organization of the ar－ tillery，alt detaits of the regiment came under the care and superintendence of the Master－General． The position of Master－General was introduced into the English Army as carly as 1483；at all events，that seems to be the earliest date that the name of such a functionary can he traced．This officer was at the head of the Buard of Ordnance，to which most im－ portant duties were assigned ；and if any oue would wish to learn what the Master－Gegeral had to do in the 1 ith century，let him go to the Tower and exam－ ine the correspondence of Lord Dartmouth，the faithful friend and servant of Charles Il．，a profes－ siousl artilleryman，and James I1．，a skitled Master－ General to the last．The last Master－General of the Ordance was Lord Raglan，who died while in com－ mand of the British Army in the Crimea．
MASTER－GUNNER．－Formerly an ancient office un－ der the crown，as far back as the reign of llenry V111．The appointment is now filled by pensioned sergents of artillery．A Master－Gumner，as under－ stood nowadays，is a warrant officer selected from the Non－conmissioned officers of artillery，whose duty is to take charge of guns，ammunition，stores ctc．．in a fortress．The Coast Brigade is com－ posed of Master Gunners（pensioners），and there are 3 classes，1st， 2 d ，and 3 d ，containing 16，26，and 83 respectively．

MASTER OF THE BUCKHOUNDS．－An efticer in the Master of the Ilorse Department of the Rogat llouse－ hold，who has the control of all matters relating to the royal hunts．A salary of $£ 1,500$ is attached to the oftice，which is regarded as one of considerable po－ litical importance．The Mastor of the Buckhounds goes out of office on a change of ministry：

MASTER OF THE CEREMONIES．－Au oflice insti－ tu＇ed at the Court of England in 1603，for the more honorable reception of Ambassadors and persons of distinction．The same term was afterwards extend－ ed beyond ha Court by heing applied first to Buan Nish，the fimous＂Master of the Ceremonies，＂or President of the amusements at Bath，and then to other persons exercising the same function in orlin－ ary assemblies．
MASTER OF THE HORSE．－The thirel great otherr of the Court，who has the sunerintentence of the Royal stabkes，and of all horses and lreeds of horses befonging to the Queen．Whe exereises authority wor all the Equerries amd lares，（iroms，Coach－ men，Sadders，and Farriers，and has the appointment
and control of all artiferrs workintr for Ha* Quecon's stables. lle is moswreable for the dishorsement of all revertues apjuropriated to defraty the "xpenses of
 anined by the lBoird of Cireen Cloth. Hte has the privileqe of making use of the roynd horwes, pares, and sorvants, and rifles mext to lier Majesty on hill statcoorasions. The oflce is cme of gromatiationty, sund is considered to be a position at groat homer. The Master of the Jorse is appointed daring pleasure, Jy lelter"palent ; but his lemure of oflece deprends on the exintence of the politiond party in perwer. The salary is $\mathcal{L}^{20} .500$ a your.

MASTER OF THE SWORD. 1 ((itizen (manloycil 10 instrurt in tha heo of the small-sword, brosul-sword, and bayonet, at the U. ふ. Military Acarlomy. II" is withont rank, but wears a miform of the following pattern:

Cout-Double-brasied frork, two rows of buttons of the coneral Stall of the Army, seven in card row. Oorvot.- Sime as prescribod for a Second Lientemant, dismounted. J'ontalouns-- Dark IJles', phain. Cop-Chasseur pattern, with letters M. A. in silver, ancircled by a wreath ingold on the front. Sioned aud simord-belt-Same as prescribed for dirntemants of lufuntry. 11e is permitted 10 wear the dark-hlue suck-coat prescribed for Army ollleers, with the buttons of the femeral Stall.

MASTER TAILOR. - A competent tailor, attached to eneh regiment, who has been, if a solfier, pro. nounced by a Board of Sergeant Master Tailors to be efficient and well up to his work, or who has been instructed in the art of tailoring at the Gov"rument Clothing Establishment, Pimlico. A civil. iantailor may voluntecr for the situation; and if so, he will have to pass an examination at the lRoyal. Army Cothing Depot, and be culisted as a Sergeant Haster Tiailor

MASTIC.-I species of gum-resin yiched by the mastic or jeutisk tree (n istucia lentiscus, natural ordor terebinthace(p). It anzes from cuts made in the bark, and hardens on the stem in small round tearlike lumps of a straw-color, or if not collected in time, it falls on the ground; in the latter state it acquires some impurities, and is consequently less valuable. The chief use of this gum-resin is in making the almost colorless varnish for varnishing prints, maps, drawings, etc. It is also used by dentists for stopping hollow tecth, and was formerly used in medicine. It is imported in small quantities, chiclly from the Moroceo coast, lut some is occasionally bronght from the sonth of Europe. The nume of mastic is also given to oleaginous cements, composed of about 7 parts of litharge and 03 of buruedi clay, reducel to fine powder, made into a paste with linseed oil.

MATADOR.- A long, narrow sword with a ernssbar. The toreador, on foot, fights with this sword and kills the bull.

MATAFUNDA. - An aucirnt machine of war, which was used for throwing stones, probably by means of a sling.

MATCH. The name givento a material, such as cotton, hemp, tow, ete., which is rendered combustible by being dipped or soaked in some ionitible solution: There are two kinds of matel familiar to the artilleryman, quick-match and slome-match. Quiekmatch is made of different-sized threads - vis: four-, six-and ten-thread-soakel in a solution of gumpowdor, mixed with gum arabic and water in a boiling state, and of such consisteney that the thread shatl be thoronghly coated with it; it is then wound on reels, and gunpowder sifted on it. If it he suiff, and has the coating of powder perfect over the surface, it is serviceable. If it has been bruised or twisted and the coating of powder removed. it is unservicenable. It is largelr used for priming fuses, ete. Slowmatch is made of slightly twisted hempen rope, soaked in lime-mater and saltpeter, and then dried, or it can be prepared by washing the hemp in a lye of
watorand wosel ashoy. It buras at the ratio of one yond in right hours, ansl is useal for lighting portiires, retc.

MATCHLOCK. - 7ho ntmu formerly given io a small-arm or masket. The arliost muskets were fircol by monas of a pircee of slow-matrol applied by tho hamd to thre tomels-boles. In improvement sia this monle of ignition was mate at the comb of the fonmerenth remary by as lack being attindactl to the nusket whicls hald the matrh, and loy jressure apo plind to the trigger of the look, it lisought the lighted match down on the juwelerepan and thos ignitod the priming powter. This mode of ignition cansel ther musket to be called the mutelures. Sice louk.

MATE-GRIFFON.-An anciont machine, thre rlestroyer and torror of tho (iruoks, which projectorl both stomes and riarts.

MATERIEL.-The expresision, " matéried of artillery," cmoraces all cannon, carriages, implements, ammanition, etco, necessary for artillery jurposes, und is used in contradistinction to "rpronnsl of artillery," which refers to the ollirars and marn. The expression, "system of ertillery," refers to the character and arrangement of the materiel of artillery, as adonted by a nation at any particular epoch. In the Enited States'service, the term " orlmance and ord. mance stores," embraces not only all the matiriel of artillery, lout the sworts, small-arms, and accoutrements used loy infentry and mounted troops.

MATHEMATICAL INSTRUMEMTS. - Those instrnments employed in the doternination of the length of lines or the size of angles. Pairs of compasses, surveying-chains, ete, are examples of the former class; while the compass, sextant, theodolite, and the numerous list of astronomical instruments generally denominated telescopes, including the equatorial transit instrument, mural eirele, ete., form the latter class. The more important of these instruments will be treated of under separate heads.

MATHEMATICS-The spience which has for its subject-matter the properties of magnitudeand number. It is nsually diviled into Pure and Mixed; the first including alldeductions from the abstract, solfevident relations of magnitude and number; the second, the results arrived at by applying the principle so established to certain relations found lyy observation to exist among the phenomena of nature. The branches of I'ure Mathematics which were first dereloped wers, naturally, Arithmetic, or the science of number, aud Geometry, or the science of quantity (in extension). The latter of these was the only branch of mathematies cultivated by the Grecks, their cumbrons notation opposing a barrier to any effective progress in the former science. Algabra, or the science of numbers in its most general form, is of much later growth, and was at first mercly a kind of universal arithmetic, general symbols taking the place of numbers; but its extraordinary development within the last two centuries has established for it a right to be considered as a distinct science, the Science of Operations. Combinations of these three lave given rise to Trigonometryand Analytical Geometry. The IVfferential and Integral Calculas makes use of the operations or processes of geometry, algebra, and analysis indifferently; the C"alculus of Finite llfferences is in part included under algebra, and may be considered as an extension of that science: and the Calculus of Variations is based upon the Differential Calculus. The term " Dixed Mathematics" is calculated to lead to error; "Applied Matlematics" is a more appropriate name. This portion of mathematics includes all those sriences in which a few simple axioms are mathematically shown to be sufticient for the deduction of the most important natural phenomens. This definition includes those sciences which ireat of pressure, motion, light heat, sound. electricity and magnetism-usually called Physics - and excludes chemistry. genlogy, political economy, and the other branches of science'
which, however, recerve more or less aid from ma. thematics.

MATRAS.- In ancient bolt or arrow with a round disk or head, which killed without piercing. It was oftener used for the elase than in war, and was especially useful in bringing down such beasts as the lunter might wish to preserve with the skin minjured.

MATRON. A woman, generally the wife of some well-behaved soldier. who is employed to assist in the hospital, do the washing, ete. The matrons arw under the direction of the Surgeon and are originally appointed by this otticer.

MATROSS. - A name formerly given to an artillery man. In the early organization of the British artillery, there were only two-trained artillerymen per gun ; they consisted of a gunner and his mute or matross. It was in the year 1783 that the torm gunner was substituted for that of matross. It would appear from this that the mate, or matross, was in fact a gunner. Another explanation of the word is as follows: A man whose business it is to be in the train of astillery, next the gunners, to assist them in loading, tiring. and sponging the goms.

MATTER. - From a physieal point of view, matter is anything that ean alfect the senses, or that can exert, or be acted on by force. The existence of matter, in the sense of substance, has been donbted by many Philosophers, ineluling some of the greatest of Experimenters. Indeed, as we can know matter only ly the forees it exerts, it is obvious that the supposition of mere geonetric points, eapable of exerting force (technically called centerwoff force), will as satisfactorily aceount for all observed phenomena as any other idea of the nltimate mature of matter. Here, however, we are dealing with a question confessedly beyond the reach of experiment, and belonging to the domain with which metaphysies professes io deal. Although experiment cannot lead to a knowledge of the ultimate mature of matter, it may lead to important discoveries as to the arrangement of the molecules of different bodies, and their similarity or dissimilarity. Some of the questions to which we may expect an answer, though not a speedy one, have already been mentioned in the article Fonce; but in order to render intelligible the short aecomnt which we intend to give of some very interesting ideas recently propounded bs Graham, it will be neressary to repeat some of them. The old idea of the transmutation of metals implicitly contains the assmmption that all kinds of matter are ultimately one. Far from being at starling assmaption, this is the simplest and most easily conceived notion we can entertain on the subject; and it offers a remarkably simple explanation of that extraordinary property of matter which Newton proved by carefnl experiments, that the weight of a body depenels only on the epuantity. not on the fuality of the matter that composes it. One idea, then, of matter is, that the atoms (or smallest parts, whatever these may be) of all bodies are ielentical, but that the molecules (each of which is a single atom, or a definitely arranged eroup of atoms) differ from one body to another. Thus (to take an instance merely for explanation, not as at all lakely to be correat , if hydrogran be supposed to consist of the simple atoms of matter; oxygen, each molecule of whinh is 8 times as heary as one of hyolrogen, may have cach molecule formed of 8 elementary atoms, arranged in a gronp such as the corners of a die; carhon, 6 times as heavy per molecule, might be composed of 6 simple atoms gromped as at the corners of an octohedron; suld so ons. It is obvions that here cach atom must be supposed expable of excrting force on cevery other. This leads us naturally to speculations as to the nedium thronerle which this force, if it be exerterl at a distance, is propagated ; and then we have introduced matter of a more refined character than oursupposed elementary atoms. 'This difliculty has suggested to varions

Philosophers the idea that there is no actio in clixhens, that all pressure, for instanee, in a gas is due to in'eessant impacts of jts particles upon each other and upon the containing vessel. But from varions experimental results, we know that this species of motion is capable of being trinsferred from one body to another, of being increased or diminished by change of temperatmre, and is, in fact, heut itself. one form of kinetic energy. This, if there lye no nltimate difference between kinds of matter, could never be the canse of their apparent ditTerence. Hence, in Graham's view, though all ultimate atoms ari identical in sulsstance, they have special motions of their own, by which one is distinguished from another. these motions not being eapable of transfer from one aton or group of atoms to another. It is diftienle to conceive energy in such a form as not to be transferable, so that we refer the reatet to Graham's own papers for the further development of his theory-remarking, in conclusion, that no theory of the mature of matter can be considered as at all complete till it account for the mutnal action of separate atoms; for this the existence of a continuons material medium in space wonld seem to be nocessary ; and this, in its turn, would, if aceepted, earble ns to dispense with the idea of atoms. In eonneetion with this, we may mention that Sir William Thomson lias shown that mere heterogeneity (which We know exists in matter), together with gravitation, is snftieient to explain all the apparently discordant laws of molecnlar action: matter being supposed, in this theory, to be continuous but of varying density from point to point.

MATTOCK. A pioneer tool, resembling a pick-axe, but having two broad, sharpedges imstead of points.

MATTUCASHLASH - An ancient Scoteh weapon, sometimes called Armpit Dagger, which was worn under the armpit, ready to be used on coming to elose quarters. This, with a boad-sword and shield, contpletely armed the Highlanders.

MAUL. - A heavy beater, or hammer, usnally shod witl iron, used in driving stakes, ete. That furnished from arsenals has a eylindrical head of wood, 6 iuehes in diameter and 8 inches long, with an iron band aromad each end. The handle is 24 inches long and 1.5 inch in diameter. Weight 10 los. This manl, as jssued, owing to poor material and fanlty construction, is of but little value. Where mach service is required, it is better to make the head of tough, hard wood, with a handle considerably larger than the cne of regulation pattern.

MaUSER RIFLE.-The Mauser is a modification of the Chassepoit system, by which it is adapted to the use of the metallie gas-check cartridge, and has been adopted by the Prussian Government as a snbstitnte for the needle-gun. In the drawing, Il represents the housing or receiver attached to the barrel ly the usnal form of serew at its forward end, and to the stock at its rear end by a tang-serew, which penotrates through the stock to the trigger-guard. The general form of the recuiver is a tube cut away at different points for the reception of the parts that work in aut are attached to it. The breech is closed by a bolt called the brecel-bolt, which contains the tiring-pin, and other parts neecssary to the operation of lorking and corking. The principal part of the breech-bolt is the tnbe, K . The rib, w, on the exterior of this tube, known as the locking-tube, is for the purpose of locking into the space ent away in the rereiver between f and f, to cnable the breechbolt to sustain the foree of the discharge. The ends of this rib being mate puite ohligue to the axis of the bore, or rather of spiral form, and the cinds of the cat boing moreover made to correspond, the brecel-bolt is screwed forward against the cartringe when it is locked in loather. By this arrangenent the cartringe is not only forcedinto its place in the chamber, shouk there be mulue resistance, but ac cinlental explosions which might arise from striking the he:al of the eartridge direetly when the bolt is
 is athached to this rib for the phatoone of workiner the breech-bolt. Tho breerdl-bolt is errminaterl in the separatupioce, k ur. by way of dosionation, this pirere is callad the bolebeid. "l'lu forwarl pordon lans a small romal holo for the point of the tiring-
 an oval hole, that beiner the shatux of the cross-8ce tion of tha tiriner-pin whing passis thronerlat it 'the extrachor-hook is athached to liae side of tha boolthead by means of at dovelatil-temon and works in a
were the thange of the antridere into its rex.ene in the batrel. 'Thescrew motion of the lorking-tnlye gives
 the chamber. Whan withalrawn, the coase falle ant loy slighty tipping ovare tha Jarrul to tha right. 'llue fol.
 cte., of the Mancer rifle and cartridgeras andonfend for the J'russian military servicen: 7ho buro is . $8: 3 \%$ incla (11 millimottors) "dianmer, and rifled with 4 flat groover "tumat to the landa la width; the depilh of the grooseos is. 01 inch and the t wist is from rieght toleft and one

corresponding groove cut in the left side of the well of the reecerer. The stud, h. fits into tha noth of the rib, and is the means of uniting these 1 wo parts longitudinally, at the same time their motions around their common axis are imbependent of each other.

The lower front corner of the cocking-pinece, \& $p \times$ catches aganst the nose of the semp, "*, tumd hohds the firing-pin at full-cock when the bolt isshoved forwarl and the breech is dosed. It has also a groove, into which the nose of the sear projects when the tiring-pin is pushed forward. The projeetion, d, works in a cut in the reeciver. 11, and therehy prevents the firing-pin from turning. A projection fits into at earrespondingly shaped (out. in the boekingtube, k, and by the pressure produced by the firingpin spring keeps the breceln-bolt in the lockedposition.

The firing-pin nut. b s, secures the corking-piere to the firing-pint. The projection, g, fits into a groove, and is thereby prevented from unserewing. The parts marked. of f, and $u x$ are the sear-spring and sear combined in one piare. This piece is attached 10 the lower side of the receiver by aseraw; the portion throngla which the serow passe's server as the ramrod-stop. The trigger, az, is pivotel to the suar, and is composcel of an arm and linger-piece. Fig. 1 , shows the firing-pin, and its spiral spring, made of supare instead of romat wire. The portions in fromt and rear of the spring are made oval in cross-section to prevent tha pinfrom turning in lorking. The reenforce. t forms a shoulder for the spring to press arainst. The main trawing represents the firingpin in the position of resting on the hean of the cartridge after firing. As the piece is hronerat to the prosition of fu!l-cock in loading, an improvernent has lately been introluced into this arm for locking the firing-pin in case it is not to be fired immediate1 F , and thereb proventing aceidental explosions. The motion of the breech-lont to the rear is limited by the sear, $a 8$, which works in a grouse on the under silhe of the locking-tube, k. To remove the bolt entirely from the raceiver it is only necessary to press on the trigger at the same time that the breech-holt is pressed hack. A recess serves to relieve the strain on the sear-spring ber allowing the nose of the sear to penetrate it. The firing-pin serew, b s, is removed with the fingers (having a milled head) by pushing batk the firing-pin and slipping for ward the cockingpiece so ats to frue the projuction, g. from its recess. The spring of the extractor allows the hook to pass
turn in 33 incles. 'Tlas lenth of the barrel is 33.0 . in 2 inches: the total harnth of the riffe without hayonet. is 58.15 inches: with hayonet, ol. ifinches: weight. withont bayonet, 10 pounds; with hayonct, 11.4 pounds. The sight is arranged for a matural printblank of 300 moters. The movable part is graduated up to 1.600 meters, some 500 yards farther than mow military rilles. The initial inlocity is abont 1,400 fect. Tlhe cartridge-shedl is Irawnout in the usiual way from a disk of shot-hrass, and is shown matoral size. The head is solid,ant has an exterior prime er of the berdan pattern. This distribution of the metal in the heal is somewhat difherent from that in ordinary solid-head sharls, and is such as to give it great siremgth to resist rupture under the pressure of the powiter. The interior of the cartridge-shell is covered with a coating of varnish to prevint the metal from ating injurionsly on the powerer harge. This varnish is applied by means of very ingenions machines devised and made by the Pratt and Whatney Company, of Lartford, Conn. The bullet is patehed with bank-note paper, thin and strong, and there is a labricating-wad between the powder and bullet. The powder-charge is it erains. The powWer for the Matuser rifle differs from all other l'ru*sian powter, inasmuch as red chareoal instrad of blaek is rmployel in its manufacture, which is thonght to give it greater strength. The sike and shape of the grain are similar to that of the Engli:h musket-powter, known as C'urtio and liarvey's Xo. 6. The bulle weighs swi grains. See Chusse prit Ritte and simet'- 2 mim.
MAXIMILIAN TOWERS-- (ircular buildings 3:3 feet high, with a mean thickness of wall of dif feet : the diancter of the base is 118 fect, and that of the top 110 feet. They are surrounded by a ditcll \& yards wide towards the exterior, ant graduallag beconting narrower towards the interior. where it is only four yards wide at tha eratrance sate. The dehais of the ditches hate heen employed to construct a glacis, that covers the masemry on the exterior. and gradually falls to the level of the ground in rear. 32 of these towers, from 500 to 600 yards apart, have been placed aromed liutz. Thay are to be connected at the moment of need by a curtain. a diteland a palisathed covered-way the whole beine flanked by the towers.
MAXIMILIENNE.- I (icrman fluted armor of the Sixtmenth century. Oftem written Maximilian. Sce Milanaise.

MAXIM MACHINE-GUN. - In other machine-gruns, the feeding and firing and the traversing have to be performed by manual power, and, however beantifully carried out, the operator in any competition for speed is pretty severly tried; and one operator alone can hardly manipulate the machine at high speed. and in his breathless condition alter its direction to any purpose. Of course, the assistance of another man must be had when the particular magazine from which the rounds are entering the gun is exhausted. The inventor of this gun clatims to have achieved a remarkable advance in making the recoil of his barrels work the feeding and firing gear; the operator knets down quictly behind the breech and directs the barrel at his leisure exartly as he likes. There are cleardy more advantages in this than appear at once. First, as noticed above, the heavy work of manipulation is saved; secondly, the danger of a jamb from a delay or hang fire is obviated, for the obvious reason that as it is the shock of discharge of fach round that loads and fires the succeeding oule. when a curtridge hangs fire the gun must wait for it. as without it there is no motive power to lond the neat round. This is clearly a very different condition of things from that in other machine-guns, when a man is driving the loading and firing-rear as hard as his strength permits, and when a jamb may be produced by delay: thirdly, a much greater rate of firing may be attained than by hand-driving gear, viz., 600 rounds per minute, instead of about 200 ; fourthly, the machine may be much lighter, and need not be clamped rigidly, as must be the case when a level haadle has to be viokently worked on one sikle of it.

The gun may be deseribed as follows: It has a single barrel, arranged in such a way as to recoil slightly in its bearings, the foree of recoil of each round acting on the feeding and firing-gear, so as to load and discharge the next round, and so on, round after round, in succession. That is, the force of recoil extracts and ejects the empty case, brings the next round into position, pushes it home, and corks and liberates the striker. The barrel recoils $9-16$ inch, with its breech lueld firmly closed. This gives the bullet time to escape and fly about a hundred feet, so that the gases have also abundant time to eseape after it has left the mnzzle. Then a lockinghook, which has held it close, is opened, and the barrel is stopped, while the breech and extractor run on, carrying the empty case with them. This is ejected, and the succeeding round brought into nosition by a feed-wheel, when the return stroke, given by a connecting rod. sends the charge lome, closing the breech, pushing the barrel forward into a firing position, and finally releasing the striker which fires the round. The recoil of this round repeats the above movements, and so on, as long as filled cartridges are supplied and fired. The inventor has mude his gun with a 0.45 inch bore to fire the service cartridges. He has a pattern of cartridge case which enables him to have a much simpler gun, because he is able to dispense with the recoil of the barrel proper, and work with the breech recoil alone; but he thinks it wiser to sacrifice what is necessary to eaable him to meet ail existing conditions. The gun without stand weighs about 60 pounds, a tripod for a man-of-war about 130 pounds, and a carriage for field service from about 60 pounds to 300 pounds, aceording to the requirements of the case. 'This tripod is about three feet ligh, and the piece from muzzle to rear of firing meehanism measures about 4 fext 9 inclies. The gun ean be left to move frefly by hand for rapid change of position, as in the case of torpedo boats or cavalry at short distances; or it may be damped and traversed or clevated by slow or quick movement screws. The rartridges are fed either from a helt or a drum. The belt is preferred ly many. Each hand or belt is about 7 fect lonct, and carries 333 cartridges, and one belt can be joinced on to another, so that s stream of in-
definitelength can be used with care and attention in placing the boxes containing each belt in position. The drum fits on to the top, and is, we think, a more ordimary and less complete arrangement ; it only holds 90 cartridges, also, and a man would be much more likely to be exposed in changing druma than in arranging the belts, and he would be kept constantly employed ; in fact, one man does not appear to be at all sufficicent for the work in rapid fring. When at full spect- 600 per minute-allowing the bullets a velocity of 1,200 fect per secoud, it will be seen that a stresin of bullets is formed, 150 feet from bullet to bullet. Should all the men near the picce be killed, the gun will go on firing as long as the supply of ammunitinn lasts. Under these conditıons, the barrel must hecome very violently heated. Some of our raders are perhaps familiar with the spectacle of machine-gum barrels firing at a nuch lower rate of specd passing through the different iempering colors of steel. Mr. Haxim endeavors to provide for this by enclosing the barrel in an onter gun-metal case, which allows a large space between barrel and ease to be filled with water. Finally he has devised a plan for carrying the smoke of from the muzzle.

The natural objections that appear to surgest themselves are-(1) That the opening of the Jreech by recoil is difficult to manage safely at so great a rate. It is thought, however, if it is clearly understood that the breech must remain completely closed-indeed no more opening than any breech-loading eannon during recoil-until it has reached a point when the bullet is 100 fect away, it will be seen that there is no danger of escape of gas. It would be interesting to see what would happen if is bullet lodged in the bore; but this is an awkward contingency for any machine-gun. (\sim) It may be objected that a miss-fire stops the firing for the moment, while in maty machine-guns it merely involves the failure of one bullet, the eartridge being ejected and the firing going on without interruption. Perhaps the machine can be sent on by hand instantly; but we think cartridges for this gun ought to be as free from missfires as possible, as the loss of a number of rounds delicered in quick firing mast be serious. Altogether, the gun is a wonderful design, and oue which naturally attracts much greater interest than almost any piece in the same stage of development. The speed of firing, the ease of working, and saving of exposure of men promise great practical advantages, and the extreme neatness of the idea of the antomatic system, by which each round fires itself and works the gear at exactly the speed that suits its own behavior, is very attractive. See Machine-gun.

MAXIMUM. - A term Variously employed in Ordnance and Gunnery. In Dlathematios, maximum is the greatest value of a variable quantity or magnitude, in opposition to minimum, the least. More strictly, a maximum is such a value as is greater than those immediately preceding and following it in a series; and a minimum is a value which is less than those immediately preceling and following it, so that a function may have many maxima and minima uncqual among themselves, as in the case of a curve alternately appronching and receding from an axis. Traces of the cloctrine of maxima and minima are to be found in the works of Apollonins on eonic sections. The thorough investigation of them requires the aid of the ditierential calculus, and even of the calculus of variations. The brothers Bernonilli, Newton, Maelaurin. Eulcr, and Lagrange, have greatly distinguished themselves in this department of Mathemat ies. The llindus have alispliyed great ingenuity in solving, by ordinary algebra, problems of maxima and minima, for which, in Europe, the calculus was considered to be necessary.
MAXIMUM CHARGE.-By increasing the charge of powder of a fire-arm, the greater and (in consequence of the wedging of the uburned grains among each other) the more difficult will he He mass to be set in motion; the space between the front of the clarge
and the mazale will be diminished; mad a larger number of grains will be theown ont mennamad. It is evident, therefore, that the ceffect of a charge of powder on a projectile shombl not incrense with the size of the charge; and experiment shows that beyoud a certain point, an increase of charge is actually accompanied withaloses of velocity. The charge corresponding to this point is called the maximm charge. All experience proves that the longer a piece is, in terms of its caliber, the greater will he the maximum charge in proportion to the weright of the projectile. For heavy camon, 19 to 20 calibers long, the maximmm charge may be stated to be f the weight of the projectile; and for light cannon of the same length, $\frac{1}{2}$ to $\frac{3}{3}$ of this weight; the increase of range for charges above the weight of the pro joctile, being very smabl. A charge of $\frac{1}{4}$ the weight of the projectile, and a bore of 18 calibers, is the most favorable combination that can be mable in smooth-hored cmmon, to obtain the greatest range with the least struin to the carriage. In the early day's of artillery, when dust insteral of grained pow. der was used in camon, the weight of the charge was "qual to that of the projectile; after the introduction of grained powder, it was reduced to $\frac{2}{3}$, and in 1740 to $\frac{5}{2}$ this wright.
MAXIMUX RANGE.-Ingunnery, the veryextreme range of a projectile either in vacuo or in the air. In the former (were it possible), with a given velocity, the extreme range of a spherical projectile would be obtained at an angle of 45°; in the latter, with a velocity of 1600 feet per second, the maximum range wonld be obtained at an angle of about 32°; a $56-\mathrm{lh}$ shot would, under these circumstances, at 32° elcvation, range 5720 yards in the air, and 23,946 yards in vacuo, and at $45^{\circ}, 26,666$ yards in vacuo. The maximam range of rilled ordnance is much in excess of that of smooth-hore guns, the 9 inch gun having ranged over 11,000 yards.
MAYHEM.-Wounding is the name sometimes
the loas of one of the jaw-tecth, the war, or the nuse, was no Maylion in cmmmon law, becture these menbers can be of ne nes in flghting.
MAYNARD PRIMER. - A primer made by indenting a shace of paber at reqular intervals, tilling wath in dentation with a smalf chargoof percossion powaler, ant covering the whole with another shae of pajer timaly pasted on. "lhe shat is then ent intostrips, (ach strip) (ontaining fop promers in a single row and, to protect it from the moisture, it is rewared with at thick cont of shellac varnish.-Se Seriction l'rimers.
MAYNARD RIFLE. While special attontion has beren paid to the manufacture of supretors sperting ritles, the interest in rifle sluoting at long range, has lod to the invention and introduction of what is known as the "New Creadmoor Ritle," in which the acknowledged and superior merits of the Maynard system are introdurcol, securing conveniance, safety, acenracy, and eflicioncy, all made applicable to meet the present demand for long range jractice. The Creedmoor ritle is a 32 -inch, 44 calibror, specially mapted to the requirements of the Creedmoor range, and to which has becon applied every facility and appendage which has been found by trial and "xperience best adapted to secure the most satisfactory results, including ammunition, vernier, and wind-gange sighte, spirit level, and all of superior models and workmanship. All the advantages comprised in the Creedmoor riffe, have also been applied to a new model mid-range target rille, 32 -ineh, 40 caliber, designed und especially adapted for target practice and ordinary field-service.
This rille is represented in the drawing, logether with two models of targets selected from the large number in possession of the Massachusetts Arms Company, and representing a fair average result for the distance named. The ritle has an elevating peep, ndjustable rear-leaf, and Black's combination-sights, and weighs about nine pounds.

foumd in law books for the offense of intlicting on another some dangerous hurt or wound: and it has bern otherwise described as an aggravated sprecies of battery. A still moreaggravatedand atrocions offense of this kind used to appearin the list of offenses against the criminal law of England under the term of Mayhem, which was a violently depriving another of the use of a member proper for his defense, such as an arm, a leg, a finger, an eye, a fore-tooth, and some others; but it was laid down quaintly enough, that

One valuable and spocial feature of the Marnard system is. that it almits of an interehange of barrels of any length or caliber. The manner of attaching The barrel to the stock is wery simple and as follow: Push the arm of the lever axis-pin down and forward until it stops against the sorew which holds it in place, then witheraw it as far as pos-ible; hohl the barrel in the left hand, pass the lever down through the breech-piece. hook the hare) on to the axis-screw at the front end, insert the lever inxis-pin
through the lever, then turn its arm back to its fastening position. No serew-driver reguired. To detach the barrel. place the harrel in position as for inserting the cartridye, then reverse the motions for attaehing.

This is a capital gun in the field, and expecially on marches through a game country, when it may be desirable to use the weapon either as a ritle or shot gun. Either barrel can be slipped into the same stock in a momest. The ammunition is peculiar. The strong brass eartridges are loaded at leisure, costing nothing lout for the powder and lead, and may be used over and over again for any nomber of times. One can earry eartridges in his pocket, loaded with different sizes of shot, and slip in and fire any size wanted. for large or small game. The rithe in itself is confined to the central-fire ammunition in each and all of the calibers, excepting the .22, in whieh the rim-fire ammunition is used; but, by the application of a simple device rim-fire eartridges may also be used. Sre Ifalley Firing-pin.

McCLELLAN SADDLE.- A saddle used by the United states cavalry prior to the advent of the H/hitman saddle. This satdle was a great step in advance in its time. and was received with much favor. Its greatest faults were batd bearing surface, too wide in front, like the Mexiean, allowing it to slip forward and embrace the tender points of the shoulder-blades; too short in the seat and too wide in front of seat, forcing the rider to an upright position, or the extreme "forked seat," throwing the weight of the rider too much over the fore-legs of the horse; a high, sharp, dangerous jommel, and heavs. See Sadulle.

MeELDERRY MULE-LITTER.-In the operations against the Modoc Indians, in the lava-beds of Oregon. the ordinary methods of transport were found unsuitable, and a form of mule-litter, devised by As-

sistant Surgeon II. MeElderry, U'. S. Army, proved serviceable and well adapted to the exigencies encountered. The drawing shows the construction of the litter and the manner of using it. When not in nse it can be folded compactly together, so as to permit a load of grain, jrovisions, ete., to be packed mon i1. When the animal arrives at its destination, the load may be removed, the litter unfolded, and made a wailable for the tramsportation of the wounded back to the base of supplies. By the use of the adjustable iron support, which raises up over the lower end of the litter, a wounded lower extremity can be suspended in the anterior or other splint, and the patient thas carried with much greater ease and comfort than when the wounded meenber is simply laid upon or tixed to the litter. It is used upon the aparejo, is well-halaned, and has no tudeney to make the animal's haek sore. It is firmly fixed in position by means of an extra-hroad horse-hair girth, as shown in the drawing. 'The litter weighs, without a mattress, 54 pounds, and like the $7 / \%$ "stle litter, has the advantage that its width does not much ex-
ceed the outer limits of the flanks of the park-animal ; a condition adapting it to the passage of narrow defiles or canyons, or of roads encumbered by velicles. See Litter.
MCINTYRE-FUSES.-The time-fuse, shown in Fig. 1, and inserted in the rear of the shell, consists of the brass stock, A: time-fuse B; a brass serew-phig, C; and a lead igniting cap, D. 'The' fuse composition driven in a paper case is first inserted in the

Fig. 1.

Flg. .
stock, the screw-plug with a vertical hole, to one side of its center is serewed to tonch the top of the fuse. The igniting cap with its channel of pressed powder composition is then inserted so that the under apening of the channel shall commurieate directly with the hole throngh the screw-cap, which is also filled with the composition. Direetly under the projeetion which rises above the top of the iguiting cap is the mpper opening to the channel. Before firing, this projection is removed with a sharp knife and the composition thas exposed. The combination-fuse, shown in Fig. 2 , is identieal with the time-fuse, except that there is inserted in the fuse composition a plunger, whose head is of leal, and whose tapering stem is of brass; immediately surrounding the stem of the plonger is a colnmon of plaster of Paris, between which and the composition is a tube of fusible metal. Shonld the projectile in which the fuse is inserted strike a resisting object before the fuse eomposition has burned ont, the phonger is thrown forward into the shell, giving the flame from the burning composition direct access to powder in shell. See Fuse.

McREEVER CARTRIDGE-BOX.-This box, invented by Captain Sammel McKecver, of the U.S. Army possesses all the requirements and advantages necessary for the military service, and is at present used by the United States troops. It is made of leather, is $6 \frac{3}{8}$ inches long, 31 inches wide, and $1 \frac{1}{2}$ inches thick. It is carrietl on the waist-belt by two loops, opens from the top, the outside half working on a hinge formed by a brass rod running under the box and holding it together. The eartridges are held in webbing loops, ten in each section of the box, and are readily extracted from the box, a bellows arrangement allowing the tops of the cartridges to incline forward when the box is open. It has been improved by the addition of a brass escutcheon, and by making the bellows of russet leather, which is not so liable to corrode the cartridge. This box possesses all the merits of the thimble, or service belt, which has been highly recommended by many ofticers of the Army, with the additional ad. vantages of protecting the cartridges from the danger of loss, or exposure to dust or moisture. No provision has been made in this box for a screwdriver, but, whenever meessary to eary one, a cartridge may be taken out and the screw-driver inserted in its place.
MCLEAN FORTRESS.--This fortress, a section of which is shown in the drawing, is designed to be a permanent structure, or it may be a huge raft, with interior compartments forsupplies of all kiuls found
necessary. The raft is to be towed from place to shot. Thas same system is internderl to be used with phere, and when in position in shallow watw will a magazime smallarm, Jr. Actaran has made more rest on the bottom, bering held by hallast or piles, or variotice of mathine ghans than any other inaker, bat, by anchors. The fort or raft is to bear two turrets, in the opinion of the writer, he hats sarritio edo to, mach in ohber directions in order
 to secure rapidity of firte, and up to this time nome of his working guns lave mot with more than at
 has it mumber of improvernents now in progress which are rex. prated to overormu tho tillimaltirs hatherto exprerionerel. Sue Wrathint-gnths.

MEALED POWDER. (;1mprosACO pulverizel ly treatinur with alooh(o). It ranses ("onnpmettions tolurn rearlily and quivekly. sice Guntumedor.

MEAN Is a gioneral terme, the modian between two extrernes, ambl is ordinarily malerstomel to be what is known in mathematirs asatharithmeticmean. An rrithmetir monen brtworn (wo numbrers is found by adding them togethor sumd dividing ly iwo. A grametrie mean is found by rlividiner the larger number by the: smaller, and taking the stuare root, which
one within the other, the outside one being stationary, the inner one rotating, the guns firing through port-holes in the outer turret. The surface of the fort is to be leavily armored, and have quarters and storerooms below the armor.

McLEAN MACHINE-GUN.-This gun, illustrated in the drawing, is one in which every detal is made suburdinate to the one of extreme rapidity of lire. The curtridges are in magazines at each side of the barrel, and are forced lanek by their spring followers into a sidewise reripromating breceln slide rontaining chambers for twonartidges. When one of the clambers is in line with the harrel the other is inline with

the magazine, and the loaded cartridge pushes out the old shell, the bullet being too large to pass into the slide further than its seat. The cartridge is fired in the slide, the force of the recoil serving to cock the tiring-pin so that it is in position for the next
gives the common ratio; the smaller number multiplied by this ratio or the greater mamber divided by it, wives the mean. A harmonic mean is fomall)y adding the reciprocals of the mumbers and dividing hy two; the reciprocul of the result is the mean.

MEAN DEVIATION. - For the same trajectory. the mera deviation of a projectile, at a given distance. maty be taken as an indirect measure of jts accuracy at that distaner. 'To olbtain the mean deviathon; let the piece be pointed at tho cesiter of at tareret stationed at the required distance, and fire a certain number of shots, suy ten; and let the position of each shot-hole be mentsured in a horizontal and vertical direction from the origin of co-ordinates, taken at the lower left land corner of the target. Thresm of the distances in each dircetion dicided ly the number of shots, gives the corresponding co-ordinate of the center of impact, or the center of the clustar of shots fired. Nultiply the horizontal coordinate thus obtained by the number of slats whose corresponding eo-ordinates exceed that of the center of impact; take the difference between this product and the sum of the horizontal co-ordinates that exceed that of the center of impact: this difference divided ly one-half the number of shots fired. will grive the mean horizontal deviation. The mfan rertical deviation is detcrmined in a similar manner. Each of these results may be verified by making the same calcnlations upon the shots whose co-ordinatos are less than the corresponding one of the center of impact. The mean abrolute deciation. which is the average distance of the shots from the center of impact, will be the hypothenuse of a triancle whose sides are the mean horizontal and mean vertical deviations. The successive steps are explained by the following tabulated example:

The + signs are prefixed after the determination of the center of impact. The foregoing furnishes a measure for the accurace of fire of the piece and projectile, but it does not afford a measure for marksmanship, the object of which is to direct a projuctile so as to strike a given point or surface. In the \mathbb{L}. S. Nilitary Service ordinary target practice is recorded by the number of projectiles striking a target of a given size; and when firing for prizes, by the "string" or sum of the distances of the shots from the point aimed at, each miss connting twenty inches on the string. The shortest string is the one selected. The measure of "marksmanship" now most generally adopted is the "score"" or sum of
the numbers representing the value of shots placed serew laving been made with great care by Wm. within certain circles described abont the center of a Sellers \& Co., of Philadelphia, it was put into the given farget. The size of the target and the radif engine and was found to give, for a certain number

Mean absolute deviation.
.609 feet.
of the circles depend upon the distance, the number assigned to corresponding circles being the same for all distances.

MEAN IMPACT - The point of mean impact on a horizontal target is the intersection of the lines of mean range and mean lateral deviation; and on a vertical target, it is the intersection of the lines of mean vertical and lateral deviation.

MEAN RADIAL DISTANCE,-The relative precision of small arms is decided ly what is termed the mean radial distance of the shots from the center of the group on the target. To determine it, find the point of meran impact, and measure the absolute oistance of each slot from it. Divide the sum of these distances by the number of shots on the target.

MEASURE OF UNIFORMITY.-In gumnery, the regcu.arity in the velocity given by a number of consecutive rounds. It is calculateve as follows: Take the mean observed velocity, and from this deduct the dilerence of each romul, and divide the smm of the differences by the number of rounds tired.

MEASURING MACHINE. - The need of an instrument for the purpose of determining dimensions ly difforence from verified standarels has been felt in all well-roquated engineering, tool, and machine shops. The scrow operated by a whel with gradnated periphery, las been in use for many years, and was loronght io a high derree of profection by White worth in Jingland, and others. It may be said that, with proprer safocuarilu in its use, it is sufficiently accurate for all practical purposes. It is cloubtful if it serow of purfootly uniform pitcla throughout any considerable length can be matle. The attompt to compensate for this varabiblity of pitch is frequently matle hy virions devices.

An interestine manas of toing so is shown in tho dividing engine at the Frankford Arsenal. A new
of turns, a greater length than the nominal pitel. of its thread indicated. To counteract this an inclined plane was attached to the engine, upon which a weighted lever secured to the nut runs up or down as the nut traverses the screw in opposite directions. The effect, as it runs up the plane, is to back the nut a small fraction of the distance it would otherwise travel. and thereby compensate for the crror of the pitch, and vire cersa. If the pitch were absolutely uniform throughont the length of the screw this would leave nothing to be desired from a mechanical point of view, but when the pitch varies from incla to inch, as is nearly always the case, instcad of an inclined plane, the corrective element of the engine would have to be a surface having a series of elevations and depressions to correspond to the variations of the pitch, a result only to be attained by a "cut and try" process, blike tedions and expensive, and of only approximate accuracy. It conlil bot be depended upon for small fractional parts of the inch, say 0.0002 inch , or more or less, such as are daily brought into use. Short screws, or portions thereof, may be fuite uniform, or so nearly so that the error can be safely disregarded, or an allowance mate for it

These considerations have led to the adontion at arsenals of the plan of obtaming everitied standards of length, diameter, otc., in suitahle forms and motasuring, by difference from them, the objert mbler examination as proposed by Mr. Jieharils. 'Thuse stamelards differ by conveniont fractions of an incla from one another, and by using the nearest ons to the object whose dimensions are required, only a very short acrew is necossary. The drawing shows the form of a Measuring Machine nuch usel in arsemals. Thase manhines are male of various sims. are aljusted for absolute measurement of dimen-
sions within their range, and are correct within a limit of one ten-thomsandth of an ineth. This is the nannl limit of acenracy for eylindrionl ernages, and sutlleiently precise for all practicul purposes. These
bisenits wore first introdncedinto Ibritain fron dmer. iea by Mr. Borden,in the yenr 185!. They have lumen spoken highly of ly inediost men as focol, and are still mad. to a limitiod extent; but one purpose they

muchines will indieate, by means of vernior attardsment, variations to ome twenty-tive-thomsmadtly of an inch, or ceven less: but mowsiving and indicuting are very different things, althongh gencrally confounded.

See fiunge.

MEASURING-STAFF.- - n instrument employed in the inspuection of cammon. It consists of a stable of stecl or iron, in joints of suitable lengths, connected together hy serews. liseh joint is provided with a light brass disk, D, the dianneter of which is . 05 inches less than that of the bore. Through the center of the disk there is a lole which tits upon the sloulder at the joint; the whole is so arranged that when the joints are screwed together the disks between them are hedel firmly in place, while the length of the staff is not affected by them. A stuel point is serewed on to the end. When pushed to the bottom of the bore, the siaff coincides very nearly with its axis. The

outer joint is graduated to inches and tenilis. A slide, S , is made to play upon it with a vernier scale. graduated to humdredths of an inch. On the innerend of the slide, a branch, B, projects at a right angle, sufficiently long to reach neross the muzzle-face, and, when in contact with it, to indicate the precise length obtained from that point to the end of the measuring-point on the other end of the staff. The instrument is introduced until the point reaches the bottom of the bore, and the branch placed so that it takes across the mizzle-face, and the reading shows the length of the bore of the gun. See Inspection of Ordnance.

MEAT BISCUIT.-A preparation of the substance of meat combined with a certain quantity of flour, and made into the form of biscuits, by which process the nutritive qualities of the meat are preserved for any length of tine. One way of preparing these biscuits is as follows: Large pieces of beef are placed inaquantity of water sufficient to cover them, and are subjected to slow ebullition. The fat being skimmed off, evaporation is allowed to take place, until the liquid is about the consistency of syrup, whon it is mixed with fine wheaten flour, rolled out to the thickness of ordinary ship-hiscuit, cut into any shape required, baked,and dried in the ordinary manner. One pound of biscuit usually contains the soluble parts of 5 lhs. of meat and half pound of flour. The meat biscuits can be eatenlike ordinary biscuits; but boiled in ahout twenty times their own weight of water for half an hour, with the usual condiments, they make an excellent soup, and for this they are chiefly intended. Neat
wrore first internded in serve-that of proserving the animal food of Sonth dmorioarand Anmatia-has since been more ettectually done by other and simple menns.

MECHANICAL GUN-CARRIAGES. - The first of shll consiclerations as to tho mounting of a battery is, that it should admit of the utmost possible rapidity of tire, united wit! aceuracy of am. $1 t$ is important to secure the greatest possible colicioney of the Weapon under the cometitions in which it is ructuired to be employed. The duty of providing the most perfect menns of working guns sedms to be seroond only in importance to that of adopting the best matterial, form, and construction for the ghn itself. ()f two similar guns, that which can fire the grealest number of rounds in a given time is certainly more etfective, and rapidity of tire depends more on the gun-carriage and convenienors for londing, than upon any peculiarity attaching only to the gum. Owing to the increase in the size and power of ordnance since the introduction of armor, gun-carriages liave gradually become elaborate machines; and mechanical science. in the hands of experts, has produced carriages and slides which enable the heaviest guns to be easily, accurately, and safely worked in cramped positions. The great superiority of wroughtiron to timher as a material for gun-carriages is now universally acknowledged. The principal requirements of mechanical carriages are powerful moving-machinery so contrived as to be unaffected by the concussion of firing; self-acting controlling gear, almost independent of human carelessness; the gradual absorption of, rather than rigid resistance to shocks; the dispersion of concussions over large surfaces; and smoothness and ease of motion in every direction, and safety under all conditions. Guns mounted on the disappearing principle, are arranged to drop when fired into a position in which they can be loaded under cover, and from which they are only raised when required again to deliver their tire. In this system the gun must not only be loaded while lowered and under cover, but it is usually fitted to be trained and aimed while there, by indirect methods, such as by telescopic apparatus adapted to the gun's axis, and so arrangeal that it can enable an observer to look over and abow the cover.

MECHANICAL MANEUVERS. - The mechanical maneuvers are the application of machines and of mechanical powers for mounting, dismounting, moving, and iransporting artillery. The implements and machines required for the varjous operations depend upon the kind and weight of the piece and the nature of the maneuver to be performed. In every case the minimum number of each is used. W'hen much work is 10 be done, due allowance must be made for wear and tear. which, with heary material, is very considerable. Sound diserction shoukl be
exereised not to allow the wearing to go beyond the limit of safety. Those now used for siege-pieces are such as can be found in most localities; the rollers, chocks, and, if necessary, the hand-spikes being readily shaped from sections of trees. The following is a list of the implements generally used when maneuvering siege-pieces:

Implements.		$$	号		-	Remaris.
IIandspike	$\underset{8}{\mathrm{Incl} .}$	Inch.	Inch.	Lb.	$\overline{\mathrm{Oz}}$	
Loner roller	42	6	r'nd	25	0	$\left\{\begin{array}{l}\text { Grooved }{ }^{\text {P4 }} \text { inch } \\ \text { deep in the }\end{array}\right.$
Short roller	1:	\uparrow	r'nd	12	0	(middle.
Gun-chock.	3.6	2.75	3.5	0	6	Wedge-shape.
Wheel-chock..	7	6	3	-		$\left\{\begin{array}{l} \text { Section a tri- } \\ \text { angle. Top } \\ \text { rounded } \\ \text { an inch. } \end{array}\right.$
Roller-chock...	7	5	2	1		
Shifting-plank.	67	12	2. 25	48	0	f Ends heveled on (opposite sides.
Trace-rope.....	360	r'nd	1.25	8	8	\{ Sometimes call-
Hammer wr'nch				2		$\left\{\begin{array}{l} \text { ed monkey: } \\ \text { wrench. } \end{array}\right.$
						$\left[\begin{array}{r}\text { Made of round } \\ \text { iron } 0.55 \mathrm{in} \text { in } \\ \text { diameter, with }\end{array}\right.$
Sling-chain.....	156				0	$\left\{\begin{array}{l}\text { a stout hook } \\ \text { at each end: } \\ \text { length of links } \\ 5 \text { inches. }\end{array}\right.$

In every case the wooden handspike is required, and the following general directions for its use are given. Six are the number generally used. When men on opposite sides of a piece apply themselves to a handspike, the handspike nsed is that of one of the
where square handspikes conld not be used. When a haudspike rests on a fulcrum, and the weight on one end is to be raised by bearing down on the other, the weight should never rest on the beveled side, as the handspike would not then give a good hold, and would be liable to split. In this ease the beveled side should be down. But if used for lifting, as when two handspikes are crossed under the breech or ehase of a gun to heave it upward, their ends resting on the ground or platform, the beveled side should be up. Two or more men, lifting or hauling together, mnst wait for the command before exerting their strength. The gunner sees that all are ready before giving the command heave. Then all move with a prompt but steady effort, and apply their jower iuereasingly uatil the weight responds to their effort. The gunner will repeat the command heave as often as it may be necessary. Whem the movement has been sufficieutly made, the gunner commands: Ease Awar. Those making the effort will then desist; but in doing so will be careful to avoid all sudden shocks or strains. Every operation should be done with spirit and animation, but without bustle or confusion. Vigilance slould be constantly exercised to have the piece or rollers securely chocked. The limber of a siege-piece makes a powerful lever, and may be advantageously used in many cases. The pole is raised and the pintle engaged in a sling around the weight to be raised. The pole is hauled down by a trace-rope attached to the eye.

The machines and appliances usually employed for moving heavy artillery: Ropes, blocks and tackle, gins, hydraulic-jacks, sling-carts, casemate truck, iruck-wagon, railway truek, cradle, gun-lift, capstan, derrick, shears, blocks and skids, hand-cart, blocks (whole, half, and quarter), way-planks, pinch-bars, mortar-wagon, collar. These, with the implements

Fig. 1.
even numbers: the man to whom it belongs is at the used in the mechanical manenvers with siege pieces smaller eud, the corresponding ofd number at the are sutfieint to mamge the heaviest pieces of arbutt end ; those what assist place themselves inside of these two nombers; the lowest numbers nearest the ends. Whent two or more mon work at thesane cud of a handspike, the man to whom it belougs is at the cond, and the other men in the ascemding order of their numbers from him. When several handspikes are erossed at the mmzale in order to raise or low or it, they are applied in the order of the numbers of the men to whom they helong, those of the highest numbers moarest to the trumions. The handsuikes used in the mechanical maneuvers are beveled on one side, as these will enter into places or under bodies tillery in all cases which ordimarily present them. selves in service. All implements and machines, before being used, should be most carcfully examined in every detail, to see that they are serviceable aud suitable for the operation to be performed. None should be put to uses for whieh they are not intended, nor subjected to strains they are not construeted to bear. It must be borne in mind that the giving way of one part breaks and destroys other parts.freetuently 10 an cexteat not readily repaired, and, furthermore, endangers those working at the mancuver. IIeavy weights must never be allowed to drop, even for the
 with it gentle motion, and at the sumbe lime chackell to provent rolling or stiding. In hoistingr, they mast, when practicable, be clasely followed up with blowes and chorks to guardugninst any ponsible giving way, All motions will hervy bodies must be slow, so ins not to gencrate momontum. Siupports mast have a dirm base, and scolfolding abevel foundation, 'and bre built up vertically. All holdfastg must be secure loeyond possibility of giving why.
'The mancuver of the varions service pieces are detailed in the Tactics. Within the Jimits of this article we will confine our dessriphions tosone grencral maneuvers and appliances, the details of which will cover the gromed of the whole subject. 1. T'" more a gun by rellinef it-l'lace a skidundor the rear of the trmmions, and mother under the middle of the chase, and roll the gan over. by inclining the skids and contting the momole it may be moved in differeat directions. In rolling leavy guns it is most

Fig. 2.
convenient to use two collars of wood or cast-iron of eguin diameters (one on the breech, the other on the muzale), Jarge enomgh to allow the trunnions to turn without striking the ground. A rope used as a parbmekle is the best method of rolling at gnm. To do this, place the gram on skids, aud attach the rope by a bowline to one of the trumuions. passing it un. dre and around up over the gum, and hauling on the cond. If the rum is to herolled up a slope, two ropes. of size suitable to the weight of the gun, are used. An rud of each rope is made fast to some fixed object at the upper part of the slope : the other ends are carried under the chase and hody respeotively, and ul) over the gun; these ends ire hatuled upion by means of a capstan. or by attaching to them at fail and tackle. The muzale is slucd forward by jinehing with bars, or by means of a rope and tickle atthelad to a roller or skid thrust into the muzale. The piece is lowered by inverse means.
2. Tiustift a gun from the trunnion-holes toits travel-ing-bed.- limber up); remove the (ap-squares and chock the wheels front and rear; place the short rollcr umber the reinforco: attach the trace-roje at its middle to the cascalsel by two lulf-hitches; cross two handspikes under the orice in the borc: lift and push at the muz\%le, and latul on the ropee until the trunnions are over their travelling position: ratise the chase bring forward the roller to the head of the stock and lower the clase upou it: raise the chase agatin; remove the roller, and lower the chase upon the
 a lifting-jack can he nerel, place it moler therewell of the mu\%zle: raise the clane ; place is half-htork on the hriad of the stork: take a seoond lift, and platers two rollors on the storok, one just in rear of the irme nion, the other under the reinforce; rlack the latter toward the muzale, and Jemove the lablfoblock; lanal on ther rope uttiached to the caseabel, and bring the brecoh over the bolster; chook the raar roller; place the jack under the mazole, and remose thare rollers. Tos shift the 'gun from its travelling-bed to the trun-nion-holes, chock the wheels front and roar; remove the entu-squares; raise the chase and insert the hiort roller undrr the trumbions; attuch the rope by its midelle to the cascolad; bear down the mazale, and, an the piese rolls forward, gnide the trunnions into their holes hy moans of thee rope; remove the short roller. A lowitzer is shifted to and from its travel-ing-bed hy the sumc monas, excopt that the handspike in the lore is chocked above and below for raising the chase the lower chock being placeal abont 18 inches in the borc. 'Thaverticat diancter of the shart robler should be just forward of the rimbases. 3. To move amal hundle hary guns with a trurls amel trameray. - The case with which hoavy loads are moved when loaded on an ordimary railway-car, on a smooth, rigid, unyichling track, as compariol with other means of conveyance, lass led to the adoption of this mode of transportation whenever the work to le donce will justify the expernse of preparing the roadway and laying down the track. It is thought that this means of transportation might be mate available for the transportation of 15 -inch finns and other heavy loads in andabout our permanent works; that a lemporary portable track might be jrovided capuble of sujpporting as great a weight as that of a 15-inch gun, and could be laid down readily without much preparation of the road-bed, in many places nome at all,and furnisled at a small expense. I fourwheeled truck of simple ronstruction, stroner enongh to sustain a weight of twenty-five tons, conle le constructed at a cost not much greater than that of a cradle, but could be moved with far greater ease and much greater celerity. This idea elaborated, and proposed as the best, for transporting 15-inch guns over moderately even eround. For this purpose, umber the above mentioned conditions, it will commend itself for its simplicity, efficioncy and econony.

In foundries, and special locations in permane nt works, there are positive advantages attending the use of ofrkead tramways, within certain limits of weight and strain. The excellent machinery in this liue made by Edwin Harrington \& Son. and adopted by the Únited States Government. las damonstrated that there is an actual saving of 50 per cent. in the cost of haor, and litile liability to aceident. by the use of such a system. Two men can handle a large casting of 2,500 los. with great ease, and raising it clear of other leavier articles in the path or on the floor avoid the necessity of moving or handing the latter. Fig. 1 shows a simple form of turn-tahle for an overhatd track. The load is revolved by means of a hand-gearamd pinion operated hy a wheel and chain; the table can be adjuste do any reofuired momber of tracks that will allow the load, When once raised, to be tramsported to any desired point with safety and dispatch. The rarrier truck cammot be run off from any trats. except on in the turu-table, and when on the turn-table it emnot be run otl axrept on to some one of the tracks. When combere tion is mate with any track. the table is securely lockedin position, theroby prevonting all possibility of accident. Fig. : shows the construction of the most approval gearcd truck. The ordinary truck. when constructed of one or more wheels, anid run ly pashing or pulling the load at the lower end of the cage or sling, is very liable to lurch or junap. cspe. cially if rumning around a curve, of en causing hreakage of the chain or roper as may be in use, besides
being a source of great annoyance to persons that may be on the floor over the trinck. The geared truck obviates all this, and one man can run the heaviest load required with ease on a straight rail or round a curve, stoppiug and starting at any desired point, the track ranning with perfect smoothness and disturbing no one.

To mount a gun on the surface car, raise it by hydraulic jacks high enough to get the track and ear under it: support it by blocks built up under the muzzle and breech; lay the track between the blocks, and place the truck on the track under the gun, the trunuions midway between the wheds; lower the gun on the truck; or place skidding, one end on blocks built up to the required height to reach the bolster, the other on the ground, and roll the gun up the inclined plane thus formed to its place on the truck. The bolsters are just high enough to permit the gun to be rolled into its place. Four men ean lay down the track a distance of eighty yards in thirty minutes where no gradiug is required. Four men cau transport a $15^{\prime \prime}$ gun over level ground, using a capstan, twenty yards in five minutes after it has been mounted, the track has been laid down, and the capstan in position, or they can lay down the track and transport the gun twenty yards in fifteen minutes, all of the preparations having been first made. A horge with one double and one single block will move a $15^{\prime \prime}$ gum as fast as the track can be laid and the tackle shifted, or a pair of oxen will pull a $15^{\prime \prime}$ gun. a elead pull, without the intervention of pulley-blocks, the road being level. An increased force will be required if the track, instead of being in a level, is on an ascending grade, and pro-

Flg. 3.
portionately erreater as the angle of the slope increases. Horse-power is the only one recommended, exeept in vary extraordinary cases, where there is a great amount of work to be done and done quickly.
4. To more and mount hearyguns, etc., with blocks, hylranlic jarks, capstan, or erab, cradles, etc.-To move a heavy gun a short distance, raise it on skids, so that the trumnions will not toueh the gromad, roll it over by the pinch-bars, chneking the breach and cutting the inuzale when necessary. For longer
distances, and through narrow entrances, mount it on the eradle, with rollers and shifting-plank underneath, and if on level ground move it along with pinch-bars or lnandspikes; if up a ramp, rig the fall and blocks to cradle. crab, and some fixed or wellsecured object on top of ramp, and then work it up with the erab, changing the shifting-plank and roliers as required. Weston's hoisting erab, with automatic sufety brake, should be used on every possible occasion. This exeellent machine is shown in Fig. 3, and consists of the usual winding barrel, for common rope or chain, driven by manual power, applied to eranks, through two or more spur wheels, the ratio of the gearing being varied in the several sizes of machines, according to the load to be lifted. The lifting is accomplished in the usual manuer. The lowering is done with the least possible exertion, by winding the handles backwards, and as long as this motion is continued the load will descend. The construction of the safety ratelet or brake is such that the load is always self-sustained and cannot run down. The handles canot recoil on the operator, and if snddenly "let go" at any time, either in hoisting or lowering, the load will quietly come to rest and remain suspended. The smaller size has only a single speed or power; the larger size, two changes of speed. The capacity of either may be inereased by the use of a running block in the usual manner.

For the purpose of thorough illustration, we will notice the process of mounting a fifteen-inch ginn. The gun is supposed to be in its cradle, the cridle being blocked up to alevel with the skidding that rests one end on the chassis-rail. Each skid is supported near the rail by a erib of heary blocks piled one on top of the other, three in a crib, and brought to a level with the rail. The cribs, if placed obliquely to the skidding, will still be stable and support the skidding more in the direction of itslength. The ends of the skidding remote from the chassis-rail are supported by two double cribs. Each crib is luilt of three tiers of blocks, alternate ends resting on the lower tier, each pair of blocks parallel to each other and $1^{\prime} 6^{\prime \prime}$ apart. The cribs are brought to a level witly a chassis-rail. To move the gun from the cradle on the skidding, a man with a chock stands by muzzle and breech, the rest of the men work at the bars. The muzale is first cut and chocked from the cradle to the skidding; after the muzzle rests on the skidding the breech is cut on the skidding the same way as the muzale. This operation is contimued alternately with breech and muzale as before, except the meu with the chocks now chock on the side toward the chassis-rail until the gun rests on the skidding on the chassis-rail, under its position when mounted on the carriage. The gin or pumps are now set over the muzzle and breech or under them, as the ease may be. The cribs to support the muzzle and breech are now respectively placed 3 from the muzale, and at the greater swell of the breceh. In raising the gun, the breech is raised first by pmomp or gin 6" full, a man standing on cach side with chock, in case of slip, to prevent rolling. Care is taken to set the gin or pump vertical over or inder the breech, and when lowering to case up, without jorking.gradually. The muzale can now be raised $12^{\prime \prime}$ full, hlocked and chocked in that position. The skilding is now removed. The breech $6^{\prime \prime}$ additional, always having the men with clocks on either side ready and following up the gun with the blocks, so that it canmot lave a fall in case of accident. The blocks used come from the cribs for the skidding that are no longer required. The oper. ation of alternate blocking at breech and mozale is
continued until the gran stands above the bright of the Irmmion-beds with the axis through the trumion horizontal. Tha top-carriage is now put on the chassis and assemblad with the trumion-beds umber the trumions. The gen is then lowered in the trumnions, and the blocks and gin or fumper retoovid.

Another plan, when the top-carringe has not beron tak'n mpart, is as follows: Mount the chassis on phatorm and top-rarringe on the classis with pin, and then run the top-carriage into latery. Bring the gun upon cradle or skideling until it is parallel toa eonvenient position of chassis. Roll the ghan over the chassis. 'hatwing the breesh projerting beyome the rear end of the classis, raise it by hacking imaler the breeds beyond tha rails, amm inder the mazale by horeks outside rails, with a skideling taind across them, until the muzzle is high enough for the top-arariage to be moved back mater the trumions; the marole is raised by gin and the brecell by hydrandic pump. Jun the top-rarriage back under the trumions, lower the gun into the trmans, remown scatiolding. In buikting scatiolding of blocks, put the thickest at hottom, and as you gain in height in raising a gun, replace thin blocks by thicker ones. Derricks for rasing and monting orimance as heasy as $15^{\prime \prime}$ are to he avoided, if possible, as they are heary and troublesman to move and set up-more ditlicult to handle than gums, and can only le used under favorable comblitions of space; in other words, they consume labor and time that onglat to be expended only on the guns. These objections apply to any machme of much weight ami size beyond two or thiree cubic feet. Fiorts are often at comparatively inaccessible plates, and are oftem in thomselves very limited, and possess platforms for whns in ungles and contined places hard to approach with guns as large as $15^{\prime \prime}$, and, consequemty, the mentis of handling-moving and mounting-imust be small and powerfiil.

We will close this article with a deseription of the unloading and mounting of the 20 -inch grun at the United States Centemnial Fxhibition. This gun, with a 13 -inch sea-coast mortar of about 18,000 pounds, a cradle of about 4,000 , with heavy yellow-pine skidding and a deek-load of lumber, in all about 80 tons, were shipped from Fort llonroe on a vessel rated at 94 tons. She nearly foundered in a gale on Cluesapeake Bay mi her way to the canal at Baltimore, but arrived at Plailadelphia atloat but leaking badly, with her deck only about eight inches above the water-line and about four feet below the level of the wharf at high tide. The steam-erane on the wharf had been found by analysis to be insufficiently strong to lift the gum entire; it was consequently simply used as an auxiliary. A 14 -ineh spar was wetged very tightly into the muzale of the gum, and served also as a fastening-point for the 11 -inel hawser by which the gun was raised. The gun having been blocked np about 2 feet from the caseabel, the crame began to lift. It lifted the muzzle about 15 inches, besides stretching the hawser about 8 feet. Blocking was then placed just back of the center of gravity of the gun, and the muzale lowered on this pile as a fulcrum until the breech was high enough to take a fresh pile of blocking loneath it. By this lift the gun was raised about 3 inches. The position of the three supports was as follows: 1st, 5 feet from the muzzle; 2 d . immediately back of the trumnious; 3d, 2 feet from the breech. Owing to the position of the thirl point the erane was strained about 13 tous by this lift. Double piles of bloeking were used at each hearing-point for safety, so as to limit any accidental fall in raising or lowering the gun to an inch or two at the utmost. Choekingquoins were also used to follow up the gun elosely in its movements. About 15 men were used through out the maneuvers. One of these men, as shipcarpenter, with his adze and crosseut-saw, was particularly valuable, and also a rigger from the United States Navy-yard. Heavy 18-inch yellow-pine skid-
dine was placed from under the ghan to the wharf, inrlining slightly upwarls, and the hawser parbuckleck aromad the fim anel fastened to the crane. A pur. rlase was taken from the mazale by a loremontive standingon a nefghoring track. The wrane locgan to hosist at 6.44, the gum immodiatoly rolling toward the wharf as the hawser uncoiled. 'The morzale was cot monwhile by the locomotive. At $\boldsymbol{i} .04$ p.m. the gun was landri, in 11 hours if minutes workingtimi.

As the veracel was relieved of the weight of the gun it roser converting the inclined way of skithling into a dorlivity lading to the wharf. This fature bermitted the pild of blorking on darek to be murlo low"r than wemblotherwise have been necersuary. (on the serend day the gun was rolled by the crame and horeo. motive together to a position parallel with the railroad track across which it had been necessarily lanelef. 'Toward the latter part of this operation the locomotive was dispensed with, it being fomm that by plaring the crane in a favorable pesition, taking bold of the mazare, and then toppiner the boom, ther mu\%\%he could be rut almost as wedl as with the locemortive. After about 4 hosurs of effective hoisting, the gron was phaced on the car, on which it was trancportal safely the next morming to the exhilsition grounds, and unloaded the same day. The alsantages in this operation were as follows: S The proximity of William (${ }^{\circ}$. Allison de Som's wharf and the ir large car-works, from which were obtained, reatily, supplies of blocking, ilat iron hars, have tools, men, and notably the use of their stram-cranc and railroadplant, and the G-inch oak car-bolsters, cejeceally valwable for blocking. II. The use of an extra heavy flat car prorurel from the Pemesylvana Tailrond Company. The disadvantages were: I, The suatl size of the vessel, its bradtlo of 23 foet giving only 8 or 9 feet on each side of the bare gun to work in. The gun also occupied all the space betwren the masts. With the additional weight of the blocking upon her decks, used in raising the gun, the danger of breaking them in or of starting fresh leaks was greatly increased. II. The Captain of the schooncr refused to permit hydraulic jacks to be used, for fear of breaking in his deck. III. The gun had to be raised so high, in order to roll it off upon the dock, that the stability of the ressel was considerably endangered. 11. "The Captain of the schooner refused tolic alongside of the wharf, fearing, as he represented. shoal water: consequently the gun had to be rolled off from end of the wharf in a direction at right angles to the railroat track. V. Mnch of the work was done after dark, in the lope of getting the gun on the ear by Suntlay, the Pennsylvania Railroad wishing to move it to the grounds on that day, for fear of obstruction to the track and to avoid eardemurrage. VI. The men were unaecustomed to moving heavy weights, and sbirked all they could, especially at night. In mounting the 20 -inch gun, the Laidley gun-lift was used, assisted by blocking. The other gnns were monnted with blocking only. The light auxiliary shears, provided with the gunlift, proved of considerable value in placing in position heavy articles. such as the field-cannon, raising the ways of the drop-lammer, etc. A casemate-gin, mounted on three rollers, was also used. This was very useful in picking up heavy pieces, such as lumps of ore, drop-anvils, ete.. and moving them to the pedestal or the foundation on which they were to be placed. Two of the rollers on the windlasslegs were joined ogether by a sleeve of heary steampipe, fitting over the projecting limbs of the axles. to prevent the rollers from assuming their naturad position at right angles to the line of the leg. See Blocks, Capstan, Casemate-gin, Cosemate-truch, Cord age, Crab, Cradle, Derrick, Gin, Gin-derrick, Knots, Lever-jack, Lifting-jack. Mrounting Cannon, Piper Gin, Rope, Shears, Sling-cart, Sling-vagon, and Tackles.
MECHANICAL MOTION.-Colonel A. R. Buffing
ton, United States Army, las recently designed an interesting machine, which is serviceable as a practical illustration of the resolution of forces into components, and of the principle of mechanics that action and reaction are equal, simultancous, and contrary. For a full deseription of this machine, reference is made to the Report of the Chief of Ordnance for 1882. In this connection we will be confined to an investigation of the theory of the contrivance. Suppose, in Fig. 1, the two circles A and B represent the pitch-lines of two gear-wheels, one, the larger, geared inside-a ring-gear-and twice the diameter of the other, each fixed at, but free to revolve on, its center. Any point, d, of the smaller will mark on the face and through the center of the other a right line, $a b$. Suppose a point meer the point d be fixed to a slide on the face of smaller A [which slide can move only in the line $d e]$, and compedled to move in a r roove, $a b$, across the face and center of larger B. If a force whose direction is the same as
in the direction of ed (Fig. 1). Is it was shown above how the perpendichiar component of the appplied force is destroyed, it remains to show in what manner the parallel one is neutralized.

In Fig. 3 let $a b$ represent the groove across the face and center of B, d the point of a slide on the face of A, and also of a block free to move in the groove ob, and the arrow e d represent the applied force and direction of it. It has heen seen that haneler the action of this force the gear t would start to roll around inside of B, as indicated by the arrow, carrying the arm h i as indicated, which in its turn would carry the gear C and give it by means of fixed gear 1) the motion indicated by the arrow. But the two small gears engage at c, and examining them at this point it is seen that they lave motion or, strictly, tendencies to motion, in opposite directions, consequently no motion can take place, although the system is free to move either by application of forer to the arm or the free ring-gear. Thus thetceth of a

Fig. 1.

Fig. 2.

Fig. 3.
the line $d e$ be applied to this point no motion of the fixed ring-gear are interposed at every point of revosystem can take place; for the action arainst the larger would be in the line $f^{\prime} d g$, perpenticular to a b at l^{2}, and passing throngh f, the point of engagement of the two gears, and the reaction on smaller would be in the same line : these, action and reaction, being equal, no motion could take place. But suppose the center of smaller gear be free to move, mofion would then take place-the smaller would roll around inside the other, the point referred 10 moving in the groove a b, the larger gear, although free to move around its center, remaining stationarythat is, the force applied would be resolved into two components, one perpendicular to and the other parallel with line a b, the former destroyed by action and reaction, the latter passing throngh the center of larger, producing motion only of smaller gear.

Suppose, now, two more gears precisely the same in size and gearing and having the same relation to each other be placed so that the small ones slatl engage over the centers of large ones-these latter having no direct connection with each other-and that the centers of small ones be connected by an arm fixed so as to revolve at c, (Fig. \sim) ; the two systems diff(ring only in that the ring-gear (D, Fig. 2) shall be fixerl-mable to move in any way. -1 and B of Fig. 2 being the two gatara explained in Fig. 1, engaging at $f ; C$ and D (I and B coincillent, showing but one circle), engaging at j, being the equal pair of last supposition; the smaller wears engaging at c and united by the arm $k i$, each free to revolve on journals of arm at h and i. If motion be given to the arm the small gear C will roll aromd inside the fixel ring-gear I, and revolve the other A about its center h, as it is carried around ly the arm, and A will carry with it the movable ring-gear B, or if motion be given to this later (B) it will carry A with it, which in tum will roll $(:$ around insiele the fixed grar /h. Duriner this motion any point of -1 will describe a right lime across the face and renter of $I B$ as previonsly noted. But if A and B be arranged with slide and groove and a forer applical, as alove supposed, the system camot he moved as longr as the direction of this force erosses the center of i
fixed ring-gear are interposed at every point of revo-
hition to neutralize the parallel componeut. To always practically have the force applied, as described, to a crank arm whose center is at c, a link is attached and connects with the slide and block. To carry over the centers, the system of four gears above explaincd is doubled, the crank-arms leing placed at right angles on the shaft to which they are attached. The point d describes during a revolntion a double cusp.

MECHANICAL MOVEMENTS.-In the construction of models or machinery, the skillful inventor and meehanie will stady to avoid clumsiness in the arrangement of the parts, and will naturally select the simplest and best forms of mechanical movements. By the kind assistance of the proprietors of the Stcientific Amerian we are emabled to present aseries of such movements, from among which the inventor may select at once that movement hest suited for his purpose, and see at a glance the separate part- best adapted to any special combination of mechanism. The following is a brief deseription of the various movements as numbered: 1. Shaft compling. 2. Claw coupling. 3, 4. Lever couplings. On the driving shaft, a disk with spurs is monnted, ant to the shaft to be elriven a lever is seeurely hinged. By catsing this lever to eatel in the spurs of the disk the eompling is readily effected, as in the figure 5. Knee or rose coupling of which 26 gives a side view, 6. Universal joint. 7,8 . Disk and spur eoupling. 9. Prong and spur lever coupling. 10. Fast and loose pulley. 11. Sliding gear, the journal-boxes of one of the wheels being movahle. 12. Frietion clutch. By tightening or relcasing a steel band, encircling at pulley on the slaft, the mathinery is thrown in or ont of gear. 13, 14. Shoe and lever brakes. 15,16 . Change of motion hy sheaves. 17. spiral llanged shaft. 18. Comnected with the rod are pawd links, catching into ratehet tecth in the whece to which retary motion is to be imparted. When the rod inoves in one direction, one of the pawls acts: and when the rod moves in the opposite direction, the other pawl aets in the same direetion as the first. 19. The reciprocating motion of a rodi
is converied intor rotary motion of the thy-wheed by a weight suspended from a rord, which passers ower a small palley that conncetu with atreatle, from which the motion is transmitted to the Hy-wheel. 20. "Flying horse." By pulling the cords radiating from the crank, the persoms orenpying the seats or horses on the cuits of the arms are embled (o) kecp the apparatus in motion. $21,2 \%$. Bow-string arrangements to convert recipronating into rotary montion. 23. Same purpose by differentink serew. 24. The same ly double rack und whecls. 25. Conpling for square shafts. 2 f . Silde view of l"ig. 5. 2\%. Sliding-spur pulley coupling. 28. Laver with bearing roller to tighten pulley bands. 29. Chain where. 30. Reciprocating rectilineur into reciprocating rotary motion by two racks and cog-whech, as shown. 31. Obligue-toothed wherls. 32. Worm and wormwhecl, 33,34 . Claw coupling with hinged lever.

35, 36. Disk couplings with lugs and cavitics. 37. Disk coupling with screw bolts. 38, 39, 40. Shaft couplings. 41. Face view of Fig. 12. 42. Friction cones. 43 Friction pulleys. 44. Self-releasing coupling. Disks with oblique tceth. If the resistance to the driven shaft increases beyond a certain peint, the disks seprarate. 45. Hoisting blocks, 46. Elbow crank, for changing motion. 4i. Reciprocating into rotary motion by zigzag groove on cylinder. 48 Another form of Fig. 29. 49. Reciprocating into rotary motion. 50. Same purpose. 51. Same purpose, by double rack and two ratchet pinions. When the double rack moves in one direction, one pinion is rigid with the shaft: when the rack moves in the opposite direction, the other pinion is rigid, und a contimuous rotary motion is imparted to the fy-wheel shaft. 52. Reciprocating into oscillating. ©33. Rotary into reciprocating. By the action of the whedpins the carringe is moved in one direction, and by the action of the same pins on an elbow-lever it is moved in the opposite direction. 54. Stamp rod
and lifting can. 55. For giving reciprocating motion t" rack 5f. Same motion to a bar, with slot, by means of an eccentric pin projoreting from a ravolving disk and catching in the slot. 57. Walkingbeamand ly-whocel. 5s. Reciprocating motion to bump or othar rod by means of (ececntric disk and friction rollors. (sice 81 und 104). 59. IIristing rame. 60. Friction gears. (See 43). R1. Ietary into reciprocating low rising and falling pinion acting on challas rack. fis. IBy therevolving oma rising and falling or a reciprocating rectilimar motion is readily imparted to a drum. 63:. Recijprorating mo.

tion is communicated to a frame by means of the condess rack and pinion. 64. Reciprocating rectilinear motion to a toothed rack by a toothed segment on a lever-arm, which is subjected to the action of a weight, and of an eccentric wrist-pin, projecting from a revolving disk. 65. Reciprocating motion to a rod. The whecls are of different diameters, and consequently the rod has to rise and fall ws the wheels revolve. (See 110). G6i. Cam and ellow-le ver. 67. Rod reciprocates by means of cam. Gs, Revolving into reciprocating motion, by an endless segmental rack and pinion, the axle of which revolves and slides in a slot toward and from the rack. This rack is secured to a disk, and a rope round the disk extends to the body to which a reciprocating motion is to be imparted. 69. Elliptic gears. iu. Bevel gear. 71. Whorm and worm-wheel. i2. Transmitting motion from one axle to another, with three different velocities, by means of toothed segments of mequal diameters. i3. Contimous revolving into reciprocating, by a cam-disc acting on an oscillating lever. i4. Intermittent rewolving motion to a shaft with two pinions, and segment gear-wheel on end of shaft. Tis. Uscillating lever. carrying pawls which cngage teeth in the cdges of a bir to which rectilivear motion is imparted. ib. Oscillating lever, connecting by a link with a rod to which a rectilinear motion is imparted. Ti. Oscillating lever and
pawls, which gear in the ratchet-wheel. 78. Common treadle. 79. Describing on a revolving cylinder a spiral line of a certain given pitch which depends upon the comparative sizes of the pinion and bevel-wheels. 80. Marking a spiral line, the graver moved by a screw. 81. (See Fig. 58). 82. Plunger and rods. 83. Cross-head and rods. 84. Reciprocating rod guided by friction rollers. 85. Revolving into reciprocating motion, by means of roller-arms extending from a revolving shaft and acting on lugs projecting from a reciprocating frame. 86. Crank motion. 87 Reciprocating motion communicated by toothed wheel and spring-bar. 88. The shaft carries a taper, which readily catches against a hook securely hinged to the drum,soas to carry the drum along and raise the weight on the rope. When the tappet has reached its highest position, the hook strikes a pin, the hook disengages from the tappet, and the weight drops. 89. Reciprocating motion to a rod by means of a groove in an oblique ring secured to a revolving shaft. 90. Double crank. 91. Cam groove in a drum. to produce reciprocating mo-

tion. 92. Belts and pulleys. 93. Pulleys, belts and internal grar. 94. As the rod moves up and down, the teeth of the cog-whecls come in contact with a pawl. and an intermittent rotary motion is imparted to said wheel. 95. By turning the horizontal axles with different velocities, the middle wheel is caused to revolve with the mean velocity. 96 . Oscillating lever and cam groove in a disk. 97. Lazy tongs. 981. Oscillating secment and belt over puif leys. 99. Converting ossillating inton reciprocating motion by a cam-slot in the end of the oscillating lever which cateless over a pin projecting from one of the sides of a parallelogram which is connected to the rod to which reciprocating motion is imparted. 100. Oscillating motion of a beam into rotary motion. 101. Motion of a tradle into rotary motion.
102. Double-acting beam. 103. Single-acting beam. 104. (See Figures 58 and 81). 105. Device to steady a piston by a slotted guide-piece, operated by an eccentric on the driving shaft. 106. Rod operated by two toothed segments. 107. 'Two cog-wheels of equal diameter, provided with a crank of the same length, and connected by links with a cross-bar to which the piston-rod is secured. 108. Device for a rectilinear motion of a piston-rod based on the lyypocycloidal motion of a pinion in a stationary wheel with internal gear. If the diameter of the pinion is exactly equal to one half the diameter of the internal gear, the hypocycloid becomes a sight line. 109. Same purpose as 56. 110. Action similar to 65. 111. Revolving motion by a circnlar sliding pinion gearing in au elliptical cog-wheel. 112. Smimat to 96. 113. Carpenter's clamp. The jaws turn on the piv-

ot-screws, and clamp the board. 114. An irregular vibratory motion is given to the arm carrying the wheel A by the rotation of the pinion B. as shown. 115. Intermittent rotary motion of the pinion-shaft, by the continuous rotary motion of the large whecl. The part of the pinion shown next the wheel is cut on the same burve as the plain portion of the circumiference, and therefore serves as a lock whilst the wheel makes part of a revolution, and until the pin upon the wheel strikes the guide-piece upon the pinion, when the pinion-shaft commences another revolution. 116. Stop-motion used in watches to limit the mumber of revolutions in winding up. The convex curved part, ab, of the wheel B serving as the stop. 117. Several whicels, by connecting-roils, driven from one pulley. 118. Intermittent circular motion is impartcd to the toothed wheel hy vibrating the arm 13. When the arm 13 is lifted, the pawl is raised from between the leeth of the wheel, and traveling hack ward over the circumference again, drops between two teeth on lowering the arm, and draws
with it the wherd. Il!), Reviprocating rectilinear notion is given to the bar by the contimuses motion of the cann. 'The cinn is of 'qual diameter in evory direetion mentarad arross the center. 120. Wredannism for revolving the cojindar in Colt's fircarms. Whon the bammer is drawn back, the dory, a, attached wo the tumbler acts on the ratehoq, b, on the back of the eylinder, and is held up fon the ratche loy asprins, c, 12 F . Altornate increasing and diminish ing motion, by mans of ecerntric toothed whecd fand tootherd cylinder. 122. Oseillating or forodalum engine. The cylinder swings between trumions like a penduham. The jiston-red connerts directly with crank. 123. Intermittent rotary motion. 'The small where is driven, und the frietion rollers on its studs move the larger wherl by working against the faces of obligue erooves or projections across the face thoreof. 124. Jongitulimul and rotary motion of the rod is produced by its arrangement between two rotating roblers, the nxles of which are oblique to each other. 125. Friction indientor of 1Roberts. Upon the periphery of the belt-pulley a loaded carringe is placed. its tongue connected with an indica-

tor. With a given load the indicating pointer remains in a given position, no matter what velucity is fraparted to the pulley

When the load is changed the indicator changes, thas proving that the friction of wheals is in proportion to loud, not velocity. 126. (ircular intermittent rectitinear reciprocating motion. Used on sewing-machinc's for driving the shutthe: also on three-revolution eylinder printing-press. es. 12\%. Continuons circular into intermittent circular motion. The cam is the driver. 128. Sewingmachine, four-motion feed. The bar. B, carries the feeding-points or spurs, and is pivoted to slide, A. B is lifted by at radial projection on eam. C. which at the same time also carries it and B forward. A spring prodnces the return stroke. and the bar. B. drops by gravity. 129. Patent erank motion to ob-
viate dead centers. Dressure on thre treadle moves the slotied sidide, 1 , forward motil tha wrist panses therenter, when the sporinge, b, forces the slide agningt the stops until next forward movenent. JBo. Fourway cock. 133. (One stroke of the piston gives a complrite revolntion to the erank. lssa. Rertilincar motion of variable verority is given to the vertical bar liy rotation of the shaft of the relurved arm. 1 idel. lantagrajh for coplying, colarging and reducing plans, cte. C, lixed point. I3, ivory tracing point. A, pencil. Trace the lines to be coprod with IS, und the pencil will reproduce them donble size. Shift the slide to which C is uttuched, also the jencil slide, and size of the copy will be varical. Jibl. J3all-and. socket joint for tubing. 135. Numericul registering device. The tecth of the worm-shaft gear with a bair of worm-wheels of equal dinmeter, one Javing one tooth more than the other. If the tirst wheel has 100 teetli and the serond 101 , the puinters will indi. rate respectively 101 and 10,100 revolations. $1: 36$. Montgolfier's liydraulic ram. 'The right-land valve being kept open by a weight or sjring, the chrrent llowing through the pije in thr arection of the arrow escapes thareby. When the pressure of the waster current overcomes the weight of theright valve, the momentum of the water opens the other vatere, and the water passes into the air-chamber. Onc ectuilibrium taking place, the left valve shuts and the right valve opens. $13 y$ this alternate action of the valves, water is raised into the air-chamber at every stroke. 137. Rotaryengine. Sluft 13 and huh. C are arranged eccentric to the case. Slidiner ralial pistons, a, a, move in and out of hub C. The jistons slide through rolling packings in the hul, C . $1: 38$. Quadrant engine. Two single-acting pistons, B, J3, connect with crank D. Steam is admitted to act on theouter sides of the pistonsalternately through valve a, and the exlaust is between the pisions. 139. Circular into rectilinear motion. Thescalloped wheel communicates motion to the horizontal oscillating rod, and imparts rectilinear movement to the upright bar. 140. Jotary motion 4 ransmitted by rolling contact between two obliquely arranged shafts.

MECHANICAL POWERS. - Machines are instru. ments interposed between the moving power and the resistance, with a view of changing the direction of the force, or otherwise modifying it. Machines are of various degrees of complexity ; but the simple parts, or elements of which they are all compoacd, are reducible to a very few. These elementary machines are called the Mechanical]'owers, and are usually reckoned as six in number, three being pri-mary-viz., the lever, inclined plane, and pulky; and three secondary, or derived from the others-viz., the uheel-and-axle (derived from the lever), the uedige, and the screzo (hoth derived from the inclined plane). To these some add toothed wheets. What is special to eacls machine will be found under its name; a few observations applicable to all may appropriately be made here. 1. In treating of the theory of the lever and other mecbanical powers. the question rally examined is, not what power is necessary to move a certain weight, but what power is necessary to balance it. This once dnue, it is obvious that the least additional force io P will suftice to begin motion. 2. In pure theoretical mechanics, it is assmmed that the machincs are without weiglat. A lever, for instance, is supposed to be a mere rigid line; it is atso supposed to be perfectly rigid, not Iending or attering its form umder any pressure. The motion of the machine is also supposed to be witliout friction. In practical mechanies, the weight of the machinc. the vielding of its parts, and the resistance of friction. have to be taken into account. 3. Whan the effect of a machind is to make a foree overcome a resistance greater than itself. it is said to give a merhanical adcantage. A machine, howerer, never actually increases power-for that would be to create work or rnergy, a thing now known to be as impossible as to create matter. What is gained in one way by a ma-
cbine is always lost in another. One pound at the longend of a lever will lift 10 pounds at the short end, if the arms are rightly proportioned; but to lift the 10 pounds througli one foot, it must descend 10 feet. The two weights, when thas in motion, have equal momenta; the moving mass multiplied into its veloeity, is equal to the resisting mass multiplied into its veloeity. When the lever seems to multiply foree, it only eoncentrates or accumnlates the exertions of the force. The descending one pound weight, in the case above supposed, may be conceived as making 10 distinct exertions of its force, each throngh a space of a foot; and all these are concentrated in the raising of the 10 pound weight through one foot. The principle thus illustrated in the case of the laver lunds good of all the mechanieal powers. 4. The object of a machine is not always to increase foree or pressure; it is as often to gain velocity at the expense of foree. In a spinning factory, e. g., the ohjeet of the train of machinery is to distribute the slowly working foree of a powerful water-whed or other prime mover. among a multitude of terminal parts moving rapilly, but having little resistance to overcome. 5. The mechanieal itdvantage of a compound machine is theoretically equal to the product of the separate mechanical advantages of the simple maehines eomposing it; but in applying machines to do work, allowance must be made for the inertia of the materials composing them, the Hexure of parts subjected to strains, and the friction, which increases rapidly with the complexity of the parts: and these consid. erations make it desirable that a machine shonlif fonsint of as few parts as are consistent with the work it Jas to do. 6. The forces, or "moving powers," by which machines are driven are the museular strength of men and animils, wind, water, electrical and magnetie attrations, stemm, ete:; and the grand objeet in the eonstruction of machines is, how, with a given amonnt of impelling power, to get the greatest amount of work of the kind required. This gives rise to a multitude of problems, some more or less general, others relating more especially to particular cases-problems, the investigation of which eonstitutes the science of applied mechanics. One of the guestions of most general appliration is the following: If the resistance to a machine were gradually reduced to zero, its velocity would be constantly accelerated until it attained a maximum, which would be when the point to which the impelling force is applied was moving at the same rate as the impelling foree itself would move if unresisted. If, on the other hand, the resistance were inereased to a certain point, the macline would eome to a stand. Now, the problem is, between these two extremes to find the rate at which the greatest effeet or amount of work is got from the same amount of driving power. The investigation would be out of place here, but the result is that the greatest effect is produeed when the veloeity of the point of application is one-third of the maximnm velocity above spoken of. The moving force and the resistance shoum therefore be so adjusted as to produce this veloeity.

It will be our radeavor in this article to find the relation between the power and the weight when they balanee each other in each of the simple machines: friction and the weight of the machine not being taken into aceoment. For the sake of eonvenjence, the power will be denoted hy P, and the weight by W. Λ lever is an inflexible rod, strimbt or bent, turning on it point called the fulerum. It is much used in the form of an irom har for movingr heavy bodies, through small distances. Fig. 1 shows a lever used for that purpose, in which F is the fulcrem, ${ }^{\prime}$ is the power exerted by the hand, and W is the weight to be moved. Take a straight intlexible bar, A B, loig. 2,and plnee it on a prop. F. On the end, B, lang a weight, W, and balance it with the power, p, Ining on the end, A : $\mathrm{in}^{\circ} \Lambda$ is the power-arm, and $\mathrm{F}^{3} 13$ the weight-arm. Now if F A is equal to F^{B}, then W is equal to P ; if F A is
thre times the length of the arm, F B, theen W is double the length of F^{*} B, then W is double of P; if $F A$ is three times P ;and so on. The treight always bears

Fig. 1.
the same proportion to the pooner as the poner-atrm bears to the reightarm. The same thing may be expressed by saying that the power multiplied by the length of the power-arm is always equal to the

FIg 2.
weight maltiplied br the length of the weight-arm. This rule holds for all levers; but if the lever be bent as in Fig. 3 we must not take the bent arms of the lever, E II and F N, for the power and weight arins; but for the power-arm we maust take, $\mathrm{F} A$ the perpendicular drawn from the fulcrum to the direction

Fig. 3.
in which the power acls, and for the weight-arm we must take F B, the perpendicular driwn from the fulcrum to the direction in which the weight acts. The same precaution must be observed if the power and weight do not aet in directions parallel to each other, as shown in Fig. 4.
In Figs. 2, 3, 4, the power multiplied by the length

Fig. 4.
of $F A$ is called the moment of the power about the fulcrum, and expresses the tendency that the power has to produee motion about the fulerum ; in the same figures, the weight multiplied by the length of $F \mathrm{~B}$ is called the moment of the weight about the fulcrum, and expresses the tendeney that the weight has to produec motion about the fulerum in the opposite dirction. Wesce that when a lever is at rest the moments of the power and weight abont the fu].
(rime are equal. Jevers are emembly divided inter three kinds, aceording to the position of the pewer and weight with regard to the dialerame. In lowers of the tirse kind the power and welyht act on different sides of the fulcrum, as slown in lig. f. It is evi-

ITg. 5.
dent that with levers of this kind we may either have a mechanival ndrantuge or a mechanical itivadrantagge. acorsing as the fulcrum is phacel nearer the weight or the power. Examples of this kind of lewer are numerous: the crowhar, used as scen in Fige 1: the poker used in stirring the fire: and the claw-hammer used in drawing a natare familiar ithserat tions. In thase as well as in the wamples to be given of the other two kinds of levers, the reader shoukd satisfy himself as to what constitutes the fintrom. porireand meight in wach ease. In levers of the second hind, the power and weight act on the

Fig. 6.
same side of the fulerum, the weight being nearer the futerum, as shown in Fig. 6. Ifere, it is evident. that we have always a merkunical adrentage, whether great or small, for the power-arm must be always somewhat longer than the weight-irm. Nut-erackers, a chipping-knife, an our used in propelling a boat,and a door taken ly the handle and opened on its hinges, are levers of the second kind. In levers of the third kind, the power and weight also act apon the same side of the fuicrom, the power being nearer the ful-

Fig. \%.
crum, as in Fig. 7. In this kina of lever there is al ways a mechanical disadrantage, for in it the powerarm is always shorter than the weight-arm, so that to support a weight with it a greater power is required than if the power were applied directly and without the intervention of a machine at all. This kind of lever is only used when velocity rather than
power is wantel : the homanarm, Fig. G. is an exanple, Thar fulerom is at hler allow, the weight is the besly resting on the hand, and the comeractile

Fi, N. N.
fore of the musele furninhes the power whichacts at P. When the mucde cortracts. the hamed thescribes a much longer curve than l'does, and this

Fig. 9.
is conrenient. The W^{W} hepl-and-Axle as represented in Fig. 9. consists of two eylinders of different sizew. having a common axis to which the are risidly attached : the larger eylinder is called the whecel, hecanse atheel having a groove in its circumference for carrying a rope is sometimes used instead of it ; the smaller cylinder is cathed the axle: their common axis is firmly supported on a strone frame. The weight is attached to the end of a long rope which is coiled romid the axle. and the power aets at the end of another rope which is eniled round the wheel in an opposite dircetion, so that when the

Fig. 10,
rope is pulted down the weight is raised. Fig. 10 represents a vertical section of the wheel-and-axie.
from which it is manifest that it is merely a modification of the lever, in which C , the center of the axle, is the fulcrum. C A, the radins of the wheel, is the power-arm. and C B, the radius of the axle is the weight-arm.

It clearly follows, from the law of the lever, that the wheel-and-axle is in equilibrium when the power multiplied by the radius of the wheel equals the weight multiplied by the radius of the axle; so that if the radins of the wheel were eighteen inches and the radius of the axle two inghes, then a power of

Fig. 11.
one pound would balance a weight of nine pounds. In the windlass, shown in Fig. 11, the arm, A C, is used instead of a wheel. Examples of the practical application of the wheel-and-axle are seen in the capstan. crane, water-wheel, and toothed wheels.

Fig 12 shows a Pulley in use. It is a small disk or wheel, of wood or metal, having a groove in its circumference for carrying a string, and turns on an axis passing through the center of its faces, the axis being supported by a frame called a block. Pulleys are designated as either fired or movable; a pulley is said to be fixed when it does not ascend or descend according as the weight is raised or lowered. It is manifest from. Fig. 12 that a fixed pulley has no mechanical advantage, for the power, l^{\prime}, must be equal to the weight, W, in order to support it. This machine is omly used to change the direction in which a force acts. When force is transmitted through a string, as it is in the case of pulleys, it gets the name of tension, and a string possenses the property of transmitting a force wiflout changing its amount; thus the tension at every point of the string in Fig.

Fig. 12.

Fig 13.

12 is the weight, Wr. Pulleys are called movable when they ascemb or descend according as the weight is raised or towered. We have a movable pulley in Fig.18. When one movable pulley is used, the strings being paralled, the weight is equal to twice the power. For W is supported by the tension in B I: and the tension in A P'; and since the tension in each of these is the power, ${ }^{2}$, anting upward, these two tensions would support a weight of \mathfrak{l}^{1} : therefore W must be equal to 21^{\prime}. It is senerally found to be converient to use a fixed palley along with a monable one when we wish to change the dircetion of the furee, as in lig. 14. There are three systems of
arranging pulleys-or reeving them. as it is called. In the first system, which is shown in Fig. 15, each pulley hangs by a separate string, and all the strings are parallel. When three moveble pulleys are ar.

Fig. 14.
ranged thus, the weight is equal to eight times the power; for the tension in the string passing under the first movable pulley at the top is the power, P;

Fig. 15.
the tension in the string passing under the second movable pulley is 2 P ; the tension in the string passing under the third movable pulley is $4 P^{\prime}$; and the tension in the string langing from this pulley is 8 P . But this last tension supports the weight, W, therefore $\mathrm{W}=8 \mathrm{P}$. It will be observed that in this system each movable pulley that is added doubles the mechanical advantage. In the second system the string passes round all the pulleys, and the folds of this string are parallel, as represeuted in Fig. 16. ITere the weight, W, is supported by the tensions in the folds of the string; and as there are four folds, each having the tension of the power. P', the weight must be four times the power. In this system the weight is always as many times the power as there are folds in the string, the folds being counted beI ween the two blocks. In the third system Fig. 17, each pulley hangs by a Reparate string, and the end of each string is attached to the weight, the whole being suspended from a lixed support. The tensime an the string passing over the tirst pulley at the hottom is the power, P; the tension in the string pass ing over the next pulley is $\underset{\sim}{2}$.': the tension in the string passing over the third pulley from the bottom is $4 l^{\prime}$; and so on. Thus it is when three pulco:s are arranged in this manner. W is supported by $P+21^{\prime}+41^{\prime}$, that is, by $\quad 7 P$, and
thercofore the weight is exactly efpal to suven times the power. 'Thereffet of any onhor mumber may be calculated similarly. "The firat thing that strikes one on rxperimenting wilh the pulleys is thr

Fig. 16.

Fis. 1\%.
prineiple of virtual velocities, Let us make an expriment with the first system, shown in Fig. 1 n . Hore we have three movable pulleys, and wi fimd that a power of 10% balances a weight of 80%. Trime: but on putting the machine in action, we also find that when the weight is raised 1 ft . the power las to move through 8 ft ., so that what is gained in power is lost in speod. and, as we said before, this is true of every machine.
We now come to consider the inclined plane. Here

Fig. 18.
is one in Fig. 18. We shall perform an experiment on it, and then draw a conchusion. Let the weight, W, he drawn from the bottom to the top of the inclined plane by the power, P , which acts on the

Flg. 19.
weight in a direction parallel to the length of the plane A B: W will be thens raised through a vertical distance equal to BC C. the height of the plane: but during this time P will have descended through a vertieal distance equal to $A \mathrm{~B}$, the length of the plane. Now, from the principle of virtuel velocities it fol lows at once that there is equilibrium here, when $ए$ moltiplied by A B is equal to W multiplied by BC C; that is. on the inclined plane, when the power acts parallel to the length of the plane, there is equilibrium when the power multiplied by the length is equal to the weight multiplied by the height. In Fig. 19,
an experiment is shown which verifies the rale we have just drawn from the priaciple of virtanl veloeitios. A 13 ami A Care two bonards, hinged togerherer
 ("an be made to rises from it at my angle ly inserting a wedge, propurly propared as sern in the bgure. From ${ }^{\text {S }}$ hangs abar graduated in inchos, by which the height of the plate ran be at ence measurem. The carriage, W", "onstitutes the weight, and the power, l', asta on it in a direction parallel (t) the longth of the phane. Now make: J' balance W, and then measure the: heright and ingeth of the plane: it will ber found that 1' is to W as the height of the: phane is a its leneth: that is, the pewer multiphecl hy the mumber of inches in the length will be comand to the weight multiplied by the namber of inches in He luejght. By varying the experiment, so that the power might act in a direction paratled to the hase, We would tind that therre would he equilibrime when the power multiphiof by the base copuals the weight multiplicel by the locight. Two indined planes plater hase to base form a Wedge. It is mush used in. spittines wood, as in Fig. 20; it is also used for raising grat

Fig. 20.
Wrights through small distances. In lockyards, shizh are raised on the stocks by wedges driven under their kecls. Theoretically considered, the meclanical advantage of the isosceles wedge is the side of the wedge divided by half the back. But this gives ns no idea of the real advantage of the machine: this arises from its enormous friction, and also because the force which urges it is derived from the blow of a hammer or a mallet,

Fig. 21. etc.; a force so very different in its nature from the resistance that it has to overcome, which is the pressure of some weight or the cobession of the particles of a body, that it admits of no uumerical comparison. One part of the theory is true: that the smaller the back the greater is the advantage of the wedge. If a tlexible inelined plane, A-one matle of paper, for example-be wrapped round a cylinder, B, as in Fir. 2i, a serenc is formed. By means of the apparatus in Fig. 22 we can determine the mechamical advantage of the screw. The resistance here is the bar, 15 , which is to be moved forward, the power acts at the handle.AI I. When the machine is put in action by turning the handle, the power moves through the ciremmferene of the circle described by the handle, while the weight is only moved fromi " to b, the distance between two threads; so that in the screw the power is to the weight as the distance between two ilareads is to ilue circumference of the circle deseribed hy the power. Thas. suppose \& P sweeps a circle of 30 in ., and that the distance betwern wo threads is $\frac{1}{2}$ in.: then the meehanical advantage of the machine is 30 dirided by $\frac{1}{2}$, that is 60 ; so that if a power of 50 llbs . is
exarted on the handae, $A P$. the bar, W, is urged forward with a force of 60 times $50 \mathrm{lhs} .$, that is 3,000 lbs.

The scrow is much nsed to exert a great pressure through small distances. Fig. 23 shows a common screw-press. To apply the serew here, in in expeditions way, a hollow serew is ent in the nut. N,

F5. 権
into the groves of which the threads of the solid screw fit exactly. The solid screw, S, is fixed to the press-board. J; B, so that it cannot turn round. but can he male to move up and down; on the other hand, the nut, N, is fixed, so that it cannot be moved up and down, but can be made to turn romnd by means of the bar, $]^{3}$, which is inserted in a hole in its side. When the power makes one revolution, the solid screw, with the press-board attached to it, is ratised through the distance hetwern two threarls; so that if the power. P . sweeps a circle of 20 ft. , that is, 240 in. , and the

Fig. 23.
distance hetween two threads is 1 in... then the mechanical advantage of the machine is 240 so that if a force of 100 lbs . Te exertad on the extremity of the lever, anything placed between B and J) will be pressed with a force equal to 240 times $100 \mathrm{lbs} .$, that is. 24,000 lbs.. or 10^{5} tons. In the compomal marlines, the mechanical advantage is the procluct of the mechanical advantages of the simple machines which compose them. Thus, in Fig. 24 we have a compound machine consisting of

Fig. 24
three levers combined torethor; its mechanical advantage is 3 times $:=$ limes ${ }_{2}$, or $12 ; 3$ being the mechanisal inf vantage of the first lever, 2 that of the socond, and z that of the thirs. A power of 1 lh . apphiod at A. Would halance a woight of 12 lbs . if 1).

MECHANICS. - The sojence which troits of the mature of forces and of their ardion on boolies, either directly or by the atemey of mathinery. 'The maturn of
force will he found treated of mndrr Fosece. The action of forces on loorlies may be in the form of pressure or of impulse, and may or may not prodnce motion. When the forces are so balancerl as to prearrve the body affertod by them in a state of equilibrimm, their actions are investigated in that branch of mechanics called Staties; when motion is produced, they are considered under the head of Drasmres, or Kiyntica. The equilibrium and motion of fluids (including liquids and gases) is treated in the suborilinate branches of IIydrostatics and Mrdrodynamics; thongh the special terins Aerostatice and Aeronynamics (for which the comprehensive term Pneumatics is often used) are sometimes employed to designate those portions of the science of mechanies in which the action of gaseons bodies is treated of. The science of mechanies owes very little to the ameient philosophers. They were acquainted with the conditions of equilibrinm on the lever-discovered by Archimedes-and had reduced the theory of all the mechanical powers, except the polley and the inclined plane and its derivatives, to that of the lever, but this was nearly all. Arehimedes, starting from the principle of equilibrimm on the lever, struck ont the idea of a center of gravity for every body, and investigated the position of that point for the triangle, parabola, and paraboloid. Till the 16 th century, the science remained stationary, C'ardab, the Marquis Ubaldi, and Stevinus-the first to give the correct theory of equilibrinm on the inclined plane-then gave it a slight impetus, and the labors of Galileo, who introduced the expression of mechanical propositions in mathematical formnlas, discovered the laws regnlating the motion of falling bodies, and oriminated investigations concerning the strength of materials, placed the science 00 a broad and substantial basis. Torricelli, Descartes, Pascal, Fermat. Roberval. and Huyghens, on the continent, and Wallis and Wren in Englandthe last three of whom simultaneously discovered the laws which regulate the collision of bodiesadderl each his quota to the Nem Science, as Mechanics was then called. In 1687, appeared Newton's Principia, in whicla the complete experimental basis of the subject was first laid down in a satisfactory manner, and the mechanical principles which had before been considered to act only at the surface of the earth, were shown to rule and direct the motions of the planets. Contemporary with Newton were Leibnitz, and the two elder Bernonillis, James and John, who, besides contribnting ereatly to the advancement of the science, applied to it the newlyinvented differential calculns, which was found to be a weapon of immense power. From this time, at constant snccession of illnstrious men lave prosecuted the study of theoretical mechanies, or of subjects connected with it. The chicf names are Daniel Bernouilli, Euler, D'Alembert, Clairatut, Lagrange, Japlace. Jagrange's Mécanique Analytique not only systematised the suliject, but enormously increased its power and the range of its applications. The last great additions to the science are those made by Sir W. IR. IIamilton, under the name of the principle of Varying Setion. The developments whiclithis has received from Jacobi, Boole. Cayley, Liouville, Donkin, lBour, etc., form an extensive and diticult branch of applied mathematies. - hiefly of the theory of simmltaneous differential equations.

MEDAL . . A piece of metal in the form of a coin, not issued or circulated as money, but stamped with a ficrure or device to preserve the portrait of somu eminent person, or the memory of some illustrions action or event. The study of medals, interesting in an listorical and antiquarian point of view, is also important as illustrating thr contemporary state of art. Like conins, medals belonis to two periods, anciant and modern, separated by a wide interval. To the former belong those pieces issuing from the mint of ancient kome, known as M'da'lons, of the size
of the anreus in gold，of the dronarias in silver，and of the first or large＇brass in（＂）何er．＇They are gener－ rally sapposcel to have been strack on oreasions similar to those on which medals are eoimel in met－ cri times，on the aceession of an Emperor，on the achicevement of an important vietory，or asspureimens of workmanship；but there are circiumstances whicly eomatemane the belief that they wore circulatod as money．Medatlions prior to the time of IJadrian are rare dind of great valac；onte of the most lematifal amb most fanous boing a gold medallion of Jurnstus （＇asar；from Hadrian 10 the colowe of the Emapite they are compratively common．Of the lioman medai． lions，some werestruck by order of the Emperors， some by the Semate；the lattor nay be known by being inseribed with the letters S．（．The larger bron\％eme－ dallions are of athirable workmateship．In some of them a ring of bronze surromals a（＂nter of colpper， and the inscriptionextends over hothmetals．No por－ trait of a perann not prine ly occurs on any anciont medal，a remarkable circumstance，considering the numbrous eontemporary stataes of poots，historians， and philosophers．The（＂ontorniati are bron\％e mel－ als marked with furrows（contormi），distributed at the publiegames and apparently also in use as money， Nnmerous medals ame medallions were strutk in the （ircek provinces of the lioman Empire，of lass suh－ stance mad thickness，for the most jart，than those of Rome＇．＇Thes Sicilian medald are of very lime work－ manship，particularly one with a head of Cores，amel on the reverse a Vicery crowning a figure in a coar．

Menals in the present day are comferred hy the Sov－ erejgn as marks of distituction for eminent worth or moble combluet，more particularly for naval and mili－ tary services．Such medals of honor ara seddom of great intrinsic value，their worlh depending merely on the associations comnered with them．Thoy have ribbons attached，with edasps or small bars，cache of which bears the nome of a particular action．The Watcrlon metal is of silyer，with the head of（acorece IV（＇rince 1R＇gent），a winged Victory，and the worels ＂Watrrlew，＂＂Wellingtoni＂it hanges from al rimson ribbon，with a narrow strije of blue near each edge． The Crimenn medal，also of silver，is attached to at blue ribbon with yellow edges when worn for serviee in the（rimes，am！to a yellow ribbon with blue adyes when for service in the Baltic．Good－service medals of silver were instituted！in 1830 and 1831，and roles formed for their clistribution among meritorious sail－ ors，soldicrsaud marines．The Naval medal is worn suspended from a hlue，and the Dilitary from a crim－ sun ribhon．There are also varions British medals which have been conferred for services in the Penin－ sula．India，ete．On every medal is engraved the name，rank，etc．，regiment or ship of the recipient of it．Nealals and decorations do not seem to lave been （ver conferred as rewards in the Army or Nivy prios to the Commonwealth．The French military medal and the Sardinian War Hedal were some time ago be－ stowed to a large extent on British officers，soldiers， seamen，and marines．The former exhibits the eftigy of Napoleon III．，surmonnted by an cagle，and is worn from a yellow ribbon with green borders；the latter is charged with the Cross of Savoy，and suspended from it sky－blue ribbon．

MEDAILLE MILITAIRE．－ 1 French military meda］ instituted by Napoleon 111．It is conferred princi－ pally on privates and non－commissioned olhcers for gallintry in the field．and carries with it a pension of f_{5} a your．The medaille militaire is，lowwever， also conferred on Field Marshals and Generals when they have attained to the highest rank of military honors，that of Grand－Croix of the Legion of JIonor It exhihits the elligy of the founder，surmounted by an eagle，and is attached 10 a yellow ribbon with a green horder．It was，after the Crimean War，be－ stowed，to a large extent，on British soldiers．

MEDICAL BOARD．－A Board consisting of three or more othieers of the Medical Department，convened by an order through the Secretary of War，for the
inspection of wonmaleal ollicers in ordi．r to hecoure theon a provision for lifo，in incourdane＂with the： regulations rocarding penuions，＂tr．

MEDICAL DEPARTMENT．＇l＇his ］Heparinurnt of an army，next to the（＇ommissariat，is the：most impur－ tant of all tarenom－romhatant sections．＂The surgical
 more the comblat with olinesace congenelored by erowed－ ing，unhealthy stations，ant the rackloss liathite of
 an average of the whole army，it is fommet that tha rate of sickness is at least triple that for thererivil prol－ nlation．
In the British army every battalion，whon at lome or in the temprrate zonm，lias at Surgeon aral an A sistant furgeon；whenin！neliaorthe tropicesonother Assistant Surgeon is ateled．In ablition tothese of fierers，there aro numerous Stafl Dedienl follierers at all stations，who have charere of detachmonts，bose pitals，etce＇The artive list of the Mediend whirerss comprised，in $1 \times 79-80,580$ surgeons－（ienceral，It phe
 Besiders these，there are botwern doo and boo Wedi－ cal Oflecers cunployed with tha army in lnelia．＇Tha total estimate for medical establisimuents ant ser－ vices in 187！－80 was 2266,200 ．The 11 （edical I）（part－ ment is govermet by at Direcetor－fieneral，who i－a member of the W゙ar Ollice，and las claarewof the sur－ gieal，motical，and sanitary arrangements of the army．
 cel，muler the Secretary of W゙ar，with that adminis－ trative daties of the Mediabl 1）partment．The（＇hat Medieal Purveyor is the elace phrehasing and dis－
 under the direstion of the suresen General，the sal－ pervisjon of the purchase and distribntion of all med－ ical and hospital supplies．Every military pust has at least one metlist wificer and sometimes two， 18 the nature of the climate or the stronerth of the esar－ rison demands：all of whom are under the eommand of the Surgeon General．
The Meclical 1）epartment is，at present，oreanized as follows：－One furgeon（ienersi，with the rink of Brigadier General；one Assistant Surgeon Gencral． with the rank of Coloncl；one Chief Medical J＇urvoy－ or，with the rank of Colonel：four surgeons，with the rank of Coloncl；eight Surgeons，with the rank of Lieutenant－colonel；two Assistant Medical Purvey－ ors，with the rink of Licontenant－colonel；fifty Sirr－ geons，with the rank of Dajor：＂ighty－eight Assis－ tant Surgeons，with the rank of Caphain；ind thirty－ seven Assistant Surgeons，witl the rank of First Iientemant．Thore are also in the Medical Depart－ ment，four Medical Storekeepers，and one humelred and tifty Hospital Stewards．Assistant Surgoons have the rank，pay，and emoluments of First Lien－ tenant of Cavalry for the first fize ycars＇service，and the rank，pay，and emoluments of the gracle of Capl－ tain ufter five years＇service．

MEDICAL ${ }^{\text {D }}$ DRECTOR．－In the United States ser－ vice，an officer who is assignedto duty at lie Iteatl－ quarters of a Military Geographical Division or Department，and who，under the supervision of the Surgeon General，has control of the Morlical 1）e－ partment within the limits of the command in which he is sarring．Medical Directors are as signed by order of the secretary of War，aud are required to make such special reports to the Siur－ geon General as shall at all times keep lim fully in－ forned as ito the sanitary conclition of his Depart－ ment．

MEDICAL SCHOOL．－Anestahlishment for the tecls． nical edncation of medical otlicers for the British aml Indian military service．Candidates are examined competitively in the ordinary suljeets of professional knowledge；and，passing satisfactorily through that ordeal，are then required to attend，for six months， at the Military Medical Sehool，where they got through practical courses of military hygiene，military and
elinical-military surgery and medicine, and pathology with morbid anatomy. As the School is attacherl to the Royal Victoria Ifospital, which is the great invalid depot for the whole army, the students have ample opportunity of seeing theory exemplified in practice. The School comprises 4 Professors with $£ 850$ a year each, 4 Assistant Professors having $£ 450$ each, and msually about 40 medical candidates, who receive each 5 shillings a day and lodging-money, The annual cost of the whole establishment is abont £ 7,900 .

MEDICAL STAFF.-A branch of the British Army, under the control of some experienced officer, stationed at headguarters and denominated Director General. Immediately under his command are a number of Inspectors General, Depnty Inspectors General, and a Corps of Staff Surgeons. The locality of all the oflicers subordinate to the Director General is tetermined ly the force to which they may be attaclied. All the Regimental Surgeons and Assistant Surgeons make their reports to and consult the staff Officer who is placed in their district. The Director General is paid from the civil department of the Government. A Deputy Inspector General of IIospitals must have served five years at home, or three years abroad in this rank, before he shall be eligible to the highest rank of Inspector General.

MEDICAL STOREKEEPERS.-MedicalStorekcepers are charged, under the direction of the Surgeon Gieneral and the Chief and Assistant Medical Purveyors, with the storing and safe-keeping of Medical supplies, and with the duties of receiving. issuing, and accounting for the same, according to regulations. If a Medical Storckeeper be assigned to the same depot with an Assistant Medical Purveyor, he prepares all requisitions under his direction and subject to his approval. Medical supplies transferred to MerlicalStorekeepers by the Chief or Assistant Medical Purveyors are receipted for as invoiced, withont breaking packages, provided that the number of packages corres. ponds with the invoice, that they be in good shipping condition, and that there be no reason to suppose the contents broken or defective. Medical Storekecpers cause the Medical supplies issued or transferred by them to be well packed, each article designated by the name of the maker or vender, and each package legibly and correctly marked with the address of the oflicer for whom it may be intended, and with its weight and contents. whether medicines. hospital stores, instruments, dressings, books and stationcry, bedding, clothing, or furniture and appliances. There are four Medical Storekeepers in the United States army, with the rank, pay and emolnments of a Captain of Cavalry.

MEDICAL SUPPLIES. - The Medical supplies for an army are preseribed in the Standard Sup?ly Tables
furrished by the Surgeons General, and issnes are governed by it, except as to the size of packages, Whichimay be regulated by cirenmstances and quantities required. When any requisition is not according to the Supply Table, the reason the refore is explained, as in the prevalence of epidemics, unlealthy location of troops, or other cause making a deviation desirable. In the United States service. Acting Assistant Medical P'nrveyors at field depots, and the senior Medical Officer of every hospital, regiment, post, or detached command, forward their requisitions for Medical supplies to the Medical Director ninder whom they may be serving. The Medical Director approves or modifies the requisition at his discretion and transmite them to the nearest parveying depot for issne. If the Assistant Medical Purveyor or officer in charge of the depot deems necessary, on account of the character of the supplies, he forwards the requisition through the Chief Medical Purveyor to the Surgeon General for instructions. If the quantity required be large, and there is time, the Medical Director transmits the requisitions, with his recommendations indorsed thereon, to the Surgeon General.
Reguisitions to replenish Medical supplies are made in detail, in dnplicate, and transmitted by different mails, on the 30th June and 31st December They are made only for articles that are or probably will bc. deficient. They exhibit the quantity of every article on hand, whether more be wanted or not. At remote posts, reguisitions are made at such times and for such periods as may be specially authorized by the Surgeon General. Special reguisitions are only permissitle in cases of cmergency. A duplicate of every special requisition, giving the name of the officer upon whom it is made, is immediately forwarded to the Surgeon General for his information. Requisitions for articles not on the Standard Supply Table is, in all cases, forwarded to the Surgeon General for his action. When it is necessary to nbtain Medical supplies, and recourse cannot be hiad to a purveying depot, they may be purchased by the Medical Ofticer, and bills in duplicate therefor sent through the Medical Director to the Surgeon General for examination and payment. The purchasing officer shall prepare, in triplicate, an invoice of all the articles bought-one copy to be forwarded to the surgeon General, with the bill ; one, as a roucher, io accompany his next property return, on which lie accounts for the articles purchased; and one to befiled with his retained set of vouchers. In all official lists of Medical supplies the nomenclature, order, and classification of the Standard Supply Table is strictly followed. The whole table is not transcribed in all instances, but the name's of the articles mentioned follow the ollicial arrangement.

I.-REGLLAR LIST medrelises.

Icid, acetic.
Acill, carbolic, for disinfection.
Acid, carbolic, pure, crystallized.
Arid, citric.
Acid, muriatic.
Acid, nitric.
A(cid, sulpturic.
Acich, mulphuric, aromatic.
Acid, tamnic.
Acich. tartaric, powderch.
Alcohom.
Aloces. powideren.
Aluminal and potassa, sulphate of. Ammonia, aremstice spirits of
Ammonia, carbonate of
Ammonia, muriate of.
Ammonia, solution of
Antimony and potasea, tartrate of. Arecnice, pills off.
Arsenite of potassa, solution of.

Belladoma, alcoholic extract of. Bismuth, sulmitrate of.
Borax. powdered.
Cimplor.
Cantor sil.
Cerate, blistering.
Cerate. resin.
Cerate, simple.
Clank, prepared.
Chboral, hydrate of.
Chloroforin, purilied.
Cinchona, huth extract of.
Cimammen, nil of
Cod liver cil.
Colchicum seed, lluid extract of. Colocynth, compomid extract of. Copper, sulphate of.
Croton oil.
Digitalis, tincture of.
lirgot, fluid extract of.
Ether, compound spirits of.
Ether, stronger, for andesthesia.

Ether, spirits of nitrous.
Flaxseed.
Flaxseed meal.
Ginger. fluid extract of.
Glycerine. purc.
Grim arabic, powdered.
Ityoscyamns, alcoholic extract of. Iodine.
Tpecactumhat, powdered.
Iron, solution of the sulplate of lren, sulphate of.
lron, tincture of the chloride of.
Irom and quinit, citrate of.
dalap, powdered.
Lawender, compound spirits of.
Leall, acetate of.
Liquorice extract of.
Liquorice ront, powdered.
Magnesia, heavy calcined.
Magnesia, sulphate of.
Merenrial ointment.
Merenry, corrosive chlorite of.

Mereury with chalk.
Mercury, mild chloride of.
Mercury, ointment of the nitrate of.
Mercury, pill of.
Mereury, red oxide of.
Morphia, sulphate of.
Minstard sceel, black, ground.
Nux vomica, alcoholie extract of. Olive oil.
Opium, camphorated tincture of.
Opium, compound powder of.
$O_{p l i m}$ dendorized tincture of
Opium, powdered.
Opium, tincture of.
Prpper, Cayeme, ground.
Peppermint, spirits of
Pills, camphor and opiam, in botthes.
Pills, compound cathartic, in bottles.
Pills, opinm, in bottles.
Podopliyllum, resin of.
Potassa, "anstic.
Potassa, acetate of.
Potassa, hicarbonate of.
Potassa, bitartrate of
Potassa, chlorate of.
Potassa, nitrate of.
Potassa, permangamato of
Potassium, bromide of.
Potassium, iodide of
Quinia, sulphate of
Rhubarb, powdered.
Rochefle salt.
Santorin.
Sencka, tluid extract of.
Silver, nitrute of, in crystals.
Silver, nitrate of, fused.
Soup, castile.
Soap, common.
Soda, bicarbomate of
Soda, chlorinated solution of.
Squih, powelered.
Syuill, syrup of.
Strychuia.
Sulphur, washed.
Turpentine, oil of.
Vaceine viras.
Wax, white.
Zinc, acetate of
Zinc, oxide of.
Zinc, solution of chloride of.
Zinc, sulphate of.

11.-SUPPLEMENTARY LIST.

 miedicines.Acid, arsenious.
Acid, benzoic.
Acid, chromic.
Acid, gallic.
Acid phosphoric, diluted.
Acid, hydrocyanic, diluted.
Aconite root, fluid extract of.
Aconite root, tincture of.
Ammonia, phosphate of
Anise, oil of.
Arnica, fluid extract of
Arsenic and mercury, solution of iodide of.

Assafetida.

Atropia, sulphate of.
Bismuth, subcarbonate of.
Bismuth, tamnate of
Blistering, liequid.
Bromine.
Buchu, fluid extract of.
Cacao, butter of.
Calabar bean, extract of
Cantharides, tincture of.

Cantharides, cerate of the extract of.
Catechu.
Chamomila Howers.
(incloma bark, powdered,
Cloves, oil of.
Collorlion.
Comabia.
Creonoti.
(:umeb, ole (0-resin of.
Gentinn, hluid extract of.
Gumarabic.
Gualare, resin of.
Indian homp, purified extract of
I_{1} necalcuanha, thiol extract of.
Iron, dricel sulphate of.
Iron, by hydrugen.
Iron, lypophosphate of.
Iron, sirup of the iorlide of.
Iron, ixadate of.
Iron and potassa, tartrate of
lron, pyrephosphate of.
Mercury, green iodide of.
Mercury, yellow subsulphate of.
Morphia, acetate of.
Myrri.
Origamm, oil of.
Potassinm, cyanide of.
Sarsalarillat, thuidextract of
Senna, confection of.
Sinapism paper.
Soda, phosphate of, exsicemated
Sodat, sulphite of, exsiccated.
Sulphur, in roll.
Tar, wood.
Taraxachm, fluide extract of
Tolu, balsam of.
Vialerian, thuid extract of.
Feratrum viride, fluill extract of.
Veratrum viride, tinctare of.
Wax, yellow.
Wild-cherry bark, iluid extract of. hospital stores.
Arrow-root.
barley.
Beef, extract of, Liebigs.
Brandy.
Candles.
Candles, wax.
Cimnamon.
Cocoa or chocolate.
Corn starch.
Farima.
Gelatin, slired.
Ginger.
Milk, concentrated.
Nutmegs.
Pepper, black.
Sugar, whitc.
Tapioca.
Tea, black.
Whiskey.
Wine.

111.-ARTICLES ENPENDA.
 BLE.

instruaments.
Nipple shields.
Probangs.
Syringes, glass.
Syringes, rubber.
Trusses, single.
Trusses, double.
DRESSINOS.
Bandages.
Bandages, suspensory.
Binder's hoards, small.
Binder's boards, large.
Cotton bats.
Cotton wadding.

Flamel, rod, all wool.
(intta-purclat cloth.
Lint, patent.
Lint, pirked.
Maslin.
Niedles, cotton, thimble in case.
Nicedlers, assortect.
Needles, upholsterer's.
Gakum.
()ilerl muslin.

Oiled silk.
Plastcr of Paris.
Prancils, hair.
Pins.
Plaster, adhesive.
Plaster, isinglass.
Silk, eray.
Silk, ligature.
Splints.
Splints, Smith's antrrior.
Splints, material for making, folt, Sponge.
Thre, cotton.
Thrend, limen.
Thread, eotton, spools.
Tuw.
Towels.
Toweds, roller.
Twine.

リ゙.-ARTlCLEA NOT EXPW:N1)ABLE:
 instruments.

Atomizers, steam.
Cupping grasses.
Cupping tins.
Elcetric apparatus.
Firdel case.
1rigators.
Lancet, thumb.
Leech, artificial.
Obstetrical case.
Porkit case.
Post-mortem case.
Scarificators,
scissors.
spectlum for the rectum.
Speculum for the vagina.
Spongeholders.
Spray apparatus.
Siethoscope.
Stomach-pump and tube, in case.
Syringes, hard rubber, 8-ounce.
Syringes, hypodermic.
Syringes, rubber, self-injectiag.
Syringes, rubber, self-injecting.
with colpeurynter in each cast.
Syringes, universal, lard rubber.
Syringes, vagina, glass.
Syringes, vagina, hard rubber.
Tooth-extracting case, Army pattern.
Thermometer. clinical.
Tongue depressors.
Tourniquets, field.
Tourniquets, screw, with pad.
Urinometers.
Amputating casc.
Trephining case.
(ieneral operating case.
Exsecting case.
Capital operation casc.
Minor operation casc.
Trunks, leather.
13arometer, aneroid.
Barometer, mercurial.
Hygrometer.
Rain-guuge.
Rain-gauge glasses.

Thermometer, maximum
Thermometer, minimum.
Thermometer, standard.

BOOKS.
Anatomy, Grays.
Bumstead on V̇enereal.
Chemistry, Fowne's.
Children,Diseases of,Meigs Treatise.
Children, Diseases of, Vogel.
Craig on the Decimal System.
Diagnosis, Da Costa's.
Dictionary, English, Worcester's.
Dictionary Medical, Dunglison's.
Diseases of Women, Thomas.
Dispensatory.
Ear, Trültsch on.
Eye, Stellwag on.
Ilistology, Stricker's.
Hygiene, Parke's.
Jurisprudence, Taylor's.
Jurisprudence, Stillé \&Wharton's.
Meteorology, Loomis'.

Midwifery, IIodges.
Midwifery, Cazeaux'.
Ophthalmoscope, Zander.
Pathology, Surgical, Billroth's.
Physics, Ganot's.
Physiology, Flint's.
Practice of Medicine, Flint's.
Practice of Medicine, Wood's.
Practice of Medicine, Reynolds'.
Practice of Medicine, Aitken's.
Practice of Medicine, Niemerer's.
Recrnits, Examination of, Tripler's.
Skin, Discases of, Tilhnry Fox's.
Surgery, Erichsen's.
Surgery, Gross'.
Surgery, Holmes.
Surgery, Guthrie's Commentaries.
Therapeutics, Stille's.
Therapentics, Waring's.
Therapeutics, Mechanical, Wales'.
Woodward on "Camp Diseases."
Woodward's Hospital Steward's Manual.
Case, Diet and Prescription Book.

Morning Report Book.
Order and Letter Book.
Record of Deaths.
Register, Meterological.
Register of Patients.
Register, Surgical Operations.
hedding.
Bed sacks.
Beds, water.
Blankets.
Blanket cases.
Counterpanes.
Cushions, rubber, small.
Cushions, rubber, with open center.
Gutta-percha bed covers.
Mattresses, hair.
Mosquito bars.
Pillows, hair.
Pillows, feathers.
Pillow cases. white.
Pillow ticks.
Sheets.

The above Table is ample and sufficiently varied for ordinary practice, but in order to provide for the necessities of unusual emergencies, and to indulge, as far as practicable, individnal preference and treatment, special requisitions for numerous misccllaneons articles, not on the Table.may be made to the Surgeon General at any time.

MEDICINE CHEST. - $\boldsymbol{\Lambda}$ panmier filled with a variety of medicines necessary for a campaign, together with such chirurgical instruments as are useful. These chests are usually provided by the Government, and are fitted up with a view to being transported on pack animals. Before taking the field for a long or indetinite period, Commanding Officers, or Surgeons-in-Charge, should provide a snfticient number of Medicine Chests, each supplied with the following articles: A case of pocket snrgical instruments, consisting of, at least, a lancet, scalpel, small knife, forceps, and scissors; a few rolls of sticking and adhesive plaster; some silk, needles and waxed thread; an assortment of bandages, splints, sponges and some red flannel ; some lint, oil-silk and tow; a flask of wine or brandy; a hypodermic injection syriuge; a tourniquet and small eup; blue mass, quinine, opium and cathartic, put up in usual doses ; a little chloroform, laudanum, hartshorn, camphor, solution of morphia, iodine, tincture of chloride of iron, chloride of lime, tincture of myrrh and aloes, tincture of arnica (excellent for strains and contusions), spirits of nitre, ammonia and turpentine; sulphates of iron, zinc and copper: pulverized indigo, carron sil, saltpeter, tartar emetic, nitrate of potasl, prepared chalk, tincture of opium and catechn, cantharides (in powder), sugar of lead, acetic acid, and powdered inustard ; emeties and aperients (mild and powerful); nitrate of silver, in a holder; cold cream or glycerine (cooling for irritated surfaces); a cordial for diarrhcia, a sudorific (Dover's powders ex(ellent), and some simple cerate or a mixture of wax and lard; some alum, Jamaica ginger, castor oil, linsect oil and meal, flaxseed, and an assortment of cathartic, diuretic, sedative, febrifuge and alterative "balls"; also some astringent ointment (one part acetate of kead and three parts of hard), hoof ointment (equal parts of tar andlard), and a strong liniment. Sre Fiehl Remedies, Mcdical Supplies and Military Surgery.
medjidie. - A Turkish Order, instituted in 1852, and conferred after the ('rimean Campaign, to a eonsiderable "xtent, on British officers. It has tive classes; and the decoration, which differs in size for the different classes, is a silver ston of sevin triple rays, with the deviec of the cresecent and star athernating with the rays. On a circle of red enamel, in the center of the decoration, is the legent in Turkish, whose sighification is "Zal, Honor, and Loyalty," and the date 1268, the Molammedan year corre-
sponding to 1852; the Sultan's name is inscribed on a gold field within this circle. The first three classes suspend the badge around the neck from a red ribbon having green berders, and the fourth and fifth classes wear it attached to a similar ribbon on the left breast. A star, in design closely resembling the badge, is worn on the left breast by the first class, and on the right breast by the second class.

MEDIUM CAVALRY.-An appellation given to some of the regiments of the British army which are neither heavy nor light. There are 11 regiments of medium cavalry, 5 of which are Lancers (5th, 9 th, 12th, 16 th, and 17 th), tive Dragoon Guards (1st, 2d, 3d, 6th, 7 th), and one (6 th) Dragoons. The latter 6 regiments wear brass helmets. The average weight carried by the horses of the medium cavalry is about 18 stone 10 lbs .
meer bukshy.-A Chief Paymaster in the East, Indies.
meer tozuk.-In the East Indies, a Marshal whose business is to preserve order in a procession or line of march. and to report absentecs.
meggheteriarque.-The Commanding Officer of a body of men called Heteriennes, who formerly did duty at Constantinople. They were composed of soldiers who were enlisted in the Allied Nations.
MEGRIMS.-Megrims and vertigo are the terms usually applied when a horse at work reels, and then cither stands for a minute dull and stupid, or falls to the ground, lying for a time partially inseusible. These attacks come on suddenly, are often periodical, are most frequent during hot weather, and wheu the auimal is drawing up a bill, or exposed during heavy work to the full rays of a hot sun. Liability to megrims constitutes unsoundness, and usually depends upon the circulation through the braiu being temporarily disturbed by the presence of tumors. IIorses subject to megrims are always dangerous; if driven at all, they should be used with a breastplate or pipe-collar, so as to prevent, as much as possible, pressure on the veins carrying the blond from the head. Shey should be moderately and carefully fed, and during hot weather have anoccasional laxative.

MEIGS GUN.-An carly 'magaziue-gun carrying a great number of cartridges. Some patterus carricd ins many as forty or tifty rounds. This system, like many of its contemporaries, did not meet with any consid.rable sucerss. Sie Ifagazine-gun.

MELDER SYSTEM OF FORTIFICATION.-This syg-
is an absence of ravelins on the salicats of bastions.
MELEE. - A military trrm which is usell amomes the French to express the hurry and ronfusion of a batte. Melece corrosponds with the Vinglish "xpress sion "Thijek of the tiglit."

MEMBERED.-A term in lhemhlyy; when a lird has its legs of a diffurent color from its booly, it is said to he membered of that color.

MEMBFRS, Othicers areso ralled wha are detailed by orders to sit on Gencral or ('arrism Courts-Martial. In coste supernumerary menabers are thetailed for a comrtmartial, they are sworn, and it is right that they should sit and be present at all deliborations even when the court is clameal, in order to be prepared to take the place of any absent member. Until then thryhave no voice.

MEMOIR.-The title given by military ollierers to those plans which they offer to their erovernmant or commanders on sulojects relating to war or Military "ronomy. Ifemoirsis a spurites of history, written by fersons who had some share in the transactions they relate, answering in some measure to what the Romans ${ }^{2}$ enll Commentarii. Cgesar's Commentaries are the Nemoirs of his Campaigns.

MEMORIAL. - In address in the form of a petition to a Sovereign or other antlority, able to redreses the grievance of the memorialist. Memorials or jetifions of the nature above adverted to may be addressed by otticers to government; they must be written, not printed, and signed by the writer.

MENACE.- A hostile threat. A Court-Martial may punish, at diseretion, uny person who uses any mentieing words, signs or gestures in its presence, or who disturbs its procecedings by any riot or disorder.

MENAGE.-All military mon should have a thorongh knowledge of the strueture and powers of enilurance of horses; should be familiar with the rules for their management under all circumstances; should understand in detail the method of shoeing them, and be able to treat all ordinary cases of injury or disease. In the field, or on the march, an ignorant or careless commander will always have many broken down and unserviceable animals, while the animals of other commands, performing the same duties, but judiciously haudled, remuin in good condition.

To make the horse tractable and steady in maunting. - Go up to the horse, and pat him on the neek, and speak to him: then take the reins from the horse's nerk, and hold them at a few inches from the rings of the bit with the left hand; take such position as to offer as much resistunce as possible to the horse, should he attempt to break away; hold the whip in the right hand, with the point down; raise the whip quietly and tap the horse on the breast; the horse naturally tries to move back to avoid the whip, follow the horse, pulling at the sume time against him, and contimuing the use of the whip; be careful to show no sign of anger nor any symptom of vielding. The horse, tired of trying inctiecthally to avoid the whip, soon ceases to finl, aud moves forward; then drop, the point of the whip and make mmeh of him. This repeated once or twice, usually proves sulficient; the horse having found how to dvoid the punishment, no longer wits for the application of the whip, but anticipates it, by moving up at the slightest gesture; this is of grat assistanra in the bending-lessons, as also in mounting and dismounting, and accelerates the training of the lonse.

To bend the horse's nech and to rein in dismonnted.The balance of the loorse's body, aud his lightuess in hand, depend on the proper carriage of lis head and neck. A yomig horse usually tries to resist the bit, wither by bending his nack to one side. by setting his jaw against the bit, or by carrying his nose too high or too low. The bending-lessons serve to make a horse manageable by teaching him to conform to the movements of the reins and to vidll to the pressure of the bit. During the lessons the horse
must nover be burried. To bend the moke the the right for instance, take a position on the nemar side of the horse, in front of his shouldfr and faring toward his nock; take the ofif rein close up to tho bit with the right hand, the near rein in the anner way with the Joft hand, the thombes toward carh other, the little dingers outwarl, Jring tho right hand towaral the boily, and at the same time extend the left arm go as to turn the horse's lacall to the right. The forece romployed must lue gradual, and proportioned to the resistance mot with, and cart must be taken not to bring the horse's nose too close to his chacst. If the horse buck, contimue the: pressure until, tinding it impossible to avoid the restraint imposed loy the bit, he stands still and yieldes to it. When the bend is complete, the horse holds his licul there withont any restraint, and elamps the bit ; then make much of him, and let hin resunse hia matural position by degrees, without throwing his head round hurriedly. A horse, as a rule, champs the bit when he ceases to resist. The horse's nerek is bent to the left in a similar manner, the man atanding on the ofit side. To rein in, cross the reins helnind the horse's jaw, taking the near rein in the right hand, and the off rein in the left, at about six inches from the rings ; draw them across each other till the liorse gives way to the pressure and orings his nose in. Jrevent the horse from raising his licad by lowering the hands. When the horse gives way to the cross-pressure of the reins, ease the band, and make moneh of him.

To benel the horse's neek aud to rein in, monuted.The horse should be equipped with the curb-bridle. To bend the neek th the right, for instance, adjust the reins in the left hand; seize the right rein with the right hand well down; draw it quictly toward you until the horse's head is brought completely around to the right, in the same position as in the bend dismonnted. When the horse champs the bit, make moch of him, and allow him to resume his natural position. To rein in, lower the bridle-hand as much as possible, turning the back uppermost; with the right hand, nails down, take hold of the curb-reins above and close to the left hand and shorten them by degrees, drawing thems through the left hand, which eloses on the reins cach time they are shortened. When the horse resists much, and holds bis nose up, keep the reins steady; do not shorten or lengthen them; close the legs to prevent the horse from backing; after remaining perlaps a minute or more with his nose up, and his jaw set against the bit, he will yeld, bring his nose in, and champ the bit; make much of him, loosen the reins, and, after a few seconds, rein in again. This exereise gives the horse confidence, and teaches him to arch his neck, and bring his head in proper position whenever he feels the bit. Most young horses are afraid of the bit, and they must never be frightened by sulden jerks on the reins, lest they should afterward refuse to stand the requisite pressure of the bit. A certain amount of bearing is necessury to induce the horse to work boldly and well, as well as to apprise the rider of what the lhorse is going to do. In reining in, some horses rest the lower jaw against the breast: to counteract this press looth liges egually and force the honse forward to the bit. Some horses will not work (1]) to the hand, that is, will not bear on the bit at all. Such horses are mintit for the service.

To teach the horse trobey the prosumbe of the leg.-If it is desired to turn to the right on the fore-fcet, for instance, apply the right leg well behind the girth, vory quictly, and without touching the horse's side with the spur; press aranst him till he makes a step to the left with his himl-leos: then cease the pressure of the leg and make much of him; then repeat the same until the horse takes another step, and so on until he has furned about, always pausing when he takes a sta'p in turning. The horse should not be reined back: his fore-Legs remain in place, and bis hind-quarters move around in a circle. Both legs are kept close to the horse, the pressure of
either leg being increased as the nccasion requires. Turning to the left on the fore-feet is exccuted in a similar manner.

To break the horse of bad habits.-Should the horse rear, the rider must yield the hand when the horse is up, and urge lim vigoronsly forward when he is coming down; if the horse be punished while up. Je may spring and fall backward. Jicking can be presented by holding the horse's head well up, and closing the legs; if necessary, they are closed so much as to force the horse forward. Shying sometimes results from defect of siglit, and sometimes from fear. If from fear, the horse must be taken up to the object with great patience and rentleness. and be allowed to touch the object with his nose. In no crase should a horse be punished firr timidity. The dread of chastisement will increase bis restiveness.

To accustom horses to firing. Station a few men at a little distance from, and on both sides of, the stabledoor, and cause them to fire pistols as the horses are led into the stable to be fed; for the same oliject, a gun may be fired during the hour of feeding.

To teach hor:ses to jump-IIorses should be first tanght to leap the ditch and then the har. They are equipped with the watering-bridle, and follow a steady horse who is accustomed to jumping. The horses are taken in the open field and practiced at jumping shallow ditches, fallen logs, very low fences, etc. Great discretion must be used in applying the whip, and the horses will not be reguired to leap repeatedly over the same thing or at the same place. See Horse and Iforsemanship.

MEN'S HARNESS.-Anarrangement by which men are attached to a grun-carriage which is to be moved but a short distance, or where animal power cannot be employed. It consists of a rope 18 feet long and 4 inches in circumference, haring a thimble at one end and a thimble and hook at the other. Ten leather loops are fixed in pairs to the rope, 5 on each side. These are of sufficient size to allow a man to pass his body through them. the strain of the draft coming on the chest.

MENSURATION.-That brazch of the application of arithmetic to geometry which teaches, from the actual measurement of certain lines of a tigure, how to find, by calculation, the length of other lines, the area of surfaces, and the volume of solids. The determination of lines is, however, generally treated of under trigonometry, and surfaces and solids are now understood to form the sole subjects of mensuration. As the length of a line is expressed by comparing it with some well-known unit of length, such as a yard, a foot, an inch, and saying how many such units it contains, so the extent of a surface is expressed by saying how often it contains a corresponding super. ficial unit, that is, a square whose side is a yard, a foot, an inch; and the contents of solid bodies are similarly expressed in cabes or rectangular solids laving their length, breadth and depth a yard, a foot, an inch. To find the length of a line (except in cases where the length may be calculated from other known lines, as in trigonometry) we have to apply the unit (in the sliape of a foot-rule, a yard measure, a chain), and discover by actual trial how many units it contains. But in measuring a surface or a solid we do not require to apply an actual square board, or a cubic block, or even to divide it into such squares or blocks; we have only to measure certain of its boundary-lines or dimenvions; and from them we can calculate or infer the contents. To illustrate low this is done, suppose that it is required to determine the area of a rectangular figure AlBCl , of Which the side $A 13$ is 7 inches, and the side 10 a inches. If AC Ce livided at the points F^{N} and E into 3 portions, cach 1 inch lones, and parallels be drawn from ${ }^{4}$ and le to $A 13$ or (B ; and if Al , be similarly divided into 7 parts of 1 incll cacla, and parallels be drawn to $\mathrm{A}(\mathrm{o}$ or 131$)$ through the points of section, then the tigure will be divided into a number of
equel squares or rectangular figures, whose length and breadth are each 1 inch; and as there are 3 rows of squares, and 7 squares in each row, there must be in all 7×3, or 21 squares. In general terms, if a and b be the lengths of two adjacent sides, there are u rows of litile squares, and b squares in each row. Ilence the aren of a rectangle = the product of tiro adjucent sidex.

The areas of other figures are found from this, by the aid of certain relations or properties of those figures demonstrated ly pure geometry; for instance, the area of a parallelogram is the same as the area of a rectangle having the same base and altitude, and is therefore equal to the base multiplied by the heirht. As a triangle is half of a parallelogram, the rule for its area can be at once derluced. Irregular quadrilaterals and polygons are measured by dividing them into triangles. the area of each of which is separately calcnlated. By reasoning similar to what has been employed in the case of areas, it is shown that the volume of a rectangular parallelopiped or prism is fomad in cubic inches by multiplying together the length, breadth, and depth in inches; and the oblique paralcllopiped, prism, or cylinder, by multiplying the area of the base by the height.

MENTONIERE.-The bearer of a helmet, sometimes called Brviere. Mlso written Mentonniere.

MERCENARIES.-Soldiers surving for pay in any foreign service.

MERCURY.-One of the so-called noble metals, remarkable as being the only metal that is fluid at ordinary temperatures. It is of a silyery white color, with a striking metallic luster. When pure. it runs in small spherical drops over smooth surfaces; lint when not perfectly pure, the drops assume an elongrated or triled form, and often leave a gray stain on the surface of glass or porcelain. Moreover, the pure metal, when shaken with air, presents no change upon its surface; while, if impure, it becomes covered with a gray film. It is slightly volatile at ordinary temperatures, and at 662° it boils, and forms a colorless vapor of specific gravity 6.976 . Hence it is capable of being distilleel; and the fact of its being somewhat volatile at ordinary temperatures, helps to explain its pernicious effects upon those whose trades rerpuire them to come much in contact with it-as, for example, the makers of barometers, lookingglasses, etc. At a temperature of - 39°, it freezes, when it contracts considerably, and becomes malleable. In consequence of the uniform rate at which it expands when heated, from considerably below 0° to above 300°, it is employed in the construction of the mercurial thermometer. All mercurial compounds are eitler volatilized or decomposed by heat; and when heated with carbonate of soda, they yield metallic mercury. Native or virgin quicksilver only occurs in small quantity, usually in cavities of mercurial ores. Of these ores, liy far the most important is cinnabar. There are two means of obtaining the metal from the cinnabar: the ore may be burned in a furnace, in which case the sulphiur is given off a sulphurous acid, and the mercury is collected in a condensing chamber; or the ore may be distilled with some substance capable of combining with the sulphur-as, for cxample, with slaked line or iron flings. The mercury imported into this country is usually almost chemically pure. If the presence of other metals is suspected, it may be pressed through leather, re-distilled, and then digested for a few days in dilutecold nitric acid, which excras little action on tha mercury, if more oxidizable metals are presunt. The meranry, after being freed from the nitric acid by washing with water, is chemically pure.

There are two oxides of marcury, the hack suboxide ($\mathrm{Ig}_{2} \mathrm{O}$) and the retl oxide (IIgO). Both of these lose atl their oxygen when heated. and form salts with aeids. The biack suboride, alhough a powerfal hase, is very unstable when isolated, being readily converted by gentle wammth, or ceven by
mere exposure to light, into red oxide und the motal ($\mathrm{I}_{\mathrm{g}_{2}} \mathrm{O}=\mathrm{H} \mathrm{g}(\mathrm{O}+\mathrm{IIg}$). The most important of its
 watery solution ammonia throws down a black precipitate known in pharmatey as merorrius selubiliz Ifuhnemenni, from its discoveror. and consisting essentially of the black suboxicte with some ambarnia and nitric acod, which are apmarently incombinaation. Of the red write. the most imporame salts are the nitrate (IIgO.NO $0_{5}+8$ (4) : the sulphate ($1 \mathrm{~g}_{\mathrm{g}}$), SO_{3}), which is employed in the mannfacture of corrosive sublimate: and the basic sulphate (3] $\mathrm{IgO}, \mathrm{SO}_{3}$) which is of at yollow color,and is known as turpeth mineral. Sulphine forms two compumals with mercury-viz., a sulphide (ller, k), a black y woder of litue importance amd a suljhitle (llest). which oceurs maturally as eimabar. sulphide of moretery is thrown dewn as a black procipitato by passing sulphareted hydrogan throurgh at solution of a persalt of mereury corrosive sublimate, for examble). When dried and sublimed in vessads from whicla air is excluded, it assumos its ordinary red color. The well-known pigment rermillion is sul. phide of mercury, and is sumetimes obtainod from pure cinnabar, lat is more frequently an artifial product. Mereury miles with most numuls to form amalgams, severaj of whichare employed in the lab. oratory.

Of the numerous organic compounds of mereury, it is ummeressary to mention more than the fulminate and tho cyanide ($\operatorname{Ig}(\mathrm{y}$) , which may lue propured by dissolving the red oxide of merenry in hydroryanic acid, and is the best source from which to obtain cyanogen. The uses of mercury are so numbrons that a very brief allusion to the most important of these must suffice. It is employed exturnsivaly in the extraction of goll und siluer from their ores by the process of amalgamation. Its amalorams arc largely employed in the processes of silvering and gilding, and some (as those of copper and cadminm) are ennjloyed by the dentist for stopping lowh. 11 is indispensable in the construction of philosophieat instruments, and in the laboratory in tha form of the mercurial bath, etc. It is the source of the valuable pigment vermillion. It is constantly used for percussion caps, and in takiag the density of gunpowder. Spherical projectiles are floated in mercury to ascertain whether they are homogeneous.

MERCURY DENSIMETER.-In order to secure a first-class gnupowder, which is so essential for militury purposes, it is of the ntmost importance that the several ingredients should be as pure as possible; this

being secured, it then becomes very necessary that the density or specifie gravity of the powder sliould at all times be as nearly a possible the same, as any variation however slight, affects its quality and force to an immense extent. To ascertain its deusity, therefore, is a matter of considerable importance and for this delicate opration a very ingenions instrmment has been devisedealled a " donsimeter "; it may be described as follows: On a small table a kind of barometer is fitted, but instead of the glass tube being closed at the upper end and all in one piece, as is usual, it is in this case made in two pieces and ojen at the top. The upper part is about 24 inches in length, and is con-
nected to the lower, which is 10 inctacs in langth, by monns of a closedy filting mad jurfoctly air-tight sereworl motal joint; the Jowor ; mert, instend of being a plan parallal (abe of the samer diameter throunts-
 bulb, sand on the moek at rachrod of it a metal bnion and stojs-cock ure secoreal, both of whish ure mande perfectly air-tight. IVy means of one of thear onions this glasig globe or lower lalf of the instrament is ntthelied to the upurer, while the other maisn, into which is acrewed an open nowale or mutal tule, dips into at cup fasterned to the table dilled with murenry. On another table standing by tho side of the tirst one
 cece. It will reablily be seen that if the upJer jart of the glase tabe of the densinetrer be connecterd with the air-junnp, and the air be cexractod from the glats tube whilst the lower tap is closed, a vicomum will be formod, and that upon ojurning the lower tity so an to aftord a free passitere for the mereory in the crup, it will rise and till the glass globe and mper portion of the tulne to such a height as will halance the prossure of the atmosphere, thas giving it colnman of mercoury of proremely the same total beight ats that in an ordinary burometar.
'J'o use the instrmment, two tables arc julaced side by wide, the ofror mber end of the arla-stab) of the densimeter is connceqed with the airophmply mo ans of a Hexible tube, the taly on the ulyer union of the Idensimeter is opened, the lower ons is elosed. The air-pump is worked: as som anall the air is cexlansted, shown by a vacuman gatan athached to the airpump, the lower tap on the ghass tube immerliately below the globe is offened, and the merenry rushes into the tube: when it ceanos to rise, tha two metal tijus are closed, and the globelart, with the merenry eontained therein.is removerd ind carcoflly weighed. All the mercury is now emptied back amain into tho (cup, and the globe, nearly filled with a known weight of gunpowder, say 100 grammes, is then reconnected to the densimutar under the same conditions as beforc, and the air agnin cxhansted notil a vacoum is formed. The lower tiap is now openct, and the mercury allowed to find its way in and rise in the tobe; the merenry rises to preciscdy the same height in the tube as before; but the globe having been nearly tilled with gunpowder will contain less merenry. The tajs on the lower portion of the instrmment are closed, the globe part removed und again weighed. Tbis weight, as well as that previously ascertained when the globe was entirely filled with mereury, is recorded, and from these two ascertuined weights the density of the powder can readily be olstained by the following rule: To find the density of the gunpoirder, re have only to multiply the sperific gravity of the mercury by the weight of the gunponeder placud in the globe of the densimeter, and divide by the difference in weight of the globe ahen filled with mercury only and when fill ed urith gunponditr and merrury. plus the might of the porsder placed in the globe; the result will show the density of the gunyowder undrer test. Sae Donsimeter, Jupont de Vemintr's Denwimeter. Inapaction of Poird.r, and Vercury Densimeter.

MERIDIAN. - The nume given to the great circle of the celestial sphere which pases threngh both poles of the hearens, and also through the zonith and nadir of any place on the carth's surface. Every place on the earth's surface has consequently its own meridian. The meridian is divided by the polar axis into two equal portions, which strutch from pole to pole, one on each side of the earth. It is midrlay at ans place on the cartlis surface. when the centre of the sun comes upon the moridian of that place: at the same iustant it is midday at all phaces under the same half of that meridian, and midnight at all places under the opposite half. -1l places under the samemeridian have, therefore, the same longitude. Stars attain their arreatest altilude whon they come ujon the meridian: the same thing is true approximately of the sum and plamets: and, as at this point
the effect of refraction upon these bodies is at a minimum, and their apparent motion is also more nniform, astronomers prefer to make their observations when the body is on the meridian. The instruments used for this purpose are called meridian circles.
The meridian may be determined at night by passing a plane through a plumb-line and the north star. The trace of this plane on a horizontal plane will be the projection of the meridian sought, the north star

being only $\frac{1}{12}^{\circ}$ from the true pole. It is easy to rerognize the north star-it is the seveuth star of the little bear and is fonnd precisely in the prolongation of the two first stars of the great bear (grande ourse), a constellation disposed in symmetrical order as in the drawing.
To practically determine the variation of the comnpass, ereet a pole, and at a distance of 200 yards set up another, so that the two are in a line with the true north; the rariation of the compass may be as. eertained the next morning by taking the bearing of one pole from the other.

MERIDIAN MEASUREMENT. - The determination of the form and size of the earth from the measurement of an arc of a meridian has been in favorite problem with matbenaticians from the earliest times, but up to the mirldle of last century their op erations were not carried on with exaetness sufficient to render their conelusions of much value. Since that time, however, geodesy has so rapidly progressed, owing to the invention of more acenrate instruments and the discovery of new methods, that the measurement of the meridian can now be performed with the utmost accuracy imaginable. The modus operundi is as follows: Two stations, having nearly the same longitude, are chosen; their latitude and Jongitude are accurately determined (the error of a second in latitude introluces a considerable error into the result), and the direction of the meridian to be measured ascertained; then a base line is measured with the greatest aecuracy, as an error here generally bocomes inereased at evory subsequent step; and then, by the method known as triangulation, the lengrth of the are of the meridian eontained between the parallels of latitude of the two stations is aseertained. As the previonsly found latitueles of its two extrenitios give the number of degrees it comtains, the average lenerth of a degree of this are cata be at once determined ; and also-on the supposition that the lenerth of at degree is uniform-the lengetle of the whole meridional circumferenee of time "arth. This operation of meridian medsurement has bern berforoued at different times on a inteat many ares lying betwern 68° north latitude and 38° sonth latinute. and the results show steary thourh irregular increase in the lengeth of the elegree of latitude as the latitude increases. On the sulposition that this law
of increase holds good to the poles, the length of every tenth degree of latitude in English feet is as in the following table:

		皆	
0°	362.732	50°	364,862
10°	362.843	60°	365.454
20°	36\%,158	70°	365.937
30°	363,641	80°	366,252
$40^{\text {e }}$	364,233	90°	256,361

This result shows that the earth is not spherical, as in that case the length of all degrees of latitude would be alike, but of a more or less spheroidal form-that is having its curvature beeoming less and less as we go from the extremity of its greater or equatorial diameter to the lesser or polar axis. It was by the measurement of a meridional are that, in $1792-99$, the length of a quadrant of the earth's cir. cumference was determined, in order to from the basis of the French metrical system. See Metriral Measures.

MERIT ROLLS.-Rolls prepared by the Academic Board, at each examination, in which the merit of each Cadet (at the United States Military Aeademy) in each branch of study upon which he has been exaniued, is denoted by a number proportional to his profieiency and to the importance of the subjeet; and in whieh the names of the Cadets are arranged, in their respective classes, in the order of aggregate merit, as determined for each, by the addition of the numbers expressing his merit in each particular branch, and in discipline. The table on page 315 shows the manner of forming the general Merit Roll.

MERKIN. - A mop used for cleaning cannon. Also written Malkin.

MERLON - Infortification, the position of the parapet between two embrasures. Its length is usually from tifteen to eigliteen feet. The term is also appliced to the projection on the top of a erencllated wall.
MERRIILBAYONET HANDLE-The essential feature of this device is a slide in the side of the handle, whieh being withdrawn, allows the bayonet-stud to pass aside into the square notch prepared for it at the farther extremity of its L-shaped groove. It is securely kept there by pushing back the slide into its former position. In a modification of this invention, the bayonet is held on the grn by the engaging of the bay-onet-stud with a corresponding noteh in the springeatel swinging in a slot in the end of the handle. By pressing down the outer end of the spring-eateh the shoulder on its forward extremity is passed above the bayonet-stad, and the bayonet is still further secured on the gun by the muzzle jassing through a corresponding hote formed in the guard.

MERRILL GUN.- I brecelt-loading rifle having a fixed ehamber colost hy a movable breech-block, whime slides in the line of the barrel by direct action. It is opened by raising the handle of the breech-bolt to a vertical position and drawmer it hack to its full extent. In raising the handle, the tiring-pin is retractod by a lug near its head congaing with a spiral eam-recess in the receiver; it is helal back by the lar entering a circumferential grouse in the bolt. In withdrawing the bolt, it pasecs over the hammer and presses it hark to the full-cock The pirece is closed by reversing the movemont of the bolt. At the end of the forwaril stroke, the point of the extractor cogrges with a recess in a ring which sur-
rounds the moutl: of the chamber, and against which the bolt is pressed, and turns the ring with it ; so that the rotation of the bolt in locking will not cause it to grind agranst the head of the cartridge. In turning down the handle, the piece is locked by
in the Brooklyn Nuvy Yurd, was forged like the Horsfall Ciun. by the Mervey Iron Works, in 1845. Its climensions are: total longth, 169 inchacs; diamcter over the chamber, 28 inches; langth of bore, 144 inches; diameter of bore, 12 inclaws; weight, 16,700

Class Tank.			号	$\begin{aligned} & \text { Natural and Experimen- } \\ & \text { tal Plilosoplyy. } \end{aligned}$		¢			-	Ordnance and Gitmery			艺
Maximmm in ench branch.	300.0	100.0	\%5.0	300.0	150.0	100.0	100.0	300.0	150.0	100.0	75.0	200.0	1950
1. ${ }^{\text {A }}$	293.5	82.8	66.9	292.8	146.6	95.4	81.9	300.0	144.6	98.8	75.0	170	848.3
$2 \mathrm{C} .1)$.	2!)f. 7	98.9	74.2	285.7	144.9	89.6	0.5 .4	289.2	135.7	100.0	72.3	156.0	1834.6
3 E .10	300.0	95.9	67.6	289. 2	139.8	8.5 .0	87.5	292.8	146.4	96.4	68.7	188.6	1807.!
4 G .11	240.3	75.7	59.5	282.1	136.4	87.3	85.3	28.5 .7	133.6	89.2	69.0	172.3	1783.7
$51 . \mathrm{J}$	287.0	86.8	70.6	296.4	143.2	73.5	84.1	296.4	139.3	97.6;	63.6	103.3	1747.8
6 K .1	283.8	94.9	71.3	257.1	133.0	91.9	79.6	260.7	141.1	92.8	(ij.9	172.0	1745.1
$7 \mathrm{M} \cdot \mathrm{N}$	$27 \% .4$	96.9	69.8	300.0	148.3	100.0	92.0	274.9	128.6	90.4	73.2	183.3	1784.8
8 O .1 '	270.9	92.9	73.5	264.2	138.1	79.3	100.0	253.5	130.4	91.6	74.1	162.3	1730.8
9 Q.R.............	374.1	90.9	63.9	278.5	134.7	64.3	93.2	257.1	142.9	88.0	62.5	167.0	1717.1
10 S . T.	258.0	76.7	58.1	267.8	141.5	97.7	59.3	264.2	1:32.1	95.2	197.8	191.6	1710.0
11 U.V..............	261.3	64.6	43.4	274.9	150.0	96.5	96.6	278.5	148.2	94.0	71.4	160.6	16331.9
12 W. A............	264.5	88.8	72.3	242.8	129.6	67.8	88.7	221.4	126.8	86.9	64.2	149.0	1602.8
$13 \mathrm{B.C}$	238.7	77.7	58.8	271.4	131.3	68.9	94.3	282.1	117.9	85.7	70.5	109.3	1599.15
141). F...............	225.8	89.8	69.1	224.9	127.9	88.5	49.1	271.4	137.5	84.5	65.1	148.3	1581.9
$15 \mathrm{~F} \cdot \mathrm{G}$.	251.6	83.8	72.0	185.7	121.1	94.3	37.4	196.4	114.6	70.2	60.7	166.3	1494.0

See Unith States Military Academy.

the engaging of a sectional eollar on the bolt with a corresponding groove in the receiver. When this is accomplished, the lug on the firing-pin is opposite the deepest part of the spiral recess and is free to move forward when the piece is fired (by means of a center-lock moved by a double mainspring.) Extraction is accomplished by a springhook lying on top of the breech-bolt : and in drawing back the bolf, the natural spring of the extractor presses down the rim of the cartridge upon the bottom of the receiver, until it is checked by striking against a notch left there for that purpose, and is thereby thrown upward aronnd the look of the extractor and elear of the gun.

MERRILL LOCK.-A loek intended to dispense with the tumbler and adjacent parts, and to be hermetically imbedded in the stock. In a moditieation of the lock the motion of the mainspring is arrested by a stop-pin after the hammer, in falling, has pussed the half-cock notch. When applied to the springfield system the act of raising the firing-pin guard in turning the cam-lateh to open the block would be sufficient to easily overcome the friction and weight of the hammer and to bring it to the balf-cock. In this loek there is moswivel, the mainspring pressing directly on the hammer.

MERRILL MAGAZINE.-In this device, the comb of the butt-stock is cut out in a gronve deep enough to receive one cartridge, on end, and long enough to accomodate four or five of them site by side. A movable back for this groova is formed by a followerblock, which is pressed forward by a spiral-spring. carrying the cartridges ahead of it to the mouth of the magazine, from which they are to be picked out one by one. The magazine has a sliding cover by which, in traveling, the cartridges are to be kept from falling out.

MERSEY GUN.-The 12 -inch wrought-iron gun,
pounds. It was, reccived after the borsting of the stockton Gun, of which it is a copy. The Mersey Works bave also constructed satisfactory wroughtiron guns by the rolling process.
MERWIN HOLBORT REVOLVER.-The new Army Revolver, patented and manufactured by the Messr:.

Merwin, Hulbert and Company, is rapidly becoming
a favorite with the military organizations throunhout the United States. The details of its construetion may be readily understood by a reference to the illustration whiel wepresent herewith. This revolver makes the following elaims for superiority Compactness, symmetrical, casy outline, aud general neat appearance; no salient points to prevent its ready and easy insertion into or withdrawal from the holster. In handling, not liable to injure the himd ; all the projecting parts being rounded and smootli ; cleaning being therehy facilitated. The circular form of eylinder front gives a eontinuous eover to breceh of barrel: prevents sand or dirt cutering therein. Aceidental unlocking of the parts prevented, as lammer must first be set at half-cock. The front sight forged solid with the harrel; not liable to be separated therefrom or injured. The extractor ring prevents the interior of the lock and ratchet from fouting by escape of gas about the primer when using outside primed ammunition. The hond and collar at front of cylinder covering base-pin and base-pin hole prevents fouling. The flanged recoil plate here covers and protects the heads of the cartridges; prevents sand or dirt entering hetween face of recoil plate and eylinder, whieh might olog it and prevent rotation. The eylinder and barrel can be dismounted from the frame and re-assembled thereto without the nse of screw-driver or any tool. The construction is not intricate nor fragile, and the extractor is a solid part of the base pin. Strength, durability and endurance. Simultaneous, positive, and easy extriction of shells: great power obtained for starting the shells before final extraction by the incline screw aetion on the base-pin. Less lateral escape gas is defleeted downward into the works, as no top strap is used. The face of the collar on cylinder takes against the bracket, prevents forward movement of cylincler when pressed by the ball in rotating ; gives a central bearing: prevents abrasion of cylinder face against rear of barrel ; gives easy rotation : permits a close joint without friction, jeducing the escape of gas; the cylinder is not, foreed backward on firing, but is held forward by the hood-clutch taking into the recess of the eylinder collars. The lines of recoil and resistance are close together, lesseuing upward inclination of barrel when fired.

The following are the directions for manipulating the arm:

To load-Place the hammer at half-cock, press the gate downward and insert the cartridges.

To eject the shells-Push back the thumb-bolt under the frame, turn the barrel outward, and draw forward, when the shells will fall out.

To take the arm apart-When the barrel and cylinder are drawn forward, press the small pin in the barrel-catch even with the frame, then press the catch down and draw forward.

Complimentary letters lave been received as regards these armis from all parts of the world. Col. George T. Denison, author of the Russian Imperial Report on Arms and Cavalry Tactics, for which he received the government reward of five thousand dollars and gold medals, as well as medals from other governments, says: "This amy revolver is, in my opiniou, the most perfect cavalry pistol in the world."

MESAIL.-That portion of a helmet which closes on the open front, more generally known in England as the Jentaill. Also written Mezail.

MESNE PROCESS.-Any writ issurd in the course of a suit between the original process and execution. By this term is also neant the wit of procerelings in an action to summon or bring the Defendant into co irt, or compel him to appear or pat in hail, and then to lecar and answer the plaintiff's claim.

MESS. - A torn it present used in the sonse of a number or association of ollicers or of men taking their meals toralter. In sucieties consisting antireJy of the male sex. and of one set of men continnally thrown together, it is at very important social point
that tre Mess should be well regulated. There are conseruently stringent rules-both of the service and of mutual etiquette-laid down for jts govermment. Oue officer acts as caterer, receives subseriptions from the several members, eharges the wine to those who drink it, ete. ; a steward las elarge of the more menial department, arranging for the eooking, purchase of viands, servants, rations, cte. In the British army, the Mess is a regimental institution for the maintemance of a common table for all the oftieers in a regiment, who are bound to subscribe an annual subscription, whether present or absent. Married men pay ous half if ther do not regularly attend the mess, but they pay all contributions to the mess fund. The introditetion of messes into the British Army has been attended with the happiest results. Ofliears of all ranks meet togetlier on an equal social footing, and the youngest offieer in the regiment is able to enjoy the society of his senior and brother ofticers without reserve. The adranlages of a mess are manifold, and are seen not only in its social value, but also in the means it offers to all ranks of living well and comfortably. A small government allowance is granted in aid of the expenses of the officer's mess. Hesses are extended also to the non-commissioned officers and men of a regiment, who have their several messes under the superintendence of the officer commanding the regimeut and the captains of companies. In France, the several grades mess separately; lieutenants and sub-licutenants forming two tables: captains another, and field officers of different grizdes gewerally eating separately also.
MESSAGES. - Communications passing betweeu oflicials whether in peace or war time. In the former, messages are generally sent by dismounted orderlies, cxeept the communication is urgent, when it is sent by a mounted orderly. In the latter,mounted orderlies are sent between the general and his staff. on subjects relating to the army and requiring expedition. Important messages forwarded to a distance, and where the bearers may fall into the enemy's hands, shonld be sent in daplicate, one real, the other false; the former to be concealed in a quill about his person, in such a way as is not likely to be discovered, and which way will in peril suggest itself; the latter in the form of a letter. One orderly is not considered safe; one or two more sliould be sent at certain intervals of time, say two or three lours between each. Emissaries sent from besieged cities with messages to relieving forces or to friends should use great wariness to avoid falling into the hands of the enemy; but if they do, they should be able to conceal the message, which in all probability would be in cipher and in only a few words, about their person. The modes resorted to in warfare, to aroid written communications being seized, are mumerous. During the siege of Metz, Marshal Bazaine, desirous of communicating with the govermment at Tours, sent two emissaries disguised as peasants, who botli managed to pass through the German lines; one carried his despatch in cipher inside a hollow tooth, and the other had his message woven in one of his socks. Carrier pigeons very often play an important part in the transmission of messages during hostilities, as they did during the siege of Piris in $18 \% 0-71$.
MESSENGERS.-Otlicers employed by Secretaries of State to convey dispatclaes at home and abroad. In former days their oceupation consisted, to a considerable extent, in serving the Seeretaries' warrants for the appreliension of persons accused of high treason and other grave offenses agninst the State, nor was it umusnal for them to keep the prisoners whon they apprelumded at their own houses. They are now principally employed in forejgn scrvice.
MESS-KIT. - That portion of 'amp "rpuipage consisting of cooking utensils. The cooking implements and table necessuries should be so selected as to nest compactly. The camp kettles may enclose
the dishpans, and these the skillots amd smatlof are tieles. It is bost with n virw 10 parking (on hive tho skillets, fryinglans, etc., so constructed liat a spoon

may be appliot as a handle, and removed whon not in use or whern packecl. The drawing shows the irlea.
MESTRE DE CAMP GENERAL.-Thw mext ofticer in rank, in the old French cavalry service, to the Colonel-Genernl. This appointment was ereated under llenry 11. in 1552. Mevtre de Gemp General des / ragomen, was an appoiniment which first took place under Louis X1V., in 16.4.

METAL--1. A term in Ileraldry. 'The field of the escutcheon and the charges whieh it hears may the of metal as well as of color; anel the two metals in use among heralds are gold and silver, known as or and argent. It is a rule of blazon that metal should not be placed on metal, or color on color. 2. Broken stone, ctc., used as a road cover.

METAL CASTING. - The art of ohtaining casts of any desired object ly means of pouring melted metal into molds prepared for the purpose. It has risen to great importance in recent times, on account of the many new applications of iron. Iron-founding, brassfounding, type-founding, as well as casting in bronze and zince are the principal divisions of the art. The casting of the finer metal and alloys, as gold, silver, and (ierman silver, is necessarily condueted on a smaller scale. When the casting of an object is required, it is necessary, in the first place, to make a pattern. Suppose it to be a plain round iron pillar, such as is used for hanging a gate upon. A pattern of this is turned in some wool which can be readily made smooth on the surface, such as pine, and then varnished or painted so as to come freely out of the mokl. This wooden pillar, or any similar pattern, is ahway mate in at least two pieces, the tivision being lengthwise, for a reason which we shatl presently sce. The mext step is to prepare the mold. The moleds used by the iron-founder are cither of sand or loam, but more generally of fine sand. Proceeding with the preparation of the mold, the founder takes a molding-box, which is composed of two open iron frames with cross bars,., the one fitting exachy on the other, by means of pins in the upper tropping into holes' in the lower frame. One half of the box is first filled with damp sand, and the patteru laid upon it a little elry parting sand being sprinkled on the surface. The upper half of the box is then put on and sand firmly rammed all aronnd the pattern. The hox is then carefully opened, and when the pattern is removed. its impression is left in the sand. The mold at this stage, however, is generally rough aud broken. It is necessary, therefore, to give it a better finish, which is done by taking each half of the mold separately, repairing it with a small trowel, and reintroducing the corresponding half of the pattern till the impression is firm and perfect. Finally, the surfare of the mold is coated with charcoaldinst, which gives a smooth surface to the future castiag. These columns being made hollow, there is yet another matter to arrange before the casting can be made-namely, the cure In the instance before us, it womld simply be a rod of iron, covered with straw and loan to whatever thickness the internal diameter of the enlumn happened to require. The core of course occupics the center of the mold.

The cast iron is melted with coke in a round firebrick furnace, called a cupola, the heat being arged
by monems of a perwerful blase, arcated by fanners revolviner tht high sperel. The molten metal is run from at tap at the brotom of the furnace into a matlathle irom ladle, hinesl with chay, from which it is
 orgutes. Whan the mold is newly filled, numerons jots of blue ilame issue from as many small hoks piereed in the gand. These perforations are nerressary for the escape of air and other gates broducerl by thenction of the hot metal on the mold. (are must also be taken not to lave the mod too damp, othurwise steam is generaterl, whish may canse hokes in the easting, and even force part of the metal nut of the mold. The castiner remains convered up for a time, in order to conl slowly, and is then removed by braking away the sand, and frawing ont the core. In the case: of a dinted or otherwi-t ornamented pillar, the pattern would repuire to be in at least four pieces insteal of two, bremuse it is only a plain pattern that will come out of the: mold in halves without tearing away the sand. Whon a pattern is necessarily made in suveral pieces, it is drawn out of the mold bit by bit, to the right or left, as the case may be, and so parts from the sand without lreaking it. Suppose that a smal? ornamental vase was to surmount the pillar, the fommer would prepare the pattern of this in a more claborate manner. He would first mold it in wax or clay, from which a cast in plaster of P'aris is made ; from that, again, a cast is laken'in an alloy of tin and lead, which after being sharply ehased, ant divided into the required number of picces, is used as a pattern to cast from. Ail ornamental patterns, such as figures, scrolls, leaves, enriched moldings, and the like, are made in this way, whatever metal the ultimate casting is to be produced in. Very large engine cylinders, pans, and such vessels, are cast in loam-molds, which are built of brick, plastered with luam, then coated with coal-! ust, and finally dried by means of a fire. This method is adopted with large plain objects, where a pattern would be expensive, and when very few castings of one kind are required. Iron molds. coated with black lead or plumbago, have recently been introducedfor casting pipes into; they are greatly more expensive than any other kind, but they enable a founder to dispense with a pattern,as, when once made into the required form,they are not destroyed like molls of sand or loam at each casting. l3ronze and brass are cast in molds prepared with finer sand than that used for iron. Pewter and similar soft metallic alloys are cast in brass molds. The type-founder, on the other hand, useb molds of steel, which are now worked to a greatextent by a machine. The variety of articles produced by casting are very numerons, among others wemay mention cylinders, cisterns, paper-engines, beams, boilers, pimps, ant the heavy parts of machinery generally, gates, railings, lamps, grates, femlers, cooking-vessils, and the like, in iron; cannon, many portions of machinery, and numerous ornamental objects, in brass ; seulpture and other works of art in bronze and the more costly metals. One of the most remarkable castings yet executed for the requirements of modern ragincering, was the cylinder of the hrdraulic pross nsed for ratising the tubes of the Britania bridge. It measurea $9 \mathrm{ft} . \mathrm{x} 3 \mathrm{ft}$. © in., the metal being 10 in . thick, and weighed upwards of 20 tons. It remained red lot for three days, and it was seven days more hefore men could approachit to remove the sand. Sole jlates of steam-hammers, and for otber purposes, have been cast more than doulle this weight. but the same care was not required in their execution. In regard to sculpture perlaps, the most wouderful casting known is the colossal statute of Bavaria at Muniel, finisined in 1850 which stands 54 ft . high, the face being equal to the height of a mun. It took eight years to cast, and the cost of the bronze nsed was about $£ 10.000$. Sce Foundry.

METALLIC AMMUNITION FOR SMALL-ARMS.-For the manufacture of metallic ammunition for small-
arms and friction and electric primers for cannon on a large scale, the following bmildings are required:

No. 1. F"ire-proof factory with L; basement being prosided with machinery atapted to the manufacture of primers, etc., with a separate* roon : containing grindstones, emery-wheels, etc., and tumbling barrels. The first story being fitted up with all the machines, tools, and benches of a tirst-class machineshop, for manufacture and repair of the machines and tools employed in the works, with necessary oftice and engine rooms, and well furnished with presses aud cabinets for surplns tools, staudard gauges. specimens, etc. A room in I, with all appliances for washing cases, and a large and conveniently arranged drying-room over the engine boiler. The second story contains all the machinery necessary for drawing, trimming, heading, and forming cartridge-cases, with a separate room in L provided with machines and tables for making paper packing boxes: print-ing-presses, type-fonts, etc, for printing. No. 2. Fireprouf fuetory for manufacture of bnllets, with separate rooms for charging eases and inspecting and packing finished ammunition. No. 3 Blacksmiths' shop and stacks for forgings and small castings, and ammealing furnaces for tools, ete. with a separate room for annealing and pickling cases. No. 4. (ar-penter-sherp, for making boxes, tools.implements, cte.
drawing or reducing. The cylindrical shell is trim med to a standard length in a machine called the case-trimmer. After washing, the shells or cases have a flange formed at the closed end by pressure in a speeial machine called the header. "The headed case is tapered to a standard size. The open end is mate cylndrical for the lengrth the bullet enters it, so as to inclose the latter sungly; and if it be insideprimed, like the present service cup-anvil cartridge, the anvil is inserted and fastened at the same time by crimping the case around its edge.

Priming is done in a machine called the primer. For outside priming a percussion-cap is used, made in the ordinary way. Priming of fulminate of mercury should not under any circumstances, be deposited on brass, as it forms an amalgam, and rapidly deteriorates the metal and priming. Shellac varnish is uscel to protect the surface of brass. No injurions deterioration from this canse has been noticed in the use of copper. Bullets are made in a bullet-machine from a cast slug or rolled bar; the last is considered the best; they are trimmed by a machine called the bullet-trimmer. The diamoter is required to be up to standard with no minimum allowance, and they are sizerl at the hobricating machine by passing throurh a die. The form, width, and depth of groovesmmst conform to the standard with very little

No. 5. Paint-xhop. No. 6. Retort-house, for manufacture of fulininate of mercury: No. T. Magazine, for powsler. No. 8. Sinall Magazine, for fulminate of mercury and friction-powder. No. 9. Storehouse, for storing cartridges, primers, etc.
The modern center-fire metallic cartridges may be dividerl into three classes: the solid attached head, the solith head, and the foldel head. There are two varisties of folded-head cartridges the reinforced and non-reinforced. As regards priming, the abovenamed classes are divided into outside and inside primed cartridges, and may be designated respectively as re-loading and non-reloading cartridges. They are generally made from shect-copper or brass, the latter material having more elasticity, and the former more uniformity and durability.

Manufasture-Sheet metal of the required thickness, from $.025^{-1 "}$ to $.09^{\prime \prime}$, is used for the variouskinds of cartridges. This is fed to a double-acting dic and punch, which cuts out a disk and forms it into a cylindrical cup at one operation. The cup is reduced to a cylinder of the recpnired length in from four to six operations by dies and punches, and is called

variation. The weights should not vary more than two grains from the standard of 405 grains. The lnbricant should be free from acid reaction, and of vegetable origin as bayberry or Japan wax, and filled into the grooves by a machine. Loading, or assembling the case, powder, and bullet, is done in a machine called the loader, by one operation (as in the Frankford arsenal loader), or by several operations known as plate-charging. The bullet should be perfectly concentric with the case at the time of insertion. The charge of powder slould be as uniform as possible, with not more than two grains variation from the standard weight of 70 grains. All cartridges should be wiped clean and gauged as to diameter, length, and diameter and thickness of head. Those should be rejected showing any defects in material, or bad workmanship. Each cartridge should be weighed to detect loss of parts or deficiency in weight of powder. A special automatic weighing machine is ased at Frankford arsenal.

That the present degree of perfection in the mannfacture of these several classes of metal cartridges has been the result of gradual and careful develop-
ment, is evilent from a chrsory fxhminntion and comparison of the carlier, intermocliate, and more recand brst forms.

Among the tirst of motal eartridgos of Amorican invention is the Morse, which was brought out a short time before the war of thre rebellion, but not thoronghly rxperimented with at the tinne or introducal into service. Its olnjectionable fratures are apparent in the light of progress made. Its marits over puper or similar smmmation ar: apparent, the? chicf, porlaps, being that it was dosignerl as a wellsprimed cartridge, lad a thanged-hod for coxtraling the case, and that it reduced the operations of loat. ing.

About the same time the Burnsidr. Maymurd, und a few others, were jroduced, somm of whinh wror good in their day, and for the arms for whifle they were designed, hat were fired lyy means of a cap, through a vent, at some distance from the cartridgr, and were extracted by the fingers. With them there was met that necessary nicety of tit tothe flamber of the emn, the joint was not abolutcly closed, and the fallures to explode wereas frequent ats with Henhb-fnshional paper cartridge and percussion-cap. Such failuras would, now-a-days, he considered a most unwarranted perentage in any motallic ammmition laying claim to excellence, and, in the best known varioties, ds not oceur to the extent of one in one thonsand ruminds; in fact, many attain a much higher stambard of surety than imbicated by this tigure. The records uf the testing-rounds show longeontinued firing and consumption of thousands of rommes without fatlure at all from any catuse, and the summation of a year's practice and test, in proof of manufactura, exhibits but an execedingly small percentage of such fallures.

For some time the idea of combining the primer anel cartridge did not assert itwelf, but sone inventions were pushed in this direction, and the rimprimed cartridge was produced. In this the folminate composition was placed in the folded head of the case.
its alvantagres boing surs uxplosion whon struck by the: point of the liring-pin; loss of fu!ninate and loses strain on the lead of the chrtridge: greater meenrity in hambling und using umber all "xignoneires of morvice: These cartridges lave boren sulbjereterl to thes severost tests (o) fomonstrate thoir colpability to rosist all ac;cidonts, surly as mashing up boxes of amamanition, und evan firing into them with bulicts. onty the cartrilges actusilly impinged upan raplorleol under surh tosts, theic neighbors being only blackonesl and not othorwise damaterl. 'Ilyo safety of hameling Had transporting this anmanition in conaparianon with that of the shlefashanned kind is vastly in its favor, and the risk attombing its earriagre is aimost wothing. Its erratily superior fuatity qu resist rexpos sure of rlimate, moistare, clo., hase also brean provern by such exceedingly suvero losts that it may brs assurted (0) lop praticoally watar-proof. A central and direct blow on the point grimed is an resantial and highly juportant feature of the ronter-primerl
 all brcech-loading sarvice small-arms to its use, is the best proof of its acknowledged superiority. Simple modifirations of the form of the lowal sulatit it to safe ase in magizine: arms, (eviol though the: front of one bullet reste on the lamd of the prececting rartridgr, while witl all varioties of repriming ammonition the central lire is a siue gra resh. Other reasons in its faror sight be givin, but it is believed suflicient have already burn adduced to warrant the atibtement that whatever may be chamed as the particalar merit of saty one varioel of motalic mmmanition, by ardent inventors and admirers of special forms, all areagrect that, for military purposea at leust, the palm to center-priming must be yodeded. The service-cartridge, mate of a copper case with a folled-head and coppur fulminate primed cup anvil, crimped in position, has bren so long used and testell on the experimental ground and in the fielal, and ly various boards of experts on smali-arms, and ite

This mode of priming requires a large charge of the priming composition, which, beng thrown into the fold by swiveling, the entire circumfercuce of the head was not always primed thoroughly, and as the cartridge is exploded by striking the rim at a part of the head under the hammer, it not infrequently happenel that it failed from the point struck not having any priming. The large charge required, also (about 5 grains against $\frac{1}{2}$ grain for the center-fire), was a further objection to rim-priming; the exploding of so large a quantity of quick-powder in the folded head, the weak part of the cartridge, tending to strain and open the fold to bnrsting, as it frequently did. Another objection to rim primed cartridges is that they are more liable to accident in handling, and in shock of transportation, and in those incident to service; in fact, a number of instances of explosion in the magazine of repeating-arms, and in patent cartridge-boxes for service of such, have been reportcd. by which serious injury resulted to the soldier.

Hence, efforts to produce a still more rcliable and satisfactory cartridge, and the development, prodnction, and general adoption for service of what is now so well known as center-primed metallic ammunition,
excellence in all these fichds of trial so well demonstrated, that no particular deseription of its constroction and performance is here necessary. Some of the varying modifications of the folleif-flange cartridge are noted in the drawings. It is of rare occurrence that the fold is sometimes slighty opened or barst in firing, probably from a defect or thinness of the metal, but this is not attended with the least inconvenience or risk to the person or arm, and, in most cases, would escape notice altogether outside the carefnlly serutinized cases at the experimental and testing grounds.

Sofar this has not been deemed of any consequence in the service, and none of the best model breech-loading arms take the least notice of it. If necessary, however, the folded-head cartridge is abundantly susceptible of improvement, in an easy and practicable manner, as is evident from an examination of the varions forms of re-enforcement of cartridges of this construction, experimentally tested and herein described.
The Berdan, made in large numbers for the Russiangovernment, for use in the Berdan breerb-loading rifle, has been most strictly and severly tested
during manufacture, and has proved of great excellence. It is execedingly ingenions; its re-enforee. ment simple and effective; its capacity as a reloader fully tested and demonstrated by prolonged and repeated trial, daily, during production of millions of rounds; a number of the shells being reloaded, primed, and fired ten times, and much more extended trials have been had for special test of the enduranee of the eases in this particular. Its chief distinguishing feature is that its anvil is of the same continuous piece of metal as that of which the case is made. Herein there is no possible displacement or mispacement of the anvil, and it has a fixed position with respect to the primer. The eartridge is singular in this respect, and superior to its rivals that require a separate anvil. In it was a happy idea hit mpon by the inventor of making his anvil by a simple return of the metal of the pocket for the primer. All other anvils are its inferiors in that they have to be handled in assembling the parts of the shell. Another advantage is, it preseuts a point to the primer inside, rendering it sensitive to the blow of the hammer. The use of the speenal Hobbs' primer is most excellent in this combination. Uther varieties of an excellent re-enforcement may be referred to, as exhibited in the drawings and notes under this elass.

These re-enforcements may be accomplished in various ways, as by a ring of expanding metal, a ring of solder, felt or papier-maché wads, ete. When the ring of this metal is used as a re-enforecment it is best applied, and perhaps only effectually, in those cartridges having a pocket or return of the head for the priming. In these cases it should be so formed as to act by expansion against the walls of the case and of the pocket, to cut off the escape of gats to the folded head in both directions. The solder ring las been found to be a good re-enforce also, and in the wrapped-metal and sonse other varities of cartridges it serves also to attach the flanged-head to the body of the case. It was first used here for this purpose, and that it aeted also as a re-enforce was a resulting discovery. The felt or papier-maché wad is not believed to be as good or to hold the head as securely, although it is extensively used in the varions forms of Boser ammunition. It is not believed that a simple ring of any soft metal of any shape, as lead or its alloys, foreed into the case at the head, will act as a re-enforce, as has been elaimed. No matter how closely the metallic surfaces are in contact, if the reenforcenient does not expand more promptly and as fully as the case itself under all the pressure of the gas, it does not strengthen or re-enforce the point to which it is appliet. A re-enforeing ring works well, applied to a Martin cartridge, as well in fact. as to a Berdan, and in tlie same mauner. In objection to the Dlartin is its small anvil for small-headed cartridges, and their liability to burn the priming composition inclosing the pocket on the anvil, a difticulty met with in their manfacture. with the bar-anvil, and which can onlv be: wholly eliminated by careful inspection of primed eases.

A very motable cartridge is the Boxer, as made at the Royal Arsenal, Woolwieh, wor the Suider and Martini-IIenry rifles. A perusal of the Englishieports of their small-arm orfnance hoard will show the most casial reader that the failures of these cartridgess, from all canses, have been what wonld be considered in our trials of the best smerican eartrideres as a very large percenture, sufficient to warrant the abamdonment of a cartridge that falled so often. Tinlike its Ameriean prototype, from whieh it was originally taken, its parts are more mumerous, and the steps of oprextions in its production more than clouble those in that simple eartridge. Its cost, hence, is also large, consiclering the low prices of hat lon and materials, and the very large nombers fab)ricated in the eoountry of its alophion; a cost very mueh m excess, it is believerl, of that of any other of the most approved American varietios of metal rartridges fabrieaterd under similar alvantages of
cheap labor, low-priced materials, and large production. It does not appear to be well adajuted to stand the shoeks of transportatin or exigencies of scrvice, is easily indented and disfignred, so much so as seriously to interfere, with ease of loading. Per contra, it is beautifully expanded and brought into shape of the exact walls of the chamber in firing, and extracts readily if the head holds. which, from the reports, seems not always to be the case. It is not suitalble in its present state and form for use as a reloader, whatever may be elaimed for it in this respeet, and it is loubtful if it could be made so. The idea of such a nse does not seen to receive encouragement from recent reports. Its attachable beads, from the peenliar and awkward mode of fixing them, are not exact or even, and may not always be firmly put on. Macke of iron, it is believed they never should be for cartriclges subjected to all varieties of climate. The use of this metal for a cartridge, otherwise so costly , is the poorest kind of economy.
There are several varieties of solid heads, as the IJotchkiss, the Dutch, the United States Cartridge Company's ife. The head, here, is re-enforced by using a thick sheet-metal strip to form the case, and leaving sufticient stock in the head, in drawing the ease, to flow out and form the flange solidly. That this is effective in making a very strong case is unquestionable; its manufacture recuires some heavier plant for special operations; its cost m metal and production is somewhat greater: and it is believed that the head is unnecessarily strong for the present work required by well-constructed breech-loading small-arms.

Experience, it is believed, has fully demonstrated that, in order to insnre the best results in service, our small Army should be furnished with the most approved arms and material practicable. To effect this, the eareful selection of an excellent (the best if it can be determined upon, for the chief trouble of such a selection seems to be from embarras de richesse in this branch of invention) system of breech-loading rifle small-arm, and suitably working eflicient anlmunition for the service of the same, is preeminently desirable. Supposing the first part of the proposition aecomplished, and sueh a breech-loading system seleeted, approved and adopted, their prodnetion in such numbers as may be required by the Government for the Army, the uniform equipment of the militia, and the necessary reserve-stores for futnre emergencies, can unqnestionably be aceomplished at the National Armory, and no dauger need be apprehended of any serious diffienlty in the way of adaptation of its present machinery and plant, to the manufacture of any brecch-loading system of small-arms, perfeetly interchangeable, in these days of advanced scientifie manufacture, when the production of the most complete and intricate machinery, interebanging in all their parts, is a problem of an easy, sure, and daily aceomplishment.

If, from the abmandace of good things to be chosen from, the difticulty of selection can be overcome, the rest, with adequate appropriations, is comparatively easy. A prime essential of such manufacture should be the institution of a rigorons standard from whieh there should not be the slightest departure, exeept by competent authority. Especially should this apply to the chamber of the gun or sat of the cartridlge, the dimensions of which should be invariably fixed, and the greatest nicety of finish and adjustnernt of brech-mechanism jnsisted upon. In other words, the rhambers shomli, within the limits of mechanical construction, be of the same dimensions, to the thomsandth of an inch, both for the borly of the cartridge and its Hance or head. the sent of the a xtractor should not occupy any part whatever. of the body of the clamber, aidi its surface should be as smooth as it is possible to make it. The denth of the flange reecss of the chamber should only be sufficiently deepor flan the thickness of the hend of the cartridge to be employed in it to
allow for the reasy elosing of the lorerem-block, thar small variations of thickness of molal from whicha the ease is mate, mal of merosisury mandacture A (linterence ot $0^{\prime \prime}$.0) is belomeal to bu ample for atl
 than that of the cardridge-juead, whing shomblat itself be great emough to allow at secrare hold to the extractor. Atb the angles of the chamber shonled he slightly rouended. The length of the chamber shosuld be but a fow hmorleathes of an inch longere than that of the case of the cartridge, and ils thenat, or seat of the projeroting part of the lallet, should be ate rarately attended to, sor that, with the rartrider in situ, the breceh-block leeing cosed, it slambel always occupy the samo rolative josition with respert to its hearings in the chambor, and the lmblet hitve the smallest necessary distance 10 move before engiging the growves of the barrel, which engatement shonld le well alvaneed lwfore the bullet is free from the case, to insure that it will start with its axis in the direction of the axis of the barrel. The expansion of the case in tiring shonld immediately shmt ofl escape of gas aroumd its body to the rear - the only lmits in diflerence of climeter of chamber and case allowable being those necessary to insurs the reduired ease in loading, and there should be no fonling of the chamber in tiring lall-cartrilges.

A little reflection will convince all that an invariable chamber is the prime essentirab to the proper pirformanceof the cartridae, ussuming, of course, that the latter is also as carefully made. This once obtained, let us insist on the case of the carlridge fitting as closely as practicable-the limit of variation allowable being only the very small umavoidable range of thicknoss in metal strips, and a reasonable life or wear of dies and punches necessary to the production of ammunition by the equantity. These degrees of perfection can be cibtained only by the aduption und presersation of exact standard grerges. by frequent and every-day careful inspection of material and work, and keeping the attention of mechanics directed to the necessity of constant watchfulness over and frednent veriticacion of their tools dies, and puncles, in curreut use to insure the desired nicety Without this constant care in keeping up to the standard, work, however satisfactorily and successfally inaugurated, will soon become indifferent.

All experience shows that the fulminate composition for priming should not be in contact with any easily corroding metal, or so deposited in the primer or in assentbling the parts as to render any galvanic action possible for its deterioration and cventarl destruction. It is not believed that the service fithminate composition for priming in contact with pure copper undergoes any such teleterious change, as our percussion-caps of twenty years ago are now prompt and perfectly reliable. It shonht not be in immerliate contact with brass, however. where brass is used in construction. This is not necessary, as in the IJobbs' primer, for instance, it is efficiently protected by being between two coats of varnish, one applied to the botom of the cap before the priming is dropped in, the other to one side of a tin-foil varnished thisk pressed over the priming, which also holds it securely in place. Similar means of prolection are used in other primers, or an equivalent. The United States Cartridge Company's primers, the Millbank, etc., are well protected from moisture, deberioration, and injury. See A mmunition.

METAL-LINED CASES.-Pow der barrels lined with sheet copper, for the purpose of holding prepared cartridges. Metal-lined cases are useal as portable matrazines. When tested.they should be water-tight.

METALLURGY. - The art of extracting melals from their orcs. The operations are partly mechanical
 principally on rlesuical ranctions for tineir remalis

 differant andals. bat there ara erortain predinainary oprations of at mechatrical kind whicla abelallice orres madroges, sumb as erashing, jigging, washimg, vto., which wre shatl desaribe here, as thes are wasentially the same for the orro of leftel, "olyer, tin. xine, anl inderel most of the Jnctits. (Jras are first brekenn alp witl hammers into pieres of a chavenient si\%: for crushing or stamping. W⿵aste material, suth as pibeces of rock, spar, aco, which always accompany ore, are as far as possilhe picked ont loy hambla and the orr jtself is arranered in sorts acorobling lo its purity.
 rle., are then used for separaliner it into dillorerat sizes, in ordar to secure a wniform strain on the erushing matchinery. In one of the mosht in proroved forms of crushing-mills the ore is ratiselly mans of small wagems to a platform, whare it is roatly to be anpplied to the crashing-rollors tharomghan operning. These rollers are monntod in a stroner iron frane, held together lyy wroughtitiron lairs, and boliced to

strong beams- Their distance apart is regulated by means of a lever to which a weight is attached. The bearings of the rollers slide in grooves, so that when any extra pressure is put upou them by a large or hard piece of ore, the lever rises, and allows the space between the rollers to widen. The crushed ore falls upon a scries of sieves, which are made to vibrate. These have meshes increasine in fineness as they descend: and the upper two are so wide that pieces of ore too large to pass throngh them are conducted into the lower part of the bucket-wbeel and raised :Igain to the platform to be recrushed. The lower four sieves separate the remaining portion of the crushed ore into different degrees of fineness. which is eollected in pis.

A sectional view of the Blake Ore Crusher. standard in the United States and alsoad, is shown in Fig. 1. A three-sided framework of east-iron, with broad flanged base, holding the movable jaw. J. in suspension. from the front part of the machine between the upright convergent jaws of which the stone is crualhed. The jaw shaft, K, is held in place by wronght iron or steel clamps. C, which serve to take part of the strain due to crushing in the upper part of the jaw space, andalsoserve as walls thereof. In the lower part of the threc-sided frame or front part of the crusher, and on each site of it, are holes in the casting to receive the main tension rods which connect the front and rear part of the machine. The rear part B, is called the main toggle block, and is also provided with holes for the tension rods R. R., corresponding to those in the front casting. These two parts of the machine are connected by the main steel
tensiom rods, R R., eteh providel with serew-thread and muts, N. N., by which their lengelas and the jaw opening are readily andjuted to crish coarse or fine, ats may be desired. The front and ram castings are supported on parallel timbers, to the under side of which are bolted the boxes carrying the main eceentric slaft. s, provided with fly wheds and pulley, I) and E . The timbers are thas made component parts of the machine, and take the transerese strain which comes upon the pitman onnecting the main shalt and the toggle joint placed to the rear of the movable jaw, and between it and the main toggle block.
between the broad thaged lases of the front and rear castings and the timber on which they restare placed that rubber cushions, $C^{\prime} \mathrm{C}$, one-quarter to three eighths of an inch thick. Every revolntion of the shaft brings the togyles. O .0 , more nearly into line. and throws the swing jaw forward; it is withdrawn by the rock provided with rubber spring L . In this way a short reciprocating or vibratory movement is communicated to the movable jaw.
The rigidity inseparable from machines with cast iron framessand which is the cause of frequent breakages is completely overcome in this machme, and the longitudiana as well as the transverse strains are hrought upon materials which are strong and elastic as compared with cast iron. The rubber cushons.
hanled from place to place, is illustrated in Fig. 2. It will be seen how peculiarily well adapted this style of Breaker is for mounting. The fly wheels themselves surve as the rear pair of whecls. The keys of the main fly wheds are withdrawn, and the main shaft is provided with a collar and set serew to hold the wheels in place when the macline is being haulad about. After being crushed, the ore is washed and sifted on a jigging siewe. In one of ite simplest forms the ore is placed on a tathle from which a sieve is filled. It is then immersed in a tub of water and a jigging notion communicated to it by a workman altermately raising and lowering a hanalle. This effects two purposes-it washes the ore, and separates the material into two layers: the upper consists of the lighter spar and other impurities, which are raked off; and the lower consists of the heavier and purer portions of the ore, which are now ready for the roasting farnace. It will be apparent that in the bottom of the tub) there must be a quantity of more or less valuable ore, which, from its fineness, has fallen throngh the sieve. This is called sludge or slime; and the minute particles of ore it contains are recovered either by simply forming an incline on the ground, and washing it with a current of water, of by using an inclined table called a sleeping-table. Ore which has been reduced to powder at the stamp-ing-mill, as well as slime, is washed by thin apparatus. The material is put into a chest whicl is placed in a sloping position, and is supplied with water on turning a ste pcock. The current carrics the contents of the chest throngh in upening at the bottom. and spreads it, with the aid of ascries of stops, or small lits of wood, over the surface of the table. A stream of water is then kept flowing over the table till the earthy impurities are all carried down into a troigh, the pure particles of the ore remaining, by reason of their greater specific gravity, near the top of the table, whence they are removed to be smelted. Sometimes the table is suspended by chains and receives a succession of blows at the tol from a buffer, moved by cams on the same principle as the stamping-mill. The varieyy of machinery and apparatus used in dressine ores is very griat, and they pass under different wanes in different districts, but they are all very similar in principle to those we have deseribed. See Iron.
METAL SEPARATOR.-A machine much used in armories and arsenals for separating iron and stecl chips, turnings filings etc. from those of brass or composition. Its caparity and utilit; for this kind of work are very great. The machine is not on'y a great labor-saving device, lunt brass-stock treated with it is much improved, as it is so thoroughly cleansed that it may be used for the best of work. The machine may also be used for separating iron from emery. The driving shaft shond run 40 to 100 turns per minute. There are two things absolutely ncressary in using the machine: 1 st , Whenever the machine is not running, raise the brush and cover the wheel with iron. 2d, The tray under the hopper should strike equally oneach side, so as to distribute the stock evenly on the wheel. If you wish it to feet faster, draw the hopper forward. The boxes should be placed as shown in the drawing.

METCALFE CARTRIDGE-BLOCK.-Tlis consists of a wooden block, 5 inches by $13-4$ inclues by 11-16 inch, boret on its edere with eight holes to receive the same number of ritle earlridges. It is provided with a carricer or metallic hook, siding upon the belt, in which it is proposed to carry the bioek full of car tridges. The rille and the block are so arranged that. at pleasure, they fan be secored together in a very eonsonient position for lowding. It is intended that the blocks, when exlansted, shall be thrown away; hat they can. if necessary, be rethed and used many
imes. It is proposed that as many of these carriores and blocks he wrom 11pon the belt as may be necese sary, due regarel being hat do the sigu of the math and to He charactor of the serviore rembiting thoor nee. The advantages of this invention are manifold. 'IThs block in itsolf is a goorl parkige for the rartridges. It is nearly indestructible intranspostation or by wot; it keeps the cartridges from jostling together, and

Netal Separator.
thereby as has been shown by experience, mangering their surety of fire. It also protects them from dust and samol, quite as ingurions to the gum as mosisture would be to the cariridge. It is at convenient parkage in shape and size, if an extra suphly of anmanition lad to be carrice in the men's pockets.

When combined with the gum, a considerable inerease in the possible rapidity of tire is attained and a vory marked advantage is fomm in firing lying down. In this position it seems probable that manels of the firinge of the future is to be conducted. The only portion of a man so firing which it is at all necessary to move is his right arm. If an isolated skirmisher, he need not twist or roll over to get at his back or side for amunition, and thereby attract attention. The cartridges are immediately in front of the firer, under his eve. IIC sters just where they are, and how many are left him. We have frequently heard of troops engaged in intrenchments spreating, for couvenience, their cartridges on the parapet in front of them. In a similar case, a man provided with the block has all this facility of manipulation, with this additional advantage, that, if obliged to change his position hurriedly, he thes not have to leave his anmunition behind him, but carries it with the gan to which it belongs. Picketsor other troops exposed to surprise may sleep with their belts oft if they have their blocks fixed. In case of a surprise, they have but one thing to look for-the gun.

Moreover, the hlock protects the hand from burning on the barrel. Afier a few shots have been fired from the new springtield rille, especially on a hot day, the barrel becomes so hot that it can hardly be tonched. The blork, when fixed, prevents the hand from touching it if the thmmb be properly tait along the stock. The English War Department has conse'quently been obliged to issue leather pads to buckle over the barrel at the grip. With the cartridge-bloek it is never so mueh needed as when it is used.

METEOROLOGICAL REGISTER.-A monthly report prepared and tramsmitted by the Senior Surgeon on duty at each military post. It embraces the following items, as noted in the forms on pages 324 and 325.

METHYLATED SPIRIT.-AlCohol($\mathrm{C}^{4} \mathrm{H}_{5} \mathrm{OH} \mathrm{O}$), of specific gravity of 83 . mixed with 10 per cent. of
wood spirit, or methylic ateshol (${ }^{1} 1811_{8}$ (1), IIO), which is one of the products of the alestrustive distillation of wool. Methylated spirit is us-al for damping dotomating compositions, so as to form them into paste, when they can be hamderd. It dissolwes shellar.

METIER.- A trim "pllicable th those nations whed k"ep up large atauling armiow, hnd make war tharir principal ohjore amel porsuit. ('lewatier Polaral gives lle following detinition relative to the fuestion Which is ofter disconsed on thereabject of war, nameo ly whether war bea trade or a srinnee. The linglish' call it a profrasion. Polard, howerer, distimgrishes it in this manner: Fa gurrere ent une turitior

METRICAL MEASURES. -The frequently recurring neressity for changing tables expressing the dimensions, weigltes, and power of foriojgrigums (other than British) into their cqui radente in our own system has suggested the prepraration and compilation of the tables on payes 306 and 32T. Some of the tables have been published in part, or in another form, but such have been generally based upon values for the mefer and Filogram, which the latest accurate investigations have rembered obsolete; other of the tablea, if ew.r pablishef, are not gemerally aceessible. All' (except (able 31) are hased upon this value of the meter in inches and of the kilogran ingreines. The standarel inch and grain of the L'nited states are copies of the British; the tables, therefore, also express the equivalents of metrical in british measures.

('Tathes A., B., and ('.) The international burean of weights and mequsures at laris is now engated in thetermining, with the utnows exactness, the relations of the French standard to those of other mations. Since 1868 the L'uited States Coast Surwoy Ollce has used a value for the meter crual to 39.370432 inches, as delermined by an extensive surics of comparisons, the results of which are published in a volme entitled "Comparisons of the Standard of Lengeths of England. France, Belgiom, Prussia, Russia. India, and Australia, made at the Orilnance Survey (oftice, sonthampton, 1866." Pemeing the resnlt of the investigation at laris, this value of the meter is gencrally accepted by scientific men. The fact that the meter is standard at $0^{\circ} \mathrm{C} .\left(32^{\circ} \mathrm{F}\right.$. and the yard at 62° F. has bern taken into account. and the valne given is that of the meter in inches of the standard yard. Tables A, B, and C, like all the remaining ones, consist of the values of eacli denomination. from 1 to 9 inclusive, which can be applied to all numbers, by decimal multiplication and division.

Weights.-(Table D.) The standard troy pound uf the United States at Philadelphia, is our only stanelard of weight; it is an exact copy of the imperial troy pound of Great Britain, obtained in 1827. Flaborate comparisons, since 1855, of this troy pound, weighing 5.760 grains, and of the commercial or aroirdupofs pound of 7,000 grains, derived from the former, with eopies of similar weights from the standaril pound of Great Britain, have shown that there is less than rō ${ }^{1}$ of a grain difference between the monty standards (troy weights) of the two countries. The British standard pmund aroirdupois is the weight, in the latitude of Lonton, of a certain piere of platinum kept in the exchequer oftice. In the Philosophical Transactions for 1850 , is published Prof. 11 . 11 . Miller's determination of the weight of the kilogram equal to $15.432 .345 i 4$ grains. which is atccepterl as authoritative. This value has been used in the preparation of Table D.

Air Space rer Unit of Weight of Powter-charge. -(Table E.) In the metrieal system, the volume of the chamber and bore of the grum is espressed in decimeter cubes (d. c.) or liters. The space in the hore (or chamber), in rear of the projectile in place. in whicla the combustion of the charge takes place. constitutes the initial rolume, and the final rolume results when the projectile leaves the piece and the in

sumbaries of winds and weather.
$\left.\begin{array}{|c|c|c|c|c|c|c|}\hline \text { N. } & \text { N.E. } & \text { E. } & \text { S.E. } & \text { S. } & \text { S.W. } & \text { W. } \\ \hline \text { No. Force. No. Force. No. Force. } & \text { No. Force. No. Force. } & \text { No. Force. } & \text { No. Force. No. Force. } \\ \hline & & & & \\ \left.\hline \begin{array}{c}\text { Averase } \\ \text { cloudiness. }\end{array}\right)\end{array}\right)$

E		No.	Logarithm.	Logarithm.	No.		
11.						$\left.\begin{array}{c} \text { Kilogramme } \\ \text { to the........ } \end{array} \begin{array}{c} \text { Millimètre } \\ \text { earré...... } \\ \text { Centimetre } \\ \text { carré...... } \end{array}\right\} \text { in a poumd to } \begin{aligned} & \text { the square } \\ & \text { inch. } \end{aligned}$	
							```Nilogrammes ! to the metre carré in a pound lomme..........) fo the spuare foot. Kilogrammes ! to the metre carró in a ton to Tonnes .........) the square foo'..```
							Gilogramme to the millimetre cube in a pound to the cubie inch.
							- Kilorrammes to the metre culue in a pound it in the cubic foot.
	Ton to the cubse foot in a ton to the culbice metre.	0.02786885	2.4451191	1.5548809	35.452355	'Tcanes to the metre cube in a tou to the cubic foot.	
1.		7.233075	0.8593230	$1.1406770$	$0.1382 .337$	Kilogrammetre in a foot-pound.	
	( Foot-10ns in it ton-melre.................................	3.2290518	0.5090750	$1.4409250$	$0.30068843$	Tonnes metres in a foot-tom.	
	Foos-ponmels to an inch of circumference) in a kilogram-motre to a centimetre of circmenfurence.	18.3718474	1.2141528	2.7358472	0.05443111	( Kilogrammetre io a ceutimetre of ciremot ference in a foot-pound to an inch of circumference.	
	Foot-tons 10 an inch of circumference in) a ton-metre 10 a centimetre of circum. forence.	8.201717	0.6139048	1.0860952	0.12192567	(Tome-metre ${ }^{\text {fon }}$ a centimedre of cireumference in a foothon to an inch of ciremm1 ference.	
	Foot-tons to as sumare inch of cross-section) in a ton-metre to a square cemtimetre of (ross-section.	20.832178	1.3187346	2.6812651	0.01800267	(Tomme-metre to a centimedre carré of crosssection in a foot-1on to as sptuare inch of ( crossisertion.	
1.	Foot-pomuls to at pound of powder (or gim) in at kidogram-metre to at kilogram of powider (or $g^{\prime \prime n}$ )	3.28086 .93	$0.515!8890$	1.4800110	0.3047972	(Kilogrammere to a kilogramme of powder (or gum) in a foot-pound to a poumel of powder (or crum.)	
	Foxertons 10 : prumd of powder (wr grin)) in a tom-nctre to a kilogram of powder (or gim).	1.40:407.	0.1057410	1. 83.42590	0.6827 .1578	(Tomme-metre to a kilogramme of powder (or yrin) in a foot-ton 10 a pound of powder (or !un.)	
	Fooltons to a pound of pressure in a tom-' melre to an atmosphere of presure.	0.2197126	1.3418550	0.6iss 1.450	1.5.51.1		
		$1 . \mathrm{H}$	0.2552725	1.7.17275	0.5055555	Centigrade denrere in a Fabrenheit degree.	
	1 Fiblirenheil degrees inal	2.25	$0.35015 \%$	1.8.176175	0.414 .411	Reammar degree in a Fialurenheit degree.	
N.	l'nits of hest in a (aloric'.........................	3.968:3183\%	0.5986066	1. 40133935	0.25199593	(ablorie in a unit of heat.	

flamed gasses have expanted to completely fill the whole of the bore. The detinite relation bet wren the powder-charge and the initial and final volnmes, which we express by"- - - cubic inches of air-space to the pound of powder," is in that system expressed by "- decimoter cubes of air-space to the kilogram of powder." Table E cnables us to convert these expressions.

Pressure of an Atmosphere.---(Table F.) The value of the unit utmosphere (or atmu.) Which has beco adopted in the netrical system, and used by Reguant in his investigatinus to determine the relations between the temperature and pressure of gases, is the pressure of 760 millimeters( 29.922 inches) of the mercurial column at $0^{\circ} \mathrm{C}$. ( $32^{\circ} \mathrm{F}$.) at Paris; whicl amounts, in that latitude, to 1.0333 kilograms on the square centimeter, or 14.6667 pomads on the sutuare inch. In consulting this table it is therefore necessary to remember that it deals with anarbitrary un't atmoph re.

The Encyclopardia Britannica, gives as an utmosphere, in the English system, the pressure due to 29.90.3 inches of the mercurial columin at 300 F , at London, which atmosphere thins becomes 0.99968 of that of the metriad system. Cnder this pressure (99.005) distilled water boils at $212^{\circ} \mathrm{F}$.

Rankine assumes as the value of an English atmos piere the pressure due to 29,422 inches of the mercurbal column at $32^{\circ} \mathrm{F}$., which in the latitude of Loudon corresponds to a pressure of 14.704 pounds per sciuare inch. This, it will be observer is the height nsed in the metrical system, which is thus indicated as the miversal standard.

There are two ways of taking such a standard. 1st. If the ubolute pressure at Purix, due to 76 centimeters of the mercurial column at $0^{\circ} \mathrm{C} .$. be as sumed, then if we wonld have the same absolute pressure in taking readings of the barometer for pressures, in a different latitude, allowance must be made for a difference of height of the mercurial colnmm. corresponding to the difference between the latitude of the place of observation and that of laris. The height of the mercurial column at $0^{\circ} \mathrm{C}$. giving a pressure equivalent to that of this metrical atmosphere, can be computed in centimeters by the follow ing expression

$$
76 \times \frac{\left(1+.00531 \sin ^{2} 48^{\circ} 50^{\prime}\right)}{1+.00531 \sin ^{2} l}
$$

for any latitude $l$. ( $48^{\circ} 50^{\prime}$ being the latitude of Paris.) Thus we have for New Fork City, taking $l=40^{\circ} 42^{\prime} 43^{\prime \prime}$, a value for the expression of $76.063^{\circ}$ 14 contimeters $=29.946$ inches. which height of the mercurial column at $32^{\circ} \mathrm{F}$. at New York City would indicate a pressure equivalent to the metrical atmosphere of comstant pressure.
2f. On the other hand, assuming the universal stindard to be the pressure (wherever taken) due to 29.922 inches of the mercurial column at 320 F . then the absolute pressura of this unit atmosphare at New York would equal but 14.686 pounds on the spuare inch, which is 0.949272 of the metrical atmosphere ut l'oris. It may be adrled that $29.92 \boldsymbol{2}$ inches of the merebrial column at $82^{\circ} \mathrm{F}$. corresponds to 30 incles at $5 \%^{\circ} .8 \mathrm{~F}$. ; the rerluetion $1032{ }^{\circ}$ for this retuling being- 0.078 of an incla for an ob served reating of the attached thermometer of $57^{\circ} .8 \mathrm{~F}$ 。

Bending-Stress per Unit of JengTh.-(Table G.)In the fase of a uniformly disiributed lond, or of a pressure temding to hend or burst open a stmecture. this table enable's us to pass from "kilouriummes to the contimoter" to "pounde to the inch." "ll.., and vier erras.
 (loubles 11 amd I.) The lirst of these tallas findes its applieation csperially in the conversion of expressions giviner the trasile streneth of materials, whercin we change the metrical "xpmession in "kalogrammes to the square millimetor"into "pommis to the sfpare
nch." otherwise stated simply as "-- ponnds tensile strenerth." The two tables apply to the conversion of values of furces of rompression; the word stress being used to indicate rither a force of extension or compression.
Units of Work or Enerny.-(Table K.) -This table gives simply the equivalent values of "hilogrammeters" in "foot-pounds." and "tonnes-metres" (sometimes written dynamodes) in "foot-tons." It will be used in the translation of abstract quantities of work or energy.

Energy of ? Pojectiles.-(Table L.)-The translation of expressions for total energies will be malle by Table $k$, while in this series ( $L$ ) we pass readily to rxpressions for careries of projectiles in termis of the "units of the shot's circumference" and "units of the shot's cross section." This series also enables us to translate the proportion of the total eneigy due to each kilogram of the powder-charge, each kilogram of the piece, or each kilogram of the projectile, into equivalent denominations in our own system. and vice zerset. Further, it includes a translation of the proportion of the total enorgy due to each anit of the terms in which the pressure upon the bore is expressed : as, for example, "tonnes-mètres (of "n(rgy) per atmosphere of pressure" in "foot-tons per pound of pressure."

In Ordnance Notes, N゙o. XLV, Maj. George W. HcKee, United States Army, has alreatry called attention to the influence of the local value of the force of gravity $(g)$ in using the formnla $\mathrm{E}=\frac{W z^{2}}{2 g}$, which is employed for dotermining the energy of a projectile. In connection with these tables, it may be remarked that while they translate the value given in the foreign tables, yet the values thus deduced may not always be strictly comparable with each other or with our own. The practice of the Cnited States Orduance Department is to use a value for $g=$ 32.2, which is the same as that used in Great Britain; this makes the published tables of energy directly comparable for the two countries, but slightly underrates the local power of our own gnas.
The French use the value of $g$ at Paris, where it is equal] to 9.81 meters $=32.185$ feet, which, it will be seen, gives slightly greater energies for one of their guns than we publish for one of ours, supposing all the values entering in the formula (except $g$ ) to be identically the same for the two guns under comparison. Small changes introduced in the value of $g$ will, however, make little practical difference in the published results, which, for energies, are usually given in foot-tons to tenths only.

Thermoneters. - (Table $\mathrm{II}_{\text {. }}$ ) This table presents merely a tabulated solution of the formula

$$
\mathrm{F}^{\circ}=\frac{\mathrm{C}^{\circ} \times 9}{5}+32=\frac{\mathrm{R}^{\circ} \times 9}{4}+32
$$

By decimal multiplication aud division it can be applied to all numbers, as the others. In passing from centigradi or Reaumur to Falirenheit we first take out the tubular mumbers and thrn add 32 ; in the reverse operation we first subtract 32 from the Falirenheit degrees, to be converted into centigrade or Reaumur, and then take out the tabular numbers corresponding to this rumainder.

Units of Heat-(Table N.)-The themal mit contigrule is the amomat of heat required to raise unit mass of watar from 0 to $1^{\circ}$ (.

This table expresses the relation betwern the amonnt of leat required to raise one kilugrem (2.2046 pommes) of water from oto $1^{\circ}\left(\therefore\left(1^{\circ} .8 . F^{\circ}\right)\right.$, and the amount of heal required to raise whe ponend of water
 lents of the " unit of heat "in the two systems bear a like relation to "ateh other. This mochanical "fuivalent, in the binglish system, is the number of
foot-pounds of mechanient energy which must berexpended in order toraise the ternperature of one pormad of water onte dearere. Fur Faronlait's degrece that

 If we replace the pound ly a kilogrann ( 2.80 onfot pormols), that quantity breommes for the ('rontiotrado
 is the merohnical equivalent of the metrical mut of


METRONOME. - I valuable mathine for indirating the corredt time or coldence. It was invernted in 14.5 ly Mailzel, the invontoralso of the antomatomtrampe cter. The lest of a correet metronome is. that when set at lio it slall heat seeonds.
MEURTRIERES.-Small luop-holes, suficionlly lariee io ithonit the burrel of arifle or musket. themorh whirlh soldieqs may llre, masherover, arainst an enemy. Likewise the eavitios made in the walls of it fortifical town or place.

MEXICAN SADDLE.-The Mexican, or California saddles ats sometimes called, ar" "xtensively usal throurhont the Western States of Amerion; ind in proportion to their "xecessive cost, are consjelared by the traders and Indiansfarsujerior to any other sad. dles manafactured. 'Jhoy are furnishad with woollincel hastos, lhama skin anoperas, sudateros, tapaderos and stirrup-leathers hamelsomaly cht-stamped. These saddles, dieect descembants of the HoorishSpanish, brought over by Cortm\% 300 years aço. lave hardly improved in the changes. The convenionce and safety of the rider are alone considereal. 'The shate of the bearing surface rumbing throush all the many varieties is invariahly bad. They (anin never les used without it great thickness of sadder eloth or blankets, and ewon then cut, gonge, and lacerate the back of the horse. They are always herevy and anotwourd.
MICRO CHRONOMETER. Whan the chrovograph is used, with the interval of 50 meters or more betwern the targets, the chronometer receives the dents bear the top, when of course it is moving with its greatest speed, and, consequently, small dificrences in time give proportionately larce differences in height. But when the interval to be measured becomes fmall this no longer obtains, for then the dent of the sloot is imprinted on the lower recorder near the disjunction circle before the chronometer has acquired much acceleration. To obviate this dilformlty the arrangement shown in the drawing is adopterl. The electro-magnet of the registrar with its stop is femoved to the uppor jurt of the column, and introduend in the riment that is broken first. Ry this :urrangement we olitain a disjunction thent near the "ppren end of the chromometer and thus regatin the advantare, even when the in. terval is very small, of recording very minute times where the represenative scale is greatest. This dis-junctor-reading is about 0 ".3, at least double what it was before, hence the representative dents of small times are readily marked on the chronometer
when it has rlouble its former velocity. Wre may re= mark here that for diminishing velocitiog und in Hogaturing kmall timos for decorssing intervals, the
 ing spaces on the elironomseter in the other inceredse most desirable attributas of instrumentes of this

 low the disjumetor-reading, and the duration of this fall is found hy subtracting that of tho formare from
 0 millimeter by morans of the saralo angraved fon the rule ambly its vernicr atad the corrowionding tim...
 lakon directly from at tahlo, which is formeal anal. ogomsly dotheordinary logarithmic: bathes. Whan the
 "pper remeler,the riner on the robl masthe remosed. and iwe of the literar tubes applivel :0 the choromometer, one ahove the other. The largest intorsall that ran le recorded by the instrumbent thas arramerd ithat which corresjonds to the disjunctor-readinge a little over $0^{\prime \prime} .3$. Whan lace time bretween the ropotare of the two rirenits exeeeds this readiner. the rhron-
 the dent of theorigin is obtaincel. Sere Le foblenget fhronogirajh.

MICROMETER-In instrument uscit with it telaSooper or microscope to metsure small distuncers, 0? the apparent diancters of objerts which mbletend very small angles. The micrometer with a gradu-
 comparison. Tha application of the mirromitarer to the telescope is crerlited by Whewell to lhayerans. Malvasia and $A$ zomit. It was a great advance in tho attempt to do by aceuracy of measuremont what hand provionsly been attempted, and in part aceomplished, hy enlarging the instrument so as to cmable the mosasurements of smaller ares. "The first micronnetor on reoord is that of Gascoigne, of Fingland, constructed about 1640 , amd used by him in measuring the diamcters of the moon and some of the planets. The instrument hact nicely-ground parallel codes of hrase plate, and parallel liairs were substituted by the renowned Dr. llooke.

The drawing shows tho miorometor userl with the Engineer's Transit and uther standard instruments.


It consists of a compound cross-wire ring or diaphragn: having lhree larizontal wires, of whicla the middle one is cemented to the rimer, as usual, while the others, bb and of, are fastened to small slides, hedd apart by a sleweler brass spring hoop, and ate tared by independent serews, ded. ly which the distance between the two movable wires can be indjusted to include a given space, as one foot on at rod one hundred feet distant. These wires will in the samo manner inclacke two feet on a rod two bundred fert distant, or helf a foot at a distance of fifty ferot. and so on in the sime proportion. thms furnishines a means of measuring distances. (specially over broken ground, much more easily and crobl more accurately than witl it tape or chain.-See Engineer's Transit. Gradienter and Stadia.

MICROPHONE.-This instrument, invented in 18 by Prof. IIughes, does for faint soumds what the microseope does for matter too small for sirlit ; the fall of a bit of tissue-paper or the tread of a fly being readered audible at many miles distance. In principle the microplione illustrates the action of sonorous vibrations on the strength of an clectric eurrent. One of the most sensitive substances for microplonie action is willow-charcoal, plumered in a state of white heat into mercury. The theory is that in a lomogeneous conductor the compressions and dilatations of the moleeules balance cach other, and no variation of current ensues while under minute subdivision, with electrical contimuty, sonorons waves tffect the strengtl of an electric eurrent. and variations in the eurrent reproduce sonorous waves. One form of microphone consists of a picee of mercurytempered earbon an inel long, placed vertically between two carbon-blueks hollowed to receive its conds, wires connecting the blocks with the battery and the receiver by which the sounds are to be heard. "A piece of willow-eharcoal." says the inventor, "the size of a pin's head is sutficient to produce articulate speech." Two nails laid parallel, with wire comections, and a third nail laid across them, make a simple form of microphone. A few cells of any form of battery may he used. A continuous soimel las been made by the mutual interaction of the microphone and telephone, each instrument in turn repeating the sound made by the other. llany useful applieations of the microphone have lewn made or suggested.

MICROSCOPE.-An optical instrument by which objects too small to be viewed by the maked eye may be scen and examined. A single or simple microscope is one by which the object is seen directly; it may eousist of a single leas or more than one. In a compunend microscope two or more lenses are so arranged that the imageformed by one is magnitied by the others, and viewed as if it were the object itself. In a soler mieroscope a reflector and condensor are employed to direct the sun's rays on the object. In a lucernid microseope the rays of a lamp are similarly wirected. The microscope is used for a varicty of military purposes in arsenals, and also for cletecting adulterations in the ration and fabrics. Another use to which it may be applied was disclosed during the late Franco-Prussian war. Copies of newspapers, retheed many-fold in size by photograplyy, were fastened in large numbers to earrier-pigeons and intronluced into besicged cities. These were easily real by the mieroscope.

The United states Army mieroseope, made by Zentmayer, is thms deseribed: It has a brass body. 16 inches high, on a brass stand, with a joint to inclin* it to any augle, double-milled lread-rack and pinion for coarse adjustment, mierometer-serew for fine adjustment, and a movable glass stage; under the stage a tube is fitted for carrying the accessory illuminating apparatus. concave and plane mirrors, arranged for direct or oblique ilhmination, two eye-picces, one achromatic object-glass $\frac{8}{3} 0$ of an inch focus, of 24 degrees angular aperture, ome achromatie object-glass $\frac{\pi}{6}$ of in inch focus, of 80 clegrecs angular aperture (not adjustable for glass-cover), giving power of $50,100,250$, and 450 diameters;
 of an inch, and a condensing lens two incles diameter on al separate stand.

The drawing shows one of the latest improved min(roseopers and stands. The stand has a tripod (d) for its base, upon which is placed a revolving fittiner (B), graduated to degrees, by which means the microscope can beturncol arommal without its leingliftof from the table, and the amount of surh rotation recistered; upon this tittiner two pillars are firmely fixed.and hotwien them the limb (') ("an be clevated or depressext to any angle, and lightenerd in its position by the lever (D). The limberries at one eme

pieces and objeet-glasses ; in its renter the compount stage (F). beneath which is the circular plate, slid ing on a duve-tailed fitting, and moved up and down by the lever ( $Z$ ), and carrying the supplementary hody or sub-stage ( $G$ ) ; and at the lower end a triangular bar carrying the mirror (II). Each of these parts requires a separate description.

The binocular body eonsists of two tubes, the one fitted in the optical ixis of the microscope, and the other obligue. At their lower end and immediately above the object-glass there is an opening, into which a small brass box or fitting (I) slides; this box holds a prism so constructed that when slid in it intercepts lialf the rays from the object-glass, diverts them from their direct course. and reflects them into the additional or oblitue tube. To the prism-box is attached a spring-eateh, whieh, when pressed in, permits of the removal of the prism-box: but this is only need ed for cleaning, as, when the box is clrawn back to the distance properly allowd by this spring. the prism in no way whatever interferes with the ficld of view, and all the rays pass up the direct body and the microseope is eonverted into a monocular one. The upper or eye-piece ends of the tubes are fitted with ratks and pinion for varying the distances between the cyes of varions persons: and arrangements are made for racking out one tube more than the other, to suit irregularities or inequalities betwean the eyes of the observer. This body is moved up and down with a quick movenent ly means of the millheads (k), and with a very delicate and a fine adjustment by the milled head (L). This milled head works against a lever, whieh moves a slicle independent of the rack-movement, and gives an adjustment at once certain and decided.
The compound stage is of an entirely new construction: the object is most frequently merely placed upon it, but, if neeessary, it ean le clamped by carefally lringing down the spring-piece (ll): the ledge will slide up or down. and the object may be pushed sideways; this arringement forms the coarse adjustment. Finer movements in vertical and horizontal directions are effected by means of two milled heaths ( $N$ and $O$ ), the screws attached to which are kept up to their work by opposing springs, so as to avoid all strain or loss of time. The whole stage revolves in a circular ring by the milled head ( $P$ ) , or this can be drawn out, and then it furns rapidly by merely applying the fingers to the two ivory stuls (Q, Q) fastened on the top plate, which is dividedinto degrees to register the amount of revolation. The stage is attached to the limb on a pivot, and can be rotated to any angle, which angle is recorded on the divided plate (R), or ean be turned completely over, so that the objeet ean be viewed by light of any obliquity without any interference from the thickness of the stage. Bencath and attuthed to the stage is an iris diaphram (S), which can be easily and allogether removed, as shown in the illustration, from its dovetailed fitting, so as not to intorfere in the slightest degice during the rotation of the stage. The variations in the aperture of this cliaphrigm are mate by a pinion working into a racked are and adjusted by the milled head (T).

Brencath the stage are two triangular hars (U, V). the one revolving around and the other rigid in the optical axis of the instrment. On the former the suh-stage ( C ), carrying all the apmaratus herafter deseribed for illmmination and polarization, fits, and is racked up and down by the milled head (W): the mirror also, if desired, slickes on the same bar: the revolving motion to this bar is given by the milled head ( $\mathcal{X}$ ), and the mmonnt of angular movement is recorded on the circle (!), whilst the whole of this part of the stand is raisad and lowered eoncoutric with the optical axis of tha instrument ly the lever (Z), and the amome of sueh clevation or depression registered on a seale attached to the limb. This bar can be cartied around amd above the stage, amel be thus nsed for opatue illmmation. The lower tri-
angular bar (V) carries the mirror If, or a right of ilhmination, some provision has to he made: for angle prism, when the illumimation is required to be holding varions picee of apparatus between the obsconcentric with the optical axis of the instrmenent, ject and the mires. For this purpose a supplementand independent of the movements of other illamin- ary body, or sub-stage, is monntod porfectly trace ating apparatus. The mirror-lowx contnins two mir-with the lowly, and is moved up and down in its the rors, one that and the other concolve; it swings in a ting ly rack and pinion romereted with the milled
 which enables it to be turned from one side to the already bern made, is now regarded as one of the

other. and revolves on a circular fitting for giving greater facilities in regulating the lircetion of the beam of light reflected, the whole sliding on cither of the triangular hars, previously refered to, and made to reverse in the socket (a) so as to bring the center of the mirror concentric with the axis of the microscope in either case.

As the mirror alone is insuticient for many kinds
most important parts of the achromatic microscope; in it all the varied appliances for modifying tha character and direction of the light are titted. But a few years since it was considered sufficient for this part of the stand to be constructed so as to move up and down perfectly coincillent with the opticalaxis of the instrument. and for that purpose it was racked in a groove planed out on the same limb as that on the
upper end of which the optical portions were carried. Put lately microsconists have shown the devirability of alfording every facility for tateral angular adjusiments: and this has led to the sub-stage being atiaehed to an are ( $b$ ) working in the cireular plate ( $Y$ ), and moved by a rack and pinion ( $\mathbf{N}$ ). whilst the amount of such angular movement is recorded on the upper surface of the plate ( $\mathrm{Y}^{Y}$ ). Having once fixed the angular direction of the light, the focusing of it depends upon the lever ( $Z$ ), which moves the eirele up and down. and with it the arm arrying the illuminating apparatus, in the "npticu' ax 's of the instrument.

MICROSCOPIC-GAUGE.--An instrunent used incorneetion with the testing machine. It consists of a pair of glass sides, which are commeeted with the specimen by collars in the manner shown. One of the

glass sides is graduated to thousandths of an inch, and the other 10 hundredths of an inch. A mieroscope using a one-inch objection is employed in reading these scales, and by means of it the seale of thousandthe may be readily subdivided into ten thousandths of an inela by the eve alone. The microscope is supported by an adjustable armattached to one of the posts or the testing machinc, or to a post expressly provided for this purpose, and detached from the machine. See Taper-rule and $I^{\prime}$ rnier yenge
MICRO-SPECTROSCOPE. - A spectroscope placed in connection with a microseope in order that the absorption lines may be readily produced. The instrmment is employed in varions testings; bit nota-
the focrs of the top lens of an eye-pieec especially constructed is placed what is teclunically terned a slit, B; this consists of two shutters met ting in the ecnter of the field, the one sliding up to the center of the ficld of view, and the other adjusting by means of a delicate milled head. Vpon the delicacy of the dage of this slit the value of the Speetrosone hargely depends, any irregularity or piece of dust appearing a dark band at right angles to the speetrm under examination, and greatly interfering with the definition. In the same part of the instrument is inserted a small right-angle prism, (D), which can be pushed forwardor drawn back nut of the field of view by a milled head. In the former position it reflects the rays passing through any objeet placed upon the supplementary stage to the eye placed at the eye-end of the instrument. and enables the observer to compare two spectra with one another, or to measure and reeord the position of the absorption bands. Placed on the flat surface of the eye-pieces are a couple of levers, moving two shutters. placed immediately over the slit, for regulating the length of the spectrum moder examination. Above the toln lens of the ere-piece the most important portion of the instrmient slides: this consists of a series of prisms. (A), so arranged as to give a direct-vision spectrum, and upon the amount of the dispersion of which prisms muel of the value of the instrument depends. At the side of the main tulue is a supplementary stage, upon which a standard scate, or a seeond ebject is placed, suppliet with a mirror, for refleeting the light through the object, the rays then being totally reftected by the right-angle prisin. (D), hefore alluded to. and thrown up the tube to the observer. To use the instrument, remove the ordinary eye-piece of the microscone and side the speetroscope eye-piece (Figs. 1 and 2 ) into the body in its place. Remove the upper tube, containing the series of prisms, and draw back the sliding slit liy a milled head, so that one-half of the fiedd of riew is elear. Focus the microscope to the object to be examined.


Fig. 2.
Fles 1.
bly, by furgeons in virwing the absorplion bands of blood in toxiecological researell. The misero-upectroseop dexirnod by Wamsley and ('o., and shown in tigures 1 and 2 . convish of a series of prisms. (A). arranged for direct vision, fitted into ath "ye-piece, and supplied with various applinnces namely, a slit, ( ${ }^{3}$ ), a supplimentary spertrm arrangement, consisting of a small right-ungle prism, b, it stage, for placing an objert upon, and a mirror, for refleetind the light and all the necessary adjustments. In

light，so that the framonofor lines are fainly sornt
 and thes absorption－bamds will be sratily seren．The character of these bands and their position varios in every object：and if any bractionl use is to be made of the inversigations，it is acoressary not only $\{0$ ob） server，but to record their position，lyy meins of a standarl scale provided for the purposes．

MICROTASIMETER．－In inctrancont invented ly Mr．＇Thomats a Vilison for the purpost：of monsuring very minute variations of pressure canaseli hy the ex－ pansion or contraction of any given borly，from what－ ever cathers，host，monstare，ele．A part of the apo paratus is construeted thon the principle of the py－ romotror，and when the（expansion is condsed by moint－ ures，ujoun that of sumfe forms ol hyerometir．But the novel abol wingue part of the invention ronsists in the ellecet which the pressure of the expanding rod hats upon the electric resistance of a piece of car－ bon jlarod in the cirouit of a gralvanic battery．A rod of valeanite is usod as the expmandiner eldoment when it is resired to use the instrmment to ascertain slight variations in the leat vibrations coming from any objuet，as the sum，or a gas，or cluctric light． This rod is atljusted in a strong frame kett at an equable temperature，so that no expansions or con－ tractions shall exert any inthence，＂socrpt those which take place in the vulcanite rod itself．In the chamber which receivers one end of this rod，or plate， there is placed under a follower，or slide，a piere of carbon，which lecomes compressed with erreit force upon the expansion of the valeanite rod．If ratiant heat is to be measured，a large funnel is plared in front of the apparatus to gather the rays and throw them upon the rod or jlate．When the rays increase in intensity the rod expands，eompresses the button， and colanges its conducting capmeity，which at every moment is indicated by a galvanomettr．＂lhe in－ strumant lats been uscel suece＇ssfully to asectain the variations in the radiation from the sum during an eclipse．It may also be used to oote the variations taking place on a day when clonds ar＂passing across the sun＇s disk，or when the tramsmission of his rays differs from incrense or deeronse of moisture．It may be used ats a clelicate hygrometer by substitut－ ing in place of the valcanite rod a body contaning gelatine，which expands unter the inturnee of moisture．

MLDDLE AGES．－The designation applied to the great historic period between the times of chasic an－ tiguity amb modern times．The beginning and close of this period are not very detinite．It is usual，how． ever，to regard the Middle Ages as beginning with the overthrow of the IV estern Roman Empire in the year 476 ；and there is a pretty general concurencein fix－ ing on the Reformation as the great event which bronght this period to a close．It began with the rise of the Frankish upon the ruins of the ancient IRoman Empire，and with the commencement of civ－ ilization among the barbarous tribes which had taken possession of what were formerly Roman Provinces． hn course of it the different nations of Modern Elurope were formed，and their political and social systems developed．It was a period of much super－ stition，in connection with which much religious en－ thusiasm very extensively prevailed，manifested in many grat religious encowments，io magniticent coclresiastical buihtings，in pilgrimares，and，above all，in the Crusades．In the carlier parts of this per－ iod the Chureh was much occupied in the extension of its hounds in the north of Europe，where heath－ enism still subsisted，and the means employed were mot always eonsisteut with the spirit of Christianity． During the Middle Ages the Hierarchy aequired enormous power and wealth，and the Papacy rose from comparatively small beginuings to its utmost greatness．During the Diddle Ageschivalry had its rise and decline，modifying and，in many respects，tending to refine the feelings ind usages of society．Towards the elose of the Middle Ages the revival of letters，
the incratac of kmowloclgre，ant tha formation of a woalthy but influential colass in sorofoly，rlistinot alike
 lefore：the Raformation，beoth to the rlimination of the brower of the llierarelly and tho decay of tho foulal systcom．
MIDDLE ASSEMBLINO BAR．－A ron川ponfont prort of ther raiscon．It is male of iron，has two ears in the middle to servo as stay－platos for the miklalde clests，and a slot for the axe on the right of the mid． （1）

MIDDLE CHEST．－The front ammanition－clust on the borly of the caisson ；so riblled lworanse it is bre twern the hind chest and the limberarliest when thr： c：aisson is limbered．

MIDDLE－CULVERIN．A cannon of the Frioughar－ tilkery，under Il＂nry II．，carrying a projectile wionela． ing two promds．

MIGNON．－The formor French term for a piekel solulier－at present conlled filite．

MIKADO．＇The popmlar title of the Eimperor of Ja－
 （llavenly King）or Transhi（Cbild of lIeavo（en）is most frergurntly uspl．（otloretitles used intlurnative parlance or literature arc Nin－6（King of men），（）－i or りai－o（Groat Kiner），だo－toj（lanler of Jations）． OHer trems arising from the application of the mame： of the Mikado＇s pace of residence 10 his person，are Dai－ri（Imperial l＇alace），（＇hó－tei，（Hal］of Aurlience ）， Finri（the Forbidlan Interior），Go－sho（Palace），which names oceur frequently in old European works on． Japan．The term Nikado menns llonorable Gate， like the Turkish＂Sublime I＇orte，＂and the Figyptian ＂Plaroab．＂The Dynasty of Mikatos is the oldest in the world，the present ruler，Mutsubito，luoing the 123 of the Imperial Line．The tirst Mikato was －Iimmu Tennó，who began to reign 660 b ．с．，the pros－ fessed starting－point of Japanese chronology．The カ̈rst seventeen Mikados in the ofticial list are said to lave died at ages ringing from 100 to 141 years．The Mikados have each a persomal name，but no family nane，and the name of any one Mikado is never re－ peated；thonghin two instances in the list，two Mika－ dos reigned each twice，and have each two posthu－ mons titles．Seven of these Sovereigns of Japan were females．The average duration of eachreign is nearly 21 years．The Dikados elaim descent from the heavenly gots，and their regalia of sovereignity art a mirror，crystal ball，and sword．The possession of these pallidia is the test of legitimacy during civil or dynastic war，of which but one is known in Japancese history－－tle period $1836-92$ ，when a compromise was made by the rival in possession of the regalia receiv－ ing the title of Ex－Eimperor，and handing over the saered emblems to the other．After death，the Mikado receives a posthumous title by which he is koown in history．Tle Mikado is allowed twelve miogo or con－ Gubines，besides the Empress；and in addition，there are four woble families called Shinvo from whon heirs may be chosen for adoption．Sucecssion is not always to the oldest son，but usually to the Mi－ kado＇s nominee．The Imperial Houschold forms a distinet department of tbe government，called the Fimaislóo．

MILANAISE．－A German finted armor of the be－ gimning of the sixtecnth century．The cnirass is rounded，the breast－plate does dot possess the cun－ tral ridge ot tapuland the shoulder pieces are large with persse－gardes．The cuishes and npper arnu picces are fluted like the rest of the armor but．the lower arm pieces and the greaves are plain．The solerts are paw－shaped and indicate the tinie to which this armor belonis．

MILBANK GUN $-\boldsymbol{A}$ brecell－loading small－arm， having a fixed chamber closed by a movable breech－ block，which slides in the line of the barrel by di－ rect action．The piece is opencl by raising the han－ dle of the breech－bolt from its recoil－bearing in the recciver，and then druwing back the bolt．It is closed by reversing the action of the bolt；the ham－
mer-bolt striking a sear-bolt in closing, and thereby compressing the spiral mainspring which surrounds its rear portion. It is locked by the support afforded the base of the handle by its bearing on the re-eoil-shoulder of the receiver when the prieet is closed. The piece is fired by the action of it spiral mainspring surrounding the hammer-bolt. 'The hammerbolt is kept from accidentally disclarging the eartridge by striking the firing-pin before the breerl is fnlly closed, by means of a tiansverse stop-pin, which, when the handle is up, passes througl the firing-pin and kereps it forced back with its point flash with the face of the bolt. Whew the breceh is fully lorked by turning down the handle into place, the transverse pin is drawn back by an inclined surface in the hole of the firing-pin through which it passes, and it leaves the firing-pin free to be driven forward, at pleasure, in the usmal way. The rear end of the firing-bolt when drawn back passes through the base of the rear section of the breech-bolt, and indicates the position if cocked. Exiraction is aceomplished by a hook swinging on a pin passing transversely through the recoil-block near its face. Ejection is coused by the action of a spiral spring, set in the face of the bolt and pressing against the lower edge of the cartridgr-head until the shedl is clear of the chamber. The shell being then free to turn, is rotated around the hook by which it is held and is thrown clear of the gmm. A safetr-lever is comnected with this arm and serves to dispense with the necessity of a half-cock notel. The accidental opening of the breech may be prevented by turning up the handle part way and pressing down its stoppin; the point of this passes into a hole in the side of the recoil-block, and thus prevents the revolution of the entire bolt.

MLLD STEEL.-Tbe statisties of iron and steel are very suggestive of the condition of the times. In the middle of the last century the amoment made in England was about one five-hundredth part of what it is at present; the amount imported was more than that manufactured at home. Whilst now the English annually export millions of tons; the last few years have shown a striking increase in the world's annual prodnction, thougl great fluctuations have occurred; the amonnt prodnced has risen from some $10 \frac{1}{2}$ million tons in 1869 to about twenty-one millions in 1882
an enormons increase due to the vast development in the use of iron and steel for ships, railways, bridges, buildings, machines, ete. Apart, however, from the increase in the total quantities we notice (Fig.1) that cast iron, wrought iron, and steel have not increased nniformly, but the last has far surpassed the others in the rate of its growth, having multiplied some twelve times in the thirtecn years under consideration.

Although steel has been made from remote ages, it was only about twenty-five years ago employed on a eomparatively small scale for such irticles as tools, knives, swords, springs, etc., and from the expenditure of time amd fuel on its manufacture, it was necessarily an expensive article: but the inventions of Bessemer, Siemens, and others have resulted in the production of a class of " mild" steel in large quantities, moderate in price, suitable for varions purposes of construction, and surpassing wrought iron in all, or almost all, of its good qualities. Of late years competition in the trade has led to numberless improvements, and great ceonomy in mannfacture, esperially in the amount of fuel consumerl. It may be intoresting to notice the proportion of iron and steel ammually produced (in 188\%, for cxample) in (ach comontry. Weare at onex siruck by the salient feature that Great liritain is far ahead of all othors in quantity; in fact, excluding the Uniter States, hor production probally exceeds that of all the rest of the world put together; lut other mations are also now making goot progeress. With regard to quality. the reputation of English iron and stem is thespradiy very ligh: the geat majority of modern improve.
ments in mamefacture are due to English inventors, practically developred by English makers, and many foreign firms are olad of English assistance. Iron ores and good conlas well as materials for fire-bricks and fluxes, are found abundantly all over lomerand, while the great carrying trade gives facilitios for the plentifnl supply of good ores from hpain,and pio iron from Sweden for modern sted making, as well as for the export of manufactured iron and steel to foreign customers. The resources of other comntries are, however, leing largely developed.

Seeond on the list comes the Unitwd States, whose rate of increase of mannfacture is uncxampled. The lemand has been hitherto so great. to meet the wonderful development of the railway system, and other large works, that milions of tons have been sent from across the Atlantic, but the time has now come when the United States produces sufficient for its own wants. Its naturill resources are very great, and it has excellent ures of great richness and abundance, vast coal-fields, calculated to last for centuries. and a people full of energy. At first sight it may seem sirange that at the present moment steel for only in 8-in. Gun can br produced, but this is simp! y because until lately there has been no demand for it. The colossal plant needed for beary gun mamofactnere dues not exist in America, where the heaviest hammer is one of 17 tons, while France las one of 100 tons, and Krupp is said to be making one of 150 tons. Whitworth is now supplying the Government of the States with steel for 10 in . guns. The United States have lately sent a Gun Foundry Board to make inquiries in Enrope concerning the mannfacture of steel for military purposes; their report has been publisbed, and contains most valuable information : a smplement submitted to the senate add December last, gives plans of two proposed gun factories, one for the Army and the other for the Navy. Besides certain ammal expenses, it is estimated that a sum of $£ 7,000,000$ will last for six and a balf years, intwo years will be required.

Next on the list of producers comes Germany, whicli possesses the largest mannfactory in the world -that of Krupp-remarkable for its excellent steel which soon attained a wide reputation, as shown by the fact that in 1865 England ordered from this firm, for het own use and that of her colonies, no less than 11,396 tyres and 564 axles for railway pnrposes. Krupp early applicel lis steel to the manufacture of ordnance, and he has supplied several nations with guns. Germany depends greatly on this maker for her ordnance, but the American ofticers do not considcr this a wise arrangement, as the Government may find it difficult to deal with a single private firm in times of great emergency.

Fourth in magnitude comes France; with her well known le Creusit, Terre Noire, and other works. The first, with its massive plant and 100 -ton hammer has prodaced steel armor plates of excellint quality; while the second las, after many difficultios, attained great success in sterl castings, and in the mamufacture of steel projectiles. Although the loss of Alsace has told heavily on the production of iron and steel by France, and though lanlf her ores are imported, her progress is certainly very good, especially in the steel required for warlike purposes, as after the war of $18: 0$ the French Govermment encouraged private companies to such an extent that sevaral can produce the largest steel ingots, others have the jlant of a gan factory, and others again are able to produce armor-plates of excellent quality. The American oflicers consider that Franec has made better arrangements than othor nations between the Govermment and the steel makers.

Belgimm has gord supplics of coal, lut maving exhausted her own ores, has to import for the mamuficture of steel; nevortheless she lias made good progress, especially consithering the means at her disposal, and she enterskernly intocompetition with England in certain clepartanents of the trade.

Austria, lhough formarly redebraterd for matal.

 the produrtion of iron and stome. "J"he want of ronl. and of rasy eomamonimations, and perlapis tho lack of organization amel eapial, have proverl hindraners to

Russian jossurses rexcellent oros in thr momatains of Siberia amd the Irn], but the want of govel mosans of

 daction for military purposis is now considerable. 'Jhe deassian Cowarmant serms anxions (os sujply itself with stere ; armor and gums tup to fol toms are now mate in lansia. Formerly lirupp sujpliod orilnance.

The lost Swedish lis iron is of eapitn] quality, as the ores from which it is produrod are very jure. and the chareosal comployed as tho furl in smedting being free from sulphur, does not eomtaminate the cast irom: but the want of coal limits the supply.

Fige 1.


The production of iron and ftecl by the
countrics of the world in $14 \times \%$.
 3:-B, Bessemer: Č, crucible; O. II., open hearth.
Spain cannot be called a manufacturing country : but the Bilbao ore has lately been very lirgely used in steel making; twenty foars ago hardly any for-





Italy has latrilly any iron or stem works; the lillat
 fornurly. Ther Jugre irruor-rlad ships of Jtaly, with their viry hotivy tuns, have, howover, (callial for

 to tha dovelopmatit of sonare private liras for prodaringe larovy war matrrial. Acresedine io law Stamentare of rewont date tha tirm of sir 16 . Arme
 lishing large factorios for makiner grans atol armor platos in thr notirhberhorot of Niaple.s.

 those alreatly named. Jia tho other eomatrios of tha world considurable jorogroses las herom mate, as alors in some of therobonies-the rstablinhment of at gran fomadry at (unebroe is under considaration: and in many placos large supplies of ore aro available.

Stod is by monnans casy to fefinc, since it is a romphex body, amd as all porsoms are mot vearety
 iron, lawsuits have ennseabontly arisen; but thas definition of mild sten fiven ly flolloy, guoled in the liogal (inn Factory Jroatise, that it is "an alloy of iron, rast. While in a dnid state, into a malleabje ingot." has, at any rato. tho atlyantage of simplivity if mot of perfoct exactaces. 'l"his befintion sorvios (1) distinguish it from cast iron on the onc band, and from wrought iron on the wher: as asat iron is not malleable, but erumbles to piocos if lowited amal struck by the hamnurr, ants wroughat iron. themgh malleable, is produced, not as a fluid. hut as a pas 13 mass, the temperature of the ordmary furnare bering insufficient to melt it.

Wrought iron is more filmons than mild sted. and it contains, from the method of its mannfacture, an arrage of 3 per cent by woight, or $7 \frac{1}{2}$ per cent hy volnme of slag, dispersid through its mass in fine filaments. which detrafts from its strength: on the other lamad, the process of fusion in the mannfacture of midd steel gets ride of all Iraces of slag : and this is a great advantige. Old drfinitions of stor) stated Hast tha projortion of carbon in it was more than in wronght iron, but less than in cast iron: lut this hardly holds good at the present time. WJen sonme mild sted has no more carhon than some wrourht iron. Sir W. Armstrong states that "stet is irm produred by a process of fusion instexd of hy one of whesion, and in that sense it is mdeprendent of any particular sense of carbonization. [sing the turn in this sense, steel has the advantage over iron in being free from defects in welding. It generally contains more carbon than wrouglat iron, which renders it stronger. It is also tougher under some to: t⿳. but more prone to fracture under others.... The manufacture of steel contimues to jnprose, while that of iron is stationary, and the time is probmbly near whon the manufacture of iron, ats now practicesl. will entirely merge into that of steel. as produced by the process of fusion."

Taking Holley's detinition, carbon is the essential substance which alloys with iron to form steed: it increases the hardness, elasticity, and tenacity, althongl it decreases the elongation before fracture: it also gives rise to the important property of tempering by rapid cooling, by which these advontages can be increased, thougla with a further loss of power to elongate. Innealing, or softening ly sluw conding, may be called the reverse of ampiring. The presence of carbon, however, greatly adds to the ditticnlty of forging, which must be done at a lower tamperature as the proportion of carbon increases: if too hot. the mass will crumble to pieces umber the hammer, or if this does not actually take place. the result will be to give brittleness instead of strength
in the operation of forging-producing what is technically ralled "burnt steel." : in explanation of this remarkable fact it can only be stated that some physical and (possibly) ehemical change takes place in steel at a certain temperature depending on the proportion of carbon present, which causes it to assume a coarsely crystalline structure, greatly decreasing its strength and reliability: the forging of steel is eonsequently generally more tedious than that of wrought iron, which can often be heated to a white heat when it becomes soft, and can then be quickly hammered into the required shaper. At the beginning of modern steel making, the necessity for eare about the temperature for forgine was not fully recognized, and " burnt steel" was often produced, accounting probably for many of the mysterions fractures which happeued, and which gave reason for so much distrust. At Terre Noire 'sperially, the neu who had been accustomed to deal with wronght iron could not understand for a long time that sted must be treated differently, and experience was only gained at the cost of a good many failures. On one occasion, the ordinary workmen were turned away, and carpenters who liad to learn the work, but who would do what they were told, were engaged instead

So great, however, is the progress in some departments of steel-making, that notwithstanding these difficulties of working we tind Mr. Denny writing that 'steel for ships' plates has become so uniform as to have lost interest, while iron attracts attention from its deterioration and want of miformity, and the men complain if they are put to work upon it on acconnt of the amonnt of spoilt work involved:" and this is not an isolated opinion. It cannot he said, however, that the large masses of steel for guns are as yet produced with such nniformity.

Mild steel can be welded like wrought iron, but the operation becomes more and more difficalt as the carbon increases; the 13 -pr. steel axletree is consequently made in one piece without any weld, bnt wronglat irnn axletrees are most conveniently made in two pieces, which are afterwards welded together. On the other hand large quantities of excullent tubular steed are now produced by the process of lap welaing.

It is more difficult to cast mild steed than cast iron, becanse a more uniform result is required, and since the temperature of fusion is so much higher (from the smaller proportion of earbon), mueh greater contraction takes pace on cooling, giving rise to a variety of intense moleeular strains, which are sometimes suffieient to tear the metal apart in the mold. and often cause surface cracks, telling of a state of strain whieh most be allowed for and counteracted as far as possibleby suitable methods of eooling and reheating Krupp takes the greatest care on this point, making the cooling of his ingots very slow indeed, keeping them warm with hot ashes sometimes for weeks,and they are said to be remarkably free from eracks or flaws. Anncaling for several days is often resortell to in the case of steel castings.

As small differences in the proportion of carbon make very great ditferences in the chasticity, tenacity, hardness, elongation, ete., it is most important to use every elfort to control the quantity admitterl into steel in mannfacture, and it is one of the greatest aims in making steel for ordnance, to obtain, as nearly as possible, the desired proportion of earbon: for this purpose it ranges from about 0.25 to 0.5 . For the hard steel fuce of compound armor plates it may be as hirh as 0.8 por cent.

In all modern stere there is a considerable proportion of manganese; this is suphosed to act in the same way an earbon in hardening. lut its erfect is not 80 marked. It is always added to melted steel in manufacture, in order (it is supposed)to take a way ferrous oxicke, which forms at is high temperature, and also to a certain extent, it may take away other impuritics which would impart red shortness or
brittleness at the forging temperature ; as manganese l.as an extraordinary affinity for oxygen, it is prepared for use as an alloy with earbon and iron, termed spiegeleisen or ferro-manganese, according as the proportion of iron or manganese predominates; both of these alloys are now important artieles of commerce. When the manganese mixture is put into the liquid steel, some of it immediately attacks the ferrons oxide, deprives it of its oxygen, and becoming itself oxidized, runs harmlessly into the slag, leaving a certain small quantity of metallic manganese to alloy with the steel; this is the last operation before pouring out, in the Bessemer and "open hearth "pruecsses, so that no time may be given for the formation of any more ferrous oxide. Mild steel shonld not have morr than about 1.0 per cent. of manganese, or it will be brittle, but it is generally best to have less than this quantity. Messrs. IJadfield and Co., however, have lately profluced steel having as much as 12 per cent. of manganese which has shown remarkable qualities, and may perlaps become of practical utility in varions ways. This alloy is very hard, but not brittle, and is scarcely affected if heated and plunged into water ; but considerable variations bave occurred in its properties.

Silicon has the property of rendering cast-steel ingots sonnd and free from blow-holes; small quantities of pig iron rich in silicon are often added for this purpose. It is supposed to de-oxidize, the carbonic oxide gas which forms the bubbles, and thus silica is prodnced which enters the slag. Not more than about 0.3 per cent. of silicon should be present, and mneh less if the steel is to be of very mild quality for brittleness will be produced.)

Sulphur and phosphorus (especially the latter) are the enemies of the steel maker, for if present beyond a very small amount (say 0.04 and 0.06 respective!y) they produce brittleness : as a very large proportion of the ore-deposits in the world contain 100 mneh phosphorus to allow them to be used in the mannfacture of steel as it is generally carried on, it las long been a great problem to invent some process by which it could be eliminated, and it appears that this has at last been practically accomplished by the basie process, invented by Messrs. Thomas and Gilchrist, in which freshly calcined magnesian limestone (dolomite) absorbs the phosphoris almost entirely when the metal is melted, and by this process good steel has been produced from highly phosphoric ores. The averages of analyses made in the North Eastern Railway Company's laboratory by Mr. Rontledge, of twenty steel rails made from hamatite iron, and of twenty others made from phosphoric Clevedand iron by the basic process, give very nearly the same results.

Car sili. Snl- Phos- Man- Iron.
bon con. phur. phorus. ganese. Iron. Trematite steel. $0.45 \approx 0 \cdot 1050 \cdot 1210 \cdot 0521 \cdot 17898 \cdot 022$ Cleveland steel. $0.450 \quad 0.065 \quad 0.095 \quad 0.054 \quad 1.201 \quad 98 \cdot 134$

As far as present experience goes, the physical qualities of the two steels are said to be similar: hasie steel has not yet, however been employed for ordnance.

Although this plan was invented by Englishmen, it has been more widely adopted in some parts of the Continent (where phosphoric ores abound) than in England. where grod ores are gencrally proeurable from abroad if not elose at hand: and the practical question now scems to be gencrally one of economy, whether it is better according to local conditions, cost of carriage, ete, to employ an expensive ore and a comparativily chap metliod of production, or a cheapore and a somewhat more expensive process: as further experience, how"ver, is obtained. the ndditional labor and expense of the basic lining blan may possibly he reduced. The results have been so good that it secms as if a new departure las occurred in the progress of steel making ; already about a million tons of sted are mamfactured annually in Europe from phosphorie pig, and the highest honors
bave men given to the inventors. If mast, however, be statol that oros rich in siliom present somer diflionlty with this proferse, as the furnaco lom-
 frestaly caleined limostome, as it somu abourlos moisture from the atmosphere.
'Fhepower tor resist atirasion ant rublimg possarssed by milal stect, is groater than that of wrought iron ; this is apparently due, not only to groator landures impartal by more emrbon, leut it adso ressults from the greater iniformity of its atructure: wronght iron. on the obhor homb, flakes ofl, from the presence of fibanconts of sitis. The atrantage of mikd steel over wronght iron in this respect has bern shown in a marked mammer lyy the superior condurance and mifformity of steel rails: as, for instance, when the lom-
 agomade a careful experiment to Chalk larm Siation at a spot where the trable was speriably leavy, the top side only of steel rails lasted eleven times ats long as both sides of wrought iron ones on the other side of the same lime. Steed has consecuently been wite ly ablupted for rails, though it camost be saticl that all now mambuctured are of nearly such good quality as those mate for that experiment. This same prop)erty was long ago roobstizel in glan making. when t e lore's of orlmanee, which have to resist the a'rasion of studs, rete, and the erosive action of tired gumpowder, were mate of steel.

The process of drawing into wire increases the elastiofty, tenneity, and clongation of stece to a degree mattainable in any other wity. Advantage has of late years been taken of this fact in the manufacture of ordmance, as this methrd also allows of the initial tensions being very aceuritely aljustral, and no extensive flaws can remain moletected. Many other physical and chemical properties of steel might be considered, bat those just mentioned are probably the most important for the purposes unter consid. eration.

Fxcluding the olfer processes for the manufacture of hard toul steels, we tind that mide steel for constructional purposes is produced by the thrce following methorls:

## 1. Crucible. 2. Open hearth. 3. Bessenies.

In each of these plans a very high temperature must be obtained in order to melt the steel, which must not be in contact with the solid fuel, because if it were so, the proportion of carbon in the steel wonll be too large; and means are always taken to render the product as uniform as possible.

1. The crucible plan is by far the oldest, luat it is now the least employed; it las long been known that wrought iron enclosed in a crucible with carbonaccous matter is capable of conbining with the carbon, and melting, in form steel, at a temperature insulficient to melt wrought iron alone. At the present time, carefully weighed proportions of wrought iron, with sometimes a little sterl, or even good cast iron of known composition, powdered charcoal, and spiegeleisen are put into a crucible capable of holding some 60 to 100 ponnels, this being about the limit which its strength will enable it to vear withont risk of cracking. A number of such erucibles are plared in a furnace specially construct"d for their reception; a very high temperature is obtained, and after some two and a lalf to three hours, according to the degree of carbonization required. the contents are melted, the carbon lons alloyed with the iron to form steel, nad the manganese in the spiegrleisen las reduced any ferrous oxide which may be present. A liquid slag formed at the top, and a tire-chay cover prevent oxidation, whicla might otherwise occur at the high temperature attained; the contents of several erucibles are then poured into the sime ingot mold as ripidly as possible. Krupp has greatiy developed this metiont, and lie has poured from as many as 1.800 crucibles into one mold: great care and arringement in the large numbers of men employed being necessary.

The advantaces claimerl for this plan are 1hat the


 sillte, otherwise the reactions may difler in ditroreme eruriblas if tho luat varies in duration atod intranity.
 care and arrangoment nevessary for very large in. gots, whell great numbers of mem matst be carefully trained to work logetl:ar ; the lougetlo of time taken in consting is also a drawlack, lant the pronduct is oftern excellent if all wooessary conditions arc: olsservod, and it hats bern larcoly maployed for gom toleses. wherc Firth's crucible stecel has lamen much usod.
2. "The open hearth plan is promapis the mast reevent method of sterel making, and it owes its sureross to the invention of Siomens and ofleres, whe have conn
 producint vory lighl tomperatures. Thisser-called hearth is somewhat spoom-shapet, sloping down to one point, and the bed is covered with partly fused samd ; good cast iron is first thrust in, and the flame beating down or reverberating from the low roof sonom melts it, its the molial is readily fusible fronn the large guantity of carbon which it contains, and thas the so-ealled "hath" is formed. Sometimos only one kind ol pig iron is usod, but generally it is more economical to make a mixture for instaner, a very [ure Swedish pig iron eombined with a chocaper ircon from English liematite: ore, whichl has at goond (loal of anlphar, bat not anough to nakcean injurions amonnt in the mixture, and sometimes sferl mixed at first with the cast iron. When the bath is sutlieiently Ilnid, steel scrap, erop ends of rails or wrought iron are thrown in, after being warmed by ibe waste heat, the ol,ject being to obtain a mixturehaving less amd less carbon; when these have been well molted down, a further reduction of carbon is erleceted by the addition of known quantities of good spanish hamatite ore-an oxide of iron. When this is adhed, a violent cbullition ensues, due to the rombination of twe carbon in the melted charge with the oxygon in the hematite, and the consequent production of carbonic oxide gas; this is technically called "boiling:" The whole operation might be donce loy the use of pigs iron and ore without any wrought iron or steel. This Was a good deal practiced at one time, but it was found to be very expensive, as more fuel was reftured, and the wear and tear of the furnace lining wis considerable, from the corrosive action of the lavge quatutities of slag produced. During the litter part of the process the steel maker is constantly testing the composition of the molten mans, hy instriing a large iron rod with it spoon at the end of it. and taking ont a little of the sterel; this is judiojously conle:l, hammered on an anvil, bent over and broken, and the fracture and general appearance are ecmpared with the samples previously obtainod which have given good results, and which have hoon chemically analysed. If it is judged that the carbon is not low enough. mote ore must be added if no "boil" is going on; lut if, on the other hamel, it is too low already, some good pig iron must be put in. and on leaving off the bperation the sterel should be as quiet and free from bubbles as possible, to droid blow holes in the casting.

Great practical skill is regured on the part of the steel maker: his tests must be taken rapidly. and a judgment must soon be made from the scanty and appiarently rough data furnished by the comparison of the test pieces with the standards bat, nevertheless, the same results may be reporatedly attained by the same operator within comparatively narrow limits.

Just before the pouring ont. comes the addition of the proper guantity of spicgeleisen or ferromanganese : both of these necessarily contain carbon, and consequently the melted mass should previously be more decarbonized than the finished sicel. The uanganese is previously heated, carefully scattered
twer ind stirred up in the sterel, and allowed to femain a short time to become thoroughly ineorporated and to conure miformity of compusition: at the last monent two spoon tests are taken. one for chemical "ualysis of the carbon and the other for physial trial; the tapuing hole at the bottom is knocket through by means of hammers and atoug rod, and the lignidstere flows out along at enter into a large irom latle lined with fire-rlayand previonsly hated; if not heate $l$. or if the temperature of the licuid sted is too low, a groul deal of waste oceuts from the formation of a considerable "skull," or metallie lining, cansed by the solindifying of the outer part of the sted in the latle. When all the sted hats been poured ont, two spon samples are very generally takin for chemical and physical tests, the bathe is carried by a powerful crane to the ingot mold it is desired to fill, and a pherg is ruised at the bottom, worked hy a rol paseing through rings of fire-chay in the liquid mass; the sted then rums ont of the bottom of the ladle and fills the ingot mold; the slag being lighter remains at the top and is not mixed up with the steel, unless indeed any difficulty oreurs with the bottom phag, when the sice mast lie pourend from the top of the latle, as water is from a jug: in this case, small quantitien of slag may hecome entangled in the steel, and the ingot will probally be spoilt.
sometimes the metal is run direet into the ingot mold withont the use of a ladle. but this is not generally considered a conventent plan. The whole operation lasts from $i$ to 11 hours, or longer, acoroling to the size of the furnace and the wedint of charge; the largest fumade yet mate will melt over 30 tons at a time; the furnace bottom needs repair after each charge. The advantages of this presess are that it is chaiper than the lats, the componition of the steel can be very carefolly controlled, but it requires very great attention adod skill on the part of one or two responsible persons. It is wery largely employed in making steel for orinabere carriages, and other military constructions, where miformity and high qualitios are more desirable than economy
3. By far the largest proportion of mild stred (nearly 80 per cent.) is mannfartured by the bessemer process, bat it is mot applied to military purposes to anything like that degree ; the rapidity and economy of this blan are eonsiderable ant the whole operation is startling and impressive. A large eggshaped iron vessel walled at "converter," can rew rolve on trumions, one of which is provided with tecth which erear with rack-work, hy mans of which it can be turned up or down. 'The other tromnion is hollow, and through it cones a plipe communicating with at great mumber of small holes or
Hayeres titted in the fire-hricks sithated in the hotion of the versich; a hand of air (an thas herent from an engine throngh the tuyeres. The top of the converter is provided with as shon chimney, and the interior is lined with a very refractory material called eramister. The operation is as follows: The converter being heated, it is turned down and mofted cast-iron is pouned in by a gutter, either from a rebeating furnace, or in some eases, ats first pracetieed at Torre Noire, dired from the blast furnace, where it is reduced from the ore ; when:a suffieient charere hat been perured in- only about $\frac{1}{5}$ of the total wamely, se that the iron may mote to the thyerese on praring in the blast is tumed on, and when
 guid ironi canmot run down the suall thyere hotex through whith the hast womes, lat on the eontrary, the presoure is aufticient to canse a continuona streman of buble of air to rise ap through the moltell mass. thas oxidizing the rarbon in it with the formation of carbonic oxide sats, which horns witha strmar flame some 20 fert in lengethat the top of the chimmery
it beromes decarbonizen and consequently more infusiale, it still remains lipuill ; after some 20 minutes the flame becomes much shorter and alters its chararter. signifying that the carbon is beeming very low, and that the operation is nearly completed : it is essential that the cxact timu of having of shonk be chosen, as if the "hlow" is stopled too soon, sulticient carbon is not extracted; if, on the other hand, it is contimued too loug, the iron becomes oxiclized, when not only is some of it wasted but the quality of the rest is spoilt, for the iron itedf buras. and excess of oxide is formed. The appearance of certain lines in the spee troscopic appearance of the flame is employed to find the proper time for leaving off, but it is often determined by eye alone. Beforipurriug ont, however, connes the addition of mangancse. which is absolutely necessary in this phan : as from the method of manufacture a good ceal of ferrons oside must necessarily be formed: the "blow" is continued for rather less than a minute, after which the sted is poured out into the ladle, when it is sontimes stirred by meats of an "agitator" to distribnte the manganese and produce miformity. The ingot casting is the same as in the open hearth" system. The rapidity of this plan enables an enormous ouput to be made with a mole erate phant, as each "blow" lasts less than half an hour to prodnce 6 to 12 tons of steel, but this very rapidity prevents the eareful control over the results which an be exareised in the last method: in : large firm this cam be allowed for by sorting the ingots produced, and applying (ath tif the purpose for which it is most suited : but it is most tlifficult to hnow what will be the exact proportions of (arbon and the other qualities of any particular "blow." It does not appear at present to be well suited for the mannfacture of ordnance; and the following extract from the "Prowedings of the American Socicty of Civil Engincers" about the Monongabela Briflge, Pittshurg, seems to represent the facts concerning the employment of this steel for work of the higher tualities: $\therefore$ The difficulty seemed to consist in conarolfing the miformity of the steel within close limits for quality and strength with the Bessemer process. After a while, the attempt was given up, and the "open hearth' was substitutedpo trouble was then experienced in getting a uniform grade of steel of preseribed ctiality. 42,000 tons of "open hearth" steel will be used in the ronstruction of the Forth Bridge. Bessemer steel is very much used for rails, and ilso for a great varicty of other purposes, including compound armor.
When steel is to be forgect, it is cast into an ingot mold of a rery simple form, etforts boing made, by the use of silicon, either in the pig or iin : special misture, or by fluid pressure as used by Whitworth. to get rid of blow-holes: the ingot is iaken ont. reheated, carefully inspectod, cracks cot ont, amd it is then either hammered, rolled, or pressed to the reguired shape, great care being taken about the temperature. In order that the hlows miy be well transmitted through the mass, it appears that very heavy hammers are now generally preferred, probahly becanse mild sterl is bot in as woft a condition as wrought iren when forged. As harge masses of stem are now worked, it is probable that the mambers of already existing very heay hammers may be inreased, maless Whitworth's method of hymandic pressure he amployed instend; and this now apperar: to be very gencrally preferred; great jurogress hats lesen made in some of the leading factories abroad: amel this secms an innortant matler for linglish mamfathrers to consider, with reference to the larere misses recuired for ordmane. harger ingots hawe hesel produced in France atod (icrmany thin in Ene lant.

Ineratse of tentwity can be whaned by the imper-
The tomperature of the iron in considaraby raised tant "peration of lempering, but this is at the ex-

 the leangerature and the natare of the cooling matcor-

 water, mol couls the motal morreslowly. Kimple is satid to lemper his stoel at a miform heots: while our plan for ardnance is to temper atest picere at 1,450
 Comperature is variad within cerain limits, and llan the whole mase is treated in the sathe way as notary ats jussible, as the tost piero whicely gave the best results. 'Tompuring lawers har sporiticegravity shinhty,
 prochaced ly this operation, when barge masmos are
 \%in experiment in 1882 was fempered on the fare io gain larduess. and it comserperatly warped su mandi that it hat to be phaned oflo at the rearmers to make it tit tha frame it was placed in. (imutnles often de-
 thicknosis of metal is athowed so that they maty aftore wards be (atl out in the lathe.
Witla steel castings, every collort is made to aret rid of hlow-holes: this arencrably involves (for all erood work) a very eonsidarable leathead, which athes to the expense, amd has to be cut ouf. Ammealine for several days is resorted to by some while othors are contront with slow cooling in hest ashes; fompering is sometimes used for special purposes, sumb ats the hatad of ats armor-piereing propectile, though it cathnot be satid that cast-steel projectiles are as yot very sucorssful for armor-piercing purposes against stect or compenumd armor. Great pregrass has recently been made in steel constings; amd they are now used for at ereat varicty of purginses some cast trucks lave been subjeeted to very rough tratment, and yet llay lave mol shown any signs of fracture, lut have simpe ly bent out of shape. Siwodish castings now beine exlibited by Jr. Norlenfeld have attracted very great


Fig. 2.
Eximples of stom continge of complicated forms. Messirw. Hal. field d ('o.
attention on aterount of their sommeness and cxerellence ; a very high temperature is obsained when melting the sted, and diquid fuel is employed. In designing the shape of a casting, sharp cormers and great ditherences of thickness must, if jossible be aroided onserount of the ditficulaties of preventing unequal strains tending to produce rupture in contracting on cooling down.

A ervat variety of tests are upplied to stera in aif forent pharrs, according to the purpose for which it is required: latterly there has been a growing tomdency towards uniformity; the workmen's rough tests of bending, breaking, and observing the fracture has been systematized in various pulline mathines, atetuated by a deat weight or by levers, or by hyalrablic pressure, by all of which the limits of elasticity und tenacity are indicated: bemding and torsional tests are also of en applied, and in othere cases dymamieal trials are made, as by dropping heary weights on to rails, or by exploting gun-cotton as is sometimes

Alome with hoiler phates, whichare matue of very malke sforel, having but litule carbors.


 the iracture and its groferal andmarance are also mos


 which it canse; lot it apparara new to be creneraliy noknowlederal, that the sitame lasat will canse a dif


 pierer. It scerms a soumd mothod to procecel (as it is believerl the: Fremelt dos 10 (ant a piece of 1 the tempered mass and then toct it, and the result will 1s0 at more replain knowlodere of the lanacity fore really attainca-mor" prarticularly as witla abll the sare at proserot used, it is not possibles to lue phite Fure that the large mase is lirouglat to the same lieat an the test piece was. Y"he clomgation on fracture has of late attracted attention, as it is a well reacognized fact that at short test piece will elongate mowh more per cernt. of its lengila than it Jonger one of the satme matcriat : this is cexplained lyy the ciroumstance that as the chongation is ondy consideralale just innmodiately at the puint where rupture take place, the totel elongration of the long piece is not actually


Fig. 3.
Showing lofs of alengention per cent. in test gineces of thin pro portions, but of the rame material.


much more than that of the slont piece, and is "omsedpently less in proportion to its length-or the Alongation per cent. of its length is less- (vide Fig. 3, where a test piece of Whitworth's dimensions is supposed to elongate an amonnt $i A$; if the same materiad is made according (1) Royal Arsemal lattern, it will only elongate BJ", insteat of $13 \mathrm{~B}^{\prime}$ which would be in the same proportion as the last, while if the tust pieces are still longer. the elomeration ( ${ }^{\circ}$ ") is (ven less per cent;) thus if a test is taken according to the Woodwich plan, it will not rive such a favorable result as by tha Whitworllinethod unless the differences in the proportions of the test pieces are taken into acoomat. It is momal to say that the elongation is so muth in a test piece of so many iuches, but this is not really correct, as a thiek piece will elongate more than it thin one: it is now proposed that all tese prowes shall be of the same pros portion of denghl to thicknoss.

It is important that the tests imposed shombld bo reasonable aud possible. but this apparently las not always been the case, as, for instatnce. when iron was first employed inthe construction of ships the text cml phoyed by lloyd's was the single one of good temeity irrespective of clongation. hefore fracture; the consequence was that much inferior brittle iron was buitt into many it ressel, acoomming. doultless, for nombers of casualities. On the ather hamd. to how
the alyantage of good elongation before fracture, many instamces have occurred of steel vessels grourding on rocky places, when the bottom plates have been bent and crumpled. but not fractured, as they donbtless would have been if they had been brittle, althongh with a high tenacity. Going to the other extreme, the demands for tenaeity and elongation, within certain limits of temperature for tempering, have been so high in some specitications that it has not been found possible to come up to the standard when large masses have been supplied; the steel has in some cases heen rejected wholesale, whilst at other times it has been passed, when the tests being set aside became useless.

Not only are mechanical tests employed, but the chemical composition of steel is found by fuantitative amalysis in a most systematic mamer: and cach large factory has a regular laboratory, with one or more analysts, a class of men created by the requirements of the steel trade, in which sound scientific training in those concerned is a sine quit non for sucressful manufacture.

The tests imposed by the Ordmance Committee on large masses of stee] appear to have been very stringrat. and mannfacturers have found a difficulty in complying with the conditions, but the making of steel in the Royal Arsenal has given a decided impetus to gun steel, which differs somewhat from that required for most other purposes. The Frencil Goverament, intent upon progress, have insisted on rigorous tests for steel which their own makers at first cleclined.bnt afterwards agreed to comply witly: in the meantime, however, a harge contract was given to a foreign firm. It would appear to be the wivest course to insist on obtaining the very best material for gun steel.

The amount of steel used for naval and military purposes bears only a small proportion to that which is used for ordinary industries, and this ratio varies greatly in differ"nt countries. being probably highest in Russia and lowest in the United States. A great part of the steel for warlike uses can only be proluced by special plant on a colossal scale-thms we hear of 100 -ton nammers, immense rolling mills for armor, 160 -ton cranes, a tank containing 100 tons of oil for tempering, railway trucks for taking immense weights, and tools for machining enormous masses of metal. The number of factories in the world where the heaviest gins and armor can be produred is thms necessarily limited.

About two years ago a most important decision was made that Englisll ordnance, of all calibers, was in future to be constructed entirely of stecl, and wrought iron coils were abandoned, as there was no longer a doubt that steel is much superior to wrought iron for this purpose, from its greater strength. This has been especially noticed with gruns firing the modern large charges of slow-burning powder. The s.eel for ordnance should be of such a quality as to possess a considerable clastic limit, so that permanent deformation or enlargement of the bore may not take place to any appreciable exfont, its uncertainty being always urged as a reason fur its non-adoption in the service as long as wrought iron was nsed in manufacture. It appears, however, that reliability and uniformity are now being attaincol though only by most unceasing and intelligent care in anl processes of manufacture. Especially is this recognizerl to be the cast where very large masses are forgel, at the difficulties in obtaining uniformity in the mass lreone greatly incorased. The percontage of carbon is about 0.4 to 0.45 witl crucille stace when the manganese is low ; but with the "ropen hearth "sted the percentage is a good deal Jess ( 0.28 to 0.31 ) when more manganuse is present.

A modern heavy steel gum is constructed as follows: The tube is made Irom the ingot by repeated. ly and alternately leating and drawing ont ander the hammer, and a core is then cut out or trepanned and thus most of the material cut to picces in the or-
dinary process of boring is available for other purposes; the process is also quicker. Whitworth proposes, however, to proceed in a different manner, suggesting the plan adopted with such snceces by his firm in forging hollow propeller shafts, which are made thus: An ingot is bored, and the shavings remelted: the interior containing a higher percentage of carbon and other constituents, is not considered of sufficiently good quality for further use without remelting. The hollowed ingot or cylinder is then heated, a hollow steel mandrel of smaller diameter than the interior is passed through it, and both are


Fig. 4.
Whitworth's IIydraulic Forging Press. Drawing cut a Tube. placed in the powerful hydraulic pressing machine, which presses the metal of the cylinder against the mandrel by repeated pressings while the cylinder and mantrel are turned round into fresh positions (Fig. 4) ; the consequence is the hollow cylinder becomes graduatly less in diameter, but increases in length. this process is repeated with thinner mandrels ant repeated heats until the cylinder assumes the desired proportions of the propeller shaft; the mandrels are kept cool hy water circulating through them. No service gun tubes, except those supplied through the Elswick Company, have yet heen made in this manner, thougl it may possibly be adopted for some of the largest.

The hoops for service guns are also made from the ingot, which is trepanned, the ends cut off and remelted, and the rest is cut into thick rings, each of


Fig. 5.
Whitworth's Iydraulic Forging Press. Enlarging a Hoop*
which is afterwards heated and made thimer by hammeringr on a mandrel placed through it and supported at each end (the hoop is thus suspernded on the mandrel). This operation naturally increases the diameter, and the manufitcture resembles that of the weldless tires of railway wheels. Whitworth makes some hoops in this way, substituting the press for the hammer (see Fig. F), but he proposes to con struct others in the same way as the tube, in the form of long, thin cylinders, and thus the heaviest gruns conld le male of fewer parts than those at present designed. For instance, the 110 -tongun is intended to be male of forty-three parts, but one
 pieces. Thw mew English haty guns are inew re'faired in latere numbra for the Nayy, and atso for the coast defenses of Eughand and She (ohonies, und "very rifort shond be made to supply them with all the rapidity consistent with clliciency. Thar sied for the $110-\mathrm{tom}$ grms is boing made ly Whitworth and ('ammell, and the forgings will be handed over (o) the Elawick Ordannce Company. Who will machin. them mad luikl up the gnis. In u fow months time Whitworth's fiate extahisulanemt will have all the tools necessary for completing the haviest grans, and biawiek will probably have the phant for masting and forging the heaviest ingots; the comery will When possess two complete (stablishments to supphimont the Royal Gim Factories, and there are of
 steed in targe masses, and who are acrenstomed to the working of heavy stem forgings. ('are should be taken that thoroughly reliable guns are producerl, and chose inspection should be insisted on churing manufacture, as well as rimerous proofs, before the gumsareadmitted in the service. Military materiol has before now been neglected in our country for yars during patace time, from in lifterence or on the sent of economy: thensuddenly, when the need for it has been folt, on the outbreak of war, a hurfied order has been given for large quantities; this is an cexper sive phan, as a high price is necessarily charged mo der such circumatances, and it is diflicult to make proper inspection: it is far the wisest plan to juroceed mellodically and diligently while there is time.
The barrels for small arms are made of mide steed from the bar, in an mgenions mathine with a series of vertical and horizontal rolls, which in one heat draws out the harrel to the required length with arccuraey. This has heen in use some six years at Enfiedd, and copies have sined been supplied by an English firm to several foreign govermments. The bayonet is made of a hard steed wededel by the aid of borax to a socket of sufter steel; great care beine taken not to overheat the end of the bar, which will form the blade, while the socket being milder, is made much hotter: the tests to which hagonetare subjected before being passed into the service have lately been made a grood deal more severe than before the late war in the Eastern Soudan.
The increased strains which the large charges of modern guns impose on gun-carriages have necessitated the empleyment of steel in their construetion, in order to obtain the necessary strength; and steel plates and axles are now freely used, as in the 13 -pr., but wrought iron is still preferred for some parts, as fot instance the trail eye of a fied gum-carriage, which is subject to constaut jars. Steel castings are much used for heavy gun carriages; some of 5is cwt. each have been made in ennsiderable numbers for the sides of $43-t o n$ gun-carriages: and steel castings on a grand seate are contemplated for the proof carriage of the $110-t$ on gun. Steel racers have long bern introduced for use with some of the heavier garrison gums, as they well resist the blow cansed by the jump of the platform on firing. which indented the older and softer wroughtiron racers, and renclered suhsequent traversing a difficult operation ; the path and twenty-eight rollers of cast iron on which the turrets of the Inflexible revolve have not hem found hard enough : in future they will probably be of steel. Tulular steel linings are cmploved for the cylinders of Vavasseur mountings: and enrrugated steel plate has been tried for field artillery ammunition boxes and appears to succeed.
Steel has been applied to shells with great success. but at present the expense is considerable. Shapnel are matle for the 7 -pr. and 12 -pr. of Delmard's tubes, with thin walls and bursting charge in the head; the proportion of nseful weight in the former being 45.4 per cent., while in other natures it is 25 per cent., and often much less. Steel has been tried for common shells, its they do not break up so often
of tha atvantare of their the was furniblacel by an experiment, when a parapet was more ratily


 lofing nade thinner than these of rast-iron a larger bursting chargn ran bu inserted. liy lomathening shells and compressing the poweler, it has lien fomm possible to more than chable the buratine chares: thas with the feinech gun thes burstinge charere in the ordinary common shel isumder $\boldsymbol{F}$ lhas. but lome store
 powder; this increase is mest important when frstroying barthwork, etc. Kirplolas done a gomb domil in this derection. It is thometful which is the best way to apjly sterd for these parporese wherther to cast it at once to there rempired shape or to forere it : the first is the eimplest and rlanapeol way: but at
 which may lead to fracthre in the lwore when the walls of the shell are thin: however, with reemt improvements in casting sted, this ohjertion may very possibly be overcome.

Anolier phan is to cont off lenerthe of tubular iteme heat it, bend in one ched for the head, and turn in and close up, the nther end for the hatere or else welld in a base disk; another dewiee has bon ingenionsly employed of cutting oll a pinco of ihick hat etw stamping it into a bullow, and drawing up the sides grachaily when heated to form a shell. With receard (6) armor-picorcing jurojectilas, fome fow vears ago experiments were hade at thoeburyness with ?-ind projectiles, with striking velocity about 1.50 f. s. to determine the best material of which they hould be made. and aiso the form of head. we: The genmeral result was that forged stecl from Sir J. Whitworth and Co.) was leridedly the leest, but at the same time it was very expernsive; since then. howerer, conditions have altered, and not only is the striking velneity of modern projectiles often consideratly alove 1.500 f . s., hut the stem and compound armor of ships now being made is harder than the wrought iron plates which were formerly employed. ('onsequently, the projectiles break ip, and it cannot be said that the present shells are guite satistactory. Careful experiment is needed to find out the brist methods to pursue. It is to be hoped that the sulbjects of steel armor piercing projectiles for the heaviest guns may be thoronghiy cone into, and the bect material for the purpose employed.

At the present time the Service Palliser cast iron (hilled sbells do very great damage to the targets. lut they break up in doings so. Krupp has produced a good armor-piercing projectile, and the French Nave has for some years past been provided with sted ar-mor-piereing shells for 32 and 19 cm , guns, all supplied by eontract under severe tests for recoption. The following conditions were imposed some time ago when the French Government invited their sted makers to supply a large number (2.100) of armorpiercing projectiles for 32 and 27 cm . guns: the conditions imposed appear to be somewhat severe, and show that a high standard of execllence is desired. The total number is divided into four for each caliber. and the behavior of two shells tested ont of each lot will dethrmine the aeceptance or tejection of the others. The heavier projectiles are to be fired almost at right angles against a 30 cm . Crensot steel plate with wood backing with striking velocity of 43.5 to 44.5 meters per secoud. While the ligloter ones will strike a 25 cm . steel plate with a velocity of 455 to 465 meters per second. If the first projectile perforates the target umbroken and umcraeked. the lot to which it belongs is to be at once acrepted: but if it breaks up in perforating. the seeond projectile will he fired.and only if it getsthrought minjured will the lot he accepted. If the first romme does not perforate the sarget. the lot will at onee be rejected. Facilities were given to allow the maker:
to fire trial shots against stece plates before summitting their finished shells.

Norchenfelabullets for penetrating the sirles of torpedo-boats are forged from sten bars by drawing downa part to form two heads: piecess are then cut off. stamped to true shape in a die, and oil tempered. Compound armor is constructed on two plans by the only twofirms which at present manufacture it in England.

The Itlas Works (Sir J. Brown \& Co.) make it on Ellis's patent : a considerable thickness of wrouglat iron and a thin stee! face plate are kept at a few inches elistance fromeach other, with wedge plates round three sides, ant sinall steel studs at several points kecp them from coming ton close to each oflere in the furnace: the whole mass is then strongly heated with the plates horizontal; when hot enough it is taken ont and lifted by a crane, swang vertical. placed in a pit. and melted steel is ponred from a large ladle into a trough which distributes little strams into the cavity between the two phates and joins them together ; in a short time the whole plate is taken up and put back again into the furnace; when reheated, it is taken out. and the whole is passed through the large rolling mill.

In Wilson's plan, adopted by Cammell and Co.. a large wrought iron plate built up of many thicknesses is passed througl the rolls. and is then pushed horizontally into a hare iron chamber which can revolve on trunnions; when the plate is secerred, the whole is turned up and beeomes vertical, and licuid steel is poured in from a latle and trough, between one side of the wronght iron and the side of the box. precautions being taken to prevent it from flowing elsewhere. In Trilson's plan the steel was formoriy poured on to a wrouglit iron plate provided with a rim and placed horizontally; but this was given up, as the scum, etc. tended to remain on the face of the plate. The whole is afterwards rolled.

The steel constitutes about one-third of the weight in botl systems, its object being to break up the projectile on impact : it consequently has a considerable amount of carbon in order to give it the neces. sary hardness, while the wrought iron at the back of the plate is intended to hold the plate together, and to prevent the formation of cracks and splits as far as possible. This class of armor has achieved gond results: the experiments at St. Petersburg and at Spezaia during the last two or three years, as well as some made at shoburyness, having been favorable. Ellis's plan has the advantage of a very good front surface, but the results attained by each are senerally consideral to be abont the same as far as present experience has shown. The resisting power of compound armor is greater than that of wrought iron, and consequently a less weight will grive as great protection uncer orelinary circmmstances, and it is coming into nse on board ships; on land, however, it will probably be little used, escept, perhaps, in some very ronfined situations. Wrought iron of equal resisting power. but of great © Woright is cheaper.

The injury sustained by wrought iron when it is strum is gencrally local; but compound armor temels tos split over a considerable arat, and is not well calculated to resist blows fabling closi together. Very good extimates can be formed beforehand ly calculation of the probable penetration of wromert iron, if the plate he of ordinary quality, but the resistines power of compoumblarmor is at present ditticult to forelell: it depends more. perhases, on the total weirgt than on the thicknoss of the plate, and thw nature of the backing has a most inportant intlurence on the resistance ofliored. It has beron surgesterl What a considerable number of experiments might porotiably be made on a small seale in order to endeavor to determine tho value of varions alterations in its arrangement. ('omponml armor is now manle in larere quantities in Rassia, Commany, and france wn the Wilson system; in the latter conmtry there
are diree factories busily engeged ant in Germany the Dillencren works have been in operation for two vears protncing compound armor for the three khips Old nourg, Bremke, and Bremmer. The Russian works at liolpino, 16 miles from St. Petersburg, are just completed, and the hirst of their componnd armor-plates, mader an English director, are now being mamufactured. The works will probably be well employed, as the Russians are rapidly developing their nayy, and six large armor-clads are fast approaching eompletion. Excellent steel armor lias been made at Le Creusut, of a milder quality tlau the face plates of compound armor, and it has given grood results when tested at Spezzia, in competition with compound armor. Thin shields are used for the jrotection from musketry fire of men working machine-guns: they are $\frac{1}{4}$ inclu thick, and oil tempered: the resisting power is considerably better than that of wrought iron.

Steel enters into the construction of a variety of warlike stores, notably in torpedoes; the beautiful air receiver before us is a goodexample of the tinest work, forged from a bored-out ingot, oil tempered, and accurately turned down till the metal is very thim. It is most carefully tested to make sure that it will sustain the pressure of the compressed air which drives the engine in the Whitehead torpedo: and tite hollow torpedo propellur shaft also presents a good example of a weldless steel tube of great strength. Tubular steel also comes into use in rocket cases and in sockets for tent poles, in which strength and lightness are combined. Large fuantities of compressed hay lave been sent out to Egypt bound round with Bessemer steel wire. $\Lambda$ very intrresting and recent example of the use of welded steel tubes is furnished by the gas vessels which contain compressed hydrogen for military balloons. These have only been developed during the last few months, and 150 are now in South Africa with Major Elsdale, R. E., who hopes to make good use of them under Sir Charles Warren. It was considered difficult, to make hydrogen in the field, and therefore the plan was adopted to carry it in strong receivers. Various makers were asked to produce this rather novel work, and many responded, with the result that the patteru shown by Mr. Delmard was considered far the best, as it holds more than any other with due regard to weight and safety. Each vessel is proved lefore use, and it must not show signs of any permanent culargement when charged with a test pressure very considerably in excess of that which it will have to stand when the hydrogen is stored in it. Some said that under such high pressure the gas would get through the thin metal: but as a matter of filet it does not do so, and some vessels have remainal fully charged for months. It will he most interesting to hear how this contrivance will answer on active service. The receivers can easily be transported : the weight of gas in them is only is ozs. When fally charged, and thay will float in water. In fact some fully charged have been formed into a raft. Somewhat similar vessels are also employed for carrying oxygen and hydrogen under great pressure for use with the lime light when sionalling. See Steel.

MLLEAGE - In allowaner of eight cents per mile paid to ofticers for travel. To entitle an othcer to mila $a$ ge the travel mast be performed inithout tronon, and be rovered by at speritic ordar in the case issued by a superior otlien previous to commencement of the journey. Suco orders arrissued only where the jumrmey is on acomat of and moressary to the public service". Distances must "be calculated beythe shortrast nsually traveled ronte", no matter ly what ronte the travel was performed. Vixapption to this rule may be made unly when the forms of the order, or impratedoblibity of the "shortest usmally traveled ronto," romper! thw otlicer to proeced ly a longer route. In suth cases milener mave be pad for "acha mile actually travcerd." Lists of distances are fur-
nished by the Paymatar (ioneral. Nilenge eannot be allowed for such bart of at distance as liose ower that portion of a "railrome on which the treops and supplies of the United States are entithed to be rans. perted free." Oftirers whose ortars "ntithe them to mileage may cexerise theoption of "miknge" forthe entire journey (free railroals wxduded); or of "transportationin kind" for the entiry journcy or of "mila"ure" and "ramsportation in kint" for differment parts of the same journcy. But mileage cannot brallowad for amy distance for whels transportation in any other form has been furnished ly the Cnited States. Acivance mileage may by paid, withom special anthority, when the distance to be traveled, "xchnsive of any part which may by emberacel in the dist of freer roads, is unt less than twothousam! miles. This will motaply, however, to journeys in which the oriere contemphates delays at intermediate points affording opportunity to colloct mileage for completcri travel. In the following cases no expense of fravel is allowed: In joining for duty upon first appointment to the military service; or moler first order after reinstatement, reappointment, or revocalion of an order of dismis sall ; or to dfecet an exchange of station, or a transfer from one company or regiment to another when the same is made at the request of the parties. Excepting only in the following eases: Assistant Surgeons, appoved by an (examining board and commissoned, joining for duty under the first order; graduates of tha Military dealemy, from West d'oint to their stations; cnlistal men journeying under tirst order after appointment or commission.
miles.-A soldier of the Middle Ages. hisually of noble or knightly rank. Ite went to the wars, monnted on a trod war-horse and followed by an incors, more or less mumerous in aceorlamen with his own rank and means, composed of rassals and scrfs, who were equipped with slings, bows and arrows, cutlasses, and spears.

MILITARY ART.- Military art may he divided into two principal branches. The first relates to the or der and arrangement which must be observed in the management of an army, when it is to fight, to mareh, or to be encamperd. This branch is gen(rally known under the mane of tuctics, which signifies orter. The second bedongs to the other branch of military art, and indudes the composition and applieation of warlike machines.

MILITARY ASYLUM, ROYAL--An educalional Government Institution at Chadsea, near, but wholly distinct from, the Royal Hospital for I'ensioned Soldiers. Its object is the snitable education for trade. etc., of 500 male children-gencrably orphans-of British soldiers. For these, there are it Model School and an Infant sehool, and the hors have a eompletely military organization. with scarlet uniform, band, ete. As a result of their training. a large proportion of the pupils ultimately volunter into the army. This school was originally established in 1803" hy the late Duke of York, whence it is still commonly known as the "Duke of York's School." Originally a similar school for soldiers" danghters was included, but was not found to answer, and has been discontimuch. Attached to the selool is a training establishment for military sfhoolmasters, kaown as the Normall Kelooh. The total cost of the whole Institution is about Ell,500 per annum.

MILITARY BRIDGE.-A temporary construction. Io facilitate the pasiage of rivers by troops, (amon, and military wagons. The most efficient are described under Postoon; but there are many other kinds. A briage of boats is formed of small-craft. especially cargo-boats, collected from rarious places mind down the river; trestles are phaced in them to bring their tops to one common level: the boats are anchored across the river, and baulks of timbre, resting on the trestles, form a continuous road from boat to boat across the whole breadth of the river; : he
beats chaght to brof such aize that, when fully taden, the grmwales or unger erfoces shall not be lose that one fors above the water. Romelorillyen are prometimes, hat not fredumentle, used by military "nginerep. A beet-unti-rope leridge iancists of cables resting on lonts, and mpporting aplat formor romid of stont timber. A rask-lıridyr consists of a surios of timber-raft.s.
 quarrangular masues; at errain intervals timbers are latil upon them to form rafts and several such rafts form a bridgra: it is an inforior kind of pontoonhridge. A trexte-bridy is sonmetimes made for arms. ing a small stream in a billy comntry: it consi-ts of restlies hastily made up in any rough materials that may be at ham, with planking or fascines to form a ifooring, cables to keepthe trestles in a straight lire". and leavy stomes to prevent then from flematiog.
 casily matce of any rough materials that may ho found om the spot; but they have little buoyaney, nad are mol very managahle. A kering-flying ! ridge comsists of a bridge of toats, of which one cem is moored in the ecriter of the river, and the othere end left bonse; this lonse end is brought to tha proper side of the river, the boats are laden, and they make a semicircolar swerp across the river, by means of radiers and oars, mint the boose cond of the bridge reaches the other bank. A trath-flying lridge is a boat or raft, or a string of boats or rafte, which is drawn across a riber hy ropes, in a dine suarked ont and limited by other ropes.
llistory has many exampers of the use of military bridges. The lirst of magnitude, of which we lave betailed accomms, was the one built of hats, over the Hellespont. hy Xerxes, when he invaded Greece, anarly two thonsind four humbed vearsago. This bridge was about one and one half miles long, and was composed of two roadways. Gne was used by the troops: the other ly the baggage train and camp followers. It is said that the number with him was 5.283 .220 , and that they were seven days and nights in crossing. bridges aceross the Tigris resting on boats are mentioned !y X Xnophon. Alexander the fircat used skins of animals indlated, or filled with hay, as floats in crossing strams, as shown in his passare of the Oxns. The Tinmans carried with their armies small loats and bridge material, when rivers intersected their lines of marel. An example of a military bridge resting upon fixed points of support is deseribed in the fourth book of "Cat'sar's ("ommentaries." This bridge was across the Rhine and was of sufficient strength to meet all the demands made upon it. Wie find many deseriptions of miliary operations along the flime and of the means nsed to pass this river by armies oprating along its banks. Thar same may be sad with reference to the Wannbe. History records. in many casts, the failures arising trom awant of a military efuipare.and the dinasters averted by the nse of such (opnipage. or by the construction of an improvised brider from the materials found in the neighborhoofl. The want of a bridge cquipage was particularly felt by Bomaparte in his campaign in Italy, in 17: Thi presence of such an equipment would have ambled him to eross the Po in time to phace his forces in the rear of the Austrians, and would have avoided the forcing of a pasesage over the Adda, at Loodi. The importance of bridge equipages was particularly folt by the armins
 in tha arrival of the bridge material was. on more than one occasion, a canse of disaster. No bettet cxample of the importance of a bridge equipare and the value of skilled pontoniors "an le given tham the single instance of Napoleon's crossing of the Beresinan, in 1812, in his retreat from Noseow. Sere Bridges and Pontrom.

MILITARY COLLEGES.- The great improvements made in the art of war in late years, in weapons and discipline. makes a demand for a body of trained othecrs capable of moving, directing, and briaging
into effective operation the modern applianers of war. As this special training cannot be obtained at the few Govormment Institutions and ordinary educational establishments, it has become the poliey of most governments to 'meourage a study of military science by establishing military departments in the various state and private Colleges. In the United Siates, officers of the army are letailed as professurs at Colleges and Tniversities as follows:The detals are apportioned throumhout the Inited States as nearly as may be pricticable according to population: such States as do not contain sufficient population to entitle them to one efficet are grouped with one or more contiguous States or Territorics. so that the rombined population of the group will allow the dotail of one or more officers, to the extent of thirty ntlieers in all. As a rule Captains of Companies hegimental Staff Othecers, or ofticers who have served less than three years with their regiments or corps, or who have recently completed a tour of detached duty, are not eligihle. No details are made that will le"tve a battery, troop, or company without two offieers for daty witlı it. The period for detail is not longer than three years. Retirod otfiners, if acceptable to any Institution, may, on their own request, be detailed on this duty among the thirty authorized. Besides this number, any retired officer may arrange to serve at a College or University without devail from or reference to the Wir I cpartment: but unless ditailed umder section 129.5. Revised Statutes, such service will not entitle the institution to the arms, ete., provided by that section. No dedail is made for any Institution except upon an application from its proper representatives, nor is ans other so detailed, unless acceptable to the autloritiest of the lnstitution, who should make theji selection from the otficers available for this duty. Applications for otficers should be addressed to the Secretary of Wrar, and should duly certify the number of male students the College or CTiversity las the capacity to educate, and should also be accompanied by the last printed catalogue. Otheers of the army desiring a detail at Colleges or Universities may make application to the Adjutant Genera!, through the usuad military chanmels; theirapplications and the recommendations forwarded therewith will, if the ofticers are available, be furnished to such Institutions as may desire to make a selection.

Issue of stores, limited to the following, will be made, under scetion 1205 . Revised Statutes, by the Chief of Ordnance to any selected Institution upon its filing a bond in the penal sum of double the value of the property, conditioned that it will take good care of and sately keep aceombt for the same, and will, when required by the Secretary of War, duly return the same, withon thirty days, in good order. to the Chief of Ordnance L'nited States Army, or to such oflicer or person as the Sceretary of War may designate to receive it.
2 s-ineli rifed guns, wrought-iron, model

$$
186\} \text {, at } 450
$$

2 carriages and limbers, 3 -inch gun, at s.825,
2 gunners' haversacks, at $\mathbf{3} 3,35$,
4 lany:ards, at 10 cents,
2 priming wires, at 10 cents,
2 liandspikes, trail, at $=1$,
4 spunges and rammers, 3 -inch, at $\stackrel{i}{1}$.
4 sponere eovers, 3 -inch, at :30 cemes.
2 tobe-protelas at $\$ 1.50$.
4 thumbstalls, at 20 conts,
2 tompions, 3 -inels, at 30 cents.
2 vent-covers, at 40 (と・nts.
1 prmelalum hanass , B-inch,
1 perndulam hansse seat,
1 prolulum hausse poucla.

150 springliold "cadet" rill"'s. cal. .45, with appromlages, cife. at ats,
150) bayonet scabbards, stem, "coulet." at Sl wints.
$\$ 90000$
65000
( 70 40 20 200 400 120 300

150 waist belts and plates, at 50 cents, 7500
150 cartridge-boxes, cal. 45, at \$1.25. . . 18750
For practice-firing the following allowances of ammumition will be made ammally to cach of the various institutions, viz: 1,000 carbine metallic ballcartrikges, (al. . 45 ; 1,000 metallic blank cartridges. cal. 40,100 rounds blank cartridges for 3 -incly gun: 300 friction primers. This ammanition is issued upon requisitions, which should be forwarded to the Chicf of Ordnance by the presidents or superintendents of the institutions. See Wilitary Fechools, and Post Schools.

MILITARY COLUMN. - Among the Iinmans a column on which was engraven a Jist of the forces in the Roman Army, ranced by legions in their proper order. They haid another kind of Jilitury riolimen called C'olunina Bell'ra, standing before the Temple of Janus, at the foot of which the Consul tleflared war by throwing a javelin towards the raemy's comentry

MILITARY CREST.- $A$ common expression for the top line of a slope. The drawing shows how the defender (who. while standing near the military crest, uncovers only his shoulders and observés

the whole body of the assailant as he climbs the ascent) will, wn receding from the crest, place himself below the prolongation of the slope and lose sight of his climbing adversary. At the same time, he will receive the enemy's grazing fire as the latter ascends to the erest. See interior Crest.

MILITARY DECORATION.-A medal, cross of honor, ete. bestowed for distinguished services.

MILITARY DEPARTMENT.-A military sub-division of a country. The whole territory of the United States is divided into Military Departments, each being under the command of a general officer. See Geographical Dipartnents and ivirisions.
MILITARY DISCIPLINE.-The obedience to and exercise of all orders and regnlations which lave for their object the good government and management of a regiment or army. In fact, discipline may be detined as the perfection of order and regnlation in an army. To it may be attributed in the day of battle much of the success which has attended the arms of a nation. Withont it, an army becomos a rabble; and though bravary will do minch towards achieving suecess, it is by discoipline mainly that the object of a war can be ultinately attained. In the "Vited States service, the following regulations in this conuretion are observed : All inferiors are reguired to whey sirictly, and to exerute with alatrity and good faith the lawfal ordors of the superiors appointed oser them. Military authority is to be exarcised witlu dirmmess, but with kindness and justice to juforiors. J'unishments shall be strictly (onformable to military law. Suprotiors of every grade are forbidden to injure those under them by tyramical or (apricious conluct, or by abusive language. Courtesy among military mensis indispensable to discipline: respect to sipuriors will not be confined to abedience on duty, but will be extented on all oc easions. Deliberations or discussions anong any
rlass of military mern having the oljoret of converying praise or ernsiure, or any marl of apyrohation toWard their superiors or others in the military service. and all publications relative bo fransmelions but wern otlicers of aprivate or jursonal nature, whether nrws papar, pamplalet, or hamel-bill, arastrictly prohilsited. Su" liscintime.

MILITARY EXECUTION, The punishment intlict ed by the semberere of a ('ourt Dartial ; also the rave nerinig or destroying of a combtry or town that refuces to pay the contribution inticetol 12 pont them.

MILITARY FIRST PRINCIPLES. 'Thr |molily $\mathfrak{q u i n}$ ing for a moldier, to make him hardy, robust, aime cap-

 pater, for sum lougth of time, and with surd burden, as withoul irainine he would not be ahbe to do.
MILITARY FRONTIER. "1'he former mame of a marrow strip of lamd alonir the 'Turkish frontior of the Austro-lhangarian Emanere. It hata spectal military constitutions and formed a separate " (rown-lamel." Of late, how ever, the peentiar inctitutions of thas Mit itary Frontior habe been abolishes? portions of the territory have hera inoorporated witl adjoining provinces ; and since 1873 ther remaincher of the Nililary Fronfico, now ollicially termed tha Croblo-slivonie burder-land. forms, alosurg with slavomia and Croatia, a dependeme of the 1 hameraran Crown "lhw Constimtion, eivil amb military, is now accordinery similiar to that of the nther l'rowimen of the J Imatgarian part of the Empirc. "I'be area of tha Dilitary Frontier was about 7.500 square miles and jts ferpere lation in 1864 was 6 ofo, 300 . The breadth of the torritory one ${ }^{2}$ known muler this mame is eonsiderable towards the western extremity, lut diminishes to only a few mile at the castern. "lhe surface has an averatge elevation of $\quad$ pewards of 2,000 fent. All the impurtant rivers llow east warl. 'The climate is severe in the highands of the west but milal in the lower districtes fowarl Slevonia, Maize, wheat, oats, fruits, amd vergetables art the jrincipat probluctions. The Military Frontier owes its origin as a Crownlan I to the becessity of having a permanent body of defenclers on the borders during former wars, and esperially cluring uars wi ht the Tto..s. In the 15th contury the Austrians batd gamed from the Jurks certain trate of territory on the banks of the save and bambe. These tracts they colonized, making it, however, a condition that the coonnists must render military service against the Turks. Thus originated the Capitanate of Zengeg, during the reign of Mathats Corsinas. The Wraradin Frontice originated in the same manner in the 16 th , and the Panat Fronties in the 17th century. The Constitution of the Military Frontier, as it existed till 1878, has heen thus deseribed: The military stations along the fromtier sorve a threefold purpose-the defense of the comentry, the prevention of smuggling, and the prevention of the spread of contagious disease into the territories of the Anstrian Empire. The inhabitants of this Crown-land enjoy peculiar privileges. Their immiorant ancestors received only the tenuporary use of lands consigned to them: but in 1850 a law was passed making over the land to the oceupiers as their own property. This right of properiy dues not helong, however, to individuals, but to the f.umily in an unted sense. The oldest member of a family (called the Hauscater) is intrusted with the management of the land; his partner (the Mausmutter) ranks equal with him, and they each receise a double share of the profits for the year as recompense for the management of the estate. A family of this sort is called a border-house (firenzhaus). All who are able to bear arms are sworn to the servicu from their 20 th year. The soldier of the frontier. who is clothed as well as armed and supplied with ammunition by Govermment, finds it his duty not only 10 watch and proteet the frontier, but to preserve peace and order in the interior. and 10 go on foreigu service when repuired. Only the smadler
portion of the forces of the Dilitary lorentior is re-





 onos aroommodatiner twolve mon and a jo:njor willrar, has lewe instituted. Within this lime sre thre


 main a lanero ar slartor time at the quarantine fablis'aname, in order that all insondaction of dimane may lue jrrventerl.

MILITARY INDICATIONS. Thure are many juli-
 chabla' them to jurge of what they wish to know, as Clarly as if a detation picture of the roncony wert spretil before them. It is מreessary, thorefore, that -vory ofler.r and seldice should know how to mark

 roats and pabtaluens: onlere distinctive marks. the mambers of villettes, semtinels. fires, and tents of the ('nomy: the frequency and direetion of rounds, pat Irols, and reromonissancess; the mathre and time of sigmals by trmopet or alrum: the placiner of sienal posts; modsures of straw: bouglns broken off: the arrival of reinforcements: new uniforms: collowtoms of fisciness, beams, joists, ladders, boats. Wharn a rorps is watched on the march, the sions 10 observe are the (lepth and front of columns; the mumber of subulivisions; the sort of troops, infantry, cavalry, artillery, trains: the fuickness and dircetion of the matrela; the bueght of the dast: the retlection of arms; the momber of the thankers and the ectairenrs. When an army realy for batile is observed, we should particularly note the mumber of its lizes, thar extont. the comprosition of the troops in column or in line of battle; the caliber of pieces; their position relative to eavalry and infantry; the numbar of skimishers: their maneuvers: the concentration of forces or artillery on such a point, flank marches of one or many corps. If troogs are followed on their march, we note the tracks of men and horses, those made by wherds, cattle, and leasts of burden; the relative positions of these iracks: whether they are regnlar and preserve an invariable order; whether the places where they stop have little or much space betwern them; whether the route passed over is covered with remains of animals; whether the skletons of the horses are lean and sore; whether the ground is bloody: if graves have been freshly made, whelbor some indications may not show them to be for supcrior ofticers; whether the conntry has heen devastated; whether the entrails of beef, matton, or loorses are secn: whether the fires are recent: whether they are numerons, and khow mueh or little sahes; whether bridges are broken, and in what parts: whether the inhabitants of the country are anxions, sad. hmmble, inmated, or satisfitd. Sita Signes.

MILITARY JURISDICTION.- Military juriadiction is of two kinds: first. that which is ronferred amdletined by statute : scomd, that which is dorived from the conmon law of war. Dinitary offenses under the statute law must be tried in the manner therein directad; but military offenses which do not come within the statute mist be tried and punisherd umbler the common law of war. The character of the courts which exercise these jurisdictions depents upon the local laws of each partieular country. In the armies of the lnited states tha firw is exercised by (ourts. Martial: while cases whirl do not come within the

Rules and Articles of War." er the jurisdictioneonferred by statute on Comrts-Marlial, aro triuddy military commissions. Scr Jurivdirtion.
MILITARY JUSTICE.-That sueces of justice which prevals in the army, and which is administered by military tribunals in accordance with the Articles of

Wirr. In Russia justice is freununtly obtamed through what is known as the Court of Ilonor. In the linitad States the Articles of Wiar provicle that any ofticur Who thinks himself wronged by the commanding Officer of his regiment. and upon due application to such Commander, is refused relress, may complain to the General commanding in the State or Territory where such regiment is stationed. The General shail examine into said complaint and iake proper measures for redressing the wrong complained of : and he shall, as soon as possible, transmit to the Department of Wara true statement of such complaint with the procerdings liad thereon. Any soldier who thinks himself wronged by any ofticer may complain to the Commanding Officer of his regiment, who slatll smmmos a Regimental Court-Martial for the doing of juslice to the complainant. Either party may appeal from such Regimental Court-Martial to ia General Court-Martia! ; but if, upon sueh second hearing, the appeal appears to he groundless and vexations, the party appealing shall be punished at the discretion of said General Court-Martial. See Articles of Wor. $\boldsymbol{i}$ to 105, Conert of Momor, and Courts-Martial. MILITARY KNIGHTS.- An Institution of Military Kniglits at Windsor, England, formerly called Poor Kinights." which owes its origin to Fdward 11I., and is a provision for a limitsd number of old officers. These othcers consist of a Governor and 12 knights on the upper fommation, and 5 on the lower, together 18, and are composed of officers selected from every grade, from a Colonel to a subaltern, chiefly veterans, or on half-pay. They are allowed three rooms each in Windsor Palare, and 2 shillings per diem for their sustenance, besides other small allowances. Sce hnights.

MILITARY LAW.- Cnder the Constitution of the Inited States, Congress is intrusted with the creation, govermment, regulation and support of armies; und all laws passed by Congress for those purposes are military laws. Congress, being also invested with power "to make all laws which shall be necessary and proper for carrying into execution the forecroing powers, and all otber powers vested by this Constitution in the Govermment of the Cnited States, or in any deprartment or ofticer thereof," is supreme in all military matters. The oflice of Commander-in-Chief, intrusted by the Constitution to the President, must lave its functions first letined by Congress. Snch military powers only as Congress confers upon him can be excreised. Excepting that, bing the Commander-in-Chief under the Constitution, he of course exureises all authority that Congress may delegate to any military commander Whatever, by reason of the axiom that the power of the greater includes that of the less. Nany of the functions, thas devolved by the Constitution on Congress, in most governments belong to the Execoutive. The King of Great Britain makes rules am! artictes for the government of ammies raised by him with the consent of Jarliament. Congress, with us, both raises and groverns armics. In army raised in Great Britain is the king's army ; with nis it is the Army of the United States. These most essential distinctions shomble canse Congress to give more of its attention to the army. Jt shond be borne in mind that our ribes for the govermment of the army have beron borrowad atmost entirdy from Great Britain ; that the relation of the army to the people is in the two fombtries entircty distinct ; Herefore, that rules ndapted to an aristocratic govermment nay not be (entirnly suited to democratic forms.

Hartiat law must be distinguisled from hoth military law amd military gevernmont. The last henotes the: rule of a conque red or insurmectionary district by military anthority. white military baw is that brancoly of the law whicli regords military liveriplinf amel the governmotnt of persums employed in the military serVior. Martial law, says kimi, supersedes and suspourls the coivil liw, bit military law is superaddeal and suburdinate to the civil law. It will be seren that
martial law is in the highest degree arbitrary and capable of abuse. It may be clecread at will by competent military anthority, and the only rule as to the propriety of its'being established is the test of necessity. The Duke of Wellington, from his place in the English House of Lords, deprecated its enployment, except mader the most urgent pressure, and then only with great modifications. In a celebrated CeyIon case the late Lord Chief-Justice Cockburn was very reluctant to admit that civil law could be superseded by Coart-Martial, except where, as in India, the military government was absolute; but in the same case Blackburn. J., laid down the dictum universally acrepted in the United States, that martial law is derived from statutory provisions and founded on paramount necessity. Thus the question as to its neture is closcly connceted with the manner of its exercise, and this again with the rexponsibility for such exercise. As to its extent, we may refer to a liccision of the I.S. Supreme Court in the case of Neal Dono v. Bralish, Johensm. Octobur term, 1879. It was held: that an ofticer of the United States, while in service in in encmy's country, was not liable to an action in Civil Courts for acts done in pursuance of a Superior's orlers: and when any portion of an "wemy's country was in the military possession of the United States, the manicipal laws were to be continued in force and administered through the ordinary channels for the protection and benefit of the inhabitants aml others not in military service, but not for the protection and control of army onicers or soldiers. ln the Supreme Court of Missouri it has been beld that the det of Congress making the order or authority of the President a good defeuse for acts done or left undone during the Rebellion, is unconstitutional. The whole subject of the relations of the civil and military anthorities in time of war, and especially the constitutionality of Aets passed distinctly as war measures, is of great interest, and, while much may be res judicuta, there are many points not yet clearly determined. See Martinl Larr.

MLITTARY NECESSITY.-Military necessity, as understood by mollern civilizen nations, consists in the necessity of those measures which are indispensible for securing the ends of the war, and which are lawful according to the modern law and usages of war.
It admits of all direct destruction of lite and limb of remed enemies, and of other persons whose destruction is incidentally unaroidutbe in the armed contests of the war; it allows of the eapturing of every armed eneny, and every paremy of importance to the bostile government, or of peculiar danger to the captor ; it allows of all llestruction of property, and obstruction of the ways and channels of traflic, travel, or commonication, and of all withlolding of sustenance or means of life from the enemy; of the apmopriation of whatever an enemy's crimtry affords necessary for the subsistence and safety of the Army, and of surla deception as does not involve the breaking of goorl faith, either positivaly pherloged, regarling agreements entered into during the wir. or smpposed by the modern daw of war to exist. Men who take up arms against one anotler in public war do not cease on this aceount to be moral beings, responsible to one another, and to God.

Military necesisity does not admit of ermelty, that is, the infliction of sutfering for the sater of sultering or for revenge, nor of maming or wounding, exceje in fight, nor of torture to extort confessions. It lous not athit of the nse of poison in any waty, nor of the wantun flevastation of al distribl. it admits of deception, but thisclams acts of perlidy ; and, in general, military necessity does not inelude any act of lostility whileh makes the retura to peatee unaceessarily difficult.
MILITARY ORDERS.-Redigions Associations whiclt arose from a mixture of the relirious enthusiasm and the chivalrous love of amos which almost equally formed the reharacteristics of medieval society. The first origin of such Associations may be traced lo the
necessities of the ('hristian resilcmes of the Holy Land, in which the monks, whone time duty hat berin to surve the pilgrims in the hospitat at ilerasalem. were compelled, by the mex.ssity of self-thefornse, to assume fhe character of soblieers as wall asof monks. The Order of the 'Tomplars wats of similar origin. Those of Alemotara and Calatrava in spain had for their immediate ohjoct the defense of their country ugainst the Moors. 'These Orders, are wedl as that of Avis in loortugral, which was institated with it similar virw, followed the ('istreman rale, and ald thre difforel from the Templars and the Kinghate of N't. Jolm in being permitted hy their institute to marry once. The satme privilere was angorad in the Savoyard (order of Kinghts of St. Haturice and the Flemish order of si. Hibert. On the cemtrary, the Teatonic Kinights, who had their origin in the Crusades, were bound by an absolute vow of dhastity. With the varying comditions of society, these Religious Associations have at varions timest beraboblishod or fallen into disuse ; but most of them still sulnsist in the form of Orders of Kinighthood, and in some of :hem, attempts have recently been made to revive, wilh cortain moditications, the menastic character which they ariginally possessed. Sere ordm.
military pits. - Rows of pits in the form of in verted cones or pyramids made bofore a work, and having astrong palisatue or stake in the cemter of dach. To prevent the emony's rillemen from making use of them, they should be made either too deep or too shallow, that is, dilleer 8 feet or $2 t$ fert deep) The diameter of the pits at the top is 6 feet, and 1 foot at the bottom; that of the shallow pits, 3 feret sopuare at the top, and not more than 2 feet deep. The usual position for military pits is lecyond the comnterscarp, and principally opposite the salient angles. They wouk form an obstacke to cavalry, Ghe man can construct two deep pits per day in ensy soil, and ten shallow pits under the same circumstances.

MILITARY POLICE.- $\boldsymbol{A}$ few stendy soldiors w]o arce chosen from a regiment or regiments to main tain order and regularity within thr lines of a camp or garrison. They are under the superintendence of the lrovost-hergatat, and their number varies ace cording to circmastances. W"hen ondaty, they wear a batge round their riont arm marked M. P

When an army is in the field, it is reeommended that a troop of poliere should be attached to carh division, and one to the head-fuarters of atela amy corps, to prescrve civil order as distimet from mili tary diseipline. This body of men to be untar the Urovost-Marshal, who, during war time, is vested with exceptional powers.
MILITARY POSITION. - An oflicer, to be able to select a suitable position for an army, should know the distanece taken up by troops in order of lattle; the tactical combinations of the difierent arms, und their placing for mutual support (o derive the greatest advautages from their respective action in battle, the qualitications of each for the defensive amd offerssive, and the nature of the ground best adaptided to their mancuvers. In sclecting a position for an arnyy, regard must be had not only to the ground in the inmediate vicinity of the field of batter but also to the mature of the surrounding country in its relat tion to the position to be chosen; whether the latter lends itself in every respect to ulvintage to the parlirular gronnd in question.

The following are the principal points to be lacla in viow in selecting a position:

1st. The extent shondad be in proportion to the number of troops in hand to sermpy it: its general direction being suelt as to phesent an unbroken front thronghout, from which a strong direct fire may be brought to bear upon all the approaches leading to it. If too extemed, weak points will have to be teft in the line; if too contracted, all the trongs available cannat be placed to hriner their tire to lume upon tha enemy. In allowance of one thousand yards for

- vory dive thonsand to six thousam! som of all arma will kronerally be marle. This provides for two linuer and ateserve. ('avalry in line requires onne yard to vith filo, infantry two foret. and artillery fromitighty to one homirmi aurl ten yards for each lattery of six pioces, dropording upon the intervals. Fevery jusition slamblathe at lepth of at least tive hamilroid to one thomsamblyards, to permit the freo movernornts of troops of atl arms. No position slanald be takero U1) Which acoes not present ample means for retrost, allowing the troogs to be marehed off the field withe out confusion from crow ling.

21. Liond commanications should exist through ont the whole extent of the josition, permitting the trongs to move frecly from joint to point to reatho forces the line whore mecessary; good dibunches tos the fromt, to allow the oflensive te be promptly assument; goud roads leading to the rear, to facilitate the safe withdrawal of the trocpes in ease of disastor. As a gassive defense will never load to any derisise results, a position should nlways present cevery facility neressary for the army to assmon the offensive at any favorable period of the battar.

Bd. Good conmmand over the ground by which Whe ancmy must apmroach, thas providing for a trong, direct fire, and facilitating slaeltar for the roups, which, if not aftorded lyy the natural foratures of the ground, should hesupplicol by this constrace tion of the Inest protections possible under the aircumstances.

4th. There should we natural obstructions along the front of the poxition within effective rille range, as a marsh or at stream. These surve to braik the enemy's line and delay him in his advance at a time when the most damage may be indicted. If those olstacles donot exist, the weak proints of the line should be strengrthened by ulattis, slashed timber, entanglemonts, ctce. The obstaches shoulal not, however, be of a nature to alford shelter to the cnemy, but simply canse a cleday in his advance. A pond, marsh, or a narrow, deepstream, are good examples of what is most favorable to fulfill this comblion. An obstruction parallel to the front. and betwcen one hombled and three hondred yards from it, is very favorable and adds to the strength of a position, provided always, that it does not afford shelder to the camemy's troops. Auy position with olbstacles perpendicular to the front, as hills, wooded gromed, cte., should be avoided, as they allorel shedter for the enomy and conceal his movements. If, however, these ohstructions cease some tistance in atvance of the line, they are not so unfavorable. Any position along a small stream flowing into the suat or a large rivir. wonld be a desirable one, as it presints the features of an obstrucerion in the frome, and at thas sume time a strong suphort for one flank.

5th. Strength on the dianks is particularly important at the prosent time, as. with the improvid weapons, a front attack will not oflem many chances of success without severe dosses. Measuris mmet then be taken to turn a llank und thus render the position untrnable, at the same time having atrong force in front to prevent the anemy from reanforeing the tlank attacked, or extending his line to more: the turniner movement. If the flanks donot rese on some natural obstacles, as a village, extended marsh, an unforlable river, ctc., they must be strengthemed by all the moans at hand, as fortifications, acconmulations of troops. ete. The thanks sbonld not he commambed by any ground in the ficinity, nor should there be facilites of any kind in the neirhborhood which wonle allow the enemy to approncla unseen.
thth. The location should be leealihy, and the requisite wood and water should be near at lanel and rasy of aceess.

Th. Conditions two and four canno: be satisfied at one and the same time. In case an active defense is intended. condition ton will govern, in order to have erood delmerkex by which to fall upon the comemy of the proper time. For al passive defense, which is
generally imposed when the forces are muc! inferior to the enemy in numbers or discipline, the thirel condition shoule? be fulfilled.

In a flefensive position, if the flanks are well protected, the concave front is the strongest; for the enomy while moving forward to the attack exposess both inis flanks to a strong tire of artillery posted at the extremities of the line. If, however, the flamks are not strong naturally, or are liable to be turned, it convex front is desirable; for it gives short lines of communications, allowing supports to be moved quickly to either wing when threatened. The general case will be a combination of the two above mentioned, presenting alternately salients, reentering angles. and straight lines joining them.
MILITARY POSITIONS.- lsolated positions, ofcupied by small detachments, for the purpose of guarding particular points which are of importance during the operations of a campaign. or for the longer or shorter period. These positions are frequently villages, farm houses, ete. The officercharged with placing a village in a defonsive attitude, should first proceed to a careful examination of its environs, for the purpose of ascertaining what natural obstarles, and what facilities, they present to the approach of the enemy. Very slight accidents of ground may be gratly improved by trenches of trifling depth, to phee troops speedily under cover. When the surface is undulating it should be particularly examined with this view, the othicer taking a position at different points and directing men to approach him, and occasionally stooping to observe how much they will be masked from a fire at varions heights above the surface. The side slope of a ridge from the enemy will be the best position for the trench to obtain sperdy cover, proviled the gromad in advance of it can be well swept from its crest. The next points to be considered are the walls. inedges, etc., of enclosures, which may be turned to a uscful account for the defense, or which might serve as a shelter to the enemy. After having finished this examination, he will next proceed to lay out his works; arranging their plan so as to draw every possille advantage from the natural and artificial obstacles at hand, to render certain points inaccessible, and to procure a shelter for troops snd flanking arrangements by means of the walls, hedges etc. If there should be danger of an attack before these works can be completed, the roads leading to the village, by which the enemy might approach, should be broken up; and cannon slould be placed in the best position to guard the most accessible points. The streets of the village should by barricaded, and the houses and walls, in the vicinity of the barricades,
shorld be placed in a defensive attitude. In taking these preparatory measures against a sudden attack, any means that will aford the troops a cover from the enemy's fire shonld be resorted to ; bales of cotton or wool, casks setside by side, and fillerl with earth, piles of timber, etc.. lave been used with great success under such circumstances. As the various arrangements called for under such circumstances will demand great activity on the part of the garriom, care should be taken to distribute the work among the men most conversant with it, placing the men who have any skill in the handling of tools at preparing the wooden and stone defenses, and common laborers at throwing up the earthen works, etc. The works that surround the village should be placell so far from the houses that the troops shall not be incommoded either by the splinters occasionell by the enemy's artillery, or by the flames and smoke, should the houses be set on fire. The communications from all the exterior defenses to some central rallying point shonld be carefully arranged, to aroid confusion in retreat, and check the pursuit of the enemy. The garrison should be matle perfectly familiar with them and with the resources they may afford. incase of need. Short-cuts should be made for this purpose by breaking through garden walls, the party walls of houses. etc., and hy the erection of barricades at all suitable points to make a stand.

MILITARY POST. - A Military "Station" is synonymous with Military "Post." In each case it means not an ordinary residcace, having nothing military about it except that one of its occupants holds a military commission, but a place where military duty is performed or stores are kept or distributed, or something connected with war or arms is kept or done. The interchange of ofticial compliments and visits between foreign Military or Naval Ofticers and the anthorities of a Military Post are international in character. In all cases it is the duty of the commandant of a Mlilitary Post, withont regard to his rank, to send a suitable officer to offer civilities and assistance to a vessel-of-war (foreign or otherwise) recentarrived. After such offer it is the duty of the Commanding Officer of the vessel to send a suitable ofticer to acknowledge such civilities, and request that a time be specified for his reception by the Commanding Officer of the Post. The Commanding Otticer of a Military Post, after the usual offer of civilities, is always to receive the first visit withont regard to rank. The return visit by the Commanding Officer of the Military Post is matle the following day, or as soon thercafter as practicable. Whan a Military Commander officially visits a vessel-of-war he gives notice

Abralam Lincoln, Fort. J. T. Dept. Dak.
Adams, Fort, R. I., Dept. East.
Alcatraz Island, Cal., Dept. Cal.

* Andrew, Fort, Mass., Dept. East.
Angel Islancl. ('al.. Dept. Cal.
Apache, Port, Ariz., Dept. Ariz.
Assinaboine, Fort. Mont., Dept. bak.
Barrancas, Fort, Fla., Dept. bant.
*Baton Rouge Barracks, La. Itpt. hiasi.
Bayarel, Fort, N. M., Jept. Mo. Benicia larracks, (al., Dept. Cal.
Bemett, Fort, I). T. . Dept. Dak
Bidwell, Fort, ('al., inept. Cal.
Bliss, Fort, Trxas, Dept. Mu.
Boise Barracks, Idaho, Dept. Columbiat.

Bowie. Fort, Ariz.. Dept. Ariz. Brady, Fort, Mich.. Dept. East. Bridger, Fort, Wyo., Bept Platte.
Brown, Fort, Texas, Dept Texas.
Buforil, Fort, I. T., Dept. Dak. Canby. Fort. Wash. T., Deppt. Columbia.
*Carroll, Fort, Mid., Dept. East.

* Cuswell, Fort. N. C., Dept. East.

Clark, Fort, Texas, Dept. Texas
*(lark's Point, Mass., Fort at. Dept. East.
*Clinch, Forl, Flis., Debt. Eant.
Ceur d'Alene, Fort, Walke, Dept Columbia.
Columbus Barracks, Ohio.
Colmmbus, Fort.N. Y. H. Inept. Bast.
(onclon, Fort, Tixas, Dept. Texas.
*Constitution. Fort, N. II.. Dept. East.
Craig, Fort, N. M., Dept. Mo
C'unmings, Fort, N. N., Dept. 110.

Custer, Fort, Mont., Dept. Dak.
D. A. Russell, Fort, Wyo., Depit Platte.
Iavids Island, N. Y
Davis, Fort, Texas, Dept. Texas.
*Delaware, Fort, Del., Dept. East.
Donglas, Fort, Utah, Dept. llattc.
*Duteh Island, R. F., Fort on, Dept. East.
Elliott, Fort, Texas. Dept. Mo.
Elliw, Fort., Mont., Dept. Dak.
*Finn's Point, N.J., Battery at, Dept. Last.
*Foote. Fort, Mld., Dept. East.
Fref Stecle, Fort, Wyo. Dept. Platte.
*(Gaines, Fort, Alat., Drph. Bast.
(anston, Fort, (inl., Jept. C'al.
(ibhem, Fort, hat. T., Dipt. No *Gorges, Furt, Mr., Dept. East.
(irant, Fort. Ari\%, Dent. Ari\%.
*(iriswodd, Furt, ('min., l)ent. Enst.
Inale, Fort, I). T., Dept. Dak.
Ialleck, Fort, Nev., Dept. Cal.
Hamilton, Fort, N. Y., Dept. Bast.
Hays, Forrl, Kima, Diltt. Mo.
Huachaca, Port, Ari\%, Мッрt. Ari\%.
 EMal
Jackson Barracks, Lain, Inpt. East.
*Jacksm, Fort, (in., Dept. East.
-Jackon Poort, Lat., Dept. Dast.
Jeticrem Barracks, Mo.

* Jeflerson, Fort, Fla, Dept, Fast.
*Johnston, Fort, N. (C., Dept. East.
Keogh, Fort, Mont., Dept. Dak.
*Key 11 est Barracks, Fla., Dept. East.
Flamath, Fort, Oreg., Iejpt. Columbia.
*Knox, Fort, Me., Inept. East.
*Lafayette, Fort, N. I. II., Jept. East.
Lapwai, Fort, Idaho, Dept. Colimbia.
Jaramie, Fort, Wyo.. Dept. Platte.
Leavenworth, Fort, Kans., Dept. Mo.
Leavenworth Military Prison, Kans.
Lewis, Fort, Colo. Dept. Mo.
Little Rock Barraeks, Ark.,Dept. East.
*Livingston, Fort, La., Dept. East.
Lowell. Fort, Ariz., Dept. Ariz.
Lyon, Fort, Colo., Dept. Mo.
Mackinac, Fort, Mich., Dept. East.
*Macomb, Fort, La., Dept. East.
*Macon, Fort, N. C., Dept. East.
Madison Barracks, N. Y., Dept. East.
Maginnis, Fort, Mont., Dept. luk.
Marey, Fort, N.Ml., Dept. Mo.
*Marion, Fort, Fla., Dept. East.
Mason, Fort, Cal., Dept. Carl.
*Mcclary, Fort, Me., Dept. East.
Nebermit, Fort. Nev.,Dept.Cal.

Mallowell, Fort, Ari\%, 1)'pt Ari\%.
MrHonry, Forst, Mul., Dept. Fast.
Mremesili, Fiore, 'Texas, Dept. 'firxas.
Mrkinny, Fort, Wyo., Dept Platt".

*Millin, Fort, Pa, Dept. Bant.
Missoula, loort, Mont., ()ept. Dak
Mogave, Fort, Ari\%, Dept. Ari\%.
Monror, Fori, Via., Dept. Past.
*Montgomery, Fort, N. I', Dept. bast.
*Morgan, Fort, Ala., Dept. Bast.
*Moultric, Fort, S. ('., Depl. East.
Mount Viernon Barracks. Aa. Dept. East.
Myer, Fort, Va.
Ni"wort Barracks, Ky., I) (ept. Pasl.
Niagara, Fort, N. Y., Dept East.
Niobrara, Fort, Neb., Inept. 1’atte.
Omaha, Fort, Neb., Dept Platte. *Ontario, Fort. N. V̌., Dept. Exist. P'embinal, Fort, I). T., Dept. lak.
*Phemix, Fort, Mass., Dept. East.
*Pickens, Fort, Fla., Dept. East.
*Jike, Jort, Lal, Dept. East.
Plattshurg larracks, N.Y. Dejpt. East.
*Topham, Fort, Mc., Dept. East.
Poplar River, Camp. Mont., Drpt. Dak.
Porter, Furt, N. Y., Dept. Eas.
Prehle, Fort, Me., Dept. Jast.
Presidio of San Franeisco, Cal. Dept. C'al.
*Y'blaski, Fort, Ga.. Dept. East. Randall, Fort, I.T., Dept. Dak. Reno, Fort, Ind. T., Dcpt. Mo. Riley, Fort, Kans., Dept. Mo.
Ringgold, Fort, Texas, Dept. Texas.
Robinson, Fort, Neb., Dept Platte.
Su Antonia, Texas, Dept. Texas san Diego Barracks, (al., Dept. Cal.
*Sandy Hook, N.J., Fort at, Dept. East.
*Scammel, Fort, Me., Dept. East. Sehuyler, Fort, N. Y., Dept. Eust.
Selden, Fort, N.M., Dept. Mo.
*Sewall, Fort, Masi., Dept. East.
Shaw, Fort, Mont.. Dept. Dak.
*Ship Isfand, Miss.. Dept. East.

Silney, Forst, Noll I)cpt. Platte. אill, F'ort, lat. T.. Vem. No.
 Sndling, Fort, Alim., Delt. Dak. Sookame, Fort, Wash. T., Dejet. (o)
"Standish, F'urt, Mass., Jopr. East.
Stimton, Fiort, N゙.M., Inpt. Mo. Stevens, Fort (oreg. Dept. Coblumbia.
Stockton, Forrt, Texas. I)cpt. Texas.
Sit. Fraucis Barmacks. Fla.. Dept. East.
St. I'hilip. F'ort. Iar. Inepr. Jist.
Sullivan, Fort, Me., Jupt. East Sully, Fort, 1). T. Dept. Inak.

Supply, Fort, Ind. 'T, Irept. Mo.
*Taylor, Fort, Fla., Jept East.
Thomas, Fort, Ariz.. Ifept. Ariz.
*Thornjargh, leort. C'tuh. Lejet. Platte.
Tottrin. Fort, D. T., Dept. Dak.
Townsend, Fort Wash. T., Dept. (columbia.
Trumbull, Fort, Conn.. Dept. East.
Uneompahgre liver, Cantonment on, Colo, Dept. Mo.
Union, Fort. N. M., Iept. Mo.
Vancouver Barracks. Wash. T., Dept. Columbia.
Verde, Fort, Ari\%.. I)ept. Ariz.
Wadsworth, Fort, N. Y.. Dept. East.
Walla Walla, Fort, Wash. T., Dept. Columbia.
Warren, Fort, Mass.. Dept. East.
Washakie, Fort. Wyo.. Dept. Platte.
*Washington Barracks. D. C., Dept. East.
Washington, Fort, Md., Dept. East.
Wayne, Fort, Miclr., Dept. East.
West Point. N. Y., L. S. Military Acadeny.
Whipple Barracks, Ariz., Dept. Ariz.
Willets Point. N. Y.
Winfield Scott Fort, Cal., Dept. Cal.
Wingate, Fort, N. M.. Dept. Mo.
*Winllurop, Fort, Mass., Depr. East.
*Wolcott, Fort. R. I.. Depr. East. Yates, Fort, D. 'T.. Dept. Dak.
of his visit to the vessel previously thereto, or sends an officer to the gang way to announce his presence, if sueh notice has not bern given. He is then received at the gangway by the Commander of the vessel, and is accompanied there on learing by the same otticer. The officer who is sent with the eustomary offer of civilities is met at the gangway of a vessel-of-war by the Officer-of-the-Deek: through the latter he is presented to the Commander of the vessel, with whom it is his duty to communicate. A vessel-of-war is approached and boarded by Commissioned Otticers by the sturbourd side and gangway, when there are gangways on each side. In entering a boat the junior moes first and other otticers according to rank; in leaving a boat, the senior goes first. The latter is to acknowledge the salutes whichare given at the gangway of naval vessels. Naval vessels fire personal sulutes to efficers entitled to them when the boat containing the ofticer to be saluted has cleared the ship. It is an ae-
knowledgment for his boat to "Iie on har oars" from the first until the last gun of the salute, and for the officer saluted to uncover, then at the conelusion to "give way." The exehange of official visits betwern the Comnianding Officers of a Post and vessel opens the door to both otricial and social eourtesies anmeng the other offlcers.
The foregoing list comprises the Military Posts occupied hy troops of the Tnited States on the 1st of Jannary, 1884. Those not garrisoned are marked *.

MILITARY PUNISHMENT.-In a military sense, the excention of a sentence pronounced by a Court Martial upon any delinquent. The Romans punished crimes cominitted by the soldiery with the utmost rigor. On the occurrence of a mutiny, every tenth. twentieth, or hundredth man was sometimes chosen by lot. bnt generally only the ringleaders were selected for punishment. Deserters and seditious persons were frequently, after being scourged,
sold for slaves, and orcasionally the offencier was made to lose his riglit laad, or was bled nearly to death. Among the nations of Westem Europer, t'ie punishments for military offenses were, till lately, no less severe than they were among the Jomans. Besides the infliction of a certain number of lashes with cords, solliers convicted of theft, marauding, or any other breach of discipline which wis not punishable with death, were sentenced to run the gantlope. In Russia the knont was extensively nsed. (See Knout.) It is often necessary to punish to maintain discipline, and the Rules and Articles of War provide ample means of punishment, but not sulticient rewards and guards against errora of jurdgmont. In the French Army degrading panishments are illegal. but soldiers may be confined to quarters or deprived of the liberty of laving the garrison; confined in the ghard-room, in prison, or in dungeon; required to walk or to perform hard labor; and officers nay be subjected to simple or rigorous arrests. Every officer who infliets a punislment must acconnt for it to his superior, who approves or disapproves, confirms, augments, or diminishes it. If an inferior is confined to the guard-room, he cannot be liberated except upon application to a superior. Any officer who lias been subjected 10 punishment must, when relieved, make a visit to him who ordered it. The French Code has, in a word, been caraful to provide for both the security of its citizens and the strength of antliority. The panishments established by law or custom for $\mathrm{L}^{\top}$. A. soldiers" ly spmence of Court-Martial, are embodicel in the Articles of War. (See Artirles of War.) It is regarded as inluman to punish by solitary confinement of confinement on bread and water excecaing fourtecn days at a time, or for more than cightyfour days in in year, at intervals of fourteen days.

MILITARY REGULATIONS.-The rules and regulations observed in one uniform system, and by which the discipline, formations, field-exercises, and movements of the whole army are directed. See Lrmy Regulutions and it rticles of Ilter.

MILITARY SCHOOLS.-Establishments for the education of officers, nou-commissioned officers, and mon of the army. In the United States, schools are (stablished at all posts, garrisons, amd permanent camps at whicla troops are stationed, in which the enlisted men are instructed in the common English branches of education, and especially in the history of the United States. The Secretary of War sletails such othecers and enlisted men as may be necessary to conduct them. It is the duty of every post and garrison commander to set apart a suitable room or Fhilding forschool and religions purposes. The Enited States Military Acmdemy, the Artillery Schonl, and the School of Application for Cavalry and Infantry are discussed in detail under the appropriate heads.

The military schools of foreign countries deserve considurable attution, especially those of France, where a military commission is one of the best scholastic prizes looked forward to. In France no attempt is made to impart general education at the military semiuaries: a boy is required to have a thorongh general knowledge before he cun be admitted to these institutions. being open to maversal compertition, and being the only channel-or noarly so-10 the hest employment under the state the great military selools ly the ligh stambard repuired for them, give great impetas to arneral "ducation thromgont the empire amd tho lyeres, or public schools, ndapt their course of instruction tosthe antiviputed competition. In the army, two-thirds of the line commissions and one-third of those for the seientifie corps are riven to nom-onmmissioned onlicers, lut very few of these rise beyond the rank of Captain: the remaining commissions in the line and scientitic corps, and all appointments to the Statf, are given by competion after it carcfal course of proferscional wluceation. The randidates in open competition are placed aceording to
merit cither in the lnfantry School of St. Cyr or the celchrated Polytechnigur: at looth colleges they lave the right, if ther newl it, to partial or entire state support. From the srhool of St. Cyr the more promising pupils pass to the Niaff School, and thence, af ter a thorough conrse, to the Fiat Majeur of the army; the remaining students pass as subalterns in. to the Line. The pupils of the Polytechnique, which is entered aftor the age of 17 years, have annually about 160 ralmalbe prizes open to them. The first 30 to 40 cundidates usually select civil employment under the state, such as the "ponts et chansées;" those nest in merit rhoose the artillery and engineers. and pass through a terhmical course at the school of Application. The remaining students either fail to qualify and leave the school, or have to content themselves with commissions in the line, subordinate situations in the government. civil or colonial service, or they retire into civil life altogether. In actual service there areschools for tho men, who are also tallght trades and singing. The standard of education imong French soldiers is far ligher tlan among their English brethren, as the conscription draws the men fron- all classes of socicty.

The Prussian system of military education differs from that of France in that competition is but sparingly resorted to: and the object is to give a good general and professional education to all the ofticers, rather than a specially cxcellent training to a selected few. Aspirants for commissions must enter in the ranks, and within six months pass a good examination in general and liberal knowledge; if however. the candidate has been edurated in Cudet Housewhich is a semi-military school for youths-and has passed properly out of it, this examination is dispensed with. After some further service, the aspirant goes for nine months to one of three "Division Schools", where he completes his professional education. If he pass the standard here required, he is eligible for the next vacancy, but cannot be commissioned unless the officers of the corps are willing to accept him as a comrade. The Artillery and Engineer hchools do for those services what the Division Sclools do for the line. The culmination of Prussian military education is the Stalf School, open to competition for all the officers of the army, and presenting the highest prizes in the profession. In all the schools, the candidates study at the expease of the state, or receive great anxiliary grants.
The Austrian system is very elaborate, and commences at an early age; boys intended for military service leginning their professional almost contem. poraneously with their general edncation. There are schools for training for non-commissionud ofticers and for officers, and senior departments for imparting more extended instruction to both classes. (andidates for appointment as non-commissions $\}$ officers pass by competition through the lowner honses, where they remain till 11 years old: the upperhonses, which detain them till 15 ; and the school companies, whence, after actual ajprenticeship to service, a few pupils pass to the academies for aspirants for commissions, and the others are drafted into the service is non-commissioned aliters. For oflicers, boys are pledged to the servire lyy their parents at the age of 11 , when they are placoel in Cadet Schools; ifter which the state takes charge of them. At about 16 the boys pass, according to tualification, to the line or sciontific corps acandemies, and fonr years later into those services themselves. Thes young otherers chance of entering tha State Seloool-and therefore the Stall-depends upon his platce at the tinal acadenice xamination. The competition observed throughont the course of military education is satd to impart erreal vigor to the tuition.

In the balian army thesystom so mearly approaches that of Wrance that a separate deseription is moneressary. It need only he stated that the educational status of the lalian ollicers is considered high. In
 1. Thuse for tha edaration of the wilier.rs alroaty in the serviter, as the senff" rollege atml the costablistimont at ("latham for traning vagincor willowrs.

 Muskethy. 3. Sidomis for tha profucsjonal ednea-



 instruction providal for their sons or orphatns, ats at
 beyr.s.
MILITARY SCIENCE. - War in luth is seirnopand an art. All investigations which here for their ohjoect thedalermination uf the orreat principhes whichshonda govern a facmeral in condumting his military "preafions: all analyses whid are mado fo show the im-
 campatign or battle, athd romparisons made with other campaigns amd hattles: all deductions and formations of rales whiclo are lo be nsed in military operations: all these belomes to the " Sormene of Ware." The pratetionl application of these groat principles and males belong to the " irt of $H$ ar."
bathescimet of war as in the other fheysical
 thourg the number of known facts issteadily ineratsing the momber of general principles upon which the theorien of the seience are based, is roonstant, if mot decreasing. Thase general principles atre deduced by a close and critical examination of such methods of
rowlanged. piraleral, lamod, or given away; and no




 any righs, tillo, or interast thorerin: but tho samemat
 of the I nited Sitatres. eivil or military, and therompon

 any surcla clothres, arms, military ont fits, or accuntre. minne by any puraon mot a solliar or oflicer of tho
 hartcr, "xchlanese, pledere, lonan, or aift.

MICITARY SURGERY. Rositricterl is its rigorons signilication, Wilitary surgrry is thr surgioal practice in armias; bist in ita bromid and ordinary acomple ation (anbratecs many othor branchose of art eomp.rehowding the practioc of incelirine, sanitary prostur. tions, hospilal administration, anlmanores, reco.

The military surgeon must not only be a skillful physician ant! surgron, but he mast have faronsitnfion sulliciently strong tos resist the fationces of war, and all inclemancies of wastler: a solid judernomt and a cronerons artivity in qivinor prompt accinance: to the wounded withont distinetion of ratnk orerrade. ant withomt even exdudine enomies. Ifomast have the courigen to face dangers without the power, in all cases, of combating them; lw mast have sratit coobness in order to ate and operato in the most ditlicoult positions, whether mmidst ibu moverment of troopse the shock of arms. the crises of the wounded,


Waging war as have been adopted by those great Generals who are known as aminent in their profession. It is revident then that an intimate connertion cexists between military history amd the scionce of
 paidrns: Ilamibal, seventren, one in Spain, fifteren in ltaly, and one in Ifrica; Cosar. thirtern of which eight were aganst the (iands and five aganst the leglons of Ponury : Gustavus $A$ foljhus. tharee: Turenue, eightern: Prince Eugene of Suvor, thirteen ; Frederick, eleven, in Bohomia, Silesia, and on the bunks of the blbe. The history of these cighty-four campaigns, written with care, would be a complete treatise on the art of war. From this source. the principles whichonght to be followedin offernive as well asdefensive warfare, could at oneebe olatained." To these campaigns, are to be added the battles and campaigns of Napoleon. Jomini, av eminent writer on military art. says: "Corroct theories, foumbed upon righi principles, sustained by actual events of wars, and added to accurate military history will form a true sehool of instruetion for generals. If these means do not produce great men, they will at heast prodnce generals of sufficient skill to take rank next after the natural masters of the art of war." The sources of all treatises on lfilitary seience are to he fomme in the military histories narrating the events an I results of the batilesand campatigns just commerated.

MILITARY STORES. - The arms,ammunition, clotle ing, provisimas, cta., pertaining to an army. In the Thited Statos all public stores laken in the enemy's camp, Lowns, forts, or magazines, is scoured for the service of the [ nitod states. The clothes, arms military outhits, and accouterments furnished lys thw United States to any soldier can not be sold, bartured.
in a charge, in a retreat, in intrenelaments.unter the ramparta of a besieged plaree, or at a breath. 11. must have inventive ingennity whicll will supply the wants of the wounded in extreme casse and minst bo prepared for all "mergencies.

Frecpuently the surgeon is not immediately available. In anticipation of such an evont, it is incumbent upon all who take the tield to possass a sulliciont knowledge of medicine and practical surgary to 'nable then to relieve the sick and wominded (hoth mern and horses) until professional ainl ("un ber servired.

The fracture or dislocation of a limb is the nowst frexpent of all acridents attending is compaign in a roneh or mountaimous country. A misestep) of the soldier, or a fall of the horse often results in this mislap. When fractures oecher and there are no plints at hand, they must be improvised from -unds materials as may be found. If the thigh be fractured, a ritle may be used for a splint, placing its lout in the axilla, and allowing it to pass along the ontsidr. of the limb, being secired by bandites aromed the trunk and ankle. A fracturid leg may be swored with a splint of any description placod along its outside and the whole then wrapped in a coat or blanket and made fast by straps, or strings of suft material. It is a good plan to tie the fractured low at the ankles and convenient pomts, to the uninjured lequ. and rest them on coats, blankets, or a mattress. In this manuer the two legs will mose as one, and tha broken bone will not injure the tlesly. A fracturn may be "put up" witl a gum stock or sword scat)-bard-even a roll of straw or grase makew a good temporary splint. A fracture of the arm may be "put up" with a bayonet seabbato or with inin bundles of straw or grass. Light piecos of board, bark,
or even the soles of shoes or boots are often useful of the limb. Should there be any diffienlty in eheckfor splints. The fore-arin should be carefully sup- ing it, ligatures should be applied. When the blecolported in a sling. Often a severe shock or collapse ing is arterial, the dimb should be firmly grasperd by from pain or nervous fear follows the fracture, in

which case a stimulant (whisky and water) should be administered.

Dislocated and broken ribs are frequently the results of falls and other accillents. The ilrawing shows the normal position of the ribs and adjacent bones $-a$ is the breast-bone; c. c.r. the ribs, which are fastened at one end to the spine b. $b$.. and at the other end are attached to the breast-bone by means of strips of cartilage, d. d.d.; e is the collar-bone. There are twelve (12) ribs on each side, all of different lengths-the shortest are at the top and have the smallest curves; descending they increase in lengt to the seventh, which is the longest, then decrease. The last two have no cartilages are very short, and are attached to the spine only.

In this connection it would be well to carefully note the formation of the pelvis, and the sacrum which supports the spine. The pelvis is frequently

injured by thrusts and gun-shots, all of which wounds clemand the most carcful and cantious treatment. The drawing shows its form, with the location of the ilite fossate, $a . a$., and the anterior surface of the promontory of the saerum, $b$. To know how to arrest bleeding is all important, as life may oftem be saved by promptly adopting simple means. Bleeding may be from veins or from arteries. In the first case the blood is of a dark color, and flows slowly in a strean towards the heart; in the seeond case it is of a bright red color, forcibly issues in jets, and is in a direction from the heart. In ordinary venoms hemorrhage, such as the bursting of a varicose vein, the bleeding may be stopped by pressure or elevation
same, and is far preferable if the patient be feeble. When the patient becomes faint and insensible from loss of blood, he should be placed flat on his lack, with his head low. Cautery may be resorted to when the tourniquet fails to do its work. The accompanying drawing shows the manner of the attachment of the miseles, $a, b$, to the bone, the functions of ligaments abont the joints, and the manner in which the arteries are covered and protected by the muscles, etc. In reseting a strong and muscular limbit is often neeessary to keep up a great strain on the muscles in order to weary them and cause them to relax, when the bone may be set with less difficulty. Sec Fiell Romedies, Medieal Supplies, Medicine ("hest, and Wounds.
Military tenure.-In England, an accompaniment or immediate consequence of the Feudal System established duriug the Aiddle Ages throughout the greater part of Europe. Feuds were introduced by the barbarous tribes who poured themselves into the Roman Empire during the 44h, 5th, and 6th centuries. The chief feature of feuds was, that the lands of the conquered country were parceled out to the leaders, on the condition of bearing arms whenever the Sovereign required them. The relation thus created between Sovereign and Vassal was called a fend. The Grantee held his lands at first for life only, but gradually it was developed into a hereditary character, and also into one which admitted of subinfenclation, i. e., the parceling out of the feudal hand anong Viassals of the lacad Vassal, who was the Lord of his own Vassals This kind of relation between Lord and Vassal gradually was extended to all kinds of land, for the owners of allodial land voluntarily surrendered their land to some Lord, so as
to have the same atvantages. "Who Yassal did hormage to the lord, and took the oath of fatly. Besides these elaractoristice, tho holdiner ranme lo iors attendel with tha following incelelents. J. An aid, which was a payment. granterl tolalpthr Lard in his necossitios. \&. A relicef was at tributa paid loy a new
 Was paid by a Penatut to the Lord on alimating tho
 was the: reverting of the estate to Har lard when there was is fuihure of heirs or some violation uf laty on the part of the Tassal. The liondal hystem was extomded to Energand by the Norman Barons soom ufter the Compucst, with the concorremer of Willisun I., much to the dislike of the Saxoms, whone griavo ances grew wntil they fomme vent in Hagna (lharta, which wus in fact an atlempt to ratore thair carliar Constitution. The chiof fiction, however, of a relas tion lotween the Crown and the holders of lanel was not got rid of. 'The C'rows was mominally the loorel Parmmomt, and there were intermediate bords called Nrene loords, of whom the 'Penants held. (iradial. ly, the kinds of tenure were classed under free and basteservices-the former lefing those which a freeman might proform, as serving in war, or paying a sum of money; the lather, such as a J'asant mirght perform, suclis as phugining the lord's land, "te.

MILITARY TRAIN. - Formacrly a highly important corpos of the army, of which ther fanction was to transport the provisions, ammmotion and all other materiel, together with the woumed in time of batthe. It wits formed after the Crintean war, on the dissohntion of the Land-Tramport Corps. It comprised six batalions, in all 1840 ollowers and mou ; and its annual cost for pay, etc., was about fir ,000. The corps ranked after the Royal linsineers, and was classed as Mounted lnfantry, the oflicers receiving infantry rates, and the men cavalry rates of pay. The commissions were furehnablile, as in the line. The men were armed witl carbine and sword, but rather for defensive than aggressive purposes. dttached to each battalion were 166 horses, with proportionate wagons and ambulances.

It is proper to observe that the Dilitary Traincoustituted only the moleas of a tramsport service for a large army, and that in time of war it wonld be expanded by the addition of thousands of horses or mules, and the incorporation of many hundred drivers, etc. The advantage of possessing even a few inen realy 1 rained, and capable of directing the movements of othors, was amply demonstrated by the failures of the Crimea in 1854-1856: so that Parliament voted ungrudgingly the expense of this corps, althongh in time of peace it was comparatively without employment. The Military Train was disbanded in $18 \% 0$, as being too military in its formation. Its functions were transferred to the Transport section of tie Army Service Corps, a purely non-combatant oreraniљation.

MILITARY WAYS.-The large Roman roads which Arripna caused to be made throngla the empire in the reign of Augustus for the marching of troops and conveying of carriages. They were paved from the gates of Rome to the utmost limits of the Fimpire. The British lave constructed a military road throughout India, with wells and other accommodations at certain distances.

MILITIA. - The purpose andiopimon of the found ers of our government is uneguivocally expressul in the second amendment to the Comstitution, which declares, " A well-regubated militia being necessary to the sceurity of a free State." The unvaried agreement of all subsequent writers and statesmen with this assertion mirlat well cause us to view with some alarm the fact that all attempts to secure an eflicient militia have hitherto signally falled. Whale all agree that the perpetuity of a republican form of government depends on maintaining a well-regulated militia, the faet las been demonstrated that under no other form of government is it so difficult, owing
to the indisposition of thre peropla in submit to the "nforecoment of military thty in timm of preace.


 lative lamor, and a perfect tithelo public gratitule.
 Ilor sulsaceront lailure of all attempers at legrislation. Nevortheless, wo arre (ertainly arovincod that the sulation of tho dillioultios is now "tsy, mot throngit

 for us. 'This solution we concerive to be to kubstitute a Volumterermilitia in placo of enforcoal militia
 a mumber that the vohnomer militia of the States will low suthicionty large and efliciont for all the purjoses for which militin can or ever shomld be nsed.

No sulject, unless it bo that of timance, has so long and so often engitgot the attention of Congress as that of the militia, and on wone lave more able and rxhathetive reports bren written hy those whose slight "st intterances we hate benn tanght to bonor and respert. The records of Congress are tilled with messages from l'rasilunts, reports of Exerntivar) blicers, reports of ('ommitteces of both Mouses of Congress, and with plans and bilds for the improvemont and orrimization of the militia, to attempleven a brief outCine of whleh would far exceed the proper limits of this article. Wre cammot, therefore, domore than give a brief outliue of the most salient features in the history of the subject.

On July 18, $17 \% 5$, the Continental Congress passed as series of resolntions recommending "to the inlablitants of all the Unitod English Colonios in North America that all able-bodied effective men betwren sixtecn und tifty years of age in each colong immediately form themselves into recrular companies of militia." One of these resulutions is particularly sugfestive, as it contains the germ of the volunteer systen which has now grown to such proportions. It is as follows:
'Thant one-fourth part of the militia in every Colony be selected for minute men, of surh persons as are willing to enter into the nucessary service, . . . and as these minute man may eventually be called to action before the whole body of the militia are suthiciontly tranued, it is recommended that a more particular amd diligent attention be puid to their instruclion in military discipline.

On the formation of the Ifedera Government one of the earliest acts of the first llouse of Representiatives, in 1789, was the appointment of a Committee to prepare a bill to urganize the militia. The session adjourned bufore the Committee made a report, but at the following session. in 1790. Generill linox, Secretary of War, submitted his colebrated plan for organizing the militia, accompunying it by a letter of transmital which is remarkible for its turse, striking, and strong arguments. His plan, in brief, was that every boy on arriving at the age of cightecn years should be eurolled in the cadet corps of militia and he obliged to scrve in camp of instruction thirty days in tach of first two years and tun days in the third year, and that no person arriving at the age of twenty-one rears shonld be entitleil to "xcreise the rights of a citizen unless he could produce his certificate of having so served; all citizens betwean twonty-one and forty-five yourm of agt were to be enrolled in the main corps of militia and be obliged to drill four days in eadly year: and between fortyfive and sixty years of age to be enrolled in the reserve corps, whith should be assembled wice in each year for inspection of arms. C'nder his plan the genural government was to furnish uniform, arms, equipments, and bear all the expenses of the camps of instruc,ion. The features of Gencral Knos's plan were cloarly embodied in a bill presured by a Conmittee of the Ifouse of liepresentatives, and the subject was discussed in detail on many occasions
through the two shicereding sessions until all of its orimalal features wre ehanged or mondifech, and the Act of May 8, 1792, finally agreed man and emarted. As this is the law still in forer. we reserve a detailed explanation of its provisions, and simply state here that its main feature is that every citizen, between eighteen and forty-five years of age, shall beemrollend in the militiat and shall irm and etuip himself at his individual expense. This law was found to be so crude and inatlenuate that it became the subjert of criticism immediately after its passage, and of cfforls to amend it which have continued to the prescont time. As well expressed by Washington, after 1he attempt was made to put it in practical operation it " (xhibited such striking deffets, as could not have been supplied but by the zeal of our citizens": ant in his annual messages to each succeeding session of Congress, during his two terms of office. he urged that the evident defects of the law be remedied. In the session succeeding the enactment uf the law an effort was made to repeal the provisiun requiring every citizen to arm himself. In the next following session, in 1794 , a bill was reported by a Committee of the House of Representatives to urganize a " select corps" of militia, to be armed and "tuipped by the general government, and pail for arricein annmal camps of instraction. Different propositions, having in view these two changes in the militia system, were discussed in successive sessions until 1795 , whem the threatening condition of our relations with France culminated in the format tion of a provisional army and other warlike preparations that temporarily suspended consideration of the militia system.

Our troubles with France having been amicably settleat, the militia question asain assumed prominence, and Jefferson. in his annual message to Congress, importuned them to take some action. It was chictly through his earnest elforts that the law of A]ril 23,1808 (section 1661 Revised statutes), was passed, making a permanent appropriation of 8200 , 000 a year to provide arms and "opuipments for the militii. Somewhat curionsly, however, the requirement of the old law that every citizen shonh arm and equip, himself was not repealed, and still remains the statute. As the country wats rapidly increasing in population the uselessness of requiring active inilitary duty from the whole body of citizens became more apparent, and was felt to be an unnecessary burden. Jefferson in his mnnal message in 1805, rewommended that the militia he classined accoring to ares, and thonght that those from eightern to twentysix years of age would form a sumficiently large body io be subjected to any chaty in time of peare. This proposition was taken up by Congress, and in various forms was the shaject of debate in successive sessims, until the war of 1812 put an end to the discussion without any result having been reachect.

Madisom was ahmostasurgent in his appeals to Comaress to amend the militia las as Jefferson had been. In his annual message in 1810 he alvaned anew proposition in the suggestion that the commissioned and non-eommissioned oftiers of the militia should he assembled in annual compes of insiruction at the expense of the general governmemt: and in his hast amnual mesage, in 1816. he earnestly recommended a roorgankation of the militia, and ciassifying them aceworliner to age. Prompted hy the rocommendations of Marlison, the Fourteenth Compress. in 1816, directod the seefelary of War to prepare ame repert a plan for the organi\%ation of the militia. Secrectary of Wia (iraham reporterl th the following session, recommenting very foreibly that the militia be divided into three laksess aceurding to are and that the two fromare ratasses be detailed imd reguired to assemble amnally in harge campor of instruction and be urmed, equipped, and subsisted at the expenar of the eremeral suvermment. This report wats reforrent to a "ommittee of which General larrisom (then a lappresentabive from Ohio) was chairman.

Tharison took a dopp interest in the subject, and prewented a careful report. Ife themed it essential that the whole body of the perphe shouht he instructed in military matters, and for this purpose recommended that military instruction be made a branchof edncation in exery school in the country. Believing that it would eninil too great an experiditure of time and money to subject the whole enrolled militia to drill athd military traming, he revived the old propositions first made by leresident Madison, and recommended that the Citicers and Sergeants be assembled anmally in (amps of instruction, be paid for the ir time. and le thoroughly drilled and instructed at the expense of the general government, which he estimatrd would amonnt to about one and a half million dollars a year. Harrison continued the agitation of the subject while her remained in Congress. and made reports in 1818 and 1819 urging action.

In 1825 Secretary of War Barbour addressed a circular letter to the Governors of all the States and to many citizens most promincut in military and civil life, setting forth that it had long been apparent that some chance in the militia law was necessary, and asking their views on the subject. He then convened a Board composed of some of the most distinguishet ofticers of the army and militia for the purpose of considering the question, and submitted to them the voluminons correspondence that had resulted from his circular letter. It is worthy of note that the president of this Board was Winfied Scott, then a Major General in the Army, and that Zachary Taylor, then a Lientenant-colonel of Artillery, was one of the members. The militia were represented on the Board by General Cadwalader of Pemsylvamia.Gen(ral Sumner,of Massachusetts, and (iemeral Daniel of North Carolina. The report of this Boart?, together with all the papers and correspondence connected with it, was transmitted to Congress by the President. The Board reported that they considered the primary defert of the militia law to be in the excess of numbers which it hetd to service. They recommended that a select comps of militia be formed. to consist in "ach state of one brigade for every Conglessional Representative, and that the officers of this select militia be assembled in camps of instruction ten days in each year, and be paid by the gencral government for their time and traveling expenses. They also recommended that the oftice of Adjutant General of militial he created, and that, on the application of State Executives the United States should furnish oflicers to instruct the innual camps.
In 1835 President Jackson, in his amual message urged Congress, in lis usual forcihle style to give their attention to the wubject, and amongother thingrs recommended that voluntere organizations be enconraged and inducements held out for their formation. The Secretary of Wiar (General Cass), in his annual report, gave his views on the subject, and represented the necessity of some legislation. U'renent etfort was made in Cougress to secure agreement to some plan, lout without surce:s.

In 1840 secretary of W゙ir Poinsett submitted a plan to Congress. Apparently despairing of securing agreement to any plan that simply changed and perprituated the existing system, lue jroposed at radical reform that stretched the constitutional powers of the remeral government to such am extent as to cansa apposition to it on that gromed. His plam was to divide the militia into three rlasses- the active, reserve, and mass. The antive militia to consist of 100,000 men. apportioned to the respective states, and cach state: to be required to keep its quota tilled at all times. "ither ly voluntary enlistment or draft. Gne-fourth of the active militia to go nut of service 'tmmatly and la enrolled in the restrve corps. The mase of the militia not to be suligect to any duty in lima of peace. He proposed that Congress shomat bey law anthorize tha Prewident to ordar the ardiwe militia into the orviow amp pry of the Tonited states for thirty days in each year for ine purpose of placingr
them in campes of instruction. This apposars to
 caying symom from dissolutions, will the excroption of an effort in 1840, when a bill was reforlial th remerly the excess of momber of the militial ly lims.
 tworn twonty-once and hhirty tars of acer, whor should be formard into a lagion of aretive militia in earel state, the ollieres of which should serve anmaslly in camps of insametion at tho expense of the groneral govermmont.

The militia systrm, by this time, was virtually deall ; during tha many yrars devotrd to debating it remorly for its dofects it latel gradmally samk, umtil it no longer rexistod exapt ont the Statute-book. In the morin time, in all the Stittes, by it process of "nathral sedection," there latd spruner mp volunter organiantions of militia, and thas Sates, by fostrong and encouraging tham, had surpliced the de.forencios of the ereneral law. These voluntere organi\%ations made possible and grate "flicirnoy to that splendid borly of volanterors whose soldierly qualities amb decds of valor in the Jexican War qave such renown to our arms. $\Lambda$ fier that war still greater interest was manifestod in the volumterer militial the States devotcel fo them the meagersupply of arms and equipments shtained anmally from the gencral govcrmandot, whichin many instances they supplemented by latre aphoropriations of their own, and the volunteer militia continmed to increase in mmmers and elliciency umtid the breaking out of the " War of the Rebellion." Of that fearful strugere it is safe to say that the magnilieant armies which were so quickly formed on both sides were only mate possible by the fucts that the efforts of regularly educated officors in drilling and diseiplining them were supplemented by those who had recejved a partial military training in the volunterer militia.
dust luefore the war, in 1860, an earnest effort was made in the llouse of Representatives to incrase the ambual appropriation for furnishing arms and equipments to the militia. In urging the measure. Mr. Vallandigham reviewed the militia systom and spoke of the volmuteer system replacing it, asserting that they womld " in time become the National Ginard of Amerian."

After the close of the War of the liehellion, another most decited effort was made. both in the House and Srati, to reorganize the militia, or rather to create a dew militia system, and several bills for that purpose were introduced in the Thirty-ninth Congress. Although none of these hills were passed, they contained provisions that are interesting and suggestive, and some that went to the extreme limit, if they dia not go beyond the constitutional power of Congress in the premises. It was, however, a purpose common to all the bills to form an aetive volunterer militia. and that seemed to be accepted as the trus solution of the militia question.

This closes the history of the efforts to achieve a satisfactory militia system, with the exeeption of an interesting report by the Chief of Ordnanee, and a report by the Scmate Committec on Military Allairs ( L . Report 56, second session Forly-fifth Congress), both recommending that the permanent appropriation for providing arms and equipments for the militia be increased to : $1,000,000$ a year.

The three following points are at present urged as the proper remedy for the defects in the Militia system:

First. To sulstitnte a volnntecr militia, limited in number in time of parace, for the existing compulsory system that applies to the whole body of the people, and whichs las become so intaplicable as to be itterly disregarded.

Second. To make such provisions as will aid and encourage the formation of volunterer organizations, remove the disparity in their numbers and discipline that exists between different States, and promote their elliciency to a common standard that will make
them atvailablar for all the purpenes for whir-la athi litin is repuiriel.
"lhird. T's athelisht the prosiont mystorn of at perma
 for the militia, amd sulstitnar jurovinions jromeribins with what armas and ergnipuncritu the militial skall lar farnixherl, and on what conditjons-leaveme it (o) for discration of (umgress (1) reghlate the anmaial iljura) prialions for that furpuses.

In relation to the first feature flace mamtilntion of
 of the history of thr militia law will latwe mathe it
 was warly recongized to be in the rexeres of mandsers
 in popmation this rxaross of mambers corraspmoling-
 tical absurdity by repuiring to-day actual militiat -arvire from six and one-half millions of mone. Wie have sern that for more than laalf a cemtary the luot and wisest slatesmen of our conntry umpavorotl to procure agreomment to some jlan that wonlil limit the militia to a pravtioable nombor, in ordar that it might be made an eftective bendy. The more the country increased in pupulation, and the more the ponulation berame ahsorbed in tho pursuit of wealth and material prosperity, the more impracelanda beeame the provisions of the militia law, until finally it sank into sucle utter contempt that all profemare of rogardine it "dased "Tha "orornstalk miljtia" and the ammand "tratinings," with all their atroompanyiner parodies on military allicioney, remaincmly as rorebloctions of our boyhood days. Volunterer organizations eradually increased as regaril of existing law decreased, and. thougls marecognized by the eremeral law, and without any of the aids or reøplimements uroressary to secure eflicienry, they have managerl fomaintain a precarions existence. atod have umquestionably becn of great and essential sarvice ion the country. We think it grood policy and fram statesmanships to acknowledge the chancres and atvail ourselves of the results whicle time and the foree of cirenmstances have brought about, and we therefore assent to the proposition that the volunterer militia of the State-the militia in fact-shoruld be reeogni\%ed as the militia of the daw, and provilond for accordingly. On the second feature, the provisions made for promoting the -fticiency of the wot untero militia and securing a uniformly high siandard in all the States, we Felieve there can be no disarreement. Thomnorganizel levirs whiclo, under the bame of militia, have bern called into service in all the great wars of the eountry, while they occasionally performed some lorillimit servire, have not only shown the inefficiency of existing law, hat have also served to make the term "militia" one of "omtempt and derision. It is not denied that yreat disparity exists in the character and eftronene of the existing volunteer organizations between the states and even within the States. During the "labor liots of $18: 3^{" 1}$ some volunteer organi\%ations proved utterly undisciplined and unreliable, while fothers performed conspienous and valuable service. ('ongress has never "xpreised its romstitutional power "to provide for organizing, arming, and discijplining " the volunteer militia. On the contrary. the Folunteer organizations have maintaned themsclvers at their own expense, with sumb aid as by unwearied excrtions they may lave been able to prornare from their respertive States. It is dur solely to the want of support and of miform resuirements as 10 drill and diseipline that the voluntw-r organizations have not all reached the samm eftieioncy that charactorize a part of them. The men who monstitute the bolunteer organizations are naturally those who have some love or aptitude for military attairs, and we therefore see no reason why, muler the proper rearulations for their discipline and training. they eannot attain a higl and uniform efteriency. "That they have been or are in any particular indlielent is not
an argument against the possibility of making them milit ry training among those who wonk be most all that we desire．We therefore consider the sug－likely to respond to a call for volnnters in time of gestions made，to aid and conconage the volunteer war．It las been ayred by all who have preceled system and to exact certain requirements of them， as both politic and wise．We acen them penlitic， for the reason that the aid they offer is conditioned on the voluntecrs complying with the provisions which are deemed essential to their efticiency．We deon them wise，for the reason that we believe that under their pperations a volunteer militia will be created，which，although remaining moler the ex－ clusive control of the States，will，when its services are required by the general government，be found ready and equipped for instantaneons service und fully efficient to perform the duties of militia，which Jefferson defined to be＂not only to meet the first attack，but，if it threatens to be permanent，to main－ tain the defense nutil regulars can be engaged to re－ －Tents and camp equipage ure absolutely neqessary lice them．＂．It is also worthy of consideration that to enalle the volnuteers to go into camps of instruc－ in encouraging the yolunteer system you provite for tion and learn the elementary duties of soldiers．A disscminating military knowledge and a partial plain，serviceable，and unostentatiousuniform，over－

STATES．	Organized strength．								
	皆		范						
Maine	1878	1	10	9	41	61	814	875	78，458
New ITampshire	1879	1	8	27	107	143	1.805	1，948	48.770
Vermont．．．．．．．．．．	1879	1	14	12	38	65	605	670	44，366
Massachus．tts．	1879	2	17	95	215	329	3，699	4，028	225，461
Rhorle Island．．	1878	4	35	76	99	214	1.764	1，978	42.969
Connectient．．	1879	7	15	37	184	193	2.895	3，088	73，961
New York．．	1879	19	205	264	851	1，339	18，941	20.280	567，669
New Jerser．	1878	3	35	$6 \%$	130	235	2，988	3，293	248，12\％
Pennsylvania．	1879	6	56	174	451	$68 \%$	9，063	9，750	422，371
Delaware．．．．．	1879	3	4	1	6	14	76	90	24，073
Maryland．	1879	1	8	6	66	81	1，164	1．245	89，344
Virwinia．．．	1879	1	1	29	161	185	2，450	2，635	215,200
TVest Virginia．									100，000
Nurth Carolina	183！	7	18	41	196	262	2，521	2，783	200，000
Sonth Carolina．	1879	16	162	$6 \%$	748	993	10，812	11，805	95，856
Georyia．．．．．．									180，000
Florida．．．．．．	1878	8	50	100	215	373	5，130	5，503	25.903
Nabama．．．									170，000
Mississippi．	1879	7	2		14	9		9	135，178
Lemisianal．．	1879	5	5	$4 \%$	149	206	2，551	2，757	137，973
Texas．．．．	1879	1	1	1	84	87	1，119	1，206	150，000
Arkansas．	1877	14	32	$1!7$	810	053	15.424	16，37\％	100，000
Kıııucky．	1879		1.	4	48	48	674	729	218，000
Tennessee．	1876	1	（i）		22	$7!1$	1．205	1．284	23！， 564
Ohio．．．．．．．．	1879	1	16	114	400	531	7，343	8，374	500,000
Indiana．	1879		8		79	80	1.464	1.544	320，546
Dlichigan	1879	5	12	23	71	111	1，688	1，799）	300.000
llimuis．．．	1874	3	51	107	$38 \%$	548	1，846	7，394	350,000
Mis：c）uri．	1879	1	4	\％	67	7	1，270	1，34\％	300,000
W゙isconsin	1879	3	${ }^{(1)}$	5	78	92	1．382	1，824	250，000
Minnesuta	1879	1	3	1	8	13	191	204	120，000
low：．．．．．．	1877	1	11	50	369	$3: 31$	4250	4，581	197，456
N（C）raska	1879	1	＋		36	38	658	690	46，000
K゙allıが，．	18\％9	5	5	11	106	127	1，930	$2.04 \%$	121，0\％0
Nevada．								．	20,000
Oru¢n ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	1878	3	24		32	59	582	$60^{641}$	14，878
California．	1879	7	88	42	100	$25 \%$	2,340	2,597	114，565
（ 0 loridds．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	1878	6	7		36	4！）	153	602	20，000
Grand agerregrate．		14．7	921	1，60．5	6．198	8.869	11\％，03\％	125，906	6，516，758

 sontial les the outlit of the voluntore that lae may bre endred intoserviee ut amoment's warning, and that his sorviens may be coflective when ralied fers.
(oh pagd 3 anf is an alostract of the militia force of the [nited States (organizod and unorgmazod), arocordiner to the latest returns reeoived at the efllee of the Adjutant Gerneral, I niterl Geatess Army, furmishorl for the information of the Conereses of the Cuitul Slates in rompliance wilh section 2:3? of the Reviserl Ntatutes.

The existing volunteer militia are provided with what is essential. Some of the States lave matele very large appropriations to supplement the amount heretofore allowed by the (aneral Government, and many of the States, as we hate lefore mantomed, hatio now in possossion considerable amonnts of arms amd equipmants that have been jssume to them liy the oremeral govermment. It is therefore dillicult io es. timate what worlal be tho cost of makiner up defio. ioncies, and of completing the arming and "ubipment amd of proviliner uniforms ant campersuipase for the volanterer militiat in the manner contomplated, but we jutge that threa million dollars would be anple for that purpose, and that its appropriation might be distributed into the budget of three sucrossive Yours. Ifter the volmeer militia should be onfe connulotely armed amd equipped, we julige that an ammal expenditure of 8750.000 would metintain it in proper condition. These sums are (amparativaly very small, searcely larese enough to excite cilher oppiosition or comment, being smaller than was frequently contemplated and advoeated in the carly days of the Republic. The ammal expenditare would be less than is required to sustain a regiment of cavalry in the regular service, and it cammot for a moment be questioned that a standing force of $150,-$ 000 thoroughly armed, equipued, and well-drilled volunteers, ready to take the dield atthe first moment of danger, would be as effective in the mational defense as one regiment of regulars, and that the existence of such a force would be serionsly considered by any Nation contemplating an attack on us. In this eomection it is not improper for us to nbserve that the Senate Committee on llilitary Affars in the Forty-tifth Congress reeommended that the ammal appropriation fir the militia be increased to 1,000 ,000 , very pertinently observing that "if $\$ 200,000$ was none too much in 1808 , certainly $\$ 1,000,000$ is none too mueh now "

There is no feature in our form of government in which the powers of the general government and the rights of the States are so intimately inturwoven as in the jurisdietion over the militia. One of the stated primary causes for forming the lnion was to "provide for the common defense." In the opinion of the framers of the Constitution. it Well-requlated militia was the essential means of providing for the common defense, and they accordingly framed the clanse to provide that Congress shall have powerto provide for organizing, arming, and diseiplining the militia, and for governing such part of them as may be employed in the service of the United States, reserving to the States respectively the apbointment of the otticers and the anthority of training the militia according to the diseipline preseribed by Congress.

The purposes and provisions of this elanse are clearly amd distinetly stated and searerly admit of misinterpretation. The States are expressly limited to the apmointment of the officers and to traming the militia, and in training it. it will be observed. according to the discipline presuribed by Congress If the certain power conveyed to Cungress hy the words "organizing, arming, and lisciplining" conla be foubtery, the tebates of the Federal Convention are sufticiently clear to remove them. The Committee that reported the clause, on heing asked the scope of the powers that they intended to convey, replied that they mant by "organizing" proportioning the
villerers to the mon ; by "armings" not conly to provile for maformity of arms, bat the anthority to raghate the modnof fornishing thom, cithor by the

 the manumb exereisa, "volntions, "tco, and that laws
 thing mocospary for anforcing promaltios.

The debates of the Föchorai ('omvontion on ablonet ing tha clanse thometh short, are pertinemt. Dr.
 powers over the militia shonlel be vestod in the eratioral governmant. Whichlor sulserturntly moditiod by moricesting that this abselnte power should lw limit. col tor a portion of tho militiat a time. so that by serving in rotation the whole borly wonid tinally lat: discoipilined. Mr. Malisen thought that tho rogalation of the militia maturally apereraned to the sumthority chargen with the jublioe defenses, thast it diel not s."m in its mature divisible Jretworn iwo dintinet aththorities, und that the disedpline of the militia is evidently a national comeroth, amd ought to be pror vided for in the mational Constitution. The clane- ats reported by the Committer had but little opposition, it beiner roneeredel, as stated by Mr. Landulpl, that reserving to the sitatesthe sppointment of the ofliones Was all the serourity they needecl. Mr. Dityton amd Mr. Ellsworth expresed themselves in faver of phatiner greater limitation on the power of Congress. bust a motion mate for that purpese received only ons vote, that of Mr. Ellsworth, who movel it. and the clanse, as it now stamols, was therefore adopucol with a marked unamimity in scotiment and vote.

We have only adverted to the fuestion of the connstitutional powar of Congress as a matior of historic. al interest in commertion with the general subject, for Whatever question there may be as to the enostitutionality of the existing law: or of some of the mans. heretofore sugsestul for rurganizing the: mililis, none ean possibly arise on the proposed reoremization, for it is a happy solution of all the constitutional quostions involved. There is not a compulsory feature presented. It simply says to the Siates that if they will by their own laws provide for and enforce such requirements ats Coneress deems neceesary 10 secure an efibcent militia. Congress will exercise its unquestioned constitutional power, ant provide for arming such militia out of the national Treasury.

From this review of the subjert we are satistied that time has solved those difliculties of the militias system for which the wisdom of our preteressors conld find no acceptable remedy, and that the great inerease in the population of the country now makes it not only practicable but desirable to substitute the volunteer system for enforced militia duty in time of peace. The subject is one on which there never have been any political differences, and on which nome should exist. Washington, as the exponemt of the Federulists, was unceasing in his efforts to procure legislation, and Jefterson, as the leader of the AntiFederalists, was even more importunate in urging it. In view of these facts, aut of the fact that we now have practically no militia system, and that the strength and perpetuity of our repmblican form of govermment largely depend on the existence of a well-regulated militia, we indulge the hope that the subject will receive the earnest considerntion which it deserves, and that some derisive action will be tiken on it. See State Troops.

MILITIA ADJUTANT.-- In oftiecr appointed to earh regiment of militia fosperintomd the drill and instruction of the regiment. We is taken from the remular army. The following are the reanlations recently issued relative to the duties of Adjutants of Militia:

- 1. The Dilitia Adjutant will be, during the nontraining period. the reprosentative at the brigade depot of the officer commanding the militia battalion or battalions.
"i. He will raisa and enroll all recruits for the
militia hattalion or battalions, and superintead the out-station recruiting for the army and the militia as required.

3. He will have military charge of the militia staff during the non-training period, and the military charge and supervision of the drill of the militia racruits when they are trained in large bodies; militia recruits, when they come up singly or in small numbers, will be attached to squads of line recruits, ant they will in that case be under the supervision of the officer of the l)rigade depot.
4. The duties specified in the foregoing paragraph will have priority over all others, but when Militia Adjntants are not employed upon them, they will be liable to perform such other (depot and sub-district duties as the officer commanding the brigate depot or sub-district may direct.

MILITIA ARTILLERY.-Forms a large body of artillery in addition to that of the regular forces of Great Britain. Formerly the militia artillery was called upon to exercise with all kinds of ordnance but since 1873 they only practice with garrison and coast gums. Each regiment, however, has some Armstrong guns for the drill of recruits; but, from the absence of horses, its organization into batteries remains incomplete. The places of meeting chosen for the yearly drills (two months for recruits, and one for ar regiment) are some fortified poin's of the coast. where the men are tanght to exercise with garrison and field pieces. There are 30 regiments of artillery, composed of 796 ofticers, 66 surgeons, 15.978 men.

Militia reserve. - A force createrl by the Aet of 1867: its numbers not to exceed one-fourth of militia quotat the men to be cnlisted for 5 years, during which time they remain on the strength of militia regiments, but are liable to be drafted into the army in time of war

MILLAR GUNS.-Guns introduced into the English sorvice ly General Millar in 18:2\%. The thickness of metal at the breech is considerable, and comparativeIy slight in the chase. Two of his 8 -inch guns are still in the service. Besides these grms, General Milhar also introduced the 10 -inel and 8 -inch iron howitzers and the present L. S. S. B. iron mortars,

MILLAR HIND SIGHT. - A sight consisting of a block of gun-metal, with a thomb-screw, lead packing, a brass scale, and two serews. The blocks are of tive different patterns. The scale differs for each nature. It is tightened by at thmols-serew working against a brass pring in the block, and is in every case graduated to $\frac{1}{4}$ degrees. It is attached to the rear of the base ring at an angle of $66^{\circ}$.

MILLBANK - A large prison.situated on the banks of the Thames, Chelsea. . 111 soldiers under sentance of Courts- Hartial for lengtheeed terms of imprisonment in England are commited to the military diviwion of this prison. Bolliens also sent from abruad under punishment for lengthened periods are generally sent to Millbank, or to the military prison in the district in which theo disembark

MILL-CAKE. Thw invorporated materials for gumpowder, in the form of a dense mass or cake, ready to be subjected to the process of erramulation. As the process of ineorporation appronches completion. the charge refuires to be carrefully wateded, in order to insure c:ach finished charge leaving the anill in as u"arly an fossible the same state as regards monisture 'ithe appearance of the powder when finished deluends mainly on the state in which the charges leave the mill. The finished charge usmally las from (wor to three per cent. of moisture. If tos much mainture be present as the incorporation draws to a
 a khar er: if too lithe, mome more must be adderi from the watering-int. The coler of the charge grives a very gexul indication of the anomat of monisfere present. When the proeres is timished, the wharge, now kown ats milleratio-bering parly in the state of soft cake. and partly of dast is scratpo.al bued swept up, from the mill-bed, phaced in worden
tubs, and transferred to the charge-lrouse to await inspection. If the charges are found to be of a proper color and consistency, samples from cach are taken, which, after being roughly granulated by hand and ilried, are flashed on a glass-plate to ascerthan the thoroughness of the incorporation they have undergone. This tlashing is more a matter of form than anything else, for the mill-cake seldom fails to give satisfactory results. See (íunponcder.

MILLER MAGAZINE-GUN.-This gun is an adaptation of a magazine to the United Siates service Springfield rifle. The alterations are as follows: The orisinal receiver and breech-pin are replaced ly' a receiver alone the tang being solid will it. The upper rear part of the receiver gives the bearing for the cam, while the space ordinarily filled by the breechpin if utilized as a channel through which the cartridges are fed from the magazine in the butt-stock. The ejector-stuc! is replaced by one beveled on its rear as well as its front, in order that the cartridges may slip easily over it into the chamber. The magazinc. is a tube slotted through its whole length. To the upper side of the side of the tube flat springs are serewed. At the end of each spring and riveted to it is a lug, beveled on its rear service; all these lugs pass through holes cut in the magazine and serve to separate the cartridges. A rateliet works in the shot in the magazine-tube. It is operated by a slide attached to the guard-plate. When the slide is drawn back the teeth of the ratchet pass in the rear of the heads of the cartridges. On being returned to prosition each tooth moves a cartridge forward, the lugs on the springs being pressed out of the way by the cartridges themselves. At the front of the ratchet is a cartridge-stop, held up by a spring. The stop is prevented from rising too far by a pin. When the ratchet is withdrawn the stop-spring yields-since the cartridge cannot move backward on account of the shoulders of the lugs on the springs-the stop descents and is drawn under the firstcartridge, which is then free to leave the magazine and enter the chamher, gravity being the motive force the gun being hedd mazzle downward. When the ratchet is moved forward the $2 A$ cartridge oecupies the place of the 1 st, the 3 Cl of the 2 d , and so on. The ratchet is prerented from entering the tube by two pins which bear against the outer surface of the tube along the edges of the slot. It is held in contact with the tube by a spring, which is kept from slipping off the bottom of the ratehet ly two forks. The magazine is loaded through a gate in the loutt-plate. A projec. tion on the brech-block hooks over a pin and prevents motion of the ratchet when the piece is lockcd. As a magazine-gun, tive motions are necessary to operate it, viz: cocked, opened, loaded (by operating the ratchet by the slide), closed, fired. The same number of motions is necessary as a singleloader. This gun carries six cartridges in the magazine and one in the chamber. The last cartridge will not feed from the marazine, however, until forced down by others when the marazine is reloaded. See Maguzine-gun, and Springfield Ritte.
MILLING.-The term "milling" as generally understool, means the cutting of metals hy ath of serrated revolving cutters, each having a suitable mumber of cutting-teeth. Hilling cutters have bern used in this conntry for many years, but until recently with only a limited amome of success, owing to the experse and differnty of producing their cuttilg codges and keroping them in urder. This was nest to impossible before the introluction of a small roncry-wheel and compound slides, cto., for carrying the milling cutter while lower re-sharpened. Hence in the ohd system of milling, which did not promit of the re-sharpening of the hard fte the the results were, that after much expense and time hat heen
 labor some upon it white in ite unstarpenct state), the whole was as it were mase hy the provess of tompering ; the arcurary which haid previously been





 third of the mumber of its ferth were fotmel lo be into at enld bath.
cutting at all, the others mot roming in contand will Wre represent in fige I the Brown and sharpe




Fig. 1.
plied, and not more than one-third of the proper in addition:-the "arriage moves and is fed autowork produced. Nor was this the only drawhack: matically, not omly at right angles to the spindle but the quality of the workmanship produced by such at any engle and (an he stopped at any required atmilling cutter was not of the bestand deterinated point. On the carriave renters are arranget in honerly from blunting and wear. Sucla at cutter would which reamers, drills and mills an bee cut vither probably not work for more than two whole days straishat or piral. The head which holds one center hefore it wonld require to be againsoftene loy heing can be raised to any angle, and comical hanks placed heated red-hot and allowed to cool gradnally. The on an arbor in it, cut straight or spiralling. The
cone has three diameters, each $3 \frac{1}{2}$ inehes face. In addition, the cone is strongly geared, thus making six changes of speed. There are, also, the same number of changes of feed. The spindle boxes are of hardened cast steel, and, together with the spindle bearings, are carefully ground, and are provided with means of compensation for wear. The spindle will carry a cutter arbor projecting 15 inches, which is supplorted by an adjustable center at the outer end. Cutters of eight inches or less diameter can be used. The horizontal movement of the spiral clamp bed upon the knee, in a line with the spindle of the machine, is fit inches, and the rertical movement of the spiral bed centers below the spindle centers is 11 inches. The spiral bed can be set at angles of $35^{\circ}$ each way from center line of spindle, and can be fed automatically 22 inches, taking also 22 inches between the centers, and will swing $11 \frac{1}{2}$ inches. The lole through the chuck and spiral head is $1 \frac{1}{3}$ inches. In addition to all the more common kinds of plain surface milling, this machine is applicable to a great variety of work, anong which
on a mandrel of the small cutter-grinding machine; the mandrel itself is adjusted vertically and horizontally by ordinary slifles, and ly means of a worm and worm-wherl, to its required angular position : and each tootly is ground or re-sharpened by passing at once rapidly forward and backward under a small revolving emery-wheel. The mandrel fits "avily into the cutter which is being ground, so that the latter may be readily turned round lyy the thamb and finger of the operator. Nilling cutters are made of the required form to suit the various shapes they are intended to produce; and all the ordinary forms can be used in any milling machine either of the horizontal or vertical class. The face-milling cutters, Fig. 2. are of disk form, and are anong the most useful. They are constructed to cut on one face and on the periphery; and they produce very perfect finish, especially on cast-iron. This form is also very useful for all kinds of stepped work, which even when not of the simplest form, can be readily and reliably finished to standard and


Fig. 2.


Fig 3.


Fig :



Fig. 6.
may be mentioned the following: cutting of bevel and sphir wheels, worm wheels and racks; milling of circular ares and slots: squaring of bolt heads and nuts; fluting of tops, reamers, ide., cutting the teeth of mills, either straight or spiral ; slotting of serewheads; making of twist drills; driiling of holes on the peripluery or face of plates; die-sinking, milling key-ways in spindles, \&c.. \&c.; proving as its name indicates a machine adapted for universal application to milling purposes.

It is proper now to describe the modern sustem of making and maintaining the improved miling cutturs. A cast-steel forging, or hlank as it is usually styled, is bored, and then turned to its proper shape" in a lathe. The teeth are then machined ont of the solid to the required forms, in a universal milling or other machine. The work is so accurately produred, direct from the marline, that no rostly handabor need he expended upon the milled eutter, which is taken direet from the milling maclune to the hardening furnace, and twinpered. The hole in the cemter of the ratter is them carc:fully gromal out to standard size. so that it may fit aceurately and without shake on the mandrels both of the grinding mathe and of its own milling machime. The cutter or mill is now placerd
terchangeable, and fit together without the slightest shake or play, just as they leave the machine, and without any hand-labor bestowed on them. Another ordinary and useful form is the cylindrical cutter, with tecth cut spirally over its circnmference. This is largely employed for cutting flat, vertical, or horizontal surfaces, for tinishing concave and convex curves, and for complicated formsmade up of straight lines and curves. With this spiral arrangement of the tecth, and with reliable means of re-grinding or re-sharpening them, viry high-class machine work can be produced. Some experiments have been made by cutting a spiral groove or thread into the outtr surface of one of this class of mills, and thus reducing the aggregate lengtl of its cutting surface. Other mills again are made in the form of smatl circular saws, virying from $\frac{1}{4}$ to $1 \frac{1}{2} \mathrm{in}$. or more in thickmess. The teeth in some of these are simply cut around the circumference: others have these tecth extronding some distance down each sitle their edgus radiating from tha center of the mill. Towasd the center they are rodnowd in thickness so as to clear themselves. These cutters are useful for a great variCty of work: for instance the cutting of key-ways, parting off or cutting through picces of metal, and making parallel shots of various widths, for the broad-

Pr of which two or more conttrers mity be nsed side by sirle. Conical and angular milling cutters arto marh employed for utront varicly of work, suchas thoratiting of rimors, hae making of milling colters themsetves, bevering, entting the sorrated part of hand and thmmb-serews, mits, ete. Any complex forms, suchats the spances hot ween the derthof spars, mitrar, and othor wherels, ran be machined by using what are known as the patent conters, which (sin heresharponed ats offon as refuired by simply grimpling the fice of and tooth. They are so eonstructed that, loweror ofton they are re-grommet, they never lose their origimal curved forms, and alwiva prodnce tha samo diojth of cut. The of these centters, for instance will ent the samer standard shapes of torth in at spur-wherel, after it has lren used for yeary, ats it did the first day it was started. ligures, 83.4 , and 5 illustrate some forms to whieh these chlters are adipped. There is risk of frachure in making lares milling culters out of one solid cast steel hlank, tha principal dithenty being in the tomporing. In practire it is found that if they are reguired of larger diameter
ly fastonod at any angle, by two Hequare head sarews, che of whirlo is shown in the drawirse. Fig. ! shows a dixidin! horal rend tail sitork, wroll admpterl to thos users for which it is fleuigume. It has a comumomating Woder for arljusting the hatvers of tho sparciner worm gratatanl an iferation of the nsmal tail stock patern mo that milling ratters, ndjusted riose to the remter, pass relar across. With it gears can loe aroonratily
 forms. tajs and ratiners hlobed and worm whorels gashed. "1"he stots in thre storek allow the hoord to lre: Clevated from a horizontal to a vertical porition, and hysitulemental slots in tho (rlovated horial, in which
 prosseri to :30 dearoes indow a brorizontal line, arml is deereres bevond a vertional, making lan dearrees of rhange, all dretrminecl by graduations on stork. Tho spatoing worm grar is mado in hal vers, amblatl pronts.
 tion for wrar. Three intax dials go with the: hand.alividing all mmomers mb to 50, and as many othors as an every thy machime shop practice may demamd.


Fig.
than about 8 ins. they are better made of wroughtiron or mild-stmel disks, with hardoned cast-ster so semurely fitted into them that they do not require to he romoved. The cuttingedges can then be re-sharpencel in their own places, as in the case of the ordinary milling euftres: thos insuring that each shall have the same angle of rutting and clearince, run perfectly concentric, and therefore do a maximmm amonnt of cutting in a given time. It must however he borne in mind that the smallor the diameter of the milling autter, the better finish it will produce; and eutters of harge diameters should only be used to reach into depths where one of smaller diameter could not, or to do the heavier classes of work. Again, the smaller the cutter, the less does it cost to make and maintain.

Fig. of represents a cutter in connection with the work, showing the position required in entting the tecth of a spiral cutter. The distance $a=$ oze tenth of $B$. The liole in the cutter is ? inch. Fig. F shows


Fig. 8.
Garvin's spiral attachment, designed for use with the milling marhine, and which will cut with the propur charge gears, spirals with piteh varying from one turn in 1.66 inches to one turn in 60 imehes. Fios. 8 shows the swivel vise, mounted upon a graduated base $\approx \frac{1}{2}$ inches high. This vise is useful for a variety of work, is quickly adjusted, and may be secure-

The spindle of the elrvating liead lias a taper hole flear through, and thr end of the spindle is threathed to receive the chuck, allowing pieces of any denuth less than 1 and $1-15$ inch diameter to be milled. The tongues under the bise of the head and tatil stock are of steel, and ran beremoved to allow swivelling of the luad, so that work leded in the chuck, such as hollow mills, ete., can be cut under or looking. The tail stock has a milled head aljusting serew, and screw to bind the spindle central in any position. These centers are designed to be used on milling, shaping and planing machines.

The cutting speed which can be emploved in milling is much greater than that which can be used in any of the ordinary operations of turning in the lathe, or of planing, shiping, or slotting. A milling cutter with a pleutiful supply of oil, or soap and water, can be run at from 80 to 100 ft . perminute when cutting wrought iron. The same metal can only le turned in a lathe, with a tool-holeler having a goorl cutter, at the rate of 30 ft . per minute or about onc-1 hird the speed of milling. Again, a milling cuttrr will cut east-steel at the rate of 25 to 30 ft . per minute. The mereased cutting spered is due to the fact that a milling cutter, having some thirty points, has rarely more than three of these cutting at the same time. Each cutting point therefore is only in contact with the metal during one-tenth of each revolution. Thus, if we suppose it is cutting for one second, it is out of contact, and thercforc cooling, for the succeeding nine seconds, before it has made a complete ruvolntion and commences to cut again. On the other hand, a turning tool while cutting is constantly in contact with the metal: and there is no time for it to cool down and loose the hoat imparted to it by the cutting. Hence, if the entting spered exceeds 30 ft . per minute, so much heat will be panduced that the temper will be drawn from the tool. The same ditlieulty Io a great extent applies to the cutting tools in plariing, shaping. and slotting machines. The sperel of (buting is groverned also by the thickness of tho shaving and ly the hardness and tenacity of the me*al which is being cut: for instance. in cutting mild atect
with a traverse of $3-8$ in. per revolution or stroke, and drawing, is composed of a lucel-strap, $a$, or " main with a shaving abont $5-8$ in. thick, the speed of cut- leather band," as it is ealled by the inventor, to ting,must be reduced to about 8 ft . per mimnte. A which the rowel-plate, $b$, is riveted, a lower strap, good average cutting speed for wronght or east-iron is 20 ft . per minute, whether for the lathe, planing, shaping, or slotting maeline.
or under strap, $c$, passing under the boot: and a spur-strip, $d$. The metallic parts of the spur are the rowel-plate, $b$, the yoke or frame, $b$, the shoulder, $h$


Fig. 9


Millrind.

MILLRIND.-Milletind, or Fer meant to represeut a mili-iron originally a mere variety in designating the cross moline, but accounted a distinet clarge by some heralds. See Hermldry.

MILLS CARTRIDGE-BELT. This belt in its nain features is not unlike what has been for a long time known as the "Prairie Belt," its distinguishing characteristie being that it is not only made entirely of heary cotton fabric, but that the whole belt-the main fabric or budy of the belt, as well as the loops or thimbles which hold the cartridges-are woven in one solid piece, at one and the same time, in the same loom, there leing no sewing whatever in the entire belt. The cylindrical loojs are taken from and returned to the main web at the same point, so the cartridge is bedel in place by friction produced by contact with its whole circumference, and are of surb areurate form that, aided by the cord at the top of the belt, the cartridge cannot drop out.
(all of brass in one piece), the rowel, $f$, of stecl, the rowel-pin of steel, the buckle, $k$, of brass, eyelet, $l$, and the brass rivets and burs, marked 1,2, and 3 . The buckle is fastened to the understrap by means of a small projection. which is twined over the bar of the buckle and riveter, the tongue passing through the slot. The eyeiet, $l$, is intended for the insertion of a button attached to a steel wire double loop for strapping down the trowsers.

Tue different steps in the process of manufacture of the rowel-plate and yoke are very simple. The plate and yoke are first pmehed out flat in a rotary press. The middle slot and the holes for the rivets and rowel-pin are then punched. The branches of the yoke are next rounded and beut up by means of a pinch and die of proper shape. The shoulder is then formed aud by the next operation set firmly down on the rowel-plate. The holes are then drilled. and the finished rowel-plate and yoke are pickled and polished. The hole for the rivet is drilled or panched, and the rowels are strung on a wire passing through the hole, placed in the milling machine, and the teeth milled out.


As seen in the drawing, the belt las a suitable margin ahove and below the cartritge and loop which prevents the wearing of the former by rubbing against the clothes of the wearer. llaulsome and (lurabla buckles atre furnished, so formed that the wearer maty aljust the length of the belt to his person without sewing or cutting, and ean also adjnst the buckle midway between the eartridge lonjs. This bedt was recommended by the Equipment board of 1689 , was very fully approved by the (ieneral of the Army, and atopted lyy the seretary of War, and is now the Regulation Belt for the Cuiterl States Army. Sce I'uider-dones Belt.
MILLS SPUR.-This spur, the ${ }^{\text {xinvention }}$ of $C$ olone Anson lills, United States Army and shown in the

The rowel is riveted in the yoke with a rotary press. The rivet is increased in diameter thronghont its entire leneth by this operation, and the hole in the rowel is made ", larger than the rivet to allow for this increas. The rowel-plate is riveted to the herel-strap hy the same press, as it is not easy to do the riveting leg hand without the plate. Thac leather parts are assembled after the ruwelplate has heen riveted. The spur-strap and heel-strap are placed together and the eythet inserted; the heel-strap and nider-strap on the other sidd are assembled in the same manner; the ('nd of the under-strap with the slot in it is thearearefully inserted between the heedstrap and the spur-strap, and the whole sccurcly riveted.


Mining, 1. Míners at work. 2. Scaffoldiug. 3. Filling ore-cart,


MIM BASHX.-Inthe East Indies, a commanmior of ond thoumand horse.
MINER'S TRUCK-In low gallerice and branches, where whedbarrowa ramot be used, suatl wagons or miner's truches, restinig on short enat-iron whocels, answor the same purpuse, at math pushime luthind, assisted by another pulling with it rope in front, when the gallery is deseconding.
chiff wrought by the mine ofen very great is its moral influmere on the tronpo, and raperoially on the assallants. "Jhe bravest soldiers, who atwance without thinclinge to the very month of the cannon erhich they are, will hesitate to crose geromme which thoy smppese to be tunderninerl, mal on whish they may lee daslied to destructiom in a monent, withoist the jower of averting the unseen danger. The tirstern-


Ville spur.
MINES.- Wilitary mines constibuto at oner one of ployment of mines was very ancient, and mercly conthe most imbortat departments in military engin- sisted in obtaining an entrance to the interior of co-ing, and a very formidable accessory loth in the attack and defevse of fortreses. A military mine consists of a gallery of greater or less langith, rum from some point of safety under an opposing work, or under an area over which an attarking foree must pass, and terminating in a chamber which, being stored with gunpowiler, can ber exploded at the critical moment. Dines are of great use to the be- wall diverged oo eitier side, and andermmed the


Fig. 1.
siegers in the orecthrow of ramparts and formation the wall was sustained hy timber props: and these of a breach: the comutermines of the brsieged in un- being ultimately set. on fire, the wall fell: and the dermining the glacis over which the assatuting col- besiegers, who hat awaited the uportunity. ruatar umm must charge, and blowing them into the air, in at the berach. This use of mines of athick neresor in destroying batteries erected for breaching, are sitated those of defense which obtained in medieeral (qually serviceathe, But far ahowe the actual mix- timesamd have ever since kept the name of" counter-
mines." The earliest subterrancan defense consisted of a gallery surrounding the fort in advance of the foot of the wall, and termed an enveloping gallery From this the garrison would push forward small branches of tributary galleries, whence they could obtain warning of the approach of hostile miners. and by which they succerded, at times, in overthrowing the battering-rams or towers of the besiegers.

Two centuries appear on litve clapsed between the introduction of gunpowder into Enropean warfare and its application to subterranean operations. The first instance of this occurred in 1503 , at the siege of the Castello del Uovo, in the bay of Naples, which a French garrison had succeetled in holding for three years against the combined Spanish and Neapolitan forces. At lengtlo a Spanisla Captain, Perlro Navarro, devised a gatlery into the rock. which he stored with powder, whereof the explosion, hurling portions of the rock and many of the besieged into the sea, caused the immediate captnre of the place. At once the ase of mines of attack spread thronghout Europe: and so irresistible were they som comsidered by all military engineers. that it was not at all unusual for the besieger, after preparing his mine to invite the besieged to inspect it, with the view of inducing the latter at once to surrender. Defense soon availed itself of the new power, and. retaining the enveloping gatlery as a base, ran smali comntermines in many directions, to ascertain, by hearing, the approach of the enemy's sappers-his work being audible, to a practiced ear, at a borizontal distance of 60 feet. Small charges were then explorded, which, without creating surface disturb ance, blew in the approaching gallery, aud buried the sappers in its ruins. Thus commenced a system of subterranean warfare, reguiring the greatest risk and courage, in which the operator was in constant danger of being suffocated. Of course, in such a system, the balance of advantage lay with the besieged, who had ample opportumities, before the siege commenced, of completing lis ramifications in every direction, ind, if desirable of revetting them with masonry, which much diminished the chance of being blown in; while the assailant, no longer able to cross the glacis by an open zigzag trench, was compelled to engage in a most uncertain subterranean advance. The French engineer, Belidor, in the 18 th century restored the advantage to the attack, by demonstrating that the explosion of a very large mass of powder in a mine which had not yet entered the labyrinth of defensive mines, effceted the destruction of the latter for a ereat space round. clearing the way with certainty for the hostile advance, Although the primary purpose of a mine is the explosion of a clarge of powder, they are ofteu used ass a means of communication between different works, or between different parts of the same work. some being constructed of size sufficient to permit the passage of four men abreast, of horses, and of artillery.

It is, of course, impossible, in such a work as this to give even an outline of the professional part of military mining; but the article would be incomplete withont some allusion to the main principles. Hines are either vertical (xhefte), horizontal, or inclined, in either of which latter cases, they are gullerifes, the word "ascending" or "descending" being added if there be inclination. The dimensions range from the great gullery, 6 ft .6 in . ly 7 ft ., to the smutl loranch the last dimimntive of the gallerywhich has lut $2 \mathrm{ft}, 6 \mathrm{in}$. height, with a breath if 2 foet. The most frepuent work is the rommon gallery, 4 ft .6 in . by 3 ft ., which is considerel the casiest for the miner. 'I'lae sapper's tools are mumerous, bint most in request are his shovel, pickaxe, and, above all, his push-pick, he has, besides, a barrow, a small wagon, a lamp, and ohlier acecesories. As he advances, it is neressery to line his gallery, atways at the top, and ahmost always at the sides. This he does either by frames-which resemble door-
frames, and serve to retain horizontal planks or sheeting in position against the earth-or by cases somewhat resembling packing-cases, of little depth. which are used 10 form the sides and top. With cases, galleries are supposed to advance one foot and a half per hour; while with frames, the progress is barely more than half that amount. When a mine is exploded, the circular opening on the surface is called the crater; the line of least resistance is the perpendicular from the charge to the surface; the half. diameter of the crater is its radius; and the radius of cxplosion is a line from the clarge to the edge of the erater, on the hypothenuse of the triangle, the revolution of which would form the cone. When the diameter fquals the line of least resistance, the crater is called a one-lived crater; when it doubles that line, a two-lined crater; and so on. The common mine for ordinany operations is the two-lined crater; and for this the charge of powder should.in ground of average weight and tenacity---he in pounds a mumber equal to one-tenth of the cube of the line of least resistance in fect, for example, at a depth of 18 feet. the charge should consist of 583 pounds. In surcharged mines, or globes of compression, as introduced hy Belidor, vastly greater charges are employed, and craters of six lines are sometimes produced. The rules, in these cases, for computing the charges vary exceedingly, according to differeut engineers, and in every case are very complicated. Previons to the explosion, the gallery is filled up hehind the charge, or tamped, with earth, sand-bags, etc., to prevent the force of the powder wasting itself in the mine. This tamping must extend backwards for one and a half or twice the longth of the line of least resistance. The mine is cominonly fired by means of a powder-hose. composed of strong linen, inclosed in a wooden pipe laid carefully through the tamping, or $b y$ wires from a voltaic battery.

One of the most important subjects engaring the attention of the engineer is the proper ventilation of the mines. With the progress of civilization, this subject is assuming, every day, aspects of more and more importance, not only in relation to safcty and health, hut in a great measure from its vital conneetion with some of the great enterprises of the day. The entire inadequacy of any of the present arrangements or systems to give any thing like a thorough and perfect rentilation becomes more and more apparent as they proceed to greater depths and listances under ground; which, taken in eounection with the unhealthiness, great risk and fearful loss of life from explosions, now of such common occurrence, suggest the alarming contingency of being compelled to abandon them at no very distant day The consequences of even a slight interference with the mining interests of Europe are dreadful to contemplate. And in some parts of our own country the subject is one of great importance. Sometimes, in connection witlı high chinungs above ground, additional shafts lave been sunk. Fires have heen kept in the mines and chimneys, in order to rarefy the air and thas produce draught. This is not only dangerous, lut to a great degree ineffectual. And further, it has been demonstrated that the power resulting from the combustion of one pound of coal will give more ventilation than thirty to tifty pounds ronsimed in the way spoken of. May we not, therefore, on the whole, pronounce this system al falure? The only remaining plan of note to be considered is the fan. Of late thoy have received considerable attention. Enormous fans of from twemty to fifty feet in diameter, have been constructed at great "xpense, and requiring is vast amonnt of power to run them. But these ennsiderations would not be of so much conserfuence, if they acomplished the purpose: but this, in mines of any considerable depthand extent, they do not and can not. Within a certain range, fanin would undoubtedly be beneficial, but fans do not have a positive action cither for pressure or exhanstion. Their capabilities are thas limited. The
dereprend more extensive the mine, the greater the neressities for thorohglt ventilations. Here they must always fail.
'The lioot's positive blower uppears to be the nost satisfactory machine ever used by the mining enginerer. With this apparatus phaced at the mouth of the slaft we can exhanst the (hanps and fonl air in any required quantity, and discharge it votirely onl of and away from the mine, where it can do no haran whatever. 'l'he foul air thus displaced will be replacel by pura air, whieh will rush in from the surface in it vohume equal to the air displaced. 'llaus the most dislant pates of the mine will be equally us well ventilated an any other part amel the mine thromerout its contire extont may be said to be washed out with pure air. By this method, the foul air reक्षulting from blasting in mines anel tunncls is exhatustal at the point where the grases are formed, and entirely removal from the lammel and repplaced with pure ailr. This vantilator is shown in suction in Fig. 1. It ronsists of two rotary pistons, which are ench 25: ft . hametor and 13 ft . wide, and are built upon stece! shafts. L'pon emels of the shafto are keyed live cast iron dise plates, having langes at their circumference which are all tarned to exactly the same diamoter. In each dise phate there are three wrought iron lars dixed on chel side of the center, and reaching to the outside of the rotary piston; planed recesses are provided in the dise plates to receive the hars, which are also secured to the dise plates by bolts turned to fit. "lhe outer ends of the bars are widenerd, and marked off and slotted to the radius of the outer circle. Angle irons bent to the radius of the outer circle are riveted to the exiremities of
tweron the periphory of one of the rotary pistons and the center crircle of the other is alse the: samer mol thas in any part of the ventilator the chatranca for loss by the reburning of the uir is not musla more thann $\frac{1}{1}$ inchl.

The arrangement of the congine-homer and vantilator lmilding is slow in the emeraving ; the dis. chargod air escmpes through perforaterl openinge in the roof, and, owing to the very larese area of omlet from the viontilator-the top of the vontilator comsine beiner left entirely open-the sair that is boiner rexlanasted from the pit anast nereessarily be arlivereas into the atmosplacere a lower velority than in usial with other ventilating mathines. The range of this blower, when employed ats an exhauster, is certainly in advance of any of the previons merolanional ventilators: amd in the writer's opinion this would lo a decided advantage in the case of an explosion. When the airedoors become disarranged, the vorntilation of the mine is interfered with at the monnent when it wouhl be of the greatest service, and this owing to the limited power of fan ventilation, which can only be depended mpon up to alsont ${ }^{3}$ in. watar grange; but in a cuse of emergency, with a Root's ventilator similar to the one describcol, the marhine could be instantly driven at its maximam lower, and would speedily cloar the workings of the choke. damp, firc-(lamp, or after-damp. Since (xplosions camot always be prevented, it is of importance that the doudly gases should be drawn out in the shortest possible space of time, and replaced with pure air ; and from present cxperience this ventilator appears to be well filled to suit these requireinents.

Fig 2. shows the adaptation of the Cameron min-


Fig. ${ }^{2}$.
The bars, and are covered with $\frac{1}{4}$ in. sheet iron plate; (ing pump) for sinking and recovering shafts. It frethe center circles are also corered with $\frac{1}{4} \mathrm{in}$. shect iron plates on the turued blanges of the disc plates. The sides of the pistons are eovered with wood, and the inds with sheet irou. These rotary pistons revolve in bearings fixed upon deep east iron girders, which form the framework of the ventilator pit, and are connected together at each end of the ventilator by cross girders. The girlers and the cast iron side plates above them are planed on their inside surfaces, and the stonework of the ventilator pit is dressed off level with the planed girders. The engines to drive the ventihtor are a pair of 28 inch cylinders with 4 ft . stroke, and provided with addjustalhle cut-off valves. They are placed at right angles to the ventilator, and are connected to it with bevel wheels 9 ft . $2: 3$ in. diameter, 1 wo bevel wheels leing tixed upon the crank shaft, each gearing into a herel wheel keyed now the end of the ventilator shatts. The engine belw are carried along and fixed upon at stay girder. seeurely keyed and bolted to the main girder. The main girders are fixed 13 ft . $\frac{1}{4}$ in. apart, therefore, the clearance hetween the rotary pistoms of 13 ft . and the sides of the ventilator pit is only $\frac{1}{4}$ in. on cach side. At each end of the ventilator pit, and at the bottom on each side of the inlet from the upeast shafi, adjustable packing bloeks of timber are tixed apon hinged iron frames, and dan be adjusted with screws and nut; these blocks areset up quite close to the periphery of the rotary pistons within $\frac{1}{8}$ inch. The clearance be-
ing pump for sinking and recovering shafts. It frewater so rapidly that it is very difficult to remove it as fast as necessary, and for the same reason great trouble is experienced in lowering an ordinary horizontal plymp from one level to another; and in attempting to recover old mines hat have been "drowned out," the difficulty is the more serions, becanse of the large surface below to make water. This machine is held in suspension in the shaft, and being vertical, requires but litthe room, and can be raised and lowered as required. There is no dauger of its being submerged. Being compact and strongly made, without any of the working parts exposed to injury, they are well adapted for the rough usage incidental to the work for which thay were designed. Adjustable wrought-iron dogs are provided to fasten the pump to the shaft timbering, although they will work equally as well when hanging by the taekle, or will operate perfectly when placed at an angle or horizontally. The general features are exactly the same as in an ordinary horizontal machine, except that they are arranged to work vertically. Iron pipes or tlexible hose may be employed as best suits the situation.

It is but rare that, in the defensive arrangements of a field work, auy combination for a war of mining is provided for ; aithough in many, and those bot recent cases of a stubborn and protracted defense of field works against regular siege operations. mines have been employed with great sucetss, although
not made before the works of the assailant were under way. Astle end to be attained is the same in conducting the defense of a work by mines, whether it bea temporary or a permanent one. thesame principhes in the arrangement of a combination of mines for this purpose are equally applicable to the two cases ; the most essential of which are as follows: As the galleries of a system of mines serve the purpose of underground communication, they should be subjected to the same conditions as vther communications. A condition of primary importance is, that no combination shall be made which mirht compromise the safety of the work. To this end, no gatlery beyond the ditch should lead to the interior of the work: for should the enemy get possession of such a gallery he might cither penetrate into the work, or else barricade the gallery and hold possession of it long enough to blow up the works nnder which it leads. The galleries should not offer any facilities to the besiegers for carrying on their works. Those galleries, therefore, which, communicating with the ditches, might serve the besiegers for their descent of the ditch; also a continued connterscarp gallery, which may not only facilitate the descent of the diteh to the besiegers, but also, when in their possession, give them that of the whole system of mines, and, besides, serve to protect their passage of the diteh, and to prevent sorties in it, slionld be rejected. A gallery hehind a portion of the countersearp not favorable to the enemy's works, is very useful as a depot for the implements of the miners, and also as a communication. A complex system of mines should not be used for works that can be carried by storm ; for the reason that the besiegers might easily get possession of the system before it could be brought into play. The entrance to a sytsem from the ditch mast he revetted, to offer a sufficient obstacle to prevent the enemy from getting possession of the system by surprise: hence, a revetted counterscarp is a necessary condition in the establishment of the system. The galleries should not be run out to any considerable distance beyond the coveredways, both on account of procuring a good circulation of air, and because very advanced galleries are easily destroyed by the besiegers. The distance 10 which the galleries may extend should be so much the less as the ground above them is well protected by the collateral defenses. The soil must be suitable for the establishment of a system ; wet, marslyy ground, shifting sand, and lard rock, present almost insuperable obstacles ; whereas a dry, firm soil, soft rock, or ordinary earth, under a thin superstratum of hard rock, are very favorable circumstances. If the sub-soil is wet, but presents a firm and dry superstratum 12 ft. thick above the level at which the water collects, mines may still be placed with advantage.
Besides the above generat conditions, there are certain suecial oncs to be attended to in arranging the galleries and chambers. The galleries should be placed as far below the surface as practicable, to withdraw them from the effect of the globes of compression of the besiegers. To drain the galleries they slould have a slight inclination, aloont $\frac{1}{50}$, towards the ditctues; or, if the ground descends towards a bollow, the inclination may be given in that direction. The chambers, on the contrary, should be near the surface ; by this arrangement the powder is economized, and all danger to the galleries from the explosion avoited, whilst the object of the mines, which is to destroy the enemy's works, can be as fulJy attained by small mines as large once. The galleries shond not he placed nearer to each other than twice the lincof least risistance of the heaviost eharged minos, and not much less than four times the line of least resistance of the smallest charges. 'lhis arrangrment will readily uhbit of a combination of mines in two titers, the line of least resistance of the lower beines at least double that of the mppar, the chambers of which may be so arranged that the
explosions of one tier shall not affect either the gat leries or the mines of the other. Twice the line of least resistance of the largest mines is the Jeast distance that can be allowed between the galleries, in order that the mines of the lowest tier, which, being julaced near one gallery to destroy a part of it, shall not injure those parallel to it. By placing the galleries at this least distance apart, the branches for the service of the upper tier will be as short as jossible, effecting thus a saving of time and labor; and for the same reason, the galleries on any one point being as many as can be placed, there will be less chance of all being destroyed by an explosion, but that some one of the galleries will be fonnd serviceable. The galleries and branches for the service of the different groups of mines shonld be independent of each other, so that there may be no confusion in the service, and that no group may be rendered nuserviceable by the destruction of the communications to another. The same principle should be attended to in combining the different groups of mine cbambers. The galleries and brauches should never present their flanks or sides to the globes of compression of the besiegers. This rule leads to the rejection of enveloping galleries. See Blower, Countermines, F"ir"ug-intiery, Gullery, and Shaft.

MINIE BALL.-A ball or bullet of peculiar coastruction. It is cast hollow for nearly two-thirds of its length, and into the opening of the internal cylinder there is introduced it small concave piece of iron, which the powder at the moment of firing forces into the slng, spreading it open, and causing it to fit perfectly to the barrel. Hence, a great increase in the precision of aim and the extent of range.

## See Bullet.

MINIE RIFLE. - A rifle introduced some years ago and adapted for firing the Minie bullet, the pecuiarity of which bullet was that it had an iron cup placed in a cavity at the base, which, on the rifle being fired, expanded the lead into the grooves of the barrel. In 1851 a rifle musket of the Minie pattern was supplied to the English Army, but only to a limited extent'; it was ased in the Crimea, at the battles of the Alma and Inkerman. Notwitlistanding its many advantages, it was fonnd to be defuctive in practice, and was superseded by the Enfield ritle in 1853.

MINION. - An ancient form of ordnance of small size, the caliber of which was about three inches.

Minister.-I. Functionary Diplomatic. Bythe American system Ministers to exercise diplomatic functions near Foreign Courts are appointed by the President and confirmed by the Senate of the United States. They are accredited by letter to the Sovereign of the cointry to which they are appointed, and are permitted certain immunities ani privileges, being entitled to be adilressed as "Excellency," and conceded exemption from the operation of municipal law. The United States send no Envoys of the rank of Embassadors, permanently accredited to Foreign Courts; but have not infrequently conferred the rank and authority in the case of special missions. II, Functionary Executrye, In the United States Gov. ermment, the executive officers are under the inmediate official direction and control of lleads of Jepartments, including those of State, 'Treasury, Interior, War, Post-Ottice, Navy, Justice, and Agricnlture. Seven of these Otheials have seats in the Cabinet or Council of Advisers of the President, and are termed "The Cabinet." They are the Sereretaries of State, War, the Trasury, the Navy, and the Interior; the Postmaster-(ieneral, and the A1tornej-General, or the $1 J_{\text {a }}$ at of the Department of Justice. These Oml cials are appointed by the President, and confirmed by the Gemate; their cluty is to alminister or execnte the functions of their respective otlices under the direction of the l'resilent; to whom they are immediatuly responsible aml to whom they report anmally; and from time to time on special subjects if so desired by him. They hold their ollices at the will of tho President, who muy reinest their resignations if the
good of the pablie srrvice shatles"m tor require it. As


 nothing, lonwevar, in the Constitution or alsewhera in American law which remolers it obligatory on the l'rasident lo (omploy than in this manner, thomes rustom has made it usual and ronvoniort so to do. E.xerpting to the l'resilant for tha proner performe ance of thoir aflicial datios, they have mo responsibilities and in mo partboular exrajpt in the nature of these datios do they resemble the Jinisters of Great Britain or those of the diaroferan l'owers

MINOR BARONS.-Thu wort baron, in tho rarliost protiod of fromblism, signtiod one who held landes of a sujerior by military temure. Thesuperior might be the Kovereign, or he might le an liarl or othor eminent person, who held of the hovereign. decording as le wat the one or the other, the buron wats, in the rarliest sense of the distinetion, a Greater or Lesser Baron. At the Congurest a large part of the soil of Enerland was parcoled by Willian the Norman among his military retainors, who wore lomad in retmrn to perform services, to do lomage, and to assist in administering justice, and in transateting the other business done in the Court of the King. 400 of these 'lowants-in-C'hiof of the ( $r$ own arre enumerated in Domesday, inclabling among thom "Vice-amites" and "comites", who together canstituted the body of men called the Barons of England. As the Novereign was entitled to demaml from 1l.e Baron's military' s('vice, lomage, and attendance in the Courts, sot, many of the principal barons, particularly, such of them as wore liarls, had Military Tenants, from whom they in turn received homage and assistance in administering justice in their Baronial Courts. These Tenants were Burons of the Barons, or, in the earliest sense. Minor Barons; hut by the asage of Enghand, from the Conmuest downwiade, they were seldom called Barons, that term baving been generaty restricted to the formor clase, the holdess of hand direet from the C'rown, who were next to the kiing in dignity, formed his army and his legislative assembly, and obtamed the great chartor from ling John. Thesmbinfeudation which produced the Minor Barons was ehecked by astatute of Edward 1., directine that atl persons acyuiriner lands from a suhjoect, should bold not of that subject, hat of his superior.

MINUTE GUNS. Gins fired on the interment of an otlicer of rank, or of some ligh personage of the realm. The oflicer to whom these hanors are paid mast have been above the rank of colonel in the Army, or of Commodore in the Navy, and have died on service. Dimute guns are also fired as signals of distress.
MINUTE MAN. -1 man 'mlisted for service wherever remuired, and ready to marel at a moment's anotice. The term was tirst used in the American Revolution.
MINUTES. - A lurief or rough sreport of the prowedings of a Society or Commoil drawn hip hy the searetary or Recorder. They are so called from being taken down shortly, and in minute or small writine, 10 he afterwards engrossed.

MINUTES OF COUNCILS IN THE MLLITARY DE PARTMENT. - The notification of orders and regnlations, whirh are directed to be observed by the British Army in India. These minntes receive the sanction of the Governor-General in Council, and are the results of previons commanications from the Court of Directors in Europe. The answer to the French word, fesultat, which was pretixed to all orders and regulations that ware occasionally issmed by the Diditary Buards, or Conspib de (i)uerre, for the governEent of the Army. The term. Jugement dinen Comseil de Guore, corresponded with minutes of a General or Garrison Court-Martial, and expressed not only the minutes, but the senterner of the Court.

MIQUELETTI.-I small hody of mountain fusiliers.
who formorly larlonged to the S゙anpolitan Aruy. The term s/iquelets is applimel to lisamdis, whos lave
 borne by thro (aptain-firnorial's (inaril. In lsom, Niposeon organizod a corps of sfigueletn foroncatio. whor rendered goond surviers.
 erortain los:alitios, and as simple in itsonian as atomishing in its rffects. [ondar it are classara] tha apprarance of distant objorets as dombles, or as if ma
 of the miragre is a diminution of tha density of the air moar tha surfare of the carth, pronliared ley the iransmission of heat from the varth, or in some uther way: the renser strathm bring thang
 the rare. Now, rays of liehte from a distant ohjort situated in the denser modium (i. "... :1 litala above the earth's leved), coming in a dirowtion noarly par. allol to the carth's surface, most the rarer monlian at a very obtuac angle, and instearl of passing into it, are refleoted back to the dense modinm, the rome mon surface of the two modia areting as a mirror. Suppose, them, a spectator to be situateal on an riminrence, and looking at an oljeere sitwated like limself in the denser stratam of atir, les will sere the robjeet livemeans of 'directly transmitod rays; bat busifles this, rays from the binjert will he relliwetel] from the upper surface of the rarcer strathm of air bencath ion hise ege. 'The image frodured hy tho retlewerd rays will appear invertiol, and teelow the real objeect, joist as an imace reflected in water aplexars whatil obs. survied from a distamere. If tho olijeret is a clond or portion of sky, it will appear by the retlected rays as lying on the surfice of the carth, and betring a strong resemblanee lor a sheet of water; alco, as the rellecting surfare is irregular, and constantly varicos its position, owing to the constant commanic:ation of lieat to the nuper stratum, the rellected inmige will be conatantly varying, and will present thre at)pearance of a water surface ruffled hy the wind. This form of mirage, which "ven experioneed iravelars have found to be completaly deceptive, is of eome mon oceurrence in the arid deserts of lowor Eeypt. I'ersia, "lartary, ete.


In particular states of the atmesphere. reflection pf a portion only of the rays takes place at the surface of the denar medinm. and that double inaters are formed, one by retlection, amd the onther by re-fraction-the first inverted, and the second "rect. The phenomena of mirage are frequently unch mote strange and complicated, the images being often murli distorted and magnifiod. ind in some instanees oceurring at a considerable distanee from the object, as in the case of a lower or chureh seen wror the sca, or a vessel over dry land, eve. The partionlar form of mirage known as lomming is very fraquently observed ot seid, and eonsists in an excessive apparent elevation of the ohjeet. A most remarkalbe case of this sort ocourrel on July 26,1764 , at lifs tings. From this blate the French coract is fifty miles distant: yet, from the sea-side the whole coast of Franco, from (alais to near Diejper, was distincelly
visible, and continued so for three hours. In the Artic regions it is uo meommon occurrence fur whale-fishers to discover the proximity of otherships by means of thier images scen clevated in the air, thongls the ships themselves may be below the horizon. Generally, when the ship is above the horizon. ouly one image, and that inverted, is found; but when it is wholly, or in great part below the horizon, clouble images, one erect and the other inverted, arefrequently seen. The faithfuluess and distinctness of these images at times may he imagined from the fact, that Captain Scoresby, while eruising off the const of Greenland in 1822 , cliscovered the propinguity of his father's ship from its inverted image in the sky. Another remarkable instance of mirage occurred in May, 1854, when, from the deck of If. M. screw-steamer Areher, then cruising of Oesel, in the Baltic, the whole English fleet of nincteen sail, then nearly thirty miles distant, was scen as if suspended in the air upside down. Besides such phenomena as these the celebrated Fata Morgunu of the Straits of Messina sinks into insignificance. The Sipster of the Brocken ia lranover, is another celebrated instance of mirage. Its varieties are indeed numberless, and werefer those who wish for further information to Brewster's Optics. Biot's Traite de In mysique, and for the mathematical thenry of the 2 mirage to the works of Biot, Monge, and Wollaston.
MIRE.- In the French artillery, a piece of wood about 4 inches thick, 1 foot high, and $2 £$ feet long, which is used in pointing cannon.
MIREUR.-An instrument employed in coast batteries for ascertaining whether the enemy's ships are within the range of the guns, and thus to prevent the gunners from expending their shot unnecessarily.
MIRMILLONES.-A variety of Roman gladiators, said to have been so called from their having the image of a fish on their helmets. Their arms were tike those of the Gauls; hence we find that they were also called Galli. They were usually matehed with the? Retiarii.
MIRROR.-Au instrument used in the iuspection of cannon. The interior of the bore is examined by reflecting the rays of the sun into it from the mirror or mirrors; or, if the sun is obscured, and there can be no delay, by means of a spirit-lamp or of a wax taper on the eud of a rod, taking care not to smoke the surface of the bore. See Inspection of Ordnance.
MISBEHAVIOR BEFORE THE ENEMY.-The Articles of War declare that any officer or soldier who misbehaves himself before the enemy, runs away, or slamefully abandons any fort, post, or a guard which he is commanded to defend, or speaks words inducing others to do tbe like, or easts away his arms or ammunition, or quits his post or colors to plunder or pillage, shall suffer death, or such other punishment as a Court-Martial may direct.

MISCELLANEOUS. - An item or charge in the Esti mates of the British Army, and so distinguished as Miscellunevias Services; the same as our Contingent Fxpenditures.

MISCONDUCT AT DIVINE SERVICE.-In the Articles of War, it is earnestly recommended to all Officers and Soldiers diligently to attend divine service. Any othicer who behaves indecently or irreverently at any place of divine worship is brought hefore a General Court-Martial, there to be publicly and severely reprimanded by the President thereof. Any soldier who so offemis, for his first otfense, forfejts one-sixth of a dollar; for each further olfense he forfrits a tike sum, and is confined twentyfour lours. The money so forfeited is deducted from his next pay, and is applied, by the captain or Senior Officer of his troop, battery, or company, to the use of the sick soldiers of the same.
MISCONDUCT IN TIME OF WAR.-All Officers and Soldiers are to behave themselves orderly in 'fuarters and on the march; and whover commits any waste or spoil, either in walks or trees, parks, warrens, tish-
ponds, houses, gardens, grain-fields,inclosures, or meadows, or maliciously destroys any property whatsoevor lelonging to inhabitants of the United States (unfuss by order of a General Officer commanding a separate army in the field), shall, besides such penalties as he may be liable to by law, be punished as a CourtMartial inay direct.

In time of war, insurrection, or rebellion, larceny, robbery, burglary, arson, mayhem, manslaughter, murder, assanlt and battery with an intent to kill, wounding, by shooting or stabbing, with au intent to commit murder, rape, or assauit and battery with and intent to commit rape, shall be punishable by the sentence of a General Court-Martial, when committed by persons in the military service of the United States, and the punishment in any such case shatl not be less than the punishment provided, for the like offense, by the laws of the State, Territory, or District in which such offense may have been committed.
MISERICORDE.- A very short sword, in early times, attached to the right side, corresponding with the position of the regular sword on the left side. This weapon is so called because it was habitually used to stab the fallen and vanquislued foe, when in sucb extremity either that mercy would be sought, or that it would be a merciful deed to put ar end to the sufferer's agonies.

MISNOMER.-The mistaking of the true name of a person. If auy prisoner plead a misnomer before a Court-Martial, the Court may ask the prisoner his real name, and call upon him to plead to the amended charge.

MISSILE.-A weapou thrown, or intended to be thrown, for doing execution; as, a lance. an arrow, or a bullet.

MITER.-The miter, as an ornament, seems to have descended in the earliest times from Bishop 10 Bishop. Among the Cottonian MSS, is an order dated July 1, 4 IIenry V1., for the delivery to Archbishop Chichely of the miter which had been worn $\mathrm{b}_{j}$ his predecessor. It was in some cases a very costly ornament. Archbishop Pecheham's new miter, in 1288, cost $£ 173$ 4s. 1d. In England, since the Reformation, the niter is no longer a part of the Episcopal costume, but it is placed over the shield of an Archbishop or Bishop, instead of a crest. The miter of a Bishop has its lower rim surrounded with a fillet of gold ; but the Arehbishops of Canterbury and York are in the practice of encircling theirs with a ducal coronet, a usage of late date and doubtful propriety. The Bishop of Durlam surrounds his miter with an Farl's coronet, in consequence of being titular count palatine of Durlam and Earl of Sedburgh. Before the custom was introducod of Bishops impatius the insignia of their sees with their family arms, they sometimes differenced their paterual coat by the addition of a miter. Miters are rare as a charge in Ilaraldry, but are sometimes borne as a crest, particularly in Germany, to indicate that the bearers were feudatories. or dependencies of ancient Abbeys.

MITFORD PERCUSSION BULLET.-An ordinary Enfield bullet, having a chamber, down its longer axis, to within $\frac{1}{5}$ inch of the hollow; this chamber contains $4 \frac{1}{2}$ grains of detonating composition: and the bottom is closed with wax. It is intended to explocle ammunition wagons.
MITIGATE-To diminish the severity of punishmeut. Every officer who is authorized to order a General Court-Martial has power to pardou or mitigate any punishment adjudged by it, except the punishment of cleath or of dismissal of an officer. Every othicer commanding a regiment or garrison in whiel a Regimental or Gamison Court-Martia! may be held, has power to pardon or mitigate nny punishment which such Court may adjudge.

MITRAILLE.-Small pieres of old iron, such as heads of mails, ete., will which pieces of orduance are sometimes loaded.

MITRAILLEUR.- $I$ marlime-gun in which nul ancrous barge hored rifles are comblinord with breerels

 Belamam, and idopoted loy the l'remeh limperor soon after the J'rassiath-distrian, war of 1866 . It was the rhiof camon of the fromels artillary during tho Francetiorman war of 1870 . 'The mitmallense (ex iuted in a primitive form ats early is the 1-1th e'mtury, and well-prestoved speroimens maty he fomml
 lin, Moscow and Constantinoble. A lato form of tho Weapon, usenl hy the fremels, bas 37 harrols, and ammanition chests alongside the gan on the same axde. The : is cartridgea, intemeded for the charge, are romtainod in at small box. A steel plate with corrosponding bobles is placed ont the opern box, whicol is then reversed, and the cartridges finll, points foremost into their respecelive holes. They are prevernted from falling throngh by the rime at thoir lases. The lualed phate is then introduced into the brecechslot, and when the brecelt is closed lyy a lever, a number of sterel pins, pressed by spiral springs, are only prevented from striking the percussion arrangement in the cartridges by a plate in front of them. When this case is moved slowly by a hamolle, the cartuidges are fired one by one. If the plate be withdrawn rapidly, they follow cach other so quickly that their discharge is almost simultaneous. 'The projectile weighs 37 , rrammes, or a little over an ounce. The charge of powder is from 6 to 8 gram. mes. The last amomet is that comseled hy the inventors. Thismitrailleur weighs 180 kilogrammes, or 400 pounds without the carriage and it can be worked by two men. It was fonnd, however, at Vienna, in December 1860, that to obtain the most rapid tiring, or 48 balls per minate, five men were necessary 10 work the piece. The front carringe contains from 48 to 56 boses for loading, and the two caissons hold 10 lorecech-plates furmished with cartrideses. The piece is, herefore, provided with 2368 cartridges: and a battery of 8 mitrailleurs can hurl on an attacking colum 3848 effcetive projectiles per minute.
The leseription and nomenclature of the one-ineh mitraillent (Gatlin ( l (un), a picce mach used in the United States Army, is as follows: The breech loading ritled burrels ( 1 ) are fastened logether by a fiont
for-grontes; bupher-sproing. Sior the drawing below The following parts are within the brevela-cedsing



 Each lock consisis of at lock-honit, lark-Lule or plumidre, luck-hamumer, terk-apming, firing-viu, and atruetori.

T'o twhe the mitroillente aperet liloerk up, lranase abrl latrols: lake off haplere fakre off romerabel jalatre: take pin out of pinjom, turs rerank downward, and] thonl remove crath-ahaft; lakt ont rearosight, and
 in diapharagm, and geontly revolve the piocom matila low presents itself on a lime with the hole in the diaphragm, throngh which the locks are surceres. ivoly rimosed; take out large srews on sides of breceb-casimer, amb remover caning to the rear. Ife carefal to hatw the lock-rylinder and piece supported so as to kecp the center-line of main-shaft parallel to top of frame: this is noressary to wrevent the inner brecell or rear of the piree from droppiner when the asinus is removod. The large rear nut, on the slast in rear of the lock-evlinder, and which serves as a ghidio for the rearerinds of the locks, is made fast by a tapered pin and a bifthenuled sorive; to remove this man, the pin is taken out and the wut twomed to the right. The lork-rylinder and carricrblock are then taken off. The spiral com need not conne ont of the casing in taking the mitrailleur apart.

To put the mitrailleuz together-Put main-slaft in place, thromgh the plates which hold the barcels, and then replace carricr-block, lock-cylinder, and larere rear nut; screw up this nut tighly, ant put tapered pin through the mat and shaft ; blace the mitanillenr in the frame, and let front end of main sluaft rest in the bole designed for it, in the front of frame: lake cotre to krep the center of man-shaft in the plate of icp of frame. When the picce is in this position. pust the cocking-ring over the lock-cyliuder and let it hang loosely round the carrier-block; raise the breceh slighty, and push the breceh-casing over the lock-cylinder, ete., 10 jts place: screw casing (1) frame and pat cocking-ring in its proper place: revolve the piece to the right or left, so that the rlaces for the locks will come on a line with the looke in the diaplaragm, through which the locks are suc-

burrel-plate (2) and a rear barrel-plote (3). The carrierbloch (4), a hollow cylinder which carries the cartridges, is directly behind the barrels. The lock-cylinder, another cylinder behind the carrier-block, econtains the locks (one to each barrel). The barrels, carrier-hlock, and lock-cylinder, revolve around a common axis called the mansthaft (5), which is turnby the lanu-cranh (b). The lock-cylinder revolves within a brech-raving ( 1 ), forming the body of the gim and closed in rear by the cascrubl plate (8) The breech-casing is fastened to the frame (9) by the cas-ing-weress (10). The cartridses are insorted in the hropper (11), and pass sucecssively into the channurls of the carrier-block, whence they are thrust into the barrels hy the lock-tubes or plungers, and held here mutil exploded by the firing-pink. The cartridge-shell stop is attached in the hopper. The other parts are the tr"m nions (12); rear-sight (13); front-xight (14): fice ( 15 ) : sochet, for head of elevating-serew; sucket guide-plate and sereas; locking-bloch for locking bolt : plug for removing locks: trapersing-sereers: reguluting uut, on traversing-screw; thumb-spring for regulatiug nut ; crank-stop; hinges; hopper-spindle; hop-
cessively inserted and placed in a proper position: then insert serew-plug to close hle hohe flaronirh diaphragm; put on cog-whect : replace crank-shaft, jinion, and tapered pin; then put on rear-sight, and screw on butt-plate and hopper.

The following is the nomenciature of the enn-carringe for the mitrailleur: Stuck: 7und; grmer; trail: rounding of trail; trail-piate: hemelle; juinting-rng; pointing-vecket; trail-handes; whel-gurerel plate; ile-rating-serese: plerating-serren bux ; elicuting-server bicl; rondelles; chesks; irashor-houkix for landspiks: understrups; handspikering*: cap-squatres; cilp-apuare* chains; kry-chains and keys; trunnion-3ude ; trunnime sacivel; trumnion-sacirel friction-bed; srame fir trater-sing-ripparatus or tracrring-arm; trarersing-fork; traversing-jork srring: (sliral); tracersing-firtionandle: trarirsing-finh ciamp-screas: tratersing-firk cawe, with slot for hanclle : lockiong-bolt counceted with traversing-fork by a lecking-lecer; loching-lult chas; whok-seat, with hinge and prop, drag-hooks; cieratingscreo nut; elecating-nut lundle: elernting-cianip) serewo; rod-rase and heys; axle; wheels. See Gatling Gun, Machinc-gun, and I'iece.

MITTEN.- $\boldsymbol{A}$ hand-covering which superseded the gauntlet in the 15 th century. It was mate of thin plates of steel, with joints, to enable the hand to move frecly. It is of this mitten that Bayarl says,"Ce que gantelet gagne, gorgerin le mange."

MITTLERER. - One of the three parts of whicla the enciente is formed, in the German system of fortification.

MIXED BATTLE.- $A$ combination of defensive and offensive battles. The most common case of this class is that in which a position is selected before hand where the army awaits the attack of the enemy, and at a suitable moment moves from it and attacks the assaulting colnmas. This rase is sometimes known as a "defensive-offensive" battle. Where the ground is favorable and the truops are in good condition, these battles offer peculiar adrantages, sine the assululting columas.being exhausted by their first efforts are not in the best condition to repel the at tack of an army rushing forwarl from its pesition. See Battles, Defensive Buttle, and Offensive Buttle.

MIXING MACHINE.-A machine employed in the manufacture of gun powder. It consists of a hollow drom of copper about $2^{\prime}$ wide by $3^{\prime}$ in diameter which is made to revolve at a speed of thirty-five revolutions ber minute. The bearings of this drum are hollow, and a shaft passes through them, having in the interior of the drum an eiglit sided boss or tuhe secured to it; into this a series of arms or flyers are screwed, there being fiwn on one face of the octagon and six on the next alternately, so that there are

forty-four flyers altogether. They are made of a flat section, hat forked it the ends, and provided with holes through their flat sides, and each one is set at a different angle to the next: their points just elear the inside of the drum, and they revolve in the opposite direction to it at the rate of seventy revolutions per minute. The three bags of ingredients ( 50 11). in all) are emptied one at a time through a door into the copper drum,and after the machine has been five minutes at work they will he found to be thoroughly mixecl. The door in the drum is now opened, anit the composition falls flown a slonot into a tub, and after being spread ont, is carefully examined, and then placed in the receiving hags. Where the bags are filled, they are tightly fied an, and it is very essential that this operation be carefully parformed. for should the composition be allowed to remainloose in the lages (the ingredionts having very eliflerent spurific gravitics), thw saltpeter would fall to the boltom, the charcoal rise to the top, and the sulphur orerupy the eentar, therely undoing the mixing: and as any vibration caused by the working of adjacent machinery would be much against the eomposition retaining the thorough mixture given to it by the mawhace, the bises are pat into smatl magazines sepa-
rate from all buildings containing machinery, and there laid on their sides, so that the weight of the saltpeter may affect the mixture as litthe as possible The emmpositien is now ready for the next operation, and this is performed in the incoryorating mill. See Gunpuzeder.
MOAT.-The ditch round the ramparts of a fortress, may le either wet-i.e., fnll of water-or dry. In the latter, which is the commoner case, the dept in chould not be less than 12 feet nor the width under 24. The more perpendicular the walls, so much the greater will be the obstruction to the enemy. In regular works the walls are usually reveted with masonry, that at the foot of the rampart being the scarp or escarp, and that below the covered way the counterscarp. See Ditch and Fortification.
MOBILISATION MOBILIZATION - The act of preparing troops for war. The process consists in augumenting a regiment from its peace to its war complement, in calling in men on furlough, in organizing the staff of divisions and brigades, constituting the commissariat, medical, artillery, and transport services, and in aceumulating provisions and munitions As the work of mobilizing an army causes great and inevitable expense, it is only resorted to when hostilities appear imminent. The rapidity with which armies can be mobilized has been of late years great. In 1859, it took thirty-seven days for France to collect on the river Po, a force of $104,000 \mathrm{men}$, with 12.000 more in Italy. In 1866, the Prussian armies ( 200.000 in number) were placed on the Frontiers of Saxony and Silesia ita fortnight; andin 1870, Germany was able to mobilize lier forces in nine days, and to send in eight dars more to the French fronticr an army of 400,000 soldiers and 1200 guns. The mobilization of the British army has been provided for under orders issued by the War Office and Horse Guards. By this sebeme. which is not only based upon defensive requirements, but also adapted for offensive warfare as well, 300,000 men will be available within a few lays for the defense of the conntry, and if necessary, a certain portion of the force can be embarked for a war in foreign countries.
MOBILITY.-Lightness, facility in moving. In war fare it is of the highest importance that the artillery and transport of the army should be as light anil movable as is consistent with efficiency. Not only does this term apply to the particular branches above adverted to, but mobility expresses also the facility and rapidity with which an army can traverse a country, when called upon to do battle will the enemy, which, combincd with concentration of force, is likely to bring matters to a snceessful issue.
MODEL.- A pattern or imitation of anything on a small scale, in wood, stone, wax, or any other conrenient substance. Models are not only made for the reduction in size of articles of all sorts, and for possession of fac-similes of all such works as are either too large to be moved or too expensive to be bought, but they are valuable in a military point of view in giving, in a handy and instructive form, the elevation of ground sketchet out in topographical maps, and whiel is also applicable to fortifications, cte. Under the name of model an apparatus has been lately invented by Captain E. Padmore Clark (Instructor of Musketry, IIerefordshire Militia), for the parpose of instructing oflicers and men in the cavalry and infintry drill. The infantry model consists of a miniature regiment of infantry, i. instal, and is so formed that the ranks can be eimultaneously turned in any direction, and the position of ollicers and markers is clearly definet. This apparatus, which is called " Drill Mosel Apparatus." consists of a lattalion of six companies, with mounted and other officers, color-party,bumh,and pioncers, eomplete. Two of the eompanies are thivisilite into half-rompanies, for the purpose of showing the movement of the sideface companics in the formation of a two-deep square in a battalion of four companics. 'There are six smath stands to attach to the right or left, or the center, of
ench rompany, for the leating graide in formations of fours to a flonk, or for the right grible in retiring in line. 'l'his apparatas will, olonhtuss, prown very uscoful io imparting to young ollierrs practical knowi. celge in this important hranch of their profession, and
 movements which companios amd ballilions arevall(al upon to perform on the drill-gromat or bin the field. The drill mosel for cavalry is similar, and represents a wholer regiment, and the trounsand stematrons are divisible on the phan of the infantry modd.

MODULUS. - A constant condiciont or multipliar, by means of whicll one scric's or system of chantities can be redneed to another similar sorias ur sys. tem. "Thas we have the moshalus of diastacily", of friction, and of systems of logarithms. "17ne systom of logarithms which is miversally accopoded as the primary is Napicr's, and from it all othersystems are dedured in the following manner: Iat $N$ be it number of which the Napporian lorarithan is b, r luinger the Napuerian base, it is recpured lontind tho logirithan of $N$ to somis other base $a$. Let $x$ be this logarithm, then, we will lime


This multiplier or " modulus,"--a, is inher-
pendent of N , and is therefore constant for the reduction of all Napicrian logarithms to the system whose bise is $t$. If $t=10$, the multiphier beromes - 1 —. the modulus of Briggs', or the common syslog. e10,
tem of logarithms, and is ("pual to $\frac{1}{2.30258509}=.4342$.
944. . .

MOENCHS BUCHSE.- A small hamd-cammon II inelaes loner and $4 \frac{1}{1}$ inches in diameter . It precoded the invention of the whecl-lock, and gave the tirst idea of it.

MOFFATT GUN.- $A$ breech-loading rifled ficldginn. 'The hoty $A$ is of steel, and bored through from end to add. The breceli-mechanism consists of a conical breechepheg, accorately fitted to the bottonn of the bore, and efficiently closing the same through the smpport afforded liy the breech-strap. This strap is attached to the trunions as an axis of
aganst the lags, the loops of the hetrag over tha tromions mhationg of al sligit play for that purfinse.

In the proliminary firings had with the fern, to trest the working of tha parts. tha brecedt was thrown
 the rexin. 'To obviate this at lexking device wins
 1he breedh-strajp and into atroiss in the breerehblock. A half-turn of the: hamble is suflic'in年t to proses the blork firmly luwn into platere, and there retain it. A half-larn in a rontrary diruction diarngreses the key from the recess in the blords, and the
 hlock not always fall back on tilting up the brevelh, a leather stras is provicted, which pulls barek the
 disconguge it from tho sirap. 'lhe tromnions are s.rewed into the frm-body, and ine furnisheet with shomblers, by which the bops of the brecech-straps are confincel to the rimblases.

Theretling of the gran consists of twelve grousion
 and the depth of the groovers $0^{\prime \prime}$ (0.). Thlo twist is miform, and makes one turn in 12 fect. The chanber is concentric with the bore but of larerer disum"tor. measuring $3^{\prime \prime}$.19. the diametar of the boro through groow's looing but o'". $^{\prime \prime}$. Its capacity is such as to accommotate a rharge of it pummis of powder and a luad-conted or a donbla-bearing Boter projectile of about 10 pounds wricglat, the projectile haing insertarl in the ritled portion of the bore as far as the front rib or band. The vent is in the bormal position on top of the gun. When the gun was originally finished it was provided with it cup-shapeal gas-check of copper'; but having failed to give satisfaction under heavy charges, a number of Broadwell rings, of sleel, brass, and composition, were tried, several of which Eave excellent results. The nes of a loose internal Rodman pressure-gauge being prerhbded in a small breech-loader, and it not being wished to mar the gan hy horing for the "xturmat grange, the inner face of the breech-block was bored and tapped for the reception of an interior plag.

The gin-body was manufactured by Messer*. Jirth \& Sons, Shefticld, Enerland, of the best quality of crucihle cast-steel, and forged from a single ingot. As recoived at the South Boston foundry, it was rough-bored and tarned. The sterl for the brex.ellblock, strap, etc., were forgings from the Nashua

motion, but is enabled to withstand the strain of discharge by locking into lugs on cither side of the breech of the gun. The breceh-strap rests in rear upon the top of the elevating-screw, to which it is attached by it suitable coupling, to admit of the free movement of the serew. The breech-block is hinged in a fork attached to the under side of the breerh. The operation of the mechanism is as follows: The breech is opened by tilting up the breech of the gim, throngl the medinm of a lever E, which has its axis in at stirrup underneath the brech-strap. By this operation the block is raised out of the brecelh-strap, and falls back by its own weight upon the latter, thus exposing the chamber. To close the breech again the lever is raised, and the gun, owing to its preponderance, falls back into the position for firing: the wedge-shaped back of the breech-block, at the same time. cuters a correspondingly bevald recess in the breech-strap, and draws the latter firmly

Works, New IIampslire. The final work of fitting, finiwhing, and asscmbling. was accomplished at the sounh Boston foundry, under the supervision of the Inventor.

The following are the limensions of its principal parts, to wit:
Dimmeter of loore across lands.
Diamoter of bore throngh grooves......
Dianmer of chamber..
$2.0 \%$ inches

Dimucter of brevelulock cavitlo....... of gas-check.
Diameter of breech-block cavity. outer edge $3.1 \%$ inchus 3.10 incos
3.90 inclac:
5.23 inches Diamcter of piece at muzzle............... 5.90 inches Diameter of pitce at trummions........... S. 00 inchors
Diameter of brecch..
a.t\% inches

Diameter of trmmons.
$3.1 \%$ inches
Length of rifle portion of bore.......... .5. . 0.00 inches

Length of beveled junction of elamber and bore.
Lengtli of chamber
1.00 inches
.......................... 0.i0 inelies …… 72.65 inches Pitch of rifline uniform: one turn in.... 144.00 inches Number of grooves and lands............ 12
Width of lands................................. 0.2 inch.
Weight of gun. $1,000 \mathrm{lbs}$, Weight of gun-earriage without imple-
$\qquad$
The preponderance of the gun at the elevating sorew is such as to render the gun easily operated. The gun is mounted on a Cnited States 6-pounder carriage; the only modifications required being to change the housing for the elevating-screw, and to slightly increase the space between the cheek-pieces. Sce Ritted Horitzers, and Orduance.

MOGRABIAN.-A soldier of a branch of the Turkish infantry composed of the peasants of the northern part of Africa, who sought to better their condition by entering foreign service.

MOGUL,- The popular designation of the Emperor of Delli, as the impersonation of the powerful Empire established in llindustan by the Mongols, who were called Moguls by the Persians. The first Great Mogul was Baber, the great-grandson of Timur, who founded the Mongol Empire in Mindustan in 1526. In 1803 the Great Nogul was deprived of his throne; in 1827, of even the appearance of authority, becoming a mere pensioner of the British; and in 1858, Mohammed Bahadur, the last of the Dynasty, was condemned, and transported for complicity in the Indian Matiny.
MOIENNE.- A piece of orlnance, which is now called a 4 -pounder, and which is ten feet long. It was formerly used by the French.
moineau.-A small,flat bastion, raised in front of an indented fortification, to defend it against attacks from small-arms
MOLDED POWDER. - A powder laving the same ingredients as those of ordinary gumpowder, but each grain is separately molded. Gen. Rodman was the first to propose this variety of powler; the object being to cause the powder to burn on an increasing surface, thus lessening the strain on the gun in the first moments of combustion. See Grunpucder.
MOLDING.-The process by which a cavity of the form of the guu is oltained by imbedding a model in sand and then withdrawing it. The model of a gun, technically termed the pattern, is usually constructed of wood made in as many sections and parts as may be necessary to admit of its being easily withlrawn from the mold. The sections of the pattern for the breech and reinforce are made with diameters exceeding very slightly those of the finished gun. while the diameters of the sections for the chase are largely in excess. The breeh section is proviled with a cascabel for supporting the gun in the lathe while being turied and bored. The patterus of the trumions are attached in their places by wooden pins, which can be casily withdraum when it becomes necessary to detach the patterus. The severad sections of the pattern for the body of the gun are made with a slight taper to faccilitate their withdrawal. The pattern for the chase of the gun is made considerably longer than the required Fength of that part, to provide a "sinking-liead" which, when the gun is cast, recrives the scoria of the molted metal as it rises to the surface, and also furnishes the metal required to feed the shrinkage caused lyy the coobing of the casting. The samed used for the molling composition should be principatly of silex, very refractory, commonly called sharp-sand. Whem not suflicicutly refractory it is vitrified by the hig! temperiture of the medted inctal, and protuberances are formed upon the easting which are removed with great difliculty. To prepare the composition for use the sand is carefully sifterl, then properly mixed and moistened with water in which clay has been stirred, or with the re-
fuse of distillery wash ealled "returns." Great care is required in secoring the proper degree of colvsiveness in the composition, as it must be sufficient to enable the mold to preserve its form in handling. and not so much as to cause it to be injured by contraction in drying. It is considered sufficieutly cohesive when it will retain its form when taken in a moist state and squeezed in the hand. The same composition may be repeatedly used in molding, but as its cohesive property is destroyed by the heat to which it is exposed, it must be reprepared in the same manner as when first formed.
The mold is formed in a cast-iron case called a flosk, which is usnally made in sections eorresponding in number and length to those of the pattern. These sections consist of two pieces which, when united, are circular in cross-section, excepting two slight enlargements opposite eacli other for the formation of the channels or "side gates" for the metal to pass down. The pieces are flanged at the edges, fastened by bolts, and additionally secured by clamps over the flanges. The trunnion sections of the flask are fitted with trunnion boxes which have movable plates at their ends for the purpose of introducing the trumnion patterns and facilitating the formation of that part of the mold. The several sections are so constructed as to he united to cach other in their regular order by means of clamps over the flanges at the top and bottom. To form the mold the lower or breech section of the flask is placed upon an iron plate in an upright position, the corresponding section of the pattern introluced and centered: the space between the pattern and the flask filled with molding composition, which is rammed down in thin layers around the pattern until the section is completed. The patterns for the side gates and their branches for conveying the metal into the mold are introduced as the work progresses. After the mold for the lower section is finished the next section of the flask is placed upon it and secured, the corresponding section of the pattern introduced, fitted with dowels, which enter the breech section and hold it accurately in place. The molding is continued with this section as with the first, and when completed it is lifted off, the pattern being left in the mold. The third section of the flask, which is usually the trunnion section, is then placed upon the second and secured, and the pattern adjusted in the same way as before. The trunnion patterns are attached and the molding is continued. When this section is completed the pins attaching the trumion patterns are removed and the patterns withdrawn. The formation of the remaining sections is continued until the whole is completed, tious insuring a perfect mold throughont, free from irregularities at the junction of the sections.

Care is taken to sprinkle dry sand upon the surface of each section of the mold before contimuing the work to 1 revent adbesion and to admit of the seetions being separated withont injury. As the work upon the respective sections is finished the patterns are withdrawn. If any portions of the mold are injured in the withdrawal they are repaired. The several scetions are placed in the drying oven, where a moderate heat is kept up, until thoroughly dried. They are then removed from the oven, and a wash, composed of German graphite, pulverized antlaracite coal, and distillery returns, applied to the interior surface of the mold. The sections are replaced in the oven, and when drica removed, and a second coating of the wash applied while the mold is still warm. This wash is to produce a smooth, hard surfaee. It provents the melted metal from mixing with the sand of the mold and forming protuberances on the surface of the easting.
The corebarrel or arbor consists of a water-tight cast-iron tube, made sufliciently thick to withstand the pressure of the metal in the mold. Its length and diameter are such as to leave a sullicient surplus of netal in the bore of the gun to secure a good
finish. It is constructed with a slight taper to facilitate its withdrawal after the casting. The lower chid is rounded off and is fittod with speveral iron fins for securing the extremity of the rope, whird is used as wraphing materind in the pregaration of the core; the exterior of the haree is fluted from top to bottom to allow the ascape of the gases gracrateri hy its combustion. before being used the corc-harred is always subjereted to a powerful water pressure to test its soundnes. To prepare the core for casting, joumals are titted at its extremities. It is then placed in a horizontal position upon an iron truck, supported by the jourmals resting in bearings, amd turned by it crank attathed to one of the journals. It is first wrappeti with white hemp rope so as to cover all of the exter-

ior surface in contact with the melted metal in the mokd. Over this a coating of mokling composition is applied quite wet, wrapped with twine or wire to insure its adhering. When the composition has partially dried another thin coating is applied, and the surface rendered smooth and even by revolving the core in contact with a straight edge resting on the truck. The truck with the core is then rolled into the drying oven. When the composition is dried the core is removed from the oven and a coating of the same wash again applied. It is again replaced in the owen until thoroughly dry, when it is removed and the journals taken out. The one at the bottom is replaced by a tight fitting serew-plug covered over with molding composition. The top is fitted with a water-tight cap so constructed as to receive the con-ducting-pipes for the water, and is ready for use.

The pit as usually constructed for the casting of gmen on the Rodnan plan, is cylindricalin form au? is surrounded with a brick wall, built in offsets, affording supports for braces to steady the mold in position ; grates are arranged around the circumference of the bottom for fires lighted immediately after the casting to retard the radiation of heat from the exterior of the mold. To retain the heat of the fires in the grates the month of the pit is coveref with a close-fitting cover of boiler iron. For furnishing air to the fires, flues are made opening into the pit below
the grates, while neme the toy another hlue, making suitable remmertion with a chimener, prefluces the neroessary dranght. If the pit has bern ent of use for any wery grat lomenth of timer, it is thoromghly dricil ly lires in the grates berone placing the molds in position. To propare the pit to reereive the mold, the bottom is covered with a layer of sand. A bravy cast-iron phate is then hait down
 seetion of the mold is patacel in an moriaht position. "The ohber sections are sumecessively lowered amd secured in their plares, the wholo beine bracel from the sides of the pit to keep, it in a wertical pusition. The eore is thell lowerold into the mold of the gum. To renter and sereure it in position, a ceast-iron frame, usmally termed a "spider," is employed. The spider consists of a licavy ring supporterl ipoon threo legs, each having a projection at the brotom titted with an andustable scrow reating upon the upper flange, of the flask. The core passec through the ring of the spinder, is securai to it by bolts through tha thange at the top of the barrel, and held firmly, so that any movernent of the spider will protuce at change in the position of the eore. Fo center the core, a loner wroden rod is used, to the cond of which a piece of brard is fixed to hold a light. The lemeth of this projecting board. previonsly determined in the distanee which the core should be, when in the center, from the mold at its maximum diameter. Having adjusted the core in the mold by means of the serews in the lags of the spiler, it is firmly secured in its pasition by clamps made to tit under the flange at the top of the llask and over the projections at the end of the legs of the spider. The furl for the fires in the pit is arranged on the grates in readiness to be kindled. See Fotman finun.

MOLDING COMPOSITION.-The sand most used for this purpose is a kind of loam, which contains a sutheient cuantity of clay to render it moderately colhesive when damp. Sand, possessing all the qualities required for molding, is scldom, if eyr, found in at state of nature; but when the requisite qualities are known the materials may be selected, and an artificial composition prodnced without difficulty. The sand should be principally of silex, very refractory, and of the kind commonly called sharp-sand. When not sufficiently refractory, the sand is ritritied by the high temperature of the melted metal, and protuberances are found upon the casting which are not easily removed.

The metho3 of preparing the molding-composition artificially, varies according to the kind of easting for which it is to be used. In preparing it for cannon, great care is taken to introduce the exact quantity of clay required. When too litle is used, the consposition is not snfficiently adhesive; when too much is used, the mold is injured by contraction in drying. The sand is first carefutly sifted, then properly mixed and moistened with water in which clay has been stirred; the composition is considered sufticiently adhesive when it will retain its form after having been taken in a moist state and squeezed in the hand.

Tbe same composition may be repeatedly nsed for molding, but as the adhesive property of the clay is destroyed by the heat to which it is exposert in casting, more elay must be addel every time, in the same manner as when the composition is first formed. See Molding.

MOLLY MAGUIRES.-A secret Order which existed in 1854 in, and probably still exists, in the anthracite coal mining region of morth-eastern l'manys. vania. Ilere 400 collieries employed 60,000 men: Americans, Germans, Welshmen, Englishmen, and Swedes comprising one-half the number, the remainder being Irikh. Among the latter half origimated. in the locality named. the (order of Molly Maruires, a branch of the "Ribbomen" of Ireland. The Order, however, had a mach wider existence, and is alleged to have been attiliated with
the "Ancient Order of Hibersians," elsewhere a peaceable and reputable organization. Until $186 . \pi$ and '66 the Order of Molly Maguires liad not beeome generally known for the murders and other brutalities which then distinguished it. In $18 \%$ having gained control of a combination which foreed a general strike in the coal regions, it suceceded in obtaining an ascondency in the councils of the miners, and from that period was prominent in assassinations and other ontrages, committed usually on the persons and against the property of Justices of the Peace, Police Ofticers, and Mining Bosses. The number of murders increased between 1869 and 71 , and fell off after the latter year, and until that of the great strike of $18 \%$. According to some of those who made an investigation into the antecedents of the Molly Maguires, they originated in the trade-mnions, and not in the A. O. Il. or among the Ribhonmen. None but Catholic Frishmen or their descendants were admitted to membership: the Order was organized in divisions, each having a chicf official knowu as a "Body-Master"; and there were signs and passwords to enable members to distinguish each other. These sigus and passwords were given to the members by the BodyMasters, who received them from the County Delegate, who got them from the State Delegate, to whon they were furmished by the Nationd Delegate or National Board in New York City; to the latter they came quarterly from Ireland, by the hands of the Steward of one of the transatlantic steamships. A central aud governing organization known as "The Iboard of Erin" was said to be the origination of the Order, and this hedel quarterly meetings in England, scotland, or Ireland. So extended were the ramilications of this Order in Pennsylvania, that it was made known during the trials of the Molly Maguires in $18 \% 7$ that one of their Body-Masters in the l'otteville district held the high office of County Commissioner. The tinal exposure, capture, and punishment of the Molly Maguires was largely due to the energy and determination of Franklin B. Gowen. President of the Philadelphia and Reading Railroad Company; through the immediate instrumentality of James Mc Parlan, a detective, who joined the Molly Maguires, he became acquainted with their members and the secrets of organization, and Was at length enabied to afford information which disclosed the names of criminals connected with a majority of the murdcrs committed by the Order. A large number were apprehended, tried, and condemmed, and their execution-that of a number of them oecurring on the same day-so alarmed the members of the Order that it ceased to possess any extended intluence.
MOMENT. - The moment of any physical agency is its importance with reference to some special application. Thus the moment of a force applied (perpendicularly) to a lever, is the importance of the force as regards turning the lever about its fulernm. It is, as we know (ste Lever), proportional to the product of the force by the distance of its point of application from the fulermm. The moment of a foree about any axis (to which its direction is perpendicular) is the product of the force by its least distance from the axis; and a similar definition is laid down for monent of velocity and moment of momentum. It is casy to see (see Nomentrim) that in any system of mutually acting bodies the moment of momentum abont any axis remains constant, since the equal mutual forces measure the moncontum transferred from one holly toanother, and the moments of these forees are in pairs equal and onposite. A particular case of this is Kepler's law, that each planet deseribes cqual areas in cepalal times aloout the sun.

In the rotation of hodies round an axis, the momont of inertia is the sum of the products of cach partide of the broly into the square of its distance from the axis; or if life the body, $m_{1}, m_{2}, m_{3}$, ete., the particles composing it, and $r_{1}, r_{2}, r_{8}$, etc., their corres-
ponding distances from the axis, then the moment of inertin of $\mathrm{I}=m_{1} r_{1}{ }^{2}+n_{2} r_{2}{ }^{2}+m_{3} r_{3}{ }^{2}+$ etc., and if a quantity. K . be formd such that $\mathrm{MK}^{3}=m_{1} r_{1}{ }^{2}+m_{2} r_{2}{ }^{2}$ $+m_{3} r^{2}+$. ete. then K is called the ractius of gyration. See Center of (igration.

MOMENTUM. - Momentum may le defined as proportioual to the mass moving, and its velocity, conjointly. If we assume unit of momentum to be that unit of mass moving with unit of velocity, we shall evidently have, for the momentum of a mass $M$, moving with velocity V , the expression MV. And such is the unit generally adopted. It is shown hy experiment that, when force produces motion in any body, the momentum produced in one second is proportional to the force-and, in fact, force $i \times m e a s$ ured by the momentum it is capable of producing in unit of time. Thus, the same force, if acting for one second on each of a number of bodies, produces in them velocities which are invervely as their masses. Also when, as in the case of falling bodies the relocities produced in one second are the same in all, we conelude that the forces are proportionul to the masses; and, in fact, this is the physical proof that the weight of in body is proportional to its mass. Again, if different forces act, each for a second, on the same mass, the velocities produced are proportional to the forces. All these are but different modes of state. ment of the experimental fact that force is proportional to the momentum it produces in unit of time: which forms a part of Newton's second law of motion. When two masses act on each other, Newton's third law of motion shows that the forces they mutually exert are egual and opposite. The momenta produced by these must therefore be equal and opposite. Thus in attraction or impact of two masses, no momentum is lost; since what is lost by one is gained by the other. The momentum of a system of bodies can be resolved (as velocity is resolved) into components in any assigned dircctions, and the mutual forces of the system may be thus likewise resolved. Applying the previous result, we see at once that in any system of mutually acting bodies (such, for instance, as the solar system), no momentum is. on the whole, either gained or lost in any particular direction ; it is merely transferred from one part of the system to another. This fact, called the conservation of momentum, has cansed great confusion in the minds of psendo-physicists, who constantly confound it with conservation of work or energy, a totally different thing. The momentum produced by a force in any period of time is measured by the product of the force and the time during achich it has acted-the energy or work done by a force is measured by the product of the force and the space through wetich it has reted. Dlomentum is proportional to the simple velocity of a body, aud can never, by any knonen procese, be transformed into anything else. Energy, when depending on velocity, is proportional to the square of the velocity, and is in the natural world constantly being transformed from its uctual or kinetic form to its potential form, and beech again. or to some vither kinetic from, such as lirat, and finally must breome heat. Momentum, on the contrary, is never altered, cither in kind or in amonut. In knocking donen a wall, or in staving in the whole side of a ship, the battering-ram of the ancients (when constructed of sulficient mass, and worked hy the proper number of men or animals) was prolably nearly as effective as the best modern artillery. But in making it breach in a wall, or in punching a hole in the armor of an iron-chad, mere massive shot with low velocities (such as those of the Dahlgren gums), are comparatuely inelfective, however great their momentum ; while an Armstrong or Whitworth projectile, with a fraction of the momentum, but with rreater velocity, and, for its size. much greater kindic energy, iffects the object with ease. lamany cvery-day phenomena, we see most distinetly the diffrence botween these two affections of matter. Thus, a blow delivered from the shoulder lyy a heary
phyilist, aven if it bo shageshly given, arnerally lloors its man, withont foiner muschother injury ; but a sharp stroke weministered by a light woight, whilu hardly disturbing the atversary's equilibrium, intlicts serions punishtnent.

MONARCHY.- 'lhat form of government in atrom-
 anthority. It is only when lhe king, or Chief Magistratio of the comminity, possesses the chite ruling power thathe is. in the juroper arocepation of tha term, a Monarcle. Most of the Oriontal (fovermments past and prosent, latsiat at present, and Apain and France as they were in the last conlary, are in this strict sense Wonarehies. The degemerate form of Monarchy is tyramay, or Govermment for the exclusive heretit of the Ruler. Whan the llead of the State, still posscessing the status and dignity of royally, shares the supreme power with a class of No. bhes, with a popular body, or with both, as in our own country, the (Government, though no longer in strictness monarchionl, is called in popular langmage a Mixed or Limited Monarehy, the torm Absolnte Monarchy being applied to a Govermment properly monatrchical. The highest ideal of Government would perbaps beatained by an Absolute Monarely, if there wore any security for allwily possessinio at thoronghly wise and good Monureli; but this comdition is obvionsly unatainable, and a bad Despot has it in his power to inflict intinite evil. It therefor becomes desirable that a governing rlass, composed, if possihle, of the wisest amd most enlightened in the eountry, should share the supreme power with the Sovereign. A Limited Monarchy las this alvantage over an Aristocratic Repmblic that, in diflieutt crises of the nation's existance. Royalty becomes a neutral and guiding power. raised above the accidents and struggles of political life. Mon. archy, most usually hereditary, has sometimes locen electiv, a condition generally attended with feuls and distractions, as was the case in Joland. The elective system is still followed in the choice of the Pope. Constitutional Monarchy may be in its origin elective or combine both systems, as when one family is disinlaerited, and the scepter declared hereditary in the lands of another umber certain conditions.

MONCRIEFF DEPRESSION CARRIAGES.-The depressing garrison-carriages have been made to mount gums of 6.3 -inch. F-inch, and 9 -inch calibers, the latter being as large as it is thought practicable to work on this kind of earriage. The cheeks are made like those of the heavy carriages, of two $\frac{1}{2}-$ inch plates riveted together, with wrourht-iron frames $3 \frac{1}{2}$ inches wide letween them. The cheeks are connecied by two transoms of plate-iron. The elevator is made in the same way as the cheeks. The chassis-rails are of cirder-iron, $19 \frac{3}{9}$ feet long, $6 \frac{3}{3}$ inches wide on the flange, and 12 inches deep for the 9 -inch gun. Nix traverse-wheels are used. The carriage has been tested at Shoeburymess by repeated firings, some of which with the 6.8 -incli and d-inch gun we witnessed. The smaller gun comes down to the loading position after firing more smoothly and with less shock than the larger gun. the charge for which was 50 pounds of powder and a projectile weighing 250 pounds. The 6.3 -inch grm is clesigned to fire over a parapet 9 feet 4 inches high, and the 9 -inch gun over one $12 \frac{1}{2}$ feet high. In the !-inch hydro-pneumatic carriage the force of the recoil is utilized to compress a certain volume of air contaned within a close vessel, and is afterward employed to raise the gmn frona under cover to the firing position. The gun is supported on two strong lever supports. One end of cach embraces the trumnion of the gum, and the otber is keverl to a heavy shaft which torns in journals near the founda-tion-plate. This shaft has two stroner cranks which operate pistons fitted to two cylinders. A third lever support is hinged at one end to the breech of the gun, and the other to a support attached to the ele-
 moman uf strong pipees wifl airovosurels, and a valve is arramged to prermil the wather to prass fronn the rydinders to the air-verserla, lout dous not aliow it to requrn. A salleciont quantity of water is unool to assure the vaives lejog alway̆ inmersed in it. The:

 gran from the lrading to the firing pestition. Whan the grne is fired, the recoil forees the: pistons in the rylinders, and rompresserg ther air in the: vessels,
 for the next lire. By turning the valve which allows the water to flow bark from the vesuels to ther rylinders, the water att once presses against the pistonleade, and foreiner them back raises the genn to the tiring position. Tha (arriage is the sambe in primciple as the hyelre-pmommatic stegre-carriage, which will be noticerd in detail.

Major Honcrieff urges widh much foree that hy the atoption bf a depressing carriage for siego-yuns, embra\%ures for earthworks, which are entirely unsuited to modurn warlare may be depensed with, and a bethor ant safer hattery can be used; namely, that in which the guns are planterl in pits or trenche es where the gunners are untirely proterted from the lire of sharpshooters and the direct tire of canister and sharaphel. In lis sicge-carriage, instodl of asing the recoil of the grm to raise a counterpoise weight Which shall in turn elevate the gun from the loading to the liring position as in his sea-coast carriage, he utilizes the recoil to compress a volume of air. Which) buing brouglat to act uloon the gon slall raise it to the firing position. The same illa, was proposerl several years ago by Mr. Jamos Eads, rivil worineer of St. Lonis, and a carriage made to oprote on thi principle was patented by him. Moncridet's carriage is built for at 64 -pounder rifled gun. It resembles in its general appearance an ordinary wrouerlatiron slege-carriare, and clithers from it only in the addition of the hydro-pncumatic cytimer and piston. the elevating arms or supports, ant a moulification of the apparatus for pointing the ginn. Betwoen The checks of the carriage is placed a cast-iron eylindor with trumions, which are suploorted in trun-nion-beds in the cheeks. The eylinder langs in at vortical position. and comes down to within 15 inches of the ground. This eylinder is a compomid one, having an inner cylinder in its axis, thore locines two elannels of communication bet wers them. closed by valves. The first is intended to permit the passage of the liguid from the inner to the outer cylinder and is closed on. One side ly a ralve which works ont antomatically, and on the other'by it rear ulating-valre for moderating the motion of the pieco at the last part of the recoil, and also actiner antomatically : the otfer channel allows the lionitil in the outer cylinder to pass into the inner one, and is closed by a valve which is operated by unans of a lever attiched to the left trmanion of the cylinder. A piston fits the inner eylinder closely. Its luas 1 is divided into two branclies amb scryes as a dransom to the two lever arms, to which it is secoured hy hinge-holts. The two lever-arms are strong wrourht iron bars, the lower ends of whieh are formed in tho shape of trumions, and fit in the trunnion-lieds uf the carriage, beiug held in place by the cap-spuaris. The upper ends lave holes bored in thom to receive the trumions of the gun. In the firing position these arms are nearly vertical, and ratee the axis of the piece 8 feet above the platform: the recoil brings them nearly borizontal, lowering the trunnions of the gun to about $3 \frac{1}{8}$ feet. 'Two fong iron rods are fastened to one eni to the breech of the grm by a hinge-bolt, and the other end to the elevating apparatus.

The imer eylinder is filled with liquid. which also occupies the lower part of the outer cylinder, but only for a short distance. so as to cover the pasages between the two eylinters. The liquid is a mixture
of one part of glycerine to two of water. The air is the outcr cylinder is rompressed hy means of an airpump before it is jut in position. The exact derree of pressure must be determined by experiment. The carriage is held in flace behind the epaulement by means of a clain or rope, which is made fast at one end to a hook on the axle at its middle point, and the other to an anchor in the ground in front of the gun. The recoil of the carriage mnst be prevented in order that the hydraulic apparatns may be made to operate. The regnlating-value of the cylinder is worked by a crank, whieh is moved by a connecting-rod attached at its upper end by a hinge-bolt to the right lever-arm. The connecting-rod has a slot in its lower end, in which the pin of the crank plays. Supposing the gun to be in the firing position, the regnlat-ing-valve is wide open. Wheu the gun is discharged the recoil presses the lever-arms down to the rear, forcing the piston in the cylinder, which turns around its trunions. The pressure on the liquid opens the valve and allows it to pass into the outer cylinder, compressing the air contained therein. The regulat-ing-valve is open during the great part of the motion downward, the length of the slot being so regulated that the pin of the crank will not reach its upper end until the gun is almost down, when it will turn the crank and close the passage hetween the two cylinders. The trunious strike on India-rubber buffers bolt-
long iron rods attached to the brech are hinged to the upper end of the racks. By turning the lamdle of the endless screw, the circnlar racks are raised or lowered, and also the breerlo of the gun. The circhlar rack has its center at the point around which the rod is pivoted on the breech of the gun whern it is in the loading position, so that the angle that its axis makes with the horizon in this position is the same, no matter at what angle it may be fired. Refleeting sights are arranged on the carriage, so that the grm may be aimed ly the gnaner without exposing himself to the enemy's fire.

The carriage is monted on an ordinary siege-phatformand the parapet should be an oyerhanging one. in order that there should be the necessary space for loading, and to insure the muzzle of the gun when in the firing position being well beyond the crest. If the hydro-pnemmatic arrangement he disabled, the gun may be then monted on the carriage as an ordinary siege-gum. The hydro-pmeumatic eylinder should he charged in the park and unt in the battery. Air-pumps are provided for this purpose. The mean pressure in the crlinder during the experiments has been 400 pomds per square inch, about 27.2 atmospheres, the piece being in the firing position and corresponds to 500 pounds when it is in the loading position. If it slould be necessary for any reason to increase the pressure in the cylinder, portable air-

ed to the upper side of the cheeks. The greatest distance that the piston can be forced into the cylinder is $28 \frac{1}{2}$ inches, and the dimensions of the cytinder and piston are so determined that at the end of the motion this air will have beco compressed to about one-third of its original volume. When the piece is loaded, in order to bring it to the firing position, it is only necessary to npen the passage between the outer and inner cylinders. To effect this, the gunner on the left turns the key in the left trumion of the cylinder, and opens the valve which allows the Iiguid to return to the inner cylinder; the pressure of air drives back the liguid, which raises the piston and the gun. Two chains fastemed on the right and left of the piece, one end to the lever-arms and the other to the ehreks, stop the grun when it has reached the firing position. During the upward motion the connceting-rod at tached to the right lever turns the regulating-valve and opens it reaty for the discharge of the piece. A windlass hetween the sides of the trail affords the means of bringing down the gun by the aid of ropes to the loading position withont firing, or when the trunions are nol brought in contaet with the rubber buffers, as will happorn when firing with small charges at high angles.

The devating apparatus consists of two circular racks placed on the inside of the wheks. and werated ly mans of an condless serew, which turns a pinion engaging in the teelly of the rack. The two
reservoirs are provided containing air compressed to 75 or 80 atmospheres. The gun has been fired many times with 12 pomuls of powder and a projectile weighing 64 pounds; the carriage worked well. It has been found that it can be fired at the rate of one round per minute at low angles of clevation. The welght of the carriage complete is $62 \frac{1}{4}$ cwt., the ser-vice-carriage heing $32 \frac{1}{4}$ cwt. Major Moncrieff believer the weight may be reduced by making the cylinder of bronze instead of iron, the plunger a hollow cylinder of wrought iron, and the lever-arms of huilt heams instead of solici) to $50 \frac{1}{4}$ cwt. T'se great weight of the carriage is still regarded as a serious objection to it. Besides, the complex and delicate nature of the machinery, and the complication of stores required to go with it, induce the belief that it woukd prove too cumbrous for use in sieges generally. Sie Seccoast and Garrison C'arriages, and Siege Cerriages.
MONGOLIAN CASQUE.-An ancient helmet with beak erest and socket for phume. It was viry beautifnl. and richly ormamented with damasecned work.
MONK. The most common methods of firing mines are by the use of the monk and the box-tra, These two mothorls repuire a powder-hose. The monk is a bit of agaric $1 \frac{1}{2}$ inches in length. The Irain to be therl by it, isarranged as follows. Stretell the extremity of the hose rupon a sheer of paper and sprinkle somis Iry, the powaler upon it; cover this powder over with another shect of paper, secured at
its four comers with dry agrla or stonesp pase the monk thronesh athole in the nןper shert, mand lot it project half its length above it, its hasebobine plang. cal in the powaler on the lmotom shaed sed tire to the
 informer of the same dimensions fund form ns the first, sum retire fuickly.

Both the use of the box-trap an 1 monk have tho inconvonirnce of reguiring a peowlar-hozat whicho, from its own explosion, poismons the gratheries. I'hery have also, and more partionlarly themonk, thedeforit of not producing the exphosion alwaysut the instant desired. To avood these ineonvenienees a galvanio current has of late been thyliod to fire mines, and with complete surecess. This mothonl has bex.ln fomme partienlarly survic"ahle in diring charges maler witcer.


MONOMACHY. - 1 single (onnlant or the fighting of two, hand to hand. It is derived from the (iroek. A dued may property be called a Mononnachy.

MONTALEMBERT SYSTEM OF FORTIFICATION: Among the writers an ]ermanent fortitication whose works have had in importint bearing on the progress of the art, Montalembert bolde a consuicuens plates,
 the evident defects of the mothods of bis predeecsisors, parliculaty the want of easemates, both for defensive dispositions for artillery mul musketry, amd tha shelter of the gerrison and manitions, Montaromburt devoted his timm, talents, and fortane to bringing aboat a change in the direction in which it sormed to hime called for. LIis eflorts, however, .ed to no mothications of consequence during his ife, which was prineipably spent in angry controversies with his opponents. cxarj) the extension of cascmmed defenses for sea-const works: mod it is only within a comparatively recent period, in the present century, that a new selool of rogineers hats grown up principally in Germany, bated mpon the views pat forth mainly by Montailembert. 'Theprincipal proprositions of Montalembert comsist: 1. In the entire rejeetion of the bastioned system, as, necording to his views, unsuitable to a good dofensive disposition; and in its stembl he proposed to use cither the tenailled systom, or else the polygomulaystem. 2. In basing the strength of these last systems ipon an overwhelming force of artillery tire in defemsive casemates. 3. In organizing strung permanent works withiu, and indevendent of the body of the place, which are to serve as a secure retreat for the garrison when forced to give up its defense. Montalembert first gave the name polygonal system to at trace of the enceinte in which all of the imgles are either salient, or where the re-enterings are vary slight. A description of the polygonal system in its most simple form, the one in which Monatembert presented it for the fortifieations at Cherbourg, one of the most important naval stations in France, will be given here as an example. The body of the julace consists of the scarp wall, arranged with casemates for artillery and musketry; of a corridor, between these cascmates and the earthen rampart and parapet. In rear of the rampart is a high wall, arranged with loop-loles, within whieh the garrison retired when driven from the defense of the rampart. Cisemated caponières, which are secure from a coup-demain, are placed along the rimpart, amb so arranged that a fire can be thrown from them over the parapet and also along the terre-plein. The corridor is also swept by a casemated caponnière for musketry: and the front of the wall by a like arrangement. The principal eaponniere for thanking the main ditely is in the form of a lunette, and placed at the midulde of the exterior side, its lhatso joining the casemated gatlery of the enceinte. The fianks and the faces of this work, are arranged with two tiers of artilkry and musketry fire; each thank carryiner ten and wein face twelve guns. A wet ditch s"parates lhe faces and tanks; alonj-holed wall encloses the jortion betweeu the thanks, from which the opposite portion between
the fares is swopt by masketry. 'Ther "aponmia. resoreal in fromt hy atuce iotiver of varila, in tho
 rovered in liks manmer hy the rontinnons face cover of carth, in the re contering angles of which censomasled lmetiorien of two stories, for urtillary and mons. kotry, are placed to flank the ditchos sum swoep the prositions for conduter hatleries arouml the salionts uf the eoverom-way. 'Thess battrerices sire mankerd in [ront by carthen works. The whole is rooverial by the glacis of the cowered way, arranged in the Hsual mamacr. 'The better to llank the main caponaio.re. the portion of tha ratsemmed ghblery joininer it is arrangerl with two tiors of artillary fira, the ramaining portion having but one tior of grame. "lo. come mimiuations between the diferent works atre by
 tem iff fortifiration, and! Systome sf: fiortifiention.

MONTER - I t(rm signifying (o) rice from rme ramk to anothar in the way of promation, as from Liditenant to Captain, etco, or from having the (om, mamal of tha fommerst ronmpany to he jromotiol (i) that of the oflest.
MoNTERO. - I militury caj) and hood formerly worn in (*imp).

MONTIGN P MITRAILLEUR, - $A$ maphine gin ronsistiner of 37 ritled stecel barrels, hexaronally formed exteriorly, and fitted and soldered into is wronghtiron tube, somewhat in the form of an ordinary piece of artillery. This has a movable breooch-pisece worked by means of a levor, and containing a spring and striker, corresponding with each barrel. Th", whole of the barrels (an be charifol simultanoom-ly by the introduction of a sted plate containiner the thirty-seven cartridgas: they ('an be fircel inlleprondently, and at any interval of time, or the whole may be fired in one second ; relonding takes five secomals. and a continuons firc at the rate of ton clischargets per minnte an be maintained. The gon is provid(1] with both vertical and horizontal adjustments. and may be made to swoep horizontally abomg a line of adjustment between cath discharge, or daring the discharge itself. As there is no recoil, the gun onee hid will continne to throw 28 has, weight of projectiles per minute on the same spot, or at various points of any line requaring the same clavation without any further labor than that involved in the working of the lateral adjustment. It appears from Major Fosbery's acconnt, who was sent to $\mathrm{B}(\mathrm{c}]$ gium by the English government to report on this mitralleur, that at 866 yards the lits were $32 \cdot 12$ per cent. From the report of the Special Committee appointed to carry out comparative experiments with the Montigny and Gatling mitrailleurs, it would scom that the result is in favor of the later. In the pecial compertion between this gun and the Jlontigny mitrailleur of thirty-seven barrels, the former made 618 hitsin 3 minutes 31 seconds, in 720 rounds at 600 tards: the Montigny. at the same range and with the sume number of roinds, scoring 538 in 4 mintutes. With 5 se rounds at 800 yards, the result was even more favorable to the Gatling, whidh made 439 hits in 2 minntes 26 seconls, arainit the Muntigny's 292 in 3 minutes 3 seconds.

MONT-PAGNOTE. In fortitiontion, an eminence where persons post themselves out of reacha of com nom, to see a camp, siegr. battle ote. without being exposed to danger. It is also ralled the loust uf the Invulnerables.
MOORING--This is the most ditlicult operation connerted with summarine mines. It is a problam containing so many conditions lhat it is impossithle to rive more than genceral sugerestions concorning its solnlion. In order to possesis a maximmm of efliciencro. no indication of the position of a mine sbould appear on the surface of the water, and yet the spot, to within a few foet of where it is deposited, mast be known to the defendors of the clammel in whiels it is used. In certain calico-as when there is consiblerable rise and fall of the tide-it is inmossible to total.
ly conceal the position of a system of mines. When such is the case, the very smallest indication possible should be allowed to appear on the surface of the water. It has been found that the least curront, or so much roughness as only a moderate breeze would cause, renders the placing of even a single mine in it definite position a matter of very considerable clifbculty, When a series of mines are to be moored in proper relative position, this diffeculty is much increased, and it is, furthermore, augmented in proportion to the deptl of the water.

The objects to be obtained in mooring are as fol Jows: 1st. That the charge should be kept as nearly as possible stationary at the point where it is required to act. This is particularly necessary where there is a tide which, flowing first in one direction and then in another, tends to cause the mine to shift its position, and is indispensable in the case of mines intended to be fired by judgment. :id. The moorings should be so arrauged that there shall be as litile twisting as possible, which might break or injure the insulation of the electrical cables. 3d. The anchors or heavy weights used should be suited to the nature of the holding ground or bottom. 4th. Mooring cables shonld be so arranged that they may not be likely to become twisted together or entanged. The best special mooring appartus for general purposes is the mushrom anchor. It is decidedly so for a soft, muddy bottom. On a hard, rocky hottom the deadweight of the mooring minst be depended upon to keep a mine stationary, and if a heavy mushrom anchor is used, its edges shouldi be furnished with toes or points to catch in the crevices of the rocks. The weight of the anchor would depend on the buoy ancy to be overcome, and would usually be from 500 pounds upwards. Ordinary mooring chains and hemp cables may generally be employed in connecting the charges or circuit-closers with the anchors. Where there is any tendency to twist, a wire cable is the best to counteract it. Any considerabie amome of twisting must be checked, as it is liable to entangle the moorings and to rub and injure the electric cables.

Next to the mushroom sinker the ordmary anchor is the best. For make-shifts. any heary-weights-as large stones, pigs of metal, or bars of iron-may be used. These must necessarily be sufficiently heavy to hold a mine in position simply by their dead weight. The material just mentioned can be fastened to frames of wood, and the whoke sunk as one mass

The weight necessary for a mooring, whether inchor, sinker, or other apparatus, will depend nuon the buoyant force of the mine, the nature of the bottom, and the currents.

The buoyancy of a mine is in excess of flotation over its weirht. This would be measured by the number of pounds required to sink it, and no more When wooden casks are used the buoyancy may be ronghly taken as equal to the woight of the charge of powiler. With heavy metallic cases their weight must, in all cases, be takion into consirleration. lu water fro from conrents twice its buoyancy is eonsidered neeressary bo kerp the mine in at vertiond position over the mooriner this, therefore, would be the weight required for the mooring. Where thare is a current, additional wright to keep it from swinging off withot is required, and this increses with the strongth of the lattor. Whenthe mine is moored by a single cable, a conveniont rula, aproximating closcly toresults from experiments, is to allow ons adhlitionai buoyanes for cach mile pex hour of courrent; $i$, e., two humyancies being allowed for still watce. three would be allowed for a murent of onve mile; four for two miles; tive for three miles, and so on These represcont the weights for the mooring in mald instance. In a tide-way where there is a current of more than five miles ain hour, two anchors may be advantateromsly used, placed up and down strean at a consideralade distancer apart, d"perading upron the force of the current and the distance from the bot-
thm at which the mine is to float. It is extremely difficult to moor mines in proper lines and deptlis by this means. When the mine is small, sily ome rontaining a charge not greater than 200 pounds, a single large barge may sullice for placing it. The anchors can be lot down at a suitable distance apart from the extremities of two out-riggers, one from each end of the barge. The mine, attached to the midde of the cable conuecting the anchors, is weight. ed down by a heavy saddle, which after the anchors are down, is hoisted in and the mine permitted to rise to the proper depth from the surface.

In order to place a large buoyant charge of, say, 1000 pommds and upwards, three of these large boats are required to carry it and its anchors, one for each amchor or mocring sinker, and one for the charge itsulf. They are connected by a rope, which, if kept stretched. would insure the anchors being placed at the projer distance apart. The sinkers aud mine are carried out and lowered from the davits at the stern of each boat. Skillful boatmen and sailors are reguired for all operations connected with the placing of mines, and a handy steam-tug is the most convenient craft to use. The floating mine is used where the depth of water is so great that, if placed on the bottom, the mine would require for efliciency an excessively large charge. In this case it is held to the bottom by moorings in such position as not to rise to the surface at low tidenor at high tide be so deep as to be beyond effective range of over-passing vessels. To arrive at this exact point, it is best to hanl the mine down towards the sinker. For this purpose there are varions contrivances. some one of which wonld be supplied with the rigging furnished with the mine. When the mines are to rest upon the bottom, they are lashed to some heavy object suthicient to sink and hold them in position, and then lowered to their places. See Submarine Mines.

MOORS,- A people who form the great majority of the pupulation of Jarbary. Their appearance indicates their origin, which is a mixture of the Mauri, (from whom they derive their name), Numidians, Phenicians, Romims, and Arubs, who have successivelyheld possession of the country. In consequence, they are fonnd to vary considerably in appearance and character in different parts of Barbary, but all show mach more or less strongly the symptoms of a considerable infnsion of A rabian blood. 'They are a well-formed race, with fine oriental features, and a mild and melancholy expression of countenance. They are more friendly and sociable than the Bedouins and Berbers, who inhabit the deserts and monntains: but are inferior to them in mental ability, besides being volnptuous and cruel.

As the Arab conquerors of Spain invaded that country from Africa, where they had largely recruited their forces, they were uaturally enough called Moors, and in Spunish history the terms Moors, Saracens, and Arabs are syuonymous. From this mixed Moorish-Arabrace spring the Morisenes who werepermitted by Ferdinand the Catholice to remain in spain after the expulsion of their countrymen, on conditinn of their ambracing Christianity A eruel persecution, whieh was originated by l'hilip II., drove them to rebellion ( $1567-70$ ), and in $15 \% 1 \mathrm{many}$ of them emigrated to Africa: those who remained being, to the number of 500,000 , expelled in 1610 by Philif TH.

The Moors first appear in modern history as the Alfes of the Viadals in their invasion of Afrisat, and werecontinually rebelling igrainst the byzantine limperor. They werencxt. after aseverestruggle. conguered aud comverted by the Arabs in 707. In 1091 they were summoncd hy the latter into spain, to aid in stemminer the tide of Christian ('onquest ; and after lathfully supporting tha Arab Calif of cordova, etce, till his dominions fell into the hands of the King of leon and ( "astile, ther rotired in 1238 to Granada, where they fromder their lingelom. The Kings of firamula carriced on a vorous, and, at the same
time, ehivalrous warfare with the Kinges of Castile: lut at length, werkenet hy intermal diseord, ware compelled to sucoumb io berdimand tho ('atholice in 1422. 'l"he Hoors, or at lase that portion of thom who refased to adopt C'loristianity, were then rxpelled from Spain, and in revente, founded in 1518 the pirational Statos of Mgiors 'Tunis, and Morocero.

MOORSOM FUSE.- 'lin lionly of lis fuso is matic of hronze, aml is sorewed intothe ryo of the stall hy moans of a key lited inte two mortises mande in the head. The lower part is not threaded, and projectes into the chamber of the slacell. In tha body of the fusc two 'ylindrical chambers are plawod, one abeave tho othor, with their axes perperadisular to cach other. These chambers are both alike, with similar perenssion apparatus. In eaco chamber is placend a solid cylindrer of bronze, torminated at eacch and by a smatl projection, or piston Ghe hemed of the chambar is movalble, and when scresped into its platere, its extorjor is flush with the comvex surfarent the fuse. Holes are Inft on the exterior for the use of a key, and the hood is scrowed in, aftor the hammer is placed in the chamber and suspended. In cach "ud of the clame ber is a small recess, a vent beine bored through to it from the exterior of the fusc. These are both tilled with fulminating powter. A hole is drilledthrough Whe hammer at its middle point, and peronendicular to its axis, and is used to suspend the hammer, by mestns of a ropper wire, in the center of the chamber. The wire passars through corresponding holes in the hody of the fuse, and is soldered at the ends in the curved positions of the holes near the surface of the fuse. In the lower emd of the fuse a third chamber is placed with a percussion apparatus similar to the preceding, ateting, however, in the direction of the axis of the fuse, and having but one end of the chamber provided with perenssion-powder, the vent leading from which communieates with a cross-chamber, having at cach end a small chamber tillerl with powder. The hammer, a cylinder of bronze, with a piston like the others, on its upper end, is suspended in the same waty, and has below it a copper-wire passing through holes in the fuse, and soldered like the rest. At the bottom of this last chamber stands a cylinder of lead, fixerd in its position by its base, which is pressed in a little offset, between the bottom rind of the fase and the cap which closes the clamber. Whan the shell strikes, the suspension wire of that hamamer whose axis coincides with diameter of the shell passing through the point of impaet, or, is parallel to it, is torn loose, releasing the hammer, and allowing it to plunge forward and explode the fulminate, by strikines it with the piston on its end. From the construction of this fuse it will be seen that there are six points on the surface of the shell, the striking of which will produce the working of the apparatus with certainty. See Fuse.

MOOTIANA. - In the East Indies, a term applied to the soldiers who are employed to collect the revenue.

MOPPAT. - A very carly name for a cannon sponge.
MORGENSTERN. I mace with a long handle aud spiked head. See MFrming Stur.

MORGENSTERN GUN. - I breceh-loading rifle having a fixed chamber closed by a movable breechblock, which rotates about a horizontal at $900^{\circ}$ to the axis of the barrel, lying above the axis of the bartel, and in fromt. It is opened by drawing back the handle of the firing-bolt until the ribs on its sides are clear of the gronves in the receiver in which they slide. This cocks the piece by compressing the spiral mainspring which surrounds the firing-bolt. until it is canght and beld by a scar lying well in the bottom of the breech-thlock. The breech-block may then be thrown upward and forward until it is stopped by striking the front part of the receiver. It is held open there by the head of the ejectorspindle, which changes its bearing on the extractor so as, throngh it, to support tbe block. The piece is closed by reversing the movement of the breech-

Blorek, and is lorkerl loy the fide ribs of thre firinge


 laned lay the action of the trieger within the reo coiver hjesh the sear within tha hook. Lextraction is accomplishard by ilse breroch-lolerek striking the lup on the extractor above its centre of motion, and "jaction is consed by the aroveleration impereswed on the extractor by the action of thro "jowtor sprine on the ejoctor-spindle, when, by the motion of oproning, the direction of this latter basses below the axis of the "xtractor. Thar ejector-spring is than relenacel from the tonsion canced by its comajression in opmaing, and cansas the extractor to rapidly rotate about its axis, corrying the ("mpty rartridge against lhe bevered shomblaes of tha recolvar, by which it is leflected upward amd thrown clear of the grun.

MORGLAY.-An ancient and very dearly waspen, in the form of a great sword.

MORION.- Originsilly a spanish helmet. It harl neither vizor, nose-pixace formet, nor neck-guard; but was surmometerl by a hioh crist sometimes lanif the height of the helmet. Its evere turned up in at point in front ami] belhind, so as to form a cresceent when seen in protile. The Morion was worn by Ar-


MORNE.-'Jhe Head of the lance ased in tilting or other peacefniencounters. It was curverl so that an adversary might he monorsed, but not wounder, by a siroke. Also writt('n Mortne.
MORNING GUN. - The gun fired at the first note of revoilla, at all military posts, forts, etc.
MORNING PARADE. -The daily parade at tron $p$, sometimes called Troop Parale. In every garrisoued town, fortified phace and cmmp, as well as in every town throngh which soldiers pass, or occasionally hast, a certain hour in the mornines is fised for the assembling of the different corps, froojss, or companies, in regular order. Siee I/reks l'arale.

MORNING REPORT. - 1 report of troops, lheir service, condition, ete., rendered every morning to superior antlority. The Morning li"ports of Companies and Detachments are combined and form the Consolidated Jorning Report. 'Whe form of Durning leport, given on page 380 . nsed at Wrest Point. will illustrate its purpose.

MORNING STAR. A mace having a long landle and a bead with projecting spikes. It received its name from the ominous jest of wishing the enemy good morning with the Morning-stur, when they hand been surprised in camp or city" This weapon became very jopular on account of the facility and guickness with which it could be mannfactured. The peasant made it easily with the trunk of a small slarub and a handful of large nasils. Hornizgstars, short in the haulle, like hammers, were made especially for the Cavalry, Sone were supHemented with small hand-camon in the 15th cenITY.
MORRIS-PIKE.-An arrcient pike muchused hy zhe Hoors. See Pike.
MORTAR. - I short and comparatively light cannon, enployed to throw hollow projowiles at arceat angles of elevation. It is intended to produce effect hy the force with which these cxplode. The graat curvature of their fire gives them power of reaching oljects behind works which would be seconre from direet fire. As the projectile has a lared diamuter, amb, except in rare instances, a very great ramge is necessary, a comparatively small charge of powder is requisite. To give this its utmost power and concentration, it is confined in a hemispherical chanaber at the lower end of the bore, but of less dianctor. The shell completely closes this chamber; and when the explosion ensues receives its full force on its conter. Ordinary mortars range in diameter of bore from :) to 13 inches. Large mortars hare, however, been tried at times, ts at the sicge of Antwerp citadel
Morning Report of Cadet (Captain)
Note. On the monthly returu of absentecs and men on special duty to be accounted for by name, after " Expliauations of Alterations."
Alterations since hast Return.



(
in 1832, when the Firmeh brought one of 21 inche : hore to the atiark. 'This menster, owing to its unwiddiness amd other canses, was at failure, harger still than his, though promps mome mangerable, is Mr. Natlet's grat :3i-inch mortar, constructod in 1850, of iron parts wollod texellore and now at Woolwich, rather as a ruriosity thon for use. It leaded shells are of immense weirht, su loway, indeed. an in harger calibers to mwolve the apparatus to eleposit them in their flaces, and the mortar is fired at high clevations, the requil is so great and wa nearly vertical that no carriage rould withetand the whork: it is mecespary, therefore, that the mortar should be monnted on a solid irm or timber lech, by the trumbions, which are placed hothind the brewth, and supported in from by masive hacks of wood. This arrangement renders the apparatus so heavy
provided wihn complete priming apparatos, are cat
 the same facility as at gun.

Nortars, liki: oflor ramon, are aimed by dirst giving the dirertion and thentheredevation. "The dseVation, whicla is usually that of the erratrest range of projectiles in racu", wi\%, dos, is ifotermined by : 1 . plying the gualram to the ficw of the pioere and ratsing and low ring the brecerla motil that momber of dagrees is indicated. Therdarge of peowder is variod to suit tha reguired range. "los give the nhedle for the same range, a ereater velority in the de femding benncla of its trajechory the mortar is sometimest tirced at an angle of fol $^{\circ}$, in which case the charge of powder most be increased nearordingly. As mortars aro usually masked from the ohject to be behnhardeol by an eprambent or parapet, differed means from those

that mortars of large size are rarely used in fiedr used with guns become necessary for giving them operations, the ir ordinary positions being in defensive or sicge works, and in mortar-vesisels. More wieldy, however are the Cochorn mortars, invented by the Dutch engineer of that name, for clearing the covert-way or litch of a fortress. This mortar is sufticiently small to be managed by one man, and is accounted usefal in sidge or defcuse operations. The French use a similar Lilliputiam ordnance under the denomination of pierriers, or stone-throwers. Small morturs are likewise constructed for momatain warfare: a mule carries the mortar, another the bed and a thirel is laden with the projectiles. The use of mortars is diminishing at the present time, elongated shells of great weight being now thrown from ritled canuon.

Vertical fire is effective when it is desirable to prevent an enemy from occupying certain anchorage. The deck of a sbip is ascompletely vulnerable to falling shells as the bottom is to submarine mines and torpedoes. Judiciously-placed batteries, if armed with a sufficient number of mortas throwing shells, would make it perilons for an ememy to remain within their reach. But mortar-firing from smooth-bore mortars is at best somewhat wild, and depends on guantity for its elfectiveness. It is, however, safe to say that no fleet nor vessel can remain under well-directed fire from heavy mortars. A battery of one hundred heary mortars will keep at bay all the iron-clads that can maneuser or anchor within their range. The moral atfect of mortar-tiring is ajpralling, and inerenses vastly with the mmabers of mortars used. The armor that a ressel is capable of carrying on her deck, in addition to that upon other parts, is not sufticient to resist the crushing power of a 18 -inch shell with maximum velocity -419 feet jer second. The 10 -inch mortar is serviceable only against uarmored deeks. or those very slighty protected. In firing at iron-clads the shells should not burst before striking; in fact, it is best to fill the shells with sand instead of powder. Solid shot would be preferable to either. Mortars mounted on the center-pintle traversing chassis, and
their direction. There are several proresses cmployed, all of which, however, are reduced to determining practically two fixed points which shall be in line with the piece and the object, and sufficiently near to be readily distinguished by the person pointing the mortar. These points determine a vertical plane which when including the line of metal becomes the plane of fire. Sce Boib, Coehurn Mortar, Byer Pointing Appuratus, Ordnance, I'addock Interpolam ter. Plummet, Sea-cunst Ifortar, and Siege IVortar.
MoRTAR Batteries. - Mortar batteries have principal features of batterics for gues. It is desirable that they shonld be located where good views of the enemy's position may be had: this, in order that the gunuer may himself see the effect of his shot, and not, as is too frecpuently the case, have to depend up)on the imperfect riport of at distant observer. For siege mortars, the platforms are placed the same distance apart as for sicge guns, vi\%., 16 fect; for seat coast mortars, the distance is the same as for sencoast guns, viz., 18 to fret. They are usually placed in pairs, with traverses between each set of pairs. Emblrasures are not required, and as the platform mnst be at suche distance from the parapet that the hast will not injure the interior crest, it is not necessary to revet the interior slope, the earth being allowed to assume its matural slope.
There are two kinuls of mortar hatteries used in the attack: those for mortars throwing shells: and those for mortars throwing baskets of slones, or other like projectile's. ${ }^{\text {bestides these, there is the }}$ Coehorn mortar. which, from its small size, may be phaced in any unoccupied corner of the tremelnes within their range from the bexieged works. The first kind of batteries may be in front of the first and second parallels, or any other points farther back. The positions chosen for them should be such as to bring as great a portion of the defences under the direction of their fire as practicable, to increase the chances of destructibility of each shell thrown. The second kind are nsually placed in front of the third parallel, mandy with a view to anoy the covered-
ways and parts adjacent. These batteries are usually sunk below the natural surface, since even several feet difference of level in the position of a mortar will have but little eftect on the range, or the trat jectory. The profile suitable for such positions, mader the ordiaary circumstances, is the following. Wijuth of trench it bottom. 13 feet 6 inches. Depth in front, 3 feet 6 imches. Depth in rear, 4 feet. Reverse slope, $\frac{1}{2}$. Front slope, D feet base. Height of parapet, 4 feet. Thickness of parapet, 18 feet. Berm, 1 foot. The earth for the epaulement is taken from an exterior ditch: and, when splinter-proof traverses are required, portions of ditelies are mate opposite to their position to furnish the requisite earth.

The siege-mortar phatform furmished for fieli-purposes is too light to sustain mueh firing. For fixed batteries, they shonld be constructed of heavy timbers, and to insure anything like accuracy in frimg, must be both level and stable. The sea-coast platforms when properly laid, are in every respect dflicient. A good kind of rail platform may be made by using two pieces of timber. 12 to 15 inches sifuare and 9 feet long for the rails, to which planks 2 or 8 inches thick and 8 or 9 feet long are spiked. The rails are parallel, and have their centres 28 inches apart for the 10 -inch mortar, and 22 inches for the 8 -inch. A pit is dug large enongh to receive this structure, and the bottom being made perfectly level, it is placed in it with planks dorn. Earth is filled in on top of the planking. This kind of platform is particulatly well adapted to sandy localities. If the mortar is intended to be fired in varions directions, a snfticient number of rails are used to extend orer the whole surface, the planks being spiked to all of them. Nortar and other hatteries for firing loaded shells, are provided with bomb-proof shelters for the men who load the shells, and others also for the loaded shells These shelters may be placed in the epanlements of the batteries, under thick traverses, or in any position most convenitnt for the service of the battery.

When the site of the battery is marshy, the construction of the parapet and the laying of the platforms require great care to give them the requisit. strength and firmness. Each of these parts should receive a firm bottoming of two layers of long fascines, 12 inches in diameter, the border for a breadth of 2 or 3 feet receiving a thickness of 3 or 4 layers, the first well covered with sand or rammed clay, if they can be obtained, before placing the second
form 3 are to rest, is ton meven or ton mbeli inclined to be easily leveled by hammers, it will be necessary to fill in the space required for the service of the guns with earth or sand, and to use a cribwork if necessary aronn! the border of the interior to confime the soil, which, as in the case of a marshy soil. ©hould be well rammed and levelled before laying Uhe platforms.
The drawing shows a plan of an intlented sunken battery on a canseway from 50 to 60 feet wide. A.b. is the line of direction of fire; c, contraction of rear of battery; D D. enlargement of rear of battery; $E$, ramp.

MORTAR BEDS.-Mortar beds serve the same purposc as gnm-carriages. The beds for the smaller

mortars are made of one solid block. The larger beds are construoted and put together in a manner similar to the top-carriages for guns. At the ends of each cheek are projections, called front and rear notches, nuderneath which the cannoneers embar with their handspikes to move the carriage. On those for siege mortars there are also two front and two rear maneuvering bolts for the same purpose. The bottom part of eacla cheek, resting on the platform, is called the shoe; the front and rear ends being designated the toe and heel, respectively. Carriages for siege mortars are without truckwheels, and rest directly on the platform. Seacoast mortars have two truck-wheels on an eccentric axle, for manenvering the carriage on the platform, and maneuvering bolts are omitted. See Mortier Carriages and Thirtecn-inch Mortar.

MORTAR CARRIAGES.-The application of the principle of rifling to mortars, in common with guns of all kinds, has had the effect to obliterate to a great degree the sharply-dofined lines of distinction which formerly divided the different classes of cannon, and to reduce them more closely to a common model, adapted more nearly to a commou use. The rifled mortar, to give it the desired efficiency, has been increased in length until it differs

 in no respect from it howitzer or short gum, and is no longer confined as formerly to a vertical fire exclusively, but may be used with effect for direct or ourved fire, with solid or hollow shot, as well as shell. The carriages for the different guns have had to undergo necessarily corresponding changes to adapt them to the new comditions of service: and as the guns have been moditied till they bear aresemblance to each other, so the carriages on which mounted are less distinctive in appearance and

Layer, which should cross the first at right angles. and the well picketed to it. On this bul the paraper is raised, and, if the adjacent soil of which it is formed is vory wet, layers of smaller fascinos may be adcantageonsly used it different heirhts to prevent the wet soil from running. Ther site of the grms should be covered, to a depth of at least $f$ inchos, with moist sand, or good loan well rammed, to recoive the platforms; which, like those at the siegres of forts l'ulaski and Wagner, should rest on a bed of plank, over which the weight of the grms should be well distributed by the milur timbers of the platform.

On a site of solis rock the only means that ean be well emploved for construeting the parapet is samblbags. If the surface of the rook on which the plat-
more nearly approall the same jattern. The mortar, in place of leing monnted as formerly on its bed, must in its changed condition be provinled with a carriage consiructed so as to cmalle it to deliver its fire at any angle from $0^{\circ}$ to $60^{\circ}$, and be turnexl with prompiness on any objecet within a wide fied of fire,

Crited Statex.-The ('ochorn mortar earriage is simply a block of wood. worghing 132 pounds: the total weight of picce, equiphents, and carriage boing 311 pounds. 'lhe carriage or block upon which the mortar is momeded, is provided with two hambles on each side, by means of which the mortar is radily carried by four men from one part of tha work to another. They accompany troops in the field for use against an enemy covered by intrench-
ments. 'The ground, when firm, is sufle enont for the carriage to rest upon; if it is not tirm, at whem ean radily le: (xtemproizat from surh material as maty be at hand. The carriage should be le wel whan the mortar is fired. 'Jhe siege mortars are fired from wooden platforms, The carriages are of wroughtirom, and, buiner withont rhators, rest di-
 lierel from a wooden platform. The curriato is of wrought-iron, and, heing wilhout chassis, rests directly upon the platform. An axle, atarying at carch extremity a truck-whed, passes through the carriage near the fromtent; this axde is cecentric, and whon thrown in gear the truck-wheels rest upon the phatform ; only the rear part of the shoe llacin reste on the platform and mowes with shiding friction. Twa steps are placed on the front part of the carriage for eonvenience in loading. The carriage of the lofind sco-coast mortar is of wrough-iron, and is provided with an eremtrie: aske and truck-wheels similar to the carriage for the 13 -inch mortar.

Anstrif. - The Austrian carriare is composed of two chereks, wach formed of iwo phates of beiler-iron riveded together aromed their outer edges, with a wrought iron frame betwernt them. Tha chacels are $4 \%$ inches high in from and 181 inches in rear Trummiontards formed in the upper face are provieled will trumbion-plates and cay sopures: the Jatter ate held each by two krys. The two cheoks are joined together front and rav lyy two transens, each formed of two plates of iron and angle-irons. These transoms pass throurg ents madn in the inner plate and are riveted to the outer plate of the Chere ; they are also sechred to the imer plate by angle-irons riveted to cach. Two bolts pase through these transoms and join the cherks, besides a bolt, about a third of the height from the top in frome. The part of the bolts ambraced between the chedes has at wrought-iron pipe over it. A square hole is (at in the eheck near the fromt edge, intended for the wroughtition axle used in transportation. The ande is composed of a body, square in cross-section, and two eylindrical arms for the wootho wheels. The chocks are provided with four pairs of truckWherels, two for moving the carriage to the front on rear, and two oblhers for moviner it latarally. They are all momed on eccentric axles, which hive cast-

iron handspike sockets. The carriage may be thas moved in either direction, as may be desired, or it may rest flat on the platform for firing. The askes are held in position by mans of keys. The chevating apparatus is composicd of a serew, which moves a mul which has a hook bearing against the breech of the mortar. The serew rests in a bed of sheetfron inclined upward to the rear. riveted by angleirons to the inner face of the cheeks. Near the rear cond of the bed there is a collar, in whieh the screw turns. The heat of the screw las in it holes
in which is inserterl a crank-handle to river rotation to the serew. 'Tlor nut is grided in its motion by two projections which mover in e, ravemaling growers in the beal. Forer liringe at low andeos of
 it and incrasiner jis lowight. In order 20 bring the moriar quiekly from the liring pesition fo that fors loading. there are fastomed or wither -ide of the hemedn of the mortar two rircular toel arest with
 face of the chaceks. A whoreland pinion on the oute wille of the ebeceks are used to giver motion en thos inner pimion. Tos trampurt the mortar an ashe is insertel in the chocrks of the carriage and ordinary whedes are pert on, raising the carriace with jacks. A trail is provided which has a luncte for hereking onto an ordinary siege-limber: it is securet to the carriage by pasing onc com whater the from tranyon and angatine it in two leooks under the paint-ing-berd, and helil by a cronsphicere. Weight of the
 the trail, lge pounds; with the lock-chain ant shore?
 her witly wherels, sis pounds; the total weight of the carriage ready for travelinge (6,9) potunds; with the mortar, 17,820 jumals. Width of track of rear wheels, 72 inches: fromt wherls, 48.5. Angle for turning. 420 . The rlevating screw with the ordinary hool; will give clevation of $20^{\circ}$ to $\operatorname{ton}^{\circ}$; by put-

Gromany-This carriage is composed of two wooden crleeks, the greater pertion of the borderemenforced hy iron straps and joimed together by fonr wooden transoms and cight transom-ionts. A trun-nion-piece, $a$, of wroughtiron is bolted to the mper side of (ach cheek, iml is provideal with a cap)square, key, and chain. The devating apparatus is composed of a long ironscrew with a spluatre double: threal, turning from right to left, inclined at alroat d. ${ }^{\circ}$. It is terminated at the upper end by a whed ams handle, and turns in two crillars fastimed one (1) the front wide of the lower tramson and the other to the midd)e transom. The nut etravels alome the errew throughout its length. The rads of the femate serew are provided with rollers, which play in the groows of dhamed-beams secured on the inner fact of the cheeks. Two iron rods, "conmert the femaldererew 20 the brecelt of the mortar, whichs has a horiz-atal hold drilled into it 10 rececive a bolt, forming an axde around whish the rods, on mote. By this arrangement angles of alevation frome 0 to $75 \mathrm{~s}^{2}$ may he given. The carriage is provided with two siegrewherelo and a wroughtironaxle, which may be raiecol worticaily by means of a hoisting apparatus and made to move in two slots formed by an iron bar fastene to the front face of the cheeks. This asje has near rach arm a syluare re-enforec, with a rertical hole in it, in which is placed a bronze female serew with a domble thread; one mut is right-handed. the other left. The hoisting apparatus is composed of two vertical screw. in the slots. i, passing through the nuts in the anle. The serews have on their upper end the simer-whed. $f$, engaging in the ahreads of the melless serewsone of which is right-hamedel. the other left.ind momented on the same horizontal shaft, which is turned in jour-mal-lowes in the upper part of the groove by means of a capstan-handle, $h$, on (arh end. The anle is gudedin its motion in the grooves ly a plate of iron, screwed to the inner face of the aske inetween the two shoulders, and terminating in sifuare hooks, whid form guicles, and slide in the grooves. The hoistiner apparatus is used either to lower the carriage on the platform by raising the wherels so that the tho not touch, or to raise the carriage by bringing the whels on the ground. Four men at the handles of the serew are sufficient todo this work. To lower the mortar on the platform, it is necressary to ratise the wheels only from $\frac{1}{2}$ to : $\frac{3}{4}$ of ans inch. whereas for the transportation of the mortar the carriage must be rafect suthcjently to attach it to the limber. This is done by
means of a trail. $k$, of T-iron. This las a lunette at axles, and when the gan is to be traversed these one end, and is made fast to the middle transom by means of a strong bolt, $l$, and to the rear fransum ly two iron ears, between which it is firmly lachl. A becentimeter gun-limber is used. The wear on the female screws in the axle is diminished by metns of stirrups with screw ends; the axle is lowered to its lowest point in the groove, the ends of the stirrups are passed throngh holes drilled in the axle to the right and left of the shoulders, and the threaded ends are screwed into double nuts, which are jammed latrd. The minlde part of the stirrup fits in a notels, $\%$. cont in the lower end of the screw, and prevents it from turning. There are several other irons on the checks; two prining wireeye-bolts, four equipmentwheels are thrown in gear, and when the proper horizontal dirmetion hat been given to the gun they are thrown out of cear, and receive none of the shock of the recoil. The $n$ a ans for traversing the chassis are the same as in the sea-coast carriages, namely, a wiudlass and chain made fast to the platform nur either end of the ontertraverse-circle. Thepintle is in the front transom. In orler to presurve the axis of the sun at the proper height above the platform to enable the grna to fire ower parapets of the usual consiruction, it is necessary to make the top carriage as much higher as the top of the chassis has betn lowered. To give the different elevations ranging from 0 to 75 , a circular rack is dixed to the under side of

rings, $i$, two hooks, $t$, four plates, $p p$, at the rear, two of which are on the onter face of the cheeks and two on the rear face: they present a kind of cup turned downward, in which the hook of the rollerhandspike engages. The lower front transom and Fear transom are provided with pointing-plates. Weight of carriage, 4,457 pounds ; the carriage and mortar, 11,125 pounds. Height of the axis of the trunnions above the platform in firing position, 54 inches. Lenerth of the cheeks, 80 inches. Total length from the front part of the wheels to the end of the trail, 158 inches.

Krupp's carriage for what he designates as his 28contimeter (11-inch) howitzer is arranged to enable the genn to deliver a direct fire over a parapet in the same manner as a gim mounted in an ordinary barbette battery, and to fire as mortar at an angle of elevation of $75^{\circ}$.

The carrage in its general con-
the gun, the conter of the rack being at the intersection of the axis of the trunnions witli that of the gun. A cog-wheel engages in the teeth of the rack, and is operated by two whecls on the outside of the cheeks, the same as in the sea-coast carriage. A gradnated are is attached to the outside of the left cheek, just under the trumnion; an index abont 11 inches in leneth is made fast tothe left trunnion, and indicates the elevation of the gun. The means for checking the recoil, rumning the gun from battery, hoisting the shot, ete., are the same as in the other carriages for heavy gmos.

Ruswiu.-The 6-inch-mortar carriage represented in the drawing, as well as the 8 -inch, which differs from this only in the dimensions, were designed by Colonel Semenoff. It is composed of two chereks of boiler-plate 1 inch thick, conneeted by five bolts, with pipes, forming transoms, two above and three

struction is quite similar to that made for the seatcoast aruns, with surbluoditications only ne be camm necessary to fit it for the specinl servica requireduf it. 'I'u ('nalle the chassis to resist the strain brought monn it in firing at mevations of $75^{\circ}$. the rabls are made to bear evenly on fone traverse circles lad in the platform, placed at iequal distances from ench other. The rear traverse-wheds are mounted on eceeniric
bedow. The frumion-bed is formed by re-enforeing the bole cat in the plate with al lat pieere of iron on the outside and an angle-iron on the inside. The trumion-bed is secured to this by means of rivets with commersmak hemds, and inside of the angleirons are hattens, with screws on the and for holding the caplapuares. The lower edge of the rhowk is re-enforced both on the inside and outside by
angle-irons, and shod with a lat bar fastened by rivets with emontrersunk hemels. Two grides ari fastemed to the angle-irons in frome and rear, and serve to gude the rarriage in its motion by pressing against the directrix, which will be mentioned hereafter. The devating apparatus is composed of an nre fistencel at eachend to doe mortar, havine foeth whicla engage in a pinion monated wan axde turnod by two handles ontside of the cheres. Two cannonerers, one on the right and the other on the left, give the elevation ly turning the two handers at the same time. The angles of fire are embtaced be-
 screw on the left end of the shaf! prevents the ghas from moving after it has been pointed. To lowd the mortar, it mast he brought after firing for morly at horizontill position. The use of a ghmur's livel cach time is avoided by having a gradated bronze are fastened on the ontide of the cheres, just under the right trmmion, and an index marked on the face of the trimnion.
In firing. Ho carriage shides on the phatform: or, for the facility of romning it intobathery and moviner it laterally, it may be momed by means of four truck-wheds on a kind of low dhassis or directrix. The two front wheels, mounted on the same axle. are just over the top of the ehassis, but do not touch it ; the rear wheels are mombedench on a crank-aste; a forked lever, which can be brought down between the cherks, serves to bring the wheds in contact with the tops of the directrix. To eause the earriage to rum on its four wheels, it is suflicient for a cma noned to force the forked lever down to the rear ; the rear end of the earriage is thas raised, and the front wheels are made to bear. The directrix is composed of two wooden beams, covered on top and sidess by plates of iron, and joined by two wooden transons and three bolts. Nath the front end is an iron axle, with a vertical hole in its middle for the pintle, and provided with two traverse-wheels which rest on the front traversecircle of the platform. Two hurters, attached to the front end of the directrix, stop the carriage in its motion intobattery, and two counter-hurters, placed in rear, limit the recoil when
in rossesection, are placed erosswiar. four toward the front, thren in Ha middle, and 1 wo in rear; cheven romble serers are lain on and slighty let ints them; nine of the round slowers are laid fown in the whatere of a fan, and the othertwo latyon into the whers form the rear ablicure sides of the platform.
 them, are latel thity-two finch equare feathing of variable Jengeth, aceroming to thar jexition, the imis

 scontling and hedd by boits. The front ccantlings are serured in the same way, only the hurter-phank is not let into the seantling. In rear of rarh ol-4 per at large pieket is drivern. Near the fromt and of tha platform the pimbe-flate and friction rindeare platen and serewod fats, and near the middle of the platform a serond hatwerse-cirellewith ohld ne holow in it. The length of the phatform is It firl, its sleye to the
 form, whird is still provisionally ased in scraterast batteries, has heen recently replacend in siveg and garrison hatteries by a simgler ome, which has ber-m teated with much satisfaction since 1 18:3. This last is formed of two rectangukar parts of unequal widdh. It is emoposed of nine stecelers, if inchess spuare, and coverid with twonty flanks 3 inches thirk and !) inches wide; seven sleepers, tive in the middlo and two at the edge of the platform, are 15 feet fong, and extend from one end to the other; the remaining two are 7 feet $!$ inches long, and support only the rear plank. The sleepers rest on the luads of fifty-eight pickets 2 inche's in diameter and 3 feet longe "driven into the carth. Tworross-pieces are placed undrer the front ends and middle of the seven long sleeners; that under the middle supports the front ends of the short sleepers, also the traverse-circle and the rear end of the carriage.

For transporting the mortar and its carriage an axle has been fitted to the latter foe two wherls, and a movable trail intended to hitch on to the sidegelimber is used. The axle is hedrl in the hoxes cut in the fromt cilge of the checks by means of cap-squares and bolts. The movable trail is represented in the

firing at low angles. Near the middle, between the t wo beams, is placed a traverse-wheel, which travels on the rear traverse-circle. The directrix is provided underncath with fonr cross-sleepers, which prevent its bending under the weight of the earriage. The lenath of the directrix will allow a recoil of 9 feed, Which is sufticient for the maximum charges with a dry platform at angles greater than $20^{\circ}$, and with a damp phatform at angles greater than $45^{\circ}$. For leess angles it is necessary to throw some sand or similar material under the carriage. To give lateral motion to the mortar, if only a slight motion is required. insert the end of the lever in the holes in the rear traverse-circle and press against the carriage. If, on the contrary, it is desired to move the carringe through a great angle, the directrix is traversed on its wheels by three or four men pulling on a rope fastened to its rear end. The platform, as originally adopted, is fan-shaped; nine sleepers, semi-cireular
drawing, with its lunette, iss friction-plate, and lash-ing-ring. It is put in place by unscrewing the two rear bolts of the carriage, bringing the trail in position, replacing the bolt., and securing them hy the nuts. The mortar being in battery. to pmi it in traveling position it is run lack to the rear of the phatform: the axte and trail are put in place. The front of the carriage is raised by means of a juck put moder the middle of the axle, blocking up with blocks till it is high enonglh. The rear end of the carriage is raised with two jacks, or ly means of a lever-har passed under the carriage crosswise. Th, wheels are put on and the limber hooked. A seat for the driver is placed on the forward end of the trail, in front of the pintle: in the box under this seat the handes of the elevaling-serew are carried : they have to be removed to almit the wheels being phat on. The axle is provided with a bucket-hook. The siegelimber is arranged so as to be drawn by ten horses.

In rear of the fixed splinter-bar, with its two swingletrees, a longer splinter-bar is made fast, amd provided with two swingle-trees. The pole has a movable doable-tree at its eud with three swingle-trees: the front horses are hitched to the traces of the three middle ones. Twolock-shoes for the rear wheels are carricel on the body of the limber. The directrises of the mortar carriages are carried by themselves in siege-wagons : four can be carried in one wagon. with great ease.

The following are the princijal weights and dimensions:
Weight of the carriage with mortar and limber

Pounds.
8,893
Weight of the mortar
Weight of the earriage without trail. axle or wherels
Weight of the trail and seat
Weight of the axle with two wherels
Weight of the siege-limber
Number of horses to draw the carriage
Whole length of the carriage to the end of the pole
Width of the carriage
Diameter of the fron wheels
Diameter of the rear wheels
Sce Gun-cantinges and Siege-mortar.
MORTAR CASEMATES.-These are namally placed in rear of the parapet. by which it is covered from direct fire. The arch is covered by earth. to break the shock of shells. It rises towards the frout to give ample room for the shell in its flight. The casemates are covered on their flanks from enfilading tire by an embankment, and are partly closed by a wall in the rear. A smatl ditch is made in front of the chamber, and a slight wall built within it, to give cover from the splinters of shells filling hetween the parapet and the casemate. Arelzed chanbers are in some cases mado beneath the mortar chambers which serve as store-rooms and temporary" mayazines. Whenthese casemates are placed in rear of a portion of the parapet but little exposed to alirect lire the thickness of the parapet in front of them may be reducel? and the interime slope lye replaced by a breast-height wall along the front of the casemates, in order to give better cover in thank and from slant fire, by throwing forwarl the casemates more under cover of the parapet. See C'asematex.

MORTAR FUSE.-The mortar-fuse now used is a paper-case time-fuse, similar in general appearance to the ordinary paper-case fuse, of long time of burning. They are mule up in packages and marked with the kind and length of fuse. For any shorter time the fuse is cut with a sharp knife or fine saw. With this fuse is nsed a wooden fuse-plug, having a eonical opening, which is reamed out to fit tha paper case. When the shell is loaded, and the fuse cut to the required length, it is pressed in the plag and the plug firmly set in the luse-hole. The head of the fusc having been covered with tow or something to prevent braking the composition, the fuse-setter is placed on the pher, and it is driven with the mallet until the houd is about $\frac{1}{4}$ of an incth above tha surface of the shatel.

The old form of morlar-fuse consists of a case midd of hered-wood. turned in a lathe to a comional shape, and bored out nearly to the botlome to) raseive the composition. The romposition is kriven with fifteren blows of the mallet. The bore is chlarged at the top to rereive a priminer of mealed powder moistened with atenhol. 'To protect priming from top of the fuse is covered with a
cip of water-proof paper. on which is marked the rate of birning of the composition. The exterior is divided iuto inches and tenths, to guide the guwurr in regulating the time of burning. This speration is generally performed before the fuse is driven into the fuse-hole of the shell, by cutting it off with a saw, or boring into the composition witl a gimlet. If the fuse be driven, the column of composition may he shortened by taking a portion from the top with the fuse-tuger.

The great disadvantage of this fuse is its irregularity, it being very difticult to press such a large column of composition so that equal lengths will burn in equal times. Sce Fuse and Time-fuse.

MORTAR PLATFORM. - I platform similar to that nsed with siege grms, but of smaller dimensions and without a slope. See Plutform.

MORTAR-SCRAPER،-A slender piere of iron with a spoon at one end and a seraper at the other, used for cleaning the chambers of nuortars.

MORTAR SHELL. - A hollow projectile of dimensions to fit the pieces shown under the head of llortar. Mortar shells are issued loose, but are filled with a charge of bursting-poweler at the time they are required. They are fired from mortars at high inngles; the larger natures, with the object of setting fire to buildings, ships, or other combustible constructions (and in the attack of a place they would be especially directed on the gumpowder magazines): the smaller natures, to annoy or drive ont troops behind parapets or any particular cover.
MORTAR VESSEL. I class of gum-bout for mounting sea-service mortars, and in some cases provided with steam-power. The mortars are usually of the largest caliber- -13 inch. To enable the mortar to be properly maneuvered, and to resist the recoil from the nearly perpendicular explosion of so great a piece of ordusinee, the vessel has considerable breadth in proportion to her lewgtl. The mortar is slung anidships in a massive bed. The ancient form of mor-tar-ressel was the * bomb-ketch,"convenient because of the lengtl of deck without a mast. The present vessels originated during the Russian war, and were fonme servicuable at the bombarlment of Sveaborg.

MORTAR WAGON. - wagon used for the transportation of siege mortars.siege guns, and heavy projeetiles. The limber and wheels are the same as those for the siege-gmn carriage. The body consists of a platform of rails and trinsoms, resting on the rear axle-tree, the two midde rails being prolonged to the front to form the stock. The side rails are prolonged to the rear, and furnish supports for the roller of a windlass; which is used for loating the wagon, the guns, mortars, etc., being drawn up the stock, which rests on the ground, forming an inclined plane. Each end of the roller is provided with pawl and ratelet, operated by a handspike, fitting into a sorket after the manner of the windlass of a gin. Over good and firm roads, the mortar-waron is capable of carrying the 100 -pounder Pirrott, or any other vieed not excereling in weight 10,000 pounds.

MORTISING-MACHINE. I machine much nsed in arsenals in the construction of gun-curriages, etc. The self-acting mortising-machine was inventerl by Groneral Bentham, and described in his specificution of 17 O8. Dle made them for the British Admaralty previous to 1800 . Ilis arsoription inclutes the operation by means of a hold previonsly horeal and then clongated by a vertically rewiprocating chisel; and also the making of a mortise by a rotary cutter cluring the traveling of the work. Onk form included a pivoted table. l3runcl's mortising-machine, mate by Mamday for the British Almiralty, about 1804 , with improvements, is employerl at this time for mortising the shells of blocks. The drawing shows the (. IJ. Rogers medinm-power mortising-mathine, as c'mployed in most of the arsenals of construction. This mathinc is provided with boring apparatus and is apecially athated for ordinary work in lard Hood and the heavier elasses of building. The
chisel has a rapice perpendicular motion, and is brought down to the work by tho: treatile, and car ried up by the bainnce-weight on lanck and of tramdle. It is self-reversing, tumning tha ehised whent the freadle is let up, at eache cond of the mortise. Thas beel ean bue set at any angle reguired. The mathine has the boring apuiratus, whifor is sod on the same line with the chisel, so that the work esun be bored and thon ram mader the clisel amel mortisad withont unclamping it from the bed. 'l'lar liteshaft is rim by $a$ belt from the chisel-shafl, and wor arranged, that


When the chisel is working the bit stops, and, as the chisel is let up by the treadle, the hit starts, ready for boring. The driving pulley is 10 inch dinmeter. 3 inch face, and should make 300 revolutions per minnte. The machine may be driven from a main line, if it is lovel with the pulley in top of machine. If not, a counter will be needed, to set on a level with the pulley. and 8 or 10 fect distant. The weight
of the machine is 1,450 pouncls. Sees: Jhonble /iemiong rend Mortixiug-muchine, atnd /luls Mertisiug-zrmbhim.
MOSS TROOPERS, Jarumelerh; 「rio-booters; planderers. They wroce eonfined to thr dimelots which livitud the Gootola and Englishateritorios brefore tha Union. They wero Inamelal togrolacr jn ratans, and lived by rapian and reexived this denomination from the rharacter of the eomatry over which thoge travel. ro] in their atventurons monle of life. In fonllor's
 they mumbered sioveral Habusands, and that tha-ir great conenies were "The liws of the land and tha Lord William Nawortls," whos finally redacerd therm to legal oherdience. Seott mentions them in The La! of the last Minastort.

MOTHIR AL MOOLK.- In the Liast Indias, al lerm
 breast works.

MOTION. 1. A division of a movamont in that manual of arms to farilitate the instruction of recruits. 2. J'he laws of motion are the fumblamental principles commecting forere and motion in the plysis. cal universc; and are obviously to be derived from rxperiment alone, since intuitive ratanong commot possibly give us any information as to what may or may not he a law of nature. Jomgh these laws aro derived from experiment, it ennnot be said that we: have any very diret experimental pronfs of thrir truth-our most satisfactory verilications of them are derived from the exact ateordinece of the results of calcolation with those of oljservation in the cate of such giguntie: conthinations of mutually inlluencing boties as that of the solar system; ame it is by such proofs that they most bee consjdered to have been fimally established. They seem first to bate heen given systrmatically and completely by Newton, at the opening of the Jrincipua; but the first two were known to Galileo, and some of the many forms of a pert of the third were known to llooke, llayghens, Wren, amd others. We shall give thom here in order, with a few brief comments, showing their necesity and their ase First, then. we naturally inquire, what matter would do if left to itscilf; and, ly considering cases in which less and less rxtermal force is applied to a body, we are led to the statement called the first lurn of motion.

1. Hivery buly continues in itsolute of rest or of uriform motion in a straight lime. sieput in so jitr res it may be compelled by impressed fores's to charge thist state. This expresses simply the intrtia of matteri. $x^{2}$, a hody camnot alter its stat of rest or motion: for any sueh alteration external force is retuired. IIence the definition of force as that whirh rhanges or tends to clange a body's state of rest or motion. Now, how does the change of state depermi on the force whicla prodnees it: This is obviously an now (question, to be resolved by expriment ; and tho answer is the serond lar of motion:
2. ('henge of motion is propertional tor the imporsxed force. "lud totes place in the divertion of the straight line in achich the fore actr. Newton's silence is as wixpre sive as lis speecta. Nothing is lure satid about the previous motion of the body, or about the number of forees which may be at work simulanmously. Hence, a force produces its full effect in the form of elsange of motion, whether it atet singularly or be associated with others; and whatever, morefover, he the original notion of the body to which it is applied. llence, there is mosuch thing as equilid)riun of firces: every force produces motion - and what we eall rimil librium is not the balancing of forces, but the bisle ancing of their fficte. Jence. the absurdity of attemptine to found the scionce of statics on any other basis that is to be derived from the second lateof motion: which, in fact, leats as at once (by the perallelogran of relocitios, which is u purely geonnotrical conception) to the paralle hogram of forces, amb thence. with the help of the third law, to the whole sulyject of Staties. The second law also supplies the means of measuring force and mass; and of solving auy prob-

Jem whatever concerning the motion of one particle. But more is required before we can study the motion of a system of particles-as a rigid bodr, or a liquid, for instance; or a system of commented boties. Here there are mutual actions and reactions of the nature of pressure or of transference of energy between the parts-and these are regulated by the third low of motion.
3. To every motion there is always. an equal and contrury reaction; or, thec mutual actions of any tico bodies are almuys equal and oppositely directed in the same straight line. Thus, the mutual pressure between two hoelies has equal, lut opposite, values for the two. The tension of a rope is the same throughout, and tends as much to pall back the horse at one end as to pull formard the gamal-boat at the other. The eartl exerts as much attractive force on the sun as the sum exerts on the earth-and the same law applies to the other attractive and repulsive forces, as those of electricity and magnetism. But Newton goes much further than this: he shows, in fact, that action and reaction (subject to the third law) may consist in work done by u force, instead of the mere force or pressure itself. From this form of the third law we derive at once the principle of virtual velocities, which in its application to machines is familiar as "What is gained in poser is lost in speed." But we also derive the grand principle of the indestructibility of work or energy; at all events in the case of the ordinary mechanical forces-and this must be regarded as one of the grandest dis. coveries which Science owes to Newton. It is trne that lie merely mentions it, and then abruptly passes to another subject; yet we can hardly exaggerate the value of this single remark. Experimenters, mainly Davy and Joule. have since shown that all the physical energies, as heat, light, electricity, etc., are sulvject in their transformations to the third law of motion, and thus the system constructed by Newton for ordinary dynanical purposes, is now found to rnle the most mysterious of the affections of matter. See Force, and Mutipliers.
MOTON.-In ancient armor, a small plate covering the armpits of a knight, used when plate armor was worn.

MOTTLED CAST-IRON.- A mixture of the white aud the gray varicties in varying proporions, the gray iron sometimes appearing in specks, like min. ute flowers upon a white ground: whilst in other specimens the mass is composed of gray iron, and the white iron appears in spots. Fine gray mottled iron from its great tenaeity is known to he the best fitted for large castings where great strength is required, and is employed for gun-fouting. It may he matle by mixing white and gray iron, or by contiuning gray iron in [usion for some time, until it gets the proper color. The kind of mottle will depend much upon the size of the castings. See Castiron.
MotTO.-In lieraldry, a word or short sentence which forms an accompaniment to a coat-of-arms, crest, or lousehold badige. Mottoes were originally attached to the badge when the fimily had one, or to the crest where there was no badge. In later Heraldry, the practice is to place the motto in an eserol either over the crest or below the shided. A motto is sometimes a religious or moral sentiment, as "Garde\% la foi." "I Itamanitate;" it is not unfrequently ateroic "x"lamation or war-cry, "Courage sams peur." "Forward." In a great many cases it bears reforence to the erest, batge, or some beatrine of the escotcheon; thus, Stuart, Varl of Moray, has for crest a pelican wounting herself, and for motto, "Silus pur Cliristum hedemptorem;"and nota few mottoes are punning allusions to the fanily nameas homanmore. "Goutoamow Wivini;"Vernon, "Ver nonsemper viret;" "F"are, fate" for l'arfax; and "lime Demm, cole regem," for C'oleridge. T'wo mottors are sometimes used by the same familyone above the crest, the other below the shicld. The
motto, "Dien et mon Droit," which accompanies the royal arms of Great Britain, is supposed to bave been a war-cry, and was used in England at least as early as the time of llenry VI. Its origin has been as. signed to a saying of Richard I., "Not we, but God and our right have vanquished France."

MOULINETS.-1. Circular swings of the sword or saber, performed asfollows: Left Moulinet. Being at guard, extend the arm obliquely to the left and front to its full length, the haud in tierce and as high as the eyes, the point of the saber to the front, and a little ligher than the hilt. (Two). Lower the blade, edge to the front, and make rapidly a circle around the hand, to the lelt of and near the horse's neek, the blade passing close to the left ellow; returu to the first positiou. (Three). Resume the guard.

Right Moulinet. Being at guard, extend the arm to the front to its full leugth. the hand in quarte, and as high as the eyes, the point to the front, aud a little higher thau the lilt. (Two). Lower the blade, edge to the front, make rapidly a circle around the hand, to the right of and near the horse's neck, the blade passing close to the right elbow; returu to the first position. (Three). Resume the guard.

Rear Moulinet. Being at gnard, raise the arm to the right and rear to its full extent, the point of the saber upward, the edge to the right, the body slightly turned to the right. (Two.) Begin by moving the point of the saber toward the left, and describe a circle in rear. (Three.) Resume the guard. In executing the moulinets, the right arm is kept as steady as possible in position, the saber being eontrolled by motions of the wrist and hand. Sees saber Exercise.
2. Mechanical appliances employed to draw up the cords of the cross-bows, while the bows were held down by the feet. They were in common use about the end of the 13 th century.


Mound

MOUND.- A bulwark for offease or defense. 2. In IIeraldry, a representation of a globe, surmounted with a cross (generally) pattée. As a device, it is said to have been msed by the Emperor Justinian, and to have been intended to represent the ascendancy of Christianity over the world. The royal crown of England is surmounted by a mound, which first appears on the seal of Willian the Conqueror, though the globe withont the cross was used earlier.

MOUNT.-The means or opportunity for mounting, especially a horse : and the equipments essential to a mounted horseman. 2. To place one's self


Mount on, as a horse, or anything that one bestrides or sits upon. Hence, to put on horseback; to furnish with animals for riding. 3. To put anything that sustains and fits, for use; as, to mount a gun on its carriage, to prepare for being worn or otherwise used; as, a sword-hlade by adding the hilt aud scabbard. A ship or a fort is said to mount cannon when they are arrauged for use iu and about it. 4. A term iu Heraldry. When the lower part of the sbidd is occupied with a represeutation of ground slightly raised, and covered with grass, this is called a mount in base; e.g., argent, on a mount in base, a grove of trees inpr. . Whalkinshaw, of that ilk, Seothand. 5. A word of command in cavalry exercise for line men to mount their horses. It is rxecutcd as follows: 'Ile men standing to horse, the Instructor commands: I'repare, to mount, whereupon the odd mombers lead ont. Alf the men then face to the right, dropping the right rein from the hand. take two side steps to the right, sliding the haud along the left rein, make
a half face to the left so as to bring the right aide toward the horse's flank; "arry the right foot theree inches to the rear ; take the reins with the right hand nided by the leff, and phee the right hame on the ponmel, the reins coming into the hand lutwern the lamml) and fore-finger, and held an at to forl lightly the lorse's month. (T'wo.) limelt reernil pires a thirel of the left foot in the stirrap, with the assistunce of the left lamel if necessary, null smpports it. anamat the forearm of the lorse ; reste bupon the lanll of the right foot; places the left himel on top of the nertk, well forward, and grasps a lork of the manrthe lack roming wat betwern the thamb and foretimger. The lusi ructor then commands: \&. Jomenr. At this command, spring froms the right foot, hohting firmly to the mane, and keeping the right hame on the frommel; bring the heels togrther, the knows straightancel and resting agninst the saddle, thr body erect. (Two.) J'ass the right leg extencied over the (roul) of the horse without whelsing himp fret the Hody come gently down into the sitldla; letgo the manc, insert the right foot in the stirrup, pacis the reins into the left land amel adjust them. At the commands, 3. Form, 4. Rank, the even mumbers move up upon reaching the satdelle, a position should be assumed with the bultorks bearing chually bupon the saddle. and as far forward as possible; the roins coming into the left hand on the side of the little tinger, and leaving it between the thmmatand forelinger; the little finger between the reins, the other fingers elosed, the thamb pressing the reins firmly on the second joint of the fore-finger: the left forearm horizontal, the dingers six inclles fiom the body and turned toward it; the litule tinger a little nearer the body than the upper part of the hand; the riglat hand belind the thigh, the arm falling naturally, the feet inserted one-third of their length in the stirrups, the heels slightly lower than the toes.

MOUNTAIN ARTILLERY.-Mountain artillery is designed to operate in a country destitute of car
from the facility with which it ronld lw sarriod un,
 in sitredt-fighting. Si.. P'isle Artillory.

## MOUNTAIN ARTILLERY CARRIAGE- Tla' (:arri-

 ugre for the momatain-rille is similar in muterind furm
 is withont an asle-borly, and the wherels lacome melisl naves.
'The mountain-howit\%er carritge slomble lse light (rnongh to be carrioel on 1lar hatek of at jack amimal,
 to piss through very narrow cletilay. It dilliare in constraction from the liend-carriage, imanancls as the stork amb chacks are formerel of the same pireco, loy hollowing out the lormel of thas stork. Tlow whorls
 is made of wood, the arms luing proterelal from wear by akeane, or strips of iron. "Jhe distancere lacetworen flae whede is about equal to their diamoter. 1t. is arranged for clratarht hy attachaing it pair of shafis to the trail. "Ther pack-sarlille and its larmoses are constructed to carry severilly, the lowitarr and slaft, the carri:uge, or two ammanition clests. or it combles an mimal to dritw the carriage, with the howitere momented upon it. A portathe forga arcompanies carlumountain bat tery, and is so constractcol that it can ho enclosed in two chesis, and carried. witla bas of coal, 1 pon the pack-saddle.

The Jussian carriage lans very short rhowks, the front ends of whirh are cut oft obliquely instead of vertically; the truman-beds are let into 1his ablique face, and the trumnions are lield by cap-squares and keys. krapp makes two sizes of carriages for the 8-centimeter and ficcentimeter guns, respectively. The elevating-screw almits of $18^{\circ}$ of elevation and $10^{\circ}$ depression. The ammunition-chests are made of wood, with iron angle-pieces.

The English have two carriages, as shown in the drawing, for the two T-pounder guns, one of which

riage-roads, and inaccessible to field artillery. It must, therefore, be light enough to be carried on pack-animals. The piece used for mountain service in the United states is a short, light 12-pdr. lowitzer, weighing 220 lbs. The form of the chimber is cylindrical, and suited to a charge of $\frac{1}{2}$ lb. of powder. The projectiles are shells and case-s!sot. It is disclarged from a low, twowheel carriage, which serves for transportation whenever the ground will permit. When the piece is packed, the carriage is packed on a separate animal The monntain bowitzer is also employed for proirie service, and in defeuding camps and frontier forts against Jndians, in which case it is mounted on a light, four-wheel carriage, called "the prairic carriage." ln the "l vican war, the mountain howitzer was found uscful,

Weighs 150 pounds when made of steel, and 200 pounds if made of brass; the other weigls 900 pounds When made of steel, and $2 x 4$ if made of bronze. The wheels are 30 inches and 36 inches in diameter, respectively, and have a track of 2 incles. The eleviating apparatus consints of a movable bed, which looks on a cross-bar hetween the checks over the axle, and has two studs, one on each side, to rest in racks riveted to the inside of the trail-pieces. I sliding-quoin rests on the bed, and is worked by a screw which passes through a collar in the end of the bed and enters a mut in the guoin. A light iron limber is made for the heavier carriage, and carries two ammunition-ciests, which contilin ten rounds of ammunition rach.

In transportation the fun is carried in lussia and

Germany over the horse's spine, the breech in front this being deemed the more favorable position for massing narrow passes and the rouds throngh which mountain artillery has frequently to make its way. The objection to having any part of the load crossways has induced the Russians to detach the axles for transportation, believing that the delays which may occur on the march from the axle-arms interfering with a free passage through woods, etc., would be greater than would result from having to adjust the axle to the carriage when it was required to commeuce firing. The carriage pack-saddle is provided with a rear pad to protect the animal's rump from blows from the end of the trail.

The following are the principal weights and dimen*ions of Krupps carriages :-

8-centimeter, 6-centimeter.
Welght of carriage with wheels. Weight of gun with wedge...
Weight of ammunition-chest, packed.
Number of rounds in each chest. Weight of pack-saddle Weight of powder-charge Weight of chell, loaded. Initial velocity of shell.

The following are
English carriages :-
03.6 ponnds. $1053 / 2$ pounda 8 fitis pounds. 14 ounces. 8 lbs .13 oz . 952 feet

16
$46^{12}$ pounde bunces. 4 lbs. $6 \times 1 / 2 \mathrm{Oz}$. 919 feet. weights of the

Weight of light carriage withont wheele
Pounds,
Weight of hight carriage with wheels.
Weight of heavier carriage without wheels.
Weight of heavier carriage with wheels.
Weight of limber.
MOUNTAINOUS SIT the most important military features of a promi nently marked mountainous position. It is throngh the latter that the roads are made, and the former, from their elevition, command the latter. The crests should therefore never be abaudoned to the enemy, althongh from their position, or distance, they may not directly overlook the gorges; for independently of the real advantage of position, which the enemy would thas acquire, he would possess a relative advantage in the moral effect proflaced on troops when they find themselves in themmanded position. If the base of the momntain does not stretcin ont too far from the summit to admit of a sure setreat on the latter, works maty be thrown up for the defense of the hase, with intermediate works between the base and the summit placed on the secondary ridges, or other commanding points. But if the distance between the summit and the base is great, and particularly if it is decided beforelamd to retreat upon the smmmits, in case of disaster, then the base should be disregarded.

The works thrown up for the defense of the summit should be laid nut on the brow of the height, for the purpose of overlonking and glarding its sides. As has already been stated, the plan and reliof of the defenses will be suhordinated to the features of the ground. Where the surfice alling the crests is undulating, presenting salient and reentering parts, consisting of spurs and ravines more or leas prominent, the salient points should be oceupied by works with a good relief, and otherwise strengtlened by passive obstructions to the assail ant's advance, as from their position a broud flanking swerp of the surface for artillery can be obtanded for the dofonse of the apmonches abon the collaterald salicnts. The re-ratering portions may be ocenpied with defenses of a weaker protile, as their gusition is stronger and it is from them that a stroner lire of masketry and of the lighter field gums can be bronght to brar upon the groume directly in front of the salients andacent to them. The cremallere lime and the redan line with long eurtains broken forward, so as to form a temalled combination with altormate lones and short branches, both lend themselves bother than most other combinations to a configuration of gromat of this elessription.

Yery steep slopery will not almit of a defense with artillery, because the gun camot be firvol umber a
mucti greater depression than one-sixth, and unless the shot take effect the enemy will be inspirited to advance, confiding in the safety of his position. In slopes of this character the works may cousist simply of a parapet, in the form of a glacis, without any ditch, the earth for the parapet being taken from an interior trench; in some cases a dry stone wall may be substituted for an earthen parapet. An abattis may be formed in front of the parapet within close musket ringe; and heavy round logs, or large masses of rock, be arranged along the parapet, ready to be rolled over on the enemy should he break through the abattis. Stecp escarpments of rock are generally considered as inaccossible; but those points should never be left to thein own strength. It is always prudent to post a small detachment to frustrate an attempt of the enemy to surprise them. A steep natural slope maybe made inaccessible by cutting away the face of the eminence.

It may, in some cases, be indispensably necessary to guard certain points at the base of a mountain, as, for example, wbere the base is washed by a river, over which there is an important ferry. Under such circumstances the point to be guarded should be most thoroughly protected by some strong work; moreover, a number of posts, placed at iniervals on the most commanding points between the sunmit and the base, should connect the two. These posts shonld, when practicable, be placed in defensive relations, and in all cases their fire should sweep all the ground between the two principal points. The interior of the posts most advanced should be exposed to the fire of those in their rear, in order that the enemy may be driven out, should he succeed in forcing his way into any one. As these posts will require a considerable delachment for their defense, care should be taken not to multiply their number unnecessarily, and never at the expense of the main defense. All communications, leading througl the mountains, should be carefully guarded, both at their outlets and at the most suitable intermediate points for defense : otherwise the most respectable positions will be liable to be turned by the enemy. If the communications are not of ise to the assailed, they mast be barred by a line of abattis, or by an artiticial inundation, etc. ; and they should be watched by a detachment of light troops. whose retreat on the main works should be secured in case of an attack by superior forces. If the communications are of use to the assailed they should be defended by intrenchments, which should command amb enflade them in the most effectual manner.

MOUNTAIN TRANSIT.-This instrument is a modifieation of the Engineer's Trinsit, made for mountain and mine surveys. but applicable as well to all the other work of the Engineer. It is made exceedingly light and portable, its needle being 4 inches long; and its teleseope 8 inches long, having a power of 20 diameters. Its sockets with the leveling head, remain attached to the instrument; and its compass circle is movalble abont its center, so as to lay off the variation of the needle. In this instrnment the limb is divided on solid silver to half degrees, with verniers reading to single minutes: sometimes the lmb is divided to twenty minutes with veruicrs reading to half minutes. There are also eydindrical caps above the levoling screws to axclude the dust, etc. The drawing shows one of the celluboid ruflectors, whieh are phaced over the two opposite verniers of the limb, and are of service especially in the survers of mines, to throw light upon the divisions below.
like the Engincer's "Transit, this instrmment is sumetimes used with a plain telescope; but oftener with one or more of the extras, as level, chanj and tangent, and vertical circle. More freguently, however, the IIonntain 'Transit is furnished as shown, witl vertical are, level, damp and fangent, aml the solar attachment. Which is essemtially the solar apparatus of Burt placed upon the eross-bar of the or-
dinary transit, the polar axis lơing directed nhove
 $A$ little eircular disk of about an incle amel thalf diamoter, amel having a very short, rommel jivot, projecting above its unur surfaco is dirst monroly serewed to tho teleserope axis. (0) restes the enlargad base of the polar axis, whictl is ulso tirmly comeretod with the disk hy four roipstanlumb serows jassing from the maler sithe of the disk intothe base alronty namod. Therse sorews surve: to m!just the polar axis.
"The hour circele surromadine the hase of the pobar axis is ensily movathe abont it, amb can le fastande at any poini desired by 1 wo llat-lacal surews alowe. It is divided to tive minutes of timat is ligured from 1, to Xll., and is remd by a small imdex fixed to the derelinationare, and moving witlat. Alsollow cons, or socelet, fitting elosely to the polar axis and mate to move snorgly upon it, or rlamperd at any point Acsired by a millend-head screw on top, furnishes by its two expmoled arms below, a tirm support for the deelination are, which issucurcly fasterned to it by two large serews, ns shown.

The declination are is of abont live inches radius, is elivided to quarler degrees, and reats by its vernior to single minutes of are, the divisions of berth vernier and limb heing in the sume plane. The doclination arm has the usial lenses and silver plates

on the two opposite blocks. made preciscly like those of the ordinary solar eompass, lmut vernier is outside the block, and more easily read. The declination arm las also a clamp and tangent moventut, as shown in the drawing. The are of the declination limb is turned on its axis and one or the other solar lens used, as the sun is north or sontle of the equator; the drawing shows its position when it is north. The latitude is set off by means of a large vertical limb having a radins of two and a half ímehes; the are is divided to thirty minutes, is figured from tho center, each way, in two rows, viz., from 0 to $80^{\circ}$ and from $90^{\circ}$ to $10^{\circ}$, the first series being intended for reading vertical angles: the last series for setting off the latitude, and is read by its vernier to single minutes. When desired, an are of three inches radius is prepared reading by its vernier to half minntes of a degree. It has also a clamp-screw inserted near its center, by which it can be set fast to the telezcope axis in any desired position. The vernier of the vertical limb is made movable by the tangent-
serew atharlocol, so that its \%eror and that of the limb,

 10 the axim. Tlore usesal tangent movernent (o) the
 limb to the proper elowation. A level (on llae-nmer

 The divided ares, verniors, shal homer everelo are all on silvor plate, and are dous eatily refich and proservend from tarnishing.

Ton detromint latitnde, first level the insalrumsent vory rarefully, using, as before, the level of the telescopre until llac bublar will remain in the ceontor durine a complate revolution of the instrament, thes tangrat movemont of the teleseope broing userd in eonmertion with the leveling sorews of the parallel plates, und the axis of the tedescope dirmly clamprol. Noxt flamp the vertioal are, so that its \%erosamb that of its vernier coincile as near as may bee fand لhen bring them into coxat line lyy the tunerent-sirew of We vernier. Then, Inving the dectination of the

 rlination are, note also the erpation of time anal lifteen or twenty minntes lx.for moon. the felvecopus being direreted to the north, and the wheeterad lowered until, by moving the instrancent haon its spindle and the ilectination are from side to side. the sun's image is brought ratarly into position lwotwon the "anatorial lines. Now hring the dacelination are directly in line with the (olescrpe, (lamp the axis firmly, and with the tangent-srew bring the image precisely between the lines and keep it there with the tangent-screw, raising it just as long is it will run below the lower equatorial lince or in other words, $n s$ long as the sum continues on rise in the beavens. $\mathrm{TV}^{\text {ben }}$ the sum reacones the meridf ban the image will remain stationary for an instant, and then begin to rise on the julate. The moment the image ceases to run below is of course apparent noon, when the index of the laour are shoukd indicate Xll, and the latitude be determinu d hy the rearling of the vartieal are. It must be rememhered, however, that the angle throurl which the polar axis has moved in the oproration just oleseribed is measured from the \%enith instead of the horizon as in the orditary solar, so that the angle read on the vertical limb is the complement of the latiturle.

The Jountain Transit is usually placea upon an extension triporl, in which all the legs can lue - laretened or lenghoned at will. It is thus adapted for use in mountain surveys, where one or more lugs must be shortened: or for mines, where in mary places a short iripod is indispensable. If desired, the sliding pieces can be easily turned end for cusl, the points being thans put ont of the way and the trijod more fely transported. The tripod wher closed is only three feet lones, and is carriad by an ordinary shiawl-strap, The weight of this instrument, as made by the Mesirs inurley © ('nitcol states, with plain telescope is $8 \frac{1}{5}$ pounds: with the solar attachment, are, level, and elamp. 9is pounds. The extension tripod weighs about s' pounds. See Engineer's Transit.

MOUNTAIN WARFARE. - In warfare, mountains ofer a considerable olstacle to au invadiner army. nod, if properly defented. may either siay the advance of an cnemy or prevent ingress into the country. The dilficilty to be overeome will be still Ircater if there be other ubstacles, such as rivorsand a suceession of monntain ranges. In such warfaro The invading General should use every premation in xamining cach step of the way, and erfenning all information in his power from maps, guides, and reconnoissanees. Further, he shonld be careful that lac does not fall into a trajs, whic.l the emomy may lay for him in feigning retrent, when he is enleavoring to ontfunk him and get in his rar, tuns render-
ing the position of the invalder very precarious. It should therefore be laid down as a maxim that, in mountain operations, especially, the flanks and rear of the iuvading army must be secured, to prevent being surrounded. One of the great diftimaties in this nature of warfare is leepsing the communication open with the rear, and briuging up food for the army. as mountain ranges, passes, cte. do not afford facility for using wheeled carriages: and the transport, iherefore, resolves itself into men and pack animals. Such trausport forms but a slow and precarious means of carryiug forward supplies, if not well guarded. Ilistory affords examples of the difticulty of mountain warfare in transportiug the merteriel of war: thus, for instance, that of Napoleon, the First Consul, whilst effecting the passage of the Alps, witl the Frencle army, in that part called the Great and the Little St. Bernard. The carriage of his artillery and stores was a source of great ansiety and difticulty. The exertion of a whole batialion was refuisite for the conveyance of one field-piece. with its proportion of ammunition; one-half of the reginent could only draw the load, while the other half was obliged to carry the knapsacks, frelocks, camp kettles, and five days rations.

MOUNTED PAY. - A grade of pay allowed mounted officers, or to other ofticers serving under conditions which entitle them to the same pay. The following ofticers, in addition to those whose pay is tixed by law, are entitled to pay as mounted oiticers: oflicers of the Staft Corps below the rank of Major, officers of troops of cavalry, officers of one lirlit battery for each regiment of artillery, officers announced in orders from the Adjutaut General's Othee as Acting Signal Ofticers, and authorized Aides-de-('amp duly appoiuted as such. Other light batteries of artillery which may be designated by the President, and equipped as such, will each have the organization of a licht battery, except the additional od Lieutenant and the officers thereof actually serving with the light batteries will be mounted. Officers actually serving with companies of infantry mounted by authority of the War Department, and not in excess of the legal organization of infantry, are mounted while so serving. A company of infantry mounted retains the same organization as on foot. Other officers on duty which, in the opinion of the Department Commander, requires them to be mounted, are entitled to be so considered, on the certificate of their Department Commanders that they have been on duty iu the service of the United States which required them to be mounted during the time. Sce Pay.
HOUNTED RIFLEMEN.-Naunted infantry, the designation of riflemen being given to them from the arm they were equipped with. Mounted riffemen are soldiers trained to act as foot and cavalry soldiers. This arm is but little known at the present time in the British service, but since the war of $1870-$ 71, which has confirmed the opinion held by many soldiers, that mounted riflemen are now essential to every enterprising army, the subject of reintroducing it in the army las been often discussed. The first mention in military history of monnted riflemen is that of the dragoous created lyy Maréchal de Brissate in 1600 . They were fool soldiers monnted on horses, who on emergencies carried a comrade en croupe. 'The first oflicial record of such troops in the British service dates from a royal warrant of $16 \%$, which regulates the matchlock as one of the arms. 'Il'e scots Greys, who were raised in 1683 , carried also fire-arms, as well as the British dragoons of the serenteentla century; both wre insiructerl to act as infantry on horses, to emable tlem to maki more rajid movements. Dragoons, acting as such, were eventually elanged into eavalry; and the last corps bearing the mane of monnted riflemen was that at the Crpee, which was dishandedafew yearsago. This nature of monnted infantry lats been reintroluced in the volunteer forces of the country. there being fotr
small bodies of mounted ritlemen. Nounted rifle men were considerably used and appreciated by Najoleon 1. and his Generals. Jomini writes on the subject as follows: " It is cortainly an advantage to have several battalions of mounted infantry, who can anticipate an enemy at a defile, defend it in retreat, or scour a wood." Sir G. Wolseley, in writing on the subject of outposts, gives it as bis opinion that, whenever mounted iufantry is introduced into the service, aud its employmeut properly understood, these ontpost duties will devolve to a very considerable extent on il. Such men are invaluable in cover ing retreats; to seize, destroy, and hold bridges; fur works of destructiou, such as removing rails and telegraphs, etc. For these duties they were frequent ly employed in the American and the last Coutinental wars, most foreign armies having adhered to that system. Colone] ITanuley says, in his "Operations of War," second edition: " As cavalry alone could effect nothing in an iutersected country, or against a body of mixed troops, or a force sheltered by obstacles, it is indispensable that the troops thus employed, while mounted for the sake of celerity, should be able to meet infantry on good ternis. Their chief action mast therefore he as infantry, the horses of the dismomed men being held ly their comrades.
Mounted infantry is altogether a different thiug from clismounted cavalry, and the two kinds of force should be kept earefully distinet. All experience has shown that cavalry who are habituated to rely on their tire-arms are apt to lose their distinctive characteristics of promptitude, impulsion, and resolution in attack; and it would be impossible, by ayy amount of training, to combine such opposite functions in the same troops. By establishing mounted riflemen as a separate arm of the service, men and horses of a size which, thougl admirably suited for rapid and sustained movements, is deficient in the power and weight that tell so formidably in the charge, might be turned to excellent account." Colonel Hamley further states that on this kind of troops might properly devolve the business of reconnoitring or leading the advanced guards, of scizing defiles, etc. On the other liand, the regular cavalry. spared in great measure the harassing duties which fritter away jts strength. would be preserved intact for the day of battle. In a country like India, infantry can be mounted on caucls, and has been so utilized when it was desirable to send troops on a forced mareh to take a place by surprise, or to scatter a collecting force. Each camel carriestwo men. It would be necessary on such service to dismount; and rest the men during the journey. But except for the expense there is no reason why there slonuld not be a permanent Corps.

MOUNTING CANNON.--If the platform is much above the general level of the ground, as in casemated batteries aud on ramparts, the cannon have to lee raised by strong derrieks to the level of the platform, or they may be drawn up ramps of eartla or of scaffolding.

1st. The chassis being on the .platform, the top carriage not in position.
'There will be required to mount the gun oue or two hydraulic or two or three serene jacks, dependiug on their power, and block: of different lengths and widths, varying in thickness from one to twelve in. also a few skids and chocks. The gun is brought parallel and near the chassis, a jack is placed under the brecch and one minder the muzale; the extremities of the grun are raised alternately and supported loy blocks till they aro at such a leeplat that skids phaced on the rails of the chassis will pases under it. 'Tlue gun is rolled till it oceupies a proper position under that for the top carritige. It is then raised as before, being supporicd by cribs of blocks buit one under the swe th of the hreerelamother under the erlase, three feet from the mazale, till it is broughat to a heirght above that for the trumnion heds, the frumions being lovel. The lop earriage is taken to pieces and
assembled in position marler the gran, which is thron let down into place.

2l. The (latssis nat top) earriag( Incing in josi-tion.- 'I'la* gun is bronght parallel to tho thassis. and is raised and rolled as before on to skids placed om the rails in ratar of the top earriage, the breeod prosjertinir to the rear. It is then lifterlby jurcks and sup)ported on a crib of blocks bailt in rear of tha chassis maler the broceh, and by is skid beariner uncle the mozale lad areoss and resting on 1 wo cribs, one on frach sida' of the muzale withont the chassis. '1"hr gan being suthiciently higla, thr top carringe is movert to the rear and the erm lowred into the tramion beds. In ratiner lavy eamon anordinary gin can sometinoss low used for the mukale, the jack being required for cievatiner the breech only. In buililius the cribs the thickest blocks, as a rule, shouk be

Was gomatimas usal in sport is diatingnish the: but talion mern from the flank ennmpanios. It was in-

 fachal, the former remain in phartores, like vate to watch the mice. cote.

MOUSING A HOOK. - A morle of paweiner is piocere of spum yarn romm? the point mat barek of tho forok of n blork in urder to prevont it disanguging itmalt from anything to which it may ho howked.

MOUSQUETAIRES. - A looly of lorse-soldiore wn(lar the old lerenell Ragizue, raised by lonios Xlll. in 1022. 'This Corps was consiblered a Military schoos for tha Franch nohility. It was dishandal in 1 (i-4 4
 rreated in lfifo, and formal Curdmal Jakarin's Gimid. Alsus written Alusketers

placed at the boftom, and thin blocks should be replaced by thieker ones as the gan rises.
3 l . The camon being on or by the phatform, the chassis and the top carriage in position or not.
In many instances the position of the phatform is such that the monnting may be facifitated by the jacks being placed above the gun. In this case a special device is used. The jacks, two in number, are supported each upon a heavy timber or bulater resting on blocks, or on high, strong trestles. Ou top of the jack rests one end of a lever, the other end hearing on a fulcrum. A strong iron hoisting-bar also throngh one made in the lever. This bar is passes through a mortise prepared in the bolster and piereed with a number of holes, into which iron pins may be placed. The extremitics of the gun are slung to the lower ends of the hoisting-bars; pins being placed in the bars immediately above the levers, the jacks acting on the levers raise the gum; pins are then passed through the bars above the bolsters and the weight sustained by them till a new lift is taken with the jacks; by transferring the pins the gun is brought to any desired height, the jacks being worked together. The bolsters should be of sulficient length to embrace the chassis, and the gan placed by the side of it. If the chassis and top carriage are in position the gun is raised to the necessary beight, the carriage traversed till it is brought bencath it, and the gun then lowered into place. If the gun alone is on the platform it can be raised, and the chassis and top carriage be brought in succession ou a truck and placed in position beneath it. The appliances to be cmployed in mounting heavy cannon, and the order in which the different parts should be placed on the platform, must vary with the position and nature of the work and the construction and the arrangement of each particular platform. Any device or arrangement that may expedite or facilitate the work should be resorted to The circumstances may be such as to render advis. able slight variations in the steps taken in mounting each gun in a battery. See Merhanical Maneurers.
MOURNE.-That part of a lance or halbert to whicb the steel or blade is fixed.
MOUSER.-In the British Army, a sobriguet which

MOUSQUET FUSIL.- A fint-lork: gun which was invented by Marshal Vanban, about 1640 , and whicls Was so contrived that in case the Hint did not striku fire, the powder might beinllaned by means of a small match which was fixed to the breerh. Most anthors of Encreloperlias, from the habit of copying one another, have repeated that the bayonet was inventerd and manufartured at Bayonne by Puységur, who diecd in 1682. Nevertheless this sort of dagger or swort had bern adapted to the arquebusc, and even perhaps to the carlicst portable fire-arms. The bayonet was already known in France in 15\%0, lut was not universaly adopted until 1640, when it replaced the pike in certain regiments. Subsequently the bayonct was fixed at the end of the gun by means of the socket. This was the side-arm joined to the fire-arm, callocl musket-gun, and attributed to Vauban.

MOUTH,-1. The opening of a piece of ordnance at which the charge is introdnced, and from which, when fired, it issues. 2. The interior opening of an embrasure, from eighteen inches to two feet wide. aceording to the caliber of the gun, and of a rectangular or trapezoidal form. See Embravure.

MOVABLE BATTERY.-A battery nsually consisting of field guns and small mortars which can take up, temporarily, any favorable position for damaging the enemy's defences. The movable gun batteries will consist of 10 , in some eases. 20 -pounder riffed guos; and the Napoleon gun for throwing hollow projectiles. These guns will take advantage of any tomporary covers, as undulations of the ground. woods, fences, ete., from which they can bring a damaging fire on the defences, and which they will maintain until the fire of the besieged becomes ton heavy for them. In this way a very important auxiliary to the fixed batteries will be called into play; sometimes forcing the besieged to estahbish new fiositions to drive off these light guns. In like mannor the smatter mortars that can be readily moved by land, or on sleds, may be placed in good temporary positions to increase the amomat of fire delivered on any miven point. Sce Batteries and Fired Bathrias.

MoVable pivot. -The are described by the soldier or guide on that flank of a line of troops toward whied a wheel is made. See Pioot.

MOVEMENT. - The regular and orderly motion of an army for some particular purpose. It is also described as the changes made by an army from place to place, either to take np new camping ground, to engage the enemy, or to avoid him. Ender this term are comprohended all the different evohutions, marches, countermarches, and manewvers, which are made in Tactics, for the purpose of retreating from or of approaching towards in enemy. The science of military movements forms one of the principal features in the character of a great Commander. If he be full of resonree in this important branch, he may oftentimes defeat an enemy withont even coming to blows, for to conceal one's movements requires great art and much ingenuity.

MOYENNE.-An ancient 4-pounder, 10 feet $\operatorname{long}$, weighing 1,300 pounds. In the time of charles IX. ( $150^{2}$ ) it was a $2 \frac{3}{3}$ pounder.

MOYENNE VILLE.- A term formerly givea by the Fronch to any town in which the garrison was rqual to one-third of the imhabitants, and which was not deemed sufficiently important to bear the expense of a citadel; more especially so because it was not in the power of the inhabitants to form seditious meetings without the knowledge of the solditers who were quartered on them.

MOYENS COTES.-In a fortification, all those sicles which contain from 80 to 120 toises in extent. They are always fortified with bastions on their angles. The moyens cotes are generally found along the extent of irregular places, and each one of these is individually subdivided into small, mean, and great sides.

MUFTI.- A term in the army for plain clothes, the opposite of regimental clothing. In the british army, an officer in England is permitted to appear in mufti when off duty.

MUHLAGIS.-Turkish Cavalry composed of expert horsemen. who generally attend the heglierbeys. They are not very numerous.

MUIRKIRK IRON. - A variety of iron well suited for the purposes of gun construction. It is made with charcoal at Muirkirk, Prince George's Connty, Maryland The ore used is a nodular carbonate of iron from the lertiary sands of the western shore of Chesapeake Bay. It is more or less altesed into sesquioxide of iron by the action of surfare water, and is cleaned and roasted before charging the furnace. The yield of iron from the raw ore is from 40 to 45 per cent., and from the roasted ahout 50 ]eer cent. This iron has been used at the south Boston foundry for a number of years and with excellent results, but has not until recently been employed for orlnanee purposes. Sce Dover Iron and Iron.

MUIR-MONTSTORM RIFLE. - A breceh-loading small-arm laving a fixed chamber closed by a movable brach-block, which rotates about a horizontal axis at $90^{\circ}$ to the axis of the barrel, lying below the axis of the barrel and in front, being moved from above hy a thumb-piece. The breech-hlock of this arm is moved by an outsicle lever, the interior shaft connected with which is cam-shaped, so that the first motion of opening draws down the breceh-bloek, until alip on its upper surface is clar of a hook or jaw formed on the mader side of a projection of tha frame overhamging the month of the chamber. By eontinuing the motion of the lever, the breech is finly axpused ly the rotation of the block, the hammer at the same time being hrought to the full-cock. By reversing the movemant of the lever the lorecell is elosed. The hreerlo-block is lockerd by the abutment of the frame upon its back. Extraction and ejection are aceom. plishoel hy a slisling extractor in the lower sicle of the harrel. Its mider sime is notcolad for the upper encl of a lever. whicll is pivoter on the same pin as the bimmer. This lever lits two horizontal armes. which are struck by correspontling proness on tho. lower side of the block, in opening the piece.

MULCT. - A soldiar is said to be mutred of his pay when jeat under fincer stopuages for necessarios. of
to make good some dilapidations committed by him on the property of the prople or the government.
MULE.-A hybrid animal, the offspring of the male ass and the mare, much used and valued in many parts of the workd as a beast of borden. The ears are long; the heal, croup, and tail resemble those of the ass rather than those of the horse: but in bulk and stature the mule approaches more nearly to the horsi. The mule seems to excel both the ass and the horse in intelligence; it is remarkable for its powers of muscular endurance; and its sure-footedness partienlarly adapts it to mountainous countries. It las been common from very ancient times in many parts of the East; and is much used also in most of the countriesaround the Mediterranean Sea, and in the mountainous parts of South America. Great care is bestowed on the breetling of mules in Spain and Italy, and those of particular districts are highly esteemed. In ancient times the sons of Kings rock on mules, and they were yoked in chariots. They are still nsed to draw the carriages of Italian C'ardinals and other eeclesiastical dignitaries. Both in Spain and in south America mules amployed to earry burdens are driven in troops, each preeeded by an animat-in Sonth America usually an old mare - called tie madrina, or godmother, to the neck of which a little bell is attached, and the mules follow with the greatest docility. When troops mingle in their halting-places or "lsewhese, they are readily separated, as they recognize at once the soumd of their own beli. Mules are comparatively little used in Britain.

Pack innles should not be too large or high on their legs. The Spanish-Mexiean mules, for enturance, are superior to all others. These mules are small, but ean stand a great amount of abuse and starvation, and will suffer but little from the effects of a hard drive. Being smaller than the Anerican mules, they can fill up in a much less time, and it will be found that in three hours on thin grass they will fill up and recuperate better than American mules on the same pasture in six hours. This is the sceret of small mules outlasting the large ones in the mountains and on the prairies. The time spent in camp is not sutticiently long, when the grass is scarce, to allow a large one to find enough to eat. The small mule finds sutficient in a short while and has some time left for rest and reeuperation.

As in other hybrid aumals generally, males are more aumerous among mules than females, in the proportion, it is said, of two or three to one. There is no instance on record of offspring produced by two mnles: but instances oceur, althongh rarely, of their producing offspring with the horse and with the ass. The mule is very superior in size, strength, and beauty to the hinny, the otfspring of the male horse and the female ass. See I'uch A mimals.

MULLER.-A hand instrument made of wood and covered with leather; it is used in the laboratory for reducing powder to great fineness. The term is also applied to the painter's stone for mixing paint.

MULLET. - Mullet, or Mollet, in llerablry, is a charge in the form of atar. having generally five


Mullets
points, intenderl to represent a spur-rowel, and of frequent oncourrence from the corliest beginnings of coat-armor. (iwillim, Hir Goorge Hackenzie, and Nislace lay it down that mullots shomdalwas be piereed to represent the romul hole in which the spur-rowel turns, but this has beren by no monns uniformly attomded to in practice. Huch confusion exists in bla-
\%onry botwren mallets and slars: in Fingland the in

 other mamber be specifted. Nixbel lays down it rule nextly the converse of this, which has never been andhered to : and in sentish Ileraldry the same ligure seemas to be often hazomed an at mollat or a shar, nocording as it mocompanies military or erelos. tinl fientes. The :mallet is tho mark of caterney ussignell to the third son, "J'o incite him to elivalry." The mallet is orerasionally used in lleratdry for the lishs so cadled. Sce /heraldry.

MULTIBALL CARTRIDGE.- $A$ caririlge in which two or more ballets or juicese of lead are sulastituled for thr ordinary bullet, with the dea of doing more excention at short ranges. 'The following allyantages are daimed for the enonsed multiball cartridge as manufactured by Merwin, Jlalbort © (o):1. No loading of barrel liy any mamher of discharges. 2. At each discharge the casing acts ats the deaner and Jubricutes the barrel. :3. 'The labriented a ase taking the ritling gives an easy transit of balls and aceuracy of llight. 4. The debloricant is preservad under the different ordinary deegrees of tamperafure. 5. By the centrifugal force given to the casing and balles ly the rilling, tha chaing is thrown off after leaving the barrel, the halls diverare or separate nearly cipual to the front of three men at aboul one humdred yards disiance. (6. The matti (or B-ball) eartridge in its alfoctive (or destructive) results at cach discharge at short range is nomrly equal to threw separate discharges by a breceh-lander throwing ond latl. F. The cartridire is timily comstructed and will withstand rongh usage of actunl service athl preserve its uniformity of slapec. 8. Continnoms (and rapid) firing withont requiring the bares to be cleaned. 9. Preservition of powiler. The casing as an insulator prevents galvanie action betwern the metallic shell and balls whieh chemical action in time would deteriorate the powder. 10. The casings are matde. the balls placed und sereured tirmaly therein, separate from the metallic shedls and ean be transported in bulk or otherwise without injury and attached to the loaded metallic powder case when hesirable (or at reloading of shells)
The multiball cartridge for the service ritle is shown in Fig. 1, and has the following particulars: Weight of powder charge. Namber of balls
Diameter of lanls (each)
Weight of bads
Total weight of lead.
$\begin{array}{cc}. g r a i n s . ~ 5 \% ~ \\ 0 . & 3\end{array}$
$0^{\circ} .424$
.grains. 108.66 -graius. 306


Fig. 1.


Fig. 2

The charge is inclosed in a comper cartridge case of service dimensions. The three bills are inclosed
in a strong (asing of paper labriantorl with a mixture of parathote suml heoswax, making of thatio a fingle


 fo facilitatermutare afine it has lofe thae jine... (A light conling of shad ase covers the pertion of thre cate that projorets from the sholl in some of tha cirtridgen with a view to jerotoretion of the cartrideres from atmosplacric intluencers). "The harionat is phacen] in the recesses (corresponting to cambelares), where the batls ecome in comatet.
Tha moltiball cartridge for the arervion revelver is shown in lig. 2 , and lats tha* following prartionlars: Weight of powdor charge: . . graine ay Number of hatls ( 1 ogival and 2 sphererical soremefles)
Diameter of balld
$0^{\circ} .49 .4$
Length of ogival luillat
( 0 ". $3!9$
Altitude of segments
Weight of ogival lullet Weight of serments (cach)
Total weitith of leat
the marge is inelosed in a copporer rartridere mase, of sarvice dimensions. 'lhe paper rasing for the bullets js like that for the rithe. The ogival lins a that base, and the bases of the segments lit to this and to mach othor. "the lubricant is placerel in tha recesses and about their jumetions. . Issumines that $1 \frac{1}{2}$ inches pernetration in soft pine bobras with these
 found by experiment hat the effective raner of the riflo-bullet moliball is limited to abont 160 yards; ant with the pistol even at 25 yards. lut one of the luthets in the cortridere hats a juenctration of $1 \frac{1}{2}$ inches. The efuestion naturally arises whethor it woulai be advisable to emequmber men in action with cartriflers which, as revolver cartrilges, are not at any range -aperior to the uniball to intlict a dancrerons wouml, and inany case could not be used witla coteet beyond T5 yards; and as rille rartridges could not lee used with "flect beyond 1 Ts yards, while their superiority to the miball is limited belween 30 and 160 yards. Sew Buckwhet Curtridge and I'right Multiball C'urtridye.

MULTI-CHARGE GUN. - Many attempts have bern mate by inventors to utilize the acovlerating effect on the propectile of sereral charges suceressively fired in a gran. Bessemer proposed to use a very long gun, placing the charges separatidy in holes at the breech, to be fired in succession by electricity. In the d.y man-Haskell multi-charge cannom. Whe inertia of the shon is first overcome by a moderate charge of Very coarse-wrained, slow-burning pewder, and then rejuated charges of quick-hurniner powder are int plited in succession until a great increased velocity is attained. In recent experiments with an ace eatiner or malti-chare ornm the average pronetration in laminated armor composiod of one-lalf inch boilerplates was $4^{\frac{7}{5}}$ inches. No doubts are entertained by experts that early experiments will slow that these gims, at comparatvedy moderate cosit, will be at least as eflicient as the hest in Europmo sere L,ymmen Markiell Multi-charge 「'an nonn.

MULTIPLE DRILL.- 1 tool designed more especially for drilling side framos and steel armor plates. lut well adapted to a whle range of other gencrad work in the armory. The large size machine is fittel with two or atry requireal manlor of sliding leads; these heads, carrying drill spindles, with it hateral range of $1 \%$ feet frotn cemer 10 center of spindles, and a forward and hack movement, at right angles, on a sliding horizontal arm, of 10 inches (or more if desired), thus enablimg holes in be drilled in line or athermise. Capacity on tol of table ander drill spindle, Be inches: from flow to top of table, 32 inches: fsom colurn to ernter of dritl suintle. 22 inches, or moro, accordiner to length of the diding arm: from column to front of table 18 inches; top surface of table. It inches wide by 18
feet 4 inches in length; table has a front or verticai surface, 25 inches deep, by 18 feet 4 inches in length; T-slots on both top and vertical surfaces for clamping work; vertical traverse of spindles, 12 inches; spindles balanced by weight attached direct to top of spindle; has quick return by wheel and rack; has automatic gear feed suitable for drilling or boring: driving cone $22 \times 4 \frac{1}{4}$ inches in diameter. to run 225 turns per minute, four or more sections; each head has perfectly independent universal movement and an independent feed, also an indeprent friction for stopping and starting; spindles are steel; pinions and rack gearing are of steel; steel shafts and screws; all cnt gearing; floor space oe-

cupied, 48 inches wide by 18 feet 8 inches long; total height to top of spinales, 9 feet: weight, $18,-$ 000 ponnds. The drawing shows a smaller tool which is used for general work. The spindles have hand and power feed; balanced, quick return by lever; lateral adjustment, can be run one or more att same time, and at any desired speed, by arrangement of gearing; table has vertieal adjustment by right and left screw; distance from spindle to column, $7 \frac{1}{2}$ inches; and with counter-shaft and pulleys, 12 by 32 inches, to run 350 turns per minute. Weirht, 850 pounds. See Drill Press and Giang Drills.

MULTIPLE LINES. - It has been proposed, by some writers, to throw up several lines of detached works for the defence of a position ; so that the troops in the first line may retreat under cover of the second, and so om. This arrangement, in the first place, can scldom be made, without andekening the order of batthe, and thorefore weakening the defancer, ly too great a dissemination of the troops. Moreover, in works of ereat extent there never ean be that eoneert which is so essediat to a vigorone defenee, from the impracticability to direct it properly. The troops destined to aet otfensively against the enemy if repulsed, are foo far in the rear to be dromght up in timu; aud the gromatl being greatly cut ub. by such a maltiplisation of works. will reacler the man*uvers slow atme dilliondt. Besidres, "rryy rapital obliontion in worr, the time and labor repuired to throw
up so many works are altogether beyond what ean be disposed of in the ordinary circunstances of an army. See Lines.
MULTIPLIERS.-It would exceed the limits of this work to enter into a discusion of the formulas from which the values of the multipliers used in the equations of motion in air are calculated ; it will be sutficient to explain how these tables are used in practice.

The reader will find this subject, as well as all others relating to Ballistics, ably and fully treaterl in Dinion's Traite de Balistique.

Multiplier 13. The decimals are earried out to three places, which is sufficient for ordinary purposes. The valnes of $\frac{x}{a}$ are given in the first looriI
zontal line, the value of - in the first vertical column, and the values of the corresponding multipliers are set opposite to them.

To find the multiplier $B$ for two intermediate $x \quad x \quad 5$
values of - and - , not given in the tables, we serk, in the absence of the proper numbers, the corresponding values of the rearest tabular numbers. We ad! to these, parts proportional to the differences, as though each part were to be considered separatelv.

Multiplier $I$. The values of $I$ are given in the same table as those of $B$; except that it is necessary to commence in the lower horiz sntal line, and sultract from then the product of $\frac{\Gamma^{\prime},}{r}\left(1+\frac{V}{r}\right)$, b the corresponding number of the line called "Correction."

Falues of $L^{r}$ and $D$. This table is caleulated for $x$
differences of 0.10 in case of - , in the upper line, and for differences of .05 in case of $\frac{V}{r}$. For $U$, the values
of - are found in the upper horizontal line, and for $D$, in the lower line.
$V^{\prime}$ alues of $-B$ for calculation of Rangex. This talule $c$ gives the value of $\frac{x}{c}$ and $\frac{V^{+}}{\gamma^{*}}$, for differences of 0.05 and 0.05 ; the unknown quantity to be determined is $x$ V $x$ - when $\frac{-}{r}$ and $-B=p$, are given.

Arrange the calculations as in the preceding cases. Only one of the proportional parts is unknown, and this is determined by the condition, that if it be added to the other proportional part, and to the number in the table, the sum is equal to the required nmmber. $V$,

I'alues of r for initial relocities. This table gives , 13
he result arising by dividing - by $\sqrt{\prime \prime} B$ for values of
 method is the same as in the promeding table; the sign of the difference slowald invariably be changed if the vallue of the guntiont $q$ is found to diminish ass

## $x$

-incronses. Ser flidion's formulas.
MUNCHEEL. - A kind of litter whid isuscal on the Aladras and fommby side of ludia. It is simply a lammorlk susprombed from a horizontal poles, and is
 kepp the eanvas of the cot or hammerk at fall lenerth, there is a cross picer of wood at the top and botom. On servied it would be used for the same purjose: as
 munchorl is largely uset to corry pooble nhont in
 to kerp ofl the sum, amd a waterpmof piree of cloth, or a blanke. is thrown over the supprorting pole to keep ofl the rain. Siee Litter.

MUNIFICE.- A Romatn soldiar who was snbjected to every kimd of drmbdery-work in compl

MUNIMELL. - A stronghold, fortiticution, brastwork, rls.

MUNITIONS OF WAR.- Ammumition amd military stores of cevery description.

MURAGE.-An ancient term for money appropriated to the repair of military works.

MURAL CIRCLE, - An astronomical instrument for taking declinations; consisting of at large circle built against the wall (whence its mame), movable on its axis in the plane of the ma-idian, and with a telescope attached, also in the plane of the meridian, which turns about an axis. The circle is graduated, the whole instrument counterweighted and furnished with an illuminating apparatus for night readings. Readings are made aceurate by setoserews and microscopic micrometers. The pline of the limb and the optical axis of the delescope are made parallel to the meridian by leveling and sweeping-serews, and the cross lines of the eye-picee should follow in star near the equator their whole length. The instrument being rectitied, the height of a star above the horizon is measured by a eup of mereury ; the star is ohserved dieetly and then hy reflexion, the half sum of the readings being the correct angla. The co-latitude of the place is ohtained as with the theodolite. As the tube is movalle about the circ!e, reading should always be checked by reiteration: with more than one limb of tise eirele.

MURAL CROWN. - In Iheralelry, a crown in the form of the top of a circular tower, masoned and cm. battled. It is meant to represent the crown which was given loy the Romans as a mark of distinction to the soldier who first mounted the walls of a besieged town, and fixed there the standard of the army. A mural crown supporting the erest, in place of a wreath, oceurs in the aclievements of soveral of the English Nobility, and in various grants of arms made in the early part of the present century to ofticers who had distinguished themselves in war. Viscount Beresford, in consequence of his gallantry at the butle of Albuera, obtained as crest, issuing out of a moral erown, a dragon's head with its neck piereed through by a broken spear, the head of the spear, point downwards, being lield in the mouth of the dragon.

MURDER. - The crime of killing a luman being of maliee aforethought, aud is punishable with death. lt is immaterial what means are employed 10 effeet the object. Blackstone says that the name of murder, as a crime, was anciently applied only to the secret killing of another, which the word moerde signitios in the Tentonic larguage. And amones the ancient Goths in Sweden and Denmark the whole vill or neighborhood was punished for the erime, if the murderer was not discovered. Murder is detined. by Coke thus: "When a person of sonnd memory and discretion unlawfully killeth any reasonable creature in being, and under the King's peace, with malice aforethought, either express or implied." Almost every word in this definition has been the subject of discussion in the numerons cases that have occurred in the law courts. The murderer must be
of gromel memory or diseretion; i. (... lare mant lae at least 14 yorars of atero, amblut at lunatio er biliot. TYos act monst toe done malawfolly, i. é., it most not bre in melf-tlefanse, or from othor justibshlts cause. The person killed monat let at reasomable: croathre, amel honce killing a child in the wombls is mot monder.
 thing in morder is that it be done matiocously and deliberatrly, and hemes in catses of hot blowi and s-ulling, the oflense is fencrably manslanghtor only. killinerloy duclling is thas mureler, for it is deliberatte. It is not neressary, in order to eomstitute murdar, that the murderer kill the man le: intended, providled lec lat is deliberate design to morder some one. Thus if one shoots at $A$, and misses him, but kills b, this is murder, because of the previons felone jons intent which the law transfers from one to the other. So if one lays poison for $A$, and $B$, against whom the puisoner hatl no felonious intent, lakes it, und is killed, this is murder. The only sentenee on murderers is now death. Which is carried ont by hanging. Formerly the murderer was directedafter death to be hung on a gibbet in chains near the pare of the crime. Formerly, also, dissection was ndded as part of the sentenec, and the execution was to take phace on the day next but one after sentence. lut now an intorval of fortnight usually takes Hace and the body is buried in the precincts of the prison. Attempts 20 murder were until recently punishable in longland like capital felony; but now all attempts to murder are punishable only with penal servitude for life, or for it term not less than three years.

MURDERER.- $A$ great picce of artillery. 1 Imnng the ordnance given up to Jonk with Edintourgh Cas the in 1650 is mentioned "The great iron morderer, Muckir Meq."

MURDRESSES. - In ancient fortification, a sort of battlement with interstices raised on the tops of towers in ordar to fire through.
MURSAIL. - That portion of the belmet made so as to lower or turn down in order to protect the fuce. So called from the resemblance it bore to the muzale of an animal. It is the same as Meaail and lentail.

MUSCHITE.-A local designation applied to the early hand-enlverins, and which gave its form to the word monisquet or mnsket.

MUSCULE.-In ancient times, a machine of war ; thow, long, and sharp-roofed shed, which enabled the besiegers to advance to and sup the wall of the besieged. Sce Testudo.

MUSICLANS.-The men enlisted and detailed to farnish music fortroops. Regiments are supplied with ficld music on the requsitions of the Commanders, made, from time to time, direct on the Adjutant Gencral; and, when requested by Regimental Commanders, the Adjutant General will endeavor to have suitable men sclected from the recruits, or eulisted, for the regimental bands. See Band, Drummer, Fifir, and Trumpeter.

MUSKET-MUSQUET.-The fire-arm for infantry soldiers, which succeeded the elumsy arcuebuse, and in 1851 gave way before the Enfield rifle, which, in its turn, was converted into Snider's pateat breech. loading rifle, now known as the Snider-Enfield; the latter arm, so far as the regular infantry is concerned, has been replaced by the Martini-Henry breech-loader, but the Eoglish inavy, cavalry, and the anxilliary forces still retain the Snider. The first muskets were mateh-locks: after which came wheel-locks asnaphans or samp-hance and flint muskets; and lastly, percussion muskets, which were a vast improvement, both for accuracy and lightness, on all which had gone before. Compared, however, to either the Enfiek or Dlartini Ileury rifle, the musket familiarly known as Brown Bess. was a heavy, ugly, and ineffective weapon. The following is a table of the ranges attained, on an arerage, by the musket, the Entield, and the Martimi-Henry :


MUSKET BASKETS. - Small baskets about a foot or a foot and a bolf high, 8 or 10 inches diameter at bottom, and a foot at the top, so that being filled with earth there is room to lay a musket between them at the botton. They are set on Jow breastworks, or parapets, or on sich as are beaten down. MUSKETEER.-A soldier armed with a musket. See Monsquetrires.

MUSKETOON.-An obsolete weapon. a short musket with a very wide bore, carrying a ball of 5 oz ., and sometimes bell-mouthed like a blunderbuss. The arm was mostly used toward the close of the serenteenth century. Also writtun Wusquetoon.

MUSKETRY INSTRDCTION.-The knowledge imparted to the officers and soldiers of a regiment, to perfect them in the theory and practice of smailarms. The following is the course pursned in al? Line Regiments. Every year, in the infantry and cavalry, each company and troop in a regiment is struck off duty in turn, to go throngh the annual course of musketry, under the Regimental Instructor. This is divided into preliminary drill and practice. The former lasts four days, and consists of position (standing and kneeling), aiming, the judging distance drill, and the teaching of theory; the latter is divided into three periods, and consists in firing a number of rounds at different distances, from 150 to 800 yards-standing, kneeling, or in any position. Volley and independent firing, skirmishing, etc. form part of the course, during which each man fires 90 rounds. The result of each man's firing is consigned to carefully drawn up tables, and classified by regiments according to the figure of merit. These tables are published yearly in a blue-book. See Schonls of Musketry.

MUSKETRY INSTRUCTOR -In England, an officer attached to each regiment of the regular and auxiliary forces, to carry out the instruction and practice of the musket. He is one of the IPermanent Staff of a regiment.

MUSTER.- 1 review of troops under arms and fullly equipped, in order to take an account of their numbers, inspect their arms and accoutrements, and examine their condition.

In the British army, muster is a calling over of the names of all the men composing a regiment. Each man present answers to lis nanie, those not answering being returned as absent. The musterroll from which the names are called is the Paymaster's voucher for the pay he issues, and must be signed by the Commanding Officer, the Adjutant, and himsclf. The crime of signing a false muster-roll, or of personating another individual at a muster, is ineld most severely punishable-by imprisonment and flogging for a common soldier. by immediate cashiering in the ease of an officer. In regiments of the Line a muster is taken on the 24th of cach month. The master after a battle is a melancholy proceeding, intended to slow the rasualties death has wrought. In early times, before the army was a standing force, and when each Captain was a sort of contractor to the C'rown for so many inen, the mus. ter was most important as the only seeurity the Sovereign had that le really obtaned the services of the number of menfor whom let paid. Aceordinely, any fraud, as making a false return, or as mustering with his troop men not actually serving in it was by the Articles of War of Jlenry V. mate punishable with death for the second offense, and hy Charless 1. with death " without murcy" for even the first such crime; while any person abetting in any way in the fraud shared the penalty.

In the Unitud States, troops are musternd for pay on the last day of lehrairy, April, Jume, Augus:, October, and December. The musters are made
by at Inspector Gencral, if present, otherwise by an nfticer specially designated by the Commander of the Army, Division, or Department : and in absence of either an Inspertor Gencral or otheer specially designated, the muster is made by the Commander of the Post. Nll stated musters of the troops, when practicable, are preceded by a minute and carcful Imapetion in the preseribed mode; and if the command be of more than a company, by a Revien, before inspection. The Mustering Officer having inspected the companies in succession, beginning at the head of the column, returns to the first company to muster it ; each Captain, as the Mnstering Ofherer approaches, brings his company to rear open order, supports arms, and commands: Attention to muster. The Instering Officer then calls over the names on the roll; each man, as his name is called, distinctly answers Mere! and brings his piece to a carry and then to an orter arms. The Adjutant, at muster, provides himself with the muster-roll of the Field and Staff; and each Captain with a rol] of his company, and a list of absentees alphabetically arranged. After muster, the presence of the men reported in the hospital and on guard is verified by the Mustering Ufficer, who is accompanied by the Company Commanders.

MUSTER-BOOK.-A book in which military forces are registered.
MUSTER-MASTER. -The Mustering or Inspecting officer who takes an account of troops, and of their arms and other military apparatus. This title is not known in the United States Army. See Muxtir.

MUSTER-ROLL. - A return or list of all troops and establishments, actually present on parade or otherwise accounted for, which is taken on the day of muster. The presence at muster of all concerned is peremptorily necessary, otherwise an officer or soldier subjects himself to forfeiture of pay, unless leave by competent authority has been obtained Sometimes written Muster-file. See Pay-roll.

MUTILATED. Wounded in such a manner as to lose the use of a limb. A battalion is said to be mutilated when its divisions, etc., stand unequal.

MUTINY.-Behavior either by word or deed subversive of discipline, or tending to undermine superior authority. Till recently mutiny comprised speaking disrespectfully of the Sovereign, Royal Family, or General Commanding, quarrelling, and resisting arrest while guarrelling; but these offenses have now been reduced to the lesser crime of "Mutinous Conduct." The acts now constituting mutiny proper are exciting, causing, or joining in any mutiny or sedition; or when present thereat, failing to use the utmost effort to suppress it; when, knowing of a mntiny or intcuded mutiny, failing to give notice of it to the Commanding Ofticer; striking a Superior Ofticer; or in using or offering any violence against him while in the execution of his duty: disobeying the lawful command of a Superior Officer. The punishment awarded by the Mntiny Act to these crimes is, if the culprit be an otheer. eleath or such other punishment as a General CourtMartial shall awarel: if a soldier, death, penal servitufle for not less than four years, or such other pmoishment as a General Court-Jartial shall award. Is the crime of mutiny has a tendeney to immediately destroy all authority ant all colnesion in the naval or military boty, Commanding ()thicers lave strong powers to stop it summarily. A I)rmm-head Conrt-Martial may scutence an offender, and if the (ase be urgent, and the spread of the mutiny apporehenelet, the immerdiate execution of the mutinere may follow within a few minutes of the detection of his crime. It, however, behooves Commanding Ohlicers to exercise this extramolinary power with groat caution, as the use of so almentute an authority is narrowly and jealously wateleed. To prevent matiny among men the onlecers shomla be strict without harshmess. kind without familiarity, attentive to all the just rights of their subordinates, and
above all things most particnlar io the arrying out. to the very letter of any promise they may have made.
MUTINY ACT;-AnAct of the British Parliament passed from year to year, inverting the ('rown wilh powers to regulate the gevernment of the: Army and to frame Articles of Wat. 'The: Navy stands undor Navy Diseppline Acta, INGil and 18 fith, the sureressors of Srticles of War tirst wanted umber (Charles Il., which, unlike the Matiny Aet, remained in fore for an indetuite time. By the laill of lights, the mantenance of a Standing Army in time of pace, unkes. by consent of Parliament, was dedared illegal, and from that time the number of trongs to be maintained, and the censt of the diflerent branches of the survice, have been reculated by an ammal vote of the Blouse of Commons. But Jarliament possosises a further control over the Army. Soldiers, in time of war or rebellion, being subject to martial law, may be punished for mutiny or desertion; but the occurrence of a mutiny in certain sonteh regiments soon after the Revolution, raised the guestion whether military discipline could be maintatined in time of peace; and the rourts of law derided that, in the ab). sonce of any statute to rnforce diseipline, a soldier was only amenable to the common law; if he deserted, he was only liable for breach of contract ; or if he struck his oflicer, to an indictment for asmult. The authority of the Lugislature became indispensable to the mantemane of discipline; and larliament, from 1689 till 1879, at the bergming of every session, conferred this and otber powers in the Mhtiny Aet, limited in its duration at one time to six months, but latterly to a year. Although it was greatly changed from the form in which it first passed, 130 years ago, the amual alterations were slight, and substantially it had a fised form. The preamble quoting the above declaration from the libll of Rights, added that it was judged necessary that a furce of such a number should be continued, while it gave authority to the sovereign to conact Articles of War for the government of the forese. The Aet had 107 chases, the first five specified the persons liable to its provisions-namely, all calisted soldiers or commissioned oflicers on fill pay, those of the Milita or leomanry employed on active service, and (1) recruits for the Nilitia umder training. Clauses ( $\mathrm{f}-\mathrm{I} 4$ treated of Courts-hartial; clanses 15 -28 related to crimes and their pmishment; for mutiny, desertion, cowardice, treasun, insubordination, death might be the peralty; for fratads, embezalement, ete. penal servitude was awarded. (lauses 20-33 provided for military prisons, the reception of soldiers in civil jails under the sentences of Courts-Martial. Clauses 34-37 enacted rules for deserters. Clause 38 referred to furlough; 39-41 enacted that no persom actuitted or convicted by a Civil Magistrate or Jury be tried by Court-Martial for the same offerase. and similar matters. Clauses 42-53 reforred to En listment: 60-74 to stoppages, billets, carriages, and ferries, and the converance and entertaimment of troops. The remaining 24 clansess atverted to miscellaneous matters. By clanses 105 and 106 , the Militia, Yeomanry aud Volunteers might on emergency be attached to the regular forces. For years prior to 1878 , attention had lecendrawn in Parliament and Chewhere to the shorteomings of the Act, as well as to its cumbrousness, and the Articles of War by which it was accompanied, explained and amplified. These representations culninated in the appointment of a Parliamentary Committee, which, in 18:9, presemed a Bill to supersede the Matiny Aet, and, like it, to be passed ammally as the "Srmy Discipline and Regulation Act." The Marine Mutiny Aet, applying to the Marine Forces when serving on shore, was almost identical in its provisions with the Mretiny Act. Passed ammatly up to 1878 , it was in 18:9 nerged with the Mutiny Act in the " Army Diseipline and Regulation Act."

MUZZLE-LOADER.-The name green to all gims.
smooth-bore ur rifled. which are leaded at the mouth or mazalい, to distinguisla them from those losiderl at the broeth. All the newly-matce ordmance n-ad in the service are rilled, amellandel at the mazale,

 rlc-louding was brought about, chicily, from tho instability of the syatem in hoary tuma, at want of it reliathle brow hedencor, and the want alow of a mito able pererassion-fyse. Morenter, the natiare of the pewelar used when heavy breceli-fonders were in the servier was surchas to rionder the breoch apparathes unsafr. A mozale-loading gum has a simpter, leas

 arrangement, (an br used.

MUZZLE.PIVOTING CARRIAGE.- Tlo vertical licll of tire of gums moumed in casemates is sommel) restrieted liy the cmbrasure that the want has lomer been foll of a carriage which will allow the gan to be used at high angles of clevation, and also at a depression, withont a great (endargenaront of tha (min) brasure. With the view of solving this problem, is now carriage for casomates has been constructed] recently, by which the gan ran le tired through an embrasure of the usual dimensions at 150 revation and in depression. The prineiple adopted in its construction is to vary the horight of the tramionbeds instead of always preserving them in the same fixed positions as in the ordinary carriages. Tos effect this, cach cheek of the carriage is cut with at wide vertical slot, in which plays ap and down a rectingular block of iron bored with a hole to receive the trumion of the gun. Cumber this block is phaced a strong screw to support the weight of the gmm. By means of a hydraulic jack placed monder cach trumion-hlock the gun is raised or lowered to any desired height, and the motion is immediately followed up by the two screws, to which the weight of the gun is at once trans. ferred. Two minutes are required to raise the gur from the lowest to the highest position. In orider to obtain the greatest elevation, it is of conrse necessary to lower the armmion-blocks to the bottom of the slot, and for tha greatest depression to raise them to their highest position. See sea-comst and

## Garrison C'urriages.

MUZZLE RING. -The metallic ring or circle that surrounds the mouth of a camon or other piece of ordnance.

MUZZLE SIGHT.- A frout sight placed on or mear the muzzie of a fire-arm.

MUZZLE VELOCITY.- A term more properly amployed for the initiol velocity, or the velocity at the muzzle of the piece.

MYOPIA. - An anomaly in the refraction of the ${ }^{*}$ eye which, by law, disyualifies a recruit for enlistment in the army. This defect depends upon the

refractive condition of the eve: it is that condition in which the rays from distant objects come to a focus in fromt of the retina, and consequantly the latter receives but the blarred and indistinet image of cexternal objects. A clance at the drawing will explain this. Myopia is usually due to an ahomormal lengtheniug of the eveball, thus cansing the retina to recede from the point where the rays come to an accurate focus. It is a discase which of enexists from birth, aud is frequmty hereditary; but, although frequently this coudition in preand from birth, and
manifests itself in later life, no doubt, many case's are developed by excessive use of the eres at fine " near work," such as reading or sewing, before the coats of the eye have become fully developed and hardened. Statistics show that the pereentage of Myopia increases in proportion to intellectual development, and, that while it may be quite small in the lowest grades of Sehools, it steadily gains in mumbers as the course of study beconses higher, until, in the Colleges and Universities it reaches a very large percentage.
Among the prolific causes of the development of this disease, is the habit of reading with the head bent forward and over the book, thus preventing the free cireulation of the blood. and calusing a congerstion of the eves, which tends still further to stretch the coats of the perhaps already weakened organ. The habit of reading with insufficient ilhmination, or in a reclining posture, is also most injurions. The popular belief that near-sighted eyes are strong ones is not only absolutely incorrect, but also nost mis. chievous, since there is no state of the eye which more urgently demands the use of a proper glass, than does Myopia. Such eyes instead of being strong, are not only absolutely weak, but they are
sick eyes, and, if the defect be of a high degree, liable to the most serious accildents, which may result in loss of sight. The damger lies not in the imperfect vision. loyt in the interocular changes which ac company the defect in its higher grades, and which often are progressive.
The treatment of near-sightedness is the use of the proper concate glasses. By this, there is an endeavor to attain two objects. The rays are brought to a focus on the retina, and thus distinct vision is insured: and, hy wearing the proper glasses, the disease may usually be arrested. In cases where the defert is slight, the correcting-glasses can be given by a good optician, care heing taken to select the meakest concave lens with which vision is normal : where, however, the defect is high, the advice of an seulist should be sought. Messrs. Wahnsley d Co. makera specialty of glasses for myopic eyes, and supply most hospitals with same. See Recruits.

MYRIARCH.-A Captain or Commander of 10,000 men.

MYRMIDONS. - Those soldiers who accompanied Achilles in the expedition against Troy. Rough, desperate characters handed under a leader, are frequently called Myrmidons.

NABOB.-A corruption of the word narrib (lleputy), was the title belonging to the administrators, under the Mogul Empire, of the separate Provinces into which the district of a Subalder was divided. The title was continued under the British rule.but it gradually eame to be applied generally to natives who were nen of wealthand consideration. In Europe, and especially in Britain, it is applied derisively to those who, having made great fortunes in the Indies. return to their native country, where they live in oriental splendor. Also written $\mathrm{T}^{2} a^{2} a b$.
nagarkana.-In the East Indies, the place where all the drums and war-music are kept.
NAGGUR.-The principal drum in Asiatic armies, commonly allowed only to persons of high dignity: the bass drum.


Naiant.

NAIANT-NATANT. - A heraldic term applied to a fish when borne Inrizontally across the shield in at swimming position.

NAIGUE. - A native subaltern of ficer among Indian and Anglo-Asiatic troons, whose functions are rather somewhat analogous to those performed among European troops by the Drill-sergeant. Also writton Waick: and Waik.

NAIL BALL.-A round projecti'e with an iron pin protruling from it, to prevent its turning in the bore of the piece.

NAILS. - Pointed pieces of metal, generally having flattencd or rounded heads, used for driving into wond-work, for the purpose of holding the pieces togedher. A variety, in which the head is very larse. and the spike portion small, used hy shomemers for protecting the soles of boots and shoes from wear, is, called the hub-nail; another, which is made ly cutting thin phate-iron into thin pointed pieces of varions Jengiths, is called brats; thesesometimesare without heads, hat are usually male witha slight projection hy way of a head. Whem made small, with hat heads, for attaching cloth or hangings in upholstery work, they are called teck:s; and when very large for heavy carpentry, spitics. Vormerly, all nails were
hand-made, by forging on an anvil; and in Britain and the north of Europe vast quantities are still made in this manner, being preferable, for many kinds of earpenters' work, to those made by machinery. In France, the greater part of the nails used for light carpentry-work are made of soft iron wire, pointed with the hammer; and in order to head them they are pinched in a toothed-vise; which leaves the portion for the head projecting, and makes below it three or four grooves in the nail, which increase its hohl on the wood when driven bome. The head is beaten into a counter-sinking on the vise, which regulates the size. The iron used for hand nail-making in Britain is sold in bundles, and is called nail-rods; it is either prepared by rolling the malleable iron into r ds or small bars of the required thicknesswhich process is only employel for very fine quali-ties-- or liy cutting plate-iron into strips by means of rolling-shears; these sliears consist of two powerfinl revolving shafta, upou which are nixed dises of hard steel with nquared edges. The dises of one shaft alternate with those of the other; they are of the thickness of the plate to be cut. and the shafts are so placed that a small portion of one set of the discs are inserted between those of the other set. When the shaftsore revolving a plate of iron is prossed between the dises, and it is forcibly drawn throngh, the steel discs cutting the phates into strips with great rapidity. The quantity produced in this way is enormous, some mills thrning out at the rate of ten miles per hour of nail-rods. Several inventions in which America took the lead, have been introbuced, and are suecessfully worked, for making nails direet from plate-iron, cither by cutting them out cold or hot; and a very large proportion of the nails in use are made in this way. Nailmaking by machinery was originated in Massachusetts in 1810.

NAIRS.-A mative military tribe of the Mababar Coast. They athirm that they are the oldest nobilily in the worlet. Their prite on this supposition is greater tham that of the Rajpoots. In 17505, the King of Travancore, with the assistance of a French officer called Lannoy, discjplined 10,000 Nairs in the method of European Infantry.


Noissant,

NAISSANT, - A turm appled in heralaric bla\%on to an amimal depictord as coming forth out of the midelle - not like iasurant ene jo sartut out of the foumdary line-of an ordinary.
NAKED BULLET, A groover or canmelured bullal us fintimgnishord from the patromed fullot. Sew liullet.

NANA.-In hat East lmblos, tha tinle whirh is eriven to at Chinf of thr Muhrattas. It more properly signilices tho acting heat of the fovermanent, and (iomeral of the forces.

NAPOLEON OUN. in 1850 it wate proposed to increase the powar of the light and diminish the woight of the beavy tield artillery, by the introlaction of a single piece of medinm weirht and anliber. The form of the new piece is shown in the lrawing. If has and chamber and should therofore be chassed as a gran. lts exterior is charactarized by the entire absence of molding and ormament; and in this respect it may be at once distinguished from the old tield cannom. The tirst reinforce is eylindrical ; and it has no secomd reinforee, as the exterior lapers uniformly with the clase from the extremity of the first reinforce. The size of the trumions and the distance between the rimbases are the same as in tha 24-plr. howit\%er, in order that both picces may be transported on the same kind of carriage. The diameter of the bure is that of a 12-pir. The length of hore is just $13_{1}^{3}$ calibers. The reight is onc hundred times the projectile, or 1,200 lhs. The charge of porder is exact by the same as that for the heavy 12 -pdrs. (pattern of 1810 ), or $2 \frac{1}{2} \mathrm{lbs}$. for solid and case sliot.and 21 bs .

prone of fact, the ditforent races in finefore aro so comminglad, that any reconstruction of thr prolitionl

 traths of Furoje has berern mixal within thr hastorical periosl. "ilar tost of language on which Nition-

 The people on the frontior low weon twor racos, as in the sontla 'ly yol, erenorally sprak two langusare. Then wo lave dialectes, like the: Wallos, the (irijelnerisels of the Tyrol, and the Romanselh of the (iri-

 indopendont cosmmanitios. "The well-hring of the
 mont. and it has practionlly arot low-a always fommo That HState is bettor goviorned whon it consists of one race only, than when it inclubles an agereerate of races. llighly diversition Natimalitios may be united in one politienl system, provided only that the Govermacnt respects and consults the jucemenarities of the several ruces and does not attornot to force the usages, halnits, or language of one oat the rest.
NATIONAL ANTHEM. - A srlertion of vinsic set to words, and common to all nations. In lingland the national anthem is "God save the Queern," whichl is played when troobs payy the proseribed lownors to the Sovereign and nuembers of the lioyal family: in the latter case only six bars of the anthem are jnlayed. The first part of the national anthem may also be played at the salute of $n$ Vieeroy, at state ceremonials, and at the trooping of colors. The playing of the mational anthem is only due to those personages who are entitled, under the regulations, 10 a royal salute.

NATIONAL ARMORY.- A mational establishment for the manufacture of smadlarms, etc. The manufacture of linited States small-arms and small-arm ammunition for the present armies and mil-
for canister shot. Ithas, therefore, as great range and accurary as the heaviest gun of the old system; und, ut the same time, the recoil and strain on the carriage are not so severe. The new gun and carriage weigh about 500 llss. more than the $6 p d r$. and carriage; still it hasbeen found to possess sufficient mobility for the general purposes of lightartillery. The effect of this change is to simplify the materiel of field artillery, and 10 increase its ability to cope with the riffe-musket, principally by the nise of larger and more spherical case-shot. The principal objection to an increased caliber for light field-guns is the increased weight of the ammunition, and the reduction of the number of rounds that can be carried in the amminition chests. See F'ield irtillerg.

NASAL.-A kind of peak or visor, on ancient helms for the protection of the nose.
NASIR-JUNG.--An Indian term expressing victorious or triumphant in war.

NATION.- I word used in two distinet senses. 1. A State or Independent Society united by common lolitical Institutions. 2. An agoregrate mass of persous connected by ties of hlood and linenge. and sometimes of langunge. The modern dogina of wationalism, as maintained ber a class of continental Politicians, starts from an assmmption that a nation in the latter sense ought neceswarily to be also a Nation in the former, and endeavors to assign limits to the several races of Europe, with the view of erecting each into a distinet State, separatod from other States or Nationalities. The extrema Politicians of the Nationat School seem to comsider the supposed rights of Nationalities as paramommt even to the obligations of treaties, and the politienl conjunction of one Nationality with another is lookerl on by them as an adequate ground for a revolt or scparation, apart altogether from the questom whether the Nationality is well or ill governed. In
itia, and for the reserve supply, is one of the groatest importance, and the Springfied Armory is a model one of the world in the perfection of its fabrications, the extent and completeness of its arrangrements and the facilties for the production of this class of warike stores.
NATIONAL ARMORY CIRCDLAR CUTTER.--A morlification of the Adams cutter, from which it differs only in the details of its form and dimensions. The diameter of the circle which forms the cutting-adre is $3^{\prime \prime}$; the angle formed by the rlements of the two right cones whose intersection forms that edge is $60^{\circ}$ instead of $61^{\circ} 20$. The altitudes of these cones are the same, and are equal to $0^{\prime \prime} .866$. The Hickness of the disk is $0^{\prime \prime} .25$ The angle of $60^{\circ}$ was adopted for the edge as being an ungle which conld be accurately formed in a turning-duthe withont difliculty, as almost every machinist possesses au equilatcral triangular gauie by which he can verify at any instant the angle included betworen the Jege of the striding-grage that he us, to guide bian in turming the bevels. The diameter and thickness of the diskplato were chosen with reference to retaming lhe angle of $60^{2}$ and with reference to ease of exact measurement hy practical mechanic's. by assimming these dimenrions the strength of the elitter is not impaired; it is remdernd a little more sonsitive to small ditheremes of presente than the duansenttor: and its dimensions, both limear and angular, are easily preserved in fabrication by any one of ordinary mechanical skill. Tho limits of these lincar dimensions, whether exproseed in hmalredilis or thousandths of an ineb, can always be made to fall upon the larger and more common divisions of almost any linglish seate of inclose. The special atdvantage of the circular culting or indenting edege is that it an be roadily pressed into the indeutation. previously made in the conper block or disk while
in the piece, upon its removal to the dynamometer or testing-machine. In the case of the pyramidal conter, it is, and always will be, a matter of comsiderable difficulty to make the apex of the pyramid coincide with its former position, in alljusting it in a dynamometer for the purpose of getting the reatling of the estimator or the setting of the limit-gange, in order to govern the operator in inaking the simiJar secondary eut or cuts from or by means of which the pressares are determined. The more accurately the entter is inserted into the indentation made by the force of discharge, and the greater the precision of the adjustment of the linit-gauge, the more nearly will be the approximation to the true pressur* as determined by the dynamometer. With the circular cutter, no lifienlty is experieneed in adjusting its edge to the botton of the indentation in the eoppert. The steel disks for the Nitional Armory circular cutters wore mute in Septembur, 1876 . See Adams Cutter, Bentin Dyuumometer, Circulur Cutter, and Pressure Gチuqge.

NATIONAL CEMETERIES.-In the United States, these are the burial-places for soldiers, provided by the general government. The Quartermaster General of the army has charge of all the National Cemeteries, and the records pertaining thereto. There are, at present, (1884) 26 National Cemeteries of the First ('ases; 20 of the Seceund Cluess: 11 of the Theird Clasex, and some 33 of the Fuurth Clas. 3 The Superintendents of these classes are paid $\leqslant 75$. $\$ 70, \$ 6 \%$, and $\$ 00$ per month respectivety. Military Commanders exercise the same supervision over National Dilitary C'meteries within the Geographical limits of their commands as over other military posts or establishments under them, only excepting the Military C'emeteries in the District of Columbia and at Arlington and Alexandria, Virginia, which are attachet to the Quarternaster's Principal Depot of Wiashington. D. ('

A copy of the following law is kept posted at the entrance, and in several other conspicuous places. in each Cemetery:

Every person who willfully destroys, mutilates, defaces, injures, or removes any monmment, gravestone, or other structure, or who willfully destroys, cuts, breaks, injures, or removes any tree, shrub, or plant within the limits of any National Cemetery, shatl be deemed guilty of a misdemeanor pmislable hy a fine of not less than twenty-five dollars and not more than one lundred, or by imprisonment for not Jess than fifteen days and not more than sixty. The Superintendent in rharge of any National Cumetery is anthorized to arrest forthwith any person engagel in committing any mistlemeanor herein prohibited, and to bring sinch person before any United Statew rommissioner or judge of any district or circuit court of the United States witlin any State or district where any of the cemeteries are situated, for the purpose of holding sueli person to answer for such misdemeanor, and then atad there shall make the complaint in due form. See Battle gromud C"moteries. P'ost Centerteries, and Superintendent of National remeterics.
NATIONAL DEFENSE. The defense of a State or a Nation against invasion. The national defenses of a country consist, besides her armies and rescrves, of the navy; of the fortifications, forts, and fortressen built along the roasts, and on some important strategieal points, cither inland or on the frontier line ; of torpocdoes laid down for the protection of larbors. arsenals, fote. When these have beren fonand insuthciont, an ajpleal is made to all men able to carry arms to stand mp for the defense of the country, and to repulse the invasion. This is called a leriep on mossep. In Englind, in the event of at threatened invasion, the volunteres would be called out and mobilised with the different army eorpes to which they belonge.

NATIONAL GUARD.- A body of mititia composed

Commuttee of safety in 1789 , and mustering at one time 300,000 men under the command of Ladiayette. Napoleon dissolved them in 1795, and reorganizer them in 1814. They were again dissolved in 1837, by Charles X., were roorganized in 1830, eleserted Lonis Philippe in 1848, were reorganized in 1859, and took part in the Franco-Prussian war and the Insurrection of the Commune.--The samu term is applied to the Sitate Militia of Niew Fork and New Jersey.

In England the National Guard is an organization for lofal defense, differing from the Britisl militia and volnteres, in being at the disposal of the Municipalities, not of the Crown. Italy, Grecee, and other nations have maintained this civic force; but the country whence it derives historic fame is France. The French National Guard was instituted in Paris in 1789, when the Government had an army of 30,000 at the gates. The Hunicipality armed 48 ,000 men . and their example was followed by the clief towns of France. These corps obtained the nume of National Guard and assumed the fumous triculor as theirensign. In 1795, 30,000 of the Paris National Guardsattacked the Tuileries and were repulsed by Napoleon Bonaparte with 6,000 regular troops. In 1830 they were reorganized under the command of Lafayette, their original chicf; aud between 1848 and 1851 a haw was passed by which all males above 20 not otherwise amployed inder Government were included in the National Guard. Aiter the Coup d'Etut in December, 1851, they were reduced to the condition of an armed police. In the war of $1870-187$ ! they showed some signs of vitality in sympathy with the Commume, but effected nothing for France. After the fall of the Comnune they were disbanded. See Militia.
NATIONAL HYMNS.- Popular airs which are peculiar to and characteristic of a particular nation. It is a singrlar fact that the composers of national hymms are seldom known. The Germans call their aitional music volk's musik, a designation whicli is very appropriate, as a people collectively may not improperly be considered as the actual composer of its mational tunes. A short melody extemporized by some one in a moment of patriotic emotion, is often taken up by others and traditionally preserved. In the course of time it generally undergoes moditieations, until it has attained those conditions which insure it a general acceptance. This fully explains what W. Grimm means in his laconic saying, " 1 national song composes itself" (Ein Volkslied dichtet sich selbst), for the attempts of celebrated musicians to invest a tune with universal and permanent popularity have been successful in a few instances only. Among the most popnlar European national liymns, is God saze the King, but the authorship of the tune has not hitherto been satisfactorily ascertained. In Prussia it is catled Heil Ibir im Sieger Kranz. and in the United States the melody is sung with the words "My comntry'tis of ther," etc. Although there is no sutisfactory "vidence of its having been in existence before the reign of George Il., there are several tunes known of an earlier date in some degree resembling it. The Austrian national hymn, Gotte irhatie [Franz] den liniser. is a cominosition by doseph Maydn. llaving during lis visit to England witnessed the ellect of God sace the Fing, on public orensions. Ilaydu resolved after his return to Vienna, to present liis comotry with a similar composition. Barom Sivicten and Count Samrau procured the poetry for him, and the leynu was sung for the first time on the birthey of the Emperor Frank, Febl. 1!, 179\%. The poctry was written by L. Lappold Hasehka. The Russian hymm dates from the year 1N:30, when the Emperor Nicholas ordered it to bejere formed in concerts and representations on the slage. Its composer was Alexis lwoff, and the air appears to have heen shggested by the Sicilian Marineris Jlymm, which is also a favorite melody of the Goncholiers in Vinice. The poetry of the patriotic soner
of the Danes，Fong（Itristiun stod red pairn Jiont was writton by liwald，and the masie is by a firr man（emposer，Jolamn llartmann．＇Thu＇Frensla national hymn，the Jforseilluise，clates from the your 1792．It was composed by Romget da l＇lsla，dariner the frencla levolation．Plac mational lyann of tho
 popularity daring the brances（icrman war of $18 \% 0$ ． Hoses ist des Dentarthen Vetorland was writlon by Ernst Morit\％Armdt，a German patriobl，during the wars of Nupoleon 1．＇lhere have been many at l（mpts to manufacture mational songs in the I nited States．but the great mational hymm of America will probably be a spontaneoses production．The stare Spangled Bunner was wrillon hy k゙．S．K゙ry，in 1814 ，and the worts were alaptorl hy F ．Dnrang to an old Frencll air，long known in Vingland as dum－ creon in Mactern，and in Amorica as damas and Giberty．It arew in favor in the layal status duriner the Rehellion，and was played contimally by all military and orchestral bands．But as at patriotic song for the people at large it is almost usiless，ats the range of the air，an ortave and a half，platess it out of the eompass of ortinary voices．Partite Doodle has the elain of long assoriation，and will probably always retain a emtain degrec of favor．Its words are mere childish burlestua，and it is reported to have heen a popular tame in Englamd during the Comumonealus．Some state that its dogegerel words oririmated at that time，Oliver Cromwoll being designated as Nankee Doodle．Othors state that it was the tune originally set to the old Encrlish song， Iydia Locket lost hor Pocket，and that the present words were written by a British Sergeant in Boston in 17\％5．Jrail folumbia was writion by Juseph Ifoplinson in 1798，and was set to the musie：of the Presilene＇s Merch，which was composed by une Plylas or Fayles，a German leader of orehestra in New York．Columbia the Cofm of the Ocrm．and Harrison Milharl＇s I iad ${ }^{\text {S }}$－merica have also attaned considerable popularity．

NATIONAL RIFLE ASSOCIATION，－Illhough the introduction of the rithe as a military weapon was owing to the lessons of our Revolution，andalthough our success in the earlier contests of our history de－ pended upon the skill in itsuse displayed lyy our an－ cestors，no recognition，nutil lately，was sivin by our citizens of the fact that the change which has taken place in the habits of the American people was rapid－ ly depriving them of that personal skill in arms and marksmanslip，which hitherto formed one of the grenest elements of our national strength．Other nations have long since instituted a thorongh system in rifle practice．France．Germany，Switzerland， and，above all，England and Canada，unite in giving to rifle practice a leading position in their system of military training． 150,000 trained riflemen are a standing proof of the Wimbleton contests in Eng－ lame．So，on our Northern border．Cunada boasts her 40,000 skilled shots，and has her annual hoocal， Provincial．and Dominion matches，by whach their skill is maintained．In this country，on the other hand，the matter was entirely neglected，although our entire system of defense is based upon the levy－ ing of volunteers in cases of emergency，who，to be valuable，or even available，must nuderstand the use of arms，and supply by their skill as iudividuals the contidence which discipline gives to regular troops．

Whike England had a system of rifte practiee which was required to be annually and thoroughly perform－ ed by every soldier in the army，whether stationed in India，Anstralia，or Europe，our war Department for a long time sent rav recruits against the Indian sharp－shooters of the plains．In the Niational Guards a similar apathy prevailed；and it was the rule，not the exception，for a man to serve ont his full term of cnlistment in their ranks without firing a shot．

This anomalous condition of atfairs having excited on siderable discussion among military men through
the press，limally，on Novenuber s4，Ixal，leal to tho formation in tha：©ity of Now Jork wf thrs ．＇utional Rifter Asarriation，which was desigroed lo lore the parcont of many similnt Associalions throbsfanat tha comntry，and of monformpraction in the Army．＂this Association was incorporaterl muler tha：laws of tho state of New York，and incladect anomome ins incorpes－ rators many prominent ofllecers and＂x－oflacers of the Army and Nintonal guard．

The main aim of the Asseriation is the encourage
 amd the sucecess thas far attamed surpassa－s thw most sanguine anticijations．＇Iho present seope amol rons－ dition of the Assaciation will be berateranprehended by carrfully reviewing the legulation．
 nusa meetings for compertition will ber conulactorl by an Exacolite OHliorer，worang it triocolorad badge，

 Otlicer，wearing a mel badere，and assistants，wearing badres correspomting in rolor to those worn ley the （hirls of their respective l（＂）artmonts．こ．The Fox－ weutive Othecer shall have control of the ramer for the condnct of matrhos．and slaall appoint an dcljutant to assist hmm．3．＂I＇he＂Statistical OHfeer shall have charge of all statistics．4．＇the Fimancial（ollicer shall have charge of all tinatners connected with the：－ neetings．5．＂The Range（H）Heer shall have charge of all Firing l＇oint o ，athd of the shootiner thareat．IB． －Gelher Competitions．1．All other association compe－ titions will be conducted by an（aflicer or loirector of the Association，or other competent jerson previons－ ly designated ns the Excentive otherer．In the ahs sence of the ©flierer，Director，or other person jrevi－ onsly designated，the Assistant－secretary or siper－ intendent of Range shall act as the Executive Otlicer．

11．－General Ieqielations．－1．Dhrinit the pro－ gress of a match，no one，except，the Onficers，Di－ rectors and Employees of the Assoeiation，the com－ pelitors and the scorverepers，will be permitten within the ropes，withont specid permission of the Range Ofticer．2．The shands of competitors will be slationed not less than four yards in the rear of the firing points，where each conpetitor most remain until called by tha Scorekerper to lake his position at the tiring point，and until he has completed his score．The Scorekeepers will be seated close toand in rear of the firing point stakes．3．Scorekeepers shadl，as each shot is signaled，call in a loud voice the name of the competitor and the value of the slatet． and at the conelusion of the score of each competitor， announce in like manner his name and total score． Competitors must pay attention to the scores us an－ nounced and recorded，so that any rroor may be promptly investigrated．4．All competirors will be allowed to examine the records of the georekewper daring the progress of any match．5．All protests and objections mast be made to the Executive Utli－ cer，or，in his absence，to the Range Officer in charge．In case a competitor is dissatistied with the decison of the latter，he may appeal to the Executive Ofticer．6．Any competitor feeling himself agroriav ed by the ruling of an Executive（Hlicer，may make to the Secretary a statement of his grievance in writing，giving the names of two or more witnesecs in the ease，which shall be hamded to the Executive Committee at its first meeting thercafter for its cou－ sideration．Tha decoision of the Execulive Commit－ tee shall be final，sulyject，however，to the discretion of said Committee，or uny two members of it，to refer the matter to the Board of Dirtetorsfor its decision． 7．All practice upon the lange is subordinatie and must give way to matches of the dssociation． These regulations，and such special rules or direc－ tions as the Executive Othcer may give，must be rig－ idly complied with by competitors and all other per－ sons upon the Rance grounds．

IlI．－Rifles．－The rilles or carbines allowed to be used in the competitions are－1st．Dlilitary ritles；

2d. Any rifles: and must comply with the following conditions. viz.: 1. Militury Riftes, weigbt (without bayonet) not to exceed 9 pounds, 4 ounces. Stock sutticiently strong for military purposes, and such as to admit the use of as sling; minimum pull of trigger six pounds. Sights to be of bona fide military pattern, to be attached to the barrel; the front sight to be immoralle. Tbe rear sight may be used as at wind gauge, by the sliding bar or the leaf being moved laterally, pither by sliding, or by a screw, or by any sinailar device suitable for military purposes. Filing or altering the sights of such rifles or of the ritles ursed by the National Guard, or Regular forces (except as authorized by the military authorities thereof) is probibited. The sliding bar of the rear sight may lie inverted, and lines drawn to mark the center. Any pal or shoe attached to the butt is probibited. . Auy Ritle maxinum weigbt 10 pounds, minimum pull of trigger three pounds; sights of any description, except telescope, magnifying and such front aperture sights as solid disks or bushes pierced in the center, whicb cover the target so as to conceal the danger signal when displayed. No stirrup constructed of metal or other subsitance, connected to the rifle by straps of any kind, for the purpose of taking up or lessening its recoil, will be allowed. 3. Competitors shall submit their rifles and ammunition for inspection whenever required. 4. No hair or set trigger will be allowed. 5. No fixed or artificial rests will be allowed.
IV.-Ammuntion.-1. In competitions restricted to the use of breech-loaders, the gun shall be loaded at the breech with fixed ammnnition. 2. In all other competitions any ammunition may be used.
V.-Targets.-The targets are divided into three classes, and shall be of the following sizes:

1. Third Clase, to be used at all distances up to, and including 300 yards-Target $4 \times 6$ feet.

Bull's-eye circular, 8 inches in diameter.
$\begin{array}{llll}\text { Center } & \because & 26 & \text { " } \\ \text { Inner } & 46 & "\end{array}$
Outer, remainder of target.
2. Second Class, to be used at all distances over 300 , to, and including 600 yards-Target $6 \times 6$ feet. Bull's-eye, circular, $2 x$ inches in diameter. Center " 38 ." ". " Inner 54 "
Onter, remainder of target.
3. First Class, to be used at all distances over 600 yards-Target $6 \times 12$ fect.

Bull's-eye, circular, 36 inches indliameter,
Center
54
Inner, square, $6 \times 6$ feet.
Guter, remainder of the target.
VI. marhing, seoring and signaling.-

1. Bull'seye, counts 5 ; signal, white circular disk. Center, "4 4; ". reel
Inner, $\quad$. 3 : white and black .
Outer, .. 2; ." black
 twier right and left in front of the target. Ricorhe't hise will be marked out after the tiag signal. 2. When at shot strikes the angle iron "pon whel the parect stames, the marker will open the erap) and raise and lower his hag thre times in front of the tared. 3 . Any objecetion to the recerd of a shom as sigmathe or to one not signalled, must be mate before another shot is fires. Any competitor challenging the marking of : shot shall tirst dapusit with the Exerentive Oilieer, or his representative, the sum of $\mathbf{7 1 . 0 0}$. If his challenger is shatained the money shall be returnal. In eas the whatherge is mot sustamed the money shall be forfoted to the Aswociation. The chatlongre shatl he permitted fo insered the target in combpany with the proper oflicer. 4 Ang altoration of ascoring ticker mast be witmessed hy the ollieer in -harge of the liring peint, and fobtorsed with his initials.

Vit. Runnina Deer.- 1. Will berun mbly ly a
provided the sights are withont traverse adjustment. Position. standing ; distance, 100 yards, mnless otherwise prescribed. A fine of tencents will be imposed for firing when out of bounds, nottiring, or for litting the hamch.

> scoring and signalling.

Bulls -eye, white disk, counts 4,

Center,	red	.	.	3.
Onter	black	.		2

Haunel. white disk, with black eross, seoring M.
VIII.-Bull's-Eye Targets.-1. Bull'serye targets will be open all the time during the Amual Mcetings. 2. Tickets (entitling the hoder to one shot at any Rull's-rye target) will be sold at the office of the Financial Oflicer. upon the Range, at 10 cents each, or twelse for $\$ 1.00$. 3. Each competitor making a Bull's-eye will receive a Bull's-eye ticket. 4. At the close of the firing each evening, the pool receipts (less one-balf retained for expenses) will be divided fro rata among those making Bull'scyes, on presentation of their tickets. 5. No person will be allowed to fire more than three shots consecutively at any Bull's-eye target, provided others are waiting to fire.

1X.-Matches.-1. The commencement of the Annual Heetings will be signaled by the firing of two guns, 15 minules apart. The first will be the signal for competitors and scorekeepers to assemble at the firing points, and the second to commence firing. 2. The matches will take place, if possible, at the hour previously named. Any deviation from the programmes will be posted upon the Bulletin board as long before hand as practicable. The posting upon wuch bulletin board will be conxidered sufficient nutice to all competitor:s of everything so posted. It should be examined by all competitors daily, botb morning and afternoon, before the shooting commences. 3. In team matches, at Annual Meetings, an officer will be assigned to eacb of the firing posts as Supervisor, and he will, in connection with the Scorekeeper, keep a record of the firing ; and any disagreement between such officer and Scorekeeper, will be decided by the Execntive Officer, subject to appeal. as provided for in the Regulations. 4 Each Team may appoint a responsible person to act as Supervisor, whose duty it slall be to see that the rules of the N. R. A. are strictly adhered to by the team at whose target he may be assigned. 5. No practice will be allowed upon the range on any of the days of the Anmual Meetings, unless specially anthorized by the Executive Ofticer. This does not apply to days upon which special matches of the Association, or of attiliating associations or clubs take place.
X.-Entries.-A."Annual Mectings.-1. For all competitions open to military organizations, the teams slall (unless otberwise specified) consist of twelve from each Regiment, Battalion. Company, or Troop. 2. In all cases competitors for prizes offered to military organizations must be either ofticers ur regularly eulisted members in good standing of the Regiment. Battalion, Combany, or Troop which they represent, and shall have been such for at least threa months prior to the match for whicls they are entered. All entries must be made for full tiams. 3. Enfries must be made at the othice of tho Associalion, in Nuw lork C'ity, at lenst me erek preceding the commencement of the meetings, when the ciltry books will be elosed at the oflice of the Assemittion, amball subsequent entrics shall be called Post
 be imposed upon all such ? Post Entries. 4. Compeitors who are prewned from being prenent at any meting shath have the untrance fres they have paid returned after the metting, provided that they semel their tickets and give writen notieg to the Sucretary before the day on which the prize for which they have enterd has bern ammoned for compelition. 5. Competiturs prevented from com buting by ilhuess will rewive hack their monance fee
in full, on production of a modieas erretifente and their 'ntry' tickets. 6. 'The holders of pust emtry tickeds may los ordercd to fire whenever turget no romnomation can be provided, but whend they be prectuled from eomboting ly delicioncy of target accommodation, their entrancefees will be returned to thern, the Execulive OHicer not heing able to guar anteremerommodationforall subll antris. \% All rat tries are rocived upon the express comblition that the compretitor is toajplear at the diring point at the "xuet time named upon his soore card, and connplett his seore within the limitation of time prescribed, regardless of weather or any other monforearon catase. 8. The sime person shall not be a merabor of more than one tean in the same matcla. 9. ('ombetitors selected io shoot in team matehes, or who are Jetatiled toshoot off a tie ht a jurtioular hour, and who lind that such engagements will intcrfare with their shooting in other competitions, must at once commoniate with the Execntive onlicer. 'Jlesa cases will be provided for, when powsille. hy altering the hour : and when that emmot be clone, the entry will bo cinncedled and the entrance foe refunded. B..- (yeneral higulations.-1. A member of the Association entering for orshooting in a matela on the range must exhibit his budge. シ. A revister tioket may be transferred at any time before the tiring for the mateh has commencod, by exchanging it at the otlice of the Statistical Onlicer for one latving the name of the new hodeder. It is available only for the hour and target for which it was originally issumd. Any arasure or alteration not initinted by the Exerutive ollicer will render the ticket invilid. 3. Fo post entries shall be received for any competition after the firing in such competition has commenced, muless expressly permitted by the terms of a matels.
XI.-Shootino.-1. Competitors must be present at the firing points punetually at the time stated upon their tickets, or forfeit their right to shoot. 2. After a competitor has joined a squad bue shall not quit it until he has combleted his tiring, or retired. 3. No two competitors shall shoot in any match with the same rithe, nor shall a competitor elange his rifle during a eompetition, unless expressly permitted by the terms of a match, or unless his first rifte has become unserviceable through an accident, which must be verified by the officer in charge of his firing point. 4. In all eompetitions confined to members of military organations, comuetitors shall shont in the anthorized miform of their corps, including waist belts. $5 . \operatorname{In}$ each matcln of the An nual Mectings, except where otherwise stated, the squad or team assigned to each target will be required to commence firing at the time named on the score card, and to continue firing at the rate of one shot per minute until the completion of the seore. 6 The tinse for each squad to commence and! close will be signaled by firing a gun every thirty minutes, from 9 A. M. to 5.30 P . M., and no firing by any of its members will be permitted except between those signals. In case a competitor, without fault on his part, has been prevented from finishing his score within that time, he may apply to the Executive Oflicer for further assignment, the granting of which will be in the discretion of that ofticer. \%. Competitors retiring from matches forfeit all claims therein. 8. No sighting shots will be allowed in any match, but targets will be assigned as Bulb:-eye Targetsat which competitors may practice at any time, provided such practice does not in any mammer interfere with their presence at the designated time at the firing point to which they may have been previonsly assigned. 9. In all competitions restricted to military rifles the competitors shall place themsdres at the firing point by twos, and shall fire alternately until they have fircall their shots. 10. In other competitions the competitors shall fire their shots alternately throughout the squad. 11. Competitors may wipe or clean their ritles during any competition, except
those restriched to tha nse of military ritles. In connpolitions at mose than onse distance, restricted lumilitary riflas, clenning will bupermithal butwoen distancos. 12. Whentever tho danger Hag is elise phyad, competitors about to tire will be roplitired to opean the brewele block of their rifles (if Jreecoldlondars). If they have the tirimer frint they mant withelraw the rartridge. 13. Any comapetitar chataying his sumad will be phased by. In me (atse will the: tiring be delayed to enable a compurtitur to procure a rille. 14. Competilors mase slanot thair meooros at dilferent distances in the ordar maned in the comdjtions of the competition.
XII.-Ionstion.- I. In all matches (rxeropt those specially for carlsiness, the prosition up or and inchading 300 yards, shall be standing. J'ine left c.lbow may be rested acainst the body, proxistod the litac tingar of the left hand is in front of the trigger gharl. 2. In carbinc matehes, thw jowition at zon yards shall be stamling; at buO yards, knceling; over that distance, in any josition (as prescribed for infuntry). 3. Jn all other matelars, at dintancers above : 300 yards, any justion may be taken withont arliticial rest in tha rible or boly. 4. ()ne-armand competitors will breallowed (o) usce false arms, willaout "xtra support, in tha standiug and kneeding positions, and to nssume any pesition in the nse of military rifles, at distances abowe 200 yarch. 5. Shots at ball'seye targets, at all distancén beyond 300 yards may be fired in any position withomt artificial rest. 6. In all cases the rithe shall be hoidd clear of the ground.

XIII-Tiks.-1. Ties shall be decided as follows: A.-In Individual shomting. 1. Whan the tiringr takes place at nore than one distance, loy the total score mate at the bongest distance ; and if still a tio, and there be tharee distances in the competition by the total score at the sceond distance. \%. By the fewest misses in the entire score. 3. By the fewest outcrs in the entire score. 4. By the fewest inners in the entire score. 5. In handicap matches (after the preceding). by the fewest conters in the entire score. 6. If stilỉ a tie, by inverse order of shots, counting singly from the last to the tirst. F. In matches where two or more seores added together count, if still a tie, by adding together the last sloots of each single ecore, and if still a tie, hy alding together the next to the last and so on. B. By firing single shots at the longest range.
B.- In Team shonting. 1. By the aggregate total score made at the different distances in inverse order. 2. By the fewest misses in the entire score. 3. $33 y$ the fuwest onters in the entire seore. 4. Bythe fewest inners in the entire seore. 5. By the total of each round in inverse order. 6. By the competitor on cach side who has made the highesit score, firing five rounds at the longest distance. II. The names of competit ors who have to shoot off ties will be posted on the Bulletin-board as soon after cach match as practicable. WI. When the ties are shot off, one - ghting shot shall be allowed without charge IV. Competitors not presint at the firing points at the hour named for shooting oll ties, loose their right to shoot. V. lf, having forfeited their right to compete, they shall still be within the number of prize winners, they slall take any prize that may be allotted to thein by the Excentive Committec.
XIV.-prizes. 1. Prize winners,upon application to Statistical Olficer on the range, will receive eertificates, which must be given up on receiving the prizus. 2. Irizes will be delivered on the ranget at the close of the meeting, under the direction of the Prize Committee, unles otherwise specified. 3. All prizes and J3ulls-cye money not claimed within thirty days after the day on which same was won, shall be forferited to the Association.
XV.-Penalties. - Competitors must make themselves acquanted with the regulations. as well as with the conditions of any match for which they may have catered, as the plea of ignorance of either
of them will not be entertained. Disqualification Any competitor (a) who shall fire in a nane other than his own, or who shall fire twice for the same prize, unless permitted by the conditions of the competition to do so, or ( $b$ ) who shall be guilty of any conduct considered by the Board of Directors or the Exccutive Committee as discreditable; or (c) who shall be guilty of falsifying his score or being accessory thereto; or $(d)$ who shall offer a bribe of any kind to an employee-shall, upon the occurrence being proved to the satisfaction of the Board of Directors or the Execntive Committee, forfeit all his entrance fees, be forever disqualified from competing at any fime upon the range of the association, and shall not be eutitled to have any prize won by him at the time or meeting awarded to him.

Exclusion from all further Fomprtition. 1. Any competitor wbo shall be detected in an invasion of the conditions prescribed for the conduct of any match, shall be ruled out of such competition. 2. Any competitor, in any meeting or match, refusing to obey any instructions of the Executive Officer, or his assistants, or violating any of these regulations, or being guilty of unruly or disorderly conduct, or being intoxicated, will be immediately ruled out of all further competition, during such meeting or match, and forfeit his entrance fees; and may also be reported to the Board of Directors or the Executive Committee, aut be by them disqualified from the use of the lange. 3. Any competitor firing when the danger flag or trap disc is shown at the target or firing point, or knowingly discharging his rifle except at a target to which he has been assigned or into the blowing-off pits, or as may be directed by an Officer, shall be debarred from all further competitions daring the meeting, and shall forfeit his entrance fees. This shall not apply to a competitor accidentally firing at the wrong larget, when no danger disc is up. 4. Any person discharging a rifle or snapping a cap within the inclosure, except in accordance with the regulations for shooting may, at the discretion of the Executive Officer, be required to leave the ground. 5. Any competitor or other person found with a loaded rifle except at the firing points and when about to shoot, slall be debarred from further competition during the whole of that meeting or competition. 6. Any person, whether a competitor or not, interfering with any of the firing squads, or annoying them in any way will be at once expelled from the ground. \%. Any competitor discharging his rifle accidentally, either by his own want of care or by reason of any defect in the rifle, shatl be disqualified from further competition in the match. 8. Should a competitor lose his register ticket, omit to take it to the tiring point, fail to attend at the prescribed hour, or give a wrong ticket, and so by his own neglect miss the opportunity given to him of competing for the prize for which his ticket was issued, his claim in regard to snch competition shall he eancelled. 9. Any person tiring on a wrong target will be reported by the scorer to the Executive or Range Officers present and will be fined $\$ 1.00$ or be (10barred from further competition; or both, in the discretion of the Executive Officer. 10. Any person ruled out of any meeting or competition shall forfeit all entrance fees.

NATIONAL SALUTE.- 1 salute of one gun for each State in the Conom. This salute is fired at mon on the anniversary of the Independenee of the United States at cach military post or camp provided with artillery. See salutis.

NATIONAL TROOPS.- Troops raised under the :urthority of Congress, in controdistinction to the Milititu, which may be called state troops, being organioterl by the several States.

NATURAL ANGLE OF SIGHT.- The anglo which the rutural line of sight makes wilh the axis of the pice.
NATURAL FORTIFICATION. - A fortiticationconsist ing of those obstacles which nature affords to retard
the progress of an enemy ; such as woods, deep rav. ines, rocks, marshes, ete. The term is employed in contradistinction to Artificial Fertification, or that which is raised by human ingenuity to aid the natnral advantages of the ground, or supply its deficiencies. See Fortification.
NATURAL LINE OF SIGHT.-The right line passing through the highest point of the line of metal at the muzzle, and the lighest point of the same line in rear of the trunnions. See Limp of lfetal.

NATURAL POINT-BLANK. -The point-blank is the point at which the line of sight intersects the trajectory the second time; or, more practically speaking, it is that point which, being amned at, is struck by the projectile. The natural point-blank corresponds to the natural line of sight when this line is horizontal, and the distance of 1 bis point from the muzzle is called the point-blank range.

NATURAL STEEL.-A variety of steel which is oblained by reducing the rich and pure kinds of iron ore with charcoal, and refining the cast-iron, so as to bring it to a malleable state. It is made principally in Germany, and is used for making files and other tools. The lndia steel, called nootz, is said to be a natural steel. containing a small portion of other metals. See Shear Steel and Steel.

NAVAL CAMP. - In military antiquities, a fortification, consisting of a ditch and parapet on the land side, or a wall built in the form of a semi-circle, and extended from one point of the sea to the other. This was beautified with gates, and sometimes defended with towers, through which the defenders issued forth to attack their enemies. Towards the sea, or within it, they fixed great piles of wood, like those in their artificial harbors; before these, the vessels of burden were placed in such order, that they might serve instead of a wall, and give protection to those without; in this manner, Nicias is reported by Thucydides to have encamped himself. When their fortifications were thonght strong enough to defend them from the assaults of enemies, the ancients freqnently dragged their ships on shore. Around these ships the soldiers disposed their tents, as appears everywhere in Homer But this seems only to have been practiced in winter, when their enemy's fleet was laid up, and could not assault them; or in long sieges, and when they lay in no danger from their enemies by sea, as in the Trojan war, where the defenders of Troy never once attempted to enconnter the Grecians in a sea-fight.

NAVAL CROWN, - In IIeraldry, a rim of gold round which are placed alternately prows of galleys and square sails. The device is said to have originated witl the Roman Emperor Claudius, who, after the conquest of Britain instituted it as a reward for maritime services. He who first boarded the enemy's ship, and was the occasion of its being captured, was entitled to a naval crown. A naval crown supporting the crest in place of a wreath occurs in various grants of arms in the early part of the present confury, to the naval heroes of the late war. The crest of the Earl of St. Vincent, bestowed on him after his victory over the Splamish fleet in Naval Crown his victory over the Spanish feret in
1797 , is issuiner out of a naval crown or, "nwrapped by a wreath of laurel vert, a demi-perasus argent maned and hoofed of the first and winged azure, charged in the wing with a tleur-de-lis or.

NAVAL HOWITZER.- 1 bronze shell-gimn, adapted to tield and boat service. They are made of bronze on accommt of their compurative lightuess for the same strength, and from their being lass liable to burst than iron guns of the same caliber. They are both smooth-bore and ritted, and are alike in the principle of construction amp general appearance, and difier omly in weight and dimensions. Around the charge the netal is distributed in the form of a rylinder, extending sulliciently in front of the seat
of the projectile; thence: to the morale it is sontimacel as at trmented cone.

NAVE-The contral portion of it wheel; it is gen. erally romposed of a rylindrian hiork of woon in which the spokes are firmly tixerl, and in whirh the axkearm works. This has hitherto beent the mave of all artillery carriages in the British service, but in the newly constructed wrought-iron carriagos the Malras jattern nave, mate of motal, with somes slight moditichtion, has leern sulopted. In the Matlras where, as originally formed, the mov-hos is made of ginmotai, and cast in one piece with one of the plates, but the primeiple of comstraceion is the same whether it be so unital or cast separatrely. Mrtween the two plates, 12 spokes are plaror, so formed that the parts which enter the nave are in close routact with each othrer, and with theiremels forminir an arch completely roumel, but mot quite tonehing, the nave lox. The whole eonstruetion is then firmiy bolted ongether, with 12 triangular bolle passingr through holes in the diace, dum titting into the riangular spaces formed betworn cateh spokr by their radiation from each other. Theos bolts have circular lacads, and when driven into their plates, their ends are secured outside hy muts. The naves are in two or three parts. The great advantage in the latter is that the top and hottom, as two of its parts are termed, are almost remelered perpetait, whereas in the nave in two parts, if the hox wears and therefore becomes unserviecable, the box with bottom, altogether nearly three-fourtha of the nave , is rendered nseless, ant must be renewed; lut with the nave in three parts, the box ulone is rencwable if it wears away. In the late Malras artillory, the gun-metal nove had bern in use for the last sixty or seventy years, and no failure of its strength or whit of durability lad ever been reported. For many
in the nave, must he fixed with precial refrernece to these sible thrista. 'I'he strains in tho planes of tratction are lat mlight, on inceomat of the smatl inertia of the nave about itsaxis. See Archibuld Whorl.

NAVEBOXES. IS Xe's which we placerl in the navers; thry were formerly marle of brass, but exper rionce has shown that those of rast-iron rothece less friction, amblare much chapure 'lowre are two, one: int estols enol, to diminish the friction of the axletrue againat the nave.

NAVE-BRARE, I eontrivance for skidrling the weerels of gran carriages in order to increase the frictional resistancer, at tho time of reeotil. 'The I wo halves of the brake elasp, tho nave with more or less tiehtacss. The attachanent betwern the brake und the nave is only a frictional ont*, and as crertain amount of slipping round occors if there is at vary violent recoil.

NAVE HOOPS. - Filat iron rings used to bind the nave: there are geacrally three ons cach nate.

NAVEL.-A lug with a lonk through it on the umber side of a carronade, nsed to connect it with its carriage.

NAVEZ LEURS CHRONOSCOPE. - This is prolably the most sureressful of all the pendulum instraments, where the valuce of the thate is expressed in arc. It may be said to consist of two separate instruments, the perablum and the dixjuncter. The pendulum is an upright plate of volcanite will a graduated are, t, mounted on a stand, and supporting two pendulums, two electro-magnets, a pair of springs, and the pivot upon which the escrapement system works. One of the pendulums, $a$, is termed the chronometer penrlulum, and the other, b, the register pendulum; and the magnets are so adjusted, one behind weh pendalum, that when magnetized by a current of clectricity they will just sustain the bous of their


Gircuit from battery which magnetizes the chronometer electro-magnet. Circnit from the battery which mugnetizes the reqister electro-mannet.

reasons it was a great improvement on the block nave. Its ofurability was apparent after the occupattion of Bummah in 1852 , and subsequent years. In that country, for a long period after it was annexed to the British possessions, gum carriages, bungal and Madras, had for want of cover to stand ont exposed to sun and rain. During that period not a Mialras whecl was the worse for exposure, whereas the majority of the Bengal wheels had large leep slits in the wooden naves, which neeessitated their being replaced and the wheels set up afresh. Side thrists on the wheel tend to shear the material of the naw (if it be of wood), and to bend the flanges when of (if it be of wood), and to bend the thages when of which is between the springs, when the wedge-
metal. The amount of material and its disposition lever, e, is displaced by the face of the stirrup, $d$.

The rod of the register peninlum is provided with an arc earrying a stirrup, if, whieh in its descent when the pendulum is released, knocks away the wedgelever, $p$, from between the springs, and so closes them npon the disc, $r$, of the index-ncedle, thus clamping it. The disjumetor consists of a small stand, $B$, on whieh are two pieces of hrass, $f f$, eael provided with a pressure-serew, a brass spring, g. fastened by auother pressure-screw, and a cam, $h$, to work the spring: the brass pieces have platinum points, separated from each other by a very short interval, and the spring has also a platinum point below it, which, when pressed down by the action of the cam, connects the two other points: thus connecting, when requisite, the circuits througli the apparatis.

The electric currents are obtained by means of Bunsen's'voltaic batteries, there being two circuits for an ordinary experiment, one passing throughthe magnet of the chronometer pendulum on the first screw, the other througl the magnet of the ragister pendulum and the second scraw; as both pass through the disjunctor, the simultaneous disjunction of both eircuits can be effected by turning the cam, releasing the spring, and so discomeeting the platinum points. The apparatus is placed in a small house at a distance of about 130 yards from the $\underline{m}$, so that it may not be effected by the firing, and the arrangement of the gon and largets is as follows: The first target is placed at a distance of 10 yards in front of the mazzle of the piece, and the second target 40 yards beyoul the former; hoth targets are of the same ronstruction and dimensions; each consisting of al wooden frame having conpler wires stretched across in parallel rows by means of pins in the sides of the frame, and these wirss are broken by the passage of the projectile through them. In order to protect the wires of the first targut from the action of the gras, a wooden screen is placed abont 40 inches from this target, between it and the gin ; the sereen has a circular hole, abont $1 \frac{1}{2}$ calibers in diameter, through which the projectile passes. When the gim is fired, the projectile passes through the first target, breaks the first circuit, and demagnetizes the magnet of the clironometer pendulum; the bob begins to fall, carrying with it the index-nerdle. When the projectile cuts the wires of the second target, the circuit is broken, and the magnet of the register jendulum is demagnetized; the bob falls, carrying with it the are and stirrup, which in its desecnt knoeks away the wedge-lever and clamps the index-netdle. The time due to this are of vibration can, hy the theory of the pendulam, be realily ascertaineti, but it must be greater than the time taken by the projectile to pass from one target to the other; for a certain small interval of time elapses between the rupture of the second cirenit ant the clamping of the index-mede. This small portion of time is found by means of the disjunctor, before the gun is fired, ly breaking both eirenits at once, and the small are so found must be deducted from the are determined by firing the gin. See Chrono. scope.

NAVICULAR DISEASE.- A disease in the borse, consisting in strain of the strong tlexor tendon of the foot, at the point within the hollow of the fetlock, where it passes over the havienlar honas. It is most common amongst the ligiter sorts of horsts, ant especially where thry have uprirht pasterns, outturned toes, and carly sevore work on hard roads. It soon gives rise to a short, tripping yet rantions gait, unlur wear of the tor of the shoc, wasting of the maseles of the shomblter, and projecting or "pointine" of the alfectod limb whilst standing. When early notioded, and in lorses with well-formad legs, it is often emrable : 7ut when of several werks standing, it leads to so much intlammation aud destruetion of the temion and adjoining parts, that soundaces and fitness for fast work aro again impossible. Rest should at once be given, the shor re-
mover, the toe shortened, and the foot placed in a large, soft, hot poultier, changed every few honrs. Laxative medicine and bran mlshes should be ordered, and a soft bed made with old short litter. After a few days, and when the heat and tendurness abate. cold applications shoudd superserfe thu hot; and, after another week, a blister may be applead round the coronet, and the animal placed for two months in a good yard or in a grass field, if the ground be soft and moist ; or, if sufficiently stronis, at slow farm-work on soft land. Division of the nerve going to the foot removes sensation, and eonsequently lameness; and lienee is useful in relieving animals intended for breeding purposes or for slow work. The oneration, however, is not to be recommended where fast work is reduired; for the animal, insensible to pain, uses the limb as if nothing were amiss, and the disease rapidly becomes worse.

NEBULY.- One of the partition lines in Heraldry, whicl runs out and in, in a form supposed to represent the uneven ederes of clonds.

NECESSARIES.-The articles issued to the British soldier, such as boots, shirts, stockings; razor, cte. which are requisite for his comfort and cleanliness. These are technically termed regimental necexariex. Non-commissioned ofticers are not allowed to sell regimental necessaries to the soldiers. Every article is direeted ly the Regulations to be marked with the owner's name, the letter of his company, and the number of his regiment; and the sale or injury of them renders him liable to be tried by Conrt-Martial and punished.

NECK. - The elbow or part connecting the blade and socket of a bayonet. See Bayonet.

NECK COLLAR. - A piece of armor whichsupported the whole of the rest of the harness. This mast not be confounded with the gorget, underneath which it was placed, and which, like it, was formed of several plates.

NECK LINE.- In old term in fortification signifying the gorge.

NECK OF A CASCABEL. -The part joining the knobs to the base of the brecch. See Casrabel.

NECK OF A GUN.-The small part of the piece in front of the ehase.

NEEDFIRE.-Fire obtained by the friction of wood upon wood, or the friction of a rope on a stake of wood, (u) which a wille-spread superstition assigns peculiar virtues. With varieties of detiil, the practice of raising needfire in cases of calamity, particularly of flisease among cattle, has been found to exist among most nations of the Indo-European race. It has been supposed effectual to defeat the soreery to which the disease is assigued. When the incantation is taking place, all the fires in the neighborhood mast be extinguished and they have all to be relighted from the sacred spark. In various parts of the Scottisl hightands the raising of needfire was practiced not long ago, and it is perlaps still had recourse to in some very remote loealities. The sacrifice of a leifer was thought necessary to insure its efliciency. The ways of obtaining fire from wood have been various; one is hy an apparatus which has been ealled the
fire-churn," a cylinder turning on a pivot, and furnished with spokes, by means of which it is made to revolve very rapidly, and fire is generated by the friction. Fire struck from metal has been supposed not to possess the same virtue, and in some instances the persons who performed the ceremony were refuired to divest themselves of any metal which miglit be about them. In its origin the fire-cluru was considered a model of the apparatus by which the fires of heavon ware daily rekindled. It is still in daily use in the temples of the IIindus. The same sipserstition was doubtless the origin of the story of l'rometheus.

NEEDLE, - An instrument of metal, or other matwrial, for the purpose of earrying the thread in sewing, embroidery, knitting, nettins, and other similar operations. Needles are generally made of metal,
but hone ivory, and wood are also used; for ordinary needlework, ralled sewing, they mre made of the sterel, and are too well known to newd deseription; for other kinds of work they are ofton mascha larger and differently formed, areorting to the reguirements of the work tobe donce. The tregnetio neelle is a slender har, usually printed and resting on a pivot, in acompass, so as toturn frecly towarts the magnetic poles of the earth hy virthe of the mang. notic polarity with which it has been artulecially enduct.

NEEDLE GUNS.-To be Indided at the brech, and to be firet by the persetration of a needle inte, or the impinging of a piston on, a detonating cap within the eartridge, are distinet attributes in it weapen; and ahhough it is only within the hast difty years that the system has been carried out with suceess. brecel-hading arms have been tried, acerpted, and abmeloned without number during the las three conturies. Inderd, a surt of instinet diednes that loading the breech is the preferablo eourso ; and all the eariast muskets were so make, the system heing doubthess abamdoned from the dillieulty of aecurately closing the brewelh, in those days of rough workmanship. The extraordinary etheacy of breech. loating arms for military purposed was brought prominently forward during the wars of the last few years, and notably in tho Prussian campaigns of isfe against Demmark, and of $186 t 5$ against Ahstria. The suceesses of the Prossian arms were attributiol in monall degree to the rapidity with which their trous eould tire aseompared with the enemy. Tlacy hati, in greater or less numbers, berme these same ritles since 1835 , hot these were the first opportunitics of using them in warfare. To all he other powers, whose men still carried muzale-loading ritles and who had debated, withont practical resuit, for years past the gucstion of armament with brechloaders, soldiers thas armed appeared irresistible. From July, 1866, to the present moment, the hammor and the anvil have been busy night and day throurhout the civilized world in making the weapons of death yet more deadly. Scarmly two comtrises seem to have adopted the same phan ; eath nation has claborated a system from among its own inventors. Those possessing no great reserye of rifles have prepared new arms: but the majority of Govcraments have been content, in the first instance, to convert their existing stock into breceh-loaters of as good a construction as circumstances would permit. Thus, Britain, after offering a handsome prize for the best design, seleeted one said (suliject to some controversy) to be the invention of the late Mr. Snider. It is to be borne in mind that the British Government only regarded the Snider arm as a makeshift for the conversion of the enormous stock of Enfield ritles then in hand, reserving to itself the ultimate selection of a suitable pattern on whieh to manufacture new weapons. It is ont to be understood from what is said above that IBritain alopted a breech-loading arm in a sort of panic after the battle of Sadowa. It was after the Danish Canpaign, on the 11 h July, 1864, that it was decided as an abstract question to arm the British infantry with breech-loaders; a portion of the cavairy having for a number of years previonsly been armed with Slarp and Westley Richarls carbines, loading at the breech. The selection of an arm took longer ; but hy the beginning of 1865 it had been decided to convert the great stork of rilles on the "Snider" system. In 1869 it was determined that new arms should be on the Martini-IIenry system-i. e, with the Henry barrel, and the Martini breech action. The advantage of breech-loating is olvions; to be able to insert the charge at the breed end insteat of the mazzle. is to save time, and to aroid exposure to hostila fire during the operation of loading ant ramming home, whieh involves considerable outstretehing of the limbs. The great condition of success is, that the bullet shall be propelied with equal force and ae-
furary, and with equal anfety th the rilleman, as from the muzalo-loader. Wiben a charge is ignited, the constituents of the gmonewior, asmaning a gascons condition under the heat angerderent, "xpand into a volume sf light gas many times graater in bulk than the pewder before orempiad. On the amomme of this expansion and its sudden aterion on the brosjoctile, the forere of the shot deprombs. Any joint in
 can rempe, without having imparted its thrust to the ball, tends, therefore, to lessen ther ranere and penetration ; whike the shork of the "xplosion falling more severely on this than on any otharer part of the marrel, temis yet more to dislocuto the bree ch-piereme and diminisli the "loseness of the jesint's fit. In worpens which do not call for a homer range as revolver pistols, it pereptibte interyal is left betwern the chamber and harrel, through which much gas
 tration as prineipal objects, there is prime fucie ground for preferring a mazale-loater. The gas, howewr, is far frompareas generateol in the harrel, for much water is produced and held in suspernsion, white there is atse is solid residuum consisting of unburned materials of the powder. In the mu\%zlehoader, these dosig (or, teclmically, fonl) the harsel, tilling the growes, and rendering the ramming home of succeeting charges more and more ditherut. The effect is, that at solid mass of mblurned mather is graduatly forced by ramming inte the head of the barrel, destroying the: accuracy and usefulness of the weapon. In the breceh-loader. this solid deposit must be provided against both ways. The backward throw on tiring (for, of course ${ }^{\text {en }}$ tha charere oxplodes with equal power in every direction) tonds to force it into the mechanism of the joints, preveming their broper tit, and comtimally augmenting the escape of gas; and, on the other hand, the deposit in front is most adrimental to aecuracy of tire. Thin protection of the breech apparaths, the prevention of fouling, and the retaining.and. if possible.improving the forec and aceuratey of fire, were the problems which inventors have had to solve.
A moderate escape of gats in front of the tirst position of the ball, is not muder any circumstance, found to be of any material disadivantage. If, then, the barrel conlil have an opening where the cartridge condel be inserted, and then pushed backwarls, an escape of gas throngh the joints by which the opening might be subsequently closed would be comparatively immaterial; but this formation would be impracticable, becanse the explosion of each cartridge would drive: the fouling more and more backwards, tid nitimately the chamber at the breech would be unable to contain the cartridge. It is clear, therefore that the charge must be insarted either at the harrel's head, or, if the barrel be opened, in a space close to that barrel's head. In either of these cases, the breceln must be solidy closed to resist the explovion. I third case, as in the Snider, is where the eartridge is inserted and then pushed forward, the aperture being elused by a solid breech-piece which completely fills that portion of the barrel, and forms, with the barrel's head, a massive font to resist the backward pressure of the fired powder. No brecch aetion can be made to fit soaccuratelyas to prevent a backward escape of gas unless a properly-constructcl cartridge-fase is used. A perpendicular moving joint is found in practice to be the one which is best adapted for jreventing a serious escape of gas. In the Prussian needic-gun, the ennd of the barrel is the frustum of a cone, which fits into a corresponding cavity in the fort-end of the lrecech-piece, bute in practice this joint is not sufficiently tight to prevent an escape of gas from the silf-consuming cartrilge used with this gun. which becomes inconveniently gratafter long use of the weapon, and it is only available when the breech-piece is pushed up from the rear. in the snider and several other breech-loading weapons, the cartridge is made itself
to close hermetically the aperture between the barrel and the fore-end of the breech-piece. This is effected by the expansion of the cartridge-case which, being composed of metal, or a combination of metal and paper, is driven out by the force of the explosion till it completely fills the chamber and prevents any escape backwards between the sides of the case and the clamber. The cartridge has a portion of its case at the base flattened ont into a rim which fits
along the groove. When the cartridge is deposited in we recess in the clamber, this breech-piece is closed against the heel of the harrel by moving up the hasulle to the front end of the groove, and then turning it down to prevent it from leing driven back on the explosion of the charge; representing, indeed, the resistance offered by the heel of au ordinary muzzle-loading barrel. Firmly screwed within the brecch-picce, at a short distance from its front, is a


Fig. 1.
into a corrcsponding recess in the end of the barrel; solid block of metal, on which impinges the first and to prevent expansion backwards, which would fracture the cartridge-case, and injure the breech or the firer, the breech-piece is made to fit as closely as possible against this base. This rim is on the Snider cartridge.

The Prussian gun, although it may be said to be now obsolete (having been superseded by the Manser, a bolt gun on much the same principie, but using a metallic cartridge-case), was first in the field. As regards its breech-apparatus and needle-lock, it consists of three concentric hollow cylinders, with a solid cylindrical bolt inside tbe last (Figs. 1 and 2).
force of the explosion. Projecting from this block to the base of the cartridge is a strong tige, or pillar, around which a suitable space containing air is left. Through this same pillar is the channel for the needle to work. Fitting within the rear-end of the breech-piece is a smaller cylinder. $h$. coustituting the lock of the gun. It slides within the breech-piece, and is retained from falling out backwards by the spring, $i$, which catches in a notch. $d$. Along the bottom of this cylinder is a groove to admit the passage of the trigger, $k$, and at the back is a short, upright haudle, by means of which the weapon is


Flg. .
The rear-end of the barrel is firmly sorewed into the cocked. Lastly, within the lock is a bolt, l. pressed leat of the chamber, $a$, which is fixed to the stock forward ly a spiral spring, and having the needle, of the pieee, and is open at the rear-cnd. The upper half of the cylinder is cut away at the front end for rather more than the length of the cartridere: this constitutes the opening in which the musketere inserts the cartridge. From the rear of this opening (o) the back, a groove is eut, sulliciontly wide to atlow the square pillar of the breech-handle, $r$, to pass aloner it. In the middle of this groove is a rightangled shumt, oflering a stop to the breach-handle when drawn harkwarls, umless it be likewise moned downwards when it maty be paseed completely out at the rear ent. Next within the rhamber is the brecehtpiece, which, to admit the cartridge, is drawn back for a sutlicient distance by the breceh-handle. forward by a spiral spring, and having the needle,
$m$, rigidy fastened to its front cud. Having now described the several parts of the riffe, it is easy to follow it from the moment of a shot being fired until the next is ready for discharge. The soldier first presses down the spring, $i$, with hisfinger, releasing the catch below it, and cnabling him to draw back the lock to the next eatch on the spring (Fig. 1.) llaving foneso, he ratises the breech-liandle to the perpendienlar, and passes it along the groove toopen the brecel. This done, he places the cartridge in the oprening thus made in the chamber, and again moving up the brecedi-picee to close the lirecell, the dige in it gmshes the cariridge forward into the barrel, and the rifle is at once at "half-cock;" for in
drawing latek the lorek, the front point of the spring, $i$, foreed the bolt, $l$ (ineluding the nerelle $m$ ), with it, and thre projertiom, $n$, on it, having passerd wver the hesuleof the trigerer, $k$, is catught by the lattor in a way which can only be relensed by the falling of the trigger.

It will bre ohserved that at halferock the noordee is ready to pencetrate the eartridge, lout that thespirnl spring is loose nnd withont power. "To "full-cork," no more is neecessary than lapush / buck to its original position. It cinnot take the loolt, with it, as
 is now obtained, in which the bolt, l, projeets at the: back, und the spiral spring is rompressod into astate of passive strength. All that is now noreled lo lire the gron is to press upon the trigger, until the point obears, when the bolt, $l$, being relansed hy the depression of $k$, the spiral spring asserts its power, and drives the neredte into the heart of the eartridere, the parts all resuming their oriwimal positions. At first sight, one cannot lesp, exclaining: "What a complicated apparatus with the four "ylinders and the springs"; but, in reality, it is as simple as almost any other gun, for the whole mechanism of the hock is dispensed with. If it be desired to take the needlegun to pieces, press the rigeger till the point, $p$, hears. If the breech-handle he then in the himeter part of its gronve, the breech-piece with its eontents will slip ont of the chanber. Pressing down, next, the spring $i$, until the second enteh is passed, there is nothing to retain the lock, $h$, in the breecerpiowe; and the lock being free, the needla, with its attached bolt and spring, falls readily out of its foreeend. 'The grum is thus taken to pieces in a few seronels, and as many sullice to put it again in fighting order. The most delicate portionsare the needle and the spiral spring; but in case of aceident to these, there is a sure one in a small cavity opening by a spring in the butt-end of the stock. The worst feature about this celebrated gin is its weight, 12 lls.. or 33 per cent. l.eavier than the Enticld or Snider ritle. Sce "russion Veedle Carbine and Prussian Veedle-gun.
NEESHUNGPAT.-An Indian tern expressing a violent assault without bloodshed.

NEGATIVE.-1. A term userl to express the result of measures or enterprises which, though not entirely successful, are not productive of sorious or mischievons conseguences. Hence the British expreditions to Spain and Waldeheren may be considered as having had negative success. 2. In photography, that kind of photographic picture in which the lights and shadows of the natural object are transposed; the high lights being black, and the deep shadows transparent, or nearly so. Negatives are taken on rlass and paper by various processes, and should indicate with cxtreme delicacy, and in reverse orler, the various gradations of light and shade which occur in a landscape or portrait. A negative differs from a positive inasmuch as in the latter case it is required to produce a deposit of pure metallic silver to be viewed by reflected light: while in the latter, density to transmitted light is the chief desideratum; accordingly inorganic seducing and retareling agents are emploged in the development of a positive, while those of organic origin are used in the production of a nerative.

NEGATIVE HAUSSE. In order to strike an object at a distance less than point-blank range, it will be necessary to diminish the angle that the axis of the piece makes with the natural line of sight. This will he accomplished by diminishing the difterence between the radii of the mumbe and base-ring. This amount, required to be taken from the radius of the hasering, is gencrally ralled the negutite hauluse.

NEGATIVE PENALTY.-The term applied to buch pnoishments as removal from command, bars to iuInlgence, reprimands, ete.

NEGLECT OF DUTY. -Total omision or disregard of any prescribed service, or unsoldier-like execth-
dion. All erimes mot catpital, and all sllsordere unol wegleces, which ofllerers and soldiers may tor gailey of, to the prejuliore of gent order and military slis-
 War, ure to he taken cognizanco of lyy a licneral, or
 Martial, aceording to the matare amd dreree of the whense, and punished at the diserotion of furb ( m mit.

NESHAUMBURDAR. Thr Inclian nиme of an Ensign.

NETLEY HOSPITAL. - 'lare Royal Virtoriallospita], at Nutley, is a supurb building: on tha shore of Southamplon water, for thereception of invatiols fron the army on foreign scrvice, and from alfomp the Iroops surving in the adjacent military diatricts. In fimes of peace, it is only necessary to nse a portiom of the vast structure; but in the event of a E"nropean war, in which the Britisharmy should take part, the exigencies of the serviece wombly pobably tax its ace commodation to the ntmost. "There is provision for 1,000 patients with power to increase the number if necessary. Thr Medical Staff of course varios in proportion to the work to he done : hat at present it congists of a (bovernor, an $\boldsymbol{A}$ djutant, a Diamaster, an Assistant-Commandant, and Medical filicers, and Othicers of Orcherlies of various ranks. The total erost of the construction of this hospital, which was commmenced in $185^{5} 5$, has heen alonat $\mathrm{f}^{6} 350,000$. Athathed is the Didical School for candidates, for the army Medical Department, the students having the best means of practienl instruction in the wards of the hospital. Netley is also the head-cuarters of the female nurses of the army, who are under the fontrol of a lady stationed there as Superintendent. Complete arrangements have been made for the landing of wounderl men in front of the hospital and for convoying them thither with the least disturbance. There is no doubt as to the convenience of this great hospital for its purposes; but some questions lave been raised, under high sanitary authority, as to the salnbrity of the site, adjacent as it is to the wide banks of mud which Southampton watur nencoversat low tide.

NETTOXER LES MAGAZINS. - In artillery, a term which meansto remove the difierent pieces of ortnance, for the purpose of having them carefnlly examined, etc., and to lave the stores and ammanition so arranged as not to receive damage.

NETTOYER LES TRANCHEES. - i term meaning to scunr or clean the trenches. This is effected by motans of a vigorons sally which the garrison of a hesieged place make upon the besiegras; when they beat in the guard, drive off the workment, level the parapet, break up and choke the line of circumviallation, and spike or nail the camon.

NEUTRAL AXIS.-The name given tonn maginary line to any body which is being sulpjerted to a transverse stridin, and separating the forces of extension from those of compression. If the ratio of the resistances to extension and compression were the same for all substances, and depended merely on the form of the body, then in all bodies of the same form the neutrals axjwould have a detinite geometrical position: but it has been satisfactorily proved hy Mr. Faton IIodgkinson, that this ratio has at sevarate valne for eich substance. In woot, where the ratio is one of equality, the neutral axis in a beam supported at both ends. whose section is rectangular. passes lengthwise through the center of the beam: while in rast-iron, in which the resistance to compression is grater than that to "xtension, it is a litthe above, and in wrought-iron. in whicll the contrary is the cace, it is a little below, the center.

NEUTRALS.-Nations who, when a war is being carried on, take no part in the contest. and evince no particular friendship for or lostility to any of the belligerents. As a gencral rule Neutrals shomld con duct themselves with perfect impartiality. and do nothing which can be considered as favoring one
belligerent more than another. The duties and obligations of Neutrals at sea have given rise to many complicated questions. It is allowed on all hands that a Neutral State forfeits her character of nentrality by furnishing to either belligerent any of the articles that come under the denomination of contraband of war. If she does so, the other belligerent is warranted in intereepting the succors, and confiscating them as lawful prize. Contraband of war, besides warlike stores, has sometimes been held to inchude various other articles, a supply of which is necessary for the prosecution of the war; and it has beeni doubted how far, in some circumstances, corn, hay, and coal may not come under that eategory.

An important question regarding the righta of Neutrals is, whether enemies goods not contraband of war may be lawfully conveyed in nentral bottoms. The principhe that free ships make free gonds was long resisted by England and other maritine countries; and the general understanding has been that belligerents have a right of visiting and scarch. ing nentral vessels for the purpose of ascertainingFirst, whether the ship is really neutral, as the hoisting of a neutral fig affords no absolute security that it is so: Second, whether it has contrabaind of war or enemies' property on board. Neutral ships have therefore been held bound to provide themselves with passports from their Government, and such papers as are necessary to prove the property of the sbip and cargo: and it is their chuty to heave to when summoned by the cruisers of either belligerent. It has been considered that a neutral ship which seeks to avoid scareh by erowding sail, or by open force, may be captured and confiscated. When a merchant-ship is sailing under convoy of a ressel of war it has been said that the declaration of the officer in command of the eonvoy that there is no contraband of war or belligerent property on board is sufficient to bar the exercise of the right of seareh.

A declaration having important bearings on the rights of Jeutrals was adopted by the Plenipotentiaries of Great Britain, Austia, Franee, Prussia, Russia, Sardinia, and Turkey, assembled in Congress at Paris on April 16, 1856. By its provisions, 1. Privateering is abolished. 2. A nentral thag covers enemies' goods, with the exeeption of contraband of war. 3. Neutral goods, with the exception of contraband of war, are not liable to capture under the enemy's flag. 4. Blockades, in order to be binding, must be effective-that is, maintained by a force suflicient really to prevent access to the coast of the enemy. It has sometimes been proposed to exempt private property at sea from attack during war. Such a project, however, seems inexpedient. There may be a propricty in respecting the property of individuals on land in a time of war, because its destruction, however injurious to the persons immediately concerned, can have little influence on the decision of the contest. But at sea private property is destroyed, because those from whom it is taken, heing purveyors or curriers for the conmunity at large, its loss must serionsly afleot the pullic, and lave no small influence in bringing the contest to an end. Sce Flockade, and ' nitrabund of War.
NEUBAUER SYSTEM OF FORTIFICATION.-This system is distinguished by a roduit in the re-entering places of armus, imitated by Cormontaingne. lt also proposes six fold thanks.

NEW MATTER. - It is not proper that the Irosecutor should be allowed to introduce nemo mattor, neither should it be admitted on the defense. There is a great dilferinee between new matter of accusition and fatets proved by evidence to mitigate the sentence. The latter are not new matter in its strict sense. Should either party, in the momese of their examination of witnesses, or by bringing forward now onres for that purpose, introfluce new matter,
the opposite one has the right of calling other witnesses to rebut such new matter. The Court-Dartial should be very cireumspuct to see and prevent new matter from being introrlueed, either in the prosecution or defense. But the Aceused may urge in his defense mitigating cirenmstances, or exanine witnesses as to character or service, and produce testimonials of such facts, without its being considered new matter; and if any point of law be raised, or any matter requiring explanation, the Judge-Advocate may explain; no other renly is admitted.

NEW MODEL.-In the United States, all cannon made since 1861 are on the Yein Model. This is characterized by the absence of all ormament on the exterior,-the outline is made up of gentle curves as far as possible, -and on the inside the bottom of the bore is a semi-ellipsoid.

NEW TRIAL.-In Court-Martial, the privilege of a new trial is not denied. The provisions therefore are borrowed from common law, and are not held, in either civil or military tribunals, to prechade the mecused from having a second trial on his own motion. Officers who sat on the first trial should not be cletailed for the new trial; they have formed and expressed opinions. New, or second trial, can only be anthorized where the sentence adjudged upon the tirst trial has been disapproved. After a sentence has been duly approved and has taken effect, the granting of a new trial is beyond the power of a Military Commander, or the President.

NEW ZEALAND CROSS.- A decoration instituted in the year 1869. The New Zealand Cross was provided in the year 1869, by the Government of the Colony, with the sanction of the Crown, as a reward for acts of distinguished valor similar to those recognized by the Yictoria Cross. The fourth clause of the Order in Conneil, whieln subsequently received ber Majesty"s special sanction, as "Fountain of Honor," provides that "The distinction shall only be conferred upon those otheers or men who, when serving in the presence of the enemy, shall lave performed some signal act of valor or devotion to their duty, or who shall have performed any very intrepid action in the publie service: and neither rank nor long serviee, nor wounds, nor any other circumstance or condition whatever, save merit or conspicuous bravery, shall be held to establish a sutlicient claim to the honor."

NIELLO-WORK. - A metliod of ornamenting metal plates by engraving the surface, and rubbing a black or colored eomposition, so as to till the incised lines, and give effect to the intaglio picture. It is by mo means quite certain when this art was originated; Byzantine works of the 12 th century still exist to attest its early employment. The finest works of this kind belong to the former half of the 15 th century, when remarkable excellence in drawing and grouping minute figures in these metal pictures was attaincl by Jaso di Finiguerra, an eminent painter, and student of Ghiberti and Massacio. In his hands it gave rise to eopper-plate engraving, and hence much interest attaches to the art of niello-cutting. Genuine specimens of this art are rare, some of those by Finiguerra are very beautiful and effective, the black pigment in the lines giving a pleasing cffert to the surface of the metal, which is usually silver. Those of his works best known are some elaborately heautiful pattines wrought by him for the church of San Giovanni at Florence, one of which is in the Lthzia, aud sone are in various private collections. In the collection of ornamentalart at South Viensington, there are no less than 17 specimens of this art.

NIGHER.- An Indian torm for any fortitied city measuring at loast 8 coss, or 8 English milen, in length and breadth.

NIGHT-FIRING.-Cannon are pointed at night by means of eertain marks, or measmrements, on the carriage and platform, which are accurately determind during the day. In the case of gions and


howitzers, the elevation mav bedelormined he marking the elevating serew where it rnters the nut, wr by measaring the distance between the lacad of the screw and stock. In the case of mortars, the josition of the quoin may be elotermined by marking or liy mailing a clent on tho bolster. 'Pho direction of at carriage or mortar-bed is delerminmily nablinestripu of bourds aboner the platform, us quides to the trail and wherds; to prevent thestrips fronn being injurnd by the reonl, they shmuld be matiod at a rertain distance from the ceirriage, or bed, and the space tilled Hi) with astick of proper widala, which should ho removed hefore tiring. The rhassis of at sen-const carriage cun be seened in a partiondar direction by firmly chocking the traverse wheds. See Pbinting.

NIGHTLY CORDON. - In the opreation of atage, the investment of the position is nsmatly performed by a strong body of troops deetached from the attacking force, which body moves quickly mod suddenly, surronnding the position, and seizing all tha atornes of uppronch. $A$ chain of outposts and sentinds pheed just outside of the range of tire of the defence, but close enough to wateh all the avenues learding to the position, is established by the investing foree. Thus chain is drawn in notrer to the position at night, and moved bate at short distance inday time. The terms nightly cordon and daity cordon are frequent. Iy used to designate this chain. See ('ordon.

NIGHT-SIGNALLING.-An importunt branch of signalling. It lany be effected in varions ways. In ordinary service two toreles are used,-one on the ground and the other attached to a stati, which is used precisely as the thar for day signals. Lanterns hedd in the fiands can also be used. For long distances amd when stations cannot be seen on account of intervening olstacles, such as woods, signal-roekets, candle-bombs, und other pyrotechnic devices are used.

NIHILISTS. - - revolutionary organization in Russin, aiming at the destraction of all existing laws, redigions, and political and social systems, while preparing to replaee them with nothing. It is stated that the term wus first employed by the Rnssian novelist, Iran Turgenieff, in his stories of Russian society. It was, however accepted by the organization itself, as will uppear in the following quotation from a speech by a momber, and which may be accepted as fuirly signifieant of the doctrines with which the minds of the advanced diadicals of linssia have become imbned. "Nothing, in the present state of social organization ean be worth much, for the simple rason that our ancestors institnted it. If we are still obliged to confess ourselves ignorant of the exact medium between gool and evil, how could our ancestors, less enlightened than we. know it? A German Philosopher has said: 'Every law is of use. It rules the conduct of individuals who feel for one another and appreciate their respective wants. Every religion, on the ather land, is useless; for ruling, as it dous, our rolations with an incommensurable and indefinite lundug, it can le the result only of a great terror or else of a fantatitic imnglation.' Now, we Nihilists say, no law, no religion-Nihil! The very men who instituted these laws zuling their fedlow-creaturts have lived and died in complete ignorance of the value of their own nets, and without knuwing in the least huw they had aecomplishad the mission traced for than by destiny at the moment of their birth. Fiven taking it jor grantod that our ancestors were competent to order the acts of their fellow-ereatures, does it necessarily follow that the requirements of their time are similair to those of torlay? Evidently not. Let us, then, wast ofli this grament of law, for it has not becn mate according to our measure. and it impedes our free movemants. I lither with the axe and let us demolish everything. Those who come after us will know bow to reluild an edifice quite as solid as that which we now feel trembling over our heads." Two points will be obscrved in this
manifeslo: tha one breing its prositive antagenimm to all existing things - buranse they exist ; the rother the suphisiry with which tha* acrepteal persition is reasomed ont io a ingiast ronrlasion. And this brings us maturally to the harting points of Rassian Nihilion: In the inflornere of the Russian history;
 coptiomal charactars of the Rassian J'olitiond Sybicum.

NIP. - A tern usad in artillary, manning to stog, rojes with at gaskut, or with scoveral turns of spun yarn romme rabls, and the ends made fast.
NIPPLE. - 'Tho passare of communication in porr. cussion arms batwen the cap and the rharge; the perenssion cup is plated on the niphate when the dire lock is primed, and by the action of the lork the picere is discharged. ln breech-loading arms, excolt in the Sindor, thore is atilforent arrangemment for igniting the elarge, which renders the nipple unnocessary; 1 lucse are fired ly means of a neerile or some similar method.
NIPPLE WRENCH.-The spanner with sides which tit the square of the nippule, mod which is used for screwing it to and unscrewing it from the larrel.
NIQUIBS.-An Indian term for men whose military functions among the sepoys, correspond with those of Curporals in othur services.

NITER-NITRE.-Niter occurs as a natural product in the Vast Judies, Eirypt Persiu, whure it is fomnd sometimes as an chloresconce upon the soil, and sometimes disseminated throngh its upper strutum. 'The cruale salt is olotaned by' lixiviating the soil, and allowing the solution to erystallize. A large quantity of niter is artificially formed in many eountries of Europe, by imitating the conditions under Which it is naturaliy produced. The most essential of these conditions seems to be the prosence of decaying organic matter whose nitrogen is oxidized by the action of the atmospliere into nitric acirl, which combines with the bases (potash and lime) contained in the soil. The method employed in the artificial prodnction of niter consists in placing animal matters, mingled with ashes and lime rubbish, in loosely aggregated heaps, exposed to the air, but sheltererl from rain. The heaps are watcred from time to time with urine or stable rnovings; at suitable intervals the earth is lixiviated, and the salt crystallized. Three years usually elapse before the niter bed is washed; after this interval a cubic foot of the debris shouk yidd between 4 and 5 ounces of niter. As there is always a considerable quantity of the nitrates of lime and magnesia present, wheh will not crystallize, carbonate of potash, in the shape of woorl-ashes, is added so long as any precipitate oecurs. The nitrate of lime is decomposed, and the insoluble carbonate of lime separated :
Carbonate of Nitrate of Carbonate of Nitrate of
Potash. Lime. Lime. l'otash. $\mathrm{KO}, \mathrm{CO}_{2}+\mathrm{CaO}, \mathrm{NO}_{5}=\mathrm{C}_{2} \mathrm{CO}_{2}+\mathrm{CO}_{2}+\mathrm{KO}, \mathrm{NO}_{3}$ The clear hiquor is then evaporated and crystallized. It has heen found that the earth in which niter luns once bern formed fnrnishes fresh niter more readily than on the first oceasion. Care is taken that the nitir plantitons, as they are furmed. shall rest upon an impervious flooring of clay, sothat the liguid which drains away from them may be collected and presurved. Sce - Vitrates and šultpter.

NITHING. - An old turm for coward or poltroon. Also written Viding.

NITRATE OF SODA.- An extensive deposit in the soils of some portions of Peru and northern Hexico It is cheaper than nitrate of potassa.and for the same weight aliords a greater amount of mitric acid, or oxyen. Its attinity for moisture constitutes a scrious objection to its use in the manneacture of a gunpowder for war purposes, or onc that is to be prescrved for fany length of time. The nitrate of soda may be used in ohtaning the nitrate of potassa hy decomposing it with carbonate of potassal-the potash of commerce. See Chlorate of Putassa and Niter.

NITRATES.-Salts formed by the union of nitric acid with bases. Some are found in a natural min. eral condition, as saltpeter and cubic niter. They are distinguished for their solntility in water. On being heated, they undergo decomposition, being converted either into free nitric acid and a base, or into oxygen and a nitrite. In many respects one of the most important nitrates is the nitrate of silver, or lumar caustic. It is of great use in surgery and the arts. As a caustic it acts powerfully, lint rather superficially, producing a white slough, whichblackens soon on exposure to the light. It is nsed in a solid state, or in solutions of all strengtlis. If dissolved in pure water, it remains colorless; but the smallest particle of organic matter will cause the solution to turn dark. On this account it is employed for making marking-Hnids for linen. Indelible ink is nsually made by clissolving 1 part of nitrate of silver and 4 parts of gum-arabic in 4 parts of water, and adding a little India ink to give it color, so that it may be seen when the mixture is applied. The place which is to receive the impression is first moistened with a solution of carbonate of sorla and driet. After the application of the ink, the writing is exposed to the sunlight. Lunar caustic marlings may be readily removed by applying a few drops of tincture of iodine, and dissolving out the iolide of silver thus formed by a solution of hyposulphite of soda, or a dilute solution of caustic potash. Nitrate of silver is used in plotography. Nitrate of ammonia, or ammonic nitrate (aceording to modern nomenclature, anmonimm nitrate), NIl $\left.{ }_{4}\right)_{, ~ N()}^{5}$, or, according to later views, $\mathrm{NO}_{8} \mathrm{NII}_{4}$, may be formed by the action of the galvinic current on a mixture of nitrogen and oxygen with an excess of lyydrogen; but the common method is to add a slight excess of aqua ammonia to nitric acid. If crystallization is conducted slowly, six-sidel prisms, like those of nitrate of potash, will be formed, having a specific gravity of 1.635 . It melts at $226^{\circ} \mathrm{F}$., and at $482^{\circ}$ decomposes into water and nitrous oxide, or laugh-ing-gas. Nitrate of baryta, or barytil saltpeter, is made by treating the natjve carbonate of baryta with nitric acid. It crystallizes in auhydrous regular octahedrons, having a specific gravity of 3.184. Whem heated strongly it is converted into baryta, or baric oxide, witl evolution of oxygen and nitrogen. Nitrate of bismuth and also sub-nitrate are important salts in the arts and medicine. Nitrate of cobalt, prepared by the action of nitric acid on the oxide, crystallizes from solutions in beantiful pink-red deliquescent crystals, laving a specific gravity of 1.83 . It is much used in the chemical laboratory, particularly as a blow-pipe reagent. Witl magnesium compounds, it yields a pink color; with those of zine, green; and with aluminum compounds a beautiful blue; for this reason it is mucll used in coloring porcelain and earthenware Nitrate of copper is made by the action of diluted nitric acid on (opper turnings. Nitric oxide gas is given off during the operation. It erystallizes from cold solutions in beantiful blue, deliquescent, rhomboidal prisms, containing four molecules of water. From solutions above $59^{\circ}$ it crystallizes with three molernles of water in needles, laving a specific gravity of $9.04 \%$, soluble in alcohol. Nitrate of copper is converted, by moderate heat, into an insolubla latsie nirate. By raising the leat, the acid is completely driven off, loaving only the black oxide of the metal. Nitrate of copper is somotimes useful in smrecry, as an application to certain ill-conditioned ulcers. The nitrates of iron are important salts. The protonitrate or ferrous nitrate, is formed by digesting iron-turnings in very dilute nitric acid. It crystallizes in jale green rhembohedrons, having the formula $\mathrm{F}^{\mathrm{H}} \mathrm{e}\left(\mathrm{N}^{+} \mathrm{O}_{3}\right)_{2}$, $611_{9}$ O. It is much nsed in dyeing. The pernitrate, or forric nitrate, is made by dissolving iron-turnings in nilric acid of sp.gr. between 1.2 and 1.3 . It is used in surgery. Nitric acid forms scveral salts with lead, the priacipal of which is the common nitrate,
or kiumbi nitrate, $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$. It crystallizes in anhydrons regular octahedrons, usually milk-white and opaque. It dissolves in $\% \frac{1}{2}$ parts of cold watur. Is is alcomposed ly heat, with evolution of peroxicle of nitrogen. Nitric acid forms a greater mumber of salts with mercury than with any other metal, one of which is used in medicine, and the other for the manufacture of corrosive sublimate. See Viter.

NITRO-CELLULOSE.- During the last few years great improvements have been effected in the mannfacture and application of this material, aud in consequence, its use is rapidly extending, especially in Great liritain, where it is found of great advantage in mining operations, owing to its not producing smoke when explorled. For the improvements as well as the invention of gun-cotton, we are indebted to Germany and Austria, the most important improvement being that of Baron Lenk, consisting chiefly in the following precautions in the manufacture: 1. A perfect cleansing aud drying of the cotton. $\sim$. The use of the most concentrated and purest acids procurable commercially. 3. Steeping the cotton a second time in a mixture of the strong aciuls. 4. Continuance of this steep for 48 hours. 5. i thorongly purification of the gun-cotton from free acid ly washing in a running stream for several weeks. This may be supplemented by washing in a weak solution of potash, but is not absolutely necessary. The following are the important advantages insured by the new method of making nitro-cellulose: 1 . The same initial velocity of the projectile can be obtained by a charge of mitro-cellulose one-fourth of the weight of gumpowder. ?. There is no smoke from the explosion of nitro-cellulose. 3. Nitro-cellulose does not foul the gun. 4. Nitro-cellulose does not heat the gin to the injurious degree of gumpowder. 5. Nitro-cellulose gives the same velocity to the projectile with much smaller recoil of the gun. 6. Nitro-cellulose will produce the same initial velocity of projectile with a shorter length of harrel. 7. In projectiles of the nature of explosive shells, nitro-ccllulose has the advantage of breaking the slell more equally into much more numerous pieces than gunpowder. 8. When nitro-cellulose is used in shells instead of gmpowder, a quantity efual in weight to one-third of the latter produces donble the explosive force.

NITRO-GLYCERINE.-An explosive agent formed by the action of nitric acid upon glycerine at a low temperature. The following reaction occurs
$C_{3} H_{3} O_{8}+3 \Pi N O_{3}=\left({ }_{3} H_{5}\left(\mathrm{NO}_{2}\right)_{8} O_{8}+3 H_{2} O\right.$.
When freshly made it is a white, opaque, heavy oil, but becomes transparent and nearly colorless, on

standing for a suflicient lime. Above $50\left(41^{\circ} \mathrm{F}\right.$.) it has a specilic gravity of 1.6 ,is odorless and of a swert laste. It is poisonous, and if placed incontact with
the skin, even in small grantities, lafore the syatern has bexome acenstomed to its intion, pronluces violent, lambache. If incompletely frow from actids, it undergoes spontancons decombosition, is dangarons to latalle, and ultimately may lose its cexplosive joropertjes; when jure it econgeale brlow 54 ( $1 \mathrm{~J}^{\mathrm{N}} \mathrm{J}$.) into a white, erystathine solid. whiclt is nearly incolpable of explosion ; it may readily be thawed by introdncing the vessel rontaining it into warm water, which restores its fill explosive powor. Nitroglycerinc, ignited in small quantilios by at fance,

 or if subjeceted to the cepposion of if gratios of fulminating moremry, it dotonatces with tromormons forer ; fully explerlad it grives oll no injurions gases. It is not ordinarily sensitive to friation or mosderato percossion. but is very much so when in at state of decompositiom.

In the manufacture, nitrice aced is mixed with twice its weight of strong sulplario: acicl to take u] the water formed during the reaceion, and prevent the dilution of the nitrie acid. The procerse consists essentially in the conversion of glycerine inte nitroglyerome, and the separation and washing of the nilro-glycerine. The apparatus is slown in the drawing. I, d, are wooden trouglas jalaced aronnd the brick chimmey, /), /I. In these trongha are the enrthenware pitchers, of, which contain the acio mixture. On the shelf, $B$, abose the pitcher, are the bottles, $b, b$, which contain the ryacrine. The botthes are loosely elosed by wooden stoppers with brond, rounded tops. Throngh lonles in these stopepers pass lonsely the rubber tubes, $r$, $c$, which reach to the bottom of the bottles and carry small glass jets at their outer ands. Conical wooden plags, $e_{\text {, }}$ $e$, are placed in the holes throngh the stoppers alongside the rubber tubas. The steam-pipe, fi, passes along the shelves, $B, B$, just fohind the $g$ lycrine bottles. The air-main, $F$, passes under the shedf, $R$, and carries on its moler side a mumber of smath, short pipes or jeqs (two for eateh pitcher), to which are attached the rubber tubes, $d$, at, which lang over the pitchers, lu these rubber fubes are inserted glass tubes, long enongh to extend to the bottom of the adid pitchers. The troughs are made tight to hohl the ice-water with which the pitchers are surroonded Partitions, with opronings at the bottoms, cut off the corners of the tronglis forming clear spaces. These spatoss contain water only, as the partitions keep out the ice. These watre spaces ure convenient as affording opportunities for quickly emptying a niteher into water if it becomes necessary. In one corner of each trough is placed a pipse, through which the water may be drawn of into the escape, $E$, when the pperation is finished. The pitchers stand on narrow strips, which ratise them off the bottom abont two inches, thus griving the cold water free and perfect access all about them, and when set in proper position are wedl under the overhanging hoods, (! ' O'g. These hoods are flat wooden boxes, wide at the bottoms and drawn in at the tops, where they fit against openings in the chimuers, DD). In the lower part of the chimney, on the floor below, is placed at grate and fire-door. Each pitcher receives 18 to 20 Jbs . of the acid mixture according to the strength of the latter. All are then set in place in the troughs, covered with glass plates, surrounded with ice and water, and allowed to stand until completely cooled. Into eacla bottle is put $\stackrel{3}{\sim}$ Jbs. of glycerinc. When the acid in the pitchers has fallen to the temperature of the surrounding ice water, the covers are removed from the pitchers, and the air-tubes passed through holes in the hoods down into them. Through these airtubes a strong current of air is forced by nemus of a pump driven by steam. This current of air keeps the contents of the pitchers in continual agitation. The air for the pump is drawn through sulphurie acid to render it perfectly dry, and just before it
enters the air-main ovar the tronghs it is thorobshly


 ing sumface wilhout imperling the enrrent. As anofs as the air current has lecen Enrued on, the flow of glyerime is begom. liacla rubler thlue, ", is a syphon whith is startal by suction throngh a shats tibue in-
 runs frody: the suretiontube is withalraw and a tinepointord glass jet put in its place. "llue: elycerine rams Irom this jee in at tincestream directly into the pile her buder it. Incohl wathor the glyarinc maty treeome too thick to thow easily. Ton ovireonot this the butthes of glyerincare warmerl lyy bassing sleam tarough
 ty thin. The glyerinu dropping into the aroid mix. ture is rapridly acted on and convorted into nitroglyorine. The reachion is acomonaniod ly a consiflerable evolution of loat. This heat must be removed, for if the tempreature be allowed to rise too high the erlyeerine is not converered into nin ro-glyerrine, but is oxydized or lomrmed, with formation of other substances. The limits of tumperature are very narrow. Sitarting at :324, the temperature mast ncerog go beyond $48^{\circ}$; at 50 to 550 , there is frorat danorer of "firing" laking place. "Tlae liquid in the piteleres is kept cold by surroundiner 1 hom with icereodd water and by the stram of rold air passing into the acid. Tlae most important work of the aireurrent is to keep the acivl mixture in constant agitation. In this way the heat generated is quickly ditfused through tha whole, preventing amy" sudden local rise of tomperature. Filse glycerine is mocho lighter than the aciod mixture, and womld be ajt to coblece in littk pools aboye it. and whent these wore broken up and a quantity of glyerrinc suddenly brouglt into contact with the arid. the aretion would le so rapid that it could not be controlled. Whike: the glyerrine is rumning into the piacleers, observattions with the thermometer are constantly made of the temperature attained in them. If in a pitcher the temperature is foumd to be rising too rapidly and to be approaching the higher limit. thre glycerine is evidently rumning in too fist, and its $1 l o w$ mast hu clecked, which is donc ly pressing down the: comical wooten plug in the stopper of the glycerine botle. This phag passes through the same opening as the rulber glycerine tube; therofor*, when it is pressed down, it compresses the latter so that less liguid can pass through. If the temperature is too high or conntimuses to rise, the plug is forced hard down, closinge the glycerine tube altogether. The flow of glyerine being checked or stopped, the pitcher rapidly rools down again. As soon as the thermometer shows this to be the case, the plug is loosened and the flow again set up. Constant care is therefore necessary, but the operation is a simple one, easily learned and performed by ordinary workmen. If the limit of lemperature is exceeded, "firing" takes place indicated by the copions evolution of red, nitrons fumes, and in extreme cases by ilame. [sual]y when this occurs it is easily controlled by stopping the glycerime stream and stirring vigorously the contents of the pitcher, but if it is violent the pitcher must be emptied as quickly as possille. Durine the operation of conversion, arid and irritating fumes are given off in large quantities, greatly to the injury of those compelled to breathe them. In the apparaths here deseribed these are entirely removed through the hoods and chimney. A tire in tho erate at the bottom of the chimney causes a powerful dratugt in the hoods, which overhang the pitchers, drawing upwards all the fomes and disehareing them into the open air. Generally a small fire at first is found to be sulficient, and quite frequently no lire at all is necessary.

It dors not mix with and is maffected by water. It has a sweet, pungent. aromatic taste, and produces a violent beadache if placed on the tongue, or
even if allowed to tonch the skin at any point Those constantly using it soon loose their suseeptibility to this action. Freshly made, opaque nitroslycerine does not freeze until the temperature is lowered to $3^{\circ}-5^{\circ}$ below $0^{\circ}$ Fahi., but the trausparent or cleared nitro-glyeerine freezes at $39^{\circ}-40^{\circ} \mathrm{F}$. Ni-tro-glycerine freezes to a white crystalline mass When frozen it can be thawed by plicing the vessel coutaining it in water at a temperature not over $100{ }^{\circ}$ Fah. Pure nitro-glycerine does uot spontaneously decompose at an ordinary temperature; but if it contains free acid, decomposition is apt to oceur. It is, therefore, very important that all acid shonld be removed by thorough washing when it is made. No instance has yet been noticed of the spontaneons decomposition of properly made and purifird nitroglycerine. Pure nitro-glycerine is not sensitive to frietion or moderate percussion. If placed upon an anvil and struck with a hammer, only the particle receiving the thlow explorles, senttering the remaiuder. Nitro-glycerine in a state of decomposition hecomes very sensitive, exploding violently when it is struck, even wheu uncoufined.

Nitro-glycerine may be comveniently kept in Jarge earthen jars, with a layer of water over the explosive. If it is to be transported, the liquid form is very inconvenient, espucially from the danget of leakage. It is therefore advisable to freeze it, and carry it in a frozen state, when it is perfectly safe. For transportation it should be put in strong tin cans holding about 45 or 50 lbs . Each can should be paraflined on the inside, and have passing vertically through its center a tin tube, so that freezing or thawing may be more easily aceomplished. All vessels in which nitro-glycerine has been kept shoudd be destroyed when not wanted for the same use, as the nitro-glycerine cannot be easily washed off.

Nitro-glyeerine is the most powerful explosive in use. In difficult blasting, where very violent effeets are required, it surpasses all others. In spite of the many accidents that have oceurred with it, it has heen found to be so valuable that its use has steadily and largely inereased. Its liquid form is a disadvantage except under favorable circumstances, as when made at the place where it is to be employed. It, however, forms the essential ingredient in a number of solid mixtures. When used in blasting. work it is usually put in tin cans or cartridge-cases. If the bore-holes are tight, it may be poured directly in ; but it is rarely safe to do this, as there is great danger that some of it will escape through seams in the rock, and not be exploded, remaining to cause accident at a future time. Since uitro-glycerine is so readily detonated, it has the advantage of not requiring strong eoutinement. Eveu when freely exposed it will exert violeut effects. such as breaking masses of rock or blocks of iron. So. in hlasting, it requires but little tamping. Loose sund or water is entirely sufticient. The relative force of nitro-slycerine is not easily estimated, since the offert produced depends greatly on the ciremmstances. Thus, a charge of nitro-slycorine in wet sand or any soft material will exercise but a slight elleret, while the same charge will shatter matny tons of the harelest roek. In the former ease mand more sand would be thrown out by a slow're explosion, whith wonld gradually move jt, than by the sulden, violent shock of the nitro-glycerine, which would only compress the material immediately abont it. But in the lard rock the sudelan explosion is much more cll'etive than the same amoment of force more showly applied. lionghly, it may bu sadd that nitro-elycerine is wimht times as powerfal as gumpowder, when taken welght for weight.

On explosion, nitro-rlycerine js resolved entirnly into the gases (:arbonite, anhydride, water, nilregexa, and oxymen (Nobel), the lant named alyemring only in small gutantity. If explosion is imperfertly accomplished, oxides of nitrogen atre formod, amel the total quantity of gas is lessened. If fully explod.
ed, no disagreeable or foisonons gases are given off. S'e Wualin, Iynamite, Gun-cotton, Gunpoocler, and Lithefracteur.
NITRO-MANNITE.- A higlı explosive resembling nitro-glycerine in its properties, and made in an analogons manner by the aetion of aitric and sulphurjc acidts upon Maunite; a peculier sacecharine matter which forms the principal constituent of manna; it is also found in several kinds of fungi, iu asparagus, celery, onions, etc, It is most readily obtained by digesting manna in hot alcoliol. On cooling the filtered solution, the mannite is deposited in crystals, which are very solnble in water, and possess a sweet taste.

NOBLLITY.- That distinction of rank in rivil society which raises a man above the coudition of the mass of the people. Society has a tendency to inequality of condition, arising from the natural inequality, plysical, moral, and intellectual, of those who compose it, aided by the diversity of external advantages, and of the priuciples and habits imbibed at an early age. This inequality is apt to increase ; the son, imheriting the faculties of his father, is more favorably situated than his father was for making use of them; and hence, in almost every nation, in even the very early stages of civilization, we find something like a hereditary nobility. Privileges originally acquired by wealth or political power are secured to the family of the possessor of them; and the privileged elass come to constitute an Order, admission into which requires the consent of society or of the order itself. The military tenaut who held but a portion of a knight's fee participated in all the privileges of nobility, and an impassable barrier existed between his Order and the people. Over Continental Europe in general, the Nobles, greater and Jesser, were in use, after the 10th century, to assume a territorial name from their castles or the principal town or village on their demesne; hence, the prefix "De," or its German equivalent "Von," still cousidered over a great part of the continent as the criterion of nobility or gentility. Britain was, to a great extent, an exception to this rule, many of the most distinguished family names of the aristocracy not having a territorial origin.

After the introduction of IJeraldry, and its reduction to a system, the possession of a cont of arms was a recognized distinction between the Noble and the Plebeian. In the words of Sir James Lawrence: "Any individual who distiuguishes himself may be said to ennoble himself. A Prince judgiag an individual worthy of notice gave him pateut letters of nobility. In these letters were blazoned the arms that were to distinguish his shield. By this shield he was to be known or nobilis. A Plebeian lad noblazonry on his shield because he was ignobilis,or unworthy of notice. ITence arms are the criterion of nobility. Every Nobleman must have a shicld of arms. Whoever has a shicld of atms is a Nohleman. In every comntry in Enrope, withont exception, a grant of arms, or letters of nobility, is conferred on all the descendints." On the Continent the term Noble is still senerally used in this sunse; in Encland it is now more common to restrict the words noble and nobility to the five ranks of the pecrage constituting the greater nobility, and to the head of the fimily, to whom alone the title belongs. Gentility, in its more strict sense, corresponts to the mobility of Sir T. Lawrance and of Continontal Commries. This differeuce of usiage is a frequent source of misapprehension on both sides of the channce; st some of the minor Grorman Courts thre nutitled member of an Enorlish family of ancient distinguislocel blood and limeade has sombetmes been postponed to a recently created Barna or "Herr Ton," who has received that litle, and the gentility aroompanving it along with his eommission in the army. It hats beren taken for erranted that the latter helonigs to the "Adel" or nolulity, and not the former.

The nobilit of Spain boasts of a special antiquity and purity of blood, a descent from warriors and
conquarors alone, without the infusion of any of thar elements derived from the elanch, liw, and come merce that are to be foumd in other commatios. "1lidalgo " (hige d'algo, son of somedoely, not dilius mullims) is a term which implios erentility or nobility. 'Ihe
 " I On," whion, like "Sir "of longlisht k゙nights and lanonets, regnires the adjuncet of the C'hristiman mome. When the Christian neme is onntted, the tille" "ho. nor" instend is pretixed with the addition of "1) "." "1 Won" has latterly been used by persoms whon have mo proper daim ta it about as "xtensively as " liwo
 important privileces and immunites. The himber nobility are styled (irandees; formorly the title was "Ricohombre" ${ }^{\text {and }}$ the ceremonial of creation ronsisted in granting the right of assuming the pronon and! caldron (penom y caldera)-the one the rullyiner ensign of command, the sthor of maintemance of followers. In contralistinction from the Granders, the clase of nolility below them are called " Less Titula dos de Castillal." Red bloml is saill to llow in the veins of the lidalero, blue in that of the firandere Formerly there were thrce classes of Griandees, whose mark of distinction was this that a Grandee of the tirst class was entitled to put on his lat in the royal presence before the ling spoke to him; the second, after the King spoke to him: the thirs, after the King had spoken and he had replied. The second and third classes are now absorbed into the first.
of this dath can be recordend with acemracy tothe
 tained in workinge this instranemt is about i , (ر)
 ence of the revolving dises sed that (atele incols trave
 part of ascoobl; atad as the inch is mablivich ol by
 sentation at the ciremonf(renter is thus oblained of iutervals of time as minute as the ons-millionth part of a sceontl.

Is a small variation in sperd womlal atiocet the relation butworn the sereral recorrde obtatineol. the uniformity of rotation is aserertained on eareh oreassion of experiment by three chaservitions: onte immerliately lorfore, one darinor, and ome imanediately after the experiment, the mean of the there olsorervathons being taken for the average spered. With a jittle pratede there is no dillicalty in arranging the instruncont so thatt the dises maty rolate either uniformly or at $1 t$ rate very slowly inereasing or deereas ing. The arranoments for obniminer the clectrical pocords are as follows: the revolving dises are conerred on the edge with a strip of white caper, and are conmeeted with one of the secomary wires, (i, of an induction coil. The uther secondary wire, II, (arefully insulated, is brought to a diselarger, I, oppusite the wdoe of its corresponding dise, and is tixed so as to le just clear of the latter. Whatn a spark passes from the discharger to the dise, a minute hole


NOBLE CHRONOSCOPE.-The principle of action of this instrument consists in registering, by moins of electric currents upon a recording surface, travel ing at a uniform and very high speed. the orerise instant at which a projectile passes certain dedined points in the bore. It consists of two portions: first, the mechenial arrongemont for obtaining the necessury specel, and kecping that speed uniform; secondly, the flectrimb recording arrangement. The first part of the instrmment consists of a serios of thin metal elises, $1, ~ \boldsymbol{A}$, calel 80 inches in cireumferenee, fixed at intervals mpon a horizontal shaft, $\mathfrak{s i}$. which is driven at a high speed by a heavy descending weight, $\mathrm{B}_{\mathrm{s}}$ throuqh it train of gearing, multplying 60.5 times. The driving-weight is, during therxperiment contimully moved np by means of the handle II. If the requisite speed of rotation were got the by the action of the falling weight alone. a considerable' waste of time would ensue. 'To obsiate this ineonvenience, the resuired velocity cun be (s) tained with great rapidity by means of the lamdle co $^{\circ}$. The precise rate of the discs is obtaned by mestas of the stop-clock 0 , which can at pleasure be connected or diaconnected with the revolving shaft, Eis and the time of making any number of revolutions
is perforated in the paper covering upon that part of the dise which was opposite the discharger at the insiant of the passige of the spark: but. is the sitnation of this hole in the paper wondel be very difiente to find, on accomet of its extreme minutences. the paper is previously coated with lamp-black, ancl the pusition of the hole is thus rembly seen: a distinct white spot is left on the blackennel paper. the hampe black at that point having heen lurnt aw:y by the spark, so that the white paper is shown bencath. Iby means of the mierometer the distance betwern the sparks on the dise is read off.

In order to connect the primary wirce of the induction conils with the bore of the" grm, so that they may be cut by the projectile in its passage tho erun is tapped in a number of pheses for the reception of hollow sted plass (arrying at the ent next the bare a cutter whirla projects slimbly into the hore. This cutter is held in position ly the primary wire, which is carcfally insulated and pased dosson the pluse thromgh tha cutter, and back out of the phar, ther ends beiog connected to the main wires leading to the induction coils. When the projectile rearlue the boint where the pluer is scresudin, it presses the chtter in flush with the bore, and, by su doing, cuts
the primary circuit. As cath plug is reached a spark is elelivered, and thas the pasiage of the projectile along the bore is recorded at regular intervals. thome idea may be conveyed of the minute intervals of time which can be measured by this means, from the fact that the distances between the parts of a X-inch gan at which the time-records have been obtainetl are in some instances only 2.4 inches, while the total time the projectile takesto reach the muzzle of the gun-a distance of too ineles-when tired with a full charge. is about the one-hundreth part of a second. By this menns the time may be recorled which the projectile occupies, from the commencement of motion, in reaching different parts of the bore, and from these time-records may be dellneed the veloeity with whel the projectile is passing through the different parts of the bore, and the pressures in the gun which eorrespond to these velocities. Sce C'honosermp.

NoISY.- A termapplied to projectios in flight. The passage of a rifted projectile through the air canses a shrill, tearing sound. An experitneed ear at experinental practice candetect from this somed whether the projeetile is properly centered; if not, it is said to be herivy in tight.

NOIZET SXSTEM OF FORTIFICATION.-The School of Application for engineer and artillery ofticers, first established at Mézieres and subsequently at Mexz, has given to Franee, from ahout the period of the French lievolution lown to the present day, many able ofticers who have gainerl universal and descrucal celelority for these two corps. In these schools the precepts of Vauban and Cormontaigne have been jealously regarted as the highest anthoritr,and their mannseripte and works have formed the basis of the instruction given in them. Someslight monlifications were proposed in the frent of Comontaigue by two engineers. (hatillon and burignean. and tanght liy them in the course of permanent for tification given in the school. These elanges chiefly consisted in enlarging the demi-lune and making it more salient ; and in placiag casemates for cannon in the flanks of its redount, with reverse views on the breaches that might be made in the bastion faces. The teaching of the school of Mrtz has received its prineipal impress in later years from General Noizet. For nearly fifty years, General Noizet was engaged in the stridy and practice of his profession, sorving for many years as professor of the art of fortification in the school at Metz. He bath the good fortune to apply practically ou a large scale the principles tanght by him in the school. He was for ten years a member of what we would call the Board of Engineers for France, and has visited every fortification in France. Ile is regarded as first among the sucessors of Vanban and Cormontaigue. The front planned by him has been taken as an elementary exercise for instruction in the art of fortification for the cadets of the U. S. Military Academy at West Point, N. Y. In it, there is no sensible departure from the views and method of Cormontaigne, exeepting to introduce such modifications as wond remedy some of the acknowledged defects of his methoil. This front combines the principles of the sedence of fortiferation to as great an extent as any one sys tem or method that can be given to the stulent. Another objeret has been kept in view in using this frent. That is, 10 presest in itscombinations, a probslem, in the solution of which the pupil womld hate to apply to a special case, both the elementary principhers of fortitications and the greometrical methods used ly the military e ecineer in the practice of his profession. Noizet, in the phan of his cuceinte, has adopted dimensions and constructione which gives results for the most part, we sume as those of Vanlan and Cormontaigme, making the defensive properties of these diflerent methods about cyath. The extent of the exterior sitle, the lemgth of the curtain, the diminished angle and the diredion assumed for the flanks, prothed a combination griving an collicient thanking, bothas to direction and amount of tire, for
the antire searp, and a powerful cross-fire upon the rowerel-way and its orlacis in adivare of the bastion salient. The lines of defense, by this combination, are within the effective range of the most inproved small-arms, and the lanks are eapable of receiving a baltery superior to the eounter balteries that can lee brought argainst them from the glacis erest of the opposite eovered-way. The dimensions and form of the protile are such as experience has shown will give durability and stability to the masonry from the pressure of the embankments and the ordinary eauses of destructibility to which it is liable when exposed to the weather. The rampart and parapet have suf fieient strength to resist the action of the heaviest siege artillery in ordinary use, whilst they offer to the assailed every convenience for their prompt action, and the use of their arms. The widh and slopes of the ramps are regulated for the passage of artillory. Where the height to be overcome is slight, as that between the terre-plein and barbette, the slope of the ramp may be as great as $\frac{1}{6}$, and its width be 3.30 yards. Where the height is greater, the declivity of the ramp should be proportionally less steep, and its width be 4.30 yards at lenst. The position of the terre-plein witl respect to the interior erests is that usually considered necessary to give slelter to the tronps and muteriel on it. By inclining that of the bastion, the guns and troups on the faces aud flamk are better covered from the enfilading and rienelnet fire than they would be if the terre-plain was horizontal; as a ball passing over the salient will of necessity reach an inclined terre-plein at a point much farther from the salient than one whiel is horizontal. The following is the summary of the principles, and essential details iuvolved in this system. 1st. The enceinte of every permanent work should present an uninterrupted line of searp wall, which, when the ditch is dry, shonld be at least 30 feet high above the botom of the diteli. Sd. All the approaches to the work, beyond the diten within the etfective range of its fire, as well as the ditcli itself should be completely swept by this fire. Bd. All searp walls shonld be sheltered from the fire of the enemy's artillery, to the latest moment, by earthen masks. 4th. All parapets should be proof against the heaviest projectiles, to which they may be exposed. 51h. The terre-plein of the rampart should be masked by the parapet from the enemy's view; it should be wide enough for the infantry and artillery survice: should have convenient communications for these between all its parts: and between it and the parade. 6th. All outworks, except the coverel-ways, should be recrarded as accessories ratber than indispensable additious to the main work. When properly placed, they strengthen weak points and delay the enemy's: progress, hy forcing him to gaim possession of them before he can advance beyond the points they oncupy. Their scarps, and the gorges liable to be turned by the chemy, should be of masonry, not less than 12 feet in height. The more retired of these works should command the more advanced, and where this rule is violated, the retired work should be defiled from any establishments that the enemy might be able to make on the advanced one by which it is commanded. They should be commandied by the unceinte, and as far as practicable flamed by tal fire of its small-arms. 7th. The eoverchlways are regarded as indispensable. Without them the communications between the main work and the axterior would not loe secure. Their embankments form, in a great majority of cases, the only masks for the scarpls of the work in their rear, and by affording advanced eover for the garrison, crive the means of anoying the enemy by sharpshonters, and rearding his approach low sorties in small parties. They shonh le thoroughly swopt by the tire of small-arms of all the works in ineir rear, and have their terreploins defiled from all commanding points liable to fall into the hame of the encmy. sth. The erlacis should be thoroughly swept by the tire of artillery
and small-arms of the main work and nutworks where a fire can he brought to bear upom it. Jior this purpose, the surfares should be soarranered that their inturacetions slatl not form hollows or ridges, which might he of alvantage to the conemy in atvancing tumon the work. gth. The tratille is an as. gential imdition to all fronts of attack. W"ithout it, the justern in the cartain would be not only insecore but absolutely unserviceable as soom as the rineny could in any mammer gain a position where lis fire conded be brought to bear on its outlet. It also enables the dofinse to furm rutronehments rasting either on the thanks or curtain of the rnceinto, that cannot be turucel by the ememy, und ulso ollore n sheltered placeof-arms, in the ditels, hotworn it and the curtain, which can be nsed for ass mbling troopes against the themy in the ditches. Its relief is so che termined that it shall not mask the fire of the lianks on the bastion-faces, whilst at the sume time it affords cover to the searp of the eurtain amel flanks. 10th. 'The demi-lune, when joroundy wranged, forms an important adidition to the defense. It sovers the eurtain and portions of the bastion-faces monr the shoukler angle from the lire of the enomy": artillory, and seeures the main outlet from the rincointe from surprise: The arrangemont of the demi-hmes places the lastions in strong reenterings, thas foreing the enemy to take them before he can attempt the assault of the enceinte ; and when the faces of the hastions prolonged fall within the demi-lumes, they mati them from miflaling views. These alvantages are the more decided as the demi-lone is the larger and more advanced. Its searp is taken 22.50 foet high to afford the necessary seenrity against an open ssambt. and to obtain a very ulleciont eout aross its fitce. 11th. The flemidmen redoubt adds to the strength of the demi-lume. Its arrangement with llanks addas directly to the strengtla of the eneminte, as the reverse fire from the flanks on the breach in the has-tion-face will fore the encmy to carry the redoubt before he can risk an assanti on the lureach. 12th. The redoubt of the re-entering place-of-arms, adds greatly to the strength and wecurity of the covered way. From its retireal position, it wan he ocenjied after the dimi-lune has fallen, provided there is an ellicient cut in the demi-hne face, and the redonbt has been detiled from the establishments of the enemy on the parapet of the demi-lune. It also, in connection with the demi-lume, covers that portion of the eurtain which is exposed through the diteh between the tenaille and enceinte thank. Its crest should mask as little as practieable the fire of the lastionface on the glacis in advance of it. 13th. The cut in the demi-lune face is an important addition, as it secures the redoubt of the re-entering place of arms from being turned. Its position should be so chosen that the face of the redoubt may be flanked throurl it by the fire from the demi-lune redrubt. A parapet is thrown up behind the eut to defend it after the enemy has gained possession of the clemi-lme salient. It should command the salient and its terre-plein should be defiled from the same point. 14th. The ditches should furvish the earth required for the embanknents. Their dimensions, therefore, will depeud upon the amonnt necessary for this purpose. When water can be used, it is more adrumtageons to increase the width at the expense of the depth. The ditches of the different works should afford no communieations through which an enemy might penctrate from one into that of another, and thus assault the works by the rear. 15th. The communications, in accordance with ons general principles already stated, should be of convenient dimensions, and of easy access; be swep)t by the fire of the works in their rear; be covered from the fire from all points that the enemy can occupy whilst they are needed; be seeure from surprise, and from being approached in the rear by the enemy: and not compromise the safety of any work through which they may lead.

A fortification ronstructerl in kreping with those brinciphes, posscosies the udvantage of having its ditcolas thoroughly fwrejt from tha inain work itrelf;
 appronclas on the salients we the cencerinte; and furnishiner it strong direat andeloresa lire mpon the site in alvance of the curtains aurl the fares of tho loas. tions. Thu principal thjections urgeral against this particular systan aro: ]. '1"hat its chiof chapacteristic, a perforet lanking disposition for the wnire lince of the soarjb, isattaimable onlymular cortain relations between the requisite reliof for a pormancont work amb the longthis of the exterior fiblu and courtain, which therefore restricts it in its application to fortifications of a permanent character. 2 . That, in oralre to secure it sutlicient length of tlank for an effertive llamking disposition, the angle hetwern the face of the bation and the restorior side, formed the diminialud anghe of the polygors, has to be mate so great as to dercrase consuiderably the space inclosed within the polygon, whilst the elovelomment of the
 the dirnetion urcessarily given to the fares from this canse throws their prolongritons in positions vary lavorable to the crection of all the entilating batteries against them. 4. That tha thathks, upon which the whole system is based, lie in positions in whichl, like Her fares, they can be not only ensily entilaterl, but are further exj osed to at revorse dire irom shot which maty [uss over the parajet of the faces as well as the: opposite tlank. 5. And that thase objeretions are much the stronger as the saliont angies of the polygon are smallor or as the number of the sidles is Alecreased. See Cormontaigne systrm of Fortificttion. Fortijterction, and Systeme of Fortificotion.

NOLAN RANGE-FINDER. The principal juarts of this instrmment are: 1. Two instrmments for meas. uriner angles. 2. One tape-line. \%. One reckoning cylinder. Facle of the two instrumonts consists of two telescopes, which lir crosswise one above the other under an angle of about $90^{\circ}$; the smatler of the two has a Iong arm, with a vornier at one encl; to the other a sector is fastened, whiels is clivined ujo into degrees. liy means of sh scruw, an anyle of ahout $20^{\circ}$ can be described by the n1pper or smaller twescope. The reckoning cylinder consists of a solid hody and two rotating rings. The lower rinor and the lower edge of the body are divided iuto 100 equal parts. On the upper ring are the logarithms of the tigures, and on the upper edge of the body are the logarithms of the signs, from $6^{\prime \prime}$ up to $2^{\circ} 1 \bar{b}^{\prime}$

To find the range, the instruments on their triporls are urranged at the end of the assumed lase-line, which is perpendicular to the range: or the instruments may be attached to the right and Jeft guns of a battery. The long telescopes are turned toward the olject whose distance is to be found: the smaller ones upon each other, and the eross-threads of each male to cover the cross-liaes on the leather dise throngh which each small telescope points. The coinciflence obtained by directing the longer teleseope on the object, the two angle's at the base are detcmined; the base-line being measured, one side and two angles of the triangle are obtained. With this data recourse is then had to the rockoning eylinder. The arrow marked "bund " is set on the fierure that corresponds with the distance between the instruments or base-line-say 34 finds: then set the arrow on the lower ring on the figure forresponding with the angle found through the instromentsay $18^{\circ}$; then find the figure for the number of degrees of the other angle-say 420 , nn the lower ring. Just above that is the figures 60 on the other division of the lower ring: coinciding with this on the lower edge of the upper ring is the distance, 1,320 yards. The bases used are convemiently taken fromi 30 is 40 yards for a range of 3,000 yards and over. See Pratt Range-finder.

NOLLE PROSEQUI.-An entry upon the records of a Court-Martial by the plantiff or the prosecutor,
declaring that the proceedings against the defendant shall be discontinued. a Fol.e Prosequi is not equivalent to an acquittal, but acts merely as a stay of proceedings, and the defendant is liable at any time to be re-indicted. It may be entered as to one of several defendants, and is often done so to allow his testimony to be introduced against the others It is generally in the discretion of the prosecuting offieer to enter a nolle prosequi, but in some cases leave must be obtained from the Court.

NOMBRIL POINT.-A term in lleralley. Sce Escutcherm.

NOMENCLATURE.--Technical designation. The term, as applied to military stores, signities a sys-- tematic classifieation of words pertaining to each article used in the service. For nomenelature of ordnance, ete. see appropriate headings in this work.

NON COMBATANT.-Any person eonnected with an army, or within the lines of an army, who does not make it his business to fight, as any one of the Medical Officers and their assistants, Chiplains, and others: also, any of the citizens of a place oecopied by an army. In the Eaglish Army, the duties of all non-combatants are restrictea to the Civil Department.

NON-COMMISSIONED OFFICERS. -Subordinate olficers of the General Statf, Regiments and Companles who are appointed, not by commission, but by the Secretary of War or Commanding Officers of Regiments: They are usually selected on account of good conduct or superior abilities. In the British Army, the Non-commissioned Officers constitute a numerous and very important class in the regimental system between the Commissioned Officers and the men. As the former are not permitted to mix with the private soldiers, lest familiarity should diminish the sway of absolute discipline, it is necessary to have an intermediate class to overlook the men in their barracks and at all times when off the parade. None are so suited for this duty as the best condueted of the men themselves, who are promoted by selection to Non-eommissioned rank. and hold many

Fite. 1.
privileges and powers umathanalbe by the privates. The Non-commissioned oflicers comprise the Ser-greants-Major, and all the Sorgents, the' Trumpeters, Drummers, and buglers, imil, in the life. Giards, and Royal Horse diuards only the Corporals. They can be reduced to the ramks by sentenee of a Court Martial, or by their Colonel Commandant; but not

loy a Lientenant Colonel nor by any Junior Officer. Non-commissioned Officers are entitled to quarters for their wives, or lodging mouey in lien of quarters. Accustomed themselves to obey, the Non-eommisinned Officers are admirable assistants in preserving discipline; reterans, to whon military life is a sceond nature, they are looked up to by their comrades as examples, to lead in battle or to teach in drill. The Non-commissioned Officers have a me'ss to themselves. In a battalion of infantry at home, there were, in 1874, 58 Non-commissioned Officurs to 520 rank and file; in India, 66 to 890: but the rank and file may be greatly angmented withoiat affecting the number of Non-commissioned Officers. In the whole British army (European) for the year 1874-75, there were 20,949 Non-eommissioned Oftieers. This rank is a necessity in all armies; in France, the Non-commissioned Ofticers are termed Sous-Officers; in Germany, Vinter-offizieren.

NON-EFFECTIVE. -The term applied to the portion of the personnel of the army or navy not on active service or in immediate realiness for active service. It thas comprises all ofticers on retired or half-pay, pensioners, and superannuated officers. In a force liable to frequent augmentations and re. Inctions, the non-effective charge must be considerable, and a large retirement is necessary, in order to rapid promotion. The great French war, also, with the reductions following it, bequeathed to the British an annual non-effective charge of several millions, which is not yet wholly expunged. In 1878-79, the non-effective charges were $£ 2,344.912$ for the the army, and $£ 1,887,5 \% 1$ for the navy, being upwards of 16 per cent on the gross cost of the two services.

NOOSE.-A running knot, which hinds the closer the more it is drawn. See Cordage, Knots, and Lasso.

NON-POLAR PROJECTLLES.-A designation appied to projectiles which do not keep the same end or aspeet foremost throughout their courses.
NORDENFELT MACHINE GUN.--In addition to the older mechanism devised by Mr. Nordenfelt for his well-known four-barrel 1 -inela gun, he has lately in-
with two of the 1 -inch ginns as representatives of the two systems.

The finur-barrel 1 -inch gun, Admiralty pattern.When the use of the torpedo boat berame general, it followed as a neerssary consergurnce that a momes of defence must be provided agninst these swift and destructive little vessels, and the Britisli Admirally searched for a weapon having suflicient penctrating power to damage the boiker of a torpedo boat at a distance of from 300 to 500 yards. Other essential conditions repuired were that the gun condd be fired so rapilly that it world almost certainly seore a sullecient mumber of hits on an approaching torpedo boat to insure its being disabled daring its run at full speed from the distunce maned, before it could rach the vessel attacked, or which could be fired so rapudly as to make it impossible for the boat to discharge a Whitchead torpedo at such a range that the missile would have uny reasomable chance of hitting its mark. After various competitions the Admiraty decided in favor of the Nordenfelt gim.
The four-barrel gun, shown in lig. 1, eonststs of a reetangular framework of wronght iron, the sides of whichare comected by three phates or transoms. The four barreds are placed side by side in the frame their muzale entla passing througis the front cross picees, while the breech ends are serewed into the middle transom. In the rear of the middle crosspiece is the action bloek, which is (ajable of move ment backwards and forwards. In front of this action block are four brecela phags, worresponding to the barrels. 'lhese are of steel piereed with a channel, in which a firing yin or striker moves fredy and they are furnished with an extractor on the right side. Behind each phonger is a hammer, with a projecting tenon, and behind the hammer is a strong spiral spring.
The trumions fit into a cross-lead pivoting on a cone, which is tirmiy fixed to the side or other part of the ship, where the gum is to be fired. The training is given by a hand-whech, which works a worm raiaring into a horizontal toot hed rack attached to the top of the cone. The elevation is produced by a wheel working a differemtial screw. One turn of the tratining whed gives $(\boldsymbol{d}$ degrees of truining. and one of the elevating wheel 12 degrees of ele vation or depress10n. The action of the mechanism is as follows. Supposing the discharge to have heen just completed. that the lock closes the breeeli end of the barrels, and is still secured in its place by the two bolts; 1. The handle begins to move to the rear ; the friction roller traverses the eoneentrie part of the action phate. and the action bloek remains steady. The spring ant the heet of the lever, acting on the trigger comb, drive it from right to lefi. 2. As the movement continues, the action lever acts on the locking-bolt plate, and withlraws the bolts leaving the action hock free. 3. At the moment these bolts are withdrawn the frietion rodler engages in the straight part of the action plate, and the action block begins to move back, drawing with it the breech plugs, whieh extract the cartridge cases 4 . When the brecch phags are clear the friction roller on the action block bears against the forked arm and so pushes the carrier to the left. At the same time the cocking eam begins to press against the tooth of the trigger eomb, carrying the latter to the right. The empty cartridge cases fall to the ground and are readily replaced by filled ones. The tenous of the hammers jass behind the teeth of the trigger comb, which is driven to the left by the spring, or by the coeking emm, as the action block moves forward. The handle moves forward with the following effects: 1. The friction roller on the action lever acts on the director, and moves the action block to the front. The action block, pressing against the fork, drives the carrier to the right, thus plaing the cartridges in line with the barrels. 2 . The action block adrances to the front and the spiral springs are eompressed by the ban-
mare, which are kept back by the tric, ree comb. The plungere push the cartridgeres into the barreds. ? When the cartridges atre quite home, the action block stops, and the stad on the action lever catases the closing can to drive the bolte into the holes in the gen frame, so that tho brewle closing is combplate: 4. The action lever now bregins to rarry the trigger combls to the right. Fanch hammer is revasect in turn from the tootly which reqains it, and the striker pertaining to it is driven forward in consequence. Tha action of the drill sect, is this: "The hand lever is brought up by it before it has aronpheded the back stroke, so that the hammers cammot pass hehind the trigerar combl. Thas, the gun is aot full rocked, because thesprings are sot rompressurd when the artion block mowes forwarl. The gen is sighted up to 1,800 yards, and the sight is so fitterd that it can be moved up and down loy mans of a rack and pinion. "Tlu" following are some of hae princtpal advantages elaimed for guns made on tho Nordenfelt systom: 'Thoy are stronerg und simpla, and the whole mechanism, as wedl as the springs and tiring pins, can be takron out without the use of any tools; they tire "ither single slonts or volleys of four Whots each an desired. The vartringer are fell to cach harrel from its own compartment, and imberendent of the others, so that if ome or more barrels berome damaged the fire can be comtinurd from the reman ing barrels. The whe is free from any prossible liability to jam, more 'specially after some of the improvements recently adopted by the Admiralty. In order to teat these improwements, 2,000 rounds were tired very rapidly without any hitch or jam whatever and most of the ressels at the bombardment of Alexamtria were armed with thece gans, tiring many thousands of rounds without any failure or dilliculty: Besides their principal objowt as defense against torpedo boats, these guns are enjocecially useful for firing against the gums and rittemen in the encmy's tops, cwen if protected by shields-against conning towers and gun-ports-and in Fegyt they have been recently used for firing through lac fortholes of forts, and mounted on railway trucks, they have served for long range tiring against tron)s. Tha caparity of the system for very raphid firing of steel projectiles of larger caliber than ritle bullets. makes it a very valuable wapon, ceven for purposes where. perhaps, strietly speaking, small shefls might he more suitable, because with the modern swift vestels at slow-firing machine gun has really very little chance against a quick-volley gun for purposes where the latter has sufficient penctrating power.

The double-barrel 1 -inch gun-This donble-barrel 1-incla gun, shown in Fig. 2, has been made for the purpose of being mounted on torpedo boats, where the four-barrel 1 -ineh gunhas been considered too heavy. The gun weighs only $1 \frac{1}{2}$ ewt., and its maval earriage and stand weigh together 165 pounds. Counting 345 pounds for 500 rounds of anmunition, 80 pounds for hoppers, and 132 pounds for the gunner, the weapon, with mounting ammunition and gumer complete, weighs 8 cwi.. which is well within the limits that can convenjently be carried on a torpedo boat. When not in artion, i.e, when the gunner and ammunition are below. the weight of gum and mounting is only one-third of the welight of the Nordenfelt four-barrel gun. It fires the same 1 -ineh steel-shot cartridges as the four-harrel gun, and with exactly the same initial veloeity of 1,500 feet. Its penetrating power is conseguently the same ats that of the four-barrel 1-ineln gun already describet. The nccuracy of fire is also the same when tiring vers slowly. and is somewbat higher when tiring more rapidly, becanse its volley of two shots causes less vibration to the weapon from accumulated reeoil than the volley of four shots. The rapidity of fire in proportion to the number of harrels is somewhat greater than that of the four-harrel gun because the stroke of the lever is shorter. The four-barrel gun fires ten volleys in eight to ten scconds, this two-barrel gun
fires ten volleys in six to seven seconds. This gun thus fires twenty shots in six to seven seconds, and it fires sixty shots in the half minute. As will be seem, the rectangular frame is made in one piece, with the center cross-har dovetailed into it, and the front cross-piece bolted on to its fore end. The barrels are screwed into the center cross-piece and pass through the front eross-piece. The action cam is cut into the cam plate and is driven by the friction roller on the action lever, which again is moved by the firing handle, keyed on to the axis pin. The breech plugs are made in one piece with the cam plate, and contain the firing pins. On the upper face of the cam plate are two studs which pull back the hammers. The action block is moved right and left by the rear end of the action lever. In the action block there are four grooves, two of which receive the breech plugs when drawn back, the other two contain the hammers and spirai springs, which are held within them by the back plate, which carries the pressure of the action lilock on to the rear of the frame itself. The cartridge receiver is moved right and left in front of the action block by two lugs or cams on the cam plate. The trigger comb is inserted into the action block, and is held by a spring; the sloping surfaces of the hammer studs move it to the one site to eatch the hammers, and the trigger comb is pushed against the side of the frame in order to release the bammers when the shots are to be fired, showing the parts separately. The operation of the mechanism of the Nordenfelt machine-gun may be described brietly as follows, supposing a discharge 10 have just taken place: 1. The firing handle travels to the rear,
supnorts the rear of the breech plugs, the back plate of the action block resting firmly against the rear of the frame. 4. The movement of the action block to the right pushes the trigger comb algainst the imer side of the frame until the hammers are released and the shots fired. The principal advantages claimed for this system, in addition to those mentioned above for the four-barrel gun, and which also apply to this weapon, are the great simplicity of the mechanism, in which the number of parts is 16 in all, or only 8 parts per harrel. The movements of the parts of the mechanism are all inside the frame, so that the action block does not move beyond the rear part of the frame. When the firing handle is held forward in the position in which the gun would travel, the entire mechanism is inclosed, so that not even the slots for the extraction of fired cartridge cases are open. This makes this system especially suitable for guns which are exposed to dust and storms of sand.

In the following article are described all the Nordenfelt volley-firing guns which are at present manufactured: No. 1. 1 mo-barrel $1 \frac{1}{2}$ inch gun-This type weighs $4 \frac{1}{2}$ cwt., and fires steel shot and shell weighing 22 ounces, with an initial velocity of 1,600 fect, giving a penetration of $1 \frac{1}{3}$ inches into an iron plate at 300 yards; the shells have 580 grains bursting charge. This gun is made to compete with revolving cannon of the same caliber which fire 16 ounce shells with 337 grains bursting charge and 1.390 feet initial velocity, giving a penetration of $1 \frac{1}{4}$ inches at 300 yards range. The rapidity of fire is about 40 shots per half minute. Both guus are about


Fig. 3.
while the friction roller moves along the eoncentric part of the action cam, the plongers remaining steady in ordar to give sufficient suppert to the cartridge case after the discharge. The rear end of the action lever during this movement brings the action hock over to the left and allows the spring to push the of trigger comb into position.
2. The continued rearwird movement cinses the cain plate to draw back the breech phags into their grooves in the action hlock, after which the lugs upon it move the cartridge receiver over to the left to take a fresh layer of cartridges. 3. Just hefore the rearward movment is completed thr hammers are caught log the studs on the rigeger comb. 'The forwart movement of the firing handle has the following ellect: 1. It forces the ligs on the cam plate agninst the cartrider receriver and pushes it to the right so that the curtribges are in a line with the chambers in the harrels. $\underset{\sim}{0}$. "The cam phate is driven forward, and the breceh phags enter the grooves in the cartridge recriver, pushing the cartridges into the chambers. 2. When the loreced plags have chosed the breech. the rear end of the action bever pusles the netion block over to the right until the hammers come in a line with the firing pins, when the action blerel fully:
the same weight; the Nordenfelt is, however, the more rapid of the two, as it tires a volley of two shots for every single shot fired by the revolving gun. No. 2. Thooluervel 11 inch gun. This weighs 3 cwt., and is made in the same way as No. 1 , ind for the same purposes. Its shell weighs $14 \frac{1}{8}$ ounces, with 460 grains bursting charge, but its greater initial velocity of 1.500 feet gives to this gun the same penetrating power as the $1 \frac{1}{3}$ inch revolving gun, with its rapidity of fire and slighty less weight of gum. No. 3. Tino-barrel 1-inch (hemy) gun.-Is made to No. 2 pattern, with exerptionally long barrels. The wright is 4 cwt , and it fires solid sicel shot of 9 ounces (shifls are not allowed for this weight of projectile). This stec] shot gave at I'ortsmonth in initial velocity of 2,009 feet per second and pernerated a 2 -inch solid iron phate at 300 yards range. This gm las been made for defense agrainst torpedo boats if in future any rountry should carry out the idea to arm such vulnerable parts as boiler and engines with 1 -inch strel plates. No. 4. Foner-barrel 1-inht (medium) yen-The type of this gun is illustrated by Fig. 1. It fires 8.9 -ommees solid steel bullets, with 1 , fi50 feet initial velocity, and gives greater penctration than the four-harrel 1 -inch English Admiatity gun; it
weights about $\frac{1}{2}$ ('wt. more, and is monnt to bre nerol for the same purposes and in the manm mannaras the ordinary four-barrel 1-inch gun No. 6 , by any Ninv that may draire fohate greater penctrating power at the cost of more expensive ammanition smol with out reducing the rapidity of fire. No. 5 . Fibeobutre l-inch gun- This gun is similar to No. 6 and liresthe same mommation; it consedrently has the same bencrating power but lires 20 per cent. נuore rapilly and weighs $\frac{1}{2}$ ewt. more than the four-barrel gran. No. 6. bimer-bared l-inch gutu-This gma has buen alrealy fully deseribed as reprosenting the Nordenfelt volley gras with more than three barrels. No. i. Tino-barorl 1-iuch gun-This gan hass also heren noticed ( Fig. 2), as representative of the patern of volley grans with legs than fonr barrels, and is prosposed for arming torpedo boats, as beine the lightest vollay gun mate with sullicient penotrating power for this purpose, the only other gun of less weight of any other system with sullicient penterating power, being the Nordenfelt single-barrel $1:$ incll slecll-gan. No. 8. Ticelve-barrel rifte-caliber gien; and No. 9. Ten-butrel rifle caliber gun fully illustrated in Fig. 3. These machinc-guns weigh abont $2 \frac{1}{2}$ ('wt. and 2 ewt., respectively, and tire 1,200 and 1,000 rounds per minute. They are constructed after the same pattern as the four-barrel Englisla gun, and are especially designed for maval as well as for land serviee, in eompetition with the tive-barred Gardner ginn. At the Shoeburyness trials in February, 1881 , the ten-barrul Nordenfelt did not act quite so well as it shondd have done in conselpence of it haviag been adjusted to ineorreet ammminition, lont after the extracting and feeding gear had been put in order, the gun worked to perfection at all the Porismouth trials in July, 1882. On that occasion it lired 3,000 ronnds in three minutes three seconds without any hitch or jam whatever, and it worked so ensily that the same man fired the whole of the 3,000 ronnds withont any relief ; immediately after the tiring ceased, the otticers ascertained that the gun was in perfect order and worked quite as easily as at the commencenment.

For land service they have been recommended more especially for two purposes. First, for acting on the thanks of artillery for the proteetion of artil lery against infantry tire. 'The enemy's infantry could never advance so close up to a battery of artillery as to force it to retire if the battery had on canch fank a teu-barrel gun firing rifle cartridges, and cavalry would never clarge, or cond never reach a buttery protected thus by two gnins capuhe of a very rapid fire contimuonsly poured ont of it, white the gunner who aims the gun would all the time follow the movements of the advancing cavalry. Thoternbarrel gins are mounted on an ordinary light field carriage with its limber which holds 4,000 rounds (Fig. 3). Four horses easily manage the gun and limber, three men ride on the limber, and the Captain of the gun is separately mount od. The second purpose for which this type is adapted is especialiy for position defense. Wherever machine-guns ean be used in such positions that there is little or modifticulty to provide ammunition, and where it is not required to lift the gun about too of ten, the ten-harrel Nordenfelt is to bereeommended. Even with its great rapidity of fire it does not require any greater number of gunners to serve it than the five-barrel guns.

It luas been stated that a machine-gun wistes ammunition, but this is not the cusce, beenuse it must score a mueh greater pereentage of hits thanh has been recorded in recent wars from ritle fire. This is quite natural, because the gran has no werves and is not fired from the unsteady shonder of a man panting with fatigue or excitement -and a soldior would commence to fire his rifle at long range (where he wastes his shots) for fear that he might not he able to stop in time an enemy who outnumbers him. If he has a gun that tires 1,000 rounds a minnte, he
would krop eon and aim rarrfolly, wroll knowing


 are ench madie to the pattorn of the four-larrel ginn. will such allorations in the jumer mechanion ats arto



 minolo.s os soromis withonl any hilech or jan ; that same man liring tha. whole of the 3,000 romals withwut redicef. It has also lireol at 30 dagrees aldevation, and at Bo degreas deprosision, the fording and extracelion giviner purfect satisfaction. Fer the very rapial movernenfs of momeded infantry, and to save timu in dismonnting the ghm fortiring, and momoting it ighain When it lans to be moved, a very light carriage las been made at thas surgestion of 1 oorl Charles frores ford, on four whects, to be drawn by two horseg Irivan by a man sitting on his lox on the two front wherds. Tha gran is noonated at the rear of the rarriage, and is tired from it withont taking ont the horses; 3,000 rounds of ammunition are carrierl on the same carriage, 48 wedl as the gomer who tirns the gun, ind a second man who lonks after and supplies the ammunition. The remainder of the sarvice for the gun are mounted on spare borses, harnessed so as to rephace fuickly any of the driven horses that become disabled. The carriage itself is so light that it carries a shied to protect the gum and the gunners, and also to proteet bhe horsos arrainet dircet lire from the enemy's rifles curing the time the gun is fircel. This shiedid ('nables the gun to advanec within shorter distance of the enemy's rifle fire than could otherwise lee done, and allows the gan to be kept at shorter and more effective ranges when retirint before infuntry. The rascontial idea of this mode of using the gun is of course to make all possible use of its excecdingly rapid movements, to rush forward to a comparatively close range against infantry or artillery, taking the risk of being disabled while galloping forwards (much in the same way as the men in a torpedo boat take the risk when approaehing a vessel). In infantry service the gan is mounted on its own limber (Fig. 4), from whisit it is fired; the limber, as represented in the drawing. is on two wheels, the pole acting as a trail when the gun is to be fired. In this case, as well as in the previous one, the gun can betrained nearly all round by means of a traversing serew without shifting the position of the carriage. When mounted for infantry on the two-wheel limber earriage it can be served with six men with drag-ropes. If desirable, there can be four men dragging, the other two ilcting as reliefs when changing the men at the rofess, or as spare men if any of the others are disabled. With the Captain of the gin there would thus le ouly seven men required. The five-barrel gun can also be used for mountain service with advantige, the gran and the trail being quite liglst enough to te carricol each on a mule, a third mule taking the whechs and aste. aud a fourth the ammunition, hoppers, and implements. with other mules for spare ammuntion the only difference from the three-barrel gun being that this would require an additional mule for the exn and carriage and more ammmnition. ()n the otlar hand its fire would be more effective and only the same number of men are required to surve it. It could also be placed in an ammmition wagon for tha use of infantry, though only four fivebarrel whus combl be carriod, if closely packed, by the wagon within the same wejgbt as six tive-barrel guns. No. 12. 7hrec-barvel rifte-caliber gun : and No. 13. Tico-burrel rithe-caliber gien. These ine made to the pattern of the two-barrel rolley gun. They weigh respectively fon pounds and 40 pounds, and fire at the rate of 400 and 300 romeds per minute. For maval service they are not used at present, beeause the tive-barrel Nordenfelt isquitelight enough for all na-
val purposes, but for land service they are very use. ful, in consequence of the ir lightness and simplicity. The three-barrel gun does not iveigh more than the Gardner one-birrel, and the Fordenfelt three-barrat gunconsists of thirty-five pieces eompared to thirtythree pieces in the Gariner one-barrel., All these light Nordenfelt guns are, like those of larger ealibers. made almost entirely of best wrought steel instead of the sun-metal so freely used in some other types of machine-guns. In order not to be exposed to rust. these light Nordeufelt steel gnos are cardully and completely covered over in a galvanic bath with a coating of copper which protects the guns as well as all the varions parts of the mechanism except the aetual wearing surfaces. These types are designed especially for the following purposes : 1. For choalry. - The gun is so lightand so convenient in shape that it can be earried on a led horse at the same speed as the eavalry advances withont disabling the horse. One led horse would then be required for the gun and implements, one led horse for the stand from whiclı it is to be fired when the gun is dismonnted, and one led horse for the cartridge hoppers or feed eases filled with ammunition. Other forses or haggage wagons would carry the extril supply of ammanition. 2. Fur mounte n servićA gun mule which can earry 2 ewt. including sad-
-exeept, perhaps, as a wall piece-when it is proved that a wa a tliree-barrel gumean be made light cenough to be carriod by a man on his shonlder. A General would probubly not submit to the expense and inconvenience of a machine-gun equipment and service of men and mules for gun and ammunition, when the efticieney of the gun is entirely dependent on one single ritte harrel. Sue Marchine-gun.

NORMAL PROFILE. - Profile which would be construeted for a work located upon a level site, and when there is time to build it. It is evident that great variations mast occur, inflnenced largely by the kind of earth and the surrounding circumstances at the time of the construction. Slopes which are practicable in one kind of eartl will not retain their shapes in other kinds. Parapets placed on sites commantling all ground in eommon range need not be so high as those on lower ground commanded by neighboring heights. The prineiples laid down and the reasoms expressed for the normal protile apply equally well to all its variations. A consideration of the following principles will leal to the construetion of a strong protile which is essential to a vigorous defense. Men of the greatest ordinary stature, in bringiner their moskets to an aim, do not fire at a higher level than about five feet; therefore any mass of this height in front of them will just inter-


Fig. 4.
dle. would carry the gun and stand. A seeond cept their fire: but this mass would not shelter a
mule wonlel carry the wheels, axle, and fartridge hoppers filled, and other mules would carry the extrasupply of ammmition wanted for the gun. 3. For infintry.-Six of these gums, with their stands, wheels and loppers can be stowed away in one baggage wagon or extra ammunition wagon, and follow the ammunition train which is nearest to the front. Whencerer comparatively small force of infantry is hardpressed.or when it has to protect a threatened point, a larger eantonment, or temporary intrenchment, the six guns can be lifterl off the wigon and he ready to eonmence fire in a few minutes. Two men ran dram pach gun on its wheref for considerible disances, and one man can curry the ghn with two men carrying the stand, if sueh diblieult ground is met with that such a light gun canoot convoniently be dragged over on its wherts. No. 14. Single-berreb rifle-catiter gun.-This grm is made with a different muchanism from the two patterns above named. It weighs 13 pounds. and it tires at the rate of 180 roumds per minute; it has oftern fired sucerssive spurts of 30 shots each in rivht to tun seeoruls. This gin has been made in oreler to show that a single barrel machine-gnon ned mot be more than 4 pounds heavier than an orlinary rible: at the same time no single-barrel rille-caliber would really be used in war
cept their fire: but this mass would not shelter a the tallest men usually found in the ranks, the interior crest shond be at least six feet six inches above the terre-plein. The command must then be regulated by these two facts, and this principle may be laid down. The command of a field work over the groumal occupied by the assailant, should be at least five feet; and six feet six inches over that occupied by the assailed. In following this ru!e for the command, we deprive the assailant of a planging fire upon the parade ; but as ar breast-height of five fret is too higl for men of ordinary stature to fire over it and grive their pieces any sansible depression, as is very uften requisite, it would be necessary to throw up a sutlicient banquette for this purpose behind the parapet, which would add to the time and labor of constructing the work. On this account it is best to give tha parapet only the height to atmit effective firing over it, which is about four and a quarter feet. But this minimum command would give thic assailed only a slight advantare, as the men, when on the hanquotte, would be still mueh exposend; and in an assumbt the height of the paripet would present an ineonsiderable obstacle. These dufucts of low works have led Engineers to adopt eight jeet as the least height of parapet which
will admit of any respectable defensp. '1")ace greateat height has been tixed at tineloe feet, owing to the difflculty of throwing up a work will the ordinary means ut hand, which are nsually only the piek und shovel.

The: thickness of the purapot, which is alwaysestimated hy the horizontal distance belween the interior and cxterior erests, is regiblated by the muterial used for the parajet ; the kinl of nthater ; and ite prosbable duration. The rule adogted for this is to add to the depth of penetration of the jrojoretile, given by experimont, one-half for this thickness. In following this rule there will always be a hhickness of earth between the extreme pernotration of aprojectile, at any point below the extoriorerest and theintertor of the work, greater than one-third the: thekness of the parapet. The superior slope is arrimged to defend the crest of the counterscarj); to rthect which the fire should not strike lelow the ('rest, nor pass more than three feet over it; otherwise, cither the eounterscarp would be damaged, or the assailed by stonping when near the arest, would find at sheder. 'J'he inclinstion of the superior slope, however, shomidnot be greater than one-fourth, nor hess than ons-sixth. If grositer than one-fourth, it would make the portion of the parapet, about the interior crest, ton worak; and if loss than one-sixth the gromal directly in front of the work would not le so well defenderd: moreoves, as artiliary cannot be tired at agreater deporession than one-sixth, withomt injuring the eurriage, this inclination of the superior slope serves as a check in rapid tiring.

Tho exterior sioje is the sume that the earth nuturably avsmemes. Any means used to make it slepper Would be injurious; beatas? they would be soon destroyed by the enemy's hire, and the carth giving way, the necessary thickness of the parapet would be liminished.
lhe inturior sioje receives a base equed to one-third its feight. This is a result of experience, whinh has shown that it is the most convenient for the solelier in leaning forward to debiver his tire over a parapet.

The trand of the banquette is pheced four jeet three inches belenn the interior erest ; this will almit men of the lowest ordinary stature, to tire conveniently over the parajnet. Its width is ticu jett, jur el definse arith one renk; and jour fict jur tino or three runkar; because the third rank does not tire, and is therefore placed on the banquette slope, the buse of which is twice the allitude, to render the ascent convenient. When the tread of the batupette is very high, aml particuiarly in enclosed works, where intorior space is wanted, stejs may be substitutad for a slope.

The berm is a diefere in tield works, becanse it yicids the enemy a foothold to breathe a moment, before attempting lo ascend the exterior slope. It is useful in the construction of the work for the workmen to stand on; and it throws the wergit of the parapet back on the searp, which might be crnshed out by this pressure. In firm soils, the berm may be ouly from eighteen inches to two feet wide; in other cases, as in marsly soils, it may require " width of six jeet. In all cases. it shonlel he sixe feet betore the exterior crest-to preveat the enemy, shonld be form on it, from firing on the truops on the bampurtte.

The ditca should be regulated to furnish the earth for the parapet. To delermine its dimensions, the following points require attention: its depth shotsid not be less than six fert, nor its width less than twelve feet, to present a respoctable obstacle to the enemy. It cannot, with comvenience, be made deeper than iwelve feet: ind its greatest width is regnlated by the inclination of the superior slopee, which, produced, shonld not pass below the erest of the counterncarp. The slopes of the scarpand eountersarp will depend on the pature of the soil, amd the action on it of frost and rain. The scarp is dess steep than the connterscarp, because it has tosustain the weight of the parapet. It is astatl to give the slope of the scarp a hase equal to two-thirds of the base of the
natural slope of a mound of frostr rarth whose altitode: is rgana to the deptha of the ditch; the lase of the
 base. In excatvating the diteh it will Jre fommert that more rurth will le furnishod at the malionts than is
 ings will not always farnish conomerh. On this acecomot, the width of the ditela shonld not be uniform, but narrower at the sutionts than the roeroterimgs. 'Tho sulients of the parapet on lori\%ontal sitos, are sombetmes matlo higher than thr roventorings, at granlual slope being given to the interior arest froms the: salions to the re-cntorines, with a virw to cover low ter the ("rro-plain, towarils these last points, from the phomere of an rniliating fire on the faces. The eflect of this, low wever, is but trilling.ats the eleseronding plange of the projectile is the greator, as the siab lient is highor over whiols it passes. ()n suclls sites, therefore, the profile of the paraject is uswally maiform throughout. Sec frield fiortificution and D'rofile ing.

NORTON LIQUID FIRE.-In the elaractor of its flecets, this rivals all that has lowern reoorded of the oid ciratefire. The reomposition here used ronsists of a clsconical combination of sur] phar. (arlon, amd plosphorus. The composition is fonceloseol in a shadl, and is instantly ignited npon the sholl striking any object.

NORWEGIAN ARMY.-By the terms of the law's of 1866 and $18 \% 6$, the army of Norway is componad of Troops of the Line, the Military 'rain, Ihe Wititia or Landevacrn, the Civic Guards, and the lamistorm, or tinal war levy, In 1 sis the Troers of the Line numbered 12,000 men and 750 otlisers. All young men above twonty-one vears of age ar: lialofe to serve, with the exerption of the inhabitants of the three northern amts of the kingdom. The only fortitied spots are Frodericksteen at Fredrrickshald, Frodurickstad, Akershums, Bergenshuns, Munkholmi, and Vardohmus.

NOSE-BAG.-A hag of stont canvas with a leathore bettom, und having straps at its upper, open end. by


Which it may he fastened to a borse's head mite he is eating the containcol proveruler. It is gencrally nsed for feeding the grain ont of the stables. Thi drawing represents it mose-bag jroperly provided with means for ventiation. Horses sulfar murh when their noses are confined in a close nose-bag, where the jaws camot be opened without compressing the nostrils and preventing the ingress of suthicient air.
NOSE-BAND. -The lower band of a military loridle, passing over in front and attaclacd to the clucekstraps.
NOTABLES. - The name formerly given in France to persons of distinction and political importance. Is the States General were ineonvenient to the despotism of the Nonarchy. the Kings of the IJouse uf Falois mopted the expedient of calling in their stad Asxemblies of the Notables, the time of calling them and the composition of them being entirely dipendent on the pleasure of the Crown, by which also their whole procedings were guided, so that they generally consented at once to whaterer was jroposeld to them. They showed a particular readiness in granting subsidies, to which the themselves, as
belonging to the privileged classes, were not to contribute. An Assembly of Notables. convened in Paris by Richetien in 1626, and presided over by Gaston, brother of Louis V111., consisted of only 33 members. For more than a century aud a half even this poor acknowledgment of any other mind or will in the nation than that of the Sovereign ceased to be matie; but when the state of the finanets brought the monarchy into difficulties and perils, Louis XVl., at the instigation of the Minister Calonne, had recourse again to an Assembly of Notables, which mot Feb. 22, 1787, and was dissolved May 25. It consisted of 137 members, among whom were 7 Princes of the Blood, ? Dukes and Peers. 8 Marshals, 11 Arehbishops, 22 Nobles, 8 Councilors of State, 4 Masters of Requests, 37 Judges, 12 Deputies of the Pays d'Etats. the Civil Lieutenant, and 25 persons belonging to the Magistracy of different cilies of the kingdom. Calonne's representations of the state of the finances indnced the Notables to adopt many reforms in the matter of taxation; but no sooner was the assembly dissolved, than many of them joined the Parliaments in opposition to resolutions adverse to their private interests, so that the King was compelled to determine upon assembling the States Gencral. Necker, who had neanwhile been phaced at the head of affairs, assembled the Notables again. Nov. 6, 1788, to consult them eoncerning the form in which the States Genetal should be convened. The Notables declared against every innovation, and so compelled the court to half measures which helped to prepare the way for the Revolution. The Parliament of the new principality of Bulgaria is spoken of as the Assembly of the Notables.

NOTE.-A brief writing intended to assist the memory. Members of Courts-Martial sometimes take notes. They are frequently necessary to enable i member to bring the whole body of evidence into a connected view, where the case is complex.

NOT GOILTY. -The form of verdict in a criminal prosecution, and also in some civil actions, when the Court find in favor of thedefendant or accused party. The verdict is conclusive, and the accused cannot, in criminal cases, be tried a second time.

NOT PROVEN. - A form of verdict used in eriminal prosecutions when the Court thinks there is some foundation for the charge, but the evidence is not strong enough against the prisoner to warrant a verdiet of guilty. In such a case, a verdict of " Not lroven" is substantially a verdict of acquittal. The prisoner cannot be tried afterwird, even though new and conclusive evidence come to light after the verdiet.

NOYADES. - The exicution of political offenders in great numbers at once by drowning them, one of the atrocities of the French Revolution, practiced at Nantes by Carrier, the deputy of the Convention. This mode of execution was also called.in cruet sport, lrotical Depurtation.

NOYAN.-1. The whole of the vacant space or bure of a cannon, under which are compretended the diameter of the month, the vacant eylinder, the breech, and the verut. 2. With respect to bombs. grenaders, ibul hollow batls, that which is called Voyun consists of a ghohular piace of earth, upon which the eover is eatst. 'rlemetal is pourced in between the cover and the Noyan, after which the Noyan,oreore, is broken and the carth takern out.

NUGGAR. iterm in the Enst Imlis's for a fort.
NUMEROS.- liound pieces of hrass or other metal, which wore numbered and nsed in the ofd French service in the detail of guards.

NUNCIO. - The name giveri to the shperior erade of the Ambassadors semt by the lope to Forcien Courts, who are ald calleql by the gencral name of legate. A Nancio is an Ambassador to the Court of an Emperor or King. The Ambassader to a Ropublir, or to the Court of a Minor Sovereign, is chlled Intermuncio.

NONCUPATIVE WILLS.- A nuncupative will, so termed from naming an exceutor ly word of mouth, is a verbal testamentary declaration or disposition. By the common law, it was as valid in respeet to personal "state as a written testament. A will could not only be made by word of mouth, but the most soleun instrument im writing might be revoked orally. In a rude and uncultivated age, to lave rectuiriod a written will would have been a great hardshio, but with the growtly and progress of letters, the reason for permitting a verbal testament diminished in force, until an elfort to establish snch a will by means of gross fraud and perjury gave rise to the provisions of the Statute of Frands. Nuncupative wills, not being regulated by statute as to their mode of eelebration or execution, the singlequestion for the judgment of the Court is, whether the nuncupation was made by a person entitled to that privilege. The restrictions of the Statute of Frands were not applied to wills made by "any soldier being in actual military service, or aby mariner or seaman being at sea." By the revised stautes of New York it was provided that nuneupative wills should not be valid, "unless made by a soldier white in actual military service, or by a mariner while at sea." The terms of the exception in the statute are briefly stated as follows :"Any soldier being in actual military service, or any mariner or seaman being at sea." The pliraseology is slightly different in these statutes; but the rule is substantially the same in all-that the nunenpation is only valid when made by a soldier in actual military service, or a mariner at sea, at the time of the testamentary act. It is not enongh to be a soldier or a sailor, but there must be actual service. The military testament was first conceded by Julius Cosar to all soldiers, but it was subsequently linited by Justinian to those engaged in an expedition-sulis qui in expeditionibus occrpati sunt. Tle exception was borrowed with the rule from the civil law, and the courts have invariably adhered to the principle that there cannot be actual warfare and the soldier not be engaged in expeditione. So also the nnneupation of a mariner to be valid must be made at sea. It is sometimes diftieult to determine when the mariner is to be considered at sea. For eximple. Lord Hugh Seymour, the Admiral of the station at Jamaica, made a codicil by nuncupation whilestaying at the house on shore appropriated to the ailmiral of the station. The codicil was rejected on the ground that le only visited bis ship oceasionally, while his family establishment and place of abode were on laud at the ofticial residenec. But when a mariner belonging to a vessel lying in the harbor of Buenos Ayres, met with an aceident when on shore by leave, made a moneupative will, and died there, probate was granted for the reason that he was only easually absent from his ship. The will of a shipmastermade off Otaleite has also been allowed. The principle upon which the privitere of nuncupation is conceded applies to all persons of whatsoever elasses engaged in the marine service. whatover may be their special duty or their oecupation on the vesset. As in the arniy, the term " soldier"embraces every grade, from the private to the highest officer, aml inchudes the gunner, the surgeon, or the general; so in the marine, the term "mariner" applies to avery person in the naval or mercantile service, from the common seaman to the eaptain or admiral. It is not timited or restricted to any speecial occupation on shipboard, but a purser, or any other person whose particular rucation does not retate to the satiling of the ressel, possesses the same right as the salor. I cook is cortainly as mueh a necessary part of the effective sorvice of a vessed as the puraer or the saibor : and there would seem to be no reason why he should be excluded from the adiantage of a rule designed for the benetit of men engaged in the anarine, without raference to the particutar branch of duty performodin the vessel. As well beenuse the wills of soldiers and mariners were excepted from
the operations of the provisions of the Statute of Frauds, as for the reasoun and groumd of the exception, and the pecoliar character of the military temtament, it was never hedd requisite that thair nonacopations shonled be mate during that last sioknoess. Nor has any particular mode leen preseribeld in resperet to the mamer of making the testament. The very essence of the privilege, however, consists in the absente of atl ceremonias as legal reanisites-or, as Merlin states the propensition, "their form was properly to have no form." lt is true the lammon law prescribes two witnessers; but this, howevor, did not relate to the ensence of the acet, but only to the proof. In respect to evidences, we do not follow tho divil or fanonlaw; no particular number of witnessors is repuired to varify an ate judicially, and all the court demands is to be satistied by sulleient evidence as to the substance of the last fostamontary reyuest or declaration of the deceased. This ascrertained. the law holds it stacred, and carries it into "flect withas mish favor and regard as wonld be paid to the most formal instrument excented with "very leral solem. nity. And so, according to mamarous dereisions, made in Grat Britain, quoted by Irendergast, "whenever a military oldicer on full paty makes an informal will its vilidity can only be supported by showing the testator to have been on actual military service at the time the will was mate. Sad the result of the decisions appears to be, that an othecer serving with his regiment, or in command of trongs in garrison or quarters, cither in the United Kingdom or the Colonies, is not deemed onantual military service. To satisfy themeaning of the Aet of Parliament in that respect, he must be on an expedition, or on some duty associated with positive danger."

NURSE. - I moram whose whole hasinase is lo atterad the miok in lanspital. In tho C'niteot Sitators nervire, marses are dotailed in pest lonasitals from ther compania* who aro surving att tha pest. Orilinarily one norse is allowed torvory ton jersons siok
 Charit"" asually carry thair noiscion of moroy into Hes: mblitary loospulads. D'rotestant Vingland having now such organization to fall batek upon, the sobldars have bern dependont on the reginar male hosjutad nllomdants for their care duriner sieknoses, or wholl sulforing from wounds. Thas ('rimoin rannuign, however, disclosed so melanelooly a [nicture of the want of wonmen's co-operation, that a band of self sarriticingr ladies, lacadrd by Jiss Noplotingate, proze cected to T'arkry, ant ware soon acknowledget its thessengers of health and life by the unfortumate wounded. The example thas sot has not befon without effect. In the Franco-German war of $18 \% 0$ 7! lady nurses in larere nombers and of varions nations ministered in all Hwe military hospitals, and the like took place again duriner the Russo-'Jurkish war of $18 \% 7.78$.

NUTHALL RIFLE.-In the ordinary morie of grooving rilles, slarp angles are left between the groove and "land" (those parts of the smooth-bort" left in their original state after the process of grooving has hen completed). These create great fraction with the projectile, both in loading and discharging. Major Nuthall removes these objections by rounding off the "lunds" into the grooves, that is, making them a series of convex and covcave curves, the bore assuming a beantifnl apparance to the eve, for the smoothouss and evomess with which the lands and grooves blend into cacle other.

OAKUM. - A tangled mass of tarred hempen fibers, made from ohl ropue by untwisting the strands and rubbing the fibers free from each other. Its principal use is in canlking the seams botween planks, the space round rivets, bolts, cfe.. for the purpose of preventing water frons penetrating. It is much used in artillery for packing shot and shell, wiping the vents of guns after firing, reaning elewating screws and implements, and in making washing sponges.

OATHS. - The takimer of the oath of tidelity to (rovernment and obsedience to superior Otlicers, was, among ancient armies, a very solcmmatiair. A whole corps took the outh together, sometimes an entire arniy. In modern times, when so many othur checks are used for maintaining discipline, the oath lass become little more than a form. In the linited Kingdom a recruit enlisting into the army or militia, or a volunteer enrolling himedf, swears to be fatliful to the Sovereign, and obediunt to all or any of his Superior Otlicers; also to divnlge any facts coming to his knowledge which might affect the safety of his Sovereign, or the stability of Hat Sovereign's Government. The Members of a Court-Martial take oath to try the cases brought before them justly according to the evidence, to keep secret the tinding motil soutirmed by the proper anthority and to keep secret alyays the opiniuns given by the members individually. The only othar military oath is the comown oath of a witness before a Court-Martial to tell thi truth the whole truth, avd vothing but the truth. See Irticles of ll cer.

OBEDIENCE.-Submission to the lawful orders of a Superior. Two guestions arise under this article': Who is to judge of the legality of the command, ami
who may constitute a Supfrion Officer? It is evident that if ill otlleers and soldiers are to judge whon an ordur is berfiul and when not, the captions and the mutinons would never be at a loss for a plea to justify their insuborlination, It is, therefore, an esfablished principle, that, unless an order is so manifestly against law that the question does not adnit of dispute, the order mast first be obeyed by the $1 \mathrm{n}-$ ferior, and he must subsequently seek such redress against his superior as the laws allow. If the Infurior disputes the legality before obedience, error of judgment is never admitted in mitigation of the offense. The redress now afforded by the laws to Inferiors is not. however, sutlejem: for dombefal questions of construction of Statutes, instead of being referred to the Federal Conrts of 1 aw for their true exposition. have received variable expositions from the Executise, andleft the army in an unfortunate state of uncertainty as to the true meaning of certain laws, and this incertainty has been mosit unfavorable to diseipline. Again, while the bunishment of death is meted to olleers and soldiers for disobedience of larfill commands, the law does not. protert, oflicers and soldiers for obeving unlarful commands. Instances have occorred in our comntry, where olticers and suldiers have been suljeeted to vexutions prosecutions, simply for obeying orders. according to their oath of office. Would it not be just if the law. insteat of repuiring oflicers avd suldiers thus nieely to steor between =icylla and Charybdis. should hold the superior who gives an illegad order, alone resuon-ible for its execution? By sine perior ofticor in the Irticles of HF ar, is meant an ofticer who has the right to command his inferiors in
the military hierarchy. The word superior, therefore, embraces, within their appropriate circle of of command. Commanding Generals, Superior Regimental and Company Officers, Superior Otticers of Corps or Departments, and the Commanding Officer on guards, marches, or in quarters of whatever corps of the line of the army, marine eorps or militia authorized to command the whole, whenever different corps come together. This construction of the words "officers appointed over me, aecording to to the Rules and Articles of War," is manifest by an attentive examination of those articles. See for example, Art. 24, which gives authority to "all officers of what condition soever to part and quell all quarrels, frays, and disorders, thongh the persoms. conerned should belung to another regiment, troop, or company." Here it is seen that the ordinary subordination, by grades, is fonnd only in the same " regiment, troop, or compray." The power to part and quell quarrels, is, however, made an exceptional case. in favor not only of officers of different tegiments, but the power is even extended to those of an " inferior rank." In a company, regiment,or corps, subordination by grades is eatablished by the terms of the commission lield in such regiment or corps. So, also, where officers holl commissions in the army at Jarge, their right to command when on dnty is co-extensive with their commissions. Within regiments and corps the muster-roll, then, at once determines the question of superiorty of ofticers on duty.

OBERER. - One of the three parts of which the enciente is formed, in the German system of fortification.

OBJECT-GLASS.-The glass in a telescope or microscope, which is placed at the end of the tube nearest the olijeet, and first receives the rays of light reflected from it. The oftice of the object-glavs will be clearly understood by an examination of the common operaglass, shown in the drawing. This is a double tele-

scope, constructed optically on the same principle as the telescope invented hy Galileo, and is used for looking at objects that require to be clearly seen rather than greatly magnified-such as scenery and performances in theaters and public halls. Each tube contains a convex achromatic object lens and a double concave eye hons, which are placed at nealy the difference of their foeal length apart. Thus, if the object-glass is five incher focus, and the eye-piece one inch negative focus, the length of the bodies will be abont four inches, and the power will be nearly tive times- that is, the objects looked at through the opera-rlass will be seen as distinctly as they would be with the naked eye if brought four tirnes nower theohserver. Opera-glassis, are short and light, and Can be alasily managed with ond bamal they have small magnifying power, say from two to fomr times. "lole two objeret-glasses or large lenses are the most important ones, and upon their perfection the fuality of the opera-glass depernds,

With the opera-glass a low magnifying power and farge and char fiedd of view are the great objects to be desired, on areonat of the comparative nearness of the ohjocts looked at ; but when tho objocts arone or more miles distant, power becomes a more
important quality than field of view. To obtain a greater magnifying power with glasses constrncted upon the principle of the opera-glass, the distance between the object-glasses and cye-pieces must be increased, and the greater that distance the ligher the power. In order to kerp up fair proportion of light with the increase of power, the oljeect-glasses must increase in diameter. Such glasses, as they are only intended for ontloor use, are called Field or Marine-glasses, have shadestoextend beyond the object-glasses to keep off the sin or rain, and are made throughont very substantially, in order to bear romeh handling of field or sea service. 'They are put up in strong leather cases, with strap to sling over the shoulder. The power of tield-glasses varies from five to eight times, and their clearness and efticieney depend ripen the accuracy of finish of the objectglasses, and their durability to the strength and good workmanship of the body. See Spy-glass.

OBJECTIVE POINT. - The point to be reached or gained by an army in executing a movement, has been termed the objective point. There are two classes of objectives, viz: natural and arcidental. The term geographicab is frequently used to designate the first of these. A natural objectice may be an important position, strong naturally, or made so by fortifications, the possession of which gives control over a tract of country, and furnishes good point of support or good lines of defense for other military operations. Or, it may be a great bnsiness center, or a capital of the country, the possession of which has the effect of discouraging the enemy and making lim willing to sue for peace. Accidental objectives are dependent upon the military operations which have for their object the destruction or disintegration of the enemy's forces. These objectives are sometimes called "objective points of" maneuter"." The position of the enemy determines their location. Thus, if the enemy's forces are greatly scattered, or his front much extended, the central point of his position would be a good objective point, since the possession of it would divide the 'nemy's forees, and allow his detachments to beattacked separately. Or, if the enemy has his forees well supported, a good objective would be on that flank, the possession of which woukd allow his communications with nis base to be threatened. It is well to remark that the term "point" used in this connection is not to be considered merely in its geometrical sense, lut is used to apply to the object which the army desires to attain, whether it be a position, a place, a line, or even al section of country. See Base of Operations and Linu of operations.

OBLAT.-A disabled soldier formerly maintained by abbeys.

OBLIQUE.-This term, in tactics, indicates a direction which is neither parallel nor perpendicular to the front, but more or less diagonal. It is a command of warning in the tactics for the movement. It is used when reforring to diagonal alignments, athacks, orders of battle, squares against cavalry, changes of front, fires, etc. The oblique step is a step or movement in marching, in which the soldier, while advancing, gradually takes ground to the right or left at an angle of about $25^{\circ}$. It is not now practiced.

As soon as recruits ar* well established in the principles of the direet march, they should be exercised in marching obliquely. The squad marching in line, the Instruetor commands: 1. Right (or left) oblique, 2. March. At the command march, eacli man makes a half face to the right, and the'n marches straight in the new diruction. As the men no lonerer touch ellows, they ghance along the shoulders of the nearest liles, toward the side to which they are oblicuing, and regulate their steps so that their shoulders are alway behind those of the next man on that side, and that his head conceals the heads of the other men in the rank. The men presurve the same langth of pace and the same degrece of obliguity, the line of
the rank remaining paraldel to its original position. "To resume de origimal direction, the instructor commamls: 1. Formarel, D. Mancen. At the erommand moreh, "ach man makers a half fare to the loft in marching, and then moses struight to the fromt. If the seguad be at a halt, the onon half face to the right at the command right oblique, and step of at the commamd marek. If hallod while obliguing, they will. after halting, face to the fromt withent further comroand. In the oblique mareh in line, the grared is alway on the side toward which the oblicpue is made, without any indication to that effert lemen given; and, when the direct marel is resumed, the guide is, equally wiflout inclication, on the side where it was previous to the obligue. This rule is general. The stuat in columon of tiles obligues by the sham commmands and mems as when in line, the loading file being the guide.

OBLIQUE EMBRASURE.-A direct embranare is one in which the directrix is perperadicular to the interior crest at the peoint of intersection will tha crest: an sblique embresure is one in which the directrix makes an angle with the interior erest. When possible, direct cmbrasures are the ones which are made. If oblique embrasures are to be made, their method of construction is practically the same as that given for direct embrasures. Oidique embrasures do not admit of the muzale of the gun being inserted so far as the direct ones, and they weaken the parapets more. Oblique embrasures are not used, as a rule, if the directrix makes with the nor:nal to the crest an angle exceeding ten legrees. In case the angle is greater, the embrasure is provided for, in field works, ly modifying the interior crest. The manmer of laying out an oblique embrasure is similar to the direct ; the month is of a rectangular form, but is made wider in proportion to the obliquity, in order that the part of the embrasure which corresjonds to the mazale of the gun may be nearly of the same width in both the direct and obligue embrasures. The exterior width of the sole is made equal to one-half the lengeth of the directrix, measured on the sole. The checks are haid out as in the last case. The muzale of a gum should enter at least six inches into the embrasure, to prevent the blast from injuring the cherks; this limits the obliguity of the directrix to abont sixty for long gems. The height of the chacks must not he more than fonr feet for the same reason: it will, therefore, in most cases, be necessary to raise the ground on which the wheels rest, giving to the top surface the same dimensions as for a barbette, and forming the side slopes and ramps in like mamer. Sce Enibusure.

OBLIQUE FIRE. When two batteries bring their fire obligulely upon one point of the enemy's line, they make. what is called, a cross or concentrated fire, which is very destructive upon columns, though not so clfective as entilade firce. If a pointed projectile strike an iron wate at a less angle than that formed by a tangent to the curve of the heal, it will prohably glance off, as the tendency of the shoulder will he to slide along the phate, and the point will find a difficulty in "biting." If the angle he greatur than ahout io degrees, the resistance will approximately be increased in the proportion of the extrat thicknesi to be traverset. In this rase the sharp point of the projectile "bites" the plate on striking amd the shot has a tendeney to bring its axis perpendicular to the face of the target ; perforation then deperds upon the energy with which the projectile may be animated. Thius the side of the Memerche (i-Inch plates) could be perforated "directly" by a projectile having a \%one-energy of 90 foot-tons, but it would require 120 foot-tous to send the same projectile thr bug! at an angle of 60 degrees. The defense, therefore, should not rely too much on the chance of shot striking "ob)lichely": for the projectiles fired from large modern ritted ordmane wonted probably perforate atl thinly armored ironclads at all fighting angles and ranges.

OBLIQUE FLANK. - In fortification, that part of the
curtain from whence tha face of the ofposite hastion may be diseovereel; and isthe distance betwern the diases roxtant and fichatht, whichare rajetefl by gome rariners, as being liable to be rumed at the beginning of a simge, ceprecinlly when made of sandy carth.
 the oppesite face, and is to be used only in a phace attacked by an army without artillary.
OBLIQUE ORDER OF BATTLE. Nilitary writors describe this oreler of hattle ata one in which the primitive paralhalorder has been departol from, with the design of giving the one force, by manduvering, as superiority oser the other, or, in other words, if an army attacks its encmy in flank, say the right, its
 rives on the cemem's line, the army will be in oblictues order. In orter to makn use of the chligue order with sucress, the enemy must be deceiverd as to the intention to attempt $i$, otherwise it may be in his power to frusiate its exerution by reinforcing the momed lank; extreme cantion, therefore, in the preparation for such a mancuver, and the momost raplity in its execution, are indisuensably requisite. The aim of using this order of hattle is to turn or outhank the enamy. Sice order of Battle.
OBLIQUE STEP.- $\boldsymbol{A}$ step or movement in marchirrs, in which the soldier, while advancing, gratually takes ground to the right or left at an angle of abont $25^{\circ}$. It is not now practiced.
OBLONG BULLET.-This form of bullet at present 1nsed in the United States' Nervice, is composed of at cylinder surmounted by a conoid-the conoid being

formed of the ares of three eircles. The cylinder has three grooves cut in it, in a direction perpenticwher to its axis, to hold the grease necessary for lubricating the bore of the piece in loading, and possibly to guide the bullet in its flight, after the manner of the feathers of an arrow. A conical cavity is formed in the boltom, in which the gas of the charge exprands, and forces the sides of the bullet into the grooves or rifles of the gun. From these grooves it receives a rotary motion around its long axis. which prevents it from turning over in its flight. See Bullet, l'rojecteles and IRond Bullet.
OBSERVATORY.-For the purpose of obscrving the fliglt and effect of the projectiles, a look-out termed an observatory, is arranged on one of the flanks of the battery; in most cases the end of an enaulement will afford a safe point. Where a secura sledter of sand-bage can be mule so as to emable an officer with a field-glass to not- the range and effect of the fire, so ats to regulate it and give the greatest ethiciency.
OBSERVER SERGEANTS...-In the Lnited states, Sergeants in the Signal Service, stationed in large towns and important commercial centera to give timely warning of the approach of storms. rise of riwers, and all other important weather news for the gudance of merchants and others.
OBSIDIONAL CROWN. - A crown so called-among the ancients, which was bestowed upon a (iovernor or General, who by his skill and excrtions, either lachl out or cansed the seige to be raised of any town belonging to the Republic. It was made from the grass which grew on the spot, and was therefore called graminens.s.
OBSTACLES. - No ohstacle is insurmountable. Obstacles may hinder, and even stop for a while, an
enemy's approach, but they can be overcone. Their massive resistance inust be aided by the active resistance of the defense. These onstacles, in order that they should be accessory means of defense, should detain the enemy in a position where he will be under the fire of the defenders at close range. Hence, the following conditious should he observed in arrangiag the obstacles in front of a tield work. 1. The obstacles should be placed within close musketry range of the alefense. ¿. They shonld be arranged so as not to afford shelter to the enemy. 3. They shonld. as a rule. be proterted from the fire of the enemy's artillery. 4. They should be arranged so as not to interfere witl an active defense of the work. Their uses as obstacles will depend upon the degree of resistance which they offer in harmony with the foregoing conditions. Abatis placed in the ditch will, in one case. be in the lest position: in another, it should be placed some distance in front of the work. it fraise placed in the scarp, when the ditch is swept by a fire from the work or from ditch defenses, will be better than if along the counterscarp. Torpedoes, military pits, entanglements, etc., may ill be combined. In some cases the ground in front of the work will be the better position: in others, the crest of the counterscarp and the ditches offer the best conditions for their use. As a general rule, it is advisable to place the obstacles not nearer than fifty yards to the interior crest. if the profile is a wak one. When the profile is strong, it is not a matter of so much importance, so long as the assaulting columns are exposed to the fire of the defense. It is well to remark with respect to inundations, that they should not be used until the last moment. The unhealthiness due to the presence of staguant water is apt to produce more casualties than are to be feared from the enemy's attacks. If the dams can not be protected or hidden from the enemy's artillery fire, they should be built, as far as possible, so that the enemy can bring his fire to bear only upon the upper side. The amount of the dam exposed to his fire will then only be the portion between the top and the surface of the water. See Accessury Means of Defense.

OBSTRUCTIONS. - Water may be made a Fery important accessary means of defense in many localities, as in a flat, marshy conntry where the level of the natural surface lies but at a sliglit elevation above the water-level; or as, in the case of an undulating surface, where small streans rumning throngh valleys, can be dammed back, so as to produce an inundation of some extent.

In the former case, the defensive works can be easily girdled by a zone of marshy ground, which will give an assailant great trouble to construct his trenches and other siege-works upon, whilst the work itself can be secured from attemptsat surprise, by keeping its ditches filled with water to the depth of six feet at least. In such a locality-moreover, if in a climate where the winters are mild-revetted scarps and counterscarps, the chief use of which is to prevent an attempt at an open assault, nay be replaced by curthen ones, a strongr stockade being formed along a wide berm, answering as a corridor, to give greater security on the more exposed fronts of the work.

In the latier case, portions of the ground, in the immediate vicinity of the works, maty be covered by a sheet of water, of sullicient depth to prevent their being used loy the isssulant in his approaches; and within the inumdation thas artificially produced detached works may be arected, which, by taking 1lank and reverse viows over other lines of approach of the assailant, may foree him to make hisapproatch upon other points which will have lecen strongly fortified to meet this eondition of things.

To form these artificial inundations the locality must lend itself to the construction of dams, in sueb ${ }^{4}$ position that they cannot be reached by the
assailat's missiles, and wall be secure from any other means he may take to destroy them. This supposes, then. that thestream shonld either rmu through the works, so that the dam could lee erected within them or so uear to them that, in combination with some advanced work, the lam may be made secure.

In a locality laving these features, the inundition would, as a general rule, have to be formed on the npstream side of the work, since. if made below it, the dam would have to be placed further from the work, and the inundation itself might spread up 100 far within. Besiles these oljections to this position, an assuilant would evidently have greater facilities for tapping the inundation and running the water off than when it ocenpies the upstream position. The position and extent of the dams, and the other necessary constructions connceted with them, as sluices, waste weirs, ete., will depend entirely puon the local features of the site, and will form a particular study in each case for the engineer.

Besides these uses of water as a passive obstruction, arrangements may be made, when the locality is favorable to it, for produeing a powerful current to sweep away the assailant's works in the ditehes by letting loose a large body of water, which has been dammed lack for the purpose, with a rosh into the ditches. This, in like manner, will require the same construetions as in the preceding case, and flash gates which can be suddenly turned about a horizontal or a vertical axis, so as to give an outlet to the water in considerable volume and with great relocity. These gates have to be placed in some scenre point of the ditches, inaccessible to the assailant and covered from his missiles, and, if effectively used, may prove a source of great annoyance to him by frequently frustrating his attempts to make a passage of the ditch.

Solid hard rock, or even thin layers of soft rock alternating with layers of soil, as was the case at Sebastopol, are great obstructions to an assailant's siege works, as the rock has, in many cases to be blasted out to gain partial cover, and a large amount of earth, with trench materials, has to be brought forwarl at great risk of life to form the parapets. In constructing a work, mothing should be omitted which, if placed on the line of the assailant's approaches, will delay his operations and force him to greater efforts and exposure. To this end, where fragments of rock can be readily had in sutticient quantities, it shoald be used in forming the embankment of the glacis, and also be thrown in upon other points, over which important lines of trenches must necessarily run.
Besides these accessory means of delaying the progress of the besieger's works, a site of solid rock offers the farther advantage of giving matural scarps and counterscarps, where the ditches are excavated out of the rocks, of far greater resistance to the assailant's means of destruction than any masonry, however solidly and carefnlly constructed, can offer: besides forcing the assailant to construct galleries through the rock to attain the lefel of the botiom of the diteh where his passage of it is to be constructed. With a similar purpose, the stumps of large trees may be left in like positions, and trees may be planted when the work is constructed with the object of cutting them down and leaving their stumps whem the work is threatencel with a siege.

Mines, when properly, arratiged and wedl planned, are so important a defensive means that they should constitute a purt of the permanent dispositions of defense of every work where the character of the soil will admit of it, at least on those points which are otherwise weakest, and therefore most liable to be assailed. 'The general arrangenent of a combinstion of galleries and mine clambers, as well as the details for their construction, are givenin the articles, Mines, and Countermines; Herefore, nothing further is called for liere than to state that the principal gallaries of the combination should be constructed with
the work, and of clurable matcrials, leaving the othor parts to be done whell the exigency callinir for them muy happron. See sccessory J/ratus "f Jofimspe.

OBTURATEUR.- 1 kind of stoppor, which is namally male of wroight iron, and uscel with tho Jandon, and similar fuses. Thar obtureterer is serownd into the table, and assists in proventing the suft motal of the fore from being driven into the shell by the foreo of the rlarge.
OBTURATION.- The" escape of gas at the jumetiom of the brereh-hlock and the end of the bore mont be prevented; the system of obturationcmploved loy the Conglinh in thair morlern 13. La. (interrupted serew ) ordmance was a carefully madr steel rup attached to the breceln-block; whon the gun was fired the: expanding gases pressed the sithes of the stare erip against the bore amd over the junction with the block, thus closing atl small oritiow. lumediatedy afterwards the clasticity of the steel cansorl the eup to regain its formore shape, and the broweh conlal be Opened again. 'Jlue l'remela have obtained good results from the lateral expansion of a wad of ablestos and tallow acted on by a homisplacrical staed block at the end of the bore. With 13. L. small arms the obturation, is eflected by the use: of a melallice cartridge-rasu'.

OBUS-OBUSIER.- A species of small mortnr, resembling ib mortar in evorything but the carriage, which was made in the form of that belonging to a gun, only shorter. It has been froquently ustal at sieges; and was well calendated 10 swerp the eover-el-way and to dire ricochet shots. "They were usually loaded with cartonches. A howitzer, called Obues. ier, was known unter the name of Hesenicse, in 1434.

OC. - An arrow used by Turkish archers and bowmen.

OCCUPATION ARMY.-An army that remails in possession of a newly conquerel comentry, rutaining it as a kind of hostater, until peace is signed and the war indemnity paid. Armies of operpation are generally fed at the expense of the acfeated nation.

OCTAGON. - 4 plane elosed tigure of 8 sides. When the sides are "qual, and also the angles, the tigure is called a "regular octagon"; in this case, ach angle is $135^{\circ}$, or eqpual to three half right anerles. If the altornate corners of a regular octagon be joined, a square is constructed; aud as the angle contained between the sides of the square and of the octagon is one-fourth of a right angle, the octagonmay easily be constructed from the square as a basis. The octagon in fortification is well calculated in its groumd for the construction of large towns, or for sucla as have the advantage of neighloring rivers, especially if the engincer can so place the bastions, that the entrances and ontlets of the rivers may he in some of the curtains. By means of this disposition, no person could come in or go out of the garrison without the Commandant's permission, as the sentinels must have a full view from the flanks of the neighboring bistions.
ODA. - A name given to the different corps or companies into which the Janissaires were divided. The word Oda means a room, and the companies were so called from messing separately.

ODA-BACHI. - A termapplied to a Captain superintending the gunners at Constantinople.

ODIUS. - I herald in the camp of the Growks before Troy.
ODOMETER.- An instrument attached to a carriage or other vehicle, for the purpose of resistering the distance it las traveled. Such machines lave been in use from an early period, and one is deseribed by Vitruvins in that part of his work $D e-1$ rehitactura, which is devoted to machines. The instrument, as commonly employed, consists of a truin of wheelwork, which communicates motion from the axle of the carriage wheel to an index which moves round the circumference of a dial fixed in one side of the carriage over the axle. The wheel-work is arranged
so as to produce a great. climinnifon of the velocity impresucel by the aXlo of the vehirle, and the clial is so erimhated that the index can shaw the mombere of miles, furlongs, yizrds. retc, traversed. 'The instrinment isalso (onstrucotol to work indeponcontly, be:inge in this cuse provilled with wherds andanaxle of its own: wlan this is clone thes wherl is matule: of such a si\%- hant its coiremmferemee is an alimpot prart of a mile, an arranorment which groatly simplitiog the: calculation of the distances travoram. Thes rompleqe ohometer ran then be rlown alone liy a man on foot, or attarded belnind at carriuge.

The Odometer, shown in Fís. 1, concists rssmontially of as spuare brass weight or pendulum, lanes within a rectangular frinne whirlo revolves with the whecel, while the promblan romatan vertionl. IJon the front face of the pendalnu are two brass whecls,


Fis. 1
two inches in diameter, the inner surfaces of which are in contact, the edges of both uniting to make as groove corresponding to a worm cat in the middla of a shaft fastened to the sides of the frame. The front wheel has one hundred teeth, the rear one ninety-nine, and botlo pitch into and are moved by the revolving worm of the frame. There are also the same number of divisions as of teetly on each wheel, and they are figured, the front wheel from 0 to 100 , the rear one from 0 to 9000 . The front wheel las three spokes, an index being also cut down on its perimeter to read the divisions of the rear whel. the front wheel itself being read by a slentor stee' wire fastened to the brass weight and curving over the worm, so as to be immediar . 2 over the divisions of the wheel. Now when th, firme is matle to revolve by the revolution of the wagon wherd, the worm will turn both wheek, and racli will be moved forward one tooth by evel turn, and when one hundred turns are made, the front wherl will have moved completely aronnd, and the index of its zero division will have been carried over one division of the inner wheel. And thus by noting the positions of the indices of both wheels, the number of revolations of the wagon wheel can be easily obtained up to 9900 , when both wheels will be at zuro again. The wagon Wheel being of a given size, the number of fect traveled cas be at once ascertained by noting the readings of the wheels, at the beginning add edd of the journey, subtracting one from the other. and multiplying the perimeter of the wagon wheel by the number of turus made.

An excellent form of Odometer devised by Messers Gurley, United States, is represented in Fig. 2. The pendulum is fastencl to a shaft turning in the center of a strong circular metal box on this shaft, and turning with it is a pinion giving motion to at train of wheels, each of which has also a shaft to the end of which an index is fastened. There are dials for each index as shown, and the number of turns of the wagon whed can llus be counted up to 100,000 . I
strong bezel ring with thick glass covers the dials positicy is indispensable, and if this is made on the and allows then to be easily read. The Odometer is securely fastened to the spokes of the whed by three carriage-bolts, there being also a thick leather washer on each side confined between the bottom of the projeeting arms, and a metal washer of same shape on the other side of the spokes. In using this Odo-


Fig. 2.
meter the reading of the dials must be taken at both ends of the journey, the one subtracted from the other, and the renainder slowing the number of turas of the wagon wheel, multiplied into its perimeter. See Pedometer.

CEIL DE BEEUF.-A French term literally signifying ox's eye, applied in architecture to those small round or oval openings in the frieze or roof of large buildings, which serve to give light to spaces otherwise dark. The most famous is that in the anteroom (where the courtiers waited) of the lioyal Chamber at Versailles, which gave name to the apartment. Hence the expression, Les Fiastes de l' Gill-de-Bauf -i. e., the history of the courtiers of the Grand Monarque, and by extension, of courtiers in general.

OFF.-Most distant; a term commonly used in speaking of horses harnessed to a carriage, in contradistinction to near. It means the animal which is harnessed on the right hand facing the front of a team. The term is variously compounded, as in the expressions, to march off, to somud off", to tell off, etc'.

OFFENSE- A erime committed by an officer or soldier for which he deserves punisbment. All acts that are contrary to grood order and discipline, omissions of duty, etc.. may be called military ollenses. and sulbject the offenter to be tried by Court- Martial. The principal offenses are specified in the Articles of IVur.

OFFENSIVE BATTLE. - In a purrely Offensive Batthe, an anmy seeks the enomy and attiocks him wherever he is to be fomm. To know what we are groing to eneounter is half the battle in almost all atrits of life; for we are, thas far, secure from the surprise of findiner somothing in our way that we had not connted upon. In wo transaction is this heforchand knowledge more inportant than in prepaning for a battle. There is hardly any habor, any persomal risk 10 which a Gencral shovild not subjuet himself to arain precise and aceurate information on this heal. Ftrere bemnst soc for limself, at the risk of tinding his orders miseonstrued, and his phans defented by the carelessness or stupidity of his subordinates.

A personal reconnoissance therefore of the enemy's
eve of the attack the General should take another last look in the morning, before moving, to see that the encmy las not anticipated him, and taken steps that call for changes on his part. Of course, whatever is advantageous to the defensive will particularly engage his attention; but, as his great object is, not only to drive back the enemy, but to bring on him a great disaster, the chief point to which he will bend his thoughts, will be to see by what mode and by what point of attack lie can secure the greatest strategical results.

Considerations therefore both of tactical and strategical character must receive the carcful examination of the Commanding General, in deciding upon inis plan of attack. The first, as carrying with it the most important advantage, is the strategical result; the two principal of which are, first, either to direct the main effort upon that wing of the enemy which, if overthrown, will naturally bring us on the line of retreat of his forees. or, seeond, upon some point between his two wings which, if pierced, may force his disconnected forces on divergent lines of retreat, and thus expose them to the disaster of being beaten in detait, or to the capture or destruction of one of the fractions. In the battle of Austerlitz, for example, in which the Allies at first acted offensively, their plan was mude subservient wholly to the strategical result. The right of the French position was nearest to their line of retreat on Vienna; by forcing this point, the Allies would lave heen brought between the French and Vienna, thus throwing them further from their base. If repulsed in this attempt, which was possible, the Allies still covered their own line of retreat, so long as their center and right held firm. The strategical object of Napolcon, on the contrary, was to pierce the Allied center, and thus secure the advantages of a successful operation of this kind. Next in importance come what may be termed the grandtactical considerations; that is, the means of doing most damage to the enemy on the field of battle itself. For example, if the enemy's position is such that he has an impassable obstacte on one of his wings, as a river, lake, or a narrow defile, tactical considerations alone would suggest to direct onr main attack on the opposite wing, since it is evident that by defeating this, the center and the remaining wing may be very easily thrown upon the obstruction which it either caunot pass, or must pass with difficulty, and thas be captured or greatly cut up. In like manuer, tactical considerations would engage us to attack a height on the enemy's position which, if gained, would give our forces a decided advantage: or, if his line of batthe presents a very salient point, upon which our efiorts can be concentrated to attack this point; or if his line at any point presents a wide break, into which we can fore our way, to do so : any one of these points if gained, would give decided tactical advantage.

Though not necessarily lewding to the same decisive results as the two preceding, a third considcration, in choosing the point of altack, is the facility which the natural features of the ground, ower which wa mast move apon it, afforl for the combined operation of the troops of the different arms that are 10 make the attack. Too much weight, however, is not to be given to this, in selretinir the point of attack; as ground, however difictilt, may almost always be get ower by (roopsof all arms, and very often it more than compensates for the labor of doing so, by the covor and other advantages it may afford in blvancing.

In the battle of Austerlitz the tactical arlvantages were greatly against the Allied point of attack, as
they, in the first phace, had to mpaneragaingt the villages occupied by the firench and hromgh marrow, hollow roads, in which their columas bectame confused and disordered; and they hal, moronwr. on tha: flank ant rear several pontes, with only narrow canseways le when them, on whirlo, if thrown, there was no ontlet of escotpe exerpt over harse narrow defiles, all of which were exposed to the artilfery of the Frenell. The result, as we know, was a frightful disastar. I'rudence comensels, in all math cases, to forego the tempting objoct of a grand result if to gain it we expose oursilves, if unsnceessful, to a great disaster. The General who lowks forward nome, not providing for his own rear or llanks, or who. intent only upon some striking suceess, rushes reeklessly in the parsuit of it. Within the jaws of lestruction, has learnet lsut half his trale, and that the most easily acefuired ant the most dangerons in its application in such hands. It is in niecly weighing these considerations and geleeting the lesat, that the great Gencral shows his powers. Reeognizing settled principles as his guides, he does not apply them blindly.

Although but one point, known as the key-point, is usually selected for the main effort of the assailant, still the whole line of the assaited is more or less menaced, to prevent the key-point from receiving reinforcements. A different course, one by which we endeavor, so to speak, to envelop the assailed, can only be attempted with a prospect of success, when we are greatly superior in force. flad the Allies at Austerlitz, instead of pressing with suel vigor the French left whilst they weakened their center in moving on the French right, thens leaving the phatean of Pratzen a comparatively easy prey to the French,simply menaced the left and held the plateau with a strong force, not succeeded in their min attack, they would at least have avoidel the subseguent disaster. Connected with enveloping attacks is that of sending a strong detachment, by a circuitots route, to fall on the enemy's rear, whilst an attack is made on him in front. Such mancuvers are wrong in principle, and military history presents stiking instances of their failure in practice. The topographieal features of the immediate theater of operations can alone determine whether to risk turning operations. When this is in a very broken or obstrueted country so that such a movement may be concealed for the time necessary to perform it, the risk will be less, but the chances are still against it.

An attack on the center is the obvions operation when the enemy's line is too extended for the number of his forces. It may also be the best course when the enemy's line of retreat is through a defile in the rear of his center, as, in case of suecess, each wing is cut off from the line of retreat, and the troops of the center, if forced upon the defile, cannot escape from a serious disaster. Where hoth flanks of the enemy's position are sccure, and it beeomes a case of necessity to attack some point of the frout must be seleeted for the main effort, whiel, if gained, will give a decided advantage. For example, if there is a commanding eminence on his front, every effort should be made to carry it, as, from there, the field of battle leing overlooked the enemy would be obliged to fall baek. In this case the order of battle would necessarily become convex; the divisions of the center to make the assault, being in advance whilst their flanks and rear would be secured by the divisions of the wings advaneing in echelon, those nearest the center being most advanced. Eliminating all exceptional local features, the general case which presents itself is that, where the entire line of the enemy is equally exposed, and where suceess therefore depends upon the ability of the assuilant to keep the whole line so threatened that its reserve alone can be moved with safety from one point to another, whilst a powerful effort with coneentrated forces is made on some one point, ustrally one of the wings. In this case the assailing wing will be stronely rein-
formen, particularly with artillery; thre center also strengthened, whilst the eppersite wing will be refused, the divisions recerling from towards the eronter,
 them, ur at making a liank attack on this part. Tho omly fencral rules that can be well haid down for the distribution of the different arma on the ledell of latathe have already been given. Details on this perint mas lwe urecessarily left to the sulwerlinates, whe, if well acpuainted witla the true functions and resenreen of their respective arms, will selldom fail to prost them so as to de as much injury to the enemy and lae exposed to as litule danger to themselves as the natural fratures of the field of batule will atmit of. The plan of the batte having been decidfed on, the manenvers to carry it out should be as simple as possible, so as to gnard against the failures that almost invariably attom any attempt at complex movements, within striking distance of the enemy. All distributions for what are termell fassagers of lines shrobld be avoited, cuen in the ease of thomblaly drilled tromps. The distribution of infantry in celaclons, wherever it can beadopted, is one of the best, as cach division has its support at hand on its llank, whilst the interval left between the flank of the one in ant vance and that of the one next it in rear, should of fer suflicient space for cavalry or artillery to move forward to the front if wantel. See Batlles, Definsire Battle, and Mired Battle.
OFFENSIVE PATROLS.-That elass of patrols made exterior to the line of out-posts, with a view of gaining intelligence of the eneny's whereabouts. They are composed of larger bolfies of men than defensive patrols, the number being proportioned both to the distance to be gone over, and the extent of front to be examined. In a position, presenting but few eross-roads, and sparsely setted, a patrol of ten or twenty horsemen may be found ample, to seareh, with all desirable thoroughness, from twenty to forty miles in advance of the position, along the prineipal avenues to it ; whereas, with a more extended front, presenting many lateral avenues, double this number might be reguired for the same duty. From the information obtained, through the ordinary channels of maps, and by questioning the inhabitants at band, the commanding-oflicer can usually settle, with sufficient accuracy, the strength of a patrol.
OFFENSIVE WAR.-Military aets of aggression constitute what is ealled an Offensire Har. Those who assail an opposite or adverse army, or invade the dominions of another power, are said to wage an Offensive War. See Hrar.
OFFENSIVE WEAPONS.-All arms of the present day, such as cannon, small-arms. swords, and other weapons which would be used on an army taking the fictel for offensive operations. See Ordiance and Small-arms.
OFFICER.-Military Officers are combatant and non-combatant, the latter term ineluding Paymasters, Medical Otficers, Commissariat, and other (ivil Officers. Commissioned Ofbeers in the Englishs army are those holding commissions from the Crown, or a Lord-hieutenant, and comprise all holding the rank of eusign. or corresponding or superior rank. Divided by duties, they are sitaff Officers (see Staff) or Thequmental Officers (sece Remment) : divided by rank, Genernl Ohiecers. Fied Otticers, and Troop or ('ompany Otheers. The last are Captains, Lieutenants, and subLieutenants, and, except in the eavalry, are unmounted. The only Warrant Ofticers in the army are Master Gunuers and Schoolmasters. Non-ennmissioned Officers are deseribed under that heating.
OFFICER IN CHARGE.- In oflicer, at the United States Military Arablemy, charged with the enforeement of all regulations governing the (orps of Cadets. Each of the Assistant hastructors of Tactics are in turn detailecd as Officer in Charge; his tour of duty to eimmernec at grard-mounting, at which time
he reports for orders to the Commandant of Cadets.
Between thiriy minutes after receille roll-call and taps he stations himself in, or near his oflice, and at no time during his tour absents himself from it, except on duty or at meals, without the sanction of the Commandient of Codet.s. He is in the Cadets' mess-hall at their meals, is present at every parade and roll-call during his tour, and sees that all duty during the day which does not reduire the presence of the Commaindunt of Cudets is performed in a sol-dier-like manner, and according to regulations and orders. He sees that all sygals are sounded at the proper time, and takes effectual measures to sup)press all irregularties and disturbances that may orcur in the quarters or their vicinity, and corrects all violations of orders or regulations coming to his knowledge. Ihe visits the sentinels at his discretion during his tour, to see that they are well acquainted with their duties. On being relieved, he embraces in his report all suggestions that may be of service to the Commandant for the preservation and promotion of health, police and discipline, and reports all offenses against discipline, coming to his knowledse, which have nceurred during his tour of duty.

OFFICER IN WAITING.-In the British service. the Officer next for duty. He is mentioned in orders. and ought to be ready for the service specified at a minutes warning. He must not on this account quit the camp, garrison, of cantomment.

OFFICER OF THE DAY.-An ofticer whose immediate duty is to attend to the interior economy of the corps or garrison to which he belongs, or of those with whieh he may be cloing duty. The Ofticer of the Day has charge of the guard, prisoners, and police of the garrison; and inspects the soldiers barracks, messes. etc. Both the old and the new Oftieer of the Day are present at guard-mounting. While the old guard is being relieved, they inspeet the guard-house, or tents, and verify the number of prisoners. They then proceed to report to the Commanding Officer, when the Officer relieved preseats the report of 'the Officer of the Guard, upon which he previously makes such remarks as circumstances reqnire. At the same time, the new Officer of the Day receives his instructions. The Officer of the Day is responsible for the enforcement of the police regilations, and the cleanliness of the post or camp. Fatigue parties are furnislied him when the number of prisoners is insufticient for police purposes. The Officer of the Day visits the guards during the day at such times as ne may deem necessary, and makes his rounds at night at least onee after 12 o'elock. The Oflicer of the Day sees that the Officer of the Guard is furnished with the parole and countersign before retreat. In war time, the Officer of the Dar satisfies himself frequently during the night of the vigilanee of the police guard and advanced posts. IIe prescribes patrols and ronnds to be made by the Officer and Non-commissioned Officers of the Guard. The Ofticer of the Guard orders them when he thinks necessary. He visits the sentinels frequently.

OFFICER OF THE GUARD.-An officer detailed daily for service with the guard. It is his duty, under the Othicer of the Das, to see that the NonCommissioned Officers and men of his guardare well instructed in all their duties; he inspeets the relicfs, visits the suntinels, and is responsible for the prisoners and the property used by them and the guard. He is also responsible for gond order, alertness, and discipline. Offierers remain constantly at their guards, except while visiting their sentinels, or necessarily engaged elsewhere on their proper duty. The Of ficer of the duard inspects his gumrd at reveille and rotreat, and seces that the countersign is duly communicated to the sentincls at the proper time before twilight. Seer Civard Report.

OFFICIAL COURTESIES. - The interchange of oflicial compliments and visits betwern foreign military or maval ofllecres, and the anthorities of a military post, are international in character. In all cases it
is the duty of the Commandant of a military post, without regard to his rank, to send a suitable officer to offer civilities and assistance to a vessel-of-war (foreign or otherwise) recently arrived. After such offer it is the duty of the Commanding Ofticer of the vessel to send a suitable officur to acknowledge such civilities, and request that a time be specified for his reception by the Commanding Oftieer of the post. The Comminding Ofticer of a military post, after the lisual offer of civilities, is always to receive the first visit without regard to rank. The return visit by the Commanding Officer of the military post is made the following day, or as soun thereafter as practicable.
When a Military Commander officially visits a vessel-of-war he gives notice of his visit to the vessel previously thereto, or sends a suitable officer (or an orderly) to the gangway to announce lis presence, if such notice bas not been given. He is then received at the gangway by the Commander of the vessel, and is accompanicil there on leaving ly the same officer. The officer who is sent with the customary offer of civilities is met at the gangway of a vessel-of-war by the Ofticer-of-the-Deck; through the latter he is presented to the Commander of the vessel, with whom it is his duty to communicate. A vessel-of-war is approached and boarded, by commissioned officers, by the star-board side and gangway, when there are gangways on each side. In entering a boat, the junior goes first and other ofticers according to rank; in leaving a boat, the senior goes first. Thi latter is to acknowledge the salutes which are given at the gangway of naval vessels. Naval vessels fire personal salutes to oflicers entitled to them when the hoat containing the officer to be saluted has cleared the ship. It is an acknowledgment for his boat to "lic on her oars" from the tirst until the last gun of the salute, and for the officer saluted to uncover, then at the conclusion to "give way." The exchange of official visits between the Commanding Officers of a post and vessel, opens the door to both ofticial and social courtesies among the other officers
To a boat with the flag of an Ailmiral, Vice-Admiral; or Rear-Admiral. or the broad pennant of a Commodore, boats with narrow penmants "lie on their oars" or "let fly their sheets," and boats without pemnants "toss their oars." In both cases officers in them salute. In the case of two boats mecting or passing each other, each with the same insignia of a Commanding Othicer, the junior is the first to salute. Ofticers of inferior grade to a Commanding Ofticer passing him in a boat, "lie on their oars" or "let Hy the ir sheets," and salute. All other officers passing each other in boats are to exchange salntes, the junior saluting first. Cockswains steering boats are, whenever commissioned officers are salnted, to stand up and raise their caps, and whenever warrant officers are saluted they raise their cajps only. The officer or Cockswain of a loaded boat, or of boats engaged in towing, salute a boat with the flag of an Admiral, Vice-Admiral, or Rear-Admiral, or the broad pemant of a Commodore, by standing and raising their caps. When boats are rowing in the same direction, an inferior is not to pass a superior in grade unless he is on urgent duty, or anthorized by the superior. When boats are pursuing opposite directions, the rule of the road to prevent fouling is, that both shall "put their helms to port"-i. e., to pass to the right, circumstances permitting. When boats are approaching the same landing or vessel, an inferior is always to give way to a superior in rank. Boats about leaving a ship's side or landing are to qive way in ample time to others approacloing. It is not proper to land over another hoat without permission, and only when it cannot be avoided is permission to be asked. Boats display their ensigns when they shove off, and keep them liying until their return.
To distinguish onfeers in boats, Commanding Onticers of flects, squadrons, or divisions earry the disting nishing marks of their rank on the bow of their
barges. Flags and pemants distinguishing rank are: also worn at the bows of bats. An Admiral's flate is a hlue thag bearing four white stars: that of a ViceAdmiral bears threc sturs; a Rear-Admiral, two stame a ('ommodore's permant, ons: star, and is a swallowtailod thag. "Tha narrow penmant is worn by Commanding Otlecers of lessarr rank. In addition, Cat)tains in the Navy wear a gilt ball on the end of their boat staffe, and Commanders a gila star. 'lo tha ships, hoats, and oftleers of the United States Navy, as well an foreign oflicers, the foregoing is duc: and fometesy between the land and maval services is indispernsable to good order and discipline, as well an necessary to the mational dignity and honor. Nilitary oflecers of assimilative rank are entiterl to and should carry the above hout insignia. Navy regulations respuire oflleers and men never to omit, on any oceasion, to extend the same empliments toonlleers of the Armyas arc paid hy them to ollieers of the Nivy.

When a civil functiomary entitled to a salate arrives at a military post, the Commanding Oflieer meets or calls apon him as som as practicable. The Commanding Otheer will tender him a review, providing the garrison of the place is not less than four batteries of artillery, or their equivalent of other troops. When an officer entitled to a salute visitsa post within his own command, the troops are paralad and he receives the honor of a review, unless he directa otherwise. When a salute is to be given an oflleer jumior to another present at is post, the scnior will be notified to that effeet by the Commanding Oflicer. Military or naval ofticers of whatever rank, arriving at a military post or station, are expected to call upon the Commanding Otticer. Under no circumstances is the flag of a military post dipped by way of sahute or eompliment.

OFFICIAL ENVELOPES.-In the United States, it is lawful to transmit through the mail, free of postage, any letters, packages, or other matters relating axclusively to the business of the Government of the United States: Provided, That every such lotter or package to entitle it to pass free bears over the words "Ofticial business" an indorsement showing also the name of the Department, and, if from a bureau or office, the names of the Department and burean or office, as the case may be, whence transmitted. And if any person makes use of any sneh ohicial cavelope to avoid the payment of postage on his private letter, package or other mutter in the mail, the person so offending is deemed guilty of a misdemeanor, and subject to a fine of three hundred dollars, to be prosecuted in any court of competent jurisdietion. For the purpose of earrying this aet iuto effeet, it is the duty of each of the Executive Departments of the United States to provide for itself and its subordinate offices the necessary envelopes; and in addition to the indorsement designating the Department in which they are to be used, the penalty for the unlawful use of these envelopes is stated thereon. These Envelopes, with the penalty elanse printed thereon, are confined to the War Department and its burcaus and offices in Washington City. For small packages of publie property, weighing not more than four pounds, the mails may be used, as anthorized by law, provided the cost of freight is not less than the postage at legal rates. Sueh packages may be prepaid with oflicial postage stamps at the rates required by law for the matter inelosed; and by authority of the Post Offee Department packages containing publie property may be sealed, provided a written certiticate is alixed, signed by the officer mailing the same, that they contain no matter subjeet to a ligher rate of postage than has been prepaid thereon. Under the provisions of the Universal Postal Union Conrention, coneluded at Paris on the 1st of June, 1878, the prepayment of postage on every kind of correspondcnee exchanged in the mails between countries of the Postal Union can only be effected by means of
postares stamps valid in the country of origin for
 correspondence exempterl from this reotuirement is whicial correspondener: relative to thr promal mervice and rexhanged directly betweron lomatal Adminimeta-
 countri's and colonies can only be prepaid by means of the orlinary Uniterl States postage stamps which are furnished to the public. Sere Formking Letters.

OFF RECKONINGS.-An allowance formarly giwn to the Commanding Offorers of regiments and (ap)tains of companies, sut of the annal rething money get aside for thair men The allowanere was subsecquently paidonly to the Colonels of regiments, and was alhetuatingsum, depending on the amont of the surplus left after the . Fothing was made np. Abont twenty-five years ago, an avorage of thirty years was struck, and a fixed smm from that protod illowed yearly to Colonels, termed Cobont ${ }^{\prime}$ s Alhanance, amomiting to ahout effoo a year in line regiments, in addition to the regular pay. The term onf: reckenings is therefore now obsolete.

OGEE.- A molding consisting of two curves, one concave and the other convex. It is calleal (in classic architeeture) cymatiom or rymm rearexn. The ogee is also muels usod in Gothir architecture. An arch having each side formed with two contrasted curves is called an oree arch. The ogee, sometimes written ogive, frequently constituted the ornamental molding on guns. mortirs, and howitzers.
oorval. - The form usually given the head of ohslong projectiles. It was foum hy Borda that this shape experienced less resistance from the :ithen any other. See Dblong Bullet, and Projectiles.

OHM'S LAW.-This law is singularly in aecordanee with cxperimental results. Jt assumes that the elcetromotive foree for a particular galvanie pair is constant, and that the strength of the curent it produces is the quotient which results from dividing it by the resistance of the circuit. This resistance arises from two sources, the first being the resistanee within the cell offered by the exeiting liquid, and the second the interpolar resistance. If e represent the electromotive force: $l$, the resistance within the cell; $w$, the interpolar resistance; and S . the strength of the enrrent, or the quantity of electricity aetually transmitted, the statement of the law for one eouple stands thus:

## $\mathrm{S}=-$. The application of the law in a few partic+ 0

ular cases will best illustrate its meaning. If we inerease the number of cells to $n$, we inerease the elec. tromotive force $n$ times, and at the same time we increase the liquid resistance $n$ times, for the current has $n$ times asmuch of it to travel, then $S=\frac{n e}{n l+\infty}$. If in be

$$
n l+\infty
$$

small eompared with $n l$-that is, if the external conneetion be made by a short, thick wire-it may be negleeted, and so $\mathrm{S}=\frac{n e}{n l}=\frac{e}{l}$. This shows that one cell gives in these cireumstances as powerful a current as a large battery. But if $n l$ oe small with respeet to $x$-as in the interpolar cireuit of an eleetric telegraph battery-nl may be neglected, and $\mathrm{S}=\frac{n \ell}{n_{0}}$. Here we learn that the strength of the current increases direetly as the number of eells. We may learn from the same that the introduction of the coil of long, thin wire of a galvanometer into such a circuit. introdueing but a comparatively small inerease of resistanec, causes a very slight diminution of the eurrent strength. If. again, we increase the size of the plates of a galvanie pair $n$ times, the section of the liquid is proportionately inereased, so that whilst the eleetromotive force remains the same, the cell re-
sistance diminishes $n$ times; therefore $\mathrm{S}=\square$, or $l+10$ $n$
$\mathrm{S}=\frac{n e}{l+n w}$. If the exterior resistance is small. $n l$ may be neglected, aud $\mathrm{S}=\frac{n^{\rho}}{l}$. and the strongth is thus snown to increase $n$ times. These are only a sery few of the conclusions arrived at by this law. With the aid of a tangent galranometer, which gives the value of $S$ expressed in absolute magnetic units. or centimeters of voltameter gas, we ascertain $e$ and $l$ for any pair. By making two observations with two wires of kuown resistance separately included in the circuit, we have two simple equations with two unknown quantities, from which $e$ and $l$ can be easily found. In doivg so, we must adopt a unit of resistance. The unit proposed and determined by the Britisin Association, the I3. A. mint, or the ohm, is the only one now used in this country. The resistance of the liquid of the pair would be expressed in units of this, and the electromotive force in absolute units or centimeters of gas, with a circuit offering a unit of resistance. See Gralvanism.

OIL-BATH.-A bath employed intempering steel. The tube of steel is drawn out of the furnace and suak into a large iron tank about twenty feet deep, coutaining several hundred gallons of oil. The heated steel in passing into oil will sometimes cause the sur-face-oil to take fire, whieh is extinguished by closing the top of the tank. A eovering of coal is also formed round the steel by the burned oil, which greatly retards transmission of heat. The tank has a waterspace surrounding it, and as the steel parts with its heat, raising the temperature of the oil, the temperature of the water is also raised. The water, as it is heated, is drawn off by an escape-pipe, and a supply of cold water is continually running in, thus the heat is gradually taken from the mass. Exceeding tonghness is the result of the operation; the tensile strength of the steel is made higher, and it is barder and more elastic. See Tempering.

OILLETS.-Small openings often circular, used in mediewal buildings for discharging arrows, ete., through. Also written Oeillets.

OIL TEMPERING.-In English gun construction, all tubes being procured by contract with the different steel producers in great Britain, are delivered at Woolwich as solid ingots, and, of course, untempered. The facilities at that place are ample for all nedds for tempering in oil. The general details of this process as practiced at Woolwich have been published in the English text-books, and need uot be iu consequence described in this work. The effeets of Oil-tempering are to increase the hardness, tensile strength, and elastic limit of the metal, but somewhat at the expense of its ductility. It is a pracess, however, which is applied to all stetl products for heavy ordnance in Eurland, antl also in France, and has heen so long practised, witls confidence in it remaining so long unshaken, and, in fact, inereasing, that it must be recognized as probably an important process to be employed in constructions where steed tubes of ahout cqual diameters throurhout their antire lengtla are designed for use in built-up guns. For ingots, however, wherein unequal diameters find place, the process becomes one of donbtind benefit in its application, as it evidently disturbs the molecular contitions of the metal ; sections of different diametors being umequally acted upon by the tempering proeess, injurious strains are introduend similar to those procluced by unerpuat eooling in masses of cast iron where the arois of adjacent cross-sections are sensibly and abruply different.
'The increased latrelness and dimintiton of the percentage of clongation in the metal intrulued by
the application of the process are subjects for consideration, and should leave the question of tempering one for consideration and further experiment. The increased tenacity and hardness secured by the proeess was a matter of great moment to the English eonstructors when the Palliser stud system of projectiles was standard in the Britislı service, as the enormous strains brought to bear on the bearing edges of a few deep rifle grooves required these qualities to be present in the highest degree attainable; but now, when the Palliser stud system for securing rotation is a thing of the past, it remains to be considered if the merits of the oil-tempering process should not be further inquired into. both theoretically and experimentally, if praticable, and the result may be that a modifieation of the process, securing an increase in toughness and tenacity to a more limited extent, may be attained without sacrificing too much the extensibility of the metal. which, by permitting a yielding at the eritical period in gun practice with high pressures, instantaneously produced, adds largely to the ability of the construction to withstand the effects of those powerful, dangerous, and suddenly upplied strains.

The steels used have not elranged in quanties since $18 \% 2$, and about the same physical properties obtain now as then, as exhibited by their tests. A soft steel of 31 tons per square inchat the breaking point, and when tempered in oil raising 1047 tons, is now, from the latest information in print, about the standard required at the Woolwich arsenal. The untempered steel reaches its elastic limit, at, say 13 tons per square inch. and the tempered at 31 tons per square inch. It is thus apparent tbat the oil-tempering not only inereases the tensile strength of the metal, but also inereases in much greater ratio its elasticity. It is stated on good authority that no standard of heat required for tempering has been es-tablished-different specimens requiring different heats-and hence tests for the required temperatures are made for each tube from specimens taken from their ends. The more hammered steels require less heating than the less denser or softer ones, and hence the degree of heat required varies in every case depending on the grade of the steel under treatment as toits physical properties as determined by tests. See Tempering.

OIL TESTER.-A machine used for ascertaining the relative value of lubricants, giving the co-efticient of friction, and pressure per square-inch of journal; also the temperature at the same time. The drawing on the opposite page slows such a contrivance with the following:

Extreme lıeight
Extreme length Extreme width Weight

21 inches.
dimensions

40 •
340 pounds.

## ADAPTATION.

Provided with three sizes of journals, viz, 2 inches,
$2 \frac{3}{4}$ inclies, and 3 incles, also a cone-pulley to run at 3 different speeds.
Cajacity 2.200 pounds.

In using the machine, a small and detorminate quantity of the oil to be tested is placed on the journal, the prossure is adjusted to that at which the oil is desired to rum under test; and the machine is started at a speed which will give the desired relative velocity of rubling surfaces. Observations are made at short intervals, and recorded, until the test is chosed by rapid leating, as shown by the thermometer, ant excessive increase of friction is indicated. (ompeting oils are similarly tried, and the records aflord a perfect means of eomparison. The rebative power of resisting ligh tomperatures without decomposition is another inportant point which may be tested. See Testing-machine.

OLEOMETER.- An instrument for ascertaining the densities of fixcd oils. It consists of a very delicate
thermometer-tube the latb being large in proportion to the stem. It is divided into tifly degrees.

 olive oil. Also written Bhetemeter.

OLIFANT.-A horn which a Paladin or Ḱnight soumedel in tokern of dollanee, or as a colalconge. Commonly written oliphant.

OLINDE.- A term applled to an carly form of sword-hate.

OLYMPIC GAMES. - The most splendid Natiomal Featival of the Aneient Grecks, eelelmated every tifth year in honor of Zeus, the father of the gods,
(0) be preaent, on pain of being thrown heallong
 the 11 th to the 15th of tha Attie montly Hohatome buron (our July August), fluring which, first thronghout Elis, and then throughout ther rest of Gerecen, seraldo prochnimed the arssation of all intestine hostilities: while the ferritury of Elis itself was dechared inviolable. "The combatam1s were required to moderge a preparatory training for 10 montha in the gymmasimen at blis, and during the last of these montis the gymmasiun was almost as numeronsly attenderl as were the games themselver. Much moncertainty prevails as to the manner in which the con-

on the Plain of Olympia. Their origin goes haek into Prehistorie Ages. Aecording to the myth elaborated or preserved by the Elean Priests, they were instituted by the Idran Herakles in the time of Kronos, father of Zeus; according to others, by the later Herakies, son of Zeus and Alkmene; while Strabo, rejeeting the older and more ineredible legends, attributes their origin to the Herakleidee after their Conguest of the Peloponnesus. But the first glimpse of anything approaching to historic faet in conneetion with the games is their so-called revival by Iphitos, King of Elis, with the assistance of the Spartan lawgiver, Lyeurgus, ahout 884 в. с.; or, aecording to others, about 828 B. c., an event commemorated by an inseription on a dise kept in the Hereum at Olympia, which Pausanias saw. That festive games were celebrated here-in other words, that Olympia was a sacred spot long before the time of Iphitos, can indeed hardly be doubted : the universal tradition that the Elean Fing had only "revived" the games proves this; lut nothing what ever cau be historieally ascertained concerning their origin, character, or frequency, in this remotertime. Iphitos may, therefore, be regarded as their founder, yet the reckoning of time by Olympiads-the real dawu of the historical period in Greek history-did not begin till more than a eentury later. At first, it is conjectured, only Peloponnesians resorted to the Olympic Games, but gradually the other Greek States were attracted to them, and the Festival became Panhellemic. Originally, and for a long time. none were allowed to contend except those of pure Hellenic blood; but after the Conquest of Greece by the Romans, the latter sought and ohtained this honor, and both Tiberius and Nero figure in the list of Roman victors. Women-with one excuption, the Priestess of Demeter Chamyne-were forbidden
tests were distributed over the different days. K ranse suggests the following order: On the first day the great initiatory sacrifices were offered, after which the competitors were properly elassed and arranged by the Judges, and the contests of the trumpeters took place; the second day was set apart for the boys who competed with eaeh other in foot-races, wrostling, boxing, the pentathlon. the pankration, horseraces; the third and prineipal day was devoted to the contests of men in foot-races of different kinds (as for example, the simple race, once over the eourse; the diaulos, in which the competitors had to run the distauce twiec; and the dolichox, in which they had to rum it seven or twelve times); wrestling, boxing, the pentration, (in which all the power and skill of the combatants were exhibited), and the race of hoplites, or meu in heavy armor; on the fourth day came off the pentathlon, (contest of five games-viz: leaping, running, throwing the discus, throwing the spear, aud wrestling), the chariot and horse races. and perlaps the contests of the heralds; the fifth day was set apart for processions, sacrifices, and banquets to the vietors (called Olympionikoi), who were crowned with a garland of wild olisetwigs cut from a sacred tree which grew in the Altis, and presented to the assembled people, each with a palm braneh in his hand, while the heralds proclaimed his name, and that of his father and eountry. On his return home; he was received with extraordinary distinetion: songs were sung in his praise, statues were crected to him, both in the Altis and in his native eity; a place of honor was given him at all publie spectacles: he was in general exempted from public taxes, and at Athens was boarded at the expense of the siate in the Prytaneion. The regulation of the games belonged to the Eleans, from whom were chosen the Mellanodikal, or Judges, whose number varied. At
first there were only two, hut as the games became more and more national, and consequently more nnmerons, they were'gradually increased to ten, sometimes even to twelve. They were instructed in their duties for ten months beforchand at Elis, and held their office only for one year. The officers who executed their commands were called Ilytio, and were under the presidency of an Alytarch.

ONAGER.- A warlike machine, which was used by the ancients to throw stones of different sizes. It is mentioned by Yegetins. See Balista.

ONE-HORSE LITTER.-A litter intended to be dragged by one horse or mule. It is varionsly extemporized from such material as may be at hand. Tbe drawing, from a photograph of one of these
to wa'ls not more than 21 fect thick, the others to heavier walls; the object being to leasen, as far as practicable, the weakness which loop-holes necessarily cause to the wall; this defect increasing as the exterior or interior opening is greater.

Fur thin walls, where the plan of the loop-hole is trapezoidal, the width of the exterior opening may be from 2 to 4 inches, and that of the interior from 15 to 18 inches. These dimensions, however, may vary according to the ficld of fire to be brought within the range of the loop-hole, the more or less cover to be given to the troops, and the strength of the masonry of which the wall is formed. The vertical dimensions of the loop-hole, both on the interfor and the exterior, will depend upon the field of

contrivances, used in the Powder River Indian Campaign, in $18 \% 6$, shows the manner of its construction and use. When two animals can be spared, or when the conntry to be passed over is exceedingly rongh. the tico-horse litter will usually give better satisfaction. See Litter, Stretcher and Tracée.
ONEIN. - An offensive weapon of medirval times, consisting of a staff with a hooked iron head.
OPEN. - A term frequently used in military movements and dispositions, in contradistinction to close; as open column, open distance, open order, etc. It also constitutes part of a word of command ; as, rear open order. By open distance in column is meant that the intervals are always equal in depth to the extent in front of the different component parts of the column.
OPEN DEFENSES.-To this class belong the arrangement of the parapet which has already been described: simple loop-holed vall: for musketry used as inclosures of gorges, etc.; axterion corridors which are covered either by a wall or an earthen parapet; and burbettes and embrasures for artillery. Walis of this elass, when used as the inclosures of the gorges of lunettes or other isolated works, placed in advance of the enciente, but within the reach of its artillery fire, should be high enough to secure the work from an open assault, and sufficiently thick to resist the occasional shot which may reach them over the parapet by which they are covered. For these purposes the height should be from 12 to 15 feet, and the thickness from 4 to 5 feet. The loop-holes are not placed nearer to eaph other than from is to 4 feet, estimated betweren their axes. They should be at least 6 feet above the exterior foot of the wall, and $4 \frac{1}{1}$ feet above the ground or banquette within. The loop-holes are nsmally placed at regular intervals along the line of the wall ; or only opposite that portion of the exterior gromed upon which a tire is to be brought to bear.
The form and climensions of the loop-hole will depent upon the thickness of the wall and the tield of view, both vertically and horizontally, whieh is to he covered by its fire. The phan is cither trapernital, widcening from the front of the wall inwards, or else it widens from the center emoch way to the front and back; or, as is the more nsual form in our works, the interior portion from the center widens inwards, whitst the exterior part is rectangular in plan, and of the same wilth as the width on the interior or the back of the wall. The first form is best adapted
fire to be embraced in this last direction, and they will be regulated accordingly : the top and sole of the loop-hole receiving a suitable slope or direction for this purpose.

The foregoing details can only be determined upon from the snecial object to which the loop-holed defenses are to be applied. Care only is to be taken that in attempting to give cover to the troops their field of view be not 100 restricted by 100 narrow an opening for the use of the firearms. Where the throat or narrowest part of the loop-hole is within the wall, the exterior opening leaves a wider mark for the missiles of the assailed, and when the sides of the loop-hole gradually widen outwards, a shot striking one of them naay glance inward and do injnry. To prevent this accident, the sides and sometimes the sole are made in offsets. A more convenient form for coustruction, aud one better adapted to arresting the encmy's balls, is to make the exterior portion rectangular in plan for half the width of the wall, as already described.

In open exterior corridors the troops covered in frout either by an earthen parapet, which is usually only musket-proof, the scarp wall being run up to the superior slope; or else the scarp wall serves as the cover, in which case it is pierced either throughout its length or at suitable points with loop-holes. The floor of the corridor serves as a banyuette tread for the loop-holes, and is therefore placed with reference to the direction of the fire from the loop-holes. The height at which the scarp wall rises above the floor of the corridor will depend upon the level of the floor and that of the bottom of the ditch ; this height, however, should not be less than $6 \frac{1}{2}$ feet to afford it sufficient cover to the troops. See Barbette Battery, Covered Definses, Embrasure Battery, and Machicalllis.
OPEN FLANK.-In fortification, that part of the hank whieh is covered by the orillon.

OPENING OF THE TRENCHES.-This operation, in the progress of a sipge, supposes that all the meas. ures preparatory to it have been laken; the depots of treneh materials established and well provided; careful recomatissances of the site and the defense's made; an acourate map made from such instramental survers as were practieable, and other information gainel ; the positions of the defenses marked out upon the map giving the directions of the faces and capitals of the principal works; the elistanees and heights of their salient points from that of the
lirst parallel, ete; and the approximate positions of the flrst parallel and of the approashas to it from the depoits in its rear, und of those leathing from it apon the defenses. With the defe furnished from those sources the engrineers can procered to stake out wpon the ground ibe directions of the portions of the trenclacs upon which groumd is to bee dirst broken, either on the samenight, or anight or two before, as opportanity may serve. "phis duty is ratily per. formed with the airl of rough sketehes, rark lanterns, small pocket compasses, and pirkets jainted white, with all of whieh the oflleers are provided, and with the aid of several intelligent non-commissioned ofllcers or soldiers of the engincer troops.
liverything being in readinsos, the workmen ure assembled in detaehments, at the proper moment towards night-fall, at the depots of the trenches, where they receive their trenching tools, and what. ever else is necessary to carry on the work with. They are then led, in single file, to the positions they ure to ocenpy in breaking ground, by an otlicer or engineer soldies; Aomethmes chell man grasping with the right or left hand at tracing rope or tape, on which his position in markel in tle usual way, or clse the tracing-tape is first stretehed and the ment placed in their position near it. When once in position, the working purties ure commanded fo lie down and keep perfectly duiet until ordered to rise and commence work; to give time to the engineer otheers to reetify any mistakes of direction in the lines. So soon as this is done, the order is given to rise and break ground. This will be done by each man digging a lole as speedily as posssible, and throwing the eartis towards the defenses, so as to give cover for himself, and from which he can gradually, and with security, work forward in the direction of the trench he is to excavate. This operation is supervised by the engincers on duty, who sec that any mistakey made by the men digging are corrected at the proper moment. In the prosecution of the works during this period, the simple trench, tlying sap. or full sall will be used, as opportunity may offer, and as the fire of the defenses is more or lass certain and destruetive. As the flying sap will alford the most speedy cover against case shot, it will be employed generally so soon as the trenches have been advanced within destruetive range of this; using, however, the simple trench at night, or at any other opportune monzent. The full sup must be used when within the certain range of small-arms, and when the cannon fire of the defenses is very deadly; resorting, however, to the flying sap whenever the risk is but slight. See Siege.

OPEN ORDER. - In tactics, an interval of about three yards between eaeh rank. Sce Rear Open Order.

OPERATIONS.-Under the term Military Oprerations are included: field operations; offensive and defensive operations; undergronnd operations ; siege operations, etc. All consist in the resolnte application of preconcerted measures in secrecy, dispriteh, regular morements, occasional eneampments, and desultory combats or pitched battles.

OPHICLEIDE.- A nusical wind-instrument of lorass or copper, invented to supersede the serpent in military bands. It eonsists of a concial tube, terminating in a bell like that of the horn. with in monthpicce similar to that of the serpent, and ten ventages or holes, all stopped by keys like those of the bisson, but of larger size. Ophiclcides are of two kinds, the bass and the alto. The bass ophicleide offers great resources for maintaining the low part of masses of harmony. Music for it is written in the bass clef. and the compass of the instrmment is from $B$, the third space below the bass staff to $C$, the tifth added spacer above it, ineluding all the intervening claromutic intervals. The alto ophieleicle is an instrument of very inferior quality, and less used. Its compass is also three octaves and one note. The musie for it is written in the treble cleff, and an octave higher than it is played. Donble bass or monster ophi-
 but the anomat of loreatla which is required to play them has preventerl thesir coming into gencral usse.

OPINION. I. Ducoision, detormination, and jurligement formme muen matters that have boen lajel lefore a Comrt- Dartial or ('ourt of lmpuiry. 2. Tha treh. nical namas: for the arlvice given by an Advocate. The Attorney or Soliojtor writus a statement of farets, callod "at case" in lincrland, and "a nomorial" in Southad, whieh encls by asking certain pucrices, and the answer written by the Counsel is his copinion. A Comand is not liable for any damages canted by bis giving a wrong opinion, thongh the result of gross innorance, this heing one of the privilegres of Comnsel.
OPLITAI. - A Grecian army, at lht period whan the military art was in the greatest perfaction amemer them, was composed of infantry and cavalry. T"lat formor was made up of three different orders of soldiers; termed, 1. "loe oplitei, or lueavily armed, whos wore a very complete lefensive armor, and bore the ararisse, or Macedonian pike, a formidable weapon rither for the attack or defonse, about 24 feet in length. 9. "The Paitui, or light infantry, who were witlont defensive armor, and carried the javelin, bow, and sling. 3. The Peltastop, who were interincolinte between the othor two, carrying a lighter defensive armor, as well as a shorter pike than the oplitai.

The oplitai, when formed for exercise or parade. Were drawn up in open order; leaving an ecpal interval between the men of cach rank and between the ranks. When ready to charge, eacha man oecupied a square of 3 fect, and the six leading ranks brought their pikes to a level; thus presenting an array in whieh the pikes of the sixth rank extended 3 feet in advance of the front one. In attacks on intrencliments, or fortified cities, the men of each rank closed shoulder to slionlder, a sutheient interval being left between the ranks to move with celority; the leading rank kept their shields overlapped to cover their front; the others held them nbove their heuds for shelter against the weapons of the enemy.

OPTICAL ILLUSION.-Of all the senses none is more deceptive than the sense of sight; it often deccives us as to the distance, size, shape, and color of objects ; it frequently makes them appear as if in situations where their existence is impossible; and often makes us think them movable when they are not so, and viceverma. An object appears to us as large, near or distant, aceording as the rays from its opposite borders meeting at the eye form a large or a small angle: when the angle is large, the object is either large or near ; when small the object must be small or distant. Practice alone enables us 10 decile whether an object of large apparent size is so on acconnt of its real size, or of its proximity; and our clecision is arrived at by a complarison of the object in position with other common objects, sucla as trees, luouses, ete., which may chance to be near it, and of which we have by experience come to form a correct idea. The same is, of course, true of apparently small objects. But when all means for comparison are removed, as when we see a distant objeet tloating on an extensive sheet of water, or erect in anapparently boundless sandy plain, where no otber object meets the eye, then our judgment is complotely at fault. Imperfection in the accpured porceptions of sight, as it is called, jrodnces many other illusions: it leads us to consider splerieal solids at a distance as dat dises, und deceives us regarding the size of objects. by their color: the sun appears larger than he would if illumined by a fainter light, amd a man in a white babit seems larger tban lue would if he wore a dark dress. Illusionsare also produced by external causes. The property which the eye possesses of retainingan impression for a viry brief, though sensible period of time (about one-quarter of a second), after the ob)jeet which produced the impression has been removed. jrodnces a third clas of illusions. Common examples of this are the illuminated cirele formed by
the rapid revolution of an ignited carbon point, piece of red-hot iron, or other luminous body, and the fiery curve produced by a red-hot shot projected from a cannon.
OPTIMATES AND POPULARES. - In the politics of republicun Rome, the conservative or aristocratic, and the democratic or progressive parties respectively. The Pomulares comprised the great body of the people, including not only the proletariat but mauy men of wealth, but withoit personal influence. The Optimates were the aristocracy, the great official houses, and their followers. The two parties perpetuated the old contests between the patricians and plebians. The Popularex trimuphed under the leadership of C. Gracchus, and were erushed hy Sulla.

OR.-In IIeraldry, the metal rold


Or. represented in heraldic eugravings by an unlimited number of dots.

ORB. - In tactics, the disposing of a number of soldiers in circnlar form. The orb is a good formation for a body of infantry in an open country when resistiug eavalry, or a superior force of infantry, inasmueh as it is regular and equal-
Iy strong, and gives an enemy uo reason to expect better success by attacking one place than auother. Cæesar drew up his whole army in this form when he fought agajust Labieuus. The whole army of the Gauls was formed into an orb, uncler the command of Sabinus and Cotto, when fighting against the Romans. The orb was generally formed six deep.

ORDER.-This word is applied to an aggregate of couventual rommmnities comprelended under one rule, or the societies, half military half religious, out of which the institution of Knighthood spring. Religious Orders are generally classitied as Monastic, Military, and Mendicant.

The earliest comprehension of Monastic Societies under one rule was effected by St. Bazil, Archbishop of Cesarea, who united the hermits and cenobites, in his diocese, and preseribed for them at uniform constitution, recommending at the same time a vow of celibacy. The Basilian rule subsists to the present day in the Eastern Chureh. Next in order of time was the Benedictine Order, founded by St. Benediet of Nursia, who considered a mild discipline preferable to excessive austerity. The offshoots from the Benedictine Order include some of the most important Orders in ecclesiastical history, among others the Carthusians, Cistercians, and Priemonstrants. The order of Angustiniaus professed to draw their rule from the writings of St. Augustine; they were the first Order who were not entirely composed of laymen, but of ordained priests, or persons destined to the clerical profession.

The Military orders, of which the members united the military with the religious profession, arose from the necessity under which the moaks lay of defending the possessions which they had accumulated, and the supposed duty of recovering Palestine from the Saracens, and retaining possession of it. The most famous Orders of this kind were the I Iospital. Iers or Knights of St. John of Jerusalem, the Knights Templars, and the Teutonic Order. Many other Military Orders existed, and not a few continue to exist, particularly in Spain and Portugnl. 'The plaraseolony of the old Military ()rders is proserved in the Orders of Knighthood of modern times, into which individuals are admitted in reward for merit of different kinds, military and civil.

The thre" Menilicant Orders of Franciscans, 1)ominicans, and Carmelites ware instituted in tha 13 th century. Tlaeir principal purpose whe to put down the opposition to the Church, which had bequn to show itself, and also to reform the Church hy example and profrpt. At a later perion the Order of Jesuits was founded, with the object of inereasing the power of the Church, and puting down heresy.
-Notees of the more important Orders, Monastic, Military, and Meudicant, will be found under separate articles. See Orderx.

ORDER ARMS. - A position in the Manual of Arms, executed as follows: The Instructor commands 1 , Order, 2. Arms. Grasp the piece with the lefthand, the forcarm horizoutal, let go with the right haml; lower the piece quickly with the left; regrasping it with the right above the lower band, the little finger in rear of the barrel, the hand near the thigh, the butt about three inches from the ground, the luft hand steadying the piece near the right, the fingers extended and joined. (Two.) Lower the piece gentIy to the ground with the right hand, drop the left hand hy the site. aud take the position to be dedescribed. The position of Order Arms has the arm hanging naturally, elbow elose to the body, the back of the hand to the right, the fingers extended and joined; the barrel between the thumb and foretinger extended along the stock; the butt against the toe of the right foot, the barrel to the rear and vortical. See llamual of drms, Fig. 4.

ORDER BOOK. - A book kept at all military luadquarters, in which orders are written for the intormation of ofticers and men. Every order in this book should be signed by the Officer whose signature was attached to the originals sent from the office, and each order should be separated from the one following by a red line. The mode of numbering, distributiou, aud geueral form of orders are preseribed by the regulations: but the distribution in each particular case should be noted in red ink in the margin to show that the regulations have been complied with; and where orders, are sent to one othcer, under cover to his Commander (which course ought always to be pursued), or furnished at a date subsequent to that of their issue-these facts should likewise be added: where the order has been printed. it will be suthicient to write the word "printed" in red ink in the margin. to indicate that the widest circulation has been given to it. There are two indexes attuched to the trok-one of names, the other of subjects-every order will be iudexed in the latter immediately after heing copied. For names, a detashed index will first be used until the record book is full, when they will be arranged under each letter as in City Directories. and thus classified, transferred to the permanent alphabet. ical index attached to the record book. Every proper name will be indexed and a red line drawn in the boly of the order under it, to facilitate a reference to it.

ORDER OF BATTLE.-The combination which is made to attack one or more points of an army in position, is called the order of battle. The four prin(ipal orders of battle are the parallel, oblique, concave, and convex. The lines of battle of the opposing forces being sensibly parallel to each other is an example of the parallel order of battle, This order of battle uaturally results when a simultaneous attack is made along the whole front of an euemy's position. The results will usually be very decisive for the army which gains the advantage, but the price pad for success will also be very dear. When the line of battle of the assailant makes an angle with that of the assailed, the order of battee is suid to be wblique. This order of battle results when the attack is made with one wing, the other wing at the same time being held back, or refised. When the attack is made by both wings, the center being rem fused, the order of buttle is concove; and, whern made by the centur, with the rings refiused, convex. The order of battle then results from the dispositions made fo attack the (nemy's position; so it naturally follows, that when the 'memy is found, the first point to bedecided is, hom to make the uttrack arith the greatest domage to the enemy and with the least to the ottacking forre. Owing to the great loss which nsuatly follows attacks along the whole line, even when sinceessful, they should seddom be made, execpt when the chances of success and the probable results of victory are very great.

ORDERLIES.-Non-commissionme ofllerors and selslices appointed to wait unon (ioneral and othor Cummanding Otlicers, to communisate thoir oriers, and to curry moss ges. 'J"he Ordelly Ofleme or Othecer of the Day, is the ollieve of a corpes or regiment, whase turn it is to superintend its interior aconomy, us cleanlinuss the goodness of the food, vete. Firderly Non-cemmissioned Officers are the: Kergeants in catch company who are "ordarly, or on dolty for the werk. On the drusn beating for ordiare they prosreed to the Orderly Roon! take town the generat or regimental orders affecting their respretive combpanias, show them to the Company Otlicers, and warn the noecssary men for any dutios specitiod in those orders An Orefrty Bombis provided ly the ('aptain of each troop) or company in a regiament for the insertion of general or regimental orders from time to time issucd.

ORDERLY DRUMMER.-The drummer that lnats the orders, and gives notice of the hour for messing, re.

ORDERLY ROOM. - The court of the Commanding Ofticer, where charges brouglit against the mon of his reriment are investigated, and sentence passed. It is also the othee of tho Commanding Onfer, usualty in the harracks, from which all orders emanate.
ORDERLY SERGEANTS.-The First Sergennt of a company is commonly so called. On hearing the drum beat for ordars, Orderly Sorgeants repair to the Adjutant's Office, and, having taken down the orders ir writing, they are immediately to show them to the ollicers of their company, and to warn the men for duty.
ORDER OF MARCH. - The formation assumed by troops on the march, and which dejuendes on the matture of the conntry they are moving in, the objert to be atteined, and the claracteristic of the enemy, as well as the number of troops composing the force. If at any distance from the enemy, the comfort of the men, as well as the means of giving them the necessary supplies, must be stadied. When in the proximity of the opposing force, tactical considerations must alone weigh in disposing of the order of mareli. In all cases anarmy is preceded by an mlVance guard, covered by the main force, the rear of which is followed by is rear goard.

ORDER OF MERIT.- A military distinction given to officers or soldiers for some signal service, the badge of which is generally expressive of the service. Such was the Medal or Order of Merit, presented by the Austrian Emperor to the Ofticers of the 15th British Light Dragoons for lheir bravery in the affair of Villers en Couché in 1794.

ORDERS. - The intructions, injunctions, or commands issued by superior ofticers. The orders of Comnmanders of Armies, Divisions, l3rigades, and Regiments are denominated orders of such Army, Division etc., and are either General or Special. Orders are numbered, General and Special in separate series.each beginning with the year. Those issned by Commanders of Posts, Battalions, Companies or Detachmenta are simply denominated "Orders," and numbercd in one series, beginning with the year. In the British service, orders are General, Divisional, Brigade, or Regimental. General Orders are issued by the Commander-inChief of an army, and affect the whole of his force. The others emanate from Gencrals of Division or Brigade, or from othcers commanding Regiments, and severally affect their respective commands. In the Uuited States, a General Order or an important Special Order, is read and approved by the officer whose Order it is before it is issued by the Staff Offlecer. An Order states at itshead whether it is Special or General: its number, date, and place of issate ; and at its foot, the name of the Commander by whose allthority it is issued. An Order may be put in the form of a letter addressed to the individual concerned, through the proper channe!. Such Ordersshould be in strict military-not semi-official-forms. Every Commander who gives an Order involving an ex-
pronditure of jorblic money wonds a coby, without dobay, tothe Jhreau of the Whar lepartment to whicl, the" expenditure appertains, and if sutcls Commatider be serving in a Dilitary Ibopartment, he geads a rony of the orider to the Ilaslquartars of the 1) prrtment. If a Nilitary (ommander gives to a dim. bursing ollior any order in conllict with orilers recoivert ly him from the oflliere in chatere of his brpartmant at any sinperior fandomartors, such Commander forthwith trammmits the order to surd headquarters, with explanation of the nerowsity which justitios it. Commanding officers of MiliIary Divisions, Departments, and Districta forward, dircet, copues of all the orclers atrectiog the whimers of the Gencral stalf under theje command to the It... Imrtnents at Washincton to which the dation of tho oblicer portain. It is important that advious of leaves of absence, ehanges of lowatity, slution, reto of sub) ordinate oflicers of the (iencrat Stafl berarly come mmincated to the leads of their resperetive lowartments. Orders and instructions are transmitted through intermediate Commanders, in the order of rank, excelpt when they are of such a cllaracter as to leave the intermediate Commandars mo discrotionary power to modify or suspend than. Io such exceptional cases, the Grders or instructions will be sant direct to the officer under whose unthority they are to be excented, copios bering furnished to the initermediate Commanders. Orders for any loody of troops are adrlressed to its Commander, are openeal and exerouted by the Commandrer present, and are published and distributed by him when necessary. Copies of all orders of the Commanders of Armiaes. Departments, Divisions, and detacheal lorigades, and of the Superintendents of the Recrniting Sirvice, are forwarled at their dates, or as soon thereafier as practicable, in separate series on full sheets of letterpaper, or as printed, to the Alljutant General's Office. A tile of the printed orders is kept with the head. quarters of each Regiment, with each Company, and at each Military Post, and is regularly turned over ty the Commander, when relieved, to his suecessor. The ordcrly hours being fixed at cach healquarters, the Staff Officers and chiefs of the special services cither attend in person or send their assistants to obtain the orders of the day: and the 1st Sergeants of companies repair for that purpose to the Adjutant's othice. During marches and active operations, and when the regular orderly hours cannot be observed, all orders are fither sent direct to the troops, or the respective Commanders of Regiments or Corps are informed when to send to lieadgnarters for them. Under the same circumstances, orders are read to the troops during a halt, without waiting for the regular parades. See General Order.x, and special Ordor.
ORDINAIRE. - The common French term for the soleliers' mess.
ORDINARIES. - In lleraldry, certain charges composed of straight lines, and in very common uses, to which writers on IIeraldry lad assigned abstruse symbolical meanings, but whose real chiof peculiarity seems to be that they originally represented the wooden or metal fastenings of the shieJds in ase in actual warfare. The Ordinarios are usually acoounted nine--the chief, pale, fess, bar, bend, bend sinister, chevron. saltire, and cross. Heralds vary a litte in their enumeration, some taking in the pile in place of the bar. Each is noticed under a separate article. See ITeruldry.

ORDINARY OF ARMS.- In Heraldry, an iudex or dictionary of armorial conts, arranged, not aceording to nimes, like an armory, but according to the leading charges in the respective shields, so as to evable any one conversant with heraldic lanenge, on seeing a shield of arms, to tell to whom it be' longed. A very imperfect Ordinary for England is ippended to Eilmonson's Heraldry: a far more complete and elaborate work of the same kind, Papworth's Ordinary of British A rmorialx, partly edited by Alfred Morant, was published in 18 it.

ORDNANCE.-The term ordnance includes cannon of all kinds fired from carriages, slidcs, beds, tripods, etc. Cannon are classified according to their nature, as guns, howitzers, mortars, and machine-guns, and according to their uses as field, mountain, siege, and sea-coast. Guns are further classified as to their construetion, as smooth-bore and rifle; as muzzle-loading and breech-loading; and as cast and built up cannon. All ordnance for land service in the United States is made by private Coutractors, under the direction of officers of the Ordnance Department. Rifled howitzers and mortars, aud guns with chambers for large charges, are now under consideration. Rifled breech-loading field-guns are also under trial. For the present, until superior armament can be provided, guns of obsolete patterns and kinds are retained in serviee. Standard guns, howitzers, and mortars take their denomination from the ealiber in inches.

Heavy modern ordnance dates properly from the casting of the great Rodman smooth-bores in the United States. To the impetus thus given may be ascribed the origin of the powerful guns of the present day. In Rodman's study of gunpowder and the improvements introduced by him, lay the germ of all subsequent progress in ordnance. His most important invention, perforated cake poinder, was transplanted bodily to the Continent of Europe, wbere, under the name of prismatic porder, it has been used ever since. So perfect is the theory of this powder, that invention and science toiling over the subject for twenty years las produced nothing better. Since the first half of the decade-1860-70-the United States has fallen behind the nations of Europe in the
ordnat.ce in the present stage of its development. Large-grained powder, the first of these requisites, is universally used. Great length of bore, to utilize the whole force of the powder, is another eharacteristic. Great power is secured by immense charges of powder and weight of shot. A caliber oi at least 12 inches, giving an oblong shot of about 700 pounds, seems to be regarded as a sine qua non for all armaments. Englaud has taken the lead in all these improvements, and though it would appear from recent events that her choice of gun systems is unfortunate, there is no question that all great advances since Rodman's day have been based upon her expeusive experiments. The work of the celebrated "Committee on Explosives," 1875. of whieh Col. Younghusband and Capt. Noble (now a member of Sir Wm. Armstrong's firm), were members, did more to this end than any other investigation since Gencral Rodman's experiments in gunpowder. Acting upon the obvious idea that the peril to the life of the gun is relieved by air-space, the Committee recommended the eulargement of the bore at the seat of the charge, or the use of a ehamber larger than the bore. This simple expedient led at once to an increase in the power of guns while the pressure endangering them was kept at a point lower than before. Every good thing can be pushed too far. The immense charges made possible by the English chamber have been continually added to by the Italians in their 100-ton Armstrong monsters and the vital air-space greatly redueed till a charge of about 552 pounds of powder has recently ( 1880 ) burst one of these magnificent guns.
The following table gives an interesting compari-

power of her armament. Having heen committed by her two great inventors, Rodman and Dahlgreu, to cast-iron smnoth-bores, whieh were fabricated in great numbers, her attitude has been that of Micaw-Ber-"waiting for something to turn up." England occupies the other extreme, - of all the powers she las veutured the greatest sum3 upon the theories of lier gum-makers. Her private manufacturars have received such encouragement at home or abroad that they are now able to supply the whole world. Their only great rival on the Continent is Krupp, when finds his market priucipally in Germany, Russia and Turkey.
The early adoption of the rifle principle loy all European powers placed them at once on a plane of advancement. 'The vexed questions of brewh and muzzle-loading and of gun construction have beren decided by ench nation in the manner most satisfactory to itself. Opinions differ widely, and it is prob)able that many changes may be mate m these matters. Still they all possess powerful guns which have ecrtain features in common, cssential to heavy

$\begin{aligned} & \text { 둘 } \\ & \text { 를 } \end{aligned}$		Weight.				Total energy at the muzzle per kilogramme of the weight of gun.
		Gun.	$\stackrel{\stackrel{0}{0}}{\frac{1}{6}}$	年		
$\dot{\Xi}$	$\stackrel{\text { ® }}{\leftrightarrows}$	Kilogrammes.			艺	
305	10.70	48,550	455	141	530	. 104
355	12.40	81,350	725	225	530	. 103
305	6.70	36,600	325	72	488	. 103
305	9.14	43,341	344	128	597	. 14
320	6.70	39,000	341	86	470	. 104
406	8.15	82,300	771	204	498	. 114
343	10.97	64,000	567	283	624	. 175
432	11.89	103,100	908	300	558	. 118
340	6.7	48,340	420	117	480	. 101
340	11.20	37,500	450	180	600	. 221

son between the largest guns at present existent :
Tables I, II, III, and IV, on pages $443,444,445$, and $446, e m b o d y$ the principal dimensions and weights of ordnance aud ammunition of the United States Land Service. The tables, pages 447-456, together with the descriptions of ordnance referred to in this Encyelopedia, at the elose of this article, will enable the reader to trace the history of ordnance, ancient and modern, and at the same time, to make comparisons of that pertaining to the various military services. See Armstrang Guns, Artillery, BlahelyGum, Brech-insertion, Bronze fiuns, Built-up Fims, ('an. nom. Cannon Metuls, C'ast-iron Guns, Cast-sted Guens, Comerrted Gums, Cooling of C'astings, Dhhlgren Cuen, Élwiris Gun Wurks, F'abrication of Tubes, Fijtteninch (run, liraver Gun, French Army Ordnance, Fun Gonstruction, Inspection of Ordnance, Ifann Gun, Mogfiatt Gun, Mortar. I'alliser CYnn, I'arrote Bun, Persons Gun, Ritled IIoncitzers, Rodman Run, schultz Wipe (yun. Sutrliffe Cun. Systemx of A rtillery, Thomp)son Fun, lichatius (\%un, H"hitworth Guns, Hire Guns, atal IIroolirich (iua.






98	G涪	$\chi^{*} 99$	\％＇82	F66	$867^{4} 68$	も゙げI	081	98		$99^{\circ} \mathrm{L}$	8	
1288	6.97	988	6＇92	9＊90I		$987^{6}$ L	¢ 991	L＇8E	$68^{-c ¢ .1}$	6.2	$889^{\circ} \mathrm{L}$	
L＇it	L゙下g	699	9\％8	$\underset{8: 64 i}{0 L I}$		$\begin{aligned} & +88^{*} I \\ & \varepsilon I F^{\circ} I \end{aligned}$	$9[8$	$\mp \because 28$	$\begin{array}{r} 8.191 \\ 811 \end{array}$	$\begin{array}{r} 26 \\ 6 \end{array}$	$9 \pi^{\circ} \cdot 8$	 
98	9゙も	I＇99	8：	$8^{\circ} 66$		81F＇1	08 I	98	$8[1$	6	8	




*яวย!




．．．．	8	96.15		L81＇\％			－96		1107	9807 1	
	－	981		8LL＇\％			$\bigcirc 01$		$110{ }^{1}$	176	
ה¢G1				$108 \%$			88				
				$009{ }^{\circ}$		0¢\％＇ti		0 6 9	$\begin{aligned} & 6 \pi 011 \\ & 0 \approx 021 \end{aligned}$	$\left.\begin{array}{l} 21071 \\ 98071 \end{array}\right\}$	
	$\begin{aligned} & 19 \% \\ & 62 \% \end{aligned}$	$\underset{6008}{2}$		$\begin{aligned} & 9\llcorner 9 ' \% \\ & 6 . \varepsilon^{\prime} \% \end{aligned}$			－02		$\mathrm{K}_{5} \mathrm{O}$ Ol		
								008	Stiol I	$1 \mathrm{ILO}_{51}$	
		$\begin{aligned} & 5 \cdot 26 \\ & x, 2,(1), \Gamma \end{aligned}$	＊puows：		7204	$*^{* p u n o} d$	dt	$\overbrace{20, H}^{626}$	88012	81021	
				－ว¢ิธทห	－！！oวay	asoq jo ழวロ！ax 2nibs ad antissad	－иоп̧влә近	［b！！！aI	 	ว！！วә！   －ord jo 7 पinan or  	${ }^{\text {²0xid }}$
－notlifinga nyalu									－so oiuver		


	$\begin{aligned} & P 669 \\ & 9 F 69 \end{aligned}$					$\mid\} \text {............ }$	91		70.9	91980	$6 \cdot 9$	
－	869 869	¢	っоqes su！puedx   допеs 号u！pardxa				08： 07001	$\widetilde{\sim}^{*} 9$	［：	8L68．0	$8 \cdot 9$	
．．．．	9\％	\％	．．．．s．sper	92＇				78\％8	Ł9＇9	$8689^{\circ} 0$	$6 \cdot 9$	
8.9 89 80		5		6． 6	\％．．．．．．．．．．u！̣อ S	． 99	19	L＇t		2 600 \％	$22^{\circ} 9$	
	（18 ${ }^{18} 9$ ）	${ }_{\text {\％}}$ \％	．．．．．．．pareo pear	61.2	……．．．попив	،6\％of	07	$88^{\circ} 8$	$90 \% 9$	［Stas	$0 \cdot 9$	
			．．．．spurq aәddoo			．．．．．．．．．．．．						
－xpunert	＊punorl			－криппл			0 O	－ $8.239 ? 7{ }^{(10)}$	$x_{0.12 q ? m_{n}}$		69	
－วзึавчว Steles．ng	－pancol   $245!24$	リ｜	－umpisis		＇pa！y		－s．aq！por	－Su！${ }^{\text {Su！}}$ JO	＇2ı0才 ЈO			
		hinoaroac			－gosve）	－0nitait	SO LSTM L	－hlonat ail	vmixouddy			



	$09 \square^{\prime}$		       	รu! 1 เวəเS	
-0b	\%08'\%	- nosi-74inosM1			-dazı!м
-97	$0 \mathrm{C} 9^{\prime} 1$	.... poom	apour PIO		
-09	$0 \pm \mathrm{L}^{\prime} \mathrm{S}$	- пол!-2ysnos M	 	-ajsvd पи!M - ovquer jo suid	
-62   022			    	  Su!tysnq pats	
oR2	-npunod	$\mathrm{pOO}_{\mathrm{M}}$		isuiphr Sutynge suta dadiop	
			- 3 Inrs		
					'วJPI
			-358!ux		








		Range.	
$\mathscr{S}$			
	$\cdots$	皆	
		$\begin{gathered} 5 \\ 0 \\ 0 \end{gathered}$	
	过	¢	

tiou of accuracy.-" Revue D.Art.." July, 187.1 Shell 3 cals. long tumbled, and of 23 cals. bathote plece.
get charges than 7.7 lbs oproved too heavy for the

Remarks.




	$\begin{aligned} & \overrightarrow{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	
$\neg$ $\vdots$   $\stackrel{\rightharpoonup}{0}$ $\stackrel{\rightharpoonup}{0}$   -0 $\vdots$   $-i$ 8	Weight of projectile to weight of piece.	\%
	Initial velocity.	
	Elevation.	
	Pressure per square inch of bore.	
$\stackrel{\text { N}}{\stackrel{\rightharpoonup}{*}}$	\#	
	$\stackrel{\text { تِ }}{\mathscr{E}}$	
	Time of light.	
	$\stackrel{5}{0}$	
	苞	
	覅	
	Deflection.	
	Mean reduced deflection.	
	I) ${ }^{\text {civation. }}$	



ORDNANCE AND ORDNANCE STORES.-T"hr Leme ral denomination "Ordnance and Ordance Stores" compreliends all camon and artillery marriages and equipments; all appuratus and nambines for the srevice and mancuver of artillery; all small-arma, no: ponterments and horse equipmonts: all ammunition and all iools, madhinery, and materials for thro Ord. nanceservice; and all horse "cpupments and harness for the artillery; mad, in genaral, all propurty of whatever nature supplied to the military establish. ment by the Ordnance: I) epartment.

It is a duty of the Chiof of (9rdnamen to furnish iss timates, and. under the dirmetion of the Siceretary of Whar, to make contracts and purehases, for proveruring the neressury supplies of ordmance and ()rdnance Stores; to direct the inspertion and joroving of the siane, and to direct the construction of a!l rannon and carriages, ammanition-wagons, traveling forges, artilierers' wagons, and of "very implement and als. paratas for ordanace, and the preparation of alf kints of ammunitionamlordnance stores constrmeted or propared for tha service.

ORDNANCE BOARD. In the United States Army, a Board composed of' such oflicers of tho Ordambee Department ats the sometary of War may dendgnate, and which is advisory to the (bicef of Ordmance amd is atharged with the investigation of such subjects atal the proformance of such datios, ind at Elath times and phates as the Chief of Ordmance may direct. No changes are made in the cstahdished inodels or patterns of Ordmance and Ordmance Stores for the serviee of the United States except on the rexommendation of the Orilnance Boarel, approved by tha Secretary of WFar. Sce Board of (ordmance.

ORDNANCE DEPARTMENT.-In the L'nited States Service, the Ordnance Department of the Army comsists of one Chief of Grdamaer, with the rank of Brigadiar-(ieneral, three Colonels, four Lientemant colonels, ten Majors, twenty (aptains, sixteen Jirst Lientenants, ten seeond Lieutenants, und thirtern Ordmane Store-kepers. The Ordnance Sitorekereer at Huringtied Armory lass the rank of Major of C'avalry. Sll other Ordnance store-keppers have the rank of Captain of Cavalry. No Ottiecer of the Armay is commissioned as an Ordnance Oticer untill he shatl have been examined and approved by a Board of ant less than three Ordmance Ofticers, senior to him in rank. If an Ofticer of the Army fail on such examination he is suspended from appointment for one year, when he may be reexamined before a like Board. In ease of failare on such re-examination lie can not be eommissioved as an Orinanee Officer Any number, not exceeding six, of the Ordnance Store-keepers may be authorized to act as Paymasters at armories and arsenals. The Orduance Department was first established in the United States in 1812. It was not provided for in the reduetion of the army in 1815 , but continned in the service. In 1821, the Department was merged into the Artillery, attaching to each regiment of Artillery one supernumerary Captain, and giving to each Company four subaltern otticers. The Ordnance Corps was re-es. tibblished April 5, 1832.

In the British service, the Ordnance Department was abolished by an Order in Conacil of Nay 25, 185.3. after an existence of at least 400 years. Its constitution, its important functions, and the eanses which led to its dissolution, will be found under Board of Omonance. The early history of the Department is lost in the Middle Ages; but it abspears to have risen gradually under the Lancastrimn kiness. A Master of the Orinanee is mentioned in the time of Richard lif.; but we read of John Louth being Clork of the Orinance as early as 1418. Henry VII. constituted the Board, adding a Lieutenant, a Surweyor, and ibstore-keeper, to whom a Clerk of the Cheque, was subsecpuently joined. With the exception of the last, whose oftice was abolished in the beginning of the present centary, this organization was mantained antil the
abolition of the wholes. In 1604 Jamos I. flignlfadd the Mastror und lixucenatnt with the renperctive tithes of Master-Gonpral and Lientemant-finmeral. T'be bistory of the Ordnance oflee is of importanot; in British hintory, as in all wars it has beon resporasible not only for the managrabent of the mativiel of the armies, but also for the direction of the perseatere of tho artillery and "nginerers. liy an ordur in Council of Jume as. 1870. the Department of Orelnamee in a very moditied form was revived under the Surveror-f;en. cral of the ()rdanace, as a suction of the Whar Olller. responsither for all supplies and matiriolof Wur. Sier

## Board of Ordualure.

ORDNANCE OFFICE - IBufore the inverntion of gumm, this oflice was supplied by ollicers under the follow ing names: the Bowyer, the Cross-bowyor, the (ial. cater, or Purveyor of IICemets, the Armorer, and the Kerejer of the Tents. Ilenry VIIJ. placed it under the management of a Masicer-formeral, a Lie.utrant, Surveyor, rte: ' Thas Master-General was chasen from anomg the first finerals in the service of the sovereign. The appointment was formorly for life: but since the restorstion, was lacld dirmate bene plesritn, and not minfequently by a Cabine Dinistor. $7^{11}$ le lenters patent for this ontlece were revoked Jay 25. 1855 , and its dutics vested in the Minister of W'ar. The last Master-dencral was Lord Fitzroy Somberset, afterwards Iord Jastan.

ORDNANCE PROJECTILE.- A projectile having a east-iron body. with is sabot romposed of an alloy of Jead and tin, which is cast on the base of the projeretile, and beld in position by underents and dovetails; the nction of the charge bemg to force the sabot on the cast-iron body and to make it take the grooves.

ORDNANCE SELECT COMMITTEE. - A Committee composed of selentitic oflicors, to advise the Secre. tary of Siate for War on al] inve ations in war mate riel. It had its oflicers at Woolwich, in the midst of the manufactories of the Royad Arscnal, and near the head-quarters of the Royal Artillery, by whom most of the designs had to be practically tested. Tho President of the Committee was usually a General Otfece of Artilfery; and it Captain in the Royad Nitvy served as Vice-l'resident. Since 1870 these functions have been fulfilled by ofticers of the Department of the Director of Artillery and Stores, who has his Lead-quarters at the War otfice.

ORDNANCE SERGEANTS. - Non-commissioned Stafl Olticers appointed. by the Secretary of Wrar, from Sergeants who have faithfully served eight years in the Line, four of whieh shall have been in the grade of Non-commissioned Oflicers. Sergeants reeriving these appointments are dropped from the rolls of the regiment or company in which they hape been serving. Captains report to their Colonels such Sergeants as, by their condurt and survice, merit appointments as Ordnance Sergeants, setting forth the description and length of service of the Surgennt : the portion of his service he was a Non-commissioned Ofticer; his generul character as to fidelity and sobriety; his qualifications as a clerk, and his tituess for the duties of the position for which lac is recom. mended.
The duties of Ordnance Sergeants relate to the care of the ordaunce, arms, ammuntion, and other military stores at the post, under the direction of the Commanding ofticer. Should the post be evacuated, he remains at the station, under the direction of the Chief of Ordnance. in charge of Ordnance and Ordnance Stores, and of such other puhlic property as is not in clatge of some Ofticer or agent of other Departments: and for this property he acconnts to the Chief of the Departmont io which it belongs. If in charge of stores at a post where there is no Commissioned Otticer, he is responsible for the safe keeping of the property, and is governed by the Resulations of the Ordaanee Department in issuing and accounting for the samu. If the means at his disposal be insuflicient for the preservation of such property,
be reports the circumstances to the Chief of Ordnance.

ORDNANCE STORE-EEEPER.-An Officer of the Ordnance Department who bolds the rank of Captain of Cavalry, excepting the Ordnance Store-keeper at Springfield Armory who, by law, has the rank of Major of Cavalry. There are, at present, five Ordnance Store-keepers in the service; but the grade has been abolished by a recent Aet of Congress, and henceforth the duties appertaining to the office will be performed by other ofticers of the Ordnance De. partment.

In the British service, the Ordnance Storekeeper is a civil officer in the Artillery who has charge of all the stores, for which he is aceountable to the Ordnance Office. See Ordnance Department.

ORDNANCE SURVEY.-By this term is understood the various operations undertaken by the Ordnance Department of the British government for preparing maps and plans of the whole kingdom and its parts. The idea of a general map of the country to be executed by the government was first proposed after the Rebellion in 1745, when the want of any reliable map of the northern parts of Scotland was much felt by the officers in command of the Royal troops. A drawing, on a scale of one inch and three-fourths to the mile, was completed in 1755 ; but in consequence of the war which broke out in that year, was never published. In 1763 it was proposed to extend the survey to the whole kingdom; but the first steps to effect this were taken only in 1784, when MajorGeneral Roy commenced measuring a base-line on Hounslow Heqth, near London, This principal triangulation was designed partly for astronomical purposes, and partly as a basis for a map on a small scale. The base-line was remeasured with great care in 1791; and detailed plans were commenced by officers of the Royal Engineers, partly for practicing them in military drawing, and partly for the purpose of forming plans of some portions of Kent for the use of the Ordnance. The principal object was, however, the instruction of a Corps of Military Surveyors and Draughtsmen, the plans themselves being regarded as of secondary inportance. In 1794 the surfey for the one-inch map was begun, and some sheets were published in 1796. As the scries of principal iriangles were extended westward towards the Land's End, it was thought right to measure another base, for fortification, on Salisbury plain in 1704; and two other base-lines were subsequently measured-one in 1801 at Misterton Carr, and the other in 1806 on Ruddlan 'Marsh. Though first intended chiedy as a military map, the publication of the survey soon ereated a desire on the part of the publie for better maps, and surveyors were then hired to hasten its progress. This, however, was very slow, the map being at one time entirely suspended during the war in the beginning of this century, and even the parts which were executed, having been done by contract, were fonnd very inaccurate. In this condition the survey of England contiumed during the first quarter of the present century, sometimes delayed by the government from motives of economy, at other times urged on by the county gentlemen, who wished the mup either as a hunting-map or for local improvements.

In Scotland, the principal triangulation was begun in 1809, but was discontinued in the following year, to enahle the persons who had heen employed there to carry forward the subordinate triangulation required for constructing the detail maps in England. In 1813 it was resumed, and continned steadily up to 1819; a new base line having been measured on lelhelvie Links, near Aberdeen, in 1817, and the great sector used at various stations, both on the matnland and in the islands. It 1820 it was agaia suspendcd, was resumed in 1821 anp 1822, and anew broken ofi in 1823, the large theodolite being wanted in order to proeced with the principal triangulation in South Britain. In 1824 the survey of lrelind was
begun, and nothing more was done in Scotland till $183^{8}$, except that some detail surveying for a oneinch map was continued for a few years in the southern Counties. The chief strength of the surveying corps was now transferred to Ireland. A map of that country was required for the purpose of making a valuation which should form the basis of certain fiscal arrangements and other improvements which the social evils and anomalies of Ireland urgently demanded. For this map a scale of 6 inches to the mile was adoped, as best suited for the purposes in view. On this seale the whole map was completed, and published in 1845 , though the first portions were in an imperfect form, and needed revision which was proceeded with in 1873.
This great uational undertaking has beeneonducted at different times on different scales and plans, and the system now pursued was only adopted after much discussion both in Parliament and out of doors. The map was origiually begun as a military map, and the scale of one inch to the mile chosen, without considering whether some other scale would not offer greater advantages. Many now think that a scale a little larger, and an aliquot part of nature such as $1-50,000$, or about $1 \frac{1}{4}$ inch to the mile, would have been preferable for the small map; in which case a scale of $1-10,000$ of nature, or about $6 \frac{1}{3}$ inches, might have been chosen for the intermediate, instead of the six-inch scale selected at first for mere local purposes in Ireland. Be this as it may, the arguments in favor of the one-inch map are that it is the most convenient both as a general and traveling map. For general views of the structure of the country, the distribution and relations of its mountains, plains, valleys, and rivers, the one-inch is admitted to be superior to the six-inch, and thus better adapted in the first instance for laying roads, railways, or other extensive public works, or for the publication of a general geological survey. Such a map.on the other hand, is on too small a scale to admit of correct measurement of small distances; it is in some respects a generalized pieture, and not a correet plan. The six-inch maps were at first selected in Ireland as the smallest size on which correct measurements of distances and areas could be made. On them every house and field, and almost every tree and bush might be laid down. Hence they are superior for working out details, as in miuute surveys of railways and roads, or the complex geological structure of rich mineral districts. On such sheets, too, a proprietor or farmer may find every field laid down, and the relative heights indicated by contour lines, and may therefore use them for drainage and other improvements. It has also been proposed to use these six-inch maps as a record of sales or eneumbrances of land, thus lessening the cost and simplifying the trausfer of property. On the other hand, their size untits them for most of the purposes for which the one-inch map is useful, and the contour lines give a far less vivid and correct impressiou of the physical features of a eountry than the hill sketching of the one-inch map. Most of the purposes of the six-inch plans are attalned in a still more perfeet manner from the $\mathbf{\Sigma 5}$-inch plans or cadastral survey. The last name is taken from the Freneh cadastre (it register of lands), and is defined as a plan from whieh the area of land may be computed, and from which its revenue may be valued. The purposes to whieh these large plans may be applied are, as estate plans, for manaring, draining, and othewise improving land, for faciliating its transler by recristering sales or encumbrances ; and as publie maps aecording to which loeal or general taxes may be raised, roads, railways, canals, and other pablic works, laid out and executed.

Nearly all the States of burope have produced trigonometrical surveys, many of them of great excellence as scientific works. All of these have been pablished, or are in rourse of publication, on conveniont scates; generally smaller than one inch to a statute mile.

The greatest extru buropean work of this kind is the 'Trigonometricul Siurvey of India, which was leegun over seventy yoars ago, and has beron rennducted with great ability. "fhe work is drawing to at close", but will still woapy several yars. The matjs ure: published on a scale of gronno or of of an insh to the mile. In Anurrica, the Contst Survey of the United States, a map; of great accumey and mimute detail, has been going on for many years. The general charts are published on a scale of поó on or of an inclı to a mile; the harbors and ports goboo ur 35 of an inch to a mile. No systematic survey has yet been undertaken for the interior of the country.

ORDNANCE TIMBER.-Timber und wrouglit iron are the principal materials used in the construction of artillery earriages and machines. Jimber for the arsemal is usually purchased in pieces of the size requircal to make cach part. A list of the picees for a certain kind of carriage, induding the contents of each piece, in bonard-measure, is called a bill of timber. None but the beat wrought iron should be employed in ordmunce constructions. Large and pe-cular-shaped picees, as axle-trees, trunnion-plates, etc., as well as those requising great strength, are made from hammered shapes, furnished by the iron manufacturer, according to prescribed patterus; other parts are made of rolled iron. The following varicties of timber are briefly noticed as being most frequently required in the varions ordnance constructions: White ouk-The bark of white oak is white, the leaf long, narrow, and deeply indented; the wood is of a straw-color, with a somewhat reddish tiuge, tough, and pliable. It is the principal timber used for ordmance purposes, being employed for all kinds of artillery-carriages. Becth-'1"he white and red beeches ure used for fuzes, mallets, plane-stocks, and other tools. twh-White ush is straight-grained, tough, and clastic, und is therefore suitable for light carriage-shafts; in artillery, it is chicfly used for sponge and rammer staves, somefimes for handspikes, and for sabots and toob-handles. Elm-Elm is used for felloes and for small naves. Hickory-Hickory is very tongh und Hexible; the most suitable wood for handspikes, toolhandles, and wooden axle-trees. Blrek: raluut.Black walnut is lard and tine-grained; it is sometimes used for waves, and the sides and ends of an-numition-chests ; it is exehusively used for stocks of small arms. Poplar-White poplar or thlip-wood, is a soft, light, fine-grained woud, which grows to a great size; it is used for sabots, curtridge-blocks, efe., and for the lining of ammunition-chests. Pine. White pine is used for arm-chests and packing-boxes generally, and for building purposes. Cyprexs-Cypress is a soft, light, straight-grained wood whicn grows to a very large size. On account of the difficulty of procuring oak wood of a suitable kind in the Southern States, eypress has been used for seacoast and garrison carriages. It resists better than oak the alternate action of the beat and moisture to which sea-coast carriages are farticularly exposed in casemates; but being of inferior strength, il larger scautling of cypress than oak is required for the sume purpose; and on account of its softness, it does not resist sufficiently the friction and shocks to which such carriages are liable. Bassmootl.-Basswood is very light, not easily split, und is an excellent material for sabots and cartridge-blocks. Dogmood.-Dogwood is bard and fiue-grained, suitable for nallets, drifts, etc.

The principal circumstances which affect the quality of growing trees are soil, climate, and aspect. In a moist soil, timber grows to a larger size, but is less firm and decays sooner, than in a dry, sandy soil ; the best is that which grows in a dark soil, mixed with stones and gravel; this remark does not apply to the poplar, willow, cypress, and other light woods which grow best in wet situations. In the United States the climate in the Northern and Middle States is most favorable to the growth of timber used for
ordnance purposes, execpt the cypress. Trece growing in the rentrer of a forest, or on a plain, are gencr. nlly straighter and frecr from limbs than those growing on the ratge of a forest, in open ground, or on the sides of hills, but the former are, at the same time, less hard. 'The aspect most shalered from prevalent winds is genrerally most favorable to the growth of (imber. The vicinity of salt water is favorable lo the strengib mat hardncss of whiteoak. The sclection of timber trees slanuld be made before the fall of the loaf. A liealthy tree is indicated by the top branches being vigorons and well covered with leavea; the lark is clear and smooth, and of uniform color. If the top has a regular, rommber form ; if the bark ia dull, scalbly, and covercal with white and red spots, caused by running water or sap, the tree is unsound. The decay of the lopmost branches, and the separation of the luark from the woorl, are infallible signs of the decline of the tree.

The most suitable season for felling timber is that in which vegetation is at rest, which is the case in midwinter and midsummer. Kecrnt experimente incline to give preference to the latter season, say the month of July; but the usual practice is to fell trecs for timber between the hirst of December and the middle of Marcb. The tree slould be allowed to attain full maturity before being felled; this period, in oak timber, is generally at the age of seventy-five to one hundred years, or upward, hecording to circumstances. The age of the hard wood is deternined by the number of rings which may be connted in a section of a tree. The tree should be cut as near the ground as possible, the lower part being the best timber ; the quality of the wood is, in some rlegree indicated by the color, wbich shonld be near. ly uniform in the heart-wood, a little deeper toward the center, and witbout any sudden transitions. Felled timber ahould, as a rule, be immediately stripped of its bark, and raised from the ground, The white wood next to the bark, which rery soon rots, should never be used, except that of hickory. There are sometimes found rings of light-colored wood surrounded by good hard wood; this may be called the second sap; it should cause the rejection of the tree in which it occurs. Brashurood is a defect generally consequent on the decline of the tree from age; the pores of the wood are open, the wood is reddish-colored, it breaks short, without splintera, and the chips crumble to pieces. Thia wood is entirely unfit for artillery curriages. Wood which died before felling should, generally, be rejected; so should knotty trits, and those which are covered with tuberclea and excrescences. Wood in which the grain ascends in a spiral form is unfit for use in large scantlings; but if the defect is not rery decided, the wood may be used for naves and for some ligbt pieces. Splits, checka and cracks extending toward the center, if deep and strongly marked, make wood unfit for use, maless it is intended to be split. H"ind-shakes are cracks separating the concentric layers of wood from each other: if the shake extends through the entire circle, it is is serious defect. The center-heart is also to be rejected, except in timber of very large size. Which cannot, generally, be procured frec from it. As soon as practicable, after the tree is felled. the sapwood should be taken off, and the timher reduced, either by sawing or splitting, nearly to the dimeus:ons reguired for use. Picces of thickness, or of peculiar form, such as those for the bodies of gun-carriages and for chassis, are got out with a saw ; smaller pieces, as spokes, are split with wedges. Naves shonld be cat to the right length, and bored out, to facilitate scasoning and to prevent cracking. Timber of large dimensions is improred by immersion in water for some weeks, according io size, after which it is less subject to warp and crack in seasoning. To season or dry timber, it sloould be piled under shelter, in such manner as to allow a free circulation, but not a strong current of air, around
each piece. The piles should be taken down and put up again at intervals, varying with the length of time the timber has been ent. The seasoning of timber requires from two to eight years, according to size. Oak timber loses a little more than on ${ }^{\circ}$ fifth of its weight in seasoning, and about one-third of its weight in becoming perfectly dry.

From the fact that ceriain blowers are used with equal facility either for forcing or exhausting air, or producing a continuous current, which can be reversed at will by simply changing the motion of the blower witbout any other alteration whatever, they are peculiarly adapted to drying lumber. It is owing to the fact that air has the capacity to take up moist ure and hold it in solution. that the process called drying is possible. The water thus taken up is, in this
rangement a nearly uniform temperature is secured hetween the air at the ceiling and the floor, seasoning all the lumber alike. Lumber seasoned in this way is not nearly so liable to crack and check as when seasoned with uneqnal beat.

Timber for gun-carriages is now, almost entirely, worked into shape by machinery; the operations arc sazoing, planing, turning, mortisina and tenoning, dove-tailing, etc., and are described in detail, under the various machines, in this work. In joining together the different pieces of a carriage, regard should be had to the character of the fiber of the wood, and the effect of drying in changing the form of the piece. If a piece be supported at both ends, as in the cases of carriage-stocks, chassis-rails, etc., the greatest convexity of the fiber shonld be placed

condition. invisible. At a low temperature, this capacity is very small; at $32^{\circ}$ Fahrenheit, a cubic foot of air will only hold in solution two grains of water. This capacity is rapidly increased as the temperature is elevated, in the ratio of about three grains per foot for every ten degrees of heat ; 80 that at $200^{\circ}$ Fahrenheit, a cubic foot of air would take up abont fifiy grains of water. Forrapid drying, therefore, it is necessary to have an elevated temperature. But at any temperature, the air can be saturated with moisture, that is so loaded that it can hold no more, even though it be very hot. Hencc it is necessary for rapid drying, not only to have heated air, but also to have a constant change, so that as fast as the air becomes saturated with moisture, it may pass off, carrying its load with it, and a fresh supply presented that may, in its turn, carry off its quantum. In simple language, this is the process of drying. The drawing shows Root's flower as arranged for seasoning timber or lumber. A notice of the drawing will explain the operation. The dry air is taken in at the inlet of the 13 lower and forced through the heating apparatus, which may he a hot-air furnace, or coils of pipe heatal lyy stam, as shown in the cut, or any other device for heating air. After passing throngli the heater the rarified air rises to the ceiling of the dry-house, but being positively foreed into the rom, it displaces an equal guantity of the air already there, which is forced out at the bottom of the the, as shown by the arrows. By this means a constant and regular change of air in the dry-house is secured, the air passing out being loaded with moisture. By this ar-
uppermost; if in the middle, as in cases of hounds of limbers, side-rails of caissons, etc., it should be placed downward. When tbe pieces are to be united in pairs, as cheeks, side-rails, etc., use such pieces as have nearly the same curvature of fiber. In drying a piece of timber, the sapwood shrinks more than the heart, and the effect will be to warp in the direction of the sap; therefore to prevent the joint, formed by the two pieces which constitute a car-riage-stock, from opening, the heart-wood should be placed on the outside. To prevent the cheeks from warping inward, place the heart-wood on the inside. In hounds and side-rails, the heart side should be placed on the outside, as this will have a tendency to tighten the joints. When picecs are to be joined, the surfaces of contact and the dowels should be covered with a good coat of white-lead. Bolts and bolt-holes should be well covered with tallow moistened with neat's-fnot oil. The surface of holes for devating screws and pintles should be always well painted. If wondwork is to be painted immediately, it slould lave a sood priming coat of lead before the irons are put on; if not, it should receive a good coat of linsced oil. For service, the woodwork of carriages and machines is painted, in addition to the priming of leal-color, with two coats of olive paint: the iron-work, with one coat of lcad, and one coat black paint. Great care should be observed to protect iron fortress-carriages against the corroding influenee of the sea-roast atmosphere; the best means remains to be determined by expericuce ; at present they are covered with oue coat of hot lin-
seed oil and threecoats of a reddigh brown paint. Moulels, ret:- The morlels, ete., of all ordnnace "matéric," are determinest by the Orilnance lbourd. subjoct to the revinion of the Chisef of ©rdatace, and the dinal approval of the Secerctary of War. Whaen a model has becn duly approvmi, copies, or drawinge of it, are sent to the dilferent arsenaly of construction, and from these, patterns and ghages are matle for the guidance of the workmen. Patterns are gromerally mate of well-seasoned mahogeny, and bonmel with strigs of bress ; gatuges are made of alsect iron or slecel. 'To serure uniformity of work at the dillerent arsenals, it is made a part of the slaty of the inspector of ursenals to see that the patterns correspond with the oripinals: and it is always the fluty of the ollicers stationed at an arsenal, to see thal tho work, as it progresses, corresponds with the patterns, and that none but suitable materials are used.
OREILLERE. - The car-picee of an ancient helanct, shuped like an oyater shell, employed to protect the car and cheek.

OREILLON,-The car of a sworl, languet, or smalt slip of metal on the hilt, which, when the aword is sheathed, extends along the seabhard.
OREILLY COMBINATION-FUSE. - This suse consists of ametal stock, $\boldsymbol{\Lambda}$, open at the rear, but cloged

at the front end by a 8 crew-cap, $B$, from which projects two studs, $\mathrm{C} C$, for screwing and unscrewing the caps. There are also two holes, D D, in the screw-cap through which is passed and secured a strand of quickmatch, E.

The fuse, $F$, is tightly pressed into a conical shaped, snug-fitting plunger, $G$, held in place by a wire, H, which passes through a hole, I, in the side of the stack and enters a cannelure on the plunger.

The operation of the fuse is as follows: At the instant of discharge the quick-match is ignited by the flame from the clarge of powder; this ignites the fuse, which continues to burn as an ordinary time-fuse; when the Hight of the projectile is arrested, the planger, by its inertia, is driven forward, sheering ofl the pin which holds it, and, being followed by loose powder in the shell, ignition and cxplosion follow. See Fuse.

ORGAN GUN. A gun consisting of a number of tubes or barrels placed in arrow like the pipes of an organ. Sce Orgue iो Serpentin.

ORGANIZATION. -For the purpose of supply, discipline, rapillity and precision of morement, an army is divided into corps; corps into divisions; divisions into brigades; brigades into regiments; regiments into batalions, and battalions into compaties. For the purpose of employing to adrantage the difTerent weapons and of providing for that matual support
und aid so ressential to sucress, un army is organized into different arms of service, viz.: lnfantry, Cuvalry, Artillery and Enusineers. These four arms of the service are callorl Trorpos of the Jine. A battalion is the tastical unit of infantry, lut the company should undoubtedly be considered the fighting unit, for it is the only organization that will in future wars fultill all the reyuirements of anit, viz: All the nen be known to, ovarlooked by, and within rench of the voice of the oflleer commanding $\mathrm{i}:$. The spuadron of two troons is the unit of cavalry. The battery of six guns is the unit of artillery. An army corps usually eonsists of about thirty thonsand men, divirled into two or more divisions, depending upon the strengtl of the corps. Each division is gencrally composed of the fonr arms of the service-infantry, eavalry, artillery, and engineers-the urtillery being assigned to the corps by battery, and the congincera by compuny. The eorps is, as a rule, provided with a reserve of artillery, which, with the artillery assigned to the different divisions, is under the orders of one commander. The organization of an army into corps was introduced by Napoleon about the year 1804 , while prepuring his army for the contem. plated invasion of Eingland. The idea is to make each corps a complete army in itself, in order that it may be detacled at any time from the main army when the necessity urises, and be ready to act as au indepentent force. The division is composed of two or more brigades, and rarely of more than four. Brigades are composed of two or more regiments, and regiments of two or more battalions, each consisting of two or more companies, generally four. Tise bittalion organization is for administrative purposes, and for instruction in the movementa prescribed in tactics. As all the duties devolving upon the General in command of an army cannot well be performed by one man, he is assisted in his duties by the officers who compose his Staff. The duties of Staff-officera are : to transmit the Geneial'a orders; to procure information, both of the enemy, and of the condition of his own forces; to preparo reports, obtain guides, spies, etc.; to inspect the troops to see that they arc properly supplied and in good condition of drill and diaciplinc; to preserve the correspondence and records; in fact, to perform all those duties required of the General in command, which will enable him to have his army at all times prepared in every respect to meet the enemy. The principle of Staff organization is also extended to the divisions, brigades, and regiments, composing the army; the duties being less important and arduous as the body of troops is emaller.

The necessity for a body of officers specially trained in staff dutics has been greatly increased in consequence of the fact that wars are now waged by much larger armies than formerly. Therefore every army should be provided with a body of officers who in time of peace sloould be thoronghly instructed in all duties pertaining to the staff, so when war is declared they will be fully competent to enter upon the active and efficient discharge of their duties. Nearly ull European armics have such an organization, which is commonly known as the General Staff.

Jomini lays down the following general conditions, as essential to the perfect organization of an army:-1. A good system of recruiting. 2. An efficient formation. 3. A well organized system of national reserves. 4. That otticers should be well instructed in drill and mancuvers, and in all the duties of a camp and in the field, and that there should be a goodsystem of interior economy. 5. A discipline strict, but not humiliating; a spirit of subordination as far as possible on a conviction pervad. ing all ranks of its importance, rather than on tho mere orders of the service. 6. A well regulated system of rewards and a spirit of cmulation. 7. A special corps. engineers and artillery, well instructed. 8. An armainent well uuderstood, and, if pos-
sible, superior to that of the encmy, comprising arms defensive aз well as offensive. 9. A staff capable of applying all these elements to the greatest advantages and with an organization adapted to the theoretical and practical instrnction of its members. 10. Well organized commissariat and medical departments. 11. The command of armies and the supreme direction of operations by a sound practical system. 18. The maintenance of a high military spirit.

ORGUE A SERPENTIN. - A machine composed of a great number of gins of small bore loaded either from the muzzle or at the breech. Each separate chamber was encased, as far as the mnzzle in wood or metal, and they were fired in succession or all at once. The term orgue was applied to several patterns of ordnance, composed of a number of musket barrels, all so joined on the same carriage, and the touch-holes corresponding with cach other, that they could be discharged simnltaneously. This weapon may be said to have been the origin of the Mitrailleur.

ORGOES.-Thick and long wooden beams, pointed aud shod with iron, hung vertically by separate ropes in the gateway of and over the cutrance to a fortified place. They answer the purpose of a portcullis or door, and are dropped into position by cut ting the ropes from which they lang. Their descent is inevitable, in which they possess an allvantage over the portcullis, which may be held up by the enemy or blown in by petards, whereas petards have little effect on orgues, for if one beam he destroyed another can be dropped to fill up the gap.

ORIENTAL POWDER.-A variety of gunpowder made at the Oriental Powder Jills at South Windham, Me., on the Presumpscot River, where every facility is at hand for making powder to the best advantage. The following brands are well known and are regarded as excellent :

Falcon Ducking - Especially adapted for breechloading guns and target practice Its sizes are No. 1 (fine), No. 2, No. 3, and No. 4 (coarse). Packed in kegs of $6 \frac{1}{4} \mathrm{lbs}$., and in canisters of 1 lb . each.

Western Sporting-A clean aud moist burning powder, and used for ordinary purposes in the field. Its sizes are $\mathrm{Fo}_{\mathrm{g}}$ (coarse), FFG and FFFg (finc). Packed in wood or metal kegs of $25 \mathrm{lbs} ., 12 \frac{1}{2} \mathrm{lbs}$, and $6 \frac{1}{4} \mathrm{lbs}$., and in canisters of 1 lb . each.

Wild Foul Shooting - Of a coarser grain than "Western Sporting," aud especially prepared for use in very damp places, and for muzzle or breechloading guns. Its sizes are No. 1 (fine), No. 2. No. 3, No. 4. (coarse). Packed in wood or metal kegs of $25 \mathrm{lbs} ., 12 \frac{1}{2} \mathrm{lbs}$., and $6 \frac{1}{4} \mathrm{llbs}$., and in canisters of 5 lbs and 1 lb . each.

Blasting - A superior grade, and especially adapted for military and mineral mining, also for railroad work. Its sizes are C (coarse), T, Tpg, F, FF, FFF (fine). Packed in wood or metal kegs of 25 lbs.

ORIFLAMME.-A banner which originally belonged to the Abbey of St. Denis, and which was borne by the Counts of Vexin, patrons of that church, but which, after the connty of Yexin fell into the hands of the French erown, became the principal banner of the Kingdom. It was charged with a saltire wavy or, with rays issuing from the center crossways. In later tines the oriflamme became the insignia of the French infuntry. The name seems also to have been given to other flags; according to Sir N. II. Nicolas, the oriflamme borne at Agineourt was an oblong red lag split into five parts. Also written Auriflemme.

ORILLON. - In fortification, and especially in the earlicr systems, the orillon is a semicircular projection at the shonlder of a bastion, intended to eover from the observation of the enemy the gruns and defenders on the flank, which, with such a construction, is sonewlast retired or thrown back. 'The flank thus protected is held by many distinguished
engineers to be most valuable in the defense of the ditch, when clearing it from an attacking party, or from hostile miners. The retired flank is sometimes


Orillon:
$a, a$, orillous; $b, b$, retired flanks (the dotted lines show the original bastion).
straight, at others curved. The orillon is as old as the bastion, and is found in the works of Pagan and Speckle.
ORLE.-In Ifcraldry, one of the charges known under the name of sub-ordinaries, said to be the diminutive of a Bordure, but differing from it in being detached from the sides of the shield. It may be the sole charge in a shicld. Or, an orle gules was the


Orle,
coat borne by John Baliol. An orle of heraldric charges of any kind denotes a certain number (gencrally eight) of these charges placed in orle, as in the coat of the old Scottish family of Gladstanes of that Ilk; argent, a savage's head couped, distilling drops of blood proper, thereon a bonnet composed of bay and bolly leaves all proper, within an orle of cight martlets sable.

ORMOLU.-A variety of brass, consisting of zinc 25 parts, and copper 75 parts, wbich bas a nearer resemblance in color to gold than ordinary hrass. It is extensively used for castings of ornaments. When the casting is made, its color is brought out by a pickle of dilute sulphuric acid, after which the acid is removed by water, and a liquor varnish is put on to keep it from tarnishing.
ORNAMENTS.-Those parts of the dress of a soldier which are more for appearance or distinction than for absolute use ; as belt-plates, shoulder straps, trimmings, etc.

ORPIMENT.-A sulphuret of arsenic. There are many varieties of orpiment, one in fine golden colored scales, another in dense yellow stony lumps, a third in earthy-looking masses, called King's Yellow, a familiar paint; but the orpiment required in the laboratory for blue lights, signal-lights, and parachute light-balls, is the red protosulphuret or realgar.

OUTER. - A term applied to a portion of the target. On the regulation targets it is all the space outside of the larger circle, or the space outside the vertical lines. See Inner

OUTFIT ALLOWANCE.-In the British army, a sum of $£ 150$ for the cavalry aud, $£ 100$ for the infantry, granted to Non-commissioned Officers promoted to Commissions, to emable them to mect the heavy charges for uniform and equipments. The larger sum is given in the cavalry because the newly Commissioned Officer has to pirehase his charger.

OUTFLANK. -T'o turn the tlank or fauks of an enemy. See Flank Movement.

OUTGUARDS.-Small bodies of troops stationed at a greater or less distance beyond the limits of a camp or main army, for the purpose of preventing an ene-
my approarhing without notiee, and also to offor opposition to his jrogreess, while the main forco prepares for resistance. Oulgaards mardit off to thelr position silently, and pay no ecompliments of may kind to fofleers or others. Assoon the the ofliber commanding an ontguard arrives on his ground, he proceeds lo carefully examine the anvirons, noting all heights within rifle-range, roads and paths by which an cnemy may appronch, etr. Healsotakes suchimjromptu means of strengthening lis position as occur to him-felling a tree here, culling hrushwood there, blocking a path in another place, and resorting to any expedient which may sorve to drelay the foe at point blank ramge-un olyject of importance, as a stoppage at such thoint is known to art as a greal disconragement to alvancing troops. See futposts.

OUTLET.-Ontlets, in fortilication, are the passages made through a jurapel, or an (anclosure of a gorge, for the services of the work. They shondal in atl cases be made in the lrast cxposed part of the work. Their width need not be more than six and a half feet, when used only for the service of the work; but when they serve as a common pasange for wagons, ete. in the ease of the intrenchment crossing a road, they should lee at least ten feet wide. When cut through a parapel, the sides reccive a slope of three perpendicular to one base, and are revetted with sods, ctc. A gate', termed a barrier, serves as an enclosure to the outlet. The framework of the harrior is made like un ordinary gate, consisting of two uprights, or stiles, a cross-piece, or rait, at top and bottom, and a sringing bur, or a diagomal brate. Upright palisades, about seven fect long and four inches thick, are spiked to the frame about four inches apart; they are finished at top with spikes, A barrier thus constructed will not offer a shrlter to the chemy should he attempt to ent it away. The barrier is hung on hinges like an ordinary gate. See Gorge.

OUTLINE.-In for*ification, the succession of lines that show the figure of the works, and indicate the direction in which the defensive nasses arelaid out, in order to obtain a proper defense.

OUTLYERS. - A term formerly applied, in the British service, to men who were prrmitted to work, on condition that the whole of their pay was left in the hands of their Captain for the time they were so employed. This sum the officer appropriated to his own use, to enable him to incrense his pay and keep a handsome table when he mounted guard. It was also a common practice to place on the muster-rolls the names of officers' children, and instances litve occurred of girls receiving men's pay as outlyers.

OUT-LYING PICKETS.-1)etachments of cavalry and infantry, accompanied sometimes with light gims, and posted on the front and flanks of an army in the field, in order to guard against surprise, and to keep reconnoitering parties at a distance. See Out-posts.

OUT OF GEAR. - For most heavy guns, the motion of the top carriage to and from battery is regulated by a pair of truck-wbeels, one on each side, which work on an eccentric axle placed underneath and a little in front of the axis of the trunnions. The wheels are thrown out of gear by means of landspikes inserted into sockets upon the ends of the eccentric axle. See Into Gear.
OUT-PENSIONER.- 1 pensioner attached to a hospital, as Greenwich or Chelsea, England, who has liberty to dive where he pleases.

OUT-POSTS.-The detachments of troops and the method of arranging them, by means of which an Army when in bivouac, in camp, or in cantonment, is protected from surprise by an enemy. The duties of the out-posts, and of the grand-guards whicli form their supports, are strictly those of observation. If attacked, they offer no resistance farther than to caable them to feel the enemy perfectly, and never lose sight of lim. The lask of holding the enemy in
eheck by a vigorous resistance, so as to procure auf-fir-iont time for the main- borly to make itw fimpositions for bathe, is consigned to the pirekets. "The position of the ont-posts, with resprect to the main-brocly, will be regulated by the suore or loss tiroken charaviar of theremotry. St a general rule thomonn distance may Jo takrn at about two miles. 'The line oreupherl by these posts shonld take in all the approaches to the fromt and thanks of the "man position. When a position is to lee larld for a romsiderable time, the ont-posts may be thrown farthor in and vance; toproeure grentor ropoge nud secomrity for the main-borly. The gromad on which the line of ont-posts is established should lue carefully examined; with a view both to obsrrvation and defense. As far as practice able, those points should be selected for posts whirly present some natural advantages for the defense; will serern the troops from the enemy's view: and rnable them to watch all his movements. Whenever the features of the ground do not offer natural obstacles to cover the posts, artilicial means of a slight character should be resorted to. The llanks of the line slould rest aponstrong natural obstackes; when sucle cannot be found, without giving the line too grat an extent, these points must be serured by strong pickets of cavalry or infantry, thrown back to form crotelets; from which patroles mast lue constantly kept up on the flanks in the presumed di. rection of the enemy.

The strength of each out-post, and the distance from one to the other, will be regnlated by the features of the gronnd, and the number of sentinels, or vedettes that each post must throw ont. The pusts shonld, as far as practicable, be within sight of the grand-guards to which they belong; and the sentinels of their respective posts. When the ground does not permit this arrangement, sentinels slould be placed at intermediate points, to communicate promptly whatever may liappen at the line of posis, or of sentinels to the rear. Posts of infantry should not, as a general rule, be placed farther apart than 600 paces ; nor their scntinels more than 300 paces in alvance of the posts. Those of caralry may be some 1,500 paces apart ; and their vedettes from 600 to 800 paces in advance. The strengti. of each post should be calculated at the rate of four men for erach sentinel, or vedette. An wificer in command of any of the out-posts must be capable of untiring vigilance and activity ; to perform the various duties that devolve upon him. He should be provided with a good map of the country, a telescope and writing materials. He will thoroughly reconnoiter the ground upon which he is to dispose his command; andalso as far in advance as circumstances admit questioning closely any inhabitant le may find. After taking up his position, he should go forward with the half of his command; and post each sentinel himself. If however, lie relieves another in the command, and Jeems it advisable to make any clanges in the dispositions of his predecessors, he shondd promptly report the facts to the Commanding ( )fficer in his rear. When the officer finds tha: the cnemy is not in his immediate neighborhood, he shonld ardeavor to feel bis wray catitiously towards him by patrols: and whenin immediate presence, he slaondd omit no means to watcli the ruemy's novements : and from the occurrences of the moment, firh as noises, the motion of the clouds of dust, camp fires, conflagrations, etc., endeavor to divine what is passing in his camp, and his probable intentions. Accurate written reports should be promptly sent to the officer in command, in the rear, on all these points. The reports should be legibly written, and should clearly but conciscly, state what has fallen under the officer's eye; what he has learned from others; and the character of the sources from which his information is drawn. See Adranced Postis.

OUTRANCE.-To the utmost ; to the last extremity. Thus the Freneh say, Se battre it outrance, to fight to the last extremity.

OUT-SENTRY.- A sentry posted to guard the (ntrance or approach to a place. See Outguards.

OUTSIDE. - In fencing, that part which is to the right of the line of defense. The Outside Guard is used with the broadsword and saber, to defend the outside of the position.

OUTWARD FACE.-A word of command for troops to face to the right and left from their center.

OUTWARD FLANE. - The extreme file on the right or left of a division. subdivision, or section, according to the given front, when the battalion is at close or open column, and which is the farthest wheeling point from line into colnmn, or from column into line. It is likewise called the reverse flank.

OUTWORKS.- A work consisting of an enceinte alone is more or less exposed to surprise, as it must have outlets of some description to keep up a communication with the exterior, and a bridge, or other means for crossing the ditch. This is not the only defect of a fortification of this simple character; for having no covers heyond the ditch for its garrison, their action must be restricted to what may be termed a passive resistance alone ; in any attempt to operate on the exterior, they are exposed to fire as soon as they emerge from the ditch, and in a retreat towards the work, if closely pursued by the assailant, they will not only run the risk of being cut off, but a retreat under such circumstances may lead to the capture of the work itself, by the assailant being enabled to enter it witl the retreating force. To provide against dangers of so grave a character, engineers have devised other defenses beyond the ditch, and which they have placed in immediate defensive relations with the enceinte, being under its fire, and in positions where, if assaulted, they can be readily succored by the garrison. To this class of exterior defenses the term outucorks has been ap. plied.

The outworks should satisfy the following condi. fions to render them very effective and secure: 1. They should lave revetted scarps of a sufficient height to sceure them from any ordinary open as. sault. 2. As far as practicable their scarps should be flanked by the enceinte and be masked from the positions of tbe assailant's batteries. 3. Their parapets and covered shelters should be shot-proof. 4. Those which are most retired should command those in advance; and whenever this cannot be done the retired work shonld be defiled from the one in advance by which it is commanded. 5. In any combination of outworks the dispositions should be such that the more advanced ones shall fall into the hands of the assailant before he will be able to gain possession of the more retired. 6. The communications should be ample, and satisfy the general conditions for these elements. See Connter-gward, Covered-uny, Demi-bune. Redoubt, and Tenaille.

OVATION. - A lesser trimph allowed to a Commander for any victory not deserving a trinmph, in the strict sense; hence, an expression of popular homage. See Triumph.

OVEN. - A very necessary apparatus in military economy to prescrre the lieath of troops, by enabling them, at a compuratively small expenditure of

fucl, to cook many rations together. In the Dritish army littieatontion was paill to such subjects, until. in 1858 , the inquiries of Mr. Sidney Herbert (after-
wards Lord Iferbert) brought to light the excessive mortality among soldiers, which was partly-and, as the event has shown, justly - attributed to the bad eookery of their food. Captain Grant has bestowed much attention to army cookery, and has invented ovens for barrack use and for the field. While great improvements on the system-or want of systemwhich preceded them, these ovens are still admitted to be far from perfect in their arrangements. For boiling meat, etc., in the field, he employs detached cylinders, which, when empty, he proposes to join and floor over for use as pontoons; when in use they are united crosswise, one in the middle serving for a chimney, One or more empty barrels can be attached for steaming fotatoes, and the roasting of coffee is performed, though not altogether successfully, in another cylinder made to revolve over the


Fig. 2
chimney. Up to the present time other systems have been partially resorted to; but none has as yet been definitirely adopted to the exclusion of others. Cylindrical ovensare preferable for field service, and the want of brick for the arch and fireplace may be supplied by two gabions of semi-circular or semielliptical form 1 m .44 in diameter; the basket work is uot so close as the ordinary gabion, and is 1 m .32 in heiglit. The two gabions, resting one over the other upon the flat s:de, make a cradle 2 m .64 long, 1 m .44 broad, and 0 m .72 bigh . (Fig. 1). The interior and exterior is then plastered with clay, which must penctrate the interstices of the basket work. The frout and back part is shut in the same manner, or with sods. The cradle is then covered with earth to retain the heat, and in order that the superincumbent weight may not cause it to give way. Withes are attached to the top of the basket work, and passed vertically through the embankment, and then fastened to the longitudinal beam of a wooden horse straddled against the exterior curve. Eight of these furnaces may be made in 24 hours. The wooden oven (Fig. 2) is made by digging an excavation of 3 m .20 in leugth by 2 m .40 in breadth, and 0 m .50 in depth, making the fireplace slightly descending towards the month. This trench is covered with pieces of wood of 0 m .15 to 0 m .25 square, placed close together ; the wood is covered witls carll carefully packed, the chimneyplace is soduled. The fireplace is dried by heating for 7 or 8 hours, and subsequent heatings require twohours. Suchovens resist very well five or six bakings.

OVERCHARGED MINE. - A mine whose crater is wider at the top than it is deep. See Crater.

OVERCOAT.- A part of the uniform, worn in cold weather and when specially ordered. In the United States army it is prescribeil as follows :-

F'ou Generol Officers. Of tark blue eloth, closing by means of four frog buttons of blatek silk and loops of black silk cord; cord down the breast, and at the throat by a loug loop "el l'óchelle" without tassid or phate, on the lift side, and a black silk frog button on the right; cord for the loops tiftecen lundredths of an incli in dimmeter: bnck, a siugle piece, slit up from the hottom from fifteer. to seventeen inches, nceorling to the height of the wearer, and
closing at will by buttens, and buthon-lolese cont in a cone eald thap; collar of the same color and material as the eoat, fommed at the edger, and to stand or fall; when standing to be about five inclaes hish; steeves loose, of a single piece and round at the berttom, without cuft or slit; lining woolen, anm, with, the facings, 10 correspond in color with tha: trimminge of the uniform; around the front and bower burders, the edges of the pockets, the eifges of the slecves, collar, and sit in the back, at lat braid of black silk one-half an inch wide; and around bach frog button on the breast a knot twond one-guartar inches in dianneter, of back silk cord, seven hamd redtos of an inch in thancter, cape of the same color and material as the easat, removable at the piatari of the wearer, and reacling to the culf of the coat sleeve when the arm is extended; coat to extend down the leg from six to eight inches lowow the knee, according to height. To indicate ramk, there is on both sleeves, near the lower edge, a knot of flat black silk braid, not exceeding onc-eirghth of an inch in width, and composed of tive braids, fouble knot.

Fion all other Office rs-1 Mark hlue, elose-titing dou-bic-breasted surtout-coak, having a cape, matde to detach from the enat and fall to the tips of the tingers when the arm and hand are extended; the skirt of the coat for mounted officers to reach half way hetworn the knee and the sole of the foot; for dismounted officers, three inches below the knee.
The coat has seven buttous on cach breast, of the same pattern as those on the uniform coat. The insignian of rank is on the sleeve, as follows, viz: Colunel, five braids, single knot. Lieutenant-oolonel, four braids, single knot. Major, threc braids, single knot. Captain, two braids, single knot. 1st lieutenamt, one brad, single knot. $2 d$ Lieutenant and Additional $2 d$ Lieutenant, without braik. Military Storekeepers, same as olticers of the General Stafl of like rank. Chaplains, without braid.

On the frontier and campaign, olticers may wear the soldier's great-coat, with the insignia of rank on the sleeve. See Great-coat.

OVERHAUL.-A term used in artillery applances in "overhanling" a tackic, that is, in separating the blocks. This should invariably be done from the standing, and not from the movable block.
OVERLAP. - In marching by echelon tor the purpose of forming upon any given point, and particularly in wheling from colnm into line, tronjos may lose their relative distances by not taking ground ec nougl; when this oceurs, the rear division, company, or section, unavoidably crowds upon its preeeding one, and is then said to ocerlap.
OVERSEER.-An ollicer in the Ordnance Depart ment, who superintends the artificers in the construction of works, ctc. IIe is ealled suferinterndent.
OVERSLAUGH.-To hinder or stop by an unexpected impediment; as to overslaugh a military othcer, that is to hiader or stop his promotion of cmployment by the appointment of another to his rank or duties.
OWN.-A term which has been attuched to some British regiments sinecthe Revolution in 16si. Thas the 4 th Foot, which landed with Willians III., was called the 4th Kings: Own.
0 X . -1 ruminat guadruped of the family bovider, much used as at dranght animal in military trams. The ox is more frequently employed ats at beant of draught in some parts of the contiment of linrope Lhan in Britain. From the carliest historie times the horse has been more penerally thas employed, and has now almost entirily superseded the is. The gait of the ox is slow and pleddinge, but its strengets enables it to perform a great amomi of work, ant it is not easily exhausted. It needs, however, intervals of rest inconvenient for the marches; and it is not capable of exertion at all equal to that of the horse on any oceasion of emergency. Sce Bullock.

OXFORD BLUES.-The third heavy catvalry regi-
mant of the Hounchand lirigade. It was rajselel in lforl, and took part in Harlmoreduch's campaigne; it alses served molder Wrollington in the I'rmingula amb
 Lifeg Guards, wears it stend ruirase, but over a blame coater, wheras the coater of the two later rocgimonts is rath. sim Jhorse-finurets.
OXIDES. Notallice oxides are the most impertant of all the compomals of the: metals, and in many (ansu aceur naturally as abmondant maluable ores. They are divided liy chemises into three rlasu-s vi\%., (1) basie oxides or bases, (\%) saling or indif.
 The difierent oxides of the same metal osenaly af. ford illastrations of 1 wo and not unfreplac.ntly of all three of these clasers. Thus (to takn the case of mangancse) the protoxile (Mno) is a prowerful hate, the red oxide ( $\mathrm{Mn}_{3} \mathrm{O}_{1}$ ) is a satime or inditferemt osade, Whowine lithe tendene to combine either with acids
 atl the properties of an arial. As a gencral rale, the greater the number of atoms of oxyern which an oxide contains, the lese is it disposed to mite with the acids; on the contrary, it 1 requently poseneses areid properties, and thern unites with bases to form saits. I'rotoxides gencrally are strong salifiable bases: they require one "quivatent of a monolbatio: acid to form neutral salts. Sisquioxides are wraker bases; their salts are usually unstable: Whey roquire three atoms or equivalents of a monolasio. acid (o) form at salt which is neutral in (onupesition. though it may not be neutral to test-paper: and in general, all oxites refuire as many equivalents of acid as they contain atoms of oxygen in their composition. Some of the metalic achd. like the stannic and titanic, contain two atoms of oxygen to one atom of metal, but most on them contain three atoms of oxygen-such, for example, as the manganic, ferric, chromic, tungstic. molybdic, and vanadic acids; whilst in a few (ases. such as the arsenic, antimonic, and permanganie, the proportion of oxygen is still higher. (f the lasie oxides, which form by far the most important class. it may be observed that they are devide of all malallic appearance, and present the characters of carthy matters, and that six only of them are soluble in water to any considerable extint, viz, the three al kalios and baryta, strontia, andlime. All the oxids s are soid at ordinary temperatures, and as a general mute, the addition of oxygen to a metal renders it much less fusible and soluble; the protoxide of iron, the sesquioxide of chromium, and molybdic acid being the only oxides that met more reatily than the motal.

OXYHYDROGEN BLOW PIPE. - An instrument for the purpose: of hurning oxyeren and hydrogen yases in their equivalent proportions, so as to gret the greatest heat fron the combination. Two volumes of hydrogen amb one of oxygen form an exceerlingry powerful explesive misture in conserfuche ot their instantancous union upon the application of sutti(icnt heat, as the clectrie spark or a taper, the result being the formation of water. It was, therefore, early known to be dangerous to experiment with the mixed gases. In some instances, when the gases were contained in separate reservoirs and conncted by tubes at their extremities, they have lerome mingled in one of the reservoirs in conserguence of at hackward flow of the mixture, and serions accidents hateresulted. This led th the arly nes of coneentrictubes for the delivery ol the gases, the hedrogen tip usually surromnding the one discharging the oxygen. By properly regulating the pressure in the gas-holdors the two gases mar be mingled without danger, near the wat of the tulnes, at the entrance of the burner. Hemminge's safety jet is used for burning the gases mised in the same reservoir ; but it is not thought safe to hate: this of metal, but of a membrane. The ordinary moruer, which mingles the two gases for some inches before their exit, is all that
is sufficient to protuce thorough admixture previons to ignition, and will furnish as "solid" a tlame as may be desired. The chief uses of the oxyhydrogen
blew-pige are to readily fuse metals, and to render lime ineandescent in the Drummond light. Sue Drummond Light.

## 1

PACE.-In its modern acceptation, the distance, when the legs are extended in walking, between the heel of ore foot and that of the other. Among disciplined men the pace hecomes of constant length, and as such is of the utmost value in determining military movements, the relative distances of corps and men being fixed by the number of paces marched, and so on. The pace in the British army is $2 \frac{1}{2}$ feet for ordinary marching, and 3 feet for "double quick" or running time. With the Romans the pace had a different signifieation, and it is important to bear the distinction in mind, when reating of distanees in Latin works; the single extension of the legs w:心 not with them a pace (passux), but a step (gradus); their pace (powsus) being the interval between the mark of a heel and the next mark of the same heel, or a double stop. This pace was equivalent to 4.84 English fert. The pace was the Roman unit in itinerary measnre; the mile being 1.000 paces, or 5.000 Roman fect, equal $f 0.917$ of an Esglish mile. Whether measurements were effected by aetually counting the paces, or by the time occupied, is not clear; but either method would. with disciplined troops, give a safe result. In the Middle Ages, writers confnse accounts of distances by allusion to a geometrical pace, a measure which varied with different authors.

PACING DRILL.- In the Enited States Army, before teaching the soldier to estimate distances simbly by sight, he is tirst instructed to measure them by waking over them and carefully counting the number of ecgual paces thus taken. The Instructor canses a distance of one lundred yards to be measured off on smooth, level ground, and marked by a stake and small flag at each end. The squad is marched to the ground nuder arms, and formed in single rank, in a line passing throngh the first stake and at right angles to the measured line. The Instructor directs e'sely man to mareh straight forward until he romes opposite to the thag planted at thr 100-yard stake, aud to carefully preserve his natural step without either increasing or diminishing its Iengtla, at the same time counting the number of steps taken. This is repeated three times. From the moan of the three trials the Instructor will give to each man a mumber of steps that he will take in measuring 10 yards and 100 yards, so that if he march with equal paces he can step 100 yards with some legree of accuracy. When themen have learnerl to measure distances on smooth and leved ground, they are next practiced on that which is more or less broken. The instructor reminds them that in ascending, a shorler stelp is always taken, and the reverse in descending. Where it is possible he selects bifferent practice groumds, which will give the men the opportunity of detrrmining the momber of steps taken in a given distance in going up or down hill, and ako thiat which is more or lass broken by ruts and furrows. 'The mumber of stops taken under these circumstances are recoreted by each man, give iner the inclination of the gromid and other irmersularities as nearly as possibh. The men are then cxereised in measinring unknown distances, embracing gis great a variety of surface as convenient, and continumb until they are able to redne the error male to within tive per cent, of the distance measured. The ditloulty of eorroctly estimating anve erven distance withont the aid of proper instruments for the
purpose increases rapidly as the distance becomest greater. The exercises for the instruction of the men are for this reason divided into three parts, and the men are assigncil to one of three classes according to their proticiency in the drill. The third seetion of the course has reference only to distances varying from 100 to 300 yards; the second section to those from 300 to 600 yards, and the first from 600 to 900 yards. Beginners form the third class; those who become expert in estimating the distances of the third section are advanced to the second; and when the drill has been mastered as regards the distances of the second scetion, the pupil is passell into the first class, and practices estimating all distances up to 900 yards.

PACK-ANIMALS. -Paek-animals may be advantageously employed in sections of country not permitting the use of wheeled carriages. Horses, ponies, mules, oxen, elephants, camels, goats and degs are more or less used as pack-animals in different countries, and the variety of packing gear is very great. The nature of the country to be traversed and of the load to be transported, will in a great measure determine the form and adjustment of the gear. The mule is a favorite pack-animal in many conntries, but the ox is far superior, and would be in greater demand, whe it only fashionable to nse him as a pack and saddle animal. Oxen hold out meln better than mules over long marehes, are much cheaper, are!ess liable to be stampeded by the cnemy, are easily caught when needed, and in case of emergency may be used for beef. In some respects the mule is a superior pack-animal to the horse. His pecnliar build gives him, in proportion to his weight, a greater power to transport a load on his back; besides this, the mule eats less than the horse, and is more sure-footed.

The load, gait, journey, forage, intervals of rest, etc., of a pack-animal should be so proportioned that he will be no more fatigned one day than another. It lias bern determined by experience that a pack-animal, traveline at a walk, over a good road, can carry from 220 to 300 llos.. 30 miles in 10 hours ; or if he moves at a trot. 175 lbs . over the same distance: and the daily work of a pack-animal is equal to that of five men, under the same circumstances. If the road be lilly the advantage will be in favor of the men. The above data supposes that the animat is regularly fed on the serviee-ration. If he be fed on crass alone, an allowance must be made for its quality and abundance. Over difficult and longeontinned journcys. with pastures seldom good, the net weiglit of the packs sliould not exceed the half of those readily transported over a level country, furnishing a sulticieney of grain and camps at regular intervals. The question hoo mast the animat be loaded and urged to wotain the maximum zork or usefiel effect is an important one. If he transports a light weight, le may make a long day's journey; if ho transports an excessive weight. lu may soon conte to at standstill, and in either case the "uscofulemeet" is litule or nothing. let $I=1$ lie distanee an animal could iravolaty if mandeaded. W=1he wogght under which he eould not traved at all. $W^{+\prime}=$ some weight leas than W, under which lie condd traved $\mathrm{D}^{\prime}$ miles
 Now the work or " uscful elfuct" will be a maximum when $W^{\prime} D^{\prime}$ is a maximum, or when $W^{2 / 2}={ }_{9}^{4} W$,
and $D^{\prime}=\frac{1}{3} \mathrm{D}$, or in other words, the animal will accomplish the most work when he transperts ? of the load under which her would stagerer, and he will travel just $\frac{1}{3}$ the distance he enild if be carried no load at all. For example: Suppone an anmal is able to travel 20 miles pers day, bearing a load of 200 lbs , und dimiles per day, when he (arrics nothing ; then, from the equation $\left.\mathrm{W}^{\prime} 1\right)^{2}=W$ $200 \times 2025$

## $\left.(1)-1)^{\prime}\right)^{2}$, we tind $\mathrm{H}^{\prime}=-\frac{-}{6,5}=6.18 \mathrm{lbs}$, the load

 under which he would be brought to a standstill, and from $W^{\prime}=\frac{4}{6} W$ and $\mathrm{D}^{\prime}=\frac{1}{3}$ ), we tind the best kad to be 2881 has . carried 15 mites per day.An army requires to be accompanied by several thousand pack-mimals, sometimes horses, hat preferably mules; and in Asia, eommonly camels, or ceven edephants. Pack-saddes are variously titted, aeeording to the oljects to be earricd; some for provisions or ammunition; others for arrying wounded men, tents, and, in momatain warfare, even small camon. In battle, the immediate reserves of small-armammonition are borne in the rear of diviajons hy pack animals; the heary reserves being io wagons between the army aud its base of operations. See Buffato, Ciomei', Elephont, ILlama, Wulp, I'acking, and I'othsuddle.

PACKFONG.-A Chinese alloy or white metal, consisting of arsenic and copper. It is formed by putting two parts of arsenic in a crucible with five parts of eozper turnings, or finely divided copper; the arsenic and copper require to be placed in alternate layers, and the whole is covered with a layer of eommonsalt, and pressed down. When melted, the alloy contains nearly the whole of the arsenic, and is yellowish-white in color when in the rongh state, but takes a fine white polish resembling silver. It is not very ductile, and camot be fused without decomposition, as the arsenic is casily dissipated. It is sedion imported now, the nickel alloys of Europe having ruite superseded ite use; in China, however, it is extensively employed in the laboratory. Also written Petong.

PACKING.- The art of making up and atjusing the load of a pack-animal. The mode of packing varjes with the pack-sadde and gear. With the aparejo, used in the United States Army, the packing process is very simple. It requires two men to
justs the sadde bhaket and eroromat. (Two (1). No. 1 seizes the aprarejo, the lefe hand near the renter of its front, the right hame near the ofle and rear corner, ant pheces it well to the rear on the hack of the animal, when No. 2 immediately adjusts the rempure, and assiats No. 1 in moving the abarejog fat far forward as possible. (Thiren). No. t pashes the aparejon rinch te the oll side, till the shider emed reachers di-
 the latigestrap downwards over the sider ant inwarde flosough the ring, and again over the slider. While No. 1 is drawing the latige strap moterately (ight, No. 2 reaches over the animal, in front of the aparefo, seizes its from corners and dratw them upwarl and forward, placing the aparefo stuarely over the animal. This being done and the aparejo wit, No. 1 places his left knce against the atparejo, amb aei\%es the latigo strap as far down an pessible, the lefthand in advance. (Four). 'The latige strap) is firawn until the cinch is sullicionty tight, when No. 1 doubles it, and passes it througli the loop on the cinch, drawing it tight. N゙o. 2 removes the blinsl, and ties the animal at or near his cargo. If Nos. 1 is not sulticiently strong, No. 2 paseres around to the near side, faces No. 1 and assists himin drawing the latigo strap.

1. Sling. 2. The Paek.

At thas command, No. 2 unties the animal, places the bliud, and takes his position near the cargo. No. 1 seizes the sling rope, doubles it and throws the loop well nver on the off side. (Two). No. a quictly raises his side of the pack high up on the aparejo, and holding it there with his left haud passes, with his right hand. the loop of the sling-rope over the cargo to No. 1, who passes the ende of the sling-rope through the loop, drawing them tiglat. ('Three). No. 1 quickly places his side of the pack on the apharejo against that of No. 2 , holds it there with his left hand, and passes one end of the sling-rope to No. 2, who passes it under a branch of the sliug rope already on his side, and back to No. 1. No 1, resting his left arm against the pack, quickly brings the ends of the sling-rope together and ties them in a square knot, ufter (lrawing tiglat. (Four). Nos. 1 and 2 seize the pack at the lower and inner edges, settic it to the full extent of the sling-rope, and carefully balance it, No. 2 removing the blind, and gently leading the mule a few steps forward, while No. I

properly pack the animal. Designating the packers as No. 1 und No. 2 , their duties are as follows:

No. 1 is habitually on the near or left side, and No. 2 on the off or right side of the animal. To teach the art, the Instructor commands:

## 1. P'repare. 2. То Раек.

At this command, No. 2 places the hackamore upon the animal, leads him on the off side of and near the rigging, places the hlind and assumes his position on the off side. No. 1, assisted by No. 2 , on the off side, then places and carefuliy ad-
observes the pack from the rear. No. 1 then places the pack cover, and is assisted by No. 2 in adjusting it. When the mantas are not in use, they are folded and carried on the aparejos under the oinches.

1. Layh. :2. The Pack.

At this command. No. 1 takes the lash-rope and holding it coiled in his right, seizes it with his left hand near the cinch, and throws it to its fill extent to the right; whereupon he passes the cinch hook from him, under the mule, and holding it strady, he flaces the rope lengthwise ou the center of the pack (Fig. 1.)
(Two.) No. 1 now moves forwarl to the animal's shoulder, draws the lash rope forwards two-thirds of its length, srizes it 5 or 6 feet from the cinch, and passes it doubled to No. 2 (Fig. 2), who takes the double in his right hand, and the hook of the einch in his left. No. 2 then moves his hands, until he feets the rope tight, when he passes the rear branch of the rope from above into the hook and the slack back to No. 1, who draws it tight with his left hand. He then passes his right hand under his left, seizes the rope in front of the pack and passes it to the rear (Fig. 3). (Three.) No. 1 passes the rope in his left hand under the standing branch from rear to front, pulls it well up on the pack (Fig. 4) and forces the bight thas formed below the aparejo. In the meanwhile, No. 2 graspe the end of the rope, passes it under the front standing brauch on his side (from front in rear or from rear to front), pushes it to the top of the patck, and throws the end in front of the pack on the side of No. 1; No. 2 then seizes the front standing branch with both hands, well down. and places his left knee against the aparejo. No. 1 seizes the front brinch on his side, placing his left s!uoulder against the pack. No. 2 pulls while No. 1 takes in the slack. When all is sufficiently tight, No, 1 satys "good," and seeing the pack well balaneed paseses to the rear and tightly pulls the branch under the aparejo. (Fig. 5). (Four.) No. 2 goes to the rear, pulls the branch on his right and passes it forward under the points of the aparejo. No. 1 moves forwarl, on his own side, takes the ent of the rope, tightens it, passes it down under the points of the aparejo. back to the center of the pack and there fastens it by dratwing it under the staming branches (Fig. 6). If the lishi roper is Fery long, No. 1 passes the end to No. D. whomalkes it fast as stated. All set, No. 2 removes the blind, ties up the hackamore strap and drives off the animal.

## 1. Unsling. ~. The Рack.

At this command, No. 2 loosens the end of the lash rope, goes to the animal's shouldoramp pulls out the branch on his side. (Two.) No. 1 slackens the rear and front brancles on his side in suceession, passes the front branch under the standing branch from front to rear, withdraws it and passes the slack to No. 2, who unhooks it, wherenpon Nos. 1 and 8 throw the lash rope to the rear. (l'bree.) No. 1 unties the sling rope quickly. (Four.) Nos. 1 and 2 take down the portions of the pack on their sides.

The aparejo is taken off in the inverse order in which it is put on. This being done, No. 1 arranges the eargoes while No. 3 collects ind assorts the rigging, placing the aparejos in line. resting on the lower ends of the pads. As the train moves out, each animal should be carefnlly noticed. Raising the hips and twiching the mouth or noseindicates gulling, and shonld lead to immediate examination. The hackamores should fit very closely. Nothing is so fiable to irritate an animal and give limm "fits of fury" as sore ears. If possible, the curgo should be made into two packages of equal weight anclbulk, of about 100 or $12^{2}$ pounds, and the highest louds should he the bulkitsi and most valuable storns. All rattling

 the side packs. If carelessly pouked and allowed to rattle, the animats will frequently berome nlarmed thad as frecuently succeed in dropuing their patcks.

PACKING-BOX. I hox used forkeeping tixerl shot or shall in store, or in transit from place to place, ur un the mareln with siege trains. The name is given to :my box or case containing military stores.

PACKING OF POWDER. - Bovernmerni powter is packed in harrels of 100 pounds aich. I'owder harrels are made of well seasoned white oak, and hoonal with hickory or cedar hoops, whe wholal hedoprived of theirbark; the cedar is not so liable as bicknry or white oak to be attacked by worns, and it should therefore be usad in preforeneé or the hoope may be prepared by immersion in a solution
of corrosive sublimate. The hoops should cover two-thirds of the barrel. The grain powders may be packed in canvas bags before being barreled. Instead of a bung on the side, a serew-hole 1.5 inches in diameter is made in the head of the barrel, for mortar and musket powder; it is closed by a woodscrew with an octagonal head, which must not project beyond the ends of the staves; moler the head of the screw is a wisher of thin leather, steeped in a solution of beeswax in spirits of turpentine. This screw-phng renders it unnecessary to take out the head of the barrel, and the hoops may therefore he seeured with copper nails; for transportation, a piece of cloth should be glaed over the head of the plug. Some barrels have been made with six copper hoops, amd others with four copper and eight or ten cedar hoops : the copper hoops are one inch wide and oneeirhth of an inch thick, fastened with two rivets and nailed each with three (onper nails 0.025 inch long. Average weight of a hoof $2 \frac{1}{4}$ pounds. Powder boxes lined with galvanized ironand conper with large serew lids are now on trial, loolding 100 pounds. It has been found that lining powder barrels with India-rubber cloth has an injurious effect on the powder in consequence of the affinity of the canatchoue for sulphur. The heads of prowter barrels are painted buck in order to show the murks more plainly in dark magazines. The following are the dimensions of powder barrels:-

## Whole length

20.5 inches.

Length, interior, in the clear
Interior dianeter of head
Interior diameter of bilge
Thickness of the staves and leads
18 incles.

Weighit of the harrel
inches.

The burrels have generally 12 hoops, 14 to 16 staves, and two or three pieces in each head. Tae dimensions are such that with 100 pounds of powder there shall be a vacant space on the barrel to allow for shaking to prevent caking. The barrel will hold 120 pounds settled by shaking. See Ciunpoude:

PACKING SMALL ARMS.-When smull-arms are to be sent on a long sea voyage the armb-chests are provided with tin limings, securely soldered, so as to exclude all dampness. The clamps for the bayonets are screwed down precisely as in the unlined chest. The tenons of the packings (muzale, butt, top, and middle) are cut off, is the tin does not extend in the grooves ordinarily filled by them. In a chest intended to be lined the grooves are omitted. A leather strip is placed mater each bottom muzzleclamp to prevent tha butt-plate rabbing on the lining. Two strips of wood $\frac{1}{8}$ inch wide and i inch thick are placed lengthwise with the box, ons on etreh side, their ends resting in notehes cut in i..e ends of the top clamps. The edges of the lining are about one inch above the level of the chest. 'lucy are bent inward, and hammered down on the strips of wood before mentioned. The edges are then carcfully soldered to the cover. To open the box a sol-dering-iron and thin knife are required to oven the soldereal joint.

In the ficld, or under other circumstances, when the proper arm-chests are not on hand, it may sometimes be necessary to pack arms with straw. The interior dimensions of a box for twenty muskets may loe the same the for the regular packing-box. The straw should bo lonir, perfectly dry, and free from dust; rye stron is the hest; hiey should not be" ased; abont twonty-tiveponnds of straw are requiren (o) a box. To preperre the mushet for packing- ()il it; let down the hammer, pass the bayonet up to the sorket into the guarl-how, on the right side, in front of the trigger. Make a rope of aboul forty straws, slighty twisted, and forty inches long: wrap it about the musket, commencing on top of the hammor going round the bayonet below, agitin over the hammer an I round the piece in front of the guard, then Q ver har socket of the hayonet near the neck, and wraping the rest aromat the latndle of the stock.

Lay a hefl of straw 2 inches thick in the bothom of the lox ; in the midille and at if inchers froms the ends, place Harere rashions of straw 6 inchos thick and lo inches wide. Jut in atior of 10 mosisetm, crossing each other, the butts resting altormately against the ende of the box, the guarts rupermost and the hammers bearing on the cushions. I'ut small trmsses of strisw under the upprer amd midhlle bands lye raising the maskets at one emd nuel then pressing them down between the others. J'acts betwon the lutts wals of straw 8 inches longe, macle of in handful of straws fohled in throw ; cover the guards and gratid-hows with the rmuls of the straw that form three wids. which will hestill about 12 inches long. J'ut in another tiar of 10 maskets in the stme manmer, makige the crashions 4 inches thick. I'ack tha imploments in straw in the vacont suaces. Fill the bos witls statw, sos that the cover shall require strone pressure to keevit rlown. Jut two hoojes round the box, at 18 inches from the ents. Other arms, sworde, rete., ire jareked in a similar manner. Arms should not bot wrapped in paper, unless it le oilend, as it attracts moisture more readily than straw does. Sra small-arms.

PACK SADDLE.- l'ick-satillesurc varioucly fitcod, aecording to thar nature of the losads to be ciarricel: some for provisions or ammamition ; others for carrying wonn led men, tents, and, in monntain warfarte, cern small cammon. The cross-tree sadelle atud gear, represented in the drawingr, is nased to at great extent hy the Indians and traders in Northwersern Ameriest. This description of sadale is very well adapted forsmooth roatls and evenly formed puack. but for seouting trains or the professional packer. whare ohjects of every imaginable shape and various weights are to be transpurted, nothing has yet been invented so suitable as the rperejo, composiod entiruly of hide.

In viry carly times the sad lle to which the bondles were fastened consisted ol two piecees of wood.

curved so as to fit the horse's back, and joined together at the ends by two other straight pieces. This frame was well padded underneath, to prevent injury to the horse's back, and was firmly fastened by a girth. To each side of the sadile a strong hook was attached, for the purpose of carrying packages, banniers, etc. Panniers were sometimes simply slung across the horse's back with a pad under the band. The panniers were wicker baskets, and of varions shapes, according to the nature of their usual contents, being sometimes long and narrow, but most generally having a length of three fect or upwards, a depth of about two-thirds of the length, and a width of from one to two feet. The pack-horse with pinniers was at one time in feneral use for carrying merchandise, and for those arricul. tural operations for which the horse and cart are now employed; and in the monntainons regions of Spain and Iustria, and in other parts of the world. it still forms the sole medium for transport; though the mule haq, especially in Jurope and inerica,
beren substitutad for the luorse. Sire Aparion amel J'eckin!.

PACK TRAIN A troop of prack-animals. W゙hen fitting out a train, as few different kinule of unimmly shouhd be taken as pussible, as they will run in differcnt hords and require much mure athontion.
 gind, of such lumps of ifnmpowider as mblure to the: firee of the rollers duriner the incorperating froners in the mannfacture of \&unpowier. "The operation requires great care, nnt shesuld only lo ressortiol to undor exceptional vircumstances. Genorally water poureil un thr face of a rollar will, tosome extent, looseria the peowelar.
PADDOCK INTERPOLATER. When, owing (o) the interposition of an intermollate olostarle, the whoce to be tirnd at cannot lee aren from tlae mortar, a point must be interpolated on the required line in sumbly position that it can be som from the murtar. This is most readily effected by this most simple and converniont instrament, conkisting of two small mirsors attachold to a metalice frame. One of these, termed the upper mirror, revolves on a horizontal axis; the other is called the lowa mirror, and to it is attached a small spitit level, a. llair-lines are marked on these mirrors, representing the trace of a plane nor-

mal to the axis of the level at its crnter, and also to the axis of the upper miror. To use the instramont, the observer plawes himself approximatcly on the line from the mortar to the objeet to be fired at. Kecping the bubble in the center of the: level, he turns the instrument so that the mortar will be resflected from the upper mirros onto the lair-line of the lower mirros. Ile then resolves the upper mirror, and, catching the reflection of the object, whserves on which side of the hair-line of the lower mirror it falls. He moves in that dirention until both images-that of the mortar and of the object-fall upou the lower har-line, the two hair-lines being coincident. A pin or plummet is placed in prolongation of this line to mark the required point. To make the last part of the obsertinion with accuraes, the instrument should be rested on some convenient object.

When the foregoing instrument is not to be hatl, a point may be interpolated by two persons, eich using a light, slender stake. They place thensolves as near as practicable on the required line, one facing towards the mortar, where he can see it, and the other towards the object. Where le can see it, and both within riew of each other. Holding their stakes vertical, they sight and move them alternately, until finally they have them in such position that they range both upon the mortar and the object. The stakes or, better, plummets are then aljusted at these points, and sighting by them back 10 the mortar. a plummet sis suspented in the usnal manner behind the platform. The plummets thus established mark the desired plane of sight. This noeration is more conveniently performed by using a strip of board, ten or twielve feet long, in which is set at each end a priming-wire. The board is placed at the intermediate point in a position approximately in the plane of sight, and where the mortar can be sean by sighting past both wires back upon it, and the object can beseen by sighting forward in the same manner. Two persons, one at each end, by alternately sighting and moving the board, readily
establish the wires in the required line. A plummet is then suspencled, at some convenient point in front of the mortar, in line with the two wires on the board. The plummet in rear of the mortar is suspencled on the same line. The two plummets thus established determine the plane of sight.-See Plummet.

PADS.-In the artillery and cavalry service, pads are used to protect saddle and draught horses from galls. The pad recommended is iu the form of a folded blanket, or pad made of sheep or kit's akin, stuffed with hair, 6 inches by 4 inches. When placed above and below the gall considerable relief will be afforded. If a piece of harness is seen to be commencing to rnb it horse, besides altering the fitting. friction may be prevented by rubbing in any lubricant (tallow will do on an emergency). To cure a gall or sore while the horse continues his work, pads must be judiciously applied. Sheep skin is the favorite specific of many collar-makers; it sometimes effects more than would be expected; it enables the harness and skin side of the sheep skin to move, while the ends of the hair remain withont motion on the tender part of the horse. The rubbing of a trace is sometimes diffionit to prevent; we have seen the pressure completely removed by attaching a short, Hat piece of wood along a hip or bearing strap, with the ends extending 2 inches past the trace, small pads being fixed on it above and below the trace. It looks ugly, but it works well. Elastic pads constructed of a certain number of tubes of vulcanized caontchouc united together, and invented, some years ago, by General Angelini, of the Italian army, are stated to have beeu very successful in the Italian cavalry in preventing galls.

PAGAN SYSTEM OF FORTIFICATION.-This system paved the way for Vauban. It included three kinds of Fortification, the great, the mean, and the small, with fronts of 390 yards, 350 yards, and 312 yards respectively; and was the first to employ the perpendicular (which equaled 58 yards) to draw the line of defense. The faces of the bastion were equal to $\frac{3}{10}$ of the front. The flanks were perpendicular to the lines of defense, the ditch 30 yards wide at the salient, and its counterscarp directed on the shoulderangle of the bastion. Inside the bastions were constructed interior retrenchments, with magistrals parallel to, and 32 yards from the enceinte. The flank was triple; the first retired and level with the ground, the third level with the inner bastion, and the second of intermediate command. The ravelin had a 90 yards' face, and oceasionally received a reduit. while a countergrard sometimes covered the bastions. In another method, calied "re-inforceel," the enceinte was precedel by a contimuous envelope. The weak point of this systeru was the possibility of breaching the curtain from the re-entering place of arms, thereby turaing the interior bastion. The triple flanks were also defective, the defenders being too much exposed to the splinters of the upper scarps

PAGEANT- - In ancient military history, a triumphal car, chariot, or arch, varionsly, adorned with colors, tlags, etc., carricd about in public shows, processions, etc. Also a gorgeons show or spectacle.

PAGEANT SHIELDS. - Lichly enbossed shields of the 1 fith century. Althongla they were pieces of defensive armor, they were rather intended to be worn on gata days, when the Nobles rivalled one another in the magnificence and artistic richaess of their "quipments.

PAH The name of the stockaded intrenchments of the Now Za'alanders.

PAILLER.- An anciont Joly of French Militia. The soldicrs belonging to it were probably so callect cither from the cirenmstance of their wearing straw in their helmets, in orter to know one another in action, or because they were accusiomed to sot fire to the habitations of thoir conemies with hundtes of straw, which they always carried with them for that purpose.

PAINTS.-Prepared or unprepared compositions by which wood, iron and other materials are coated with a preservative surface of oil, mixal with an earthy matter to give it color and consistency The art of painting in its primitive state consisted merely in applying such natural, minerai, and vegetable colors as were spontaneousiy yielded, without any vehicle to render them permanent, consequently they had to be renewed as often as they were rubbed or washed off from the surfaces to which they were applied. The paints now in use are nearly ali mixed with a liguid vehicle, and are applied in the liquid state. The mixing materials are varied according to the requirements of the work. Thus for some kinds of decorative work, and for water-color drawings, gum, glue, size, or other adhesive materials dissolved in water, are employed; whilst for the painting of buildings, etc., oils of varions kinds are used for mixing and thinning the colors. Thus, for painted work exposed to the weather, it is found that linseed oil boiled with the sulphates of lead (litharge) or zinc, or with acetate of lead (sugar of lead), is the best. The preparation of boiled oil is one reqniring particular care, as it is desirable to have it bright and clear. Hence the proportions of the metallic salts are much varied by different mannfacturers, and by some varions other ingredients are added. The time of boiling and the method of filtering are also much varied. For indoor work, plain linseed oil and oil (spirit) of turpentine are used; if a glos:y surface is wished, the linseed oil must be in excess; if a dull,or fluttened surface, then the quantity of turpentine, or turps, as it is often techuically called, must be increased; and it is usual to add a small quantity of ground litharge and sugar "of lead, which are prepared for this purpose, and sold under the name of driers. For artists' colors, very fine linseed or nut oil is used, unboiled, and in small quantity, and turpentive is employed to dilute them. Paints for very rough purposes, such as orduance work, stone walls, etc., are often mixed with whale oil boiled with white vitriol (acetate of zinc), litharge, and vinegar, and they are diluted with common linseed oil and turpentine.

Most of the paints used for ordinary purposes are composed first of the coloring matter, then of a quantity of white-lead, with which and the oil they are worked into a paste of the shade required, and afterward thinned down with oil and turpentine when us'cl. The white-lead which thus forms the basis of most paints, and by itself a color, is a carlonate and oxide of the metat, produced by exposing picces of lead to the action of the steam of acetic acid in beds of fermenting tan. It is the principal white paint used, but is liable to discoloration from the gases contained in impure atmospheres. Other white pigments are prepared from the oxide of zine, and the carbonate and sulphate of barytes. Olives, for carriages, are produced by mixtures of yellow ochre, boiled oil, litharge, lamp black, spirits of turpeutine, and Japan varnish. Reds are either purely mineral, or they are lekes, i. e.,organic colors precipitated on alumina bases. Of the latter there are madder-lakes, prepared from madder-roots, aud carmine-lakes, prepared from cochineal; of the former, vermilion (lisulphuret of mereary), Indian red a native oxide of iron), Tenetian red (an oxide of iron), rad lead (red oxide of lead or minium). Bhues consist of the artiticial uhtramarine, and for artists' purposes of the real ultramarine, also the silicate of cobalt, and for watercolors, indigo and Prussian blue. Greens are cither produced by mixtures of yellors and blues, or they are mate directly from the phosplates, carbonates, ancetates, and arsenites of copper, also from the sesquioxide of chronium and from terre verte, a native mineral, consisting of iron, silica, potassa, and magnesia. Bromesare mumerous, athe various in their (omposition. Decomposed peat, burned mather, hurned Prussian biue, lurned terre verte, asphalt, manganese brown, eatechumber (which is an oxide
of iron with maganese), and mumany, or the asphat mixed wilh othermatterstakern from Eqyptimn mammics, are amomgst the best known amb most used. Backs are made of lamphateck and bone-htack, peroxide of manganese, and hlue-black, which is made of the charcoal of burned vine twigs. In all casers the coloring materials of paints require to be wery
 care is recquired in their preparation, amd anveral forms of mill have been invented for the purpose The principhe upon which all are made in to secure the operator from the poisonong dust and "xhatations, and to reduce the coloring material, if ground dry to an impalpable powder, or, if mixed with the oil to a perfectly smooth paste.

The following tathe shows the quantity of paints required for earriages:

Cident or disister. Such parts should lg. ©"irefully cestmined by moma of punches and hammers, athed (a) susth materian be aufferell to repmain where it is dinererons. Sow lachiors.

PAIRING. Wharn the wed) of a gathion is mand with two rods at at time, (he prowers in callan puiving.
PAIXHANS GUN. This gun, intended for shipgof War or camst fortressen, and adapted to throwing shells and ho!fow shot, wasadopted in France abont 182d, and afterwards in Eingland. It was ased by The Russian flect whidh destroyed the Tarkish forts and shijs in the harloor of Sinope. J'aixhans recommended rylindro-eonical projectiles as going more directly and striking mure powerfully than romad batla, and (xposed to biss resistance from the air. It. hedieved in small ships carrying heavier gums for firing shell and hollow shot. 'The original Paixhans


A priming of lead color and two coats of oliw. color are applied to new wond-work, and one coat of lead color and one of black, to the iron-work of field-carriages. Two coats of metallic paint are required for the iron carriages. Add 60 per eent. for $10^{\prime \prime}$ and 40 per cent. for $15^{\prime \prime}$ carriages with pheumatic buffers, and 30 and 20 per cent. for these carriages with hydramic buffers. One coat will last a year. Oriental red is the best for iron-work, most durable, and retains its full, rich, red color better than other metallic paints. For use mix 100 pounds of oriental red paint (in a dry state) with 5 gallons of raw linseed-oil to prepare it for grinding ; for use. add 10 gallons boiled linseed-oil. 1 gallon spirits of turpentine, $\frac{1}{2}$ gallou Japan dryer; mix thoronghly. This mixture will make about 230 pounds. Brown metallic paint requires abont the same quantity of oils, etc. The oriental red has a good body, spreads, and adheres well to iron. V'ermilion red and red ochre are good substitutes when the oriental is not available ; their color may be moderated by yellow ochre. Spanish hrown is also a good substitite for oricntal red. Nix as follows: 100 pounds of Spanish brown. with 25 pounds of red lead; grind each in raw lin-seed-oil before mixing. Mix as for oriental red; the red lead makes this paint dry horder and tirmer, and stands exposure well. 1t requires about 2 gallous more oil than the oriental red.

Before painting. all blisters, rust. or accumulation of old paint should be removed with a scraper. The top of the chassis rails should neither be painted nor oiled, but kept clean by dry scraping. All ron handspikes, elevating-bars, and similar implements, are painted black, using for this purpose common hlack paint. Heads of bolts and edges of rails may Jikewise be painted black. The damp location of most artillery posts is particularly favorable to the rapid decay of material. Rust gradnally eats away iron parts of carriages and machines. These defects ure frequently hidden by repeated coats of paint or lacquer, making them extremely liable to lead to ac-
gun was $9_{3}^{\frac{1}{3}}$ fert long, with a bore of $8 \frac{2}{3}$ incbers, and a weight of about 7,400 pounds. The charge was between $10 \frac{1}{2}$ and 18 pouncls of powder. It would bear hollow shot of 60 pounds, or solid shot of 86 to 88 pounds. The shell was mostly cmployed for incendiary purposes, and was either charged with gim powder alone, or, as in the French service, with guu powder and carcass composition. Sece Orduance.

PALADIN.-A term originally derived from the Counts Palatine or of the Palace, who were the highest dignitaries in the Byzantine Court. and thence used gencrally for a Lord or Chiefiain, and by the Italian romantic poets for a Knight-Errant.
Pala estra.-In Grecianantiquity, a puhlic building where the youth exercised themselves in the military art, wrestling. rumning, ctc.

PALANKA.-A species of permanent intrenched camp attach to Turkish frontier fortresses, in which the ramparts are revettel with large beams. rising i or 8 feet above the (art ${ }^{\text {? }}$ work, so as to form a stroner palisade above.

PALANQUIN-PALKI.-A rehicle coinmonly used in Hindustan by travelers, and for the transport of sick and wounded. It is nsuaily a wooden box. abont 8 ft . long 4 ft . wide, and 4 ft . high, with wooden shutters which can be opened or shat at plonsure. and constrncted like Venetian blinds for the purpose of admitting fresh air. while at the same time they exclude the scorching rays of the sun, and the heary showers of rain so common in that country. The furniture of the interior consists of a cocoa mattraso well stuffed and covered with moroceo leather, ou which the traveler reclines: two small bolsters are placed under his heatl, and one under his thighs, to remder his position as comfortable as possible. At the upper end is a shelf and drawer, und at the sides are nettings of larger dimensions than the ordinary pockets in earriages, for containing those artieles which may be necessary during the journcy. At each end of the palanquin, on the outside, two iron rings are tixed, and the hammals, or palamuin-bear-
crs, of whom there are four, two at each end, support the palanquin by a pole passing through these rings. Traveling in this mode is continued both by day and night. The palanquin is also used at the present day in Brazil, with the prominent exception of Rio Janciro.

Similar modes of traveling have been at various times in use in western Europe, but only for short distances. The Roman " litter," the French "chaise à porteurs," and the "sedan-chair" were the forms of velicle most in use, and the two latter were in general use till they were superseded by hackney coaches. The Roman "litter" was one of the criteria of its owner's wealth, the rich man generally exhibiting the prosperous condition of his affairs by the mulitude of the bearers and other attendants accompauying him. See Stretcher and Tino-herse Litter.

PALE. 1. In Iteraldry, one of the figures known as ordinaries, consisting of a perpendicular band in
IDMWMEXI
the middle of the shield, of which it is said to orecupy one-thiral (No. 1). Several charges of any kind are said to be "in pale" when they stand over each other perpendicularly, as do the three lions of England. A shield divided through the midtle hy a perpendicular line is said to he "parted per pale." The Patlet is the diminutive of the pale, and is most generally not borne siugly. Three pallets gules (No. 2), were the arms of Raymond, Count of Provence. When the field is divided into an even number of parts by perpendicular lines, it is called "paly of" so many pieces as the (No. 3), Paty of six argent and gules, the arms of the fanily of Rutbveu. When divided by lines perpendicular and bendways crossing, it is called pal bendy (No. 4). An Endorse is a further diminutive of the pallet, and a pale placed between two endorses is said to be endorsed (No. 5). 2. In Trish history, pale meaus that portion of the Kingdom over which the English rule and English law was acknowledged. There is so much vagueness in the meaning of the term that a few words of explanation appear necessary. The vagheness arises from the great tluctuations which the Euglish anthorit $y$ underwent in Ireland at various periods, and from the consequent fluctuation of the actual territorial limits of the pale. The designation dates from the reign of John, who distributed the portion of Ireland then nominally sulyject to England into twelve counties palatiue, Dublin, Meath, Kildare, Louth, Carlow, Kilkenny. Wexford, Waterforl, Cork, Kerry, Tipperary and Limerick. To this entire district, iu a general way, was afterwards given the designation of the frale. But, as it may be said that the term is commonly applied by the writers of each age to the actual English territory of the periond, and as this varied very muel, care must be taken to allude to the age of which the name Pale is used. Thus, very soon after the important date of the statute of Kilkenny, at the close of the reign of Edward 11 ., the English law extembed only to the four counties of Dublin, Carlow, Meath, and Louth. In the reign of Henry Vit the limits were still further restricted. In a general way, however, the Pale may be considered as comprising the Counties of Duhtim, Meath, Carlow, kilkemy, and lonth. This, although not quite ceact, will be sullicient for most purposes.

P'ALEAGAS. - ('hinfs of momatainons and woody districts in the peninsula if India, who pay only a temporary homace. Also written Polygurs.

Paleties. - The part of the armor proterting the
arm-pits. Palettes date back to the middle of the fifteenth century, and disappear at the end of the sixteentl.
PALINTONE.-An ancient machine of war, described by Herou, Philon and Vitruvius. It was a variety of the catapult.

PALISADES.-A palisade is a stake about ten feet long, and of triangular form, each side of the triangle being eight inches. The trunks of straight trees should be solected for palisades. The diameter of the trunk shonld be from sixteen to twenty inches. The trunk is sawed into lengths of ten and a half feet, and is split up into rails, each length furnishing from five to seven rails. The palisade is pointed at top; the other extremity may be charred if the woon is seasoned, otherwise the charring will be of no service. A petisaring is a row of palisades set in the ground, either vertically, or slighty inclined towards the enemy. To plant the palisades, a trench is dug three feet deep; they are then placed about threc inches asuuder, with an edge towards the enemy. Each palisade is mailed to a strip of thick plank, termed a ribend. placed horizontally about one foot below the ground; another riband is placed eighteen inches betow the top. The earth is firmly packed in the trench. A palisading is sometimes used as a primary means of defence, particularly for low works. A banquette is thrown up for this purpose against it ; the tread of the banquette being six teet below the top of the paliwading, and four feet three inches below the npper riband. As an obstacle in flanked works, it is hest placed at the foot of the counterscarp; the points being twelve inches below its crest.

or clse covered by a small glacis. In this position the paisading fulfills all the conditions of an efticient obstacle; it is under the tire of the work; covered from the enemy's fire; will not afford a slelter to the enemy: and cannot be cut down without great difficulty: An inclined palisading, "as shown in the drawing, is sometimes placed in an adranced position in frout of an ordinary trench to secure it from surprise. This was done to secure a line of treach at the seige of Fort Hagner. The palisading was made at the depôt in panels of four or five palisades, cut from pine saplings varying from four to cight inches in diameter, those above five inches being split in two, and placed with the bark side upwards. The spaces het ween the palisades were left only small enough to prevent a mau forcing his body through them. See Aeressory Means of lhefence, and Stockade.


PALL-In Heraldry, the upper part of a saltire conjoined to the lower part of a pale. It appears much in the arms of ecelesiastical sees.

PALLISER BOLT.- A screw bolt for securing armor-phates. The end upon which the serew-therad is cut is larger than the shank. See Bolts.

Palliser GUN.-Major Pallisor, of the British Service, describes his manner of making a gum to consist in introducing into a cast-iron gun a barrel or hollow eylinder of coiled wronghtiron, of such thiekness in proportion to its caliber, that the residual strain borne by the tube shall have a relation


to the strain it transmits io lha surrounding castiron, which shatl he most suitably proportionorl to their respective clasticities. 'I'he prorise proportions will drpernl on varions ciremmstaners, viz: the excessive expansion of wrourht-iron duc to heat, also the greatar range betweren the lamits of dasticity and rapture of this anetal, and that the cast-iron will have to do nearly all the longiturlimal work. By varyine the thickness of the tube, the transmithol strains fan lue regnlatiol with the greatest aicoty

The method of eonstruction is very simple. Thas gun laving boon bored, atoilad wrought-iron talw is inmertel, as slown in theatrawing. '1"ho thbre consists of two thin wronglat-iron barrils, the outer ond being much shorter than the innor one, and shrmak to it at the breerh-end. Two are naed lor the purpose of obtaining the benefit of the trension, and also to break the continuity of any intornal fracture. 'L"he
from the eronter of gravity, and the sume distancer

 shot are ronstructorl on thre plan of Major l'sllisur, formorly of the loysal Irlillery, atol are dosignoul resporoially for the penctration of frmor. 'llacy aronsist, as shown in the dratwinge of the body l's, from

 aml two retrector-lutex, one shown at E 。 'lhore Montial frature of this projerotile is that the londy is cast in a same mond amel the hend in onde of moval. Wy this moans. the hernd is chilfod white nearly to the denter, and areduires the propertios of internere hardness. rrushing strengeth, brjutrames. inml ligeh density. llambuess here reiatery for the rigidityo of actual particlas. and (rnshiner stronerth to the rigind eonmortion or building up of particles so as to resist

tuhe is made to slightly tiper, and the bore of the gun is tapered correspondingly ; the tube is plated in the hore, and as soon as it eomen in fontact thronghont its length, a serew-locking ring, $\lambda$, which takes against a slambere on the tube, is sereword into the muzzle. and sets the tube home ; and since in practice it has been fomm that the elastivety of the wroughtirm inner tabe is not proportioned to its greater elongation, the deficioncy is suppliod by putting the tube muder slight fompression, which is "ffected by permanently stretching the wrought-iton inthe gun by leayy proof-charges. The tube is furthersceured in the gun by means of a screw which passees through the cast-iron shell a short distance befor: the trunnions at right angles to the bori" and serews into the tube.

In the larger guns Captain Palliser proposes to nse two or more concentric tubus. In the very largest guns he proposes three tubes, the inner one to be of the softest and most ductile wrought-iron ; the next may be of a strongr and lharsher nature : the third of steel for some distance in front of the chamber. The system is being applied in the [nited States, and with most promising results, in the conversion of $10^{\prime \prime}$ Rodman guns into $8^{\prime \prime}$ rifles. In these guns the ritling consists of tifteen grooves and lands of equal width, with a uniform twist of one turn in forty fect. The shape of the gronve is tlat. 'Jhe center of gravity is, by this altoration, thrown in front of the axis of the trunnions. This renders at speeial elevating appratus necessary. The ritlo thus obtained, though giving io a projectile a less mazzle velocity than does the $10^{\prime \prime}$ smooth-bore, has, on account of the increased weight of slot, greater penetrating power at all ranges, being donbled at some and irebled at others. Its aceuracy is three times greater and the capacity of its shell twice that of the original gun. See Built-up Guns. Cont:rted Gunч, and Ordiuance.

PALLISER PROJECTILES. - The Freneh and Woolwich systems ditfer only in the form and position of the studsand the material of which they are made: in ench system, the momber of huttons varies with the size of the gun, there beinc, however, alyays one set for each groove in the piece. The bouly of these projectiles is matle of cast-iron: the form is cylindro-ngival. The studs, of an alloy of copper and tin, are secured to the projectile by being pressed into umbercut holes; their shape differs with the kiml of rifling employed. Two studs to each groove are used for all guns smaller than 12 inches ju caliber, and, except for cored sliot, are at equal distances
their heing forced in mponeach other. The deficienry of the homal intwarity is mot ly the form givern to it. 'I'he boty of the projeretile, leeing coast in samb, Ias greater teameity than the hearl; a sounder rasting is ensured; and the motal is rendered much less subject to the then of the molarnlar forces which may ceither split it in store, or erark it so as to cancer rap)ture in the bore of the gram; the presence of the eavity
 also redures this lithbility, and adily to the strength of the jrojectile, as it is rery dilfirnli to obtain a solit] casting from surla a motal. and any lefect in this respect woisld be a sourer of Weakness. The sliape of tho: cavity is rapecially mapterl to the work required. The iron is cast about the bushing in the base, whirlh is of wronght-iron. a athemetal rimployed, even when cast in sind, is too hard to admit of tool work. The Pillisertincll also is designiel for tho penctration of armor, and diffurs from the shot in construction only, having a larger catity in order Haat a bursting-charge may be used. Nofise in employed, the charge lefing ignited by the heat prosduced in the metal onimpact. Toprevent the explosion from taking placr before nenctration is arcomplished, the interior of the shell is covered wisha backer, and the charge is placed in a woolen bag. The Boxer shrapnel, named from its inventor, rmbodies all the features essenian io such a projettile. The charge beiner at the base, the tondeney is, on explosion, 10 increase the forward velority of the bullets instead of their lateral spread. See studded Proiectilex.
PALM.-That measure of lengll, originally taken from the width of the hand. intesured across the joints of the four fingers. In Grece it was known is palaiste. and was reckoned at 3 in... or $\frac{1}{6}$ of a cubis. which was their stanelard mit. The Romans:ulapt rd two measures of this name the ont was tha Greek prabriste, sud was called palmus minor: tha other, which was not introduced till later times, wa: malled pulmus major, or pa’ma. and was taken from the length of the hand, being therefore nsually es. timated at thrce times the length of the otber. It the present day, this measure varies in a most arbitrary mannur, being different in fach comotry, and oceasionally varying in the same. The Fnylish palm, when used at all. which is seldom, is con-jedered to be the fourth part of an English foot or 3 inches.

The following is a list of the most common measures to which the name palm is given :


In Germany and in the low countries the palm is generally contined to wood-measurement, while in Portugal it used to be the standard of linear measure.
PALMER EQUIPMENT.-The Equipment, invented by Lieutenant George H. Palmer, of the U.S. Army, consists of carrying-braces, coat-straps, knapsack, and haversack-the whole weighing $3 \frac{1}{2}$ pounds. The haversack, which is a little smaller than the knapsack, is carried on the rightside, the knapsack on the left side The carrying-braces consist of a back-pad and double shoulder-straps-two straps for each shoulder. The shoulder-straps are attached to the back-pad by rivets, so as to be movable on their fastenings. The back-pad gives additioual bearing-surface for the weight carried. Its shape enables the shoulder-straps to be attached in such a manner as to separate them on the back and shoulders. The back-pad, in conncetion with the should-er-straps, prevents the weight carried from pulling directly downward on the shoulders, instead of which it tends to pull toward the center of the back by means of a pad supporting a portion of the weight. Two straps are attached to the front ends of each shoulder-strap, for supporting the front cormers of the bags, the waist-belt, and cartridge-boxes. To the back-pads are fastened rings whieh hold the blanket-straps. Two straps are attached to the parl for supporting the rear corners of the bags. On these straps is a double loop, which may be moved down or up, for the purpose of drawing the bags together at the back, or to permit them to lang at the sides. A strap looped at each end is on the blanketstraps and passes underneath the straps supporting the bags, for the purpose of holding the blanket more firmly in place when marching at double time. At the bottom of the bags are straps with buckles for drawing the bags together at the back and to retain them more firmly in place.

PALUDAMENTUM.- A military mantle, worn by the ancient Romans, differing little, if at all, from the Chlamys. It was worn by the officers and principal men in the time of war, who were therefore called I'aluduti, and this distinguished them from the common soldiers, who, beeanse they wore the Sromem. were called the sagati. The Paludamentum, whicls was gencrally white or sed, came down to the knees or lower, was open in front, linng loosely over the shonlders, and was fastened aeross the cliest by a clasp. Also written Paludimentum.

PALY.- A term used in Ileriblry, to signify division into four or more equal parts by perpendicular lines, and of two dilferent tinctures disjosed atternatriy. Sce Pale.

PAN.-1. 'l'lat part of the lock of a muskel, pistol, ete., which hokls the priming poweler, the necessity of which is superseded by the use of pernussioncaps. 2. 'The distanee which is compriserl betwern the angle of the quanle and the flanked angle in a fortificition. 3. In military history, one who was fieutemant General to Botchusand tis ludian ex. perlition. He is recorded to lave been the first abthor of a general shoul, which the Grecians prace ticed in the beginaing of their ontsets in battle.

PANACHE- - A plume worn upon the erest of an ancient helmet. The term is now commonly applied to any military plone or feather.

PANCARTE. - An ancient exereise or tournament, which was performed in the Roman Amphitheater, wheu strong, athletic men were opposed toall sorts of enraged animals.

PAN COUPE.--The short length of parapet by which the sellient angle of a work is sometimes cut off.

PANDOURS.- A people of Servian origin who lived scattered among the monntains of Hungary, wear the village of Pandour in the connty of Sohl. The name used to be applied to that portion of the light-armed infantry in the Austrian service which is raised in the Glavonian districts on the Turkish frouticr. The Pandours originally fought under the orders of their own proper ehief, wbo was known as IIarun-Basha, and rendered essential serviee to the Austrians during the Spanish war of succession, and afterward in the Seven Years War. They originally fought after the fashion of the "free lances," and were a terror to the enemy whom they annoyed incessantly. Their appearance was exceedingly picturesque, being somewhat oriental in ebaracter, and their arms consisted of a musket, pistols, a Hungarian saber, and two Turkish poniards. Their habits of brigandage and cruelty rendered them, however, as much a terror to the people they defended as to the enemy. Since 1750 they have been gradually put under a strieter discipline and are now incorporated with the Austrian frontier regiments.

PANIC.-A term employed where fear, whether arising from an adequate or inadequate cause, obtains the mastery over every other eonsideration and no. tive, and urges to dastard extravagance, or hurries into danger or even unto death. An inexplicable sound causes a rush from a church, a vague report in the market-place canses a run on a bank, and precipitate the very eveuts that are dreaded. This emotion either differsfrom natural apprehension, or presents so intense and uncontrollable a form of the feeling, that it is propagable from one person to another, and involves alike the educated and ignorant -those who act from judgment as well as those who act from impulse. There are, besides this feature, several grounds for believing that such manifestatious of involuntary terror are of morbid origin, and should be regarded as moral epidemics. They have generally arisen during, or have followed, seasons of scarcity and of pliysical want and disease, the ravages of war or periods of great religious fervor and superstition. The dancing mania, the retreat of the French Army from Moscow, and recent and familiar commercial panics afford illustrations of eertain of these relations. The most notable instanee of universal panic, and that which demonstrates most aptly the connection here indicated, is the dread of the approachingend of the world which pervaded all minds, and almost broke up human socicty, in the 10 th ecutury. The Empire of Charlemagne had fallen to pieces; public misfortune and civil discord merged into misery and famine so extreme that camibalism prevaliled even in l'aris; superstitions and vague prodictions becume formalized into a proplecy of the cond of all things and universal doom in the year 1000 . Thlis expectation suspended even vengedice and war. The "Truce of God" was proclaimed. Enormous riches were placed upon the altars. Worship and praise never ceased. The fields were left uncultivated: serfs were set frere; four kings and thousands of Nobles retired to the eloister ; and all men, according to their tomdencies, prepared to die. It is worthy of note that during all pestileness there have arisen epickmic torrors, not so much of the devastations of discase, as of plots and poisonings directed by the rich against the boor. Den where tlese epideraic terrors are legitinately traroable to local and physioul causes, as in the case of the singular affeetion timoria, which oecurs in the marshy and
unhealthy districts in Sardinia，the tremor and trepidation，nmid other phemomena，are ascribed to the magical intluence of encmies．

PANNELS．－In artillery，the carriages upon which mortars and their led are eonveyed on an marels．
PANNIERS．－1．Shiddes of basket work formerly used by archacrs，whon set them up in front during lat－
 in pairs over the back of a pack－animal to carry a lond．Also leather bage used in the same way；and especially the cases used for carrying medicines．Soe Park－sathalle．

PANONCEAU．－An ancient name for an ensign or banner．

PANOPLY，－Complate armor oridernarr ：a full suit of defensive armor．

PANTAGRAPH－PANTOGRAPH．－An instrumen： for copying maps and other drawings．It invention is aseribed to Christopher teheiner，in Jesuit，in 1603. It has since undergone various moditications and improvements．It usually consists（Fig．1）of four metallic rules，jointed two and two，and perforated with holes，a tracer，a pencil or pieker：and a screw or point which is forced into the drawing－board or table to liold the instrument in position．For use， the roles are secured to cach other by insorting thumb－serews through the holes corresponding with the seale to wbich the drawing is to be redueed or enlarged．The mieropantagraph，used for copying
＂opy．Tormerly thesedeforets，the patagraph las bean constructedi in a variety of forms，all of which， howerer，bile the one deacribed，alepend nipon the principle that the two triangles which have，for theor angular proints，the fulerom the permeli－point and a joint，and the fulcrum，the trarer－point，and at joint， mast always presserve their similarity．

Fig． 2 ：shows the instrumbent arranged for new ats an acerssory to the indieator，to reduce the monion between the aross－heat，or any wher part of the congine，ar 1 the indicator．－Sce：Lrazy Trang．

PANTHER．－A term in Iferaldry＂．The purntlor is borne gardant and incensed，i．t．，with tire issuing from his month and cars．

PANZERBRECKER．－An anciont ：mall，ilirce－wideal poniard．It digured conspicmously at the hatte of Bonvines，in 1214.

PAPEGAI．A popinjay ；al bircl mate of wornd or pasteboard，stuck mon a lance，and used as at nark when practicing with the bow，＂ross－bow，mansket， ctc．

PAPER AMMUNITION FOR SMALL ARMS．Tliert are two kinds of pabler cartridges used in the Cnited States Scrvice，the ball－cartridge，mate with a single elongated ball，and the blank cartridge．

Lead balis are made ly compression，by means of machines for that purpose．Balls thus mate arc more uniform in size and weight，smoother，more solid，and give nore accurate results than east balls．


Fig． 1.
microsconic dispatches，may be deseribed as a system Tice lead is first east into round ryindrical bars，． 58 of connected pantagraphie lovers，the least of which inch in diatncter for the calber ． 58 ，and 21 inches carries a piece of glass on which the original is re－long，and then rolled to． 46 inch in diameter；length， duced in a proportion determined by the relation be－ 2.5 inenes．Tbese bars are fed to the machine，whieh tween the lengths of the longer and shorter arms of the series．The glass resta and moves upon a diamond－point while the point remains stationary． The diamond may be raised or lowered by ap－ propriate mechanism，to regulate the width and depth of the cut，or entirely remove it from the glass． Witl an instrument of this kind the Lord＇s Prayer has been written within the space of 大亏⿱亠䒑口阝⿱一⿱㇒⿵冂⿰丨丨一心 square inch．In the same ratio the whole of the old and New Testament would be contained within $\frac{1}{27}$ of


Fig． 2. cuts off a part suffieient for one ball and trausfers it to at die，in which the ball is formed，with cavity and rings，the surplus metal being forecd out in a thin belt around the luall in the direction of its axis．Tbe halls are trimmed by hand，with a knife，and are then passed through a cylinder－rauge of the proper size．One man can make with the maehine 30,000 balls in ten hours．the bars of lead being prepared for him．One man ean cast 1,560 bars in ten hours，and can trim and soll 2．000 hars in ten hours．A boy can trimand gange 5． 000 in 10 hours．Bullet－molds are provided to cast balls where the pressed balls cammot be hatl．The mold is so constructed as to trim the balls by a single operation before they are taken from the mold．To grease the halls． place them on their hases on a tin frame capable of bolding 50 balls，aud immerse it in a melted mixture of one part of tallow and eight of beeswax，kept warm，until thuc cylindrieal part of the ball is coveretl．Re－ move the frame and let it stand till the grase bardens．Thrce frames are required for each boy．
The paper is tirst cust into strips of a width equal to the length of a trapezoint．usimer the pattern is a guille．The paper and ruler are kept from moving ly means of a lever，one end of wheh is tixed and the other is moved a square inch．The defects of the instrument are its by the foot by means of a cord and treadle．The weight and the ditticnlty of reulering it perfectly mobile，hoth of which prevent that steady motion of the tracer which is necessary for making in accurate knife is held in hoth hauds．From six to＂ight reams may be cut at a time in this way．Acutting－machine like that used by look－binders facilitates the opera－
tion when many hands are employed. When only a knife and ruler are used, about 12 sheets are cut at a time.
The following implements are required hy each workman when making the cartridges:
Two boxes to hold cylinders, 20 inches long, 8 inches wide, and 4 inches high, in the clear, made of $\frac{1}{2}$-inch boards, without a cover; they are placed on their sides, their backs inclined against the partition in the middle of the cartridge-table, the front resting on cleats nailed to the table; 1 former, cylindrical, of hard wood, of the same diameter as the ball, 6 to 7 inches long, one ent pointed almost as much as the ball, and marked with a shallow groove 4 inches from the end; 1 subbet or frame, tacked to the table, to hold balls, placed at the left hand of the boy; 1 spool of thread, turning on a vertical spindle fixed in the table near the balls: 1 choking-string, made of four or five cartridge-threads 1 wisted together, about 9 inches long, with a wooden toggle at the end, fastened to the edge of the table at the right hand of the boy; 1 knife blade, $1 \frac{1}{2}$ inch long, hooked, driven into the front of the table helow and near the chokestring.
To form the cylinder, lay the trapezoids on the table with the sides perpendicular to the hases, toward the workman, the broad end to the left. Take the former in the right hand and lay it on a trapezoid, the groove in the former against the right edge of the paper, bringing the pointed ent $\frac{1}{3}$ inch from the broad end of the paper; envelop the former with the paper; then, with the fingers of the left hand laid flat upon the paper, thirn the former and roll all the paper upon it; hold it firmly with the left hand and, with the choking-string in the right, take one turn around the eylinder at about $\frac{1}{3}$ inch from the ead ; hold the fornier firmly in the left hand and draw gently upon the choking-string, pressing at the same time with the left foretinger upon the projecting end of the eylinder, thus folding it neatly
inder on it. on a second trapezoid; put a ball over the end of the former; roll the paper on the former and the ball; hold the cylinder in the left hand and cloke and tie it as thas described for the inner cylinder; withdraw the former, pressing the cylinder with the left liand, and place it in the box.

The following implements are required to fill the eylinder:

One churger, made of a cylinder of wood or brass picreed with two holes through its length, holding the exact charge of powder ; a funnel attached to one end of the cylinder, and a discharge pipe to tho other. The holes in the eylinder are made to communicate and shut off, alternately, from the funnel holding the powder, and the discharge-pipe at the lowerend, by a reciprocating motion given to the cylinder by the bands. Fill the funnel with powder, insert the discharge-pipe in a cartridge, holding the charger in both hands, and turn the cylinder; the charge of powder is deposited in the cartridge; insert the pipe in the arxt, and turn the cylinder in the opposite direction, and continne in the same way for all the rest. Cartridges may be filled with a copper charger made to hold the exact charge, pouring the powder by means of a small funnel. which is inserted in the cartridge.
To pinch the cartridge, take it in the riglit hand, strike it lightly on the table to settle the powder; flatten the empty part of the cylinder and bend it flush with the top of the powder at right angles to the eartridge, the oblique side of the trapezoid on top, the cartridge standing vertical on the table; fold the flattened part in the direction of its length, with two folds from the exterior, meeting in the middle; bend this folded end back on itself and strike it on the table to set the folds.

The following utensils are required to bundle the cartridges :-1 box without ends or top, width equal to five times the diameter of the ball, height equal to twice that dianeter, and length that of the cartridge.

Cartridges for Smallarms.

Kind of curtridge	Expanding-ball.		Blank.	Elongated ball.			
Kind of arm.					8 4 0 8 8 8 8		
	$\begin{aligned} & .58 \\ & .5715 \end{aligned}$	.58   . 57075	. 8	$.58$	.44 .46	.38 .39	. 54
		450		450	$216{ }^{\text {c/6 }}$	$145{ }^{.39}$	475
Charge of powder..................................g. . . do do .	60	50	60	40	30	17	50
	4.12	4.12	3.75	4.1	2.75	2.4	
	4.0	4.0	4.16	4.0	3.25	2.5	3.25
	2.5	2.5	20.2	$\underset{10}{2.5}$	1.6	$40^{1.6}$	${ }_{24}{ }^{2.25}$
Number of trapezords in one sheet....................	16 9	16 9	21	${ }_{9}^{16}$ -	30 8	${ }^{40} 7.5$	10
	6.5	6.5		$\therefore .5$	6.5	4.9	10
Wrapper............ $\{$ Number	6	6		15	${ }^{6}$	12	4
Color..	Ordinary. color.	Red.	Ordinary.	Blue	Ordinary.	Blue .	Ordinary.
Thread for 1,000..... . . . . . . . . . . . . . . . . . . . . .ounc	. 5	. 5		. 5	. 5	. 5	. 6
Weight of 10 cartrldgex ....................... do . ${ }^{\text {a }}$.	13.5	13		12.5			13.5
	2.6	2.5		2.4	2.3	2.20	2.6
	2.9	2.9		2.9	2.0	1.9	2.5
Depth_................. ${ }^{\text {do }}$	1.15	115		1.15	. 85	. 8.5	1.1
Size of packing.boxes $\int$ Werngth $\ldots$.............. ${ }^{\text {do }}$	14.75		15.5		13.1	10.5	14.75
	10.\%5		11.0		4.6	3.8	8.9
Welght of hox packed   (Depth.................... do C'olor of box	98.38		0.2)		28.5	16.5	\% 78
	Olive ....	Gray	Olive	Y'cllow	Olive	Blue..	Oliv
	4.85	4.25		5.25			
	8 8. ${ }^{5}$	8.25					
	5 7 4	4.25		59.5	...		

down upon the end of the former. Having ehoked
the eylind are close, carry it to the right side, and with the thread in the right hand, takn two halfhitehes firmly around the part that has been ehoked: cut the thread on the knife-blade and press the choke in a cavity in the tahle; place the former with at cyl-

It is tacked to the table, the sides parallel to and aratr the colge of the table.
Put a wrapper in the box, the long side perpendicular to the enge of the table, the middle of the paper in the middle of the box; parallel to the sides of the box, two tiers of cartridges of 5 each, the balls
alternating; bring the short ends of the paper together and foll them twier close down on the cartridges; insert a package of (alps in the end of the lmmille next to the emts of the lower tier; fold the wrapper on the ends and tie the hundle, first in the direction of the lenghth, then ite berendtl, with the twine fastencel in at single-bow kool.
When making blank cartridges, ont the paper into trape\%oids, as for the ballesartrideres; roll the tranzoit on the former one tarn, folld down this mach of the paper on the hatal of the former with the left hamd; roll the rest of the paper; fold down the rest of the paper; touch the fold will a little pate on the linger: press the emal of the informer on at thall imbodded in the table for the purpose; remove tho cylinder from the former: place it in a bow to dry. Fill the rylinders, as described, for ball-cartridges.
Balle are packed in looses with tow or saw-dust to prevent their brusing. The loxes are made of 1. inch boards, and contain 1,000 balls. 'lys a are markedon both ends with the number and kind of balls, and on the inside of the cover with the place mad date of fubrication. The enver is fastenod with six 2-inch serews, and the boxes mast be hooped with iron for transportation. They are not painted.

The car for small-arms is made of copper. it is very slightly conieal, with a rim or flange at the open end: it has four slita, extending about half the height of the cap. The cap is charged with folminute of mercury, mixed with half its weight of nitar, the oblject of the niter being to render the fulminate less explosive and to give body to the tlame. Toprotect the pereussion-powder from moisture, and also to secure it from falling out, it is covered over, in each eap, with a drop of pure shellae varnish. The copper for making the copsis obtained in sheres 43 inches long an 114 inches wide, weighing 3 pounds: a variation of 4 ounces, more in less, is allowed. The copper slould be pare, free from seams, holes, or blise ters, well annealed, and as evenly rolled as possible. with straight and smooth ederes. The eopper is cleaved by immersion in a pickle mate of one part (by measure) of sulphuric acid and forty parts water; it is scoured with fine sand and a hand-brush. and washed in rumning water: after which it is well dried in clean saw-dust and rubbed over with a cloth slightly oiled; it is then ready for the machine. See Ammunition.

PAPERSHELL.-A species of fireworks, in the slape of an ordinary shell made of paper, filled with decorative pieces, and tired from a mortar. It contains a small bursting charge of powder. and has a fuse regulated to ignite it when the shell reaches the summit of its trajectory.
PAPER-TESTER.--A machine for ascertaining the strength of various papers. The drawing shows such a contrivance with the following:

DIMENSIONS.
Extreme helght.......
Extreme belght
Extreme lenoth.
Extrems
Wheight
A wright balance indieates the strain. There are no doese weights. A weighing beam can be substituted for a spring batance if desired. When the specimen is secured, the wheel at the and of the machine being turned, calusis the mandrel to furn and apply the strain to specimens. The indicator. on the fare of the dial, remains stationary at the breaking point. A test can be made with spectlant acouracy. The machine is quite valuable in testing the qualities, elc., of papers for the laboratory: See Testing Jicechme.
PAPER TIME FUSE. - A fuse consisting of a cylindrical column of burning composition packet in a paprease, grabualty increasing in thickness from it: lower to its upper or outer extremity: to insur. ignition, it is primed with rifle-powder at the larger end. It is inserted at the time of loading the pince into a brass or wooden plug previously driven into
the fuse-bale of the shofl. The conponition has the Manne ingrediants ns ginnpowder. the properetions boing varied to suit the roguired rate of combustion;
 meding cortain proportions of sulphur and niter, the (omposition barns more alowly. "lhe rate of burning also deperads upon the alensity of the composition

and the purity and thorough mixture of the ingredients. These fuses vary in length. lurning from 4 to 10) seconds: they are grathated in seconds on the ontside of the case, ant can lee cut to a length corresponding to any time of tlight. See Fuse.

PAPIER-MACHE. - From the cxtension of the applications of papier-maclaf in the laboratory, morlifications have taken place in its composition, zund it is now of three kinds-1st, the true kind, made of paper pulp; 2d, shects of paper pasted together after the mamer of pasteboard, but submitted to far greater pressure ; and 3d, sheets of thick millboard Cast from the pulp are also heavily pressed. The term papier-mache is in trute held to apply rather to the articles made of the pulp than to the pulp itself; and a vast manufacture has sprung up during the present centary, particularly in Birmingham, in which a great varicty of articles of use and ornament are made of this material. They are coated with successive layers of asphatt varnslh, which is acted upon by heat in ovens until its volatile parts are dissipated, and it becomes hard, and capable of receiving a high polish. The fine surface which can lee given to the asphalt varnish also permits of burnisheel gilding and other decorative applications with excelfront eif.ect.

PAPILIO.-A square Roman tent for eight men.
PAPYROGRAPHY. - A term applied to a motlified process of photolithography for enlarging copies of maps, which is considered to possess certain advantages for use in the fiedt. The process is carrich out by means of an ink invented by Captain Abmey, which is not greasy, and drawings made with which upon ordinary paper might be transferred to stone or zine, for the reproduction of topographical maps aud military sketehes. This invention has been introduced into the British Army:

PARABOLA.-One of the conie scetions. produced by aplame not passing through the vertex, which cits the cone in a direction paralle to that of a plane touching the convex surface of the cone. A little consideration will show that asection so produced cannot be a closed curwe, but its two branches, though continually widening out from each other, do not diverge so rapidly as in the lyperbola. The
nearer the cutting plane is to that tonching the cone, the less the two branches diverge; and when the two planes coincide, the branches also coincide, forming a straiglit line, which is therefore the limit of the parabola. It may otherwise be cousidered as a curve, every point of which is equally distant from a fixed straight line and given point; the fixed straight line is called the directrix, and the given

point the focus. Thus PAP', is a parabola, any point $P$ iu which is equally distant from the focus $s$ and the directrix CB , or $\mathrm{PS}=\mathrm{PD}$. If, from S , a perpendicular, SE, be drawn to the directrix, and produced backward, this line, AO , is the axis or principal diameter of the parabola, and the curve is symmetrical on both sides of it. As A is a point in the parabola, $\mathrm{AS}=\mathrm{AE}$, or the vertex of a parabola bisects the perpendieular from the focus to the dircetrix. All lines in a parabola which are parallel to the axis cut the curve in only one point and arc called diameters. All lines, such as $\mathrm{PP}^{\prime}$, which cut the curve in two points, are ordinates, and the diameter to which they arc ordinates. is that one which biscets them; the portion of this diameter which is intereepted between the ordinate and the curve, is the corresponding abscissa. From the property of the parabola that $P S=P D$, the equation to the curve may be at once deduced for $\mathrm{PS}=\mathrm{PD}=\mathrm{EN}$, therefore $\mathrm{PS}^{2}\left(\right.$ which $\left.=\mathrm{PN}^{2}+\mathrm{NS}^{2}\right)=\mathrm{EN}^{2}$; hence $\mathrm{PN}{ }^{2}$ $=\mathrm{EN}^{2}-\mathrm{NS}^{2}=(\mathrm{ES}+\mathrm{SN})^{2}-\mathrm{NS}^{2}=\mathrm{ES}^{2}+2 \mathrm{ES}$. $\mathrm{SN}=$ (since $\mathrm{ES}=2 \mathrm{AS}$ ) $4 \mathrm{AS}^{2}+4 \mathrm{AS} .5 N=4 \mathrm{AS}$ $(A S+S N)=4 A S . A N$; and calling $J^{\prime} N$, the semiordinate, $y ; \mathrm{AN}$, the abscissa, $x$; and $\mathrm{AS}, a$; the equation to the parabola becomes $y^{2}=4 a x$, where $a$ (the distance of the vertex from the focus) remains the same for all points in the same curve. It is evident from the equation, as well as from the geometrical derivation of the parabola, that it mast have two, and only two branches, and that the further it is extended the ncarer its branches approach to the coudition of straight lines parallel to theaxis, though they never actually become so. The parabola has no asymptotes, like the lyperbola, but it possesses many properties which are common to it with that curve and the ellipse. In fact, the parabola is nothing more than an ellipse, whose major axis is infinitely long. If parallel rays of light or heat fall upon the concave surface of a paraboloidal nirror, they are reflected to the focus, and conversely, if a light be placed in the focus of a paraboloidalreflector, its rays will be reflected in parallel dimetions, and would appear equally bright at all distances didlight move without deviation, and umabsorbed. Also, if a body be projected in a direction not vertical, but inclined to the direction of gravity, it would, if undisturbed hy the resisting fore of the atmosphere, describe accuratoly a parabolis whose axis is vertical, and whose vertex is the highest point reached hy the body. The term parabola is used in analysis in a general sense, to denote that class of curves in which some power of the ordinate is proportional to a
lower power of the abscissa. Thus the curve we have just described, and which is distinguishere? as the common or Apollonian parabola, has the sipuare of its ordinate proportional to its abscissa; the cubical parabola, has the cube of its ordinate proportional to its abscissa; and the amicubical parabola has the cube of its ordinate proportional to the square of its abscissa. - Sce Projectiles and Trujectury.

PARACHUTE.-A machinc invented for the purpose of retardiug the velocity of descent of any body through the air, and employed by aromauts as it means of descending from balloons: It is a gigantic umbrella, strongly made, and having the outer extremities of the rods on which the canvas is stretched, firmly comnected by ropes or stays to the lower part of the handle. The handle of the parachute is a hollow iron tube, throngh which passes a rope romnecting the balloon above with the car (in whichare the aeronathts and their alparatus) beneath, but so fastened, that when the balloon is eut loose, the car and parachute still remain connected. When the balloon asceuds, the parachute collapses like an umbrella; but when the balloon rope is severed, and the car begins to descend, the parachute is extended. by the action of the air, aud prevents the car from acquiriug a langerous velocity of descent : the finul velocity in those cases where the machiue is of a size proportioned to the weight it hats to shpport, being no more than would be acquired by a person leaping from a height of between two and threc feet. But the slightest derangement of the parachute's equilibrium. such as might be caused by a breath of wind, or the smallest deviation from perfect symmetry in the parachute itself, immediately produces an ascillatory motion of the car, having the apex of the parachute as a conter, and the oscillations becoming gradually greater and more rapid, the occupants of the car are in most cases either pitched out or are along with it dashed on the ground with friglatful force. This defcet in the parachnte has been attempted to be remedied in various ways, but hitherto without success. The first successful experiment with the parachute was made by Blanchard at Strasburg in 1787 , and the experiment has been often repeated by Gamerin and others; very frequently, however, with fatal resnlts. The parachute was (mployed by Captain: Boxer, R.N., as an essential part of his patent light-ball, for discovering the movements of an enemy at night, and was so arranged is to open up when the lighted hall had attained its greatest elevation, so as to keep it for a considerable period almost suspended in the air.

PARACHUTE LIGHT.- $\mathbf{A}$ suspended light invented by General Boxer, R.A., and which is used for the same purposes as ground light-balls, viz.: to light up the enemy's works and working parties. It is preferred to light-balls, as they can be extinguislad or their lights hid with a few shovels full of earth, whercas the parachute has the advantage of being out of reach, so it camnot be interfered with.

The parachute light consists of two outer and two iuner tinned iron hemispheres; the two onter are lightly riveted together, the two upper hemispheres are connceted by a chain; the inner upper hemisphere has a depression at the top, to admit the bursting charge and fuse. A quick-match leader conducts the flash from the bursting charge to the fuse comfosition in the lower inner hemisphere. The inner upper hemisphere contains the parschute tightly folder up. To insure its opening, a corl is passed between its folds, and through at hole in the top of the parachute, and is fastened to the upper inner hemisphere, so that, when the hemisphere is blown away, the cord is pulled and the parachute expanded. The lower inmer hemisphere contains the composition. A hole is bored, and driven with fuse composition, and matched as usmal: this hemisphere is connected with the parachute by cords and chains;

The bursting charge is issued in the parachute, the fusc is bored to the requiced length and well ham-
mered in ; the parachute blaced in the mortar, ame lired.

The aretion is further deseribed ats follows: The finse igniles the bursting charge, the onter lamisplerex are blown asay, and the inner apper homisphere, which is chained to the onter once, is blown away with it ; the pramolnte: is operod ly the core
 leing ignited by the guick-matela lealor. which ignites the fuse composition, the romposition burning abont threemimates when tired from the lo-inch mortir.

PARACHUTE LIGHT-BALL. - A thin shell, the npper half of which is hown ofl by the charge at a certain height. The lowar hatf, filled with eomposition which is kindlod loy the explosion, is kepot loatinem in the air by means of a sumall parac:luto. which is set free when the 1 purer half of the shell thies ofl.
PARADE. This word signifiod in its original sonso a propared gromml, and was applied to the conrtyard of a castle, or to any inclosed and level phan. From the practice of reviewing troops at such a sipot, the Review itself has acequired the namo of I'arale. In its inodirn military aceceptation, a Perode is tho tarning ont of the garison or of atremiment in full equipment, for inspection or evolutions before some superior ollicer. It is the boast of British troops that their line and discipline are as perfect maler an ememy's fire as on the parade-ground. P'arates are Gencral, Regimental, or Private ("roop), Battery, or Company), according to the strength of the force assombled. Siee Joress Parade: and Chulress I'arade'.

PARADE OFFICER.- In otherer who atterichs to the minutice of regimentil sluty, but whois not remarkable for military seience.

PARADE ORDER. - When a rearment of horse (s) fout, a trons or company, is drawn up wilh the ranks open and the othecers in front, it is sald to be in limude Order.

PARADE REST.- A position of rest for soldiers, in which, howover, they are required to be silent aml motionless ; used specially at jarade. Ilso, the comsmand for the position. When without arms, to give the men rest, imposing both steuliness of position and silence, the Instructor commands: 1. Purade, こ. Rest.

Carry the rirgh foot three inches directly to the rear, the left kuee sliontly bent ; clasp the hands in front of the center of the body, the left hand uppermost, the left thamb clasped by the thumb and forefinger of the right hand.
When under arms, and at un order arms, the Instructor commands:

1. P'arude, 2. Rest.

At last the command rext, carry the muzale in front of the center of the boly, the barrel to the left ; grasp the piece with the left hand just abover, and with the right land at the upper band : carry the right foot three inches straight to the rear, the left knee slightly bent.

To reswme order arms the Instructor eommands: 1. Niqued, D. Attention.

1. Garry, 2. Arms. Raise the piece vertieally with the right hand, grasping it it the same time with the left above the right, resume the carry with the dight hand, (Two.) Drop the left hand by the sicle. See Ifunurib of lom, Fig. 5.

PARADOS.- Inother name for a traverse. It is an intereepting mound, erected in varions parts of a fortification for the purpose of protecting the defenders from a rear or ricochet-fire.

PARALLEL.-In sioge operations, parallols are trenches cut in the gromud beforea fortress, rouglily parillel to its clefenses, for the purpose of giving cover to the besiegers from the grum of the plate. The parallels are usually three, with zigzace trenches leading from one to another. The old rule used to be to dig the first at fo0 yards distance, but the improvements in artillary have rembered a greater distance necessary; and at Sebastopol, the Lllies made
thrir lirst trencha 2,000 yiards from thee walls. Tho third trencli is very nefir to, the lwsioged works, and
 the coveredi-way. 'l'he tronelace of the paralleles roo coive a wiath at bottom of to foot ; their daptls in front is :3 fort, and in rear, is foret if incolos. Ther
 the hotlon of tho tremeh, on the front sille, lo tho nathral grombl. 'Thoreverse of the tremeh rienives a slopar of $45^{\circ}$; or elsu, is also rat intos stops. 'The stops in front ure alone reveltol with fasomes. Vine ban, in his maxims, prescribes that there sliall be at
 by the troops of the besieging fore immediately on llaty, with is view to meet any sortios of the garrison on the besiegrers works; ind further, that thoses paralle?s shonld ('mbrace so wide a front as 10 cenntrol all the difonses which beat in any manuer upon the ground over which the besiegers will have to rom lheir trenches.
In Vandan's time, and to within guite a recont taty, it was considererl that when the site was completoly exposed to the fire of the bexiecera, the firm purallel might be laid ont at about foos yards from the most atvanced points of the defences lo bre eme braced within it, and eoncentric with a lind joining these pronts, and extencled so far cacll way us 10 guard all the batteries thrown 11 along its front to silence the fire of the defenses. fromassaults in front and on cither llank of the parallel. "1"he position of the ist paraflel, Vauban makes dependent on the site, as affording more or less of shedter from the fire of the dofonses; and, at the celcbrated sicege of Gobastopol, the Frencla establinhed their Ist parallels at two separate points, the one at nearly lotho yards, the other at nearly 1800 yaris from the defenses and the English, in their attack, infon placed their lst parallog at nearly 1800 yards from the defenses in their front. This thpartare from nsage was owing to the great caliber of the guns and the large quantity of tire of the Rassian defenst's. ]ustead of there parallels, the Fronch found it quite necessary to throw ap at many as seven. the nearest of whicls to the Russiun defenses was abont 30 yards, wloen the final open assanlt was mude from it iupon the kry point of the Russian position.

The greater range and aceuracy of fire of riflod guns will necessarily lead to establisling the tirut batteries against the defenses at much areater dis. tances than formerly, when smooth hores were alone used ; and assuming the 30 -pounder, as the probable largest urdinary caliber of siege guns for the athack, the first batteries will probahly, in futhte sieges, orchly positions at from ",000 (o) 3,000 y"rels from the delinses. These distances will secare for these batteries, what is essential for all those of tbe attack, a good range for destroying the artillery of the aldfenses, and security, if properly gharded, ejther ly placing them within strong inclosed worke. with sutlicient tronps to defend the works, or by troops occupying trenches so disposed as to nacet a front or thank attack on the battery. Invthing like a connthnuous line of paralle? would seldom be requisite at this Ilistanee, as the garrison would hardly vonture sorties so far from their defensces. Besides which, consiclering the great extent of front that the bat terieswonld have to embrace at this distance, to control all the tire of the defenses, it wonld require too great a length of continnons entrenchmemt.
l'actical consilerations roxpure that, in the estuhlishment of the successive parallels, the one most advanced shonlal be laid ond nearer to the one in its rear, by which the workmen completing the formor are proteretod, that to the defonses; so that it cam receive timely succor against an assault upon it by the besieged. Considering the first line of batteries and trenches as a lst parillele the position of the eld parallel may lo safely placed at 1 , (0) yords in advance of it ; that is, inearer to it by lof yards or more than to tho afofuses. Is it is usual to place
the $3 d$ parallel so near to the defenses as to bring the covered ways, or other most adranced defenses, which may be assanlted oper ly, within range of stone mortars, placed in batteries either within or in front of this parallel; its position, for this object. should be some 60 yards from the salicnt puints of the most advanced portions of the defenses, or as to bring their interior within the range of the stones and othermissiles thrown from the mortars.

In giving the $3 d$ parallel this position, there will be a wide zone of ground between it and the 2 d parallel, over which the approaches connecting these two parallels must be run, which would be very much exposed to the sorties of the besieged, as well as the 3 d parallel, were its protection left to troops stationed as a guard in the 20 parallel. To provide protection for these approaches and for the 8 d parallel, whilst in process of construction, ends of trenches, termed demi-parallels, are run out, on the right and left of the lines of the approaches, far enough to contain sufficient bodies of troops to protect all the men working on the trenches in advance of them from sorties. The positions of the demiparallels will be regulated by the same tactical considerations as those which regulate the positions of the parallels. The length to which they should be extended on the flanks of the approach, will be regulated by the number of troops that it may be deemed necessary to post within them, and also from the considerations that they shall not obstruct or be endangered by the fire of any batteries to their rear. See Appronches and sirge.

PARALLEL FORCES. - Those forces which act upon a body in directions parallel to each other. Every body, being an assemblage of separate particles, each of which is acted upon by gravity, may thus be considered as impressed npon by a system of parallel forces. The following demonstration will exhibit


Fig. 1
the mode in which the amomint and the position of the resultant forees are found : Let $P$ and $Q$ be two parallel forces teting at the points $A$ and $B$ respect ivels, either in the same (Fig. I) or in opposite (F゙ig. 2) directions: join AB , and in this line, at the points $I$ and $B$, apply the coual and opposite forces $S$ and $S$, which counterbalance each other, and therefore do not affeet the system. Find II and $N$, the resultants of $P$ and $S$, and $Q$ and $S$ respectively, and produce their directionstill they meet in D , at which point let the resultants be resolved parallel to their originald directions; then there are two equal forces, S anls S , acting parallel to AB , but in opposite diructions, and thus, as they counterbalane wach other, they maty be removed. Then there rumain two forces, 1 'and $(2$, acting at 1), in tha line 1$)\left({ }^{\text {s }}\right.$, parallel to their origimal direetions, and their sum (Fig. 1) or difference (Fitr. $\underset{\sim}{2}$ ) represcnted loy 13 . is aecordingly the resultant of the oricrinal forves at $\Lambda$ and 13. Ton tind the position of C , the point in AB , or Al proluced, through which the resultant passes, it is nceessary to make use of the well-known property denominated the triangle of fores, according to whid the three forseg $S, 11$, and $P$ are proportional to the lengths of $\mathrm{AC}, \triangle \mathrm{D}, \mathrm{DC}$, the silles of the irianerle: ADC ; then $S: 1^{\prime}: \wedge C: C D$, similarly $Q: S: D C: C l$, therefore $Q: P:: A C: l C$, and $Q$ ' or $R: 1 ’: A C B C$ or $A J: B C$, from which proportions we derive the
priteciole of the lever, $\mathrm{P} \times \mathrm{AC}=\mathrm{Q} \times \mathrm{BC}$, and also that $12 \times \mathrm{BC}=\mathrm{P} \times \mathrm{AB}$, whence $\mathrm{BC}=\frac{\mathrm{P}}{\mathrm{R}} \times \wedge \mathrm{B}$, and the point $C$ is found. The failing case of this proposition is when $P^{P}$ aud $Q$ acting in opposite purallel directions at different points are equal, in which ease the resultant $l R=Q-P=Q-Q=0$. In all other cases there is a progressive motion, such as would be caused by the action of a single force $R$ $(=Q \pm P)$ acting at the point $C$ in the direction of $C R$; but in the failing case, since $R=0$, there is


Fig. 2
no progressive motion but a rotatory movement. round the center of AB . It is of no consequence whether $A$ and $B$ be the true points of application of the forces $P$ and $Q$, provided their directions when produced pass through these points, and the point of application of the resultant need not be in the line joining the points of application of the component forces, but its direction must, when produced, pass thronglı $C$. If there be more than two parallel forces, the resultant of the whole is found ly compounding the resultant of the tirst two with the third in the way given above, thus obtaining a new resu'tant, which is similarly combined with the fourt $1_{1}$ force; and so on till the final resultant is found. The center of gravity is only a sperial name for the point of application of the final resuliant of a number of parallel forces. See Couple
PARALLELOGRAM OF FORCES. - The fundamental problem in statics is to find the magnitude and direction of the resultant of $t$ wo forces; in other words, to compound them into a single force, wuich shall be in every respect their equivalent. Intensity and direction being the only elements necessary to entirely describe a force, forces in statics are represented by lines, which are obviously capable of being made to represent them both in magnitude and direction. When two forces act along the same straight line on a particle, it is sufficiently obvious that if they atct in the same direction, the resultant will be their algebraical sum; if in opposite directions, their algebraical difference. This being premised, the relation between two forces acting at the same point, but not in the same line, and their resultant, is set forth in the following theorem, whieh is known as the Parallclogram of Forces. If two forces, $P$,


Fig. 1.
Q, acting on a particle $\Lambda$, be represented in direction and matritume hy the lines $A p$. $A q$, then the resultant will be represented in direction and magnitude by the diagonal $\Delta r$ of the parallelogram described upon $\Lambda p, \Delta q$. 'The proof of this depends upon the simple principles, flat a fore may be supposed to act at any point of its direction, that point being conceived to be rigidly athached to the partiele on which the force acts ; and what may be ac-
cepted as an axion of universal cxpericnece, that when any momber of forces are impresacel on a partiele or body, eachexerts itself, as il the othors wore not acting, to produce its fulleelfert. 'The doctrime of the matralle logran of fores has given rise to much controversy, not as to its truth, hut as to its derivastion, some appoaring to content that it is dircetly deducible from the axiom alove stated, withont the necossity of further rantoning. Kinowning how to componind two forces acting at a point, we are abe to compound or determine the resultant of any mamber. If the forces, though in the same plane, donot act at the same proint of a borty, those of them whose flirections ment maty be compounded by the profed. ing rule; if they are parallel, their resultant is a foree parallel to them and equal to their algeloratical sum, combting those acting in one dircction as positive, and in ile opposite dircetion as negative. The singular case is that of equal parallel forces antinge in opposite directions. These constitute a couple, and camot be represented by any single force.

The resolution of forces is the converse problem. To resolve a given force $I R$, whose direction and magnitude is $A r$, into two forees actimg in any directions that may be chosen. as $\triangle P, \Lambda Q$, we have only to draw


Fig. . .
parallels through $r$, which determine the lines $A p$, A $q$, represerting the magnitude of the forces required. It :s evident that there is an indefinite number of pairs of forces into which $A r$ might be resolved, according to the direction in which the new forces are to act. It is usual, however, to resolve a foree iuto forees that are at right angles to each other.
The composition of motions is analogous in every way to that of forces; motions are the results of forces, and the analogy might be expected. If a body be actuated simultaneously by two velocitie's having different directions, it will evidently move in a direction intermediate to the two, and with a relocity which will in some way depend on each of then, and which is ealled their resultant. The proposition which sets forth how to find the resultant, is called the Parallelogram of Velocities. It is: If two velocities, with whicha particle is simultaneously impressed, be represented in direction and magnitude by two straight lines drawn from the partiele, the resultant velocity of the particle will be represented in direction and magnitude by the diagonal of the parallelogram described on those two straight lines. The proof is very simple. There is no reason why the full effect of both velocities should not be produced, as if the body moved first withone of them, and then wilh the other, in their respective directions. If in one seeond the body moving with the one velocity would reach $p$, and if we suppose it then to move on $p$ for another second, parallel with the other velocity, it would at the end of the second second be at $r$. Itence, under their joint intluence, it will be at $r$ at the end of one seeond. The resolntion of motions is altogether analogons to that of forces. All the principles of the P'arallelogram of

Forcos may be roadily illustrated by the upparatus shown in Vieure: 2. Sere Fialling Bontios.

PARALLEL ORDER OF BATTLE.-In tactics, the matural order of latle is when trong coming upon ordinary ground are ranged in line of batle by tho prescribed tactical mems, and when they are formed in columa right in frome
The paratlel order oporates onthe contrary against He whole front of the conemy. 'Tarenne and Conde fought habitually in paralled order, althougl, they sometimes mate a skillful nse of whighe attacks. (rimbert well say's that at contiguons and regular paralle order can be of no nese in war.
The oblique order is contradistinguished from the paralled, and in general means every tactical compbination the aim of which is to produce an efferet upon two points of an enemy's line ly bringing it superior force to bear down on those two points. Such combinations ronstitute the oblique order, whatever maneuvers may be used to acermplish the object.

PARALLEL RETREAT.-Great advantages somelimes arise in conducting a retreat parallel (o) oner frontiar, when the topography lends itself to this operation; as, the encmy, in following up, really gains but little ground in advance. If a retreat of this kind, termed a perallel retreat, is made in the enemy's country, the army subsists at the encmy's expernse; the evils of war fall on him; and he is almost as badly olfas if he had not the upper lind. If this retreat takes place within our own fronticr we draw after us the victorious army; we force him to move onwards withont gaining a foot of ground towards the interior; we abandon to him only our borders, whilst we force him to offer his liank to any force we may have in the interior. But, with all these obvious advantages, we must look out how we attempt anything of the kind in a territory which is open, and wonld give the euemy an casy means of cutting us off from our base. Sneh a retreat, therefore, requires to be covered by a river, a mountuin chain, or some other obstacle that an enemy cannot cross with safety, to interrupt our communications to the interior. If the parallel retreat is covered by a river, all bridges by which the enemy might intercept our communications, or attack in flank, sbould be timely destroyed, the fords obstructed and guarded. Like precautions are to be taken, when covered by a mountain chain, in oceupying the main defiles, and obstructing other less important passes. Our troops should be so disposed as to fall in mass upon any corps of the enemy that attempts to force its way through; and we should not show too much anxiety respecting any weak body of troops that may have risked a raid upon our rear, as the peril is for it and not for our troops. It will be readily seen that a parallel retreat can ouly be resorted to with effect along a frontier of some considerable extent. Although a frontier of this character is more difficult to guard than one more limited, it presents, on the other hand. the advantages above pointed out, and leuds itself well to the defensive-oftensixe on our side. which of itself, in the hands of an ablc General, is the surest means of suecess in a defensive war.
PARALLEL RULER.-A draughtman's instrument consisting of two wooden or metallic blades, so joined together by jointed crossppieces as to open to different intervals and yet retain tbeir paralkelism, Fig. 1. A still simpler form is a rolling eylinder. Fig. 2, represents a rolling parallel ruler, consisting of a that ruler, and a roller rotating in bearing-posts fastened to the ruler. This instrument is very useful for constrneting the plans and elevations of fortifications and numerous other military subjects. The ilhstrations are on page 48?. See Draring.
PARAMETER.-This term, used in conic sections, denotes, in the case of parabola, a third proportional to the abscissa of any diameter and it:correspending ordinate; in the ellijwe and hyperbola, a third proporticnal to a diameter and its conjugate. The par-
ameter of any diameter is, in the case of the parabola. the same as the donble ordinute of that diameter which passes through the focus, and is four times as long as the distance between the dianeter's vertex


Fig. 1.


Fig. $\because$.
and the directrix. The term parameter was also at one time used to denote any straight line about a curve, upon which its form could be made to depend, or any constant in its equation, the value of which determined the individual curve; but its employment in this sense is now discontinued, except in the theory of homogencous differential equations, where the constants, for the purpose of aiding the solution, are supposed to vary, and the method is consequently denominated the "variation of the parameters."

PARAPET.-1. A wall raised higher than the gut. ter of a roof for protection; in domestic buildings, churches, etc., to prevent accident by falling from the roof. Purapets are of very ancient date. The Israelites were commanded to build "a battlement" round their flat roofs. In classic architecture balustrades were used as parapets. In Gothic architecture parapets of all kinds are used. In early work they are generally plain, but in later buildings they are pierced and ornamented with tracery, which is frequently of elaborate design, especially in French flamboyant work. Shields and little arcudes are also

assuilant. When the covering mass is so constructed as to afford the assailed a view and fire over the assailant's line of approach, it is termed a purapet. The riffe trench is the simplest form of work. In this, the parapet is formed by throwing the earth from a trench within to the front. The earth thus thrown up, together with the depth of the trench, affords the desired shelter. The troops stand or squat in the trench and deliver their fire over the bank of earth in front. The method of intrenching affords the speediest means of obtaining cover, and is the one resorted to when troops are under fire, or when they intrench their camp or position for a temporary stay. Rails, logs, in fact, almost anything at hand may be used as a rough interior revetment for sustaining the earth. For artillery, the trench is made somewhat wider than is necessary for infantry. In the more elaborate class of field fortifications, such as the inclosed works of various descriptions, the earth to form the parapet is taken from the exterior. thus forming in front of the parapet a ditch which makes a formidable obstacle in the way of an assailant attempting to enter the work by escalade.

Having fixed upon the profile, the pick commences the constructiou of the parapet by breaking ground so far from the counterscarp crest that, by digging vertically three feet, he will arrive at the position of the counterscarp. The excavation is carried on at the same depth of three feet, advancing toward the scarp, where the same caution is ohserved as at the counterscarp. The earth is thrown forward, and evenly spread and rammed, in layers of about twelve inches, from the banquette slope to the exterior slope. For the facility of entering the diteh, whilst working, the offsets at the searp and counterscarp may be formed into steps with a rise of eighteen inches each; and if the ditch is deeper than six feet, an offset, about four feet broad. should be left at the scarp. abont mid-depth of the diteh, to place a relay of shovels to throw the earth on the berm. In some cases, a scaffold of plank is raised in the diteh for the same purpose. When the ditch has been excavated to the bottom, the offscts are cat away, and the proper slope given to the sides. The earth furnished by the offsets, if not required to complete the parapet, may be formed into a small glacis. If the soil is stony, the vegetable mold on the surface ghould be scraped off, and reserved to form the top of the parapet, which should be made of earth of this kind, to the depth of at least eighteen inches, to prepent injury to the troops from the effect of a shot striking the top, and scattering the pebbles in their faces. In making the parapet, care should be taken to form a drain, at some suitable point, to carry off the water from the interior into the ditch. The water from the drain should not be suffered to run down the scarp, as it would soon destroy it. A gutter formed of boards, should be made to prevent this. See Field Fortifications and Normal Profile.

PARASANG.-A Persian military measure, some times assumed as a league, but equal to about four English miles.

PARAZONIUM.-A name given by the early Greeks, to a short sword or dagger worn in the belt at the right side.

PARBUCKLES.-Four-inch ropes, 12 feet long. with a hook at one end and a loop at the other. To parbuckle a gua, is to roll it in either direction from the spot in whicl it rests. To do this, place the gun on skids, and if it is to he moved up ordown a slope, two $4 \frac{1}{2}$-inch ropes are made fust to some place on the upper part of the slope, the ends are carried under the chase and breech
used as ornaments to parapets; and the buttlements of castles are imitated in the parapets of religious and domestic buildings. 2. In field fortifications the main features are the covering masses of earth of whieh they are constructed, and which are intended to shelter the assailed from the view and fire of the
of the gin respectively round it, and up the slope. If the running ends of these ropes are hauled upon, the gun ascends; if cased off, it descends. If the gromed is horizontal, handsjikes only are necessury to more the gun.

PARBUCKLING.-A mode of drawing up or lower-
ing down an inclined plane any cylindrical oloject, as a barrel or a beary gun, without the aid of a reme or tackle. It consists in passing at stout roper round a post or some suitable object at the tol of the incline, and then doubling the ends underand over the olject to be movert. This converts the rask or gun into a palley in its awn belalf, and limits the pressure at eath end of the rope to one-fourth the weright of the object moved, as felt on the incline. By hauling in the ends equally, the gun aseends, or were versa. Sce IIfchanical Mantuvers.
PARCEL-A term, mmang in the artillery serviee, as applied to arope, to put around it canvas well daubed with tar and bound with spun yarn to protect it from elanfing.
PARCHMENT. - There are beveral kinds of parclsment, prepared from the skius of dilferent animals, according to their intended uses. 'The ordinary writing parchment is made from those of the sheep and of the she-goat ; the tiner kind, known as velhem, is made from those of very young calves, kids, und lambs; the thiek, common kinds, for drums, tumbourines, batldedores, cte., from those of old hegoats and she-goats, and in northern Enrope from wolves ; and a peculiar kind is made from asses' skias, the surface of which is enameled. It is used for tablets, as black-lead writing can be readily removed from it by moisture. The method of making parchnent is at first the same as in dressing skins for lenther. The skins are limed in the lime-pit until the hair is easily removed. They are then stretched tightly and equally, and the flesh side is dressed as in currying, until a perfectly smooth surface is olstained. It is next ground by rubbing over it a flat piece of pumice-stone, previously dressing the flesh side only with powdered chalk, and slaked lime sprinkled over it. It is next allowed to dry, still tightly stretched on the frame. The drying process is an important one and must be rather slowly carried on, for which purpose it must be done in the shade. Sometimes these operations have to be repeated several times, iu order to insure an exeellent quality, and muel depends upon the skill with which the pumiee-stone is used, and also upon the fineness of the pumice itself. When quite dried, the lime and chalk are removed by rubbing with a soft lambskin with the wool on.
PARCOURIR.-A term expressive of those movements which are made by General Offieers, Officers Commanding Brigades, etc., for the purpose of encouraging their soldiers in the heat of an engagement.

PARDON.-An act of grace emanating from that power in the State intrusted with the execution of the laws, and exempting the individual on whom it is bestowed from the punishment to which he has been legally sentenced after conviction of crime, or to which he is by law liable for an offence on which he has not been tried and convieted. Every officer authorized to appoint a General Court-Martial, has the power to pardon or mitigate the sentence of death ; or of cashiering an ofticer, which, in cases where he bas no anthority to carry them into execution, he may suspend, until the pleasure of the President of the United States can be known, which suspension, together with copies of the proceedings of the Court-Martial, the said officer immediately transmits to the President for his determination. And the Colonel or Commanding Officer of the regiment or garrison where any Regimental or Garrison Court-Martial is held, may pardon or mitigate any punishment to be inflicted.
PARK.-An enclosure, or any place, where guns, wagons, animals, ctc., ean be placed in safety. A Park of Artillery is the whole train of great guns with equipment, ammunition, herses, and gunners for an army in the field. It is placed in a situation whence rapid access can be had to the live of the army in any part; and at the same time where the divisions of the force can easily mass for its protec-
tion. The horges of the park are pickeler) in lines in its rear. The torm is also upplied to the gersunct on which all guns stand or are parked. Joring it sirge
 possible from the virw and fire of the enomy; but, in a position to communicute freely with the besieg. -r's tranches, If porsible, its loseality should alas be: chosen close to rome good linc: of commanication, either a road or river. (ireat care should be given 10 the position of the laboratorives they should be as far away from the racony as the park will permit. The oflece in charge of the park should loe assisteal ly well. trained men of the Ordnane of Jepartment and a sullieient mumber of artificers. An Enginur l'arto eomprohemls all the materials, tonds, whe., attar:hewl to that bratach of the sarvice: A Siage fark comprises the ging rollerted together at the commenemment of the investanent of a fortress, taken from the artillery park, and manued by artilery, aided by the men of the Orenance Department. The carriages of a battery are parked in two ranks, all the pieces limbered and in the front rank, the cuissons vavering their pieces; the interval is suidh as is most convenient; the distance from the rear part of the pieces to the end of the poles of the caisonns is about eight yards. The carriages of each sertion are arranged from right to left in the order of their permanent numbers, the 1st scetion on the right. In horse batteries, the distance is seventeen yards, but may be decreased to eight yards if the nature of the ground requires it.
To form the park, the Captan directs the eolumn of sections toward cither Jtank, or in rear, of the position to be occupied by the park, and estallishres the Guidon near the point where the lead-Iriver of the leading carriage is to halt. He then directs the column forty-seven yards in rear of, and paralld to, the line to be occupied by the lead-drivers of the front-rank carriages, and commands

1. Right (or left) into park, 2. $1 t$ (so many) yards interval, 3. Мarch, 4. Frost. TheChief of theleading section commands: Right ocheel, at the first command, and repeats the third. At the command march, given when the leading section is three and one-quarter yards from the point opposite the position which it is 10 occupy, theleading section whecls to the right moves forward and is halted by its Chief when the leading driver arrives in line with the Guidon. Each of the other sections continues the march until three and one-quarter yards from the point opposite its place in park, then wheeds to the right at the command of its Chief, and moves forward ; on arriving at three yards from the line, the Chief commands: 1. Section, 2 Halt, 3. Left, 4. Dress. The Chiefs of platoon superintend the movements of their sections, but do not repeat the commands. The Captain and Chief of caissons go to the left and superintend the alignment as presiously explained. The Captain commands right into park, or left into park, according as the column is left, or right, in front. See Train.

PARKER GUN.-This gun is a distinctivery American production, and has all the advantages of the American system of manufacturing. The different parts are made by special machinery, and by workmen who make a speciality of oue thing only, and are subjected to rigid inspection so that no defeetive or imperfect part can find its way into the finished gun. The number of parts is reduced to a minimum, and the eonstruction is so simpte that anyone with no tool but a screw-driver can take the gun apart for cleaning or repairs. No breceh-loader has less to get out of order, and none will stand better the ordeal to which a breech-loader is subjected. The drawing shows the top action. Pressing the thumb against the lever, throws it to the right, and aeting through the piece, 16 , forces the picee, 18 , to the rear. This piece being piroted at the top withdraws the bolt, 17 , from the mortise which is cut in the lug, 6 , and releases the barrels. When the gun is
closed the sides of the extension rib, 24, being upon portion of the chambers of the barrels, as shown in the arc of a circle, with the hinge joint, 13 , as a center, have a bearing along their entire surface, and the extension rib fits securcly into its seat, 24 , in the frame. When the barrels are brought to place for firing, the bottom of the lug. 6 , strikes the trip, 21 , withdrawing it from the bolt,17, which then enters the mortise in the lug, 6, and securely locks the gun. The taper-
the drawing (which represents an end view of the breech of the barrels). When the gun is closed, the extractor, 14, extends from the rear end of the barrels to the projection on the joint, 13 , and as the barrels swing on this joint, 13 , which remains stationary, this projection forces the extractor, 14, from the rear end of the barrels, so that when they ar-

bolt, 17, locks the harrels positively firm, and the use of a taper-bolt for fastening the gun gives it a decided advantage, as it does not allow a little dirt (which is very liable to get under barrels when open) to prevent the gun from locking. Many times when shooting, marksmen are balked in this way, but this cun closes with the same ease and locks as securely even if there is a little dirt in the way. When the gun is opened, the check-hook, $T$, comes in contact

with the pin, E, which avoids any strain on the joint, 13 , and thus prevents the gun becoming shaky by constant use.

This gun has an automatic extractor which draws the shells or cartridges from the barrels during the
rire at the position as shown abore, the cartridges are withcrawn from them quite far enough to be entirely removed by hand. In connection with the lock, which is rebounding, attention should be called to the direct blow of the firing-pin exactly in the center of the cap and at right angles with the head of the shell. By this arrangement the chance of a miss-fire is very much lessened, and the efficiency of the arm is increased. The locking-bolt is held back while the gon is open, doing away with the wear on the hinge joint which all breech-loaders are slibjected to when the harrels are forred down against a strong spring in the rear of the bolt.

The following drawing explains the lifler action peculiar to this gun : Pressing up on the fingerpiece, 1 , in front of the guard. 2. raises the lifter, 3 , and its heveled side-coming in contact with the screw, 4 -acts as a wedge to drav the bolt, 5 , from the mortise which is cut in the lug 6 , and releases the barrels rearly for the insertion of the cartridges. It. will be observed that wher the bolt, 5 , is back to the position as shown. the small hole which is drilled in the under side of said bolt comes directly over the trip, 7 , which, by the assistance of the small spiral spring, 8 , is made to enter this hole in the bolt, 5 , and

operation of opening the gun. The extractor, 14 , thereby lolds it in position. The finger-piece, 1 , is is inserted in a hole drilled in the lug, 84, with its solid and a part of lifter, 3. The action of the lifter, rear end enlarged and extending into and around a 3 , is phsitive, not only to withdraw the bolt from, but
to force it forward inte the nortise in the lug, 6. For the purpose of cleaning, it can be very easily removed by taking ofl the locks and removing the small ecrew, 4 , from the end of bolt, 5 , then jress down on trip, 7 , which will allow the lifter to be withdrawn without removing cither stock, guard, or trigererplate. The improved roll, 13 , gives great strength to the joint. This gun has bern issued by the Cnited States Govarmont for arming laymanters' encorts, ctc. When light shooting and rough usage were anticipated.

PARKHURST MACHINE GUN,-In machine-guns the heating of the barrels has limited the momber of charges that cond be rapidly fired lo fore they become toos hot for use, so that aftrer a period of rapid firing the gun would become dangerous if not allowed to cool. The Parkhurst gan has a device for keroping the barrels cool hy surrombling them with water under atmospheric pressure, thus preventing the temperature from rising above the boiline peint of water. A temperature not exceeding 2120 Fahronheit does not impair the action of the gun. The barrels are inclosed in a metallic water-tight casing having a vent for the excape of steam. 'The casing is filled from time to time during the firing, ats may be required. The mechanism for rapidly loading and firing is also improved.

PARKINSONIA. - A slirub found commonly in Bengal. It has been stated to yiedd a very fair charcoal for gunpowder purposes; bat from irials made of it, of late years, at the Goverument Powder Works at Ishapore, it was not found to be erual to that made from urhur or thath statk. Nevertheless it might be used if the latter crop failed.
PARK PALING.-A very inferior gun-material, from which vast numbers of very infcrior guns were made during the existence of the slave-trade.
PARK PICKETS.-Small wooden posts which sup)port the rope line round the artillery park. They are carried either on carts or camels in India when on the march. Dimensions-length 53 inches, and diameter 3 inches.
PARLEY.-In military language, an oral conference with the enemy. It takes place under a llag of truce, and usually at some spot-for the time nentral-be$t$ ween the lines of the two armies. To beat a parley. is to give a signal for suclz conference by beat of drum or sound of trumpet.
PARMA.-A kind of round buckler used by the Velites in the Roman Army. It was 3 fect in diameter, made of wood, and covered with leather. Its form was round, and its substance strong ; but Servius on the Aeneid, and even Virgil, say that it was a light piece of armor in comparison with the clypcus, though larger than the pelta.
PAROI.-A stout wooden frame having long, sharppointed stakes driven into it horizontally. It is placed upon the parapet to oppose scaling parties.

PAROLE.-1. A watch-word differing from the countersign in that it is only communicated to Officers of Guards, while the countersign is given to all the members. The parole is usually the name of a person, generally a distinguished officer, while the countersign is the name of a place, as of a battle-field. case in which there is no morc than lis sense of honcase in which there is no morc than his sense of hou-
or to restrain him from breaking his word. Thus
designated limits; or he may even be allowed to rearn to his rwin country on his parale not to fight arain, daring the existing war, against his raptors. 'Te break porole is aceounted infanoms in all civilized nat tions, and an ofllere who hat wo far forgothen his por fition as a gentioman, crases to have any cham to the treatment of an honerable man, nor can he expeet quarter should he again fall ints the hands of the encray he las derejvect. The following rules in regard to peroles are restablished by the common las and usages of war: An ollecer whis gives a prerol for himself or his command on the batte-fieded is deemerd a deserter, and will be punished accordingly for the oflecer, the ploflying of his parole is an individnal are, and no wholesule paroling by ad ofleser, for a number of inferiors in rank, is permittod or valid. No prisoner of war can be forced by the hostile (envernment to pledge his purule; and any threat or ill treatment to foree the giving of the parale is contrary to the law of war, and not binding.
No prisoner of war ean enter into engagements inconsistent with his eharacter and duties as a citizen and a subject of his state. Ife can only bided himself not to lear arms agsinst his captor for a limited period, or until he is exchanged, and this only with the stipulated or implied consent of his own Government. If the engagment which he makes is not approved by his Governowent, he is bound to return and surrender himself as a prisoner of war. His own Government eandot at the same time disown his engagement and refuse his return as a prisoner.

No one can pledge his parole that he will never bear arms against the Government of his captors, nor that he will not hear arms against any other enemy of his Govermment, not at the time the ally of his captors. Suell agreements have reference only to the existing enemy and his existing allies, and to the existing war, and not to future lecligerents.

While the pledging of the military porote is a voluntary act of the individual, the capturing power is not obliged to grant it, nor is the Government of the indivicual paroled bound to approve or ratify it.

Parves not authorized by the common law of war are not valid till approved by the Government of the individual so pledying his parole.

The pledging of any unauthorized military parole is a military offense, punishable under the common law of war.

PAROLE EVIDENCE.-In luw, it is such evidence us is given by witnesses ly word of mouth at a trial or hearing of a canse. Parole agreement, in English law, means any agreement made either by word of mouth or by writing not under seal. If the agreement is made by writing under seal, it is called a deed, or indenture, or covenant, according to the nature of its contents.
PARRAIN.-In military orders, the person who introduces or presents a newly-elected Knight. Thr term is also used to signify the comrade who is selected by a soldier who is condemned to be shot tc bind the handkerchief over bis eyes.
PARROT-BEARED.-A term applied to a battleaxe and the like when very short in the handle and rescmbling a parrot's beak.

PARROTT GUN.-The Parrott rifle-gun is a castiron piece of about the usual dimensions, strengthened by shrink!ng a coiled band or barrel of wrought-

a prisoner of war mar be released from actual pris- | iron orer that portion of the reinforce which suron on his parole that he will not go beyond certain $\mid$ rounds the charge. The bodies of the larger Parott
guns are cast hollow，and cooled from the interior on the Rodman plan．The barrel is formed by bend－ ing a rectangular bar of wrought－iron spirally around a mandrel and then welding the mass together by hammering it in a strong cast－iron cylinder，or tube． In bending the bar，the outer side being more elon－ gated than the inner one，is diminished in thickness， giving the cross section of the bar a wedge shape， which possesses the advantage of allowing the cinder
the Parrott projectiles were frequently broken at the bottom by the force of the powder in such manner as to wedge the body against the bore．It is quite probable that this cause had much to do with the bursting of the guns．The inventor thinks he has corrected this evil

The following table gives the more important di－ mensions，etc．，of Parrott guns；ranging from the 10 －pounder to the 10 －inch．

Gun．	4		荡	\％	$\begin{aligned} & \text { ㅇ } \\ & \text { ti } \\ & \text { 会 } \\ & \text { 光 } \end{aligned}$	$\begin{aligned} & 40 \\ & 0 \\ & =0 \\ & =0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		呙	
			Inches．	Lbs．		Inches．	1 turn in ft ． at Muzzle．	Lbs．	Lbs．
10－pounder．	$70$	3.	11．3	890	3	0.1	10	1	10
20－pounder．	79	3.67	14.5	1，750	5	0.1	10	2	19
30 －pounder．	120	4.20	18.3	4，300	7	0.1	12	3	28
100 －pounder．	130	6.4	25.9	9，700	9	0.1	18	10	86
8－inch．．．．．	136	8.	32.	16，300	11	0.1	23	16	150
10－inch．．．．．	144	10.	40.	23.500	15	0.1	30	25	250

to escape throngh the opening，therehy securing a more perfect weld．The barrel is shrunk on by the aid of heat，and for this purpose the reinforce of the gun is carefully turned to a cylindrical shape，and about one－sixteenth of an inch to the foot larger than the interior diameter of the barrel in a cold state． To prevent the cast－iron from expanding when the barrel is slipped on to its place a stream of cold water is allowed to run through the bore．At the same time and while the bands hang loosely upon it，the body of the gun is rotated around its axis to render the cooling uniform over the whole gurface of the bar－ rel．A large number of these guns were used in the late war，both on sea and land；and the amount of

The proof of these guns consists in firing each piece ten rounds with service charges．The table given below shows the ranges of the 100 －pounder Parrott gun ；charge， 10 pounds of cannon powder； projectile，Parrott shell，tilled， 100 pounds；initial velocity being 1，080 feet．See Cast－iron Guins and Ordnance．

PARROTT LIFE－SAVING MONSTER．－A mortar made of cast－iron and lined witl a steel tube．The piece is cylindrical about the seat of the charge， gradually tapering to the face of the muzzle．The breech is hemispherical．The trunnionsare placed near the breech；their projection upon a plane through the vent and axis of the bore，being in front

范	岂				$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { E } \\ & \text { cix } \end{aligned}$				
Yards．	－，	Seconds．		Ft．－secs．	Yards．		Seconds．		Ft．－secs．
100	014	0.28	014	1066	1700	436	5.15	509	923
200	029	0.56	029	1053	1800	454	5.48	524	916
300	044	0.85	044	1041	1835	500	5.59	533	914
400	059	1.14	100	1029	1900	512	5.81	547	910
405	100	1.16	101	1029	2000	531	6.14	610	903
500	114	1.44	116	1019	2100	550	6.47	633	897
600	130	1.73	133	1009	2158	600	6.67	645	893
700	146	2.03	150	1000	2200	609	6.81	656	891
788	200	2.29	206	992	2300	628	7.15	719	885
800	202	2.33	208	991	2400	647	7.49	742	879
900	2 18	2.63	226	983	2470	700	7.73	759	875
1000	231	2.94	244	974	2500	707	7.83	808	873
1100	251	3.25	303	966	2600	727	8.18	834	867
1151	300	3.41	313	962	2700	74	8.53	900	861
1200	308	3.56	322	959	2767	800	8.76	913	857
1300	$3 \mathrm{~N}^{2}$	3.87	341	951	2800	$80 \%$	8.88	926	855
1400	342	4.19	400	944	2900	8.37	9.23	952	850
1500	400	4.51	421	937	3000	848	9.58	1018	844
1500	400	4.51	421	937	3056	900	9.78	1032	841
1600	418	4.83	412	930	3100	909	9.94	1047	839

work done hy them，especially in breaching mason－ ry，is probably not exceeded by the rille－guns of myy other system．While it few of them have failed in the service，others haveshown very great callarance． The ciluse of this fature las been attributed to thes bursting of shells In the bore，the presence of samel in the bore，etc．，but late investirations show that
of and tangent to a plane perpendicular to that axis and containing the front end of the chamber．The chamber has the form of the frustum of a cone．The projectile is of east－iron，cylindrical，with the ends rounded．An eye－bolt is screwed into the base for the attachment of the line．The rye of this bolt is close to the base of the shot．The cylindrical portion
is turned in a Jathe so as to be ahoost a perfect fit for the bore.
Thisapparatus is provided with a safety altachment, comsisting of a piece of rubber, rectangular in
 thiek, and of three or four galvanizel-iron wires about for long, laid paralle! to each other, Jonsely twisted and cold into a helix of from 181019 turns. The rubberstrap is sometimes placed inside the ceit, and at others ontside of it. This combined strap) and spring is interposed betwern the shot and line in firing. The ohject of the combination is to ab). sorb the shock of the discharge and thes prevent the breakage of the line, by letting the first jerk come nupon the rabber, which will gencrally break, ams then upon the coiled wire spring. 'The wires will be straightened out before the full strain falls upon the line. Sce Liffesmoing Rocket.

PARROTT PROJECTILES. - These projectiles are composed of a cast-iron body aud a brass ring cast

into a rablet formed around the base. The flame presses against the bottom of the ring and underneath it, so as to expand it into the grooves of the gun. To prevent the ring from turning in the rabbet the latter is recessed at several points of its circumference.

Parrott's incendiary shell has two compartments formed by a partition at right angles to its length. The lower and larger space is filled with a burning composition; the upper one is filled with a bursting
chatge of powder, which is fired by a time or remcossion fuse. The harning composition is intre) duced through a holve in the bottom of the shaell, which is stoppect up with a screw-plug.

A more recent formof the Darrott l'rojeectide for harge calibers whown in the drawing. The sabot is cast on to the projectile, anel is provided with a lip, and canmelure. It is prevented from turning on the projectile and from stripping by means of recesses and umberents upen the base of the projectile, intos which the metal when liquid enters. See Expanding l'rojertiles and I'rojertiles.

PARRY.-A defrnsive movement in bayonet and sabrer exercises, exeonted as follows: H'ith the bay-onct-The Instructor commands: 1. Tierce. 2. 1'abry. Move the point of the hayonet five or six inches to the right. 1. Vuarte, 2. Parsy. Move the pioce quickly to the left, the small of the stock jassing under the left cilow, the piece covering the left shonlder; the barrel to the left, bayonet in front of, and higher than the shoulder, the left forearm on the right of the piece. the elbow touching the right wrist, the tingers on the stock. 1. Secoude, 2. Parby. Move the point of the bayonct quickly to the left, describing a semi-circle from left to right, the point of the bayonet at the height of and in front of the right knee, barrel to the left; the left clbow in front of the body, the flat of the butt under the right forearm, the elbow two or three inches higher than the right shoulder. 1, Butt, 2. Paray. Dove the jiece quickly to the left, covering the left knee and shoulder; the barrel to the right, the butt three inches above, and to the left of the left knee; the left hand and arm as in quarte parry. 1. Prime. 2. Parry. Lower the point of the bayonet and describe a semicircle to the left, carry the piece to the left, covering the left shoulder; the barrel downward, the left fore-



Fig. 10
arm pehind the piece, the bayonet at the height of and to the left of the left knee; the butt higher then the head, the right forearm above the eyes and six inches in front of the forehead. The double parries are combinations of the simple parries, and are executed by the following commands: 1 . Tierec, 2, Quarte. 1. Prime, 2. Seconde. 1. Quarte, 2. Tierce. 1. Seconde, 2. Prime. 1. Tierce, 2. Seconde. 1. Tierce, 2. Butt. 1. Sceonde, 2. Tierce. 1. Butt, 2. Tieree. The tierce and quarte parries are used against blows aimed above the arms; seconde and butt parries, bclow the arms; prime parry, for blows either above or below the arms. In all parries, care must be taken not to uncover the body, by moving the piece farther than necessary to parry the blow. These positions are shown in Figures 1, 2, 3, 4, and 5. With the Saber-The Instructor commands: 1. Tierce, 2. Parry. Carry the hand quiekly a little to the right, point of the saber as high as the eyes, and opposite the right shoulder, edge to the right. (Two.) Resume the guard. 1. Quarte, 2. Parry. Turn the hand in quarte, and carry it opposite the left breast, edge of the blade to tbe left, point to the


Fig. 11.


Fig. 12.
front, as high as the eyes, and a little to the left of the left shoulder. (Two.) Resume the guard. 1. Left, 2. Parry. Raise the hand above and six incles in front of the eyes, the elbow somewhat bent, edge of the blade to the left, point downward, and parry the blow aimed at the left side. (Two.) Resume the guard. 1. Lfft, head, 2. Parry. Raise the saber quickly above the head, the right arm vertical, edge upward, point to the left and about twelve inches below the guard. (Two.) Resume the guard. 1. Night head, 2. Parry. Raise the saber qnickly above the head, edge up, point to the left and higher
hame, still in tierce, above the left shoulder. (Three.) Jesume the guarl. 1. Against infantry, 2. Right, 3. Parry. Turn the head to the right, throwing bark the right shoulder, raise the saber, the arm extending upward to the right and rear, the hand in tierce, edge of the hade to the left, point upward. (Two.) Describe a circle quickly on the right, from rear to front, the arm extended; turn aside the bayonet with the back of the blade, bringing the hantl as high as the head, the point upward. (Three.) Resume the guard. See Bayonet Exercive. Cavalry Parriex, Fencing and Saber Exercise.

PARSONS GUN.-The principie upon which Mr. Parsons makes his gun would seem to be similar to that of Captain Palliser's, i. e, by varying elasticity. As applied to strengthening a 68 -pounder cast-iron gun. his method consists of boring iuto the breech of the gun, coincident with its axis, reaming out the bore into a slightly conieal shape as far as the front of the trunnions, and then inserting into this space a reinforced wrought-iron tube, which is secured in its place by a breech-plug. The exterior of this compound tube is turned to fit the conical space easily, its length being cut so that it will be compressed longitudinally by serewing up the breceh-plug, thus commonicating to the outer castiron portion the entire longitudinal strain of the powder. This method is based on the fact that wrought-iron may be stretched three times as much as cast-iron, and will offer from three and a half to six times the resistance within the limit of its elasticity. Mr. Parsons has also proposed that the tube should be made of steel, having a solid breech, A, as shown in the drawing, the ingot not being bored through its entire length. He proposes to reinforce the tube with jaekets of steel shrunk on, $B$, and to insert the whole tube and jacket, from the rear of the iron casting, the cast-iron gun being sobored out as to require foree to insert the tube in its place. The tube being inserted. a steel plug, $C$, is to be serewed on from the rear, whieh presses against the rear of the tube, and the breech is then closed by a cast-iron lng representing the cascabel of the picce. See Conerted Guns, Ordnance, and Palliser Gun.

PARTIALITY.-An unequal state of judgment or leaning in favor of one of two parties. Every member of a Court-Martial is sworn to do justice, without partiality, favor or affection. A previous opinion expressed by a member, before the Court is sworn, is cleemed a good and sufficient cause of challenge by either the prisoner or prosecutor, and the individual cannot sit on the trial and judgment of the case.

PARTISAN.-1. A name for a halberd or pike, or for a Marshal's baton. The name is also given to the leader of a detached body of light troops, who make war by luarassing the enemy, rather than coming to direet fighting, by cutting off stragglers, interrupting bis supplies, and confusing him by rapid

than the head, the right forearm nearly vertical. (Two.) Resume the guard. 1. Against infantry, 2. beft 3 . Pamex. Turn the head and shoulders to the left, raise the saber, the arm extended upward to the front and left, the hand in tierce, back of the blade to the frout, point upward. (Two.) Describe a circle quiekly on the left, from front to rear, parallel to the horse's neek, the arm extended: turn aside the bayonet with the back of the blade, bringing the
strategy. The action of such a corps is known as Partision Warfarr.
2. Partisans are soldiers armed and wearing the uniform of their army, but belonging to a eorps which acts detached from the main body for the purpose of making inroads into the territory occupied hy the enemy. If captured, they are entitled to all the privilege's of the prisoner of war.
Partisan warfare is advantageously pursued only
in mountainous or thickly-wooled districts. In an open country, the cavalry very rastily deatroys them. See durrrilles.

PARTITION LINES.-In lleraldry, lines dividing 1.he slateld in directions corresponding to the oretinaries. Aceording to the direction of the pratition lines, a shield is sad to be party or parted per fess, per pule, per bend, per cheveron, per sultire; a shicld divided by lines in the direction of a cross, is said to


Partition Lincs in Heraldry.
bequartered; and a shield parted at once per crossand per saltire, is said to Gironsé of eight. The partition lines are not always plain; they may be engrailed, invected, embattiod, wavy, nobuIy, indented, dancotté or raguly-forms which will be fonnd explained under separate articles. See Heraldry.

PARTIZAN. - A species of halberd. The iron is long, broad, and double-edged; there is no axe, but bartos in the style of the ransear. The partizan was known in France from the time of louis $X \mathbb{I}$. ( 1461 ) until the end of the 17 th century, but its invention was not earlier than 1400 . Also written Partisan.
PARTRIDGES. - In artillery, very large bombards formerly in use at sieces and in defensive works. They are mentioned in Froissart.

PARTY. - 1. In IIeraldry, parted or divisled:used in reference to any division of a field or charge. 2. Any small number of soldiers detached from an army or regiment on any particular duty either in peace or war time. A party is often sent out to forage, reconnoiter, and gain intelligence. The term is also applied to other duties which small bodies of men are engaged on such as reoruiting parties, working parties, storming parties, elc.

PAS D'ANE.-The ring-shaped sword-gnard below the cross-piece, on each side of the blade. It is not generally met with until the second half of the 16 th century.

PAS DE SOURS.-Steps leading from the bottom to the top of a ditch in permanent fortification.

PASHA.-A title used in the Ottoman Empire, and applied to Governors of Provinces, or Military and Naval Commanders of high rank. The wane is said to be derived from two Persian words-pa, foot or support, and shah, rnler-and signifies "The support of the Rnler." The title was limited in the early period of the Ottoman Empire to the Princes of the Blood, but was subsequently extended to the GrandVizier, the Members of the Divan, the Seraskier, Capitan-Pasha, the Begler-Begs, and other civil and military authorities. The distinetive badge of a lisha is a horse's tail, waving from the end of a staff, crowned with a gilt ball; in war this badge is always carried before him when he goes abroad, and is at other times planted in front of his tent. The three grades of Pashas are distinguished by the number of the horse-tails on their standards; those of the highest rank are Pashas of three tails, and include, in general, the highest functionaries, civil and military. All Pashas of this class have the title of Vizier: and the Grand-Vizier is, par excellence. a Pasha of three tails. The Pashas of two tails are the Governors of Provinces, who generally are called by the simple title of "Pasha." The lowest rank of Pasha is the Pasha of one tail ; the Sanjaks, or low-
est class of Irovincial Governors, ure of this rank. The Jasha of a Province has authority overthe mili. fary forco, the revenus, and the adminiatration of justice. Ilis muhority was formerly absointe, lut reerntly a check was impored on hin by the appeint mont of locit Councils. The lasha is in his own parson the military leader and administrator of jusfice for the P'rovince under lis charge, and holds oftice during the pleasure of the Sultan-a most precarions tonure, as the Sulnn can at any moment, in the exereise of his despotic power, exile, imprison, or put him to fleath; and this has frequently brect done in cases where the l'ashn's power has excited the apprehwsion, or his wath the avarice; of his Royal Master. Also written Basheon and J'acha.

PASS.-1. A straight, difticnlt, and narrow passuge, which, well defenled, shuts up, the contrance to a country. 2. Permission granted by a Commanding Ollieer to a soldier to be absent from his quarters, rerorded and signed by the Commanding Oflicer, so that the soldior may be nale to show to others, if uecessary, the authority for his bring absent from his regiment. 3. A road or path leating from one side of a mountain to another. In latitudes where Hurth snow falls, the "passes" are only open for egress or ingress during the summer nomths. In warfare, mountain passes play a very important part, if the operations, whether defensive or offensive, are earried on in a mountainous country.

PASSADE,-In fencing, a push or thrust ; a sudden movement to the front. Often writton Pisumud.

PASSAGE-A movement in the School of the soldier Mounter, for gaining distance to the riglat or left, executed as follows: To passage to the right, gather the horse and ineline him to the right, by carrying the bridle-hand slimhtly to the right, and closing the right leg; then earry the bridle-hand well to the right, close the left leg hehind the girth without leaning to the left, so that the hannehes may move last, and hold the right leg near to support the horse and moderate his movement. The horse having obeyed, keep up the passage by a gentle application of the same means. To balt, replace the bridile-hand and left leg by degrees, and straighten the horse by carrying the bridle-hand slightly to the left and closing the left leg. In passaging, the movement of the horse's shoulders always precedes that of hishaunches. To facilitate this, the horse is held inclined to the side toward which the passage is to be made. If the horse oblique too much, the rider carries the hand a little to the left. and increases the effect of the left leg. If the horse step too quiekly to the side toward which he passages, diminish the effect of the reins and left leg, carrying the bridle-hand to the left, and holding the right leg close. If the loorse back, bear his shoulders well toward the side toward which he should passage, diminish the effect of the reins, and increase that of the legs: a horse nswally backs on aceount of the constraint he feels when his hannches lave hegun to move before his shoulders.

PASSAGE OF DITCHES.-In siege operations the passage of a dry diteh consists in the deseent (which is by a blindage, if the direh is not too deep, or a blindage and gallery for deep dieches) and a full sap, which leads from the outlet of the dexcent to the lonttom of the breach. The passage of a wet ditch is more difficult, and specially perilous if the besieged can produce sudden freshets by flood-gates or other contrivances. The method nsually followed is 10 build a dike or bridge of fascines and liurdles across the ditch. The abutment for this bridge is formed by excarating a grand gallery behind the countersearp and throwing the earth taken from it into the diteh through the ontlet of the descent. The dike is carried forward from this abutment by sappera. who work on a raft carrsing a musket-proof mask on the side of the enemy. A gathonade parapet on the exposed side of the dike serves to protect the men in bringing forward the fascives, hurdles, etc., to extend the dike.

PASSAGE OF RIVERS.-The passage is effected by surprise or by main force, and detachments are thrown by one means or the other upon the enemy's bank of the river before proceeding to the construction of bridges. The passage by foree oughtalways to be favored by diversions upon other points. Infantry cross bridges witbout keeping step. Cavalry dismonnt in crossing, leading their horses. Wagons heavily loaded, pass at a gallop. See Bridges and Ford.

PASSAGES.-Openings ent in the parapet of the covered-way, close to the traverses in order to continue the communication through all parts of the covered-way. See Traverses.
PASSAGE WARRANT. - One among tbe numerous royal warrants issued for the gridance of the army. It relates, as its name implies, to the rules and regulations to be observed in applying for passages on board troop and other government ships. The accommodation granted to officers, and the quantity of baggage allowed, as well as messing costs. will be found in the copy of this warrant.

PASSANDEAU.-An ancient 8 pounder gun, whieh was 15 feet long, and weighed about 3,500 pounds.

PASSANT. - A heraldic term used to express the attitude of an animal in a walking position, with his

head straight before him. Fig. 1. Fig. 2. renresents the attitnde. Passant gerdunt ; Fig. 3. Passant regardant.

PASS-BOX-A wooden or metallie box with a lid and handles, used for carrying cartridges from the service magazine to the piece. The boxes are of various sizes to suit the caliber of the piece, one cartridge being carried at a time. The top is fastened on with two butt hinges and kept elnsed by strong hook and staple. A wooden bandle is fastened with screws diagonally on one end, by which the box is carried.

PASSEGARDES.-In ancient armor, ridges on the shoulder-pieces to turn the blow of a lance.

PASSE-MUR.-An ancient 16 -pounder gun, which was 18 feet long, and weighed about 4200 pounds.

PASSES BALLES.-Boards or machines made of iron or brass, used in disparting cannon, and fitted to every species of ealiber.

PASSEVOLANT.-A light piece of ordnance, used in France in the 15 th century:

PASSION CROSS.-A cross of the form on which our Saviour suffered, with a long stem and a slort traverse near the top. It is of oceasional occurrence

as a heraldic clarge, though less froquent than many other varicties of cross. A passion eross, when elevated on three steps or degrers (whith bave leen saich hy heralfls to represent the virtnes of Faith, IIope, and ("harity), is called a Cross Calvary.

PASS OF ARMS. - In ameiont chivalry, a liridge, road, cle., which the linights malertook to defemb, and which was not to be passed without fighting the person who kept it. jle who was disposed to dispute the pass tonched one of the armories of the other Knight whon held the pass, that wore long on pales, columns, cte., crected for the purpose; and
this ras a eballenge which the other was obliged to accept. The vanquished gave the conqueror such prize as was agreed upon.

PASSOMETER.-A watch-shaped instrument carried about the person to register the steps taken in walking. It consists of a dial and two hands, which are moved by a ratehet worked by a weight which the motion of walking causes to vilorate.

PASS PAROLE.-An order passed from front to rear of an army by word of mouth.

PASSPORT.- A warrant of protection and permission to travel, granted by the proper authority, to persons moving from place to place. Every Independent State has the right to exclude whom it pleases from its territory, and may require that all strangers entering it be furnished with properly alltlenticated documeuts, showing who they are, and for what purpose they are visiting the conntry. Passports are sometimes issued by the Ministers and Consuls of the coontry which the traveler intends to visit, which cannot, however, be done without the consent or connivance of the State of which the holder of the instrument is a subject; they properly proceed from the authorities of the State to which the traveler belongs, and ought to bear the viac or countersignature of the Minister or Consul of the conntry which he is about to visit. In some Enropean States no one is allowed to go abroad without a passport from his Government authorizing him to leave the country-a provision used as a means of detaining persons charged with erime; and passports are even required by the natives to enable them to go from place to place in their own country. The regulations of different States have varied much regarding the use of passports; and of late years there has been a great relaxation of the stringency of the regulations connected with them. Since the facilities of traveling have so greatly inereased, it seens to have become the prevalent opinion that the passport system tends to obstruct the free intercourse that is desirable between citizens of different countries; while it is ineffectual to prevent the entrance of dangerons or suspicious characters, who can obtain passports on false pretences, or make their way in withont them. Within the United Kingdom no passports are required; but for a British subjeet traveling in some parts of the Contineut they are still requsite. At one time the greater part of British subjects traveling abroad used to be furnished with passports from the Ministers or Consuls of the countries which they purposed to visit; the Lord Provost of Ediuburgh was also in the way of issuing passports to Scotchmen. Of late years the passport most used by British subjects is that of the British Secretary of State for Foreign Affairs, which is now granted to any British subject for a fee of two shillings, and is good for life. If the applicant be not personally known to the Secretary of State, he must either be recommended to him by some person who is known to him, or produce an application in his favor by some banking firm established in Londou or elsewhere in the United Kingdon, or a certificate of ideutity signed by a Mayor, Magistrate, Justice of the Peace, Minister of Religion, Plysician, Surgeon, Solicitor, or Notary, resident in the United Kingdom. In certain cases the prodnction of a certiticate of birth may be required. If the applicant be a uaturalized British subjeet, his certificate of naturalization must be forwarded to the Foreign Office. If it be dated subsequently to Aug. 24, 1850, and previously to Ang. 1. 1858, his passport will be good for one year only; if subsequently to Aug. 1, 1858, for six inonthe only. The pussport of a British suhject naturalized ly Aet of larlinment is good for life. W'here the paspport systom is in full foree, it is required that the passport be countersigned by the Jlinister or Consul of the eountry which the holder means to visit, the visa being only of force for a year. 'lhe French Government allows 13ritish subjects to anter and lave France, and travel in it withont passports ;
but they are said to be sometimes asked for when France is ratered from the South and East. In belfium, Itoland, Germany, Swit\%erlant, Austria, Inty, Demmark, Norway, and Sweden, passports are no longer required. For direce and Dortugal they ara necessary, and the vish is insisted on in lussia, Turkey, and Egyph. In time of war, parsporta or safeconducts ure granted ly the suprome Authority on the spot-i.e., the Ollicer in Conmmand-to insure safety to the holdera when passing from spot to apot, or while occupied in the performance of some art specilied in and permitted by the passport. Passports may be granted for goods as well as individ. nals; and in tine of war, the pasport of a ship, is the formal voucher of its neutral character. It purports to be a requisition on the part of the Government of a state to allow the vessel to pass freely with her company, passengers, goods, and merchandise, without hindrance, seizure, or molestation, as being owned hy eilizens or subjects of such state.

PASTE.-A tenacious mixture of llour and ahm in the proportion of 2 lbs. of Hour to $10 \%$ of pounded alum mixed with 1 gallon of boiling water. The mode of preparing it is as follows: lleat it gently, stir it, and let it boil $\frac{3}{}$ of an hour; when it becomes ropy, ponr it into bowls, and pass it through a sieve before it is quite cold. It should be used cold, and only 2 or 3 days' supply made at a time, but it may be preserved longer by adding alum in the proportion of one-tenth the weight of $1 l o u r$. Paste is used in the laboratory in case-making, for porttires, rockets, light-balls, ete.

PATAREMO. - A sort of small swivel artillery, having a movable chamber.

PATCH.-1. A greased piece of cloth wrapped around a rifle bullet. 2. A block on the muzale of a gun to do away with the eflect of dispart ; making the line of bore and line of sight parallel.

PATE.-1. In fortification, a sort of platform or terre-plein, irregularly built, yet generally constructed in an oval form. It is surrounded by a parapet, without anything to flank it, and having no other defense than what is front or fore right. Putes are usually erceted in marshy grounds to cover the gate of a fortified town or place. 2. An iron or earthen pot filled with powder and grenades for throwing against besiegers; some were used at Lille, in 1708.

PATEREROS.-Small pieces of ordnance, now obsolete, worked on swivels; most commonly used on board ships, where they were mounted on the gunwale, and discharged showers of old nails, ete., into hostile boats. The French called them Pierriers frow loading them with stones.

Patonce.-In Meraldry, a cross with its terminations expanding like early vegetation or an opening blossom.
PAT00.-A very formidable weapon with sharp edges, used by the Polynesian Islanders aud New Zealanders as a sort of battle-axe to cleave the skulls of their enemies.

PATRIARCHAL CROSS. - A cross like the patriarchal erosier, having its upright part crossed by two horizon. tal bars, the upper being shorter than the lower. A cross patriarchal fimbriated or was a badge of the Kinights Templars.

PATRICK. - The Order of Saint Patrick is the national order of knight-

Patriarchal Cross, bood for Ireland, established by George III. Feb. 5, 1783, and enlarged in 1833. It consisted of the Sovereign, the Grand-master (who was the LordLientenant of Ireland for the time being), and 15 Kinights. By the statutes of 1833 the number of Knights was increased to 22. The Collar of the order (of gold) is composed of roses alternating with harps, tied together with a knot of gold, the roses being enameled alternately white within red, and red within white, and in the center is an inperial crown sur-
mounting a hary of gold, from which the badge is suspendieti. The Bader or the dored is of grold, and oval ; surrounding it is a wreath of shanrock proper

on a gold field; within this is a band of aky-blue enamel charged with the motto of the order, Quis Suparabit mbcolxexif, in gold letters; and within this band a saltire gules (the cross of St. Patrick), surmounted by a shamrock or trefoil slipped vert, having on each of its leaves an imperial crown or. The fleld of the cross is either argent, or pierced and left open. A sky-blue Ribsos, worn over the right shoulder. sustains the badge when the collar is not worn. The Star, worn on the left side, differs from the badge only in being circular in place of oval, and in substituting for the exterior wreath of shamrocks eight rays of silver, four of which are larger than the other fonr." The Mantle is of rich sky-blue tab. inet, lined with white silk, and fastened hy a cordon of blue silk and gold with tassels. On the right shoulder is the Ilood, of the same material as the mantle. The order is indicated by the initials $k$. P.

PATROLS.--Patrols are of two classes, "from the different objects had in view. The first are those made with a view of insuring greater security from the enemy's attempts to pass, or force the line of ontposts, and may therefore be termed defensive patrols. They consist usually of three or four men. who go the rounds, along the chain of sentinels and b, iween the posts; seldom venturing farther than a few hundred paces beyond the sentinels chain; the object being to search points which might present a rover to the enemy's sconts, and to keep the sentinels on the alert. The second class are those made exterior to the line of ont-posts, with a view of gaining intelligence of the enemy's whereabouts; and may therefore be termed affensire patrol.s. They are composed of larger bodies of men than the first class, the mumber being proportioned both to the distance to be gone over, and the extent of front to be examined. In a position, presenting but few cross-roads, and sparsely settled, a patrol of ten or twemthorsemen. may be found anple, to search with all desirable thoroughness, from twenty to forty miles in advance of the position, along the principial avenues to it: whereas, with a more extended front. presenting many lateral avenues, doulble this number might be required for the same duty. From the information obtained.through the ordinary channels of maps, and by guestioning the near inhabitants, the Command-
ing-Officer can usually settle, with sufficient accuracy, the strength of a patrol.

From the duties to be performed by patrols, cavalry are usually employed alone; in cases of very broken country, infantry may be necessary, but they shonld always be accompanied by some horse, if for no other purpose than to transwit intclligence promptly to the rear. The main duties of a patrol are to fiud the enemy if in the neighborhood; gain a good idea of his position and strength; to make out his movenents. and to bring in an accurate account of his distance from the out-posts of their own force: and the character of the ground bet ween the position occupied by the respective forces. From the nature of these duties: it is evident that both officers and men, for a patrol, should be selccted with a special reference to their activity, intelligence, and the aptitude they may possess, from previous habits of life, for a service requiring a union of courage, prudence, and discriminating observation-usually to be met with only in individuals who have been thrown very much upon their own resources. When the character of the conntry admits of it, the employment of such individnals, singly, or in very small bodies, as scouts, is one of the most ayailable means of gaining intelligence of an enemy, without betraying the secret of onr own whereabout.
In conducting a patrol, the Commanding Ofticer should provide himself with a good map, telescope, aud gnides; and gain all the iuformation he can before starting, by questioning persons in the neighborhood. Nothing should escape his eye along his line of search; and he should particularly note points which might be favorable to his defense, if driven back by the enemy; or ly which his retreat might be endangered. The order of march of the patrol will be regulated by the circumstances of its strength, kind of troops employed, the character of the comntry passed over, the hour of the day, and the particnar object in view. The intelligence and judgment of the officer in command will have sufticient exercise on these points; as he will be continually called upon to vary hiz dispositions. The general and obvious rule of keeping a look-out on all sides, will prompt the general disposition of an advanced-guard, rearguard, and flankers, according to the circumstances of the case, however small his command. The sole object being to carry back intelligence of the enemy, no precautions should be omitted to cover and secure his line of march, without making, however, too great a subdivision of his force.

Too much circumspection cannot be shown in approaching points favorable to ambuscades; as woods, ravines, defiles, inclosures, farm-houses, villages, etc. The main-body should always be halted, in a good position beyond musket-shot, or where cover can be abtaincd, whilst a few men proceed cautionsly forward. following at some distance in the rear of, but never losing sight of each other, to examine the suspected spot. If the officer deem it necessary, at any point, to detach from his command smaller patrols, to examiue points at some distance on his flanks, he should halt the rest, at the point where they separate, until the detachments come in and report; or, if he decides to move forward, he should leave three or four men at the spot, to convey intcligence prouptly to the rear; if anything is discovered, as well as to himsclf. It may frequently be found that some eminenee on the tlanks may present a good virw of the surrounding country, in which case, if it be decided to use it, two or three menought to be detached for the purpose, with orders to keep in sight of each other, but far enough apart to guard against a surprise of the whole. When the oflieer finds himself in the presence of the enemy, he should halt his command at a couvenient spot, where they will be sorecned from the enemy's view; and, having mate his dispositions against a surprise, he will procred with a few pickerd men, to the most favorable point from which he can obtain a good look-out, to
reconnoiter the position occupied, and the other points of interest. If he decmit advisable to keep his position, or change it for some other point more favorable, he will first transmit a report to the rear of what he has observed.

When the patrol moves by night, the ordinary precantions must be redoubled. Signals mast be agreed upon to avoid danger, shonld any of the party become separated from the main body. Careful atten. tion mnst be given to everythiug passing around; as the barking of dogs, noises, fires, etc. On approaching any inhabited spot, the command should be brought to a halt, whilst a few picked men move noiselessly forward, and if practicable, by stealing up to the windows, learn the character of the inmates. It cannot be too strongly impressed upon the mind of the officer in command of a patrol, that he must be all ears and eycs; that he will be called upon in turn, to exercise great boldness, caution, presence of mind, and good judgment, in accomplishing a mission where the enemy must be seen but not encountered; and such roads and halting points be selected, both in moving forward and returning, as shall be most favorable to his movements, and least liable to expose him to a surprise, or a disadvantageous collision with the enemy. See Reconnoissance.

PATTE D'OIE.-A term used in


Pattée. mining to describe three small branches which are run out at the extremity of a gallery. They are so called from their close resemblance to the foot of a goose.
PATTEE.-A cross in Iteraldry, also called Cross Formée, a cross with its arms expanding towards the ends, and flat at their outcr edges.

PATTERN.--The wooden model used in casting is technically called the Pattern. Models for casting should be made of one or several pieces, according to the form of the mold requircd. When the form is such that the whole model can be withdrawn from the sand at once, without injuriug the mold, a single piece will suffice; but generally the model is composed of several pieces, so fitted that they can be put together in snccessiou as the molding progresses, and finally taken apart and removed by piecemeal when the molding is complete. See Molding.

PATTISON PROJECTILE.-This shot has projections cast mpon it to fit the rounded grooves of the gun. The windage is stopped by a simple leather band, which is driven upon the conical base of the shot by the powder-gas.

PAOL.-The name given to a Sepoy's tent. It is of a different pattern to the European soldier's tents being much smaller and lighter.

PAULDRONS. -In ancient armor, reinforcing meta] plates covering the shoulders.

PaUlin.-A kind of tarpaulin. It is made of thick, unpaiuted canvas, and forms part of the equipment for each carriage of a field-battery of artillery. They are of four sizes, viz;-Magazine, large; Magazine, small ; Camel paulins; Cart paulins. Large paulins are used on the floors of laboratory tents. Small magazine paulins arc used in covering powder barrels and live shells in the batteries. Camel poulines, being of small size, are frequently very convenient, and are used for the same purposes as small magazine paulins. Cart pautins are nsed with tilts for artificers' carts. With the cxception of the camel and cart paulins, which are made of coarse conntry canvas, all others are made of vitry.
PAVADE. - A term formerly applied to a short darger in scotland.
pavava. - A conveyance drawn by a buffalo, and employed in the Plilippine Islands. The drawing shows the manner of its construction and use. The shafts, framework, and body, are of bamboo; the collar and nose-band of the buimalo of chair cane, and the roof of the pandanus leaves. This arrange
ment furnishes a hint for making traviqu more comfortable. Unhappily, the bambos, mimirnbly suited

Whes with it scremond. an archer. Also written /'araix, l'oras. I'arrase andil Jifresse.
PAVISIERS. Wiurriorsarmed with the \}rvise. In ancicnt "incennters, hodies of /'acisiors wa-re formed on eatels side: and, doubleoss, there strenge defontors were opposed. as morde an possible, to the hestile archers. Also written l'ariserx.
PaVots.-A small cuirnss first worn ley infantry soldiors abont Tof B . c . It consisted of plates of metal sewed on to woven stuffesor skins. Sere farioe.
PAVOIS D'ASSAUT. - A German slided of the fifteenth century, 44 inches by 72 inches, "omporecol of wood cowred over with heather. It was alos, constructed in varions shapes and sizes.
PAVOISIENNE. - A small hand shicdd of the midWhe of the fourtomith century. It was one foot and one pharter of an inch in dimmeter.
PAVON.-Anancient military liag shapeal like: a right-angled trianglo.
PAY. -The stipend or salary allowed for "ach individual serving in the army. The followiug is a table of the monthly pay allowed in the Cnitenl States Army:-

PAVISE.-A large shich covering the whole body, having an inward curve, managed by a Pavisicr,

I'ay of Offirers in Active Serrice.

Pay of Officers and Cadets at the Military Acoulemy.

Grade.

Superintendent
Commandant of Cadets
Adjutant
Quartermaster and Commissary of the Battalion of Cadets.
Treasurer
Surgeon.
Assistant Surgeon
Professor, of more than ten years' service at the Academy
Professor, of less than ten years' service..................
Assistant Professor
Senior Assistant Instructor of Tactics $\qquad$
Assistant Instructor of Tactics, commanding a Company of Cadets
Acting Assistant Professor
Acting Assistant Instructor of Tactics
Instructors of Ordnance and Science of Gumery and
of I'ractical Engineering.
Sword Master
Cadet

Grade or assimilated pay.

Pay of Colonel.
Pay of Lieutenant-Colonel.
Pay of Regimental Adjutant.

Pay of his grade in the Army.
......do.
......do.
.....do.
Piny of Colonel.
Pay of Lieutenant-Colonel.
Pay of Captain, mounted.
......do.
......do.
Pay of his grade in the Army.
......do.
Pay of Major.


The Ceneral of the Army has bern retired, without any reductionin his rorrent pay and allowancers. The maximum pay of a ('olonel is by law ent bot per
 maximum pay of a Lionterant-('olonel is by law : 4,0 ot

 per year in uddition to the pay of his rank, not to be included in computing the servire ineroasr. An Ait-rle-Camp to a Brigulicr-tionoral is allowed *150 pres year in ddation to the pay of his rank, not bo be included in computing the serviee inerease. An Acting Commissary of Sindsisurne is allower sloo per your in addition to the pay of his rank, mot to be inchated in computing the servied ins remse. Assistant Surgeons are entitled to pay of Captain uftor five years' service. IRetired ofliears receivo at pur rent. of pay (salary and increase) of their rank. A retired Chaplain receives three-fourths of the jmy (salary and also incrense ) of his rank ( 'aptain mot monnted). The offieer havinge eharge of the puhlice buideings and grounds (Washinglom) has, while so serving, the rank, pay, ant emolnments of a Colonel. The Aides-de-Camp and Nilitary Secrotary to the Ifoutemant-General, selocted by him from the Army, have, while so serving, the rank and jaly of lien-temant-Colonel. The prineipal assistant in the Ordnanece Burean of the Wur Department reedives a compensation, including pay and emolumonts, not excealing that of a Major of Ordmance. Only one Veterinary Surgeon, at © $\% 5$ permonth, is ullowed each of the cavalry regiments, from the first to the Sixth Regiment, inclusive; two, one at F100 and one at \$75 per month are allowed each of the seventh, Eighth, Ninth, umd Tenth Regiments; the senior in date of appointment entitled to the highor grade. The Temeher of Music, who slash be leader of bind at Military Acadeny, receives $\$ 90$ per month. The clothing account is settlerl June 30 and December 31 of each year. Balances found due Cnited States are charged soldier on master-rolls of those dates. Bal. sunces due soldier are carried forward on company books erediterl to his current clothing account : any balance remmining due him at discharge is eredited on tinal statements. Enlisted men of Signal Corps have the pay of Engineursoldiers of a similar grade.

PAI ACCOUNTS. -The Paymaster's vouchers for payments of salary made to oflicers and in final settlements with discharged soldiers. The form of the account used by afticers is shown on page 496.

PAY BILLS-In the British Service, accounts regularly tendered by Captains of troops or companies of the money required by them for the effectives of such troops or company
PAY DEPARTMENT. -That department of a government which takes charge of all matters relating to the pay of the army. In the United States Army, the Pay Department consists, at present, of one Pay-master-General, with the rank of Brigadier-General ; two Assistant Paymaster-Generals, with the rank of Colonel of Cavalry; two Deputy Paymaster-Generals, with the rank of Lientenant-Colonel of Cavalry ; and forty-eight Paymasters, with the rank of Major of Cavalry. An Aet of Congress, making appropria. tions for the support of the Army for the year ending Jnne 30,1884, provides that vacancies that may hereafter oceur in the Pay Corps of the Army in the grades of Lieutenant-Colonel and Major, by reason of death, resignation, dismissal, or retirement, shall not be filled by original appointment until the Pay Corps shall, by such vacancies, be reduced to forty Paymasters, and the number of the Pay Corps shall then be established at forty and no more.

PAYMASTER. - An ollifer appointed in the army for the purpose of keeping its pay accounts, and the disbursing of moneys in payment of troops. In the United States Service, it is the duty of Paymasters to pay all the regular and other troops; and to insure punctuality and responsibility, correet reports must be made to the Paymaster-Gencral once in everytwo
montlas, showing the dispossition fif the fundu prie vionsly transmitted, with arearate: ratimaton for lle מoxt jayment of such regimants, garriucons, or dis. partments, as may lee assigned to each. When vols. umterers or bisilitia are calleal intos sorviere, the l'racto dent may nssign for any wflerer of the army thse Juty of l'aymator. Phymasters are roquirerl los give lontrls.

In the liritish Sorvice, Hilitary laymastore are eithrer "romtrol" wr "lieginental." iof the latter, Whas ronstituto by far the more numar-rens dass. there is onfe lo eviry brigule of artillery, regiment of cavalry, and battalion of infantry. 'l'jue l'aymaster foldels mother commission, lat the apposintment is nearly always conferred mpon some jeerson who has previously held a combatant rank in the armey. The functions of l'aymaster compri-o issuing and ace founting for the pay of oftifeers and men, and having charge gencrally of all the tinanecs of the corps. In disciplince, the Paymastur is rasponsible to the (hllexer Commanding the leogiment; hat in all money matters luc looks for orders to the War ollice alone. He commences with a pay of 12 s . Grl. a day, with the relative runk of Cuphain; and after 20 years' servico allains the jay of $£$, 2s. foll. a day und relative rank as Major. R'regimental l'aymasters wore lirst appointed during the Freneh war. Control Paymasters have financial eharge in the military districts or sub-districts. They form a suparate Department under the Survegor General of the Orinance, romprising Paymasters, Deputy Paymusters, and Assistant J'aymast(rrs.

PAYMASTER-GENERAL.-Tlı Paymaster-Cenwral, in eonformity with the laws and regulations, is charged with all necessary instructions to lis sut)ordinutes in reference to the supply and distribution of funds for the payment of the Army, and ail other things pertaining to the financial dities of his Department, and the accommtability of its officers. In these and all other matters baving relation sjecially to the internal administration of the Pay Department, the correspondence between the PaymasterGentral and his subordinates, and betwren the Division and Department Chief Paymaster and their subordinates, is direct. In England the PaymasterGeneral is an officer of the British Ministry, but not of the Cabinct, eharged with superintending the iscue of all moneys voted by Parliament. Ile is virtually the Paymaster of the public service, having no control over the sums issued, paying merely on the order of the Department eoncerned and receives $£ 2,000$ a year as Clancellor of the Durtiy of Lancaster. IIe is always either a Peer or a member of the IIouse of Commons, and elanges with the Ministry: Of late years the oftice has been held in conjunction with that of Vice-President of the Board of Trade. The Paymaster-General is assisted by a Deputy and a staff of clerks, the annual cost of the whole department amounting to about fon, 000. The first notice of this oflice is in the early part of the reign of Charles H. . when the Pagmaster-General was nothing more than the sole Paymaster of the Army. The present extensive duties of the office have been added by degrees during the $19 \mathrm{H}_{1}$ century.

PAYMASTER-SERGEANT.- I Fon-commissioned Ofticer, in the British Army, whose duty it is to act as clerk to the Paymaster. Ile ranks with other stait sergeants, and receives from $1 \mathrm{~s} .11 \mathrm{d.}$.102 s .11 d . a day, according to his corps, with an inerease of $6 d$. after 3 years' uninterrupted service as PaymasterSergeant.

PAYNIZING. - A process for preserving and hardening wood, invented by a Mr. Payne. It consists in placing well-seasoned timber in ain air-tight chamber, and then, when, by means of a powerful airpump, the wood is deprived of its air, a solution of sulphuret of calcium, or a sulpluret of barium is admitted, and readils fills up the empty vessels all through the wood. The air-pump is again used, and the supertluons moisture is lrawn out, and a solution


I certify on honor, that the amounts charged in the foregoing account are correct and just, as authorized by law, and that they are rightfully due me as stated; and that I am not in arrears with the United States on any account whatsoever.

I was last paid to ............, 18... by Paymaster ................... and I acknowledge to have received, this ........ day of ........, 18..., of Paymaster ................... U. S. A., in full of this account, the sum of ...................100 dollars, by check Ňo. .........., on.. (Signed in duplicate.)

The following is the form of account to be used by discharged soldiers :

of sulphate of irom is injerted; this atets chemically upon the sulpharet of barian or of caltiom, and forms all through the wood dither the insoluble salphate: of hariam (hravy spar) or of lime (cypuma). The addition of these mineral materials rembers the woed vary heavy, hat it becomes also wery derable. and almest incombostils.
PAY.ROLL.-A rell or list of presmen ratithed to payment, with the sums which are to be paidon them. In the Cnited Siates Army, at cach regular master of the troops, one ordimary mastereroll and three Muster and lay rolls are-matle. 'fore master roll is transmitted by the mustering oflieer to the Adjutant Gemerals Ollice, at Washington, whthin three chays after the master. Two copies of the paysroll are for the Paymaster, the other is kept with the company records. Master, and Huster and l'ayrolls are made on the printed forms furnisheol from the Alloutant General's Ollice: and in making the rolls special attention must te given to the printed directions thereon. 'The calectlations on the l'ayrolls are made by the daymaster. They are transeribed by the Captain on the eopy retainel with the company records, in order that an exact aceonnt of each sohtier's pay may be kept. If it should bre conne necessary to nise manascript forms, they should embrace atl the data rexpired to insure justice to the soldier, and gude the bhymaster in making payment. Companies are designated on the Muster, and Master and Pay-rolls ley the names of their Captains, whether present or absent. Solderes in hospital, pationts, and nurses, execpt stewards, are mosteree on the rolls of their company, if it le present at the post.
PEABODY-MARTINI RIFLE.-This rifle is a combination of the Peabody and Martini systems, the former covering the mechanism for closinit the breech and extracting the cartridge shedl, after the rifte has bern fired, and the latter covering the device for igniting the cartridge. This rife was adopted by the
its presemt perfoction, is tha* result of lome and carome ful stady to produce ar rifle mesting :ll the repuire= monts of military survice. Its form is ecombact and graceful, and the symmetry of its lines is nowhere infringen upon by unsermly progertions, which bewieles being offensive to the eye, ate often profudicial to the comfort of the solliar on the matrila in the performance of its neressary maniphlations. No movement of the barrel, or any winer parts, rexerot thabe immedialcly combected with the block, is requirel in He freformanere of any of its operations. 'Tares are performed in the simplest prossitle manner, and without in the least infringing npon the etrength and durability of the rille, which is equal, in thaseresperets, to the best mazale-loater. In the operation of lomening, the whole movernem of the blow is mate within the brewed-frame or rewiwer the and of the blowklever falling lut a slom distance from the stock. Thac block itsolf is a sitrong. sulsistantial pieco, and when in position for firing, is so firmly secured as to dasure its perfore safoty, as has been ropeatedly shown in the severe tests to which it has been subljueterl.

The drawing shows the peabody-Martini boredr system. The position of the blork, when it is drawn down for loading, is such ats to form an inclimed plane, sloping toward the breerf of the harrel, and the gronve in its upper surface corresponting with the bore of the barrel, facilitates the entrancer of the cartridge so that it slides casily into the chamber. without the necessity even of looking to nee that it is properly inserted, The atoption of the coil mainspring in place of the commongun-lock main-spring, is considered a great improvement, and this opinion is confirmed by the experience of the Engrishand Turkish troops who have been supplied with the Peabody-Martini rilles. It has been found that, in several instances, where the coil main-springs wore broken, the dofects were not noticed, and the springes compressed in the blocke worked as musal. Hand such mishaps occeured to the old gin-lock mainsprings, the arm would have been rendered useless. The accuraey and range of this ritle are very remarkable. The systom of rifling used is that known in England as the Henry. There are seten grooves, of peuliarshape, with a sharp twist (one turn in twenty inches). After a long series of experiments, with different kinds of rilling, the English Arms Commission finally decided upon this system as giving the must satisfactory resulis, both with regard to accuracy and range.

The manipulations for loading and firing are of the simplest kind: Throw down the block-iever with considerable force, pressing with the thmmb of the right hand: insert the cartridge; and return the leverto its place, which raises the block to its proper position when the rifle is ready for tiring.
After firing, throw down the block-lever with foree, and the empty cartridge shell is thrown ont clear from the rille, leaving the chamber ready for the insertion of another cartridge. This extraction of the cartridge shell is effectet ly the action of an elbow lever, which throws it nut with uncring

Enclish and Turkislı Governments, after lone and ex. hatustive trials in competition with all the prominent breech-louding riftes of the world. It andured the test of actual experionce in war during the contest between Russia and Turkey, and obtained the highest reputation for solidity. accuracy, long range, ind other desirable yualities of a military weapm. The ofticial reports from the armies in the fielt. and the letters of army correspondenta, mitein praise of the Turkish rifles. The parts composing the breech mechanism combine the greatest possible strength with simplicity of construction, and the system, in
 ever. anich throws $\bumpeq$ nat wim certainty, the instant the block-lever is lowered. Thin clbow lever derives its power simply from the ation of the boek itself, and cannot become deranged, as its action is not dependent upon any spriner and is of such strength as to prevent the posibitility of breakage or derangement ly any service to which it can be subjected. If it is desired to preserwe the cartridge shell for relonding, throw down the blocklever with a gentle movement, and it is drawn ont into the gronere of the block, from whence it can readily be taken by the person firing.
For rapidty of firing, this rifle is believed to be
equal, if not superior to any other single loader, and in continuous firing, to any repeater. It camot be fired until the block is in its proper position, so that it is impossible for accidents from premature explosion to occur. The objection to the exeessive recoil of this rifle, which has been raised in some guarters, has been obviated in the arms manufactured by the Providence Tool Company, by the adoption of a different form of ammunition. After the decision of the English Arms Commission in favor of the Pea-body-dlartini rifle, aud its subsequent aloption as the standard national arm, the lmperial Ottoman Government contracted with the Providence Tonl Company to manufacture 600,000 . The productive capacity of this Company's factories is 1000 rifles per day. In eoaclusion it may lie said, that wherever the riffe has heen introduced, its superior qualities of safety, strength, simplicity, casy manipulation, accuracy, and range, have been fully conceded. See Martini-Menry Rifle.
PEACE ESTABLISHMENT.-The reduced mmber of effective men of an army during peace time; regiments are raised to their full complement in war time, or, as it is termed, to a var cestublishment. In Great Britain the raising of the army from a peace to a war establishment is effected by calling out the reserve, the militia enrolled pensioners, and volunteers; in continental armies, where the compulsory service is in force, by calling out the men on furlongh and the reserves

PEAN.-One of the furs borne


Pean. in Ileralory, differing from Ermine only in the tinctures: the ground being sable. and the spots of gold. See Meraldry.
PEA-ORE. - A form of compaet brown iron ore (hydrated peroxide of iron), consisting of round. smootb grains, from the size of mustard-seed to that of small pease. Sometimes the grains are still smaller and flattislı. This iron ore is very abundant in some places in France, and is smelted.
PEA-RIFLE.-A ritle of small bore carrying a ball of the size of a pea.
PEBBLE POWDER.--Since the pellet powder was first hrought into use, another description of large grain powder, ealled " pebble powder," has been introduced for service with guns of large caliber. This pebble powder is formed of large grains ranging from ${ }_{18}^{18}$ of an inel to as much as $2^{\prime \prime}$ cubes; and to manufacture this class of powder expeditiously and cheaply, has brought forth another description of machine for forming the pebbles by cutting up previously compressed cake into cubes of the required dimensions. This is done in the following manner, by a very simple self-acting machine: The cake as brought from the press-honse is, to begin with, of the thickness of the required cubes, and this cake the machine has to cut up-first. into long strips of the same width as the thickness of the eake; and, secondly, to cut these long strips transversely into cubes. This is accomplished in the maehine by means of two pairs of rollers in the following man ner: The eake is fed into a hopper phareal immediately above the first pair of rollers, and, as these are provided with knives upon their surfaces, thry rat the cake up into long strips. These strips fail upon an eudhess traveling hand, which conveys and carries them forward to the second pair of rollers, where they are ent trmaversely into culues. They thendrop into a spout, and are delivered into it revolving sifter eovered with copprer wire, which "onveys the perfect cubes into a mumber of woodn boxes contained in a small gun-melal truck; but the dust and small pirees full through the sifter into other boxes, and are taken hack to the press-house and worked up again. The framing of this machine (like most of the other machines used in the mannfacture of gumpowel(r), is composed entirely of gun-
metel, and has the rerguisite seatings cast upon it for the reception of the several brackets and petlestals which are also of gum-metal, as well as the cutting rollers, each pair being about ${ }^{\prime \prime}$ " in diameter, with a number of equidistant teeth or knives formed upon their surfaces, cut out of the solid metal. These rollers are securely fixed upon wrought-iron shafts, which reccive their motion from a main driving shaft by means of spur gearing. The underside of the bearings of these rollers are planed and faced so as to slide in their respective brackets. One of each pair of bearings is fitted with a spring box controlled by a set-screw, by means of which the amom t of resistance to the opening of the rollers is adjusted. Blocks of hard wood are also fitted between each pair of bearings to act as stons, and thus determine the minimmm distance between the surface of the rollers, and an adjustable gun-metal scraper is fitted to each roller for removing the surplus powder from its surface. A skeleton carrying band, made of two leather belts fitted with ash cross-bars of a triancular section and at about $3^{\prime \prime}$ apart, is provided. These

wooden cross-bars are rivetted with copper rivets to the leather belts and to gun-mctal strips upon their underside, these strips being of such is form as to serve the purpose of tecth for driving the band. This endless band works upon two gun-metal drums; the one is lriven by gearing from the main shaft. and the other is fitted in adjustable bearings, which can be tightened by means of a screw so as to take up any slack in the band. These drums are made with flanges at each end. and have recesses formed on their harrels to receive the gun-metal projections or strips upon the carrying band. A sliding table made of hard wood and provided with four gunmetal grooved wheels, which travel upon V rails, also made of gun-metal, is fitted to work underneath the earrying band, and travels at the same uniform rate of speed. The top surface of this table is covered with leather, and made perfectly smooth; a reciprocating motion is given to it by means of an endless chain made of sheet copper, upon one link of which a stud is fitted and works in a gun-meta? bloek that slicles in a bracket fixed upon the underside of the table. A weighted gum-metai frame is also provided, and so aljusted that the underside of it rests upon the rupper surface of the hars of the carrying band ; the ends of this frame are fitted with gmometal stay-rods, which project and work in slotted brackets connceted to the machin"; the frame is by this means free to rise if the pressure from any conse exceeds that of the weight by which it is held down. The underside of this frame is planed and made perfectly smooth, 80 as to allow the carrying band to work freely letwern the underside and the uppersicle of the sliding table.

The feeding weh-which is made of strong Dowhs canvas-is driven by a gun-metal drum $\boldsymbol{\gamma}^{\text {is }}$ in diameter, the following roller being $1 \frac{1}{4}{ }^{\prime \prime}$ in iliameter ; the top surface of this wel is supported ly a board to prewent its sagring, and, in addition, the bearings wherein the shaft of the driving dirum revolves are provided with slides made adjustable by means of sorrew erearing. A revolving siffer is titted undermath the second pair of rollers, and works in bear-
ings bolted to the nuterside of the framing of the machine; this sifter is composed of a mumber of frun-metal drums kryed upnil a slaft, aml its periblery is covered with eoppere wirs, the whole beines condosed in a woolen casing. Vmblerneath the sifter thrershiding boxes are phaced toresodve the dust and small pieces which pass throngh the "oppuer wire rove ering of the sereen. At the emd of the sifter atonmetal fraveling truck or carriago is proviched. with four whecols adaptcol to ran on V gimemetal rails tixed upon the floor ; this carriage is capable of holding five woolen boxes, eachabout $18^{\prime \prime}$ square, into which the finisherl pelbhles fall from the rend of the sifter as it slowly revolves. A wooden hopper of suflicient willth to cover the entire length of the rollers is proviled for feeding the presserake into tho first jair, and a slocet coppre easing is titted to the second pair, witl a spout at the botton for conveyirig the pebbles into the sifter. All exposed parts, such as the ents of wrousht-iron shafts, ete., are eovered with recessad gan-metal washers securely fixed to them, and any others which may be made of iron or stecel are covered with leathor. All bearings are fitted with suitable lubricators, and elanmels or pipes for conveniently and etleciently lubricating the rabbing surfaresg; and, as it is of the utmost importance: that no bil or grease he permitted to come in contuct. With the powder, the bearings of the cutting rollers are fitted with sheet copper casinges mule in halves and linged, so that the upper part can be lifted and the bearings cleaned. The copper risinges at the geared end of the rollers are sufficiently large to contain the wheels and uct ats (rip-pans. The pehbles from this machine, as well as the pellets from the hydranlic apparatus are gencrally taken to the glazing barrils, the treatment they there reccive glazes them and also rounds off the sharp comers, thereby remdering them mach better alapted for transport, storage ete. Sce Gunpoisder.

PECTORAL.-Among the Romans, the poorer soldiers, who were rated under 1,000 drachmas, Instead of the loricu, or brigantine (a leathern coat of mail) they wore a pectoral, or breast-plate of brass, about twelve fingers sjuare. Some modern troops, sueb as the Cuirassiers, elc., wear jectornls for the direct purposes of defense and bodily protection; but, in general, small ormamental plates with chasp have been substituted.

PECULATION. - A term used in a military sense for embezzling public moneys, stores, arms, or ammunition. See Articles of Mar, 60.

PEDDOWK. - A tree which grows in the forests of Burmah and the Audaman Islands. It resembles mahogany in its color. It was formerly much used liy the Burmese for gun carriages, and was introduced, some fears back, into the gun carriage man. ufactory at Jladras. A cnbic foot of unscasoned wood weighs from 65 to 70 lbs .

PEDESTALS.-Props made of wood, and used for the support of stool beds of carriages when the elevating serews are removed.

PEDIEUX.-Coverings for the feet, nsed in the fourteenth century, and made of thin plates of steel or iron.

PEDOMETER. - An instrument for measuring walking distauces. A common form consists of a string with a picee of lead at the end, and knotted at distances of 44 feet apart. It is to be used in connection with a seconds watch. Forty-four feet bears the same relation to an English statute mile $(=5280$ feet) that $\frac{1}{2}$ minute does 10 an hour; that is, the knots are $\frac{1}{12}$ of a mile apart. Drop the lead and allow the string to pass throngh the hand. the nomber of knots slipping through the hand indicate the rate of walking in the number of miles per hour. Small Pedometers, to be worn on the person, con sist of a train of wheels in a small case, and a dial which registers the number of impulses derived from a cord attached to the foot. In this form it becomes a register of the number of paces. In Payne's En-
glish pedonverer theres is at repating watrls, which shows secomols minutes and lours ; ande alse the day of the month. Sirer gotometro.
 for throwing stoma bails.

PEEL.-1. A small tower or fort. "Thorerm /ode
 strip: to pland (r) to jillage.

PEEL.TOWERS.-'Thr munte given to thre lowers erected on the scottish boredars for dofarima. 'Thoy are square, with turrets at the anglos, and the desor is sometines at a leight from the gromoti " Fhe lower story is usnally vanlted, and formed in stable for horsos, cattle, etc. For an atceomit of throse ohlo towers, now mostly in ruin, sere /Vishery nif l'elblexwhire, by W. Chambers, 1864.

PEE-MAH.-A tree which grows in Indiannd liarmah, and is mate use of in tho Madras gom corriage fuctory for certain portions of gun 'arriages. It is it lioht ind totigh wood. There are two descriptions of it, real and white colored; the formarr is the tomerher of the two. A cubic foost of ungeasoncel woud weighs from 50 to 5211 s .

PEEP-SIGHT.-Tholasis of the sightsused at C'reed. moor in the most approved loner-rancer rillos is thes old-fashioned "perp) and glot)e"." To insure acrurate shooting, the rear sight is made with a vernier

scale operated by a screw, by which an alteration of one-hundreth of an ineh, and even of half that amount, can be made in the elevation, the result heing exact, and recorded in ligures-the only way in which a correct record of elvvations can be kept. On the Remington rifle the divisions on the verniter are termed degrees and minutes, and on the Sharps decimals of an ineh. On the former cach minute is ${ }^{1} 2$ of an inch, and corresponds upon a 34 -imeh barrel With $1 \frac{1}{5}$ of an inch, at cath 100 yarls. On the Sharps rifle each"sublivision is 10 of an inch, eorresponding theoretically to $1 \frac{1}{2}$ incli to every one hundred yards. As no inan ean hold or sishit a rifle at 1000 yards within teninehes, the elevation on loth riftes is practieally the sume, or about two iuches 10 each 100 yards for each subdivision on the vernier that is, I wenty inchesat 1.000 yards. The elevations on the Metford and Rigby rifles is abont the same. The subdivisions upon the wind-gauge of both the

Remington and Sharps rifles are about $\frac{1}{40}$ of an inch, and are equivalent in practice to two inches at each 100 yards, or 20 inches at 1,000 yards, on the 34 -ineh barrel.

As the errors incident to aiming at long range will, in most cases, increase the effect of any alteration in the sights, care should be taken to keep well within the elevations which would be mathematieally correct. It must also be recollected that the velocity of a bulket decreases with the distanee, and as it losesits velocity it becomes more likely to be affected by currents of air. Consequently the effect of any change upon the sights is greater proportionately at long than at short range. The effect of wind, ete., increases in a still greater proportion, that which would require an alteration of 2 points in the elevation at 800 yarls, requiring $2 \frac{1}{2}$ at 900 , aud 3 at 1,000 . The best riftemen prefer to have the peep-hole of the rear sight of considerable size, as affording more light, and consequently allowing a better sight to be taken. In the Metford rear sight, dises having different sized apertures may be used; and it has been stated by some of the Irish team of $18 \% 4$ that they have, in foggy or dark weather, done good shooting by removing the dise entirely, so as to leave an aperture of nearly a quarter of an inch. Every rifleman should, therefore, have an extra disc, with a large aperture, to use in dusky weather. The vernier sight is usually placed upon the small of the stock. General Dakin and others who shoot on their backs, have it placed upon the hed of the butt. When the latter is the case, it makes the distance between the two sights nearly a third greater than when placed upon the small of the stock, and eonsequently a proportionately greater allowance both for clevation and wind will be required.

PEETERS BULLET.- $A$ form of bullet first used with the rifled musket by the Belgian infantry. It has a considerable cavity of a peculiar form. The metal of the projectile is left abont the axis and projects downward, filling about one lalf of the forward half of the cavity. In consequence of the cavity, this bullet is somewhat lighter than the bullet for the rifle a tige.

PEISHWA. - The title of the personage third in rank and authority at the Court of the Mahratta Maharajahs of Satara, there being only the Priti-nidhi (Delegate of Rajal), hetween him and his Sovereign. Hlowever, during the weak reigns of sevajee's descendants, the Minister increased in importance, till, about the commencement of the 18th century, Balajee Biswanath, the then Peishwa, and a man of distinguished administrative ability and diplomatic talents, made limself virtually the lanler of the Mahrattas.

PELICAN - In Heraldry, the pelican is drawn with


Pelican, in IIeraldry. wings inulorsed, and wounding her breast with leer beak. When represented in her nest feeding her young with her blood, she is cathed a prelican in her pitty.

PELLET.-1. An old word for sliot or hullet. 2. In English Iferadery, a romadle sablic. Ogrees has the sante signification.
PELLET POWDER.-lin consegucace of the viry great increase in the size of modern rilled camon, and the large charges of gunpowder which have now (1) be used (from 300 ibs to 500 lbs . heing frectuntly cmployed), it som breane evident that suma moditication would have to be made in the description of
gunpowder used. It was found that the ordinary large-gruin powder hitherto adopted for small charges was not suitable for gun of large ealiber, owing to the very rapid generation of the gases, and the inordinate strain to which the gun was thereby subjepted. Extensive experiments were therefore carried ont, with a view to determine the kind of powder that wondd give to the projectile a high initial velocity, and at the same time reduce the strain upon the gnn to a minimum. This resulted in the adoption of at very large-grain powder called "pedlet powder," which upou trial was fonnd to give very remarkable results, as high an initial velocity as 1,600 per second being obtained, with a low pressure in the interior of the gun of not more than from 21 to 23 tons per square inch. These pellets are formed by eompressing the powder meal into metal molds; various sluapes and sizes were tried, some were tlat dises, others prisms, but the shape whieh found most favor at first was the eylindrical peliet, $3-4^{\prime \prime}$ in diameter by $\frac{z^{\prime \prime}}{}{ }^{\prime \prime}$ in length, and weighing $95^{\circ}$ grains. Originally, these were made by hand. but it was soon apparent, that, if required in large quantities, machinery would have to be devised for their production; consequently a large machine of somewhat novel description, and capable of making 400 pellets at one time, was designed by Dr. John Anderson, and manufactured at Birmingham. This machine is worked entirely by means of hydraulic power derived from an aceumulator, which affords a pressure equal to $1,000 \mathrm{lbs}$. per square inch.
This machine-which has given most excellent re-sults-consists of two hydraulic cylinders, with a division in the center of each-thus, in reality, making four cylinders; in the two upper ones a plain eylindrical ram is fitted, which merely rises and falls as the water is admitted underueath the ram or is with-

drawn. These rams are used, first, for compressing the pellets, and second, for ejecting them, when finished, out of the mold plates. The two lower divisions are fitted with piston rams, seevrely attached to erossheads, which are united together, and also connected to two other crossluads ibove the cylinders by means of strong wrouglat-iron side rods, provided with collars warking between luge cast upon the: hydraulic presses, and so adjusted as to athow only a certain limited travel (ither up) or down. The upper crossheads ean be adjusted to their exact positions by mans of serewed threads and lock nuts on the upprer end of the side rols. The use of the lower piston rams is to elose the upper opernings in the mold plates by loringing the top punches-which are connected to the upper crossheads by a gun-metal phate, down upon the mold phate, and thus contine the mal powder in the molds. The upper rams are now slowly raised, and these, acting upon the lower punches, compress the powder in the mold
plate. After the proper density has bern seromed, the action of the lower rams is reversed, by which means bath the lower and upere crossheads receive an upward motion, thereby raising the upper panchaes clear out of the way, on as to admit of the compressed pellets being ejected ont of the mold phate, mind this is done by fiving a further upward motion to the two phin cylindrical rams. 'This will be better understond by referting to the enlarged view, where the mold plate-which is domble-may be suppesed to contain th charge of mal powder in the mold ready for compressing into a pellet. The lower part of the mold is elosed by the lower steel punch that fits the mold very aceurately. White the point of the pmelt rests upon the top surface of the ghan cylindrial ram in the upper part of the hydrantic cylinder. The upper pumeh is also of sted, but much larger in diameter than the lower one.

To eompress the powder in themold, and form a pellet, requires four distinet moverande of the machine. First, the upper punch is brought down mintil it rests upon the modd plate and closes the moll ; this is effecterl by a downward motion of the two lower pistou rams, to which the upper and lower

crossheads are connected together with the upper punches. Secondly, the lower punches are raised by the two upper plain rams, and the powder is compressed in the mold between the two punches. Thirdly, when the pellet is sufficiently compressed, the upper punches are raised from off the mold plate, this being done by reversing the action of the two lower pistou rams until the upper crosshead and punches are at a sufticieut height to adunit of the compressed pellet being ejected out of the mold plate. This fourth and last operation of ejecting the pellet is effected by allowing the upper plain rams to rise still further, and thus force the finished pellet out of the mold by means of the lower stecl punches. All thesc operations are simply and readily performed by meaus of a very ingenious arraugement of valves, the atteudant having nothing to do beyond placing a haudle in the several positions indicated on a dial. These valves are so constructed that the water power is admitted to the two presses simultaneously, whilst, by a self-acting arrangemeut, the pressure is shut off by the press itself when it has traveled the required distance. A relief valve is also provided, to allow auy excessive pressure to escape should it accumulate fromany cause, and this prevents damage happeniug cither to the pipes or other parts of the apparates.
It will thus be seen that a machinc of this description is capable of easily making pellets of gimost any shape. such as cyhudrical, hexagonal, prismatic, or -what is possibly the best of all-spherical, by merely altering the form of the mold and punches. In the machine referred to, there are (on a revolving table, the framework of which is made of gunmetal) four mold plates filted: each contains 200 holes, but as there are only two hydraulic presses to the machine, it follows that only two sets, or 400 molds. are under compression at one time, so that when we number these mold plates consccutively, then Nos. 1 and 3 will be under pressure whilst No. 2 and 4 are being filled. When the powder in Nos. 1 and 3 mold plate is sufticiently compressed, and the pellets formed therein have been removed. the entire table is turned one-fourth of the way round by means of a handle and toothed pinion working
into corrosponding torth provided remnd the peripiery of the gan-asctal table, the revolving of which is much nssisted by eight srsall anti friction rollors flacel to the cast-iron frame ef the mabhine ; those
 "!on its own ronter. Nos. 2 andl 4 moll! platus, which have becon wholly tilled with moal prow lar, are now bronght under ther rossshade of the inaschine and are in position for the powider contained therein to be compressed into pellels, whilst Nos. 1 and 3 in turn take their places to be refillod; the (נ)ererstion, therefore, of pressing and rofilling are continuons, sund the maseline is capable of provlacinge it large quantity of pebble powder per diby, and with very little waste. Sec Gunponceltr.

PELTA.- A small, light shiche, sometimes allribut. ed to the Amazons, but used by numerous nations of antignity, suchay the inhabitants of Thrace, Spain, and Manritunia, before its feneral introduction mong the Grueks. It consisted mainly of aframe of wood or wicker-work rovered with skin or leather. without the metallic rim, und of a great varioty of shapes. It was sometimes romal, as in the speroial case of the (etre, sometimes elliptical, but most commonly eresecnt-shaped or lomated. Soldiers bearingr the pimeta were called Peltantos.

PELTASTA.- Grcian soldiers who were jnterine. diate between the oplitai and the Pxeloi. Jloe jeltast corresponded to our élite corps of infantry, ste leeted for enterprises requiring both celerity and a certain tirmness. The formation of the jeltastue and psiloi was analogous to that of the oplitai, the number of files being 8 , instead of 16 as in the last. See Oplita;.

PEMMICAN.-This was originally a North American Indian preparation only, but it was iutrodareel into the British Navy vichaling-yards, in order to supply the arctic expeditions with an easily preservel food, containing the largest amount of nutriment in the smallest sjace. As made by the Indians, it consists of the lean portions of vanison dried by the sun or wind, and then pounded into a paste, and tightly pressed into cakes; sometimes a few fruits of amelanchier ovata are added, to improve the flavor. It will keep for a very long time uninjured. That made for the arctic soyagers was chictly of beef. In making pemmican, it is necessary to remove the fat completely.

PENAL SERVITUDE.-A punishment avrarded by the Articles of War for certain crimes committed by soldiers.

PENALTY.-A sum of money declared by some statute or contract to be payable by one who commits an offense or breach of contract. It is considered as a kind of punishment, and cousibtuting indirectly a notive to the party to aroid the commission of theact which induces such a consequence. Many contracts executed between parties and gorermment contain a clause that one or other of them who fails to perform his part of the contract will incur a penalty, i.e., will be liable to pay a fixed sum of money to the other party. In snch cases, a distinction is drawn between a liquidated and unliquidated penalty ; and whether it is of the one kind or the other, depends on the language used in the contract. If it is a liquidated penaltr, then, When the breach of contract is committed. the party in default must pay that precise sum, neither more nor less; but if it is unliquidated, then he is not to pay the whole sum, but merely such part of it as corresponds to the amonnt of injury or damage done, and of which proportion a jury is the sole judge in au action of damages.
PENCEL. - A small flag orstremmer which was formerly carried at the iop of a lance. Also called P'ennoncel.

PENDANT-PENNANT.-1. In Heraldry, a part hanging from the label. resembling the drops in the Doric frieze. 2. A narrow llar of great length, tapering to a point, and usually carried at the lead of the
principal mast in a royal ship, to show that she is in commission. In the 13ritish Navy the Pendants are borne of three colors-red, white, or blue-according to the color to which the Admiral commanding the fleet pertains. On shore, Pendants are frequently ensployed at rifte ranges to indicate the strength and direetion of the wind.
PENDULUM.-In its widest scientific sense. a pendulum is a body of any forun or naterial which, under the action of some force, vibrates about a position of stable equilibrium. In its more usual application, however, this term is restricted, in conformity with itsetymology, to bodies suspended from a point, or oscillating about an axis, under the action of gravity. The simple pendulum consists (in theory) of a beary poiut or particle, suspended by a flexible string without weight, and therefore constrained to move as if it were always on the inner surface of a smooth spherical bowl. If such a pendulum be drawn aside into a slightly inclined position, and allowed to fall back, it evidently will oscillate from side to side of its position of equilibrium, the motion being confined to a vertical plane. If, instead of being allowed to fall back, it be projected horizontally in a direction perpendicular to that in which gravity tends to move it, the bob will revolve about its lowest position; and there is a particular velocity with which, if it be projected, it describes a circle about that point, and is then called a conical penchulum.

If the bob of the simple pendulum be slightly displaced in any manner, it describes an ellipse about its lowest position as center. This ellipse may, of

course, become a straight line or a circle. The bob does not accurately describe the same curve in suecessive revolutions; in fact, the elliptie orbit just mentioned rotates in its own plane abont its center, in the same direction as the hob moves, with an angular velocity nearly proportioned to the area of the - llipse. This is an interesting case of progrexsion of the apase, which ean be watched !y any one who will attacin a small bullet to a fine thread: or, still loetter, attach to the lower end of a long string, fixed to the criling. a funnel full of fine sand or ink which is allowed to escape from a small orifice. By this process, a more or less permanent trace of the notion of the pendulum is recorded, by which the ellijutic form of the path and the phenomena of progression are well shown. The very simple arrangement of apparatus, shown in the drawing, will be found convenient for the demonstration of the principles of
pendrums, as also the laws of impact, both in elastic and non-elastic bodies.
It is readily seen that there should be no progres. sion if the pendutum could be made to vibrate simply in a straight line, as then the area of its elliptic orbit vanishes. It is, however, found to be almost impossible in practice to render the pathabsolutely straight: so that there always is from this cause a slight rate of change in the position of the line of oscillation. But as the direction of this change depends on the direction of rotation in the ellipse, it is as likely to effect the motion in one way as in the opposite, and is thus easily separable from the very curious result obtained by Foucault, that on account of the earth's rotation, the plane of vibration of the pendulum appears to turn in the same direction as the sun, that is, in the opposite direction to the earth's rotation abont its axis. To illustrate this now well-known case, consider for a moment a simple pendulum vibrating at the pole of the earth. Here, if the pendulum vibrates in a straight line, the direction of that line remains absolutely fixed in space, while the earth turus round below it once in 24 hours. To a spectator on the earth, it appears, of course, as if the plane of motiou of the pendulum were turcing once round in 24 hours, but in the opposite direction. To find the amount of the corresponding phenomenon in any other latitude, all that is required is to know the rate of the earth's rotation about the vertical in that latitude. This is easy, for velocities of rotation are resolved and compounded by the same process as forces, hence the rate at which the earth rotates about the vertical in latitude $\mathcal{S}$ is less than that of rotation about the polar axis in the ratio of $\sin . \hat{X}$ to 1 . Hence the time of the apparent rotation of the plane of the pendu24 hours
lum's motion is $\frac{}{\sin K}$. At the pole, this is simply
24 hours; at the equator,it is infinitely great, or there is no effect of this kind; in the latitude of Edinburgh ( $56^{\circ} 57^{\prime} 23.2^{\prime \prime}$ ), it is 28 hr . 37 m .48 seconds.

We have not yet alluded to the obvious faet, that a simple pendulum, such as we have described above, exists iu theory only, since we cannot procure either a single heavy particle, or a perfectly light and flexible string. But it is easily shown, although the process cannot be given here, that a rigid body of any forus whatever vibrates about an axis under the action of gravity, according to the same law as the hypothetical simple peudulum. The length of the equivalent simple pendulum depends upon what is called the radius of gyration of the pendulous body. Its property is simply this, that if the whole mass of the body were collected at a point whose distance from the axis is the radius of gyration, the moment of lnertia of this heavy point (about the axis) would be the same as that of the complex body The square of the radius of gyration of a body about any axis, is greater than the square of the radius of gyration about at parallel axis through the center of gravity, by the square of the distance between those lines. Now, the leugth of the simple pendnlum equivalent to a body oscillating about auy axis is direetly as the square of the radius of gyration, and inversely as the distance of the ceuter of gravity from the axis. Hence, if $k$ be the radius of gyration of a body about an axis throngh the center of gravity, $\sqrt{h^{2}+h^{2}}$ is that about a parallel axis whose distance from the first is $h$; and the length, $l$, of $k^{2}+h^{2}$
the equivalent simple pendulum is $l=\frac{k}{k}$. This expression becomes intinitcly areat if $h$ be very large, and also if h le very simall (that is a body vibrates wery slowly about an axis rither far from, or marar to, its ("anticr of erravity). It mast thereforo have a minimm value. By solving the equation above as a cuadratic in $h$. we tind that $l$ camot bo less than $a k$, which is, therefore, the length of the
simple pendutum corresponding to the quickrost vibrations which the borly ran rexemte about any axis parallel to the given one.

As the longth of a rod or lar of any material depends on its temperature, a clowk with an ordinary pendulam goes faster in cold, ami slower in hot, weather. Various contrivaneses have bern devised for the purpose of diminishing, if not destroying, these effeets. The ment prefert in theory, though perhaps not the most avnitable in pratiore is that of Sir 1). lirewster, foundel upon the experimental diseovery of Nitscherlich, that some erystals axpent by heat in ons direction, while comeracting in the perpendienlar one; and therefore that at rox may la: cout out of the crystal in such a direction as not to alter in length by any change of temperature. In the methot of correction asually employed, and called compensation, alvantage is taken of the fact that different substances have different ereflleiments of linear dilatation; so that if the lobl of the pendalum be sosuspended as to be raised liy the expransion of one substance, and depressed by the expansion of another, the lengths of the cifective portions of these substances may be so adjusted that the raising and depression, taking place simulancously, may lave the position of the bob unaffected. There are two common methods of effectimg this, diflering a little in construetion, but ultimately depending on the same prineiple. Of these, the mercurial jendulum is the more easily described. The rod and framework are of steel. Insigle the framework is placed a cylindrical glass jar, nearly full of mercury, which can be raised or depressed by turning a nut. By increase of temperature, the steed portion is lengthened by an amount proportional to its length, its cocflicient of linear tilatation, and the change of temperature, conjointly-ant thas the jar of mereury is removed from the axis of suspernsion. But negleeting the expansion of the glass, which is very small, the mereury rises in the jar lyy an amount proportional to its bulk, its coefficient of eubical dilatation, mand the change of temperature, conjointly. Now, by increasing or diminishing the quantity of mercury, it is obvious that we may so adjust the instrument that the length $\left(\frac{k^{3}}{h}\right)$ of the equivalent simple pendulum shall be unaltered by the change of temperature, whatever be its amount, so lons as it is not great enough to sensibly change the coetlicients of dilatation of the two metals. The serew has nothing to do with the compensution, its use is to adjust the length of the peadulum so that it shal! vibrate in one second. Sce Bub, Guen-pendulum, and Plummet.

PENDULOM-HAUSSE. - A contrivance used to point field-pieces, and at the same time to obviate the error which arises when the wheels of the carriage stand on uneven gronnd. It consists of a scale and shder. The seale is made of sheet-hrass ; at the lower end is a brass bulb dilled with leats. The slider is of thin brass, and is retained in any desired position on the seale by means of a brases set serew with a millecl head. The scale is passed through a slit in a piece of steel, with which it is connected by a brass screw, forming a pivot on which the seale can vibrate laterally; this slit is made long enough to allow the scale to take a vertical position in any ordinary inefuality of the ground on which the wheels of the carriage are required to stand; the ends of this piece of steel form $t$ wo journals ly means of which the scale is supported on the seat attached to the piece, and is at liberty to vibrate in the direction of the axis of the piece. The seat for suspending the pendulum-hansse upon the niece is screwed to the base of the breche in such
a manner that the centers of the two journal motelaesg shatl be at adistanes from the uxis ryual to tha gromtest exterior radius of the base of the breenh. 'Thes hajght of the frontosight bring "equal to the diapart of the piece, a line from the top of the ma\%zle-sight to the zero, which is the pivot of the seate, is pare
 of sight passing therough the enter line of the wale and the toj) of the muzale-sight, will be parallel to the uxis in any prasition of the piene ; thereseale: will threfore always indicate correctly tha angla which the line of sight makes with the axis. The hanuse, the seat, and the makrkesight, vary in thrir comstruction and arrangement, with the piree for which they are intended. The gramations on the seate are the tangents of rach chartur-decerew to at raling "fgal to the distanco between the mazole-sight and the erntur of the journal-nonders, whish are in all eases one inch in rear of the highest paint of the base of the breed.

PENETRATION OF PROJECTILES.-The Mrist © OMmon substaness encountered by projeretiles are arranged in the following serics, in the order of thrir resistance to penctrition: air, aceter, sumel, nowed, lead, copprr, arrought-iron, soft sterl, cast-iron, chilledirun, hardened xteel, etce. All othar suistances may be arranged between these, or in continuation of the series. Air opposes the motion of a projectile by its inertia, elastic force, and the pressure duc to its weight. The projectile compresses the air in its front and disperses it laterally, while the rear of the projectile is relieved by its motion of the normal pressure of the air. A small amount of resistance is also met with in the shape of friction. In the cuse of noter these resistances are increased by the greater density and weight of this sulstance, and there is also a slight additional resistance due to the cor hesion among the particles. Saul, bring a solid, or at least made up of solid clements, presents the athditional resistance of "crushing-strength." It cannot be penetrated at a high velocity without erushing some of the grains, and the higher the velocity tha greater the amount of work expended in this manner. This resistace to crushing implies a continuation of the elastic force beyond the elastic limits, and in volves indirectly tensile strength, since a solid in be ing crushed must enlarge laterally and finally yield to a strain of tension. In penetrating zomel, lecid, or any of the other materials, "tensile strengrth" forms the ehief element of the resistance, while incria ath friction become of minor importance.
The office of elasticity in all these cases is to trans mit the effeet of the projectile from those particles first acted upon to those more remote. and thus calling into play their inertia or tensile strength. as the case may be; and were it not for this property, the statical resistance of a plate of any material to perforation would be entirely independent of the thickness of the plate; a thick plate would offer no greater resistance than a thin one, since each layer or unit of thickness would be perfornted without receiving any assistance from its neighbors. The rourk of penetration would then vary directly with the distance penetrated, or the thickness of the plate: claticity, however, has its maximum point of uscfulness in resisting penetration, and leyond this it beomes a rreat disadvantage. While increasing the number of fibers or elementary portions of the material broken at once, thereby increasing the statical resistance, it diminishes the time during which this risistance opposes the motion of the projectile in like ratio: and the amount of motion destroyed or generated increases with: the time as well ats with the force or resistance. For this reason hardened steel and chill ed iron are less efficient in stopping projectiles than soft iron, although they offer anmel greater statical resistance to penetration. There are many reasons for believing that a general furmula for the penceration of projectiles in all materials may be deelucent. when experiments have been sufficiently extended,
in which the constants will simply require changing to suit any particular case under consideration.
That the penetration of an elongated projectile is influenced by the form of its lead has been shown hy experiment, many different forms of head having been tried. The flat head has been strongly advocated, because it is asserted to be a better form for punching than any of the pointed heads, and because it is also asserted that it will bite into an iron plate at such an oblique angle as would cause a pointed head to merely glance. But the truth of these assertions has not been generally admitted. The flat-headed projectile is objectionable both as regards accuracy and velocity, and it has also a tendency to upset or bulge at the head on impact, and this resnlt is very marked. The pointed projectile is superior in accuracy and range, and does not upset on impact to any thing like the same extent. It is asserted that it cuts through an iron plate to a better advantage, or rather tears through, bending back the plate.

Another point in connection with the penetration of elongated projectiles is the effect of different forms of head upon the rotation of the projectile when the impact is oblique. If the axis of the projectile is tangent to the trajectory on impact, and at the same
ter, so that its axis becomes perpendicular, or nearly so, to the face of the plate, having then only the least thickness to penetrate.

It is dificult to obtain for comparison the results of practice with the fiat and pointed headed projectiles of the same material fired at targets inclined to the line of the range; the former having been so little used, as its form is so objectionable, both as regards accuracy and velocity. On the whole, it may be said that in the case when the projectile ought to be capable of piercing the plate or target, there is little difference between the effect of a tlat head and a hemispherical head; but when the target is beyond the power of the projectile, the hemispherical bead makes the deepest indent.

The impact of a projectile, in addition to indenting or penetrating a target, produces more or less bending, tearing, and other damage at a distance from the point of impact; which effects may be classed under the term "Concussion." The effect of concussion is transmitted from the point of impact in all directions, in the same manoer as soundwaves, and increases with the elasticity of the material. Whatever tends to diminish the elasticity of the structure, as dividing it into many pieces, or using soft ductile material to receive the projectile,

time normal to the target, there will be no tendency to rotate about any axis parallel with the plane of the target. In the drawing, if we suppose a projectile to arrive at $A$, under these conditions it will undoubtedly penetrate the plate directly. But let one arrive at $D$ or E, and there will be a tendency to rotate, and this tendency will depend upon the form of the projectile as well as upon the angle between the trajectory and its axis.

It is often asserted, however, that the advantage in the latter case will be in favor of the flat-headed projectile, since the moment of the rotating-force will be the variable resistance of the plate naltiplied by the lever arm $D d$, for the pointed projectile, and the same multiplied by a much shorter lever arm, $E \mathrm{Ee}$, in case of the tlat-headed projectile, and this may be negative; or in otber words, there may be a tendency to rotate towards the normal, which would be a decided advantage. This would take place wheu the line of the trajectory passed within the base of the shot. In the third case, represented at $B$ and $C$, a projectile is moving with its axis tangent to the irijectory, but oblique to the target: bere there is also a tendency for the flat-headed projectile to rotate toward the normal, but it is questionable whether such rotation would be advantagcous. The pointed projectile would lave a less tendeney to such rotation.

On the other land, the respective motions of a flat and pointed headerd projectile on obligue impact are explained as follows: It is asserted that the flatheaded projectile, on striking, couts out aportion of the face of the plate, which it carries along in front, thas ineroasing the thickness to be penetrated; and. remaining nearly parallel to itsoriginal direction, it has to pass throngls the plate obliguely: While, if the projectile has a pointed lemb, the point encers at dirst more cleeply into the plate than the Hat head, and the ernter of gravity moving forward, the projectile turns around more readily than with the lat-
will diminish the effect of concussion. This effect is expended in two ways-First, in giving motion to the structure or in developing inertia; and, Second, in overcoming the tenacity of the material, either in bending or tearing those portions first acted upon from those more remote. Both of these components increase with the whole amount of work expended by the projectile, other conditions being cqual. See Impact of Projectiles and Projectiles.

PENETRATIVE EFFECT.-Generally speaking, the penctrative effect depends on the shape and material of the projectile, on its energy and diameter, and the direction with which it strikes the target. It is quite impossible to accurately determine the coefficients of resistance for the different materials of projectiles and plates; but practically the amount of penetration, whether for iron or steel plates, or masonry, or earth, may be determined by experiment. Various empirical laws sulfice to give approximate results; but they do not stand the test of any general applieation. In consequence of the varying qualities of resistance both in projectiles and targets, the variation in shape of the projectile on impact, the possibility of the projectile breaking up, and the amount of heat developed on impact, strictly analytical investigations cannot be made. If $\dot{r}$ is the velocity required for a projectile to pierce an armor-plate with right-angled impact, its cnergy per inch of cir$\mathrm{H}^{2}$
cumference (Sce Kinergy ) is $\frac{1}{}$. But if the 2g. $\pi \mathrm{d}$.
projectile strikes obliquely at an angle $\Lambda$, then, if it turns in on its point amil perforates normally, it is realily seen that the velocity for perforation mast be V
, and consequently the conergy per inch of cir-
$\sin A$
WV8
eumference for oblique perforatiou will be-
$2 g \pi d \cdot \sin ^{3} \dot{A}$
that is the number of foot－tons per inch of circum－ ference ${ }^{(0)}$ prorforate an armor－phate oblinumely is foumd by dividing the number of foot－tons reynired for perforation by right－anglad impact by the square of the sine of the ungle of impart．If the projec tile groes straight dhrough the phate without turning in，the energy per ineln of circumference for obligue W゙ど

## perforation will be $\frac{-}{2 a r} \pi$ d．Sin 1

In this mase we would hatve best resulis for flat－hend ed projectiless and comparatively thin armor－plates．

The results of experiment show that the amenme of penetration is tircetly proportional to the product of the weight of the projeretile．multiplied by its vo－ Iocity raised to powers that vary but little from unity for the different resisting bodices．The penctration into masses，such as carthen purajoeis and thick plates，is inversely proportional to the arcia of cons－ scetion of the projectile．From these deductions we obtain the expression $W=\frac{P^{v}}{d^{2}}$ in which $W$ ，culled The penctrative effect，is taken as a measure of the projectile＇s power，$p=$ weight of the projertile in pounds，$v=$ redocity of impact in foct．$d=$ diame－ ler of shot in inches．Letting $S=$ penctration of the shot in inches，we lave（ 1 ） $\mathrm{S}=\frac{1}{A} \cdot \frac{\mathrm{p}^{\mathrm{V}}}{\mathrm{d}^{3}}=\frac{\mathrm{W}}{A}, ~ A$ being a cocfficient，depending upon the shape of the projectile and the nature of the resisting substance， to be determined by experiment．For the best quall－ ity of wrought－iron plates，subjected to thr action ol ogival projectiles of steel or chilled cast－iron，the above formula may be used．For plates not exeeetl－ ing $2 \frac{1}{2}$ inches in thickness $\mathrm{A}=575$ ，whence（2） $\mathbf{N}=$ 17

For plates of a greater thickness than $2 \frac{1}{2}$ inches
W W
（3） $\mathrm{S}=\frac{-}{360}-1.5$ inches．For plates not exceeding 20 inches in thickness，this formuln gives results cosely approximating those determined by experi－ ment．The depth to which a projeetile will bury it－ self in a resisting body，which is too thick 10 bc per－ forated，is less than the thiekness of the obstacle that it will just pass throngh．For cxample，the shelis of the 2.76 inch Italian fielo－gun，at 1,000 yards range，pass through a brick wall 1.97 fcet thick，but only penetrate 1.66 feet into a similar wall 3.94 feet thick．In speaking of the peractration into masses of earth，wood，or masonry，the depth of penetra－ tion is meant，and $S$ in formula（ $I$ gives the number of inches the projectile will hury itself in a resisting body too thick to be perforated．The thickness of plate that the projectile ean just pass through is gencrally taken as a measure of the power of guns against iron plates，and $S$ in formulas（2）aud（3）has this signification．The penetration of a projectile depends not only on its velocity，but also upon the direction in which it strikes the object，the compo－ nent of the velocity normal to the surface struck de－ termining the penetration．In this case the cosine of the angle of incidence should be introduced

To find the penetrating power of a projectile，at any point of its tight，into armor－plates，the em－ pirical formula of Major Noble，of the Royal Artillery． is used．

$$
\mathrm{b}=o\left(\frac{\mathrm{~W}}{4 r R g h}\right)^{\frac{1}{2}}
$$

in which，$b=$ penetration in feet ；$v=$ velocity on impact，in feet per second ； $\mathrm{H}^{\gamma}=$ weight of shot，in pounds：$r=$ ratio of diameter to circumference of circle， $3.14159 ; ~ R=$ radius of shot，in feet：$g=$ force of gravity， 32.16 pounds；$k=a$ co－etficient determined by experiment，depending on the nature
of the wrought－iron in the plate，and the matore and form of the Juat of the shat．For a mpherical pro－
 For an ogival lomated projoctile ngainst ab backed plate（ $k$ ），is nssumed（0）be $4,8 \% 1,4 \times 0$ ．＇The plate in ronsidered to be vertioni，amil the trajerotery tes be in ＂plane perpendicalar to tho phats：Should the sloot strike the plate obligucly，the value of（b）determined us above，must be multiplicel by the sine of tho angle of incidonce．For agiven projectile and a plate of known thirkness．the work roguirul is protuce penctration will be found frote the equation placed $W \mathrm{~F}^{2}$
mader the form，$-=2 r R k b^{2}$ ；and the velocity $2 g$
muederl at impract，from the same fopation solvert with roference to（v）．
PENNATED DAGGER－In lialian zurit guenrle with threr blades exjanding by meams of a spring when a binton was prosered in the bandle，and form－ ing a gruard of great length and brearlih，in which the udversary＇s sword might be eaught and snapped．
PENNETIERE．－ 1 puckot or small bug in which slingers carried stones and leaden balls．Nlso writ－ ten P＇anctirre．

PENNON．－1．Formerly a copper wing of along． light arrow（Virpton）substituted for a feather．2．A smatl，pointed，or swallow－tailed flag，carried by the

medireal kniglit on his lanee，bearing lis persomal de－ vice or badge，and sometimes richly fringed with gold．The device was so placed as to appear in its proper position when the weapon was laid for the charge．Pennoncelle is a long streamer－like tlag．the diminntive of tle pemnon．Sec Flags．
PENSIONS．－In the United States peasions are most generously granted by Act of Congress in the many cases of persons who have seen active service in the Ariny or Navy，and who have been honorably discharged．They are also awarded to widows， orplans，or other persons dependent on those in－ stanced above．The existing pension－list of the United States includes those which have been grant－ ed for account of services rendered in the W゙ar of 1812；the Mexican War，and the War of the Rebel． lion．For the laws governing the distrilution of pensions，and their amounts，etc．，see Recised Sta－ tutes of the United States．

In England，pensions are awarded for good service． for mere faithful ordinary service，for wounds，and to representatives of deceased officers．Goed－xerrice Pensions are rewards to sclected Ofticers in the Brit－ ish Navy for distinguished service．In 1873 they were as follows ： 12 A dmirals had $£ 300$ eaclı． 25 （ap－ tains $£ 150,1$ General of JFarines $£ 300$ ，in do．$£ 200,2$ Colonels $£ 150$ ，and 5 Medical Ofticers $£ 100$ ：total £9．150．In 1875－66 the total was $£ \% .500$ ．The cor responding pension in the Army is called a Reward for Distinguished service．
The Pensions for Iong Service are awarded in the army to Non－commissioned Officers and Soldicre Who have scrved 21 years in the infaniry，or 24 years in the cavalry．or carlier if lisabled from further ser－
vice, according to the wornds. loss of hea!th, and conduct of the pensioner. The amount is fised by the Commissioners of Chelsea 1Iospital, and varies from $1 \frac{1}{2}$ d. to 3 s . 6d. a day, the lower rates being mainIy confined to Negro Pensioners from the West India regiments. Pensioners are either Jn-Pensioners of Chelsea, or Kilmainham ITospitals, in which case they forego their proper pensions, andreceive board, lodging, and a small sum for tobaceo-money, or OutPensioners residing where they please, and drawing their pensions from the Staff Ofticers of Pensioners, of whom there is one in every considerable town. These men can follow other pursnits, often do so with very great success, as their military habits of regularity stand them in gool stead in civil life.

Pensions for Woundware common to both serviees, and are limited to ofticers. They are awarded respectively by the Secretary of War and Lords of the Admiralty, for serions bodily injury, as the loss of a limb or eye, and vary according to the rank of the recipient and other circumstances. In cases of serious injury, temporary pensions are sometimes granted, or gratuities. The charge for Pensions for Wounds for $1875-76$ was-arny, 122 recipients, $£ 16$,453 ; navy, 85 recipients, $£ 9,036$; total; $£ 25,479$. In the case of Common Soldiers and Sailors, wounds may serve to hasten or angment the pension for service, but they have no distinctive Pension for Wounds.

Widows of Commissioned and Warrant Officers in the army and navy receive pensions so long as they remain unmarried, provided they have been married severally twelve montlos when their husbands die, and that the latter were under 60 years of age ( 50 for Warrant officers) when they married the Claimants. Such pension is not granted if the widow be left in wealthy eircumstances, and lies dormant during a secoud marriage, though it may be revived should she again become a widow. The amount of pension varies according to rank, and there are three distinct classes for each rank: 1st, When the husband was killed in the battle, or died within six months of wounds received therein: 2d, When he died from some cause distinctly falling within the sphere of his duty, but not from wounds in action ; 3 d . When he died in the course of nature.

In an elaborate opinion given by Mr. AttorneyGeneral Cushing, published by the War Department in General Orders, No. 11 of 1855, he draws the conclusion that "the phrase "line of duty" is an apt one, to donote that an aet of duty performed must have relation of causation, mediate or immediate. to the wound, the easualty, the injury, or the disease producing disability or death." Every person (says Mr. ('ushing) who enters the military service of the coun-try-officer, soldier, sailor, or marinc-takes upon himself eertain moral and legal engagements of duty which constitute his official or professionai obligations. While in the performance of those things which the law requires of him as military duty, he is in the line of his duty. But at the same time, thongh a soldier or sailor, he is not the less a man and a citizen, with private rights to exercise and duties to perform ; and while attending to these things he is not in the line of his public duty. In addition to this, a soldier or sailor, like any other man, has the physical faculty of doing many thinge which are in violation of duties either gencral or special; and in doing these thiners ler is not arting in the line of his duty. Around ail those acts of the soldier or sailor which are oflicial in their nature the pension laws draw a degishative line, and then they say to the soldier or sailor: If, white performing ats which are within that line, you therelly incur disability or death, you or your widow or children, as the calse may be, shatl refcive pension or allowance; luat not if the disatbility or death arise from acts performed outside of that line; that is, absolntely disconneted from. and wholly indeperident of, the performance of duty. Was the cause of disability or death a cause within the lime of
dnty or outside of it? Was that cause apportaining to, dependent upon or otherwise necessarily and essentially comerted with, duty within the line; or was it unappertinent, independent, and not of neressary and essential connection? That is the true test-criterion of the elass of pension cases under consideration.
PENSTOCK. - A machine composed of timber, which, by means of a movable board, enables the aefenders of a fortress to allow such a rush of water from the batardeaus as to inmolate and destroy the works which the enemy may have constructed in the ditcll.
PENTAGON.-In fortification, a figure bounded by five sides, which form so many angles, capable of being fortified with an equal number of bastions,
PENTATHLON. - The five exercises performed in the Grecian games, namely, leaping, running, quoiting, darting, and wrestling.
PENTHOUSE.-1. A shed langing forward in a sloping direction from the main wall of a place. 2. A small house, made of boards united by hooks and staples, for protecting a guu and its carriages mounted en barbette from the weather.
PEON.-1n ludia, a term formerly given to a footsoldier, but in these days it does not bear this signi-


Perclose. half of a garter with the buckle. PERCUSSION bOLLETS.- Percussion bnllets may be made by placing a small quantity of jercussion
 powder. enclosed in a copper envelope, in the point of an ordinary rifle-musket bullet, or by casting the bullet around a small iron tube, which is afterward filled with powder and surmounted with a common percussion-cap. The impact of the bullet against a substance no harder than wood is found to readily ignite the percussion charge or cap, and produce an effective explosion. These projectiles can be used to blow up caissons and boxes containing ammunition at very long distances. See Bullet and Projectiles.
PERCUSSION CAPS.-Small copper cylinders, closed at one end, for conveuiently holding the detonating powder which is exploded by the act of percussion in percussion-arms. Caps were not used with the earliest percussion-arms, whiel the Rev. Mr. Forsyth, of Belhelvie, Aberdeenshire, patented in 1807: but they became tolerably general between 1820 and 1830, and were adopted for the army by 1840. With the adoption of breech-loading arms, the use of semarate caps has been discontinued. The cap now forms a part of the cartridge, and at one operation is placed with it in the opened breech of the gun. The manufacture is extremely simple: A shect of thin copper is stamped into pieces of appropriate shape, which are bent into the form of caps by stamping-apparatus closing round a mandril, the whole being done in one machine by two operations. The caps are then placed in a tray, mouths upward ; and the inside of each is touched with a strongly adhesive varnish. Oyer this is dusted the detonating powier, all the particles whieh fail to adhere being hown, dusted, or shaken out. A stamper once more is fored into the cap, to fix and compress the powder, and the operation is completed. For muskets, the caps are charged with erpald parts of fulminating mercury and chlorate of potash; for cammon, with it mixture composed of two parts of chlorate of pentash, two parts of native
sulphuret of antimony, and one of jow ertered glass : the last ingrealiont taking no part in tho rlomeral atetion, and being added meroly to incrave llae frice tion. See C'rnerr-fire Melallir-case C'artridyr, and Loorls.

PERCUSSION FUSE.- 1 perronssion-fume exploters by the striking of some pmoticular point of a projectile against an objecer, as in tho anse of rituecamonompojectiles. One of the best and simplest forms of this kind of fuse is the ordinary frransoiont cap placed on a cone atlixed to the print of the projectile. "Jhe jpece for which the eonse is attachert may be tixed or movalole; in cither rases, the aplate ratias shondal be covered with a safety-cap to jorevont the percussion-caj, from taking tire by the dise hargo of the piece. "lone driwing represerits at fuse of the pereussion kimb, in which $b$ is a movalhare comer-pioce, bearing a maskrt-cals (c); mat $a$ is the safely-(*at) whiroh covers the fuse-hote. When the projuctile is set in motion, the cone-piece, or "plunger"," by its incriat, presses against the shoudders of the fasebole; when its motion is arrested, the incretia of the cone-picce catuses the perrassion- 'al to mapiong
 against the safety-eats, whieh produces explosion. 'T"he explosion of the projeetile may low mate to take place at any desired time, after the explosion of the ctap, by interposing grain, or mealed pow゙der, between the cap) and lursting Charge Exporience has shown that the plinger should be en. closed in a tight metal case to prevont it from leing foulend by the action of the powder; and to prevent premature explosions, the cone-picee should be confined by a screw or other device, to prevent it from moving until the projuetile strikes ils object.

The essential requirements of a good prepussionfuse are: that it shonlid not be ignited by the shock of discharge or on striking water; that it shall be ignited on the impart of a shell agranst the object, and that it mis not be liable to explode by handling or during transport. The perenssion-fuse has many points in its favor: it assures the bursting of the projectile ; it can be used for all ranges, be they never so great; it admits - a very important desid. eratum in war-of estimating distances, and of correting the error of the estimation : it augnents the result of firing by adding great moral to physical effect, due to the explosion of the projectile in the midst of the cnemy. Its omly inconvenience is its inability to cause the bursting of the projectile before it has tonched the object, thus rend ring the fffects of fire dependent upon the nature and conformation of the target at the point of impact. See Fusw.

PERCUSSION-LOCK.- $\boldsymbol{A}$ lock of a gun in which grmpowder is exploded by fire obtained from the percussion of fulnimating powder. Before the invention of frietion-tubes, perenssion eaps or wafers were nsed in connection with a lock, which was serewed to the body of field pieces, and to the loekpieces in heavier ordnance. The percussion powder was placed in a thin layer betwom two cireblar pieces of cartridge-paper, united by glue, pressel firmly together, dried and varnishet with nuy waterproof varmish forming the erafer. The cips wert made by forming the wafer at the bottom of a paper eap which fitted on the end of the lock hammer.

PERCUSSION - POWDER. - Poweter composed of such materials as to iguite by slight percussion: fulminatins powder. See Gunponder.

PERCUSSION-PRIMERS. - 'Jhe percussion-primer has a wafer or flat-head attached to a quill-barrel. The process usually observed in sulceting the material and manufacturing the primers is as foilows: Each quill must be claritied and furnish a barrel at least two and a balf inches long. The harrel is to be ronnd, free from tlaws, pith, and britthess oc-
casionad lyy relarifying, or any athor dofoed which

 an incla at any part, nor low lops than seronteror lamdredthes of an inchs, wilhin one and onmelalf inches of tho end that is cont from the quill. 'The: small emd mast not be broken or braiked. ('ut tho barrals of the duills alose from the featha- and insert them into the socket of a woothon blork made two inclats decoly ant twotantls of anl inch in dianctor. A pumelt, having ton culters radiating from the stom, is entered into conch quill-harrel, and Iriven down with a smart tap, so an to silit the appur cond of tha barrel into torn pronges, and as far its the
 promigs, so that thry will lie on the surface of the: hork; a circular punch is applied torach, and made by a blow to cut off the pronge to its own dianceter (i).52 incoli). Very stout paper, previonsly propural by two coats of shellac-varnish (gumlac: dissolved in aleohol), is punched with holes 0.17 inch in liameler, mmel so arranged as to correspomel with the somekels of the wooten block. 'The finill-barrels are freed from pith, the pumehed paper laid on the block, the lopless correspontling and the varnished side 1 pr, the quillbarrels put through the paper into the sordects of the: block, filled with grained poweler, sevengrains Troy, and pressed tirnly down with their prongs that on the varnished side of the sheet of stont juber. Brash the shellac-varnish over the spreces of paper loctween the heads of the 'puill-harrels, and spreat a sheet of good writing-paper. slightly moistened with water, over the entire surface of the stont sheeet and the prongs of the puills. Put the block and the marets thus sturek togrther, with the ruill prongs betwern them, into at press, apply a force of about thirty tous. and kerp them long enough to set the prongs and make the sherets of paper adtuere firmly. Ench quill is separated from the card by means of a circular punch, which cuts out it dise 0 . 62 inch in diameter. and of conrse includes the prongs cuclosed between them. A stellated dise to cover the head of the primer is punclsed out of linen-made paper of the finest and closest fabric. This ase has twelve points-diameter from exterior points, 1.25 inches. from intarior 0.7 inch. Metal plates arc at hand with superticial recesses about 0.65 incles in diameter. On calch of these a stellated cover is placed, and four grains of fulminate deposited on it. 'This is composid of tive parts of fulminating mereury and one of mealed powder, both dry. Place the head of the primer on the charere of fulminate, holding it by the quillbarrel and pressing it down firmly: brush good wheat-paste on the points of the covir and on the ander surface of the head, turn the points over, and anite them neatly and closely on the paper homat. The primer is now mate and only requires to be protected from moisture. For this purpose. shedlac is dissolved in aleohol, so as to be thin rnough to be laid on with a brush. This is of a brownish yellow; a portion is prepared with lampblack. Coat over the the guill-barrel with shollac.. then the under side of the wafer with the blark shellac-varnish. Then shellac the upper surface of the wafer. Tip the end of the quill-harrel with lhack varnish, and apply a second cont of nucolored bel. lac thiekly abont the primer. See f"riction-primur.

PERCUSSION-WAFER. -The earliest percussionprimers in use were made in the fom of wafers. The wafer was placed in the vornt of the piece. the metal of the gun being cut away in such it manner as to form a recess at the exterior oritice of the vernt. in which the wafor was depositod, and exposed to the direet action of the bammer.

PERDU.-A woral adopted from the French, signifying to lie flat and elosely in wait. It likawise means employed on desperate purposes ; acenstomed to droperate enterprises.

PERER.- In ohld form of gun, u=ed mostly on ships. for throwing stone-shot.

PERFORATED DISC GUNPOWDER.-Compressed gunpowder, perforated with a certain number of holes. From the excessive pressure given to the discs, the powder burns slowly ; it has been, and is still used for diseharging riffed ordnanee by some foreign artilleries. In the British artillery it is not used. See Gunpowder.

PERJURY.-The crime committed by one who when giving evidence on oath as a witness in a Court of Jnstice, or before some constituted authority of the same kind, gives evidence which he knows to be false. But in order to make the giving of the false evidence liable to eriminal punishment, it must have been not only false to the knowledge of the witness, but the matter mast have been material to the issue raisen. If the falsehood oecurred as to some tritting or immaterial fact, no crime is eommitted. Noreover, it is necessary, in proving the crime, that at least two persons should be able to testify to the falsehood of the matter, so that there might be a majority of oaths on the matter-there being then two oaths to oue. But this rule is satisfied though both witnesses do not testify to one point. The perjury must also have taken place before some Court or Tribunal which had power to administer the oath. Though in some Courts affirmations are allowed instead of oaths, yet the punishment of false affirmation is made precisely the same as for false swearing. The pumishment for perjury was, before the Conquest. sometimes death or eutting out the tongue; but, latterly, it was confined to fine and im. prisonment, and at present the latter is the only punishment, with the addition of hard labor. The crime of subornation of perjury-i.e., the persuading or procuring a person to give false evidence, is also punishable as a distinct offense.
PERKERNUCKA.-An Indian term for Petty Officers.

PERMANENT ANGLE.-It isalways important that the gunner should be able to aim directly at the object, so as to reduce the personal equation to a minimum. But in consequence of the deviation due to the rifling, there is always a deflection from the line of sight. To avoid this, the rear sight is set at a permanent angle of deffection, so that, no matter how much it is raised, the line of sight will always pass through the object. The formula for determining the angle for each range is
deflection

## $\tan \mathrm{A}=-\quad \times$ eosec.eleration. <br> range

Let $b$ c represent a perpendicular rear sight, and $f$ the front sight of the gun ; then $b f t$ represents the
angla $e$ is changed, the product of the three variables d
in the expression - cosec $e$ is always very nearly cou-
stant. A is always small and never exceeds about 38
It varios for diferent ordnance, and is practically found by firing a series of rounds at different ordinary clevation to find the corresponding mean ranges and drifts; the value of tan $A$, from the above formula, for cach clevation is then calculated, and the mean of all the values of $A$ thus found is called the permanent angle of drift. By this means one adjustment of the scale is sulficient instead of two, and the deflection leaf is only used for oceasional fine adjustment and for accidental cirenmstances, such as cross wind or lifference of level of wheels. With howitzers, however, the varying charges prevent the use of this plan, and no nermanent angle of drift can be found for them, which will do under all cireum. stances; their tangent seales are therefore exactly perpendicular to the axes of the piece and of the trunnions, and they are provided with long detlectiou bars.

PERMANENT FORTIFICATION.--Permanant fortifications are designed to seeure the possession of those points that are of importance to the safety of the conntry, and also those that will ormay have an important influence on the operations of a defensive or an offensive war, in which the country may be engaged. To seenre them, they must be made so strong that to gain possession of them, an enemy wonld have to resort to the tedions, laborious, and costly operations of a siege or blockade. Whatever diversity of opinion may be found amongst engineers and writers on permanent fortification, as to the best mode of arranging the elements of these defenses to attain this end, most of them agree on certain general conditions as necessary.

These conditions, thus generally admitted, may be enunciated as follows: 1st. They should be of sufticient strength to resist with snccess all the ordinary means resorted to by an assailant in an open assault. 2d. Have secure and easy means of eommumieation for the movement of the troops, both within the defenses and to the exterior. 3d. Be so planned that every point exterior to the defenses within eannon range slkall be thoroughly swept by their fire. 4th. Be provided with suitable shelters to protect the troops, the armament, and the magazines of provisions and munitions of war, required for their defense, against the destructive measures of the assailant of every deseription. 5th. And, finally, be provided with all such aecessory defensive means as the

line of sight, the gun being laid on the target, $t$, at the angle of elevation, $b f c=e$. Supposes to be the print where the shot falls, then $t s$ measured at right angles to the line of sight, represents the deflection of the shot. Join a $f$, produce it to $a$, draw $b a$ at right angles to $b t$, and join $a c$; now $a$ is the point at whiel the head of the rear sight should be placed in order to compensate for the deflection $t s$; and $a$ $c b=A$ is the angle of deflection required. Let the range $f$ ' $t$ chual $r$, and the deflection $t s$ equal $d$. Now, in the similar triangles,

$$
\begin{aligned}
& \frac{a b}{\text { lif }}=\frac{s t}{t f}=\frac{d}{r} \\
& -=-\quad \tan \Lambda=-\operatorname{cosec} . e .
\end{aligned}
$$



It is found practically that for ordinary survice angles of elovation, the values of the ranges and lateral deviations vary in sueh a way that when the
natural features of the position itself may afford, to enable the garrison to dispute with energy the oceupancy by the assailant of every point both within and exterior to the defenses. The defensive branch of the military engineer's art consists in a knowledge of the menns which are employed to fultia the above conditions, and of their suitable adaptation to the natural features of the positions he may be called upon to fortify.

The most simple mode of fortifying a position in a permanent manner consists in inclosing it with a rampart surrounded by a parajeet, with a diteh the scarp of whicl, when dry, is revelted with masonry, and so covered by an earthen mask that it camonot be breached except by hatteries placed on the border of the countersera]. The gencral form of the parapet and diteln to fulit the first of the general conditions given above will be better molerstood by an exame ination of the profile which is a sortion matle by a vertieal plane perpendicular to the general direction of the prineipai bounding line, in plan. The ram-
part serves to give the troops suml armamont, whichs are phaced on top of it and behime the parapet, it commanding view over that gromad to be Eratarded by the fire of the dofernses; whilst at the same time, it increases the olsatacle to ath open assanlo. by the: atlditional height it gives to the seary. 'The top sur-


A, Rampart; B. Parapet; C, Scarn wall; II, Ditch G, Comnterscarp; $E$. Covered-way; F, Embankmont of covered-way. a $b_{\text {, }}$ rampart slope : be, terre-plein: c d, bangucte mbpe; de, banquette tread ; e f, inturior slope; f, interior creat; §g, superiorBlope; gh, exterior slope; hi, berm;kr, glacir.
face of the rampart, b,c, in rear of the parapet, termed the terre-plein, affords the troops and armament a convenient position for circulation from point to point, where they are sheltered from the direct views of the asamiants' fire. The rampart is usually terminated on the interior, $a, b$, by allowing the earth to assume its natural slope, or one somewhat less stecp, and which is termed the rampart-slope. In cases where this slope would take up 100 much of the ground within the defenses it is replaced by a wall, termed the parade-aoall, which rises from the level of the interior ground, termed the parade, to the interior line of the terre-plein. Inclined planes of earth, termed ramps, lead from the parade to the terre-plein, being placed against the rampart-slope, or the parade-wall. The ramps are, in some cases, terminated, inwardly, with the same slope as that of the rampart; in others, this slope is replaced by a wall, which rises to the toj) surface of the ramp, or a little above it. The essential properties of the parapet are to atford cover to the troops and armament from the missiles of the enemy, and evary facility for sweeping his positions by the fire of its artillery and small-arms. Its form and dimensions are therefore so adjusted as to fulfil these requirements. The exterior slope, ish, is the part of the parapet towards the enemy; it is usually made with the same slope that the earth when first thrown up naturally takes. The top of the parapet, fg , called the superior slope, is the line along which the assailed fire on the enemy. Its inclination is generally taken at $\frac{1}{6}$ that is, six base to one perpendicubar. A greater slope than this would make the portion of the parapet about the interior crest, weaker, and less wonld not so well defend the ground directly in front. A greater slope wonld he attended by the inconvenience of firing, under a greater depression than $\frac{1}{6}$, which wonld necessitate using very deep embrasures for the guns or raising the platform so higl to the rear that the men serving the guns rould be exposed to tire. The interior slope, ef, sometimes called the breast height, is the part against which theassailed maturally lan in the act of firing. It has usually a slope of $\frac{3}{1}$, three perpendicular to one basc. 'This is a result of experience, being the most convenient one for a soldier leaning forward to fire over the
purajut. The burugutto is asmall topriace onf which the soldiar stands when tiring; the top is rathed the tread, and the inclinerd phand by whirh it is ancormberd,
 below the interior crest and is two feet widle. "l'his width is incroased when more than one rank are to use it or where other catuse es resuire it. Tlow shope of the banduette may have an inclination of $\frac{1}{2}$, or $\frac{1}{1}$, or
 gracally from eight to twelve feet bedow the interior rrest with a fill io the rear of one foot to drain off the surface-water.
'l'he theckness of the parapet, which is estimaturd loy the horizontal distance betwean the interior and exterior crests, seldom execeded twenty feet. This was the dimension usually given in buropant constructions of inportant works. Experience showed that it was sutliciently great to afford protection against the fire of the leaviest guns then used. At present, the protile most grencrally adopted for this part of the parapet and rampart is ore in whiel the portion of tle top of the rampart, for a listance of 15 fect hack from the interior crest, is held on a level of 68 fuet helow the inturior crest and serves as a feneral harbette for heavy guns; whilst the remain. ing portion of the top surface is placed at a level of eight feet below the interior crest, and made wide enough to serve as a roadway in rear of the general barbette; the two levels being connected ly a slope of $\mid$ or $\frac{1}{2}$; and the roadwa; receiving a slight pitch to the rear for drainage. In the later protile, the interior slope is $\frac{1}{i}$, and has a banquette tread of only 2 feet, with only a banquette shope of only f. Whare guns are mounted either in barbette or embrasure, the interior slope isincreased to $\frac{3}{1}$, and the bunquette and its slope removed; the earth taken off by these modifications serving to form the merlons between the shallow embrasures cut into the parapets. When the foot of the exterior slope rests on the top of the searp wall, a berm of two feet in breadth is left between it and the edge of the coping. This breadth of herm is objectionable, as giving a good landingplace for a scaling party in an open assuult; and it is proposed, ${ }^{5}$ when the work is in danger of an attack, to reduce the berm to 18 inches or one foot, by inereasing the thickness of the parapet 6 inclaes or one foot.

Circumjacent to the rampart a wide and deep diteh is made, which from its position and proximity to the parapet, serves the double purpose of increasing the obstacle which the enemy must surmount before reaching the assailed, and of furnishing the earth to form the rampart, parapet and glacis. Its width and deptl will depend mainly upon the amount of embankment required, and therefore will result from the calculation for equalizing the excavation and embankment which these demand. It has been the practice to make the main ditch when dry, from 20 to 30 yards wide, and from 30 to 45 yards when wit. Thesc dimensions may be reduced to within 10 or 12 yards where the embankments are not great and circumstances are unfavorable to anattempt at csealade. The bottom of the ditch, when dry, usually receives a slight slope from the foot of the scarp and counterscarp to its center, where a small drain, termed a cunetie is dug to receise the surface water and keep) the ditch dry. In some cases, from motives of economy, the difference of level between the cunctte and the foot of the counterscarp wall is increased, thus giving a less height of wall.

To give strength and durability, the faces of the ditch are revetted with walls of masonry which sustain the pressure of the earth, protect them from the effects of the weather, and by their height and steepness present an additional cbstacle to an open assault. The wall of masonry toward the rampart rises to the level of the foot of the exterior slope of the parapet, sustaining the pressure of the rampart and the parapet, and is called the scarp wall or scarp revetment; the face of it towards the ditch, the scarp.

The line in which the faee of the searp wall if prolonged would intersect the upper surface of the coping is termed the magistral. This is a very important line in drawing the plans of permanent works, serving as the direeting line to fix, hoth upon the drawing and upon the ground, in setting out the work, the dimensions and relative positions of all the bounding lines. The top portion of the coping, from the foot of the exterior slope ontwards, is termed the Btrm. The opposite face of the ditch is usnally revefted in the same manner. It is called the connterscarp zonll, and its face towards the ditch, the counterscorp.

The command of the parapet over the exterior ground and any ontworks of the defenses, its relief, or beight above the bottom of the ditch, and its height above the top of the scarp wall, are all points which call for a careful consideration on the part of the engineer in any combination of these that he may be called opon to make. The tire over the parapet should thoronghly sweep all the ground within range, at least up to the glacis crest ; and the more so as the closer the assailant's trenches approach the work, the greater will be the plunge obtained mpon them, and the more difficult it will be for the assailant to cover himself by his trenches. The parapet should command all outworks within range of its fire, otherwise, when seized by the assaitant, these ontworks would have a plunging fire upon the main work. The relicf of the parapet of the flanking parts of the work sloould be sueh that every point along the foot of the scarp wall slall be swept by its fire. This supposes also a certain corrclation between the relief and the length of the lines flanked, so that this condition shall be satisfied; a relation that can always be easily found, either by calculation, or by geometrical construction.
The width and depth of the ditch also eall for a careful consideration on the part of the engincer. A deep and narrow ditch offers the advantage of presenting more difficulty to the assailant in reaching the bottom of it, either in an open assault, or by a gallery in the attack by regularapproaches, thus prolonging the defense. It masks better the sally-ports from the enemy's fire by allowing them to be placed so low that the projectiles coming over the countersearp cannot reaeh them. In like manner by drawing in the crest of the glacis nearer to the searp the latter will be better masked by it from the plunge of the distant fire of the assailant's batteries; and cannot be lreached so low down from his batteries placed along the glacis crest. On the other hand, when the ditels is narrow and deep it may be partly filled by breaching the scarp, and then blowing in the counterscarp so as by the united debris to form an easy roadway for an assaulting colum to enter the work. A wide ditch, on the other hand, requires more labor to construct the trench across it by which the assailant can reach the foot of the breaeh under cover. This is a consideration of some importance in wet ditches, where the assailant is obliged to construct a dike upon which the parapet of his cover is placed.
These considerations suggest that nothing like absolute rules can be laid down so as to give a routine character to the practice of this branch of the military art. The rules here given with respert to the formand dimensions of the general profile of the enceinte are founded upon reasons growing out of the nature of the question, and as such have. scrved as guides to engineres in the practice of their profession. As they have stood the test of long experience, it is safe to follow them, whilst at the same time the engincer should not hesitate to vary from them when gatisfied, after carcful examination, that the case before him requires it. Fortfication, it must be remembered. is like all nther arts. It has its canons, which are founded upon the nature of the 'question and its rules of practice hased upon these and upon experience. As the latter presents to the Engineer
new facts, his practice must be made to conform to them; but the general prineiples of his art must ever remain the same, and he his invariable quide. See Connterscarp Wall, Fortification, F'rontier Iefense, Interior Retrenchments, Irregular Sites, and Scarp Hall.
PERMANENT RANK.-A rank in the military service which does not cease with any particnlar ser vice, or locality of circumstances; in opposition to local or temporary rank.

PERMUTATIONS AND COMBINATIONS.-A combination, in mathematics, is a selection of a number of objects from a given set of objects, without any regard to the order in which they are placed. The objeets are called elements, and the combinations are divided into classes, according to the nomber of elements in each. Let the given elements be the four letters $a, b, c$, $d$; the binary combinations or selections of two are $a b, a c, a d, b c, b d, c d$-six in all; the combinations of three are $a b c, a b d, a c d, b c d$-four in all; while there is only one combination of four. namely, abca.
Permntation, again. has reference to the order of arrangement; thus, the two elements $a$ and $b$ nay stand $a b$ or $b a$, so that every combination of two gives two permutations; the three elements $a, b$, and $c$ may stand $a b c, a c b$, bac, $b c a, c a b, c b a$, one combination of three thus affording six permutations. The combinations of any order with all their permutations are called the variations. Formulas are given in works of algebra for calculating the number of permutations or combinations in any given case. Suppose seven projectiles marked $1,2,3$, to 7 , and that two are to be drawn; if it is asked how many possible pairs of projectiles there are this is a question of the number of combinations of seven elements, tro togetler, which is found to be 21 . If we want to know how many times the same seven persons could serve at a pieee of artillery, with a different arrangement cach time, this is to ask how many permutations seven objects admit of, and the formula gives $7 \times 6 \times$ $5 \times 4 \times 3 \times 2=5,040$. The theory of probabilities is foumded on the laws of combination. Thus, in the case of drawing two tickets out of seven, since there are 21 possible pairs, the chance or probability of drawing any particular pair is 1 in 21 , or $\frac{1}{21}$. In working out questions in "combinations," advantage is often taken of the fact that whatever number of elements be taken fron a group, to form a combination, the number left gives the same number of combinations; thus the nomber of combinations of 10 elements three together, is the same as that of 10 elements seven together, etc.
PERPENDICULAR.- $A$ straight line stauding on another straight line is said to be perpendicular to that other when the angles it makes on both sides are equal. A line is said to be perpendicular to a plane when it is at right angles to any line in that plane meeting it. Planes are said to be perpendicular to each other when any line in the one plane perpendicular to their eommon line of intersection is also perpendicular to all lines meeting it in the other plane. The word "perpendicular," in common usage refers to a direction at right angles to the surface of still water, and is synonymous with vertical.
PERPENDICULAR DIRECTION.-In the mareh of a line, the direction at right angles to the line which ach man should take in a direct movement to the front. Without the strictest attention is paid to this essential principle in all movements, the greatest irregularity, and ultimately the greatest confusion, must ensue. l'erpendieular and parallel movements constitute, indeed, the whole system of good marehing. When several columms, divisions, or companies advance, the lines and direetions of marching must bestrietly perpendicular and parallel to cach other, otherwise the distance will be lost, and the ultimate object of forming a correct line must he defeated.
PERPENDICULAR FORTIFICATION.-Thin system of fortitication owes its origin to the Marquis de
 published his work upon the subjoret in 1776 . VitnPan ladd, it was almitted, rendered lhe art of attark superior to that of defense: Dontalambert steove io revorse this relation, and in his endenvors, rejewted entirely the bastion system of the alder rengiamers. Instand of the ucransonal bastions, with introrerning curtains, with which they sarroumberl their ancrinte. lue Irrokre the whols polyeron intosalient and re-t.ntering angles, the lattor biong generatly right anglas. Before lle conmected redans thas formach woreroum-tor-stards of low clovation and ravelins, to which the appronehes were throuth casematerl repan mitum. In the saliont it ersle of each redan, hr Imilt at livek tower. 40 fret in diamotor, 1 wellyo-sided, and four stories high. The seroond and thirt tiers werr buitt for lienvy gims, und the mpprer loopholal for muskretry: In the centor of the fower was a cirealar rembit, intended as a last refuge for the garrison. Hontadembert mantatined that from these towors vevery possible approatel conld be commanded, which to at great rextent is truc; but at must In also remombered that the groater spare at gim eommands, by so manch the more is it raised above the plain, and remered visihle. These towers would lave little chance againsi the rifled ordnance of the presant day. Womtalembert's system was violently nttacked ly the French engineers, lat C'arnot snibeopurntly adoped it, witl some moditications, and it enters largely into the modern German defensive works. "I"he system has nover, however, fonnd fivor with British engincers.
PERRIERE. - The early bombards being vory unsatisfactory, to ceomomize the action of the powaler, and give a more acenrate direction to the projectile.

the interior space, or hore, was made nearly crlindrical, from 4 to 8 ealibers long; it was terminated at the bottom by a very narrow and deep chamber, the object of which was to increase the effeet of the powder, by retarding the escape of the gas hefore it aeted on the projectile. These cannon were further improved by making the bores perfectly eylindrical; and were called pervieres, from the fact that they fired stone balls. They were principally employed to breach stone walls, and for this purpose were fired horizontally. See Bumburd.

PERSIAN WHEEL.- A eontrivance for raising water from a well or stream, and used in the come try from which it takes its name. It is also extensively used in Egypt, where it is known as the saguiek, in nothern India, in the Punjab, in Sinde, and also in Spain as the noria. It ronsists of a wheel, about 4 feet in diameter, revolving on a woonlen axle, which is flusl with the month of the well, and is set in motion by means of a driving wheel turned by a pair of bullocks. The wheel has on its rim pins of woorl inserted into it, at short distances apart, to which buckets or jars are suspended by means of an endless band or double rope; the buckets descend on one side into the well and ascend on the other filled with water, and discharge themselves into a reservoir at the mouth of the well. The Jersian wheel, used for raising water from a stream instead of a well, has the buckets somewhat differently arranged for lifting the water, but the principle is the same.

PERSONAL SALUTES.-Civil and diplomatic authorities receive salutes as follows : The President of the United States receives a salute, to be given both on his arrival at and final departure from a military post or station provided with artillery, of 21 gins. The Vice President of the United States, 19 guns. Nembers of the Cabinet. the Chief Justice, the

Spraker of the Ilouse of limpresantatives, the (iove
 17 grans. A 'ommuittere of ('ongress oflicmally vinitings a military posit or 4tation, 17 funs. Thore Soveroign or ('hiof Hagisarate of a forvign Sitalo, to be givern both on arrival at and fimal dopatrare from at military penst or station providull with artill ry, 2l [rums.
 rat and Consert of ther reipning sownerign of a for-
 al, or fonvernors of I'rovinees ludonging to foreign States, 17 gama. Ambassadors Vixiraordinary and l'denipetontiary 17 gum. Envoy:s lixtraorlinary anal Winistrors lhonipotontiary, 15 grans. Ministers leas.
 géa d' Afaires, or suborilinate clijumatios ageont- Ir.ft in charge of missions in thr Cnited Statos, 11 grms
 gidnc.
Military and naval oflicers recerive salutas as fole
 miral. 17 guma. Licutenant fenoral or Vicas A Imiral,
 Brigadiar Cenaral or Commodore, 11 grans. (Ifliorars of volunteers and militia, only whem in the s-rvire of the ['nited Sitatus, the salutesperitioul for tharir rank Otlicers of fore ign scrvicus visiting any military Jrum or station provided witl artillery, are sallated in as* erardance with their rank.

In acklition to the foregoing, oecasions of a publio nature fredumbly arise when salutes are bothe dowir-
 I'resonal salutes are, howerer, strictly contined to the foregring, and are lired but once, inless otherwise specititel. The I'resident of the United States, the Hovereign or Chief Magistrat of a foreign eome try traveliner in a public capracity, is saluted when persing in the vicinity of a military post. A vessel-of-war on whiels the I'resident of the L-nited States is traveling displays the nationel ensign at tho main. in the case of foreign sovereigns, vessels diplay the royal standard of the sovereign in like mannor.
Personal salntes, in compliment to foreign dipinmatic authorities, are to be fired only for those wliosp nations pay the same compliments to Uniterl States diplomatic ministers in their territories. Personal salutes at the same place and in compliment to the same person, whetlacr civil, diplomatic, military, or naval, are never to be fired oftenct than once in twelve months, unless such person shall have been. in the meantime, ndvanced in rank. Otficrers on the retired list. whether military or naval, are not io be saluted. This, however, does not alply to funcral ceremonies. An officer, whether civil, or military, or naval, hoiding two or more positions, citlur of which entitles him to a salute, re"eives only the salute due to the highest grade. Jn no event is the samd persont to be saluted in more than one capucity. When several persons, eacli of whom is entitled to a salute, arrive together at a post, the one bighest in rank or position is alone salnted. If they arrive successively, eatl is salutcol in turm. In officer assign(d to duty according to brevet rank receires the salute due to the full rank of the grade to which he has been assigned. As a rule, a personal salute is in le fired when the personage entitled to it enters the post. When the troops at a military post are to be reviewed by a personage entitled to a salute, it is most appropriate to fire the salnte from firld suns at the place of review; and at the time just previous to the review, when the personage arrives on the ground. Nee Salutes.

PERSONAL SERVICE.-The term "Perwonal Serrices," employed in section 3.705. Revised Statutes. means services which are contracted for befanse of some special confidence reposed in the person who is to render them, based upon his supposed peculiar fituess as an expert, and irrespective generally of his pecuniary or any other resources: such. for instance, as the services of a Civil Engineer or Sur-
veyor, a Lawyer or Surgeon,Telegraph Operator, etc.
No person belonging to, or empluyed in, the military service of the Cnited States shall, in behalf of the United States, purchase from any other such person, or make any contract with such person to furnish supplies or services; nor make any purchase or contract in which such person shall be admitted to any share or part, or to any benefit to arise therefrom.

No person belonging to, or employed in, the military service of the Cnited States shall be pecnuarily interested, directly or indirectly, in the purchase or sale, on behalf of the United States, of any article appertaining to such service; nor shall take, receive, or apply to his own use any gain or emolument, under the gruise of presents or otherwise, for negotiating or transacting any public business, other than what is or may be allowed by law.

PRESONNEL. -In speaking of an army, this term represents the officers and soldiers, as opposed to the Matériel, in which are comprised the guns, provisions, wagons, and stores of every description. The Personnel of a Battery comprises all the officers and men necessary for the maneuvering, management, and care of a battery.

PERSPECTIVE.--The art of representing natural objects upona plane surface in such a manner that the representation shall affect the eye in the same way as the objects themselves. The distance and position of objects affect both their distinetness and apprarent form, giving rise to a subdivision of perspective into linear perspective which, as its name denotes, considers exclusively the effect prodnced by the pasition and distance of the observer upon the apparent form and grouping of objects; while aerial perspective confines itself to their distinctness, as modified by distance and light. The necessity of attending to the principles of perspective in all pictorial drawing is apparent when we consider, for instance, that a circle, when seen obliquely, appears to be not a circle, but an ellipse, with its shortest diameter in line with the spectator and its longest at right angles to this. A square, when looked at from a position opposite the center of one of its sides, appears as a trapezoid, the sides which are perpendicular to the direction of the vision appearing to be parallel, while the other two appear to converge to a point in front of the spectator, ete. For the same reason, two rows of parallel pillars of equal height, seen from a point between and equidistant from each row, appear not only to converge at the further end, but to become gradually smatler and smaller. An excellent idea of il perspective plan can be easily obtained by interposing a vertical transparent plane (as
observance of which painters may he enabled to produce an effect true to nature. After the "scope" (i. $e_{\text {, }}$, the number of objects to be introdnced, and the distance at which they are to be viewed) of the picture has been determined, and before the design is commenced, it is necessary to draw upon the perspective plan three lines: 1. The base line, or ground line, which limits the sketeh towards the operator, and is the base line of the picture. 2. The horizontab line, which represents the ordinary position of the sensible lorizon. The height of the horizontal line is about one-third of the height of the picture, when the skcteher is placed at or a little above the level of the horizon; but it may rise in a degree eorresponding to bis increase of elevation till it reaches near to the top of the perspective plan. The general rule is to have a high horizontal line when the view is taken, or supposed to be taken, from an eminence; but when the station is on a level, either actual or assumed, as is the case when a statue or a mountainous landscape is figured, the horizontal line must be low. The horizontal line in nearly all cases is supposed to be level with the spectator's eye. 3. The vertical line, which is drawn from the supposed position of the sketcher, perpendienlar to the ground and horizontal lines, meeting the latter in a point which is called the point of sight, or center of the picture. The vertical line has no representative in nature, and is merely a mechanical adjunct to the construction of the picture, all vertical lines in nature being parallel to it in the picture. The point of sight, being the point directly opposite to the observer, is properly placed in the center of the picture, for it is most natural that the view should lie symmetrically on each side of the principal visual line; but this is not by any means a universal rule, for we very frequently find it on the right or left side, but always, of course, on the horizontal line. All lines which in nature are perpendicular to the ground line, or to a vertical plane which is raised upon it as a base, meet in the point of sight, which is thus their vanishing point (see the line of the tops and bottoms of the pillars in Fig. 1). The points of distence are two points in the horizontal line on each side of the point of sight, and in a " direct" sketch are at a distance from it equal to the horizontal distance of the sketcher's ey'e from the ground line. The equality of distance of these points from the point of sight is not, however, necessary, as it ocenrs only in those cases where the lines, of which tbe points of distance are the vanishing points, are inclined (in nature) at an angle of $45^{\circ}$ to the base line; but, in all cases, the two points of distance are abont twice as far apart as the


Fig. 1.-Illustrating the more important points and lines ; PVra is the principal and visual ray.
of glass-a window, for instanee) between the observer and the objects of his vision, and supposing that the objects he sees are not seen through the glass, but painted on it. A sketch made on a glass plane in this position, by following with a pencil all the lines and shates of the objects seen through it, the cye being all the time kept quite stady, would form a picture in perfeet perspredive. In practice, howcver, it is found, unfortunately, that the glass is not a suitable material for sketehing on, and that the vertical position is not the most convenient; it is tharefore preferable to make a careful study of the - Ifects preduced by change of position and distance on the apparances of objects in nature, and from the results of this to compile a body of rules, by the
eye is from the picture. One important use of the points of distance is to detine the distance of objects in a row (Fig. 1) from each other. For this purpose two points of distance are not necessary, as when the position of one pillar is fouml, that of the opposite is at once obtained by drawing a line paralke to the base or ground lins. We have seen that the point of sight ist the vanishing point of all level lincs which meet the gromm line or a vertical plane on it at right angles, and that the points of distance (in a direct pieture) are the vanishing points of all lines which cut the ground line at an angle of 450 ; but there are many other groups of paralled lines in a picture which have different situations, and therefore different vanishing points. Such lines
with their vanishing points (called for diatinction's sake, arcidental points) are represented in Wंir. 2. if Whe acedental point is ahove the horizental line, it is called the acrind netal pront aerial if bolow, the arcide ntal point trerestrial; and a little consideration makes it evident that these points maty or may not he situated within the plane of the picture fiseln are the points and lines neressary for the construetion of a plan in true perspertive; and from the above exphation, wo may deduee the two general principles: 1. That all parallel straight lines in nature are no longer parallel whern projeeted on the perepertive plane, but met in a point which is calter the vanishing point, and is some one of the three above described, matess these lines hapuen to be also paralled to the ground line or the vertical line, in which
 completod by l'arn\%ai and Clabldi about 16 got.

PETARD. - An instroment for blowing open gntos, derochishing palisadra, rete: It "omsists of a halferome of thick iron tilled with powder and ball; thin is firmly fastened to a plank, and the latter is joreviden with hooks, to allow of its being attacherl Eeconely (o) a gate.cte. The protardiers attached the perard, lighterd the slow-matchay which it was on be firmb, and thed. When the explosion took aferet in suppreting column charged through the breach, while the defenders ware yot in constarmation. The pretarl has been almost universally supersoded by the use of powderbags. Large petards containcol as mom as la lhs. of powder. Varions curious deviers were comployed, in ancient times for jreventing the close jropinguity


Fig. s-The lines $O$ eonverge to the aceidental point aerinl, and $P P$ to the accidental point terreztrial.
case they remain parallel when transferred to the pieture; and 2. That since the hodies drawn below the horizontal line are seen as if from above, those above as if from below, and those to the right and left of the point of sight as if observed from the left and right, it follows, that straight lines which in the pieture are above the horizontal line tower themselves, and those below raise themselves to it ; those to the left, following the same law, direct themselves to the right, and vice veraci. Jerial perspective, consists in a modulation of the brightness and colors of objects in accordance with the state of the atmosphere, tie depth of the borly in the perspertive plane (i.e., distanee in nature from the ground line), and other aceidents of place and time. As the distimee of ohjects increasts, their illuminated parts are made less brillant, and their shaded parts more freble. The blnish tint imparted by a large mass of the atmosphere to the bodies seen through it, is frequently imitated by the mixing of a slight tint of blue with the colors to be applied; a yellow object thus assumes a greenish tint: a refl one a riolet tint, etc. The air, when charged with vapor, is represented ly a diminution of the brightness of colors. and by the grayish tint imparled to them. But in this part of the subject rukes are of litth arail, for experience alone ean guide the painter in faithfulty copying the myriad aspects presented by nature. it thorough knowledge of persective is is sine qua nom to the painter or designer, and though many are inclined to think it a superthity, and that the skiteher has only to make use of his eyes, and eopy justly, the very fact that such is their opinion shows that they have never made the attenpt : for it is impossihe for the painter, and much more so for the designer, to execute a copy of nature with sullicient aepuracy by the sole aid of the eye and hand, a fact that is unfortunately much too frequently proved by many of the sketches exhibited in fine-art eollecitions. Perspective was known to the ancients, hut seems to have become extinet during the disturb ances that eonvulsed Italy, and was revived by Albert Drïrer. Pietro del Borgo, and Bramantino of
betwern the petard and the gate; one of the most curious of which was a kind of enormous rat gin,set in such a manner as to close at once on the petard and the soldiers apolying it.

PETARDS.-In pyrotrehny, small paper eases filled with powder. One end is entirely closed. and the other has only a small hole left for a piece of quickmatch, to communicate fire to the powder. Petards are placed at the bottom of lances: they are also used to imitate the fire of masketry. See Firercorks.

PETAUDIERS.-A name anciently given to the foot-troops armed with C'ranequins.

PETERERO. - A term formerly applied to a very short piece of chambered ordnance. Also written P'edriro.

PETRONEL. A firearm between a carbine and a pistol (with a wheel-lock), which was used by the Frenela during the reign of Francis l.: it was fired resting against the breast-hence its name. To prevent any injury from its recoil, the soldicr who nsed it was provided with a pad. Also written Petrinal and Poitrinal.

PETTAH.-In sonthern India. a term applied to the Euceinte of a town, as distinguished from the fortress by which it is protected.

PETTMAN-FUSE.-This fuse consists of the fol-

lowing parts: A, borly : B, top-phas: C. plain ball: 1, steady plat: E. deronating ball: F , cone phag: G, lead enp: and 11. suspending wire. The steadr and top plugs are cupped in the center to receive
the small plain ball of brass wire wbich holds them apart; and to prevent the ball adhering from corrosion, the cups are slightly larger in diameter than the ball. Round the top of the steady plug runs a groove filled with detonating composition, and two fire-holes pass from the composition down through the plug.

The composition in the annular groove is covered with thin shect brass. The detonating ball, which is coated with composition, is eovered with two hollow hemispheres of sheet-copper, and over these with silk. The cone plug (not at present coned) has three fire-holes and is supported by a copper wire which passes through the tube; but the hollow of the latter is enlarged below the wire to prevent its being ehoked. The lead cup (pure lead) does not rest on the bottom of the fuse, but is supported at the top on a shoulder on the cone pling.
The detonating composition in the steady plug and on the detonating ball consists of -

Parts.
Chlorate of potash
Sulphide of antimony
Sulphur.
Mealed powider
On the discharge of the gun the suspending wire is broken and the lead cup erushed in consepuence of the inertia of cone and steady plugs and of balls, which do not move instantanemusly with the fuse and lead cup; sutficient space is therefore left for the disengagement of the balls, and on impact the fuse ignited by the concussion of the detonating ball on the inside of the body, or by the plain ball on the composition in the groove of the steady plug, which continuing to move, after the sudden check to the motion of the fuse, presses the plain ball between itself and the top plug. See Fuxe.
PEWTER.-A common and very useful alloy of the metals, tin and lead. Two other kinds of pewter have a more compound character. Common, or ley-perter, consists of 4 parts of tin and 1 part of lead; plate-peeter is made of 100 parts of tin, 8 parts of antimony, 2 parts cach of bismuth and copper; another kind, called tritte, is composed of 83 parts of tin and 17 parts of antimony. Although these are the standard formulas, each kind is often much varied to suit the purposes of the manufacturer; the chief alteration being the addition of a large proportion of lead to the last, and a large increase of the same metal in the other two.

PFEIL.-The German name of the arrow for the long bow.

PHALANX.-The ancient Greek formation for heavy infantry, which won for itself a repatation of invincibility, may be deseribed as a line of parallel columns, rendered by its depth and solidity capable of penetrating any line of troops. The oldest plalanx was the Lacedermonian or Spartan, in whicb the soldiers stood eight deep; the Athenian phalanx had been the same, until, at the battle of Marathon (480 в.е.) Miltiades reduced the depth to four men in order to increase his front. When Kpaminondas organized the Theban army against Sparta, he felt that the Spartan line of battle would be impregnable to troops organized in their own manner. He therefore inereased the depth and lessened the front of his phalanx, which enabled him to burst through the Spartan line, intlicting the sanguinary defeat of Leuctra ( 371 b b.c.). Philip of Macedon had learned the Art of War under Epaminondas, and when he resolved to make his state a military power, he formed the celebrated Macedonian phalanx (359 в.e.), which enabled him to conquer Grecee, and with which his son Alexander subdued the Eastern Work. The Macedonian phalanx, as the latest form that organization assumed, and as the shape in whieh the phalanx encombered the military skill of the West, is deserving of deacription. The line was 16 deep; a grand-phahanx comprising 16.584 Hoplites, or heavyarmed soldiers, subdivided as follows: the grand-
pha'anx composed of four phalanxers or divisions, each under a General Otticer, called a Pluahngurch; his command was divided into two brigades or Merarchies (sometimes called Telarchies), cach of these comprising two regiments, or Chutiurchies, of four battalions or Syntagmute each. A Syntrgme answered accurately to a molern battalion, except that it was smaller. It was a perfect square, with 16 men each way, was commanded by a syntagmaturch or Xenagns; and had an Adjutant, with one or two other Staff Officers who stood behind. Vight files nnited were muder a Taxiarch, four under a Tetrarch, corresponding probably to a modern Captain, two files were under a Inluchite or Subaltern. A single file of 16 men was called a Lochos and the best man was placed at its head; a picked man, the Ourugon, also marching in the rear. The arms of all these phalanx-men were pikes or spears, 21 feet long, of which 6 ft . were behind and 18 ft . held in front of the combatant. As each man occupied with nis shield 3 feet, the phalanx, when it advanced, had six tiers of spear-points in front, a wall of stecl which no troons conld withstand, especially as the bearers of the spears were pressed on by the ten ranks in their rear. By rapid movements the phalanx conld change front, form in close column of srutagmata, and execute other critical maneuvers. The heavyarmed phalanx was ordinarily flanked by Peltustes or light infantry, similarly formed, but only eight deep, while the cavalry were but four deep. The phalanx, as representative of the heavy formation, came in contact with the lighter legion of lame during the wars of Pyrrhus in Italy. At the great batthe of Heraclea ( 279 в.c.), the phalanx won the day; but the victory was attributable to other causes as much as to any superiority of formation.

PHEON. - In Heraldry, the barbed head of a dart. It is represented as engrailed on the inner side, and its positiou is with the point downward, unless otherwise blazoned.

PHOENIX RIFLE.- A breech-loading riffe formerly manufactured by the Whitney Arms Company. This, like the Whitney and Kennedy rifles, which are improvements on it, is very simple of constrnction, and perfectly strong, safe and durable, while the ease of manipulation in opening and closing the breech, and extracting the shell or cartridge cannot be surpass ed. These arms have less parts than any other breech-loading rifles in use,and the parts are of such form as to render them as strong and safe as rittes ean be made. They have short top action, and are symmetrical in form. See Kennedy Rifle and Whit ney Rifle.
PHOSPHOR-BRONZE.-Of the many nscful insentions and discoveries recently made in the arts, that of phosphor-bronze has proved to be one of the most important. The invention is the result of a long series of careful experiments, which have established, as a scientific fact, the great superiority of phosphorized allors of copper and tin over other alloys and metals. The chemical action of phosphorus on the metals composing the alloys is clained to be two-fold; on the one hand it reduces any oxides dissolved therein, and on the other it forms with the purified metals a most homogeneous and regular combination, the hardness, strength and toughness of which are completely under control. No other metal combines, in so ligh a degree as phosphorbronze, the conditions of toughess, rigidity, hardness, and great elastic resistance. From the droptests following its comparative relation in this respect to some of the best grades of wrought-iron is made very apparent; moreover, if jointly with these qualities the fact of the total ahsence of easily corroded metals, such as rinc, be tak'n into consideration, the advantages oflired by the use of phosphorbronze can searcely be over-estimated.

In the following (lrop-tests, the weight of the drol) was one hundred and forty-eight pounds; he ght of stroke, twelve inches, except where otherwise stated;
distance between supports, four inches; striking-fach of drop, a bhanted wedge-shape; test-hars, nix inche's Ione, two inches whle, and onc-half inch thick. The fractions of inchers ntated in the tithle represent the permanent set of the test-har aftor the blow
'The letters inserted in the table indicate the stat of the surface of the test-har, on the sidn opmasite to that ipon which the blow has been given:- a, sound b, slight cracks at edge; ", cracks at erlge increase in si\%e; d, slight cracks in the middle of the test bar ; $e$, eracks in the middle inerate in number ; $f$, cracks in the midde incroase in si\%e; $g$, remains mat altered; - straight; -, test-bar reversed. It is apparent from these (drop-tests that the rigidity of phosphor-bronze is greatly superior to that of best wrought-iron, for it takes thirteen llows to bent the bar NiV. If to the depth of one ineh, whilst the best quality of forged charcoal iron takes right blows and the best chareoal scrap iron lout six blows for the same bend. The strength of the phosphorbronze bar No. $6 \times 17$ is superior to that of hest char coal serap iron, it having stood tive more blows of twelve inclers than the latur before being again completely straightened. The relative strength of phos-phor-Ïronze an to that of other qualities of iron tested needs no comment. ,
nowed in cronserguenere of their frodom from any"all hering slag is a grat point in thair faver. Plone phor lron\%e whisels, hathmers, swates, sefosers, key wealgese rete, atre made of varions sizes and possoses fine demper, great hardness and are withomt athy liability to give forth sparks. The application of phospher-bron\%e will alsolse apرlerefiater] by all who have experienced the difliculty of removing lorase or iron wood serews after they have been rexposiol to the weather for a short fime. Brass kerews are more likely to twist off than witharaw, and thesi made of iron becone se rusted that their removal is next to impossible. For all fortitication work, rarriage tinishing, and exterior fastrnings, especially at the sca-side Garrisons, plasephor-brenze strews are recommendod as the brst artirle yot produred. Sow

## Bronze.

PHOSPHORUS. - One of the most unwelenme in gredients in iron ores, from the case with wheh it passes into the metal during the smelting froseces, producing the most injurious afects, if present in more than a very small proportion. Dractically speaking, all the phosphoris in the ore and in the fuel passes into the pig-irom made. like silicom, it makes pig-iron weak; althongh it is thouglat that when the amonnt in not more than one-half to therec-

Metals tested.
Number of blows.

Phosphor-bronze, XIV. B.


Phosphor-bronze, $6 \times 17$.

Rolled Charcoal Scrap-iron, best quality:

Best Clarcoal Fire-flox Plate-iron.


The important applications of phosphor-bronze have received constant and carefulattention, and the use of the special alloy has become so widely extended into almost every branch of industry that it has become known as the " best" metal for bearings; it has been adopted by many of the leading railroads for bearings of their locomotives and cars, and large quantities are in use in rolling mills, foundries, steam engines, steam ships, and industrial works of all kinds throughout the country. Phos-phor-bronze tuyeres have been in use for several years in the iron furnaces of the United States with great suecess. They have proved much more durable than those made of iron, and after long service are found to be free from incrustation by scoris of the furnace. The facility with which they can be re-
fourths per cent., the strength of the pig-iron is not materially affected by it.
Phosphorus occasionally forms between one-fiftieth and one-sixtieth part of the weight of cast iron. but about one-hundredth part is a more common proportion of phosphorus. It exists in combination with a portion of the metal as phowphide of iron, and is derived cither from phosphate of iron contained in the iron, or from phosphate of lime, which is frequently present in the limestone employed as a flux, and in minute quantity in the coal. These phosphates contain phosphorns in a state of combination with oxygen, which is abstracted by the carbon of the fuel in ,the blast-furnace, and the phosphorus, thus set free enters into combination with the iron. So completely is the phosphorus taken up by the metal, that
only traces of that element in the form of phosphates are usually found in the slag from the blast-furnace.

The effects of phosphorns are to harden cast-iron, decrease its strength, and to increase its fusibility. Iron made from ores containing much phosphorus is always cold-short, or incapable of being wrought cold under the hammer without breaking. See cast-irun.

PHOTO GLYPHOGRAPHY.-A process, invented by Mr. Fox Talbot, for etching a photograph into a steel plate. It consists in coating the plate with a mixture of bichromate of potash and gelatine, and exposing under a negative. The effect of this treatment is to render the gelatine insoluble, jnst in proportion to the intensity of the light's action, after which a solution of perchloride of iron, of a certain detinite strength, is poured over the film, which solution penetrates those parts uacted on by light, reaching the steel plate. and biting itself in, but is repelled ly that portion of the gelatine reqdered insoluble; the plate being thus protected from the action of the solvent. Becanse a dilute solntion of perchloride of iron soaks into a film of gelatine more readily than a strong solution, it is very important that the etching flnid should possess that amonnt of dilution which has been found by practice to yield the best results.
The utility of such a process for copying old and rare original manuseripts or maps and plans of all kinds for the nse of engineers and others will at once be apparent, and it has already been largely adopted in the Ordnance Survey Office, Southampton, for the reproduction of maps and old manuseript records; at the India Musenm, London, for the reprodnction of the patterns of Indian fabries; and at Woolwich Arsenal. for the reproduction of dravings of ordnance, equipment, etc. It is also largely nsed by the War Departments of the varions European States and in America. but in no conntry in the world has Pho-to-glyphography been so extensively and so usefully applied to the reproduction of maps as in lndia. where skilled lithographie draughtsmen and engravers are very scarce. It has been most successiully worked in the Surveyor General's office, Caleutta, in the office of the Superintendent of the Great Trigonometrical Survey, Dehra Dhoon, and in the Photozineographic Office of the Bombay Government at Poonah. By its aid the maps of the varions surveys are issued to the publie within a few months after the completion of the survey, instead of being kept
ticas. The adaptation of this art to military purposes, in copying, enlarging, and in reducing maps, ete, also in recomnoissances, has been greatly extended during the last few years. One of its most useful applications to surveying consists in taking small eirenlar pictures or panoramas round each station of the triangulation into which the survey is divided. These panoramas are printed by the ordinary photographic method, and are cut out and fastened on a sheet of drawing paper in the relative position to each other which they occupied on the ground to be surveyed ; and straight lines or radii being produced from the center of each. through the objects shown in them, give by their interseetions the relative position of each object on the paper, so that the "filling in." as it is technically termed, is completed as rapidly as these intersections can be found. Such a system dispenses with the very slow process of observing each olject separately, and the liability to any possible error in recording the observation in the field-book, which is now quite done away with. The great interest taken in field photography of late years, at posts and on the mareh, is due in a great measure to the improvements made in the apparatus, which began with the itatroduction of the dry plates. These are sensitive gelatinobromide dry plates, and can be carried abont with little trouble. Formerly, when the wet plates were in use, it was necessary for an amateur to earry around with him a chemical laboratory and an extemporized dark-room. Solutions had to be ready beforehand. With dry plates it is not necessary to bother with chemicals while in the field. All that is necessary is to keep the plates, after the exposnre, from the light. They can be packed away in cases to be developed in the dark room at home. If the party wishes to make bis pieture at the time, a dark closet can be arranged under canvas. Only two solutions are necessary, and they can be carried in small bottles. Many explorers develop their plates when they get back at night from a day's photographing tramp. Others save their plates and take them to a professional in the city to be developed.
Fig. 1, shows a camera designed especially for field-service by the Rochester Optical Company. It is a very accurate, simple and practical instrument and may he operated by any soldier, of ordinary intelligence. The camera-box, in three sizes, is made of the best seasoned cherry, well finished in the natural

linck for years, th thes would be, had they to be lithographed or engraved. Besidas being used in so many fovernment Othees, this process is "xtunsively worked by matry private individuals in Europe and America.

PHOTOGRAPHY. 'The art of producing pieturis by the action of light upon certain chemical proparas
wood. The fomsing sereen is hinged to the cameraback. which is more anvonient than whore lonse, and liable to lose and hatakage. The back with sereen slides upon the bet, beine fastenal hy at set serew whon the focus las been obtaned. The tripod is attached to the bed by an serew which, while it allows of the swinging of the box lorizontally, or its


Puysics. 1. Apparatus for congealing water by evaporation, 2, 3. Yessel for reception of solin cat leat, 10. Ieslix's differential thermometer. 1t, 12, 15. Melloni's apparatus for radintion of $e$ thermo-column. 17 . Gpectral carve of themic intensity. 18. Cirres of intensity of the chem ture of a latma with wire butting. 22, 23, Invy*s safety-lamp. 24. Conduction of heat by y constant pressure. os. Formation of mist by "xpansion of steam. 29, Bo. Generation of he
 polaization by clectro-magnets. 43, Induced currents, 41,45. Action of the maguetic polwa c XI-6is.

acid. 4 to 8 . Apparatus for determination of specific heat. 9. Concave mirrors fo. experiments in radiation of 13. Heated sheet-copper as a source of rays of caloric. 14. Absorbtion of rays of heat by gases, 16 . linear ptical and thermic influences of the spectrum. 19. Comparative conduction in solids. 20 , 21 . Reducing tempera05. Conduction of heat by gases. 26 . Generation of heat by compressing air. $2 \%$. Specifie heat of air ninder triction. 31. Gemeration of heat by compmessing lead. 32. Temsion of aqueous vapor, 33. Induced eurrents. Magnetic hamer. 38, 39. Geisslev's tubes, 40. Rotating copper cube. 41. Diamagnetic repulsion. 42. Circular
removal, remains in its socket at all times, thms obsviating loss. The lens is of remarkably fine guality, giving sharp definition and great depth. The diaphragms are remorable - a point of the greatest importance, to compensate for the varying stremgth of different lights. The plate-holder is made on an improved plan, doing away with ledges and thas exposing the full phate to the aetion of the light, making a pieture the full size of the ghass. By the obld method a quarter of an inch all aromed was lost. 'llor Triporl Leegs are jointed, capable of folding to half length, lut when in position are rigid und firm. These cameras are provided with risine and falling fronts, swinging backs, hinged and folding beds (almost indispensuble adjunets on some views), and are adjustable for stereoscopic work, having touble lenscs, on interchangeable fronts and partitions.

Figures 2and 3, show a swivel-bed camera. The front is mitered in frum pieces, giving it a viry plegant appearance. The bedswivels umber the box, as shown in the drawing L, Fig. 3, is a focmsing screw, and $M$, a lock nut for fastening the box in position when the focus is obtained. The triporl had, $E$, is aljustable, so that the camera maty be leveled without the necessity of moving the tripord legs. The rising and falling front, ' , is reversible for packing more compactly. The diaphragms are removable. The focus screen is hinged and falls down at the camera back, thus offering the least resistance to wind. This camera is but two inches thick when elosed, thas making it most compact for transportation. The lens is of great depth, and fine quality, giving a sharp and clear cut picture.
One of the latest of instantaneons cameras consists of a small wooden box which can be carricd casily under the arm. Inside the box is the lens through which the picture is taken. This is covered by a shutter, which by the mere pressing of a little knob on the outside uncovers the lens for an instant. On the upper side is another lens, and underneath a ground-glass plate. This is simply to enable the plotographer to sce the image he wishes to take. Wheu it falls on the right spot in the plate he presses the little knob for less than a twenticth of a second, the dry plate is exposed and the picture is taken. Troops in motion, exploding shells, etc., have thus been photographed. With a little practice, instantancous photographing reaches so fine a point that a longer exposure than one-twentieth of a second is not required.
It is not within the province of this article to go into an abstruse demonstration of optical, chemical or mechanical facts, but simply to direct attention to an art of no little value to Topographical Engineers, and all others in the active service of the military profession. The dark room, preparation of chemicals, manipulation of camera, developusent. printing, and toning may form special studies for those desiring to become experts. The art of photograply is now taught as a part of the regular course at the Artillery School, Fortress Monroe, and in most of the Military Schools of other Countries.

PHOTO-LITHOGRAPHY.- The application of photography to engraving on stone. A lithographic stone is coated with a mixture of water, gum-arabic,sugar, and bichromate of potasb, dried in the dark, exposed in the camera, or under a negative. The effect of the luminous action is to render the gum almost insoluble. A solution of soap is then applied, which serves the double purpose, by its decomposition, of yielding a greasy printing surface, and by its solvent action to remove those portions nnacted on by light ; its action being inversely proportionate to the extent to which the gum was fixed by the light. In this condition the stone is frecly washed with water, and when dry, receives a coating of printer's ink from the roller, which, by uniting with the soap,gives additional body to the picture. This process was patented by Mr. W. E Newton; but, in common with others of a kindred elaracter, the resulting pictures
were invariably deficiont in middle tint.posserssing a degree of hardness very unphasant to the eye, which privented its reoming into feneral use.
PHOTO-MICROGRAPHY. -The enlargement of mireroseopic objects, loy mans of the microsernue, and the projection of the enarged image on a sensitive collodion film. The manipulatory de tails are the same as in the collodion process,only that, on a connt of the delicate nature of the markings to be rendered, it is necessary to employ a collodion yielding what is termel a structureless film. The principle upon which the enlargement is cIfected is that of the eomjugate fori. This branch of microscopie and photographic scicne has proved a uscful aid in the sturly of the seimenes of botany, physiology, and entomology, by delineat ing, with merring accuracy, wordy fiber, ducts, starch grannles, muscular fiber, blood dises, uerve papillar, ete. Among the numerous experimenters attractel by this interesting study. Dr. Maddox is perhaps the only one who has attained to any renown; and by him, minute animalcule, all hut invisible by maseisted vision, have bern magnitied to a superticial area of 3 sfuate inches, in which the mos: delicate details have bern faithfully preserved. By reversing tho arrangement necessary for these arilargements of microscopic objects. it will be seen that minute photographs of engravings, or other ol jects, may he produced which would reguire a microscope for their inspection. In this way communieation was maintained, during the investment of Paris, when copies of letters and newspapers were inserted in quills, and fastened to carricr pigeons; and this is really by no means so dillicult to accomplish as it may seem at first sight, since photographs no larger than a pin's head have been produced, inchucl. ing in that small space portraits of no less than 500 eminent men.

PHOUS DAN.-An East Indian term for a commander of a large body of forces.

PHYLEE.-A Greek word, meaning tribes, applied specially to the divisions of Attica, originally four, but made ten by Cleisthenes after the D'isistratide were driven from Athens. The number was still later raised to twelve. Each Phyle had a leader or Phylarch, who possessed certain authority, both of a civil and military nature, and each tribe sent fifty representatives to the Athenian Senate. In time the civil duties, such as presiding over the assemblies, were taken from the Phylarela and given to an officer called the Epimeletes.
PHYLARQUE. - A Grecian cavalry officer who commanded the cavalry of his tribe.

PIBROCH.-Music played on the bagpipe, which has a wonderful power in exciting the martial instincts aud bilarity of the Highlanders. Its rythm is so irregu'ar, and its notes in the quicker parts so much jumbled together, that a stranger has difticulty in following the modulations or reconciling his ear to them. The earliest mention of the military music of the bagpipe is in 1594, at the Battle of Balrinnes; indeed, prior to that period, the bagpipe can hardly be looked on as a national instrument of Scotland. There are appropriate pibrochs belonging to varions clans and districts, but some of these may not be older than the beginning of the last century. One of the oldest known pibrochs is called the "Battle of Harlaw," but it may be donbted whether it was contemporary with that event (1411). In the ballad account of that battle there is mention of trampets and horns, but none of the bagpipe: and the pibrocla style of music has so obvious a relation to the bagpipe that it is difficult to suppose that it preceded the use of that instrument. According to Sir Walter Scott, the connoisseurs in pipe-music affect to discover in a well composed pibroch the imitative sounds of march, conflict, flight, pursuit, and all the current of a heady fight. Many remarkable instances have been recorded of the effect of the pibroch on the Highlanders. At the Battle of Quebec, in April, 1660, whilst the British troops were retreating in
confusion，the pipers were ordered to strike up a favorite pibroch，and the result was that the High－ landers，who were broken，rallied the moment they heard the music，and formed with great alacrity in the rear．

PICADOR．－A loorseman armed with a lance，who commences the exercises of a bull－fight by attacking the animal withont attempting to kill him．

PICAROON．－A pillager or plnnderer ；one who violates the laws．

PICCOLO．－A flute of small dimensions，having the sarne compass as the ordinary flute，while the notes all sound an octave higher than their nota－ tion．In joyous as well as violent passages this instrument is sometimes very effective in a band．

PICKER．－A small，pointed brass wire，which was formerly supplied to every infantry soldier for the purpose of cleaning the vent of his musket．

PICKERING．－A little flying skirmish，which the marauders make when detached for pillage，or be－ fore a main battle．Also writen Pickerooning，and Picqueering．

PICKET．－A technical term for an elongated conoidal projectile．See Pickets．
PIGKET－GUARD．－A guard of horse and foot， always in readiness in case of alarm．See Pickets．

PICKET－LINE．－1．A position held and guarded by small bodies of men placed at intervals．2．A rope to which horses are secured when groomed．The rope，which usually passes throngh holes near the tops of posts planted in the ground，is frequently re－ placed by a timber framed on the posts．

In the Crimea，the cavalry usually encamped in line with two rows of picket－lines and a line of shel－ ter tents in front of and behind the picket－lines；the arms and equipments between the shelters and the

the man thns stood was proportioned to the offense． The punishment became，after a few moments，ex－ tremety painful；it las long been discontinued ou sanitury grounds．
3．Detachments of troops whose proncipal duty is to guard an army from surprise，and oppose such small parties as the enemy may push forward for the purpose of reconnoitering．The main－detach－ ments or pickets，which form the supports to the grand－guards and out－posts，occupy the principal avenues to the position of the main－body．As their duty is to hold the enemy in cheek，the points which they take up should be susceptible of a good defense； such，for example，as villages，defiles，etc．；when－ ever these advantages are not found at hand，resort should be had to any temporary ohstacles，as abatis， etc．，which can be readily procured，to place the troops under shelter．The points thus occupied should，as a general rule，be ahout midway between the line of out－posts and the position of the main－ body：Small posts should be thrown forward by the pickets，between their position and the line of grand－guards；both for the greater security of the detachments，and as supports to the grand－gnards． In like manner，when the line of pickets is of con－ siderable extent，intermediate posts must be estab－ lished，to keep open a communication between them， No pains should be spared to obstruct the approaches of the enemy to the points occupied by the pickets； particularly those which lead to the flanks；leaving open such only as will oblige the enemy to attack under the most unfavorable circumstances；and if， between the advanced－posts and the main－body，a defile，or other unfavorable pass should occur，which the enemy，by turning the line of the advanced－posts， might seize upon，and thus cut off their retreat，it slould be occupied by a strong detachment； both to prevent such a manenver，and to favor the retreat on the main－body．

The entire strength of the advanced－posts，as well as the relative strength of the pickets， grand－guards，and out－posts，will depend upon the character of the ground covered by them； as being more or less open，and presenting more or less facilities for circumscribing the approaches of the enemy to the main－position． It rarely occurs that sufficient troops can be detached to cover all the accessible ground， and perform the duties in a thorough manner The strength of each picket，and the kind of troops of whicl it is composed，will depend on the degree of resistance to be offercd to the cnemy＇s attack：and the character of the posi－ tion occupied．In most cases where a vigorous defense is called for，they will consist of troops of all the arms；and anaggregate of several
picket－lines．The picket－lines were stretched on the ground．and the horses sereured to them by hobbles on the right fore－fcet；the hobble being about three feet long and buckling around the pastern－joint．The drawing shows this arrangment，which is spoken of by the French officers as being the best manner of securing the horses．

PICKET－PIN．－An iron pin with a ring at the top． It is driven in the ground，and the hariat is attached to it to secure a horse while grazing．

PICKETS．－1．Stont wootien stakes driven into the ground ind used for securing purposes，and in the construction of holdfasts．The ordinary stakes for siegre－gun blatforms answer for mosi cases． When very heavy st rains are to be bome，posts from five to right feet long are reguired，and are set inte the ground by digeing holes，or with a piicedriver． When the latier is used．The post should he shond with an iron point，and lave a ring upon the head to pre－ vent splitting．

2．In carly military punishment where the ent－ prit was held hy the raised arm in such a position that his whole weighe fell on one foot，whieh was supperted on a pieket with a blunt point．The time
hundred men．The grand－guards，out－posts，and patrols，should not as a general rule exceed one－third the strengtl of the pickets to which they belong． They will be composed of cavalry，or infintry，ac－ cording to the more or less broken features of the ground．It rarely oceurs that artillery is placed at the out－posts．Wheuever it happens that a piece，or two，may be deemed necessary，to sweep some parsage or defile，in advance of the line of out－posts， the guns must be protected by a strong post，to in－ sure their safety in a retreat．If，from the character of the gronnd，the out－posts are mainly of infantry， some cavalry slould always le altache⿱口⿰口口⿺辶 patrol in adrance of the position，and to convey in－ telligenee to the rear of what may be passing in the neighborsood of the ont－posts．When the advameed－ posts cover anadvanecel－guard，the Conmanding Ofti－ cer of inc whole should tike al position，with his artil－ lery and the man－body of his command，at some central point，in the rear of the pickets：in order to be rendy to sulpport them if hard pressed by the euemy． The choice of this position is an object of the greatest importance；as the safety of the idfanerel－posts as well as that of the matin－borly，may depend upon the
degree of judgment shown in his seleedion. Sonoon as the afvancelquosts have taken up their shations, instractionss should be given tor the ohlleers of the differcm! posts, with respect to the points mum which they are to fall back, in case of their being forem in: the lines of commanication they mast of neeressity relire by; and the position they must tuke mp, when juining the supports to which they resuectively belong. An oflieer in command of any of the outposts must be capable of untiring vigilanee and activity; to perform the varions daties which devolve apon him. He should le provided with a good map of the country, a trleseoper, and writing materials. He will thoroughly recommontor the ground upm which he is to dispose his command; and also as far in Alvance as cireumstances will atmit: questioning (losely ma inhabitant he may find. After taking up) his prosition, he should go ferward with the half of his command, and post cach sentinel himself. If, how ver, he relieves another in the command, and deems it advisable to make ary changes in the dispositions of his predecessors, the should promptly report the facts to the commanding-oflicer in his rear. When the oflicer tinds that the enemy is not in his immediate neighborhood, he should endeavor to fred his way cautionsly towards him by patrols; ant when in immediate presance, he should omit no means to watch the enemy's movements; and from the oceurrences of the moment, such as noises, the motion of clouds of dust, camp, fires, conthagrations, cte., tendeavor to divine what is passing in his camp, aut his probable intentions. Accurate written reports should be promptly sent to the oflieer in command, in the rear, on all these points. The reports should be legibly written, and should clearly, hut concively, state what has fallen unter the odicer's eye; what he has learned from others; and the character of the sources from which his information is drawn. The post under the ollieer's command, whether horse or foot, should not all be allowed to slecp or eat at onee. The horses, when wanted, should be taken singly or by pairs, and always mounted. At night one-half of the command should be under arms, prepared for an attack; the others seated, their arms and the bridles of their horses in hand. The men should never be permitted to occupy a house; and if the weather is such that a fire out of doors is indispensable, it should be as much conceatedas practicable; one-half being only allowed to sit near it; the other posted, at a convenient spot at hand, to fall on the enemy should he attempt a stroke. When the position taken up is to be helt for some time, it will be well to change the locality of the posts oceasionally; this shond be done particularly at night, in a hilly district, ehanging the post from the brow of the hill, where the men can best keep a look-ont by day, to the low ground at night, as more favorable to detert any movement above. The out-posts are usually relieved at daybreak, as being the most favorable moment for the enemy to attempt a surprise; the new-guard, will serve to reinforce the old. For the same reason, the old-guard should not be suffered toretire before the patrols come in and report all safe. See Ad vanced-posts. Field-scrvice. Grand Giutrdx, and Outposts.
PICRATES. - The picrates are salts of picric acil. Pieric or trinitrophenic acid is a nitro-substitution product, formed by the action of nitric acid on carbolic acid (phenol, $\mathrm{C}_{6} 11_{6} \mathrm{O}$ ). Three substitution products may be derived from this action. but only one, pieric acid, possesses any marlied explosive properties. Picric acid has the composition indicated by its symbol- $\mathrm{C}_{6} \mathrm{IH}_{3}\left(\mathrm{NO}_{2}\right)_{3} \mathrm{O}$ or $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{7}$, Picric acid is found in commerce. being used to dye silk and wool yedow. If the acid is heated, it takes fire and burns sharply and rapidly without explosion. The pierates are all exploded with more or less violenee by heat or blows. W'ben used as explosive agents they are mixed with potassium nitrate
(saltucter) or potaskium chlorate. A harge number of pircrates are known, but the protnssimm amb ammominm salts are the only unes that have been manels usen in explosive preparations.
 lently explosive of the piceritos. Potashime ficrate and petassium chorate form a mixture nearly as powerfal as nitro-glycerine, but it is se sensitive to friction or percussion as to redederit practically useless. With potassimm nitrate insteat of chlorate as less violent mixture is oftained, hat one still too liable tonaceilental explosion.
Ammonium Dicrute, $\left(\mathrm{O}_{6} \mathrm{H}_{2}\left(\mathrm{NH}_{4}\right)_{3} \mathrm{O}_{7}\right.$, has been propesed by Abel ats an ingredient of a powher for bursting charges of shalls. The propertiog of anmonium pierate are very different from those of the potasimm sall. If flame is applied to the formor, it burns quially, withastrong, smoky lhame. If hoatod it melts, sublimes. and buras without explosion. It is almost entirely maffected by blows or fristion. This salt mixed with saltecter forms Abel's picrice powder (Brugere's powider). Experiments with this powder in England inlicate that it prossesses some atvantages when nsed in shells. A number of slachls charged with it were fired from gins of different catiber without accitents. It is mere powerful than gunpowder and less violent than nitro-glycerine and gun-eoton. It is insensitive to ordinary means of ignition. If flame is applied to it, the particles touehed burn, but the combustion dores not readily extend to the others. Blows or friction tho not explode it. It must be confined inorder to develop its explosive force. It does not absorb inoisture from the air, so that it may low stored and handled like gunpowder, and is at least equally safo and permanent. It is prepared for use by the usual gunjowder processes of incorporation-pressing, granulation, ete.; so that it has the same form and may be handled in the same way. It may therefore be a good substitute for powder when a more violent explosive is wanted and neither gun-cotton nor nitro-glycerine are available. The mixture contains 46 parts of saltpeter and 54 parts of the picrate.
The picrate is prepared irom pieric acid and ammonia. The pieric aeid is dissolved in water, and ammonia added to neutralization. Another charge of pierie acid is then dissolver in the same liquit. and ammonia again added. Thisis repeated several times, and the liquid allowed to stand for some time, when the armonium picrate erystallizes out in large quantities. The mother liquor is drawn off, the crystalline deposit drained ant dried. The mother lifuor may be used for the proparation of suceessive lots of the ammonia salt until it becomes charged with impurities, when it may be otherwise treated or thrown away. In this way a considerable amount of the salt can be expeditiously prepared with little labor and without much loss. The working of the mixture is. of course, $t 0$ be done at a powder-milh. See Explovive Agents.

PICRIC POWDER.-Picrate of potash. This powder, of a bright yellow eolor, has been recommended as stronger than gunpowder, and kess suseeptible to ignite by means of friction or a blow.
PICTS WALL.-One of the barriers erected by the Romans across the northern jart of England to retrain the incursions of the Piets.
PIECE.-1. In 1 feraldry, an ordinary or charge: as the fesse, the bend, the pale, the cross, the saltire. the chevron, called honorable pieces. 2. The terms cannon and ordnence are applied to all heary firearms which are fired from carriages, in contradistinction to smutl-erms. whichare fired from the hand. The term pice is applinel to camonn it also used to designate a cannon in union with its carriage with or withont the limber.
The light artilhery of the L"nited States now comprises the following pieces, viz. : threc-inch rifle and three-and-one-half-inch rifled-guns: helf-inch and oneinch mitrailleurs; and the tacelre-pornder smowth-bore
gun. A.45-inch mitraillenr has just been adopted trunnions with the gun ; their ends, or the shoulders ( 1874 ) ; it is intended to ultimately replace the halfineh mitrailleur. The three-inch ritte was adopted in 1861. It is made of wought-iron, by wrapping boiler-plate rond an iron bar, so as to form a cylindrical mass, which is brought to welding heat and passed through rollers, so as to unite it solidly; the trunnions are afterward welded on, and the piece is bored and turned to its proper size and shape. The method originated at the Phonixville Iron Works, Pa. The model for the three-and-one-half-inch rithe was adopted in 18:0. It is to be made of wroughtiron or bronze, and in its general appearance will
 perpendicular to the axis of the trmanions. The breech ( 8 ) is that part of the piecu in rear of a plane passing through the vent and perpendicular to the axis of the piece. The basp of the breech is the plane, or curved, surface at the rear of the piece. The seat for the pendulum-hausse is screwed into the base of the breech. The breech inchudes the cascabel (9) which consists of a knob terminating the rear of the picce, and of a neck, or narrow part, which unites the knob to the base of the breech. When the body of the gnu is strengthened by a band, or jacket, this addition is termed a reinforce. The chase $(10)$ is that-part of the gin in front of the trunnions. The muzzle (11) is the general term for the front of the gno; if the chase be enlarged at the muzzle, the enlargement is called the swoll of the muzale, and the part of the chase where the swell begins is called the neck. The closely resemble the three-inch rifle. The mitrail- front, or muzzle, sight is screwed into the muzzle, leurs are Gatling's, and were adopted in 1868 ; they or into the swell of the muzale at its highest pont. are made of steel, some of the smaller parts being of brass. The twelve-pounder, or Frapolem gun, adopted in 185\%, is still (1874) retained in the Uuited States service, thongh abnndoned by all other civilized nations. It is cast in gum-metal or bronze, which consists of ninety parts of copper and ten of tin, allowing a variation of one part more or less.

Description and nomenclature of light gnons: 'The bore ( 1 ) is the hollow eylinder which receives the charge. The mouth (2) is that part of the bore nearest the front of the piece. The bottom of the bore (3) is its extreme rear; in the three inch riffe, it is a semi-eliptical surface. The bores of rifled-guns have grooves; the intervals between the grooves are called lands; the grooves and lands are of equal width. The rent is a cylindrical hole, perpendicular to the axis of the piece (4), near the bottom of the bore, throngh which fire is communicated to the charge. The surface of the piece in the immediate vicinity

The face $(12)$ is the perpendicular plane terminating the front of the gun. Preponderatuce is the excess of the weight of the piece in rear of the trannions over that in front ; it is measured by the lifting power in ponnds, which must be applied at the base of the breech to balance the picce when suspended frecly on the axis of the trunnions. It is decided to dispense with preponderance in all guns hereafter cast. The bore is kept as dry as possible by depressing the piece and using a vent-cover and tompion. Great care must be taken not to bend or injure the frontsights, as it affects the accuracy of pointing. After firing, the bore of the gun must be washed ont, and the piece depressed. Steel guns are bronzed or lackered on the exterior. Hitraillenrs are kept cleaned and oiled to prevent them from getting rusty; after marching over dusty roads and, if possible, before going into action, the barrels and carrier-block are wiped and the parts olled, the crank being re-

	Rifles.		Mitrailleurs.		12-Pdr. model of $185 \%$.
	3 -inch.	32-inch	$\frac{1}{2}$-inch.	1-inch.	
	Inches.	Inches.	Inches.	Inches.	Inches.
Diameter of bore..		3.5		1.	4.62
Length of bore........	65.	65.	33.	33.	63.6
Whole length of piece..	72.7	73.84	58.	68.15	72.55
Greatest exterior radius of base of breech	4.85	5.6			5.5
Greatest exterior radius of breechcasing			3.81	6.5	
Length of front-sight. .................	1.85	2.25		.	2.5
Length of trmmions..	2.8	3.25	2.25	2.8	3.25
Diameter of trunnions.	3.67	4.2	2.7	3.64	4.2
Depth of grooves.	. 075	. 075	${ }_{\text {. }} 01$	. 01	...........
Twist of grooves .....................	1 in 10 ft .	1 in 12 ft .	1 in 42 inch.	1 in 6 ft .	............
Weight.	$\begin{gathered} \text { Pounds. } \\ 830 \end{gathered}$	Pounds.	Pounds. 365	Ponuds. 1,008	Pounds. 1.230
Preponderance.	40	None.	45	110	105

of the exterior orifice of the vent is called the rentfirld. The body (5) is that part of the piece in rear of a plane perpendicular to the axis of the piece and tansent to the front part of the trummions ( $6,6,6$ ), or projectiner cylindors at the sides of the piece, which are intenefed to smpport it on its carriaus ; thoir axes are in a line perpendlenlar to the axis of the picce, and in the same plane with it. The rimbiases $(7,7)$ are the short masses of metal which unite the two
versed to avoid umneressury suapping. The foregoing are the principal dimensions amd weights of pieces. In bronze, the weight of the three and one-half inch ritle is 1,299 lhs. There are seven grooves in the three-inch and three-and-one-half-inch ritles, and six grooves in the barrels of the mitraillenrs. In the twelve-pounder, the windage, or difference between diameters of bore and projectile, is 0.1 inch. See Cannon, Gatling Gun, and Mitrailleur.

PIERCED. - In Meraldry, a tern ustal to indieate that a clanere is perforsted so as to show the tield beneath it. 'lha ajeertare is presumod to be cirendar,
 enge piaread, be speritiol in the blazom.

PIERCER. - An instrument rmployed in tha fidorication of ordmance. '1'he loring of a 'anmon is commoneed by phating the boring-rot, armed with the flrst eutter, called the pirmer, in the probongation of the axis of the jucere, and pressing it against the motal. The piaceer is used till it. penematan to the bottom of the ehamber, aftor which is weroml enter, or remmer, is athehed to the boring-rod, ambl with this the horing is made comblete to the round part of the chatmber.

PIERRIER.- A term origimally appliml to an engine for cetsting stones. and later to a small kinl of cannon. Tha term is now generally applied to a mortar used for discharging stones, ete.

PIERS.-In fortitication, the tuttressea on which the roadway of a bridge rests. In the casre of woolen bridges, piers are made of barrels, ete.

PIES.-Coments Palatine, who were crmated in 1500 by Pope lius 1V, and who hatl precedenere at JRome over linghts of the Teutonic Order and Order of Mala.

PIEZOMETER, - An instrument invented by Oersted for measuring the compressibility of liquids. It has been proposed to ascertain the jressure of the gases evolved by the eombustion of gunpowelre. by inchuding in the eavity within which the prossure should be restrained a piezometer, which, by registering the compression of a liquid contained within it, should afford an indication of the pressure to which it hat been exposed. This instrument, as employed in these experiments, is shown in the elrawjng. Fig. 1, is a section through its axis; lig. 2, an exterior side view. The same letters are used in re-


Fig. 1.


Fig. 2.
ferring to like parts in each of the figures. A, is the body of the instrument. The general form of its lower (or outer end) is hemispherical, but it is flattened on four sides (as at a and a) for fitting a sockrísttached to the middle of a small oil-pan used in filling it. B. is the barrel to which the piston is fitted. It screws frecly into the body, and makes with it a elose joint. C, is the piston, packed with a leather ring oceupying a groove; $c$, is the eye of the piston, by means of which it is withdrawn or turned when required. A special implement (not represented) is fitted to the eye for this manipulation. $D$, is a stem serewed into the piston. The lower end is squared. to fit a socket like that of a watch-key. As it is desirable to use a new stem for each experiment. spec. ial appliances were prepared for making duplicates readily and with accuraey. They are coated with a thin film of black varnisif to render the marks they are to receive more distinct. $E$, is the point from which the stem receives the mark recording com-
progsion. $\mathrm{l}^{2}$ is atubular support for thr jegint, and
 tachool the spring, $\mathfrak{A}$, pressing tho point against the stenn; $f f$, are looles in the support to jermit the sil
 throst in, under the action of surrounding poressurn. II, is a serew promittincs the "acraper of wil whon the instrument is being " rat" for usa*, but also rajuble of elosing tightly the oproning in which it is situated. '1ests wore made of the tightnoss of the juistonn and of the joints.
In prepuring the piezometer for an expreriment itwo itums are to be spocoially observed ; it must eontain
 tity of oil containerl, mast be drone at the precomelromporatare the instrument is to lave at the moment of tiring. The procerlure is simply as follows: dil the parts are firat oiled, over their whole surfacoos. 3he mljusting-screw is inserted into the boly of the instrument. which is thronset upright in a sockert atharhed to the middle of a small juim interaderl to chteb any overtow, and is mearly or ruite tilled with oil, which slaould be made to tlow down the side of the cavity rather than in a stream. The snjport of the marking-point, guite clown lut covered with oil. is now serewed into its plare, with the airl of a special implement, not described. When this is withdrawn, it will he neecossury to rejplare the sil caused to overllow by its insartion. The barral is now slowly put in its place and screwed firmly down. The hole in the piston for receiving the stem is filled with oil, the stem sorewed in, and the piston inserted in the barrel. The adjusting-serew is loosened a little, permitting the piston to be pressed just below the top of the barsel, and again tightence. The next step is to bring the instrument and itseontents to the setting temperature. For this purpose a water bath (a common wooden pail) is providrd : also a narrow tin cup, deeper than the hath and weighted at the bottom so as to stamd upright within it ; andl a pair of wooden pinchers for handling the piezometer, whieh instrument could be inserted in them in such a way as to be nearly enveloped and yet to lave the atlusting screw and piston readily accussible. The piezometer, seized in the pinchers, is placed at the bottom of the eup, in eompany with the tools to be used in setting it, and is covered with a loose wad of cotton. The cup is set in the middle of the bath and surronnded with water kept as nearly as possible at the desired temperature, for a sufticient time to impart, as nearly as apprceiable, the shme to the instrixment. It is then withdrawn, the screw loosencd, the piston depressed a little to a regnlated depth with a special tool, the serew tightened, and the piston rotated a few degrees, which completes the setting. The object of this last movement is to inseritbe a transverse line on the stem, affording a starting point in measuring the length of the stroke.

Small changes of temperatmre after the instrment is set are of no consequence, as the oil will of eourse return to the same volume, and the piston stand at the same place, on returning to the same temperature. Before placing the piezometer in the hollow plog, a thin leather envelope, kept saturated with oil, is drawn upon it. (with the intention of affording protection against the shock of tiring), and when inserted, the remaining space within the plug is filled with oil, which is retained by stopping the opening through the retaining ring (which forms the communieation with the bore of the gun) with a looselyfitted disk of eork or leather. One particular to be noted is the position of the eye of the piston with reference to the line in which the gun will recoil on firing. The metal surrounding the eve occupies a position at one side of the piston's axis of rotation in the barrel, thereby throwing the center of gsration out of that line: and if that center be so situated as to fall outside of a plane eoineichent with the line of recoil, it is evident that the piston will have a tendeney to rotation when the gan is fired.

PIFFARD HEEL-PLATE.-This device consists of a soft rnbber parl or cushion about half an inch in thickness. It is applied to the butt of the gun cafter removal of the iron heel-plate), and is retained in position by a skeleton plate. The latter is attached to the stock by using one of the original screws, and in addition a small serew inserted near the toe of the heel-plate, as shown in the drawing. The stock of the gin is not altered in any manner, and the original butt-plate can be re-ipplied at will. Experience has shown that, when using this contrivance, the effeet of recoil has been greatly modificel. and a charge of as much as 110 grains of powder, with 420

of lead, can be shot without discomfort. The bencfits accruing from the lessened recoil are: liecruits and berimers will not become "gun-slyy," and contract the habit of flinching; increased accuraey from absence of flinching; target practice can be more continuously and cificiently carried on than is practicable withont the elastic-plate, owing to the bruising and other injuries attendant on the use of the service cartridge ; and, the powder charge for service ammunition could be materially increased, thereby flattening the trajectory, and in other respeets rendering the weapon more effective.

It is evident that the use of this description of heel-plate insures greater safety and increased accuracy. The dropping of a loaded gun (cocked or half-cocked), butt downwards, on a stone or hard ground may result in breaking the point of the sear or one of the notches of the tumbler, cansing a premature diseharge. This heel-plate would diminish the force of the concussion and lessen the liability to aceident. In repeating riftes, in which the cartridges are arranged in the magazine with the bullet of one pressing on the primer of the one in front of it, the dropping of the gun might cause an explosion in the magazine. The liability to this accident would be diminished by the use of the plate. Practical marksmen have found that when using this heel-plate the butt of the riffe is retained in proper position against the arm with less excrion, the rubber not slipping from the arm as readily as the iron butt-plate. On drill, Order Arms is accompanied with less noise, and less jar to the mechanism of the weapon. By a recent resolution of the Directors of the National Rifle Association, the use of this heclplate is permitted in all military and other competitions held under their auspices.

PIKE.-Previously to the use of the bayonet, infantry of the line of battle-that is, the heary-armed troops-were from the earliest times armed with pikes or spears. The Maedonians carried pikes in 4 feet long ; those of modern warfare averaged 12 or 14 feer. They were of stout wood, and tipped with a llat iron spearhead, which sometimes had cutting edges. As a defense against cavalry, the pike, from its length and rigidity, was of grent value; but thouglit homer survived the introduction of gunpowder, that wernt was really fatal to it. For sucerss wif the pike, especially in offensive war, a depth of several men was cesontial, and this depth rendered the fire of artillery pecoliarly fatal. The pike is now superseded by the bayonet on the cind of the musket.
PIKEMEN.-Men who were armed with the pike. From the reign of Henry V'll. to that of William T11. the greater part of the English Army was formend of likent il.

PILE.- I. In lleralelry, an ordinary, or, according
to some Ilcraids, a subordinary, in the form of a wedge, issuing generally from the middle chief, and extending towards the middle base of the shield. It is said that a pile should oceupy one-third of the breadth of the chief, or, if charged, donble that breadth. When a pile is borne issuing, not from the

middle chief, but from some other part of the bound-ing-line of the shiell, this must be specified in the blazon. Three piles are sometimes borne conjoined in point. A pile transposed is one whose point is upward.
2. A round or squared $\log$ of wood used in engineering operations, such as daws, bridges, roads, etc. They are sharpened at the point, and, if necessary, protected with iron points, to enable them to cut through the strata they encounter as they are driven into the ground. When used for coffer-dams, or such temporary purposes, they are placed close together, and driven firmly into the earth; the water is then pumped out, and the piles form a dam, to enable workmen to lay foundations of piers, etc. When the force of the water round the dam is great, two rows of piles are driven in all round, and the space between the rows filled with clay, and puddled. Piles are also used for permanent works, when they are driven throngh loose soil till they reach a firm bottom, and thus form a foundation on which buildings, roads, etc.. may be placed. Cast-iron is frequently used for piles, which are cast hollow. Wharf-walls are sometimes built of piles; they are then cast with grooves on the sides, into which castiron plates (forming the walls) are fitted. A kind of pile has been invented by Mr. Mitchell, which is of great use in very loose and shifting substances. It is ealled the screw-pile, and consists of a long shaft (of wrought iron), with a broad cast-iron disc, of a screw form, at the lower end. These piles are especially useful for light-houses, beacons, etc., which have to be placed on sands. They are fixed by means of capstans, which give them a rotatory motion. In 1843 Dr. L. II. Potts obtained a patent for a new kind of pile, which consists of hollow tubes of iron, from which the sand, etc., within them is removed by means of an air-pump, and the pipes are then sink. In recent railway bridges. cylinders have heen much used to form both piles and piers. They are of cast-iron, and made in pieces (of about 6 feet in height), which are applied one on top of another. The sand or gravel is removed from the inside of the first laid, which thus sinks down; another cylinder is placed above it, and the same process continued till italso has sunk sufficiently; and so on, cylinder over cylinder, till a solid foundation is reached. The requisite mumber of cylinders is then piled up to form the pier above ground.
PILE ARMS.-To plare three muskets, with bayonets fixed or untixed, in such a relative position that they shall mutually support cach other. This is dome when menstand from their arms cither on parale, on the march, or in camp. Sece stack Irms.

PILE BRIDGE.- $A$ form of lridige much used in military operations, having ! he pirs built with piles. These maty he either temporary wooten structures, in which wouden piles, driven into the ground, serve aloo as piers, or they may be mermanent bridges, with iron cylinders forming the piles below the surface, and piars above.

PILE-DRIVER. - A machine having a rising and falling weight to drive a pile into the bed. Nearly forty years aro an cminent Scoteh Engine er, Jame's Nismith, the cincentor of the stmm-hammer, con-
structed the first stean pile driver which, although "great improvement on the ordinary dropelammer in many resperets, never camo into general use for several reasons. l'rinctpal among which were the liability of the machines through eompliention of parts to get out of order. and the fact that the reme of each separate: pile required to be acearately itted and banded before it eendel be driven. Subserquent


Fig. 1.
modification of Nasmyth's machine has greatly lessched its liability to get out of order, and largely increased its usefnlmess, lont it has remained for Mr. R. J. Cram, an American and the inventor of the machine which we describe in this article, to alevise an engine sufficiently simple in coustruction and effective in practice. The Cram pile-driver, or pilehammer, as it is more properly termed, has a cylindrical ram, Fig. 1, made to reciprocate between wrought-iron I beams, which with the casting eonnecting the upper ends, carrying the piston rod and valve and the bonnet custing, holding the head of the pilc, and connerting the bottom ends, make the frame which guides the machine while heing hoisted between the leaders, or when following a pile which is being driven. These pile-hammers may be readily applied to any machine of the ordinary patterns without any alteration excepting such as may be necessary to accommodate the width of the hammer. and afford an opportunity for connecting the flexible pipe which conveys steam from the boiler 10 operate the hammer. The hammer being hoisted to a rest at a convenient height, the pile to be driven is placed in position and the hammer lowered until the bonnet casting, which forms the bottom of the frame, reccives the head in the conical aperture through which the pintle-like projection on the bottom face of the hammer strikes, when a bow is delivered. The weight of the hammer being on the pile, the clutch on the winding drum or other device controlling its descent, is cast adrift and the valve thrown open to admit the passage of steam hrough the blexible pipe and the hollow piston rod sullicient to operate the hammer at any desired speed.
On the admission of steam the hammer immediately rises in its frame or eage, to the full extent of the stroke at which it may be set, ordinarily a bout four inches, and on reaching the c'nd of its stroke the
stean is rexhatusted and the cylinder falling delivers fis blow, and throrafter mintinus io rain blows "pon the pisle with at apeenl at the will of the operatere until the pite be down, or the supply of the: stram "ent off, when the machine is hoisted to ther rast at the top of the leadera reaty fer a rapertition of the pera formance just deseribed. In this connection it may be stated that light or lionvy blows may fee azrurk at the will of the operator, ans a reverue motion of the valve lever, which, in the bands of the oferator, ado mits stram to the hammer, causer the steram (0) lo: "xhansted at any desired point in the stroke, and a blew eorresponding to the height from which the ram falis delivered; making it pussible, if dosired ly the operator, to west the pile loy one or more light hows before the mathime is permitterl to work antomatically at full stroke, or if it is desired to drive the pile in position umbre the hammer to any desired point. It is possible, when the pile is found to be nearly home to stop the antomatic working of the hammer and leliver the remaining blow's re quired to bring the pile to its prouer pusition by hand. This feature in the working of this hanmer is particularly advantagcous, becanse since the beads of the files driven with this hammer are meither braised nor shattered, the ability to drive to any dosired level with accuracy and expedition prechales, in many cases, the necessity of cutting off the piles to gain a common lovel, In the use of this machine, whether on land or mounted on a flont, it is found that with the point of the pile in prosition, and the head held by the bonnet casting, no other guides of any sort are required to insure aceuracy of position when driven. The bonnet rasting referred to in this machine is so constructed that no preparation of the heads of the piles is necessary


Fig. 2
when the diameters do not exeech cighteen or twenty inches. When it is desired in drive piles of a greater diameter the hadd are ronghly chamfered with a chopping axe. It is an exceedingly difficult matter to compare the work done by this simple machine with that of the ordinary drop-hammer, becanse this
steam-hammer will so readily do work that the ordinary drop-hammer will not do at all, for instance, after a pile bas been driven with an ordinary drop hammer until it has become necessary to remove the ring and ent a section off the pile to form a new and solid head, by experiment it has beenfound that the steam-hammer experiences no difficulty in forcing the pile until the point reaches hard pan or rock, and it will, perhaps, be sufficient to state that in the machine here illustrated, the ram weighing $5,500 \mathrm{lbs}$, when working under a pressure of 75 lbs . of steam delivers uprards of 100 blows per minute, more than sufficient to force a pile through hard sand or clay to the depth usually desired.

The fact that the ram, when the blow is delivered, is free, unattached to piston rod, valve gear, or any other part, will recommend the machine to practical men, as will also the fact that the valve is a perfectly balanced, positive action valve, with a travel of but $\frac{5}{7}$ of an iuch in a steam jacketed chest, and that the attachments of the hose at either end are flexible, thus avoiding any cramping, or twisting which otherwise would occur. The tappit or trip operating the valve is adjustable, permitting the operator to control the length of stroke when the machine is working automatically, thereby making the force of the blows suit the work in hand. Spiral pereussion springs are fitted in pockets in the " bonuet casting" to reeeive any chance blow, and in practice are found to effectually prevent any loosening of the fastenings connecting the bonnet easting with the I beams. Fig 2 shows a portable spur-geared pile-driver engine, hav-

PILING. - In iron-working, the process of building up piles of iron bars, to be charged into the ballingfurnace. The amount of work put into bar-irou varies with the quality. For the common kinds, puddled bars, or No 1 iron, cut into lengths, are piled, and when brought to a welding-heat are rolled off, either with or without first being worked into a bloom under the hammer. More usually, however, the iron of second-rolling, No. 2, is employcd at the top and bot-

tom plates of the piles when making finished No 3. or best iron. Beyond this, if further piled and welded, the iron is distinguished as bext-best and treble-best aecording to the number of heatings and weldings to whicb it has been subjected. The drawing shows samples of piling for plate, T, girder and bar-iron; the deeper shaded inner outlines representing finished sections. The harder and more granular kinds of ironare worked almost exclusively under the hammer, the rolling-mill being only used in giving the proper figure to the bar at the fimishing stage.

The great improvement in the strength of malleable iron by the processes of piling and rolling has been more satisfactorily established by experience than explained by theory. One obviouseffect of the violent compression bet ween the rollers is the squeez-

Style of Engine.
ing a cone friction single drum. The engine is designed for either portable orstationary purposes and is coustructed either with or without wheels. The drum is loose on the shaft, having a conieal friction cloteh which is thrown into or out of contact with the large gear wheel by means of a hand lever operating a spiral slecve on the drum shaft. The drnm, in lowering, revolves back free of the gear, and is controlled by a strap brake lined with wood, operated by a foot lever. A relief valve is also fitted to the engine, which allows it to back down with the load. This style of engine is the favorite in the United States for land pile driving machines. It is also well adapted for other kinds of work where speed in lowering is required. The engine may be made cither vertical or horizontal, single or louble eylinder, cither connected or independent of each other, and with single or double drums. The foregoing table shows the nower required for a specitied duty. See Gunponderhammer.

PILETUS. - A kind of armor formerty used, havine a knob upon the shaft, near the head, to prevent it from penetrating the object amed at too deeply.
ing out of slag, which is liable to become entangled in the iron during hammering and rolling of the balls taken from the puddling-furnace. The oecurrence of small masses of slag in malleable iron is not an uncommon cause of weakness, cach particle of slag giving rise to a flaw in the metal. In the process of reheating the bars this slag is melted, and may then be squeczed out by the action of the rollers.

A marked diminution in the proportions of carbon and silicon present in the iron is also effected during the process, as shown by the following results of chemical analysis:

In 100 parts	Carhon.	Silicon.
Puddled bar.....................	0.296	0.120
lhest bar..................	0.111	0.088

This may be explained by the action of the oxide of iron formed upon the surfare of the bar during exposure to air at a welding-heat. The rolling of several bars into one single bar would render the structure of the metal uniform, so that the bar would be equally strong throughout.

During the opration of fagoting, or piling and rolling, the iron arduires a remarkable librous stracture, so that if a bar of the best iron be notehed with at chisel, and broken across by a stemly pressure, the fracture will present astringy npearance, resemWhing that of a green stick; whilst a puddted bar thas trated would exhibit a crystalline, shining frac: ture, not unlike that of cast-iron. That this arree, or reed, as the tibrons structure is sometimes called, should materiality increase the resistance of a bar to any transverse strain, can readily be believed, for such at bar resembles a lunder of wires tirmly bound together, whilst a crystaline bar must be regardeel as composed of a number of particies of iron stuck together in a confused manner. See /ron.

PILING OF BALLS.- laalls are pited according to kind and eatiler, under cover if practicatble, in a place where there is a free circulation of air, to facilitate which the piles should be made narrow, if the loeality permits; the widh of the bottom tier may be from 12 to 14 balls, aceording to the culiber. Prepare the ground for the base of the pile by raising it above the surrounding ground so as to throw off the water; level it, ram it well, and cover it witha hayer of serecenct sand. Nake the holtom of the pile with a tier of unserviceable balls, buried about two-thirds of their diancter in the sand; this base may be made permanent ; clean the base well and form the pile, putting the fuse-holes of shelis downwards, in the intervals, and not resting on the shells below. Each pile is marked with the number of serviceable balls it contains. The base may be made of bricks, concrete, stone, or with borders and braces of iron. Good and imperfect balls should not be used in the same base; and, to avoid confusion, the unserviceable should be left unpainted, or painted of a different color from the serviceable.

To find the number of balls in a pile: Multiply the sum of the three parallel edges by onc-third of the number of balls in a trimgular face. In a square pile one of the parallel edges contains but one hall; in a trianguiar pite two of the edges have but one ball in each. The number of balls in a triangular $n(n+1)$
face is $-\frac{n}{} n$ being the number in the bottom row. The sum of the three parallel edges in a triangular pile is $n+2$; in a square pile, $2 n+1$; in an oblong pile, $3 \mathrm{~N}+2 n-2, \mathrm{~N}$ being the length of the top row, and $n$ the width of the bottom tier; or $3 m-n+1, m$ being the length, and $n$ the width of the bottom tier. If a pile consists of two piles joined at a right angle, calculate the contents of one as a common oblong line, and of the other as a pite of which the three parallel edges are equal.

To find the length of a pile which shall hold a given number of balls, the width of the base being fixed: A $=$ the number of balls to be piled. $n=$ the number in the width of the base of the pile. $m=$ the number of balls in the length of the base of the pile; then
$61+n(n+1)(n+1)$

## $3 n(n+1)$

In the table of the number of balls in a pile, on page 526 , the second here shows the number in a triangular pile, the base of which is the corresponding number in the tirst line. The otber numbers show the contents of square and oblong piles; the length and width of the base being in the upper line and in the left-hand columan, respectively.
For rifle projectiles: Divide the number of projectiles to be piled by the mumber in the triangular face decided upon, and multiply this number by the caliber in feet of the particular projectile to be piled. The dimensions provisionally adopted for service ritle projectiles are as follows, viz: 'Jotal length, $2 \frac{1}{2}$ calibers. Iadins of head, $1 \frac{1}{2}$ cliameter of projectile. Windage, $0^{\prime \prime}, 00^{-}$. The eavity for cored shot and for shells is of a somewhat similar form to the exterior of the projectile, except that the bottom is
romaded, and its size is so fropertioned as to secenre the proper weright to the projeretile.
The following formalas are uscful in connection witla this subject :
For an ogivat had of I diameter radins: Volune of head $=1)^{3} \times 0^{2} .305592$.
Four an ogival heal of 14 dianetor radius: Volume of head- $1^{3} \times\left(0^{\prime \prime} 447\right.$ 万号.
For an ogival lecad of 12 diancter radius: Volume of head $=\mathrm{D}^{3} \times 0^{\prime \prime} .49 \cdot 2 \cdot 5$
( I$)=$ diameter of shot.)
Center of gravity of ogival heal; Distance from oase $=\underline{\frac{1}{2}\left(r^{2}+a^{2}\right) g^{2}-\frac{1}{1} g^{4}+a\left(a^{3}-r^{2} \text {, }\right.}$ $\left(r^{2}+a^{2}\right) g-\frac{1}{2} g^{3}+2 a g$
which $g=$ length of head, $r=$ radlius of head, $a=$ raclius of head - radius of projectile.
$\left(\right.$ Diam.) ${ }^{3}$
Weight of cored shot; Small calibers $\frac{(3 a m .}{3} \cdot$ large
calihers (radins) ${ }^{3} \times 2.8$.
PILING OF BARRELS.-The following formilie refer to the usual manner of piling barrels in magarines.
C'ase 1.-Pyramid pile.
$S=1+2+3 \ldots .+n$
where $\mathrm{S}=$ number of barrels,
$n=$ number in bottom row.
$n(n+1)$
$\therefore S=\frac{(n+1)}{2}$.
In an incomplete pyramid pile,

$$
\begin{aligned}
\mathrm{S} & =\frac{n(n+1)}{2}-\frac{(m-1) m}{2} \\
& =\frac{n^{2}-m^{2}+n+m}{2} \\
& =\frac{(n+m)(n-m \times 1)}{2} ; \cdots
\end{aligned}
$$

where $m=$ number in top row
Coase 2.-Where one end of the pile rests agrainst an upright, and the top row does not touch the upright.

$$
\mathrm{S}=n^{2}-m^{2} ;
$$

where $n=$ number in bottom row, and $m$ number in top row.
Suppose the pile continued till $m=1$. Then,
$\mathrm{S}=2(1+2+3 \ldots+n)-n-1$
$=n(n+1)-(n+1)$
$=(n+1)(n-1)=n^{2}-1 ; \ldots$
and in an incomplete pile,
$\mathrm{S}=\left(n^{2}-1\right)-\left(m^{2}-1\right)=n^{2}-m^{2}$
(ase 3.-If the top row touch the upright.
$\mathrm{S}=n^{2}-m^{2}+m$.
Case 4. - Where the barrels are piled betreen (3) uprights so that if bottom row $=n$, second $=n-1$, third $=n$, and so on.

If top row $=n-1$, i.e, if top row do not touch the uprights,
$\mathrm{S}=m n-\frac{m}{2}=\frac{m}{2}(2 n-1) ;$
where $m=$ number of courses.
When top row $=n$, i.c. when top row touches 113)rights,
$\mathrm{S}=m n-\frac{1}{2}(m b-1)$

$$
m(2 n-1)+1
$$

## 2

These results, being only calculated for piles of one barrel in depth, must of course be multiplied by the number of barrels in the depth of the piles.
PILLAGE. - The aet of plundering; that which is taken from another by open force. particularly and chiffly from enemies in war.

PILLAR CRANE. - A crane of this class is entirdy supported from below, aud the masonry which forms the foundation must have suticient stability

to resist throverturning temblaney ramserl hy the lond langing from the outer rind of the bown. Whare tho surroumding gromad is sutliciently tirm the proportions of this foumblation are about as represuratiol in the drawing. On fillal gromme, piling or a timber blatform bemeath the masomy or beth, may be neecssary. These questions can only le projuerly determincel by a consideration of the fact in vacis case. Iesforring to the drawing $A$ is the collamm of the erane, and ls the boonn arrying the: upper block and revolvinur around the dixal mast or colamn, $A$; 1) is the masonry fommation; E, a heavy iron julate or ring embedrad in the masonry noar its botlom; ber fonn ation-hoits jasuing throngh this ring and also through the base of the pillar, $N$, thas socarcly fantcming the latter to the foumbation. Tlae fomblation, J, may consist of ordinary rublble masconry, covered with a rap stone, $(t$, the upper surface of which should be dressed smonth to reacive the base of the pillar, A. After the completion of the foundation the ground surrounding it should tw refillerland thoronghly packed by ramming or pudtling, so as to assist the foundalion in resisting the strains caused hy the erane.

The pillar or column of the crane is of cast-iron, and of simple lut symmetrical design, its form bring proportioncel to the strams it las to resist. It las a broad hase, thas giving it agood footing on the foundation and spreading the holding down bolts well apart. Fixed in the lead of the column is a sterl pin or pivot upon which rests the eross hend or yoke. The latter is bushed with bronze and has jorojer provision for lubrication, so that the cross-head shall atways turn frecly on the pin. The boom or strut consists of two wrought-ironchannel beams, well braced together and united at the upper cond by a head casting carrying the upper chain sheaves over which the chain passes to the running-block. The foot of the boom is supported vertically by two suspension rods, hong from the ends of the eross-licad, and its upper end or head is held by two guy rods, also extending buck to the cross-diead. The horizontal thonst at the foot of the boom is transmitted to two turncel rollers. placed within the foot easting of the boom anc? travcling upon a turned path around the base of the column. The weight, both of the boom and load, is entirely carried by a steel pin ut the top of the column, and the friction of rotation is thus reduced to a minimum.


The hoisting gear is attached to the boom near the column and rotates with the former. It consists of
a train of spur quarine provilled with an andomatic, safoty ratchot and will the. Wi.aton dlac:-brake for lowrering, sulbatantially as in the jiboerant, so that
 down, mor the haindles reroil on tho operator. Leow-
 loal descombing rasily and smontly so lomg as this
 Ward notion be diarontinuod or the hamelles lott gos. Two rhanges of specel are providiod. Swinging ur
 ing ther snsurented lomat, and the coinstruction is shach that the maximam lond ean be vasily swame by rnu mun.

This type of crance is dosigncel for yard use winere there is no roof or coiling to sinpport the toge of cerame. and where guy rods are olgjertiomible. It is phationlarly adajutod to railroad and wharf use, for doading and unloading heavy ordnance from cars or boats. amd is a useful addition to the yard applinners of any largo foundries. They are consisucterl for oferation by hand, by pow'r, or by direct steam, according to thir requiremonts of the caso. Sie Corano.

PILLENLICHTE. Short (aylindrical tuloes of laboratory japer, filled with aromposition resembliner that used in portaires. A countersink is formed in one end, at the bottom of which is placed a small disk of fulminate covered with a watreproof cap. Theontire exterior is varnished. These are used io light the fuses of the life-saving and anchor rockets of the Germans. They are put up in packages of twenty each. The following are the dimensions and wright:

Inches.

Total length
............................
Exterior liameter.
Depth of countersink in cont....
Time of burning. $\qquad$
Weight $\qquad$
See Ferman Life-saving Rocket.
PILLES.-A name given to arrows in the twerfth century, aceording to the chronicles of Saint Denis.

PILON.-A half-pike, 7 feet long exchusive of the iron, which was 18 inclues. It consisted of a fir tube covered with parchment and varnished. Marshal Saxe proposed to draw up an army four deep, the two front ranks armen with muskets, and the two rear with both pilons and muskets.

PILUM.-A formidable spear used by the Romans. It bore no resemblance to any other weapon of the same class, cither lance, pike, or javelin. Each soldier of the legions carried two pila. The weight of the pilum caused it to be regarded rather as a spear than as a dart.

PIN.-A short piece of wood or metal, generally with a head and hole at the other end to receive a key. There are many sorts used in army material. See Bolt, and Linchpin.

PINCH. - To pinch a gun or other object is to move it by small heaves with a pinch-bar or handspike, withont allowing it to turn on its axis. A piece is pinched one cnd at a time, the other end being chocked. The bar or handspike is placed as a lever. with the beveled side down, and the power ajplied at the other end by bearing down.

PINCH BAR. - A stont handspike, of iron, Witli a round-beveled butt, furned up into a blunt edge for the purpose of catching under a gun or other similar object. It is used as a lever, by
pressing down, thus jumpiny the gun forward a very short distance at a time. The butt end is of steel. The length of the bar is from five to seven feat. Those used with the 15 -inch gun are of the largest size, and weigh 63 pounds; the shorter size weigh 26 pounds. See Mechanical Maneuvers.

PINCHBECK.-An alloy of zine and eopper, in which the proportions slightly differ from those Which constitute brass; 3 parts zine to 16 of copper constitute this material, instead of 1 part of the former to 2 of the latter as in common brass. Pinehbeck, when new, las a color resembling red gold.

PINDAREES.-In the East Indies, plunderers and marauders who accompany a Mahratia arny. The name is properly that of persons who travel with grain and merchandise; but war affording so many opportunities and creating so many wecessities, the merchants, as it is all over the world, become plunderers and the worst of enemies.
PING.- The whistle of a shot, especially the rifle bullet in its flight.

PINTLE.-The rertical bolt around which the chassisis traversed. In the center-pintle carriage it is in the center of the chassis. but in the front-pintle carriage it is in the center of the front transon. It is a stout cylinder of wrought-iron inserted in a block of stone, if the battery be a fixed one; or it is secured to cross pieces of timber bolted to a platform firmly embedded in the ground, if it be of a temporary nature. In casemate batteries the pintle is placed immediately under the throat of the embrasure, and tbe classis is connected with it by a stout strap of iron, called the tongue. Casemate carriages differ from barbette carriages in being much lower, but their mode of construction is essentially the same.
PINTLE-HOLE.-An oval-shaped aperture made in the trail transom of a field-carriage, wider above than below, to leave room for the pintle to play in.
PINTLE-HOOK. - In ordnance, a hook attached to the rear of the limber axle-tree bed of a light field carriage to enable the gun or ammunition carriage to be limbered np to it. In this position the gun forms a counterpoise to the weight that would otherwise rest on the sliafts. In heary howitzers and siege carriages formed with bracket sides, the pintle-hook is either a stiff or movable iron perch, attaeled to the top of the limber axle-tree, to which the gun carriage is limbered up by a hole passing through the rear transom.

PINTLE-PLATE- A flat iron, nailed to both sides of the bolster, and through which the pintle passes.

PINTLE WASHER.-An iron ring, through which the pintle passes, placed close to the bolster for the trail to move upon.

PIONEER. - A military laborer employed to fom roads, dig trenches, and make bridges as an army alvances, and to preserve cleanliness in the camp when it lalts. Formerly, the pioneers were ordinary laborers of the country in which the army was, impressed for military purposes ; lut now such persons are only brought in as auxiliaries, a few men being attached to every Corps as a permanent body of pionecrs. Inthe British Army one man is selected, for lais intelligence, from every company. These pionecrs march at the head of the regiment, and the senjor among them commands as Corporal. Instead of a musket each man carries a saw-lancked sworl, which is at once tool and weapon. Fick bears also an axe and twog gun-spikes, other necessary tools being distributed among them. There is something rather conflictine betwecn the functions of the pioncers and thone of the enginere force.

PIONEER SERGEANT.- In the British service, the Non-commissioncd oflicer when commands the pionures.
PIPE BOX. -The eylindrical box in the nave of $n$ whec! in whith the axle-treearm works, and in whicla is a recess for labling grease. A haddallow, trchaically known as "molal," composed of "opper, tin. and rinc, is now used as the matorial for pipe-boxes
in preference to cast-iron, on acconnt of the less development of friction between it and the iron arm.

PIPE-CLAY.- A fine clay, free from iron and other impurities, laving a grayish-white color, a greasy feel, and an earthy fracture. It adheres strongly to the tongue and is very plastic, tenacions, and infusible. The localities where it is chiefly obtained are Devonshire, and the Trough of Poole in Dorsetshire. It is also found in varions places in France, Belgium,and Germany. This substance is much used by soldiers for the purpose of keeping their buff belts, etc., (clean.

PIPER GIN.-In this gin, the windlass is attached by placing it in windlass seats of peculiar construction, and is secured in position by keepersattached to the legs. The keepers are placed under the axles of the windlass. Two stay chains connect the pry-pole and legs at the upper brace-bands, and prevent them from spreading. They also serve to connect the parts for transportation. Two braces (upper and lower) connect and sccure the legs when the gin is put together, and sprve to distinguish the right from the left leg-the long brace being permanently attached to the right and the short brace to the left leg. The clevis and clevis bolt are attached to the head of the pry-pole with keyes which secure the clevis bolt when the gin is assembled; double and single blocks, with fall, are used. This gin was designed by the late Captain J. W. Piper, Fifth artillery.

Length of legs....................... 18 feet 8 inches.
Length of pry-pole.............. 13 feet 8 inches.
Weight of gin...
Weight of windlass. $\qquad$ 365 pounds
88 pounds.
Weight of block and fall. . . . 100 pounds.
Weight of bail and dowels... 41 pounds.
The parts are estimated to be sufficiently strong to bear a weight of of 5,000 pounds. The advantages of this gin are, its superior lightness and portability, and its great facility of being assembled, taken apart packed up, and transported. See Gin, and Mechanical Maneuvers.

PIQUICHINS.-Irregular and ill-armed soldiers, of which mention is made in the history of the reign of Philip Augustus. They were attached to the infantry.

PIRACY.-Robbery on the hich seas, and is an offense against the Law of Nations. It is a crime not against any parifcular State, but against all mankind, and may be punished in the competent tribunal of any country where the offecdermay be found, or into which he may be carried, although committed on board a foreign vessel on the high seas. It is of the essence of piracy that the pirate has no commission from a Foreign State, or from one belligerent State at war with another. Pirates being the common enemies of all mankind, and alt Nations having an equal interest in their apprehension and punishment, they may be lawfully captured on the high seas by the armed vessels of any particnlar State, and brought within its territorial jurisdiction for trial in its tribunals. The African slavetrade was not considered piracy by the Law of Nations; but the municipal laws of the United Kinglom and of the Enited States by statute declared it, to be so; and since the trealy of 1841 with Great Pritain, it is also declared to be so by Austria, Prussia, and Russia.

PIRAMETER. - An instrument for measuring the power required to draw a gun carriage, etc., mpou a road or track. See Iymamometer.

PLRATES.- Den, or sifuads of men, who commit hostilitics, whather loy dighting or inroads for destruction or plunder, or by raids of any kind, without commission, withont being part and portion of the organized hostile army, and withont sharing rontinuonsly in the war, but who do so with intermittiner returns to their homes and avocations, or with the ocrasional assumption of the semblance of peacefu] pursuits, divesting themselfes of the character or appearauce of suldiers-such mentor squads
of men, are not publie rememies, ami, thorelone if eaptured, are not entitled to the privilegres of prisoners of war, but shall be treatod summarily as highway rohbers or pirates.

PIRSCHER SYSTEM OF FORTIFICATION. In thi system, the encerinte is cirrular, and the diteh is ore rupied by two limes of works mataally thankiner ruch of her. 'the covered way and glatis are replaced by ulvanced works.

PISA REVETMENT. - A wall of (lay built agalust a slope in the following manner: (ommon rarth. mixed with clay und moistened with water, is kneaded until tho particles will athare when prossed
 mixed in the mass. $\Lambda$ row of pickets, with the proper inclination given to them, is iriven along the foot of the interior slope, the tops extending a short distance above the height marked for the intorior crest. A shallow treneh about twelve inclas wite is alog in the parapet, behind the line of piokets, and a board laid horizontally on edge on the side next to and supported hy the pickets. The tempored clay is then placed in the trenels and ramuned. Snewossibe layers are placed in until the clay raches the top of the board, the earth of the patrapue heing carricel wp simnltaneously with the revermont. Asecond hoard is then placed mpon the dirst, and the clay rammed in, rising simmltancously with the prarapect as in the first course ; and this process is continned until the top laver is on the same level with the interior crest. When the clay has driod, the boards and pickets are removed. - See Recetment.

PISTOL.-The smalle st deseription of tire-arm, and is intended to be used with one hand only. l'istols vary in size from the delicate saloon-pistol, ofton not six inches long, to the horse-pistol, which may measnre eighteen inches and sonctimes even two feet. They are carried in holsters at the saddle-bow, in the belt, or in the pocket. Every cavalry soldiar should have pistols, for a fire-arm is uften of grent

Wright of poweler,
40.010 grs.

PISTOL ORIP. - A shaje given tro tho stath of tho storek in shot-gims and rifles, to give at beller lowl
 quite prombar amd noarly all the reoont mo.fol of eporting arms amborly it. Sree fistot-curbine.

 by froxsure on "ither of its sides. It maty la of any shape corrosporling aceoratroly (t) the bore fof the
 cmployed for both, as in the (romonoth pmanp and steam-enginc. One of its sillog is dillod (os is rod, to whicel it vither imparts reaprocentery motion, ast in
 as in the pomp, lo the former ("ase it is tormeal solid, though genorally mot really sor; but in the latter, an ajerture controlled by a valve orrmits thr bassuge of the flad from one side to the whare durbug its downwat movemome. That piston nsmatly r"çures "packing" to cause it to tit elosoly within its cylinder, and at tho same time allow jts frev batkward and forward motion. For this purjonse its emels are nsablly formed by two connortod dises. or have at deepaminlargroove betwern then for reave ing thr backing material, which may be lecmpen eord womad around it, or other somewhat rxpansible substance, which will not wear too rajoidly nor eanse excessive friotion. In modern prartior, metallic rings, cut through at one sidu, so that their rexpansion may compensate for any wear, are larecty employed in the stram-rongine.

The cut ou page 530 shows the plan and seetion of the Cummer piston. It is made large enongh to give ample wearing surface, and with suflicient woight and careful distribution of metal, to seenre strength, no extra weight being given for any other purpose. The piston consists of three parts, the piston proper, to which is fitted the tapered end of the piston rod


Pistnl-grip.
service for personal defense, and almost indispensa- secured by a cotter, the chunk riug, and the follower.
ble for giving an alarm or signal. Sailors, when boarding an eneny's ship, carry each two in their waist-belts. As early as the reign of llenry Vllf. the English cavalry carried clumsy pistols called "Dags." The latest improvement on the pistol is the revolver. The pistol probably derives its name from the word pistallo, which means "pommel," and not from the word l'istuja, for it appears not to have been first made at Pistoja, hat at l'erugia.
PISTOL CARBINE.-A horseman's pistol provided with a removable butt-piece, which may be secired to its stock by a spring-catch, or detached, so that the weapon miny be tired either from the hand or the shoulder. The pistol-carbine used in the [nited States, and particularly suited to the service of light artillery, has the following particulars

These parts are all clearly shown in the section. The plan exhibits the piston with its follower removed but showing in section the four bolts which hold it in place when connected. It will be noticed that the piston itself and also the follower are made considerably smaller than the eylinder. and that the chank ring is external to theseand forms the bearing surface. The chunk ring is turned up so as to be an accurate fit. and is then adjusted so as to be perfectly central hy means of four situd bolts, which appear in the plan and section: their outer ends havea conical point which bears against the chunk ring, while the other ends are tapped into the boss of the piston and are provided with jam muts. The center of the chunk ring is grooved to rerrive the cast-irou piston ring which is pressed well outwards by soveral


Length of barrel, Weight complete. Weight of projectile,

Pistol-carbine.
12.00 inch. smali spiral sprines spaced around the circumfer-
5.00 lts . ence. The positions of these springs appear in the 150.00 grs . plan, and one of them is shown in the section. An
additional packing is provided by thrning two small grooves in the chonk ring on either side of the central piston ring. The advantage of using a chunk ring is, that we can make a very fact fit, and by using the central adjustment, secure perfect alignment, and we obtain a greater wearing surface for the same thickness of piston becanse the chunk ring is the same wilth as the piston itself and hears over its whole surface, whereas in the ordinary form a
vertical hole or chimncy (which is afterwards closed at the top), and the process of charring commences, beginning at the center and spreading all round until the whole pile is charred. A slifting screen is generatly employerl so as to regnlate the dranght on the windward side, and small holes ar made through the sods with a half-inel iron rod, these allow the vapor to escape and draw the fire to any side of the pile that may be desired. From seventy to eighty

part of the piston, and the follower also, are turned flown below size and do not bear at all. By this arrangement, also, whenever afterlong wear it becones necessary to rebore the cylinder, we have only to turn upanew chunk ring instead of fitting upr a whole new piston. See steam-engine.

PISTOS. Broad, short, double-edged swords of the fifteenth century, which do mot difier materially from the amelater.

PIT.-The pit, in gun-casting, isusually a ciroular well, nincteen feet deep,and twelve feet in diameter; the walls are of brick, and the bottom, an iron tank of onc-half inch sheet-iron, extending upwards eight feet. The month of the pit is provided with iron covers.made to fit closely to prevent escaping of heat from the fire built around the llask. During the casting, the gas which is generated and passed ont throngh the holes in the flask is ignited by dropping small fuantities of molten metal into the pit, and as soon after " cast" as possible, a fire is built in the pit, about the bottom of the Hask-wood and bituminous eonl being used in sufficient quantities to burn four fr five days; the month of the pit being covered, after the mass is thoronghly ignited. See Mroding.

PITAUX.-This term, somelimes written Petaux, was formerly used to distinguish those peasants who were pressed into the service, in contradistinction to soldiers who were regularly enlisted.

PIT BURNED CHARCOAL.-T'his description of charcoal is used in the manufacture of what is known as " pit gunpowder," sud is found to be more suitabe for tilling fuses, port-fires, etc., than that made from retort-burnod charcoal; it is also used for pyrotechnic compositions and other purposes of a similarkind. Clarring the wood in a pile coverta up with straw ant! sods is found to prodnce a chatreond which will give to the gunpowder the peculiar tualities require I for the before-mentioncel purposes; the process 'mployed isas follows: The wood is built up in a cone aboul 10 in diametor at the base and from s' 10 $\gamma^{\prime}$ in height, a vertical hole being laft in the center of the pile or cone raching from the bottom to the tope, so as to act as a chimmey. The wood is then entirely covered over with a laycr of straw from $4^{\prime \prime}$ to $5^{\prime \prime}$ in thickness, thon a covering of charconl rofuse or swoepings from the stort, if such can be oblained, and over all a covering of sods with the grass side inwards. The pile is now firted by a few pieces of lighted charenal being drophed to the bottom of the
hours are required to char the whole mass, and as the charcoal prodnced by this process contains more of the woorly fiber than the cylinder retort-burned charcoal, it consequently burns more slowly, is heavier, has a reddish tinge, is not so brittle, and has i more metallic sound when rlropped. See ryarcoat.

PITCH.-A thick substance obtained by boiling down tar to the requisite consistency, either by itself or combined with a portion of rosin; it becomes solid on cooling. but is soon softened by the heat of the hand, in which state it is very adhesive. When of goond quality, it is clear and luard. It is used in making carcasses, light-balis, kit, and smoke-balls.

The term is also used in wheel-work, signifying the distance between the centers of two contiguous teeth. Pitch-line is the cirele concentric with the circumference which passes throngh all the centres of the teeth.

What is known as the pitch of a serezo is the interval between the points of starting and of arrival of a complete revolution of a serew, and consequently of the thread of a screw, which is traversed by the screw, or its thread, when it has completed an entire revolution. The piteh is therefore independent of the diameter of the serew.

In ritling, the pitch is described as term resistance of the direct progressive motion of the projectile through the bore. This resistance varies according to the incline as well as the pattern of ritling ; for as the more defined the pattern the more tbe resistance, so the sharper the pitch the greater the rotation of projuctile around the axis of progression, and consequently the more difficult its initial and the slower its direct forward motion There are two nutures of piteln, an increasing and decreasing pitch. Sied Tirist.

PITCHED BATTLE.- A battle in which the hostile forces have firm or fixed positions, in distinction from a skirmish. See Buttlo.

PITCHED FASCINE. - Yitclucd fascines are fugots of dry twigs, cowered over witla an incendiary composition, and used to set fire to lniddings or to light up a work. The following materials and utensils are rexuired to make pitched fuscimes: Iry branches, about .5 inch diamutor, or other light, combustible wond; iron wire, about .05 inch diameter ; four pickets, about 40 inches long and $1 \frac{1}{4}$ inch diameter cylindrical sticks, 20 inches long, 1-inch dimmeter: 2 trace-rojes; 1 rope for a capsian; 2 levers; 1 smoll
enred; I flat punch; 1 savo, or bill-hank; 1 blork. I'u make the fascimes, form two crotclaes, if foot apart, with the 40-inch pieckets; (ent lla branchas 90) inches longr, and tie them in the middle of their lenglls, and nhont $\mathcal{Z}$ inches from therir ents, with annealeal wirc.
 prescrve a vacant space; draw tho bramehos tightly Lorethor. Ahat they may bold the composition better, and cat ofl the cmals siguare.
'The fancines receive two conts of composition. when pitched. Jior tho first coan, malt 20 parts of pitch and one of tallow in the pots, filling them not more than half full. Ilaving first woll oifrel the eytindrical stiek, plangre the fascine lnte the liguid with the fork, first one "ind and thenthe other, "ach time pouring on the uplecr and two ladiefuls of the eomposition. Let tha composition harden, holding tho fuscine over the pot, furning it slowly and then immerse it in the tuh of water. The assistant, with his hambencered with oil, fanhions the fascine, rolling it on the bottom of the tu7, and places it on the plankes.

The seeond cont is put on 34 hours after the first ; it is composed of cipual parts of pitel and rosin madted and mixed together in the pot. The eylindrical stick is taken ont, and the faseine immorsed in tho composition, as with the tirst cont ; it is permithed to drip, and is then lad in saw-slust and powdered all over with it. A fascine regnires aloout 1.1 poumd of efuch eomposition. Fiscines should be primed only a shor time before being used. For this jurpose. dipeach end, for a distance of half an inch, into a kettle holding melted rock-fire.

When used for incomdiary purposes, fascines aro placed in piles, and pinces of quick-mateh and portfire scattered ower ilem, to make the whold mass take tire at ouce. See Pircicorks.

PITCHING FIRF. - lire is pitching when the slat is projected against an object, covered in front by a work or obstacle, tho ordnance being fired at full charge.

PITCHING TENTS. - There is an art in pilchiug a tent, and the men of a regiment should be instructed from time to time how to pitch their tonts and to strike them ready for a mareh; but they will soon come to know how to do so, even if they lave hat no previous experience, when once they enter on camp life. The following is the proper method of pitehing the ordinary wall tent: After selecting a suitable spot, place the ridge pole, $A B$, upon the ground, approximately beneath its place when in position. Drive pins at 1 and $B$. From 1 and $\beta$

continue $A B$ to $r$ and $D$, by stepping one pace from each ead. From $C$ and $D$ make four paces at right angles with $C D$ on each side, and determine the points $E, F^{\prime}, G, H$. At these points drive the corner tent pegs. By following these directions the teut may be promptly pitched and will make a beantiful appearance, every portion of eanvas being in proper position and free from wrinkles. An important point to be observed in pitching a tent is not to dig inside but outside of it, viz., 10 use such means, in case of rain, that water slall not flood the tent. This, however, cannot always be prevented, but a drain dug all round the tent to the lowest ground may save a flooding. Then, agrain, to secure a tent
from buintr blown down, thre arnar robes shonld bo buslied.

PITS. Military jits, wlacther round] or square,

 'They arc usually made abont six foret in dianmetor at top, and about one foot at thes bottorn, and aro phaver so that the: exonters shall bre aloout ten foee ajpart. They shall be: placed in rows, at least threr in nomber, the pits being in quinemox orcler. "fleme mith obtained hy the rexeavation, sambel be larapera ap on the ground betwren the pits. Shallow pits shamind not be droper than abous two feet, sor that the: cnoony condi not obtain shelter hy getting in them. Thary should covar tho ground in ziop-zisg arranger ment, the uppror hases looner made square or reet ampular in form, and in contact with racls oflar. The side of the upper hase slomad be matle abome erpual to the depeth of the pit. 'Ther marth obtained from the doles is thrown in front of the arrangement, making a glacis. See Tromsald-lemp.

PIVOT.-The soldier or graide upon whon a lime of troops wherels,or partly wheels. T'lue pivot is either fixed or monabl.

In a whed on a movable pivot the radins is:
Fior a roluman of files........................................... yariln.
For a colman of twos, fours, or donlola(col.
umn of fours........................................... . . 3
For a platoon..................................................... 6
Fror a con!
PIVOT-BOLT. -The axis of lorizontal ossillation. A traversing platorm passing through the pivot transom and the front slecper of the platform.

PIVOT FLANK. - When a regiment is drawn up in colnmin right in front that is, when the company whieh stood on the right, when in lince is in front the left-hand man will be the piwot dlank of eately eompany. When the column is 3 eft in front, the right-laud man will be the fivol tlank of each company.

PIVOT GUN.- A cannon whirli turns on a pivot in any direction.

PLACAGE. - In fortitication, a kind of revetment. which is made of thick, plastic earth laid along the talus of such parapets as lave no mason-work, and which is covered with turf.

PLACATES.-In ancient armor, small phates placed in front of the shoulders.

PLACE DU MOMENT. - When the operations of an army render it neerssary that a position sloould be fortified and occupied for the whole campaign, the works assume more importance, and many consist of forts having five or six bastioned fromis. Such a fort is called a place du moment.

PLACES-0F-ARMS-The covered-way, from the direction given to the counter-searps of the enceinte and outworks, forms a line of communication with salient and re-cutering parts. The salient portions are termed salient places-of-arms: and the Eb-entering parts the re-entering placesonf-arms.

The salient places-of-arms result from the general plan of the covered way ; but the re-entering places-of-arms are formed by changing the dircetions of the two branches where they form the re-enterings, so as 10 make a salient within the re-enterings: thus enlarging the covered-way at these points, and prorlucing a flanking arrangement, by whieh the glacis cun be swept, and a cross-fire be brousht to bear on the ground in advance of the salients. See Outicorks.

PLAID.- A woolen shawl of a tartan pattern, worn over the shoulder by the Scoteh Highlanders. and still worn by llighland reginents.
PLAIN.-In geography. an extensive tract of country which, on the whole, preserves a nearly nuiform elivation. When reforred to the level of the sea. plains may be distinguished into low plains or lnwlands, and elevated plains called plateaux or thluelands. Plains ditfer musch in appearance, necording to the uature of their soil and the climate, from
the frightful sandy wastes of Africa, to the luxuriant fertility of the South American silvas. They are occasionally crossed by hills of moderate aititude, which, however, are generally detached, and exhibit no connection with any neighboring mountain system. These bills often, as in the North American Plains degenerate into mere undulations, quite miform in structure. The term "Plains " is, in a limited sense, confined to the Plains of Western Europe: those of other parts of the world receiving sperial designations, and differing from cach other in many important points thus we have the Steppes of Eastern Europe and Asia: the Deserts of Arabia and Africa; the Savannatis and Prairies of North America: and the Llanos. Pampas and Siluas of South America. The chief Plains of Europe are, the country stretching from the foot of the Carpathians in Galicia to the Ural Mountains, including Poland and Russia, the drainage area of the Danube in Mungary, and the portion of Europe which is bounded by the Elbe. the Hartz mountains, France, and the sea. Plains of comparatively small extent, but presenting the neressary characteristics in perfection, are found in almost all countries.
PLAIN CLOTHES. - A citizen's every-day dress, as applied to an officer not in uniform; this dressisalso known by the familiar name of mufti. It is left to the discretion of General Officers Commanding, to permit the use of plain clothes for the purpose of recreation : otherwise all Oticers must appear is uniform in camp or (ytiarters, or when attending public balls within the district in which they are quartered.
PLAIN COMPASS.-The plain compass, as shown in the drawing, has a "binclin needle, and is furnished with levels, sight-vanes, socket, etc. The compass-

justed by filing off its under surface on that side which seems the highest. The needle is adjnsted in the following manner : Having the eye nearly in the same plane with the graduated rim of the compasscircle, with a small splinter of wood or a slender iron wire, bring one end of the needle in lide witls any prominent division of the circle, as the zero, or ninety degree-mark, and notice if the other end corresponds with the degree on the opposite side ; if it does, the ncedle is said to "cut" opposite degrees; if not, bend the center-pin by applying a small brass wrench, furnished with the compasses, about oneeighth of an inch below the point of the pin, until the ends of the needle are brought into line with the opposite degrees. Then, holding the needle in the same position, turn the compass half-way around, and note whether it now cuts opposite degrees; if not, correct half the error by bending the needle, and the remainder by bending the center-pin. The operation should be repeated until perfect reversion is secured in the first position. This being obtained, it may be tried on another quarter of the circle; if any error is there manifested, the correction must be made in the center-pin only, the needle being already straightened by the previous operation. When again made to cut, it should be tried on the other quarters of the circle, and corrections made in the same manner nutil the error is entirely removed, and the needle will reverse in every point of the divided surface.
In using the compass, the Surveror should keep the south end towards his person, and read the bearings from the north end of the needle. He will observe that the E and W letters on the face of the compass are reversed from their natural position, in order that the direction of the line of sight may be correctly read. The compass-circle being gradnated to halfdegrees, a little practice will enable the surveyor to read the bearings to quarters or even finer-estimating with his eye the space bisected by the point of the ncedle, and as this is as low as the traverse table is usually calculated, it is the general practice. Sometimes, however, a small vernier is placed upon the south end of the needle, and reads the circle to five minutes of a degree-the circle being in that case graduated to whole degrees. This contrivance, however, is quite objectionable on account of the additional weight imposed on the center-pin, and the difficulty of reading a vernier which is in constant vibration; it is therefore but little used.
To take angles of elevation.-Having first leveled the compass, bring the south end towards you, and place the eye at the little hutton, or eye-picce, on the right side of the south sight, and with the hand fix a card on the front surface of the north sight, so that its top edge will be at right angles to the divided edge, and coincide with the zero mark; then sighting over the top of the card, note upon a flagstinf the height eut hy the line of sight ; then
instrument is used mainly in the surveys of new lines, or in the preparation of inaps, where the variation of the needle is not required. jow adjust the compass, first bring the bubhles into the center, by the pressure of the hand on different parts of the plate and then turn the compass half-way around; should the bubhers rum to the enel of the tulese, it would indiate that those ends were the highest : lower them by tightening the serews inmediately under, and looseriing those under the lowest conds hatil, by estimation, the error is half remosed; level the phate again. and repeat the dirst operation until the bubldes will remain in the contur, during an entire revolution of the compass. The sights may next be tested by observing through the sitits a line hair or thread, made exactly vertical by a plumb. Shouk the hair appear on one side of the slit, the sight mast be ad-
move the staff up the clevation, and carry the card along the sight until the line of sight again cuts the same height on the staff, read off the degrees and half-degrees passed over by the card.

For angles of depression, proced in the same manner, using the eye-piece and divisions on the opposite silles of the sights, and rading from the top of tha sights. When the instrument is to be usid in making now survers, the vernier shond bo set at \%ro and securely clamped by screwing uf the mat bencath the phate. In survering old lines, the change of the variation of the needle should be as certained by setting the compass on some one welldefined line of the tract, and making the bearing to agree with that of the old survey, by moving tho circle as already deseribed. Then the circle can be clamped, and the old lines retraced from the bear-
ings given by the original Surveror. When tha varintion of the ncedle is knownit can be vishlyset off by the vernior, and the compmass wased to run a true maridian by the needile.

A litthe rathtion is meceseary in haindllag the eonnpass, that tha'glass rovering be not "xcited by the friction of cloth, silk, or the hathl, sor its to atitact the nordle to its under surfuco, Whbon, loowever, the ghas becomes elcetrio: thw flaid may bu ramoved by brathing upon it, or touching diffirent parts of its surface with the mointened therer. In ignorance of this apparently ribling mattor hans ransed many (rrors and perplexitios in the pratioce of the inexperiened Surveyor.
The railroad compass is an instruncont of the higheat grade, in which by the addition of adividedlimband verniors the survieor is ('mathed to tako antyty, and run lines matrected by the imperfertions of the magnetic nerdle.

The vernior compass las an ant compasspirche to which is attached a "vernor." movable about a common centrer ashort distance in rither direction, thas emabling the Surveror to set the zeros of tha circde at any required angle with the line of sights: the munt ber of degrees contained in this angle or the" "variation of the needle" Bring read off by the vernior. Sere Sular Compass.

PLAN.-The representation on paper,on a reducert scale, by means of conventional signs and process. of any portion of the carth's surface. In fortification, a phan shows the tracing, also the liorizontal langths and breadthe of the works, the thiekness of the ramparts and parapet, the width of the ditelues, ete. It exhibits the extent, division, and distribution of the works, but the depth of the ditelies and the height of the works are not representerl in the plan. Siec Plun of C'tmpuign, und Plan of Dofense.

PLANE.-1. A surface without curvature, and the test of it is, that any two points whatever beingtaken in the surface, the straight line which joins them lies wholly in the surface. When two phanes eross or intersect one another, their common seetion is a straight line; and the inelination of the planes to each other is measured by taking any point in their common section, and drawing from it two straght lines, one in each plane. perpendicular to the common section: the angle contained by these lines is the angle of inclination of the planes. When the angle is a right angle, the planes are perpendicular to eacliother.
2. A tool used for realering the surface of wond smooth and level. It consists of an oblong block of wood or metal (the latter has only recently come into use), with an opening through the center; this opening is square on the upper side, and is always large enough to admit the cutting instrument; it diminishes down to a mere slit on the under sule, just wide enough to allow the cutting edme of the plane-iron and the shaving of wood which it chato oll 10 pass through. The essentinl part of the tool is the plane. iron, a piece of steel witta a chisel-shaped edge. and a slot in its center for a large- headed screw to work and to attach to it a strengthening plate. They are held in place by the lard-wood wedre. By driving in the wedge, the irons are held very firmly in their place, and they are so alpusted that only the fine sharp chisel-edge of the euting-tool projects through the slit in the bottom of the body of the plates so that when the too! is pushed forward by the force of the hand, the cutting edge pares off all irregularities. until the wood is as smooth as the under surface of the plane. There are many modifications in this tool, which can lave its cutting edore and under surface made to almost any contour, so that mouldings of all kinds may be made. The two commonest are the jack-plane for rough work. and the sinonthingplane for finishing off plane surfaces. See l'laningmachine.

PLANE OF COMPARISON. - A plan of a fortress, and of the surrounding country. on which are tax
presed the dislamees of the priucipal points from a horizontal plame, imagimod to pass through tha highe est or lowest points of gromad, in the survey. This imagimary plame is callerl a phano of compatarison.

PLANE OF DEEILEMENT. A jhinn, which rontaining tho interior crost of a work, jusases at lent right faet nbove those porints to bee sholteral, and at lanst five frot above the grommal which can berorallpiod loy un racmy wilhin cannon ranur. "J'las amomat of space in roar of a parapet whirli is reopuired to be detiladed, dopernds upon reiremmstancers. In sromo cases, the entire ppace ravelosed. and in uthers only a part, is to bo protected from this dire from tommunding height. 'Thus, it is usual to rofuiro that the whole imerior guae of an enclosed work bobald be detiladed; that the interior as far as the gergen should be dediladred for a halfornelosed work: and that so much of the interior, or so mulath of the torreplejn bchind the parapet as may be noresesary for the froe movements of the defense. slarnald be defil. uded in open works or lines.

It is not convenicont in practice to place the aye at a distance of ejghtt feet from the gromud, nor is it an eany thing 10 judge, from a distance, what hould be the position of a posint whicls shall be tive feet above the ground. The method used ister place the eye at a comvenient distance from the gromme, observe the highest point of the top of the hill, and determine the position of a visual plane tancent to the lill. Knowing the position of this visual plane, a sucond plane is phased parallel to it and tive forot above it. The tangent vismal phame is known as the rompant plane, and the plane parallel to it is the pane of elefilement. Tho position of the rampant forme and the plane of defilement may be fixed as follows: To illustrate the mothod, a realan is supposed to be the fied work which is to he huilt, upron it position eommanded by a nemighboring height. and that the sulient and extremities of the fares are marked by upright poles planted in the groumb. The trace marked, the next step is to protile the work, and this requires the height of the interior eriost io be determined. Two slakes, at a convenient distance apart, are erected upon tha eorge line; if not too far apart, the poles already erected to mark the extremities of the faces may be used. I line. three feet from the gronnd, is marked by a strip of wood having a straight edge,orby a cord tiohtly strothed, and fastened to these uprights. An observer is placed in rear of this line: he siglts along it and tangent to the hill, and determines where the visual plane containing this line euts the pole placed at the salient. This point is carcfully marked. and with the line joining the two mprights on the gorge line, fixes the position of a julane tangent to the hill and three fect above the ground at the gorire. If on the three posts, points be marked, five foct above the points of intersection of the posts by the ramjant plane, these will be points of a plane which will pass eight feet above the ground at the gorga and tive above the ground at the top) of the hill. If the fares of the redan are held in this plane, the whole interior of the redan will be detilatled from this hill, and the last plane determined will be the plame of detilade, or lafilemant. The extremitios of the faces at the gorge have parapets of the ordinary height, viz. eight feet; the parapets from these points. increase in height nutil the salient is reached. where the height is the greatest. The height of the interior erest can then be determined. at the points whare the profiles are to be placed. The site being level. there is uo renson why any one part of the interior crest should be higher than another. It js nevertheless the practice, cuen in this ease, to give alditional height to the parapet at a salient, not for the purposes of detilading the interior, but to lesecn the etrect of any conflading fire which an enemy might obtain upou the fares, and to allow for the descen: of the trajectory of a projectile which might graze the interior crest at the salient.

A slight deviation from the method just describerd is made when the work to be defitaded is a lucette, instead of a redan. Two uprights, about twelve feet apart, are planted upon, and near the center of, the gorge line. A third upright is placed in front of the gorge and ten or twelve feet from it upon the line joining the center of the gorge line with the salient. The points are then marked where the rampant plane, three feet above the ground, cuts these three uprights and the uprights planted at the salient, and at the shoulders. A distance of five feet is marked above the points just determined, and this will fix the position of the plane of clefilade for the lunette. See Defilement, Direct Defilement, and Recersp Defilement.

Plane of fire.-In Gunnery, a vertical plane througli the line of fire. See Peinting.

PLANE OF SIGHT. - In Gunnery, a vertical plane through the line of sight. See Pointing.

PLANE OF SITE. - The gencral level of the ground, or ground line, upon which the works are constructed, is called the plane of site, whether that plane be horizontal or ohtique to the horizon.

PLANE OFSYMMETRY.-In artillery, an imaginary plane everywhere bisecting the space between the two cheeks of a gun carriage.
PLANER-CENTERS.-Devices for supporting small work on the bed of a planing-machine. One of the two is provided with a worm and worm-wheel, by which the work may be rotated, so as to present each face in succession to the entter; the other has
grap hy and map drawing. As shown in the drawing, the plane table consists mainly of a drawingboard sct upon a very firm tripod, and having upon its upper surface a movable straight edge or átidute, arranged either with sight-vanes or telescope, by which it may be directed to any given point, the line being then drawn on the paper along the edge of the alidade. A rectangular plate of brass to which is attached a small compass and two spirit-levels, is also shown, and serves both to level the table and when applied by the edges parallel to the zero points of the compass circle, to determine the magnetic bearing of the lines drawn on the paper, or the direction of the table itself. The table is made of wond arranged in sections so as to prevent warping, and has an adjustable wooden roller at each end by which the paper is brought down snugly to the board, or upon whiel a long sheet can be rolled and unrolled at will. In place of the rollers, sometimes, and often in combination with them, a number of brass clamps as shown are used in holding the paper firmly. The plumbing arm shown in the figure has its end brought to a point, that it may be set at any given point on the paper, the plummet hanging from the under arm deternining the enrresponding point on the ground; the lower arm moves upon a hinge, an index on the side showing when the ends of the two arms are plumb with each other as applied to the table.

The construction of the socket and tripod-head is shown in the drawing on page 585 , in which a represents the hemispherieal concave metal cup fastencd

an inclined plane by which the slope of the work is regulated so as to give a taper, if required. The drawing shows an improvement in the device for dropping the worm out of gear, as in many cases it is not needed, thereby saving time. The dials are so rimled that they are ealeulated to plane any shape that is generally requared, and for fluting taps, reamers, ate-

by six serews to the wood top of the tripod, $b$ the upper or convex part fitting nicely into the cup and clamped to it at will by the clamping piece c and nut d ; a strong spiral-ring in the hollow eylinder between $c$ and $l$. serves to hold the two spherical surfaces of the socket together, and allow of the easy movement of the one within the other in the leveling of the table. The flange of the socket $b$ supports the


PLANE TABLE.- Plane tables may be used to dedermine distancers and to note the fall of projectiles in target-practice or tiring for ranges; also in topo-
table and is romected with its under surface by threc scerments of brass, (wo of which are slown it ee; Heser are brought down tirmly upon the shoulder of
the flange by capasam-head serows as stown, or ros leaserlat wil], thas allowing the phane table to be moved horizontally when dresimen. A sel of threw leveling-screws is sometimes aldeal for more sterenrately levoling the abbu. Ime oralinarily the proseure of the fant upon it witl tho sucket atome will be nll that is rembiret. Whendenirod, athagent movernant in arimuth may also le artelel.

WI:en estinating climanes, if the tituret is on the watcr, a point along the shore, the shatatace of which

from the battery las becn aspertained, is seleetoch so that a line drawn from it towards the place where the first grazes are expected lo mecur will be at right ungles to the line of firt, or nowrly so: here one of the pane tables is placote. The otber is situated as nearly in line with the target and battery ats convenient; sulliciently renoved, however, not to be in.

convenienced by the smoke. The two stations inould be ser situated that lines drawn from them to the target will be nearly at right angles to mach other. Their distances from each ollur and from the bathery are known. The table is adjustod with the small metat] plate over the stake that marks the station, ame leveled. The observer places his alidade on the
jivot-pinn. sights rarefally on a given point at the hattory, and marks ons the pratar aflixerd to that Lable the dirartion assignod ly the bevelay mape of tho: rular. "the direction of the othrer alation in woted in thes same way, no is alses the targat amt any makes which may be plated in the line of lire. When the
 at the Jateery ; suring thit, thes oburaver points the atinathe in the "xperted direction or the dirst graze.
 thre jol takes phare, the sightes of the alifladre aro alignatlupon it, and tha: dirextion imdiratod loy tho brvelad relge of the ruler marked apon the jasper. 'I'lar Jiar conmerting the twes stations is at base from which is cherermined there position of the joint strusk and of the batiory. T'he projuetion of this base on any sealde will enable one to ascertain in torms or that seald the distances desirex]. A[ter the firing. the tableg are returmed, the observations mando on mene tahle transerred $[0$ the sther, and the intersections of tho lines losente the positions of the points struck. fer I lidule.

PLANIMETER. - An instrument for aseqraining the contoris of all irregular plane tigures. Jore than thirty years ago, (Opuikofier, of Berme, inventrol an instrment of this description, which secmel to fultill all He refuirements of the case ; but its cost and the practionl lifhoulies attombing its ase Jrevented its (anaral aloption. More recently, Amsker-Liffon, of Schoflıansen, devised a simpler and much less cosstly instrument of the kind, which was exhibited at the l'aris IFxposition of 180 . The prin"aplo of each is nearly the some, the area lecing measurcel by a roller of given surface, the mumber of revolutions of which are indicated by a dise. 'The druwing shows the Amsler polar plamimeter, which, in addition to the ordinary requirements of the instrament, is well allajted formeasuring the area of indicuter diagrams. To use the instru. ment. press the point $A$ slightiy into the paper, not clear through, in such position that the tracer I will follow the desired line without bringing the roller $C$ against any projection. The roller must move on a continuous that surface. It is also well to fastron the diagram to a drawing-board, or some other flat surface, by means of pias or sprines. to prevent it from slipping. Nark a starting point at any point on the outline of diagram D, set the tracer on that point, and jlace. zero on the roller so it exactly coincides with zero on the vernier E. Now trace the line. moving in the direction traveled by the hands of a watch, stop at the starting point and take the reading. 1st. Find the higll. est figure on the roller that las pasced the zero on the vernier, moving to the beft, whicll we will assume to be 4 ; now the construction of the instrument is suleh, that each figure on lle roller represents an equal number of square inches. 2 d . Find the number of cormpletal divisions between four on the roller and zero on the vernier, which we will assume to be 5 . 3 d. Finthe number of the mark on the vernier which coinciles with sume mark on the roller, which in this case may be (i. We now lave the exact reading, $4^{5} b_{0}$ inclies area. In measuriner ditgrams of more than 10 incles area. add 10 to the result.

To those who are familiar with the instrmment. it is not necessary to place the zeron together"; but take the reading as it is. amal subtract it from the result. Should the second read ing he less than tha dirst, adel 10 to the second read ins before making the subtraction. If the artat to be measored is very large, divide it by limes into areas of lese than $20^{\circ}$ spuare inches, and take separate measurements. If the drawing is to a seale, mult;-
ply the result by the square of the ratio number of the scale. In using the Planimeter for inclicator diagrams, and for which it is speciully adapted, we find the area of the diagram, according to the foregoing directions, which we will assume to be 2.4\%: we now measure the length of the diagram parallel with the atmospheric line, which we will say iu this case is 4 inches. Now divide the area by the length; the quotient is the mean, or average height of the diagram, in inches, which is . 62 jnches: this we multiply hy the scate of the indicator, which we will assume to be 49 ; the product gives us 24.8 lbs . mean pressure on each square inch of the piston.
PLANING MACHINE.-Planins. machines have recently been much in use, by which both woot and metal are planed. In the case of those inteuded for wood, the cutting instruments are moved forwarl over the wood by maehinery in the same manner as in the hand-phane. The precision and rapidity with which these machines work have given great facilities for building, as one machine will do as much
of tle first ; and this is repeated until the whole surface of the plate is reduced to the required level. However tedious this process may appear, it offers such facilities for metal working as were previously nuknown.
In' its usual form, the metallic object is dogged to a traversing-table and is moved against a relatively fixed cutter. In practice, the cutter is adjusted in a stock, and is nsually fed automatically betwern strokes. The machine is variously constracted, and in sizes to suit the work in band. The drawings illustrate the Pond machines of the latest patterns, and includiug novel features. Fig. 1 shows a 26 -inch machine which is intended for light work. Its locl has great depth and its length in proportion to the length of table is greatly in excess of usual practice. The uprights have sufficient metal and breadth of hase to resist leavy cuts without jar when the tool is at the greatest height. The table is very thick, with three bolt-slots truly planed and pin-lioles drinled and reamed, and recejves back and forward no-


Fig. 1.
work as sisty men. The planing-machincs used for tion from an open and cross belt through a powerful metal are different in principle. A well-tempered, train of cut gears and rack. These gears are mounted chiscl-edgedsteel cutter is held in a fixed position, on slafts having very large diameters and more pressiug downwards upon the metal plate, which is moved forward by powerful machinery. The action of this movement is that a groove is plowed iuto the metal of the size of the stecl cutter; when the than twice the usual length of the journal. These journals are carefully scraped together and straight surfaces scraped to surface plates. The automatic belt-shifter transfers but one belt at same time, thus obviating squealing of betts and jar of machine, it is


Fls. 2.
groove complete the downward pressure of the tool chtimy disconnected from fernting apparathe and is is renoved, and by the action of the double serew arraneith tothow out to clar the reversing dogs on which has carrjed it forward, it is returned, amb re- the habe which can then be run hackward to cxantadjusted for another groove to be formed by the sidu ine the work. The feeding device gives antomatio
feed in ald directions and is adjustablac from 0 to sof an inch wide and takes no powire exrept at the mos. ment of feeding. 'l'ho down amel ungialar feeds ran be operated by haml, if more ronveriont, from hoth andsof the cross-head as well as the top of the sathlle. The commershaft has two pullevos. each 12 inclars dianmeter, by 3 inches face for the i3-inch leolennd shonld make 310 revolutions every minute. Wright 5,500 pounds.
liar. 2 shows an 84 -inch phancer, lesignod for the heavier work. It possesses all lice fertures abover
 21 inches, by binches fince for 5 -inch helt, and mukfir ${ }^{2} 00$ revolutions a minute. The wright of this machine is 50,000 pounds. Sere Rotury J'bener, and Shapiug-muchors.

PLANK REVETMENT.- llank is an exerllont mat wrinl for revetmento where charability and vary great strength are not required. 'The rase of workinig and convonience of lundling are its ereat advantages. When it can be casily obtaned and can be sparedfor the purpose, it will always be meed in worke ol hurried eonstruction.
lacertments may be mate with it hy driving posts or piecos of scmating into the earth, three or four feet apart, giving of hem has same inclination as the inlerior sloper, Boards, in ahorizontal position, to retnin ther earth, are then maled to these seant. lings or posts. Or, the scanthing may be eapped, and the boards having bern cut intomatable lengthe, placod in an upright position, similar to the posts in the timber revetments. The moisture of the earth soon produces rot in the boards, and renders the revolment a very perishalble one. siee Raretment.

PLAN OF CAMPAICN.-Buforc undertaking any military operittion, errent or small, we sliould first setule down upon some decided end to be eratined: determine upon beforeland, as far as practicable. the steps to be taken to attain our objeet. In one word, we shoulel elemrly ser what we propose to accomplish. in order that we may not go blindly to work and loave anything to chance. 'She mental process by which ail that is here supposed is claboratel is termed The layingont the Plan of Cempargn. In the first place, it stambes to ratson that this plan slomal be so limited as to comprise only the leading straterical dispositions, thus presenting only the ontline features, within which the meshwork of the minor operations is to be confined; thus leaving ample latitude for all movements of detsil and their exectution. Nothing could be more ubsurd than to pretend to dictate to the Commandirg (ieneral what he shatl do from day to day; yet this has been dons, and with but few exceptions, with disastrous results. Onee within the sphere of the enemy's operations, it Commanding Gencral is no longer at liberty to do what he wishes, hut what he hest can. Marches, maneuvers, combats depend on circumstinces for the most part imperative; decisions arrived at are often sudden, and brought ahout by the attitude. resources, strength, and the morale of the enomy. The Commandiug Gencral siondal Jave certe blinchie for carrying out the details of the campaign, the plan of which may have been decided mpon by a council, but even this is far hetter left in the hands of him who has the whole responsibility of its exccution on his shomblers, and has the rrentest interest in its success. It is with the aid of the gemeral maps of a country, made to a small scale, as cmbraciug a wider territory, that the general plan of campaign is marked out. All that is wanted for this ohject is that the maps shoukd contain the exact positions of the places upon it: the water courses, the moumtain prests, the principal lines of communication, and the political and geographical looundaries. The less detail on sueh maps the better they are for this purposce. as the mind is not distracted ly them from the main features. For all points of detail toporraphic. al maps, on a large scale. are necessary. To these we have reconrse when it is a question to choose an
 dispose an order of battle, rotr. The phan of catmphign lays down the points where the tronges aro to
 the mategrial points to he attainel. "J"ho: rhoice of
 not only dicrated by the facility of subsiatime them, althongh this is a point of grabit inportanea; bat by their salitablemess to drecive the ensury as to the posint on which we intemd to maks inn advanere, so that we may takr the initiative and foslow up our blow with the most crushing effere "the sulvanee,
 ions roads rather than upon narrow moll whatucled lyways. The nature of towns or dotiles io be trasversedmay forre ne to leave thern on omeside lo tatice byways, aithough bad: for we usoreonme with lesa dillicilty material obstiacles on onar liare of marcla than we can towna and defiles wold defended. W'larn an army can, in itsonward movernent, rest ons wing upon a natural ohstacle to an enemy, it will breall for it to knep as near that obstacfo as practiocalle; berause it will lre better roverol hy thes aronge the front of whielt during the mards ocrounits always several miles in extont; at loust so long as a buttro is not imminent. When the two wings of thearny are not supported in this waty the line of opserations slould cut the middle of the front of the army, in order that it may be copually well eoveref] on each side. There is one creneral rule ioth on the march and for batte, which is, never torxpors your line of operations: every disposition, on law contrary, slomild be taken to cover it and dofernd it in the beest possible manner. 'lhe plan of campaign for the defonsive is usualiy termed the lefinaice /'lome. It chicofly eonsists in deciding upon the character of the warfire to be adoptch; one which will depe:rd ajour mational irats, the resonrees, lopography, and (himate of the country. The Froucho for "xample. make a defensive warfare ly assaling their conemice: the Germans, on the contrary, carry on patiently a methodical kefensive behind their own fronticrs: the Spaniarls havebeen seen to carry on an extorninating war of detall; whilst the Jhussians, under like circumstances, have laid waste whole provinces and destroyed by fire tucir cippital city. to deprive their invalers of every material resource. A lirave people, but not labituated th privations, will unt irag out a war by patient endurance, hut will ent deavor to bring it speedily to a close by a few brillimet actions : its preferences will fe for sledige-lammer blows, prefcrring the hazarl of a great derisive battle, in which it may fall witly glory, 10 a series of petty combats whicla only serve to exlaanst the resources of the country without bringing about any decisive results. Carrying the war into the beart of the assailant's country, or that of his allies, is the surest plan of making lim share its burdens and foil. ing lis plans. The courage and conduct of troopla are improved in this way, and the chances in their favor increased. But io he successful, the party adopting it must not be too inferior in strength, and the nature of the frouticrs should favor it ; as there woukd be too great a risk under less favorablo circumstances, and in these even it would not be prudont to alvance too far beyond our own fronticr. The army will chietly depiend for the sulply of its wants upon the zone of territory adjacent io the frontier, and this should be desperately disputed. by uniting all its forces algainst the conomy's invarling corps. If this sureceds, from the defensive the army can assume the otlensive. If unsnecessful, nothing remains to be clone but to concentrate ads the troops possille and fall back upon positions seleceled beforehand, either of very great natural or artificial strength, as rivers, momentain-passes, fortreseses, etc. In this manner the rnomy is drawn forward into a regrion the devastations of which are monn his shonkdera. The skiffin Nontecuculi. in his memoirs. argues strongly for the adoption of swels a plan of
defensive measures; remarking that upon the territory of our enemy we aronse the aliscontented, whilst the fountains of men, money, and whatever else war calls for, are only disordered und fail in this portion in which the war rages.
PLAN OF DEFENSE.-The determination of the points on which resistance is to be made, those upon which we are to fall back in case of disaster, and the roads leading to these, in retreat; the dispositions of our forces at the ontset so as to anticipate the enemy on every point; an indication of the points in rear of our frontier for concentration, so soon as the enemy has unmasked his projects; the mode of snpporting onr advanced corps and those of observation by central reserves; finally, the designation of the points to be fortified by art, bridges to be destroyed, roads to be repaired, etc., etc. : sneh are some of the objects upon which attention must be directed in any defensive plan. The suitable military dispositions in all such plans will be controlled by the local topography; it is, therefore, impracticable to lay down invariable rules on this point; the most that can be said is, that too great a dissemination of our force is always dangerous; therefore that, so farfrom attempting to defend every pass some must be abandoned to their fate, in order to elfectually guard those which are most important and the more directly threatened by the enemy. If, instead of moving upon the latter. the enemy makes a show of gaining the former, he must be met by analogous movements, and our task should be to be in readiness to meet him by whatever route he may arrive; and also with the most troops lie can concentrate. It is from this cause that the configuration of frontiers, and the direction and nature of the roads by which they are appronched, bave so great an intluence upon the defensive measures against invasion. If these last are such as to permit our moving on right lines, from a center, upon the enemy maneuvering on the periphery, every advantage of mobility is on our side, and we ought to reach any point before the enemy. But, in any case, it is next to impossible to close every pass. To do so would require a continuous line of troops, which, from its extent alone. Would be weak at all points, and whichaneuterprising enemy would easily pierce at any one. Instead of attempting any such impracticable plan it wonld be better to place a considerable force at some one favorable point in rear of our frontier, and, from there, take the chances of anticipating the cuemy on any point lie may threaten by moving on him promptly. In advance of this central force, and upon its iront and hanks, smitll bodies can be thrown forward to occupy the principal passes momentarily and give warning of the eneny's movements. Thesedetachments, by retiring slow!y and holding the evemy in check, will give the main body time to make its dispositions, either to atvance or to receive the enemy at any point further back. With these precantions the main body will be secured from sorprise, and all the troops can be kept near conougli to concentrate for battle. Snch are the general defensive dispositions recommended by the highest military authority. It is readily seem that great discretion is necessarily lefi to the Command ing General, and that his measures should lend themselves to the local features of his line of defonse. All that is requisite that these shonld be good is lhat they sloould be hased upen the simple idea of conerntration. This is always preferable to a feeble continuous line, with semarated bodies that camot alford mutnal support; which arc too lar removed from the supervision of the Commanding (icneral, whocamot be everywhere, and which, owing to the distanes betwern them, camot be rallised and concentrated in time when the line j s pircced at may point. With the foreroing dispositoms there should be combined some suitable sys tem of signals, or other means of tansmitting intolligence promptly from the interior line of detachtwants to the main body. No pains should be spared
to ladre this system as perfect as practicable, and not liable to mistakes. A position chosen on the direct road that the enemy must follow is not always the best to check with advantage his onward march; flank positions can also often be fonnd of superior advantage for this purpose from which the enemy's line of operations can be threatened if he persists in neglecting this position. This is particularly the case when the force thrown on the flank is of such strength that the enemy dare not to leave it in his rear, and therefore mnst attack and drive it back so that he may not expose himself to be separated from his oase. In this simple manner the enemy is forced to give battle on a ground, of our own choice, and where we will have had time to make every defensive disposition. The searehing out and establishing, on sound principles, flank positions for concentration of troops, forms an essential feature in laying down any plan of defense. Having decided upon the most advanced positions to be occopied, attention should next be directed to those of a secondary claracter, which will naturally be controlled by the water courses and mountain chains in rear of the first line. These will demand in their selection very carefin study. The best of this class are those which have their wings or extremities resting npon natural obstacles that an themy cannot turn-as the sea, lakes, unfordable rivers, which, in some respects, overlook the lines of approach on thent; are accessible from the front only by a few practicable roads which can be easily guarded; the general outline of the position being convex towards the enemy, and in rear having goodroads leading to all points of it, along which troops can be rapidly moved to any point in danger. Fortified places on a frontier will, of course, play an important part in any defensive plan; even open towns, by properly covering them with fidd works, may give the means of effective resistance to any usual mode of attack. When these places lie upon a river, wbicly is itself a line of defence, particularly when they occupy both banks of it, they afforl great facilities for the operation of an army which can maneuver on either shore with safety, so $\operatorname{lon} g$ as the place itself is not invested. Fortifications so placed completely preveut the enemy from using the river as a meaus of transportation, whilst they assist us in so using them; and, in most cases, they would therefore force an euemy to take all the known measures for gaining possession of them before he would dare to pass beyond them. In whatever way a river may lie, which has fortified points on it, the disadvantages to an invading force are necessarily great. If parallet to our line of frontier an enemy cannot cross the river, leaving these occupied in his rear, withont running the risk of a gruat disaster. When perpendicular, he (annot with safety divide his forees to operate on both banks at once, as we have, by means of the fortified points, the ready facility of conerntrating on either side at our pleasure. Without such strong points on it, a river, on the contrary, might be a positive advantage to the entmy, by allowing lim to secure one of his own wings from attack by resting it upon the river, whilst he wonld also thas facilitate his own means of transportation. As to military positions, properly so called, that is localities favorable to acec"pting battle, great care should be taken in designating them on the plan of defense, and in preparing them beforehand for every eventality, by tield works, lines of retrat, the remosal of all obstructions betwern the proints of the position, "te. In revery plan of acfense, particular care shomld be takell in pointing out what ronds should be carefally preserved, and which, in any emererency, may be broken 111, or otherwise whstructed. These monatures of destruction arealmost always put ofl so late as to become impracticable at the moment of need.

PLANT. -In a military sense, to place or to fix; as to plant a stumdurd. It likewise signifies to arrange
different picese of ordmance for the purpose of toing execution against an encmy or his works; beneer, to plant a battery. Some muthors apply this word to the ace of direeting atamon preproly,

PLANTATIONS. - Tremes which itre sematimes plantod on the ghacis of fortresses. When jurliciously phaced, they form a waluable at to the defernse. First, in the werk being nsed for timber, ats they would le cut down when the pare was about the he attieked. Secomdly, in the roots of the trees which rom under the eravis forming at considerable obstaded
 a space of atorat 20 fect wear in front of the crest. This part will be of mo use to the besieger as the nily of his lodgment will probahly be exeavated ontside of it ; and the defonders may have oxcasion during the siexe to cont ramps in it ascendine from the covered way to facilitate sorties, or to conseract lodgments thereon for riflemm. For the satme renson it would be advisable to atood phanting any parts of the glacis where it is likely the defenters will have to excavate countar-appronches.

PLASH.-A term commonly usel to signify the interweaving of branches, as for gabions, tikes, weirs. hurdles. © ${ }^{+6}$.
PLASTRON.-1. A stuffed pul or cushion, formerly worn at the shonder to sustan the recoil of heavy muskets and other tire-arms, and still used

by fencers mpon the right side. 2. A breast-plate or half cuirass. In the old French servier, the dens d'Armes, the heavy cavalry, the light horse, etc. were obliged to wear them on all oceasions, at reviews, ete. Sometimes written Plaston.
Plate.-1. In Heraldry, a roundle argent. It is represented flat, and in the Heraldry of Scothand is known as ab bant argent. 2. Metallic armor composed of broad pieces, and thus distinguished from mail.
PLATE-ARMOK. - The employment of thick slabs of iron to protect the sides of ships of war and the fronts of fortifications, is quite it recent invention; or rather, the modernsy stem is the practical realization of plans suggested long ago by Merseme and othere. In 184?, Mr. Balmano, of New York. proposed that war-ships should be clad with several thicknesser of iron plate, riveted one upou another. the plates being individually $\frac{3}{6}$ th inch thick. Soon afterwards, Mr. Sterens, an American ship-builder, mate further suggestions on the subject, and other practical men kept the matter before the attention
 the fromela sent several Iloating-batteriers to the Black Som, chat with irch flaters and the linglish Ahmiraly hastily imitated this example, prondmeing
 50. 'lhen came in at food of sugeretions for arming regular ships of war in a similar way. The Admiralty, dismayed at the thought of dimameline the existing fleet, which had cost su much, delay: dhan subjere as hong as they condd, but without abandon ing it. In 18tio, tha French sent to seat lat dibire, at timber-buit ship of war, altered from a the-gun the rea decker to a 4 ()-gun corvetu, elanl with 12 -ineh iron phates having a burden of 3 , ofe tons. This proseed. ing at once set the English Govarnment on the akert they saw that furtherdeliay would be imprudent, and they set about the creation of an amor-dad naty. Many problems had to be solved - whotlace to case od wooden shipe wills armor; to build and case new wooden ships ; or to buid new vessels, of which the hall ats well as the armor shomald be of irom. Then arose farther problems - bow noar the Imawarks shonld the armor-plates come, how near the bettom of the vessel, how near the stem and stern : also. what thickness of iron, and whether the same thickness in every part.

Frum lsit en lsath, the liritish Admiralty were engaged on a series of comely constructions and reconstructions, intended to afford eventmally solutions to the above problems. Several of the ships buile have cost from e 2300.000 to $£ 450,000$ each ; eneral half-tinished limber three-deckers have been ent down and eonverted into iron-elads; and variations of detail almost inmmerable have beco introduced. The following is a list of English vessels which in 1876 formed the Ironclad Navy. Those whichare wholly chad-i, e covered with armor phates in all parts of the hall needing pro-tection-are the Minotunr, Agineonert, Forthumberlemt, Royal Oak, Prince Consort, Caledoma, Deean, Lord Clytle, Loved liarden, Asudueions, Invincible, Prince ilbert, Sarpion, Wycern, Wonarch, Srow Duke, sultan, Glattou. ('yelops, Mecate, Mydra, Giorgon, Ireatuought, Dowstation, Thumerer, Siciftsurp, Triumph, Rupert, Hotspur, Hereutex, Inflexible, Alexander, and shamon. Those whichare only partially clad -i. e. covered with armor-plates only in the more exposed portions-comprise the Black Prince. Horrior, Defense, Rexistance, Achilles, Hector, Faliant, Royst Alfred, Bellerophon, Zenlous, Pulues, F'uevorite, Resenreh Enterprise, Viper, Vixen, Hiutr. witch, P'enelope. Regarded as to the material of which the hulls are mostly buitt, and on which the armor-plates are laid. the following are timber-buile:
 Aified, Zealous, Lord Clyde, Lord Harden, Pathas. Fuvorite, Researeh, and Enterprise. The Dixen is wood and iron; the Siriftsure and Triumphare iron sheathed with wood; all the rest are iron. The dimensions and weigint of these ships, laden with armor-plates from 3 io 24 inches thick, are cnormous. The load displacement of five of themexceeds 10,010 tons eacin ; six, 9,000 to 10.000 : four, 7,000 to 9,0 , 0 : twelve, 6.000 to $\bar{i}, 000$; seven, 4.000 to 6,000 . Some of the steam engines for these pontlerous ships, nominally of 1200 horse-power, work mp to (indicated) 8000 horsc-perwer. Whatever the thickness of the armor, the plates are nicely tongued and grooved to fit closely together edgewis. The bolts which fasten them to the ship are generally 2 to $2 \frac{1}{2}$ incols thick, expanded at one end to form it head, and having a screw-thread at the other to reccive a mat.
It is not yet known whether the thickest armor will resist any shot that can be huriced against it : whether, in other words, the thickest practical armor will overcome, or be overcome by. the heavicst practicable shot. Experiments at enormons cost have been conducted for some years to detormine this important cuestion : a natural resula has been that canbon are made largor and larger, and armor-plates thicker and thicker, in the straggle betwern urillery
and ship-building. The experiments (so far as England is concerned) have been conducted prineipally at Shoeburyness. The usual mode is, to construct a target resembling the armed side of one of the ironclads, and then to try to pierce it with shot fired from guns at various distances. A llarrior target, for instance. consists of a $44-\mathrm{in}$. armor-plate, backed by 18 in . of teak, and an inner skin of ${ }_{4}^{3}-\mathrm{in}$. iron ; while a Lord Warden target has $4 \frac{1}{2} \mathrm{in}$. plate, 30 in . teak, and $1 \frac{1}{2} \mathrm{in}$. skin. A few examples will serve to illustrate the method of proceeding. In August, 1866, a Harrior target was built up at Shocbury-mess- $i$. $e_{\text {. }}$ a target similar in strength and construction to the side of that ship. Alderson's steel shell, Armstrong's conicle shell, and Palliser's chilled-iron shell were fired at it from a 7 -in. gun at 200 yards: the Palliser shot excelled the others, going clean threrugh the target, armor and all, and bursting behind. On another occasion, a Palliser 115-1b. slrot went through the target even at an angle of $30^{\circ}$ from the purpendicular. The Lord $\mathrm{I}^{2}$ erdentarget has been pierced by $9 \frac{1}{2}$ and $10-\mathrm{in}$. shot at a distance of 1.000 yards; while the thimer H"arrior target was piereed at 2000 yards. The Bell rophon and Hermbes targets were more ponderons. At the end of $18: 8$, the British navy consisted of 64 ships, aftoat or building. of which 46 were efticient. They were divided into five classes, the first two of which contain only the formidable turret-shijs. The armor of the first class comprising 4 ships, ranged from 12 to 24 in . in thickness: the Inttexible has armor from 16 to 24 in . The seconcl class, of 9 ships. has armor from 8 to 14 in. thick. The third, of 16 ships, from 5 to 12 in . The fourth, of 4 ships, from 6 to 10 in . In the tifthelass, 13 ships, the armor is from $4 \frac{1}{2}$ to $5 \frac{1}{2} \mathrm{in}$. The last class comprises the two old iron-clads, the Wiartor, Black Prince, and otbers.

Armor-clad forts are also attracting attention. Iron has been nsed largely in the defenses of Plymouth and Portsmonth. In 1864, a line of iron-clad fort was built up at Shoeburyness, to test several motes of construction. In the same vear, the Russian Government employed the Millwall Company to build a :3 ronght-iron shield, as an experiment for the defenses of Cronstadt. The front was made of 12 in . thick of iron in horizontal bars; this was backed by 14 in . of thickness in upright bars; and the whole strengthened with enormous struts, brackets, ribs, and dovetails of iron. The shield was to form the facing or armor for a battery of three of Krupp's 600 -pounder steel guns, and measured 43 ft . by 10 . The shield, with its foundation-plate, weighed 140 tons. In one experiment at Shocburyness, a plate 13 in. thick was placed in front of a mass of granite 14 ft . thick. and fired at with 200 -pounders; four sbots cracked the granite, although the phate was not pierced. The


Fig. 1. -Front View of "W Wrior" tatgat. aftct practice with GOO-pounder Armstrong Gun,
Americans made an experiment in Chesapeake Bay. in Soptember, 1866, onatemporary fortification, mate of anomous granite blocks faced with 10 -in. armor; shots of 430 and 620 lbs. Were fired from the Rodman guns, at a range of about 350 yards, and cleven sum shots destroyed the whole fabloric. The Thundered was titled up as a target-shipat Portsmonth, parlly on test very thick plates at very short distances. The
plate were fastened to an enormons bulkhead near one cad of the ship, and the guns placed near the other end. On one special occasion, a Palliser 115lb. chilled shot, with an extra charge of powder tired at 25 ft . off, went clean through a 7 -in. plate and 45 in. of teak bulkhead. On anotheroceasion soon afterwards, a Hercules target, with a 9 -in. plate, was fired at with an 8 -in. splerical shot at 30 ft .; the shot made a dent $2 \frac{1}{2} \mathrm{in}$. leep, but did not furtber distnrt the plate. The $24-\mathrm{in}$. armor of the 1 ftlexible is clivided into two $12-\mathrm{in}$. plates, with 9 in . of teak betweenthe theory of this arrangement being that the outer plate, even if pierced, will shatter the shot, which will then be stopped by the inner armor. Dr. Collis lhrown has suggested a system of sloping armored sides which would give a shiparmor of 36 in. at any given point in a displacement not exceeding that of existing iron-clads. In the trial of the 100-ton Armstrong gun at Spezzia, a steel armor-plate was fired at, and the shot, though it penetrated the plate, was stopped in the backing.

Regarded as articles of manufacture, armor-plates werefirst produced mainly by hammering, several thicknesses of iron being welded one upon another,


Fig. 2.-Section of "Warrior" Target, showing the hole made by the b00-pound stocll, and displacement of the upper plate. a, armor plating, $41 /$ in. thick (displaced); b, teak backing, 18 in. thick: $c$, boiler plate skip, 3 in in. Lhick; $d$, wrought-iron heams; e, platform.
at a white heat, by blows of a ponderous steam-hammer; but it is now more customary to produce them by rolling than by hammering-pressure being considered to produce more satisfactory results than percussion. Whatever the thickness of the slab is to be, operations are commenced with plates abont an inch thick: these are heated, rolled, cut, piled up, heated and rolled over and over again, until the required thickness is produced. The rollers are placed forther and further apart, as the slab becomes thicker and thicker. Some of them are truly enormous masses of metal. solid cylinders 8 ft . long by 30 in . diameter. At the Atlas works of Mesrs. Brown \& Co., Shettield the chief manufactory for armorplates), there has been produced a rolled slab 17 ft . long, 7 ft . wide, and 14 in . thick, weighing 30 tons. At Grïser, in Germany, some excellent armor-plates of chilled (cast) iron have been manufactured. For armor-plates, the metal is very serupulously selected. and evcry part of the processes conducted with great cantion.
PLATFORM-BOARD.- I'side-board on an ammunition carriage for forace.
PLATFORM WAGON. - A carriage on four wheels; having no sides, and nsed for the transport of guns, mortars, traversing platforms, and for every tesuription of heary stores.

PLATFORMS.-To insure aceuracy of fire with heavy guns and mortars, it is absolitely meedssary to have solid ant substantial pletforms. For casemate and barbotte batteries in fortitications, fised platforms arr consirncted with the works. The tharbette platform consistsessentially of the pintle block, which is of granite tirmly imbedded in concrete ; in the houck is inserted the pintle, of iron, and around this is the friction plate for the pintle transon of the chassis to rest upons. Traverse eireles, of iron, form level and smooth tracks, upon which the traverse-
wheels rim. Ther pinile of a casemate arringe is inserted in a hold in the solde of the "mbrasare and is lifed out when the chaswis is to be removed. The chassis is attachod to it by a tongur, and is providerd with a front sot of traversic-whows. I'latforms for
 desirathe to have them as light as is conngatible with sulliefont strength to mature the show of firime. Those used in the United! Stateshicrice combine, in a high deyrere, the essemtial quatition of strenghthme portability. All the picers romposing them are of the same dimensions, and, ats the weight of rach piow is only tifty pounds, at soldier eme carry one from the depot the the baterice, orany monderate disfance, in addition te his terms and crfingurnts. Another phatform for mortars is deseribed, which is vory simple, strong, and well suited to presitions where tri's or timber can be casily proeured. 'Ihis is designated the rail platform. Whan a siege gem or howitzer is to be fred constantly in one difertion, it is best to give the platform an inclination to the rear. This prewnes excessive reenil, and also sureses to carry ofl water from rain. The degrec of inclination is not ahsolute. When the pieece is to be traversed over a wide fied of fire, the platform should be per. fectly levei: the recoil is then cheecked by placing at bag of carth or a pile of sods at a propier distance (about five feet) behind each whed. The following is the method of hatigy the phatform when it has an incliation. To lay it horizontally: simply omit what is sain with reference to the slope: The direction in which the piece is to tire is established by stretching a cord wer the center of the place where the platform is to be laid. This line is the directrix


Fig. 1.
of the platform. Prepare a bed for the platform ly excavating the earth so that it will have the proper inelination to the rear and be perfectly level heross. The earth, if not already firm, should be well rammed. Lay the outside slecpers parallel to the directrix, their outside edges being fifty-four inches distant from it. The four other sleepers are laid parallel to these, the edge of each fiftern and a half inches from the edge of the next. The upper surface of the front enels of these sleepers is tifty inches below the sole of the embrasure, and they are laid with an elevation to the rear of one and in half inches to the yard, or four and it half inche in their whole length. This elevation is determined by placing a block four and a half inches high on the front ond of the shecere, and latying at staightedge, with a level on it, from this biock to the rear end: the earth is then arranged so ats to bring the level true in this position. The next set of sleepers are laid agalinst and inside of the first, overlapping them three feet, laving the rear emis inclined outwards, so that the outer edges of the exterior ones shall cach be fifty-four inches from the directrix, and the pate between the rear edges of the oticers the same as in the first set, viz., fifteen and a half mehes from the edge of one to the edge of the next: all having an clevation to the rear of one and a half inches to the yard, and perfectly level across. The earth is then
rammed firmly aromerl the flecepers and made reven with thrir ujper surfere. The first deck-plank, with a hole through uards and for the wrolooles, is laid in phace, perpermienhar to the diereerix, its holes rorresjumbing with thase in the slecerres. 'Ther hurter is phace en it, and the boles ariven through the corresponding holes in them pieses. Tha larter whould be se places as to prevent the wheels from striking against the 'rmalement when the pirce is in batcory. If the interior slope has a hase of twosaremths of its haght, the inner edige of the hurter shoulal be two and a half inchas from the font of tho: :loper Tha othar phanks arr laid, carls boing forerel ayninst the preeding, with the dowels fitting inte Hacir rosperetive boles; the last plank has heles fore the ryebolts. by drawing out or driving in the
 are made to corresemel with those in the last deeckplank. The boles are then driven. Drive stake in rear of carb slowpr, lemines their tops level with the upper surface or the phatiom, Raine, ram, and lavel He earth in rear of the platform, so as (o) have a plain, hard surface (0) support the trail when the recoil is great. The carth shombl he raised nearly as high as the phatform along the sides, and well rammed. giving it a slight inclination ontward to allow water to run off. The platform is tifteen feet long and lime fert wide. Instead of twelve sleppers, (ach nine fret long, it is preferable to use six, each fifteen feet long. Sce Fig. 1.

The fich platform is for siege guns and howitzers when serving with an army in the fichl, and the method of constructing it indieates the way in which platforms may be extemporized from such material as may be at hand. To lay this platform, level of the ground and mark the ilirectrix; dige trenches for the sleepors; blace the latter in the tronches so that the holes for the eye-bolts will correspond in place to those in the wheel-planks: place the wheel-planks in position, and drive in the cye-bolts. The front eye-bolts pass through and secure the lintera; apply the level and make the structure perfectly level; secure the front sleeper with stakes; it is well to secure also the rear ends of the wheel-planks with stakes: lay on the trail-plank and scecure it with an eye-bolt to the third sleeper; ram the dirt well in around the sleepers. Fig. 2. To check recoil, place

sacks of earth or piles of sods over the ere-bolts of the third sleeper, or a stick of timber, similar to a sleeper, laid aeross will effect the same ohject. This platform admits a change of dircetion of about ten degrees on each side of the directrix, thus covering as much of a field of fire as is ordinarily required. To make fhis change of direction. slighty loosen or remove the earth about the three rear sleepres, and heave the rear ends of the wheel planks over with handspikes. The platform then has the position indieated br the doted lines in the figure.
The siege mortar platform is composed of six sleepers and twinty-ome deck-plimks. It is laid level, and the front and rear deck-planks are connceted by eye-bolts to each sleeper. A led for the platform is first prepared by leveling ofI the ground, and, if not already
solid, the earth should be well rammed. This bed should be sunk only so deep as to allow the upper surface of the platform to be slightly above the surrounding ground, for drainage. The sleepers are laid parallel to the directrix or plane of fire, three on cach side of it, at equal distances apart, so that the holes in their ends shall correspond to the holes in the front and rear deck-planks, The front deck-plank is laid first, and the eye-bolts driven to secure it ; the remaining planks are driven up against it, and the last secured, like the first, with eye-bolts. At the rear end of each sleeper a securing stake is driven. Fig.3. The earth. on all sides, should le raised nearly as high as the platform, and well rammed. giving it a slight inclination outwards to allow the water to run off. It


Fig. 3.
is of the first importance that the upper surface of the phatform should be level and true.
The rail platform for siege mortars consists of three sleepers and two rails for the sloes of the mortar to rest on. It is very strong, and easily constructed and laid. The rails and sleepers are notched and fitted together as represented in Fig. 4. The distance between the center lines of the rails is equal to that be-

tween the center lines of the cheeks of the mortar carriage. The pieces are put together at the battery and the earth is excavated eight inches in depth, and of suitable length and width to receive the platform. The bottom of this excavation is made perfectly level. The directrix being accurately marked by stakes, the platform is placed in position, its center line coinciding with a eord stretched between the stakes marking the directrix. The earth is filled in as high as the upper surface of the sleepers and firmly rammed; stakes are driven in the rear augles formed by the sleepers and the rails, and one at the rear end of each rail.

The platform for sea-coast mortars is 15 feet by 15 feet by 2 feet 2 inches. To lay it, a pit is dug $\ddot{\sim}$ feet deep and about 18 feet square on the bottom. The earth on the bottom is well rammed and leveled The two inch-planking is laid level on the rammed earth, perpendicular to the directrix. The cylindrical bolts are put in the slecpers, and the sle epers. with bolt-heads down, are laid compactly on, and perpendicular to the planking and parallel to the directrix. As the alcek-timbers are laid the bolts pass throngh the holds in them. These timbers are laid compactly uron the aleepers, perpendicular to the directrix. The muts are put on the bolts and serewed down. Both the nut and bolt-heads are countersunk. The iron plates are laid paralle to the directrix, and secured firmly with serews to the deek-timbers, covering nine feet in the center of the platform and leaving three feet on each side uncovered. The earth is then filled in, and rammed compactly around the platform, with a slight inclin.
ation outwards, so as 10 sherd water. The platform for the center-pintle classis is 17 feet square ; the bottom of the pit must therefore be 20 fect square.

The 10 -inch sea-coast mortar platform is 12 feet by 12 feet lyy a foot 8 inches. To lay it, a pit is dug 1 foot 6 inches deep by 15 feet square: the remainder of the operation is similar to that for the 13-inch mortar. See Mortar Carmiages, and siege Carriages.

PLATINUM FUSE. - A fuse of great value introduced by the Laflin and Rand Powder Company, and used with their magneto machines. These fuses have become noted for their surety, regularity, and perfect safety. They eanmot be fired by a spark or by the effects of free electricity, but need a current of sufficient strengtl and persistence that in its passage through the cirenit it shall heat to redness a small bridge of tine platinum wire in the body of the fuse. The drawing shows, in section, one of these fuses nearly of actual size. The following are its parts: A, the shell. of copper, having a corrngation, thrown out from the inside, which holds the sulphur cement more firmly in place. B, chamber containing the charge of explosive, composed mainly of fulminate of mercury-very powerful. C, the fuse wires, of copper, entering the shell, having a covering which is a partial insulator sufficient for all ordinary purposes. D, the bare end of the copper fuse wircs, projecting above the sulphor cement and into the charge. E, the small platinum wire, or bridge, soldered to and connecting the two ends of the fuse wires: this is heated to redness or combustion by the passage of the electric current. F, the sulphur cement holding the fuse wires firmly in place. These fuses are of cotton-covered wires; the vicety of insulation by gutta percha not being needed for geveral work, but ouly where blasting is to be done in deep water, and not then unless several fuses are to be fired simultaneously throngh a great length of submerged wire.

In Mareh, 1880, these fuses were submitted to a rigid and careful testing at Willet's Point, N. Y. . and were found to be remarkably uniform both in resistance and in the current required to explode them. The blasting machine with which they are intended to be used is a small mag-neto-electric instrument, weighing only about sixteen pounds, and occupying considerably less than onehalf of a cubic foot of space. The capacity of this machine is for about twelve or fifteen holes, though under entirely favorable circumstances many more can be fired. As to durability, the construction is sueh that one should last as long as a clock. No uncertainty exists. In the deep mining of the Territories, especially in Colorado, many of them have been used in very wet slafts, and have been found invaluable. The patent self-discharging arrangement, a remarkable invention, has made them far superior, for practical use, to any instrument ever male. Sce Blasting.
PLATOON.-A subdivision of a company. This term (probnhly from the French ploton) was formerly used to designate a body of troops who tired together. A battalion was commonly divided into 16 platoons, and each company into id platoons, the platoon thas corresponding to the present subdivision. The word is obsolete in this itsoriginal sense; but it survives in the expression "platoon exercise," which is the eourse of motions in connection with handling, loading, and firmg the musket or rifle.
plea.- $\Lambda$ teclinical term in law. In England it
had a very restricid maning, being confincol to the plewding of a defendant to anactionat common law.
 "Sitatemem of Defense." In serethand it is mot nsed in the same semse, hat demotrs the short lagal gromad on whicha party, whether pursuer or defender, hases hise case or pleading. Ihence the plas in law are only short promasitions of haw. Pheas are subaividen areoraling to their subjoet-mutter, intos pheas diatory and premptory, pleas of athatement, ploas to the jurisdiction. गhas in bar are the same as peremptory phas; but in criminal rases in burghal, worial phas in har are phems stating some ground for uot proceeding with the inclicturent, such as a pleat of formal asequital or ansoforis asquit; or of conviction, or autrefois conviet; or ableat of parchon. In seat land a "Plea of Pamel" means a plea of gnilty or mot guity. "pleas of the (rown" was an expression anciently used to elenote the divisions of criminal offenses generally, as in the well-known work calterd P'lear of the ('monn, by Sir Matthew Ilake, ant other writers. The phrase was so used hecanse the Sovereigu was supposed in law to be the person injured by every wrong done to the community, and therefore wat the prosechtor for every such wifense.
PLOMBEE.-An ancient war-club, whose latal was loaded with lrad.
PLONGEE.- In artillery and fortification, it slope towarl the front. Thus, in speaking of the rourse of a sliell throngh the nir. its plonger is from the point of greatest altitude to the point at which it strikes the carth. So, in fortification, the phongen is the top of the parapot sloping gently toward the front. This slope is ordinarily 1 in 6 ; but a devia-

In ployiner on an intrriontermpany, if

Sright companims ploy in fromt, 1rnicu tol lift.
loft companine ploy in front, dress to right.
In ploymants tow on the right or laft, the companirc rfour the columan loy 30 yarda luefore forminer line:

PLUMACHER PERCUSSION-FUSE.-This fus: cunsists of a tube, the interior of which has thro.e pentiar-shapeal commmicating chambers of differcat sizes, a sorew calp, a scraw-lothom, a wingerd noedto-disecharging phonger in thes upper chamlior, and a charged phanger in the lower chamber, the two plungers being kept apart loy the thiri smaller or intervening chamber, as will bo shown by refor-
 the charged fuse in reposes, top rnd up. Fig. 2 is a vertical seation of the wharged fuse at the porint of striking, after having been diseharged from the gron, toje che down. Firs is is a vertical suction of the "mply fusc-cas". In extermal appearanec tho fus"tube, $A$, is an ordinary eylinter. having as ser-wthread, $t$, cut to a proper ithoth at one end on the: periphery of the projectile. It is made of the size usual for persutssion-fuses, so that it may be unerl in any pattern of elongated shall. The cavity of this cylinder is tapued at both top and botoni at v) $v^{\prime}$, and is provided with a serew-caty, I), and a sorew-bottom, E, and the interior is tivided, by ubutting shouldurs, " ", into three differnt-si\%ed chambers, $f, g$ and $h$, in which the sliding phangers operals. The serew-cap, $D$, has a groove, $r$, that it may be handleal by a screw-lliver, amd an intent, $s$, on the lower side, to atmit the: point of a necelle,

tion is permissible of from 1 in 9 to 1 in f: the sharper the slope, however, the more liable is the crest of the parapet to be iestroyed by an enemy's fire. Moreover, as tiat aplongée as possible is desirable. that sandbags may, when required. be lain upon it to form cover for riflemen.

PLOUGH.-A woorlen wedge, or a slone, shod with leather. It is attached to a gunpowder incorporating mill, for contining the charge under the path of the runner. There are two attached to each pair of runners.

PLOYMENTS. - 1 general term for all tactical movements by which column is formed from line upon a thesignated subdivision. The following points are general:

If right is to be in front, heads of compranies incline to the right.

If left is to be in front, heads of companies inclime to the left.

Always wheel by fours army from the file closers.
In all ployments (excep)t to or on the right or left) the thesignated eompany, undess it is to be the rear company of the close column, moses forward-19 yards, if from line, and 15 yards, if from cohmmo.

In ploying on a tlank, or leading company, (lress on side which company enters the column.
shoult it be deemed necessary to reverse the dis. chargr-phanger when shipping the projectile. The serew-bottom, E, has keyholes, $u$. by which it is screwed, cetc. and an escape-hole, $e^{\prime}$, throurli its axis, to permit the passage of fire into the magazine of the shell. The discharying-plunger, $B$, is a conecrowned piece of metal, smaller in diameter than cither of the chambers, with a tapued hole, $c$, in the apex. into which a pointed steel neede is screweri, hodding in place by a slaoulder on the newelle amanypointed steel spring, $k$. The stecel spring, $k$, is just sufticicutly stiff to hold the phinger in place and to prevent it from being forceal into the center or chamber, $g$, by ay power less than the impact produced by the discharge of the projectile from the gun. The plamger is contained, needle-point down. in the chamber. $f$, but by the impact produced by the diseharge of the gun it is thrown forward amid secured by the flaring springs in the chamber, $g$. The sliding plunger, $C$, incused in the chamber, $n$. larger and heavierthan the planger, $B$, is of cylindrical shape-a body of metal with a cone-shaped crown, having through its axis a hole. $c$, in which is sceured by a drop of varnish or other snitable material, the fulminating powder or pill. Through this hole also passes the fire into the magazine of
the shell Extra security in transportation may le obtained by unscrewing ihe cap, D, and taking out and reversing the necdle-plunger, $B$, securing the point of the needle in the indent in the lower side of the eap. When fired, the impact produced upon the projectile by discharging the gun from which it Was thrown forces the plunger, $\mathbf{B}$, from its normal position into the center chamber, $a$, where it is lield, at the bottom, by the narrow entrance to the lower chamber, and from the top by the ends of the manypointed spring coming in contact witlı projecting shoulder, o o, dividing chamber, $f$, from $g$, the point of the needle protruding into the larger chamber. $h$. Then, by the check on the projectile when striking, the plunger, $C$, is thrown violently forward on to the plunger, $B$, the point of the ncedle entering and discharging the pill or fulminating-powder, thereby explorling the shell. See Fuse.

PLUMES. - Large and handsome featliers knots of buffalo-hair, cte. worn as ornaments on helmets, chapeaux, military hats, etc. In the United States, the General-in-chief wears three black ostrich feathers. Nll other general officers, ofticers of the General Staff and Staff Corps, except the Signal Corps, wear two black ostrich feathers. See Helmet.

PLUMMET.-A lead or iron weight suspended by a string, used by artificers to sound the depth of water, or to regulate the perpendicular direction of any buiding. Pendulums, called also plummets. which vibrate the required times of march in a minute, are of great utility. The different lengths of these plummets are as follows: For common time, 90 steps in a minnte, 17.37 inches; quick time, 110 steps in a minute, $\mathbf{1 1 . 6}$ incles ; double time, 165 steps in a minute, 5.17 inches.

The plane of sight is established by plummets; one suspended in front and another in the rear of the mortar. A convenient method of suspending the plummets is by means of trestles, made light and easy to landle. The one in rear of the mortar should be about six feet ligh, to permit the gunner to sight without stooping. The one in front being on the par-

apet, need not be more than cighteen inches high. They should have their upper edges scored with fine saw-euts, close iogether, to secure the plummets when adjusted in position. The plummet-cord slould be of tine thread or silk, andil atfected by wind when suspended, the bobs should swing in a bucket of water. A third trestle and plummet is required temporarily for placing the first two in position. To es. tablisli the plummets in position, the Instructor commands: 1, Place the plummets.-The gunner, assisted by No. 名, places a trestle upon the parapet near the intorior erest, and suspeads from it a phommet in sucla position that it will be apromannately in the lime patssing throngh the center of the platform and the objocet to low fired at. No. 3 brings up another trestle, which the ernmur catuses him to place a few font in alvans" of the first, and in ine with it and the object : sighting ly the phumet first estahlisho -d. be ranses the socond plommet to be accurately atjustad on the line to the object; then, going to the front phmmmet mul sighting back, he causes, No. 4 to plata in position the trestle in rear of the moriar, and suspernd from it the plummet, being caroful to have it in exact line with the two on the partuen. 'The front trestle is then removed by No.3. The tresthe in rear of the mortar should be about three yards
from the platform. Shonld the fire from the enemy endanger the plimmet on the parapet, a primingwire may be stuck there in its place to mark the line. When, owing to the interposition of an intermediate obstacle, the object to be fired at cannot be seenfrom the mortar. a point must be interpolated on the required line in such position that it can be seen from the mortar. This is most readily effected by using the Paddnck interpolater. See Bub , Mortar, and I'eddock Interpolater.

PLUNDER. - That which is taken from an enemy hy pillage or open force. In the United States the Articles of War declare that every oflicer or soidier, who shall rjuit his post or colors to plnnder and pillage, shall suffer death. or such other punisliment as may be ordered by a General Court-Martial.

PLUNGER. - Iform of striker used in some breechloading fire-arms. See Firing-pin.

PLUNGING FIRE.- When a battery is raised considerably above the object, so tbat tlie shot impinges at a great angle, and is buried withont grazing, the fire is termed " Plunging Fire."

PLUNGING RICOCHET.-The description of ricochet fire, when the angle of fall is comprised between $6^{\circ}$ and $10^{\circ}$. In this fire, the ball is given a small velocity, and the curve described is short and high.

PLUTEUS. - A kind of wicker helmet corered with raw ox-lide, woru by the ancient Greeks when engaged in sapping walls. Others were made of hurdles, covered in the same way, rnnning upon three wheels, and affording cover to 7 or 8 miners.

PLUVIOMETER.-An instrument to measure the quantity of rain that falls. It usually consists of a metal funnel from 5 to 7 inches in diameter, the rain being collected in a glass bottle. This bottle should be placed in a small stand near the surface of the

ground, to protect the bottle from the action of the sim. Tluc amount of rain fallen in a given time is measured in a gradmated glass-jar, one-tenth the area of the fumel, and so divided that every inch in depth of the tulo shatl indicate $\frac{1}{0}$ inch falling in the funnel. Tho amount of rain which has fallen can be meas-
 or even less.

Another kind of rain-gatuge may also be adonted. It consists of a rylinder of ropper or other metal, from to in incles in diametor, and 30 inches long. A lloat, jusi so much smaller as to allow it to rise fredy. is placod within the cylinder, and to the centur of the thot an upright stall is attached, marked in inches and tent has of an inch, which, rising through a luble in the lowtom of the fummel, indicates the Weph of rain received into the grange. The drawing shows this instrmment as employed in the United States Signal Sorvice. See huinoguage.

PNEUMATIC BUFFER.- A device for cluceking re-
eoil through the ageney of ntmosinterice air. At present. only the 1 thench I ween the front ends of the ebassis-mile are atheromer two cast-iron eylinelers :ach 110 inchess long, with
 the erlinders are elosed will tight-fithorg hoddes seenred with screw bolts. A phaton works in eatela cylinder. The rotle of the pisionse patse ont through the rear cylimber hosus and are attacland, ly nots,
 riage. The eylinters lawe the same inelination as the chassis-rath, and are seemerel to the latter by three cylinter trunsoms. When the piere remolle thi piston-rof is withelrawn, and the nir eentablacel in the eylinder compressed between the piston and the rear foral of the eylinder. A small bole in the front heat atmits air to supply the vacomon in front of the piston. The air in rear of tha piston thas forms ars chastice cushion, offeriner hat slight resistancero the first movement of recobil, but grathatly increusing in resisting force as the earriage mose's latck, until finally the fore of recoil is overeome amil toc lopearriage is brought io a state of rest. "the showk of recoil is to a great extent absorbed without sublen strain to lace carriage. "t"he top-earriaige mast bo out of gear whearever the piece is dishlargend; it then moves on the chassis withslither friction. PMis, to. gether with the inclination of the chassis-rails, assistes in checking the recoil. Whenthe carriage is in erond rumbing order, it generally runs forward a short dis. tatuce by the reaction of the compressed air after recoil. Torun the picce in luttery, the topecarriace is thrown into gedr: it then moses forward. the air is compressed in front of the pistons, and, esenpiner gradiatly throngh the small hobles in the heads of the cylimbers, allows the carriage to move forwarll with a gentle motion. The weight of the airecylimbers with attachments is about 5000 pounds. See /fyelroulic Butfer.

PNEUMATIC DISPATCH. -This namer is givern to a mode of sending parecls, mail-bags, or telegram pa-



 failure in the warlior sebermes. 'The converyate of pascengers and of bulky gorels was not lare rontom-

 mils of iron tube was cexperimsatally laid down mear Battersea, with a vory fair averate of eradiente aml

 pela train through the tube consinting of iwo iren-
 Ifter many thanncial diseonragements, it l'memmatio Jingutele Cimupuryy obtainell rapital in trfie, and began operations in 1 (6) Th. The experimental tube was removed to Lomdon, and latid down bencath the roalway of sisymour fitreet, linston sipuare-a rlistunce of one-third of a mile. Jail-bigs befors bnecessfully transmitted in this wity, the ('omprayy rombmenced in latit tho comstrostion of at tube onat largar scalde, amb this has sinue beren eompleted. 'l'he fube has larn laid fown from Einstom Square to St. Martin's-be-frand. Dy way of Tottenlam Comrt IRoad.
 miles 'Tlue tuhe is of large size, notrly $4+$ feet in diamoter, haid clown at as small a depth bencath tha: carriage-way of the severall strects as the water and gis pijes will permit. It is chietly of cast-iron: but some portions on tharp curve are of brick. There is a large engine-honse on the sonth siale of Ilobborn, natr Lincoln's Iun Ficlas, to supply all the power for working the whole tulne in both directions, Rarefiod air in one-half of the fube draws atrain of iron carriages, laden with pareels and mail-hags, from Euston Station to Holborn; am? compressed air drives them through the other length of taln from Ilobhorn to the Gencral l'ost-()the- there being a suction in the oue case and pressure in the other. A reverse action brings trains in the other eitrection. The neressary amount of rarefaction in the one case and of compression in the other was determined by experiment; but both are produced hy means of a revolv. ing fan of peculiar ronstruction amd large dimensions worked by a powerful steam-en. gine at the IJoborn sitation. If this mode of transmission were to come into gencraluse, there wonld be great savine of time in the delivery of letters and parcels, and a material lessening of the number of parcels and mailvans and carts in the ovorerowded streets of cities. It is to be regretted ilath a work so surcessful in a scientitic ant engincering point of view slould still remain undevelopert in at commercial sease. The l'ostmaster General, the Rajway Companies, and the ereat Corriers. lave made ne practical working engagements with the Pnemmatic bispatell (ompany; and this costly tube, with the rengine-liouse in lfolborn, has now remained sifent and unusid for severat years. This of course las checked any extension of the srotem into other distriets. We canot resist the convicuion thatt abetter result will present itself soomer or bater. The problem of paswenger converance with a pucomatic tube was sloown to
 iment tried it the (rystal labuee in 18ig4: but nothing further las bern dome in the matter.
pers throngh atube by atmosplacic pressure, of by a partial viacumm. Early in the present contury, Jir. Hedhurst conceived the iblea of some such contriv. ance. He proposed to construct air-tight tunnels. with carriages moving through them on rails: mal these carriages were to be propelled hy rompresed air from behind, or else by suction in virtue of a vacuum formed in front of them. Medhurst was langhed at by his contemporaries as a visionary: but


Fig. 1

More success lus attemed the introtuction of a system for transmitting small roll= of paper through tubes of a few inches diameter. by bmemmatic pressure. Mr. Sicmens intrulnced it at Berlin: it was next tried with success it Paris: Vr. Latimer Clark constructed similar apparatus in london: and the plan is now in regular use in the telegraph department of the now buildings connccted witla the Crencral Post Otice in St. Martin's-le-Grand, while it is
also used in some of the chief provincial cities and of 30 miles an hour, instead of sending them by street towns. In 1875 the number of tubes in London was conveyance. Two parallel tubes have been laid 24, with an aggregate length of nearly 18 miles; down beneath the pavements of the streets from the there were 4 tubes in Liverponl: 3 in Dublin; 5 in General Post Oftiee to various parts of London, and Manchester; 3 in Birmingham; and 1 in Glasgow. also in some of the large provincial cities and towns; Small tubes, two or three inches in diameter, are ar- additions being made to the length of tube according ranged for the reception of telegraph forms or pa- as the system hecomes practically developell. One pers. made up into a roll, and put into a felt cylimer. tube in each pair may be called the down line, the The purpose is to economize time and expense in other the ip: the two are placed in connection at conducting the Goverument Postal Telegraph busi- each end, and one steam-engine works them both. ness by bluoing along the telegraph furms at a rate The felt cylinder very nearly fills up the tube,


Eig. 2.
bat still moves rasily abong it; this movernent is bronglat about vither hy the formation of at partial vacumm in front of the eyljudar, or by compress.
 plial as to produce either orbothof thase two results, aceorling as convmience may sumerost. An inernnious phan ismbopted for necommortating one or more intormediate ofllers, just an lome santions arre arecommodater: luetween tho two trmani of a railway
 the tabe, maless a black or eheek aretion is phramsaly put in force at an intermodiate station; and the mond of effecting this is ane of the most beantiful of $\mathrm{H}_{\mathrm{r}}$. Sirmen's inventions relating to the subject. Two
 zante "xactly atike, and are so givoted together that cither may lie adjusterl into a cavity rat in the tube, and made temporarily to form part of it. 'I'lac carrier, we will stipurase, is intenderito stopat the intermelliate stations, to admit of the removal of some telerram peapers and the introdaciom of whors. A click is lieard, the currier strikes against an obstruction in the rectiver; the cavity is opened; the exchange of papars is made; the carrier is re-intro. duced, but into the transmittre instend of the receiver: the cavity is closed agran, and the carrior regumes its journey. All this is the work of a few seeonden merely. If the intermediate station has nothing to semd and mothing to reseive, the trans mitter alone is used, and the cirrier travels on without sloppiug. The up-tube and the down-tube have cach its apparatus of receiver and transmitter. The folt rylimber and its contents lueing yory light, a slifht rarefaction of the air in front of it, or condensation of the air helama it, is suftieient to produce a spead equal totwenty or thirty miles an hour. l'raetieally, there is it curoent of air maintained, cirenatint through tho two tuhes and their terminal connee. tions; wherever a sarrior is placed in this current it is blown along, and there may be two or more carriers traveling at the same time.

We lanve recently examinerd, with considerable interest, the pnemmatie system of transmitting telegraplic messares botwern the operating and receiving fooms in the newly constructed building of the Western [nion Telegrapll Company, in New Fork. In such an immense editice, eomprising elev. en stories, it would obvinnsly involve great delay to maintain the necessary communication by means of messenger boys, and consequently the ajpuaratus which we describe and ilhatrate herewith has been introduced, with remarkably successful results. In the large engraving, Fig. 2 , sections of several of the stories are represented, showing the mumerons tubes through which the necessary current of air which propels the packages, are maintaincd. 'Those of our readers who have had oceasion to semd at telegram at the Central Office above maned, may remenber that, after they liad delivered the writing to the elerk, that functionary rolled the paper in a little parcel and inserted it in a wood and leather case, of the mamer and form slown in the upper portion of the illustration, Fig. 2. He then dropjed the case into an open tube, leading up through his desk, at $A$, and perhaps announced that the packet had reached the operating room, in the seventla story, almost before the curions wateher of his proceedings had had time to draw a second breatlo. The packet appeared to be sucked into the tube, and so in faet it is, and in abont two sceonds it is drawn up almost to the top of the great building. After leaving the clerk's hand it passes down through the wide curve in its conduit, at 13 , and thence ascends the straight portion of the sume, untilit jumps forth from the end of the tube i none of the compart. ments of the receptacle, C , in the operating room. A section of a good portion of this receptacle is also well represented in Fig. 1, in one compartment of which a packet is seen emerging from its tube. The compartments, $C$, are entirely cut off


 lattor, low erar, "acll "moparlmant eomamanirates lyy an orifice, l", which is provided will it eoterer
 further ont throwing itny tubor into or cout of artion, or mombating the air current therwin as is flopiral. In the renter of thre reroptarle atad "peraing inte the "गpure chamber, E', is a harge tube, I). which extomede fown beside the jijues. le, anol eromocets with ablower in the ccelar. It is a ponitise bant rotary hlower, inventel and constructal by the wall knowil
 The machine las loner beren in nse in iron fonnaloriw.
 ments, and, besidus, has met with rextersive rimployo mont for vembilating purposes in buildings. shipis, mines, und other Incalitios. It will he multerstome That, in the present instanee, the blowor forces the air ont bracath, so that the rarrent is drawn down the tuhe, D, thromgh the chamber. Fi, in the receptacle abover, thener throurh the orifices, F゙。 and combpartments, C , and timaly wi, tlarongh the jijues, 1 b. Thus used as an exhancter, and at the sow speerl of 120 revolutions per minute, it draws down tivo cubio feet of air per revolntion, or 36,000 (ribic fuet per hour, thas propelling the packets, and at thes sanac: time (ly removing the last mentionerl amerecrate quantity of air from the atmosplaeres of the rorms with whithl the pipe nrifices communicate) serviber as an excellent and rflicirnt ventidating apyaratus.

After a packet arrives in the upper sions, flo jerson stationclat the receptacte lifts a little window in the eompartment which it contras, takis out the case, extracts the pajer therefrom, and passes the message at once to the proper ojerator, who immediately telegraplas its confents tutheir dratination. 'I'he rase is then returned to the tirat story by drop-
 by its own gravity, landing in the box, II, whence it is again taken out to le tilled amel started hack on its journey. The general adojution of this system by all Jilitary Headquarters, allowing that it will operate througli tubes of half a mile length as effectively as it does at the Western Enirn Office, would expedite the collection and distribution of oflicial matter. and greally promote the public service and contenience.

PNEUMATIC DRILL, - - drilling-machine operated by compresseed air admitted altermately above and below a pistom comnected with gear-wheels whiclı rotate the drill. The air-reservoir and force-pump may be placed at any required distance from the cylinder, and connected therewith by a flosible jupe. The introduction of the first Burlijgh drill into the Lloosac Tmmel ten years ago marked al new era, not only in that ereat enginecring cinterprise, but in the history of rock work througliout the world. Lן to that datemany had been the attemjts to produee a machine that would supersede the severe manual labor of the sledge and laand drill, but all proved failurns. Eventually Mr. Burleightook up the matter and solved the problem by producing the machine which lears his bame, and which is a monument to his senius. The main elements of the drill. slown in the drawing. are the cage, the cylinder, and the piston. The cage is merely if trough, with ways on either side, in which the cylinder, by means of a feed-serew and an antomatic feed-lever. is moved forward as the drill cuts away lle rock. The piston moves back and forth in the eylinder, propelled and operated either by steam or compresed air, like the piston of an ordinary steam-engrine. The drill point is attached to the end of the piston, which is a solid bar of steel. The piston is rotated as it unores back and forth by ingenious and simple mechanism. The forward mo. tion of the cylinder in the frough is regulated by an antomatic feed as the rock is cut away, the advance being more or less rapid, as by the variation in the nature of the rock the cutting is fast or slow. It will
thus be seen that the drill-point and solid steel piston alone receive the shock of the blow: and it also should be stated, that the piston-rod, arranged with a double annular cam and spiral grooves, in its mosements performs three important functions. First. The movement of the valve admitting the steam or compressed air to the cylinder. Second. By the operation of the annular cam acting upon the feeding device, the cylinder is moved forward (as the rock is penetrated) in the cage or slide. Third. Be the spiral grooves and a spline in the ratchet. the piston bar is automatically rotated, a partial revolution taking place at each upward movement of the piston,

the ratchet remaining perfeetly stationary while the rotating movement oceurs, and moving only as the piston again desconds. When the erlinder has been fed forward the entire lenrth of the feed-screw. it may be rum back, and a longer drill-point inserted in the end of the piston.

By an ingenions preuliarity in the form of the cuttinesedge of the drill-point, jerfortly romed holes are encured; thus giving a greater area to the loole. and a larerer percentage of the pownernear its bottom. The rearular rotation of the drill insures the delivery of each blow at the point of greatest exliciency : carh wing of the drill-point striking ihe rock at a point just far cnough in adrance of the cut of the precerling blow to chip away the rock lying betwoen. The yindeng of the rlap sives the were of the drill-point; and thas the advance of the drill-point in the rock, withont sharponing, is ten times greater than is $\mathrm{I}^{\text {wo }}$ sible in hand-alrilling, whare the bole is formed by the croshing and pulverising of the roek. 'l'hi drittincrinachine is attacherl to a elamp by means of a circular plate, with a beveled edge cast upon the
bottom of the cage near its center. This plate fits a corresponding cavity in one side of the clamp, and is held there firmly in any reguired position by the tirhtening of serews. The clamp is elasped about a bar of iron to whieh jt may be quate tightly lecld by screws.

By the motions-upon one plane, of the plate in its eavity, and upon another, at a right angle to the first, of the rlamp upon the bar, and the sliding endwise of the clamp upon the bar-it will be seen at once that any position and direction of the drill is attainable. It only remains to securely attach the har, of any reasonable length, to a convenient carriage or suitable frame, and the machinery is ready for operation. These machines are applicable to all kinds of rock work, whether in mining, quarrying, cutting, tunncling, or in sub-marine drilling. They combine simplicity, strength, lightnessand compactness, are easily handled, and require but few repairs. With them. holes may be drilled from three. fourths of an inch to five inclues diameter, and to a depth not exceeding thirty to thirty-five feet, at the rate of from two to ten inches per minute, according to the nature of the rock. They are driven by either steam or compressed air as a motor, and, under a pressure of fifty pounds to the inch. Work at two hundred to three hundred blows per minute, according to the size of the machine.

PNEUMATIC GUN-CARRIAGE.-Facility of maneuver is of the greatest importance, after strength and stability, in a gun-earriage, and the training and running of heavy carriages, and the elerating and depressing of the gron, are now generally aceomplished by means of toothed-gear. Modern guns should be trained very quickly and smoothly, and facility in that respect is of inestimable adrantage in combat, hence a simple carriage that will return a $B$. L. gun, automatically to battery after eacla discharge is ereatly to be desired.

Simplicity of construction also is a very important quality in a gun-curriage for sea-service, where the liability to rust, deterioration and damage from sliot is very great, and the facilities for repair limited. Unfortmately, the modern carriages are entirely too elaborate in construction, and the aim in the design should be always to make the working parts as accessible as possible, and as simple as is consistent with the object in view.

The codurance of a carriage is greatly enhanced by a real judicious application of the recoil eheck. Thought it is desirable, on general principles, to allow the carriage free recoil, it is not usually possible to do so in practice, and, in fact, since the introduction of $B . L$. canmon, it has been an object to limit the recoil as mueh as possible, with a view to return the gun quickly to battery. Any device that will give an increasing cbeck is much the easier on the earriage.

A comparison of the foregoing will demonstrate the adrantaces of the pnemmatic carriage in rajulity of maneuver simplicity of construction, ecrtainty of action in any climate,protection of the vital parts. and endurance. The use of water as a recoil check makes a summer gum-carriage : other fluids are liable to cake or elog the evinders at an imprertant moment. Any misadjustment or accident to the valves of any hydraulic cheek would cause an instant splitting of the cylinders, thereby disabling the gun-an inpossible occurrence when using an elasitic gas.

As a familiar example of the application of pnenmatic force, the Whestinglouse ar-brake may lre here citurl. The introdinction of this appliance was baffled for six years by the adverse opinion of aminent Engincors as toits practical utility. It never freezes clogs or splits the pipes, and one man controls with "ake a groat tran of cars. In this commection it may be remarked that the use of hamb-gearing in modern gun-carriares is comparable to the old style "lrakes" on a railway train. The operating of the gun-carriages, either in the forts or on ships, by mans of com-

pressed air supplied to the working parts from the pipe led to the breast of the carriage, and controlled by simple levers, for rapid training, for rapidly raising or lowering the gun to aim, for checking the recoil without shoek, and for running in andout when desired, is absolntely practical, certain in its action, and the least liable to accident.

A section of the Westinghouse air-pump is shown in the drawing. The parts are numbered as follows: Stean-cylinder Heal (with reversing-cylinder, piston, and valve bushes),2: Steam-cylinder (with the main ralve and bushes.) 3: Center-piece, 4: Aircylinder (with lower discharging-valve), 5; Steampiston and Rod. 7 ; Air-piston, 8 ; Main Piston l'ach ing-ring. 9; the Reversing-valve, the Reversing-valve Plate, the Plate Bolt and Stom, 13. 10. 11, 12, Mam Steam-valve, 14: Packing-riugs for the C'pler and Lower Piston-ralves, 15, 16; the Upper and Lower Main Steam-valve Bushes, 17, 18; Reversing-eylinder and Cap, 19, 识; Reversing-piston and Packingring. 20, 21; Reversing-valve Bush and Cap. 23, 24; Piston-rod Nut. 25 ; Discharge-valve Stop-bolt, 2h; Piston-packing Nut and Gland, 27, 28; Right and Left Chamber Caps. 23, 30: Upper Discharge-valve and Seat, 32. 31; Receiring-valse, 34 : Half-inch Union. 35; Three-quarter-inclı Union, 36: One-inch Union, 37 ; Top and Bottom Steam-cylinder Gaskets, 40. 41: Top Air-eylinder Gasket, 42. The stean from the boiler enters the top cylinder between two pistons forming the main valve, 14. The upper piston being of greater diameter than the lower, the tendency of the pressure is to raise the valve, unless it is held down by the pressure of a third piston. 20, of still greater diamcter, working in a cylinder directly above the main valre.

The pressure on this third piston is regulated by the small slide-valve, 13 , working in the central chamber on the top head. This ralve receires its motions from a rod, 12, extending into the hollow piston, which, as slown in the drawing, has a knob at its lower end and a shoulder jnst below the top head. This valve chamber in the top head, by a suitable steam-port, is constantly in communication with the steam space between the two pistons of the main valve. The steam acting on the third piston, 20. and holding the main ralve down, enters below the main piston; as the main piston approacles the upper head, the reversing-ralve rod, 12 and its valve, 13 , are raised until the slide-valve exhausts the steam from the space above the third or reversing piston, when the main valve is raised by the steam pressure on the greater area of its upper pison, which movement of the main valve admits the steam to the upper end of the main eylinder.

When the main valve is moved up to admit steam to the upper end of the cylinder, it opens an exhanstport at the lower end, just below the lower steamport, which latter is closed by the lower piston of the main valve; and when the main piston is on its upward stroke, the upper exhaust-port is similarly opered. The air-valves of the pump are similar to those used in all pumps. The lift of a discharge valve shonld not exceed one sixteenth of an inel. See Porlett fun-rarriage.

POCKET LEDGER. - i small account-book with which a soldier in the Pritish serviec is provided. and in which is insertect the monthly settlement of his acrounts, having refcrence to his pay, the state of his savings-bank account, date of entistment, cte. Commanding Oflicers are to sce that these books are knpt with the utmost regularity, the oflieer commanding the company of the soldier being responsible that the book is kept corrcetly, his simnature being a voucher for the same. This hook is familiarly termet by the soldier his "Tommy Atkins."
POCKET SOLAR COMPASS.-This instrument has a necelle 3 ineles long, and a limb of $4 \frac{1}{2}$ inches diamcter, dividet to half decrees and reading by its one double vernier horizontal angles to single minutes. The arrangement of the plates is similar to that of
the large solar compass, the under plate carrying the sights revolving around the upper or compass-plate to which are attached the solar apparatus, levels,ete.; there is also a clamp with tangent-screw between the two plates, and another to the whole instrument about its spimble. The distance between the sights is nearly 7 inches, the sights themselves are $4 \frac{1}{2}$ inches high, and have a slot and hair in half their heights ; they are hinged so as to fold down in packing. The compass-circle is arranged with pinion and movable part so as to set off the variation of the needle to five minutes; the needle has a lifting-lever, as usnal, by which it is raised against the glass. The solar ap-

paratus is attached to the flange of the upper plate, and consists of the usual hour', latitude, and declination ares, marked respectively. A, C, and B, in the drawing, with an arm, FF, to the last named, carrying the solar lenses and lines as in the larger instriments. The latitude and declination ares are each divided to balf degrees, and read by verniers, the latitnde are to five minutes. and the declination are to single minutes of a degree; the hour are is divided on its inner edge into hours and twelfths, or spaces of five minutes each, the index of the declination are above casily enabling one to read the time to single minutes.
The hour are is made morable on its supporting segment to either side, its onter edge being also divided on the midule nortion to spaces of five minutes of time, and read by a vernier npon the segments to single minutes; in this way the equation of time for any given day is set off at once, and the time given by the index of the hour are thos made to agrec with muan time or that given by the ordinary clock.

The solar lenses and lines are placed as in the larger instruments, the declinationare being also reversible, as the sun clanges from north to south of the equater.

Wher packed in the case the declination are with its arm is detached from the hour are; and this itself, together with the latitude are, folds very closely to the compass box.

The poeket solar is set up for use cither upon the hall spindle, with staff mountings, or upon a light tripoll like the other pocket compasses, and very oftern with small leveling-head with elamp and tangent screws.
Sometimes a side colesope with enterpoise is substituted for the sight-vanes.

When abont to nse the instrment, it is set upon its triped or stati, and earefally leveded; the declinttion of the sum for the given day and hour is ohtainod from the boplaneris supplion with the and other solar instruments, and set off mon its are, amblow hour are is rased until its vernice marks the hatithade of the plate upon the latitude are. 'Tlae capartion of time for the day is alsonse olf an beforedescribed, the \%ero of the hour circle being moved to the riglat when the crpation is to be added, and to the left when it is to be subracted from apmarom time. The index of the derlination are being then set to the proper division on the hour are, mat the Wedimation arm directed to the sum, the limb being also sot at \%ero, and the som's imare bronght betwerot the hour lines of the silver plate by turning the whole instrument unon its spindle, the siehts will indicate the trome meralian freceisely as with the larger solar compass. The compasereirclo hoing now turned hy the pinion mutil the nerde points to \%aro, the madle also will be set to the true moridiam, and the variation of the needle can be reat off mon the outside divisions of the compass-box.

The adjustiments und the use of this solar are sul)stantially the sanc as those of the solar compass, and its indications so accurate that after repeated trials it will give the true meridian within an error of less than three minutes of a degree, which taken in conneetion with the deflection of the marnetic needle will indicate with certainty the presence and direction of weins of magnetic ironore.
Indeed, we have the assurance of competent Surveyors that while it is muchmore portable it is also very nearly or quite as accurate in all its indications as the large solar compass. Its weirht, excluding box and tripood, is $4_{3}^{3}$ 1bs. See Suker Compress.
POINT.-In lleraldry, a triangilar tigure issuing from the dexter and sinister base of the shicld. It is common in French and (ierman II ratdry, and occurs in the shield of Hanover, which was a part of the royal arms of Great Britain from the accession of George I. till that of the present Sovercign. A shield charged with a point is in heraldic drawing hardly distinguishable
Point from one parted per cheveron. See Points.
POINT-BLANK. With all small-irms, the second point in which the natural line of sight (when horizontal) ents the trajectory. With artillery, it is the point where the projectile first strikes the hori\%ontal plane on which the gon stands, the axis of the piece being horizontal.
Usually, the object aimed at has a certain height; hence, it will not only be strack when at point-btenk, but also when at points in rear or in front of the point-blank where the vertical distances of the trajectory from such points shall be equal to or less than the height of the object. This distance between these two points, known as the dangerons space, is greater as the trajectory is liattened or as the height of the object is greater.
In the drawing. A F , is the line of fire; $\mathrm{A}^{\prime} \mathrm{FP}$, is the natural line of sight; and $\mathrm{A}^{\prime \prime} \mathrm{F} \mathrm{P}^{\prime}$, is an artiticial

line of sight. It will be seen that the ohject $P P^{\prime}$. beyond the point-blenk, is struck at the bottom. P". If it were at point-blonk, it would be struck at $P$. Were the object increased in heirlat, ahore $P$, it would also be struck when placed between pointblunk and the piece. The sum of the distances in front and rear of the point-blank, at which the object could be struck at its bottom and top, is the dangerous space. This permits us to make slight crrors
in restimating distames, wron rilher ower or momer

 blink:

POINT BLANK RANGE.- ' |lhr (lintance fom tha marzle of the piere to that point in the projeretile's trajortorywhere it conte the prolonestion of the natural lian of sight, a second time, the matural lime of right being hori\%ontal. The láritish define puint-blenk renge ats, the distamere from the ma\%ke to the first gra\%e when the axion of the piree is. paratiol to the horizontal phare upon which the carriage stamels; Int this is really mothing more than the ranee dae to tho "engle of elecition equal to the angle subtenden) loy the height of the gua from tha print struck. Sie lonintblank.
POINT BLANK SHOT.-The shot of a gan peinted lirectly toward the ohject to be hit.
POINT D'APPUI. $I$ fixml point of support in rear of the operations of anarmy, or on its thanks, such ats a fortress or some convenient loonlity to ramort to in case of necessity. A. I'riut d'. 1 prgni is of qurat importance in military tactics. Few latalos have bern fonght without making use of villages, libls and even trees as Points d dimui. In whanges of front, one lank, or part of the force, should be heck securely appuyed. Artillery massed in batheries have also served as Pointe d'fippui, as instanced at the batters of borodino, Ramilies, Johenkirela, we.
POINTED STAKES.-A form of imperdine nt used on the berm, at the bottom of the ditch and beyond the counterscarp. They are phaced about one foot in the ground, and stand about one foot abowe it.
POINTING.-To point or aim a fire-arm, is to give it such diection and clevation that the projectile shall strike the object. To tho this properly, it is necessary to understand the relations which exist between the line of sight, the line of tire the trajectory, cte. The line of sight is the right line containing the guiding points of the siglita. The sights are two pieces, $A$ and $B$, on the upper surface of the gnn, the situation of which with regard to the axis of the bore is known. The fromt sight is situated near the muzale, or on the right rimbase, and is gencrally tixed; the rear sight is placed near the breech, and is movable in a vertical, and sometimes in is horizontal direction. The nuturet line "f sight is the line of sight nearest the axis of the piece; the others are called artufial lines of sicht. The line nf fire is the axis of the bore prolonged in the direction of the muzzle, or (I). The rengle of fire is the angle included between the line of fire and horizon; on account of the balloting of the projectile, the angle of fire is not always equal to the angle of departure or projection. This is evident. The engle of sight is the angle included between the line of sight and line of tire: angles of sight are divided into natural and artiticial angles of sight, corresponding to the natural and artificial lines of sight which enclose them. The phene of fire is the vertical plane containing the line of fire. The plane of sight is the vertical plane containing the line of sicht. The print-blank is the point at which the line of sight intersects the tra jectory, or $I$. Strictly speaking the line of sight intersects the trajectory at two point: $C$ ' and $P$ : but, in practice, the latter point $P^{\prime}$ is only consideret. The distance, $13 P$, is called the point-blank distance. The natural pointblark corresponds to the natural line of sight: all other point-blanks are called artificial paintblenk.. In speaking of the point-blank of a piece. the natural line of sight is smpposed to be horizontal. In the Britisla service, the point-blank distance is the distance at which the projectile strikes the level gromed on which the carriage stands, the axis of the piece being horizontal. It is evident that this definition of print-blank distance convers a lietter idea of the power of the piece than the former. which makes it depend on the form of the piece, as well as on the charge. Is the angle of sight $1 C^{\prime \prime} C^{\prime \prime}$
is increased, the point-blank distance is increased: as it is diminished, the intersections of the line of sight and trajectory approach cach other until they unite. when the line of sight and trajectory are tangent to each other: beyond this, the point-blank is imaginary. As the angle of fire increases, the force of gravity acts more in opposition to the force of projection. and the point-blank distance is diminished, until at $90^{\circ}$ it becomes zero. Under an angle of depression, the force of projection acts more nearly in the direction of gravity, and the pointblank distance is increased, becoming infinite when the angle of depression is eqnal to $90^{\circ}$ minus the
of the plane of fire. As the lines of siglat and tire are parablel in their revolved position, the planes of sight and tire must also be parallel. The angle "of" $=B O B^{\prime}$, thercfore ( ${ }^{\prime}\left({ }^{\prime \prime}=O C^{\prime} \sin\right.$. $B O B^{\prime}$. It is easily seen that with this arrangement of the front sight, the error of pointing can never exceed the radius of the breech. By an inspection of the fignre, it will also be seen, that in the revolved position of the line of sight, the elevation is diminished by a small quantity, which is equal to the versed sine of the arc ('f".

If the natural line of sight be not parallel to the axis of the piece, the planes of sight and fire inter-

angle of sight. In ordinary firing. it is not considered sect at a short distance from the muzzle; hence, it that the trajectory changes its position with reference to the line of sight and linc of fire, for any angles of elevation and depression, less than $15^{\circ}$. In aiming at an object, therefore, the angle of elerution. of which is less than $15^{\circ}$, ains exactly as though it were in the same horizontal plane with the piece. For the same piece, the point-blank distance increases with the charge of powder: for the same initial velocity, a large projectile has a greater pointblank distance than a small one : a solid shot than a hollow one ; an oblong projectile than a round one; or, in other words, it varies with the value of $c$, before referred to. Range is the distance at whieh a projectile first strikes the ground on which the carriage is situated; extreme renge is the distance to the point at which the projectile is brought to rest.

In pointing guns and howitzers under ordinary angles of elevation. the piece is first directed toward the object, and then elevated to suit the distance. The accuracy of the aim depends- 1 st . On the fact that the object is situated in the plane of sight; 2d. That the projectile moves in the plane of fire, and that the planes of sight and fire coincide, or are parallel and near to each other ; and $3 d$. On the accurary of the clevation. The first of these conditions depends on the eye of the gumber, and the accuracy and delicacy of the sights: the errorsunder this head are of but little practical importance. When the trunnions of the piece are horizontal, and the sights are properly placed on the surface of the piece, the planes of sight and fire will coincide : but when the axis of the trunnions is inclined, and the natural line


Fig. 2.
of sight is oblique to the axis of the bore, the planes are beither paralled nor coineident, and the aim will be incorrect. If the natural line of sight he mate parallel to the line of tire, by making the height of the front siglt equal to the dispart of the piece, the planes of sight and tire will be parallel, and at at distance from each other equal to the radias of the brecelt maltiplad hy the sime of the angle which the axhere makes with the horizon. To show this, lot the efrele 1 (: $B /$ ), in Fig. 2, represent the semion of the breech taken at right angles to the axis, ame ('the projection of the natural line of sight upon Hsis plams' let if $B^{\prime}$ be the inclined position of the andelrer, or trumions, (" marks the revolval position of the natural line of sight, and $\sigma^{\prime \prime} D^{\prime}$ the trace of the plane of sight, which is parallel to ( 17 , the trace
follows, that as the ohjert is situated in the plane of sight, the projectile will deviate from the ohject to the side on which the lower wheel is situated, and at a distance from it, which is proportional to the distance of the object from the piece: to correct for this source of error. the line of sight should be pointed to the side of the higher wheel, and at a distance from the obiect, which is proportional to the distance of the object from the piece. Siege and sea-coast cannou are generally fired from fixed platforms, which renders the axis of the trunnions horizontal: they are, thercfore, not furnished with jendnlum sights. In case the axis of the trunnions is not horizontal, and the piece has not a pendulum hansse, the highest points of metal at the breceh and muzzle may be determined by the gunner's level and marked with chalk: the center line of the tangent seale, or brech-sight, is placed on the mark at the breech, the slider is placed at the proper elevation, and the aim is taken along the notch of the slider and the mark on the muzzle. This method, however, does not give a perfectly accurate aim. In the absence of a lireech-sight, the piece can be pointed with the matural line of sight so as to strike objects not situated at point-blank distance if the object be within point-blank range, as at $P^{\prime \prime \prime}$, Fig. 1, the natural line of sight should be depressed below the object as much as the trajectory is above it; if it be beyond point-blank, as at $P^{\prime \prime}$, the watural line of sight should be directed to a point $I$, which is as much above the object, as the point $I^{\prime}$, of the trajectory, is below it. Owing to the shape and size of the reinforce of sea-coast cannon, the natural line of sight is formed by athining a frout sight to the muzzle, or to a projection cast on the piece between the trumaions. Athough the latter arrangement does not give quite so long a distance letween the sights as is desirable, it permits the use of a shorter breechsight, and the front sight does not interfere with the roof of the embrasure, when the piece is fired under high elevation.

In pointing small-arms and mortars, the piece is tirst given the elevation, and then the direction necessary to attiin the object. Mortars are generally fired from behind epualements, which sereen the objeet from the eye of the gumner. The elevation is first given ly a gunner's guadrant; and the direction is given by moving the mortar-bed witha handspike, so as to bring the line of sight into the plane of sight, which, by construction, passes throurh the object and the center of the platform. The plane of sight may be determinel in several ways; the method preseribed is to plant two stakes, one on the crest of the "pandement, and the other a little in advance of the tirst, so that the two shall be in a lime with the objeet, and the gumer standing in the middle of the rearedgh of the plat form : a cord is attachfil to the sucont stake, and carcfully held so as to touch the tirst stake; athird stake is driven in a dize
with tae cord, in rear of the platform, and a phammet is attached to this cond so as to fall a little in rear of the mortar. It is evident that the cors some phammet determine the refuired plane of sight into whiclla the line of sight of the mortar must be bromeht. Tho nishal angle of tire of mortars is $45^{\circ}$, which corresponds unarty with the maximum ramer. Tha adrantages of the angle of greatest range ure: 1st. Economy of powder: ©I. Diminisholl recoil, and strain on the pirew, bed.and phat form: Brl. Nore miform ranges. When the distance is mot eroat and the oljeget is to pernetrate the roofs of mavazines. buiddings. rete., the foree of fall maty be increased ly firing mader an anghe of $60^{3}$. The ranges obtainod under an angle of Bo $^{\circ}$ are about whe tenth less than
 to produce effect hy the bursting of the projectile. the penctration shombld be diminished by firing under an angle of $30^{\circ}$. When the ohject is not on an lavel with the piece, the anghe of greatest range is considered in practice to be $45^{\circ}+\frac{1}{2}$. or $45-\frac{1}{2} 1, A$ being the angle of devation or depresxion of the oljuret. Thus, to attain a magazine, for instance, situated on a hill, for which $1-150$, the angle of ereatest range is $522^{\circ}$ instead of $45^{\circ}$. The angle of tire lating tixad at $45^{\circ}$ for oljects on the same level with the piece. the range is varied hy varying the charge of peswder. The practical rula is founded on the knowledge of the amomet of powder necessary to diminish or incrense the range 10 vards. For the French 8 and 10 inch sicge mortars, this amount is nbout tio grains for the former, and 125 grains for the latter. A practical rule for finding the time of flight by which the length of the fuse is regulated, is to takie the supuare root of the range in feet, and divide it be four ; the quotient is the approximate time in seonds. Stonemortars are pointed in the same manner as common mortars: the angle of lire for stones is from $60^{\circ}$ to $75^{\circ}$, in order that they may have great force in falling: the angle for gromades is about $33^{3}$, in order that their bursting effect may not he destroyed by their penctration into the earth. Camon are pointed at night by means of certain marks, or measurements, on the carriage and platform, which are accurately determined during the day. See C'm onon and Firing.

POINTING-BOARD.- $[11$ gunnery, a piece of 9 oard 1 foot long, 2 or 3 inches wide, and 1 inch thick, laving a moteh cut in the middle of one side to tit on the stake, and craduated into equal divisions from its midale. When wot in use the pointing cord may be wound on it. This board is used for pointing mortars.

POINTING-CORD.-1 cord nsed in pointing mortars By means of puinting-stakes, one of the fixed points is established upon the crest of the parapet or at the foot of the interior slope, and another in rear of the piece. Then by a cord called the printingcord, stretched hetween these two points, with the plammet suspemed from it, a vertical plane is determined with which the line of metal is made to coincide.
POINTING-RINGS.-Two rings, one smaller than the other, aftached to the upper surface of the trail of the stock of a field gun-carriage, for the reception of a handspike, which enables the cannoueres to raise the trail and carry it to the right or left. The trail-landles serve the same purpose, but are used principally for raising thar stock.

POINTING-RODS.-Pickets or rods of irou $\frac{3}{5}$ inch round, and about 2 feet lone, two of which are placed upon the epratement of a batery in front of each mortar, by means of which, with the aid of a plummet, the mortar can be directed with tolarable aecuracy upon the olyect to be struck. The pickets are first lined unom the olyjeet : the plummet, which is in the hands of the laying officer. Who stands behimi the mortar is made to coinelde with them, and the mortar is then triwersed montil the line of the plummet covers the center line on the mortar, which
is denoted by a notch on the nuzzle, and another behind the vent: a chalked line is gernorally druwn on the exterior surface of the mortar betwern theme notchas. In masumry works, they must be placent on a fir plank, abed abont finchers from earfo emel. The phank shonld bre fitteel with a grommet of handle at rach encl. In rarthworks, twe rameods will answer for pointing-rorls.

POINT OF ATTACK.-In Mi.gre operations, after on). taining all the information that con be had from re-
 object is to decide upon the portion of the defonsens which it will be necessary to gain porsession of to forew the garrison to a surronder; thisportion, which asually cmbraces one or more fronts of the position, with lan ontworks and any advanecd works that may le connertod with them, and which must hereduced lefore the puints of the main werk can be: assailed, is terment the Print af Ittack. It is in the choice of this print-a devision which mainly rests with the Commameling OHicur-that the juderment and skill of this Otlicer are shown. In making this s.alection, not only must the rintive strenith of the varions points of the defenses whicle are arcesesible be carefully weighed, but the nature of the site as to soil, natural surface, cto. upon which the trenches and other works of the attack must be laid omt, amd the facilities afforded of an eaty communication be1 ween the parks, deyrits, whe, and the print selectel.

In considering the stringeth of the defensers, those parts are recrarided at umasaikable by the ordinary measures of anatack, which border upon precipices, marshes, a water-course that camnot be forded; or are protected by works on inaccessible points, the fire from which sweeps in llank and roverse the ground aver which the trenches must be run. Those parts, again, are considerel as offering peconliar difficulties which jorsent a series of works in grond defensive relations which can only be carrici in succession; or works whicll aremined: or these which have their ditchesarranged for a play of water; whids have dry ditches of unisual atepth; or. those parts Where the works to be carried are displayed on at right line, embracing acarly the same extent of front that the besiegers can take up) with their trenches: or, finally, portions which present a concave fromt to the attack. The points, which are looked uponas most advantageous to the attack are those in which the general combination of the works forms a salient point with respect to the rest of the defenses: as a point so sitnated can receive but lithe support from the collateral portions, and can be enveloped by a line of trench of much greater extent than itself, along which positions can be oldained for confilading and other latteries. the fire of which will bee convergent upon that of the defenses. See hey-print.
POINT OP FALL.-The point at which the projectile strikes the gronnd, when permitted to do so. When the gun and point of fell are on the same level, the angle of fire is alwars less 11an the angle of fall.
POINT OF FORMATION. -Tha point taken, upon which troops are formed in military order.

POINT OF HONOR.-A nice discrimination in matters affecting one's honor. A delicacy of feeliner. which is most generally acquired by edncation, ami strengthened by interconrsewith men of strict interrity and good conduct. It is likewise very frequentiy the offspring of peculiar habits. reccived notions, and established etigucters.

POINT OF IMPACT.-That point or spot which at projectile first strikes on mecting an opposing body. The method of tinding the point of menor impact is as follows: The horizontal distance of each shot upon the target from a fixed vertical base (generally one side of the target) is first foumd, and a mean horizomtal distance obtained. by dividing the sum of the di-tance by the number of shot: the same prosess is followed to obtain an mean vertical distance from a fixed horizontal base (generally the lottom of the target). The intersection of the two lines drawn
parallel to the bases respectively and at distances equal to the horizontal and vertical mean distances already found, gives what is termed the pount: of mean impurt. The distance of each shot from the point of mern impret is measured; these distances are added together, and the sum, divided by the mmber of shot on the target, gives the figure of 'meret. Half a diagonal is allowed for every shot that does not strike the tarcet.

POINT OF WAR.- $\boldsymbol{A}$ loud and impressive beat of the drum, the perfect execution of which requires great skill and activity. The Point of Wiar is beat when a battation charges.

POINTS.-Morements in Sabre Exercise executed̉ as follows:

Tierce Point.-Being at guard, raise the hand in tierce as high as the eve : throw back the right shonlder, carrying the elbow to the rear. the point of the saber to the front, the edge upward. (Two.) Thrust to the front, extending the arm to its full longth, edge up. (Thbee.) liesume the ghard.

Quarte Point.-Being at guard, lower the hand in quartencar the right hip, the point a little higher than the wrist. (Two.) Thrust to the front, extending the arm to its fulf length. (Three.) Resume the gnard

Left Point.-Being at guard, turn the head and shoulders to the left, draw back the hand in tierce toward the right shoulder, the hand at the heirght of the neck, the edge of the blate upward, the point to the left and as high as the hanc. (Two.) Thrust to the $l$ (cft, extending the arm to its full length. (Three.) Resume the guard.
Right Print.-Being at guard. turn the head to the riglit, carry the hand in quarte near the lift breast, the edge of the blade upward, the point to the right and as high as the hand. (Two.) Thrust to the right. extending the arm to its full length. (Three.) Resume the gnard.
Rear Point.-Being at guard, turn the head and shonlders to the right ani] rear, lring the hand in guarte near the left breast, the point to the rear and as high as the hand, the edge upward. (Two.) Thrust to the rear, extending the arm to its full lemgth. (Theee.) Resume the guard.

İgainst Infuentry, Right Puint.-Being at guard, this movement is executed the same as quarte point.


Points of tho
Escutcheon.
point ; G. the dexter base point ; IT, the middle hase point ; and I, the sinister base point. The dexter and sinister sides of the shield are so called, not in relation to the eye of the spectator, but from the right and left sides of the supposed bearer of the shield.

POITRAIL.-That portion of the horse armor whieh covers the oreast, fitted either with hinges or like a Honnce. Also written Peritrel.
POITRINAL- - In ancient armor, the horse's breastplate, formed of metal plates riveted together as a coveriug for the breast and shoulders. The term Pectored has a like signitication, and is commonly used.
POLANS.-A term applied to knee-pieces in ancient armor.
POLAR DISTORTION - In the practice of gunnery, trajectories are generally constructed by the system f polar disturtion. By this method the angles of elevation are multiplied by an assumed co-efficient of distortion. The data necessary are the angles of elevation and the corresponding ranges. Assume a range scale, a co-eflicient of distortion, and a point as the origin of the curve. Through the origin draw a straight line representing the axis of fire, and from this line, with the origin as a center, phot suceessively (commencing with the least) the angles of elevation multiplied by the co-efficient of distortion. Upon the lines of sight so established mark points at distances from the origin equal to the corresponding ranges reduced to seale. A curse drawn through the origin and the points located will represent the trajectory. Let $O$, be the origin; OA, the axis of fire; AOB. AOC, AOD, ete., the angles of elevation, multiplied by the co-efficient of distortion, to which correspond respectively the ranges from 100 to 500 yards; then will $\mathrm{O}^{\mathrm{i}}, \mathrm{Oi}^{1,} \mathrm{O}^{n i}, \mathrm{O}^{\text {is }}, \mathrm{Ov}^{\prime}$, be points of the curve. The portion of the curre lying above each line of sight will represent the trajectory for that range. The dangerous space, or the limits in distance within which the ohject aimed at is liable to be hit, is dependent, with the same arm,on the extent of that object above and below the point of aim. To determine this, describe

turning the head and shoulders to the right, inctining the point downward. (Two.) Thrust in (quarte. (Three.) Resume the guard.

Agrainst Infantry, Joft Paint.-Being at guard. this movement is executed the same as Left Point, (xaept the point is towaward. (Two.) Thrust down in tierce. (Three.) Resume the guard.
Agrinst Infentry, Fromt Paint.-Being at guard, lend well down to the right, extend the right arm well downward, the hand in rear of the thigh, the lack of the saber upward. (Tures). Resume the graard. See Saber Excrecive.
POINTS OF PASSING. - The ground on which one or more bodies of armed men march ly a kevinwing General.
POINTS OF THE ESCUTCHEON. - In Herahlry, in orter to facilitate the drestiption of a coat-on-irms. it is the pradice to suppose the shind to be dividend into nine points, which are known by the following mames: $A$, the dexter chief pmint; B, the midele chief; $C$, the sinister chief; $D$, the collar or honor point; E , the fuss point ; F , the nombril. or naval
two circles one about the origin as a center the other about the point aimell at: the former with $\Omega$ radins equal to the assumed muzzle height multiplied by the co-efficient of distortion, and the latter with a radins equal to the height of the point aimed at above the ground multiplied by this same en-efticient. A straight line tangent to these circles at their lowest point will be the gromd lime; and a line tangent on the second rirele und parallel to the groumd line, will be the line of height. The dangerons space will be the projection, on the ground line, of the portion of the trajectory comprisel between these two lines. With the U. S. Bitle the dangrous space is calculatcil for the maz\% fifty-six inches from the ground, aimeld at a point thirity-four inches from the ground; for 500 yards, this extends 40 yards before the objeret (a foot soldier) and 80 vards behind it. The distancer on the figure is D's.D'd" being equal to $11 /{ }^{\circ}$. To ascertain the vertical height alove the ground line of a particular peint of the trajectory at any distance from the oricin ; with this distance as a radius weseribe an are culling the trajectory. The length
of the perpendicular to the gromat line from this intreseretion is the required height. The mumber 10 may be employed as a conveniont coordraident of distortion. By this mothod of photing, the relative curvature of consecutive protions of the trajectory is represented with sublleientaccuracy todetermine the " hangerons spuce"
POLAR PROJECTLLES.- $A$ designalinn applided to projectiles which garsue that llight farangh the air, always kecping one ond or anjuct formonst.
POLE.-In artillery, that portion of a marriage 10 which the when horsey arre athedned. It the (extremity of the pole are placel two poh-celains. by which it is hede up, and a pole-yoke with two move whe branches, to prevent, as macha as jossible, tha pole from oscilating and striking the larses.
POLE-AXE. - A wapom mach used by the early northern mations, Celtic and Scandinavian, requiring great strength in its use. Some were held with one hand: some with two, the former kind cond be wielded equally by hors. and foot, but the latter was for foot-soldiers only. The pole-axe had a longer handle, and a broader, stronger, an 1 sharper blade than the common axe. During the Midile


Ages, and somewhat earlice, it was mueh used in sorties, and to prevent the "scalading of a lusiuged fortress. The pole-axe differed but little from the matle-axe. The black bill and brom bill where a sort of halbert, having the eutting part hooked like a woodman's bill, with a spike projeeting from the back, and another from the head. The glaine was a kind of pole-axe, or hill, used by the Welsh.

POLE HAMMER. - An carly weapon of war consisting of a spiked hammer placed at the end of a very long shaft or pole. See H"ar-hammer, and Luzerner.

POLE MARCH.-Origimally, in Grecian autiquity the ('ommander-in-Chicf; lint, afterwarls, n civil Magistrate, who had mader his care all strangers and sojourners in the city.

POLE PAD.-A pad placed on the end of the pole in field-gun carriages, to prevent ingury to the horses.

POLE PROP. - A har for supporting the end of the pole or tongue, especially used with the varisus carriages of the artillery service.

POLE STRAP.-Aheavystrap by whielt the poleof the carriage is attached to the collar of the horse. Also called Pole-piece.

POLIABOLE.- $A$ ballista, which was eapable of throwing both arrows and stones. Also written Palentonne.
POLICE.- 1. The term Military Police bas two signitications-1st, the organized hody employed within an army to preserve eivil order. as distinet from military diseiplinc; and. 2d, a civil police with a military organization. The police of anarmy com. monly consists of steady, intelligent soldiers, who act under the orders of the Provost-Marshal. and arrest all persons out of bounds, civilians not authorized to pass the lines, disorderly soldiers, etc.: they atso attend to sanitary arrangements. As in all military matters, the police of an army possess summary powers, and a sentence of the Provost-Marshal is carried out immediately after it is pronounced. Of civil police with military organization may be instanced, as snecimens, the Genlarmerie of France, the Sbirri of laly, and. in an eminent degree, the Irish Constabulary.
?. The cloming of a camp or garrison, or the state of a camp in regard to cleanliness. The working party engared in policing is called the Palice Party, and the sergeant in charge of the same, the Prome Sergeant.
POLICE GUARD.-In interior guard, having the eare of the arms, property and prisoners: also charged

With enforcing the regulations of the ratny in regarn? worder and deandiness. In rach regiment, in the firld, a polire gratard is dretailen every day, consinting of two forgeants, thre (e, erporals, iwo drummers. and men emongh to farnish the rerguired sontimels and partrols. The men are taken from all the wom-panias- from each in proportion to its morngeth. The guard is commanded by a dimatemant, mandor tho supervision of a Captain. as Jacgimental Oflerar of the bay. It furnishers tran sentinels at the ranopone over the arms of the ghard; sume at the coslonel's tent ; three on the color fromt, one of them over the rolors; three, fifty paces in reme of the tiedd-ollierers) tents; and one on earch llank, belwern it and the next regiment. If it is a dhank regiment, one more sentinct is prosted on the outer flank. Ser förul. sprice.

POLISHING.- Polishing, in the armory, is coftected ly first romoving any karnish or oxidation ly mans of some material whicla will chemically act apon it; for this purpose sulphurice, laydrocliboric, oxalie, and aceticacids are used, and in varions states of dilution. ['smally, it is nocessary to remove tha acial with dean water, and dry rapidly, to prevent reoxidation: and then dither friction with various polishing materials, or rubbing with at smonth,hard shrface or burnisher, brings out the luster of the inctal. The font-polishing lathe, shown in the drawing, is used for all mall articles and parts. It has a pindle, one cond of which is 1 hreaded and tajecrs

in a point for holding a brush, buff, or other polishing wheels. The other end of the spindle forms an arbor for holding emery and other grinding wheels, also for small drills. F'ohishing l'estes vary aceording to the materials mpon which they are to he emploged. For brass, the bret kind is a mixture of 2 parts of soft soap with 4 parts of rotten-stone in very tine powder. Another sort is s parts of time rottenstone powder, 2 parts of oxalir acid powdred, 3 parts olive oil, and enough of turpentine to make them into a paste. For iron, a mixture of emery powder and lard is used ; and for pewter a mixture of finely-powilered hath-brick and soft soap. For wood. a paste called furniture paste is made hy :ulding spirit of turpentine to beswax, sufficient to form it into a soft pasto, which is rubbed on thifly with a brush and woolen rare, and afterwards polished with a dry woolen cloth and soft hrash. See Emory.
POLITICS.-That branch of ethics which has forits subject the proper mote of governing a state. so as to secure its prospority, peace, and safety, and to attain as perfectly as possible, the ends of civil society. Among the subjects winch political science cmbraces are the principles on which Government is
founded, the hands in which the smpreme power may be most advantageously placed, the duties and othligations of the governing and governed portions of society, the development and increase of the resonrces of the State, the protection of the right and liberties of the citizens, the preservation of their morals, and the defense of the independence of the State against foreign control or conquest. While the philnsophy of governing constitutes the science of politics, the art of politics consists in the application of that science to the individual circumstances of particular States. The ancient Greek writers treated politics with reference to an ideal perfect State, which cach propounded according to his own speculative views, pointing out the variation of every existing government from his standard. The politics of a country, in common parlance implies the course of its Govcrnment, more especially in its relations with foreign powers

POLKOWNICK.- 1 Colonel of a Polish regiment.
POLO.-This may le described as hockey on horseback. It is a game of Asiatic origin, and was introduced into England in 1872 by Cavalry Officere who had learned it in lndia. Two goals, is for fontball, are set up about 350 yards apart, and the object is to drive a ball abont the size of a cricket-ball through the goal by striking it with long sticks having bent or crooked ends. The players are mounted on ponies, and much depends on the skill with which these are managed. Four or five a side are the usnal numbers, and those scoring the greater number of goals win the game. Polohas become very popular among English Cavalry Otficers, and a few clubs have also been formed.

POLRON.-That part of the armor which envers the neek and shouklers.

POLTROON.- 1 coward: a dastard:one who has no conrage. The origin of this word is stated by some to come from the Latin mollex trencue, in consequence of the frequent instances of men cutting off their thumbs to disqualify themselves for military service. Others. however,derive it from High Dutch, polster, a bed, from poltronns taking to their heds whenever any peril prescuts itself; or aqain, from the Italian puitrone, a colt, because of that animal's readiness to run away

POLYGAR HELMET.-A casque of Central India, with fixed nose-piece, check piccers, and very long neek-guard, or mail hood.

POLYGON.- 1. A school of practice for artillery in Japan. 2. The name applied to the many-angled forms in which the onter walls of all fortified phaces are built. Polygons of $5,6,7,8$, etc., sides are thenominated pentagons, hexasons, heptagons, octagons, etc., and when the number of sides exceed iwelve, the figure is merely mentioned as a polygon of so many sides. The quindecagon, or figure of 15 sides, is the only common exception to this rule. Polygons have many general properties; such as that the sum of the angles of a polygon. when increased by four right angles, or $360^{\circ}$, is equal to $t$ wice as many richt angles as there are sides in the polygon, and that (supposing the number of side's of the polygon to he
$n(n-3)$

## expressed by $n$ ) the mumber of its diagonale is

also, if a polyom of an evern number of sides be circomscribed abont a circle, the sums of its reven and odel sides are equal; and if a polygon of athen number of sides be inscribed in a circle. the sums of its even and odd angles are equal. A polygon which has all its sides and angles equal is called a mgutar polyeron. All polygens of this class are capable of heing inseribed in or circumseribed about, a cirelt: but thongh the prohlem is merely to divide the eircumference of a circle into a mumber of cgial parts, corresponding to the number of sides in the polygun, grometry was till lately only able to perform it in those cases where the number of sites of the polygon belongs to we or other of the series 2. $1,8,16$,
ctc.; 3, 6, 12, 24, etc.; ur 5, 10, 20, 40, retc. Ganss, however, in the heginning of the present century, showed how it could be done in the case of all polygons, the number of whose sides was of the form $2^{n}+1$ (provided it be a prime number), or a multiple of this prime number by any power of 2. This discovery supplies us with innumerable series representative of the numbers of the sides of polygons which can be described aronad or inscribed in a circle, such as 17, 34, 68, etc.: 257, 514.1028, etc.
POLYGONAL SYSTEM OF FORTIFICATION.-The polygonal system has been proposed by several engineers of distinction, but its most ardent advocate has been the celebrated Montalembert. Consisting of cither a simple polygonal enceinte without re-enterings, the sides of which are flanked by casemated caponnières, placed at the middle point of the fronts; or of fronts either slighty tenailled or of a bastion form. with short casemated flanks to flank the faces of the central caponniéres, this system affords more interior space, and from the mode adopted of flanking the enceinte. will arimit of much larger fronts than either the bastioned or the tenailled srstems. The salient angles moreover will be more open in this than in the other two systems. From these peculiarities of this system the positions suitable for the crection of batteries to enfilade the faces of the cnceinte are less advantageous, from their being thrown in nearer to the adjacent fronts than in either of the other systems; whilst a greater development of trenches will also be requisite to envelop the fronts of attack. The polygonal trace has certain prominent advantages and defects which may be seen by a slight comparison with the bastioned system. As the exterior sides are longer and the re-enterings of the enceinte less dep than in the bascioned systems, it follows: 1. That the interior space enclosed by the enceinte is greater in the polygonal tracé. ᄅ. That the faces of the enceinte are less exposed to ricochet from the greater obtuseness of the salient angles. 3. That the fire of the faces has thus a better bearing on the distant defence. 4. That requiring fewer fronts on a given extent of line to be fortified, there will be fewer tlanks and more artillery therefore disposable for the faces and curtains. 5. That, in the nsual mode of attack; the besiegers will be forced into a greater development of trenches for the same number of fronts.

The defects of the system are: 1 . That the enceinte, having no other flanking defense than the main caponnière, will be exposed to an cescalade so soonas the fire of this defense is silenced. . . That the progress of the besiegers during the last and most important period of the siege is but little delayed, owing to the want of the concentrated cross-fires which are afforded in both the bastioned and tenailled systems, in advance of the salicnts of the enceinte, and upon the gromed generally in advance of the fronts, due to the slighter re-entering formed by the independent works in front of the enceinte salient. It is further objected that in the German method, Fivxt. The system makes use of mmerous works of masonry that can be casily ruined by distant batteries of heary caliber, especially when piereed with embrasures and loop-holes dike the cas"mated caponmieres and defensive barracks of the German method. seomed. That the distribution of troops and matériel of war throughont the independent works deprive the defense of the mion and coneerted action that can only exist under asingle rommander. Third. That the expense of construction is much greater, in conserpence of the mumerons works of masonry rebuiring wine workmanship. Amh, Forbth. That it is imprudent to ahambon rxisting systems that have stood the test of experime for those not poswessing this advantage. Sice (rímem System of tero tifirations. Montrtemiert System of Fortification. and systom af fortification.

POLYSPASTE.-The crame of Archimedes, an en-
grine whirll was used to raise und shallor to pireces whole vessels, ame identitiol with these amornons hooks that ware nsed to patl ofl the laotle of tha battoring-rams.

POLYTECHNIC SCHOOL.- In Institulion, first re. tablishorl in l'aris ( 1 \%! 1 ) ly the National ('onvontion,
 uf Publice works). No studemes were albuitted bat those who intemed to contere tha jublie service; and thourh the egoural robjecel of lace lustitution was lae Hupplying of well-educated youlles to all hranches. it wis more particularly dovonted to 1he thoromght inselraction of racruites for the ('orps of tivil mat Military bincturors. 'Tho Instithtion reverivos the
 pils wore at first si! in number, amb eiteh receeveri, during his stay of two yerrs in the Institution, non mmatil stipenil of 1,200 francs (fi4 m*arly); the teachers were in most cases the most eminnent satvants of bramer. dn fog! some moditications were introduced into the working of the Schoosl; the number of pupils was at the sime time limited to 200, and they werr pat into uniform. Thire alvantages of an lastitution of this sorl, when ably condheted, soon made themselves evident, and the
 matiom, mot only in Prance, lat thronghont Earopu, so mued so, that it berame erommone for foreign nations, when enturing into at traty with lirance, to stipulate for the admission of a certain number of their sulsjects into the Institution, after passing the preseribed entrance examination. In 1804 . the limperor Napoleon introduced various modifientions into its working, and quve it a military organization; it was also removed from the l'alais Buarbon (where it hat existed from jis first establishment) to the Odd College de Naviare. The Institution brame more and more, as the end of the Napolconic Empire drow neir, a training-sehool for young artillerists and engincers; and such was the enthusiasm of the pupils in the Emperor's cause. that, after the disasters of 1814, they demanded to be enrolled en mosse? in the ranks of the Franch Army. JIowever, Napoleon wis (to nse his own worls) not inclinerl "to kill the hen for the gollen "gros:" but he allowed them to form three out of the twelve companies of which the Artillery (orj)s of the National Guard was composed. These tharee companies rendered inmportant service in manning the walls of l'aris, and behaved heroically in the battle of Mareh $30,1814$. After the Firsi Restoration, the Polytechnique. bemg considered to be evil-disposed to the Gewernment. sutiered considmible roluctions: but was restored to its former importance for the brief peeriod of the "hundred days." After the Scoond Restoration (Jnly, 1815), the Staff of l'rofessors was remodeled: lateroix and some others wert dismissed, and replaced by Poisson, Arago, Cimeliy, etc. Notwithstanding hese changes, the Goverument still had its doubts as to the loyalty of the establishment, and took advanage of an ou!hreak, April 3, 1816, to break it 11). It was reeonstitutod in September of the sume yeur, under a revised code of regnlations, and in 1820 the old severity of military discipline was restored. During the war of 18\%̈- 71 , the Gormment of National Defense ordered the pupils to mect at Bordeanx, and classes were opened there under distinguished pupils of the School brought fromall parts uf France. llowever the attenapt had to be abandoned, amd the pupils laving sought permission to take part in the war, were divided among the different sections of the army in which their services were lighly appreciated. "The Coustitution of the Schond, which has so froquently sutlered change, was, in the enm of 1833 regulated by Déret of Nov. 30, 1N03, and Ministerial Rules issuct on Mar. 5, 185\%, 1. No pupil cau be admitted unless he has been successful in the public competitive examination which is held each year. 2. The conditions of admission to the competitive examination
are, What the candidatreshall be a lorenchman; that he slanll he more thian 16, and less than yor yors of and, on the Jst of Janatary of that year ; anm Ihat he




 on real and aferetive service for two gairs. 4. The
 tlue cost of ontlit (to low alars paid by the puphit) ablout tion frances. 5. 'Thae duratuon of tho vonrer of instruction is two yours; the papils, after finishingr

 are arramered in orelar of morit, and rhoose in ortar what branch of tho bubliceservice they wish to enter. 6. The branclace of the publie survice which ure rerruited from the lengterhaigue are tho ('orps of Jamal amd Naval Mrillery, Military and Noval Engincers, the laperial linrine, the (torjs of Jlydro)grajhic Engincers, that of Enginerers of linats, Bringers, mond Mines, the Corjes of Statl O)tlierers, the
 Tobacen 11 anufactorios: fun! generally every Ibepartment which, reçuring special scientidir knowherdge, may be indued by leierts to thesu. The following branchas of stady ure embraced in the courriculam. Mathematics, I'nysies, Chemistry and Chwmical Jamipulation. llistory und literatire. (forman, Writton Exorcises, Drawing, Geodesy, Jochanies, Arco. i:reture, Art Militaire. Lessons in Frncing, Music, and Dancing are riven out as optional, and must be suparately paid for. The number of pupils varies with the refpirements of the public service. In 1794 there were 890 puluils: in 1800 only 66 . Jinring the First Empire, the numbers inereasal from 110 in 1808, to 927 in 1813 ; under Lonuis Philippe the avorige number was 130. During the Seennd Empire, it had risen to 140 and 150 . After the war with Germany in 18:0-71 the number rose to 260 . The numerous and admirably equipped Technical Schools of Germany, often miled I'nlytechuirn, have received no military restriction, and are avalable for a.l interested in the industrial arts ; they are in many cases scientitic centers comparable to the Univorsitios.


Pommettée Cross.

POMADA.-In exereise of vaulting the wooden horse, by laying one hand over the pommad of the saddle. See bymnastics.

POMEL CROSS.-In 11 craldry, a cross whose extremities terminate in single knots or pomels, like the Binurdon or Pilerim's staff. Also written l'ammettéf ('ross.

POMERIUM.-ln ancicut architectare. that space of ground which day betwern the walls of a fortified town and the inlabitants' honses. The form is still used among modern architecta, particularly by the Italians, to describe the breadit of tho tarreplein of the rampart, its inward tahs, and the vacant space which is usually left between this talus and the houses of the town

POMME.-In Iferaldry, a bearing or deviec representing, or in the form of, an apple.

POMMEL.-The knols on the hilt of a sword. Ilso the protuberant part of a saddlle-bow. The torm l'ommeled, or Pommelled, signitiens furnislued or mounted with one or more pommels, as is sword. darger, or the like.

POMMELION. - The cascabel, or hindmost knob of a cimmon. See Cascubel.

POMPON.- 1 luft of wool, or other material, sometimes worn by soldiers on the top) of the hat in frout, instead of a feather.

PONCHARRA RIFLE.- In 1s33, Colonel Ponclarra suggested placinis a "sabot" of hard wool underneath the baliwith a greased patch.which, resting on
the offscts of the month of the chamber, was prevented from entering it. This rithe was objected to as a war weapon on account of the complicated nature of its ammnnition, and the difficulty of procuring it in the field; besides which, the sabots frequently lroke in loading, from the ramming necessary to expand the bullet into the grooves.

PONCHO.- $A$ Spanish-Americam garment, consist ing of a pice of woolen cloth, $5-7 \mathrm{ft}$. long, $3-4$ feet broad, having in the middle a slit through which the wearer passes his head, so that the poncho rests upon the shonlders and hangs down before and behind. In the fashions of recent times, the poncho has been inIroduced in Enrope. In the United States Army, mounted troops are issued it waterproof poncho, consisting of painted cotton or rubber cloth.

PONIARD. - A pointed instrument for stabbing, usually borne in the hand, at the girdle, or in the pocket. See Iragger.

PONTONES.- Ancient square-built ferry-boats for passing rivers, as described by both Cresar and Aulus Gellins.

PONTOON.-The name given to buoyant vessels used in military operations for supporting a temporary bridge. Pontoon bridges have been constructed, with greater or less skill, from the earliest times. Darius passed the Mellespont and Danube by pontoon britges, and the former was traversed by Nerxes' immense army on similar temporary bridges, very admirably formed. A pontoon train is a necessity for every army maneuvering in a country where there are rivers, and many campaigns have proved failures for want of this cumbrous but indispensable apparatus. In most armies the pontoons are under the charge of the engineers; but in the Anstrian army there is a distinct and highly-trained corps, ralled pontowicren. Marlborough used clnmsy wooden pontoons. Napoleon and Wellington had them lighter of tin and copper. They were flat-bottomed, rectangular boats, open at the top. Anchored at stem and stern, beams were laid over from one to another, and transoms with planks crossing these beams completed the roadway of the bridge. Thesc open pontoons were exposed to the disadvantage that they were very liable to be filled with water, and thus ceased to support the bridge. They were, moreover, very heavy, one pontoon, with appurtenances, constituting a wagon-load. As 36 were deemed nocessary for the train, a pontoon equipment was a serious item in the impedimenta of an army. The open pontoons are now, however, obsolete, modern science having substituted closed cylindrical vessels of copper (or occasionally of ludiarubber), which are far lighter, can in an emergency be rolled along, and can only be submerged if perforated. Against the last contingency, they are divided within into water-tight compartments, so that one perforation may not seriously detract from the total buoyancy of a pontoon. In the British servica two pontoons are used: the larger, with hemispherical ends, being 22 ft .3 in . in length, and 2 ft .8 in . in diameter ; the smaller, cigar-shaped, with conical ends, 15 ft . in lengilh, 1 ft .8 in . diameter. Two of the largest nsed to form a raft weigh 8 ewt. 7 lhs.; the superstructure $18 \frac{1}{3} \mathrm{cwt}$. At 24 ft . apart from center to centar. this raft will carry infantry four dexp, marching at ease; cavalry, two deep, and light field guns; at 16 ft . interval, heavy guns. A raft of three pontoons, at close distances, will support siegreordmance. The pontoons can be used in very wide rivers as rafts, in their proper sense, or thioy ean be connectod, when the widtli permits, to form a bridge. In the latter case, each is towed into line, anehored above as it drops to its place, and a sceond time when its exact spot is reached. It is computed that each pontoon requires $1 \frac{1}{2}$ minutes to take its position, and that when the pontoons are placed, the roadway can be laid, if properly arrangrel previously, in $1 \frac{1}{2}$ minutes for each interval between two pontoons. A river of 600 feet may thus be
bridged in less than $1 \frac{1}{4}$ hours. The process of throwing a bridge over in face of an enemy is franglat with the utmost danger to the encrineers employid. Pontoon bridges have to be passed with great care, and every measure shonld be adopird, such as braking step, etc., which can reduce the peculiarly daugerons vibration. The following is the method generally employed for bnilding bridges with the bridge equipage of the United States Army, and known as the construction by sucressice pontoms.

The place for building the bridge having bern sclected, the pontoons are brought to the banks of the stream, near the spot, and the boatsare lannched into the water. Each boat is provided with an anchor. Some of the boats cast their anchors upstream, while others cast them down-stream. The

number of anchors to be cast will depend upon the rapidity and strength of the current. Under ordinary circumstances, an aveline cast up-stream from every alternate boat. and half the number downstream, will be sufticient. The boats casting upstream anchors are launched above the bridge: the others below. If none exists, an easy approach for the wagons and artillery should be constrneted. leading down the bank to the bridge. A strong sill is then imbedded in a treweh, perpendicular to the axis of the bridge, and is held firmly in place by four stout piekets, driven abont eight inches from each end. This sill is horizontal, and should be as nearly as possible on a level with the flooring of the bridge. A pontom is then brought up opposite to this sill, and close to it. Five balks are brought forward, and the ends placed upon, and lashed to the outer gunwale of the boat, in the proper places The men holding the balks push the pontoon off, umtil the ends of the balks on shore rest upon the abutment sill. The pontoon is then sccured in position by shore-lines rumning out from the how and stern, and fastened to mooring-pickets. The chess are brought forward and laid upon the balks, to within one foot of the boat. A sccond pontonn is brought alongaide of the first; five balks are again used, and this second boat pushed ont. The balks are iirmly lashed together and to the gunwales of the first pontom. The intervals between the poncoons are known as bays. The chess are laid as soon as the balks are lashed: and when a bay is completely covered, the side rails are laid and lashed to the balks beneath. This operation is contimed until the entire length of bridge is oltained. It is recommended to strengthen the first bay by using two additional halks-one between the first and second, and in contact with the latter; the other, between
the fomrth and lifth, in contaet with the fourth. When the water is not deref enough to float the tirat pontom, "trestle, or other tixed jwint of support, may be used instrod of the pontoon. The ereat onsfection to this pomtorn is its warcht, which makes its transportation over ladreade ditlionlt. Forer had roads and rapid movemomsa a lierter pontoon than this werden boat has to bee nsed. The one employod moler these cirrumstancos is the canvaspontom, which eonsists of a wouldon frame covered with (anm vas. The woolen frame comes apart, so asto be rasily loadderl on wagons for transportation. It has two side frames, trape\%oidial in shape, the upper picer being twenty-one feet bong ; 1he lower, "irgh teen feed :and four inches longe. The depith of this frame is wo fert and four inches. The frames are comected by pieces called transoms, framed into the side frames, and these latter are fastencel toreth er by roples pasking through rings in the apts of the frames. The immer width of the boat frame, or dis. tance betweren the side frames, when the parts are arranged, is four fect and eight inches. In some cases, the side frames are himed in the midulle, so that when taken apart, they may be folded up. The canvas cover is made of ooton duck. The haiks arm twenty two fert hage, withat ressescetion of fourand and one-half inelnes, and are provided with claws as beforedeseribet. The chess is the same as that described, but only deven feet long, instead of thirteen. The resorse equipage is divided into trains, eade train being composid of four pontoon divisions, and one supply division. Each pontoon division contains all the matcrial necessary to comstrict a bridge of clewen bays, or a bridge two hundrel and twenty-five feet long. The advance grard equipage is also divided into trains eaplo train having four pontoon divisions. A division contains cight fontoon wagens two wagons for chess and two for trestes. 'Thu" pontoon warons of this requipage are so loaded that cuch wagon will have all the material necessary
 man, thil not fruly wild, althomarh, in very many ran+4, they liwe almost in at wild state, and reorive no care or attention except when thry are wanted for use. They are in Henoral very hardy; and therir strengels is great in propertion to their si\%. They are often wicions, ar at loast platyfally tricky 10 as mand greater dearer than is hishal with large lioram.
 have large slatgey manas and forelocks. 'lluw Shee
 of horse. The frelund perny is seareely difereront from it, and is hardy enough po condure the winter of lealand without sincluer. Thar /iallemerigy, Wilahe, /hert-
 races of pony lares than the shethand. The proaress of inclesure and rultivation in their native rogions has so changel the corcumstances in whirlo they long sunsistod, and in which, ferhatus, they origimated, inat scareely any of them aro now tolne sern of pure and wmixel race. Sardinia and Corejoan have small ratecs of ponies which have subsiated an changed from anerient times. In the Morem there is a rame: of ponices driven in hords to Atiaca for salo, excerdingly wild and vicions, but rapable of being rembared very surviceable. But it is unneceswary to mention the is:any races both of Enoppe ant is iat They difter consileralny in size, sombe, like the Shetland ponyo suggesting acomarison with a laree dog. some much larers. They also differ monch in colar: a dmor tan color. with i blackstripe along the back, is prevalent in many of them. Ponics are seldem cmployed in arricultural labors; lout they are of in"stimable valu" for eampaign purposes in many wild and montatinous regions, from their hardiness and surefootelness, and are often used as saddle-hories, the latgest kinds Jomer even employed as loosees for dirla cavalry

PONY PLANER.-Intil quite recontly the morn important arsenals and armories were ecguipled with

to construct one complete bar. By hais arrangement the mumber of wagons may be increased or diminished, as the case may require. See bridges.

PONTVALENT.-A kind of light bridge, used in sieges, for surprising a post or outwork which has but a narrow moat. See Flying Bridge.

PONY. - The common name of many small, active breeds of horses, belonging to different comutries. from India and Africa to leeland; but in the warmer parts of the world chietly found in mountainons or
a novel machine in which an emery wheel was used for surfacing tiles, finishing anvils, nuts, cils, kevs. slide valves, straps, crosshead, and, in short, for accomplishing the majority of work lusually surfaceed on the planer, millingmachine, and shaper. The mode of operation consisted in adjusting the objeet to be surfaced in the clmuck to proper cleation. when it was earricd under the wheel, and at the same time the latter was drawn across it. This motion continued until the table carried the work out of the
action of the grinder. Then, by means of suitable mecbanism, the operator slightly elevated the object and caused it to run back again under the whecl. Of this machine, the invention of the Tanite Company is a moditication. The main difference is that the planer bed is made to slide to an l fro on its ways by the action of a crank, the work beine thus moved to and fro in the line of the emery wheel's revolution, while the wheel also has a cross motion imparted to it by another crank. This motion of the table corrects the inaccuracy resulting from gradual decrease in the wheel's diameter, there being a perceptible wear in the wheel, so that it grinds a long, flat picce taper instead of plane, when the work slowly passes under it; while, by this crank throw, the whole leugth of work is brought into contact with the whect at each throw. A chuck rests on fon springs, and rises and falls vertically in planed ways. When the adjustable stops have been adjusted, and the wheel no longer cuts, the work must be plane. The springs force the (chuck) work against the wheel, and yet act as safety appliances against over-friction and pressure. The whole tahle and bed has a vertical adjustment by a screw. Three belts are needed:
ly. The driving belt can come from above, below or from the back. When standing in front of the machine the cutter-head pulley is at the left hand. See Emery-grinder.

POOLER JONES CARTRIDGE-BELT - A belt having cartridge holders attached to it, suitable for either paper or brass shells. These holders can be easily attached to any hunting vest, coat front, or belt. An ordinary vest will hold from 36 to 50 , each hoder weighing about $\frac{1}{3}$ of an ounce. A belt with 30 holders attached (weighing one poumd) is shown inthe drawing. The belts can be perfectly adjusted by wearer to fit either a slim or large man, with waist measuring from 30 inches to 41 inches. It can be worn over or under a coat, and it is impossible to lose the cartridges. The belt is intended to be worn or put on with the buckle behind. The cartridges are nearly all to the front and can be casily reached. The holder, B , with the side cut away to show the wad supporter, is for carrying lorass or paper shells withont being erimped. The form shown at, A , is for carrying paper shells crimped, or with ends turned down.

POOR RNIGHTS OF WINDSOR.--An institution of

one to the wheel mandrels, one to the suction fan, and one to the driver. The gears, being interchangeable, allow the proportion of speeds between the Wheel shafts and the table to be altered in various ways. The machinery stands 32 inches high, and is 2 feet 8 inches each way. It will grind work 9 incles long by 5 inches wide. It is adapted to all small, flat work, especially to dies of hardened steel and chilled iron, to parts of gun and pistol locks. machine work, small levels, machine keys, locks, ete. It is claimed that thousands of small parts can, by this means, be finished to a gauge with greater exactness than can be done in any other way. The remaining portions of the device are similar to those in the device first alluded to above.

The mame Pony Planer is also given to a most useful wood-planing machine. One of the best machines of this class, and one adapted for a great varicty of work, is shown in the drawing. It has very powerful. geared, douhle feed-rolls, four inches in dinmetur. Those in front are weighted. those behind are provided with self-adjusting scrapers. The machine can take a ${ }_{3}^{3}$ inch cout, and is adjustable to different thicknesses of stuff by a single band whert. is of an inch to a turn. Either plane is smoth fonourl for any work, but three admit of faster freel, and the feed wome are mate aceordingly. Two pressure bars are cluse to the cutternead, the from one binged and weighted. The machine is suitable for heavy as well as for light and very short stufl. The shaving guard and feed-roll covers are hinged. to give accese to the knives. Which can be whetterd when in place. The principal bearing hoxes are selfoiling. The beravy boxed shaped base is proof agrainst twisting even when standing on a weak How, which will often yidel from the weight of lumber, thereby straining the bearings of the machines, and causing them to work hard and wear out chiek-

Military Knights at Wimdsor, England, which owes its origin to Edward III., and is a provision for a limited number of old officers. These officers consist of at Governor and 12 Kinights on the upper foundation, and 5 on the lower, together 18, and are composed of officers selected from every grade, from a Colonel to a Subaltern, chiefly veterans, or, on halfpay: They are allowed three rooms each in Windsor Palace,and 2 shillings per diem for their sustenance, besides other small allowances.

POPPET-HEAD.-That part of a lathe which holds the back-ceuter, and can be tixed on any part of the beci. Boring-machines bave a poppet-licad.

POROSITY.-By this term we express the experimental fact that no kind of matter completely fills the space it occupies; in other words. that all bodies are full of minute cavities or interstices, such as are illustrated on a large sicale by a sponge. On the atomic theory, it is obvious that this must be the case if the atoms of matter arespherical, or, indeed, if they have any form save one or two special ones, such as cubes or rhombic dodecalicelroos. It is conmouly asserted that all bodies must be porous, because they are compressible; lut this is a great mistake, since we have no reason to beliere that matter is mot per as compressib) en intependently of the existence of interstices. The Florentine Academielians, in their attempts to compress water, proved the porosity of silver hy flattening sphere of that metal, filled with water, mel solderet. The water escaped through the jores of the silver, and stood in tine elrops on its surface. The prosity of lipuids is casily shown by mixing alcohol and water. The luilk of the mixture is considerably less than the sum of the bulks of the components, showing that these must in part have entered each other's pores. This property of matter is of great importance in the Arsenal and Jaboratory.

PORTABLE DRILL.- A form of drild mudn cmployrd inarmemals. It drills at nuy angla, in any bosition, at any distance, and inany direcetun from the power. It is esperinlly mapted to drilling all pierors whicela are inconventent to move, or whirde canmod be readily adjusted umber statimary dribline marlatmes. 'The drawing shows the drill as emplogyad at the Wiatorlown Arsanal. It is used in four sizes: No. 1 is intembed for dight work only. It will drill uptol inch diameter. 'The spindle has finchers fecel- the post has 5 inches verticul adjustmont - 1 las arm is moverd in and omt by a serew, and rotated by a worm and tangent-wherd, giving a convenient and rloliente arljnstment to the drill. With one selting it will drill anywhere over a surface of 3 3: inclues outside diameter, and 1 l inches inside diamotor tho spimillo can be we to any anglo (up to 30 degrees) with the buse-the post can be held in the sjolit bearing :m the side for arilling parille with the lhase. "I"he weight is 125 pouncls. No. 2, is similar (os No. 1 , with more power and range. It will drill ny to $1 \frac{1}{2}$ incloes diameter. 'lhe spindle has 6 inehes ferd the post las 6 inches vertical adjustment. With one setting it will drill over a surface 43 inches outside diamotor, and 13 inches inside dinmetor. 'The weight is 200 pounds. No. 3 , is the most popular and nseful si\%e. It will drill up to 2 inches diameter. Thespindle has 8 inches feed, working nutomatieally when desired. with 3 speeds of feed-the post has if inches vertical adjustment. With one sotting it will drill anywhere wior a surface 43 inches outside, and 13 inches inside diameter. The weight is 240 pounds. No. 4 , is intended for beavy work. It will drill any size hole and bore up to 8 inches diancter. The spindle has 13 inches antomatic feed-the post has 6 inches vorticad adjustment-with one setting it will drill anywhere over a surface 56 inches outside, and 16 inches inside diameter. Back gearing. The weight is 390 pounds. The operation of the drill is simple and as follows: The counter-hanger is bolted to the ceiling or other convenient place, and receives power from the "line shaft" by a that helt on the fast and loose pulleys. The frame carrying the "idlers" rotates on a hollow stud, through which the round belt pesses to the grooved driving pulley, The rotation of this frame permits the belt to be led to the drilling-machine in auy dircetion, radially, from the hanger. While tha rise and fall of the weighted "idler" permits it to lue leel to any point within the scope of this rise and fall -say ten to fifteen feet or more. By inserting seretions of belt, by means of the book (oouplings. any distance can be reached. The hase is intemled io be bolted or clamped to the piece to be drilled. The height of the post can be adjusted to suit the different lengths of drills and chncks used in the spindle. The radial slotterl arm is fastened to the post by the stud anal nut: the position of the drill being adjusted by the serew whieh travels the arm. and the wem and tangent-wheel that rotates it on the post. When it is required to drill paralled with the hase, the post is held by the clamp bearing on the side of the base. There is a shoulder turned on the bottom of the ball on the gear frame (of sizes $1,2$. and 3), and a half collar fitted to it am bolted on the arm: this keeps the spindle square with the base. When this half collar is removed, the spindie can be set to an angle in any direction. When not beines nsed on the foor, it serves the purpose of at bench drill press. See Drilling-machine.

PORTABLE FIRE-ARMS. - The portable-fire arins employed as military weapons of war are rifles, carbines, and pistols; these generally rary in con-
gtraction widh thr Nation hy whicht they art uscel.


 is reatirel. All milititry Inrecth-losulers, now in use, (employ the metallir cols cartridge; they may lor dividend intos simple briect-huders and reperater's. 'The


$\qquad$


[^1]essential parts of all such arms are the barrel, the chamber. the brech-mochanism, ther luck, the atench. the sights, and the mountings, anil in repeaters the magrzine. If the chamber be made in the piece which closes the breedi, (ommmonly called the brochblock, the arm is said to have a morable chatmber: if it be formed by counterboring the barrel. it is said to have a fix it chamber. The latter has great advantages, an l is generally used. With the tixed chamber the interior of the barrel is divided into
through whith the projectile moves mader the influcuce of the powder, and the chember in which the charge is deposited. The principal parts pecnliar to simple breerh-loadersare: 1st. The mozeble breechblock, by which the chamber is opened and elosed. ?d The breeth-frame, upon which the breach-block is mounted and mited to the barrel. Sd. The chumber, with its recess, to receive the rim of the cartridere. 4th. The firing-min, which transmits the blow of the hammer to the cartridere. 5th. The atractor, by which the empty fase is removed after tiring.

The foregoing named parts may be said to be essential to all breech-loading arms in which the metallic cartridge is used ; the diflerent wars in which they are combined mark the srstems. These (onsbinations have reference rhiefly to the modes of operating and locking the breech-block. The different systems may be classified into: 1st, those with it fixed chamber: $2 d$, those with a morable chamber. The latter have now become obsolete. The tirst class lave: 1st, a momable barme ; 2d, a movable breplh-block. With rach the motion may be sliding, in which case it moves in gronves: ratating, when it swines on a hinge; or sliding and rotating combined. The greater number of systems belong to the class of a "movalble breech-block rotating about in axis." In arms of this class the asis of motion may be parallel to the axis of the barrel, and above, below, or to one side of it ; or perpemacular to that axis, being rertical or horizontal, and lying in or ont of the plane of the axis. The position of the hinge has an important influcnes on the facility of operating the blork, inserting the cartridge, and extracting the empty shell; the most suitable position is deemed to be in front of the center of the block. In this case the motion of opening and closing the block is natural and easy; the cartridge is pushed into its place by the block, and a very simple retractor serves to withdraw the empty shell after firing. The most serious defect found in brecch-loading arms was the escape of the flame through the joint, which not only incommoded the soldier, but, by fouling the machizery, seriously interfered with its operations. At present this is entirely orercome by the elastic metallic case of the cartridge. The advantares of breech-loading over muzzle-loading arms are: 1st. Greater certainty and rapudity of fire. 2d. Greater security from accidents aud loading. 3rt. The impossibility of getting more than one cartridge into the piece at the same tine. 4th. Greater facility of loading under all ciremmstanees, and particularly when the soldier is mounted, lying on the gromm, or firing from bohind any rover. The greater security with which the charge is kept in place when the piece is carried om horse-back with the muz\%le down.

There are certain functions performed by, and certain important conditions to be fultilled in, the construction of the different portions of a smallarm. The barrel is by far the most important part of a fire-arm, its wtice being to concentrate the force of a charge of powder on a projectile, and give it proper initial velocity amd direction; for these purposes, and for the safely of the firer, it should be made of the hest material and with the greatest care. In dotermining the exterior form, it is not only uecessary to give such thickness to tho dilierent parts as will hest resist the explosion effert of the eharge, but such as will :revent it from beine bentwhen nsed ata a pike,or when sulyject to the romgh usage of the servier. In aght, to a rertuin extent is necessary to limit recoil, 10 give steadiness to the harrel in niming. and to prevent it from "springing" in tiring. The latter defeet generally arises from had workmanship, whorehy there is a greater thickness of metal, and consecpuently less expansion, on one sidle of the hore than on the other. In some sporting rifles the barrel weiglas from 12 to 15 lh . but in the military serviece, where it is earried by the soldier, it seldom weighs more than $4 \frac{1}{2}$ lbs. The
$l$ ngt, if the barrel is determined by the nature of the service to which it is applied, rather than by the effeet wioh it exerts on the foree of the rharge. It was shown by experiment that the velocity of a projectile in asmooth-bored musket increased with the length of the bore up to 108 calibers at least, but such length of barrel would be too heavy for a tirearm and too unwieldy as a pike; in a rifled barred the increase extended to about 250 calibers.

Thrac points are to be considered in determining the caliber of small arms: 1st. It should be as small as possible to enable the sohfier to carry the greatest number of cartridges. 3l. 'To diminish the amont' of ammanition required to supply the wants of an army, and to prevent the confusion liabla to arise from a variety of calibers, there should not be more than two for all arms of the same serviee, vi\%., one for the rifle and the carbine, and one for the pistol. 3d. This point relates to the force and areuracy of the projectile, and to the thatness of its trajectory. The introduction of elongated projectiles afforde t the mostns of increasing the accuracy and range of fre-arms. without incrasing the weight of the projectile, simply by reducing the caliber, which diminished the surface opposed to the air. Too great reduction of caliber, however, gives a very long and weak projectile, and besides the effect of a projectile on an animate olnject depreuds not only on its penctration, but also on the shock communicated by it to the nervous system, or upon the surface of contact. These considerations have led to a general reduction of caliber of military rifles.

The gromes being for the purpese of commmmeating a rotary motion to the projectile aromma in axis coincident with its flight, their construction will deFend upon the form, chmension and matrerial of the projectile, charge of powder, and angle of fire. 'The points to he considered in determining the form of grooves for military arms are range, aceuracy of fire, endurance, and facility of cleaning the bore. Experiment, in this country, has shown that for breech-loaders these points are best attained by making the grooves broad and shallow, and with a rapid twist. The chumber being a receptacle for the charge. its shape is made to conform to that of the cartridge. Its diameter is made a littie larger, and that of the bore a little smaller than that of the projectile, this facilitates the insertion of the charge, and causes the projectile to be compressed and held firmly by the lands in its passage through the bore. The bottom of the grooves ant the surface of the chamber are gencrally coutinuous.

The breech-mechanism comprises the principal parts that are peculiar to arms loading at the breech. The functions of these parts are the opening, closing, and locking of the breceh, firing the charge, and removing the empty cartridge shell. These are the objects for the accomplishment of which the different systems are varionsly entriced, and with which alone they are concerned. The most important conditions to be fulfilled in the arrangement of this meehanism tre: 1st. The nmmber of parts should be as few as pussible, and all should be of the simplest construction. 2d. The strength and union of the parts should be such as not only to resist repeated clischarges, but the bursting of a cartridge case, which sometimes occurs from defective material or workmanship'. Bd. 'Tht locking of the breech-block should not only be secure, but all the parts by which it is efferoted should work freely withont sticking. 4th. The parts shonld be so arranged that the hammer camont strike the tirinar-pin until the breechblock is properly locked. 5th. The hmmmer should not neressarily rest on the tiring-pin when the piefe is rarrine! lowded 6th. The breath shomblbe molockral without the hammer being brought nececssarily to full eock. 7th. The working purts should, as fir as possible, be eovered from dast and water, 8th. The extractor shonld be so arranged ns to require mo cuts or openings in that part of the chamber which sur-
rounds the body of the cartridge case. 'The lime is the machine by which the charge in the eartridge is ignited. Those of the pressent day belone to the percussion class, in whish tire is produered by a blow apon the fuminating powder contuined in the cart-riclge-ense. Lacks are divided into side and renter locks, depending upen the position orempied in the sook; each of these may be eilhor frontoction, wherein the manspring is in front of the: (umbler, or becteretion, whre this spring is in rear of the tumbler. The mortise, which forms a beal for the lock of the hater construction, serionsly alfects the strength of the slock at the handlo, and for this reason the front-action lock is gencrally prefered for all military arms, except revolvers. The conditions to be fulfilled in the construction of a military lock, are simplicity, strength, cortainty of action, and freedom fromsuch aceidental motion of the parts as might produce explosion of the charge in the harrc.
The stock is the wooden part of the fire-arm, to whichall the parts are assembed; for military arms it is preferable that it should be in one piece. The material shoudd be light, strong, und well seasoned. The butt, the part intemied to rest against the shoulder and to sulphest the recoil of the piece, should be of such lenglh and slape as will conable it to transmit the recoil with the least incomenience to the soldiar. The longer it is, to a certain extent, the more firmly will it be pressed ugainst the shoulder, and the elfect of the recoll will be a maxh rather than a blowe. The stock is crooked at the handle for convernience in aiming, and for the purpose of diminishing the direct action of the recoil. Clanging the direction of the recoil in this manner canses the piece to rotate around the shondar: but if the stock be made toocrooked, the butt will be liable tolly up and strike the soldter's face. The sights are guides by whirla the piece is given the devation and direction necesstry to hit the object. There are two; called front and rear sightw. The front sight is tixed to the barrel near the mazie. The finenfss of its point is regulated by the length of the barrel, or distance from the eye, and the size and distance of the object generaily aimed at; it is made courser in military than in sporting arms, to prevent injury. The rear sight is attached to the barrel a short distance from the brech; it has a movable part, capabe of being adjusted for different elevations of the barrel. A sight for a military arm slrould satisfy the following conditions, viz.: : 1 st, it should be easily adjusted for all distances within effective range: $2 d$, the form of the noteh should permit the eye to catch the object quickly; 3d. it should not be easily derauged by the accidems of service. Globe and telexcopic sights are used for very accurate sporting arms, but they are too delicate in their structure and too slow in their operations for general purposes.

The mountings may be divided into three classes. viz.: 1st, those which serve to comnect the principal parts, generally bands and serews: 2d, those which protect from wear or strengthen the stock at certain points, as the butt-plate, guard-plate, tip; 3d, the minor parts which secure the different parts (including the mountings proper) in their place, consisting of springs, screws, rivets, pins. washers and nuts.
A butt-plate is to protect the end of the stock from injury by contact with the ground; it is gencrally curved to fit the shoulder in firing. A guard-plate is to strengthen the handle of the stock; it may serve as a fulernm for the trigger. A tip is a shield placed on the end of the stock towards the muzzle. If the piece be intended to be carried upon the soldier's back, it is provided with saivels for that purpose. generally two, one of which may be fastened to a band and the other to the guard-plate, or to a point of the stock in rear of that plate. The trigger is a lever used to set the lock in motion. Triggers are divided, aceording to their construction and the

Foree required to draw them, intormmon und at $t$ or heire triggers; the latter arre employed only in sporting arma. The fored: required to set ofl the triggar, if very gront, may disturl) the acenracy of the aim: if it be slight, the piow will be liable to aremolemal dimchareses. 'The trigerer has a grard which proterets the finger-piece from injury, and from arcidental blows that might produce (xp) ksioms. "Thar retment is a lomg, slender pieow, carried with anarm; will? breedi-loaders it is only (employed to wip: out the barrel to remove from it uny obsiruction, a4 a defretive cartridge-shath. See Šuntl-urms, and stringtiend Rithe.

PORTABLE FOROE.- A light and compact blarksnith's forge, with bellows or blowrers, 'rte., all to arranged as to be readily moverl from place to phare Fig. 1 , slows a most complete portable forge, designed for army usagr. fis horight is 22 jnchars; size of firepan, $22 \times 27$ inches, wright. 200 penmls; and diancter of the fan! maches. The firepan is made of wrought-iron, atarl is 10 inches decp, containing all the other parts of the forge when packiod for transportation. The blower and gearing are compactly framed together, and fit into a slot on the


Fig. 1.
end of the forge when in use. It has the chaingearing described under Rineting Forge. The legs made of angle iron, fit into slots at the corners of the firepan. The thyere-box fits into a slot under the hearth, which is made of heavy east-iron, and is bolted to the bottom of the firepan. The lid of the firepan is mads* of heavy sheet-iron, and so altached by strong hinges. that when the forge is in use, it is raised perpendicularly, forming a back or a fender. The forge can be set up for use, or packed for transportation in one minute. To pack the forge for transportation.


Fig: 2
as shown in Fig. 2, the blower and gearing, the legs and tuyere-box are withdrawn from theirslots, and with the short blast pije, are placed in the firepan. The falling doors at the sides of the firepan are closed and fastened. The lid is shut down, and fas. tened by a hasp. The entire forge thus packed occupies a space only $22 \times 27$ inches square and 10 ib -
ches deep. This forge will produce a quick wedling heat on iron three inches diameter, and on larger iron if required, as there is an abondance of spare blast.

PORTABLE MAGAZINE.-A wooden box or metallined casc. covered with canvar, ancl of such size as to be easily carried in a battery from plate to place when there is only one expense magazine for several batteries; but this wond scarcely ever be the case in the future, as expense magrazines in the present fortifications are provided in the proportion of 1 to every 4 or 5 guns, or in the case of very heavy guns, 1 to cerry 2 or 3.
PORT ARMS.--This old command in muskeiry drill, is derived from portare to carry and applies to a motion in which the fire-arm is brought to a slanting position in front of the body, loek to the front, the harrel crossing opposite the front of the left sbumbler. See Arms Port.
PORTATE.-In Meraldry, lorne not erect, but athwart an escutcheon: as, a portate cross.
PORTCULLIS.-A birrier termed a portcullis, which can be lowered or raised vertically by machinery. is sometimes added to secure a passage-way from surprise. The anclent portcullis was a framework of heary beams, placed vertically, leaving a few inches only between each pair of heams. These vertical beams were eithersolidly confined between horizontal beams, or elampingpicees, in pairs; or else they were so arranged that they fould slide upwards between the clamping-pieces. Each of the vertical beams was shod at the bottom with a strong pointed irou shoe. The horizontal picees were framed securcly with two heavy vertical heams that formed the sides of the frame, and were fitted into vertical growes made in the side walls of the passage-way in which the frame could slide when raised or lowered. By arranging the vertical beams to slide upwards bet ween the clamping-pieces, it enablef the passage-way to be closed where an obstruction might be ilesignedly placed before the portcullis to prevent this being done; as the beams which meet the obstruction would be pushed upwards, whilst the others would fill to their ordinary level and close the passage-way on each side of the obstruction.
In the works recently constructed with us the portcullis, and even the doors preceding them. have been coustructed of a strong open lattice-work of wrought-iron bars bolted strongly to the wroughtiron uprights and cross-pieces, forming the framework of the lattice. This is a great improvement for these purposes, bothas to durability and defense.
Passage-ways of this description should be secured by all the means at an congineer's disposal. A large guamidroom. with loop-hules hearing on the passages, shombla be erected on one side, rear the gateway: and if the enceinte is a simple one, withont outworks beyond its ditch, a small lunctic, or loppholed tambour of masonry, or tiablar, should be constructord beyond the connterscarp, forming a totede-pont, for thie sedurity of the hridge from surprise.
2. In llarahry, the porteullis is represented with ringes at its uprermost angles, from which chatins depemi on dither side. It was a badge of the beanfort fanily, and borne in virtue of their Beanfort descent by the Tuder sovereigns. l'ortcullis is the tithe of a pirsuivant in the Finglish Colldere of Arms. whose oútere was instituted by Itenry VII.
PORTER BAR.- In iron whoking, when a mass is too large to be handed comvanimily with the tongs. a large iron rod, called the portwr-bar, is wedded to it to surve as a perter or guide-rod. Somesimes a part of the porter-bar is mald. to fo:m the core of the forging, and the slabs of iron which form the forging are welded and huilt up on the bar. When the
mass of iron is too large to be handled hy the forgeman, it is supported by a crane, which serves to swing it from the fire to the hammer. Secellelding.

PORT FIRE. A sort of slow match for firing guns. It consints of a paper tube from 16 to 20 inches in length. filled with a composition thus proportioned: Saltpeter 666 parts, sulphur 220 parts, mealed gunpowder 112 parts. The composition is rammed with force into the paper barrel, and then when ignited it burns for a consislerable period. As is substitute may be employed soft brown paper dipped in a solution of two nunces of niter to a gallon of water, dried, and rolled up to the size of a common port-fire. Another port-fire consists of a rod cut schare, of lime, birch, or poplar, boiled for six loours in a solution formed by dissolving 1 lb . of nitrate of lead in one quart of water. The rod is subsequently boiled in spirits of turpentine. When thoroughly dried, one yard will burn three hours.

Port-fires are packed in boxes containing 100 or 200. The contents of the box shomld be marked in white letters on cach end, and the place and date of fabrication on the inside of the cover. The following are the particulars of the packing-boxes for portfires.

	Length.	Width.	Depth.	Weight.
For 100 port-fires,	18	9.1	5.1	38
For 200 port-fires,	18	9.1	10.1	70

See Firenurks.
PORT-FIRE CLIPPER.-The name formerly given to the entting implement which was fixed on the off side of the beam trail of a gm carriage for cutting off the lighted end of the port-fise. Port-fires being no longer in use. except on emergency, and having been superseded by friction tubes, the sockets and cutters have been removed from all artillery carriages.

PORT-FIRE CUTTER - An implement for euting port-fires to place in shells or for other purposes. 1t. is simply a strong pair of steel scissors, with an indentation one inch wide and four inches deep made in one of the blades for the purpose of holding the port-fire.

PORTGLAVE. - An ancient name for a swordbearer.
POSITION OF THE SOLDIER.-When dismounted, the proper powition of the soldier is as follows: Heels on the same line, and as near each other as the conformation of the man permits. The fect turned out equally, and forming with each other an augle of about sixty degrees. The knees straight, without. stiffness. The body erect on the hips, inclining a little forward. Thie shoulders square, and falling equally. The arms hanging naturally. The ellows near the body. The palms of the hand turned slightly to the front, the little fingers behind the seans of the trousers. The head erect and syanare to the front. The chin slightly drawn in, withont constraint. The eyes straight to the front, and striking the gronnd at aboset the distance of fifteen yards.

These points will be better understnod by a reference to the following remarks: Heels on the stame line. If one be in rear of the other, the shoulder on that side will he thrown bark, and the position constrained. Hedis more or less ildeserl. Nen who are knock-kneed, or who have kes with large cadves, cannot, without constraint, make their heels touch while standing. Fat turned out rqually, and not forming tou luige an augle. If one foot le turned ont more than the other, the shoulders will be derangeci, and if both fect be too much turned out, it will be imposible to incline the upper part of the body forward withont making thr whole position unsieady. Kinefsstreight, withene stiffness. If stifl'coed, constraint and fatimue will be amatomable. Benly erect on the hips. This gives equilibrium to the position. 'The Instructur will observe that many recruits have the had hathit of dropping a shoulder or advaneing a hip, These defects he will labor to correct. The upper pert of berly incling forkard. Rc-
cruits art commonly disposid to the reverse, to pro. juet the leelly and throw back the shoulders, whirh fanses great ineonvenicose in mareling. 'lhe habit of inclining forward the upper part of the bocly is so important to contract, that the !nsiructor numst "he foree it from the berimning, particularly with recruits who lave maturally the opposito tendron'y. sthowhlers arpure. If the shoulders be advaseed lisyomel the line of the breast, and the back arebed (the diferet (alled rommd-shouldered), the man 'antnot align himself nor use his arms with ulalress. [nless the coat tits easi!y abont the shonlilers and armpits, it will be diflicult to correet this defect. That shonlders mast not bo thrown leos far back, iss this will make the helly projeret, and rurve the smatl
 the budly: pelmsof the humers turnedslightlyite the fiont; little fingers belhind the serams of the tronsers. "Thess positions prevent the men from occupying umeress sary space in the ranks, and keep in the shonslers. Irrelercet and square to the jront; flinstightly druern in arithont romatraint. If there be stiffness in those posilions, it will be eommmmented to the uppur part of the borly, ombarass its moviments, and give pain and fatione. Whes atraight to the foont. This is tho surest way of muintaining theshoulders in a line- su essential object to be insisted upon and attained.

When monnted (horse matmblled) the proper position of the soldier is as follows: The buttorks beatring equally upom the horse's back, and as far forward us possible. The thighs turned ujon therir flat side witlaut extort, (mblarieing the horse equally, and strotehed only by their own weight and that of the legs. 'The knexe luont withont stillmess. The legs and fert free, amb falling maturally, the feet. paralle! to the horse. The body ereet and unconstrained. 'The shoulders equally thrown lack. The arms free, the dhows falling maturally. The lead erect, square to the front, und withont constraint. One rein in cach hamb, the rein coming into the rdosed hand on the side of the little finger.and passing ont ovar the first finger, on which the thumb is pressed, the bight (end) of the reins falling to the front and betwern the right rein and the horse's nerek; the hands as high as the clbows, and six inches alpart; the fingers turned toward each other.

These points will be better understood by a refercnce to the following remarks: Buttocks bearing equally upon the herse's back. If they do not support coually the weight of the body, its steadincss will be impaired. As fier formerel as possible. That the thighs may readily clasp the horse. Thighs turned upon their flutside, arithomt pffint, enbracing the horse equally. Thw more the thighs adhere to the horse, the greater is the stability of the rider; if they do not chasp the horse equally, the scat will be deranored. stretelifal only by their orn axeight, and that ef the legs. If they do not fall maturally, they can only lee extended by an effort, which will calse constraint. K"neps bent mathout stiffness. To give facility in carrying the legs more or less to the rear, withont deranging the josition of the thighs. Legs and feet firce, und fralling naturally; feet parallel to the herrix. Stiltures in the legs will impair their action ; if the feet be parallel to the horse, the thighs will be in proper position. Body erect and unconstrained. This gives cisct, and embles it to conform with suppleness to the motions of the horse. Shombler:s equally thereme back. If ihrown forward, the bark will be cursed, and the breast contracted: if not thrown back equally, the position of the body will be distorted. Strins free, and plbetes firlling naturally. "lhat they may" contribute to the steadiness of the seat and not stiffen the shoulders or formarms. Hearl erect, square to the romt, and withont constraint. If not areet, the body will incline to one side; if there be stiffucss, it will be communicated to the upper part of the body, and prevent the heas from moving with freedom.

POSITIONS.-The skill of the Engineer is chietly shown in atapting the resonrces of his art to the

Hreat varicty of topographical frotures met with in the positions that an army is nurenssurily obligod to socupg when arting on the dofonsive. No lans rkill is colled for on the part of the (iwneral in the feleore tion of his defonsive proints, as no engimering theill ran remmely, in othrer than a alofortive manner, a pusition whicla is strongly anomanmalod by paints which the assailad can orropy within good rammom range, or the lanks of which ran bereadily farmot
 "hort in the inverse ration of their atrenorth, and for the most jart is bat laber in vain. "Two prineipas ruestions present themsolves in a htriclly defon-ive War: the ome atrategirel, the othar tactiode. 'Tlare tirst is hased upon the general fontures of tho territory tos
 ing force, amd the systom of warfare lho Jocst athap torlto the assailed; the seownel on the partionlar toper grathioal foatures of the jestitions whery rasistane is to be madte. The first allontion, will maturally lo givin to the syatem of refense for the frontior whother ont or inore strong peints shall bo alonte orcrpied fronn which the assailed ean be ohserved: or whother a continucd line of natural ame artiticial (obstacles shall be prasented to ohstruct the movernemts of the invading foree. Athoush rpinion is against the latter methot, the furestion is one that ramnot be dreidud in an absulute manner. Thr mumbers and quality of the army on the defensise: pulitionl as wedl as numerets military eomsiderations: the charactor of the frontior in great detail: the facilities for the rapid concumatation of the tronjes: and the secority of the line of retreat hate an important bearing mpon it and at all times demand the most carefil considerition. "llat a very fextended linn is newerssirily a wenk one is gemerally admitted; still a system of continumb hincs, in a country dilkeult to penctrate, may be used with advantagro, and if weak when assailed by a strong force, may serve as an obstruction to a wiak one, and be particularly serviceable againts raids. Such a line may be made to phay the same part as the lines thrown ing in sieqe operations to prevent the garrison besideded from obtaining succor or supplies by detachments trying to penctrate them. The tactiend considerations atro the same: in the application of firld fortifications a position as for the distribution of troups for its defonse. Thoir principal value depends upon the character of the site itsolf. If it has thas gualities of a grond dofensive field of battle, and lende itself to such a disposition of intrenchments as the troops themselves would naturally assume, then the eserntial tactical considerations can be sceured. In all such cases both the plan and the command of the system employed must be subordinate to the site; to attempt more than this would reouire the time and means far beyond the command of an army in the tilld?

Positions derive their great importance from the intluence of fire-arms in the decision of battles: for whatever enables one party to deliwer its tire with cffert against the other, whilst it. at the same time, remans sheltored in any degree from that of its adversary, places the adyantage, all other thinge being equal, greatly on its side: and it is thin adrantage whieh shombl be priucipally kept in view in solecting a bosition. W"vords, rommanding heightw. precipires. and villagex, constitute the strong points of a position. They sorve as points of support against which the winge of the army rest: or elac, by covering parts of the front they may serve as the key points in the defense. I wood. if properery inermolet, covers the infantry from the attachs of cavalry: conceals its mancuvers, and conoles it to deliver its fire without being exposed in that of the rumy. Hoights, by giving a commandime view of the surroundine eround. increase both the range and the etfects of fire-arms: whilst ther, at the sumte time, sorve to screen the troops behind them until they are required to be brought into action. Prect-
pices offer similar advautages to heights, and are moreorer unassailable. Villages serve as secure shelters for detaclments, which, by their fire, cover the maneurers of the troops in their rear; and, if properly intrenched, will cause the eneny great loss in his effort to force his way into them. Rimors, marshes, hallons and ravines, are the most unfavorable features of a position, because they may prevent a free circulation from one point to amother, and thus impede the maneuvers; and they are exposed to the full fire of the eneny. They may, howerer, be of service when they are so placed as to support the wings, or, when the position being too extended for the number of troops, they render parts of the front unassailable. The best positions are those which, being in due proportion to the force by which they are oceupied, command all the surrounding gronnd within cannon range, the ground descending in a gentle slope to the front, presenting woods, villages. ete., to support the wings and cover parts of the front, and admitting of a free circulation from one point to another, with secure commmnications in their rar in case of retreat. If with these advantages, they present marshes, or other obstacles, which will embarrass the enemy's movements, and force him to advance in column, exposed to the fire and free maneurers of the assailed, they will unite everything desirable in a favorable field of battie.

POSITIVE FEED.-The earlier model Gatling gims had cartridges fed to them by means of feed cases, or by a drum, but recently a new method for supplying the cartridges to the gim has been devised, which is positive and certain in its action. In the old methods of supplying ammunition to the gum, it was possible for the cartridges to jam in feeding down from the feed eases into the carrier or receiver, but in this uewly-improved feed, the mechanism never loses control of the cartridges from the time they leave the feed magazine, until they enter the chambers, are loaled, fired, and the empty cases extracted. With this new feed. it is impossible for the gun to fail in its operation, even when it is worked by men nnacquainted with its use. This new improvement not only greatly increases the rapidity and certainty of fire, but enables the gun to be fired at the rate of over 1,200 shots per minute, and at all degrees of elevation or depression, whieh is something no other machine gun can do. By firing the gum at proper elevations, ascertained by means of a quadrant, the bullets disenarged from it can be made to fall upon men behind breastworks, or entrenchments, at all distances, from 200 to 3500 yards from the gun. This "hicll angle," or "mortar" fire, adds greatly to the effectiveness of the gun, and will, no doubt, prove of inestimable ralue in future warfare. Experiments liave proved that musket-size balls, fired from a Gatling gun at high angles. strike the ground with sufticient force to penetrate from two to three inches of timber. About 1,200 shots per minute can he fired from the gun, raining down a hailstorm of bullets on the heads of men behind entrenchments. thus making such positions, in a short space of time, untenable. Open breastworks, or uncovered entrenchments, woukl furnish little or no putection to troups agamst the fire of this formidable weapon.

POSSE COMITATUS.- A Sheriff or Marshal, for the purpuse of kepluing the peace and pursuing felons, may command all tho people of his comity, above 15 years old, to attend him, which is called the losse Comitatux, or Power of the County.

It is not lawful to employ any part of the Army of the Cnided States, as a Posse Comitatus, or otherwise, for the purpose of exeeuting the laws, (xeepht in such catses and mindresuch circomestances ass such tomphoynant of said force may be expressly antlorized by the Constitution or by some special Aet of Congress: and no moncy appropriated is ased to pay the expemacy of any kind incorred in the employment of any, troops in violation of this law; and any person wallfully violating the same is deemed gnilty of a
misdemeanor, and on conviction thereof is punished by fine not exceeding ten thonsand dollars or imprisonment not exceeding two years, or by both such fine and inprisonment. The provisions of the Constitution and of Acts of Congress understood as intended to be excepted from the operation of this law, anthorizing the employment of the military forces for the purpose of executing the laws, are as follows

- The United States guarantees to every State in this Union a republican form of government, and protects cach of them against invasion; and on applieation of the Legislature, or of the Executive (when the Legislature cannot be convened), against domestic violenee.

2. It is lawful for the President of the United States, or such persons as he may empower for that purpose, to employ such part of the land or naval forces of the United States, or of the militia, as may be necessary to aid in the execution of judicial process issued under any of the provisions of the "Civil Rights" bill, or as shail be neeessary to prevent the violation, and enforce the due execution of the same.
3. No military or naval ofticer, or other person engaged in the civil, military, or naval service of the United States, can order, bring, keep, or have under his anthority or control, any troops or armed men at the place where any general or special election is held in any State, unless it may be necessary to repel the armed enemies of the United States, or to keep the peace at the polls.
4. The military forees of the United States may be employed at any time in such manner and under such regulations as the Presilent may direct-First. In the apprehension of every person who may be in the Indian country in violation of the law ; and in conveying him immediately from the Indian country, by the nearest convenient and safe ronte, to the civil antbority of the Territory or judicial district in which such person shall be found, so be proceeded against in due course of law; Second. In the examination and seizure of stores, packages, and boats, anthorized by law; Third. In preventing the introdnction of persons and property into the Indian country contrary to law; which persons and property shall be proceeded against according to law; Fourth. And also in destroying and breaking up any distillery for mannfacturing ardent spirits set ap or continued within the Indian country. No person apprehended lyy military force under the preceding laws can be detained longer than five days after arrest and before removal. All officers and soldiers who may have any such person in eustody shall treat him with all the humanity which the circumstances will permit. The superintendents, agents, and subagents, cudeavor to procure the arrest and trial of all Indians accused of committing any crime, offense, or misdemeaner, and of all other persons who may have committed crimes or offenses within any State or 'Territory, and have fled into the Indian country, either by demanding the same of the chiefs of the proper tribe, or by such other means as the President may authorize. The President may direet the military force of the United States to be employed in the apprehension of such Indians, and also in preventing or terminating hostilities betworn any of the Indian tribes.
5. The l'resident is authorizel to employ so mach of the lamd and navili forces of the l nited fitates as may ly necessary effectually to prevernt the felling, cutting down, of other desiruction of the timber of the United States in Florida, and to prevent the transfortation of carrying away any such timber as may be alreaty felled or cut down; and to take such other andi further measures as may be dumed utvisable for the preservation of the timber of the U"niwd States in Florida.
6. The quarantines and ather restraints established ly the heathinas of any State, respecting any vessels
arriving in, or bound to, any port or diss rict threof, are chafy ohserved by the offleres of the retstoms reverme of the United Siaterg, by the masters mul -rews of the several reventue-rntters, and ly the military ofllerers commanding in any fort or sataion heron the sea-eonst ; ant all sucla offlears of the lititerl States faithfally aid in the reserotion of sucta yatardutincs and hodth-laws, acourching to their resperetivo growers and within their resperetive prerincts, und us they shatl be directed from time to time, by the Sec:retiry of the 'reasury.
7. Whenever any personis deliveral by any foreirn government to ath agent of the Cnited Siates. for the grurpose of lueing brought within the Conitul Stanos
 Une l'resident has jower to take all necessary mensures for the transportation and safe-kerepiner of such aceused presom, and for his serurity agninat lawless violence, until the limal conchasion of his trial for the orimes or offenses suecified in thr warrant of extradition, and until his limal diseharge from custody or imprisonment for or on aeromet of sulle crimes or offenses, and for a reasomable time thereafter.and may amploy such portion of the land or matal forces of the United States, or of the militia thereof, as may be necessury for the safe-keeping and protcetion of the acenserl.
8. Every peraon who, within the territory or jurisäction of the United States, begins, or sets on foot, or provibles or prepares the means for, any military expedition or enterprise, to be carried on from thence against the territory or dominions of any foreign prince or state, or of any colony, district, or people. with whom the United States are at peace.is deemed gailty of a high misdemeanor, and is fined not exceeding three thousamb dollars, and imprisoncel not more than three yrars.
9. In every case in which a vessed is fitted out and armed, or attempterl to be fitted out and armed, or in which the force of any vessed of war, cruiser, or other armed ressel is increased or augmented, or in Which any military expectition or enterprise is begun or set on foot, contrary to the provisions and prolubitions of the Nentrality Aets, and in cwery case of the capture of a vessel within the jurisdicion or protection of the United States as beforedefinel; and in every case in which any process issuing out of any court of the United States is disobeyed or resisted by any person having the custody of any vessel of war, cruiser, or other armed vessel of diny foreirn prince or slate, or of any colony, district, or people. or of any suljects or citizens of any foreign prince or state, or of any colony, distriet, or people, it is lawful for the Presiteme, or such other person as lie shatl have empowered for that purpose. 10 (anploy such part of the land or naval forees of the Entitil States, or of the militia ther aof for the purpose of taking jossession of and detaining any sucla vessel, with her prizes, if any; aud also for the purpose of preventing the earrying on of any surla expedition or enterprise from the territories or juristiction of the United States against the territories or dominions of any freign prinee or state, or of any colony, distriet, or people with whom the United States are at peace.
10. It shall be lawful for the l'resident, or such person as lie shall empower for that purpose, to employ such part of the land or naval forcess of the Enited States, or of the militia thereof, as slatl be necessary to eomprel any foremen vessel to depart tho Tnited states in all cases in whicd, hy lle faws of nations or the treaties of the United Nitates, she ought not to remain within the Tuited states.
11. In case of an iasurrection in any stateamainst the gotermmet. thereof, it is law ful for the l'resident. on application of the lecgislature of sueh State or of the Executive, when the Legislature cannot he convened, to call fortlo sheh momber of the militia of any Other State or States, which may be applied fornas he beems sutherient to suppress such insurrection: or.
on like*pplicettion, to (*) such part of the land or naval forcoen of tho: Cnitod Stutes as he lecems nocossary.
12. Whancover, by reatson of nnlaw fal obstractions, combinations, or assomblages of peranom, or relbollion against the antlurity of the fovernment of the linited Staters.it lecommes impracticulshe, in the jutdenont
 judiorial proreredinges, the lew's of the: Cinted Sitates within any Sitateor J"erritory.at is law fal for the l'resjdemat arall forth themilitia of any orall the States, and to cmploy such parts of the land and naval forces of the United states as lue may derm noeressary to enforce the faithfal exerotion of the laws of the Lite ed States, or 10 suppress sur-h rebollion, in whateover State or 'Terribory thareof the laws of the Linited states may lef forcilaly oppensed, or the execution thereof forcibly obstructed.
13. Whenever insurreetion, lomestic violence, unlaw?nd combinations, or comspiracios in any Cate so ohestructs or hinders the execution of the law there of, and of the Cinited States, as to heprive any portion or chase of the people of such state of any of the rights, privilegres, or immonitics, or jrotection, named in the (onstitution and secured by the laws for the protection of such rights, brivilegres, or immmitios, and the constitutod mahoritios of such Sitate are mable to protect. or, from any eanse fail or refuse protection of tha perpble in such rights, such facts, are deemed a rlenial by suchstate of the equal protection of the baws to which they are entitled unter the Constitution of the E"nited States; and in all such cases, or whonever any such insurredion, voolence, unlawful combination, or consjuracy, opposes or obstructs the laws of the United sitates, or the due execution thereof, or impedes or obstruets the due course of justice mular the same, it is lawful for the President, and it is his duty, io take such measures, ly the employment of the militia or the land and naval forces of the C"nited がtates, or of either, or by other means, as be may deem neeessury, for the suppression of sneh insurrection, domestic violence, or combinations.
14. It is malawful to take any vessel or cargo detained under section 9 from the custody of the proper oflicers of the customs, anless by process of some court of the United States; and in case of any attempt otherwise to take smch vessel or cargo by any force, or combiuation, or assemblage of persons, too great to be overcome by the officers of the customs, the President, or such person as lie shall have empowered for that purpose. may employ such part of the Army or Navy or militia of the United States, or such foree of cilizen volunteers as may be necessary, to prevent the removal of such vessel or cargo, and to protect the officers of the customs in retaining the custody thereof.
15. The I'resinent is anthorized, at his discretion, to cmploy the lamd and naval forces of the Enited States to protect the rights of the discoverer [of a gumo island] or of his widow, heir, executor, administrator, or atsions.

Officers of the Army can not permit the use of the troops under their command to aikl the (ivil authorities as a Posse fomitatus or in execution of the laws excejt as anthorized in the foregnine enactments. If time will admit. the application for the use of troops for these purposes must be forwarded. with a statement of all the material facts, for the consideration and action of the President; but, in cases of sudden amd mexjected invasion. insurrection, or riot. endangering the bublic property of tho Uuited States, or in cases of ittempted or threaterned robbery or interruption of the lnited States mails or other equal emorqency, othecers of the Army may, if they think a necessity exists. bake such action before the receipt of instructions from the seat of G()vernment as the circumstances and the law under Which they are acting may justify ; and will ihen promptly report their action and the reasons there-
for to the Adjutant-General for the information of the President. See Civil - $u$ thority, and Execution of Larns.
POST. - 1. A soldier's beat while on sentry, or a position assigned to or taken up by a soldier or body of men; it generally consists of an entrenehed village or position, or any building placed in a state of defense. The necessity of strengthening a post is admitted to be of paramonnt importance, and every endeavor should be made by an officer in command to place himself in such a defensive position as shall prevent his being taken unawares, or, if attacked, enable him to make a good fight. Often neither time, material, intrenching tools, nor men, will permit of solid works, such as a redoubt or other claborate field-works, being thrown up, but it is possible, When villages or detached houses are oceupied by troops, to throw up temporary cover which shall greatly strengthen the position. The following are principles to be borne in mind in forming a post, or in strengthening a position: 1-To obtain cover for the men and animals from the enemy's fire. 2To enable the troops to fire, in the most advantageons manner, on the ground over which the enemy mast advance. 3-To hinder the approach of the enemy by obstacles, which, even if surmonntable, shall be sifficient to break his order and detain him for some time under fire. 4-To earble the troops to pass freely from one part of the works to another, in order to concentrate on any point attacked. 5-To imperle the flank movements of the enemy as much as possible, and thus prevent his different parties from supporting each other effectually
2.- P'ost, in a military sense, frequently means to station: as, to poxt a sentinel or relief. To be pursted signifies to be formed ready for action. Thus, when troops are brought up in column, and ordered to deploy, it frequently happens that some part of the line is refused, in order to flank an enemy, or to cover a weak position: the part that is aligned is said to be pusted. The phrase also means, in a familiar sense, to be publicly announced as an infamous or degraded character.
3. - In the British service, the term Post is given to the bugling which precedes the tattoo. This is the Finst Poxt, the Last Post that which follows it. See Ideranced Post, Gurmison, Military Pust, Outpost. and Station

POST BAKER. - The person who bakes bread for a garrison. In the L'nited States service the Post Baker is an eulisted man, who receives additional pay for his labor.

POST CEMETERIES.--The Commanding Officers of all posts, situated on ali public lands of the United States, see that a suitable portion of such land is set apart and properly mantained for the burial of deceased officers, and soldiers, and their families, and of Government employés. The burial ground is suitably and securely inclosed with the best material available-a stone or allobe brick wall, or a neat wooden pieket fence-and maistained by the babor of the garrison. At each grave is phaced a heathhoard, plainly marked with a mumber, and with the name, company, regiment, and date of death of the ocenpant, the mumber on the head-board to eorrespond with the number on the record of buriths. The head-boards are about four feet long, ten inches wide. and one and three-eighthes inch thick: and stand two fece out of the ground; of well-scatsoned wood, and painted with three roats of white paint : inseription in black letters one ineli loner. The walks are abont four feet wide, neatly rounded up, pronerly drainend, and cravelod whon the material is at hand. Whare practicalble, a good grass som covers all the rest of the ground, inchuding the graves; and mative trecs and shrubsare preserved or planted? for ornament and shade. A record of interments is kepl at eato post by the Acting Assistant Quartermaster in the form on page 5ff: ; and when he is relieved, is turned over by him to his suecessors; and if the post be
brol en up, is transmitted to the Quartermaster GenA list of the names of those buried (including a transeript of the items embraced in columns 1, 2,7. $8,3,10,11,22$ and 25) is forwarded to the Quartermaster (General at the end of each your.

A public Cemetery is established near Salt Lake Gitry, Utald, noder the provisions of an Act approved May 16, 1874. This Cemetery is under control of a Board of which the Commanding Ofticer, Camp Douglas, Etah, is ex-affirio a member. See Battle-grounels 'emeteries, Lational remeteries, and Superintendent of Tational Cemeteries.

POSTERN.-Posterns are arched, bomb-proof pass-age-ways constructed under the terre-pleins and ramparts, forming subterranean communications between the parade and the enceinte ditch, or between the ditehes and the interior of the outworks. The witlth and height of the interior of posterns depend upon the use to which the communication is to be applied. For artillery the width is usually taken at 10 feet, and the height uncler the crown or key of the areh at least 8 feet. Posterns for infantry may be only from 4 to 6 feet wide, and from 6 feet 6 inches to 8 feet high under the erown of the arch. The thickness of the piers of the arches is generally taken at about half the width of the postern. The arches are from 18 inches to two fect thick, and are covered with a thickness of earth sufficient to jrotect them from any injury from shclls bursting over them. A strong wooden dioor is placed at each ontlet of the postern to secure it against surprisc. The doorway in posterns for the service of artillery sbould be of just sufficient height for the convenient passage of a gun.

The most important ponstern is the one leading from the parade to the main ditels. This generally receives a width of 12 feet and the same height under the crown. For greater security from surprise, its outlet is at least 6 feet above the bottom of the ditel, this difference of level being overcome by means of a temporary wooden ramp which receives an inelination of at least $\frac{1}{8}$. Besides two strong doors at the two ends of the postern, there is a partition of masonry about midway between the two ends, which is pierced with a doorway of the same size as the donrways of the ends, and closed by a strong door which, as well as the partition wall, is loop-holed for musketry.

In cases where the postern forms the nain entrance to the work, an arched chamber is phaced on one side of it, at the ontlet, which serves as a guardroom for a few men, to secure the outlet from surprise. The wall between this chamber and the postern is loop-holed, so that a fire can be brought to bear on the doorway of the postern; and as a further procaution against surprise a machicoulis defense is sometimes arranged at the top of the searp wall just above the doorway of the postern. See Communications,

Post flag. - In the United States Army, the Post Flag is the National Flag, It is twenty fert fly and ten feet lonst, is furnished to all posts garrisoned by troops, and is hoisted only in pleasant weather. See Flags.
POST FUND.-In the United States Army, a fund constituted by the troops haking their own head and thereby saving $33{ }_{3}^{1}$ pur cent., the difference betwern bread and flour. The Post Trader also pays an assessment of 10 conts, or less, a month for every oflewr amd soldier in the garrison, which is carred to the credit of the Post Fund. The following (exrlusive of sums transfored to the regimental fumd) are the objects to which the Post Frund may be appropriated. and Comalis will giw them prevednee in the order named: 1. Expmenses of bake-honse. 2. Garden secds and utensils (for all trongs serving at the post). 3. Post schools. 4. Posi library and reading-room, is. (iymonaimm. Whon the nuressary matorial and labor are in the Post Quartermastor's Department, and can be spared from more im-
 at

portant work, the necessary apporatins for the gymhatsimm, athl for such gathes and exorrisiss at the ('onncil maty consider desirable for the hathth and amusement of the soldiors at the post may be eronstructed by the Quartemaster's Department. fi. Clapel. \%. For fruit and shale trees. 8. For fruitbearing vines and bushes. 9. For printing press. The Quartermaster Genoral, under direction of the Secretary of Wrar, procures and forwards to the post librarian such periodicals and newspapers us his atppropriation for incidental expenses can atiord to pas for, or school books in lien of periodicals, when the I'ost Fund is not sufticient to supply them and the post does not desire periodieats. The periodicals, newspapers amd sehool books are intended for the use of the enlisted men, and must not he taken from the library or school-ronm. If used at all by othecers it must be at atime whon other dastios prevent their use by enlisted mon. The necessary school books for soldiers and for soldiers' chitdren are purchased from the Post lund, except in cases provided for in the foregoing paragrapla. See Company Fiunt and Regimental Funt.

POST GARDENS. - Commmmling Othcers of posts, at or near which suitable publie lands are arailable, set aside for Compmay or l'ost Gardens such extent of those lands ats maty be necessary for the production of vegetables for the command, and ratuse the same to be duly cultivated by the garrison, and such varieties and quantities of veretables to be raised as may be nefessatry for the subsistence or health of the troops. On approved requisitions, the Sub)sistence Department procures for sale to companies or posts, seed potatocs, garden secds, and agricultural imphenents necessary for establishing, eultivating, and perpetuating rompany or post gardens. Payment to the Sulsistence Department for the se artiches, at cost price, is made from the company or post fund. The Commissary General of Nubsistence gives to the ofbecrs of his Department the neecssary instructions for the purchase and listribution of seeds and :igricoblural implements. If in changes of station a company or garrison is suceected by another, the latter succeds to the garden of the former, reimbursing the fund of the former for its thethat ix $x$ penditures for seeds. agricultural implements, etce Commanders of Divisions and bopartment give such detailed instructions as may be necessary for carrying these regnlations into eflect. and for the proper distribution of produets of gardens mmone those ratitled to them. Surphis products mise be sold, and the proceeds credited to the post fund. or
divided among the company funds of the garrison, whichever may have borne the expense of the cultivation.

POST OF I:ONOR. - The ghard in the advance. Thw right of the two lincs is also the post of honor, ant is wenerably given to the eldeat corps: the left is tho next post, and is given to the next eldest, and so on. The laws of military discipline forbid an inconveniont accordance with this practicre as the circumstances of the eate maty refule a very dillerent arrangrment, which it would be wanton it oppose.

POST REVETMENT.- I revetment constructed of posts from 4 to $f$ incles in diametur, rut into lioneths of 5.5 feet, and set with proper stope, in close contact, in a trench two feet in depth. at the foot of the wreast-height. The tops of the posts, if not alreaty so, are sawed olf luvel, to receive a horizontal cappping piece, which is spikerl ons. Auchar ties are
 dove-tailed into the eap and secured to an anchor log imhedded in the paritpet. On top of the cap are latid several courses of somes raising the interior crest to the prom per height. With a good quality of timber this revetment is clurable. It is easily constructed, antl next to sods, is the best. See Ritrotment.

POST SCHOOLS.-Schools are eatablisheri at all the posts, garrisons, and the permanent camps at which troops are sfationed, in which the enlisted men maty he instructad in the common English branches of colncation and especially in the history of the ["nitud States: and the Secretary of War details such ofliccrs and anlisted men as may be mocessary to carry out this prowision. It is the duty of the Jost or Garriso:l ('ommander to set apart at suitable room or buiteling for sehool and religious purposes. The teachers and schools are umder the control of the Post Commander, or such atheer at the l'ost Commander may designate. school tomehers are detailed from the enlistadmen of the Army. The mumber of teachers detailed canmot exceed one for fach comprany scrving at the post. It any post it which there are no soldivers suitable for detall as shoolteachers, application is mate to the Adjutant General of the Army by the Post Commander for the necessary number of thathers. A soldier while scrving as schonl teachar receives extra-daty pay as orersier (35) rents per day) irom the Quarturmaster's Dipartmont, not deducting for Saturdays and Sundays. soldirs while detailed as school teachers will attend such parales. inspections. and drills as, in the judg-
ment of the Post Commander, are necessary to keep them well instructed in their comprany duties. While it is left optional with soldiers whether to attend school or not, yet they are advised to avail themselves of the means afforded to improve themselves, and Commanding Officers unt only give them all possible opportunities, but advise aud eucourage theus to use them. The children of soldiers are required to attend the post school for children, uuless specially excused by the officer in charge of schools. The children of citizens living near a post are allowed to attend the post school for children. For the iustruction given them they are required, if able. to pay a small rate into the post fund. Otheers and citizens furnish the school books necessary for their own children. The Post Council of Administration decide whether it is advisable or practicable to bave separate schools for adults and children. In offieer is detailed by the Secretary of War to visit and inspeet regularly the various post sehools. It is made his duty to examine into the system of instruction ; to adrise Commanders of Posts of defects which he may discover, aud to suggest methods of improvement; to endearor to bring about uniformity in the methods of management and instruction, and to make known throughout the Army the best methods and systems in existence at any Military Post. He reports the results of his inspection fully to the War Department from time to time. His inspections do not dispense with or interfere with those of the Inspector Generals of the Army, but are specially and directly addressed to the schools alone.
POST TRADER.-In the United States, every military post may have oue Trader, who is appointed by the Secretary of War, or the recommendation of the Council of Administration, approved by the Commanding Officer. Post Traders are furnished with a letter of appointment from the Secretary of War indicating the posts to which they are appointed. They are subject, in all respects, to the rules and regulations for the government of the Army. They actually carry on the business themselves, and habitually reside at the station to which they are appointed. They can not farm out, sublet, transfer, sell or assign the business to others. They are permitted to erect buiddings for the purpose of carrying on their busiuess upon such part of the military reservation or post where they are assigned as the Commanding Othicer may direct. Such buildings are in convenient reach of the garrison. [circ. A. (t. O., Aug. 28, 1879.] When a Trader is removed from his post, he has a right to remove and dispose of the materials of the buildings erected by him as his own property. Ite cannot lease or sell his buildings to another Post Trader withont permission of the military anthorities; but such permission would have the same force as a license to a new Post Truder to erect such a building at that spot. Post Traders have the exclusive right of trade
hele to pay for the benetit of the post fund. at a rate to be determined by the Post Council of Administration, not exceeding ten cents per mouth, for every officer and enlisted man serving at the post-the monthly average to be determined equitably by the Conucil. The Conncil of Administration once in six months, and not oftener, examines the Pust Trader's goods and invoices or bills of sale, and, subject to the approval of the Post Commander, establishes the rates and prices (which should be fair and reasonable) at which the goods shall be sold. A cony of the list thus established is kept posted in the Trader's store. Should the Post 'Trader feel himself aggrieved by the action of the Council of Administration, be may appeal therefrom, through the Post Commander, to the War Department. Iu determining the rate of profit to be allowed, the Conncil considers not only the prime cost, freight, and other charges, but also the fact that the Trader has no lien on the soldier's pay, and is without security in this respeet. Post Commanders report to the War Department any misconduct, breach of military regulations, or failure on the part of Post Traders to comply with the requirements of regulations.

When any cause of complaint against a Trader arises, the Post Commander places the same before the Council of Administration, aud the Conncil examines the evidence for and against the Trader, and makes a report of the facts, through the Post Commander, to the Adjutant General of the Army, for the action of the Secretary of War, in whom alone is the power vested to remove a Post Trader. When a new 'Trader is selected, and his appointment is issued, the appointment of the former Trader will be revoked; but, in order that injustice may not be done the former Trader in the total loss of his investment in buildings and goods, the new appolntee will be required to purchase a portion or all of the same at a fair valuation-the articles to be so purchased and the appraisement of their value to be determined by the Council of Administration. The former Trader is not debarred from withdrawing his goods if he so elect, nor from enteriug upon the reservation to attend to the settlement of his business until the same has been closed; such privilege, however, does not eutitle him to continue to trade at the post. See C'enteen and Sutler.

POT. - The paper cylinder forming the head of a signal-rocket aud coutaining the decorations. To diminish the resistance of the air the pot is surmountell by a paper coue.

POT DE FER.-A heavy helm worn in siege operations. It is related that Louis XIV., like the other soldiers, went into the trenches in full armor, and wearing the pat-de-fer. See Put Helmet.
POTENCE.-Troops are rauged en potence by breaking a straight line, and throwing a certain proportion of it either forward or backward, from the right or left, according to the circumstances, for the purpose


Poient.


Potent Counter-Potent.


Pofentée.
upme the military resurve to which they are apbuinted; and no other person is allowed to trade, pordile or sell grools, by mamphe or otherwisp, within the limits of the reserve. 'This does not prohibit the sale, iey producers, of fresis fruit or vegreables by permission uf the P'ost Commander. Post Traders in the Indian comery have no right to maintain a tratlic: in geonds with the lmdians, umbess they be properly licensed for such trade. For the exclusive privilege allowed them, Post Traders are assessed and
of securing that linc. An army may br posted en polence he means of a village, a river, or a wood.

POTENT COUNTER POTENT. One of the heraldic furs, in which the field is filled with eruteh-shaperd figures alternately of metal and color, those of opjosite tinetures being phaced base against base, and point against point. The metal and eoler are moderstood to be argent and azorr. umbess they be spectially hazomed wherwise. Potent counter-potent is sometimes blazonel vairy-cuppy.

 cross, from its orcorrence in the insignia of the Chris. tian lingetom of Jerusalem, which areaterent a cross potent betweref four crosshets or. 'This coat is remarkable as beine a departure from the usual heraldie rule whide prohibits the phacing of metal mom metal.

Nol thaic and chanasex, was frequenty worn loy the Kinghte of this periocl beneath the surcoat. Whide Was, tes at general Hing, consillerably lengethencal, and very richly cmblazoned with the arms of the wenter.
POWDER.-A common lorm for fumpowler. Under this mame is fomme a varioly of poweders in use: at the present day for small-irins and guns.

Counthes					ficmpowder.					
					Sintipeter.	C'harcoul.	Sulphur.	Saltureler.	Charcasal.	Sulplır.
America	...	...	...	$\ldots$	75	12.50	12.50	75.50	13:20	$11 \cdot 30$
Anstria	...	...	...	...	71	17	16	$75 \cdot 50$	13:30	11:30
Englumd	...	...			76	15	10	$76 \cdot 50$	14-50	!
リnglul	$\ldots$	.	$\ldots$	...	76	$14 \cdot 50$	$9 \cdot 50$	76	13.50	9
Frunce	...	...	$\ldots$	...	75	14.50	11.50	75	12.50	12.50
Germany	...	...	-.	...	75	$13 \cdot 50$	11.50	75	$12 \cdot 50$	12.50
1taly	...	...	...	...	76	12	12	$75 \cdot 50$	13:20	11-30
Russia	...	...	...	$\ldots$	71	$17 \cdot 50$	$11 \cdot 50$	81	11:30	8.70
Spain	...	...	...	...	$76 \cdot 50$	$12 \cdot 70$	$10 \cdot 80$	75.50	13-20	11-30

POTENTEE-A heraldic line of division which takes the form of the outline of a succession of erutchshaped tigures.

POT-GUN. - $\Lambda$ mortar for firing salntes. The mame is derived from its shape lecing formed like a pot. It is now obsolete.

POT-HELMET.-A sort of skull-cap of thick iron, and very heavy. It was used, particularly in sieges in the 16ith and 17 th eenturics. The word pot-letmet is also very commonly used for iron hats much lighter in weight, that were much worn by Cromwell's footsoldiers.

POT-METAL.-An alloy of lead and copper, oblained ly throwing humps of eopper into red-hot melted lead. It is of a gray color, brittle and gramlar.

POUCH.-A stout leather box, hack or brown, lined with tin, eovered with a strong flap, and ornamented with the device of the regiment. It sarves to carry the cartridges required by a soldier for inmediate use. When cartridges are supplied for a whole day's service, two pouches are worn, one on the front point of the hip, aud a larger one on a bedt suspended over the left shonder. The leather cases containing primers, lanyard, ete., in field and henvy artillery, and those containing athmer's devel, ventpunch, gimlet, ete., in heavy artillery, are also called ponches.

POULEYNS. - In ancient armor, a variety of kneeguards, which were very elaborately and variously enriched.

POUNDER. - The name liy which different natures of ordnance and shot and shell are distinguished. By being so denominated, the weight of the projec. tile which the gun throws is implied. Projeretiles fired from heavy howitzers and mortars are distinguished by the diameter of the pieces, such as those propelled from the 10 -inch and 8 -inch howitzer and mortar: and it would be alvisable to denominate all projectiles by the diameter of the piece, and also by the weight of the projectile itself. This is done in the case of shot and shell used with the heavy M.L. R. guns of 7 -inch caliber and upwards, hut below this caliber they are known only by the weight of the shot. The weight of heavy rifled ordnance is nlways expressed in tons, if of 5 tons or upwards: otherwise in cwts.
POURPOINT.-A military habit worn in the thirteenth centurs, but which was subsequently moxified, and from the peeuliar work with whieh it was then ornamented, nbtained the name of l'ourpoint or Connterpoint. A complete suit, consisting of a sleev.

The following table gives the proportions of the composition most generally used in the manufacture of gunpowder in the countries mentioned. Fecefoupmider.

POWDER-BARREL.- larrels in which gunpowder is stored. There are three sizes, called arhole, haty: and quarter, holding respecti:ely $100 \mathrm{lbs} ., 50 \mathrm{llm} ., 25$ lbs. of ordinary powder. The whole barrel is capable also of containing 125llss. of pebble powder. There is also a barrel in the service termed a bouge harrel, which is the size of a quarter barrel, and intended to be used, not for storate, but for holding loose powder for mortars or cartridges in a standing batery. This larrel is distinguished from the ordinary powcler barrel, in having a leather bag attached to it, which takes the place of one head of the barrel, and is closed by a leather thong. The word buuge or budge is a corruption of the French word bouget, a leather bag.

Powder barrels are composed of heads and staves bound round with copper and ash hoops, and are made by hand or ly machinery. The wood used in English barrels is msamlly American oak, whereas the Indian powder barrels are made of tak, if anything a stronger and closer-grained wood than the oak alluded to, so that it is not found necessary to bind them round with ash hoops, as in the English barrels.

POWDER BOXES. Cont rivances analogous to fougasses, used by the Russians at selmastopol. Each consisted of a double deal box, of a capaeity sufti-

cient to contain $3^{\circ}$ pounds of poweler, water-tight, and edTectually seeure it from the penetration of damp, into the top of ench box was inseried a vertical tin
tube, connected with a horizontal tin thbe at the surface of the gromnd. Within the latter was a glass tube, filled with sulphuric acid, and coated with a composition of chlorate of potassa, sugar, sulphur. and gum-water, which immediately takes fire on coming in contact with the acid. "The space between the interior of the tin tube, and the exterior of the glass tube, as well as the rertical tin tube, is filled with gmpowder. A little earth spread lightly over the whole completes the arrangement. A person walking over the ground, and treading on the tin tube, crushes it and the glass tube contained in it, causing the escape of the sulphurie acid, and the explosion of the gumpowder. See Fougasses.

POWDER CART.- A two-wheeled carriage covered with an angnlar roof of boards. To prevent the powder from getting damp, alarred canvas is put over the roof; and on each side are lockers to hold shot, in proportion to the quantity of powder.

POWDER DEPOTS.-Large depots for the stornge of powder, and the matirials for its manufacture. In selecting sites for these depots, the following considerations should be observed: 1st. That the depot should be in a region of country which does not admit of being populated, so that destruction of life and property in case of accident would be a minjmnm. 2d. The tract should be sufficient in extent to contain suitable positions for matazines for storage of 10,000 tons of powder, material lor its mantfacture, ete, and the necessary buildings for a government powder-mill. 3d. It should be near enough to rail and water transportation to afford facilities of transportation to the seaboard, interior, and the lakes, having a short line of government railroad connecting the site withrivers and trunk-lines. When the present arsenalsin the United States were established. their locations were but sparsely settled. The rapid increase of population in the adjacent towns and cities has, however, in the majority of cases. rendered these magazines dangerous to the commnnities in which they are located and hence the fovernment either has abondoned, or eventually will have to essentially abandon, the storage of powder at all of our arsenals. The damp sea-air renders our fortitications unfitted for this purpose, and the Government has now large quantities of powder rapidly deteriorating at these places for want of proper storare-facilities. See Lightning Conductors, Magazine, and Preservation, Storage, and Tromsportation of Ponder.

POWDER DUST.-All gunpowder, in the process of reeling, glves off a certain amonnt of dust. It is a great object to remove the dust from the powder, as it quickly absorbs moisture from the atmosphere, and, consequently, impairs its preserving qualities. This clust is not lost to the factory, but is worked over again, receiving first the process of incorporation for a short time, and then going through the rest of the mills until it becones perfeet gunpowder. The operation of dusting is effected by cylindrical reals covered with canvas, which revolve at a giveu rate. Sre Dinsting Refls.

POWDERED. -In Heralilry, Pocderea, or Sempe? signify strewn with an inlefinite number of small charges.

POWDER-FLASK.- A pouch or metallic case for holding gunpowiler, and having a charging nozale at the end. A hom is often fitted to holel powder and used as a thask.

POWDER-HOSE.- I tulne of strong linen, whout an inch in diameter, filled with powder, and used in firing military mines.

POWDER MAGAZINE.-The main olijects to be obtained in constructing a powoler magazine are, to place it in at position convenient to the picces to be serverl, and one least exposed to the fire of the ememy: to make it shot-proof; and to secure the contents from mointure. It is nsmally plaeed 30 feet in rear of the paratuet of the battery: "The reiling of the magezine sloulal not be more than a few inches above the natural lavel. T'lue interior lefight need
not iet more than 5 feet. The width may be 6 feet, and the leneth 1: feet in the clear. The sides of the magazine may be formed of frames and sheeting boards; or, of a row of gabions crowned with two conrses of fascines. The magazine is eovered at top by splinter-proof of timbers, 6 ly 9 inches, laid in

juxtaposition and covered with at least 3 feet of carth, botlo on top and on the sides towards the parapet. A pasarge leads into the magazine on the sile from the parapet, which is reached by one or two inclined trenches.
The drawing shows the plan and seetion of a powder magazine employed at the slege of Fort Wagner $A$, the Magazine; $B$, the covered entrance; C: the telegraph office; D, the lookout on top: E, an embankment of sand covering the magazine. The plan is taken just below the ceiliag. In the section, $A^{\prime}$, is the interior of the magazine; $B$ ', the entrance; $]^{\prime}$, the lookout; $\mathrm{E}^{\prime}$, the covering of suml. The rules given for the construction and location of bomb-proof shelters for men, apply equally to shelters of this class. The only difference in construction is in the size of the shelters, it being much smaller, as a rule, than that required for the use of troops. Large magazines are not constructed in ordinary field works. They take up too much room, and eren the best of them are but poor places in whicli to store ammunition for any length of time, The usnal method adopted is to construct as many service magazines as may he necessary, near the guns to be scrred by them, making them larae enough to contain the amount required for a detinite service of the gun or guns to which they belong.

In Permanent Fortification, powder magazines are built with strong, full center bomb-proof brick arches. sipported on heary stone piers whieh form the ontward walls, and to which interior buttresses are sometimes added. The capping of the arehes is covered wilh from 4 to 10 feet of solidly packed varth. The interior of the magazine, the floors, and the doors and windows, are built with a view to security from fire; and to preserve the powder from dampniss, by a good system of drainage arouml the foundations, aud of ventilation by means of air-holes mate through the piers, and panels of copper piareed with small holus placed in the aloors. No iron or steel fastening or sheeting is allowed in any part of the structure: and in arranging the air-looles throngh the piers they recrive al broken direction, and have a coppur mesh-work placed teross them, to present any combustible material or rats, or mice, penetrating to the interior of the magazine. In large works the magames are isolated, as far as practicable, from the curajute, so as not to emelanger it slould
man acejelontal explosion take place. Tho magnzinc is inclosed ly a stroner, high wall for serontity, and is provided with lighoning rould. Jn small works some one or more of the casomatere in the position forast exponed to the asmilant's fire ate fonitt for the phposes of at magizinc.
'The following memoranda respereliner the vorntilation of powder macuzines is herewith appenterl: 1. 'I'lae: dampuess complained of in boblelings will frequently be found to nrive froth rondensation of the watery vajuer of flace air whide enters the latilange. buildings with there watls and valleme roofs, and "Specially those convered will arth, are particularly liable lo dampusess from this canse. 2. Dir always contains some proportion of watery viper. W'hen Hhe proportion is small, the atir is sufth to be dry, and
 portion is the greatest that can lre diflutad throngh airat agiven tomprature, Ha air is satid to be saturated at that lemperatare. B. 'lowe proportion of watery vilpor which salurated nir contains varios with the temperature, heing greater for high thath for dow lemperatures. Sir contaning is particular proportion of mosistare is rembered less catpable of deposit. ing molisture lyy its tomperature bring ratised, and the reverse: when it is lowered. 1. dir maty be brought to a slate of saturation by reducing its tompratire. If the air contain but little monsture, the reduction of lemperature mast be comsidurable: but if it contain mucin, a slight reduction will bring it lo a state of katuration. 5. If air be cooled helow the degree of temperature at which it will be in a state of saturation, a portion of the watery vapor contatined therein will be doposited on any cold substance wi!h which it may conne in contact. The degree of temperature at which air will thus begin 10 deposit mosisture is cabled its deve-point, 6. Whern warm air conters a comparatively cold huilding, the temperature of the air is reducet by combing in contact with the interior walls and other eold surfaces; and if its temperatura be thus redued below the dete-puint, condrasation will tiake place. In the latter case it is obvions that the admission of fresh air will not tend to dry a buidding, but torender it damp. 7 . If a maguzine 40 feet by 24 feet by 12 feet, the temperature of whose internal walls, ete., is $45^{\circ}$, were 10 be tilled with saturated air laving a tomperature of $50{ }^{\circ}$, and the magazine were then closed, vearly a pint of moisture would be deposited during the cooling of the fresh air to the temperature of the walls. The pint of moisture would result from the quantity of air sutticient marely to fill the magazine: but if the ventilators were opened, the air might be renewed many times in the course of a day, and very mueb more than a pint of moisture be deposited? 8. Nir entering a buildiug whose temperature is higher than its own becomes capable of absorbing noisture from damp surfaces. 9. The aticiency of the ventilation of a magazine will depend upm the legree of dryness which the fresh air admitted into it possesses, and the rapidity of the current of elry air passing throneln the tuthling. 10. The aryness of air is indicated by the mumber of degrees by which its temperature exceds its dew-joint. 11. The ventilators of magazines should, in all cases, be constructed so as to exclude or admit the extarnal air at diseretion, and the instructions fine their une shomld be fromed with a vien to the fxcluexion of the cxternal air when the temperature of its remepaint is above that of the interim of the bunding. and the atmission of the air when its aler-pmint is belue the temperature of the interion of the milding. 12. The interior of a bombpronf magazine with thick walls and at valuted roof is commonly eolder than the outside air in summer and warmer in winter. Winter is therefore the more favorable season for ventilation; but in the climate of England the exceptions to this rule are mumerous, owing to the previn lence during winter of warm, damp winds from the south and west, and during summer of cold, dry winds from the north and east. 13. Whenever, notwith-
standing a carefulattontion to vontilation, magnvines
 proved by the ase of ptrick-lime whicla hav the prepe crty uf alsorbines fron thesair abont one third uf its
 limse is when the contition of the magestus: wosld
 quently, flu ventibitors are ©losed. Vime wonld bre of very lithe serviee while at rapiol corrent of air was passing thronel the building. 1r. Lime will
 ble for vontilation in all makazineis that show signs
 thr kiln, lرroken into dumpes not larger than alsunt the
 intorior of the magazine in shatlow versels. It should lue kejt in air-tirlht fotsks until preat ont for usc.

POWDER MILL. - Works in whicln thr materithes for gumpowilar are preparal and rembpommede and the porveler grained and faced. Sce tionjuerelor.

POWDER MINE.- I (ase or hollow in which pow(ler is phaced to he fired at any particular time. 'Theses were first used in 150:3. at Jiples, when it was busieged by the Spanisit General Cionzalvo, of (ordova.

POWDER PRESS. - ' 1 'lar last opration of hreaking down the mill caka, and the cone now abont to be 1/seribed, of pressing the meal intor a solid cake, is morely for the purpose of fitting it to be marle into at hard grain of égnal donsity. In the prescing process, the powder that has passed through the break-ing-down machinc is bromght from the small magaqines to the press-hunse, where it is compressed into latd cake. Many advantages are gained by this ourration, tirst, the cake when made into grajn of the roquired size absorbs less moisture from the atmosphere than if it had been soft and not pressed, and the lasting gualities of the powder are numel inereased, cspecially if glazed; aceain, by havoing been conpressed the powder is less liable to be reduced to dust in trinsport, for if proporly made it may safely be kept for a nmmber of yoars, (ven on boarel ship at sca, without any appreciable deterioration. Further, by a eloser connection of the ingredients a farger volume of gas is produced. lumk for bulk. than from a soft light powder; it also produces more

grain than could be obtained from " mill cake" not pressed, and consequently there is less waste ly dust in manufacture, and in addition to this. a lard. clan-grained powder does not foul the gun so much as a soft joowder.
For the purpose of compressing the meal powder into what is called "press cake." a powerful hydraulic press is employed. 'The apparatus for holding the meal eonsists of a very stromg gun-mefal box inessed on the outcr and imper sides with oak; it is
$2^{\prime}$ square and $\mathscr{2}^{\prime} 6^{\prime \prime}$ deep, the bottom and one side are permanently fixed to each other, but the other three sides are hinged to the bottom, so as to allow of their being opened; when shut these sides are firmly lield together by strong, coarse-tlireaded metal screws. The box, when about to be filled, is first laid on its side in front of the press, and the uppermost side is then opened and laid back. Two gride racks, of gnn-metal, with wooden ribs on them, forming a number of groores one-teuth of an inch in width and five-eighths of an inch apart, are hung on the inside of the box to those sides that have not been opened: into these grooves a series of gun-metal plates one-tently of an inels thick are slid. the racks keeping them upright and equidistant. Tbe spaces butween the plates are now filled in with the meal powder, aud this being done, the raeks are withdrawn, leaving the plates supported in their position by the powder between them. The third sidewhich has remained open until now-is then lowered down and serewed fast up to the two sides already in position. The box is provided with two projecting gun-metal claws that fit into a mandrel attaehed to the front of the press; upon this mandrel the box is now tnrned by means of overhead tackle, the mandrel being so adjusted that when the box is raised partly into a vertical position it is pushed over and lowered down exactly on the center of the press table. Attached to the press eross-heard are two overhead rails, carrying a large block of hard wood, which is hung and travels upon these rails by means of four wheels; when the box is turned over on its side for the purpose of filling, this block is drawn back to the extremity of the rails, and when the box is filled and replaced on the table and in the proper position for pressing, the block is drawn forward again until it arrives esactly over the eenter of the box, where it is retained in position hy means of a catch.
The press is now put in motion by means of pumps, which are driven either by stean, water, or hasd power, and are placed in a separate building, on the opposite side of a high traverse that divides the one building from the other. In the pump-wouse the attendants remain in safety while the pressing operation is being performed. The pumps are of the description generally used for sueh purposes, and are fitted with large and small plungers. At first, when the naterial to be pressed is soft, the large plungers are used and the box is raiscd rapidly, but when the press lias traversed abont three-fourths of its distanee the nse of the large plungers is diseontinned, and the smaller ones worked until such time as the powder is subjected to a pressure of 70 tons per square foot of surface. When the pumps are first put in motion, one of the attendants remains in the press-honse for ashort time to see that the bock enters the box fairly, and that it is in the ceuter: a clearance of about a quarter of an inch is allowed all round between it and the box. If all is in order, the attemdant then retires to the pump-house, and when the requisite pressure has heen obtained, the press is allowed to stand for a few minutes with the full pressure on it ; this allows the air to escape and the powder to consolidate. Shond the pressure go bown from this cause, the pumps are againset in motion until the full pressure is attained; and, after allowing a few minutes to elapse, the escope valve is openall and the ram with the box deseends. The overhead block is now run back ont of the way, the box turned over on its side, and all the fixing serows removed from the three sides, the mpermost one is lifted up and turned over, and the other two are opened out. The pow der, with the gnm-metal.platess between it, will now be found to be standing like a solid mass on the side of the box underneath, and which for the time forms the bottom.

The plates and powder cakes are now separated by copper chisels, and the cake--being from threeeiglath of an inch to one-half inch in thickness, and
loowing like slabs of slate-is broken into picees about the size of a man's hand by means of woolen mallets. It is now collected, put into tubs, and removed to the nest magazine, where it is allowed to remain for two or three days; this renders it so loard that it is not easy to break it. Some diticulty is at times experienced in obtaining precisely the same density in the pressed powdes, and it is an ascertained reality that any groat difference in this partienlar causes the powder to vary considerably in quality and strength; in fact, nntil the greatest precision and certainty are obtained, firstly, in purifying the ingredients, so as to ensure their containing the same percentage of gases and carbon; and, secondly, by an equally precise amount of ineorporating and pressing, absohnte uniformity in the quality and strength of the powder manufactured cannot be secured. See Gunporador.

POWDER-PROOF.-All gunpounder for proving ordnance should be of the best quality, of the kind used in the gun to be proved, and giving not less than the standard initia] velocity; it should be tested imnediately before being used unless it shatl have been tested within one year previously, and there be no reason to suspect that it luas become deteriorited.

POWER.-In military affairs, as well as in all others power is knowledge - of human passions of arms, of distance, of the skill and numbers of an eneny. To be in the porer of an enemy, is to hare taken up, injudiciously, such a position as to expose to defeat whenever the enemy may think proper to attack.

POWER MILLING-MACHINE. - 1 machine much used in the manufacture of small-arms. The drawing represents the Pratt of Whitney No. 2 Power Milling-Machine (Lincoln Pattern), which is in extensive use in armories and manufactories in Ameriea and Europe, and is highly approved at the National Armory, Springrield, Dlass. It has automatic

screw-ferd, and automatic stop-motion adjustable at any point, a foot-stock for steadying the ends of long arbors in lieavy ents, and a vise with permanent crank-wrench. The head is furnished with back-gears. The cone lats three grades, and carries a $1 \frac{1}{2}-i n e h-h e l t$. The feed cone has four grades. Speed of countershaft, having 11 by $3 \frac{1}{2}$ inch tight and loose pulleys, 125 revolutions per minute. Weight, with count(crshaft, 1,200 pounds.

POWER OF ATTORNEY.- An instrument anthorizing a person to act as the agent or attorney of the
jersongranliner it. A groneral power antlorizes the
 jowor limits tho beroney los partionlar things. A bower of attorney may for by parole, or momer axal.
 will bind his primeipal unloss his own power is eriver mater scall. Gratsts of this hatare ate vory strictly (ansimed. Anthority given to sum jursein anmot
 forth in the original erant: The rlenth of the principal at oncor cancols a powor of allormey. Nil rosualitions in the puwer must he strictly oifserver to rember the attornoy"s action laral.

POWER PRESS. - I form of jucoss (extornsivoly (m) ployed in the manutacture of tire-arms. T"hat repore

sented in the drawing is provided with Stannard's bydranlic adjustment. A foot-lever actuates a stopmotion that instantly stops the plunger, always at the hiohest point of the stroke. The crank-shaft, of steel, is made withathrow of $2 \frac{1}{2}$ inches, or less, as it may be ordered for trimming or for puaching purposes. The shaft-bearings are 3 inches dimmeter and 8 inches long. The driving-wheel. 32 inches diam eter and weighing 380 ponnds, receives a tinch helt. The planger is a hollow cylinder, open at the top, and bored to receive a piston, which is also hollow. The plunger travels in gibbed slides, and has a portion of one of its danges toothed, to engage with a pnion operated hy a crank-wrench. The hollow pisLon contains oil, or glycerine (preferably the latter, as being unaffected by changes of temperature). This
piston is attacherl to the ronnk loy n comaterting-lhar Siy merans of a thamb-value in the bottonn of the pis
 und terminaterl by a knels, the lifuitl may lue allowe
 reremi, as the julanger is lowrerel or rained by the jin-
 puncla can thas be mathe vory minnte and rexact, unal the Tolative jositions of the pibniger and piston maty be firmly sconred lsy a binding-s.row on the formur, which is splita porion of its lengell, for this phrposer.



 dom rirdered. la lim of it. one is mate hy sinbstitnting for tho hollow pistom, a soljo onte lasving its rir. comforener threaded to matrla an annular mat placerel in the central part of thr: jhlumerer, and projecting tharefrom sulliciratly to be readily turnerl to ratse or lower the planger. TThe press is also furnisherl without plangrer adjustument.
POWER SHEARS. I shomrinw-machinc manafac-

 is novel in style and action, noiseless in its oprontion, and nll fos parts liable to be rlogered isy dast or injured by soale are contained inside of the pedestal, but aire still fully accessible thrours the medinm of doors. On a shaft passing thronirh the machine from end to culd is a worn charging with a larer worm-wheel. This shaft is drivent by a facel thance-whorl (used as a pulley for belt) from which connection with the shaft is made by means of Pratt's Patent leriction-clutcla. The transverse shaft carries the worm-whecl, which has an rerentrie, forming a part of the wheel, a connceting-rod from which engages with the lower adod or prolongation of a varically vibrating horizontal cutterhead, furnished with steel jaws on cither side the central baring, which agage as shears with corresponding fixed jaws. One pair of these jaws is mate with recesses of the form of segments of circles to recoive round bars, and the other is straight. In front of the jaws are adjustable sliding rests, to resist the upward tendency of the piece to be cut, and at the back is an adjustable trange for dotermining its length. The machine is started or stop)perl instanameously, withont the slightest shock, and there is no loss of power by starting it from a purfect stand-still. Speed of pilley on machine is 280) 10300 every minute. The stre cutting-blates may be removed from the jaws for sharpening or replacement with very little irouble. The combination of the serew, worm-wheel. eccentric, and lever results in a machine of immense power. Onc size machine is made. It will cht round iron to $1 \frac{5}{5}$ inches dianeter: or Hat iron ${ }_{4}^{3}$ inch thick to 3 inches wide. Weight, with countershaft, 4.600 pounds. Sperd of commerslaft, having 16 by 6 inch tight and lonse pulleys, about 240 tevolutions per minute. See - Ingle shearing-muchine, Lever shearing-machine, and shearing-mathine.

POWER TRAVELING CRANE.-This erane consists of a bridge composed of two wroughtiron girders earried at each end by a two-wheeled truck with double-flanged track wheels having chilled treads. It one end of the bridge is a crab containing the operating mechanism, and suspended bereath this is the operating platform. Power is communjcated to the crame by an endless rope, moving continnally in one direction, and driven by a suitable wheel on a stationary sluaft at one end of the longitudinal tracks, this shaft being driven by the power transmitted in any convenient manner from a stationary engine, either directly or through the line shafting. The mechanism of the crab is such that the operator, standing upon the suspended platform, is eaabled by means of three levers, to apply power so as to cause the bridge to travel longitmdinally on the
tracks in either direction, or the trolley to travel in either direction, across the bridge, or to raise or lower the load. The bridge and trolley may be moved independently or simultaneously, at will.
The illustration on page 57 shows W'eston's 'Travellng crane, driven by power transmitted from an stationary source. and controlled by an operator standing on a platform suspended from the crane at one end of the bridge. The bridge is arranged to travel longitudinally upon overbead tracks, and the trolley to travel transversely across the bridge, so that the effiriency of the crane covers the entire rectangle included between the traclis, which latter may if desired, be 400 or 500 feet, or more, in length. "Cranes of this construction are built of any desired capacity from 5 to 50 tons, and of any span.

The motions of the bridge are effected by fixed wire cables. so arranged as to constitute a perfect squaring device, which insures the absolute parallelism of the end trucks of the bridge with their tracks under all conditions, so that the briclge always moves smoothly and with the least possible friction. The
form should, if possible, he arranged as shown in the engraving, beneath the bridge, as in this position the operator hasbest command of the floor below. Where the head room does not allow of this, or where other obstructions interfere, the platform can be arranged at cach side of the hridge, and projecting but slightly below the rab. But, for the reason above given, this arrangement is not so good as that shown in the cagraving. A foot way across the bridge gives access to the parts attached to the latter, and also to the trolley. The main chain sheaves have anti-friction bushings, and the action is such as to distribute the wear ecpually throughout the entire length of the chain. The power traveling crane constitutes the most perfect and complete apparatus for handing heavy loads, and is to be preferrel to all other type's of cranes, wherever the construction of the building, and the other surrounding conditions admit of its use. It avoids all strains other than vertical upon the building in which it is contained, and for its support requires merely a trestle or wall of sufficient stability to resist the direct pressure of the crane and its load,

motions of the trolley on the bridge are effected through the two parts of the main loisting-chain, thus avoiding the need of an independent traversing mechanism and greatly simplifying the machine.

The hoisting and lowering gear consists of cut worm-wheels with bronze rims, driven ly cut steel worms running in oil, and provided with antomatic devices by which the load is always self-sustained. Motion istransmitted to the worm gears by cut spurgearing, driven by the primary shaft, which in turn is driven continuonsly in one direction ly the driving rope. Antomatic stops are providel for arresting the transverse motion of the trolley at either 'ned of the bridere, and also of the bridge at eitherend of the longitudinat tracks, so that over-travel, cither of the briage of of the trolley, cannot by any accident aecur.

Provision is always made for two speeds of honsting and lowaring, and when desired back gearing is added to the crab, thas atfording four speeds of hoisting and lowering and two speeds of trawd, both of bridge and trolleg. Whon tlesired, hand gearing can be itsonded to emathe the crane to be mowit by hand in the event of the power being tomporarily disabled. This athe somewhat to the expense of the crane and is usually not desirable, as the motions by hand are neressarily very slow amd the owe ensions for its use very rare. The operating plat-
so that there is practically no limit to the capacity which may be obtained. With jib cranes, on the contrary, lateral strains upon the building are unavoidally introduced; and, where the cranc is large, either in capacity or dimensions, these strains become exceedingly severe. A jib crane encroaches seriously upon the floor it covers, and its capacity for the horizontal transfer of loads is necessarily very limited. The trayeling crane. on the contrary leaves the floor below it entirely clear, and is practically unrestrieted in the length of its travel. The designing of the Weston power traveling cranes has been a sulpject of the most careful study and thorough experiment, extended over a number of yoars. it is believed that these are the most lighly orgamized and mechanically perfect cranes which have ever been built. (rames of this construction are adiated for use in foundries, armories, forgus, machine shops, rolling mills, stone yards, and other places where heary loads are to he handled, and where it is desiret to aceomplish this in the most eftieient and eonomical maner. Where actively employed cranes of this type will do the work of from 20 io 50 men usiner tha ordinary devices of tackles, jacks and serews. so that it is demonstrable in many cases that the economy drected by a crane within one or two years will entircly cover the cost of procuring it. See C'renes, and IIand Traveling Crane.

POWLDRON.-la lloraldry, that part of armor whicol covers the shouliders.

POWLETT GUN CARRIAGE. - I pmemmatic ritr riare comsisting of an improverl slide titud with
 port of rommine and recoil cylimers, which are phaced maderneath the \&inn and betwern the slinke rails in
 from the chances of disarrangement by a shat of shell in action. A ratek-buere runs alome the inside of one of tha whle rails with a rolliter, reeventrid clateh, with a lever attarhed to fis eollat, so that
 13", the lever falls and athomationlly seroures the gun in that pesition matil it is desired to run in baters, or to be bronsht bitek lo the rear bothers for lobing. The ruming eyinalers are firmly tixat
 pistons, thereme of which are seremect in tha* form Ward transom of the brackets of the slithas carriatge carrying the erma. 'lyis attarbment of the coblar of the pistom-rod to the carritge has atot motion. so arranged that whenthe gat istired there is sutherent play not tostrain the piston-rex in the gland stati-

This rumbing cylinder is titted inith supply ane
 that any motion to the right or tes the left will trat verese ur tratu the eme to right or left, it dewired.
 that there is morentor of axis or motion, and, like wien, there are no siliske valves for reversione of menfiom, as this is incomplishaed Jy two pairs of sumply

 musing the lewer to the right or left. the training crorin: would follow that motion and train the ganto the right or left, as desired.
 is operated by un bprisht cylinder. with sulaciont drifi lo erive instantatheonsly the rextreme degree of revation or depession required hy the acetion of
 grm are rackedstambards, with nowable slol, lave ind a compressar screw encompasibur a racked die or shot-phus, by which, with onc-half turn of the screw lever. the breed of the fan is timmly sureareal at any degrex of wevation or depression dexirel. By this methorl of working haty granc, two monand a emmersare all the crew that jo required to work and latid the luaviest ordmane and all the power

exhanst pipes. with reversing valves or cocks, whereby compressel air furnished from below at it pres. sure may be supplied to either end of the eylinder, at will, 1 y moving the lever attachad to the stem of such reversing valves forward or backward, for rumming ont or rumning in. Whern the gran is run out and fired, is pressure of any number af pounds of eompressed air as may be desired remains at the rear emb of the rylimer for picking up) the recoil, and, if it is desirel, the clutel-iever maty be elevated and secured and the gun made to rin immerlately in hattery again, antomatically, after collh fire. In traming this compace, which is dme withont tackle. winch, or ehain wheel, there is placed at the rear of the carriage slide and between the same a pair of oscillating eylinders hid horizontally with a plane of the slides and attached direetly with a worn hi of the slides and attached directy with a worm lis war party he hount his horse. both in fuld war
geared into a worm whed baving a pinion geared paint, raises a pole to which is atached a bunch of
gine and receiver of suitable size. The drawing Tepresents at Diston 5 B.h..R. gun mounted on the Powlett carriage. Commected with this conriage is an ingenious tand-by reooil chack devier, whall. sloond any arcident hapen to thr eompressed-air machincry or pipers during action, can be thrown by a lever and chteh instantlyinto scrvice. This recoil check is mechanical, and has an cogged rearing. and keeps itself in order by rumning perfoetly frem during all mancuvering, until throwniato gear in an emerancs. Sow Brake.
POWWOW.- I jriest or comjuror amone the Forth American Indians: also, coujurations performed for the cure of diseases and other purposes, attended with great noise and confusion, and often witl daneng. When an accepting Chief wishes to orranize
feathers and a small red blanket, and rides about the village singing the war song. Those wishing to go, mount their ponies and follow the chicf. This is continned several days, until there is a suticiency of volunteers for the work.

During the absence of the war party, the people at home become very anxious, and all the conversation is centered on the absent party and its probable time of return. When it is announced that the wartiors are returning victorions, there is a great excitement throughout the village. The womm chant songs of victory, while the old men narrate the deeds of their forefathers and themselves to excite the emulation of the young. The "Medicine Men" gallop through the camp beating their drums and shouting encouragement, while the warriors painted black, with their horses in the full war paint, perform the scalp dance.

If the expedition turns out to be a failure, and some of the party are killed, the relatives of the killed cut off their own hair and the tails and manes of the famorite horses of the deccased, and ary without cessation for days. weeks, and even months.

POYNADO.-An early name for a poniard.
PRAELIARES.-Among the Romans, fighting days on whieh they thought it dawful to engage in acts of hostility; for during the time of some partjcular feasts, they reckoned it a piece of impiety to raise, march, or exercise men for war, or to encounter the enemy, unless first attacked.

PRAIRIE. - The name given, by the early French Explorers of the northern portion of the Mississippi Talley, North America, to the vast fertile plains which extend from western Ohio and southern Michigan, across the States of Indiama, Illinois, Missouri, Arkansas, Iowa, Kansas, Nebraska, and Dakota Territory, including the southern portions of Wisconsin and \imnesota. These great plains or savannas are sometimes flat.but of tener rolling like the long swells of the ocean, and rise in gradual elevation from 800 to 1.500 feet above the level of the sea. They are drained hy numerous rivers, branches of the Ohio, Mississippi. and Missouri, or emptying into Lake Michigan, whose channels seem to lave been worn to the depth of 50 to 300 fect, with vertical walls or hluffs of limestone, sandstone, displaying in some places banks of clay, sand, and loam, 200 feet in thickness. Beneatb the prairies, northwest of the (hio, are extensive coal-fields, with deposits of iron, lead, etc. The soil is finely comminuted, rich, and extremely fertile, varying in thickness from 1 or 2 feet to the bottom-lands on the borders of the rivers, which are of great depth and inexhaustible fertility, These plains are destitute of trees, except in isolated groves a few rocky ridges, and the borders of streans. They are covered with tine grasses, and brilliant tlowers of various species of the helianthoid compmsitus. Water is found from 15 to 30 feet below the surface. These great prairies.covering an area of about 400,000 square miles, formerly fed vast herds of buffalo. deer, wild turkeys, prairie-hens or gronse, prairiedogs, squirrels, etc. In the autumn, the dried grasses, fired by the Indjans, converted them into seas of flame. The laek of timber is attributed by some to the fineness of the soil. Jemains of ancient mounds, fortitications, am? cities slow that they were, at some distant period, inlabhited by a more civilized race than the ladians found by European diseoverers. These great robling phains, or naturat pastures, with only the labor of plowing, produre large crops of wheat or maize, ame, penelrated hy navigable rivers, and erossed by cheaply hailt railways, they formone of the most easily caltivated and prolitic regions of the world, and are capable of sustaining immense popmlations.
PRAIRIE-CARRIAOE.-The necessity for a small carriage for the mountain howitzer, when used on our western prairies, hats led to the adoption of a special carriage for that service, with a limber at tached as in a field carriage. This renders the car-
riage less liable to overturn. and respect to the two-wheeled one. The limber is furnished with two ammnnition boxes, placed over the axle-tree, and parallel to it, and just wide enough for one row of shells and their cartridges. See ciuncarringes.

PRATT RANGE-FINDER.-Any device, by means of which the distance between two objects may be measured with such accuracy as will warrant its application in determining what elevation shoukd be given to a fire-arm discharged at one of the points, in order that its projectile shall strike the other, or within effective proximity, may be called a range-finder. For militarypurposes, a range-finder should be as small inexpensive, durable, and simple as is possibly consistent with necessary accuracy. It should also not be limited in its application to one base, and the base should not be long in comparison with the range. It is thought that the method of use suggested by Lieut. Sedgwick Pratt, Third Artillery, U. S. A., may materially increase the value of fixedangle telemeters. An outline of this method is here given as applied in general to telemeters with fixed angles. It enables the observer to obtain the distance between two points even when he can occupy neither of them. The observer being at $\mathrm{C}, 10$ obtain the distance between the points $A$ and $B$, he lays off the bases $\mathrm{C}^{\prime}$ and $\mathrm{C}^{(" \prime \prime}$, as if to determine the distances C A and C B, respectively. Without measuring these bases'he measures the distance $C^{\prime \prime} \mathrm{C}^{\prime \prime}$, and this is multiplied by the number corresponding to the instrument, 20 , for instance, giving the distance A B . This is because the angle " ("C" is equal to the angle A C B,and the sides $\mathrm{C}^{\prime} \mathrm{C}^{\prime}$ and $\mathrm{C}^{\prime} \mathrm{C}^{\prime \prime}$ are proportioned to the sides A C and B C in the triangles $\mathrm{C}^{\prime} \mathrm{C}^{\prime \prime}$ and A BC . Care must be taken to lay off the bases in the same direction from C , that
 is, both to the righit or both to the left of the observer at C as he stands facing the points A and B for the two bases respectively. Where the instrument is adapted to haying off a right angle also, the observer can place himself on the line between two points. A and B , and obtain the distance between them in a very simple manner. Being at C , he lays off in the same direction the bases C C' and C C". one corresponding to the distance C A and the other to C 13, adds the bases, and multiplies their sum by the usual number. Lieutenant Pratt's instrument consists of four mirrors. Two are set at an angle of $45^{\circ}$ and two at a lesser angle. The number of mirrors is the same as in the modified Azémar instrument, which gives three angles. The bases are or and $\frac{1}{5}$ of the distance to be determined, and with the longer base the instrument is used like Weddon's. The method shown in the figure is applicable to the Weddon range-finder, as wedl as to those giving a right angle. When the right-angle instrments are used, care must be taken to lay off this angle at the right or at the left extremity of the base in both observations. When A C C and $13 \mathrm{C} \mathrm{C}^{\prime \prime}$ are both right angkes the line $\mathrm{C}^{\prime} \mathrm{C}^{\prime \prime}$ will he perpendicular to the lime a 13 , and this affords an ensy method of haying off a perpendicular to an inaceessible line, two points of which are visibe (1) the observer. 'This method can be used also with variable-angle telemeters. See Nohan Range -finder, Liussell l'rism Rangefinder. Teremeter, Wathins Renge-finder, and, Weldon

## range-finter

PRECEDENCE.-Priority in rink or precedenc in
military life is regnlated by the date of an ollorers commission, or the stambiner in the Corjes to whieh he maty belong. 'The following is the order of proerelonce of the several Regimants amel (orpat of her Majesty's service, viz:- (1) Tha Rerimonts of Lifu Guatels, and the Royal Rumimont of Horse Gimards. (3) The Koyal Ilorse Artillery; but on parade, with thoir grans, this Corps will take the rinht and march at the head of the llousehold Cowatry. (3) "The IRegiments of (invalry of the Lime, necoriling (o their number and order of precedrace. "The Roynl Regiment of Artillery (5) The C'orpes of Royal Lingineers. (6) Tlae IRegiments of Font Guards. (i) The Regimente of Infantry of the fine according to their number amb order of procedence. (8) The Departmental (oops. The Royal Narines when aeting with the Troops of the Linu, take rank mext to the 49 th Regiment. The liille 13rigarlo rank next to the 93, Regiment. The Militia Ragiments Iave precedence after those of the Line, according to their respertive numbers as fixal by lot. When degiments of lsritish and Irish Militia of the same arm are serving together, the Militia of that part of the United Kingdom in which the Regiments may at the time be quartored has preeedence over other Militia, but Jegiments of Artillery Dilitia alway have precedence over the Infantry Militia. On parade for purposes of maneuvering, Corps are to be distributed and drawn up in the mode which the General or other Ofticer commanding may judge most convenient, and best adapted to the purposes of the serviee. Jille Battalions slaould be formed upon at flank.

PRECEPTORY.-The name given to ecrtain houses of the Knights Templar, the Superiors of which were ealled Inights I'receptor. All the preceptories of a province were subject to a Provincial Superior, callad Grand Preceptor; and there were three of these who held rank above all the rest, the Grame Preceptors of Jerusalem, of Tripolis, and of Antioch. Other houses of the order were called "Command. eries."

PRECISION.-Exactness; aecuracy: serupulous observance of certain given rules. In military phraseology, this term is often employed when renarking on the drill or marching of a regiment. The term is also applied to riflcd arms under the name of Arms of Precision.
PREDAL WAR.- 1 war carried on by plunder and rapine. Commonly written I'redatoryltor.

PREFECT.-A common name applicable to various Roman functionaries. The most important was the Prapfectus C'rbi. or warden of the city, whose office existed at an early period of Roman history, but was revived under Augustus, with new and greatly altered and extended authority, incluting the whole powers necessary for the maintenance of peace and order in the city, and an extensive jurisdiction civil and criminal. The Prefectus I'ratorio was the Commander of the troops that guarded the Emperor's person.

PREFECT PRETORIAN.-In Roman antiquity, the Commander of the I'ruetorian frumods.

PREFET. - The name of an important magistrate in modern France, so called from his cxercising functions somewhat similar to those of the profectus urbi at Rome. In old times, the otticers whose duty it was to superintend the details of administration in the Provinces were ealled. Maitres de Requetes. Under IIenry Il., their oftice was rendered pernanent ; and at a later period, their powers were muel extended, and they were known by the designation of Intendints. The Intendants were abolished at the Revolution; and a law of 1800 first appointed l'réfets for the departments, with powers greaty similar to those of the lntendants. The othee, as jt now exists, includes the superintendence of police cstablishment. the enforeement of the laws, and the entire control of the administration of the departments. The Préfet is the head of the exceutive, exercises most of the
government patronagr, inclurling the appointment of a aones prifet for ceacll . Irrombian ment, aryl in time of thmult may call sout the military, or provisionalaly
 extonsive powers is lo be fonnd in tho (innsoil dr le Prifecture, which acts in somme meannro as a conart of apperal from tha decisions of the Prafet.

PREPONDERANCE.-1"he exeress of wright of the part of the piece in roar of the irannions rover that in front. It is expressed liy thr lifting forre. in pountls, which must bre applimed at the caseablecel of batance the piree upon the tramoions. It is nsefal only for piows momatod on traveling earriages, io keep them steady in tramportation. For all othor pireers of recent morlel the axis of the trumnions intersecte tho asis of the giores at the conter of gravity thus conabling the piece to be elevated and reproserel with groater case. The discharge dores not sromilhy change the position of the juece before the projectile leavas the bure
PRESBYOPIA. -This comlition is an areompanimant of the later years of life ; it is a physiolourical or pat. ural, not an abnormal change and fetects all foes It depends almost solcely mpon the failure of the ace commodation, lue to a grathat hardening of the Iton and decrease of the power of the riliary manale at age advaneas. Althongh this dererease in the pow or of adjustment for near objects is not notiecel montil.
 nine or ten.the accommodation is gradaally growing weaker, that is, tine print can no longer de seen as close to the tye as formorly.
This defect is not of itsclf a canse for the rejection of a recruit, but those in whom it cxists are usnally over are. All eyes undergo the changes producing presbyopha ; we frequently, however, hear of persons, ripe in years, who have never felt the necessity of glasses for reading or other fine work, and whose "strong" eyes are their especial pride. Such persons have' been near-sighted, probathly, all their lives their defect neutralizing the normal changes taking plaer, a weak concave glass before such ayes will usually improve distant vision.
The popular opinion that the use of glases should be postponed as long is possible, is erromeous. Is soon as unpleasant feelings denote the approach of presbyopia, glasses should be resorted to at once, as the longer the eyes are deprived of the aid which they need, and consequently are subjected to strain. the more rapidly will the changes in the eye become developed.

The treatment of preshyopia is found in ennvex glasses. of such strength that fine print may be seen rearlily at 7 to 8 inches. Here such a grlass is employed not to correct the refraction, as the rase of the convex lenses in hypermetropia, but to aid the power of the eye in accommodating. Presbyopin.in a perfectly lualthy eye, docs not affeet the sharpmess of distant vision, although in extreme old age, distant vision also is somewhat diminished, owing to other changes which affeet the eyr.

Thic glasses slioulil be used at first only while read ing by lamp or gaslight. When the unpleasant sensations show themselves also in the day-time. then the glasses previonsly worn at night should be used for reading by daylight, and their place supplied by a pair of slightly stronger glasses for night-work. In old persons, when distant vision is improved by weak convex glasses, those of the proper strength may be worn constantly. See Recruits.

PRESENT.- I term ased in the British service. meaning to bring the musket to a horizontal position, the butt resting against the right shoulder for the purpose of discharging its contents at a given object.

PRESENT ARMS.- A command in tactics directing that the musket be brought 10 a certain prescribed position, for the purpose of paying a military com pliment. The movement is ex?cuted as follows: The Instructor commands: 1. Prexent. 2. Anus. Carry the piece with the right hand, in front of the
center of the body, at the same time grasp it with the left hand at the lower band, the forearm horizontal and resting against the body. (Two.) Graip the small of the stock with the right hand, below and against the guard. 1. Carry, ?. Arms. Resume the carry with the right hand. (Two.) Drop the left hand by the side. See Manual of Arms, Fig. 2.

PRESERVATION OF AMMUNITION AND FIRE-WORKS.-Storehouses and maqazines should be kept in the neatest possible order, the stores arranged as much as possible, by classes, kinds, ant calibers, and labeled. They should be ventilated from time to time in the midelle of the day, in fine weather, particularly those which coutain ammunition and fireworks, which are injured by moisture. Ifenfen butlxare generally kept in cellars, ou account of their weight ; the boxes should be kept as dry as possible. and so pilecl as to admit the circulation of air about them. Curtriages firm sulle-erms are kept in magazines, the barrels or boxes being piled 3 or 4 tiers high at most. Fixed emmunition for camnon, if not in boxes, should be placed in piles formed of two parallel rows of eartridges, with the sabots together, in 4 tiers for 12 -pounder; ehoek the lower tier with strips of wood fastened with small nails; put a layer of tow 2 inches thick between the shot; let the piles rest on planks, if there be no floor, and cover them with paulins; have the place swept, and the cartridge-bags brushed off. Leave a passage of 18 inches between the double rows, and keep them 2 feet from the walls. Fixed ammunition should not be put into powder-magazines if it can be avoided: it should be kept in a dry place, above the groundHoor if practicable. The store-rooms shond always be aired in fine weather ; the piles should be taken down and made up again every six months at most, the bags examined, repaired, and the damaged cartridges broken up. A ticket on each pile should show the number and kind of cartridges, the additions to the pile, and the issues. Canisters are piled up like fixed ammunition, in 4 or 5 tiers. Empty cannisters in 10 or 12 tiers, the bottoms and covers separately. ruetridge-bags are filled and kept like fixed ammunition, or packed in boxes or barrels. When empty, they are stored in bundles of 50 , sealed up in paper cases, earefully closed with strips of thin paper pasted over the semms. Paper cartridge-bags are kept in bundles, packed in buxes or on shelves.in a dry place, with pounded camphor and black pepper or tobaceo; the flamnel hottom dipped in a solution of the sulphite of eopper. Loukded shells should never be pat into magazines, except from absolute necessity; powder is not well preserved in them. They should be pild on the ground-floor of a secure building, on planks, if the floor be not boarded, in 6 tiers at most; the fuses of the lower tier, in the wacant spaces between the sliells; those of the other tiers, turned downwards. like the fuse-holes of empty shells. The pile should be covered with a paulin. Ise the same precautions against monsture and aceidents as in a puwder-magazim. The ditierent kinds of cunveter whit are kept together, in hins or boxes. Stom-ntuterh is knpt in it dry place, such as a garret, in boxes or barmels, or are jiled on the floor. (Quichmotech, if mot in boxes, may be hung up in hunclles on ropes or pins and 'overel with paper. Fritition. mimers shonld be kopt in tin boxes. Port-fires, in bumples of twn, are phaced in boxes or in barrets on whe in safe and Iry situations. Fiuses are packed in boxes, the same kimu, as much as possible, in the same lox, in very lry and wedl-wentilated stores. 'glinders of rock-fire are kept in loxey or barrels like fuses. Firetombes are kep in coon but dry and airy phaces, suspernted ly the handle. the bottom resting on a board or done that they may not become deformed. Wach hatl shomb be labeled, stating its caliber, weight, and yoar of fabrication. signal-torliy ts:ari packed in boxes, the stirkstied tugether. Each box slould contain rockets of but one caliber, and shouled
lue marked with the size and the kind of decoration. If the sticks be attached they are tied in bumdles of 5 aceording to the kind of decoration. Wrar-ruchets are preserved in dry places with the same precalltions as loaded shells. Tarred lintis are strung on a rope and hang up. For transportation they are backed in barrels with straw between the tiers. Fuscines and torches are packed like tarred links. The parts of ornamentad fireworks, owing to their liahility to deteriorate in store, are generally made as reciuired. They may be packed in the same manncr as port-fires. See immuntion.
PRESERVATION OF PROJECTILES.-Projectiles for rifte grons should be neither lacquered nor painted, for the reason that either of these substances wouli adhere to and foul the grooves of the piece. When practicable, the should be kept under cover, in a dry place, and if unboxed, shonld be oilcd once a vear with sperm oil. They are piled, according to kind and calliber, on their sides, in tiers of convenient height. The fuse holes shonld be stopped with low or cotton-waste. Great cure should be taken when handling them to avoid injuring the sabot. No shells of any description should be kept habitnally charged. This is done, as oceasion requires, when firing. Empty shell, whether in store or in transportation, are most carefully protected from dampnes. They have the fuse-bonching coated with composition, and the fuse-hole is stopped by a ping of very soft wood which is well coated with a mixture of oil and tallow, and screwed in. The ends of the plugs are not sawed off even with the shell, but left square, and project sufficiently to allow them to be unserewed by means of a wrench: and when these plugs are removed for the purpose of fitting the shells for service, they are not thrown away, but. preserved for future use.

When projectiles have been allowed to become very rnsty, they may be thoroughly cleaned in the following mamer: Provide stout rectangular wooden tubs, fitted with faucets and tronghs, for conducting the waste water, acids, etc., to the gutters. The loose rust having been removed with a file-card. place the projectiles in the tubs, and cover them with a mixture of three parts muriatic acid and four parts water. After pickling for an lour, or an hom and a half, remove the acid directly into another tub, if convenient, as the same mixtirre may be used many times. Then thoroughly rinse the projectiles in ruming water; if any rust remains it will be in a spongy halforlissolved condition.easily removed with a file-eard. After rinsing, the projectiles are wiped with a dry elothand piled, when they will be ready for lacquering.

Whenever projectiles are to receive lacquer, carn is taken that the fuantity applied does not incrase: the diameter more than is indispensably necessary, amd in no ease above establishecl high gauge. Old lacpuer and rust are removed by seraping, as far as can be conveniently done, before il new coating is applied. Neither hammering nor beating is resorted to for this purpose. After numerous experiments upon different lacquers cmployed for the preservation of projectiles from rust, the French have abmadoned all of them. The projectiles are simply piled, under sheds wher practicable, or in the open nir, and, when put on board of ship, cleancal of rust and rubled oyer with whaleonil ; the same meams arre adopted every three months of the cruise.

In cmptying shell they are handled carefully and placet on a bench with a hole in it torereive and support the inverted shell. A woolen vessel placed below rarives the powder. The powder whichans heren removed from shedls is unly used for tilling shell, as it always contains a small' druntity of grit, which renders it unfit for general service. All jowdur takin from shell is sifted, and all dust and particles of dirt removed, as far as possible, before putting it into larrels. Should the powder have become caked, so as not to be casily removed by wash-
ing out the shell, a handful of small ironshot put in the shell fucilitatrs this ojeration. Sere Piting of Challe and l'rajpitilis.

PRESERVATION, STORAGE, AND TRANSPORTATION OF POWDER.- In thr powdrermumarines the
 light, or four thors, if necessary. Small skias shomid fo placed on the floor and betweren the serveral tiars of barreds, in order to stady them, and claneks shonld be placerd it intarvates on the skids to pre:vent the rolling of the barrets. 'I'he jowarer should De sopurated aceording to its kind, tho placo and date of fubrication and the proof-range. Fixed ammani. tiom, esperially for camon, shanded not be put in tho Hame magazino with poweler in harrels, if it can br avoidal. In a roon 18 or 14 frat wide, tho biarrals naty be arranged in a donble row in the copater, two alleys $2 \frac{1}{2}$ feet wide, and two single rows 6 to 12 inches from the walls; in this way themarks of each barrel may he sech and my barel can be catily roandied. In a room 12 feet wille, an erpual numbur of barrels may be placerl in two doublo rows, witha central alley of 3 fert, and two side alleys, next the walls, of ahout 10 inche's eateb. There shombld bo an ans encmmbered spatce of 6 or 8 fort at the dour or doors of the magazine.
Should it be necessary to pile the barrels more than four tiers ligh, the upper tiers slonuld be sup)ported by a frame resting on the thoor ; or the barrels may be placed on their heads, with bourds between the tiers. Justides being recorded in the magnzine book, each pared of powdershould be inseribed on a ticket attached to the pile, showing the entriss and the issmes.

Fur the prescrvation of the powder, and of the floors and lining of the magazine, it is of the greatest importance to preserve unolstructed the circulation of air under the flooring ns well as above. The magn\%ine should be opened and wired in clear, dry Weather, ishen the temperature of the air outside is boner than that imside the magazine. It shonld not be opened in damp weather if it ean be avoisled. The
not be used. The sentinel or crinard at is magerine, Whan it is opern, sloulth hase mos firr-arnas, and every one whe "ntore the mateamor shonld take oif hif

 rarrich in. The windows slosuldhave insidreshatiors
 nuar the mitrizine for the repair of the rouf or lightningrods. Batrels of powder shonld not low roided for [ransportation; they slamald be rarriod in hant]bartows, or slinges mato of roje: or leathor. In moso.

 wool or copper, and the barredu shonld newor be ropairma in the manazinc. When it is noevenotry to roll the powiler for its hettor proservation and to prevent its raking, this should bre donc, with a mall fumbity at a time, on boards in the matrizino yarel,

In the spring an inspertion of the barreds shombed be mode, and the hoopsswelnt with a hrush wherever thay ean be got at, to remove the insorete whirla doposit thoir egge at this soison. In wagoms, burrels of poweler munt be packed instraw, serared in such a mannar as not to ruls atrainat cach othor, and the load eoverod with thirk eanvas. In transportation by railroal. rach harrel shonla be catcofally losed and packerl, so as to avoid all friction. Tha' harrals should have a thick patulin umber theme. The cars should have sprines similar to those of passenerar cars. When powder has been damacerl by being storeal ju damp phaces, it loses its strenerth, and requires to be worked over. If the juantity of moisture alusorbed does not exceed 7 per cent., it is sufficient 10 dry it to restore it to survice. This is done by exposing it to the sum, or in a drying room. When powder has absorbed more than f per evont, of water it is sent tothe powder-mills to be worked over, or sold as condemued powder. When it lats bren damaged by salt water, or become mixed with forcign matters which cannot be separated by sifting, the saltucter is dissolverl out from the other materials andel collcected by evaporation.

I'roportions of ingredients.

	Saltpeter.	Chareoal.	Sulphur.
By the atomic thenry.	74.64	11.51	11.85
In the United States:			
For the military scrvice (the latter hroportion is generally used)	\% 76.	14.	10.
For sporting ...................................................................... If $^{\text {a }}$	T\%.	12.	10.
In England same as United States:	72.	13.	10.
For the military service	\%is.	15.	10.
For sporting	78.	14.	8.
In France (Wetteren powder has given best results; many experiments have bee made with varying proportions):	75.	17.	8.
For the military service...................................................................... For sportins	33.35	14.205	12.020
For sporting   For bhasting	\%8.	12.	10.
In l'russia, same as England and United States :	62.	18.	
For the military service.......................................	is.	15.	10.
In Spain : For the military service			
For the military service. $\qquad$   In Austria:	76.5	12.7	10.8
For the military service.	74.	16.	10.

## Sec Gumporder and Porder Depots.

veatilators must be kept free; no shrul)berv or trees shonld be allowed to grow so wear as to proteret the building from the sum. The marazine yard should be paved and well drained. Themoisture of a magazine mity be absorbed by elaloride of lime suspended in an open box under the arch, and renewed from time to time; quickline is dangerous, and should

PRESIDENT.-The President of the Enited States is Commander-in-Chief of the army. navy, and militia called into service. His fnuctions as suelı are assigned ly Congress, but embrace of course what ever authority may be assigned to any Military Commander, on the prineiple that the anthority of the grcater includes that of the less. For the coinmand,
government, and regulation of the army, however Congress has ereated a military hierarely or range of subordination in the army with rights and duties regulated by Congress, and the Commander-in-Chief cannot make use of any other agente in exercisines lus command; and all orders issued by him must be according to the rules and articles made by Congress for the government of the army. In his capacity of Chief Magistrate of the Jnion, Congress las also invested the President with many administrative functions relating to military affairs : and for the performance of the latter duties the Secretary of the Department of War has been made his Minister, upon matters connected with materiel, aecounts, returns, the support of troops, and the rais ing of troops.

PRESIDENT OF COURT. - The President of a Court Martial is the senior member. He preserves oreler in Court; administers the oath taken by the JudgeAdrocate, and the proceedings of the Court are iluthenticated by his signature and that of the JndgeAdrocate. See Courts.Martial.

PRESIDIO.-A place of strong defense; a garrison guard-house.
PRESS CAKE.-Gunpowder after it has been sulbjected to hydranlic pressure. The different natures of powder used in the service receive a pressure of so many tons on the square foot, with reference to the density required. Pebble powder receives a pressure which gives it a density in excess of the usual powders. The amount of pressure varies with the season of the year, less pressure being required in summer than in winter. See Gunporder.

PRESSURE-GAUGE. - An apparatus invented by General Iodman for measuring the pressure exerted by the gases of exploded powder. The drawing shows the construction of the instrnment. It consists of the homsing, II, closed by the plug, l ; of the piston, $P$. with its head. p, to which is attached the indent ing-tool, I; and the recorder, R, of copper. The gaschech, C , a thin copper cup, and the grexket, G , a copper ring, exclude the gas from the cavity of the honsing. When the gancre is placed in the cartridge-bas, it is securely :ied to it at the groove. h' li' In using this instrument, all its parts. except the exterior of the outer cylinder, are carefully cleaned before eacli fire, and the threads of the screw-plug and the indenting-piston carefully oiled; the copper specimen is then placed in the botom of the cylinder, the indenting-piston inserted into the serew-pling, and with the outer cylintler horizontal the plog is screwed home, being afterwards tightly set in with a wrencli while the cylinder is leld in a vise. The cylinder is

then rarefully set down upon ita closed end, and the indinting-piston arently pushed down till the point of the indenting tool rests mpon the coppers specimen; a small asts check is then inserterl, month outward, till it rests apon the and of the indenting-piston. It gives additional sefurity against the passage of gas to Dhace a smatl wad of cotion or tow over the gaschece, pressing it in tirmly withont hrivinge as a sery lieht blow, several tines reperated, might give
a erater indentationt than that due to the prosere a erreater indentation than that date to the presware to which it was to be subjected, and thus give erron-
eous results. The instrument is inserted into the gun with the screw-pluer toward the mazzle, and is erenerally found in the bore of the gun after its disclarge, when the screw-plug is withdrawn and the specimen removed. having an indentation in its surface, due to the pressure that has been exerted upou the onter end of the indenting-piston. The indications of pressure are fonnd to be, gencrally, something less, for equal charges, by this instrument than by the external housing: this may be, and probably is, due to the retarlation of the rate of inflammation of the charge by the presence of the instrmment, and to the heat absorbed by it. Another reason for this is probably owing to the fact that in the external gange the gas has a considerable space to travel through between the powder-chamber and the indieating parts, so that before reaching the piston the gases bave attained a ligh vis-viva, especially with guick-burning powders. For these reasons this instrument should be as small as may be compatlble with its practical use. See C'rusfier-gruge, External I'ressure-gauge, and Internal Prexsure-gange.

PRESSURE-SCREW.-A screw variously applied in ordnance constructions to exert pressure and liold parts in proper positions. An example of the importance of the pressure-scren may be seen in the Breithaupt fuse, when gauging the fuse for firing.

PRESUMPTION. - An inference drawn by the law in certain circumstances or conditions of facts, and is used generally as a merestarting point in an argument or litigation. Presumptions are often divited into presumptio juris and presumptio juris et de jure. The former serves as a mere starting-point, and may be rebutted by proof to the contrary. Thus, a person who has possession of goods, is presumed to be the owner till the contrary is proved. A man is presumed to be innocent unti! the contrary is proved. A prexumptio juris et cle jure is said to be a presumption which cannot be rebutted; but there are few instances of this. Presumptions abound in all departments of the law, and are adopted from the necessity of coming to some conclusion or other in most cases where the evidence is general or inconclusive.

PRETEN8E.--In Ileraldry, an Escutcheon of Pretense or Escutclieon Surtout, is a small shield placed in the center of the field of another shield. The hnsband of an heiress may bear the arms of his wife in an Escutcheon of Pretense; instead of impaling them. Feudal arms are also sometimes placed on an Escutcheon of Pretense, particularly in the insignia of Elective Sovereigns, who lave been in use of bearing their own proper arms in surtout over those of the dominions to which they are entitled. The Crown of Charlomagne is placed in surtont in the Arms of Hanover; and from 1801 to the accesssion of Queen Victoria, the Ilanoverian insignia occupied an Earutelreon of Pretense in the center of the Rovial Arms of the United Kingdom.

PRETOR.-Among the ancient Romans, the title given to the Consuls as leaters of the armies of the State: but it was specially employed to designate a Magistrate whose powers were scarcely inferior to those of a Consul. The Pretorship, in this specitie sease of the term, was first instituted in $366 \mathrm{~B} . c$. us a compensation to the Patricians for heing ohliged to shire with the I lebeians the honors of Consulship). It was virtually a third Consulship; the I'retor was entitled Collegia Consulibus; he was elerted by the same anspices and at the same Comitia. For nearly 30 yoars, latricians alone were eligibla for the othee; but, in 837 n.c.. the l'lebeians male goond their right to it also. The Protor's functions were chiefly jndi-夭ial. Thourgli he sometimes commandrdarmies, and, in the absence of the Consuls, cxereised considerable anthority within the eity, yet his principal lusiness was the adminjstration of justice both in matters civil and eriminal; and "to the ediets of successive Pretors," nays Mr. G. Loner, "the lkoman law owes, in a great degree, its development and improvement."

Originally, there was only one Pretor: luat, as the City and Shate ineroased, and llwir relations wita other mations beromme more compliantod, othors
 appointer, fo settle disputes that misht arise botweren liomans and forcioners temporarily resident

 him from the original Prevter Crbaness (City l'ratos).
 ministrate affairs in 大icily and Sardinin; and in 197 3. ©., t wo mose for the Spanish 13rovinces, or 6 in nll. Sinda incroased the momber for 8, nat Julins ("asar to 16. Augustus reduced the mumber (1) 12 ; lut at a duter period we read of 18 , if mot more. The city Pretor-ships ware ralannel llue higlest; and ufter a person had litled these olliots, ha sontetimes rereived the atministration of a province with the litle of I'rimiterr or Pruecusul.

PRETORIAN BANDS. - The name given more particularly during the period of the Jommon Empire. to a body of soldiars, orgmated for the purpose of protecting the forson and maintaining the power of the Emperors. Weindecdrendof a Protomial Cohomes, or select guard of the most valiant soldiers attarled to the person of Sejpio Ifricamis, who, aceording to Festus, recuived six-fodd puy, and the exierencirs of the civil wass naturally ineremsed their mumber ; but it was to Angusths that the instintion of them as a sceparate force is owing. II formed 1 or 10 coliorts, each consisting of 1,000 men (lorse and foot); tom kept onty three of them in fiome, the rest being dispersed in cities not far off. Tiherins, howerer, asscmbled the 9 colsorts at the eapital in at prmanent cump, und Vitedias increased their mmbers to 16 . The D'retorians served at tirst for 12, and afterward for 16 years ; they received double pay: the privates were held in equal rank to the (emturions in the regular army, and on theirectirement each received 20 , 000 sesterces. They soon acquired a daneremos power, which they exercised in a most unserupulous manner, deposing and clevating Fmperors at their pleasure. Ispirants for the Imperial loignity found it advisable, and even meessary, oboribe then largely ; while those who acquired that dignity without their assistance were aceustomed on their acecession to purchase their favor by liberal donations. The Iretorians, however, had no politioal or ambitious views: they were simply an insolent and rapacious soldiery, fond of substantiad gratitications, and careless how they got them. After the deatlof Jertinax ( 193 a d.), they actually sold "the purple" for a sum of "money to Didias Juliamus; but in the same year their peculiar organization was entircly broken up by Severus, who formed new conorts altogether out of the best legions serving on the frontiers, which le incerased to four times the number of tha odd. After several other changes, they wore entirely abobished by Constantine ( $81 \%$ A. D.), who dispersed them amoner his regular legions.

PRETORIUM.-The ILah or Court where the Pretor lived and administered justice. It also denoted the tent of the Roman Generat, in which conncils of war were held. The place where the Pretorian Gmards were guartered or lodged was dikewise called pretorium.

PREVENTOR ROPE.- I contrivance for checking the forward motion of a carriage. It is attached to the rear block of the carriage, and being twisted rommd the bollered of the platform, is heded by one of the cannoncers.

PRICE RETORT FURNACE. - The Price furnace is in part a gas furnace, and it embraces some of the features of the regenerative system, as the temperature of the air, as wett as that of the gisemus and fixed constituents of conk, is raised by the waste heat lefore it enters the chimmer. It consists of a combustion chamber or fire-box, furnished with grate-hars in the ordinary way ; a heating chamber or heartle, separated from the combustion chamber
 which opers to the rotort chamber. In the renter of the retort chamber is a rirenher firelirick pillar,

 is built the refort, the Irwer ghare of which is mactes of brick while thae upper part is citat-irom. At the

 arre dillal two dours worked lis a laver from tho
 "r suitable construction. [a the direlbrivek partion of the retort are two passuges, the: onclatading (o) the "ombustion chamber, and the fother to the outsiole of the furnate for the insartion of stoking forols to force the fact forward into the rombmstionchanbor.
 tight door. Near the botton of the retort clamber, amd in aline with the rentor of the air-vessed, are pijues inserted in the walls of the rehamber and prasa
 and opening into the retort chambor are anmatrer of holes leating into the spare aroumd the pipes. "lhis space atlords room for expansion and for a free circulation of luat. Thac pipess ate conneroled with the blast from a fan or from any suitable blowar. The atir passes into the atir-vossed anel is delivered through inn ontlet in, the ush-puit, direcety under the grate. It will be seen fromthis description that the retort furnare cumbraces some of the beat feathres of the regenerative sustem, while it entirely dispenses with its complimations of prodncers, regenerators, and reversing valves. Sie Furnuer.

PRICKER.-1. An carly name for a light horseman. 2. A priming-wirc.

PRIDE. - A term in IIeraldyT. A pearenck, or otí= er bird, when the tail is spreat ont in a circulatr form, and the wings dropped, is sad to be $\cdots$ in his pridle."

PRIEST-CAP - When the faces of a redan cannot he so placed as to swnep wedt the blank approncelies withont making the salient angle too acute; or when

the flank approaches extend towards the rear; then the plan may, in the first casce be what is tormed a priest-cap, or scolume-teth, in which the two main faces swerp the flank approalches, amd. instend of a muncompare, a broken line forming a reantering angle, phaced in the salient, affords in cross-fire on the gromet in front. In the second case a flank is ablled to each face of the redan, and receives sucle a direction as to swerep that portion of the thank ajproach which cannot be reached from the faces excejt lyy a yery oblique fire. Tle priest-cap is so named from its shapee. See Fiflrl Worksand strallone-tail.

PRIME.-1. In fencing, one of the chief ghards. ?. To charge with the powder. percussinneap, or other devie for commmicating fire to the clarge, as a fire-irm.

PRIMER.-A wafer, cap, tube, or nther device for communicating fire to the charge of powder in a cammon. The cap or tube usually contains a friction or percnssion-powder. The "friction-primer" is generally used in hlodand service. For service on ship-board, a yuill filled with rille-powder, having on the 1op a capsite of fulminate of mereury, is generally emphoyed. The capsule is cxploded by a blow from the lock-hammer. The tipe-primer, nacd sometimes in blasting, is formed of long, flexible strips
of paper or fabric containing fulminate or other quick-burning substance. The electric primer is used to fire simultancons discharges, both in ordnance and blasting. Infiring wet gun-cotton, the small charge of dry gina-cotton used in conjunction with the detonating exploder is called a primer. In small-arms, the term is specially applied, at the present time, to the percussion-caps nsed in reloading metallic car-tridge-cases. See Cannon-primers.

PRIMER EXTRACTOR.-A reloading tonl, whose function is to extract the mimer from the cartridereshell, when it is required to reload the shell. It is variously designed. The drawing shows a very handy and efficient form of extractor, suitable for re-
certain States in Germany. The title is now very genetally applied to the sons of Kings and Emperors. and persons of the Blood-Royal. In various parts of Contincatal Europe, the title Prince is borne by families of eminent rank, bat not possessed of soverelgnty; and in Fingland a Duke is, in strict heraldic language, entitled to be styled "High Puissant and Most Noble Prince," and a Marquis or Earl as "Host Noble and Puissant Prince." Practically, however. in Britain, the term Prince is restricted to members of the Royal Family. The eldest son of the reigning hovereign is by a special patent created Prince of 1 fales, and this is the only tase in which the title Prince is counected with a territorial dis-


Ioading central fire cartridge-shells of any caliber. To operate it, it is only necessary to insert the shell, close the handles just enourh to cause the chisel to penetrate the primer, and elevate the tongue sufticiently to throw it out.

PRIMIGENIA.-A kind of pike very much resembling the pilum.

PRIMING-TUBE.-A tuhe to contain an inflammable composition. which occupies the vent of a gun whose charge is fired when the composition is ignited. There are seseral kinds of priming-tubes, fired by port-fire, lock, or friction. The tube is made of quill, paper, or metirl, and is charged with maled powder damped with methylated spirit. or by a detonating composition, such as chlorate of potash and antimony. The tube is slightly smaller than the gun vent, in the relative proportions of $\frac{2}{7}$ and $\frac{2}{3}$ of an iuch. and a hollow is made down the middle of the composition, so that the fire may involve the whole length instantaneously. The simplest form is that in which the tube is merely a holder for the primiug, which is tonched off by a port-tire. This is the quill. Dutch. or commom metal tube. Another variety has a cross-head or snipe to contain a detonating composition which is exploded by a hammer. This is the crosw-head, or detonating tube. A third varicty is operated by friction, a roughened har occupying the hollow in: the composition, and exploding ly friction the detonating composition in the head of the tube. The rough bar is jerked out by a lanyard. See Friction-primer.

PRIMING-WIRE.-An implement used to prick the cartridge before priming when the fuill or metal tubes are used. It is made of wire a little less in cliameter than the vent, sloping to a point at one cuth and at the other vent into a circle, which serves to hold it by, as well as prevent it from slipping through the loop on the primer pouch, where it is carried when not in use.

PRIMIPILUS. - The Centurion belonging to the firat cohort of a legion. Among the lomans, the Primipriarii were such as had formerly borne the oftlee of Primipilus. Among other privileges which they enjoyed, they became heirs to what little property was left by the soldires whodicel in the campaign.

PRINCE.-An epither which was originally upplied to the Prinction Senathe of the Roman State and offerwart became a title of dignity. It was adopterl by Augustus and his successors: hemee the worl way ufterwarl appliod to persons enjoying kinoly power, more especially the Rulers of small States, wher covereign, as in the tase of the ancient Princes of Wales, or Dependent, like the liulers of
tinction. In Germany, the ambiguity of applying the same title to the members of Royal Houses and Princely Families, not Sovereign, is avoided, the former being styled "Prinz," the latter "Fürst." The German Furst takes rank below the Duke (Herzog). Most of the Counts who had a seat in the old German Diet were elevated to the dignity of Prince on the acquiescence in the dismemberment of the German Empire. In a more general acceptation, the term Prince is often used for a Sovereign or Ruler of a State.

PRINCE ALFRED GUN.-This gun was forged hollow, on a plan intended principally to overcome the tlefert of unequal shrinkage and initial strain and rupture. Broad plates, bent to the proper curve. were laid and welded upon a barrel made of rolled staves. Its dimensions are: length (without cascabel), 1,151 inches; length of bore, 137 inches; diameter over the chamber, $31 \frac{3}{3}$ inches; diameter at muzzle, $14 \frac{1}{8}$ inches; diameter of bore, 10 inches; weight, 24,094 pounds. The gun is rifled with three grooves $\frac{1}{4}$ inch deep. but cut the wrong way, so that the projectile would he rotated by the inclined instead of the radial surface of the grooves. It will therefore have to be borot out to 101 inches, and will then carry a 156 ponnd spherical shot. The test proposed by the makers is one romnd with one shot and 100 pounds of powder.
Princeps senatus.-An officer of the Roman Senate, who, under the Monarchy, was a royal appointee for life, Custos L'rbix, and had precedence among the Decemviri. Under the Republic, he was the appointee of the Curies, B. o. 48\%, the Paties Minorum Gentium, previously incligible. were made eligible, and afterward the senior Ex-Censor held the office Ex-Officio. Later, any Senator was eligible, but the oftice was smply honorary, and did not carry with it the Presidency of the Senate. Finally the title belonged to the Emperor.

PRINCIPES.-In the Roman armies, Principes were the infantry, who formed the second line in the order of battle. They ware armet like the hastati, with this difference, that the former lad balfpikes instead of whole ones. See IIavtati.

PRISE-BOLTS.-The projecting bolts at the rear of a mortar-bed or garrison gun-e"rriage, under which the hamdspikes are inserted for training and maneuvering the picce. They are formed by the prolongation of the assembling bolts. Also written Prize -boult.w.

PRISMATIC POWDER.--The adoption of this form of powder by some mations, and production of machinery for its manufacture, necessitated the use of
presses of prenliar monstraction to inswre sulllaiont and miform density ; the prese to tee sodevised ats to produce nniform siz. and shap of grains, and allow their reaty withelrawal from the molde; thesurfares
 considarations led to the atoption of at regalar geot-
 piling, the anglas being all sutheratoty obtuse fo preVent lareaking or spawling at the celges. Viarla harer and the whole rartridge is easily mate ul. l'arforations wore found mecresary to insure botto: and more miform control of remblinstion in tha grain. The mumber of perforations dirst atoptod were serorn -once centrai, the othor six at copanl distanceos from the reatral ond althongh onme perforation in the rerntor has lowen foumel sutlicio:at.
'Tho ingredicats for tho mannfarture of the pow. der bise are the same as usidel in the mannface are of ordinary poweler". The pulverizad materials for $2 \boldsymbol{2} 0$ pounts arr placed in woolan dram linod with solefesther, with 380 pounds of bromge hatls. and sub)jected to 1.140 revolutions at the rate of 6 or 10 pur minute. The jow inder is thes: loronght to the moistning table of wood surrommded by an upright chlese. over which is suspembed at graduatod glass measure having it pipe of copper and rose at the hottom. On the table at clarge of 5it poumber of powder is spread and moistened with $2 \frac{3}{4}$ (pharts of distilled water. It is then jatsond from it lopper tas an entless
 am! "pher bronze roller, weighing 9.405 ponnds, making a revolation in twelve mimmes. The bronze roller can be weighed to exort a pressure of 60,000 pounds. The powder is then broken into coarse lumpes by wooden matlets, and gramulated to two sizes of grains; the first, eammon powder-uscel for mamuficture of the prisms-is pased through a sieve of 0.00 inch diamoter of holes.

Ordinary grain powdor,made as above, is of a specifie gravity of 1.5 , and too clastic for the mse in the press. By reworking it loses a part of its elasticity, and is then fit for formation of the prisms by the fotlowing proceos: 'The" boweler-hase, as above is moistened with 10 per cent. of water. passed through the

spindle press with the preseribedpressure and granulated grain and dust being collected in a receptacle. This mixture of grain and dust is tried in the air or by artificial heat till $1 \frac{1}{2}$ per cent. of the moisture remains. It is placed in a mixing-rlrum-220 ponmds of powder and 330 pounds of bronze babls-and sula jected to 1.440 revolutions, moistened and pressedas before, giving it a specifie gravily of tin5 to 1.75 . It is gramulated and separated. the camon size aratin dried by air till 6 per eent. in dry wearher of monist ure remains and placed in barrels covered with damp) cloths for use.

The press for this purpose is constructed to wive a pressure of fij. 000 pounds per square inch. It consists of a heavy casting on astone foundation; a main
 cross-lurats. "The main mhaft corries a boavy whecel


 Iwo jimions on the main "perate grareal wherels on the marombary shatt, on which twe porontrive amel

 rach six luesaromal stamps perforated with seven boles which "ntar enoresponding laxatomal molele ont the lower cross-heal. Sixgronps of seron neothes are fixat in surfly pestion that they" the perforations of the lower stamps threnghont inte the molds sumb enter the perforations of the ulpor stimps as the latter desiemel lo press ther powder in the moder ; the ese form the perforations in the primme.
 are timed so that when the upper stamps have roacho. erl thoir lowest point of descontallar lower ones arr moving upward giving the extreme proware, after which the tipher stompe ascond end the lower romes simaltaneously jush the perforatod prisins up) from the molls. The lower stamps constitute the hottom of the molds. The moshas are fillend from at lopyer havine a tahle with forward-and-bark motion, renntaining six suitabla measures whirls recerive the pumder from the hopper: the charering table moves forward and drops the charge in the molds: its colge carries the prisms hronght np from the mold to an inelined shelf, whonce they are removerl. The capacity of the powder nomsures con lo regulatiod as desired. Two rooms are required for eneli zress ; one for the press. the other for the prisms.

Before starting the prose, the mold-meedles and stampsinul all ribloing surfaces ouglit to be oiled with a dight,pure oil or graphits. All surphas lubricant must be wiped off. The powder to be pressed onght to lave at least 5is per ernt. of moisture. The moist prisms werigh about 690 grains cach, and must nut varymore llan strains. "The first two sets of prisms should berejectednecanse of excess of oil. The weight of prisms must be veritied. Three men can work a prews: a carrier for every press is also repuired. "The height and weight of the prisms must be verified from time to time, and the powder in the hopper stirred from time to time. Loose bowder must be brushed away from the stanus and tops of the molds; lubricate as often as once an hour. If a needle breaks, stop the press and replace it at once. On dry days, the powder losts moisture: this will be indiested by increased height of prisms or vibrations of the press, in which case moisten with $\frac{1}{\frac{1}{2}}$ per cent. of moisture. which is done in a drum by it tinc rose sprinkler. The prisms pressed by the press contain about 5 per cent. of moisture, and must be dried to about $\frac{8}{3}$ per cent. by exposure to air or on sloberes in a snitibly arranged drying-room; they are then exposed to a temperature of $120^{\circ}$ Fanc. fir 48 hours, and are ready for packing.
The prisms are packed in wooden boxes in layers ( 12 rows of 11 , and 11 rows of $!$, 6 deep) weighing about 110 pounds to the box. The prisms are regular liexagons $0^{\prime \prime} .992$ high and $1^{\prime \prime} . f$ width neross the angles. The packing-boxes are of inch stuff. and may be tin-lined. Two sheets of felt-the smaller at ove end, the other on top-keep the prisms from rubbing against each other in transportation. The boves have rope handles, and are narked with the weight, kind, plate, and date of fabrication of the powder. See (iumporder.

PRISMATIC TRANSIT.-This form of transit, suggested hy-Steinheil, and designed be Mr. G. N. Siegmuller, was mannfactured for the Conited States Coast Survev. It is intended to be set up in the prime vertical, the tclescope pointing east and west. By the use of a prismatic objective, any star passing the meridian will be retlected and seen in the field when the instrument is set upeorreetly: by turning it in its bearings it will sweep the meridian. 'The pivot-rings
are of phosphor-bronze, and, to avoid flexure as much as possible, these rings are again connected by a tube, so that the telescope body is really donble. By one of the three setting-screws the instrument is moved in azimuth. It is provided with a reversing apparatus. which also carries the illuminating lamp. The fine level over the telescope is held by a projection from the reversing apparatus, which secures the great advantage that the level need not be taken off on reversing the instrument : it remains on whether observing in the zenith or lorizon. The setting-circle is attached behind the mierometric eve-piece with level aldade, divided on silver, and reading to minutes. It also carries the latitude level, which is chambered and reads to single seconds. This instrument, being very simple and poriable, is especially adapted for work in a rough or mountainous country See Engineer"s Transit.

PRISON.-In a military sense, a building constructed for the retention of prisoners of war, or for the safe-keeping and punisliment of offenders against military law. Sometimes during war, forts and other strong structures are utilized for these furposes. A permanent military prison was established at Fort Leavenworth, Kansas, in 1873. The Department Commander stationed at Fort Leavenworth, is ex-otticio Commandant of this prison. The other officers of the prison, detailed by the Secretary of War, from the officers of the Army, are a Covernor, an Adjutant, a Disbursing officer, Commissary, Surgeon, and Claplain. Division and Department Crmmanders may designate this prison as the place of confinement for all prisoners seutenced to be confined for one year or upwards, except such as are convicted of offenses which lawfully subject them to pnnishment in a State penitentiary. Discharge papers, descriptive lists, orders promulgating or modifying sentences, and statements of conduct since under sentence, are forwarted to the Commandant of the prison with each prisoner sent there for confinement. Before sending convicts to the military prison, a careful medical examination is made of those whose physical or mental condition appears to be such as might he serionsly affected by the confinement, or be in danger of ending in permanent disability which might cause them to be discharged before the expiration of their sentence. Special report is made of cases foumd to be of this description, with a view to avoid mnecessary expense of transportation.

The following were noted prisons during the Civil Wैar, 1861-65, for the retention of Feteral prisoners of war. Andersonville. Bedle Isle, Castle Thunder, Libby and sillisbury. The prison at Andersonville. was notorious for unlealthfulness and its discipline for barbarity; and in 1860 , after the close of the war Henry Wirz, a Swiss, the chicf instrunsent of illtreatment, was indicted for "injuring the health and destroying the lives of prisoner:3 by subjecting them to torture and great suflering, by confinement in unhealthy and unwholesome quarters, by exposing them to the inclemency of the winter and the dews and burning sun of the summer, by eompelling the use of impure water, and by furnishing insutlicient and unwholesome food; for establishing the dead line and ordering the guards to shoot down any prisoner attempting to cross it ; for keeping and uning hoodhounds to hunt down prisoncers attempting to escapue; and for torturing prisoners and contining them in stocks." Ile was found grilly and hanged. Under orders of the forermment, the place where the borlies hasd bern rudely buried in long trenches was arranged as a cemotory and adorned with gravel walks amd trees: 12,4til dead soldiars of the Tuion Army were itlentified, and their places of burial marked with tahlets; 45 l were "mmknown." Prisons were also established for the retention of Confederate prisoners at Camp Doneras, U゙ah; Clacago,Illinois; Camp Chase. Ohio: Elmira, New Vork; l'oint Lookout, Maryland: and Rack Islant, Illinois.

PRISONERS OF WAR.- A brisoner of war is a publiceneny armed or attached to the hostile army for active aid, who has fallen into the hands of the captor, either fighting or wounded, on the field or in the hospital, by individual surrender or by capitblation. All solatiers, of whatever sureies of arms; all men who belong to the rising en musus of the hostile country; all those who are attached to the army for its efficiency and promote direetly the objeet of the war: all disabled men or ollicers on the field or - lsewhere, if captured; allencmies who have thrown aw:ty their arms and ask for quarter, are prisoners of war, and as such exposed to the inconveniences as well as entitled to the privileges of a prisoner of war. Moreover, citizens who accompany an army for whatever purpose, such as sutlers, editors, or reporters of journals, or contractors, if captnred, may be made prisoners of war, and be detained as such. The monarch and members of the hostile reigning family, male or female, the chief, and chief officers of the lostile government, its diplomatic agents, and all persons who are of particular and singular use and benefit to the liostilearmy or its government, are, if captured on belligerent ground, and if moprovided with a safe-conduct granted by the captor's government, prisoners of war. If the people of that portion of an invaded country which is not yet occupied by the enemy, or of the whole country, at the approach of a hostile army, rise, under a duly authorized levy, en masse to resist the invarler, they are now treated as public enemies, and if captured, are prisoners of war. No belligerent las the right to declare that he will treat every captured man in arms of a levy en miase as a brigand or handit. If, lowover, the people of a country, or any portion of the same, already occupied by an arny, rise against it, they are violators of the laws of war, and are notentitled to their protection. The enemy's chaplains otherers of the medical staff, apothecaries, hospital nurses and servants, if they fall into the lands of the American Army, are not prisoners of war, unless the commander has reasons to retain them. In this latter case, or if at their own clesire, they are allowed to remain with their captured companions, they are treated as prisoners of war, and may be exchanged if the commander sees fit.

By the laws or recognized principles of war, the entire people of a vanquislied town, state, or nation become the absolute property of the victors; but civilization Ias greatly modified this stern rule, and except when a country is devastated for military rasons, it is rare for non-combatant citizens to be subjected to penalties of conquest, beyond the levying of contributions in money or provisions. The combatants who have laid down their arms become prisoners of war. Their lives and liberty are at the disposal of their conquerors, and even in modern times, their lives are sometimes taken, as, for instance, when Napoleon put the Turkish prisoners to death at Jatfia in 1799: otherwise, prisoners of war are kept in continement antil peate ansues, or they are exclanged for prisoners of their conqueror's nation, leld iu captivity ly their own countrymen. It is umusual to subject prisoners of war to penal discipline ; but the loss of liberty and hard fare (for, of comrse, they are allowed no more than a bare subsisteu(") render at captivity sutliciently irksome. In ancient times. the treatment of prisomers of war was far more severe. In the Greek wars, it was no uncommon thing to put the whale aditt male population of n compured state to the sword, while the wonton and children were cuslaved. Although the putting to death of prisoners became less fretucut, they and their families wre commonly reduced to slavery to as recent a period as the $13 b^{3}$ century. Noont that time the more limmane cinston of exchanering prisoners came into practice. Notwith. standing frefuent exehanges, larie numbere of prisoncres nucmmalate during war. In 1811 about dr, 600 French were prisoners in England.

Moncy and other valuablay on the persisn of at prisoner, such as watchow ir fowelry, ats wedl as "xtra clothing, atere regarded ly ilw A dorioma Army as the private propery of the priseners, and the apperopriation of suelt valuahas or money is eomsindered dishonorable and is prohihited. Nevertlacless, if laryg sums are foumd upen the persons of perisoners, or in their posesession, they shall he taken from them, und the surphas, after providing for thoir own suppor, appropriated for the use of the armys, under tha direction of the commamber, waless otherwise ordered ly the govermment. Nor eath priveners clatm, ats private property, large smons fommanal captured in their train, allhourg they had been phaced in the private laggage of the priseners, All oflecers, when raptured, surrender their side-amens in the eaphor. They may be restored to the prisoner in inarked cases, by the Commander, to sigmatize admiration of his distinguished bravery, or approhation of his hamane tratment of prisoners before his rapture. The captured offieer to whom they may be restored cannot wear them during eaptivity. A prisoner of war, being a public enemy, is the prisoner of the government, and not of the captor. No ransem con be paid by a prisoner of warto his individual captor, ar to any otlicer in command. The government alone releases captives newording to rules preseribed by itself. Prisoners of war are subject to continemont or imprisomment such as may be deemed nee"ssary on acecount of safety, but they are to be sub)jected to no other intentional sutfring or indignity: The confinement and mode of treating a prisoner may he varied during his captivity according to the demands of safety. Prisonces of war shatl he fed upon plain and wholesome food, whenever practicable, and treated with humanity. They may be reguired to work for the benclit of the captor's govcrmment, according to their rank and contition.

A prisoner of war who escapes may be shot, or otherwise killed in his thight; but neither death nor any other punishment shall he inlicted upon him simply for his attempt to cseupe, which the law of war does not consider a crime. Stricter means of security shall be used after an unsuceressful attompt at escaple. If, however, a conspiracy is discovered, the purpose of which is a united or general escape, the conspirators? may he rigorously punished, even with death; and capital punishment may also be inflieted upon prisoners of war discovered to have ploted relechon against the authorities of the enptors, whether in union with fellow-prisoners or other persons. If prisemers of war, having given no pledge nor made any promise on their homor, forcibly or otherwise escape, and are captured atgain in battle, after havines rejoined their own army, they shall not be punished for their uscape. lut shall be treated as simple prisoners of war, although they will be subjected to stricter continement. See Carkel, und Parole.

PRITCHET BULLET. - The English retained at wedge made of wood, which was placed in the lase of the Pritchet bullet used with the Entich rifte, and which prevented the gas from penetrating any tissures that might exist, while at the same time it was driven before the gas into the cavity, expanding the ball.
PRIVATE. - The title applied in the British Army io a common soldier of the Citralry and lufantry, the corresponding rank in the Artillery being equmer or driver, and io the Eugineers the sapper. The pay of a private is one shatling a day in the infantry, and 1s. $\underset{\sim}{2}$ in the cavalry-exelusive of a free rationor corresponding allowance. A private in the cavalry is sometinaes called a trooper. In the tnited states Army all soldiers helow the grade of nob-commissioned others are called privates.
PRIVATEER.- A ship owned be a private individual, Which, under gowmment permission, expressed by letter of marque, makes watr upon the
"nomy withont thas commisaion, or upon the shipe ping of a mation men apecitiod in it, in piracy. Priviatoring was nbolishod ber mothal agrerment amoners Duropmas Nations by the 'Treaty of Paris in $1 \times 5 t^{\circ}$. It is dombing, lowe ver, low far that abolition would stand in a general war, fur privatcering is the natural rescource of a nation whone reernarar nitvy is tow weak to make lowe arainst the maritime power of the encmy, erpecially when the later allers the lomptation of it wonlity commerco. An - Ffort was made at an rarly perion by the goweryment of the Enitad States to have provisions in treaties with forcign conntrime which womld abolish privatcering in case of war and the laws of tho Puited states are more prohbliting in this respect Han these of most other mations. At the tima of the matnal agrecment among Furonean nations to abolish the custom mentioned above, the gevernment declared its willingness to unite with them, provided a eertain clanse of the treaty was amenderd or, that the private property of the subjeet or citizen of a bedligerent on the high seas should be cexempted from seizure lyy public armed vessels of the wher lelligerent, "xaept it be contraband of war. But this was dectined, and (omsergacoly no arrangement with the Cnited States was included in the treaty.
PRIVY COAT.- A light coat or defense of mail, concented uneler the ordinary dress.
PRIZE.-Property capured from an encony, or an enemy's property captured from a meutral in time of war. Prize-nioney is distributed in the Lnited States in accordance with the provisions of the Act of Inne 30,1864 . This statute directs that where the prize is equal or superior in force to the capturer the Captors shatl have the whole; where it is inferior in force, the Captors shall have half, and the Cnited States the other hadf. In the case of Letters of Margue and l’rivateers, the Captors shall have the whole, unless otherwise stipulated in the (on) missions issued to such vessels. Strictly speaking, booty is the military term, the word prize heing more frequently used in the Navy. Sce Bluckude, Contraband of lidar, Neutrality, and Privuteer.
PRIZE AGENTS.--Officers belonging to an army in the field. Who are chosen after a campaign to collect all property belonging to the enemy which has fallen into the hands of the victors. In England all military booty is apportioned as the Sovereisn from time to time may direct. Deserters, and those who do not claim their share within six years, receive none. The officers appoint two Prize Agenta, by letters of attorney: the Field Ofticers naming one, and the Subordinate Officers another. The Officer commanding the successful expedition $s m$ Is to the military authorities a list of the persons entitled to booty. The Agents collect the property, convert it into money at the best adrantare and hand over the proceds to the authoritics, receiving a small percentage for their trouble. A scale of dis ribution is then made out. and the money is paid after a certain interval. When an arny and a flect join in a capture, the Admiralty calculates the army share, and seads the anount to the military anthorities. Prize and booty originally belonged to the Sovereign, and are only distributed to the Capors ats an act of grace; for, if the soverejgn pleates. the property ean be given back again to the encmay.
PRIZE MONEY. - The value of the property eap tured from the enemy afler its ralization by sale. To carry out the rules having reference to prize property, Prize Agents are appointed. setected by the armiy, to collert all property which has been captured in each of the lowns and fortresses through which the conguering army has passed. No oppresion is permitted in the matter: atll that is elemanded is that what, ly the rutes of war. falls to the possession of the capior be riven up. Such property is sold, atm finally divided among the army-
PROBABILITY FACTORS.- tiable of factors, which
multiplied by the width of a zone containing 50 per cent. of the hits, will give the widths of zones containing any other percentage of hits. Thus, if the wilth of a 50 per cent. zone is 1.00 , we would find from such a table that the widthe of $20,40,60,80$. and 99 per cent. zones are $.38, .78,1.25,1.90$, and 3.82 respectively. From such a table, we would also see that a zone twice as wide as that of 50 per cent. will not contain all the hits, but only a little over 82 per cent.

PROBABLE RECTANGLE. - The relative accuracy of dillerent guns at different ranges is estimated by the dimensions of a rectangle, called the probalie rectangle. If we determine the lateral and longitudinal probable zones, and suppose them to be superposen, we shall hase a rectangle which must contain 50 per cent, of 50 per cent, or 25 jer cent of the total number of hits. Then by reference to a table of probubility fuetors, we can find the proportionate widths of any other zones (containing a different percentage of hits) to one of 50 jer cent. as unity. To illustrate take the following example:

Suppose a raft, 25 yards square, is fired at by the 40 pr.13. M. L. at an elevation of $5^{\circ}$, how many rounds may be expected to hit, when the range is accurately ontained? IIere, the mean error in range is 17.9 yards and the mean lateral deviation is 9.02 yards. C'onsetruently, the 50 per cent. longitudinal zone $=17.9 \times 1.69$ $=30.25$ yards in width, and the 50 per cent. lateral zone $=0.02 \times 1.69=15.23$ yards in wilth. Hence, the zones are respectively $\frac{25}{30.25}=83$, and $\frac{2.3}{15.23}=1.64$ of the width of the 50 per cent. zone. From a table of probrability Juctore, we find, that a zone .83 the width of the 50 per cent. One would receive about 42.5 per cent., and one of 1.64 would have 73 per cent. of the total number of rounds fired. Consequently the rectangle formed by the intersection of the zones would receive 42.5 per cent. of 73 per cent., or 31 per cent. of the total fired.

PROBABLE ZONES,-It can be shown by the theory of probabilities, that if each of the three mean errors (range-vertical and lateral) is multiplied by the factor 1.69, we will have the breadth of three zones (of infinite length), each of which will contain 50 per cent. of the hits. If the mean errors in two directions are given, we can find two 50 per cent. zones, and hence a rectangle, in the plane of the zones, which must contain 50 per cent. of 50 per cent., or 25 per eent. of the total number of hits.

PROCEEDINGS.-The proceedings of Courts-Martial of the previous day are usually read over each day by the Judge Advocate. Much time is lost by allopting this measure, and there is no rule directing the Court to read them. All arders which have been issued, modifying the detail of a Court. after its original organization, should be included in the proceedings of every case. The entire proceedings of the Court in wach case shonld be fully set forth. All orders. motions. or rulings of the Court itself-all motions, propositions, objections, arguments, statements, etc., of the Judge Advocate and the prisoner -the entire testimony of each witness, given in his, own language - and, indeed, every feature of the proceedings material to a complete history of the case and to a eorrect understanding of every point of the same by the reviewing anthority-should be recorded at length. The record of proceedings, and the final defense of the acoused, should be written uno legabecap paper of miformsi\%. The proceetings in cath completed case should be immediately signed by the President and Judge Advocate. Pro conmentations in Clemonoys should not be placed in comection with the sentence, but should he: appentad to the record. The miginal proerdings of a Court are not the rough minntes kept ly the Jutue Aclvocate or Recorder: but those finally suthonticated ley the sigmatures of the President and Judge $\Lambda$ dvocate (or recorder). All documentary evidence
submitted to the Court must be attached to the procredings, lettered in the order of submission. as Exhibits "A." "B." יtc.

PROCLAMATION. - A public notice given by the Sovereign to his suljects. The power of issuing prochmations is part of the prerogative of royalty as the fountain of justice. They sometimes consist of an anthoritative announctment of some matter of state, nr act of the executive government affecting the duties and obligations of subjects. The demise of the Crown, and accession of a new Sovereign, a declaration of war, and the issue of new coin, are all occasions on which a royal proclamation is issued. A proclamation may also be issued to declare the intention of the Crown to exercise some prerogative or enforce some law which has for a long time been dormant or suspended. In time of war, the Crown by a proclamation may lay an embargo on shipping, and order the ports to be shut. But the most usual class of proclamations are almonitory notices for the prevention of offenses, eonsisting of formal declarations of existing laws and penalties and of the intention to enforce them: such as the proclamation against vice and immorality, appointed to be read at the opening of all courts of quarter sessions in England. Proclamations are only binding when they do not contradict existing laws, or tend to establish new ones, but only enforce the cxecution of those which are already in being, in such manner as the Soverrimn judres necessary.
PROCONSUL.-A Jioman Magistrate not holding the Consulship, who was invested with powers nearly approaching those of a Consul, not however, extending over the city and its vicinity. The Proconsul was, at first, one who bad held the office of Consul, whose Imperium was prolonged to enable him to loring an nnfinished campaigu to a close. The duration of the oftice was a year. During the latter period of the Republic, when the Consuls were expected to spend a year of their consulate at Rome, they were generally appointed at its close to undertake, as Proconsuls, either the conduct of a war in some Province, or its peaceful administration. Occasionally, the office of Proconsul, with the government of a Province, was conferred on a person who had never held the Cousulship. Under Constantine, parts of certain Diocuses came to be governed by Proconsuis.

PRODD.-A light cross-bow, used chiefly in tielel sports, in the sixteenth century. It usually projected bnllets.

PROFESSORS OF THE UNITED STATES MLLITARS ACADEMY. - The Professors of the Aeademy, being Stafl Officers of the Army, are assimilated in rank to the grades of which they are entitled by law to the pay and allowances. They are respected and obeyed according to their rank and oftice in the Academy. The uniform of Professors is that of ofticers of the General Statl of the Army of their assimilated rank, with the letters M. A. on the shoulder-knot. Or they may at their option wear a citizen's blue cloth cont, with hutions of the General Staff of the Army' hlack dress lat; pantałoons and rest plain, white or dark blue; cravat or stork, black. The uniform of the Claplain is that presuribed for Chaplains in the Army. SeeUnited States Militury Acrulemy.

PROFILE BOARDS.-Boards employed in the inspection of cannon formeasuring clistances in front and rear of hase line. Their lower edges are mapted to the shape of the erm, and the upher ones are parallel to the axis of the bore. The distances from the hase line of the sevaral parts, and of points at which diameters are to be measured are laid otl ace "uratedy on the upper colere amd then marked in lines berpendicular to it on the sindes and lower erliges of the profile. An iron strap is atached to the upur edge to prevent warping, and the whole is wedl coated with shellae-varnish to keep it from absorbinar moisture.
The following instruments are uscd in connection
with the protile-boards: A rule, for verifying the marks, of such at fongth that mot more than ine fle. 1 ing may be mocessary, amitu be gradnated decimaty according to the stamdard. Ismall squate of satec), to be used in reforrine the marks on the beard to thosse on the rule. A atere streight algor, lone (rombla eo cextond across the muz\%e-face and several inches on the bestri, asen! to ascertain the extrome lengila from base to mazalo. It is aloo nayd for the same purpose at (lue extrence end of the cascablef. A
 wise indieated, where dianectors are to la measured. Soe Inxpection af" omdentuce.

PROFILING.-An opwration in the romstruction of Lichl works which emsists in ereding at proper points along the sub-crests, wooden profilex whirth give the form of the parapets at those prints, fant which grade the worknen in the construction of the works. Protiles are phaced at the extromitios of a parapet: at pointsalong the suberest from twenty to thirty yards apmert: at he salionts and re-entrants and at any points where at change of direction or di-

 the warface, in a horisimtal line, betweren two stout pirknts, in the direction of the promilas, and sor an en include all of its lines. This cord ereves to meatare: the lorizontal distances on, and to find tho primes of the protile, above amd below it, by means of an ore dimary plumanct. I stont sefuare pieket is crivern tirmly inte the groumd, where the corderonacs aldewe the jick-line the! at sip of pine, on which the hatigh of the interior crest is markem, is mileol to the jieken. The thickness of the parater is meatured on the cord, and a picket drivern into the grommed to mark the point. The base of the interior slopee and the eroad of the Banglucte, are set oft in a similar mamere; and a slip of deal is maiked to each of the pirkels. The lacight of the interior creat, and the trand of the bangutte, are (asily aserertaned, from the penition of the erord and the interior erest ; these points having been marked om theor respertive slijs, the outline of the parapet is slasw by commeeting them by other slijss. whidhare mailed tothe urights: the ban quette slope and exteriorsiope will be determined by at similat procts.

From the protiles thas formed perperndieular to the interior arists, the obliquas profiles at the angles ran readily be art up, by a process which will suggest itself without explanation. Having completed the protiline the foot of the bangrette, and that of the exterion cloper, are markred out with the pick, amd also the erests of the scarp and counterecarp. All the
mensions are to be made. The profiles or poles having been planted at the angles of the work, and the height of the interior erest marked on them, at line is truecd on the ground with a pirk, showing the dircetion of the interior crasts. When the ground is sensilly level. lines perpendicular to the direction of the intorior crest are traced unon it, at suitable distances, from twenty to thirty yards apart, to mark the positions
arrangements preparatory to eommeacing the exeavation are now complete. Sice Fiold-fortificutiom, Sormal I'ratile. P'er'tpot, and Truaing.

PROFILING MACHINE.- I maehine much used in armories, and by which an ohject of a given contonr or outliac may be duplicated: or one by which any given profile may be given to a piece by adequate manipulation of the parts, in the absence of the pat-

of the profiles. and the horizontal distanees for the Itern which forms an antomatic guide for the tool. thickness of the parapet: the bases of the slopers, In the former case, the machine is used for duplicatctc., are set off on these lines. But when the ground ing templets, gauges, and patterns (uow much used along the direction of the profile is undulating, or in ubaking various machines) in great uumbers to an
exact size and proportion, to be afterwards assembled. Fire-arms, sewing-machines, watelies, and many other articles are thus made.
The drawing shows a two-spindle profiling machine, as manufactured by the Pratt \& Whitney Company, who make a specialty of gun machinery. It is built with orwithout Parkhurst's device for cutting formers without reversing the fixtures. With this improvement, to produce the forming pattern, the model piece is secured in the place aud position afterward occupied by the work to be machined, and the piece to be cut for the forming pattern is placed in the position it will permancntly retain. The guide-pin is put in the spindle which usually carries the cutter, and follows the outline of the model piece, while the cutter, in the spindle. which afterward holds the guide-pin, cuts the forming pattern in the exact position it will retain in use. Ifter disconnecting the gearing mon the spindles, reversing the relative positions of the guide-pin and cutter, and smoothing the edge of the forming pattern (if this be necessary), the machine is ready for work. The gearing for moving the table and cross-slicle is adjustable by means of double gears, set to prevent back-lash by two independent adjusting serews, and also by a double rack adjusted in the same manner. This arrangement is indispensable to secure perfect accuracy in cutting irregular forms, especially in turning corners. The No. 1 two-spindle machine has an area of table of $10 \frac{1}{2}$ by 8 inches, distance between top of table and under side of cross-bead 3 inches. and distance between center of guide-pin and cutter also 3 inches. Weight, 1,350 pounds. Speed of countershaft, with 9 by $2 \frac{1}{4}$ inch tight and loose pulleys, 125 revolutions per minute. Tlie No. 2 twospindle machine has an area of table of 15 by 12 iuches, distance between top of table and under side of cross-head $4 \frac{1}{2}$ inches, and between centers of guiklepin and cutter $4 \frac{1}{8}$ inches. Weight, 2,600 pounds. Speed of countershaft, with 14 by 3 inch tight and lonse pulleys, 140 revolutions per mimute. The cutter will profile or surface work to the extreme limit of the table area. The height between table and cross-liead may be increased, if so required. The machine may be constructed with one to three spiunlles, running in one adjnstable liead sliding on the crosshead. See Edging-machine.

PROGRESSIVE POWDER.-The excellent results obtained in Italy with what was termed "Progressive Powder," suggested the advisability of making trials of similar powders in some of the Ćnited States larger calibers, all of which have resulted satisfactorily. Progressive powder is fabricated as follows: After passing throngh the first stage of manufacture, and being brought to the condition of mealed powder, it is pressed into cakes whiel have a clensity of 1.79; the cake is broken up into irregular grains of from 0.3 in . to 0.6 -in. in thickness, as is required, which are not to be glazed. These grains are mixed with 40 per cent. of mealed powder, taken from the same working as that from which the grains themselves are made, and the whole mass pressed into a cake having a less density than the original small grains, say 1.75. The cake is then granulated as may be prescribed. Each grain of the resulting powder is thus a conglomerate grain, consisting of one or more small grains of very dense powder imbedded in a mass of less density, the mean density being 1.75. The theory of the combustion of this poweler is that the powder of less density lueing more quickly consumed, the whole eharge hreaks up into a much greater number of smaller grains, thereliy exposing a eraatly inereased surface to the action of the thame. In using this poweler that size of the regular-shaped grains is employed most suitable to the caliber of the gran, and is mixed with a certain proportion, to be determined by experiment, of the powder of irregular or mammoth grain. See Fossano Pomeder,and Grun powder.

PROJECTILE FORCE-The projectile force is that
produced by the combustion of the powder in the piece, causing sudilen development of gas, the expanding foree of which, acting on the projectile, impels it forward and ont of the piece. It is physically impossible to obtain exact uniformity in the charges. In practice there will always be a difference in the weight and shape in the cartridges, and in pushing them lome, greater pressure will be applied at one time than at another, thus causing want of uniformity in combustion. The temperature of the picce, arising from previous discharges and from the temperature of the air or rays of the sm ; the nature of the projectile and ita movement in tlie bore : the condition of the bore with respect to humidity and foul-ness-all havemore or less influence on the combustion of the powder, and consequently on the velocity and range. Above all, however; is the want of uniformity in the quality of powder. In this respect considerable latitude must be allowed iu the size and density of grain or pellet, in the manipulation of the ingredients, and in its condition resulting from age, moisture, and handling. With small charges, espeeially with fine-grained powler, it is possible to so mix the contents of clifferent barrels foranyseries of shots as to secure a fair degree of uniformity for that particular oceasion; but with charges requiring large quantities of powder, this, except to a limited degree, is impracticable.

PROJECTILES.-In a military sease, the term projectile is applied to a mass usually thrown from a tirearm by some explosive to strike, or destroy a distant object. To accomplish this, a projectile should liave certain hardness, tenacity, and weight. If it be soft and weak compared with the body struck, it will spread ont laterally or break into pieces, and presenting an increased surface will meet with a greater resistance, and consequently will penetrate less than if it had retained its original form. High density gives to the mass the least possible volume, whereby the effect of the resistance offered by the air and by the body to be penetrated is diminished. Different materials hare been used for projectiles. Stone, lead, wrought-iron, 'steel, cast-iron,and chilled iron possess peculiar properties which render each advantageous according to the object to be attained.

Prior to the invention of gunpowder, large masses of stone without regard to form were thrown from machines constructed for that purpose. This maturial was very generally employed until the year 1400; but its want of strength and density, qualities required in a projectile propelled by pow der. neces. sitated its use in large masses and with comparatively small charges. Sucli projectiles were destructive against unbacked walls of masonry, but broke if ricocheted on eartl. As late as 1807 , stone balls of enormous caliber were used by the Turks in defending the passage of the Dardanelles,

Lead, as a material for projectiles, possesses the essential quality of density; but it is too soft to be used agaiust very resisting objects, since it is flattened even against water. From its softness and fusibility, large projectiles of this material are liable to be dis figured, and partially melted, by the riolent slock and great heat of large charges of powder. Its use is chiefly contined to small-arms and case-shot, which are generally directed against animate objects. These defects of lead may be corrected, in a measure, by alloying it with tin, antimony, ete.

From the first introduction of cannon, wronghtiron projectiles have at difforent times been tricd. This mofal has great density and tenacity, but has not a high degree of hardness, cannot be easily worked into the necessary shapes, and when used in large masses becomes very expensive. Steel possesses the qualities required in a projectile, but is very costly and ditlicult to namipulate.
'The adoption of cast-iron for projectiles raused an important advance in artillery. It has grent lard ness, sulfleient lonsily and tenacity; is cheap, easy to mold, and can at slight cost be given exact forms.

Recent improvements in the mamifacture of this
 jectices mate from it, that they com lo used edicetively against heavy armar. Cast irm, shided by lofing coobld rapidyy, has its hardmess, "rushing strongth, and density incransel. Projerotiles ar preparad are now employed with excrellan ranales arganst the most powerfularmor, and are fomblatont as offect -
 promal projertiles, miting the good amb enerecting the Gad gualitios of different metak, have semmetimes
 shells tilled with lead, forminer projectiles of great strengthand density, were thrown from mortars to

I'rojectiles may be cither sphes, of or rlongnted. Spherical projectiles are commonly used in smoothbored camon, and for this purposi possess certain advantages over those of oblong form : 1st They tonch the surface of the bore at omly one point, and are therefore less liable to wedge in the bore and endanger the safoty of the piceer : Dd. The centers of figure and inertia coincider ; 3d. The mass is embraced in the least possible wohme; 4th. As they turn over in their llight, the surface presented to the resistance of the air is uniform and a minimum; 5ha. In ricocheting on land or water, their reloumds are more ecertain and regnlar, and less deviation occurs from the plane of tire.
It was known at anearly day that the spherical hall was not the one to which. for an egual wright, tha air offered the least resistance. In order that any arlvantage may be gained from in ohlong projectile, it must move throngh the air in the tirection of its length; mumerous unsuceessful attempts have ben made to ensure aecuracy in its hight when fired from a smoth-bored picce. One of the simplest plans for this purpose is to phace the center of gravity, or inertia, in advance of the center of tigure, or resistance. As these points should be in the longer axis of the projectile, the force of incria and the resistance of the air, acting along the same right line and in opposite directions, will tend to preserve the line of filight. This was trisd on a hollow, prointed projectile in the time of Louis X1V.; the cavity was divided into two eompartments; the front one was tilled with leaden balls and powder, and the rear one with powder only. The flight of these projectiles was uncertain and irregular, some of them bursting in the air, and others strikiner the object sidewise. Another plan of this kind, proposed by Thiroux, is to make the projectile very long, with its rear portion of wood, and its point of lead or iron, somewhat after the manner of an arrow; but it does not appear that that method has ever been submitted to the test of practice.

Attempts lave also been made to give an elongated projectile a motion of rotation around its longer axis: 1st, ly cutting spiral grooves on the base for the action of the gas from the charge; 2 d , by forming such grooves on the forward part for the action of the air ; $3 d$, by combining he preceding methods in the same projectile; 4 th, by causing the air to enter a cavity at the front end. pass through nearly the length of the cylinder, and escape by radial openings at the sides. None of these plans have succeeded in practice, for the reason, perhaps, that the projectile naturally turns over end for end, and the charge and the air do not act with sufticient promptness, energy, and certainty to prevent it. An oblong projectile, thrown under a high angle and with a moderate vacity, can have rotation about its shortest axis arrested by attaching to its rear portion a light body, by means of a chain or cord; the resistance which this body experiences from the air will cause the projectile to move point ioremost. Projectiles with wide flanges or wings, operated by springs by which they were extended after the shot left the plece, have been tried. but without success.
Projectiles may be further classified according to
their rennstraction and monke of operation, is zotior,
 alloct ly impact ; they are need in guna and in small.
 and limse for small-arma as bullets. Such projeretilo...4 are rerpired wheng grat rango, acemracey, and pome (ration art: songht; they mast, therefor", proseces groat surngeth and density, and be fired with large charges of powder.
shifls are hollow shot which act both by impact and $\times x$ phesion, for which purpose therg contain an explosive and a fuse to ignite it at the proper time. Ss they have less strength, thery are tired with smalles charges of powitre than sotich projecetiles, and are nsel against animate objects and such inamimate ones as will not cause them to bram on strik. ing. The thieker the sides of a shedl, the graater its ability to resist the shock of discharge, and the grater the proctration and accuracy; on the other hand, a shedl shoulib be capable of rentaining sullleient explesive or incemdiary matcrial to accomplish the proposed end. The number of pieces resnlting from an explosion varies with the britteness of the metal, and is increased by giving to the interior the form of a regular polyheilon. A dodecahetral form tas been foumd advantageous. The most rapid and violent explosive practicable sbould be: amployed; the size of the fusc-hote should be as small as pinssible, and shouhd diminish with the size of the cavity, to prevent the loss of too great an amount of gas.

Case-shot act only by impact: they consist of a rollection of small projectiles enelosed in a case or envelope. The envelope is intended to be breken. rither in the piece by the shock of discharge, or at any point of its flight, ly a cbarge of poveler. inclosed within it; in either ease, the contained projectiles continue to move on after the rupture, but cover a larger surface, and attain atgreater number of oljpets. These projectiles can be used with effect only against animate objects situated at a short distance from the point of rupture; they are divided into grape, canister, and shrapnel. Grenades are projectiles that are commonly thrown by the hand, or are rolled down the slopes of a work. They are designed to act only by the force of their own explosion. IIend Grenndes are thrown arrainst troops in mass; for this purpose any spherical projectiles filled with powder only and weighing not over six pounds are suitable; these can be thrown from 20 to 30 yards; they are provided with a short fuse which is ignited by a match, or, in the act of throwing, by a special device. Projeetiles have been desigued especially for this servicc, an example of which is the "hetchum" hand grenade. Tlais is a small oblong percussion shell, which explodes on striking a slightly resisting object : a guide attached to the rear end calses it, when tbrown, to move point foremost. Rampart Grenades are intended to be rolled down a breach in its defense, or to be thrown over the rampart, ete. Splaerical shells of any size will answer for this purpose: those unfit for firing may thus be utilized. Shells are fired from guns, from howitzers, and from mortars. Tbey are made of east-iron, and their caliber is expressed in the same manner as solid shot of an equal diameter. The thickness of metal in spherical shells is about one-sixth of the diameter, and their weight, when cmpty, is generally about treo-thirds of that of the corresponding solid shot. In the United States' Service, there are two kinds of spherical shells; one for guns, and another for mortars. Each consists of the sides, the cavity, the fuxe-hnle, and the ears; and, in gun-sbells, the reinforce. The sides are thicker in gun-shells than in mortar shells of the same size, to withstand the high charge's of powder with which they are fired. The fuse-hole is used for inserting the charge, and to hold the fuse for communicating tire to it. All shells of eight inches or more in diameter lave ears to receive the "hooks" used in lifting the projectile to the muzzle of the piece in
loading. The reinforce of metal, about the fusehole of the grum-shell, gives a greater bearing surface to the fuse, and prevents it from being driven in by the force of the discharge; this reinforce also serves, in a measure, to compensate for the netal taken ont of the fuse-hole, and thereby render the shell more nearly concentric. In some services, shells have, in the upper hemisphere, a charging-hole, placed at an angle of $45^{\circ}$ with the fuse-hole, throursh whielk the charge is poured immediately before the shell is used and after the fuse has been inserted. This is not necessary with the fuses used mostly in the United States' Service, as the powder and fuse can be readily introduced at the moment of loading.

A careass is a thick shell which has three additional holes, of the same dimensions as the fusehole, piereed at equal distances apart in its upper hemisphere, their exterior ouenings being tangent to the great circle perpendicular to the axis of the fusehole. The object of a carcass is to set fire to wooden structures, by the flame of an incendiary composition issuing from the loles. This shell las no fuse. and is not intconded to be exploded, althongh a charge of powder may be placed beneath the eomposition to prevent it from being approached by the enemy.

A thand of grajeeshot is composed of nine small east-iron balls, disposed in three layers of three balls each. The diameter of the balls for grape-sliot varies with the size of the piece; being used at lonerer distances, they are larger than the shot for the correspouding canister. Grape-shot are employed only in the siege and se a-const services; as now constructed, they carnot be used in rifled pieces.

The envelope for a stand of canister-shot, cousists of a tin cylinter, closed at the bottom by a thick plate of cast-iron, and at the top by one of shectirno. The plates are kept in place by cutting the ends of the eylinder in strips about 0.5 inch long, which are turned down over the plates. A wire hande is attachod to the top plate. To give more solidity to the mass, and to prevent the contained balls from crowding upon each other when the piece is fired, the interstices are closely packed with sawdust. For a gun, 27 small cast-iron balls are used. arranged in four layers, the top of 6 and the remainder of 7 each: this makes the diameter of the balls about one-third that of the bore. For howitzers, the envelope contains 48 balls, in fotir layers of 12 fach, the balls heing smaller than those in a canister for the corresponding gun. Canister-shot are used in all services. For those in which the charge of powiler is attached to the projectile, the canister lias a block of wood, called a sabot, to which the envelope is nailal at the bottom; the lower plate rests upon this block; the wire handle is omitterl. The parts composing a stand of grape or canister begin to separate the moment they leare the piece.

Ghrapnel are cast-iron shells, in which, vesides the bursting-charge of powder, is placed a nomber of small bills. Their sides are much thinner than those of ordinary shells, in order that they may contain a sreater number of bullots: the thickness must be such that, when supported by the bullets, the case will not be broken by the force of discharge, but will yidd readily to a small bursting-charge. The weight of the case, empty, is ubont one bailf, and, When filled, about equal to that of the solid shot of the same diamoter. 'This projectile is prepared by fillinge the case with learlen masket-balls well packed in; the interstices are then tilled with melted rosin: this prevents the fracture of the emvelope by the bullets, whon the picce is fired. The chamber for the pow. der is afterwards bored out. The case is stengthened by a reinforec, and to inconse the effere of the burst-ing-charge, the lower portion of the fusc-hole is clos. "d by is disc, of wrought-iron, luerforated with a small hono for the paswige of the llame from the fuse. A shrapnel may be made to explode at any point of its fliglat, and, as the loursting-clurge should be only
sutherent to open the envelope, without scattering the bullets too nunch, the execution depends on the veloeity wbich the case has at the moment it is broken. This projectile is therefore of more general use than grape or canister, and should be fired with as large a clarge as possible. It may be used in all services, but is most effective in the field. A defect of this construction is that the bullets, adhering to one another and to the case, are not always separated by the bursting-charge. The shrapnel adopted in the English Service is known as the "Bover diaphragm shell." It consists of a thin cast-iron shell, weakened ly four grooves down the sides to make it open out more readily; of a wrought-iron diuphragm which divides the shell unequally, the upper portion containing the bursting-charge, and the lower being filled with balls of hardened lead, packed in coal dust. A vocket is screwed into the fuse-blole and passes through the diaphragm; this forms a cliannel for the introduction of the bullets and coall the bottom of the soeket is then closed by a plug. Into this socket is screwed the fuse, the fire from which is communicated to the powder-chamber through the fire-hole. The bursting-charge is inserted at the louling-lole, closed by a metal screw-plug.

The advantages to be derived from the use of $f$ longated projeetiles having once been established, it became necessary that some means should be devised to make their flight accurate. It has been found that to do this with certainty, a motion of rotation about its longer axis must lie communicated to the projectile,and this end has been satisfactorily attainerl only by cutting spiral grooves or "rifles" in the surface of the bore of the piece, with which the projectile is comnected, and ly means of which it starts with a motion about an axis parallel to or coincident with that of the bore. The rotation continnes dur ing the flight of the projectile. Without this rotation, an elongated projectile will naturally turn over end for ead,and present a constantly varying surface to the resistanee of the air. This " rifle-motion," therefore, teads to eause the projectile to move through the air in the direction of the least resistance. thereby inereasing the range, and the effect of impact, and, furthermore, giving steadiness to the projectile by distributing the deviating forces uniformly aronnd its line of Hight. The more important advantages of elongated projectiles are, that the form may be altered at any time, and the center of gravity can be placed at any desired point; the projectile may be elongated so as to oppose, for an equal weifrgt, a diminished surface to any resisting medinm; by this, the range is extended, and a flatter trajectory with greater accuracy and penetration obtained. The chief disadvantages are, increased strain on the ghm: greater probability of jamming and injury to the bore; irregularity of ricochet; increased conplication and expense of manufacture; and the liability of any soft metal on the exterior to be accidental! injured.

The different systems of projectiles for ritled pieces are classificd according to the mamer in which they are caused to follow the grooves. The systoms are distinguished by some peculiarity of construction, and are generally known by the name of the persom by whom designed, or hy the place at whicli first nade. The same principles are applicable to dillerent systems, and lle simme precision of fire may practically be obtained from several. All systems are comprised under there classes: 1st. l'rojectiles with projucting ribs or studs: or laving a peculiar crosasuction. 2d. Projectile having a portion that is cxpanded hy the action of the gases in the bore. Bel. 'Those more or less of whosi' surface is compressed by the charise into the form of the bore. The tirst and second classes are applicable to muzaleloarling pirees; the third to breech-lombers only. The principal points to he consinlered, as regurds the piece and the projectile, are the amost and safest unans of enusing the projectile to follow the grooves
 jertile shomld he simple in constractime. ant of auf.
 charere that may be desired: it mast not be liable to jam in the bore in loseling or liring: amp mant prose dace a moderate and maiform strain on the gons. Thu system that most morly complies with these re-


 have bern surrilieded to some extront, fos serne at



Ist Cluss, Solid dangex, projucetine from the boely of a projoctile amb sos shaperl as to til the ritlin! of
 tha ritlemotion in canmon. ln somer rases. there Was for each groove atibextonding the cotire longth of the coylimerical portion of the projoctile, while in others, sets of roumbed buttons were ernplosed. These projections were of the same material :as the horly of the projectila, and being of a very wnyblding nature, frepucotly led to ine hursting of the ficere; buttons of zine, copper, of bronze, firmly secured in mortises in the projectiles, wore therefore adopted. 'The buttons are arranged in rows of two or more so that eisher row anters trady into a corresponding groove, in loating. Whan the bore of a ginn is a twisted prism, with amy plane figure for its bnse, the projertile, if shaped to fit it, will reecive the rible-motion when fired. The Whitworth common is ritled in this mammer, the rerossosertion beiner at hexagon with rounded corncors. (iuns have also been eonstructed with ribs prejecting from the bores, titting into corresponding gromere in the projertile. To the last systemhelomgs the Vaviaseur s.an, which has griven good results; the system preceding has not, however, broved so satisfactory.
'Fibe principal adventages of systems of the tirst class are that the projectiles are sirong, and that the refuired motion is commmaneated to them with great cortainty end regularity. 'The escape of gas arounil the projeretile, as it causes injury to the hore, is an objection to the class ; varions experiments have beed made to overcome it, the latost being by the attachment of a metal enp to the rear of the projertile, which, hy the action of the powder, is expanded and pressed against the sides of the bore. The Fromeh studileal projectile, employed generally on the Continent walt mazale-loading cannon, anil the Woolwich system, similar to it and used in Eugland, are the lext represemtatives of this class.

2l. rtuss. In projuctiles of the second class, the body is composed of a hard metil, as cast-iron, and there is attached to it, generally at the base, a cup. band, or other arrangement of softer metal, which is expanded by the action of the charge into the grooves of the gin, when tired. Expaading projectiles are easy to load, are not liable to overstrain the piece, and those of tifferent systems can generally be fired from the same piece-a point of great intportance. Such projectiles do not always withrtand the heaviest charges of powder, and are not certain to recerive the ritle motion. The use of projectiles of this chass is confined more particularly to the Enited siates. The most important are the Parrott, Lutchkiss, and Buther systems.
37. Cluss. In brech-loading cannon, the receptacle for the clarge is of larger diameter than the hore of the piece. The projectile is of that same size as this chamber, and mast be reduced to enable it io pass into the bore. Such projectiles are embraced umber the third chass: the borly has a contimer of soft metal, which is compressed as the projectile is driven through the bore, the grooves compedling it to follow the direction of the rifling. The same result is sometimes atcomplished by one or more rings of soft metal. The chiof ulvantiges of this class are. that the projectile is generally cortan to take up) the ritle-motion; that its axis is steady on leaving the





 velocity of the projeretile is rednced ly the forere "xpromed in compressing it; and that The moft mofal



 this clatse, which luobus entirely of soft metal are
 injurid.

In conserpuence of windate ame of tha netion of
 roincitle with that of the born in tirines: this gives rise to intrexuraty of fire. W゙ith projuctilem of aiach
 ditliculs: parlially if mot entirely, lyy the system of rilling. or by the natare of the chamber. Thess. properly ralate to the ermstruction of tha pieco.

 Lion ef l'rojuctiles, Effacts of" Projortiles, Elloraguted I'rejertiles, İrpanding I'rojectiles, F"atroicution of Projoc. tiles, C'alling Bodies, Form of I'rojoctilr. Inspertion of I'rojectiles, I'rutbretion of I'rojertiles. l'reorevation of I'rejectiles, Rockets, Runturr of Shells, Shollx, Sturallarm I'rojectules, Sotid Shut, spherienl I'ropectilex. Sterb Projectiles. Ntudded I'rojoctiles amd Trajectory.

PROJECTION.-The rejuesentation, om any surfaco, of the parts of fortifiration amb other objects as they appear to the rye of the ohecerver. It thas incdudes unspurctive, and is most simply illustrated ly the shathow of an object thrown by a candle on at wall: the shadow being the projection, and the phace of the light the position of the eye. The theorg of projections is of rreat importance, both in mathematics, engincering, and geograplyy: being in the former cases, perfectly general in its application; while in the latter ony the projection of the sphere is reguired. Jrojections of the splere are of various kiats. depending on the position and distance of the eye from the sphere, and the form of the surface on which the projection is thrown: thas we have the orthographic, sterengraphir. glubular, coniral, and rylimelralor $1 /$ reator's projections. Another projection frequently cmployed is the ghomomic. In gnomonic jrojection, the eve is suppred to be situated at the center of the sphere, amb the surface on which the projection is thrown is a plane surface which tonches the splate at any one point (called the principal puint). It is evident that a map constructed on the gnomonic projection, is scmsibly corrert only for a circular area whose circumference is at it small angular distance from the principal point. From the position of the efe in the gnomonic projection, it foifows that ail great circles, or portions of great circles, of the sphere are represented by straight lines, for their planes pass throurh the cye. The distance of two points on the splacre, when measured along the surface, is least if they aremeanured along a great circle; and as the distince of the projections of these points on the plane is represented by it strajegt line, which is the shortest distance beowern two points on a plane, this projection, if employed in the construction of masiners' ciarts, would at once show the shortest courst' Maps of the carthes surfice have been projected br the ghomonic method, the surface of projection buine the interior surface of a cube circmmsoribing the sphere and the complete series conseruently amounting tosix maps; but it is not fitted for the construction of mapis of large portions of the earth's surface. The grmomonic projection derives its nlime from its eonnection with the monde of describiser grnomon or dial. The orthogeraphic and stercouraphic projections were entplosed by the Greek astronomers for the construc-
tion of maps of the hearens: die former, or amotiommo, being the best known and most nsed. The stereographir, ealled plemisphere by the treerks, is saik to bave been inwented by IIipparchus, and the gnomonic is described by Ptolemy. The others are of modern invention. In mathematics, the theory of projections is general in its application. and las been employed within the last few vears to generalize the ancient geometry, as a powerful aid to algebra. Its basis is the investigation and determination of those properties which, being true of a firure, are alko true of its projeetions. such propertios being necessarily dependent, not on the " magniture," but on the "position" of the lines and andes belonging to the figure. These properties are generalfy denominaterl projective mopertiex. For instance. the three eonic sections, the parahola, ellipse, and lyperbola, are merely varions projections of a rircle on a plane, and all "positional" propertios of the rircle are at once, by this theory, connected with similar properties of the three conic sections. The theory is also largely employed in demonstrative nechanies
PROKING-SPIT.-An early name for a large Somo ish rabier.

PROLONGATION OF THE LINE.-A tactical manewver effected by parallel movements at the right or loft of any given number of men on a front diixion.
PROLONGE.-A strong hemp rope used with fichd piecest to attach the gun to the limber when diring in retreat, or advancing, instead of limbering un: for the same purpose in erossing ditches; for slinging a pierr to a limber : for righting carriages when upset, ami for varions other purposes. It is usually 2: $0^{\prime \prime}$ long, and is carried wound aromel the pro-longe-hooks on the trail of the piece. It has a look at one end and a toggle at the other, with two intermediate rings, gnto whicly the hook and toggle are fastened to shorten the distance betwern the limber and carriage.

PROLONGED FLANK.- In fortification, the tlank extension from the angle of the epante to the exterior sille, when the angle of the thank is a riglit one

PROMOTION.-The efticiency of any body of men depends mpon the energy of the indivituals composing it : the root of that energy is cmulation; and emulation can only be secured by maintaininer a proper eurrent of prometion. The etheiency of a service is thus dependent on the system of promotion atiopted: and so inportant, consequently, does promotion become, that in the present article it is purposed to glance at the rules observed in the prin(ipal ismies of the workd.

In the Army of France it is a very common saying that every Conseript has a Marshal's biten in his knapsack. Speaking of the times of the Revolutionary War, this was doubthess true, for battalions chose their chief olficers from their own ranks-a Conseript of one year was often a Lient. Col. the next, and perlapas a lbrig. Gen. the following. In the quieter times of recent yours, however, progress is slower: and, althongh promotion is open to all, and a ennsiblerable proportion of the othicers do rise frons the ranks. yet it is very rarely indeed that an otherer who has so risen -vor attains a ligher grate than that of ('aptain. - bunor commissions are-if the rule of the survice Were strictly followed-given, one-thiril tomen from theranks, one-third to caters from military soloonds, and one-third ty erovernmont patronag". In pratice it appears that in the artillery and engineers twothirels of the tirst positions are given to pupils from the Polytechniopue, and the remainder to men from the ranks; while in the line two-thirds of the ollierers rise from the ranks, and one-dhird fone from the Military sedood of St. ('yr. Bufore otliors can be promoted cortain serviee in rath rank is required, vi\%., as 2ll Limbenant, wo yearss as hioutemant, two Vrars: as ("aptain, fonr yoars; as Major, three yoars: find as lientenant (oloncl, two gears. "flaese peri.
ods are, however, curtailed in time of war. Promotion takes place in the regiment up to the rank of Captain, two-thirds by seniority, anc\} onethird by selection. From Captain to Major (chefd'seculorn on de batuillom). promotion is divided equally hetwern seniorite and sclection: while to all hierber ranks it falls exclusively to selection. The selection is matr, on reports by the Inspectors $G$ (eneral of the severil arms-their reports being fonnded on personal observation, and the testimony of senior regimental officers. To maintain rapidity of promotion there is a fixed age at which officers must retire-vjz.. Lientenamt General, 65; Major Genera?, 62; Colonel. 60; Limitenant Colonel, 58; Major, 56; (aptain. 53: anal Lientenant, 52. Thase ages do not prevent the ofitcers of a regiment from leing the opposite of youthful.

In Austria ill officers are at first Cadets; but a large proportion of these Cadets are nominated from men in the ranks by their comrades Promotion goes by seniority, and in the regiment, witly oceasional selection from other regiments. The orgamization and officering of the German Army are both peculiar. Every German subject, of whatever rank, is bound to serve from the age of 20 to 25 ; but in practice this service is reduced to a year in the case of professional men. Every oflicer must serve in the ranks but not necessarily longer than a day. Young gentlemen intended for oflicers enter the ranks, anpiranten. They do duty as common soldiers for from six to nine months, and pass two examinations. Afterward they remain nine inonths at a difision school or twelve months at an artillery and engineer school. They then become eligible for appointment as ofticers when vacancies occur which, however, they cannot obtain unless recommended by the ofticers of their respective regiments. Two-thirds of the first commissions are given to these aspiranten, and one-third to pupils from the cadet schools.

In the Italian Army, one-third of the Snb-Lieutenants are promoted from the ranks. Of subsequent promotion, two-thirds go by seniority, and one-third by selection. It is always urged against the British system of army promotion, that it is too exclusive, and contines the commissions to the npper clases of socicty; and there is no donbt that promotion from the ranks is much rarer than in almost any other army. But. onthe other hand, it is argued, the constituents of the force are very different. Sol diers in Britain are not Conscripts, who necessarily comprise men of all classes and all degrees of education, but are taken as a rule, from an extremely low aud very unedncated class of society. Again, Brit ain has a true middle class, which is wanting in almost evrry continental nation. Its army is not, therefore, necessarily aristocratic because it is not officered from the ranks. Lastly, the habits of the different classes of society differ so greatly, that unless the soldier be very superior to his comrmbes, promotion to a commission is a small boon.

With regard to the actual system of promotion which obtains; in the ranks, promotion from Private up to Company Sergeant takes place in the company, and is mude by the regimental ofticers. The promotion of Company Sergeants to be Staff Sergeants is madr thronghout the regiment. All these promotions are ly selection entirely. Of the eommissioned otlieers, the Quartermasters and lithing masters are appointed almost exclusively from the ranks; but they have no further promotion to look forward to-screquats and soreants-major arr oc. ratsionally ga\%ettal to linsigncies or lienterancios. Tha junior combatant oflicers anoubre their commis. soms either by a competitive examiation open do the: whole mation, or, hy previ uns service in the mili. tia as ollicers, or in the ranks of the army as noncommissioned oflicers. The artillery and enginers are onliored antirely ly Catets from the layal Military Academy. whose subserpuent promotion is by seniority only. In the cavalry, guarls, and line, vo.
cancius are, since the abolition of the purchase sysfom in 1871 , thlerd loy "soniority tomprert ley selocetion," the seleretion breoming more atriet ats the higher ranks are resteded. 'The promotion of oflioerm; ap' to the rank of Cimptain, is mainly regimontal, and in, tht the same time, hy semiority; but senority is. in this rotse gualited by what has beron athed hegrative felection-that is, in other worils, the excelusion of those oflicers who cho not prove their tithess for promosionat the perionlical inspections and examinations. Above the rank of Cuptain, for subtactatioe or regimentel runk, soniority is little regariled, and suldection is more ubsolute: but oflicers may bold at the same time army or brewet rank, confurrel for listinguished service, or for more seniority, in the quncral list of the: whole army. 'l'his hrevet rank does not alfect the position in ar regimem, and adde bat at suatl sum to the oflicer'spay; hat it is of erat importance, inasmuela as Coloncle riso by seniority alone to loe gernaral uthicers, and (obonel is atmost exclusively a brevet rank (the only excoptions being in the artillery and corimers, where (olonel is a regimental rank). Under those rules, it sometimes happensthat anolleor who has never held higher regimontal rank than Captain, may brooma suctossively, for goorl srrvice, Brevot- llajor, Brevet-Lifut mant Colonel, and BrevetColond, until he succeels, in his turn, to the runk of Major (iemeral.

In the UTatere States Army, promotions in the line are male through the whele: Army, in the several lines of artillery, euvalry, and infuntry, respectively. Promotions in the Staif of the Army ure mate in thes several clepartments and corps, respectively. Otherers may be transferred from the line to the Stalf of the Ariny without prejudice to their rank or promotion in the line; but no ofticer can hold, at the same time, an apponintment in the line and an appointment in the stafl which confer equal rank in the Army. When any offleer so transferred has, in virtue of seniority, obtained or become emtitled to a grate in his regiment equal to the grade of his commission in the Staff, he vacates either his commission in the Line or his commission in the Statf. No officer of the Corps of Eingineers below the rank of Field-OAlicer can be promoted to a higher grade, until he has bean examined and approved by a Board of three Engineers, senior to him in rank. If an Engineer oblecer fail on such examination lie is suspended from promotion for one year, when lae is reexamined lsefore a like board. In case of failure on such re-examination, he is dismissed from the service. When any Licutemant of the Corps of Engineers [or Orinnnce Corps] has served fourteen years continnous service as Lieutenant, he is promoted to the rank of Captain, on passing the repuired examination, but such promotion does not anthorize an appointment to fill any vaeancy. when buch appointment would increase the whole number of ollieers in the corps beyond the number fixed by law; nor can any ottleer be promoted hefore oflicers of the same grade who rank him in his corps. When promotions in the Orlmance Department of the Army are allowed by law, no officer of the corps, below the rank of Field Othicer, can be promoted to at higher grate until he has been examined and approved by a Board of not less than three Ordnance Otticers, seniors to him in rank. If an Ordnance otlicer fail on such an examination he is suspenderd from promotion for one year, when he is re-examined before a like board. In case of failure on surl re-examination, he is dismissed from the service. W'hen any ofticer in the line of promotion is retired from active service, the next ofticer in rank is promoted to his place, atecording to the established rules of the service; and the same rule of promotion is applied, successively, to the vacancies consequent upon such retirement. See I ppointment, and Sitafj.

PROOF-HOUSE.- 1 honse fitted up for proving barrels of tirearms. They are extra leavily charged, laid on a bench, primed, and fired by a train of pow-

Jer into a bank of samul. The avorabe loss in Jing-
 A s.erond proving takesphece when the piecen is rady for amsomblinar.

PROOF OF GUNPOWDER. A procrous prursurf] in testing gunjowdar as regirsls its quisity, stringrth, und miformity. 'I'he: fuality is ascarlaimed, both sumble and large grain, by its formeral appoaranco, its firmmoss, glazing, uniformity of grain, and arosity; its strength amd uniformity, us explained furtlare che 'The weight of a cozbic: foos of movernument pewale.r varies accoroline to the nature of the powder. The proserss of glavhing is alsn resorted to for tusting the cleanlinoss and intimate mixture of tho ingrerlients. With this view, about 3 drachans of powilar are placed on atiass plate, and fired withareal-lat iron. whem. if the powder has been proprorly made, no resinlue or foulness should lee left. In ablition to the bhove proonf, the hygrometrie tost is a very neros. sary one to be takain of all natures of powaler. The usnal mode adopeterl to tost the cxplosive strengll or pressurf of gumpoweler in a gun is thus explaineol: An -inch pronf gun is titted with :3 screw ganges, or "crushars." by which the pressure of the explorling charge is recorderl at ther points in tho bore, name-ly-ju the axis by : gatue serewed thronghthe cascabrel of the gim; by a gatage, screwed into the sicle of the gun at 7 ? inches from the end of the bore: and loy a gature serewed into the side of the gun int 15t inches from the eml of the lore. The velocity of the shot, or eylinder, is anensurad by two clironoseopes. For this phrpose four wire screens are arranged in front of the gim at the rospective distonces froin the muzzle of $i n$ fort, 100 feet, 210 fort, and 220 fert. Nos. 1 and 3 screws belong to No. 1 instrument, Nos. 2 and 4 serews to N゚O. 2 instrument. The velocity of each projectile is, therefore, registered at two points in front of the gnm, nanely, at 150 feet and 160 fret, by two independent instruments. This affords a complete check on the method of recording the velocity. The "crusher" gauge, or instrument for measuring the pressure caused by the explosion of the clarge, consists of a screw-plug of steel, provided with a movable base which atmits of the insertion of a small copper eylinder, $\frac{1}{3}$ inch in length, into a chamber. One cind of this copper cylinter rests on an anvil, whild the other is acted upon by a movable piston. The copper eylinder is centered in the chamber by a small circular watch spring. The action of the apparatus is us follows: Upon the explosion of the elarge, the gas, acting on the area of the piston, one end of which jisulmost flush with the interior of the bore, crushes the copper cyinder against the anvil. The amount of compression which the copper thereby sustains becomes an indication of the pressure. The area of the copper cylinders used for proof of gunpowder is $\frac{1}{12}$ square inch, while the area of the piston is $\frac{1}{8}$ square inch. To form a table of pressure, a series of experiments has bern carried out in a testing macline, so as to determine the pressure required to prodnce a dutinite amomint of compression in copper cylinders corresponding to those used in the instrument. The tabulated results furnisle a means of comparison whereby the amount of compression produced in the " crusher" becomes a direct indication of the pressure at that part of the bore where the plug is inserted. The interesting experiments curried out ly the committee on explosives have shown that the pressure indicated by each . . erusher gange" is, practically speaking, a true measure of the strain on the gan at that point.

The modux operindi of conducting an inclividual experiment in connection with the proof of gunpowher is as follows: The electric batteries and wire screens for use with the chronoscope baring been duly prepared, the operator having satistied himself that the instrments are in thorourh working order, the command is given to "loarl." Lpon this the men at the gun insert a cartridge of 35 lbs. weight and 19
incles length into the bore, and ram it lome until a stopper on the stave of the rammer comes in contact with the face of the muzzle. The cylinder, flat at botliends.js then inserted and rammed home in a similat manner. This proceeding insures uniformity.as, owing to the stops on the rammer staves.each charge oceupies the same space in the bore. The " erush(r") plugs are then screwed into their respective holes, the copper crlinders havine previously been fitterl into the chamber in the extremity of the plug. All is now ready. The operator adjusts the chronoseopes, and gives the signal to fire. The projectile passes throngh the wire sereens before it burise itself in the earth butt at which it is (lirected. The operator notes the readines of the instruments. The "crusher" plugs are withdrawn, and the little copper eylinders removed. stamped with the experimental number of the series, and measured in a calipers or mierometer gauge. A reduction in the length of the coppercylinder of $\frac{1}{1}$ inch indicates a pressure of 12 tons on the sfuare inch; of one-tenth and a balf, of 16 tons; of $\frac{2}{7 \pi}$. of 21 tons; of $\frac{3}{10}$, of 36 tons, ete. Thus, the operator, in each round, records two velocities, which ought to be almost equal, and pressures at three points in the bore. Let us assume that the pressures at the three points are respectively 17.6 tons, 17.9 tons, and 16.3 tons, and that the observed velocities per second are 1430 and 1426 feet at the respertive distances of 150 feet and 160 feet from the muzzle. As a flat-headed cylinder of 180 lbs. Weirht and 8 inches in diameter, traveling at 1400 feet a second, would, owing to the resistance of the air, Jose about 15 feet relocity in passing over 150 feet of space, the mean velocity at the muzale will be 1443 feet. This bateh of powder, therefore, would have passed proof within the terms of the specification. IIat]. howrever, the pressure recorded at any one point exeected twenty tons, or the observed velocities been less than about 1405 feet, or greater than about 1465 feet, the powder would be rejected. The instrment inrented by Le Boulenge for proving powder, has now nearly superseded that of Navez-Leurs, both in India and in Encland.

A very valuable paper on "Fired Gimpowder," by Captain A. Noble, F. $R$ S., and Professor Abel, $F$. R. S., will be found in the " Plilosophieat Transac tions of the Royal Society" for the vear 1875, in which is given the result of eertain experiments for ascertaining the different plemoniena of fired gunpowder within the bore of a gun, a subject until very lately veiled in obscurity for want of suitable instru ments and data on which to earry out the experiments. The different chronograplis which have been invented give us the measure of velocity of a projectile at the muzzle of a gun and during its flight, but the velocity of a shot within the bore from the first movement, along certain fixed points until it leaves the gun, has been left to Captain Noble to discover with his beatutiful ehronoscupe, which is able to record the millionth part of a second. This instrument, in conjunction with the "crusher gange," enables us to asertain all the phenomena attending the combustion of simpowrler, such as its tension or pres. sure-its rapidity of ignition-the time orerupicel in burnines dillerent natures of gunpowthr, cte. The subjece js so interesting that it cannot fail to attract the attention of all sedentitic men and that of the practical artillerist. The length of the memoir prevents, in a work of this sort, a Jongar allacion tot the results of the expuriments than is How given.
Ejproumeth, and cimumusdir.
PROOF OF ORDNANCE. - (imms of all descriptions are proved before being issued for sarvier. Hus. kets are tested by heiner fired with heaviar hallets and larger charge of powder than they will in the ordinary way be reduired to carry. Camon are subjereferl to a series of tests. loirst, they are gitured to asererain that the dimensions are corrext, the utmost vaistion permittul heintr .: in. cexternally, and . (0): in the dianterer of the bore, but the position of
the onre may frequently deviate . 25 in. from the line of the piece's axis. The next trial is by firing twice with very heavy charges-tha bere being sulbsecpuently minutely examined, to detect flaws or crevices in the metal. A cavity exceeding in depth 2 in . if belind the tirst re-inforce ring, or .25 if before that ring, condemns the pisce. After the proof by fring, water is forced at a great pressure into the bore, in order that it may permeate any honeycombs or flaws; the next day the bore is examined by means of a mirror, which casts a strong light into it. Flaws are then asily detceted for while the rest of the bore is th oronglily dry. water will contimue for some time to weep or run from the loles, and will stand user them in clrops. This operation completes the proof. When a gun bursts in proof, the remainder of the guns of the same sort then in proof are sulbjected to another ronnd.

Gunpowder for proving ordnance should be of the best quality of the kind used in the sum to be proved, giving not less than the standard initial velocity; it should be proved immediately before being used unless it shall have been proved within one year previously, and there be no reason to suspect that it has become deteriorated. The cartridge bags are made of woolen or raw silk, the full diameter of the bore or chamber. They are filled by wejght. The shot must be sinooth, free from seams and other inequalities lat might injure the bore of the piece, and they mist be of the true diameter and weicht given in the tables. Guns and hucitzers are laid with the muzzle resting on a block oi wood, and the breach on the ground or on a thick plank, giving the bore a small eJevation. Mortars are mounted on strong wooden frames or iron beds, at an elevation of $45^{\circ}$, supported by the trunnions. Each picee should be fired two rounds with maximum charges and projectiles. Tlue bore, vent, and the exterior surface of every piece which is approved, shonid be well covered with sperm oil immediately after the inspection. Bronze cannons are fired three times with solid shot and a charge of powder one-third the weight of the shot. If the piece has been in service, or if it be new, and its bore be of the true size, the shot should be wrapped in clotlu or strong paper, to save the bore as much as possible from injury. See Inspection of Orlnance.

PROOF-PLUG.- A plug screwed temporarily into the breecl of a gum-barrel to lee proved.

PROPER. - I torn in Heraldry. A charge borne of its natural color, is said to he proper. In object whose color varies at dilferent times and in different examples, as a rose, which may be white or red, cannot be liorne proper.

PROPORTIONAL DIVIDERS.-An instrument dessigned for dividing a line into any number of equal parts: for describing regular polygons in given circles; for reducing or enlarging the area of a drawing, and ulso for taking the square and cube-root of numbers, The bodies of the legs of these dividers are made of a tlat jicee of German silver, or brass, with a rectangular opening eut in eacla nearly the whole length; the ends of the legs are armed with sterd points; the lourest two are fonr or five times the length of the shortest ones. The legs ire put tugcthor with the rectangular openings exactly opposite tach other, and retaint d in their place by elamp pates and a thmmb-scrow, which can be moved up and down the opening and made tight at any desired point; these clampholates and thmmb-serew eonst j tute the joint of the dividers, upon which the legs arv openex, and it is casy to perecise that if this joint is rexactly halfway betifern the "xtremity of the points the two ents will open to the same distance, but if the joint is moverl nearer one enul the opening of the points will hear the same proportion to cate other as the Jonger docs to the sborter mart. The cheatur form of these divixlers have but one set of armhationa. by which lines only can be subtivended; the proportions are $\frac{1}{2}, \frac{1}{8}, \frac{1}{6}, \frac{1}{8}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{y}, 1^{\frac{1}{0}}$; that is, if
the line neross one of the champeplates is malle to "oure opposite cither of the divisious on tho leg. the two ends of the dividars will open in that propertion. 'Jlar best proportional dividers bave onte side of ons of the legs grablated for dividing lines into $\frac{1}{2}$. fi, $\frac{3}{3}$
 the log is grablatad for inscribing regular polygons of $6,7,8,!16,11,12,13,14,15,16,17,18,19$, aml 20) sides in given arifers. To use the limes of polygenns, bring the lime atross tha (lamp) phate to coinride with the eraluation whirls is marked with thr number that the polygon is : on lume sidas, then opra the dividers and make the lomer stere proints take in the ratins of tho eirele, Hem the listanee lutworn the small points will he the lengeth of one sicle of the
is matu npon an abstract showing fally all itsuspon-

 is mater, onm copys of whicls, together with ome of



 of bidiler." "Date of ledivery"," "homarkw." and twe

 fored; for exitmple molder the item of pork, there are two columas (price and (fanmity) for atall of tha


requiral polyenn. Thar juint of most of the proportiomal diviolas is slippud aboug tho rectangular open-
 bring it exaclly to the right plater, ans a little too moth prossure will move the lime n linle too far, and an "pposite pressure maty pht it taso far in the origiand dirertion agran. For nicely in ablustine the joint to the required peint, some proportional dividors are tittud with a har and morometor screw, by which the joint ran be drawn exactly to the required division. Another flan is to have a rack titterl on the invide of the rectangular opening and a pinion attacherl tothesliding joint litting into it; by turning the milled thumb-serew of the pinion the joint is moved up and (own in the rectangnlar oprening with great regnharity and exnctness. Creat care mast be taken that none of the points of the proportional dividers ent broken.

PROPOSALS.-Information in regrard to supplics or services for which proposals have beren inviterl by advertisements is furnished to all persons desiring it, on application to such sonurces as are designated in the alvertisement. In case of supplies, they are informed of the kimd.gnantity, and ynality of aribelew ropuired; place, time, and rate of delivery: conditions of proyment, ate. In case of serviees, they are informed of the nature and extent of the services reguired; the place where or places between which they are to be performed, and the time allowed for the performance ; furnished with or allowed to cxamine plans and specitications of all huildings, constructions and other works in comemplation, ete. No bidder is informed, direetly or indiruetly, of the name of any person intending to bid or not to bid, or to whom information in respect to proposals may have been given. All proposals shomid be inclased in suitable envelopes, securely sealed, indorsed, and adelressed as reguired by the advertisement, and be delivered 10 , or received $b y$, the ollicer 10 whom addressed before the time appointed fur the opening ; and no responsibilty shoudd attach iq that officer for premature openime of any proposal not so indorsed as to show that it is a proposal, and the particular purpose for which it is madle. When an advertisement calls for proposals to deliver supplies or render services at more than one place, a separate proposal should be made for each place, but all may be sulpmitted in the same envelope. The officer whose duty it is to open proposalstecides when the time fixedupon for the opening has arrived, and no proposal for that opening is thereafter receibed as formal. If a bidder wishes to withelraw his proposild, du* mav do so before the time fixed for the opening. without prejudice to himself, by communicating his purpuse, in writing, to the officer who holds it; and when his proposal is reachod it is handed to him, or his atuthorized agent, unread. I'roposals are opened and read aloud at the time and place appointed for the openinge: aud a record of each proposal then and there
 The following is the gemeral form of propusial
The undersignod, engiged in the - lnsiness, in response to your - dated the ... day of - -
 U. S. Irmy the following stores, viz
at - dollars and - conts prer ——. and shonld this propasal lan accropal - hereby hind - to deliver the stores in siriet erom. plance with the terms of your - - on or before the

[^2]Other l.S.
In abll cisiss where honds are requirod from bid-
 by a bond made according to the form prescribed. The eondition of the bidder's boml is to the eltieet that the bulder will not withdraw his proposal within sixty days surereding the date annomaced in the ad!vertisement or notice for the opening of proposals: and that, if his proposil be accepted amd the contract for which he las bid be awarded him, le will enter into a eontract and bund agreeable to the terms of his proposal within such number of days after the day on which de is notitied of such acreptance and award as may be desiguated by the ofticer representing the United States.
The form of the bidder's bond is as follows:
Fnow all men by these presemts, That we [name of obligur], of [residence of obligor, giving torn. cuunty. Ntate, ite.], as principal. and [name of survty], of [residence of surety], and [nome of surety], of [reskatonce of surety], as sureties. arc held and bond unto the United States of Amcrical in the penal sum of - dollars, 10 the payment of which sum, well and truly to be made, we do bind ourselves, our beirs, executors, and administrators. juintly and severally, firmly by these prosents.

Given under our hands aud seals this -- day of 18-.
The condition of this obligation is such that, Whereas the above-boundan [name of obligor], in re sponse to a public advertisement amol notire dated - - , 18- and given and published by -- - Cnited states Army, has made and presented to

L"nitid States Army. a formal proposal. in writing. whereby he las proposed and agreed to enter into a contract with
Euited States Army, atting for and representiner the suid L'nitul states. to [here whte in briof the subbject of the contratt]. according to the terms and conditions sot forth in said shlvertisentent or notice

Now, therefore, if the said [name of olligor] shall make and shall not withdraw his said propusal withinsixty days from the date of opening the proposals, and shall within-- days from the date on which he may be notified that his said proposal has been accepted and the said contract awarded to him (provided such award be made within the sixty days above mentioned, duly and formally entered into such contract agreeably to the terms of his said proposal, and into such bond for its due performaner as shall be required of him, or if his proposal shall not be accepted and such contract not be awarded him. then this obligation shat be void : otherwise, that is to say, if either he shall withdraw his proposal within said sixty days, or fail to enter within said - - days into such contract. if awarded him. and into such bond, to remain in full force, effect. and virtue.

Wituesses:

(Executed in duplicate.)
The following is the form of the Justification of the Sureties:
State of
County of -
$-$ , $8.8:$
I [name of surety]. one of the sureties named in the within boud, do swear that 1 am pecuniarily worth the sum of - dollars, over and above all my debts and liabilities.

## [Signature of surety.]

Beforeme,

## [Signature of officer administer.

 ing oath, with seal, if any.]PROSECUTOR.-In Courts-Martial the Judge Ad. vocate is usually the prosecutor; but it an officer prefers a charge, he sometimes appears to sustain the prosecution. No person can appear as prosecutor, who is not subject to the Articles of War, except the Judge-Advocate.
PROTRACTOR.-A mathematical instrument much used in engincering and fortification drawing. Fig. 1 , shows the protractor in common use, provided


$$
\text { Fig. } 1 .
$$

with arms and verniers. Crozet's protractor is shown in Fir. 2. It is mamed from its inventor, an officer of 1he United States Engineer Corps, and is considered the best amone the various protractors yet devised. II may be used with the T-rule or straight edge. The frather edge is always set to the starting point and the line produced without puncturing the paper. The feather edge is the only metallic bearing upon the paperr, small jvory projections on the unter side of the frame keep the metal from contact with the paper und prevent suiling lt.
PROVISIONAL FORTIFICATION. - Broadly speaking, provisiontal works may be divided into two classis accorcling to the conditions under which they may be expected to be cmployed. Ist. Works conistricted after the heginning of a campaign on sites mot previously strategically consibered. or whith have beomme important in comsergence of straterie developments not anticipated. In such cases neither Whe toperaraphical nor renlogival eomditions might be fully known, and. which is also of much importanere, the extent of the resourens of the meighbortoon in latoor and material might he more or less undetermin-
et. 2d. Works constructed at the declaration of war.or its approach, for a well defined and previously considered object, on sites perfectly well known. and under conditions aceurately ascertained before-


Fig. 씅․
hand. As an instance of works of the first class, Plevna may be cited; as instances of the scond, Adrianople and Tschataldscha: as an instance of the possible demand for the second class, London. The former class would usually have to be carried out by Military Engineers capable of adapting standard designs to varying conditions and full of resource, so as to be able to make the best use of the time available and the material and labor forthcoming. On the other hand, works of the latter class could be designed in the fullest senseduring the calm of peace. Their requirements in labor and material would be exactly known. The resources of the neighborhood would have been accurately gauged, and the how and the whence to supply deficiencies would have been considered. Morcover, if a properly elaborated design existed, the execution might safely be left to civil labor under civil supervision. In the defense of England both classes of fortification would probably come into play. Certainstrategic, commercial, or manufacturing centers would appear to nced protection under any circumstances, others would call for fortification as soon as the landing place of the invader, or his subsequent plan of operations, had declared itself.

A method of fortification, in which forethought amd lrain power applied in advance may save enormous and possibly useless, because misdirected, expenditure, appears to be worth very careful study; and there are circumstances which make provisional fortification particularly applicable to Englamel. The sea secures lier time and a fair warning. Ifar resources in labor and the very ordinary materials repuired are practically unlimited. Iter great railway system facilitates the rapid concentraitionat any poot of liboor and material. Moreover, England possesses in her Civil Enginers a very powerful force, which could at a time of nered lue applied to the defense of the country. Thare is a very considerablo lowly of young and able lingincers who, if providet with proper designs, are perfectly wedl abla to carry out all the work necessary to fortify a position, and who have great experituce in dealing with, and organizing civil labor on at large seate. In any time of raal necessity the perwomed of the (orjos woud have demands made upon it whish its strength could searcely meet, ant it is no small adtvantage to have this very read "reserve forec" 10 fall bick upon. The same may be said of many of
the eobonies, and it remains 10 prepare in peace time at romplete systom of proviniomal defonse, amd ly morlifying it from tima to dime to kerp it abrast of the: relvancing power of the attack. A paler
 deception, which mu proat mations, jeatoms of the mamarement of its alfiars, Homble folerate; but a priper system of fortitication may, it is: contomberl, formata very real defonse. Only this paper systom mast be thorongh, and the brain pewer applicil to it unstinted. A very litter reflection surves to show that the design of a provisiomal work is a task of considerably greater dimbenty than that of a tield refoubt. Thes restriction to two or three days, or less, in : We case of the lattor intromeres a very shary limitation th the possibilitios of design. Extom the time tothree or four weeks. or wem longar, postulate an ample supply of limber, of railway hars, ant even perlapsos bricky and cement, and it will be evident that these poswihilitios have raormonsly widenced, and that very considerable variations of trace, protile, and general arrangement will present themselves for considuration. it is even contended that the design of a good provisional work is more diaticult tham that of an anagons permanent structure, and that it allords more scope for clewer and resmure ef al engineering.
The drawing shows a plan of a typieal provisional work for the defense of a hill top. This ilesign was
around the work, and the frome line is broken art as to form two bationel fromts atal alen two plamen of armesathe shoulders, dofiladed by four traverens romtaining casiomatre. Brickwork is (omployed in
 tha ditch down into the wapemiars and up to the rove red way. "There total brath of the liase of fire is


 arine accommoclation for the extent of about bif 5 sifuare fie.
The: most aliont fonturess of the works attributen (4) blahm are thus: 1. 'rhae (wareal trace of the rerst of the main work. 2. The polygenal trace of the ditelt; the latter usbally undlanked. :3. The combination of artillary anol infantry tire from tho work itself: the amploviment of the latter only from the ervered way. 4. 7ilue eurved lefonsible ratared to cover the gorge; the iarge lateral traverses comtaining camentates for mona amd magazines. 5. The comployment of brickwork ats maril as powsible for the walls of the risumaters and fore stepped appromebes. The work appears to haveseveral merits. The coreular or chliptic Irace camorat well be entilated: it afforls a maximam of interior spaco with a minimum of parapet : there are no midefended angles. The ohl objection to circular redoubts-that they tend to too great a disjersion of tire-has now less

furnished by Bluhm Pashato Colonel Ott of the weight. sinee a amaller number of brech-loaders is
 segment (diameter about 60 vards) and fone sides of the polygonal ditch are flanked ly eaponiers with two tiers of fire, formed in the coninterscarp at its front ends. These caponiers are well pliaced for protection from distant artillery fire, lout in the event of the encmy gaining and maintaining possession of the diteh their defenders would be saeriticed. Accommodation is provided for eight overbank guns in the work and one in the gorge traverse. The latter is reatly a segmental lmette partially inclosing a traverse containing a shell-proof casmite. A covered way affording a good line of infantry fire runs old riffes. Nor has the other ohjection-that the cireular traee is suited only to direct defenses, and that works so designed have no self-tanking power - fuite its old force, since the increased range of artillery enables works belonging to a line to atford eachother more effectual muthal thank defense than formerly. Morenver redoubts wonld frequenty be flanked by detached batteries in rear of the general line of their positions, On the other han!, it may pernaps be said that the work above doseribed provides insuffieient conver for its garrison, that the broad berm at the angens of the ditch affords a grood
resting place for an assaulting party to aecmmulate prior to the final rush for the parapet, and that there is on the whole too little storm-freedom. The latter objection may, however, be partially met by a liberal use of obstacles. See Fortitication.
PROVOST.-The temporary prison in which the military police contine prisoners until they are disposed of.

PROVOST CELLS.-In the TBritish service, those certified cells under a Prownst or acting Prownst Sergeant, in which Court-Martial prisoners maty be imprisoned up to forty-two days. Also, called Regimental or Garrison cells.
PROVOST MARSHAL. - An officer appointed in every army in the field, to secure the prisoners confined on elarges of a general mature. , ln the British Army he is an officer, with the rank of Captain, appointed 10 superintend the preservation of order, and to be. as it were, the head of the poliee of any partichlar camp or district. He has cognizance of all campfollowers, as well as of members of the army. His power is summary, and he can punish an offenter, taken figrante dilicto, on the spot, aceording to the penalties laill down in the Matiny Act.
PROVOST SEGEANT. - A Sergeant who is charged with the military police of a corps. He is generally given one or two pon-commissioncel officers as assistants. In the British serviee he is also charged with the custody of all prisoners in the cells.
PROWLERS.-Armed prowlers, by whatever names they may be eallect, or persons of the enemy's territory, whosteal within the lines of the hestile army, for the purpose of robling, killing, or of destroying the mail, or of cutting the telegraph wires, are not entitled to the privileges of the prisoner of war.
PRUSSIAN BREECH LOADER. - This method of elosing the brecel is similar to that of the Hisherendonf Breech-loader. The leakage of gas is stpplped by a valve and a prepier muché cup. The sliding block is set up by a wedge tightencd by a screw.

PRUSSIAN FUSE.-This fuse might be designated as a time-concussion-chemical fuse. It consists of three parts. 1st. The botly of the fuse, or fuse-ease, which holds the other parts, and is serewed into the eye of the shell, the top being flush with the onter surface. This part has heencoustructed of both metal (brouze and cast iron) and wood. The interior is divided into two parts, both eylindrical, and with a common axis. The one next the outside of the shell is much the larger in diamoter. This case was made the same size for all ealibers, but that part destined for the reception of the fusc-romprasition, is longer for fuses bihich are to le fired with small charges than for those with which large charges are to be used. 2l, The perenssion apparatis consists of a small glass tube, hermetically closed at both ends, partly tilled with coneentrated sulphuric acil, and wrapied with cotton threal soaked in a composition of 70 parts (by weight) of chlorate of potassa, 10 parts of Howers of sulphur and 20 parts of white sugar, pulverized, sifted. and moistened with aleobol. This coveriug is put on of such a thickuess that the tube can just fre insceted in a paper case which serves it as an envelope and which fits partly into the smalle openiner in the fuse-case und partly into a thimble-shaped prectior of lema, which is inserted over it in the large. part of the operines. 3 d . The composition column. The "xplosive apparatus being in position, there remains between the thimble and the sides of the fusecase a vacant space, which is filled with compressend meal-powder, filled in by means of a hollow drift, the interior diameter of which is a little greater than the diameter of the thimble. When the componition reaches the top of the thimble aneompressiond meated powder is tilled in to the top of the casc. On luing fired, the thimble or braker being sumported by the composition aromud it, is not distarbed. lant as this takes fire like an ordinary fuse and buras down to the bottom of the breakir, it deaves this unsupported; and if the eomposition is all con-
sumed when the sliell strikes, the shock overthrow: the breaker, rupturing the glass tnhe, setting free the sulphuric acid, and exploding the shell. Experiments go to slow that, in this fuse, the best maturial for the fuse-fase is beech-wood; and the worst, cast iron.

PRUSSIAN GUN LIFT. - The gun-lift adopted for scrvice in the l'ussian Army consists of two telescopic hydranlic jacks, cach mounted on a solicl base. and carrying suspended from the heads of the two ajpjer jacks a wronght-iron cross-beam, with a double hook depending from the middle for attaching the load. The lower jacks are $8 \frac{3}{3}$ inelies in diameter, and the upper ones $6 \frac{3}{4}$ inches, each having a lift of $3 \frac{1}{2}$ feet. They are operated by means of a erank on an axle. which rests in two bearings on the lower jack. A ty-whel with a handle is attached to each end of the axle; they are used to transport the jack from place to place. The cross-beam is built $n_{1}$ of two rolled plates placed vertically, strengthened by angle-irons, and joined together by a top plate riveter to them. A cast-iron block is bolted between the phates at the middle of their length, and a link passes around it and carries the double-hook. Length of cross-heam, 10 feet; weight. 1,430 ponnds. Capacity of the lift, 62,000 pounds. raised 7 feet.

Great care must be taken to prepare the foundations for the jacks to set on, so that they shall mot yidel uncrually when the weight is brought upon them, and eause the jacks to upset. If the ground be soft, the foundations may be made of timbers bolted together and resting on piles. The jacks are placed on the bases at the proper distance apart (depending upou the length of the cross-beam, which is usually 10 feet). The cross-beam is brought into position ly 24 men, the ends at the foot of the jacks. A chain is passed through the stirrup of the upper jack, and is made fast to the end of the crossheam, which is raised by pumping the jack, and is rested on a trestle prepared for the purpose. The jack is now lowered, the end of the beam is secured in the stirrup, and the trestle removed. The same operation is performed with the other end, thus bringing the cross-heam into a horizontal position. and the heads of both jacks down. The cross-beam is suspended more quickly and safely by using two trestles; raise both ends of the cross-beam at the same time, rest it on the trestles, lower the heads of the jacks, and suspend the cross-beam in the stirrups, then raise it slightly and remove the trestles.
The cross-beam is placed across the gun, a block of wond of proper slape boing first interposed to protect the gun from injury. The first jack is placed 5 feet from the axis of the gun, and the end of the eross-bram is inscrted in the stirnpl. The second jark is set up in a corresponding position on the other side of the gun: a chain is passed through

the stirrup and made fast to the end of the crossbeam, which is raised by pomping the gack; a trestle is placed under the rross-hemen when it is lromght (1) a horizontal position, the heat of the jack is lowered, and the stirrup is placied over the end of


the cross-beam. The slings arr passod around the gan amd hooked to the double book lby pamajumg
 liff commot be set up) over the weight to be raised it may lue set up on planks, "ther in fromt or rear, ama then moved into the reenires position hy metans of rollers. 'flor lift is taken down in the invorse matnner of setting it up.

Twentyofomr men transport the crose. lanam by two long handspikes run throush holtes in the beam for that purpose, amd place it on a truck or eart. The fly-wherels are used as truse-wheres for transporting tha jacks. 'The krys which faston them to the ax "és are removed. also the handles. The herals of the jucks are secured hy ropes, and the boblenf the axle. bearinges tightemed. 'The jack is broneht down into a nomrly horizontal position, and the stircup is placed over the pintle-lusts of a dicld-limber and soc"ured by a rope. Se'e (ŕun-lifl, amd frumpl fun-lift.

PRUSSIAN NEEDLE CARBINE.- 1 brach-loadingr small-arm, having a lixed chambere flosed by a movable barrel, which rotates abont and axis at ion ho the axis of the barrel, and vertical in the plane of the asis of the barrel. It is opened hy thrniner a lever back and to the right; in so doing the barrel is moved forward by an eceentrie ats far ats the corresponiling arm of abourt-shaped slot in the tanar of the receiver will permit the rear guide-stud to go. lay the stame weans the lutt of the barrel is swoner around to the right, so that the month of the ehamber may be readily reached with the loat. As the eceentrio turns, an eecontrie plate, which is on the same shaft with it, turnsalso; and hy moans of at conneeting rod, whicel is linked at its forwarderd to tha ecerntric plate and in rear to the rocking-holt, sliges the latter buekward against the pressure of a spiral mainspring surrounding the stem of the nocolle bolt, arainst the face of whicl the vertical arm of the corking-bolt presses. This motion is so timerl, that at the moment the piece is fully operael, the nose of at spring-sear riding over the beveled shonder of a tillet on the needle-bolt, eatches against its sumarefuce and retains the bolt against the pressure of the mainspring, when, in order to load the piece, the resistance of the hand las been vithdrawn. It is closed by returning the lever to its place beneatlo the barrel; the barrel is first swung around in the prolumgation of its origimal position, and is then drawn buck so that it gas-plug projecting from the receiver shall enter the month of the chamber. The carbine is fired in the same mamber as the J'russian nerelle-gun, and in case of a fitilure to jignite the charge, the piece, without opening it, may be rococked in the same manner. The arm using a selfconsuming eartridge-case, the extructing or ejueting apparatus is not nceded. The enormons swell left at the muzzle of this piece, it is supposed, is intended to protect it from the indentations likely to occur in common use in the momented service. See $V$ Ve-d'e-guns.

PRUSSIAN NEEDLE-GUN. - 1 breech-loading ginn (small-arm), having a fixed chamber closed by a movable breech-bloct winich slides in the line of the barrol by direct action. It is opened by releasing a apring catcla by pressimg down upon it, and then drawing it bate by the thamb. This stides a projecting thmmb-pice of the lock-tube ont of its sfuare notch in the receiver, and allows the handle of the breech-liolt to be raised to a vertical pusition and the bolt itself to be withadrawn. The pitce may then be closed by reversing the movement of the bolt, and maty be locked by turning down the bass of the handle against in recoil-shoulder formed for it on the receiver. In the net of dosing. the front sloulder of the nerodle-bolt, aromed the stem of which the main spring is coiled, cateles against the nose of a sear, and pushes tha lock-tube out to the rear loy means of the main spring included between them. By then pushing forward with the hand. the hase of the lock-tube motil the spring-eatel above it engages
with a corrasponding notrla in the nppur morfisete of the bore at the Iravels-bolt, the main moriser is rompresiabl, so that when the hatr is pullad e, of the way hy lhe trierer, tho neoollo: may low dartiod for-
 bont, find its way lhrourh the prowalor in tha" cartrime to cxplofe the fulminate lying in the bane of

 or ejocoting devires are reanired. 'Tha butt of the harrel is c-lamberent, and the face of the bracel)-bote is combltreboral at the sambe angla, wos tos to make a Plose tit aml to provent; as far as fonsible. thar 14. rape of gats. 'Jhe reonil-shmaler on the raviver is inclimed to the fromt, wothat as the endes of the harrel and lorachlolt wearolf, the bost may be lorouerht forward to supply llseir loss. Tlue arm may be eroked indapendently of the bolt, by first withilaw. inge and then shoving forwarl the lucketulu. Thw system may be dismonnted ly withdrawing the belt, amel at the same time palling haril on the: trige ger ; this canses a change of fulerom to the rear. lunst of the seolloperd surfaces. into which its ulper side is formerl. and permits the nose of the sear to be palled complelely ont of the waty for tho pasage of the beslt. Sere Nerelle -gums.

PRUSSIAN RIFLING.- "l"u l'russians early aulopt-
 ereat accuracy and range with flarges of ome-tenth the weight of the projectile. The rilling ronsistere of numerous slablow rectangular grooves. 'Tlue shot was emonsed by four romaded lead bands or hoopm, held in place by grooves in the slot. With this system tho shot is larger than the bore, and is sefuecered or planed to fit the bore hy the lands of the rinling. The shot must therofore be entered at the breecis, into a chamber larger than the re*t of the hora : ind whatever escape of gas there may be arommel tha: brecel-elosing apparatus reduces its range and volority.

PRYCK-SPUR.-In ancient armor, a spur having a single spike.

PSILOI.- Imong the Greeks, Psiloi wore the light armed men who fought with arrows and darts, or stones and slings: but were undit for close fiegh. They were in honor amd dignity inferior tos the hearyarmed soldiers. The l'siloi performed all the duties usually devolved, in the present day, upon light infantry, both before and at the opening of an engagemont. See oplitai.

PUBLIC ANIMALS.-The amimalls in the comploy of a Government. In the Lniturl States, the following specifications govern in purchasing the horses and mules for the military service:

Caculry II noses-To be geldings, of hardy colors. sound in all particulars. in good condition, well broken to the saddle, from fifteen to sixtern hands high, not less than five nor more than nine years old, and suitable in every respect for Cavalry service. Whenever it becomes neressary to purchase the half-brect horses of California or sonthern Texas, the standard of height may be redneed to not less than fourteen and a half hamds.

Artillery IIonsp- To be geldings, of lardy colors, sound in all particulars, in grood condition. stuare Protters. well broken to harness. from fiftern to sixteen hands high, not less than five nor more than nine years old, and ssitable in every respect for Ar. tillery service.

Mites-To be strong. stont, compaet animals sound in all partimatr, in gool condition, well broked to haruess. not muder fourteen hames hirh. not less than four nor more than nine years old, and suilable in every respeet for the transportation service of the army

When workhorses are to he purchased, ihey should be sound in all particulars. lifteen amd one. half hands higls and upwards. strong lmilt. well broken to work in harness. not leas than four nor more than nine years old. For pack purposes, hliق
standard of height may be reduced to thirteen and a half hands, if the animal be in other respects suitable. The pack mule need not necessarily be brokern to haruess.

For general transportation purposes of the army, horses cannot le advantageously substituted for mules. For draught purposes in the Northern and Eastern States, and at depots in large citics, and for saddle purposes of wagon-masters, messengers, and expressmen, horses may be adrantageously used in place of nules.

The following weights are suggested as the minimum, except for the half-breed horses of Texas and Southern California:

Pounds.
Artillery wheel-horses...................................... 1,200
Artillery swing and lead horses.
Cavalry horses.
Horses for messengers, etc. $\qquad$ 950

Draft-horses of the Quartermaster's Department 1.200
Wheel-mules.. $\qquad$ 1,200
swing-mules
Lead-mules. $\qquad$
It the headquarters of every regment of (avalry. with every company of Cavalry and lattery of nonuted Artillery, and with the records of every officer in immediste charge of public animals, a descriptive list of horses and mules is kept, showing the name, arge, size, color, and other pectuliarities of eacli animal, how and when acquired. his fitness for service, how long he has been in service, the name of his rider or driver, and the particular use to which he is or was applied.
PUBLIC EXIGENCY.-The term "Public Exigency," employed in section 3.700. Revised Statutes, refers to an exceptional and urgent necessity, requiring au immediate supply of articles for military use, or the immediate performance of work or service, such as may grow ont of the pressure of an existing state of war, rebellion, or insurrection, or of some particular act of warfare on the part of an euemy, or may be occasioned by any unexpected movement of troops; or such as may consist in the destruction or loss of supplies, structures, etc., by fire or the violence of the elements, by acts of rioters or trespassers, by tieft or waste, by the negligence of common earriers or others, by the failure of contractors, ete. Exigencies are sometimes assumed to exist where none have legitimately occurred. By carefully observing the laws regulating contracts, and making prompt provision for the future supplies, ete., of the command, recourse to purchases in open market to meet supposed emergencies may ordinarily be avoirled. Information can generally be derived from the proper records as to the average quantity of supplies required in yerrs past, which will provide against the bappening of such emergencies; and timoly advertisements should be made accordingly. But that statute (the art of March 2,1861 ), while requiring such advertisement as a general rule. inveuts the oflicer charged with the duty of procuring supplies with a discretion to disporne with advertining if the exigen--jes of the public service require immediate delivery or performanece. It is tos well sotthed to admit of dispute at this day, that where there is a discretion of this kind conferred on an oflecer, or bearel of ofticers, and a contract is made in which they have exercised that cliscretion, the validity of the contract cannot be marle: 10 depend on the dearex of wisdom or skill which moty have aceompaniol its exarcise.

PUBLIC MONEYS.- - Al oflicers of the Quartermas
 Medical J'urveyor and Assistant Hedical Purveyors, and all Storeknopers before contering uponthe dintes of their respertive ofliecs, frive good and sullicient bronde to the traited staters, in such sums as the Siveretary of War may direct, fathfinlly to aceount for all puldic moneys and property which they may roereive. The l'resifent may, at any time, imerease the sums so prescribetl. It is the dhty of every dis-
luraing afficer laving any public moner intrustob to him for disbursement to deposit the same with the Treasurer, or some one of the Assistant Trisisurers, of the Cnised States, and to draw for the sume only as it may be required for payments to be made by him in pursuance of law, and to draw for the same only in favor of the persons to whom payment is matle: and all transfers from the Treasurer of the Enited States to a disbursing officer are by draft or warrant on the Treasury. or an Assistant Treasurer, of the United States. In places, however, where there is no Treasurer or Assistant Treasurer, the Secretary of the Treasury may, when he deems it essential to the publicinterest.specially authorize in writing the deposit of such publie monay in any other public depository, or, in writing, anthorize the same to be kept in any other namner, and under such rules and regulations as he may deem most safe and reffectual to facilitate the payments to public creditors.

All public money advanced to disbursing othecers of the United States must, in accordance with the law, be deposited immediately, to their respective credits, with either the United States Treasurer, some Assistant Treasurer, or Desiguated Depositary, other than a National Bank Depositary, nearest or most convenient : or, by special direetion of the Socretary of the Treasury. with a National Bank Depositary, except-1. Any dishursing officer of the War Department, speciatly anthorized by the Secretary of Wiar, when stationed on the extreme frontier or at places far remote from such depositaries, may keep, at his own risk. such moneys as may be intrusted to lim for disbursement. ¿. Any officer receiving money remitted to him upon specificestimates, may disburse it accordingly, withont wating to place it in a depository, provided the payments are due, and he prefers this method to that of drawing checks. Any check drawn by a disbursing officer upon moneys thus deposited, must be in favor of the party, by name, to whom the parmont is to be made, and payable to "order" or "bearer", with these exceptious - 1 . To make payments of individual peusions, checks for which nust be made payable 10 "order". 2. To make payments of amomit not excceding twenty dollars. 3. To make payments at a distance from a depositary. 4. To make payments of fixed salaries due at a certain period. In either of which cases, except the first, any disbursing officer may draw his check in favor of himself or hearer for such amount as may be necessary for such payment, but in the last-named case the check must be drawn not more thau two days before the salaries become due.

Whenever a Linitet States disbursing ollicer serving in two distinct capacities, aurl having moners idvanced to him from two distinct Bureaus, deposits his funds with the Treasurer of the United States, an Assistant Treasurer, or L'nited States Deponsitary. staparat aceonints should lie kept of such moneys. and the balance to the eredit of each shond he reported scparately on the werkly lists of disbursing ollicers' batares. Theseinstructionsure intended to apply more particubarly to Quarter-mastars serving as Commissaries of Subsistence, and vice mersa. See Divbuming Officers.

PUBLIC PROPERTY.-It is the duty of all otherers to muard the pulblic property for which they are responsible hy all means in their power. Whenever information is received that horses, mules, or sther property belonging 1o the [年ited States, are unlawfully in the possussion of any person not in the military service, the Quartormaster, or other Staff otlicer of the Department to which the property helonge, shombleanse proper procerdings to le promptly instituted amol diligently prosiocented hefore the eivil anthorities for the reeovery of the property, ank, if the sume has boen stoben, for the amest, trial, and conviction, and due punishment of the thievos, and of atl those who atid and abot them by receiving the stolen property, or otherwise.

Upon aatisfactory information that I'nited Statere property, in matawful hands, is likely to be taken away, conceraled, or otherwise disposed of, thefore the neecesary proceodings can be hat in the civil tribunals for the recovery the reof, the pest or detachment erommander shotide at onere order the sume to hesedzed, and hold it subjoet to any legal prosect. ingst that may be instithted by other parties. I'rer
 of making way with property recenty shok from the United states, are summarily arrested by the troops, and turned over to the civil authorities for irial. Quartermasters are authorized, when fomed expedient, after failure of ordiatary means of recov"ry, to ofter for recovery of any lost urstolen mamat a reward of *25: and, in case of stulen animats, an audditional reward of 825 for cach thiof arrested, triol, and convicted, and duly sentenced to pumishment.

Thae chothes, arms, milatary outits, and accoutermentes furnished by the l'nited states to any soldier, camot be sold, bartered, exelanged, pledged, loaned, or given away: and no person not it soldier, or duly authorized oflicer of the United States, who has possession of any such clothes, arms, military outfits, or accouterments, so furnished, and which have been the subjects of any such sale, harter, exchange, pledge, Jomn, or gift, can have any right, tithe, or interest therein: but the same mat be seized and taken wherever found by any ollicer of the United States, eivil or military, and whould therenpon be delivered to any Quartermaster, or other ollicer authorized to receive the same. The possession of any such clothes, arms, military outfits, or accouterments by any person not a soldier or ofticer of the United States is presumptive evidence of such a sale, barter, exchange, pletge. loun, or gift.

PUDDLED STEEL.-A varicty of steel, made in the puddling-furnace by a modification of the pubtling process, as follows: Castiron conains from three to about five per cent. of carbon ; ordinary steel contains from three-fourthe to one per cemt. of carlon: while wroughtiron contains but a trace. In the changing from the cast to wrought-iron in a pud-ling-furnace, the pig-metal passes through the condition of stecl, that is to say, it is steel before it is wrought-iron. Now, making the pudded steel is simply stopping the common pudeling process just at the moment when the decarlonizing mass under treatment is in the state of sted. Several modifications in furnaces aud processes have been patented and various tluxes, especially manganese, are difterently used by different manufacturers. Fre I'udelling and Steel.

PUDDLING.-Although the process of puddling is susceptible of considerable moditication according to the nature of the pig-metal employed and that of the iron which it is desired to produce, it may be generally stated to inchucle the following oprerations: 1st. Melting down of the charge with or withont the pre-

vious heating. 2d. Imorporation of oxidizing linxes with the charge at is low heat. Bll. Elimination of carbon by stirring the contemts of the furnace at a high temperature. 4th. Consolidation of the redued iron to masses or balls fit for hammering.

Thacomman poldinge furmare is of the reverberat tory form. one in which the llame is matle to pass over a brige and then buat downagainoor reverberate uan at harth or surface on which the materials to be lanted are phacest. It is shown in tho elrawing, rat consists of an oldong rasimg of iron phaters tirmth homal torathor by iron tiobars, ant lined with tire-brick. The tircolace $k$, is separated from the bearth, A, by a fireobridge. over whell the hented products of comblation with a surplas of oxyeen pitay upn the surface of the molten metal, celfecting its conversion, and thence pass therogeld the fluce to o bofty chimney, ( 1 , in which is suspended a metal damper-phate, hy which the draught can be regulated. The fireplace varies in deptla with the mature of the fuel employed, heing greatest with the hard kinds of coat.

The fire-grate is mate of phain wrought-iron bars. A fored elranght, produced by hlowing air in below the erate is somolimes used. Thae surface of the grate should be between onc-lalf and one-third of that of the bed or hatrth. The charging or fire hole is about a fort above the grate. "Flat botom of the bel is formed of cast-iron heart thoplates resting upon cast-iron brams. The hearth is covered with cinders or sand, and is terminated at either enti by a straight wall or bridge, called reaprectively the fire-bridye and the thee-bridge. The roof of the furnace is curwed to a flat areh, and is generally made to slope at a sinall angle towards the "lue, which slopes towarde the: stack. The sectional area of the llue varies with the nature of the fuel, being larger for soft roal. The main working-loor is made of brick set in a castiron frame: it may loc realily lifted and lowered by means of a lever. It is only opened during the introduction of the charge and the removal of the pudded balls. The sill of the door is ahont a foot above the level of the bed. There is sometimes a second working-door near the flate for introfucing the cast-iron, so that it may soften slowly till it be ready for drawing toward, the bridge. I small rectangular or arched notelh, called the stopper-hole. is cut out of the lower edige of the door for the introduction of the tool used in stirring the metal, and through which the workman (an observe the state of the furnace. It mary be closed air-tight. The tap-hole, through which the slag, or tap-cinder. is withdrawn from the hearth, is placed below the door-sill. It is plugged up with sand. A portion of the einder also overtlows the 1]ue-lyidge, audruns down the inclined surface of the the to the bottom of the stack, $h$.

When charging the furnace, picecs of metal are successively introduced with a long wovel, and laid one over another on the sides of the hearth in the form of niles rising to the roof, the middle being left open for puddling the metal as it is successively fused. The piles are kept separate, to give frece circulation of air round the metal. The workiner-door of the furnace is now closed, fucl is laid on the grate, and the mouth of the fireplace is filled up With coal; at the same time the damper is entirely opened. Ju pudeling refined matal. or in dry puddling, the furnace is charged with metal alone; but in puddling gray metal-that is, in wet puddring, or boiling, as it is termed-forge-cinder is charged along with the metal. and the temperature rises numh higher. See lron.
PUGILISM.-Tla art of defemding one*- -elf or attacking others with the weapons which nature hats bestoweal-riz., the fists and arms. The origin of boxing, or the use of the tists. is likely as old at man himself. We tind num merous alhasions to it in the clasice aluthors. Pollux, the twin-brother of Castor. in the heathen mythology. was reckoneel the tirst whe obtained very great distinction by the use of his fists, conguerine all who opplised him, and oltaming, with IIercules, a place amoner the gods for his spar-
ring talents. The ancients were not, however, satisfied with the nse of the weapons of nature, but increased their power by the addition of the cestus. With the ancients, pugilism was considered an essential part in the education of youth, and formed part of the course of training practiced in their $\underline{m} \mathrm{~mm}$ nasia; it was valued as a means of strengthening the body and banishing fear; but it was practiced in public rather with a view to the exhibition of the power of endurance than for mere skillful self-dcfense. The earliest acconnt we have of systematic boxing is in 1740, when public exhibitions of Professors of the Art attracted gencral attention. Lp to this period, the science of self-defense had made but little progress, and strength and endurance eonstituted the only recommendations of the prartitioners at Smithfiell, Moorfield, and Southwark fair, which had loug had booths and rings for the display of boxing. Brougliton, who oecupied the pesition of "Champion of England". bnilt a theater in Ilanway street. Oxford street, in 1740, for the display of boxing: advertisuments were issued anmmeing a succession of battles between first-rate pugilists, who never quitted the stage till one or other was defeated. the rewarl of each man being dependent upon, and proportioned to, the reccipts. Broughton was for 18 years Champion of England, and with him commences the first scientific era of pugilism. The propounded some rules for the regulation of the ring, and these remained in anthority till 1838 . When they were materially altered. To Broughton also is due the introduction of gloves for '" sparring-matches." where lessons could be taken without injury. The greatest Professor of the Art was Jackson, who was Champion in 5 ias. Ile was not only the most seientifie boxer of his day, lut he gave his art such a prestige and popularity that half the men of rank and fathiou of the period were prond to call themselves his pupils. He opened rooms for the practice of boxing in Boml street, and for years these were "rowded by men of note. $11 i$ " prineiples of pugilicm" were, that contempt of danger and confidence in one's self were the first and best cualities of a pugilist: that in hitting. you must judge well your distances, for a blow delivered at all out of range. was like a spent shot, and valueluss; that men shonld
it has received no essential improrement. Shaw the Life-guardsinan, whe immortalized himself at Waterlon, was a pupil of his, and ${ }^{+1}$ orowess which lie so brilliantly displayed on - casion, was owing as much to his scient".. - raining as to his great strength. At this period, pugilism was actively supported by many persons of high rank - the Dukes of York and Clarence, the Earls of Albemarle, Sefton, rete., Lords Byron, Craven, Pomfret. The art of boxing, as an active and healthy exercise, is likely to be maintamed; and the display of science bet ween two accomplished boxers is very interesting, while it is denrivetl of all the horrors of the prize-ring; the rapidity of the blows, the facility with which they are mostly guarded or avoided by moving the head aul arms; the trial of skill and maneuver to gain a triting advantage in position, all give a wonderful iuterest to the spectator, who can watch the perfection of the art devoid of the brutalities of the ring. The pugilists of the present day are mostly publicans; their frients and the patrons of the "fancy" meet at their houses for convivial evenings, sparring matches, ratting, and the like. It has constantly been urged in tlefense of pugilism that, were it aholished, the use of the knife would inerease and Englishmen would lose their present manly system of self-lefense. This may be true, if the use of the fist in self-defense depended on the mercenary exhibition of pugilistic encounters, which, however, is mere assumption.
PULFORD MAGNETIC PAINT.-A paint now universally used instead of anti-corrosion paint for lacquering iron orduance and projectiles. It is an oxide of iron. This paint is called " maguetic "from the property of being attracted by a magnet.

PULK. A term chiefly used in Russia to denote a tribe or a particular booly of men; as, a polk of C'ossachs.

PULLEY.- One of the mechanical powers, eonsisting usnally of a wheel with a groove cut all round its circumifcrence, and movahle on an axis: the whee, which is commonly called is sheare, is of tes placed inside a hollow oblong mass of wood calle-t a bluck, and to the sides of this block the extremities of the sheave's axle are fixed for support; the curd which passes over the circumference of the sheave is called the tackle. P'ulleys may be used either singly or in combination: in the former case, they are cither fixed or moruble. The fixed muiley gives no mechanical advantage; it merely changes the direction in which a force would naturally be applied to one more convenient. The single merable pulley, with parallel cords, gives a mechanical advantage $=2$, for a little consideration will show that as the weight, $W$, is supported by the two strings, the strain on each string is $\frac{1}{2} 15$, and the strain on the one being supported by the hook, the power, 1 . requires merely to support the strain on the other string. The fixed pulley, is only of service in changing the naturally upward direction of the power into a downwari one. If the strings in the single movable pulley are not parallel, there is a dimimation of mathaical advantage -i.e., l'must be more than half of W to prothe on exact connterpoise ; if the angle made by the strings is $120^{\circ}, 1$ must be cqual to $W^{\circ}$; and if the angle be greater than this, there fight on most occasions with their lours, usine all is a great merdanical disalvantage, or $P$ must be possible arility, as well as with their hambe amp ereator than W. The following areaxamples of difthat all stifferss of style and pusition was radically forent combinations of pulleys, generally known as wrome. Jackson is sull recrarded by maty as the the tirst, second, and third systems of phlleys. In



12
13

 XII-2\%0,


15
sk. 6. Winch. T. Statinary steam-craue. A. Transportable steam-crane A. Seacerane. 10. Cogindlass. 15. Platform crane. 16. Friction windlats.
 round at pulley (to the lowest of whiclo the wedight W is fastencel), and is fantened to the block of the mext palley, with the exception of the last corel, which mases romad atised pulleythover mad is attuched to
 1has sume in all its parts, the tamion of avery part of The strine over two pulleys. is that which is produced by the wright of I', consectuently, at the last mevable pulley is supported on lonh sides by a string having atension l', the tonsion duplied in its sajuport is $\left.2^{2}\right]^{\prime}$. "The tension of the string is therefore 2$)^{\prime}$ ', and the secomd movable pulley is sipported by a force ecpual to al'. It may similarly be shown that tha force applied hy the strings in suphort of the last or fourthpultey (which is athelued to Wr) is Kl'. Whence wase sed, that berording to this arrangement, j lt, can support tlbs., if two movable pulleys ate used; : Hibs., if there are 3 movable pullays $11 ;$ llos., if there sure $t$ movable puldeys; und if there are $n$ movable pulleys, 111 can suphort $2^{\prime \prime}$ lhs. $1 t$ mast be noticed, lowever, that in pricelice, the weight of the cords, and of the pulleys, and the friction of the cord on the pulleys, must be allowed for; and the fact that in this system all of these resist tho action of the power l', and that to a large extent. has rendered it of little use in practiec. - The second system is much inferior in producing a mechanical mathatage, but it is fomal to be mur hamore convenient in ereneral practice, amd is comveniently motified according to the purpose for which it is intended to he userd. In this system, one string passes ronnd all the pulleys. and ats the tension in evory part of it is that prodaced by the weight of P , the whole force applied to elevate the lower block will its attached weight, W. is the weight $P$ multiplied hy the number of strings attached to the lower block; the pulleys in the upprer block heing only of use in changing the dirertion of the pulling force. Thissystem is the one in commun use in mechamical manemvers in dockyards and on board ship, and varions modifications of it -such is White's pulley, Smeaton's pulley, etc., have becu introduced: but the simpler forms have been fonnd to answer best.-The third system is merely the first system inverted, and it is a little more powerful. besides having the weight of the pulleys to support the
in ond combination, tho gerater is tha* merelaniocal
 dinced, and the want of perfect flexibility in the robes, prevent any great incrosase in the" number of



 ley, power and woight, 1:2. 3. (nno tixel and two

 und one movable pulley of sano rlaractor, jutwer nul weopht, I: f. 5, Gne lisad blowe with fonir puld. leys of same sigr. and onc movable of same kimel, bower and weleht, $1: 8.8$. Whorel and axle, three riblii in proportion of 1. 2. andeld. T. ('apstan. rored uthachafi to tirst sysarm of palleys.
lallays without blorks or carriars are jremerly sheraces or pulleg-arherds, which are Hisunted in :iarious whys, tecording to the purpose for which they are desimned. The simplest form is that of a wheel with a nearly llat face, over which a band passeg. This is the contmon mathone-pulley useal un shaftiog, whicda is ordimarily stapoorted by langars from the criling of the shop. ('ouplines amd lomgers are cardefuly arranged in all arecobals and armories. V'ulleysso mounted are: F'rast, being tirme


Fig. 2.
ly attached to their shaft. from which they receive, or to which they commmicats, motion: lames. running free on the slaft. to receive the belt and allow it still to traverse without being affected by, or


Fig. B
power, instead of acting in opposition io it, as in the formor case. By this time, it will have been evident to the rader that the mochanical advantare is not probaced by the pulleys, but by the strings. and that the puldeys are mercly useful in kecpiner the strings in a certain position, changing with as little fridetion as possible the direction of the pull, and affording it convenient means of attaching the weight. Theoretically, the larger the number of movable pulleys
affecting the motion of. the shaftine: Speed. having a number of faces or grooves of difierent diameter, so as to communicute varying speeds with a given rate of motion of the leelt or cord. "lhis is commens in lathes and ambogous machines, and is sometimes called a come-pulley. Fir. \& shows an improved loose pulley. at present uscel on most machines, with the advantare of suring the wear of pullers shaft, and bedt. The loose pullev is one inch less diameter
than the tight pulley, and thas relieves the tight tension of belt when running idle. A hevel tlange connects the puller faces, and the belt ships with perfect ease. In Fig. 3 is shown what is known as the mule pulley, a most useful combination for the general work of the arsenal. Lines of shafting in the same plane, but at au angle, one to the other, to yum unickly and noiselessiy, sliould be driven by a belt rumning over mule pulleys, ou a shaft stepped and stayed as showu in Fig. 3. If the mule pulleys are not too small, and if they have long hubs, they will ran with little friction and wear. For the sake of an adjnstment which is required only in special cases, mule pulleys are commouly placed on expensive arrangements of castings, which, through not permitting the use of pulleys sufficiently large, and through not being properly stayed, canse much tronble and loss of power. These disadvantages are obviated by the arrangement shown in the drawing. The following table gives the weight, principal dimensions, etc., of pulley-blocks, complete, as used in the more common mechanical maneuvers. Sec Blocks, Mechanicul Mronemers, Rope, and Tuckles.

PULL OFF.-In musketry, the test applied to the trigger of all small-arms. The test is regulated so as to require a mean weight of about 7 lbs . to be applied to the finger-piece of the trigger, in orther to release the sear-1nose from the top-beut; this result is obtained only when the lock and trigger are perfectly clean and free from dried-up oil, or other matter causing obstruction to the free working of the various parts. As a rule, the puil-off of the smatl-arms in use will be found to be influenced maiuly by the condition of cleauliness of the lock and trigger. Should the lock, after haviug beeu thoroughly cleaned and oiled, be fonud to pull-off either light or heary, i.e. below 6 lhs. or above 8 lbs., it may easily be regulated by squaring the sear-nose and top-bent in the tumb'er, care being taken to preserve the same angles.
PULSOMETER - A steam pump of considerable military importance, which requires but little steam for its operation. Wheu the water has been displaced by the steam which follows the water through the opening to the dischatge chamber, it will sutdenly condense by passing inter the water, and the va-

Kind of blocks.

1 sheave. An maves.

Wricht of block. complete.
promds...........................35; 30 s0 38

Total length of block over all, inclies .................. $22.519 .5 \quad 19.5 \quad$ 25.5
Tot:al width of huck over
all, inches.......................
Total depth of block over
all, inches....................
Greatest diameter of sheaves.
inches............................
Largest rope used with
bock, inches..

8	7.5	7.5	$Q$


8	$6.3 \pi 5$	0.30	7
	7.25		

$\begin{array}{llll}4.75 & 3.25 & 3.25 & 4.75\end{array}$
PULLING-JACK. - A varicty of jack mueh employell for artillery purposes. To use it, screw one end to some fixed object (that end nearer the pump is preferahle): wuscrew the valve in the pump by two or three turns with the ker, and stretch the jack apart; attach the free end of it to the oljject to he moved; shut the valve by screwing lack the two or three turns that were unserewed; attach the loug lever and pump away at it until the object is moved as desiret. When there is not room for the loug lever, the promp can be worked by the short lever. If the jack does not start at ouce, slack the serew in the cylinder close to the pump (which the same key fits) uutil a drop or two of the fluid comes out; as soon as this occurs, turn the serew immediately back. If the piston or ram will not rum out to its antire length or siroke, place the jack in a horizontal position, taike out the serew at cach cond of the rylinder, and fill through both holes with the usual liquid.

The pulling-jack can be nesd to pull or lift at any angle betwent the horizontal and the perpendicular, but the direetion of its force must be in a straight line, and the force pump always at the lower eud when the jack is used in any other way than horizontally. When the pmingrjack is in nese, the lever joints must lee well oiled and kept free from dirt; when mot in use, the piston-rod must be kept in; and when hang up, the end where the pump is must always be townward.

N゙o greater fore than that of one man (provided be applies a power of about 150 pomals) need awor be applied to the lever of either the liftime or the palling-jack, since that force is amply smifient to work the jack to its full capacity. See Iympoulic Jact.
cuum therely formed will cause the steam ball to change, slut off the steam, and transmit the pressure to the opposite cylinder, and at the same time induce the water to fill the chamber in place of the conlensed steam. Thus will they alternate, $k$ keping up very nearly a continuons stream, as lour as there is steam supplied and water to be pumped.
The machine, a section of which is shown in the drawing, consists principally of two bottle-shapet chambers, $\mathbf{A}, \mathbf{A}$, joined together side by side, with tapering necks bent towards each other, to which is attached, by means of a flange-joint, B, a continuou passage from each cylinder leading to one common upright passage, iuto which a small ball, C , is fitted so as to oscillate with a slight rolling motion between seatsformed in the jnnction. These chamleers also connect by means of opeuings with the vertical induction passage, $D$, whichopenings are so formed that the valves, E. E, cousisting of pure vulcanized rubber, and their seats, $\mathrm{F}, \mathrm{F}$, constructed so as to sustain the valves, may be easily inserted. 'The delivery passage, 11 , which is common to looth chambers, is also constructed so that in the openings that. commmicate with each cylinder are placed valve-seats, $\mathbf{G}, \mathrm{G}$, fitted for the reception of the same style of valves as in the induction jansage. I, I, are valve-ghards to prevent the valves from opeuing too far. To facilitate the realy removal of the valses and valve-sans, it will he olserved the flanges that cover the openings are siottel to roceive the bolts, the nuts of which being loosened they are readily removed and the covers displaced. J, represents the vacumm chamber, cast with and betweeu the necks of chambers $\mathrm{A}, \mathrm{A}$, and connectsonly with the induction passuge below the valves E, E. K. K, are thanges
envering the opranges to the raspertion chambers, which may be removed for the repatr or reatewal of valves anil scats, whon moressary. Vonn plage are inserted into thes. dhangen, for the purpore of ifrawing ofl the water toperevent freezing. 1,1 , are rorls "xtumbing from the valyo-gharis to tha set-merews M, M, hy which the suctionsesto valves and ermarim
 bearled bolts ly which tha elinelarge seats. valves and guardsare drawn down toplare. A smatl brass air cheeck-vatve is serewed into the werek of warela



J, su that their stems hanor hownward. Whe coleerkvalve in the neek of each clamber, $1, A$, ailows a amall quantity of atir to enter above the water, to prevent the stean from aritating it on its first entrance, and thas forms an air piston for preventing condensation. The cluck-value in the varmum chamher, J, nerves to cushion the ramming action of the water consegunat upon the filling of cerch chamber abternately.

The pulsometer, when fitted with a rery hard rubber ball valve. seat, and guard, is espectally allapted

to eoffer-dam work, sinking wells, sewers, excava- (tinguisher, it has no equal. The absence of all mations, fomdations, "tc., where alf the water to be chinery, its simple arrangement of valves, the ease pumped contains more or less sund, gravel, mud, mamer in which they can he replaced without killand other sediment that would clog the grid valse dabor, theis inthility to cloge from sediment, and seat amb dise valve usually used in the pmops. I the certainty in whiclit itat be started marks a
strong contrast to the ordinary donker pump. 2 , As a pumping engine in garrisons, to be on land at sbort notice for pumping out Hooded casemates, cellars, excavations, wells, and other innndated places. The pump can be detached from the carriage and lowered to places too low down for suction from the engine, steam being carried to it from the boiler through flexible steam-hose. 3. Is a mine jump, there being no exhaust stcam to dispose of. It is especially adapted for lifting water from one level to another. For use underground in mines, colleries, retc., where lifts do not exceed 60 to 90 fret, its use has been fully proved. For a greater height one can he used above another. 4. For filling water lanks in foundries, etc., it is very handy, and may be so located as to fill the tanks directly from it contiguous pond, stream, or well, by using the steam from the working engines. By having a flexible steam connection ready for instant application, it would do away with the necessity of water tanks, separate boiler, and the expenses of a special engineer. 5. As an irrigating pump for post and company gardens, its simplicity, strength, durability etticiency and ecomony are all in its favor. 6. For filling tanks on buildings, for use with elevators or in case of fire. The pipe leading down from upper tank has hose connections on each floor, from which a hose should be counected and ready to run out to extinguisli a fire within a few seconds from time of discosery, ant long before an alarm contd be made to the department. IInse connections are also made from discharge pipe of pump on the upper floors.
cat composition, it arrees with obsidian, of which it may be regarded as a peenliar form, rapidty conled from a meltel and boiling state. It is of a white or gray color, more rarrly yellow, brown, or black; but so vesicular, that in mass it is lighter than wat ter, and swims in it. The vesicles, or cells, are often of a much elongated shape. Pumice often exhibits more or less of a filmmentous structure, and it is sadd to he most filamentors when sitica is most abuntant in its composition. It is very lard and very brittle. It is much used in arsenals for potishing wood, metals. lithographic stones, etc., and in the preparation of vellum. parchment, and sone kinds of leather.
PUMMEL. -The hilt of a sword, the end of a ginn, etc.

PUMPING-ENGINE.-In engine especially designed for pumping, and muels used for military purposes. A pump may be driven by an ordinary steam-engine which also drives other machinery, bnt in the pumping-engine the pump and sterm-engine are insepatrably connected, and are confined to the act of pumping. There are a good many sman machines of this kind which only pump. but they are not commonly called pumping-engines, that term being applied only to large works. The first steamengines were pumping-engines; that of Newcomen, which was driven by atmospheric pressure (stean being used only to create a vacuuns), and Watt's, and the Cornish engine, which used steam as the motive power. There has been mncb improvement in theduty of pumping eengines since the Newcomen engine. Estimating the work done by the number


PULTUN. - An Thdian term for a regiment of infan- of pounds raised one foot by a bushel of Welsh coal try.

PULVERMASSEN. Tha German name for a kind of latrlriok with woodern powder-tubes.

PUMICE.- I mineral foumd in voleanic commtrios genctally with olsidian and porplyyies. In chemi(:14 lhs.), the following notas slow the improsement which has been mate: Newcomen engine ( 1769 ),5,500 000; the stme improved by Smeaton (1772).9,500,000. W゙att's cmrinu ( 1778 to 1815), 20.000,000. Cor nish engine $(18 \geqslant 0), 25,000,000$; the same 1820 ), 30 ,-


THE LEAVTTT PEMPING-ENGINE
BCILT BY
I. P. MORRIS \& CO.,

PORT RICHMOND IFON WORES, PHILADELPHIA.
000.000: same ( 1825 ) , $37,000.000$; silme ( 1829 ), 41,000 , $000 ;$ same ( 183.3 ), $54.000,000$; same ${ }^{(1550), ~ 60,000.000) ~}$ Consolidater mines, highest duty ( 182 i), 67,000,000 Fower consols, Cornwall, higliest duty (1834), 97, 000,000 . L'vited mines, highest duty (1842), 10ヶs. 000,000 . Among the largest pumping-engines in the world are the three which were employed in the drainage of Harlem Lake in llolland. Each engine worked several pumps, and had an average duty of $75,090,000 \mathrm{lbs}$., raised one foot by 94 lhs. of Welsh. coal. One of these eagines is described as follows : iwo stem ertinders are placed concentrically, the diameters being $144 \frac{1}{3}$ and $84 \frac{1}{c}$ inches. They are united at the bottom, but there is a space of nearly $1 \frac{1}{2}$ in. between the inner cylinder and the top. The areas of the pistons are as 1 to 2.85 , and are connecterl to a common cross-head or cap by one principal and four small piston-rods. This engine works 11 pump)s, each of 6 is in. ( $5 \frac{1}{4} \mathrm{ft}$.) diameter. The measured delivery of all the 11 pnmps at each stroke is 63 tons. The steam is cat off in the small cylinders at from one-quarter to two-thirds the stroke. and after expanding throngh the remander it is further expanded in the large cylinder.
The drawing shows in section the horizontal com-poound-cylinder pumping-engines, of the type designed by Mr. 11. F. Gaskill, an American. The novel featnre by which this type of engine is distinguished is the location of the high-pressure cylinder on the top of the low-pressure cylinder, giving short steam commmication. This arrangement requires the pistons in the two cylinders to move in opposite directions. These are connected with each other and the pressure of stean upon them is transmitted to the planger of the pump in the following manner: The latter is set in line with the low-pressure crlinder, and so receives the thrust produced by the pressure in that eylinder dircetly. Thelow-pressure piston is provided with two rods, which are extended to the lengtle of tenfeet to the cross-head by which they are connected to the rod of the pump planger. Midway in their length, another cross-head is secared upon them, which runs on a gnide. The rod from the high-pressure piston is keyed into a crosshend corresponding to this. The connection between these cross-heats is mate by means of a short vertical beam and connecting links, through which also the force exerted in the high-pressure cylinder is transmitted. A shaft carrying a tlywheel revolves in bearings which are set upon the delivery chambers of the two pumps. The two engines are connected through this shaft by means of cranks set on either ead of it, at right angle's with each other, and connecting rods from these cranks to the upper ends of the beams. The cranks determine the length of the stroke, control the movements of the pistons and plungers, maintaining those of the two engines and pumps in a constant relation with each other, and give motion to the valve gear. The steam is admitted to the high-pressure cylinders by dounle-seated poppet-valves. A cut-off mechanism is introduced into the motion of these valves, Which is adjustable to cut the stean off at any point in the length of the stroke. The point of cut-off anay be fixed by hand, or by the action of the govenor when the latter is thrown into gear. The fowrinor is constructed to be opirated ly elangres in the pressure of water ir the delivery main, and acts to correct these charges by varying the point of rut-olf, and thus the sperd of the cingine, in accordance with the variations in the demand for water. The: rommunicating valves between the high and low pressure eylinters and the exhanst walves are gridiron slides.

The engraving on the preceding page gives a purspertive view of a pumping - ngeine, having at remarkable capacity : the duty, built by the I. 1'. Morris Company, Philidelphia. It is a compound bram (an wine, the stran rylinelers of which are inclined outstardly at the top to connect with opposite ends of
the working bean. The cylinders are jacketed on the sides and heads, steam of boiler pressure being llow in the jacket of the ligh pressure cylinder, and steam of a reduced pressare in the other jacket. The drainage from these jackets is ordinarily returned directly to the boilers. The stean and exhaust valves are gridirou slides giving large openings with small movements. The valves are aco tuated by cans, which are driven by gearing from the crank-shaft, and a centrifugal governor adjusts the cams, operating the steam valves of the higli pressure cylinder so as to vary the point of cut-off and maintain a constant engine speed. The pamp is driven by a connecting rod attached to one end of the working beam. The pump eonsists of a plunger. to which is attached a bucket with valve opening upward. There are seven receiving valves, and four delivery valves, in addition to the valve in the bucket, the water leing discharged from the pump through two delivery pipes, above and below the bucket respectively. The pamp valves consist of loaded rubber disics with central guiding stems. The original valves were of metal, double beat, and the introdaction ot the present form has greatly increased the promp's efficiency.

The following are the results of the duty trial of this engine:

Pounds of wood used to start fires, 400. Pounds of coal put into furnaces, 3,500 . Pounds of coal withdrawn from farnaces at end of trial, 27. Ponnds of coal wholly consumed $(400 \times 0.4+3,500-2 \pi)=3,683$. Pressure on main by gange (lbs. per sq. inch), 64 . Water level in well below gange (ft.) , 29.05. Water pressure ( lbs . per sq. in.), $29.05 \times 0.433+64=76.1 \%$. Area of pump bucket (sq. in.), 536.0465. Revolutions of cugine. 12.33\%. Duty of engine. (ft-lbs., per 100 lbs. of coal),
$536.0495 \times 8 \times 12,337 \times 76.6 \times 100$
$=\square=111,548,925$.
3.633

PUNCHING.- When any heavy beam of wrought. iron-one. say, twelve or fonrteen inches squareis struck by a heavy shot at high velocity, the beam snaps short off. as though it were cast-iron The same shot, striking is wrought-iron plate backed in the usual manuer of armor, penetrates or perforates it in a manner similar to the action of a hand-punch on a sheet of iron laid on a block of wood. The effect is entirely local ; the hole is made without bending or twisting the plate in one case. or the sheet in the other. The same projectile, propelled with a low velocity, will bend the beam and produce the ordinary fracture of wrought-iron, and in case of the plate, the latter will be distorted, strained, and loosened from its fastenings. A simple way of explaining these phenomena is as follows: In the case of the high velocity the effect is wholly local, because the surrounding material has not time to propagate the vibration of impact thronghont the mass. In other words, the cohesion of the material is not sufficient, in the time allowed, to overcome the inertia of the surrounding mass. The distribution of the "ffect in the other case is due to the low velocity, whercin a certain length of time is consumed in accomplishing the blow. During this interval, all surrounding particles of iron have time to sustain the point struck; the force of the blow is thus suread over a large surface, and the coliesion of the particles is andisturbed. since each particle is cmabled to contribute the force of its attraction towarts miting the whole. These two distinct eflicets arecalled, respectively, punching and rucking. The work done ly ashot is represental by its weight multiplied by the sumare of its volocity at the moment of impact ; from which it will be seen that a small projectile moving with great velocity is capable of doing the same amonnt of work as a large projectile with low valocity. The character of the work is, however, as above explained, entirely diflicrent. In case of a given projectile, whatever
powrer is employed in racking the side of the verssel does notbing towards penctration, nud vier verma.
'The theory in favor of punching is, that the vital parts of the vessel ant the active cmemy within the men, guns, and machinery are retweded at once. A projuetile piercing the armor of a voswel carríes with it portions of the brokern plate, whicha, tornether witb bolts, mats, and fragnacmes of wool from the lateking, form at sproites of lengrage the offert of whieh is not lase to be fared on a crowdral slocek, or in at turret, than the explosion of the most formitahto sherll. But to produce this reanlt the projertilo mast pencerateentircly through. A projertile moving with a punching velority has only local refret, penctrating without racking the armos. If it poos lout purtly through, it does no damage either to the ship or to thir enemy within. 'Thereforr, whether from the gratness of rance, the thickness of the armore, or watht of power in the gen, entire perforation cammot be chreted, it is only a waste of ammunition to use it in siluply indentingarmor. Althoughaspherieal projectile may have, mon starting, groater vilocity lhan a rillo projectile of equal caliber, and eonseduently may have greater punching power stored up in it at this part of its llichla, nevertheless, ownge to its greater cross-scetional area, in proportion to its weight, it will lose its velocity more rapidly, and the rith projurtile will soon overtake it in its tight and go far bryond
such olvjects as armor-plates, stram-lmilera, ironshijs, bridges, and ethor great works, wonld hatio
 Iron bring undertaken. The panching-amachime invonted by Mraser. Lioherts and Sasmyth, with ro. rent modilleations and intorovernants, is in vory gencrat use in all cour groat enginewring works and arsemals ; its essential parts are ilar phancla, laver, and the spring. Thas punch is simply a fiever of tongh, hare ston os at eylindrical form, and of the size of the intended lonlesp it fits into a sorekfot, which is suspernded over at fixerd iron plateor freselo, which has a lome rasety andre the puncla, and axactly fitting it. In the sorekne whirh lirgled the phanch is a coiked iron spriner, which holds up the punch. and allows it to desceud when the powis is applind, and returns it when the prossure is relieverl. "Tha* leser, when inaction, presses on the top of the puneh, and the plate of unetal which is io be jersforated lueing placed on the iron bencila, roreives the prossines of the punch with sunlieiont fore to press ont a disk of metal exuctly the dianeter of the punch, which falls throngh the hole in the iros bench. "line lever is moved by at can on a very powerfal wherel, which presses upon it until it can pasa; then the lover bering relicved, the punch is drawn upy the spring in its socket, ready torerefve the action of the ram when the revolution of the wheel again brings it to

it in range. At the distances that iron-clads usually engage land batteries, smooth-hore projectiles would possess no punching power ; therefore for this kind of work rifles are the only suitable armament for such batteries. They should be powerful enough to do the work effectually. When heary enough for this, all additional weight is rather a detriment than an advantage, from the fact that light cuns are less cumbersome, can be fired more rapidly, are more easily replaced, when disabled, and less enstly in ammunition. They likewise stand greater relative charges and yield higher velocities with safety. The 8 -inch rifle, carrying a projectile 18 ä pounds in weight, fired with a charge of 35 pounds hexagonal powder, is the minimum caliber that can be successfully used against the present style of sea-going iron-clads. See Racking.

PUNCHING-MACHINE.-The enormous development of our iron manufuctures has necessitated the use of machine tools in the place of those made for the hand, and none of the rery ingenious inventions for this purpose have played a much more important part than the punching-machines, for without them the labor of drilling holes in iron plates for
bear on the lever. The punch itself is always solid. differing entirely in this respect from the hand-tools. This useful machine will perforate thick plates of iron, such as are used for ship-luilding, almost as quickly as a workman with an ordinary havd-punch could perforate thin plates of tin: the holes made are quite true, and are rady to receive the rivets. The drawing represents the improved machine, having sufficient power to punch an inch hole through half inch iron; it is driven by an cecentric and slid. ing box, riving 13 in . movement to the punch bar ; it has a clutch on the eccentric shaft for stopping it without shifting the belt.
There are both fast and loose pullevs on the driving shaft, so that the countershaft is not needed. The weight of the machine is 6,850 peunds.

PUNCTO.- I term applied to the point in fevcing.
PUNIC WARS. - The name commonly given to the three great wars waged for suprenacy between Rome and Carthage. The Latin word punicus, or pornicus. was the name given by the Romans to the Carthaginians, in allusion to their Phenician descent. The Romans, who believed, not without reason, that the Carthaginians never sincerelymeant to keep any
treaty of peace, employed the phrase punien fides, "Punic faith." to denote a false and faithless spirit. PUNISHMENTS.-Sentences awarded by CourtsMartial or Commanding Officers for crimes committed by officers or soldiers. They are detailed in the Articles of War. They consist of death by hanging or shooting. according to the offense, and of flouging. These are the punishments for the most ageravated and tlagrant form of offenses. The minor punishments include imprisonment, loss of goocl-condurt stripes. degradation of rank, loss of appointments. extra drill, stoppage of pay, and confinement to barracks. An officer can be sentenced by General CourtJartial to death (in time of war), cashiering, or dismissal from the service, accorting to the crime he is guilty of. In the British service, military punishments include death by shooting, if for any offense against discipline-or ly hanging, if for a disgraceful offense: for serious crimes in the field against discipline, flogeing, not exceuding 50 lashes, with the cat-o'-nine-tails, for minor offeuses, degradation of rank, imprisomment, extra itrill, stoppage of grog, loss of goodeonduct pay, stoppage of jeave, etc. Death, degradation, and loss of leave are the onfy punishments of those named above which can be inflieted on an officer. An officer cau only be punisl. ed by sentence of a Court-Martial; he may be cashiered. dismisset the service. deprived of his regiment or ship; or, in the maver reduced in rank by being placed at the bottom of the list of officers of his grade. In certain of the German armies. punishment is inflicted on the men in the form of strokes with a cane or with the flat of a saber. The pumishments established by law or custom for Cnited States soldiers by sentence of Court-NIartial, according to the offense, and the jurisdiction of the coust, are: deatn; stripesfor descrtion only; confinement ; hard labor: ball and chain: forfeiture of pay and allowances; and dishonorable discharge from service, with or without marking. It is regarded as inhuman to punish by solitary confimement, or confinement on bread and water exceeding 14 days at a time. or for more than 84 days in a year at intervals of 14 days.
PUPPET-HEAD.-A sliding device on the upper part of the bed of a lathe or boring-machine. It holds the lack center, and may be fixed at any required distance from ti:e front center. See Lathe.
PURCHASE.-A mechanical power to increase the power applied. The names are various; some indicate adiflerence in character; others merely in appplication. Among them are: chip, whip-upon-mhip, Myt-luchle, lutt'-npro-lutt, runner, double-runner, tar. tun, jerr, viol, gun-tuckle; as well as ceinch, gin, jurh. derrick, crab, eapstan, vindlass, ete. See Bloch, Pulky, ind Tumble.

PURCHASE SYSTEM.-A highy unpopular and much-minmulerstoorl arrangement in the British army: by which a larse proportion-more than half -of the first appeintment of officers and their subse(finent promotion usidd to be elfected. It ditus from the first formation of an English standing army, and was formally recognized in the reign of Queen Anne. The system itself was very simple. A price was tixed by regulatiou for cach substantive ramk, viz.:

	l'rice.	Ditrrence.
1,irntenant-colonal.	-1500	t1300
Major.	3300	] 400
Captain..	1800	1100
Sikutenant.	700	250
Cornct or Ensign	450	

Whan ang oflicer holdine ..... of these regimental fommisions desired to retire from the army, he was eatitled to sell his commission for the pricerstipulated in the above table: $E 4,50$ in ther case of a lionten-ant-rolond. This sum was male up by the senior Major, who was willine and able to porchase, buying the rank of Lieutcnant-colonel fore $\pm 1,300$ : the sunior Captain, willing and able to purchase, buying a Majority for $£ 1,400$; a Lieutcnant parchasing his
company for $£ 1.100$; a Cornet or Ensign becoming Lieutenant on payment of $£ 250$; and lastly, by the sale to some young gentleman of an Ensigncy or Cornetcy for $£ 450$. In practice, fancy prices higher than the above were usually given, according to the popularity of the regiment, and vested interest in These nver-regulation prices caused most serious complications whenever the Government made any change affecting the promotion of Purchase Officers. The value of commissions in the Guards was also greater; but as they constitute but a few regiments, and are mostly officered from the Nobility, they do not need particular description. No commission could be purchased by one officer unless another oflicer vacated his position by its sale. Death vacancies, racancies caused by angmenting any regiment, vacancies resulting from the promotion of Colonels to be Major Generals, were filled without purchase, nsualy by senority", No rank above Lieu-tenant-colonel could be purchased.

It is allecred with truth that purchase enabled the rich man to step over the head of the poorer but perhaps better qualified Non-purchasing Officer: and that money decided where merit should be the only guide. These disadrantages, however, it is replied, Were not umined. Purchase. it is argued. introduced into the army men of a very high class in socicty, who gave a tone to the whole of military life. A great proportion of these wealthy men entered with the intention of merely spending a few jears in the army. This tended to keep the officers younga great advantage; and. further, provided in the country, among its gentlimen, a body of men well adaptel for commands in the militia and volunteers. Morcover, selection exercised arbitrarily, as it must be when the men from whom the selection is to be made are scattered all over the world. away from the selecting power, is fiable to create dissatisfaction. Under purchase, exchange was a common thing; for the rich officers, for private reasons of locality. etc., were glad to change frequently from regiment to regiment, entering in each case at the bottom of the Jist of officers of their rank in their new regiment. This, of course, was an advantage to the Non-exelanging Otficer, as it pushed him to the top; and the first death or other non-purchase promotion then fell to him. An officer who had not purchased at all might, nevertheless, sell his commission for its fuil value if he had served 20 years, or for a sum less than the regulated price after shorter service. This was also a spur to promotion. On the whole, thongh exposed to the disadvantage and aumoyance of being passed over by younger officers, the nonpurchasing, i.t. the poor officersthenefited pecumiarily by the purchase-system. This is proved by the slow progress ollicers made in corps where purchase did not cxist, as. for instance, in the Royal Jarines. Few would counses the formation of a new army with such a sy:tem as purchase; but on the other hand, it had its advantages in its workings. Purchase did not exist in the artillery, engineers, marines, 19th to 21st regiments of cavalry, 101 st to 100 th regiments of foot. The purchase-system was abolished by Royal Warrant in Jujy, 1871; and by the regubation of the Forces Act of the same year. larlianent bial down a scheme for the gramal compensation of otheers who hatl fost the selling rights. [nder that scheme it is expected that a sum-total amounting to nearly c8,000,010 will be reguired.
PURFLED.-A term in Iferaflyy, uscti with referchee to the lining, bordering, or garnishing of robes,


Purpure. or ormamonation of armor. Uften written Purblucet.
PURPURE.-1nlleraldry, thecofor purple expressect in engravings ly lines in bend sinister. It is of infrequent oecarrenec in Britisla Herather.
PURSUIT.-A victory, by which the encmy is only fored from the battle-tield, is for
the most part but a half sucerss. if suel it might be called, as the losses under fire are lat vory smali compared to those arising from the demoratization of a broken and dispersed army. A prompt and vigorons pursuit is the only mons of insuring complete sucress. Defeatod and disorganizod, the only hope that remains to the enemy is that he may have time to rally and concentrate his sattered troops. The only way to frustrate this hope is topursue these disorganized masses, which are in no condition to resist a very inferior force ir it assuils tham in good order. Under these cireumstances we may separat. our army into corps, forcing the encmy thas alom divergent lines of retreat, and prewenting all cooperation betwern them. In doing this, we must, however, be very careful not to drive the enemy in such directions as will latel to his concentration on any one point.
If the enemy retires in good order, eovering his line of retreat from our attempts to turn it, nothing remains to be done but to push him back with our entire force; keeping close upon his heels, and giving him no time to take advantage of affies or other strong points to cheek us, so as to make us lose lime, and give the opportunity to him to receive reinforcements. When he attempts to do this we should hold him in check on the main road, whilst we attempt to turn his thank, and endeavor to gain his rear. By this promptitude and vigor of action our forces will hardly be retarded, but will be at ways in position to turn any point upon which he attempts to make a stand, and thus force him to fall back continually as we pash forward.
When we have come up with the enemy, we have one of two courses open to us : either to throw surselves across his line of retreat, or cise to leave this opren to him, whilat we take a position on his flank. Thislast course is usually the more prudent, for, however weakened, it is a very dangerous thing to reduce an enemy to despair, and thas eall forth heroic efforts, where but a moment before there was nothing but discouragement and a willingness to get away at any cost, even honor. With great superiority of foree, by barring the way to the rear, and pressing on vigorously in frout, we may hope "to bag" the entire army ; in all other cases, it is more certain to limit ourselves to operating on the flatk, and thus secare a part, with hat little loss to ourselves, bat with great demoralization of the enemy.

Having dispersed and demoralized the enemy's forces, the more difficult problem remains of holding the conquered territory: This beeomes the more difficult when the enemy's territory has no fortitied phees that we have been able to seize, and thus hold as rallying points for our own troops. All that remains then to be done is to oceupy strongstrategieal and populated points, by detachments of sufficient strength to keep the enemy quiet. This brings about numerous inconveniences: first, as these points must be strengthened by field works, and, in the second place, the main army must be greatly weakened by the detachments that this system renders necessary. In the mean time the enemy's broken forces having retired towards the interior, are there reorganized, recrnited, and concentrated, until, at last, an equili brium between the two contending forces is brought about, and the straggle is recommenced to go, perhaps. through the same phases.
These inconveniences may, in a great degree, be a voided by having a reserve force in rear of the movable army, charged with the sole daty of holding the territory occupied. This reserve, which should not be further than a few days' mareh from the front of operations of the movable forecs, should be dispersed over as great an extent, parallel to this line, as practicable: thus enlarging the base of operations, collecting supplies on a greater extent, and keeping a larger amount of population quiet. This reserve may be composed of new levies, and, being held in all points subordinate to the aetive arnyy, it
will be reaty to conoperate with it in any way dermed best.

PURSUIVANT. - The third and the lowerst seder of hrabdic oflerers. The oflee was instituted as a nosvitiate, or state of prolation through which the oflleces of Itcradd and King-at-drms wore ordinarily (o) be attained, thongh it has leeco lueld that a flerald or King-at-Arms may be made poer buctum. Thore are four pursuivants belonging to the Einglish College of Arms: Rouge C'roix, the oflest, so named, from the cross of St. (Beorge; Blue Mantle, instituted wither lyy Edward 1II. or Henry V., and named in allusion (1) the roles of the Order of the (iarter, or perhapis to the color of the arms of France; Rouge Dragon, deriving his title from King Itenry VIl.'s dexter supporter, a red dragon, assmmed in allosion to lis deseent from Cadwaladyr; and Portcullis, named from a badge of the same Monarch. There are six parsnivants in the heradic establishment of Seotland, known by the names of Dingesall, Buke, Carrick, Srmond, hintyre, and Unicorn-titles which, as well as those of the IIeralds, seem to have originated in the reign of James III. The Scottish pursuivants take precedence according to seniority in office.

In ancient times, any great mobleman might institute his own pursuivant with his own hands and by his single authority. The Dukes of Norfolk had a pursuivant, called Blanch Lyon, from the white lion in their arms; the pursuivant of the Dukes of Northumberland was styled Esperance, from the l'ercy motto; and Richard Nevil, Earl of Salisbury, had a pursuivant called Rigle Vert. We even find Sir John Lisle in 1442 making Thomas de Launey his pursuivant, by the title of Buanch sanglier. The ancient costume of a pursuivant of the King was a surcoat, embroidered with the Royal Arms, and worn with one sleeve hanging down in front, and another behind. In 1576 longe Croix was severely censured for wearing his coat as a Herald. In later times, however, a pursuivant's coat is worn exactly as a Ilerald's, the latter officer being distingnished by the collar of SS

PURVEYOR. - An offleer who is charged with superintending the eivil affairs of army hospitals, as the payment of men, procuring provisions, medical comforts, bedding, etc. The Purveyor aeted independently of the Medical Officer, and was responsible through the Purveyor-in-Chief to the Secretary of State for War. The Department consisted of a Parveyor-in-Chief, Principal Purveyors, Purveyors, Deputy-Purveyors, and Clerks. The Purvevor-inChief ranked with a Colonel in the army, and had a salary of $£ 547$ per annum, rising to $£ i 30$ after long service. In 1868, the Department was merged with others in the Control Department ; and on the abolition of the latter in 1875 , its functions passed to the Commissariat and Transport Deparment. In the United States Service, the Chief Medical Purveyor is the chief parchasing and clisbursing officer of the Medical Department ; and under the direction of the Surgeon General, he is charged with the supervision and distribution of all medieal and hospital supplies. See Medical Department.
PUSH-PICK. -An implement, flat and pointed, nsed to place the frames and shceting, when constructing a mine.

PUTNAM NAIL. - A hot-forged and hammer-pointed horse-shoe nail recently introduced, and regarded by the military authorities as the best machinemade nail manufacturel at the present time. These nails are forged separately from the rods, the iron when nearly at a welding heat being drawn out under four hammers, by use of petroleum gas (thus avoiding all sulphur), by which means a firmer, tongher, and more compact nail is made than is possible by any other process. In the pointing as well as in the making, an endeavor has been made to follow the old hand process as nearly as possible. All lameness? temporary, or even permanent, often results from a sliver or thin sbell of the
nail entering the quick when driven into the hoof, cansing great inconvenience and sometimes peeuniary loss, but in thesc nails great stiffness and dnetility has been maintained, the fiber of the iron is kept uninjured, and it is impossible to cause them to sliver. The drawing represents a section of a horsc's foot. and shows the frequent effect of driving cold-cut horse-nails that are liable to sliver in driving. 1 , is the coronet bone; 2 , is the coffin-bone; 3 , is the navicular bone: 4 , is onc blade of a slivering naii, passing throught the quick, or sensitive sole, into the coffin bonc; 5 , is the ither blade of the nait passing out of the wall of the boof for clinching. The other

parts may be represented as follows:-a. The wall. $z$. The sole. $c$. The cleft of the frog. $d d$. The frog. $\epsilon e$. The fatty frog, or elastic cushion. $f$. The sensitive sole. $g$. The sensitive sole. $h \hbar h$. The tendons of the muscles which bend the foot. i. Part of the pastern-bone. $k k$. The tendons of the museles which extend the foot. $l$. The coftin-joint. $m$. The navicular joint. $n$. The coronary substance. $o$. The scusible lamince, or covering of the coffin-bone.

It requires but little observation and reflection to arrive at the conclusion as to the kind of nails to be used in the horse's foot, whether a mangled piece of iron, rendered dangrrous by improper manipulation, or one made from the rod at a welding heat, where all the fibers remain intact, and afterwards hammerpointed. The foot is an important member of the animal's body, and demands the greatest care and attention, for when it becomes injured or diseased, no matter low perfect the other parts may be, the horse's services are diminished or altogether lost. Hence the value of a horse depends upon the condition of liss feet.

From the datys of Tubal Cain to the present time fire has been the only sure dement with which iron conld be properly wrought. Every other method has resulted in produeing articłes of great inferiority where strength and durability are required, and in no place are these two reqnisites more necessary than in the horse's shoc-nail. The ancients used only ehareosl in the working of iron, thus avoiding all sulphurons gases, hence the superiority of their weapons. The olel Damascus blades owe their superiority in part to the lase of asphatt when being forged, thas avoiding the presenee of sulphur, which is so ruinous to adr kimels of iron and sterd. Profiing ly this knowledge, the manufacturers of this nail hive abundoned the use of coal aud colke in the

furging, and use only jure carbon gas mate from feetrolemm, and are thereby emabled to obtain a mued highar temperatire in the working of the iron. The lutnimm mil is lrawn down to a joint from the rod of iron, as shown in the drawing. and receives about sixty quick, suceessive, sharp blows, at a wedeling heat. It is then scated hy the water process no atide boiner need, and afterwards hammer-fointed. It is to all intonts and furposes the same as the old-fa-fioned hand-made and hammer-pointed nail.

PUTTY-POWDER.--A material consisting of peroxide of tin, in great use for polishing small-arms and metal work. It is also used as a eoloring material for white glass, and for the white enamets of porcelain, ete. It is made by melting tin; as the surface oxidizes, the seum, which is the peroxide, is raked off. and when cold, is reduced to a tine powder, which is white in color, and the partieles are extrmely hard. See Polishing.

PYRGI.-Hovable towers, used by the Greeks in sealing the walls of besieged towns. They were driven forward upon wheels, and were divided into dilferent stories, capable of carrying a great nnmber of soldiers and military engines.

PYRITES. - A common name for the ancient whecllock, used before the invention of the flint-lock.

PYROBOLI.-Fireballs, used both by the Greeks and Komans. Frequently called Malleoli.

PYROMETER.-A term originally applied by Muschenbroek, in 1731 , to an instrument which he invented for measuring all the changes produced in the dimensions of solid bodies by the application of heat. It is, however, now applied to any instrument the object of which is to measure all gradations of temperature above those that can be indicated by the Mercurial Thermometer. Desaguliers gives a deseription of Musehenbroek's instrument, as improved by himself, in his Experimental Ihilosophy. Numerous pyrometers have since been invented, amongst which may be noticed those of Ellicott (described in the Philosnphical Transactions for 1736 and 1751), Graham (in Do. for 1754). Wedgwood (in Do. for 1782,1784 and 1786) and Guyton (in the Annales, de Chimie. tome 46). None of thesc instruments, however, gave accurate results for very high temperatures; and it was not till the year 1821 that Professor Daniell announced the invention of his pyrometer, which has supplanted all others, and for which, in an improved form, he received the Rumford Medal from the Royal Society.

The method by skrinkage having been adopted for the insertion of the tube of the 8 -inch breeeh-loading ritle, it at once became important to provide some reliable means for measuring, from time to time, the expansion of the cast-iron casing white undergoing heating. It was deemed most desirable, also, in connection with these measurements, to determine accurately the corresponding terpperatures, in order to acquire trustworthy data, which might serfe for reference in future operations of this nature. The instruments prepared for the above purposes were as follows :

1. For the measurement of the expansion. In this operation, since the instrument would require 10 be inscrted within the bore of the heated casing, it was deemed necessary to employ a measuring tool of such poor conducting material as would undergo itself as little change from the heat as possible. Accordingly, a number of wooden measuring-rods, with steel points screwed into the ends, were constructed. The lengths of these rods were then adjusted by a vernicr rule, reading to $0^{\prime \prime} .001$, so as to form a series, gradually increasing by $0^{\prime \prime} .005$, from $29^{\prime \prime} .00$ to $22^{\prime \prime} .05$, or to a little beyond the refuired expansion. The lengtlo of each measuring-rod was stamped upon it, and a stiff wire attached io it at the middle, by which to handle it in taking a measurement. By means of these rods, using a fonger amd longer one till one was found that would just cuter the casing, the measurements of the interior diamber of the hated easing were rajuidly, and, it is thought, fuite accurately made. The fongths of the motsuring-rods, as voritied by the vernier rule, immediately after being withelrawn, showed no sensible change. This mode of monsurement was devised lyy the Gouth Boston Jron Company.
2. For the measurement of the temperature Fox the determination of the temperature it was decided tormploy a byrometer of the form usually known as the hydro-pyrometer; in which the temperature is as-
certainced hy rexposing lat the ation of the herit whicll is to be measured at trinite worght of somuc metal，as platinnm，stow copper，rote and thern quenching the sanme in aknown weight of whter， and noting the rise in temperature of the lather From this data，and tha spocilic lacat of the motal employed，the inilial terngerature of the mexal whiche is the tompernture required，fan bo readily obtained．Thass，if a pioq of platimmon worghng 1，000 grains shonla，when immorsed in 2,0 （10）grains of water at atomperature of fiow Fahrenheit，rain
 ＝ $\mathrm{Bu}^{\circ}$ ，maltiplied hy 2 beremuse the weight of the Fater is twice that of the phatimm，gives gos the temperatare to whied a weisht of water ergnal to the phatinum would latwe luen raisent．＇IVo obtain from this the initial temperature of the platinum，in Fahrenheit degrees，we multiply by 31 ，the spereitic leat of water as comparet with juatimum，that of the latter being 1 ，and to the result add the tome perature of the water．Thercore $(6 ; 0 \times 31+)+10$ $=1!65$ is the temperature reguired．The principle may otherwise be stated as foblows：A botly of known werght $W^{\top}$ is raised to a final tomperature $T$ ， and then planged into a quantity of water of weight W＇and temperature $\ell$ ，which is contained in at cop－ per vessel callod a＂calorimeter．＂As $T$ is sipposed to excerd $t$ ，the water gains in temperature by the immersion of the body，and finally attains a maxi－
rate（an berasily writan rown，since it is only trese （asnry torxpress that thegrantity of hout piven up by the beitwol losely io cymal lothat gatmal by the water，


1．et IV denote the weiglat of the borly ：＇I ite initial
 the wator in the ralorimatore or the wejglat of the：

 of the thermometer－1abe immerent in thr water； $5^{\prime \prime \prime}$ its spertite hemt，and riv the wrophl of the merelary in the thermometer－tulfer and su its speritic hat．

Then
$W x(T-A) \quad W^{\prime}+r^{\prime} x^{\prime}+x^{\prime \prime} x^{\prime \prime}+v^{\prime \prime \prime} x^{\prime \prime \prime}+$ six siv $)$ （ $A-\ell$ ），aml


In the alooverepression the coneflecient of $(A-1)$ is
 evidently represents a mass of water surch that，sup－ posing it to receive exclusively all the hoat given ul in the experimert，a thermonnetor plasend in it would indicate the variation of temperature actually obs． ＊rverl．To determine this value for the parlimentar case ander consideration，take the following sulacd． ule：

Parts．	Material．	$\begin{aligned} & \text { 岕 } \\ & \text { た } \\ & \text { た } \\ & = \end{aligned}$	官	$\begin{gathered} \text { Apecitic heat, at } \\ 5 \%{ }^{2} \mathrm{~F} \text {. } \end{gathered}$	家		Num	erical ue．
Ball．	Copper．	5.012	Wr．	1013．	3.	$15 x$	5078	
Wrater		34.192	$\mathrm{W}^{-1}$	1.		W		34.112
（＇alorimater	Conpler	11.23	$r^{\prime}$	．1013	$r^{\prime}$	$r^{\prime} r^{\prime}$		1.1350
Mixer	Brass．．．．．．	1.51	$r^{\prime \prime}$	．1002	$x^{\prime \prime}$	$1 c^{\prime \prime} x^{\prime \prime}$		． 1513
Thermometer－tube．	Glass	．25）	$x^{\prime \prime \prime}$	． 199	$3^{\prime \prime \prime}$	$\pi^{\prime \prime \prime} x^{\prime \prime}$		． 0498
Mercury in thermometer－tuh		． 30	ais	． 035	$x$ iv	uiv $x^{\text {iv }}$		． 0105

$\mathrm{W}^{\prime}+\operatorname{con}^{\prime} x^{\prime}+\mathbb{N}^{\prime \prime} x^{\prime \prime}+\pi^{\prime \prime \prime} x^{\prime \prime \prime}+\boldsymbol{N} x^{\prime \prime}=$
mum temperature 1 ，which is noted．In the change from $t$ to $A$ ，the water has gnined a quantity of heat equal to W＇（ $4-t$ ），and the body immersed has lost a quantity equal to $\mathrm{W}^{\circ} x$（ $\mathrm{T}-\mathrm{A}$ ）；$x^{2}$ being the spe－ cific heat of the body，that of water being equal to 1．Equating these two quantities we have

$$
\mathrm{TV}^{\prime}(-1-t)=W x(\mathrm{~T}-1)
$$

Solving in reference to $T$ ，we obtain

$$
\mathrm{T}=\frac{W^{\prime}(-1-t)}{\mathbb{W} x}+\lambda
$$

This method of pyrometric measurement was first adopted by Clement－Desormes and Schnarz，for the mensurement of the heat of furnaces；it was after－ ward employed by Regnault in the determination of the specific heats of various substanees，liguid and solid，and by Dr．Siemens in some delieate experi－ ments upon the varying electrical conductivity of telegrapli wire inder different degrees of tompera－ thre．The above equation assumes that the only exchange of heat is hetween the water and the heat－ a thonly，which is not actanly the casi．The heat of the body is not given up exclusively to the water in the ealorimeter，but partly to the calorimeter it－ self，to the thermometer．the mixer，and suebs other instruments as may be employed in the experiments and come in contact，directly or indirectly，with the heated body．al The equation for the most general

From which we determine－

for the water equivalent of the promater，or the value of each degree in tha ditference between the tumperature of the water bofore and after the im－ mersion of the heated coppe．．The expression for the temperature thans becones $\mathrm{T}=70 \cdot 1-t+1$ ．．hee 7hermometer．
PYROPHORE STIRRUP．－ 1 stirrup in very anciont limes provided with a dantern，which gave light and warmed the feet of the ricker．
PYROTECHNY．－The art of making fireworks，ant of unknown antiquity．It was practiced amoner the Chinese from the carliest times．end has attained with them a perfection unknown in other countries so much is this the case，that they treat as insignificant the most brilliant of other di－plars．In their tire－ works they introduce many surprixes，such at figures of men and animals darting out，but they are somm－ what deficient in the mechanical arrangements．Fire－ works，as the name is now umber－tood，were hardly known in Europe until the diseovery of the eomprosi－ tion of gunpowder，and for a long time only very simple pyrolechnic contrivances werensed．it pres－ ant ther may be divided into two kinds－the simple
hand-pieces, such as sfuibs, erackers, rockets etc.: and the other, the fised contrivinces which have often very ingenions mechanical arrangements for making some of their parts revolve rapilly when being discharged. The materials used are gunpowder, sulphur, charcoal, saltpeter, filings of steel, ironcopper, etc., and several salts: such as nitrate uf strontian, acetate of copper common salt, etc. The ingredients of fireworks are usually filled into paper cases, made by rolling pasted paper round a cylinder of wood, of the proper diameter, until the case is of sufficient thickness, and then eutting the paper tube so formed into the required length for squibs, Roman candles, small rockets, and similar articles; they seldom exceed ten inches: one end of each is closed by drawing a piece of string tiglntly round, so as to pinch it in,or choke it, as it is echmically called, and then dipping it into melted resin. which effectunlly seals it. The combustible ingredients areffled in at the open end, and.if necessary, are rammed down witla a wooden ramod; the opening is afterward eovered with a piece of touchpaper, to prevent the composition falling out, and to ignite it by. The effects produced by freworks are either streams of fire issuing straight out of the cases, and much varied with sparks in the form of stars, etc., and colored with hrilliant colors, or whecls of beautifnl sparks produced by making the cases revolve rapidly. Revolving pieces are matle by coiling the paper tube when not too tightly filled, around a flat wooden center: the force with which the combustion of the materials is carried un, is sufficient to make the board revolve with great rapidity. Small wheels of this kind are called fretherine wheels. squibs or serpents are made by filling tubes, eight to ten inches in lengtlı, with a composition of 1 lb . of niter, 2 oz . of charcoal powder (rather coarse), $40 z$. of gunpowder. 4 oz . of sulphur, and 6 oz . of steel filings. The last is an important ingredient in many fireworks, producng brilliant, feather-like cornscations, which are the more beautiful the larger and cleaner the filings are. Rockets are tied to a wooden stick. When they are about to be alischargel this stick is stuck in the ground, and in that position the igniting point of the rocket is downward; when lighted, it rushes into the air with great velocity and reaches a cousiderable height, lischarging as it goes a brilliant stream of sparks. lockets require a hollow center ill down the thbe: withont this they will not rise. At the end of their course, they often discharge very brilliant clasters of golden. rulby, emerald, sapplife-like stars, or showers of golden or colored rain, or of fiery serpents. This is produced by a supplementary part, called the garniture of the rocket, consisting of a shorter and broader paper tube, called thepot, attached to the end of the fusce part of the rocket, and filled with a composition made into paste with pure alcohol, and cut into stars, or granulated into small, round bodies for drops. The serpents for rockets are small fusees, with the sane composition as suruibs; they are so packed as to ignite all at once. The white stars are made of niter, 16 parts; sulphur, 8 parts: gunpowder, 3 or 4 parts ; nitrate of strontian adkled, makes them ruby red; sulpliur or acetate of copper, and sulphate and carbonate of harytes, green; zinc filinge give a blue color. Yellomn stars and y loun shonr. fro are made of niter, 16 parts, 10 of sulphu:, $t$ of charcoal, 16 of \&impowder and 2 of lamp-hlack. A deeper and richer goliten color is produced by a very slishat variation in the eomposition-viz., ᄅ parts less of sulphar and clatrcoal, ame 4 additional of funpowder. Many other ingenious devices are used by masters in the art of protechny, hut they are loo numarous and too tedninal to come within the limits of this work. 'The: Roman comalle is : favorite tircwork; it is a tuhe which is hold on the ground, and diseharese upward a contionoms stroam of blate or whitte sturs or balls. Bemofel lighta are casery of about an incla or more in diameler.fillal
with a composition of 7 parts niter, 2 of sulphur, and 1 of antimony. These are much used as signals at sea; they diffuse an immense glare of bluish. white light. Chinese or jusemine fire, which is used by itself orin combination with other mixtures; consists of 16 parts of gunpowder, 8 of niter, 3 of finelypowdered charcoal. 3 of sulphur, and 10 of small castiron borings; the last must be finer or coaser in proportion to the bore of the case to be filled. The compound devices in fixed fireworks, such as are seen at public entertainments, are very complicated in their structure, and are varied more or less by every artist. One nice proint in the arrangement is to insure simnltaneous ignition of all the various parts. See Fire. morts.

PYROXYLE-PYROXYLIN. - The action of nitric acid on such vegetable snbstances as saw-dust, linen, paper, and cotton, is to render them very combustible. In their natural state these substances are al most entirely composed of lignine, the constituents of which are oxygen, hydrogen, and carbon: nitric acid furnishes nitrogen, a substance which enters into the composition of nearly all explosive boclies. Pyroxyle or gnn-cotton has the composition indicat ed by the symbol $\mathrm{C}_{6} \mathrm{II}_{6}\left(\mathrm{NO}_{2}\right)_{3} \mathrm{O}_{5}$, or $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{8} \mathrm{O}_{11}$, and is formed by the action of concentrated nitric acill on cotton. The reaction consists in the substitution of nitrogen and oxygen in feeble combination for part of the hydrogen in the cotton or cellulose, and is therefore similar to the one by which nitro-glycerine is produced. The equation illustrating the reaction may be thus written:
$\mathrm{C}_{6} \mathrm{I}_{10} \mathrm{O}_{5}+3 \mathrm{HNO}_{3}=\mathrm{C}_{6} \mathrm{H}_{7}\left(\mathrm{NO}_{2}\right)_{3} \mathrm{O}_{5}+3 \mathrm{H}_{2} \mathrm{O}$ Cotton or Nitric acid. Nitro-cellulose or Water. cellulose. gun-cotton.
A number of these substitution products are known, but only one is used as an explosive agent. Some of the others are largely employenl for making collodion.

Pyroxyle was discovered by Prof. Schönbein, and published to the world in 1846. Ilis method of preparing it consists of mixing three parts of sulphuric acid, sp. grav. 1.85, with one part of nitric acid. sp. gr. 1.45 to 1.50 ; and when the mixture cools down to between $50^{\circ}$ and $60^{\circ}$ Falir., clean rough cotton, in an open state, is immersed in it; when soaked, the excess of acid is poured off, and the cotton pressed tightly to remove as much as possible of what remains. The cotton is then covered orer and left for half an hour, when it is acain pressed, and thoroughly waslied in running water to remove all free acio. After being partially dried by pressure, it is washed in an alkaline solution made by dissolving one ounce of carbonate of potash in a gallon of water. The frec acid being thas expellef, it is placed in a press, the excess of alkaline solntion expelled, and the cotton left nearly dry. It is then washed in a solution of pure nitrate of potash, one ounce to the gallon, and being gatain pressed, is dried under a temperature of from $150^{\circ}$ to $170^{\circ}$. The sulphuric acid has no direct action on lignine, its use in the preparation of pyroxyle being to retain the water abstracted from the cotton, and prevent tle solution of the compound, which would take place, to a greater or less extent, in nitric acid alone. See Gun-cotton.
PYRRHIC DANCE.- Jhe most famous of all the war-dances of antiquity, said to have receiverl its name from one J'yrichos, or, aceording to others, from T'yrrlus or 5 (o) 刀tolemus, the son of Achilles. Critical scholars, however, eontent themselves with a gencral inference deduced from the substantind harmony of the virious mythical or legendary aceonsts miven of its orign-vi\%.. that it was a boric inven fion. It was daneed to the tlute. and its time was both quick and light, as may be seen from the Pyre hice foot, composed of two shorts (--), and the Prokelensmatic, or chatlonging-foot, of two donnle short. ( $\sim-$ ). Acording to Plato, it aimed to represent tha nimble motions of a warrior cither avoiding mis-
siles and blows, or assatalting the cnenty; and it the boric States, it was as mucha a piece of military trainjng as an ammement. Dilsewhere, in Gruere, it was purely a minetic dance, in which tho purts wert sometimes represented by women. It formed part of the public entertaimment at Panathenuic festivals.

Julins (susar introducral it at Jome, whore it breame In great favoritu. 'l'h. Romnaike, still danced in Griere, is maid to be a mudern relic of the sancient Pyrrhic dance; lont if I)r. ('urrigan's daseription of it (1'rn Hays in Athen, 181; ) is correct, it is not easy to sec the rabemblance.

QUACKENBUSH AIR-GUN. - The moat perfert and effective ginn of its class, at prosent malle. Being a harl-shooter.and asily manipulated, it is well suited for practice at short range: and is very extensively nased by recruits when learning the principles of ainiing and firing. The drawing shows its working parts. Pulling the trigger releases the piston (P). which is thenthrown foward by the spring, experling the air from the chamber (C'), through the harrel (B). with great toree, rarrying the dart or bulle lufore it. To lout the gum, the barrel (B) is pushed into the rylinder ( ${ }^{\prime}$ ), which re-sets the piston, compresses the spring, and allows tho dart or bullet to be inserted through the opening (A), after which the barrel is drawn forward to the stop tis shown. It
an instrument employed, like the spirit-level quadrant, to give angles of elevation or clepression when there are no sights to a gun, or when they carnmet be used. It ditfers from the spurit-level quatrant in having no spirit-level, but a plamb, line which is suspened from the rigit angle.
QUADRANT ANGLE. - '1 he angle which the axis of the piece, when laid, makes with the lorizontal plane. It is tormed. quadrant elevation or pualrant depression, atcoreling ats the piece is laid above or below the lrorizontal plane.

QUADRATE.-In gunnery, a term meaning to uscertain if a picce of ordannce is properly placed on its rarriager and the wheels are of "rpanl height

QUADRILATERAL.-In military language, an ex.

will he ohserved that the spring guard ( $\mathcal{F}$ ) can be drawn back instantly to remove the barrel for packing, ete: and that the whole length of the lurrel is effertive, there being no watste space to occasion a Ioss of air. The hartel is easily pushed into the chamber, by placing the muzale upon the floor or against some firm onject. See lir-gun.

QUADI.- In ancient people living in south-east Germania ; of the Suevic race, and inhabiting that part of what is now Bohemia, Lower Austria, and Morayin, which lay bretween the Sarnatian monntains and IIercyuian forests and the Ister or Danube. They were Nllies of the Marcomanni, their neigh. bors on the north-west. The IRoman Emperor Tiberius established a kingdom of the (quadi, and mate Tannius, one of his generals, F゙ing. In 174 b. c. the Quadi, rose against the Empire in confederation with other Germanie races, and it was only after stubborn resistance that they were overcome.

QUADRANT. - In gunuery, na instrument. generally made of brass, for ascertaining or adjusting the elevation of ordnance particularly mortars, which have no tangent scale. The quadrant is graduated into degrees and parts of a degrece, having a movable index, with a spirit-level and vernier athached to it. When the instrament is used, the limb or bar of the qualrant is inserted into the bore of the piece: the index which is attached to the graduated are is then fixed to the particular elevation requirell, and the piece elevated or depressed until the spirit-lewel is horizontal, which is shown by the air bubble running to the center. Another pattern quadrant to that hitherto in use has been introduced. It differs from the one generally known in being altogether of 2. stronger form ; the bar or limb has been reduced to 12 inches in length; the base is broader, and is fitted with a stop to prevent its slipping into the chamber. The commerbalance weight is arranged so as to ensure the quadrant lyiug flat on the bottom of the bore of the piece. A Gunner's Quadrant is
pression denoting a combination of four fortresses, not nuecssarily conneeted together, but mutually supporting each other; and from the fact that if one bu attacked, the garrisons of the others, unless carefully observed, will harass the besiegurs. rendering ${ }^{2}$ it necessary that a very large urmy should be employed to turn the combine position. As a remarkable instance, and a very powerful one, may be cited the Venctian Quadrilateral (Austrian till 18bf), comprising the four strong posts of Mantua, Verona, Peschiera, and Legnago. These form a sort of ontwork to the bastion which the southern mountains of the Tyrol constitute, and divide the porth plain of the Po into two sections by a most powerful birrier. Napoleon 1II., in 1859, even after the victoriss of Magenta and Solferino, hesitated to attuck this quadrilateral.

QUADRILLE.-Small parties of horse richly caparisoned, etc.. in tournaments and at public festivals. The quadrilles were distinguished from one another hy the shape or color of the coats which the riders WOT:

QUAKER-GUNS. -O)d wonden pieces of ordmance which were made to resemble the real artillery, and placed in the embrasures of forts, in order to deceive the enemy.

QUARREL. -The missiles used for all cross-bows, with the exception of the croms-buen a gatet, were called quarrela or bolts: and often written querry. One kind of quarrel (vireton) was feathered so as to regulate the movement by griving a rotatory motion. Another kind (matras) ended with a ronnd knob, which killed without shedding blood. Sce - 1 riticles of Wier. 24.

QUARTE.-In lactics, a word of command given in the bayonet exercise: as quarte parry. which is executed as follows: Hove the piece quickly to the left, the small of the stock passing under the left clbow, the piece covering the left shonder: the larrel to the left, hayonet in front of, and higher than the
shoulder, the left forearm on the right of the piece, the elbow tonching the right wrist, the fingers on the stock.
QUARTER.-1. In Heraldry, a subordinary consisting of the upper dexter fourth part of the shieh, cut off by a vertical and a horizontal line meeting in the center of the shield. When two or more coats are marshaled together on a shield divided into squares for their reception, such divisions are alsn called quarters. See quartering.
2. In war, the sparing of the life of a vanquished cnemy, which by the laws of war is forfeit to the victor. The expression seems to be derived from the use of the word "(jnarter" to designate the lodiging of the particular warrior ; to give quarter to a prisoner being to send him to his captor's qnarter for liberation, ransom, or slavery. The refusal of charter is a terrible aggravation of the horrors of war, and is only at all justitiable towareds an enemy who has been guilty of atrocious cruelty himself, or of some flagrant breach of faith.

It is against the usage of modern war to resolve. in latred and revenge, to give no guarter. No bolly of troops has the right to declare that it will not give, and therefore will not expect, quarter; but a commander is permitted to direct his troops to give no quarter, in great straits, when his own salvation makes it impoxsible to cumber himself with prisoners. Troops that give no quarter have no right to kill enemies already disabled on the ground, or prisoners captured by other troops. All troops of thi enemy known or discovered to give no quarter in general, or to any portion of the army, receive none. Troons who fight in the uniform of thicir enemies, without any plain, striking, and uniform mark of distinction of their own, can expect $n \mathrm{oq}$ quarter.

If American troops capture a train containing uniforms of the enemy, and the commander considers It advisable to distribute them for use among his men, some striking mark or sign must be adopted to distinguish the American soldier from the enemy. The nse of the enemy's national standard, Hag, or other emblem of nationality, for the purpose of deceiving the enemy in battle, is an act of perfiely hy which they lose all clatim to the protection of the laws of war. Quarter lating been given to an enemy by American troops, under a misapprehension of his true character, he may, nevertheless, be ordered to suffer death if, within three days after the hattle, it be discovered that he belongs to a corps which gives no quarter.

QUARTER ARMS.-A turm in 1 Ieraldry, meaning to place the arms of other families in the compartments of a shield, which is divided into four guarters, the family arms being placed in the first cyuarter; when more than three other arms are to be quartered with the family arms, it is usual to divide the shiched into a suitahle number of compartments; and still the arms are saill to be quartered.

QUARTER BLOCKS. -small blocks uset for various purposes in mechanical maneuvers. They are usinilly 20 inclees long, $f$ incles wide, and 2 inches thick.
QUARTER GUARD.-A guard mounted in camp, immediately on the arrivil of (ach enrps on its ground. It is phacet in front of the ernter of the camp, at about eighty baces from it and is charged with sprecial duties
QUARTER HUNG. - A torm employed when speaking of a gum whose trannions lave the $\mathrm{i}_{\mathrm{a}}$ axis below the line if bort.
QUARTERING. - ln 11 ralalry, the bearing of two or more coate on a shield divided by horizontal and perpendicular lines, a practice not tio be fumat in the "arlier lieraldry, and litte in use till the loth century. Arms may be quartured for various reasons. 1. To indicate flominion. A sowrerign quarters the ensigns of his different states. Thice earliest instance of phartering in England is found in the patcornal arms of Jleanor, daughter of Frederick 111., King of

Castile and Leon, and first wife of Elward I., as represented on her tomb in Westminster Abliey-the Castle of Castile occupying the first and fourth gaarters, and the Lion of Leen the secord and third. The arms of England and Ponthicu aresimilarly yuartered on the same monnment, and on the crosses erected to queen Eleanor's momory. The recrived rule regarding the quartering of the ensigns of differcant states is, that precedence is given to the most ancient, unless it be inferior in importance. Femdal
 arms are sometimes quarterecl in the same way by subjects. 2. Arms of augmentation, or special concession accordell to a subject by his Sovertign, by way of honor, are sometimes granted to be borne quarterly with the paternal arms. 'These contain a portion of the royal insignia, and have precedenee of the paternal coat. 3. The most unusual reason for quartering is to indicate descent from an heiress who has intermarried into the family. Where there is but one heiress, her coat occupies the second and third quarter of the shield, and the paternal arms the first and fourth. Where there are more than one, they are marshaled in the successive quarters in the order of the intermarriages. Where more than four coats lave to be marslated, the number of vertical lines is increased, and the divisions, thongh more thau four, are still called quarters. Where there is an odd number of coats, the last guarter is usually filled up by repeating the first. One of the quarters may itself, be quartered, when the heiress was entitled to bear a quartered coat; the shield is then said to be counter-ruartered, and its primary quarters are called grand guerters. Quarterings are not allowed to be added to the paternal coat withont the sanction of the heraldicauthorities. The expression " quarterings" is often loosely used for descents in cases where there is no right to guarter from representation. The eightor sixteen quarterings which are sometimes ranged around the Senttish funeral escutcheon, and which are still important for many purposes in Germany, have no reference to representation, but simply purity of hood for four or five generations ; i.e., that the father and mother, the two grandmotlers, and four great-grandmothers, as also in the case of sixteen quarterings, the eight great-great-grandmothers, have all been entitled to coat-armor. See Quarter.

QUARTERLY. - i term in Iferaldry, meaning in puarters or quarterings: as, to bear arms quarterly:
QUARTERMASTER.- I regimental Staff Officer, of the relative rank of Lirutenant, whose duty is to look after the assignment of quarters, the provision of clothing, forage, fuel, and all other Quartermaster's supplies: and when on the march he superintends the marking out of camp. He is appointed by the Cotonel of the regiment, subject to the approval of the Secretary of War. IIe vacates his Stalf position when promoted to the rank of ('aptain, or at the discretion of the Colonel. In the British service, the regimental Quartermaster rises, with few exceptions, from the ranks. If is duties are tos shprintend, assign to their respective occupants, and have charge of, 'fuartors, barracks, tents, wothing, "te, used by the reximent. He is abo regimental storekeeper. The Quartermaster has no further promotion tolook forward 10 ; but after : 30 vears' service in all inclading 10 as an uflicer ho may retire with the honorary rank of Captain. Ilo yreeives 10s. 2d. atay in the cavalry, amp sis. 2l. in the infantry, rising by length of serviee to 15s. 山il. and 13s. 2 th; with shighty diferent rates in the guarts, angineres, ete. Ila is not rempired to join the Mess
QUARTERMASTER AND COMMISSARY OF CADETS. - An Otiecr of thu Army, detailed hy the seeretary of Wiar. and assignch to duty as Quartermaster and Commixatry of ('adetsat the LT. S. Military Academy.




A board of lnspertors, comsisting of three oditere appointed hy the Superimendent, "xaminas and erompares with approwed patterns all articles of (athots clothiner, and materials for makine thr same ; and also exumines all othar supplies furnishoul lye the: Quarlcromaster and Commissary of (ialots, insd reports to the superintendent, at such tiams as lace appoints on the quality und suitablersoss of the articlos; but the Supermenendent may assign an ollewr to itse ghect clothing and shows furnished for issue. No clothiner or other irticele is issumed or sulid to the ('ndets without boing first inspereted and approverd. After every muster this Board arofully andits the accounts for clotbiner, and all olbor anthorizad charges amainst Cadots.

QUARTERMASTER GENERAL. I Stafl ()HIcra in the United States Army, who has the rank of lirima dier General, and is at tha land of the (quartormaster's I epartment. In the liritish army le is a statr Ohicer of high rank, whose duty it is to arrange the marches, quarters, ant intermal arrangements of the army to which he belongs. Eviry army has some oflicer of this Departancot; from it brigade with a Deputy Assistant Quartermaster Cencral, reeriving c173 7s. 6l. a yoar, besides regimental pay, up to a complete army under a Commander-in-('hitif, with a Quartermaster Gencral, who is usually a general ollicer, and receives $t 691$ 10s. Td. per annum, besides his other pay. Athealequarters there is a permanent Quartermaster General, responsible for all the movements of the army, the organization of expeditions, camps of insiruction, etc. lle receives 81,500, besides his pay as a gencral oflecer, and has a Sub-Department at the War Ontice, with clerks, etc. Jle is under the ofticer commanding in clicef, and the Adjutant General.

QUARTERMASTER'S DEPARTMENT.- Jepartment is chargel with the duty of provicling the means of transjortation, by land and water, for all troops, and all material of war, It furnishes the horses of the artillery and cavalry, and horses and mules for the trains. It provides and distributes clothing, tents. campand garrison equipage, forage, lumber, and all material for camps and for shalter of troops and of stores. It builds barracks, storehouses, linspitals; provides wagons and ambulancesand harness, except for cavalry and artillery horses; builds or clarters ships, stemmers, and hoats, forcks, and wharves; constructs and repairs roads, railways, and bridges; clears out obstructions in rivers ani harhors. when uceessary for military purposes; provinles, by hire or purchase, grounds for military ('n(emme)nents and buildings; pays generally all exponses of military operations not by law expressly nssigncel to some other Department; and, fimally, it prowides and maintains military cemeteries, in which the dead of the army are buried

The following are general depots of the Quartermaster's Department in the Uniterl States, amel the oflicers in charge thereof report directly to the Quartermaster General: New York, Philadelphia, and Schuylkill Irsenals, Washington, D. C., Jellersonville, I uij., and San Francisco, Cal. All other depots are under the orders of the Commanding Generals of the Mili1 ary Departments in which they are situated. The Commander of the Nilitary Division of the Pacitic. however, for all purposes of his command, has anthority over the depot of San Francisen as over I) ('partment depots; but in matters relating exclusively to the collection and manufacture of military supplies, the officer in charge of that depot conmmanicates directly with the Quartermaster (ieneral of the army.

The present organization of the Quartermaster's 1) Martment consists of one Quartermaster (iemeral. with the rank of Brigadier Cenerat: four dscistant Quartermaster Generals, with the rank of Colonel;
 of Lirntemant (anomel: fonrleron (quartormastors, with the rank of Major; atmot thirly Assistant (quartarmasters, with tha rank of ('inhain.
QUARTERMASTER SERGEANT. A N゙on-combmigaioncel othicer whon askints the (quartermastor in his varions dotins. [lo ranka amoner the regimantal
 ('olfoncl of the rogiment upone the recommondation of the equartermaster. In the l3ritish morvice, lice receivos daily 4 s , 5u, in the cavalry, 4 s . in the artillery, za. 11. in tho infantry of the line.

QUARTER OE ASSEMBLY.- A rempe\%volus or place where the troops meet to marrly from in a hesty
QUARTERB.-1. The e'mesmpmornt on onv of the primeipal passages round a place besiegeal, w prevent relicf and intercept convos's.
2. In military affiars, fuarlars are gencratly the positions assigncel tormosems or boudiceof mern. In at more special sense, the fuarters in the army are the
 not actually on daty. It all posts and stationswhere there are public quartars in buiddings lowlonging to the 1 nited states, oflierers may be furnished with quarters in kind in such public buiddinges by the (Quartermaster's 1)epartmont. 'Ilare is aflotted by the Quartermaster at the station,under the direction of the Commanding Otlierer, oneh odheer such number of rooms as is allowed to his grade by the legnlations of the Army. When assigned to duty without troops.or temporarily aml involuntarily awaiting orders, under competent amthority, ofticers areentitl? ed tothe prescribed allowance of guarters. But in no case is an ofticer furnishacd with quarters at two differcat stations at the same time. Application should be made to the Quartermastor on the arrival of the ollicer at the place where guarers are to be provided. See Allorance of Quarters.

QUARTER SIGHTS.-In gunuery, divisions marked on the upper quartars of the base-ring, commencing where it would he intersected by a plane parallel to the axis of the piece, and tangent to the upper surface of the trunnions. These siglats are usd for giving elevations up to $3^{\circ}$. The mode of elevating the gin is by bringing the division on the base ring expressing the required degree of elevation and the notch on the side of the muzzle in direct line with the object; the gun will then have the proper degree of elevation. To lay the gum point-blank, the lowist notela on the base ring ind that on the side of the muzzle are brought directly in line with the object, and though the gun may liave been laid point-blank with reference to the object, it may lave sereral degrees of clevation or depression with regard to the ground or plane of the horizon.

QUARTERS OF REFRESHMENT.-The place where the troops that have been much harassed are put to recover themselves, during some part of the campiinn.

QUARTER STAFF.-Formarly a farorite weapon with the English for hand-1o-land emcounters, being a stout pole of heavy wood, about $6 \frac{1}{2}$ feet long, shod will iron at both ends. It was gracperl in the midble by one hand, aut the attack was matle by eriving it a ripid circular motion, which brouglat the loaded ends on the adversary at mexpected points

QUATERNIONS. - The name given by its inventor, Sir W. R. Wamilton, to one of the most remarkable of the mathematical methods of calculi, which have so enormously extended the range of analysis. while simplifying its application to the most formidable problems in geometry and gunnery. It would be inconsistent with our plan to give even a complete thoumh elementary analytion riew of this calculus: but it is possible, by means of elemontary geometry and algebra alone io give the reater a notion of its nature and value. For this purpose. it will be mecesary to consider some very simple. but important jleas with referrnce to the relatire pasition of points in space. Suppose $d$ and $B$ to be any two
stations, one, for instance, at the lop of a monntain, the other at the bottom of a coal-pit. Upon how many distinct numbers does their relatice position dipend? This can be easily answered thus: $B$ is so many degrees of longitude to the east or west of $A$, so many degrees of latitude to the north or southof $\Lambda$, and so many feet above or below the level of $A$. Three numbers suftice, according to this mode of viewing the question, to determine the position of $B$ when that of A is given. Looking at it from another point of view, suppose $A$ to be the earth, $B$ a fixed star. To point a telescope at $\mathbf{B}$, we require to know its altitude and azimuth, its latitude and longitnde, or its right ascension and declination. Any of these pairs of numbers will give us the dirfction of the line AB, but to determine absolutely the position of $B$, we require a third number-viz., the Iength of AB. Hence, it appears that any given line AB, of definite length and direction, is completely determined by three numbers. Also, if the Iine at be parallel and equal to AB , it evidently depends on the same three numbers. Hence, if we take the expression ( $A B$ ) to denote (not, as in geometry, the length of $A B$ merely, but) the length and direction of $A B$; we see that there will be no error introduced, if we use it in the following sense:

$$
A+(A B)=B
$$

i.e.. if beginning with $A$, we take the step reprssented by $(A B)$, we shall find ourselves at B. From this it follows at once that, if $C$ be any third point,

$$
A+(A B)+(B C)=C
$$

i.e. beginning at $A$, and taking the successive steps ( $\mathrm{A} \dot{B}$ ) aud ( $\overline{\mathrm{BC}}$ ), we are finally brought to C. But we have also

$$
A+(A C)=C
$$

by taking the step from A to C at once. Hence, with the presunt signification of (AB), etc. we see that

$$
(A B)+(B C)=(A C)
$$

which shows that lines, when their length and dircction are both considered, are to be addea or compounded aceording to the same law as velocities or forces. In this sense, a line is called by Sir W. R. Hamilton a cector. Again, we have evidently

$$
A+(A B)+(B C)+(C A)=A
$$

because the three surcessive steps bring us back to the starting-point. Hence

$$
(\mathrm{AB})+(\mathrm{BC})=-(\mathrm{CA})
$$

and therefore $(A C)=-(C A)$, or the $\operatorname{sign}(o n l y)$ of a vector is cbanged if its direction be reversed. The rules for the addition, and, therefore, for the subtraction, of Fectors are thus extremely simple ; and, without any further preface, we are in a position to solve a great many geometrical problems, some of which are of no common difficulty. A comparativeIy simple one must suffice; let us prove Euchid i. 33 i. e., if $A B$ be parallel and equal to $C D, A C$ is paralIcl and equal to 13 D . In vectors, given $(\mathrm{AB})=(\mathrm{CD})$, prove $\left(\mathrm{AC}^{\prime}\right)=(\mathrm{BD})$. We have at onee, by going direetly from $A$ to $C$, and then by the course $A, B$, D, C,

$$
(A C)=(A B)+(B D)+(D C)
$$

But $(A B)=(C D)=-(1) C)$ by what we have just proved. Heneo the first and third terms of the ex. pression for (AC) are equal and of opposite signs, and therefore

$$
(1 C)=(B D)
$$

This examplehas heen chosen from its simplicity, und gives an extromely inalleguate idea of the grasp which vectors take in common geometry.

So far, we have not advanced much beyond common geonutrical methods; but we rove come to tha step in which quaternions proper are introfluced, a vector being nuerely at degradedspecies of ruaternion. This new stop contains Jamilton's answor to the grestion, answered over and over again during the last 50 vears in forms of the most uneonth complasity." Iloun to express the product. or the quatient, of tiri vectors, or dirpeted lines." In other words, kerp-
ing to one part of the question only, what is the nature of the factor $q$ in the equation
$(A C)=q(A B)$,
where $A, B, C$ are any three points? Let us first consider on how many independent numbers does it depend? It might at first sight appear to depend upon six, for ( $\bar{A} B$ ) and ( AC ) , as we have arreatay seen each contain three. But let us analyze the process of passing from the one vector to the other, much as we have already analyzed the vector step of passing from one point to another. To sim. plify the idea of the process, let us suppose it to be effected by a species of rotation. First. then, in

order that (AB) may be turned so as to coincide in clirection with ( $A C$ ) it mnst be turned about an axis perpendicular to the plane of the triangle ABC, and through an angle BAC. Now, the direction of a line always depends on tiro numbers, as we have seen above; hence, we will have tino for the direction of the axis, and one for the angle through whieh $A B$ is turned. But $A B$ and $A C$ are not, in general, of equal length; hence after their directions have by turaing been made coincident, Al3 must be compressed or stretched till its length is the same as that of AC . Thus, a fourth number is required for the complete description of the process, and, therefore, $q$ depends upon four independent numerical quantities; honce its name, quaternion. A similar investigation, but somewhat less elementary, shows that the product of two vectors also depends on four distiact numbers. This will be proved analytically further on in the article. Now, suppose AB and AC to be qual to each other, and at right angles; and suppose

$$
q(A B)=(A C)
$$

i.e., suppose that $q$ turns AB throngh a right ange in a given plane withont altering its length. Apply the operation denoted by $q$, a second time, and we have

$$
q \cdot q(\mathrm{AB}=q(\mathrm{AC}) \cdot q
$$

Fow $q(\mathrm{AC})$ must represent a vector equal to AC in length, but tnrned through a right angle in the plane BAC . It must therofore be in the direction of BA produced through $A$, and equal in length to AB. Ilence, by a previous renark, it may be expressed ly

$$
-(A B), \text { or by }(B A)
$$

Hence, $q \cdot q(\mathrm{~A} B)=-(\mathrm{AB})$, or $q \cdot q=-1$.
The particular quaternion, therefore, which turns a vector through $90^{\circ}$ without altering its length, has its square equal to - 1 . Thongh, of eourse, they are essentially a real geometrical conception, this result shows how elosely quatrmions are connerted with what are called imaginary guantitics in analytical geometry and algebra. Now it is foumd, by a careful examination of all the consequences involved. that we are at liberty to repesent by a vector of unit length, perpendicular to the plane of two equal lines at riglat angles to each other, the quaternion which, employ"d as a multiphier, changes one of these lines into the other. This result we must assume : as its proof, thongh not in any sense diflient, wonld require the free nse of amalytical symbols to condense it within our assigne d limits. Jenee three vectors, cach of unit leugth, and each perperndicular to the other two, have the property that the problact of any two, taken in the propir order, is the third. For illustration, suppose these to be drawn cast ward, northward, and upward, and let them be represent-


 pectively; we have the following "flution matone the'rn :

$$
i . j=k, j . k=i, k . i=j
$$

where it is lo len onserverl hat tace oriler of the atphatbet is matintained floremghoth. Alsog, ats bofores we Rece that $i^{3}=j^{3}-k^{2}=1=-1$.
*'omsillering them for a moment as hamalios for bo laid hobl of to curn the whole system abont onse of them, wo ser that $i$ turns $j$ into the presition of $k$;
 rod quadrantal rotation abont the ceatward linse $i$. What, then, is the result upon the veretor $i$ of thre rotation symboli\%ed by $j$ ? latyine hodd of the north-

 onty (as ahove, jk $=$ i) to make the upwamd line an casi ward ome but to make the eastward line it derenmerd one ; in symbuls.
Comparing this witlu

$$
j \cdot i=-k
$$

$i_{. j}=k$.
we sere that in quatermions, the commututioe lum uf multiplicution dwes wot hold; i.e.. that the pronlact de. pends not only on the factors, as in arithonetios and algelora, lont upon the oreder in which the maltipherstion is effected. This is, of comree, a litile perplex-


Quatreforl. ing to the begimer, hut is assily got over; and the mere eonsibleration of this fact is often suthericnt for the pronf of theormans regarded in arene. rat as of no ordinary dithendey

QUATREFOIL.-A heraldic bearing tucant to ropresent aflowar with fone leavers. It is not represented with a stulk madess blazoned as stipped, in which case thr satle joins the lower leaf.

QUEEN. - In its primary signitication, the liang's Consort, who bas in all countries been inverted with privileges not bedonging to other married women. The English (queren, mikeother wives. can make a grant to her lushand, and receive ond from him. She can sue atml be suted alone. and purehater land without the Kingrs eoncurrence. Thre stabate of treasons makes it tratson to compass ler death, or to violate her chastity, everr with her consent, and ihe Queen consenting, is hersilf guilty of treason. If accasod of treason, the Queen is tricd by the levers of the Renalm. I duty, mmonnting to one one-tents of the value of finesong grants hy the Crown, wats in former times due so thie Quern, under the nime of furem-abld. Charles I. purehased it from lais ('onsort, Henrictta Maria, in lfas. for $£ 10,000$, but it
 Consert is exempt from paying toll, und from amercements in any court. She lias a honsehold of her own, cousistinig of six ladios of the lbedelamber, a Lord Chamberlain. Vice-thamberlain. Mistrese of the Robes, Mastar ollthe IJorso, and three Eeplacries, as also lacr Ittorncy General and Solicitor (roneral. distinet from those of the king, who are entitled to take a place within the bar alonge with the Kioners counsel, and prosecute suits in law and equity for the Queen. It has becn the usual practice to Crown the Queen Consort with solemmities similar to those in the coronation of the king. In the catso of the Queen Hmager is the widow of the dectased King. She retains most of the privileges which sla enjoyed as Cuero Comsert, nor does she lose has dienity by re-marriage; but it has been hedd that no one ean marry the Queen Dowacer without permission from the king. on pain of forfeiture of lands and goonds. On the marriage of a ling, or accession of an ummarried Prince, Parliament makes provision for the Queen's maintenance, in case of her survivance. An income of $£ 100,000$ a yoar, with two residences, was settled on the Queen of George III.; and the same provision was made for the lati Dowager Queen Adelaide. at the commencoment of the reign of William IV. The Qucen-Downger, when mothes of

 the: armus of (hr ki ines impaled with thoir pabernal
 istor-suly, both royial supportors. It is mot Hanal to place the


 in those commeriss where lho sitis: latw dowe ant pros


 pewer of this reatme is in the (2tnen's mojo-tio as fully amb abmolately as cover it was in anyor low ment molide progemions kimge of thim roalmo: and it has since beroll hold that the powern, prerogatives, and


 al intillolity, bre is not shbjereted to the same promb
 wl by the romstitation with any politiond riphis ur priviluess, and lis bonturs and jrecedence buta-t lue derived from the (queren. I (Queron lemenant isthe whly woman who is in her own right antited to lowar lar nrms in at shided and mot in at lo\%enge. Shere is alarn entided to the extorior ornaments of lacluct, mantling. crost, und motio, and may surroumd hor shiold will the warter, and tha roblars and ribhons of all other Orders of kinierthood of which whe is soberelish.

QUEEN ANNE'S POCKET-PIECE.-In aנcirяnt 1 M . ponmerer cannon at Doser. England. "Tais piere is more than 28 fret in lengets.

QUEEN'S ALLOWANCE.- An allowaner in Enerland, in aid of the expenses of the ollionrs mase It is appliod towards reducing the cosi of wine and diminishing the daily expenses of the mess, in equmb proportions, vi\%.. one-latif for wind and one-latf for mess expurases. 'This eramt is also knownas I'tgrut's 1hbirnture.

QUEEN'S COLOR. - In the British service, the color carricel on the right of the two colors of a batalion of infintry. It is, in the line, the ertalt Cnion or Union-jack, with tha Imperial crown in the center, and the mmber of the regiment in endd laman clatracters below the erowin. In the gatards, the Quern's color is crimson, with prarions devices on it.

QUEEN`S REGULATIONS. - Those collections of orders and reanlations in force in the Enalish Army, which serve to guide emmmanding and other otlicers in all matters of discipline aml personal conduct. Fimancial mattors are lofi to the War Otlice recitations. The Requlations for the army were firsi colbected in 1788, since wheu several editions have beren issued. the last bring in 1873. The current Regulations are supplemented, corrected, and cancilal by mumerots circulars and addenda: so that bhey never represent the whole body of military rules for many diys toriflier.

QUEUE. I tail-like iwist of hair formorly worn at the back of the head by sollower.

QUEUES D’HIRONDE. - In fortitication. lines composed of projucting tenaildes, or works, which. from the facility with which an encmy can canilade their long brancles, are considered extrendy defective, and concerquemty are seldon employed.

QUICK-MATCH. - Cotion yarn, of several strands, saturated and covered with an inflamnable composition. It is used for communicating fire frons point to point in direworks, etc. The following materia!s are, repuired in mamufacture : Mealed parder: suttons yern wound in louse balls of couvenient size (sayy 1 pound, which will measure about 1,000 vards), such as is used for candlewick. WFhen donbled and slightly twisted in the tingers it should be about .0 inch in diameter. Grummed brandy or rhisky. in the proportion of 1 ounce of gum $10 \frac{1}{2}$ gallon of spirits. The gime is first dissolved in thee smallest yuantity of hot water or vinegar, and afterward mixed with the
whisky. Strips of puper ; thread. One thousand yards of quick-mateh require 1 pound of cotton yarn, 8 pounds of mealed powder, $1 \frac{1}{4}$ gallons of spirits, and $2 \frac{1}{2}$ ounces of gum arabic. Weight when dried, 9 ponnds. The following utensils are used in preparing the quick-match: Wroden or copper burls: 1 quart measure; funnet or frame; rut. Steep the balls of yarn in the gnmmed whisky until they are quite thoroughly saturated. Make a good paste of mealed powder, by mixing 1 quart of gummed whisky to 2 pounds of powder, and pnt a layer of it abont $\frac{1}{2}$ inch deep in the bowl: on this spread a coil of the cotton by unrolling the ball and distribnting it equally on the surface of the paste until there are 5 or 6 yarns over one another; put another layer of the paste.and proced in this manner nutil the bowl is full, taking care not to entangle the strands; the last laver of this paste should be a little deeper than the others. After the cotton has been 3 or 4 hours in the bowl, winel it on a reel, or stretch it on mails 40 or 50 feet apart, making it pass through a fnmuel, or the hand, filled with the paste, and taking care that the several turns of yarn do not touch each other. Before it is dry dredge it with mealed powder ; let it dry slowly, theu cut it off from the reel or uails and put it in bundles. During the winter quick match should be made in a warm room. Match thus prepared should be hard and stiff, and the composition should hold firmly on. One yard burus, in the open air, 13 seconds. "By using vinegar, a match is makle which burus less rapidly, in the proportion of 4 to 5 : and with pure water, iu the ratio of 4 to 6 . Ilcokel makes a quicker match, but it cannot be gummed, and the composition does not stick. A slow kind of matel is made by adding snlphur to the mealed powder. With $\frac{1}{6}$ of sulphur, one yard of match burns 22 seconds; with $\frac{1}{3}, 33$ seconds; with $\frac{1}{3}, 53$ seconds; with $\frac{1}{2}, 162$ seconds. Quick-match carefully inclosed in tubes burns much more rapidly than in the open air, and more so in proportion as the tubes are made smaller. To communicate fire very rapidly, it is inclosed in paper tubes, callled leaters. Sce F゙ivezeorks.

QUICKNESS OF BURNING.-The relative quickuess of burning of two different powders may be determined by burning a train laid in a cireular or other groove which returus into itself, one-half of the groove being filled with each kind of powder, and fire commmicated at oue of the points of mecting of the two trains; the relative quickuess is readily deduced from observation of the point at which the flames meet.

QUICKSTEP.-A lively, spirited mareh frequently played by military bands.

QOICK TIME.- In tactics, the length of the direct step in ruick time is 2s inches, measured from hecl to heel; the cadence is at the rate of 110 steps per minute, or 2 miles 1613 yards in an hour. Sere fid renre and Step.

QUILLED.-In Herakdry, a term nsed in eleseribing a feather, to indicate that the quill differs in tinctur( from the rest.

QUILLON.-The ordinary cross-gnard of a sworel. see Cross-guard

QUILTED GRAPE.-The old pattern grape-shot, which consisted of a roumd iron plate or bottom, having in irou pin in ita center, around which the small shot were piled, quilted with canvas, and tied. so as to appear in form something like a bunch of grapes.

QUINAN BREECH-SIGHT. - An improvement on the pendnlnm hansse. It is fixed in a socket on the right side of the breech. The scale has a spirit-level. by means of which it is made vertical. Thue front sight is a short tube with cross-hairs fixed in it. The advantages claimed over the hansse are increased steadiness and aceuracy.

QUINTE.- An important guarl in fencing. Usually the fifth.

QUINTIN.-Auinstrmment used in the ancieut practice of tilting on horseback with the lance. It consiverl of an upright post, surmounted by a cross-bar turning on a pivot, which had at oue end a flat board, at the other a bag of samd. The object of the tilter was to strike the board at such speed that the rider was past before the bag of sand, as it whirled round, could hit him ou the buck. Also writteu Ouintuin.

QUIRITES. - A term applied, in ancient Rome, to the citizens as distinguislied from the orguaized soldiery.

QUISCHENS.-The old term for Cuisses, the pieces of armor which protected the thighs.

QUITTING GUARD.-The Articles of W"ar provide that any offieer or soldier who quits his guard, platoon, or divisiou, withont leave from his superior ofherr, except in a case of urgent necessity, shall be punished as a Court-Martial may direct. Quitting any post or duty without having received any previous order for that purpose, is severely punished in the army.

QUIVER. - 1 case or sheath for arrows, formerly worn by archers or bowmen.

QUOIN.-A large wedge, used in place of an elevating serew under the chase of mortars and the breech of short howitzers, to keep them in the proper position when elevating. It has a haudle on the large end, by which it is moved.

## R

RABINET.-A small piece of ordmance formerly in use. It weighed but 300 HS . and fired a smail bull of 18 in . diameter, with a very limited range.

RACERS.-Circular rails of metal located in the ground on which the trucks of traversing platforms run. 'The racers used with wooden platforms are made of wrought-iron, laid with the upper surface raised. For wroughtiron traversing platforms on which ha*ivy muz\%le loading rifted ginns of less size than the 10 -inclu stund, flanged racers of wromernt-irons are used, but for the gans of a larger size stect is substituted for wrousht-iron.

RACHAT DES CLOCHES.-Formerly, iu France, when a fortified place was taken, the bells became the property of the Master General of Artillery, which were usmally redeemed by the inhabitants of the place ul a certain price; it was necessury that
the place should be attacked by artillery in order to secure this right over the bells.

BACK. - A straight bar, with cogs or teeth placed along it, so as to correspond with similar cogs or weth placed on a wheel, thus: If the bar is not movable, the wheel is attached to a traversiug frame, and as it revolves, is movid along by the resistance of its tecth to those on the bur. It was in this way that the formation of a railway was first projected, the rail and the driving-wheel of the eugine to be both furnished with corresponding teeth. In mechanies, rack-work has innmmerable applications.

RACKAROCK. -The mame given to a blasting powAcr formed by the union of two ingredients, one a solidand the oller a tluid, both being absolutedy inexphosive until combined by the consumer. Many attempts have been made to prepare ingredients lat
would form an ellewtive explessive immediately upon misture, hat mesty all the plans propesed have proved impracticalid. from dillienty or danger. 'lla
 matreet a powider nimad as above, the inwention of Silas R. Divine. It has bean mast edfertively asma in a great varicty of oferations in tameline und mining, and hats proved to be an explosive of ereat powar rivaling nitro-glyourine in that rexpert-mal safer that mosi other high explosives, even afore the neparate ingredients have beren emmbined ready for use in blasting. In manufacture. 1ransurotation, amb storage, there can of course be no danger, as the materials are kept separate mill wand for immediate use. 1 dry oxyen- yichling salt, in a tincly-

 into a suitable fluid hydrocarbon- preferably nil rated, as, for instance, nitro-lyenzold-and allowid tombsorb a certain amount. Whith can lo made detinite by timing the immersion, or by weighing the "artridges before they are diperel, and arresting the als. sorption when they have acegured the reanisite increase in weight. The purons crivelope or artridge of muslin is an ingenions device. 'The ider of making cepplosives hy putting the oxygen salt in porous partrideres and then saturating them. secons simple enough after it has once beem done, the same as ITowe's iden of putting the eye of the meedle near the point insterth of in the blumt cond, seemerl simple after it was onee diselosed, but the jeefertion of the invention in both cases was only reacloct after hard stady. Like the invertion of the sewing-matchine nedde. it beame necessary to reverse the old processers. The old way in explosives was to maka the cartridge fluid-proof-the new way is to make it porous. It allows the fre pereolation of the fluith to the powder, and when the interstices of the envelone are tileced with an oil or haid that will not mix with water, it resists the cutrance of the latter to the solnhbe salt inside. When the maslin cartridges were first used, they ware fully saturated, and removed from the thut in adripping condition, and the exeress of oil sifuec\%ed thut ly' wringing the cartridges. This methol wastedious and laborions. At hength it was found that by allowing a little time, a small quantity of fluid would edually diffuse through the whold mass of powder contained in the cartridges by capillary attraction. It is desirable not to oversaturate the powier, as there may be too much hydrocarlon for complete combustion with the wxyen furnished by the dry salt. Anexeess of hydrecarion will canse more smoke when the powder is exploded, and will not give so high a result dynamically.

In practice, the cartridges are placed in a wire basket and lowered into a pail or vesset containing the fluid, and allowed to remain a certain number of seconds, depending upon the diameter of the eartridges.

The cartridges saturated as above, if cut open after saturation. will present in the center of the cross sec. tion, an area about the size of the end of a leat perneil which is not wet, but which will be wet if the cartridges are allowed to stand a few minutes before using, as the oil will equally diffuse by capillary at traction. When this mode was first adopted the wire basket containing the cartridges was hung on it spring halance and ahernately dipjed and withdrawn umil the desired increase in weight was obtained.

Mr. A. (. Rand proposed to secure the riglit proportions hy immersion for a certain detinite time for cach size of cartridge. This plan was successful in practice, and has been in constant use since its alop)tion. Another mode of securing proper proportions: of dry saliand combustible liquill has been introduced by the manfacturers of Rapkarock. This is 10 mix a very volatile liquid like carbon disulphide, with a
flxal oil like nitronsmzole, fand allow the cartridges to berome romplately miturnted. 'Thern they atre alloweal tor raman in tha. open air antil the vilatiln in. gredient has r-vaporated, leaving the prepuer amemant
 Encorespful in praction. With referonew whe the of nitrated hydremarbons. it maty lat sated that tho frater the prantity of oxyern that iw comtained the fros the relative weipht of the ail that in to loe mixerd with the oxyeron yidding math. When the hydramar. low is promint in auch ghantity that the carlon ran

 smoke is avolved on cexplosion. Tho cartriblere when properiy preparedare joractically waterpronf, ame remain goonl for cond day's in wat |rill-holew, as the oil repele the water and prownts its permeating the powdor through tha mustin. "Theronsistence of the propared peowder is like that of damp lerown angar, ame it may be closely parked in therlrill-hele, cmperintly if the maslin is slit before the cartridges are dropheril in and rammed.
The sperefte aravity of the pewder is from 1.8 bo 2 and its density allow the comerntration of great !ewer in at small spare. It gives the hientest reanles in hard compact rock, and is much usiol in tummeln. drifts, and shafts, where the rock is firmly bomat. Thas gases produced during cembonstion are not sickenimer like those from nitroglycerine and the dynamites.

The sensitiveness of Rackarork can be" incrauced or elecrased ly special means conployed by the mamsfacturers, and one varicety that las- been larecty 1 and will not 'xplenle witha fulminating calp withent confincment. In the open air at common temperatures the powder will be scatterod about withont explorling when a fuse and cap are inserted in atartridere amd tired. Dut when contine in at drill-hene ohe pewders receives an impact from the detomating primer that canses the whole mass to exploted
Racking--It has bea slown that the peneration of a projectile depents more npon velocity than woight, and that the elongated is a better form that the spherical for more penetration or prenching. It mast, however, be remembered that very heay shot, fired with velocities which might not crable them to peractrate or punch holes in iron armor, may still do great damagre, especially if many are fired sureme sively, by breaking bolts and shaking the whole fathric : also, that as shorical shot, having a baroer diameter than the elongated projectile, may ofton do more damage in cracking or shattering a juate, than the latter in menching it, the rurk done by the ball being distrihuted over a larger area. The same argumint will apply to the case of two clongated projectiles, laving different diameters. striking a target with the samo force, as measured by irta. Hence there are two general methols of athempting the destruction of iron-clad vessels, terned respentiively rocking and punching. 'The Americun shave shown a preference for the racking system. which reguires heary projectiles of large diameters, fired with low velocitics. to destroy and shake oft the armor by repeated shocks without penetration, and thus to expose the ressed to the cffects of ordinary projectiles. It is believed that the two forsen may prepare the way for each onher, so as to produce it more formidable result than when ther aro independently excreisets. The defeet of the light-silnet system when the range is very long or the armor pery thiek, and of the heary-shot system whers the range is even very short and the armor is laminated, or so constructedi as to suffer little from racking and shaking, is the waste of power in producing local effect. that is fruitless becnuse it is incomplete. By combining the two systems, the light fast shot may weaken the armor by the loss of substance and continuity, until the heavy shot can carry in a larec rection of it bodily: and at the same time the general straining and cracking of plates produced by the heary shot will make punching all the easier.

The theory in favor of the racking system is, that heavy projectiles may be flred with low velocites without straining the gum ; that blows given in this Way waste no power in punching mere holes, but that the entire work will be expended in straining, loosening, and dislocating the armor and breaking its fastenings, tearing it off and exposing unprotected spots easiiy rulnerable to shells, at the same time racking and breaking the ribs and sides of the ressel to such extent as to render her unseawortly. "For producing these effects the 15 -inch gun, throwing solid cast-iron balls, is quite as formidable as the powerful rifte expending costly bolts ; but the accuracy of fire from the rifle is so greatly superior to that from the smooth-bore, as to leave a large margin in its favor. Spherieal shot, and slow shot of any form, will do rery little exceution under water. The concussion from racking blows, althongh it may not seriously injure the ressel, stuns and temporarily paralyzes many of the crew, and sprealing terror to all, greatIy interferes with the eflicient working of the ship and of her armament. See Armor-plates and Punching.

RACKING DOWN.-An operation performed with the aid of rack-lashing in laying a gun or a mortar platform, for the purpose of sceuring the flanks and the ribands of the platform together, so as to prewent them from moving.

KACK-STICK AND LASHING.-A picce of two-incls rope, about 6 fect long, fastened to a jicket abont 15 inches loner, having a hole in its head to receive the rope. Rack-lashings are used for securing the planks of a gun or mortar platform, between the ribands and the sjeepers.

RACKUMITICK.-A large javelin skillfully used by the Hottentots. With this weapon. they venture to attack the elephant, the rhinoceros, and even the lion.

RADIAL DRILL.-An upright machine, designed for drilling a series of holes without changing the position of the work. The value of a radial drill in the armory eonsists, primarily, in the readiness with which the drill can be moved to the work, or shifted over the rarious parts of the work, reguiring to be drilled. In the use of radial drills having the swinging arm at one fixed and unalterable height above the floor plate, the work nust cither be blocked up to suit the height of the machine, or extension pieces must be used to lower the drill to the work. In scellers' machines the swinging arm is raised and lowered by power, and thins guickly adjusted to the proper leight. so that the work to be drilled has only to be brouglat under the drilling machine in any convenient position and height, and the drill is then quickly set to suit the height of the work, thus saving much time. Too much stress cannot be laid on this feature of these drills. as the saddle carrying the swinging arm is so fitted and of such a langilh as not to require any bolting to place, this adjustment of height is rendered simple in the extreme. The fere motion is ohtained through adjustahbe fend dises. It has a wide range through two serics. one for the single gear, the other for the donble gear, and can be put on or ofl instantaneously ly it tap of the hand on a lever close to the haniwheel. All the aldustments of the machine are guickly made, the slifting of the back gear into or out of usp being as readily done as on any wellmatce turning laihe. A convenient clamp is arranged at the bottom joint of the swinging arm to enable the ratial arm to be secured in position; but if the drills used are correetly formed and rum true, the arm meds no clamping to place.

RADII OF RUPTURE, - lin military mining, to (ffoer an axplosion of the surrouniling ground, a (harge of gunpowder is used, which, according to its strength, and the mature of the gromme and the depth at which it is phaced. more or less affeets the Guantity of carth to be displaced. Such an explosion raises and scatters a portion of the superincumbent carth, and causes a hollow or erater. Besides
this cffect, an internal commotion is caused, capable of injuring or destroying shafts or galleries in the immediate neighhorhood. The distances from the charge to whiel this commotion extends are called ruliio of mpture.
RADIUS. - 1 . In fortification, a term applied to a line drawn from the center of the polygon to the extremity of the exterior side. There are the extevior, the interior, and the right radii. 2. In geometry, the raclius is a straight line drawn from the center to the circumference of a circle. In trigonometry, the ratios is taken as unity, and the sines, cosines, etc.. are expresed in terms of it. In astronomy the same term is employed in a slightly different sense; and to prevent confusion it is changed to radius-rector. The radius-vector is a straight line drawn from the cinter of foree to the position of a body which describes its orbit round the center; if the orbit is a circle, the radins-rector is invariable in its length, but constantly changes if the orbit be any of the other eonic sections. From astronomy the term lias been transferred to what are callad polar equations in the higher mathematics. To express a eurve by this method a point is taken for the polt: through this point a line, the axis, is drawn, indefinite in length and arbitrary in direction; then as one end of the ra-dins-vector is at the pole, its inclination to the axis, and its length at this inclination, will give a point in the curre. Eyuations of curres, when thus expresscd in terms of the radius-vector, and its inclination to the axis, are ealled polar co-ordinates, and are generally much simpler in form than whenexoressed by rectangular co-urdinates.
RAFTS.-Baulks of timber lashed together to form a bridge for crossing a river or stream, when more perfect means are not at hand. From their low degree of buoyaney, however, they are schdom emplored. Fir, pine, hazel, poplar,juniper, larch, and willow, being the limhtest woods. are the best for making timber rafts. Rafts of timber should not be used in rivers where the velocity of the current exceeds 6 feet per second, or 4 miles per hour. Good rafts can be made of casks or harrels, and form a better briulge than batlis of timber. See liridges.

RAGULED. - In I Ieraldry, jagged or notehed in an irregular manner. A raguled cross is one made of two trunks of trees without their branelies, of which only the stumps appear. Also written Raggued.


Raguly.
raguly.-In Heralilry, a term applied to an ordinary whose bounding lines are furnished with serrated projections.
RAID.-A hostile or predatory ineursion, especially an imroad or iucursion of mounted men; any sudden and rapid invasion by a cavalry force.
Ramlon.-The French term for a short arrow or puatrel.
RAIL PLATFORM.-This platform for siege-mortars consists of three slecpers and two rails for the cheedss of the mortar-bed to slide on, insteal of the deck-plank, and is very strong, and casily constructed and laid. The pieces being notehed to tit, are driven together at the bathery, the distance betwern the conter lines of the rails being equal to that between the center lines of the checks. The carth is "xarated cight and a half inches, the depth of the slocopers, and the hottom made perfectly level. The directrix being exactly marked ly stakes, the platform is placed in position, its center line conneiding with a cord streteled between the stakes marking the linte of tire. The earth is tilled in ans high as the upper surface of the sleepers, and firmly ranmed; and the stakes are driven in the rear angles formed hy the sleepers and ritls, and one at the rear end of each rail.
RAILROADS.- Railroads have played an important part in recent wars. Begiming with the Crimean war of 185\%, and mading with the late wars in Europe, the military stadent will be struck with the

Amportance of this chass of eommonneations in the cllicient supplying of an army, and in the concontra-
 tratod and supplied in at phate of lime whiol was got dremmed of in the begimniner of the presernt rentury. It is safe to predict that, in all future wars in cofvilized countrias, the: raliloud will he the line of ronnmunioation for an army. If a systom of railruadm already exists, this system will hensed ; if noh, ternporary lines of railroad will be constructod. It has now becone an important part of an olllerress colurntion to anderstand the prineiples of construction, and The working, of railroads. to know how they ean he preservied, mind how they maty be destroyrd. 'flhe construction of a railrond for military purposes differs from that intended for peacofnil tratlic only in the alegree of its very great exerllenece. Veonomy and rapidity are the most essential qualities looked for in the construction of amilitary railromal. The brincipal things in its consaruction are tho erading and the laying of the track. Grades and curves are necessary evils incident to railroads, and a proper selecetion of them requires an exercise of good judement, in many cases. Sometimes, the track may lw laid on the natiral sarface of the ground, or with so Iittle filling and excavation as to amount to the same thing. The phating of the eross-tios, the spiking of the rails, and the general finishing of the rowd arce bottor done, when men used to this kind of labor can he procured. Usually there can be found amony the troops, a groat many who lave in practicalknowlodge of this clase of construction, and these men can be profitably used as foremen and superintendents of the working marties.

The successful working of at railroad rognires tun ellicient superintendent, as muchas it requires sumbcient rolling-stock and good locomotives. A good man for superintendent can generally be obtained from some of the railroad companies, but he has the defect, as a rule, of knowing nothing of the peculiarities of military service. Nievortheless, his experience and knowledge will be of great service to the military ofllcer in charge of the road, and the working may thus be made successful. From the numbers employed upon the railroads in the United States, there will be no difticulty, in future wars, in the government obtainingas many men as may be necessary, Who will be thoroughly cognizant of the duties that may be required of them. In the beginning, there will be some friction and irregularities, but these will wear off, and an efficient corps of trained mon can soon be formed. It would be better, however, if "dime were taken by the forelock,"and a skeleton organization formed in advance. Enginecr otticers should pay particular attention to this part of their profession, and on short notice organize bodies of workmen whose speeial duties will be those assigucd to construction, working, and preservation of railroads. And since the other officers of the army, are more or less liable to be assigned to dnties connected with the preservation, as well as the constraction, of tbese roads, it is equally incumbent on them to acpuire this knowledge and be able to put it to a practical use.

The movement of troops by railroud may be divid. ed into five distinct parts, viz:-1 The mareh to the point where the troops are to get minto the cars. 2. The embarkation. 3. The journey, 4. Ienving the tran at the end of the journey. it. "lhe march from this point to the place of camping. A caroful examination made beforehand of each portion of the movement will add greatly to the soldier's comfort, and prevent much confinsion, delay, and amoyance. Elaboraterules are laid down, both in the Prussian and French services. for moving troops by rail, and it is recommended that these be read by ofticers who desire to inform themselves on this subject. A line of railroad used as a line of communieation of an army with its base. is protected in a great mensure by the army itself. It is, however. liable to injury from caralry raids of the enemy, and from the acts of a hostile population, if they be pres-
 are the Irideres andinamels. (inarily mhonld lue ata-



 pronrlars in revery dirantion, Io givo timely motion of
 in ther vireinity of tho railrouch.


 arce two gencral cascon onto, whare the injurise in-
 other, where it is desired to ofre a4 inucoll injury as passible, and remidre the werk irreparsble, eominalling an actual reconstruction of tha road. Ther tiret consists in remosing parts of the rollingestork sumb hifding thens, or, whererails cannot be obtainerl, in removing thre track at varions intervals.

The following is ancthorl of removing the trasek
 of the track lade on a high embankment. Trar up the rails of the extromities of the part to be romose ed. Line the outside of the track with men for the whole length of the portion tos lar takon mpand have the men to face inwards. At agivensigmal the men seize the rail next to them: und, at another signal.all lift the rail, raising it and the ties to a vertical posi= tion, when they let the whole fall over the embankment. If the road is ballasted, the men must provide themselves with levers to lift the track. Tlie portion thrown over the embankment eamnot bre rephaced until the rails are unfastened from the ties, amd this takestime. 'llue second case consists in removing the rails and bending and twisting them so as to render them unfit for use in repairing the road; in burning or blowing up the bridges; destroying the tunnels; disabling the rolling stock, etc. liocomotives can be temporarily disabled by removing parts of the machinery. They may be jormanently disabled by firing a round khot throigh the boiler. Another way, is to let ont all the water in the boiler and then build a large fire in the fire-box; the fire soon destroys the flues. All othar kinds of rolling. stock may be temporarily clisablel by removing parts, or permanently injured by burning them.
Some labor is required to bend and twist the rails, as it is not an easy matter to remove the rails from the ties. Worknuen have special tools for drawing out the spikes and unserewing the mats, but tlese tools are 100 heavy to be carried upon a raid, where time is so important anememt. But when the rails have been taken up, and there is time, it is recommended to form the ties into lavaps, and set them on fire. Then to place the rails on the burning heap, loading the ends with other ties. As the rails become red hot, they will heod under the load, and cannot be used again until they are straightened. This bending may also be done by men catching the ends of the railand bending it, while heated, against a tree or telegraph pole. Rails which are simply bent can rasily be strairhened by re-heating and hammering. Where only slightly bent, they can be straightened without evin beinir re-heated. To make them useless, it is necessary to give the rail a twist. A twisted rail can only be used again ly being re-rolled.

Wooden bridges may be destroyed by burning. A simple derice called a torpedo was used in our late war fur destroying wooden bridges, where time was of importance. I bolt of inch iron. 8 inches long, with head and nut, was used. The head was 2 inclles in diameter, and about 1 inch thick. Itin eylinder, $1 \frac{1}{3}$ inches in diameter, open at both conds, enolosed the bolt, and was held it place by tbe head and the nut. A washer between the head and the cylinder made it tight at that end. The eylinder was filled with powder, and an arrangement made for a fuse near the nut. I fuse was insertod and the nut screwed on, and the torpedo was ready for ure.

In using it, a hole was bored intu the timber with an angur. The head of the bolt was inserted and was driven by a hard blow into the hole. The fuse lighted, and the explosion tore the timber in pieces.

As the railroad bridges to be destroyed were ordinary truss-briages. it was only nesessary to insert a torpeds in one of the main brices, or if these brates were in pairs, in the two piece forming a pair. The destruetion of these braces at one end, or on one side, was sufticient to wreek the bridge.
The importanee of guarding a railroad, and of having a good construction corps thoroughly organized to repair the damages, was illustrated in the war of $1861-5$. This war illustrated the uses of the systems of railroads already in existence for military purposes. and also the great advantages of temporary railroals to perform a given service.-See lílizuy Communication.
RAILWAY COMMUNICATION.-In looking for the quickest and simplest methol to make a railway for military communications in a strange country, and for the most suitable material imid plant to nse in its construction, it is well to have a deseription of the varions ganges of which railways are usually made; to study the powers and capacity of different locomotives and rolline stock for these lines ; and to consider the time, labor, and cost of making a railway: Before commencing a stady of these three snbjects a statement will be given of what has been done in making raiways in war time, excluding any aeconnt of their constraction for the same purpose in civilized countries, such as the case of the Prussians, who made a railway round the fortress of Metz, and at the destroyed tunnel of Nanteuil; or the railways made by the lussians from Bender to Galaiz, and from Fratesi to Zimmitza. After a season of great suffering to the troops engaged in the siege of Sebastopol, caused partly by the difficulty of communicating with their base at Balaclava, a railway was constructed of the ordinary gange of $4 \mathrm{ft} .8 \frac{1}{2} \mathrm{in}$. About 21 miles of track were made of single line: civil engincers with a working staff of natives were employed in its construction. The rolling stock consisted of five locomotives of 12 to 18 tons weight, and about 40 urdinary side-tip ballast trueks; one of the locomotives was worked as a stationary engine to hanl trains up a short incline. This railway never had the capacity for transporting all the supplies required by an army engaged in a siege. It did a fair amonnt of work at the re-embarkation of the troops on the conclusion of peace, but it would have been of no usc if hostilities had been eoztinued on a different line of operations.

It must not be attributed to any failing of the Army Works Corps that better results were not obtained from this line, for it was composed of a staff thoroughly practieed in railway construction; the mistake was in haviner only one line of rails instead of a double line, which is indispensable to insure uninterrupted traffie; and in the plant being cumbersome and quite unsuited for military requirements. For the Abyssinian campaign materjals for a railway were collected in India from the public works and other sources,ind a works corps of natives for laying the line was raised in Bombay. In the month of November, fovernment came to the deeision of semping railway plant to Alyssinia; in the following Jannary, work was commene ol at the landing place in tho lied sea, at Zoullat and about the whl of March, 12 miless of the line wers openell for trallic. giving a rate of progress in constructing of ome mile at wet. As the railway took so long to make it was not of much use to the expelition. The ehief eauses of delay in making this railway may be attributed to the materials having been shipped from India without any system, any iramspurt vessel that could afford space being employed. The plant was all for the Indian standard grange of 5 ft . fin., which wat heavy and diflecult to hamde under monfavoratle conditions of landing appliances: the rails were also of
different sizes and weights, giving much additional labor and loss of time in laying. For rolling stock four contractors' tank locomotives, which had becn much used, were supplied; half of them were constantly moier repaits. The material for making bridges eonsisted of rolled-iron floor-joists for barrack buildings, which were procured from Aden. One great arl vantage of a railway at a point of debarkation was noticed on this oceasion-the saving of labor that was effected by being able tornu the trneks on rails into the water, so that boats with stores from the transport vessels coula be unloaded directly into the trucks. For the war in Ashantee, where the objective was to force the troops over many miles of the wildest A frican bush country, some steam-sappers (road traction engines), adapted for running on rails, were sent from England, and light rails were shipped for making a railway of 4 ft . $8 \frac{1}{2}$ in. gauge. This plant could not be well utilized for the following reasons: It was difficult to land heavy stores on a beach that had a surf constantly rolling on it; the amomet of labor required to clear a track for so wide a gange through the bush wonld bave been exeessive; and the period of fair season at the disposal of the General for the accomplishment of his enterprise was too limited for making a field railway of the full gauge of $4 \mathrm{ft} .8 \frac{1}{2} \mathrm{in}$. A light portable surface tramway (snch as is hereafter described), with light trueks that could have been pushed by manual labor, might have answered in Ashantee for transporting stores and provisions better than the swarms of carriers that had to be employed for supplying the force that went on to Coomassie. A tramway of this class could have been laid quite as fast as the troops cut their path through the bush. These are the attempts that have been made by England to construet and utilize railways for troops in the field. They have not been very successful, owing to the plant used for them being unsuited for military requirements and being hastily got together. The 4 ft. $8 \frac{1}{2} \mathrm{in}$. gange of the ordinary permanent railways is adapted specially to heavy and rapid tratlic; its carrying eapacity is greatly in excess of what is likely to be required for a force operating in an enemy's conntry. The plant is heavy, and it takes a long time to make a line of this gange, which must be well and truly laid to take the rolling stork adapted for it. Thee rails shoult be ts lbs. to the yard; a mile of line of single rails weighs $2 \pi 2$ tons, and costs about $£ 1,700$. The ordinary plate-laying gang of three superintendents, thirty plate-layers, and forty laborers, ean only lay a mile of this track in thirty hours. A field railway is only a similar line to the above, with a very mneh lighter rail of ahout 42 lbs . to the yard; it weighs 131 toms and costs on an average of firs to the mile. The same plate-laying party can make a mile of ficld railway in twelve honrs. In its construction nearly the same curves of large radius are reqnired, and the gradients cumot be made steeper, while the rate of traveling on it is mnchslower than on a permanent line of the same gange. In India a meter-


Fig. 1.
gauge las been adopted on some of the Government line:s: it is 3 fl. $3{ }^{3}$ in. Wile, rails of 36 lbs. to the yard may be used for it: the line weighs abont 106 tons and eosts sis90 to the mile. Railways of this sauge are made for quick tratle, and reguire to be laid nearly as well as wider liaes. The rolling-stock
which is made in England amb sent ont tol Impiat, is of a heave nature; the foromotives wrigh if; tons, and the carrages, which are iron-framed, weigh about $3 \frac{1}{2}$ tons. The Chitod States havelately adont. all the 3 ft . gratue in a great many lines, which an. swer their purposes just as wall as the wheler permanemt railway. They can construct the lines with great rapidity. progressing as muchas four miles in one day, inchading forming the marthwork. The Americuns carry these light railwhy over the mont dilleult conntry, and up ravines unl over mome tain passes where it scoms abmost impracticable to make any sort of road. There are portable railways made in England as well as in France: which pussess all the requirements of a military line. Thay are of varions ganges, but the $\mathrm{Z} \mathrm{ft}, \mathrm{f} \mathrm{in}$. Wide has advantages over the marrower ganges-such as the power and speed of the locomotive, the eapacity of rolling stock, and the great simplicity of parts. These serm to point to this gauge being more suitable for military parposes than the narrowernnes. The rails are" of steel, of 30 libs. to the yart, fixed in lengthe of 12 ft , to the slecpers; the sleepers are also of storl. made of various sections. The most conveniont seems to be the U-shaperd Fig. 1; therse can be phared at any distance apart to snit the mature of soil. Onusection of rails of this tramway of 12 ft . Weighs 310 lbs., and forms an easy load for four men to handle. in laying the line, which is intended to be a surfare line. It can be laicl very fast by inexperienced men -about nine miles in a day. It is casily taken mp, ocmoved, and relaid in another situation. The plant for the track is complete in all its parts, such as curves. points, and crossings; it is also very compact for shipment. Some very narrow-gange railways have been made in North Wales; the line to Featinior is $1 \mathrm{ft} .11 \frac{1}{2} \mathrm{in}$. wide; passenger and mineral trathe late been ruuning on it regularly for some time. This


Fig. ${ }^{2}$
raiiway is 131 miles long and rises 700 ft . the gradients are from 1 in 70 to 1 in 180, and the curves of 2 to 30 chains radius; the locomotives, which are of Farlie's pattern, weigh about 8 tons, and can draw trains of 120 tons at an arerage spercl of 12 miles an hour; the rails are 30 lis. to the yard, and the sleep)ers are of wood. Railways are made of an even narrower gange, 18 in.: they are much used in H . M. Dockyards and the Royal Arsenal. This gauge has been adopted in the service for a tramway io run along trenches and parallels to supply the artillery and engineer requirements of siegres. There are two types of this tramway-me with rails on wooden sleepers, and the other of a portable description. The first is that which has been taken for the service; it is designed for laying down without noise at might, this being a mecessary requirement in making a tramway in slege trenches; the sleepers are of wood, 3 ft .6 in . long, $\tilde{i} \mathrm{in}$. wide, by 3 in . deep; the rails are fixed to these sleepers by Theaded coach-screws. With rails of 24 libs. to the yard. 14 men cau lay 100 yards of trench tramway in the dark in an hour. The other description of portable tramway of the same gange is made of steel rails, 18 lhs . to the yard, secured in lengths of 10 ft . to stecl-plate sleepers. Fig. 2 . it is a handy line for laying on the surface of the ground, and is much used for agricultural and the numerous manufacturing purposes. Each section of 10 ft . of rails, with all the sleepers attached, weighs about 180 lbs... so that two men can very easily carry it ; a party of 14 men ean lay 400 yards of this nature of tramway in an hour. The end sleepers are made to lock,

 the whly of the rails; this is wery furesemary on all romghly-laid lines. It would tre thonght that this gauge of tranway wonld lace suitable for all military
 phitable on very ilat sitw, and the congine for it hase
 wants of keceping unimorrugholl commonication for marmy. Thay answer perforelly in the borekgarla
 ing in a tranch; the emgines would. hownever, fail in the evont of a long line lowing regniresl, or one twir a rough country.
Systrons of light trmaways on struretures raiural
 armines. Gne of these: tramways, designol by Br. Fell, Fig., 3. has bern -xperinarned with at Aldero shot. It consists of rails on the edges of beams sif)-

poricd on trestles of varions heights to overeome the inecqualitics of ground the principle being in dispense with cutingra and embankments as far ass jossible, and to use trestles whencerer the earthwork exeeeds 3 or 4 feet in heigh. Mr. Fell has workecl his schome out still further, and suggests the ardoption of iron lattictegirlers on posts of a guite similar constraction for raising the track over hollows, or those places wherever the rails cannot be laid on the surface of the gromad. "There are adsamtages in this method of making a railway; the raised portions of the work keep the line above the intluence of rains, and make the least clisturbance of nat. ural watercourses. It requires time. howerer. (1) put together elevated iron or wooden structures and a great deal of material is necessary ; for instance, one mile of modern structure for this railway, with an average height of trestles of 3 ft .9 in., takes $2 \overline{5} 0$ tons weight of material. The results of the trials of Mr. Fell's railway, which was erected at Aldershot, were as follows: An engine weighing $\frac{1}{2}$ tons, took 25 tons of load up an incline of 1 in 50 ; at a speed of 2.5 miles an hour 2 restles. 20 fect high, were quite stcady. It was found that 500 soldiers conld lay two miles of this class of tramway, after a littje practice. in a day of 10 hours. Another style of rained tramway bas been designed by Mr. Hadden. Fis. 4. The strncture can be made of wool oriron; itconsists of a single upper rail or beam, fixetl on pusts 7 feet high. let into the ground 3 fect: there are also lower ur grip rails made of wood, which are halyed and let into the posts. These have saw-cnts in them to admit of their bending to take curves in the line of 100 ft . radins. The breaking strength of the structure is estimated to be 20 tons. The materials for one mile of this tramway are stated to mensure 40 cubic ft. and to weigh 80 tons. The rolling stock consists of pairs of boxes of pamuicrs smspended on the upper rail or beam by means of central wheels or rollers with V-shaped tires: they also often have horizontal
wheels acting on a lower or grip rail. These boxes are ingeniously contrived to take stores, horses, and passengers, and may be used as pontoons for taking loads across rivers. By employing long ropes, traius may be drawn by animals lowing alongside of the raised tramway. The locomotives to be used on this raised tramway are reported by Mr . Madden to be capable of drawing a load of 100 tons up an incline of 1 in 10 ; they are said to gain the necessary power by acting on the grip principle instead of by gravity and traction like ordinary locomotives. The driving machinery is located on it carriage by itself, and the power is very conveniently applied to one pair of the horizontal wheels on one side of the grip rail; the steam is generated in two bollers, placed in front and behind the engine truck. It is further stated hy the inventor that an endless rope or chain athachment can be applied to all the wheels on one side of a train, giving continuous grip power for ascending gradients and break power for descending stecp in-


Fig. 4.
clines. The draw-bars connecting the trucks of a train are devised to work automatically on the driving action of the wheels, inereasing or diminishing their grip or break power according as the strain on the draw-bar is angmented or decreased by variations in the gradients the train is traveling over. Whether the engine and the draw-bars can be perfected and made to perform these varions duties remains to be proved by experiment. With regard to raised railways, it should be observed that they obstruct traffic crossing then-this is objeotionable in a military point of view; they do not lend themselves to the drawing of loads by mannal labor or by animal power as favorably as surface lines; sidings are not easily managed on raised structures; separate bridges are required for the passage of rivers when the carriages cannot be run on rails on the roadway of pontoon or other field bridges; they require a great deal of time to construct, and take much material; and they are not so casy to take up and relay as surface lines, and are more destructible.
In treating of lines of railway for military purposes, the ase of locomotives upon them must be taken into consideration; for although the line may at first be worked hy horse or by other means of draught, it must eventually be adajted to engines to make it of any use for kerping up the supplies of an arny in the field. It will be advisable to look at the rilierent natures of locomotives, and to see which appear to give the best results of work umer the special conditions of service in a strange country.
Taking the ordinary passenger or goorls engine of promanent lines, it will bescen to be a vory heayy machine to landle, particularly in situations detieicnt of appliances for landiner such engines. They possess great power and sped, but are too enmbersome to beused on a light line; they require the railway to be laid witl care and to be nearly level, that is with gradients not excecding 1 in 70 ; und they ean-
not work round sharp curves, 15 chains being the maximura that can be safely got round with engines of this class. The weight on each pair of driving wheels is so great, 10 to 15 tons, that the rails require to be heavy to stand the traffic. There are contractor's and tank engines which are very suitable to roughly-laid lines: they weigh about 16 or 18 tons; they seem, however, beyond the limit of weight that should be adopted for military lines. The same remarks apply to the class of engines that are used for the meter-gauge lines; they weigh about 16 tons, giving 6 tons on each pair of wheels, and, like the others, are constructed for quick speed; they are also not easy to handle under difticulties. The small engines made by Manning. Wrardle $\mathbb{N}$ Co., and which are extensively used in I. M. Dockyards and the Royal Arsenal, are not powerful enough to take a load up a steep gradient ; they are very well adapted for the 18 -in. gange of rails on level sites ; they will take sharp eurves and have good speed; but the lines of these locomotives must be well laid and almost level; that is the reason why snch good results have been obtained from these engines in the doekyards and the arsenal, where the rails are generally cast in solid iron plates and the sites are perfectly level. The Royal Engineer Committee designed an engine for the 18 -in. trench tramway, which has some advantages over the locomotives last described. It possesses the following characteristics: The working weight of the locomotive is 8 tons; the driving wheels are on a rigid base of only 3 ft ., admitting of its traveling on very sharp eurves; the engine is furnished with a "rail-clip" constructed on the IIandyside principle, and has also a winding drum on the part, with 400 yds . of very strong steel-wire rope worked by a distinct pair of engines to the ones required for driving the locomotive; the last two appliances enable it to get $n p$ a very steep gradient; by sending the engine up by itself, and then, by clipping the rails, it can draw the train after it by means of the rope. In trials made with this locomotive, 25 tons were drawn on the level on a very roughly-laid surface live; np a slope 1 in 25 , 7 tons could be drawn by the engine attached in the ordinary way; this incline had a curve in it of 25 ft . radins; the engine could just stearn up a slope of 1 in 11, and draw 10 tons up the same by means of the "rail-clip" and the winding drun. There is another method of applying winding power to an engine; it is a suggestion of Mr. Russell Shaw, C. E., and consists of a chain seenrely fixed at the top of an incline, and the locomotive is furnished with a clip-drum that can catch up the chain. Thesteam-power generated in the boiler will serve to wind up a loaded train by means of this chain and drum, and, by reversing the action, the chain can be made to break the descent of the train down the same incline. It would be well to convert one of the Royal Eugineer Committee locomotives to this system of haulage, so as to test the appliance.

To afford means of crossing wide rivers with a tramway, steel boats of the same description as were advocated by General Sir Lintorn Simmous, G. C.B., could be employed as pontoons for a floating bridye. The locomotives would have to be taken over the water on rafts made of these stuel boats, for use with trains on the opposite side of the stream, as it is doubtful whether they could be steamed aeross a river on any sort of floating structure. As floating bridges for a double line of rails would have to remain some time in position, the steel pontoons advocated would be more suitable than the service pontoon bridge, and besides, the pontoon train would have their own functions to perform in the front with the troops. An idea of the sort of steel pontoon tramway wagon on bogies is given in Fis. 5. The boats are made to rest on the frame which forms the longitudinal bearers or superstructure of the bridge for the rails of the tramway; when the boats are not required to form a bridge, they would thus be avad.
able for freight wagons. Whatevor kind of rolling stock is atopted for military serviee, it is absolutaly aceessary that every carriag: shombl have its break to sender perfectly safe the drawing of wagens individually by animal draught, ame dilse to lave comphete control over a train desecming indines. The: "Heberlein" continuous lreak is well sulted for
the magazines on therse phatform wagens: aml now that the manartiliory manganes have: io be extabs. lished at a murli greater distance: from a fortores than formarly wats the case, a very great having of tabor is made by moving the have thet and Ahall on tram-truck instead of the ofd trenclo eart, filg. Y. Wugons also for siege work have: buen designed

fire. 5.
this parpose. It can be apylion by the engine driver of the train or hy the guard, and can also be pat an by a persem on the side of the wagons. It sloult be observed that, thongh the bogic-irnek system is recommended for military rolling stuck is heing the safest to travel on roughly-laid lines, ame as giving the power to make sharj curves on a ralway, there is mother plan of "flexibl" wheel hase" inwnted by Mr. Janes Cleminson, which has all the adsantages of bogies. By this method the detects of a rigid wheel base are overcome, the carriages travel
that make ambulances for womeded men, and rath take thems from the trenelows the rear with ento and comfort, liow. 3: the platermes that are watal for general work are capahble of boing conwartall into ambulancers so as (1) wilize the emply return trucks. Thase tronch tramway wagens weigh only If ton, and are "qual to a loaid of thres tons. In making a eomparison between trasport hy whed ad wagons and ly mons of a railway, tho girantity of forage and fuel for the two systrms munt be takern into acconnt. The conditions under whirh forage


Fig. 6.
smoothly and safely round sharp curyes, and the rolling stock can be made much lighter in weight than ordinary raiway carriages. Thery have been constructed to take ten passengers, or threr tons to every ton weight of the carriage. giving about two tons on each pair of wheels on the rath. Tha rolling stock that has been approved for the trench tramway is on the same prineiple as is advoented for military railways; it consists of platform wagons 18 feet long Fig. 3, 6, and 7. whichare well suited for transporting the requirements of troops at sirges, such as fascines, rails, and timber for gmo platforms and splinter proofs. These platform wagons run on bogie trucks, they are easily drawn by men and by a horse pulling at the side of the wagon, and aremade low so as not to be seen by the che gy over the earthwork of the parallels. Trucks for siege purposes hatve been madefor the transport of artillery to the batteries; they are particularly suitable for this work, saving the very heavy labor to the artillery of arming their batteries by transporting the guns over


Fig. 8.
the open country during the night. The weights of the siege guns of the present day would make this operation one of great difticulty if a tramway in the parallels were not available.

The ammunition, too, can be readily supplied to


Fis. 7.
may be proenred vary greatly with the diferent localities: but in most cases transport columns must move with a certain number of days' forage for the draught or pack animaly amployed, and in the same way a locomotive must take its fucl along with it. Taking, as an examphe, the transport of 100 tons of stores for 200 miles, the following table shows approximately the curantity of fuel, forage, and time that would be reguired. The calculations of this table are based upon the employment of general service wagons, taking $2 \pm$ tons. 4 horses to draw, and 2 drivers to each wagon, with proportion


Fig. 9.
of non-commissioned otlicers; for the pack animals the load is taken at 200 the for the gool horses, with one attendant to $f$ horses, and non-commissinned otheers in proportion. The trucks for the railway are loaded to 6 tnns, and the road wagons of the "steam-sappers" to 4 toms.
The column of gross weight sestimated on the load of 100 tous with the wright of the wagons, the horses, the locomotives, the irucks, and the forage or fuel, necordiner to the numbers and (juantities in each case. To the railway means of tramsport has been added the weight of the plant that is necessary for making the railway: if of $\mathrm{ft} . \mathrm{i}$ in. gauge is eniploweth, the weight of 100 miles of single line will be 6,100 tons.


## See Iron-cled Trains.

RAILWAY STAFF VOLUNTEER CORPS. - A COTps whose object is to secure unity of action among the Railway Companies in time of war. It consists of three classes - namely, Eminent Civil Engineers, the General Managers of Railway Companies, and the leading Contractors. Their duty is to consider points relating to the transport of troops, the formation of lines of railway, etc., and to meet any exigency in time of war, all which information would prove of great value. lu Germany the railways, as far as they are employed for military purposes, are under the control of the Great General Staff at Berlin, a speeial section of that department being entirely devoted to colleet and arrange systematically all information on railways, at home and abroad, especially with regard to their capacity for carrying troops. This brinch of the State works out the instructions given for the transport of troops and mnnitions of war, examines all projects of railways, and, lastly, prepares plans for the transport of German troops under different circumstances, so that on the event of war they can be concentrated with the greatest possible speed on any given point. The Railway Battalion, which was organized after the war of $18 \% 0$. 71, and which is now in full working order, is under the snperintendence of this section. This Battalion is composed in tine of peace of four companies, recruited from among the employes and officers of existing railways. The men are taught by very practical lessons how to construct and work a line, being employed, while learning the first duty, on the State Railways, and afterwards on a special line, called the "Military Railway," running from Berlin to the artillery practice gronnd at Zossen. On war breaking out, the lattalion is mobilized, and consists then of eight constructing and four arorking companies. The duties of the former are to make impromptu lines, and for that purpose each company is provided with a train of its own, containing all the necessary imple. ments. The four workiner compmanes, taking up the lime as it is madr, will hegin on put it in running order, mamning it with drivirs, guaris, stokers, pointsmen, and trlegraph elerts from their own mumber, and, after the service is recularly established, hambing it over to the ordinary Civilian Stalf, while they pass forwarl to make a Eresh section on aheat. This batbalion ineludes there clases: Line, Reserve, and Ianderler; the twolattor boiner at prosent supplemented by a list of ordinary ralway survants, ingated for problment in time of need. In Russia, a system has heren organizedilosely rocombling that adopited ly (armany. Evory yonr picked monand oflieers are sent on all the Railwny lines, the former to study the theory of all that woncerns the working and managing of railwass, the latter to fulfill the dutios of Stalom Mastars. In 1871. after two years' practice, thero men ( $13^{2} 2$ nold 8 othicers), together with a division of infantry, and a bittalion of enginecrs, constructed in seven days a
line of 5 miles in length, with two stations and ten bridges, one of them of 54 yards span. The cost of the line was valned at $£ 21,200$, and was so well constructed that it has remained in use ever since. By an Imperial Ukase promulgated in 1870, all the Rnssian Railway Companies have to provide a certain number of carriages for the wonnded, fitted up with litters, and well ventilated, and a number of carriges, wagons, and trucks, specially devised for military purposes. France has also introduced a Railway. Battalion under her new military organization. The men of this Battalion will be in time of war associated with the Civil Railway Staff, and are classed in three categories: The first (two-thirds of annmal Contingent) is incorporated in the Active Battalion, and instrueted as sappers and miners, or as soldiers of the engineer train. The second (one-sixth of the Contingent) serves one year only in the Active Battalion; after which it is distributed among certain of the principal Railway Companies, in order to learn the working and managing of the lines, their construction, and restoration. The third (one-sixth of the Contingent) serves only one year in the Active Battalion, and is then transferred to the depots. This carries on operations with torpedoes, and is practiced generally in the destruction of railways, bridges, etc. A very similar organization of the Military Railway Department has been established in Italy.

RAIN GAUGE. - The nse of rain-ganges is to ascertain the amount of rain which falls at any given place. They are of various constrnctions. The simplest is that which consists of a metallic cylinder, from the bottom of which a glass tube, divided into inches and parts of an inch, projects downwards. It is provided with a fnnmel, inserted within at the top, to prevent evaporation, and the rain-water is emptied out hy means of a stop-cock at the bottom, or still simpler, by a hole pierced in the fumnel at the top. As this form of gatuge is objectionable on account of the frequent breakage of the glass-t uhe by frost, a tloat is nsed instrind, which is raised by the water, and a scale is attuched to it , to show the quantity of rain received. As this gange locs not admit of very nice readings, another sort is frequently employed, viz, a recoiving-vesse] and a glass measure of much smaller diameter, which thus admats of as nice gradnation as may he desired. As, practicaily, tbere is often groat diflicully or trouble expericneed in replacing the glass measure when it chances to get broken, the latc (子. V. Jagga Ráo, thealthy zemindar of Vizagaputam, proposed a gango in the form of a fumnel having a diameter of $4 \cdot 69 \%$ inches, or an are'a of $17 \cdot 33$ sepuare inches. As a fluid onnce eontains 1.733 culis inches it follows that for sery flud ommereollecterl by this gatige, the tenth of an inch of ram has fallen. This mensure can, of course, be graduntod to myy degree of nichy, mul may be reprofluced at pleasure. Sclf-registering ratin-ganges have bern invented by Osler, Crosley, and Beckly,
but they are tox expronsive to come into vary connmon use. The drawing represents the Contimatal Signal Sorvicer rain-gauge.

A most important point with ragare to tho raingange is its height above the ground. I'rofessor Phillips found the fatl of rain at Tork, for 12 months in 18:33-18:34, to be $14: 96$ inches at a height of $21: 3$ feet from the ground; $1: 3-8.5$ iuchers at 4.1 fori; and 2.571 inches on the ground. This romarkable face vi\%.. that different equantities are collected at difforent heights, the amount being alsays greater at the lower level, has beent rentirmed wherever the exproment has been mado. No perfocely satide factory accome las wot beot wiven of this singular phenomenon. 'The combensing of the vapor of the

atmosphere on the surface of raindrops as they fall - the rebound of the finer particles mos which many of the drops break themsilyes as ther strike with violence on the ground-and the eddies and curreuts which prevail most and strongest around isolatiod objects raised above the surface of the gromid, to a large extent acconnt for the phemomemon. Uf these three, the greatest weight is to be given to the last two; and this is eonfirmed by the fact, that a gauge phaced un the ronf of a buikling that happens to be flat, of considerable area, and with few or no chim-ney-staks to disturb the air-eurrents, coflects an amount equal to that collected at the same time by a gauge ou the ground. The proger si\%e and shape of the rain-gange, and its height alove the ground, so as to measure with the greatest exacthess jus ilble the real quantity of rain that falle, ahout all of which much diversity of opinion exists, have heen ably inrestigated by a scries of extensive experiments comducted by Major Wiard, Mr. Symons, Rex. Charla Griffith, and others, and the results have been published aunually in Symons British Rainfell.
RAIN OF FIRE. - A decoration for rockets, made with paper-cases $\frac{3}{10}$ inch in dimmetcr, and $D$ inches long, two thicknesses of paper being sudlicient. The
 like that for a mement "xosp the powiler for a
 der and about if of chare sail. Anothor compuc ition



 seriphion. The (iriek and lonath l-sicu wore thes result of a righd syetrom of "onsaription. The Vivigoths practiced a general conareription; peseryy, oll age and sicknoss wre the only reasena admitheil for

 which alled pion evory man, amiluprialty bim

 amb at citizen. This was the revolution of the thla century. In the $12 h_{\text {a }}$ and $1: 3 h_{\text {a }}^{\text {another }}$ imaosation rather more gradually prevaiterl, and marks tho third period in the milisary himory of Furnpr. Wero ecmary tronps were substitited for ile Fendal Nilitia. These military adventurers played a more remarkthale part in lialy than in Framer, though not a litto. troublesone to the latler comatry. A necosary "fo fect of the formation of Merrenarios was the centralization of anthority. Money becanm the sinewe of war. The invention of fire-arms cau-at it to be arknowledged that skill was no lass essential for wurlike operations than strencth and valor. Towards the end of the Middle Ages, the power of l'rine:口 was calculated by the number and quality of pail troops they could support. France tirt set the example of kerping tronps in time of peace. ('harlee Vil., foresering the danger of invasion suthorized the assemblage of Armed Mercenarices calted (romnzagnies durdunnance. Louis X1., dismiswed these troops, but enrolled new eroeps composed of ferench. Swiss, and Scotch. Under Charlos VIll.. (irrmank were admited in the Frostacharmy, and the hielte-t and most illustrious Nobles of france refarded it as an honor to scrve in the liens ditrmes. Moral qualitications not being exaetcl for admission in the ranks. Whe restraints of a barlarous discipline bocame necessary, and this discipline divided widely the soldier from the people. The French Revolutions overturned this system. Now Merectary Tronps have completely disappeared from Contine utal Europe. England onle now raises armics by the system of Rempiters. The last wars of Europe have heen wars of the people and have been fought by nationalitice. After peace armies remain national, for their clements are taken from the people. and are returned to the penple by legal liberations. The institution of comseription is cvidently the most important of modern times. Among other advantages, it has bridered the ntherwise impassable gulf betweea the citizenand ooldier. who, children of the same family, are now united in defense of their country. Permanent armies have ceased to be the personal guard of Kings, but their symathies are always with the people and their just tithe is that of shillfut warrior- maintained as:a nuclens for the instruction of their countrymen in the hishest school of art.

RAJA-RAJAK. - Originally a title whinh belonsed to those princes of llindu rares who, cither as intlependent Sovereigns or as Promaturies, guverned a Territory: it then, however, became a tithe given ly the native govermments and, in later tims. ly tho British government to llindus of rank, and it is now not uncommonly asumed live the Zomindars or Lamo holders: the title Máharifalı, or "(ireat Rajah," being. in these days, genemally reacred to the mone or leos incependent native d'rinces. Acen reline to the ancirnt suci:a system of India, the Rajah hemonger to the Kishatriya or Military Caste: now, huwerer. the title is given to, and a-mmed by, members aloo of an inferior Caste.
RAJPOOTS RAJPUTS. - The name of warious tribes in India which are of Aryan origin, and cither de-
scended from the old royal races of the llindus, or from their Kshattriya or Warrior Caste. At ald periods they seem to have played a conspicuons part in the history of India; and all over Mindustan there are many families who, rightly or wrongly, claim the title of Rajputs. At present they occupy chiefly the country known as lầjâsthan or laâjputana, inclufling, among other States, those of Mewar, Marwar, Jevpur, Bikanir, Jessulmir, Kotalı, and Bundi. Jhefore the invasion of Mahmud the Ghiznevide, four great kingdoms were under the dominion of Rajput families-viz., Delhi, Kanoj, Mewar, and Anhulvarra; and all the Kings mentioned in the Rajataranji. nî of lialhana were of Râjput origin.

RAKE.- A term meaning to entilade, or to fire in the direction of an enemy's ranks. To rake a ship is to bring guns to bear so as to fire them along her deck from end to end; this is the most disastrous thing that can happen to a vessel in action, and it is the object of all good seamanship 10 avoid it. When a ship is raked at short range, grape can be used with great and fatal effect.

RAM. - In fortitication the act of compressing, by beaus of rammers, the loose earth nsed in building parapets and in filling gabions. Althongh a parapet of loose earth is less injured by shot than a rammed one, ramming is essential for the stability of the ramparts and parapets, as they might be seriously injured by a coninuance of bad weather. To ram is also a term used in thrusting home the charge into a piece of ordnance. Hence "to ram home" a charge.

RAMMER.-1. The rod by which the charge of a small arm is forced home. 2. I staff having a cylindrical or conoidal head attached, used in cannon for the same purpose. The rammernead is made of beech, maple, or other hard wood not easily split, and is bored for about two-thirds of its length to receive a tenon on the staff. For rifled guns, or for hollow projectiles, its face is countersunk. Rammers for large guns are technically termed rammers and staces. For field artillery, a sponge is attached $t$, the other eud of the staff, and the combinen implement is called a sponge and rammer.

RAMMER HEAD. - An instrument employed in the inspection of cannon for ascertaining the interior position of the vent A head of well-seasoned wood, which fits the chamber, is attached 10 a wooden dise of the diameter of the main bore. The surface of the head corresponds with a longitudinal central section of the chamber; at the point where the projection of the vent would meet it a piece of hard wood is inserted. A central line drawn through its length, crossed at a right angle by anotherlineat any known point from the smaller end, will afford convenient points to measure from. A stout wooden staff is attached to the axis of the head; at a distance equal to the longth of the bore, the end is jogged into the center of a half-dise of wood, which is fitted to the bore. The whole is so construeted that the straight edge of the half-clisc (or the chord) is in the same plane as a horizontal section of the head. A few foles are bored through the discattached to the halfhrad, to allow the instrument to pass freely into the sun ind out of it. A wine of untempered stecs, of thesize of the vant, with a sharp, well-centeret? point, and a small spirit-level, are reguired to use with this instrument.

The grn being leveled, and the instrument being pushed to the bottom of the hore, the uppre edge of the hatf-tlise near the outer end of the staff is "hon brought to a level. The surfare of the half-head then corresponds with the borizontal central section of the chamber. The point of the wire being pushed ofently to ane tit, will show very acrurately the interior position of the vent. See Inspertion of fordurnce. RAMMERS. - Large llocks of wood, very rommonly used in military works, for the rammin! of loose earth. 'Tluc word remmer is also appied to the man cmployed in that duty.
RAMP. - Ln fortilication, a gradual slope by whicha
approach is had from the level of the town or interior area to the terreplein orgeneral level of the fortifications behind the parapet. The width of ramps at top for the service of the artillery and other vehicles may be from 10 to 15 feet, and their inclination from ${ }^{1}$ to ${ }_{1}^{1}$, or less, depending on the difference of level to be overcome. They are usnally placed in positions where they will occupy the least room of the parade. As a general role, their side slopes are of earth; but where it is desirable to economize room on the paradethe side slopes are replaced on one or both sides by a wall which sustains the earth of the ramp. When ramps serve for iufantry alone their width may be reduced to 6 feet, and in some cases to 4 feet. See C'immunications.

RAMPANT.-In lleraldry, an epithet applied to a dion or other beast of prey when placed erect on the two hind-legs, with only one of the fore-legs elevated, the head being seen in profile. When the face is turued toward the spectator, the attitude is

called rampant gardant, and when the head is turned backwards, rampont regardant. A lion conenterrampant is one rampant towards the sinister, instead of towards the dexter, the usual attitude. Two lions rampant contrary-waysin saltier, are sometinus also said to be counter-rampant.

RAMPANT PLANE. - In the earlier methods of defilement, a line was taken, the position of which was determined by a series of trials, having for their object to obtain satisfactory results bothas to the economy of the requisite embankments and the disposition of command of the varions parts at, or in the rear of, the gorge of the work to be defiled; this position, coinciding with the natural surface, or being above or beneath it as the case required. Throngh this line a plane was passed tangent to the dangerous ground. This plane, termed a Rampant Plane, was taken as the artificial site of the work, in reference to which the relative command of all the parts was arranged upou a horizontal site. Or, in other words, the result was nearly the same as if the works had been arranged on a horizontal site, and then the whole combination turned around some fixed line of this site. until it was lorought into the position of the required rampant plane. The defects of this method are evident at a glance. It preserves the redations of defense of the varions works the same as in a loorizontal site; but, to a great extent, it leares out of consideration the bearing of the command on the exterior ground, and, in many cases, may lead to excessive excavations and embankments which the method now followed enable the engincer. for the most part, to avoid.

RAMPART.-A structure forming the substratum of every permanent fortification. It constitutes the enceinte, and is constructed immediately within the main diteln by throwing up the soil excavated from it. On the front of the rampart the parapet is raised, and width should le left behind it to allow of guns, wagrons, and troops passing freely on the top of the rampart. The height of the rampart is dependent on the reliof (leight) of the buildings to be defended, and on tha positions in the neighborhood which an rnemy might assume. Also written rampier: aud rampire. Sc, Permanent Fortitication.

RAMPART GRENADE. - Rampart greuades are intended to be rolled down the rampart of a work, to protect a breach against the attack of any stormine
column. Shedls of any si\%e will answer for this purpose, and purticularly thase whirla are anservicqubla: for ordinary purposes. (irenaldes are fillod with a bursting clarge, fond are armed with it shore fase, which is lighted by a mateh in the hame of thegremadier immediately before it is thrown. "I"hey act hy the foree of their explosion allome. See Gremate, Hand (irenomb, and l'rojectiles.
RAMPART GUN.-A large gun Dtted for rimitart use, and not used for field purposes.

RAMROD. - A long, slember piece of sterd, wimbayadin mumpe-loading arms, to pusia the charge to its proper place, and to wipe out the harrel. It is carried in is groove ent into the wader site of tha stock. and it is kept in its place hy the pressure of the wereld against the tip of the stock. The hewe uf the rod is countersunk to fit the print of the projecetile; and the point has a screw toreceive the ariper hand I all-serearimplements that aro used to dean and remove ohn structions foom the bore. 'The tomper of the rane rod may be tested ly springing it in four diretions, with the point resting on the flowr. Whan the mus. lact-rod is bent six inches out of line. it shoubd waring back perfeetly straight without setting. Ifs somutluress maty be tested by striking it with a piece of metal, or by bending it over the enderof a block of woonl; in the tirst case the sound cmitted should bse clear, and in the seeond case the thaw or cracks will beopened. The serew on the point of the rod should be properly eut ; it shouldbear properly in its groove, neither ton light, nor too louse. The point should rest on the stop.
RAMRODCROSS-BOW.-A very heary and compar. atively uscless weapon of the time of Lonis XIV.

RAMSHORNS.-In Cortitication, are semicircular works of low profile in the diteh, winich they sweep, being themselves commanded by the man works. They were invented ly M. Belider, a great Freneh enginere, and, when used, take the place of tenailles.

RANCHEROS.- A name givenin llexico to amixed bred of Spanish and Indian blood, who inlabit the comotry, and may almost be said tolive in the saddle from their youth, are splendid riders and hunters, and form the bravest part of the Mexiean army-its irregular cavalry. The importance of their services was seen in the wars with the United States. The Rancheros are lank in frame, with brown, weatherstained faces and muscular limbs, hardy, temperate, and always ready for the boldest enterprises.

RANCON. - The name of an old weapon, consisting of a long stake with a sharp iron point at one end, and two blades or wings bent backwards, and extremely keen.

RANDING. - In fortification, a kind of basket-work formed in making gabions. One rod only is used, and an odd nomber of piekets, in forming the basket the rod being passed altcrnately inside and outside the pickets.

RANDOM. - Want of direction in firing a grun or musket; hence the expression, to fire at random. I random shot is a common expression when a fire-arm has been discharged without aiming in any particulur direction.

RANGE.-In gunnery, the distance between a point on the ground vertically below the muzzle of the piece and the point on the same level at which the projectile touches in its descent. The pointblank range is when the picce is fired in a horizontal position; the range then inereases with the clevation; and if the air did not oppose resistunce, the greatest range would be attained with the piece elevated at an angle of $45^{\circ}$; but in practice this angle is foumd to be on an average at little over $30^{\circ}$. As the resistance of the atmosphere increases as the square of the velocity of the shot, being also in the direct ratio of its front section, while the momentum is as the velocity multiplied by the weight ; it follows that a heavy shot should have a greater range than a light one ; and that of two shots of the same weight, an clungated cylinder of small diameter will have a

 plicate ratios of tha resimanere, as compareos with the initial velocity, the range only indreanen to is cor-
 the projeretile. Tha lengeat ratage yet athained hans been ley sir dosegh, Whitworth, with is !-ineth rillow
 yards, or if mikes and likis yards. Ma. (inuthery, atull

## Trajochery.

RANOE ROARD.- 'lohis mature of board) is intermenel for gens in fortreques, from the 7 -inch caliber ub-
 fortress where it can be semen and emasulted. It has the distancer paintel on it of pronainent oljocetr with. in the range of the guns monnted on thre werks.

RANGE CURVE. - The: rampurearresponding of the
 by mans of a liange" "urre. Which is rometructerl from the results of practior. Ilaving tracoll thes curve through several penins determined by $\begin{gathered}\text { aperi- }\end{gathered}$
 mediato angles ame? minutes.

RANGE-FINDER. An instrumemt for derermining ranges. There are surveral different primejples which may be ased. The dintande may ber nacasured int, by the vianl angle subtental by objocta of known height: 2d, by the velocity of sommil; 30h, the" instrument may furnish a buse line in itself, and solvo a triangle in which the base and wormatjont angles are given. The torm is also applied to instrumatom used tos solve a triangl, the base of which is obtained by outside means. The various range-findera aro described under appropriate headings in this work. Sce Itatkins Range-finder.

RANGE PLATES. - llates of brass attarlaed bo the
 field carriages. They aro marked with threecolumns of tigures, showing the range in yards from 100 to 4,000 for 16 -prs. and from 100 to 3,500 for 3 , 1 rs., with the corresponding clevations and t"athes of fuse.

RANGER. - One of a body of momided troopls, who were formerly armed with short muskets, and who ranged over the comery, ofech fighting on foot.

RANGE-TABLES.-A properly constructerd gaug" table for a particulas pirce containa the rance amble time of flight for each eldevation. charge of powder, and kind of projectile. lis object is to serve asa gnide in pointing, without waste of time and ammunition, and also when the effect of the projectile cannot be seen. It aids in securing good practice. Tha- Ordnatnce lnstructions contain approximate range tables for the service camon. It is with great ditheully that tables are constructed from results of the most careful experiments owing to the different ranges and dethections obtained in firing projectiles, even from the same gan with similar charges and elevations. It most be remembered that any practice table will only serve as a general guide, and that small alterations in elevation or deflection are required, according to the force and dircetion of the wincl the position of the piece with respect to the object, the guality of the powder, and several other circumstaners.
RRNK. - 1. A line of soldicrs drawn up side by side in one row; opposed to file. 2. The relative position, in the army, which oflicers and mens hold with respect to cach other, or to military things in general. In the English Army, rank is somewhat confusing from its varietics, and from the faet that the same officer mas hold at once three different ranks. The first and only rank up to the grade of Captain is regimental or subatantatire rank. Above this, officers may inlvance in two ways: First up to rank of Lieutcnant Colonel ly sulmtantative or rectimental rank: second, up to (colonel by obtaining rank in the army, generally called brevit rank, and above that by army rauk through the several grades of general itficers. In his regiment. the officer holds only his regimental rank, whatever his brevel rank may be; but anong officers of the army gener-
ally he takes precedence according to his brevet rank. In deseribing an officer who las brevet rank. bis regimental rank is placed first-as. Captain and brevet Lieutenant Colonel Brown, which means that an officer named Brown, who holds rank in a regiment as Captain, has for his services been promoted in the army to be Lieutenant Colonel. Officers of the foot-guards have higher rank in the army. Another class of rank is relative rank. which attaches to certain officers. Thus Captain Brown aforesaid, in addition to regimental rank as Captain, and army rank as Lieutenant Colonel. may possibly hold a staff appointment which confers on him the relative rank of Colonel. Local rank: is a common expedient for advancing comparatively junior officers to important dutices, a higher rank than that properly held in the army being assigned to an individual within certaiL geographical limits, as in the East Indies, the Crimea, etc. Temporary rank is similarly limited by time, and is conferred usually for the period during which some appointment is heid, as the officer acting as director of ordnance ranks as Hajor General while so employed. Honority rank carries neither dnty nor emolument: it is commonly given to the ameunt of one strp to an officer who has served the time necessary for retirement; thus, a Captain, after thirty years' service. may retire (on the pay of Captain) with the honorary rank of Major. Otticers who have quittel the arny are also allowed to retain as honorary the last rank they held.

In the Cnited States, ofticers of the Regular Army, of the Marine Corps, and of Volunteers, when commissioned or mustered into the service, being upon equal footing, take precedence in each grade by date of commission or appointment. Officers serving by commission from any State of the Union take rank next after officers of like grade by commission from the United States, except commissions issued by the President to officers of Volunteer regiments, which are considered the same as if issued by Governors of States. Militia officers, when employed in conjunction with the Regnlar or Volunteer forces of the United States, take rank next after all officers of like grade in those forces. In fixing relative rank between officers of the same grade and date of appointment and commission, the time which each may have actually served as a commissioned otficer of the Inited States, whether continuously or at different periods, is taken into account. And in computing such time no distinction is to be made between service as a commissioned officer in the Regular Army and service since the 19th day of April, 1815, in the Volunteer forces, whether under appointment or commission from the President or from the governor of a State. Where perixds of service are "qual, precedence is determined between officers of the same regiment, corps, or department, hy the order of appointment. Betwern othicers of different regiments: 1st. Rank in act ual service when alppointel. 2d. Former rank in the Regnlar Army; in the Marine Corns. or in the Volunteer service; $\dot{3} \mathrm{~d}$. By lot amones suth as have not been in the military survice of the l nitwid states. The rank of officers and non-eommissioned officers in the service is as follows: -1 . (ieneral. 2. Licutenant General. 3. Major Ceneral. 4. Brigadicr General. 5. ('olond. 6. Lientenant Colomil. Major. 8. Captain. 9. First Lieutenant. 10. Sesond Licutenant. 11. Cadet. 12. Sorgeant Major and Veterinary Surgeon. 13. Quartormaster and Saddler Sorgeant (rugmental). 14. Orenance and ('ommissary Rergeant and Itospital Steward of the first class. 15. First Sergeant. 16. Sorgent and Company (?uartermaster surgmat. 17. Corporal. In cath grade these rank ly date of eommission, appointment. or warrant. Claplains have the rank of Capains of Infantry without command. On parade, or other occasions of ceremony, tronps of different arms arear ranged from right to left in the fallowing order: tirst. Infantry; second, mounted Artillery; thirid, Cavalry:

Artillery not mountel and Engineers serving as Infantry are p sted as Infantry. Engineers serving as such are posted on the right of the Infantry. Marines and dismounted Cavalry are on the left of the infantry. In the same arm, Regulars, Volunteers, and Militia are posted in line from right to left in the order named. On all other occasions troops of all classes are posted at the discretion of the General or senior Commander.
Questions as to the positive or relative rank of officers may often be of the greatest importance at law, in consefuence of the rule, that every person who justifies his own acts on the ground of obedience to superior anthority must establish, by clear evidence, the snfficiency of the anthority on which he so relies. There may also be many occasions on which the propricty of an officer's assumption of command, or his exercise of particular functions, or his right to share with a particular class of officers in prize-money, bounties, grants, and other allowances, may depend on the correctness of the view taken by himself or others of his riglt to a specific rank or command; and an error in this respect may expose him to personal loss and damage in suits before the civil tribunals. The regnlation of military rank is vested absolutely in Congress, which confers or varies it at pleasure. The will of Congress in this respect is signified by the creation of different grades of rank; by making rules of appointment and promotion; by other rules of government and regulation ; or is by fair deduction to be inferred from the nature of the functions assigned to each officer; for every man who is intrusted with an employment, is presumed to be invested with all the powers necessary for the effective discharge of the duties annexed to his office. Rank and Grade are synomymous, and in their military acceptation indicate rights, powers, and luties determined by laws creating the different degrees of rank, and specifying fixed forms for passing from grade to grade; and when rank in one body shall give command in another body; and also when rank in the army at large shall not be exercised. Rank is a right of which an officer cannot be deprised. except through forms prescribed by law. When an officer is' on Dutr, his rank itself indicates his relative position to other officers of the body in which it is crated. It is not, however, a perpetmal right to exercise commant, because the President may, at any time relicve an officer from duty : or an officer may be so relieved by arrest duly made according tolaw; or by inability to perform duty from sickness. or by being placed by competent authority on some other duty. But whenever an officer is on duty his rank indicates his command. Struggle as commentatory may, whodesire to subject rank to excentive caprice, rather than have its powers and duties defined hy law, as the Constitution refuires in giving to ('ongress the 1 rower tomake rules for the government and regulation of the army, the rights of rank cannot, without usurpation. be raried at the will of the l'resinfent. The law las ereated ramk. Rank means a rance of subordination in the particular body in which it is created. It is, therefore, efleretive in that body, without any further legislation. and its effect, when the oflicer is present for duty, is cxtended beyomi that particular portion of the army in which ine officer loodes rank, or its extrcier is restrictide withina Corps only hy legislation. ExCution authority camot make rink vary at will. hat whataver anthority the excentive has over rank must be detrmined by law. A reference to the Articles of War will show that tha President is given the andiority to limit the dixcretion of commanding Otherers, in special cases, in respert to what is needfoll for the serviece, and also to relicere the senior oflicer from any rommand, so that the command may tall upon the next onlirer in the Line of the Army, Marine Corps, or Militia, "hy commission ther" on duly or in cuartors," or assign some senior to duty with trooss, in order that such ollicer may become
(antitled for command. Any pewsor of assigntatul rlumed for the l'resideont beyonit this is mos atha omght mot to be sandioned by law. 'Tha leginatom
 when serving only witls their wan regimant, surve acordiag to their regimenal rank; but when with other corps, the suiur by rommission in the line whetler by brever or ohterwise, is entithed to commant. Sow C'mmatrat.

RANK AND FILE.- 'flo body of whdiars comstitn fing the groat masw of the Army, incluting (ongorals, Bumbardiers, and Drivates. The Renk enel file mems literally the limes of men from site to side. and from fromt to back -at rank boing a row of man standing side by sithe, and a tile of solderes a lime of man standing one behind another. 'Jhe strengeth of ou force is reckond lyy its fronk anel file: tha Nonconmissioned and Commissiontod (oflicers forminn the supermmerary ranks charged with the dienetion of the mass.
RANKER.-A Num-eommissioned onlicer whorices to be at Commissioned OHIcere.
RANKS.-The areier of common soldiers. Noncommissioned Onlleres are frequently reduced to the renks. The term is variously appliend - To, fill the renks is to supply the unthorizal or competent mamber of men. To take rank of is 10 anjoy prewelenee over. on to have the right of tuking it higher platere
RANSEUR.-A kind of partizon, widl known in Germany during the 15th century. It came origimally from ('orsien, and has been called both corserque and roncoul lyy some authors.
RANSOM.-The price patd by a prisoner of war, or paid on his bedmlf, in eomsideration of his beeng grameal lihertyto return again to hisown comatry. In early times, when armies received little or no regular pay, the soldier looked for his reward in the bonty he might empture, and this booty inelnded the borlices as well as the chattels of the vamuinded. The conqueror had the option of slitying his jrisoner; but for his profit, he would maki him his slave, ur sell himinto slavery. 'The tran-ition would be natural to acepting compensation from the prisoner himself, and settmer limat liberty. In featal wartare, the ransoms formed a large portion of a sohliar's gains; those for persons of low degree belonging to the individual captors; but those for Princess or Great Nobles, to the Kinge Ransons were sometimes of large amount. more than the immediate family of the captive coudd pay. Ilis retainers were then reguired by fendal usige to contribute: as in the case of redecmiug kilug Richard I for E100.000, when twenty shillings wasassessed on every Kuights Fee, and the (lergy subacribed liherally. Divid Bruce, of Scotland, was ransomed for 100.000 marts. and King Jolon, of Framece for fir $(0), 000$, p:ayable in instahments. In modern warfare, where the fighting is performed by professional soddiers, pecmiary ramsoms are searcely ever resorted to, frealrm twing granted to prisoners in exchange for others of corresjemeding rank captured on the opposite sille.

RAPIDITY OF FIRE.-The rapidity with which camon ean be louded and diselarged lippends on the size of the juiece, the "onstruction of the (arriage and the care recuired in amine. Whed camon cam be discharged with careful ama ahout twiee per minute; in case of emerency, when loxely presech by the enemy, canister-shot may be discharged fomr times juer mindte. The 12 -pulr. Doat-howitar of the Nato, with experieneed ghancos, can be diseharged at the rate of sixteen thacs per minnte. Sienerems. are generally discharged twelve times juer hour ; if necesary they can be discharged as rapilly astwenty times per hour. Iron camen ("In be tired more ralpidly than bronze, as the batter metal is softemed liy heat, and the piece is liable to lwod. Siege-montars gan be fired twelve times per hour. and more rapidly than this if the objecet low large, as a rity. Siege-howitars ean be fired cirlat times in an hour. The tire of a sea-coast cammon dejendsmuel on






 (2m la diacharged (wor or thra timan in a minate.

 4lows. "This quality uf a militury firearm minestes bo


 16) Whste thuir armaunition.


 sitution, are utterly mislonding, an the $\mathrm{y}^{\text {l }}$ laver out of aceome all comsideration of rapidity and safoy of liring ; in fuct. they mive only the efler i.nery of the genf for a single romind, dans phating a gum that contel
 another gun firing a hamdrol similar romalan der hour. The kirupp gun is calcoulated th lire one round avery tow minutes from his darge ghan on the jernetime
 stated in his lectura at the I nited Surviere Intitation that the English 100-ton brewndoloadingegun could be fired comly once in fiftern or twonty minutes. Ife institutes the following comparisun to show the dif. forener betwern atgun birime six shats an hour and
 shots ia the same tim"

1)atis.	Elswick Gun of 1584.	(iun of 154fi.
Diameler of bore	16, 2\%	J1.23
Weight of gimm...	110 tons	120 tons.
- of char	300 lb.	(100 II).
" uf prejectile	1. $2(00) 11 \%$	1,800 11\%.
Mazale velocity of projectile ...	2,020 ft	
Marale encrey of projertile	$50,924 \mathrm{ft}$. tons.	50.924 ft. Lons.
Muzale energy of		
projectile per   ton of ginn.....		424.3 ft .1 smm
No. of rounds fired pur liour.	6	20
Total power of gud	$305,5+4 \mathrm{ft}$ tons.	(1) $2.4 \times 0$
Jower per fon weight of gim.	2, -76 ft tons.	

The above shows that the mora rapidtiring gun, although not 10 per cont. heavier than the Elawick gran, is over 2(0) per cent, more jowerful for de-structive purposes. Sre ordmener.
RAPIER. This word is satu! to have hat di-tinet meaniners at different times. an I in anciont foncins to have been a long cotting brombword: hut fir the. last century at least the rapirer has hem a light, high-ly-temperad. adedess, thruatins weapon. finely pointed. and about 3 foct in langth. It was for in fong time the favorite wapon in duclinge and was worn by every remblama. It preant it is worn ouly on occasions of court ceremonial, and answera nu other purpose than to ineommode the wearer. In war a rapier could mever have bew of any servio.

RAPPAREE.-A will lri-h phunderer, or called from his heing generally armald with a rogary, or half-pike. The torm was in common uw in the lith


RAPPEL. - The beat of the drum to call sobleti-P to arms

RASALDAR. - In the Fart Indic*, the namm ajpliceld to the Commander of daa-allah, which is 111 , (htu armed horsemen.

RASANTE.-A French term, applied to a style of fortification in which the command of the works ofer each otler, and over the country, is kept yery low, in order that the shot may more effectually sweep or graze the ground before them. Also written Razant.

RASP.-Tle rasp, like the filc, is an abrading tool, but differs in that its surface is studded by protruding, isolated teeth, instead of chisel-cut tecth. The teeth of rasps are formed by a pointed tool called is punch. The point of this punch is generally of a triangular pyramidal form, whose triedral angles vary in size according to the effect required to he produced. The spaces between the teeth are, comparatively, wider than those for fles. The apparently irregular intermingling of the teeth is such as will produce the smoothest surface for the number of teeth on the rasp.
The classification of rasps is very similar to that of tiles. Rasps have different degrees of coarseness.
tine or star candles; four pounds of soap; four pounds of salt; four ounces of pepper; and to troops in the field. when necessary, four pounds of yeast-powder to the one hundred rations of flour.

Fresh mutton may be issued in lieu of, and at the same rate as, fresh beef, when the cost of the former does not exceed that of the latter. Fourteen ounces of dried fish, or eighteen ounces of pickled or fresh fish, may be issued in lieu of the meat components of a ration. Molasses or syrup may be issued in licu of sugar, at the rate of two gallons to fifteen pounds of sugar. When it is impracticable for troops in the field or those traveling upon cars or transports, to draw or cook beans or rice, equivalents in money value of bread or meat may be issued; the value (in detail) of the stores not drawn, and those issued in lieu thereof, must be entered upon the abstract of issues. The following issnes may be made to troops: Per 100 rations, in lieu of the usual meat portion of the ration, 75 pounds canued fresh beef; or about 75

and the cuts are usually classed as-coarse, bastard, second-cut, and smooth. The coarse-cut is that used by horse-shoers; the bastard by machinists, carriagemakers, and wheelwrights; while the second cut is applied to shoe-rasps, and the smooth to cabinetmakers, ctc. The rows of teeth range obliguely from left to right, or from right to left, and sometimes in circular arcs. The planes of the cutting faces of the teeth are generally placed at right angles to the axis of the file; but occasionally they are made with a slight obliquity, alternately to the right and left, for the purpose of allowing the teeth to clear themselves more freely from particles of stock. See File.

RATCHET.-A small picce of metal, so placed with one end on a pivot that the otlier can fall into the teeth of a wheel. Being jerfectly free to move up and down, its own weight makes it drop into tooth after tooth as the wheel revolves.-But, from the peculiar shape of the teeth, which have the form of an inclined plane on one side, and a perpenticular face on the other, the wheel can only revolve in one direction.

RATCHET-POST. - A cast-iron post at the head of large Rodmanguns to serve as a fulcrum for the bar used in elevating the gun.

RATCHET-SABOT. - 4 copper-cupped plate, attached to the base of a projectile, and firmly hold in its place by radial grooves.

RATCHET-WHEEL.-A wheel with pointed and angular teeth, against which a ratchet abuts, used either for converting a reciprocating into a rotatory motion on the shaft to which it is fixed, or for adimitting of its motion in one direction only. See Mechunical Maneurers.

RATE-BOOK.-A priced vocabulary of govermment stores, by which officers and soldiers arc delited for the loss of, or injury done to, govermment property under their charge, if committed through carclessness, ete.
RATION.-The established daily allowance of food for one person. For the United States Army it is now composed as follows: Twelve ounces of pork or bacon, or one pound and four ounces of fresh becf, or twenty-two ounces of salt becef; eiglitern oumees of soft bread or of flour, or about sixteon oumees of hard-bread, or one pouml and four ounces of corn meal. Toevery one humdred rations, fiftern pounds of beans or of peas, or ten pomads of rice or hominy ; ten pommes of erraen coffee or about cight pounde of roastal (or roasted and groumel) coffee, or about two pounds of tea; fiftean pounds of sugar ; four (patarts of vinegar ; one poumd and eirht ounces of alaman.
pounds canned corn beef. Per 100 rations, in lieu of the dry-vegetable portion of the ration, 331 pound cans baked beans; or 202 -pound cans baked beans; or 153 -pound cans baked beans; or 5 1-gallon cans baked beans; or 25 pounds cheese. Sixpound cans of beef, and gallon or three-pound cans of beans should be issued in all cases when convenient; one and two pound cans of beans, and two and four pound cans of beef, to be issued only when it is inconvenient to issue the larger caus, or but small amounts are to be issued.

The army ration,. in England, at home, is $\frac{3}{4} \mathrm{ll}$. of meat, and 1 lb . of bread ("best seconds") if in barracks, or $\frac{3}{4} \mathrm{lb}$. of meat with $1 \frac{1}{2}$ lbs. of bread if in camp. If a grocery ration is also issued, $1 \frac{1}{2} \mathrm{~d}$. for each such ration is deducted from the pay of the recipient. When men are not supplied with rations, an allowance of Gd. per diem is grauted. Abroad, the Ration is 1 lb . of bread, or $\frac{3}{4} \mathrm{lb}$. of biscuit, and 1 lb. of fresh or salt meat, except at certain stations, where, for climatic reasons, a different Ration is specially provided. The bread ration may be increased during operations in the field, though not above $1 \frac{1}{2} \mathrm{lbs}$. of bread or 1 lb . of biscuit. During active operatious, the officer commanding may direct the issne, in addition to the above, of wine, spirits, or any other article of subsistence cquivalent thercto. The stoppage for this foreign ra tion is $1 d$. The families of soldiers accompanying them abroad are allowed the following rations: the wife (married under regulation), lualf a ration: each legitimate child under 7 , a quarter ration: from 7 to 14 , a third part of a ration. When othecrs reccive a colonial allowance in lieu of rations in kind, eacli is sulyjected to a daily stoppage of 2bd. A Ration of forage at home consists of 10 lbs . of oats, 12 lbs. of hay, and 8 lbs. of straw for cach horse. Cavalry solliers receive this without stoppage; but their officers suffer a deduction of $8 \frac{1}{2}$ d. per ration. Statf officers and mounted oflicers of infantry provide their own forage, and are granted a pecuniary allowance of 1 s .10 d . per clay to enable them to do so. See Fiond.

RATION RETURNS. - The issues of sulsistence are made to troops on ration returns, simmed by their immediate Commander and approved by the commanding oflicer of the post or station. 'These returns rall for only such limited quantity of stores as can be received and properly cared for bu the troops drawing, and will, ordinarily, be made for a few days at a time. "lhey are consolidated for the post or regiment when practicable, and embrace only the num-
ber of enlisiod men, authorized laumilregges, and hos pital matrons acetatly present. At the ernd of tha cakehaler month, the Commissary inters on arparate: abstracts, for earli chass of troobs. "vary return upon which he las issumblurovisions in that month; which nbstracts the ('ommanding Othorer rompares with the original ration returns, and if corroct, so certilles.
menare, but lase than the cirelo: the rogular polyegon of 1f: sides greater than the ovelagon, but loug than
 ber of sides. lat it cinn beremown that the differemece

 us we phonsi. by toaking the kirlog of the pelygon $t$ if - atrationerd at dely of, $1 \times \mathrm{K}=$.

		Number of men.
		Number of women.
		Total.



Number of ditys.
N゙unlor of rations.
'10ヶnl.

Nimmber of rations of
1R"marks.


The A. A. C. S. will issue on the above retarn.

Regt. of ——_Comety Prost.
Ratios.-There can be little douot that Newton discovered by means of tluxions, of which he was in possession at a very early age, the greater part of that extraordinary series of theorems regarding motion, ete, which he first published in the Principia. IIe had, however, a great partiality for the synthetic form of demonstration employed with such suceess by the Greek geometers; and the consequence was that, in the Principia, he avoided antirely the use of analysis by thxions, and invented for synthetical applications the elosely nillied method of Trime and Ultimate Ratios. The fundamental idea involved in tluxions, prime and ultimate ratios, and the differential calculus, is the same, that of at Limit. To give an idea of the mature, as well as to slow the reml origin of the name of the method, we may take a very simple case. Let a partiele be projected in any direction; it will move uniformly in that direction forever, unless deflected from it by some external force. Suppose that gravity alone acts upon it, then it will describe a parabolic jath, to which the original direction is the tangent at the origin; and the line which joins the disturbed and undisturbed positions of the particle at auy instant is vertical. Now, the original and secondary distances of the particle from the origin are not, in generai, equal. but they are more and more nearly equal as both are smaller: and, by taking each small enough, we may make the percentage of difference betwern them as small as we choose. In other words, their prime rutio, just atuthe origin. is unity. Again, the inseribed square is less than a circle; the octagon is greater than the

Regt. of_C'omd'g Comprany. numerous enough. Hence, the uttimate ratio of the areas of the circle, and inscribed polygon with an indetinitely great number of erfual sides is unity. The basis of the method, which is implicitly involved in the foregoing illustrations, is Newton's first lemma, which is thus stated: "Quantities, and the ratios of quantities, which tend constantly to equality, and may be made to approximate to ench other by lesa than any assignable difference, become ultimately equal." In other words, if we can make the percentage of difference of two quantities as small as we choose, we must produce mltimate eqnality: From this, in his second and thirdlemmas. Newton proves the fundamental principle of the integral calculus as applied to the determination of the areas of curves, by showing that if a set of parallelograms be inscribed in any curvilinear phace, the percentage of differcnec between the sum of their areas and that of the curve may be mate as small as we please by diminishing indefinitely the breadh of each parallelogram and increasing their number proportionally. Niext, he shows how to compare two curvilinear spaces, by supposing them filled with such parallelograms, eich of the first bearing to one of the second a constant ratio. Next, that the homolognus sides of similar currilinear figures are proportional. The sixth lemma is mercly a definition of continuous curvature in a curve, as distinguished from abrupt change of direction. The seventh, cighth, and uinth lemmas are of verr great importance. The general rinciple involved in their prof is this-to examine what always occurs in indefinitely small arcs.by drawinga
magnified representation of them such as always to be on a finite scale. however swall the ares themselves may be. Thus, to show that the chord of a small are is ultimately equal to the are-of which we have in trigonometry, as a particular case, the ulti-


Fig. 1.
mate equality of an are and its sine-he proceeds somewlat as follows: Let AB. (Fig. 1) be an arc of continned curvature, $A C$ the tangent at $A$. Prodnce the chord AB till it has a finite length. Ab. Describe on $A b$, as chord, au are similar to AB. This, by a previous lemma, will tonch AC at A. Now, as $B$ mores up to $A$. let the same coustruction be perpetually made, then $b$ will approximate uore and more closely to AC (because the arc AB is one of contimuous curvature), and the magnified are will con. stantly lie between AC and $\mathrm{A} b$. Hence, ultimately, when $\mathrm{A} b$ and AC coincide in direction, the are $\dot{A} b$ (which is always letween them) will coincide with Ab. Similarly, $A D$ being any line making a finite angle with $\Lambda C_{\text {. draw }}$ DBE cutting off a finite length from AD; this process enables us to prove that the triangles AED, and the rectilinear and curvilinear triangles $A B D$, are all ultimately equal. Finally (and this is the step of the greatest importance in the dynamical applications), if the lines $A D$, DE. $\mathrm{D}^{\prime} \mathrm{E}^{\prime}$ (Fig. 2) be drawn under the above restrietions, the ultimate ratio of the curvilinear or rectili-


Fig. 2.
near triangles $\mathrm{AEP}, \mathrm{AE}^{\prime} \mathrm{B}^{\prime}$ is that of the squares of corresponding sides. From this, in the ninth and hast lemma, it is easily shown that the spaces described uuder the action of a finite force have their prime ratios as the squares of the times: whence we pass at once to the ever-memorable investigations of the /rincipia regarding the orbits described under the action of varions forces. The motho of prime and ultimate ratios is little used now (except in Cambridge, which does honor to itself in making part of the Principis a subject of study), as the differcotial and integral calculus help us to the required results with far greater ease. Bnt to the true student of gunnery, the synthetic method of Newton is of very great value, as it shows lim clearly at every step the nature of the process he is carrying out, which is too apt to be lost sight of entirely in the semi-mechanical procedures common to all forms of symbolical reasoning.

RAVELIN. - In fortification, a triangular work of less clevation than the main difenses, situated with its satient angle to the front hefore the curtain. which with the shoulders of the aljoining bastions it aerves to protect. It is open at the rear, so as to be commanded by the curtain, if takem, and is separated from that work by the main ditch while in its
own front the ditch of the ravelin intervenes between itself and the covered-way. The guns of the raveliusweep the glacis, and perform a very important function iu commaudiug the space immeliately before the salient angles of the two next bastious. ground which the guus of the bastions themselves calumot cover. The bastions, on the other hand. Hank the raveliu. In the fortifications of Alessaurlria, rlesigned by Bousmard, in 1803 , the ravelins are placed in front of the glacis. The original name of the ravelin was rivellino, whiel indicates a clerivation from vegliare, to watch, the ravelin havius probably been at first a watch-tower, answering to the still earlier barlacau.

RAVINE.-In field-fortification, auy deep hollow, usually formed by a great flood, or a long-coutinued runniug water; frequently turned to advantage in the fiele. See Divide.

HAW HIDES.-Ilides uot tammed. They are used to cover the revetments of embrasures in fieldworks. The hides are doubled, the hair inwards, two to each cheek of the embrasure, and fixed by pickets driven through them.

RAW PIG. - The iron, as it comes from the smelt-ing-furnace, is termed, "Rou Pig," and is a first fusiou. The second-fusion iron (as understood by founders) is protuced by a combiuation of raw pig and secoud-fusiou, melted in an ordinary air-furnace, and theu run out. These pigs are usually of a different shape than the raw pig, but to prevent confusion, and at the same time to distinguish differmt second-fusion irons one from another, each should be distinctly marked and piled separately. The object of using a second-fusion iron in a casting is to obtain greater density than can be produced from the raw pig alone; it moreover increases the tensile strength. In the casting of the XV-inch gun, the furnaces are charged as follows:
Bloomfield raw pig.................................21,143 lbs. Bloomfield second-fusion (red-lot)...........13,214 " Bloomfield second-fusion (red-cross)....... 2,643 "

37,000 "
Total in both furuaces.................. 64,000 " The secoud-fusion, marked ". red-dot," consists of
he following combinations, viz.: tre following coursinations, viz.
Bloomfield raw pig.......
. 50,000 lbs.
Bloomfield seeond-fusiou..
.19,5\%5 "
Rum iuto pigs and marlied "red-dot"......69,575 "
The proportions of the other grade, marked "redeross," are as follows, vis.:
Bloomfield raw pig......... .29,410 llys. Bloomfield second fusion. $.32,540$ "

Run into pigs aud marked "red-cross"... 62,000 ""
The second-fusion iron used in these combinations is prodluced by melting two parts of raw pig with one of secoud fusion. See Casting aud Iron.

RAW TROOPS.-Inexperienced soldiers or men who have been little accustomed to the use of arms.

RAZED.-A term applied to works or fortifications when they are totally demolished.

RAZZIA.- A plundering and destructive incursion.
REACTION. - A terin used in reference to the political history of a Nation, to designate that tendency, often showing itsclf, to recoil from the effects of Reform or Revolution, and to seek a restoration of the previons state of things, or one still more antiquated and despotic. The causes that lead to reaction are various. Sometımes it springs, partly at least, from mere disuppointment at the smalluess of the vivible results of those changes advocated with so much rlotucnce, and waited for with so much enthusiasm and hope. The inconsiderate innmination of the peopla fexpecta a millenium to follow every important change ; and when, after the event men find they are still in the old world of imperfections, hardships, and sorrows, they are prone to believe that
they have been deluded, and are only too willine to lend an war to the insidions misrepreamatatomas of
 quently bolitical rearetion springs from rithor innunlure or injulicious, or cextravigant revolutions 'J'ho. times are not yot ripe (as in the dist Italimn revolts), or the lenders are unfit (as in the German umb
 committed (ns in the great lormoch outbrods of I78!), ans so strvolntion is nipued in the bud, or overthrown in the battle-ficlel; or intlaned with sanguinary thirst for revonge it gross mand in at "Reisn of "Perror," and "xhamsting itself in unprotin. able fromzios, faths at last an chsy proy (1) any bold and wnserupulous adventurer whom the crowid may eleet ont of desperation and disernat of antareloy, and whose rule is as abolute as any that precerdedit. A reation may thms, in certain cases, be иsoffin, in so far as it terches reformers and revelutionimes the point beyond which nature forljids them to goo ; but its argents are abmost invariably buse in charncter odious in their princlples, and sellish in their projerts. Religious reactions exhibit the same elatracteristics as political ones, and prowed from the stme canses.

READINESS- A state of alertness or preparation thus, to hende a corpos in ricrdiness, is to have it presbared in eonserfuence of some previous order :o marela at a moment's motice.

READY.-A word of rommand in the Dammal of Arms, executed as follows: The Instructor com-mands--1. squad. 2. Readr. Same as first motion of lond, except that the mumale is at the height of the chin, the right thumb on the head of the hammer, the fingers supported against the guard and small of the stock. (Two.) Cock the picce, and then grasp it at the small of the stock. The? picee, after loading, may be brought to a ready by the commands: 1. Ṡquad, 2. lieady. At whicli the piere is cooked. See Memumlof $\operatorname{lrman}$ Fig. 15.

REAMER.- A lool much nsed in the arseual to enlarge a bole and bring it to a shape the connterpart of the tool, whether eylindrical or tapering. Instead of mere longitudinal thutiner, the wrooves in the tood may be made spiral, a right and a left hamd, crossing obliquely so as to leave the surface in diamond. shaped portions. The flutings are then planed ont and barked off, the result being a toothed reamor of effective character. The drawing shows an ad-





 linc!

REAR. In llo gameral urowntation of the worl




 front ranki.

REAR ASSEMBLING BAR.- I counponelnt fart wf
 las atot for the juckance on the left of the mirlille. rail.
REAR BRACE-Thu: Jowar arm-plate of an nrm. gumrl.

REAR CHOCK CARRIAOE. I (:arriagi vimilar in construction to the garrison mandine marriater, w. (eppt that it has only the two fromt trueks ; ande, in steath of a rear axle trex, it has a blocek of womel whichl rests uben the flatform.
REAR FRONT. - Thac rear rank of h borly of troopos when faced about and standiner in that pustions.

REAR GUARD. A pecte-guaril is al bexly of tronps formex to proter"t the rear of an army when wn the rotreat; it corresponds to the advanceroll puard in a forward movement. A small roar-guard nlso follows an army on the advance its daty weing to pick up stragglers and provent small hodies of the enemy's cavalry from making raids on the rear nf the army to capture the bargage, etc. As regards its verker of march, a rear-guard is flameribed as an advancerl. guard rezersed. The principles of formation aro inlentical in both, and the same rules gernerally eraide both; with this difference, that thatrar-iguard rotirms before the cnemy, while the advancod grard pushers against him. Consexu*ntly, althouglnthe distritumion is the same as witl the arlvancerl-ghard, the sirength of the fractions of the rear-guard decreane's in-tedd increases from front to rear. The reareve in nearose the main body: The support is farther to the raar, in support of the rear party, which moves in several groups or in consolidated formations according to the country it pasies over. ln a fairly opon country, where the pursuit is not immediate, the extreme rear

justable reamer. designed by the Berts Machine Company, Wilmington, Delaware. The shank of the reamer is made of steel, the blades are six in mumber and unevenly spaced; the blades are insorted in dove-tailed slots the bottons of which are inclined planes; the shanks are ground io standard size (il thing impossible in a solid reamer, unless it reams mueli above standard size when new), and the hates made sliphtly above standard. It is plain that whon the blades wear down, it is then only necessary to drive them further into the shank, and by that means again enlarge the diameter to standard size. This may be repeated until the blades are driven to the upper end of the slots, when new ones may be inserted. The solid reamer was a great alvance when introluced, but the roynirements of fine machine fitting call for a tool which makes solid reanues athing of the past. The practice of reaming out runs, or boring them up, first took place in the British service in 1830 ; it was done will the view of increasing the weight of metal projected from such guns as were then on hand in the britisle service, at the time when the advantages of large-
will be formed of reconnoiterers, moving in a line thrown back at each end towards the llamkers, until it assumes the semi-cirenlar form in atmoner more marked than it womld in the advanee. If the pursuit is active and attack immintut the rear-guma must maneuver: and Jure we may remark that the nature of the country affeets not only the componition of the rear-guard, but the kiud of action it munt take with the troops at it - command.
A change of base or position may have caused an army temporarily to make a retograble movement, or the force may be retreating. In either case the mission of the rear-guard is torefard the pursnit uf the "nemy, and to interpose letween him and the main budy on the march. In carryine out thin duty the rear-guard must often maintain a strugqle at a disadvantage, and even, if necossary, sacrifice itself in order to enable the main force to get away in safety. JVo more honorable post can loe sassigned in an ollicer than that of commanding or serving witl a rear-guard in such a case. The very bent ofticers and the freshest troops shoulel he silected for this service, especially if covering the retreat of a beaten
army. In the latter case the position of a rear-guard is one of much difficulty, the enemy nearly always pursuing with activity, and also endeavoring by flank attacks to cut off the retreat. As regards the strength of the rear-guard in a retreat, it would ordinarily take the same proportion as wonld be allotted to the advanced-guard in a forward march. This proportion would commonly be about one-sixth of the whole marching strength. In exceptional cases it might even amount to one-finurth of the whole. It is not without reluctance on the part of a Commander that so large a rear-guard is detailed, as his first anxiety and care must naturaliy be to withdraw and place in safety the greatest number possible of his men. But if he neglects to cover his retreat by a sufficiently strong force the result will probably be that the rear-guard, unable to withstand the assanlts of the enemy, will constantly be driven back upon the main column, aud throw it into disorder. The demoralizing effect upon troops of the mere knowledige that they are in retreat is in itself very great. Should the rear-guard not be strong enough to enable the column to retire with due regularity, the feeling of depression will increase, the retreat will turn to a rout, and disaster will result. A skillful rear-gnard Commander will endeavor by every means to obtain even small advantages over the enemy, in order to encourage his men and to obtain their morale, thus enabling them to endure with better spirit a harassing pursuit. With this view it appears desirable that the extrense rear and flanking detachments of the rear-guard should be sufficiently strong, to take all possible adrantage of auy impru. lence on the part of the enemy's advanced troops. In the event of a retreat after an engagement something may also be done toward this end, by selecting for the rear-guard such troops as have not only suffered least during the day, but have themselves perlaps obtained some local advantage, which, insnfficient to affect the general result, may yet be enough to prevent the men feeling down-hearted, and with little further stomach for action. The distance that a rear-guard should be from the maiu body depends upon the nature of the country, its numbers, and the manner in which the pursuit is conducted. If the pursuit is slack it can safely be a march in rear. Under all circumstances, however, constant communication should be maintained between it aud the main body. It is difficnlt to prescribe any definite distance for the rear-guard to take up from the main body. The latter, as is natural in retreat, proceeds as fast as is convenient in the desired direction. The rear-guard has to interpose between the main body and the enemy, to check the advance of the pursuer, and to observe and reconnoiter him. in order to discover at the earliest moment any intention, on his part, of a flank or turning movement. IJence it happens that the distance of the rear-guard from the main column, in two or more cases, may vary consickerably, in accordance with a great varicty ef circumstances; but under ordinary conditions the distances usually laid down for the advancedguard iu a forward movenient would be approximatcly suitable for the rear-guard in retreat. A rearguard does not require to recommoiter in advance of its march, for the enemy cannot be there, and since the main column goes first over the ground, and investigates it thoroughly, reports and sketches of roads, bridges, and positions suitable for making a stand against the enemy, can be sent baek to the rear-guard whonver it is likely to need them. In most cases the enemy, if following, is easily reconnoitered in the rear, as in the eagerness of pursnit he has little lieed for concealment. On the flanks alone there is dillicult and delicate work, of this par. ticular uature, to be done. Themost serious danger for a reur-guard is undoubtedly that of being turued ur cut off, and not only is its own safrety imperilled in such cevent, but its protectivecharacter as a guard to the rear of its own main column ceases to havel
effect. To be attacked upon its flanks is almost as dangerous as to be rut off, and against both of these contingencies the best precautionary measure is accurate and extensive reconnoissance to the flanks. The partles seut out upon this most important duty should in all possible cases be composed largely if uot cutirely of cavalry. As regards the composition of the rear-guard, in an open country cavalry is certainly necessary, not only for reconuoitering on the flanks, but also to meet the enemy's cavalry. But infantry is indispensable in more or less strength under all circumstances, in order to nake a stand at suitable positions for defense, to form rallying points aud protection for the cavalry if driven in, and to check the eager pursuit of the enemy's cavalry. If the force is of any magnitude, its rear-guard should be composed of the three arms, in proportions suited to the ground that is to be passedover. Cavalry, to meet and ward off the enemy's cavalry, which in open ground can hover round the rear and flanks, artillery, to take up favorable positions in retreat to bear on the heads of pursuing columns; and infantry, to bear the brunt of the enemy's attack and retard his advance at the chosen points of resistance. If guns are used with skill in a retreat they can often save deployment of their own infantry, by obliging the enemy, as he presses on in pursuit, to halt and deploy; the guns retreating rapidly as the enemy forms up. Artillery is thus of special value when added to a rear-guard.

As regards the action of the rear-guard generally, since the great object which it has to effect is to keep back the encmy withont compromising the safety or delaying the retreat of the main body, it is evident that its duties can be best periormed by very frequently occupyiug such natural positions as the country may possibly afford, thus absolntely forcing the enemy not only to deploy, but even to attack, and then getting safely away without serions fighting. The great art of rear-guards is that of being constantly able, without risk, and with but little trouble, to force an enemy to deploy for attack, and then to get safely away yourself without serious fighting; in other words, the rear-guard slould. by frequent occupation of strong positions, be continually threatening to fight, as it is by so doing, and not by actual conflict, that it best fulfills its purpose. In a long retreat, when this course has been followed for a number of successive day's, the general commanding the pursuit is apt to become reckless, and, neglecting to take all necessary precautions, may push on to attack with an iusufficient force at land, or in an irregular manner; it will then be for the rear-guard toponnce suddenly upon him, with all his available force,and laving struck him a severe blow, at once resume the retreal. The officer commanding must not allow limsclf to be carried away by any partial success of this mature so as to forget his primary duty, for he should bear in mind that he cannot stop, except to retard the pursuit, and that every succeeding quarter of an hour brings his enemy re-enforcements. The length of time that a rear-guard can remain with safety in a position depends on its intrinsic strength, and the obstacles in the way of an enemy's turning it.
In the details of conflict the knowledge which it has of the ground is much to the adrantage of the rear-guard, as it can decide what points to make a stand at, what to pass over as untenable. In this respert its position setws better than that of the advanceld-guard in the forward march, but the apparent superiority is flecting, for the conditions under which the rear-guard and advanced-guard fight are widely different. The advanced-guard can push on with the confidence fairly engendured ly knowing its supports to be approaching from the rear in any reguired force: the rear-guard, on the other hand, camot but feed that the longer the conllict is protracted the farther it gets from its man body. The rear-giard, therefore, has to consider a danger which
 ent off from ita colamon shonlal il romain fon lome in






 lion, athel arain lo refard iln. promeresc of hic pharsulera. la th very closice country evory rhock thans Eiven to the emomy whleres hime in incore atomiderable :and serions delay; but the ( ommanaler of the

 atdition to that immodiatoly bentand him. This is




 samd out strones catalry patrols to andertan the
 perl in his pursinit on the main ronte.ar lee hat taken
 ter rase active recombitiswane liy convory patmols shouldimmediatoly hemadertaken lig the rearernard.

 fachanats fo ford for hims. Dn army retiring lay

 robd under a separtite commander, the rearmont groups being eontinued acoros the whold ratar, and Hankers only upon the outer thaks of the outer
 clated in one high renmanmal. The army would thas retire in the many columas as might lio nowes sin\%, conncetion beiner kept up between the difiorent matn colamas, and also lotwoon haso of the reargutrds at every eross road. and wherever the come try may allow of eammaniontion. Nowar material that could be aseful to the enemy shoulal le allowed in at retrent to fall into his hamls. The reatromard must destroy it if it cammet heremoved. If hatelly pressed, everythome that could assist the ememy, such its stambing corn fut provisions, must be burnt, linsies amd wagons prossod and sont onto the main body. Is an extrome motsure, villages on the line of ronte mess even be tired, if nereessary to retard the pursuit.
 lows: Being at a balt. the ("uptaincommames: Rater openorder, M. March. 3. Fibst. It the first emmmand. the right amd loft guides steploriskly three yards to the rear, to mark the new alimmont of the rear rank: the First and Eecond Lientomants juace theme selves on the right and left of the front rank: the Third Lientenant covers the second, in the rear rank : the Carptaing goes to the riglat blank, ind seres that the grustes are on a line paralled to the fromt ramk.

It the command morrol, the bientemants platere themselves opposite their plaes in line. three bards in front of the company: the front-rank man dress to the right ; the rear-rathe men cast their eves to the right, steplairkward. lailt a little in rear of the aligument, and !hen dress to the riorlit on the line established by the guides. "The tile-closers slep to the rear and phace themadres three vards from the rear ramk.

The (aptain superintemals flu alionment of the oflicersand the front rank, and the riorlt wnide that of the rear rank; the ('aptain veritios the alignment of the reatr rank, and of the file- dosers: the atheers and tild-closers cast their ches to the fromt, as soon as their alignment is voritiod.

At the command front, the whiles resumbe their places in the front rank, and the mon east their eyes bo the front: the Capain phaces himself threw yards in front of the right tile.








 order of the W ar llepartument, hais win rephareid ho a sight which had three movahbe leavem, furning oin

 arm consiots in hrinming the top of the front sitht,
 the line joining the cye amb the oblojet. I sienter for a militury arm shombl watiof the followiner comelitions, vi\%: lst. It should be (ainily adjustarl for all distanees within cltertiver ramer ; Bl. "The form of the notch should permit the eye for ratels the objuet guiskly: Bl. It shomald arot lo rasile deratued by
 sights atre used for very ancurate sporting-armes. but they are too delieate in theit structare sum for - low in their oparation, for generat furposis. lathe athsence of a preper rear sieght, He soldier of the lize may be taurht to point his bicece by aimine over the eenter of the knuckion of his left thimbls: tho porition of the thmmatong tha barrel determine the elevation of the pioce. This methoul is practined les carMan Framell troops of the liue for distances lo. than 400 yards.

REBELLION. - The term robullion is applatiod in an insurrection of large extont. and is m-1atly u war between the legitimate goveromont of a fonntry and portions or provincers of the samme who -rok th throw off their atlecriance to it, and sit at at anternment of their ount. When lmmanity indmes tho adoption of the rules of rewalar war iowaril relu-l-。 whether the adoption is partial or entire it slom in no way whatever imply efther a jartiad or complato arknowledgument of their goverament, if thes latwe set up one or of them, as cither inn imbrpernitut ur sovercign power. Sintrals lave mus riath to maku. The abloption of the rulde of war by the aswilad government towards rubuls the errmant of their wen acknowledement of the revolterl peoplo at no indepement power.

Treating captured reblels as prionmers of war. a x chanainge them. conehnline uf cartels, caputnlations, or other warlike arreenmint- with them: shlulewinz othicers of a rebed army by the rank they may hat
 other hatas, prochaiming Dartiand late in the ir territury, or levying war taxe or forecd loan=, or abing any other ate samepioned or demanded by the 3.0 .
 couts. neitlu' provers nor e-tabli-luce an arknow lederment of the rebellious people. ar of the sovernineat
whiel they may have erected, as a public or sovereign power. Nor does the adoption of the rules of war towards rebels imply an engagement with them extending beyond the limits of these rules. It is vietory in the field that ends the strife and settles the fulure relations between the contending parties. Treating, in the field. the rebellions enemy atcording to the law and usages of war has never prevental the legitimate government from trying the leaders of the rehellion or chief rebels for high treason, and from treating them acoordingly, mess they are included in a general ammesty.
All encmies in reqular war are divided into two general classes; that is to say, into combatants anet non-combatants. or unarmed citizens of the hostile government. The military commander of the lecitimate govermment, in any war of rebellion, distinguishes betwen the loral citizen in the revaltal portion of the eountry and the disloyal citizen. The disloyal citizens may further be classified into those citizens known to sympathize with the rebellion, without positively aiding it, and those who, withont taking up arms. give positive aid and comfort to the rehellious enemy, without being bodily forcel thereto. Common justice and plain expediency requirs that the military commander protect the manifestly loyal citizems, in revolted territories, against the hardships of the war as mueh as the common misfortume of allwar admits. The commander will throw the burden of the war. as mueh as lies within lis power, on the disloyal sitizens of the rewoltal portion or province, subjecting them to a strieter police than the non-combilant enemies have to suffer in regular war ; and if he deems it appropriate, or if his government demands of him that every eitizen shall. by an oath of allogiance, or by some other manifest act, dechare his fidelity to the legitimate government, be may cither expel,transfer,imprison, or fine the revolted fitizens who refuse to pledge them-
the hammer in the usual manner until the spring comes in eontaft with the stud in the plate and stops. The hammer by its own momentom now explotes the rap, and at this point is slown in Fig. 1, with the nose of the sear resting on the incline of the tum-


Fig. 1.


Fig. 2.
her ready to force it back to halfeock as som ans the pressurn is relieved from the trigger.

REBUFFO.-A bastard camon, or at three-fourth Carthoum (karthaune), a 36-pounder of 15 calibers lomg: acrording to Cfimo, a 45 -pounder.

RECALL.- A call on the trampet, bugle or drum, by whieh soldiers are recalled from duty, labor, ette.

RECEIPT. - A vomeher or acknowledgment, which

of............, 188, from.
in geond order and condition, the under-mentionct jackages of.
for transportation and delivery to....
at.

(Signod in duplicate.)
selves ancw as citizens obedient to the baw and loyal to the erovermment. Whether it is expedient to do so, and whether reliance ean he placed upon such sathas, the commander or his gevermment have the $r$ ght to weide.

Armed or marmed resistane by citizons of the Tnited states against the jawful movements of their trompes is levying war against har ronited Ntates, and is therefure trenson. Sice civil Wtar. Inservection, anrl Powse C'umitatus.
REBOUNDING LOCK. A Emm-loek in whieh the
 mand of safety. The drawinge show the ation of 1he P'arker rikuending-luch. The operatiom of the ${ }^{-}$ low is wry simple and rentars all fire-arms using it safe from liability of a premature or acecidental disClarge. Fige. I shows the hammer down on the phomers and rige ? shows the lock at halfocond. When the gim is divelarend, the main spring carrice

Guartermaster.
shomblatways be given whon ofticial papers are recoiverl. Whan flags of truce are the hearers of a parcel or aletter. the oftieer commanding an ont post shouk wive a receipt for it, and rectuire the party to depart forthwith. The above is the form of a reerapt used by Guartermasiters.
RECHAUD.-I elating-dish, or pan, used for various purposes particularly during a siage. Revenads. are fillod with hurning materiats and hung in difler "nt purts of the walls, sor as to lhrow light into the ditehes, and to prevent surprises.

RECHUTE. - A term usecl in fortitication Io sirmify a greater clavion of the rampart in those parta where it is likely to le eommanded.
RECIPROCAL DEFENSE.- $A$ good fanking defense. (1) $\mathrm{l}_{\mathrm{x}}$ found in permanomt fortitientions. In consiructing works of this mature, the follewing are tho abjects aimalat: 1. Torallord foreror protectiontor the grans, masomry, and bodies of the defenders trom
 2. 'lo arrange the eovering works in sucll a manmor that the elefenters may use thar wernome with facil. ity, and that the omony way be kopt umder fire froma his tirst appearanco within range of the houviont gnans to the monomt even of his arrival at the erest of the def(ander's works, a combilion whirlı ne"ossarily latds to the introduction of recipponeat or thankiner defensw, as it would, in many cases, Im impossibla, that it rould be fultilled by masans of elirecel tira aloure catch work of defonse, becoming a cobver (o) thans, ait.
 advanerol fo its latso, it being also evident llat jlank.
 term "reciprocal" hore nsod exprexsox more folly the character and object of such (lefense Dhan lhe term "llanking," "ts it "rneralises the ideas internled to be conveyrd, by inclading revarse tire and every arrangencont ly which the gromed not acted umen ly direct itre of one part of a work is brengrht wibhin the action of the firce of another pert.

RECOLL. -When the charge of gumzowdor "on taineal in a gum is tired, the suditon expansion of the jowder into many times its former bulk iscts wilh erpual force in every diroction. The resistanco offered by the ball, which moves more or loss citsily in the bore. being far less than that of thw buiky and houvier gun and carriage, the ball is forced to a great distance; but the grn, with its carriag", must nover. theless feel the reartion, and is driven loncliward at certain space, ordinarily ar few fort. This retrograle motion is called the recoil, and bingrous accillents sometimes take place from it. Afty the reeoil, the grunners have to work the piece back to its former position for the next discharere. In the Arustronger naval gun, and some other modern common, the trannions of the gan are mounterl on an inclined plane* (3) Which the recoil drives them, in run down again by their own weight. The gun and shot ramaining the same. the recoil is proportionate to the charge. The rocoil of small-arms is known as their "kick," and is felt on the shoulder of the marksmitn. The interease in the size of camon and in the charges embployed, has necessitated the introbluction of some additional means for controlling the reooil. The following are usel, viz: 1st. J'nemmatic Buffers. 2d. ILydrinulic Buifers. 3 d. Frietion ('heeks.

Pumbatic Buffers.-These are ithached principally to carriages for 1 g-inch guns. They comsist of two closed iron cylinders, placed between the rails at the front part of the chassis, seeured thereto by iron straps ; and of two piston-rouls with heats, working air-tight through the iron leads that close the rear ends of the cylinders. The rear rends of the piston-rods are attached to a heavy jron plate projecting below the rear part of the grun carriage. I small hole in each and of the cylinders relieves the pressure of the air in front of rach piston-lacad and prevents the formation of a vacmmen in rear of it. Hhen the recoil takes place, the piston-rods are drawn to the rear, compressing the air in the eylinders and checking, aradually, the motion of the syetem. Should vacumens be formed in front of the heads, the expansion of the air in rear would forer the piece forwart beyond the position for loading.

Mydranlic Butfers.-l'lu bydraulic bulfer is attached to carriages for 1 bincla grans and for heavy ritles. Each consists of a cast-iron (ylindur with head, and a piston-rod and headm the latter liaving perforations in it instetal of leeing solid as in hice previous system. I non-freazing liquid is placed in the cylinder. The motmon griven to the piston-rod by the recoil is arrested ly the liquid which is foreed to pass through the holes in the head. The amome of ligaid, and the mumber and size of the holes, which are determined by experinent, requlate the amount of recoil. Once cylinder may thas be sutlecient for any sized gun, though with the largest cannon two are generally employed. The eylinder may be attached to the









 catriatipe: their permente on the ratim is rownlatem bos



 ed. "Iha. " sinclair" rhorl is nuss breforrod. it comsiste of a box-chang bequring batinat the front
 irom rail slightly weilgr-shapmed. "xamoline woarly the lanerth of the e chatinis aloner jta center lian. It.
 plates belwren which the rail works. froe to mos
 the reite. The rail is seeverol to tha. rear of the
 two friction plators letworn which tho rail jainate, nmb on which they ure tighterncol by mesane of an ar Tow and latadle. Tlos Sriction of thi: champ apors tha rail checks the recoil, and wholl it carasion the rowe tion of the strain upon ther rail, dur io it rlas-licity
 forward in the direction of its lewarth. hecing retainerl only ly the sjuring.
 retically twsential to whtainimer at true: rocord of rocoils, can only Jo approxinaticel to in practiow: 1. The recoiling muss should consist of nothing hat the
 the dyzumomoter. 1II. The romistration bomlul be eflectal withentet arsible mation of the enn. The tir-t eondition wonld reguire that tha gha shomld lo. sme [xaldal by an imponderable permlulum rent. Thion is ajproximated to ly reducing the suabomoline apparatus to the minimum consistent with strength isul eonvenience. The second condition would reguite that the gun sliould be strippod of all grides and restraints involving friction. This is cefferted hy las ing graides near enough to the erun io prevent jusent venient derangements. but nowhere in actual rontact. The third condition would reguire that the dynamometer shomblow set, in aldyance, at an inisial tension exatctly cqual to the expereded recoil. This condition can only be satishicel wat fat to set the dynamometer at an initial tension not greater than the minimum recoil which the instrument can rensonatbly be expereted to be calleal upon tomeasurt. In the particular instrament, which forms tha suhjoct of this rejort, the spriag stamblat an intial tomson of lifty pounds avoirelupois. which is. consocylumtly, the minimum limit of its cazacity for neasurna: recoils.

The accompanying drawing will give a \&eneral iden of the instriment, amd rnathle it to be a sem-
 adjustments las been fommd most converuient: 1. Gpen and depress the fromt grnide: \&). Balance the piece, loaded, in the slimg. at tha elewation thesirent. having first attached the ". bridle, "described hevoral. 3. Bring the butt-plate leod nesrly into connact with the recoil-block, by shiftimg the juendultm colunne and clamp it: 4. Complete the enntine aceunatedy means of the horizontal screw at the head of the junddulum column: ì Raise or lower due gun by meanof the fertical screw. at the lenal of the promblum columm, until the puint of contact is in the center af the cireular lace of the reeoilhlock. An asoistant Should now standy the butt in this poxition while the front adjustments are made: ti. Slide the $f_{T}$ int euide to a convenient point under the baret and damp it F. Raise the frout guide until. When closed, the bsr-
rel hangs mindwity iu it without touching: thea, before rlamping: 8 . Kotate the front guide in a horizontal plame wit the gun hats the least perecpable lateral "inshake." at which position its vertical "inshake" alco will be limited. Clamp the front gutele in this position: B. Brivg the faces of the butt-gudes nearly into contact with the butt. See that the butt-plate contact lias not been deranged. Mark the position of the sling on the gun to facilitate realjustment. see that the index has been pushed barck 1050 : 10. Acluat the bridle.

The "bridle is not an essential element of the instrument, but only a convenient areessory. The refurn of the dynmometer spring inllicts a sharphow on the gun. which wonld throw it formird and recescitate tedions readjustments after carch slon. The bridle restrains this forwarl throw without materially interfering with the prime ubject of the instrument. Two forms of bridleacempany the instrument, one of which embraces the gun at the small of the stork by a leathereollar. which is buekled back to a honk on the dymmometer hy a leather strap; the
ummber of coutiugeuries. To supply threse defiriencies of maps. an examination of the gromud must be mate by the ${ }^{2}$ ye; and verlal information be gained on all the points comnected with the operation wer this ground. This rxamination and collection of facts is termed a recon moissether.

From the sarvices clemambed of a reconnoituring officer, it is, in the dirst place, evident that he should possess acenirements of mo ordinary character; but, in addition to these, he should be rifted by nature with rertain traits, withont which his aculuisitions would be of little account in the discharge of the responsible duty in question. With clear and specific information before him, one-half of a General?'s ditticulties, in plaming his measures, are dissipated. In a letter from General Washington to Major Tallmadge, he remarks, im rebation to reports made to ham, on a rertain oceasion: " But these things, nost being delivered with a corainty, rather perplex than form the judgment." lt is in trath this feeling of cernainty that constitutes all the ditlerence; having it, the General makes his dispositions with

other embraces the gun in front of the front sight by a metallic collar, similarly buckled buck to the column of the front guide. The first form is the lighter andless obdectionable, and can be used with all guns and earhines, execpt such as open by a hever, like the Sharp's arms. In a series of trials with the service riffe and ammmation the ustrmment satre a very uniform record of 18 pounds recoil. The pull of the trigerer, in experiments for recoil, is canceled hy the simple experdient of placmes the thmb behind the guatdbow and pineleing torgether the bow and the trigger whild standing on the right of the gim.

RECOMMENDATIONS,- Ill menibers of any Court who eoneurin recommendatoms tomereysigin. The recommendation is introdnceel after the finding and sentence are closed amd anthentiented. The remenmendation should distiuctly set forth the reasons whicla pronnut it.

RECONNOISSANCE - There are no more important datien, whicol an beticer may le cableal ujon to jerform, ham those of mollecting amb armaging the information upon which eibher the general or daty oncrations of a campaign must be basel. For the
 vory high ordar, in the dopartments of geography and statistias, are indicpensable reguisiles; 10 whicis must be addal a minute arepuintanco with topoEraply, and at rowel womparil militaize for that of Tho latur. llowever detablerl and perfece may be at map, it can mover vonver all the information that will ratlal: an otliow to plan, even an ordinary march, with safoty : still less, 口perations that necees. sarily depenal, for their sncecos, "foon a far groater
confidence; withont it, lie acts hesitatingly; and thus communicates to others that want of confidence felt in lis own mind. Au oflicer, then, selected for the duty in question should be known to be cool-headed and truthfol: one who sees things as they are, and tells clearly and preciscly what he has scem. In making his report, whether verbally or in writing, the oblicer should study conemaness and precision of languagc. Me mist carcfully selarate what he knows, from his own observation, from that which he has learned from others ; ind add all the circumstances of place and time with accuracy.

The first thing to be done by an officer seldected for any reconmoissmee, is to ascertain precisely the diaty required of him ; and what further shombly be dons in case of rertain comingencies that may, from the nature of the haty, be naturally looked for. In the jerformance of the duty assigned lim, and in making his report, the oblicer should kiep always in mimd the speritic charactor of his mission. as lis guide in both points. As the ched of a recomonissance suppose's a ereat deficiency in information upon the natural features of the combry, the ollicer, detailed to make one, should prowide. himself with matjos, a grood telescople, such simple atids for judging of distincos, and ascertaining the relative jositions of objowts, as be com himself readily make: writing matcrials; one or more
 from the inhahitants at hame, buaring muna his mission. The talent of junging of tisumers, and of the -ommertion betwern the varions foatures of a comn-
try within the fold of vision, is jurlly a matural and



 perfect ilevelopment. 'Tlow powers of the reye vary
 rules ran be laid down as a proble for the matoor in
 iner life, there are fonmel standarils whislo are Wroll umberatood ly all, - the 1 rab, for insatance, catling
 formishalile fron a wonntn- growing ont of their
 in acturing the romp d'epil milituis, in to loarn, lonth from books and on the tield. What suato is taken 1uf) by a hatidion and its intervala, hy a spratron, amb by a bathory when in order of hatth; how motel whan in colaman of mareh; and tho avoragre lime ro-
 stances of the grombl. 'l"his aspuiremont he may make by adopting some standard of his own: his ordinary pare, and that of a horse, servine for computing timu and distane recijuractly. The moxastop is to urepuire the habit of astimating, ly tho appeatrances of thew dillerent ohjects, from viarions juints of viow, how far oll they are. "hois must be dome practioally. I verysimple aid to it is the following:
 held ent at at uniform arm's lemyth from the eye. by mesins of a thread attaclaod to it amd fasterned io tha top buthom-hole, Jot the whicer mask oft, on one of the eolges, the lemerth ween on it be hobliner the perncil upright betwenthe eys. and a man placed sumcessively at dilferent listances from it, as 100, 1 bo1 , 0 on yords. This will give one rongh standart for practice
lrustworthy gnides are invalmable, lont most rares in men chemy's conntry. The best, from the informaton the arequire by thacir hahits of life, are to be found among those dasses whose averations keep) them mum abroud, going fromplace to place within a certainsphere constantly; suchas commonearriers, bunters, smmeglers, "tc. Among the first things to be attemed to by an oflicer, in taking poest at any point, is to find out persons of this class, ant tosasertain their whereibouts when wanted. Kind (reatinent. dome comre, and promises, shombl mot be spared to enlist either their good will or their interests; and, if policy rewnires it, they may openly be tronted with apparent harshmess, to sereen them from oflum amoner their neighbors. If nome of this class can be fomme, then restirt must be hat to a higher; locol anthoritios being in preforenceselorted, and if noressary foreed to atet. Here very carefn] trentment is requisite: when the neressity of the rasce is admated ing locors, much may be gleaned by kindurss, courtesy, and a certain deference, from such pertons. that ramuot be lookiod for from their inferiors.

Before stating on his missiom. the ofticer should question bis guidu thoromghly : and if lur las several. question each apart: Jike preatutions shoudel he taken with respect to other inhabitants. ('are mast be had to find ont the usual beats of one taken ats it gidde. so th mot to take him out of his own mejghborhood. should there be but one guide, he must necessarily be placed with the most alvanered portion of the detachment accompanying the otlicer. It may be woll to remark that guides are useful evon in a coumtry of easy communications: as, in caneof a remeontre, they may point out by-ways conveniment for retrat if ne"cessiry.

To designate all the objects to be embraced in $\Omega$ recommossince, would lead further than the limits of this article will allow ; sombe qeneral heads, which will serve as grailes int all cases. will therefore bo alone noticed. I generald view of the grount to be examined most first be takern in, so as tuobtain some notion of the forms of the parts. thesir eobmections. and relations to eacla other, before going into a de-













 vel ent by tho eninorer.
 ment ; the distanco-s frobu hatt ter lonlt, am wrell ay








 both as to thair position on the lime or rin rithor sithe of it ; amb also as to their from, and collor, 1.19. as "stpuare white lobise on the right:" "rommel grisy stone tower on lible to lefl." The mames of lowalit tiss, in the way in whiclathe mhabitant- proncuancer them, shoultl be carefnlly writters, mond rabled oner s-veral times, so as to be sure to grot them atmenty as practicable right in somblat: theot the natno- its written by an intelligrant inhabitant, whonld beraldo.d. Sll halting points must be wodl looked for: thois military expabilitios, in case of attack: s- well intheir resources for accommodatinir (ha. troesco ber thoroughly gone into. If the hailt is tos iaku posmi-
 theon more care must be takern, fle whele. situ- bo well stadied as to its fultilling tha grolnocd ent the points of support on the rlanks bo dowiematorl, as well as others in front and rear, that may reepuite to be oceupied : the sutablate localities wo lo elamen fur parks, hospital. etc.; the rommminations ion lu opened or repaired, pointerl out ; and all the farilities either foran atvance or a retrograwle mowermint be laid down. See Armud heronmuisarater. I'utrote and Topugraphionl Recunnonswance.

RECORDER. - One who keepr a record: aproitically the ollicer who registers the procerelingre of a 3 buatel or Minor Court.

RECORD OF FIRING. - A look is furnished pocarll post for the "rpourd uf artillery" and "resurd af firisg." In the front of this book are printed insitiut tions fully explaining how it is to lee krpt. [meles appropriate loatings, in the part urt a-ide for reonerl of artillery, each enn is daseribed by it-nmmberam marks: when received and where from: whetherg momented or tismonnted: if mommerd. in what bart of the work, stating its jlatform mumbor. "]"here sult of each inspection. mate ac haremafter dowerith ed, will be entered for eacha piece in thi part of the book.

In the portion of the loosk alevotod lo reverd onf firing, each piect hats a separate pate, whicht. what filler, is carried on to sumthor Finch -ha tireal is duly rocorded as to date off firc, kimel and woitht wf projectile, kind and grantity of jwwoler. efo vation.
 ferred from one post to another a comple te To contlis sent with it. and the previnus mumber ne fire - in entereal in the bowk at the last pool, - ot that the tiringre may not ge luyond the limit preacribula- the esblurance of the pioce: this lase lecern fised at one thom and servier romals for chat-iron canmonn.
 itary Recorels. stoh as filem of pmblice hifers. leqterbooks, order-bouki. and enther record-bunk - manster-
rolls, etc., are the jroperty of the Govarnment, and are preserved for future reference in the settlement of claims against the Govermment and for other ofticial purposes. Whenever posts, Distri•ts, Geographicallepartments, Divisions, and other commands. are discontinued, all such Records as are not required for use at the Department Headyuarters in which the commands were included are immediately sent by express tothe Adjutant General of the Army. Every person who wilfully destroys, or attempts to destroy or with intent to"steal or destroy, takes and carries away any Record, paper, or proceeding of a court of justice filed or deposited with any clerk or ofticer of such court, or any paper, or document, or Record filed or deposited in any public otlice; or with any judicial or public officer, without reference to the vialue of the Record, paper, document, or proceeding so taken. pays a fine of not more than two thousand dollars, or sinfers imprisomment at hard habor, not more than thrce years, or both. Every onlicer having the custody of any Record, locument. paper, or procecding epecified above who frundulently takes away, or withdraws or destroys any such Record, documeut, paper, or procceaing filed in his oftice, or deposited with him, or in his eustody. pays a fine of not more than two thousand dollars, or suffers imprisonment at hard labor not more than three years, or both; and moreover, forfeits lis office, and is forever afterward disqualified from holding tuy office under the Government. The established jrinted forms and blanks of all muster-rolls and returns required from the Commanders of Divisions, Brigades Regiments, Corps. Companios, and Posts are furnIshed from the Adjutant Geuemils Ottice on requistions made directly upon him. The receipt of these forms and blanks is immediately acknowledged. Oticers keep these hanks moder their own persomal care, to gnard against their being misapplied. The use of violet or other colored inks (except as carmine or rod ink is used in annotation, indorsement, and ruling) is prohibited in the Records and correspondtnce of the army. liudes for kecping the principal lecord-books at the different headquarters: forms fur making rolls, returns, etc., lists of paper* required from each command in the army, and of blank forms and books issued by the several Departments, are furnished the proper officers on application to the Adjutant General of the army. All ofticers and clerks on duty in the Bureaus of the Wiar Department are prohihited from exhibiting any table, statemont, or papee belonering to the olficial Recorls, or giving any information, ceny, or extract from the same, or giving any information respecting the business of the Departinent to any person whatever not on daty in one of the oftioes of the bepartment, withont, in each case, the authority, in writing, of the Chief of the Burean concerned." A rigid compliance with this order is enforced, to prevent improper use of information irregnlarly obtained.

RECOVER. - In tacties, a word of command in tiring, whereby the piece is brought from the position of reim to that of reatly.

RECRUITING.--Formerly, in limgland, the task of raising recruts for the army was intrusted to the (b)ontles of Jowimonts, wheremplosed divilian atents amd others to prorsumbe young men to join the jr standarls: these agents often resorting to fory illegal meflods to entrap recruits. Subsequently, the duty Wat assigned loseveral liecraiting ('orps, éneh known by゚ the name of its Commamlinge onlicer, but under this system, so many irregularities, mat sucla diference of practice arose, that in LNot, for purposes of
 cidul in place the whole reroniting under the immediate direction of the Adjutant fermeral. F'or this burpose, thw ronnt: was divided into rerrolting districts. It the lamd of ertel. district was plated un Inspertiner licla-otlicer, with hae daty of superintomeling all ruspoiting parties in his district, amd of appreving the rearuits bronght. At the loistrict
lleadruarters there was a Pinmaster, responsible for all the financial concerns, and a Medical Ofticer. who examined the reeruits in point of health and physical fitness. Recruiting parties used to consist of old sergeants, who songlit by rvery moans to indace ronng men to enter the army; they frequented fairs, wakes, and country gatherings, endeavoring by beat of drum, smart uniforms, well-fed personal appearance. and persuasion-not always too truthfnlto convince the rustics of the alvantages of the Queen's Service: advantages which really existed, though not always to theextent depicted. The adoption in 1872-73 of the system of Fegimental Localization changed all this. The Luited Kingdom is divided into 68 sub-districts, at the hearl of each of which is a Colonel, who commands the Brigarle Depot, and the anxiliary and reserve forces of his subdistrict. He also controls the recrniting within his command. primarily, for the regiunents composing the brigade; and secondly, for the rest of the Army. To preserve uniformity of action, the Colonels report on recruiting matters to the Jnspector General of Recruiting, an official on the Staff at the War Othee. On a would-be recruit presenting himself, the recruiter must ask him if he already betongs to the militia; if not, and he appear plysically eligible, lue is given a shilling, after which. should he abscond, he becomes a deserter. The Sergeaut most then give the recrnit 24 hours for considuration; afterward, but within 96 hours from his first enlistment, he must take lim before a magistrate, when, if the recruit declare that he voluntarily enlists, the justice rads to him the Articles of War relative to desertion, and puts the questions detailed in the attestation. This done, the oath of allegrance is administered, and the man becomes definitely a soldier, receiving bis free kit and bounty. The recruit may avow his dissent before the magistrate, when he mast He forthwith discharged on returning the shilling, and paying twenty shillings as "smart" for the tronble he has given. False declarations as to age, previous service, health, ate., involve the recrait in vurious penalties. About 18,000 recruits are raised annually in time of peace for the British Army; but a larger number will be necessary, as enlistment for short service with the colnrs becomes more the rule.

In the United States, the recruiting service is conducted by the Adjutant General, under the direction of the Secretary of War and the Commander of the Army. Details for recruiting service are ordimarily for the period of two years. The Adjulant Generil details the tield othcers for superintenclents. and anmonnces in Orelers the number and grade of the company ofticers to be selected by the Commander of each regiment for the charge of recruiting parties. These officers are chosen irrespective of the roster, and with regard to their fitness for the duty. They are ordered by their leammotal Commanders to report in person to the Superintendents designated lor their respective arms of service. (bthcers on the general rerniting survice are not ordered on any other duty, rxapt from tha dijutant (teneral's © Other.

A recruiting prarty consisis erencrally of one Liembenant, one Nom-eommissioned whicer, and not more than fond privates. The parlies aro sant from tha prinuipal depots, and nome but
 Army ratses frepuent inspections (1) he mathe of the rerrititige depots and redule\%vors, for the purpose of onforcing the regratations and arders grovarning enlistments, and erpecially to prevent the recoption of mest of thal chameter, dind the illeral enlistment of minors into the service. Oflieers in charge of ren(lezvens will in no case alosent themeselves from their -talons witlont athority from the Superintendent. Fuccess in obtaining recribis depends mull on the atctivity and permand rettention of recruiting otlicers. They inmat mot intrust to enlisted men the duties for which thay alone are responsible, but must une every rare to prevent the imposition of minors and bad
 allow my man to be decerved or invergted inte the servieq ly false reprementions, bat will in pereme exphat the matare of the serviere. the fenght of the form, the pay, choshing, rations. and othor allowathers to which asoldar in contitad by law, to avery

 servied.
RECRUITING DEPOT.-A Alequs fur the follfoction
 tablished by arders from the Adjutant (iomeral's.



 lorad and inspeded. 'llary arr well drilled in the Infantry Tactics, therough the sehesol of the soldier Io that of the batalion, ume in the exerefore of fieded and garrison piomes. Daty is done aromedine to the strict ralas of servies. Requitsare not pat ta any labor or work which would interface with their inistrustion, ber are they cmologed ohberwise than as soldiars, in the regular elution of garrison amb (athl). Togive ancouragement to the recmits, and hold ont imbacements to grow conduct, the Commaneling Ollinerof the Depot may promote such of them ats exhibit the requisite qualiferations to be lance rinn"-
 propartion to the mumber of reernits at the bepot. There appesintments are amomesel in orders in the nstal way, and are continucel in force until they join their regimems, maless somerer revoked. No atlowance of pay or emohanconts is assigned for these appointments: they are only to be considered as recommemation tor the ('apmatios of companies amd Colomels of reximents for the phaces in whish the recrits may have acted: but such Non-commissionetl ollicers are to be trabled with all the respret and to hate all the authority which belong io the stationo of Sergeant and ('orjoural.

The Gemeral Superintemdent anses such of the re(robits as are fombed to posseres a mataral talent for masio to be instructed (bosides the drill of the soldier) on the dife, bugle, and drum, and other military instruments; and hoys of sixtem yomes uf are. and upward, may, under his direction. be embisted for this purposs. ("are is taken to anlist these unly Who have a matural talent for masic, amol, if practioable. they are taken on trial for some time before being enlisterl. The posts usedas lecruitine beponts. are not tobe made places of condinement for military prisoners. Whenewer deserters from the Army ari
 parties, they are sent to the depots, and thencer at The earliest opportmity, forwarded for trial to their pegiments, where the witmeses in their rases should be. When trial by Gencral courl- Martial of pris. oners belonging to or under eharge of the recruiting service becomes uncessatry, the wheres are forwath ed, through the superintendent, for the Adjutant Gencral of the Army; with a list of the ollicersavatiable for daty on the Court. Piecruting purties and rerruits are mastered, inspected, and paid in the same manner as are other soldiers. The mamber of recruits at depots to be assigned to each arm and regiment is directed from the Adjutant (itherai's Oltices. As soon as a recruit joins any recruiting depot, regiment, or station. he is examined by the Medical Otlicer, abd vaceinated when it is remidend.

The Boards of Inspection at recruiting depots rejeet any man fomed to have borne an matiofactory charater on any previous culistment, or wha hats shown such character since enlistment. In all cases of refection, the reasons therefor are stated at large in a spectial remort, made by the Board, which also shows when, where, and be whom the reeruit was entived. This report, together with the surgeon's rertiticate of disalility for service, is forwarfed lo the Euper intendent or Commandant. of the post direet to the



 ability. If the recommentathon of the lamed for the
 therefor is imborand on the "artitleate, whichat ment



 fore has ralistranent; wal whether, wills pernow reare





 axplamation to bla Aefintian (boncral.
An oilliere intrusted with the comatomat of racruits orderal toreximente, wharivine at the phaco of dico tination, forwards the following pancre: I. 'Ta the
 criptive roll and an areount of chothing of surform
 fromany canse whatever, with date mal placo aloo, a special report of the date of himarrival at thar pat, the stromsthand condition of the party when thrnead over to the (ommanding oflion and all rirommstances worthy of remart which may have one ormal on tha match. To the Cinnematulity ofliore of the reginent or post, the anmerer and deceriplise rell] furnished hine at the time of settime out. forner rly signed and complened ly reeording the namme of the refaits presut, amd by woting int the column [ar remarks,opposite the appropriate paces. the time and place of death, desertion, apprehension, or whas casualy that maty have orcoarend on the romes. Se Recruiting, Recrnits, and superintendent of liorruil-

RECRUIS..- Men rased for aervice in the arme to fill racancies in regimemts or to atghemt that strength of the Arms. In the ["nited Notata, ans mate jurcon above the and of sixtern and undu-r the ate of thirts-tive years, effoctive, alde-bodied, wher free from disease, of goond (haracter and haloits, and with at competent kuowlodge of the Encti=la lam-
 In the restrictions concerning minore. Thi- resula-
 diers who may re-colist, or who lateserved heme-ty and fathfully a previous anlistment in the army. Den having the appearance of being hard drimker: are rejered thenct they may wot the thene la inToxicatel. Nomanhavina wifo or minot chald an mo anlistedur recenlitad withont -p erial anthority from the Adjutant (icneral's oflice. If minors prosent thanchlows they are to he trated with great candor: the
 if hay have any are ascertained and these are informed of the mimer's wish to minlit. that they mat make
 the age of twenty-one vears can be eali-ted or re-conlisted without the watest consent of his parents on grardians. provided that wheh miner has paremp-or
 cruiting otheers are very particular in a-cromanmy the true age of the rewruit. If why atmbe exi-t as- me
 whe evidenee of lequt age : and if he cammet, in at lit tion. furnish umbobtend pronf of the tact, lat will
 heys umber sixtece years of age: of all in-ane or intoxidated persons: of dewrtir- from the military or naval service of the ['nited stateo: and of anl] [rtsons who have becon conviciod of folouy. Mintors mader eighteren years are not anlisted excelit fur musicmas, or to learn mu-ic. and then onlv muler anthority from the superimement. In eviry can of a recruit rejectecl. or discharged an a minur, when it
appears that the enlistment was carelessly made in violation of Regulations, recommendation is mate that the expenses incurred by the Govermment in consequence thereof shall be stopped against the pay of the Recruiting Officer.

After the nature of the service and terms of enlistment have been fairly explained to the recrnit. the ufficer, bofore the enlistments are filled up, will read to him, and offer ín his signature the anmexel declaration, to be appended to each copy of his enlistment:
I, -- -- desiring to enlist in the Army of the Caited States for the period of tive years. do declare that $1:$ am ——years and - monthis of age : that 1 have neither wife nor child: that I have never bean diselarged from the C"nited States service on account of disability, or by sentence of a CourtMartial, or by order before the expiration of a term of enlistment ; and T know of no impediment to my serving honestly and faithfully as a soldier for five years.
Witness:
If the recruit be a minor, his parents or guardian must sign a consent to his enlisting, which is atderl to the preceding declaration, in the following form :

1. --- - do certify that I am the (fiether, only survicing parent, or guardian, us the cuse maybe) of —————: that the said ————_ is - years of age ; and 1 do hereby freely give my confent to hif cnlisting as a soldier in the Army of the United states for the period of five years.

## Witness

The forms of deplaration, and of consent in case of a minor, having been signed and witnessed, the recruit is then duly examined by the Recruiting Officer and Surgeon, if one be present, and, if accepted, the 4 th and 103 cl Articles of war are read to him: after which he is allowed time to consider the subject until his mind appears to be fully made up befure the oath is arlministered to him.

As soon as practicable and at least within six days after his enlixtment, the following oath is administered to the recruit :

```
State of--
```

Tinen of

I, - - borm in-_ in the State of and by orcupationa--. .do hereby acknowledge to hawe voluntarily enlisted [or re-enlisted] this-- day of - - $1^{8-}$, as a soldier in the Army of the L'nited States of Ameriea for the period of unless sonere discharged by proper authority, and do also agree to accept from the United states such mounty, pay, rations, and clothing as are or may be established by law: and I do solemnly swear that I am -_ years and -- months of inge, and know of no impediment to my serving honestly and faithfully as a soldier for - years, under this enibist ment eontract with the Cnitw States. Ancl I
do solemnly swear (or aflirm) that l will har true faith and alle giance to the Cnited States of Amorica; that I will sorve them honestly and faithfully against all their comes whomsoterer and that 1 will obey the orders of the President of the ['nited Sitates, and the orclers of the otlicers appointerl over me, aceording to the Rules and Artiele's of War.
subservibod amd sworn to before me this -- day of ———. 14 —.

## Rerviting offiorm.

This wath may be achministered by any Commissioneld othicer of the army.

The Wedieal onlicer (when one is prowided) next "xamines the reeruit. When there is no aledieal
 cxamination. 'Tle recruit is cxamine listripheit, to
see that he has free use of all his limbs; that his cluest is ample: that his hearing, vision, and speech are perfect; that he ha* no tumors or nlecrated or extensively cieatrized legs: porupture or chronic entaneons affection: that lie has not received any contusion, or wound of the head, that may impair his faculijes: that he is not a drunkard ; is not subjert to convul. sions; and has no infectious disorder, nor any other that may unfit him for military service.

In accepting recruits at rendezwons, the following instructions goveru in examining the eye:

1. No recruit shall be enlisted who eamot see well, at six hundred yards' distance, a black centre three feet in diameter on a white ground. The test will be made by means of cards, prepared under the direction of the Surgeon General of the army ; the black spots on the eards will be circular, fonr-tenths of an inch in diameter, and the recruit must be able to ennut them with facility at twrity feet distance.
2. A nomalies in the refruction of the iyp. -The prineipal anomalies in the refraction of the eye are myopia. hypermetropia, and astigmatism. These anomalies, if unaccompanind by disease of the eye, are not to be regarded as a cause for the rejection of a recruit, unless they impair the vision to such a degree as to prevent him from counting the test-spots described in the last paragrapla at the distance namet. Wyopia (near-sightedness) is a refractive defect of the eye in which parallel rays falling upon the cornea are brought to a locus before they reach the retina. Iypermetronia (over-sighteduess) is a refractive defect of the eye in which parallel rays falling upon the rornea are not yet brought to a foeus when they reach the retina. Astigmatiom is a refractive defect in which when parallel rays fall upon the enrnea they are not brought to a foens in the same phane for all the meridians of the eye. The character and approximately the degree of these defects can be ascertained by the spectacles and test-types which will be issued for this purpose by the Surgeon Gencral of the army, on requisition from the Medical Officers.
3. Presbyopia is not a refractive anomaly, hat a combition due to at diminution in the accommodation of the eye, resulting from alvaneing age Vision for distant objects remains normal, while that for near oljects is impaired. This rlefect is not of itself a canse for the rejection of a recruit, but those in whom it exists are usually over age. The existence of the defect can be ascertained by the testtypes referred to in the preceding paragraph.
4. Cobur-bimintsx.-At the principal recruiting depots all the accepted recrints are examined for col-or-blindness by the Mledical Ofticers on duty. Auy defect observed is noted on the descriptive list of the soldier, but does not of itself constitute a cause of rejection, except in the case of conlistments for the Signal Corps. The examination for this defect is made by the method of Holmgren. Test-wonls for the purpose, aceompanied by printed dirctions for their use are issued to the principal recruiting depots by the Surgeon Gencral. See Recruiting. Rerruiting $D$ pot,and superintendent of liecruiting sorvice.

RECURSANT.-1n lleraldry, moving or coursing hackwatl: satid-uf an eagle displayed with the hack towards the spectator's face.

REDAN. - The simplest work in Ficlld Fortification. It consists of two parapets whase faces join in forming as salient angle toward the chemy, like a lefter IV, in which the apex is to the frent. Regrarded by itself, the redan is a work of very linde strongth, since there is no thanking lire to proteen its facers. and nothing to provent an conemy from foreing an entrance at the gerser ; hat redans are useful in many positions, and the rapillity with which they may be constracterl. render than favorites with engineres and generals. I row of redams along an expmeal
 behind protecting the gorge, and the redins tlanking

Pac:l other. It forms an rexerilhent dofonse for a



 ant the serne of two blersly repulace by the Jussianm in. June and Acptomber.

The Fares of the redan slowh recepe direction such as to sweyt the atpromernes to the thanks of the
 of direct dire can be bronght to batar on ther sector

in advance of it, and when the salient is tino or less, whly a rery whligue fire from the facere can he hronght punt this sector, whirl heremmesthas asetor without tire Eur the assaileol. To remedy thiad a portion of the sitient is fillad in swas to form thort slefonsive line perpendicular to the eapital. This line is
 direction of the capital prolonged outwards. Sie. Piolde-merrkis.
REDAN LINE.-The simplest arrangement for at contimutilline.consist in an wrise of redans cemmerted hy straight curtains. "The faces of the redansatsixty vards in length: the ir saliont angles 60 : and the distance betwerntheir capitals $1 \times 0$ vards. This come bination will phace the salients at 1 tio yards from the

collateral renterings. An inspection of this system shows that the dithers are not Hmbelt: that the sallients are not well protected, owing to the cross-fire la:aving a considerable seector without tire in front of them; that the curtains. which, from their position. are the strongest points, are the best defenterl, and in turn they afford no protection to the faces. All these defects become mure winsible as the redans are placed further apart. Sie Jinex.
RED COAT.-An linglish soldier, or a soldier who wears a red coat.
RED FLAG.-I Bag used by Revolutionists as an rmblem of eletianer. It is used in the l nited sithes -rvice as a danger-signal at targut practice and on a man-of-war as a sigmal that the ship is receiving or (iischarginar her powidr. See Flage.
RED HAND. In Heraldry, a simister hand erect. open, and couped or, the wrist gules beiner the arme of the province of [1star, was gramed to the harmets of England and of |reland as their distinvishine badge on the institution of that orderin lithl, and is: borne be the barenets of Creat Britain and of the United lingedom. It is asommed into the armurial coat, and may he horme upon at caton. or out an escutcheon, wheh may be phaced either in the mieldhe chicf or in the fess pe int, so as least to interfere with the charges compuring the family arms.
RED-HOT SHOT. Cammoballi hated torelness. and tired from camon at shippinge marazines. woeden haikinges ete.. to combine deatrution by tire with battering lay comets:ion. In the ara ait
 red-hot shot was wed with great ettect by the de-










 rather romathly




 For the vakn of llanking tho dite h. and prowontint ats

 the soil ha. will on chalky, a wallery may lat colt ho.


 have the wak feature of wot ilefenting their wwon
 ghes with rempurativa imphnity. Thay are thero-
 protyy fidel work or in at war of firme. they now


 are particularly uscoul in forlify ine the topte of hills. "r crommanding pascos. or whore haw objoct is to coltilley a lantile ferritory, or to foll the wayerahnally thromgh a wetbed conintry. Tlae size to lie given (i) ar rodoubt, or gernerally to any inclomed work. will ho-

 Wo haw at force (ondentrated than tow mand diatril). utad, and therefore injudicions to matke work- of : Ereater extent than can be well manmed amd vierormesty defended. The number of man will depetal upon the particular circounstance of the cate: 3 . for instamea, it. -ituation with remard th distane. from the racmy: whether it is Jikily to be attar keil by a powerful force or onds hy raiding partie. whether it is of surch vital impurtane ito fie require it to be hald at all hazards, and its distance from sulpporting force.

In permane fortification, the form rerloubt or re (ait, is applied to the outwork ghated withincther outworks: the ir ohject being to strengethen the dh fense of the principal work. I work of hiv- claw in usually phecel within the demi-hane. and is termad the dimi-lune redmbet. Small work- of thi-kimel are also placed in the salicent and roeentering plase erofarms of the covereel-way, and are termed than roden'l of the salient, or weentering plucenfourma. Thaseredoubts are in some cases simple eartho we rk- : in othere they are rewited: and in othere (a-cmated both for the servien of artillery and =mall-arm-. Set

REDOUBT OF THERE ENTERING PLACECFARMS.
The objocet of this redhubt is to strengethen the. cowered-way and =worp with it- tire the enert $\boldsymbol{y}^{\circ}-$
 rederubt heing lirectly in front of the ha-tion-facto its redief should lue reduced that the tire of this
 commence by etathlishing the bothan of it-dite ho. a) that the puint of it mareat the lastion may ju-t be seen by the musketry fire of the face: we thon athont nearly a mininum relied of soarp wall: timally, we arrame the introne erent of ome fame ... an- to allow be exterior shope at onte extremity and make the wher at the -atient ? forthieher. This
 of declivity of the interior cre-t. Whermine a plate of defilement for the redubt, the prolougation is
which will pass at about 3 feet above the salients of the two demi-lunes, which are symmetrically situated with respect to the bastion capital. Thlus is done in accordance with a principle generally allopted, that when one work is less advanced thais another, and commanded by it. the plane of its interior crest prolonged should pass 3 feet above the points which the entmy can occupy on the ardsanced work-which, from the nature of the attark, unust first fall into his possession-so that he may bot have a plunging fire into the retired work, from his establishments, whichare gemerally about 3 feet above the parapet of the work occupied.

On account of the ditch between the temaille and the enceinte flank, a breach might he opened in the curtain, by means of a battery, established on the glacis of the re-entering place-of-irms, if there was no mask beewern the ditch referred to and this ghacis. By placing the angle of the redoubt on the Ine drawn through the extremity of the eurtain and the extreme of the dem-lume, it is readily soen that these two works so combined cover the upening Wift by the ditch. The means here resorted to is of frequent use in fortification: and the problem may be thus stated: a line heing given, which is partially covered by an existing mass, from fires in a given direction, to interpose another mass, which combined with the first, shall entirely mask the given line. See Noizet System of Fortification.
REDRESSING WRONGS.-If any officer shall think himself wronged by his Colonel, or the Commanting Officer of the Regiment, and shall, upon due application being made to him, be refused redress. le may complain to the General, commanding in the State or Territory where such Regiment shall be stationed, in order to obtain justice; who is required to examine into the said complaint, and take proper measures for redressing the wrong complained of, and trimsmit, as soon as possible, to the Department of War, a true state of such complaint, with the procecdings had thereon. If any inferior officer or soldier shall think himself wronged by his Captain or other ofticer, he is to comphan there of to the Commanding Officer of the Regiment. who is required to summon a Regimental ('ourt-Martial for the doing of justice to the complainant: from which Regimental Court-Martial, either farty may, if he thinks himself still aggrieved, appeal to a gencral Court. Martial. But if, upon a second learing, the appeal shall appear vexations and groundlese, the person so appealing, shatl he punished at the discretion of the salid Court-Martial.
RED SHORT IRON. - Iron which is difficult to weld and is brittle when heated is said 10 be red-short or hot-short. This defect is due to the presence of sulphur.

RED TAPE. - Thas tape used in Public otlices for tying up docmments, etc. : hence, ollicial formality.

REDUCE. This term is wed in various military senses. To produce a plaers is to oblige the conimamerer to surrember it to the hesiegers, by ceppitulation. To redure the sflutere is to restore or bring hack a battalion or hattalions, which have heen formed in ahollow or oblong square to their natural situation in line or eolumm. Tor rethere to the rankis, is to dograde, for misomduct, to the station of a private solfier. Rodecerd. in its ordinary sense, is to be takin ofl the establishment, amd to cease torereme pay ane soldiers. When at reximem is reduced. Har othieres are sencrally put upon hatfopay. Sometimes the corys are redued, and the oflicers remain upon full pay: This happens at the close of a war, when the stainding armiy of the eromery is comfind to at cretain number of bittalions. Drace is derived hae expres. sion in :und out of the bernk:
REDUIT. - In fortitication, a contral or retired work within any other work, imbended to allord the garrison a latet retreat, whenere they may capitalate. It is commonly of mavery dondioled.and often cirenar. Nany enginects doubt the use of reduits altogether.
as blocking up the working space, being themselves inconvenient for the men. ind incapable of protracted defense, while they freqnently mask the fire of other works more to the rear.

REDUCTION OF METALS. - A metal is said to be rednced to its metallice state when it is seprated from the condition of a chemical componed in which it exists as an ore. This is generally effected either by the direct action of heat, or by heating the compound along with a reducing agent. Thus, when oxide of mercury is simply heated, the oxygen is given off as gas, and mercury or tuicksilver appears as metal. Again, when sulphuret of learl is heated with iron, sulpluret of iron is formed, and the lead is reduced to its metallic state. In this case the iron is the reducing agent. The principal reducing agent cmployed in metallurgy is carbon, or rather the gas carbonic oxide, which is formed under certain conditions when carbon is burned. See Iron, and Metellurgy.
RE ENLISTMENT.-A rencwed enlistment. In the United States Army, any Non-rommissioned Ofticer, musician or private, who re-enlists within one month after the date of discharge from first enlistment, receives an per month in adlition to the montlly pay he was receiving prior to discharger; and also $\boldsymbol{s}^{2}$ per montl additional ufter each subsequent re-enlistment so long as he shall remain contimnonsly in the

RE-ENTERING ANGLE.- In fortification, an angle in the line of works of which the apex points away from the front. As an eximple, the flanks of a bastion make re-entering angles with the adjoining curtains. Advantage is commonly taken of the comparatively sheltered position of these angles to form Pluces d'A trmes for the assembly of trons. Sere $1 n-$ glt.

RE-ENTERING ORDER OF BATTLE.-An order of battle, the front of the army forming a re-entering or inclosing angle, and the reverse of the salient formation. This order presents many advantages, as it can inclose the enemy, and shake morally and physically the troops which form the angle of the sillient, by their rear leing threatemed and their retreat cut offr.

RE-ENTERING PLACE OF ARMS.-Enlargemeds in the covered-way, at the re-entering angles of the comenterscarp: illis space is formed by setting off demi-gorges of 30 yards (more or liss), and making the epaces form angles of $100^{\circ}$ with the adjoining branches of the covered way.

REEVE.-A word used in speaking of ropes, signifies the passing of a rope through any hole, deadeye, block, or pulley. in ronjunction with which it is to he used. See Cordenge.

REFINING OF METALS. - The last operation conneeted with the smetting of copper, tin, lead, and some other metals, is usually called the refining process. With copper, for example, the impure or blister enpler. containing from !n to 18 per eent. of the metal, alloyed usually with small gumatities of iron, tin, antimony, "tc., is melted in al refining furnace, amb exposed to the oxidizing intluence of the air, By this mons, the foreign motals present bermue oxidized, and rise to tho surface as slag, which is skimmedofl : the wxide of copper, formad during the process, being afterwards rediced by throwing coal on the surface of the melted metal, and stirring with n fold of green wool. The dis"ngarement of gases from the wooll durine the "poling" (enuses the metal to splash about, ami worexpose every portion of it to the reducing action of the roal ; thas the oxide of copper is deprived of itsoxygent and he copper rondered nearly pure. Tin is also retined by flirowing billets of erien woul into it while in a medodstate, whielh has the dedect of bringing impurities to the surface as froth, in a somewhent similar way to the oxidizing of foreign metals in "rypurs. Land is puritied from antimony and tin by an malogus mode of oxidation, aml silver is sepai-
 irom is a mame applied to the procios for partially soparating the amben fon cast-irom, am? is do


 almminima, it is satel, will mel aftermarale pmorify when once redmedtothermallir state ; and nirke. of which Germansilver is largely ommonsel, is re-
 be mandactarers. We mats staie hare that mometat is aver quite pher in its commercial stato. exon thomgh it hats grom through the usual uneration of retining, but all ar" wa wortain "xtent allosed with certain others. For the great majorily uf jurpence, it is mot mecessary that metals shombl be e- haminally pure, and whon it is, Hay ram only be mate an hy
 stome howeser, that it is alwase neressary 10 ares the redining of geded and wilver further than the lasis valuable metals. 'Tor romber gold ablicionty pure for manufacture into coin, an ingemions procese has, within the bat few yars. hern propmed, by when fosed endel is mixed will alomt 10 ber econt. of hack axide of coprer, and then stirmen was fonsidize any foreigh metals which happern to be persent. 'The oxite of coppore theses mot fase, hat is disseminater? through the melterl motal, and oxiclizes any tim, antimony, or arsenice and rames them to rise to the surface. so that they may be skimmod off. Werfert ly pure gold is prepared by disedviner the motal in agmaregia a mixture of nitric and hadenchloric acids-and precijpitating silver (with which it is al most always alloyed) as well as any other foreign metals hy chamieals which have moartion on the solation of gold. 'The metallis: gold is afterwares procipitated as a timely-divided powder, ly a salt of fron, and is then fustil and cast into bare. Siluar is rendered pure ly dissulvine it in mitrie aded, filtering the whlution. and then perecpitating the motal with: commonsalt ats a chloride of silver. This is afturwards mised with sulphurie adidand then. ley introblacing bars of zince a indoride of \%ine is formod, whilst the silver is ratdily redued to the metallic slate.
REFLECTING SIGHTS.- (iuns are laid with reflecting sightix when the size of the port in a casemate is not larger (mough to has the ordinary sights, or when it is desimble to proter the men employed in aligning the sights from the encmy's fire. Several methods of theng them are emphoyed.

In the first phan, the sightsare very similar to thane usatally employed, but they are both placed on the thimer part of the erminfont of the tramions. Amd as there is not room for a man's head to be paced foblind the tangent seale. on acosant of the coils of the rum, a small mirror on amoveable soneket is placend fust heliud the tangent seale notelo, and the man who hays the gend stand at somer eonemient position at thie side of the murole, and aligns the sights in the mirror exactly as he would do in laying diever. He is well proterted from the anemy's fire'.

In the second plan, which is adoped in Monerietts protected barbette system, in aldition was an of direet sights, a mirrore at the breed. sed :1 an anerle with a crose col on it is used in compunction witlo it notch, which slides in a graduated wortical gronve at the trumions. The trunion noteh is tirst adjusterl
 up at the mirror, ant the gran is mowd until by reWection the distant and the trumaion-sichat noter coincide with the intersection of the linese cut on the glacs

Another plan is to hatec one mirror art at an angle attacherel to at trmanion, su that the diatamt ohject is rethected on to amother mirror. Which stides umeder cower in a graduated slot in the side of the chevator. Tha erm is latid ly sliting the dower mirror to a dertain graduation (repuired liv the ranes. on the she and then moviug the gun till the distant object is seen








REFORMADO. Anatherer, fortiorls bet mallal, w la.






REFORMED OFFICER. In the l'riti-h Arms, ont

 of seniority, and (antimas in the why foreferment by brewat.

REFUSE. A military torm, nignifying to throw
 Which is formed when treops are apmon the perint of engaginer the cmome. "Thans it is sait? in the whimpor
 must be rifusert
REGALIA.- 'I'lu ensigna of roynty, including more particularly the apparatus of ne coromation. "Il"e re. galia of England ware, derior to tha lioformation. in the keeping of the Monks of Wiatminator Abhey. and they are still presented to the sumeroign an then coronation bex the Dean and I'rebornelarios of that ('hurch. Deiriver the Civil Wiar lan ('rown amblant
 restoration of the Royal Fimily, new em-inm- hat to bo made for the enremation of (hates If.. Whichs. with occasional atterations fand repoits, hate ermanued in use down in the presemt alay. Tha regulian strictly so called, consist of the creindo, tha - woptrer with the cross, the verge or rod with the dowe the so-called stafl of Edward the ('onfesoor (mado in reality for (charles 11.0 ) the hant sworl of morry called Cortana, the two whary swords of justion, spiritual amd temporal, the ampulat or recoptache for the coronation oil, the anomtinge -ywon 'prohatly the only existing relid of the chll rewalial), the armillib or bracelets, the spurs of divalry, and varioms remat vestments. Tll these with the exception of the vestments, are now exhibited in the juwel-rons in the Tower of london, in which are also a smallar crown, serpter, and orl, for the coronation of it
 tors- one of ivory, made for Wario d'Finte: and the state crown of silver and diamoms. Whioh wat need at the coronation of (quern Vieturia. containing is latge ruby and saphlifer, the former -atid to hate luen worn by Elwaril the Black l'rinc\%. Tha* Prinese of Wikes crown of poll, which is withomt stones, is morlern.
 He weplere amil the sworl of -tate. The erown probably belones to the tima of Rohert liruce and
 It was originally an onem crown. bat twonconempric
 monemted at the point of interadection ly a mound of pold and a lareseros pantor. The sepper is of the Time of James V.: the sworl was at prowt froms
 ('isil War the regalia wore removed ly the Farl narischal for safe custurly from the remin-ramon of
 his (abile of Humotar: and while Dummotar wabesieged by the farliamemary army. the rewabia

 ras the lieuthant Gwiwroce and the wifo of the Xinister of Kinneff. From the re-toratime to the union the regalia continnald to be kept in the crowsuroom as formerly : at the beriminer of a arh sewion
they were delisered to the Earl Marischal or his Deputy, in whose custorly they remained while Parliament was sitting, and were afterward restored to the charge of the Treasurer. William, minth Earl Marisehal, who opposed the Treaty of Cnion in all its stages, declined to witness its ennsummation, but appeared by his Deputy, who took a written protest that the regalia should not be removed from the Casthe of Edinhurgh without warning given to him or his suceessor in office. From that timetill 181s, the regalia remained locked in a elrest in the erownromm, away from public gaze. On Feb) 4, 1818, an order being obtained by warrant under the sign-maunal of George 1V., then the Prince Regent, the chest Was hroken open, and the erown, sword, and seepter were fonnd as they had been deprosited at the union, along with a silver rod of office, supposed to be that of the Lord IJigh Treasurer. They are now in the charge of the Officers of State for Scotland, as commissioners for the custody of regalia, and are exhibited in the erown-rom, along with a ruby ring set with diamonds, worn by Charles 1. at his coronation at Holyrond in 1633; the gollen collar of the garter, arnt by Elizabeth in James V3.; the St. George and dragon, or badge of the order of the garter: add the batlge of the order of the thistle, with fignres of St . AnIrew and Anne of Denmark, set in diamonds. These latter insignia were bequeathed hy Cardinal York, the last of the Stuarts, to George 1 Y゙. and sent to Elinburgh Castle in 1830 hy the special order of Willam If

REGAN CARTRIDGE-BELT.-This belt is intended to carry from thirty-five to forty eartridges, arringed so as to have five in each division. The thimbles are sewed to the belt. Between each division of five eartridges is a space of about half an inch, designed to allow the covers to project a little beyond the extreme cartridges in each division. In one of these spaces is a little ohlone pocket, like a spectacle-ease, furscrew-driver. In the seconlspace, on either side of the front of the belt, is a buckle, which is riveted to the belt, and designed to fasten the eross-belts. On each side of the eenter division of thimbles on the back part of the belt are two other buckles, to fasten the cross-belts on behind. To each division of five cartridges is arranged al little cover for the cartridges, to prevent them from being lost by oirnpping out, fastened by a small brass knob, adjusted to the center thimble of each division of cartridges. A strap and buckle, to support the hayonet scubbard, is sewed on inside of the belt on the left sille. Cross. belts are attached to the waist-belt, to remove the weight from the waist, and these are so arranged as to carry a blanket and a change of underclothing.

REGARDANT.-A term used in heraldry witis re.
a Colonel's command, and the largest permanent association of roldiers. Regiments may be combined into brigates, brigades into divisjons, and divisions into armies: but these combinations are but temporary, while in the regiment the same officurs serve contimually, and in command of the same body of men. The strength of a regiment may vary greatly even in the same army, as each may comprive any number of battalions. Freneh and Austrian regíments have ordinarily 4 to 6 battalions. Ameng British infantry, the smallest regiments are those numbered from the 26th upward (exeepi the (ioth), which have 600 men each, composing ome battalion. The 60 th and rifle brigade comprise eac.l 4 battalions. The whole artillery foree is comprised in one regiment. The strengith of a regiment is ellanged from time to time: usually by the addition or witludrawal of private soldiers. The present plan would be, in ease of war, to raise the skeleton regiment to war strength by calling in men from the army reserve.

The regimental system could only exist where standing armies are maintained. Accordingly, the Macedonian syntagmata and the Roman coborts were evidently regiments in a strict sense. During the Midelle Ages, feudal organization precluded the system, and its first reappearance was in Framce. Francis I. formed lugions of 6,000 men each, whieh wre divided into independent companies, the latter being, in fact, battalions, and eaeli legion a regiment. The word regiment hegan to be applied to hodies of Britisl troops in Elizabeth's reign; regiments are spoken of at the time of the Armada, 1588 , and as composing the force in Ireland in 1598. From that time forward, the arny and militia of Britain have been organized into regiments. Cluarles I. and the parliament each raised regiments, all of which were disbanded at the restoration, with the exeeption of the Lord General's legiment of Foot, and his LifeGuard of Horse. These two were re-engaged (1661), and form the present Coldstream Guarels and Royal Horse-Guards. In the same year, a Scotch enrps of 1700 men, which larl aken service in France in the time of James $1 .$, returned to England, and was included in the British Army as the 1 st foot. Other regiments of infantry were gradually raised as required. In 1693 was raised the first trong of horse Gremadier Guards, and the $2 d$ tronp in 1702. These were disbanded in 1782 , and reformed as the 1 st and 2d Sife-Guarls, which still exist. Besides Cavalry and Infantry, the British Army comprises the Regiment of Artillery, and the Corps of Royal Engineers, and minitary traỉn.

The total Regiments of the British Army for the year $1876-77$ (and substantially the same at present) were:

IIorse-Guarla (Blues).
Cavalry of the Line-

IIus*ars ........................................................
Laneers
Ilorse Artillery...........................................
Foot Artilhery:. $\qquad$
Royal Engineers..........................................
Foot (riarches. $\qquad$
lufantry of the Line
Army Hospital Corps
Army Survice ('orp)s.
West India Rumiments,
(black troops)

Total
ferener to an anmal whose heal is thrnct hatswarsl. Sice P'exsevet and hompornt.
REGIMENT. - In nll mexdern armies, a rousiment is

$\begin{gathered} \text { Regiments. } \\ \ddot{2} \\ 1 \end{gathered}$	$\begin{aligned} & \text { Officers and Men. } \\ & \begin{array}{c} 868 \\ 434 \end{array} \end{aligned}$
7)	
3: 28	15,973
5	
1	15,633 in 6 brigades. ( 29.291 in 26 brigades.
1	5.510
3	5.950 in 7 hatalions.
110	119,483 in 141 battalions.
1	1.574
1	3,014
2	1.832 in 2 batalions.
1	fit!) in 1 lattalion.

190,411

Each regiment is nominally commandel by a Coloncl, when in an whereral ithicer, and whose otlle is merely a sinceure. The real command, however
 Whon is assioted hy a Major and hate for at siall an
 surgem．The remiment or hatallion is divideal in－
 Ferver（orps：and intorocips in the（avalry．Tha


 unito．＇Tha working allicervare（aphain and imo

 of artillary．
 ments anal rompanion in the［＂nital static Army：




 tal ドum！











On the organization of a regiment，the batheries of artillery，companies of infantry，and tron of of cavalry are permaneatly designated by letters in abpabeti－ cal order．Officers in the first instanee are assigned to these subdivisions，and afterwatd sucered theredo as promoted to fill vacameids．battalion amp parale formations are regulated by the Tactics．Tla fidld ollicers are assigned by their Department Com－ manders wherever theirsorviests are most required． provided the assignment is with trongs of thatir own regiments．Regiments are furnshed with fied mu－ sie on the reguisitions of the commambers，made． from time totime．diree on the Adjutant（emeral： and，when requested hy remimental commanders， The ．Idjutant General emedeavors to have suitable men selected from the recruits，or anlisterl，for the regimental bands．

Each regiment is supplied will a liegimental（or－ ster Book，a Regimental Latter Book，abook of the Letters laceivel，and ab Deseriptiva Book，womath at list of the oflicers of the regiment，with their rank and dutes of appoiutment，and promotions，stausfers， lavion of absence．amb phaces and lates of birth．

REGIMENTAL COURT－MARTIAL．－A legal frilu－ nal．composed of three Members and at Jutge－helvo cate，convenet for the pmishment of oflemders in
 Triet．
REGIMENTAL FUND．－Comerils of Administration at posts occubied by companics of the same rewi－ ment at regular meetings，sid aside and cause to be patid ofer to the regimental treasurar fifty per ecme． of the amont accruing to the post tunt luring the
tal Council．
Thw musical instruncmes and evervhhing pertain． ing to the band are kopt lyy the idjutant．The Colonel or Commanding Otherer．When approsen the appropriations of the（＇oumeile is held acemmatable for all expenditures of the fund not made in accord－ ance with the Regulations．

The following are the objecte to which the laceri－ mental Fund is appropriated exelusively：

1．The mantenance of a hame．
2．Wilreu not needed for the ham！，it may le tranc fered to the companies of the reviment ac company fund．See Cimp pany Frund．and IP，Fiund．
REGIMENTAL HOSPITAL，－In（irmat liritain，wheh regiment hats a lloctutal for the reception of the sick helouging to it．Thi llomital is milar ：ime imo mediate care of the Recrimental surgeon，whon is subordinate（0）the generai Modical boarel．See $/ /=$ pitule．
 be the oflicer commanding ar reximent for the infore mationeof the oflicers and revinsent genorally．

Regimental orders follow up all ordere ianesl hy the ofticer commanding the brimale grarrion，－ta－ then．cte．havine reference to the rewiment．
REGMENTAL RECRUITING SERVICE．Th（ 1 （n－ mander of arerimeut in the supurintendent of the Reerniting Sorvice for bis regimemt．When men are enlisted by Ramimmal Roruiting Othicer．the principhes geverning the emeral arvice in resarel To qualitications of rectuit－are wheremed．A－a rule recrutione fund are nom fumished for the revermat service．When－pectial anthority ingiven to npen a
temporary rendezrous, or detach a party to recruit companies which have hecome :educed. requisition for funds may be made by the Regimental Commander upon the Adjutant General.

To prevent deserters at large and men who have been discharged with bad eharacter from imposing themselves again upon the serviee, no enlistments are mate by company officers or at posts, without sperial anthority in each case, exrept when the man has been honorably diseharged from the same company or post within one month previous to his application. so that his character is known. In all other eases, application is made to the Adjutant General for authority to culist the man-namiug him -and, if a discbarged soldier, giving his last company and regiment, and sucli evidence of good character as can be obtaned. Enlistments, when made undersuch eonditions, may bear the date of the application.

REGIMENTALS.-The uniform elothing of oflieers and men in the military serviec, as preseribed for each regiment and depariment.

Regimental schools.--In the British Army, the Sehools for Adults, and lioys above eight years of age, under the School-master, and the Infant and ludlustrial Schools under the School-mistress, for girls and little boys. In the first. plain subjeets are tanght to soldiers who volmotarily attend, or to soldiers' children. The education is wholly secular, the only theological teaching being exposition of a portion of Scripture during the first half-honr of morning school: but even at this, attendauce is at the option of the parents. The Infant Schonl is condupted on simidar principles. The lndustrial School is to fit girls for the occupations of life, and to render them capable of entering domestic service; a grant of money is made by Govermment for the provision of materials. There is a schonl of each sort, in every battalion of infantry or regiment of cavalry, the total cost of which amounts, for 1873-24, to $£ 36,253$. Adult soldiers are admittefl gratuitonsly : for children, there is a nominal clarge of 1 d . eacha month. The orphans of soldiers and the children of soldiers serving abroad are received at any neighboring school without payment: those of pensioners, contractors, etc., at 3.l. a month: and the children of officers at 5 s. a month. It is forbidden that any difference should be made in the schools in the treatment of these different elasses of pupils.
REGULAR APPROACHES. - The term Regulur Appromelow is applied to the means employed by a besieging force to reduce a fortificl position which is too strong to be earried by the usnal mode of an open assault. These means consist in approaching the position under the cover of the ordinary trench


Fig. 1. Pronle of Approach by the Simple 'reneh.
bortered by a parapet, which is gratually pushed forward in the most favorable directions to shelter the troops placed in it from both confidading ame plunging fires. In the construction of the trenches variots articles ate rexpuired to give specedy and safe cover besifles the usmal troncling tools. These are termed Trench Materials, and consivt of-1. Trueing Tinperer Iord; 2. Tracing l'ichets: 3. Ordinury P'ickves: 4. Faxcinex; 5. Siep Finguts; 4. Gabions: 5. Siep-
 bremes and shenting. The tracing tape is a slrong white tape or reorl usually 150 fortlong, and divided off into spaces of ${ }^{\circ} \mathrm{f}$ fect, a piere of lape $t$ inches long being suew to each peint of division. At cach
end of the tracing tape a short piece of corl is attached to tie the tape to two tracing piekets. The tracing tape, for conveuience, is rolled up into a ball. The tracing pickets are 18 inches long and one ineh in diameter. For ordinary use they are tied up in bundles with their bark on; but for setting out night work the bark should be stripped off to make them more readily seen. Those used for sceuring fascines are from $2^{\prime}$ to $4^{\prime}$ long, and from $1 \frac{1}{4}^{\prime \prime}$ to $\mathrm{P}_{4}^{4 \prime \prime}$ thick; those for sptting out or tracing the works are $18^{\prime \prime}$ long and $1^{\prime \prime}$ eliameter. The fascinces are usually made $18^{\prime}$ long. and $9^{\prime \prime}$ in diameter, and are afterwards cut into suitable lengths for the purposes to which they are to be applied. Sap-fagots are made, like fascines, of straight brush-woof at least $1^{\prime \prime}$ in diameter. They are $2^{\prime} 9^{\prime \prime}$ loug, and 5 '" in diameter. The center stake should be from $1 \frac{1}{2}{ }^{\prime \prime}$ to $2^{\prime \prime}$ in diameter, and project $9^{\prime \prime}$ ineles beyond one end of the sap-fagot: this projecting prortion is sharpened, to enable the sap-fagot to be planted firmly in the gronnd in an mpright position. The exterior diameter of the gabions is $2^{\prime}$, and the loeight of wattling $2^{\prime} 9^{\prime \prime}$. 'They are made ' with suven, or nine stakes, which project $6^{\prime \prime}$ above the wattliner at top. and are pointed. The ordinary trench gabion and the gabion for revetting batteries receive the same dimensions; the latter is more strongly made and of the heaviest brush woorl. At the siege of Sebastopol the want of brush wood for the wattling of gabions led to the introduction of the eommon hoop-iron for this purpose, which had served to secure the bales of hay. The number of pickets employed for each gabion was nsually thirteen. It was found that these gabions could be eonstructed more readily than the ordinary kind; that they were not much heavier. were more durable, and in all other respeets as serviceable. The sap-roller is a large gabion 7 feet is inches in length, and 4 feet 4 inches exterior diameter. It requires for its construction fiftern stakes. each from $1 \frac{1}{1}$ inches to 2 inches in diameter. After it is completed, it is stuffed compactly with fascines 7 feet 6 inches long. The sapmiller is sometimes made of two concentric gabions. the dianeter of the smaller 2 feet 6 inches. The space between the two is well stuffed with faseines The samd-bag, for the revetment of batteries, when empty and laid flat, is? feet 8 inches long, and 1 foot 4 inches wide: those nsed in the constraction of the trenches are 2 feet long and 12 inches wide.
The trenches are divided into two prineipal elasses; approaches or boyaux, and porellels. The approaches serve simply as covered communications which lead to and conneet the parallels, and are nsually directed towards the points of the defenses upon which the attack of the besiegers is made. The approaches are rum in a zigzag. or in as staight line. towards one or several of these points. The trenches of the approaches are 8 feet wite at hottom; 3 fert 6 inehes deep in front, and 4 feet at the rear. The reverse receivers a slope of $45^{\circ}$. The front is usually made with a slope of 2 feet base. The earth from the trench is thrown to the front to form a parapet. The geaeral height of this parapet is mearly 5 feet; its width at the hase abont 18 fect. The parallels are designed as stations for troops to guard the hesiegers' worka and the workmen employed in their exerution from the sortics of the garrison. The general direction of the parallels is parallel 10 , or concentric with, a line comecting the most satient points of that portion of the defenses attacked. The trenehes of the parallels receive a widtle at botom of 10 foct; their depth in fromt is 3 fect, and in rear. 3 fert 6 inches. Two steps, tarh 18 inchers high and 18 wide, lead from near the botton of the trench,on the front vide, up to the natural grount. The reverse of the trencla recerves a slope of $40^{\circ}$ : or else. is also cut into two steps. The steps in front arealone revetted with fasemes.
When the paramet is formed of carth alone as is represented in Fig. 1, the wend is termed as simple

Trenco. In this case the eqreth of tha paratuet is
 Thestop, "r luran of 18 jnelas hetworn the paraper
 Portions of the parallels, from 20 lo :30 yarils in longrth, are arranged will rtepa, reveltad with fas-
 rnable the trongs in the parallet to mave froms it th
 of the simple trench is laid out hy tho tracing-tap and piekets. The trenels is cereented ly sestaines of the line; cach man loring farmished with a pock and shovel, with which he places hinnself sumbily anter

 Nortims
rowor, by digering a hole and throwing tho arth in front of him; rontimuing his labor motil lap has ex.
 of $\mathrm{i}_{\mathrm{t}}$ to the rear as maty be assigmed to the rolief. or working party, to which la belonges. after the trench has recoived its eremeral wialth aml depth, the slopens and steps aro tinisherl ofl umber the alirection of the emerincer tromps. See serge

REGULARS. - 'Thosatroope whose contlitions uf ent rollmont are not limited to time or place. in contrat distinction to militia or volmaterer corps: tronps permanomtly in service. Franow first sot the exmmple of lowping trongs in peace. Charles Vill, forsering the danger of invasion, anthorizel the ascemblage of armed incremarios. or ('onpagnias Dordonnances. Lonis XI. dismissed these thopps but corolled new oners, composed uf lirench, \&wiss and heotch. Vomer Clarles Vlll., (iermans were admiltod in the French army, and the highest and most illastrions nobles of Franer regarded it as an honor to setve in the Gons D'armes. Moral gualitications not bring cxacted for atmassion to the army the restraints of a barbaronts discipline hecome necessary, and this diseipline divided widely the soldier from the people. The Fremeth Revolution overturncel this systom: now no merren. ary troops are to be foumd in continental Europe. Einerland only now raises armios by the systom of he cruiters. This list wars of Europe lave been, wars of the people and have bern fought by mationalities. After poace, armies remain national, for the ele coments are taken from the people hy legai liberations.

REGULATION RRICE. This phrase as appled to an Otlicer's Commission, was the requated price paid by Otlicers for each step) of rank (according to a fixed scale), other than deatla vacancies, vacameios cansed by angmenting a regiment, or vacancios resulting from the promotions of ('olonels to be Major Gparerala. When an Onieer of any rank, from at Lieutenant Colomel downwards, was desirots uf retiring from the service, he was antitled tur sull hiss commission for the price stipulated by the regulations. Sometimes, he reecived more than the reaglation sum, Purchase being no longer peranited in the army, the sald of conmissions mentioned has only reference to Otheers who entered the army be fore November 1,1s71.
REQULATIONS. - Cniler the Constitution of tha United States, rules for the government amblreguluthon of the army must be mate by Congress. Jrogulation implies regularity. It signifies tixorl forms: a cerfain order: method: precise determination of functions, rights and dnties. Kales of Regulationtaloo embrace, besides rules for the admunistrative service. systems of tactics, and the requlation of service in campaign. garrison, and quarters. In the ease of

 War. lbal in relalion lor lar juswor, rimht, imal


 prrcisely delorminull lyy military lawn. livan righta








 of military siathle and maborition in dimpala maty

 atml rights. powers. and datien ratablialarol by law would have well detorminul.

But it may be waid in relation for math roblon of

 duty might adsily loe prorformand in follows: I. lहy

 discipline ame military control of tho arany under thow
 Presidemt. 23. The stoceratary of War in ehargeal with lase alministative mervice of the arang moler
 President. B. liy difuctine tha (iorm-ral-in-(thiof. Witls the arlvice of propmery combtitmtorl Military
 groverument and regulation of the army in conmpaign。 garrison, or cuarters. including symions bif pactio. for the dificernt arms of the serviere 4. 13y dirocting the Secretary of War, with llse advie. of properly sonstituteri Bosirds. tor report (w the I'ruident rules for rajsing and supporting armine : ine cluting regnlations for the administrative arrice. 5. By directing the l’residunt to sulnuit the rulaw made in acoordance with provisions 3 atml 4 . In another beraral organioed by the l'reciolent, witheti. ractions to harmonize the detaits of the enveral
 Conerese for contirmation or ordars in the catw is. By dienctiner that each year, frowious forthe montine of Congress, the following board- lo ancernbled
 Board of General Stalf ()tlieers; a lbmard of Artillers Oltiocers: a Board of ('avalry (ntliowrs : amd a Boare! of Infantry Otliecrs. The Sereretary of war to an semble all the following lBoards, vi\%, : A Bunal uf
 Board of Medical (thberara a and a lamard of tuartermasters. Commissaries and laymantero. Fand of the Boarde $o$ assembled to repmert to the (inderal-in-Chief or serretary of W゙ar. such suggertints wf improvements in tlacir respoctive so rwion it may lu.
 gating legislativa authority of the Prasident and Sectitary of IV ar.

REGULATORS.-1. The popular name of a party in North Carolina. Which arose in latie amel land for ith object the forcible redrese of pullide erimenme. 2. Contrirances dosigned to render :low pows $r$ atnel resistance proportionate to rasta other. IRemblatore gemerally art upon that point of the machitse which commande the supply of the ponser lyy mesan- of some meelanjeal contrivancos. which chatk the quantity of tha movider principle conveyal lo sha* machine whenever the motion lexomes accelarated. and increace the supply whenever it beronme re tareled. For example. this is acombuli-lued in a steam-engine by actimg on a walve called the thruth ralve, placed in the main pipe.

REGULUS.-. I lerm in monallurgy, which is nom used in th geveric semee for metals in different stage-
of purity, but whiclı still retain, to a greater or less extent. the impurities they contained in the state of ore. When, for eximple, the are known as the sulphuret of copper is smelted, the product of the different furnaces through whieh it passes is called rogulus until it is nearly pure copper. The name, which signities "Little king," was tirst given by the alchemists to the metal antimony, on account of its powier to remter gold brittle.

REIGN OF TERROR. -The name given to that priod in the history of France when the Revolutionary Government, under the guidance of Maximilien Robespierre, supported itself by the pure operation of terror, exterminating with the guillotine all the enrmise, or supposed ramies, of the Democratic Dictatorship. In the vear 1 Tig the Convention vested the Government in a "Committec of Public Safety", a bouly belonging to the Party of the Monntain, and of which Robespierre, Couthon, and St. Jnst became the Trimnvirate. This Committee to whielevery other authority in the country wias subjected, deliberated in seeret. and the convention sanctioned all its decrees. Lonis XVI. had alrealy been brought to the scaffold; and on Oct. 16 his (Queen, Marie Antoinette, after being subjected to every possible indicnity, was beheated: the Priacess Elizaboth sharing the same fate on May 10 . 1744. The execntion of the Girondists followerl, and that of the Duke of Orleans. The guillotine becanme the only instrument of Government : a lonk or a gesture might excite suspicion, and suspicion was death. The Calendar was remodeled, and all religions rites suppressen. When the power of the Committee had attained its climax, a deeree was pasced abrogating every delay or usage calculated to protect an accused person; but from that moment a reaction began. A section of the Mountain Party were satiated with bloorl, and. harl become impatient of the control of Roberpierre. (On July 28, 17:34, he wandenounced in the Convention for his barbarities. and his death brought to a close this sanguinary era in Fiencla history.

REIN.- I term applied in a crack or vein in a muslict barrel.
REINFORCE.-The cylineler of a canmon is nsually divited intotwo portions, culled the first and secund reinforre. The first reinforce extends from the basering to the seat of the ball, and is the thickest part of the piece, for the reason that the pressure of the powder is found, both hy experiment and calculation, to be greatest before the projeetile is moved far from its place. The shape of this reinforce was formerly mate slightly conical, under the impression that the pressure was greater at the vent than at the seat of the projectile; but it is now manle cylindrical thronghont. For bronze ramon, the thickness of this part is approximately given by the empirieal formnat
$E=H \int \frac{\pi}{\frac{1}{2}}!$, in which $/ 1$ represents the diameter of a solide cant-iron shot suited to the bore: "the proof charere : and / the rabl woight of the projectile. For "ast-iron cunnon, $\mathrm{F}_{\mathrm{a}}$ should be multiplied by the co-- tlicient 1.1\%. In ereneral terms. the thickness of a bromze grm, al the seat of the charge, is a little less. amd of atast-iron gun a little groater, than the diat mutar of the bore. "Thase dimmsions exeeed tluse determincod by atarmition, but are necessury to enable the pineto to resist the shercks of the progecotile,
 with the chase. It is mader considnerably thicker than necessary to resist the pressure of the powder, in order to sirve as a properpoint of smport for the trunnions, whl to erompernsite for ecrtain defectsof motal liable to oreur in the vicinity of the trambions of all cast cannon, arising from the arysalline arrangement. and mompan cooling of the difleront parts. Sie ('anmint.
RELNFORCE-BAND.- lnordnane a hand at the junetion uf the first and secomil rilinfurec.

REINFORCEMENTS.- Ielitinnal forcis; especially thone troops interded to atugrment the strenerth of an army. llistory proves that batth's lave been decided by remforcements, and that victory is commonly the prize of the General who is the last to bring his reinforements into action. It was to the proper emplament of reserves that Napoleon owed so much of his success; and the barren victory of Borodino and his complete defeat at Wraterloo are by many attributed, in the one ease to his holding back the guard altogether, and in the other to his delay in nsing it. Jomini and other writers lay down that reinforeements being the last argment on the battlefirld should always be romposed of troops of a suprrior kind, but the experi-nce of recent wars shows that. on account of the new tactics which lave been ulopted since the introdnction of arms of preeision, all troops, so far as they have not come into action. are reserves to the leader. Reinforcements shonld be placed near enough to support the tronps in action. but they must be kept ont of sight, and their position concealed from the enemy. Their distancefrom the second line depends entirely upon the nature of the ground, as well as upon the extent of the ground covered by the line from right to left: and their strength should cousist of about one-fourth or onefifth of the whole force in cavalry ind infantry, and of abont one-third of the gins. "The reserve luatteries may cither be kept with the main reserve, or concentrated on any point where their united fire may help to shake the enemy previous to the final attack. In the attack of the fortress, no assantt slonld be attempted without a sulbicient reserve, which should be well placed for following the supports of the escalarling parties: its strength should never be less than three-fourths of the garrison of the work as. saulted.

REINFORCE-RING.--In orelnance, a flatmolding at the breech end of the reinforce.

REINS.-The straps of a bridle fastened to the curb or snaffle on cach side, by which the rider or driver restrains and governs the horse. They serve to prepare the horse for the movements, to guide and laalt him; their action shonld be gradual and in larmony with that of the legs. Jn using them the arms shonld be moved with ease, and from the wrist to the shoulder. The rein-hold will vary with the design of the rider and the propensities of the horse. The Jrawing shows the nsual manner of holding and shifting the reins. In holding them separately, one passes into each land, between the third and the fourth fingers. and out over the fore-

finger, where it is hededown by the thumb. Usually the reins are held in the left limbl, as when first taken up. IIere the left rein pasios under the little finger, and the right under the third, both passing throngh the band, and the superthous rein hanging over the first joint of the fore-finger. the thmmb secoring if. Sonetimes, the right rein inters the land over the fore-finger from abow and reosses the left rein in the patm, where the timeres close mpon them. Tlie loop, formerl of the resiche, langs down between the land and louly.

The reins should be shifted quickly and expertly without braking the time or altering the jace.
'To slift the reins from the left hame : 'lorn the thambs wall towneds each other and carry the right land over the left; place the fore-tingar of the right
lamid downward，in the pharg of the litila finger inf



＇To requrn throm to tiar laft limmat：（＇arry the Itef hanel over the right mat flawe lla litilo lines．re of the






 for with the（irand Viziore remardiner the erofors and instructions 10 low sant to tha dilferont l＇rovinomes
 alleceting the Empire，whother internal or ixtornal
 siver latree of the relations of the l＇orte with loureign C＇ourts．

REITRFS．－ 1 besly of armed horsemmen，wlue（atme
 ing the reign of Henry Ill．Thoy were incorjoratoel will the raralonners．

REJOINDER，In military law，tho dofondantis maswer to fle phanlill＇s repulocalion．＇Thue wejeht of
 part of the prisumer，motess avistence las luequal－ dueced in the rephly of the prosacortor．lant suche wi－ dence slombl mot low permiltad in reply，awl there shoulal le wos rejoinder．

RELAS．－I term nsed in fortitication to signify a spare，contaning some fort in brealth，which is lx－ tweren the foot of the rampart and the soarp of lla fosse．It surves ans a eonvenient rementable for for carth that werasionally crumbleas ont．

RELATIVE RANK．－－The preerdence whieh certain Non－combutant Otlicers and onlors aro entilled to fake among thwir combatant brethrent for instance a （＂ommissary（íneral in the lenrlish Army hasthe rank of Wajor General．Redative rank carries with it all precelence and advantares attaching to the military rank with which it eorresponsks，rexept command atnd regulates rates of lodging，moner，number of sur－ sants，rations of farl and light（or allowance in their sfead）．detention and prize moner．Relative rank does not entite the boldes to saluis from ships or fortresses，nor to the thrning ont of guard．It has bately been determined that tho Assisiant Military Secredary at the llorse Guards is to have the relativi rank of Colond

The following is the redative rank of the binglish Navy and Army：
Navy Fiely

Ardmital uf the Flow ．．．．．．．．．．．．．Find Marshad．
Admirals．
Ginerals．
Viec Admirals． $\qquad$ Licutemant（rancrals
IRar Admarals llajor trencrals
Citpistins of the Fleet
Commodores， 1 st and 2 Z d class
（alptims over three
years＇service．．．．
Captains under thete years＇survice．
Gimmanders．
$\qquad$
$\qquad$ －nants of 8 le＂ars standing $\qquad$ ieutenants under 8 years＇ standing． $\qquad$
Snb－Vicutenants． $\qquad$ Cuptains

Midshipmen Citulemants． ．．．．．．．．．．．．．．．．．．．．．．．nh－Li＂utenants．
 rank of ofticers is as follows： Irmy Siery
Second Lieutemant．．．．．．．．．．．．．．．．Ensign．
First Lieutenant． Master．
Caplain liententmt．
Major
$\qquad$ Lient＇t Cummander．
 （＇ulonい］


（comithendorr．
lobar dilmaral
Vije A－1miral
Almiral．
Major lioneral．

（ $\mathrm{a} \cdot \boldsymbol{- 1 )}$－ ra ）．



RELEASE OF PHISONERS．＇I lio＇Artirle of thar



川⿲丶丶丶⿴囗十
 whicla is well fonmulerl in pront of low．｜rosulul if

 lish．








RELIEVER．An iron ring fixal（1）al lumulto．Is


 －strattol otherwivi．
RELIEVING THE ENEMY－\｜h hrarnevor rolirur the egleny with mentey，viothals，wr ammamition，vir knowingly harbors oir perolof－an ermolus：－nifers
 may direre．

RELOADING CARTRIDGES．In 1אifi，whwon lho matnufacture of the serviow－cartrider was anoman nev at Frankford Arsumal．Jhiladulplais．J＇a．。 litth．wr nothang was known as to low a good roliald．mili－ tary cartrider comh lue mado．＇lo（xyplain the ditli． entites whieh had to be overcome at every－top．that machimes of loe invented to dor the work uniformly．
 ume．It can be said．howeverothat throngho fle cran－ bined＂florts of tha oflicersin combmand of Frank ford
 Epringficld．Mass，a cartrible was probluced whirh womld reflect crodit upon any nation．［0p totloo present time this eartritare，jerforeted and sionals modified，has bown the servire－araridge for bera cli－ loading smallarinsund machine ignas．：With flat in－ vention and adoption of hreech－loading sumall－arma nut motallie cartridge shells，luavier and mote uni－ form charges of powder wert introulacoul，giving

 marksmen．To meet evemomically the ifomamal for an ineresased expenditure of ammanition thas produead，rdonding shodls were usal．T̈atil this－de－ mand eame such shells lated not beren in acte for aty
 making them had heen worked upe at that pon－l．whith has since beven quite gencrally sumpfoll hy all maman facturers，of relondings shedls in thi（ewnniry．and alos） abloudd hy several natious，viz．makiner at focko in
 from which it is drawn，and intu which a prime $r$ could he insarted from the exterior．Ruloantinz：latls


 hats proved．The sersice non－raloabling shall is nambe of copper with at small peocoentage of epulfir．atul has shown durability equal in years to thowe longe－t masde

Thu reloadine sartridece Jou forniched to the army
 Lowetl，solid head！Winchester．soli｜heal：Pe ridan． fohded head．The Fratukford Arsenal．Lowedl．and

Winchester cartridges have a central vent in the primer pocket, which admits of the exploded prime being driven out of the pocket from the empty shell by a punch. The Berdan, having no central vert, requires a special tool, applied on the outside, to remove the exploded primer.
The materials required for reloading comprise lubricated bullets, musket powder, amb cartridge primers adapted to the shells to he reloaden. The following comprises as set of Frazkfort Aracnal hanil tools for reloading cartridges:

Name.
Cost prive.
1 brush wiper............................................. si 10
1 charger.................................................... (1is
1 die, crimping...................................................... 1 !)
1 die, reloarling.
in
1 die, resizing.................................................. 1 is
1 Irift.
15
1 extractor, primer...................................... 110
1 funnel.. 10
1 mallet. 15
1 nil rup...................................................
1 priming tool............................................. 100
1 punch, primer....................................... 碞
1 puneh, reln:uling dic................................. an 5
1 punch, resiking die.................................. 䀎
1 safely socket.. 20
1 seraper, shell.
r. $\qquad$
1 setter, primer
1 wiping rod.
box containing set $\qquad$
$\qquad$12

Total cost of set.............................. © 9 (10
The first enteration of reloading is the removal of the exploded primer. For central-went cartridges this is done by inserting the extractor in the shell and resting the liead of the latter in the recess for it on the siffety-socket. then driving out the primer with
cleaning, examine the shell to ascortain if it shows sigas of rupture. These may generally be seen at the heall, the mouth, or as transverse or longitudi-


Fig. . .


Fig. 3.
nal marks on the body. The shell is next forced in. to the die for resizing. using the mallet if necessary,


Fis. 1.
the mallet. The liridseport tool for exterior extrac-
tion, shown in Fig. tion, shown in Fig. 1, and sperially adrapod to the "13"redau" <hells, maty be nsed for all cartridges; hat the primer pumel for central-vent shells is the more simple and positive in its action. If the wire of the extractor shond break, extra ones are supplied with e:ach wet of toons, and are put in hy mserewing the flug in the lacen of the extractor, Arivine mot the broken pin with the new one in the direction of the head, the lube being tapered, dropping in the new pin at the heat, and replacing the serew plus.

THe shells, whether whe or reatently fired, should always. if possible be deamed of the powiser resitue.
 water will edan them, but hot water is a better solvent, and the shelle dry more quirkly when taken oul of it . When cireumstancers rember it impossible or inconvenient to has water, the hrishla wiper may be used for brushing wat the residumaleft in the she it by the combustion of poweder and fulnimate. Aftrr
striking fairly and squarely on the lemad of the shell. so as tin a void bending or distorting its flange. The outside of the shelt or inside of inte die should be olled to facilitate the entrance of the shell and preveat abrasion. It is driven out hy means of the punch inserten in the die and shedl. This last opcration is likely to cause a bur on the month of the shell, which would defiee the bullet if not remosed. For this parpose the seraper is supplied. Insert it about (0" 5 into the shell, lefld in left hand, seraper in right ; give the shell and seraneer a half-turn in opposite directions, bearing with the weraper anly hard enengh to take nif the hur. The hambly of seraper and axis of shelt would le kept nearly parallel to each other to avoil thiming the montli of the shell. Althongh theshell may he fired several times without resizing, this uperation is considered measary after corh randed otherwise the shell will be unduly "xpatmed by surcescive rounts, and cepotually fail to onter the gramechamber: after which the extrit
forer required to resi\% it might prove injurions to the metal.
"The shell is next inserted in the lomding dir, the primer enterad into the porket, ant lhe suferty werkel phaced over it, latge (and down; the primer tany than be driven home with the primer-punch mal malle. Considerable loss of primers by premature expleston in this opration has oceurech, and at teol is supplime for selting primers hy pressure; which is used ns follows: The shall is placel in the leol for insorting
 tered ia the procket-anal the primer presicd honne by mants of the lewer and sorew. 'llow ond of the sirew is so formed as to insure the primer la
 be slightly labricated ta a woil wear of the proferetion on the end and abrasion of the primer. The 1sridge-
 the primers of all sholle hout tho "Lonwell." which has, intentionally, a primer to dit the peoket tighaly, and reguires considerable foree for its proger msiertion. "lhe serew tool will set the "Firankford Arsomal," "Bardan," "Lawell." and "Winchester" primars "qually well. The shell is now ready for reloadines. It is inserted in the londed die, the latere into the safery-socket, and the powder-fummel into the month of the die. A lewe memsureful of powder is then poured into the sheld thengeh the fumel, aftar which the billet, or shot, is inserted and driven home with the pumeh and mallet until the shander of the puneth fonches the end of the die, as shown in Fig. 3. This insures proper and uniform leng of cartridere.

The reloadiag die may be used an a gange for determining whether carindeges are of the porere dimensions for ebtering the chambers of guns. As: rule, any cartridere that will enter the reloading die will enter the chamber of the gran freely. It i s, in fact, a combined reloading die and gange for cart











 tend to rapture the rate in bline and alot lemperarily disable the genn. I wight amonnt of bubleramt on the cartridge or dhander Hironghome thir lonrth

 tw the ir uncequal "xpansion in the rhandor r: The fromt rad beine thin is more pluickly expanded, atal in the absener of the lubricant is ludd by promane and frio. tion acrainst the wats of the e chamber. white thae thate $k$
 sure of the grance. A~ar role, bulle fond hatrionnt fram tha bullet finds ita wry inta the ranublare to anmarer all purpuses. 'These toels are made ate -imple and strong as possilhe. Some of them, partionlarly the
 so as nor to injure ther murface or ather the ir ciman. sions, where such would attert the cartriden. 'Thes are clamp. durable, and ynite raphl ins (g) ration if
 done by one person performing eseln opration whe arately on a number of sheils. Sireial twela rintployed in the operations of hoadinge wher than thaon reginied for the service cartrifies. are notiond under
 Implements, and rénter-fire Witullio-rawe "'urtridge.
REMARKS.-Army lecturns, IRegimental Returns,


Fig. 4.
ridges. To use it as a gauge insert the punely in the small (rad and the cartridge in the opposite end. If the cartridge enters fully without mosing the punch. it is of proper length anil diameter.

When shells are telloded for immediate use they may be fired after the foregoing operation. lunt if banded for storage for any length ot time, the crimping die should be used to secure the bulle in pestion. Ti) perform this operation. insert the loaded cartridge into the die, then sef the hand in the recess of the safety-socket, the latter restine on a berneh or table, and drive the cartridge in with the hlows of themallet on top of the die The safty-socke has a central hole concentric with the conner-bore. In extracting the primers it supports the head of the cascend forms a receptacle for exploded primers. It also supports the hatel of the shell on oppesite conds in the operations of louding and crimping, and the central hole protects the primer from severe

Guard lieports. etc., have a columen allottol for olnservations relative to extracolinary ow ure netes. headed "Remarks." The voucher io dhistact 13. page bio. used by Quartermaters, may be nutionlan an example.
REMBLAI. The guantity of "arth in the man of
 cel works, the "-puality lwotwers the deblai and remmeri is indispensalule for every part. may, for every face. For works pot defiladed, and having there forethe ir crests horizontal. the following method of catculation mave he employed, whe be wer expulition is required. Supposias the parapet abd the rlite lat have the same lemerth and ("gual protilas. (the it whlumes will be equal and the problem becomre thu* simplificel: knowiug the arta of the profile of the coraring mass. to calculate the dime n-it n- if the ditel so as 10 make the surface of it--rertion musl to that of the remblai. leet sepreant the area of

## Quartermaster

U. S. Army, at
for the perion herein expressed. having sigusd duplicates lacreof.

the section of the remblai. When earth is exeavated, it increames in bulk, and whatever care be taken in ramming it in, the volume it occupies in the remblat will be greater than the space it filled in the deblai this increase of bulk, ealled forsommement, is $\frac{1}{4}$ in strong soil, $\frac{1}{12}$ in ordinary soil, and $\frac{1}{2 \pi}$ in sand. Represent it by $1 \div F$ and let the arca of the profite of the diteh $=\mathrm{S}^{\prime}$; then, we have

$$
s=S^{\prime}+\frac{S^{\prime}}{N^{\prime}}, \text { whence } S^{\prime}=\frac{N}{1+F}
$$

When the work is defiladed by an inerease of command at the salients, it becones* necessary to obtain the mean protile; this is done by calculating the art:is of the profites att the salient and at the extremity of the face, and taking their mean

REMINGTON-LEE MAGAZINE-GUN.-Tlais arm is the same in principle as the one previonsly duscribued in this work. nuder the head of Lee wlegazine-gnn. Since E. Remington d Sons have secured the exclu-
that the trigger is pultud. By refrring to the Frontispiefe we cosn see that when the bolt is closerd the position of the handla is directly above the triggor. The bolt has also a removable front end or "head." This allows the firing-pin und main-spring to be put into it from the front end. so that the rear cnd where the handle is now attached is very much stronger than the old bolt, as no cutting bas to be made for the key-sleeve, $\mathbf{F}$, shown and (Iescribed on page 192 of this vobume, that piece being now discarturl.

A different method is also employed in fitstroning the firing pin, C.to the thumb-piece or cocking-piece, E, hy a locking-nut, T.

The magazine is matle of one piece of motal, in the sides of which are depressions having certain curvatures and angles, which form projections on the inside for the gundance of the follower upon which the eartrideres rest, so that they shall each be presented in their turn to the center of the bore of the barrel. The bues on the rear end of the top of the magazine are extended forward a sutbicient distance to prevent the cartridge from rising above the bore and also prevents their escape from the magazine whon it is dotached from the prece. The quatruple-leafed spring, $N$, shown on page 192 , is substituted for a coiled one, which ismmeln simpler and more effective.

By the use of this improved magazine, that part of the receiver which projects above and in the rear of the clamber known as the "overlang," is re. moved, making a larger opening for the introtuction of a cartridge, when the arm is need as a single breech-loador. Siee Lae Maguzine-gun.

REMINGTON REVOLVER. -This revolver is a modification of the Colt revolver. As the hammer is cocked a land, which is pivoted to its lower portion, rises and engages the ratchet on the base of the eylinder and canses it to revolve. A stop-bolt engages the stop notidues in the surface of the eylinter to prevent the momentum of the evinuler from carrying it past the firing point. It disengages from them under the aetion of athmmer cam, which. rising during the cocking of the hammer, presses up the rear end of the bolt and liberates its front end from the noteh. When the revolution is abont complete, the beveled lower surface of the hammer cam comes opposite the point of contact on the bolt. At this moment the tail of the bolt (being slit so as to bave a lateral spring, and the he:ad being pressed upward by a flat spring, slides down over the inelined surface of the cam, and the head engages the stopnotch in the cylinder. The spring is slit and bent so as to act apon botlo the bolt and the trigger. The drawing shows the gencral appearance of the Rem-

sive right to mamufarture and sell the Lee Magazinegun they have introduced several valuable improvements, among whith timy be mentioned the elange of the handle of the bult from the mitalle prosition to the roar ent. This greatly facilitates the rapidity with which the arm can be fired, as the hand cain kecl' its hold on the bolt-handle at the same time
ington resolver, as at present made. The vers numerous advantages or improvements chamed for the lemington revolver, as compared with the colt armure the use of a light base pin, which can be withdrawn ly loosening its catch, and thas allowing the remowal of the cylinder; the introduction of the ejector frame, fastoning to the larrel by a smmll
serew and to the frame lyy is dowelpin, fosmonime the liability of acednotatly tearing the ejocting syma tem from the barret; the coitine of the ejector nuprines aromed the base-pin insteal of aromal the ajetor; the fact that the batt of the lamingon is forperd sotid with the pistol frame. It is alsar rammed that the pistol has a mater appearmace than the: Colt. sion loble leweder.
REMINGTGN RIFLE.- 'The mechnni*! (c)nstruction of the hreerdt-sys.enn of the Jamington arm is
 iting the system with breencholorek ant hammer open and in position for lomding. The simplicity of the system, the largeness of joparts, atal the ir pere liarly matural operation, it is thaught, asold the necessity of more elaborate and distinet illaseration. The receiver, composed of frame und guard-sitap ( A A), is a substantial honsing of wrongtifon, casehardened, thesides of which are .eve inch in thicknes... This frume, eomthinines the lork umb action, is closed at the bothom by the guard-strap, which is tirmly seened in its phace loy two serews. "The hutt. stock is mortiseld for the reception of the and of the ghard-strap (lower A), and tang of frame (upper A), tenoned into the receiver, and fastened by a

 low.k-pintro.

The extractor works in ta remens rat in the left ine
 at prejection on ita lewier fare, whin hagagen with the shomkter of thw broenti-hlocke. wo that the an of swinging bate the bonk very reality withdrawn the "mpty cartringucame hy un ontirnly jomitive motion,

 ness, and rertainty of (9) worlis through the browelloblonk. It in foreal ngainat the primer by dar madian thenk of blat hamaner, which is imparted themgh the diren? action of the atrong and very mightly-curvent main-
 ridges propersly made and tithod tw the ohambar.

The operation of this arm is "aperintly simple.
 full rack. and the hrowch-piowe pwomg hack by prossing the thamb-piace with the thatah of the right haned. Tha harkwared motion of the brea hablock withoraws the dimenterged whell from the chamber, and if this motion is executed fuickly,

tang-screw passing lirough the stock vertically from tang to guard-strap. The front part of the receiver is the chamber, $1 \frac{1}{2}$ inches in length, into which the harrel is screwed. The fore-stock is secured to the hared by a recoil-stud upon the under side of the latter. The constituent parts of the action are the breech-bloek (B) and pin (h); hammer (C) and pin (b); main-spring (a) and serew ; trigger (0), triggerspring (e) and serew : Jneking-luver (I)), lockinglever spring (d), and serew; firing pin and serew. The extractor engages in a slot in the shoulder of the breceh-block. The end of the ramrod serews into a ramrod-stud. The breech-block aml ham. mer are solid pieces of tine steel, 69-100 of an inch thick, pivoted upon pins of the same material 4 ti-100 in dimmeter. These pins pass antirely forough the sides of the frame, and are held in phace by the buttonserewed on to its left axterior side. The manspring, trigger-spring, locking-lever.and the lockinglever spring are all of the very tinest quality of retined steel, the springs having the simplest possible curves, and the aetion of the man-spring uph the hammer being direct. The function of the lockinglever is two-fold, one of its otlices heing to lock the trigger, so that it camot escapre from its notels in the tumbler, when the breech-hbock is opened, and as second to secure the breech-bleck when elosed by the force directly transmitted, of the lever-spring (d). It should be remarked that the whole of the lock work of this system, with the exception of the hammer, is attaclied to the guard-strap. Which is
with the muzale of the arm slightly elevateal, the case will fall out without nececsitating the new of the fingers. 'The fresh cartriden is then insertent, and the brech closed in one continuon- motions. The arm is then ready to tire. See Ilepburn-hemo ington Ritte and Kifne-Rrmingtun Mugazine-gun.
REMINGTGN THREE BARRELLED BIFLE. I gum, recently designed by Mr. (r. IR. Remington and (*sted) with very satisfactory results. It ha- a fixel chamber elosed by a mowable breedn-block, whicla rutate about a horizontal axis at $90^{2}$ to the axi= uf the harrel. Jying below the axis of the barrel ame in fromt. The locks complete arecomaintd in the breweh-llock. which being lowered out of the way hy the tang on its lower end. permits the insertion of the cartridecs into the chambers througla a perforated extractor phate. This plate heing moved by the arm on the pivat of the brecth-hlock, withliaws the comptr shells when the block is fully (apened. I work -pring-catrd in the stock holde up the tanz uf the breech-block when the piece is cloved, and athords the ouly mpans of locking it.

REMISSION.-Abatement: forgivemes. Remio-inn of punishment as regrards a suldier tried ly a fourtMartial, is in the power of the contirming authority. and Ine can at any time remit any portion of therentence at diseretion. The perindical visitors of mili. tary prisons have the power of recommending remission of puntishactat. Whata a prionat contine d in a military prison is recommonded for a romonon of pmishment hy his commanding oflicer, the recom-
mendation should be sulmitted for the approval of the periodical visitors.

Though a soldier's punishment may have bern wholly remitted, there is to be no remission of any penalty consequent on his conviction, such as forfeit ure of service, good-contuct pay, ete.

REMONSTRATE.-To urge strong reasons against the instructions given by superior authority. If an otficer or soldier considers himself aggricved on any point, he is permitted to represent his ease, but it must be done in at respectfnl manner through his commanding othicer to higher anthority; at the same time. where the duty of the service nay require it, that duty most be first carried out with cheerfulness and alacrity.
REMOUNT.-To furnish the eavalry with horses in the room of those which have been killen, disabled, or cast.

REMOUNTS.-The name given to horses that are passed into the government service by purchase for artillery or cavalry purposes, or which are reared in a stud, as in india. The general age of remounts varies from 3 to 5 years old.

RENDEZVOUS.-A place appointed for a meeting : especially for the assembling of troops. The term commonly denotes a place for enlistment.

RENEGADE.-A term applied to one who deserts from a military or naval post.

RENNEN. - A kind of tilt. A description of tournament practiced at the elose of the 12 th century.

REPAIR OF ARMS. - The keeping in constant good order the different fire-arms belonging to it troop or company. such as riftes, ete. In the British Army a half-yearly allowance is made to Captains of troops and companies for this purposc. In the Lnited States service the cost of repairs of damage done to arms, equipments, etc., through negligence of an othieer or soldier, is declucted from the pay of said ofticer or soldier.
REPEATER.-Any fire-arm that may be discharged many times in funick sucression : especially a form of fire-arm so constructed that the charges may be successively introduced, ly an action of the lock, from a chamber containing them, into the breech, and fired, or are diseharged from a revolving chamber at the breech. See Magazinc-gun, and Fevolver.

REPLEADER.-In English law, a right to plead again, or deliver a fresh pleading in consefuence of the issue which bat been joined not meeting or exhausting the real point in dispute. This right is much abridged, in consequence of the liberatity now used in amending the record.

REPLEVIN. - In Engli:h law, a form of action by which goods which have beenseized under an illegal distress are taken bask (security loeing given to the amount for which the goods were distrained), and the action of replevincommenced, to try the legality of the seizure.
REPLICATION.--In common law, the bleading of the plaintifl in answer to the defendant's plea. The mantiff's first pleating is the declaration, which is answered by the defendant's plea, and which in turn is answered hy the plaintidy's rapliation.
REPLY. - it is the duty of al court to prevent now matter from being introduced intor the prosecution or defense, but a prisoner may urge in his defense mitigating rircumstances, or examine witnesses as to character or services, and produce testimonials of such farta, without its being considered new mather. If any point of law be raised. or any matter requiringr cephanation, the Judge Advereate may explain. No nther reply is to be admitued.

REPORT. - I. A lond moise. smela that made hy the discharge of a cammen or masket. The distance at which cammon atan be hard dejends on the wiml and the state of the atmosphere. also whether comveyed ower water, which eorsiderably increques the distanere to which somed can reachi. During the Sullej compaign in 1845-46, the report of the grans at bum battle of cohraon was very distinctly hard at

Loodianah, a distance of 80 miles. But the report of cannon, it is stated, has been heard at far greater distances.
2. A statement of facts when any offieer or soldier is accused of a breach of military discipline. A report is usually made by stating on paper, in oflicial form, by the officer making the report, the nature of the case, for the information of the Commanding Officer. In a reginent this is done through the Adjutant.

REPORTS.-Specific statements of any particular oceurrences. Othicers or men making written reports are required to sign them, specifying the regiment to which they helong, and their rank. All field ofticers not serving at the headquarters of their regiments make monthy reports to their regimental Commanders. These reports embrace everything essential to a correct record of their services. The number, date, and sonrce of athority of every order affecting their duties is stated, with the date of its receipt. their execution of its requirements, and the time they were so employed. The date of departure of a tield ofticer from his post or station, whether on leave or on duty, as well as the date of his return to his post, is in all cases specified.

Otticers on tletieleed duty report, monthly, to the Commanders of their Posts, of ther Regiments, or Corps, and to the Adjntant General, their stations, the nature of their duties, and the authority placing them thereon-likewise each change of uddress. All ollicers doing duty in the Quartermaster's Department are required to make ont and forward to the Quartermaster General, on the first day of each month, a personal report, giving their post-office address, and a statement of the duty on which they have been employed, since their last report. On the tirst day of each month the officers of the Subsistence Department report by letter to the Commissary General their stations and duties during the preceding month. This letter is required from Commissaries of Subsistence only, and not from officers acting as such. Every Medical Ofticer reports to the Surgeon General and to the Medical Director the date when he arrives at a station, or when he leaves it, and the orders under which he acts. At the end of each month he sends a gersonal report to the Surgeon General, giving his post-ottice address for the next month, and a statement of the duty upon which he has been employed, or if on teave of absence, since his last report.

Company, Post, and also Regimental Commanders make a report annually, on the first day of July, through the usual military chamel, of any oflicers under their command who, by speciat aptitude or sthedy, are notably well fitted for any branel of service, seipnce, or art, either civil or military. Such reports give full particulars of qualifications and preparation. This information is usefnl to the Cemeral of the Army in making details and selections for duty. The date of appointment, of detail, and of removal of all Stafl ofticers, or of otheers selected for duty in Staff Departments, which may entitle them to receive additional pay, is immediately reported by the offieer making sheh appointment, detail, or removal, to the Adjutant Gemeral, and to the laymaster of the Department, or command to which surb oflicers helong. Whanever a clange takes phace in the frition or location of troops, the fact is immediately reported lyy the Commanding oftiocr to (ancral, Division, or Lepartment Meadguarters, specifying the date of eleparture of the whote or any part of the troen)s, ef of the arrival of any detachment, ats well as all other eircunstances eonneeted with suw changes in the commanel. These special reports are atwaysacempanicd by an exact return of the troons anording to the established printed forms. A similar report is noted on the next ifomithly return of the lost or Station.

REPOSITORY. - A museum, or phate of deposit of musters or the samples of the different arms, tools,
 Woolwioh forms it school of instruction for hoth
 intcresting and instractive t" all ranks in tha. rogiment.


 any lime is vesterl in the ('rown at dineration. "1"hare ario ulsa several grounds on whicla tho dullere or at Court repirieves the sentomare The l'resident of the Inited slates las power to erant repriowes and
 "x'cpt in cases of impratelancot.

REPRIMAND.- reluke, whids is includal intur
 Nartial only intlict it on ofliorrs, in whifels conse it
 mand, amd muy, at the disere tion of the ('ontirnimer


REPRISAL. The relaking, from an (oncray, goonds which buc has suized, or the capture from him of other geods, as an explivalent for the damare low lats wrought. A reprisp is a ship eajtured from an enemy or pirate. If rocaptured within 2d hours of the lostile scizure, sle mast be wholly restored is her owners ; if later, she becomes the lawful prize of her recaptors. lieprisals form the worst fatures of warfare, and are seldon resorted to in conflicts between civilized nations, or, at least, slomal not bo.
REPROACHFUL, OR PROVOKINO SPEECHES.-ThC Articles of Wrar clechare that no ofllcer or soldier shall use any reproachfal or provoking specches or gestures 10 mothere. Any oflicer who so offends slatl be put in arrest. Any soldier who so otfends shall be contined, and required to ask purdon of the party offended, in the preseace of his Commanding ollicer.

REPUBLIC.-A political community in which the sovereimn power is Incleced, not in a hereditary chicf, but either in certain privileged members of the commmnity, ot in the whole commmity. According to the constitution of a governing bouly. a Republic may thercforc vary from the most exdusive Olisareliy to a pure Democracy. The sereral Ropublices of ©resce, and that of leme weres, at the outset at least, aristocratie commanities. The Medieval lepublics of Venice, (benoa, and the other Italian downs, wrere also more or less aristocratic. The sovereign power was held to lu vested m the franchised citizens, and every function-legislative. executive, or judicial-not exercised directly thy that body could only be exercised by partics deriving their anthority from it. But the extent of the franchise, and the mode of excreising it, varied much in these civic communities; and the most prosperous

















 datting froms its scoparators fronn (iront lbritain



 - Arsorica-Porn, Chili, l'araguny, Ibolivia, Colonalia
 the Areantine Conforevation. In the liopmblies of the anciant world. the franchinal elasuece exereined thair power dirextly without any syatem of drofe gation or representation. Tho sanae was at firat tho case in the Swiss ('antons whero, howeror, repro-
 Modern Republices latio bern fonnded on the rupresentative, not the dircot, systom, which cant larrolly exist except in a community that is very manall unit conerntrated as to sjater" Switzerland and tho United Siates of Amorican are Ferlaral Rovindliew. consisting of n mumber of sepmrate Statas lonomel fo-
 world the appearance of one State with at comeral Goverumont, whicls has the power of cmactimer law and issuing orders whid are directly bibuling on the individual citi\%"ns.

REQUA BATTERY.- A kind of mitraillenr, latwing twenty-tive barrels arrungral lonrizontat!y. It was used at the siege of ('larleston in 18to.3. 11. Wright complete is 1,382 pounds.
 ically in India for the recovery of mall delat- not oxceotiny 400 rupe*s. In cachínilitary cantonmume. a Court of lecquest is assemblad monthly, ant all persons are amenable to it except soblicers in the ranks. Not less than three ollicer- all militars men shonld form the Court.

REQUISITION. 1. Thisterm, in international law bosides moaniug the dronabd madr by thr suthorition of one Nation or State upon those of another fur the


I rentify that the above requistion is corrat. and that I hawe not drawn -tatiomery for any jart of the time specified.
rendering up (or extradition) of an alleged criminal. is, used also in the rules of war as nearly synonymons with the word "Contribution." The distinction made is that a Requisition is a demand uron the people of an invaded country to furnish such things as provisions, forage, transportation, or cenen labor: while a Contribution is a payment in money to provide for the needs of the military or civil government established. The former term, however. is generally used to cover all demands upon the people of the conquered country. It is now well settled that the rights of private eitizens should be respeeted and their property secured from pillage. It is the rule of most civilized nations that supplies or labor demanded should be paid for after the war. and receipts given at the time. This is the principle laid down in the Instrutions for the $A r$ mies of the United states in the Field. It was formerly the usual practice to inflict severe requisitions in the way of fines on an offending district or town as a penalty. It is now generally agreed that such measures are rarely justifiable, and are of little practical bend thit those who employ them. 2. Forms prescribed for the demand of certain allowances. On page bit3 will be seen the form of Requisition for Stationery.
REREWARD.-The part of an army that marches in the rear, usually the guard; the rear-guard.

RESERVE. - The reserve of a Nation is that foree upon which the national defense is thrown, when its regular amies have failed in securing its safety. This reserve may be the lecee en maxse of the whole adult male population, or it may consist of a smaller scetion of the people dulv trained to arms. The Jatter is, of course, the preferable system, when the arms of scientitic modern warfare are to be brouglat into action. In different countries the reserves are organized on very different principles. In Great Britain they comprise the Army Reserve, the Enrolled Pensioners-both of which consist of soldiers who have served in the army-the Militia, leomanry, Volunteers, and trained Constabulary. The numbers of the reserve forces provided for in the Army Estimates of $1876-$ Tit were as follows: Militia.

139,619
Yeomanry Cavalry
Volunteers.
Army Reserve force (including Enrolled
Pensioners) first-class.
steonil-clast..............................
15.078

168, 150
10,000
21,000
354.447

Of the volunteers, 31.828 were Artillery Volunteers, 3 fif Light llorse, 6,205 Engineers, 139 Mounted Riffes, 1,458 Permanent Staff, and 128,669 Rifle Voluntecrs.

The scheme of army roorganization, which has been carried out during the past fow years, has had a very important bearing on the rescrve forces. In 1800 it was attempted. ly modifying somewhat the conditions of colistment into the regular army, to make the provisions for secnring and maintaining a mumerically strong Army Reservemore effieint than they had hitherto bern. Enljsiment continued as before to be for twelve years; but servier in regiments going abroad was to be for six years, while the romaining six years' service was to he in the Reserve, the men being liahla to be called ont like the Naval Reserve, and rereiving a pay of do a day. In 180it ind commenced to pass from the Colors intes the Reservo. which is appeted ultimately to reach about 80,000 mon. Siy an Order in Conncil of Nareh 31. 1871, the power of the Lord Lientenant ceasers, and the manarement of the Reserve Forces in comties is vested in the Ministers of the Crown.

Gre of the ohjects chienly kept in virw in the comprehensive scheme of 1872 for the reorganization of the army was the bringing of the Auxiliary Forces into chaser and more motually helpful relations with the reerular army. The main feature of that seheme
is the localization of the combined military forces in certain territorial districts, so that there shall belong to each such district 1wo line Battalions, two Militia Battalions, and Volunteers, formed into an Adminis. trative Brigrade, the whole to rest on the Brigade Depot as center. Arrangements were made to secure that a larger number of officers of the line regiments should pass into the Militia and the Yeomanry, and that the efficiency of the Reserve should increase. The aim of the measure was "To unite the spontancity and all the other advantages of the Auxiliary Forces with the highest amount of training that the Regular Army conld furnish to any other body of men."

RESERVE AMMUNITION.-This term is applied to the supply of war ammunition carried in rear of an army for replenishing men and guns with fresh ammunition in case the first supply faile.

The reserce ammunition of a regiment is carried in carts, one for the eavalry and three for the infantry. These earts ean carry 9,600 rounds pach of MartiniIIenry or 8.960 rounds of Suider. In the artillery, there are three riserves of ammunition. The first ( 108 rounds per 9 -pr. and 72 per $16-\mathrm{pr}$. gun) is that contained in the second line of wagons of each battery; the second (44 per $9-1$ r. and 108 per 16 -pr. gun) is conveyed in the artillery general service wagons, and should be always up with the army, but kept from under fire The third reserve is carried by the transport, and contains 200 rounds per $9-\mathrm{pr}$. gun and 200 per $16-p r$. gun, and remains at one or two days mareh in rear of the army. The above number of rounds, with those with the battery, makes up 500 rounds per $9-\mathrm{pr}$. gun, and 480 rounds per 16-pr. gun.
reserve militia.-A portion of the Militia. A certain number not exceeding the fourth part of the guota of the privates of the Militia for England, Scotland, and Ireland, respectively, may volunteer to join this force. They may volunteer to be traineu for 56 days in each year with the regular army, and in case of national dancer or great emergency are liable to general service in the regular army.

RESIGN. - To resign an appointment or commission, an officer must send in his resignation through the prescribed channels. Non-commissioned officers ean resign their appointments, when they find themselves unequal to the performance of the duties of their rank, with the consent of their Commanding Officer. Enlisted men are not permitted to resign, and can only quit the survice after having been properly discharged.

In the United States service, no ofticer is considered out of service on the tender of his resignation, until it shall have been duly aecepted by the proper authority. Any officer who, having lendered his resignation, prior to due notice of the acecpunce of the same by the proper authority, and withont lave, quits his post or proper dnties with the intent to remain permanently absent therefrom is registered as a deserter, and punished as such. The resignations of ollicers appointed by the President ean be accepted by him alone.

Before approving tenders of resignation of dislursing officers, Commanding Gencrals cause all public moneys or property in their hands to be turned over to the officer designated to receive the same. This action is indorsed on the resignation, and promptly reported to the War Department. Resigmations tondered under charges, when forwarded by any commameter, are alway acempanied by a copy of the charges; or, in the absonce of written elarges. ly a report of the case, for the information of the secretary of War. Before inal payments are made to an onlicer whose resignation has been accepted, he is required to axhibit a rertiticate of nom-indebtedmess lo the United States from the proper accounting ollieres of the 'Treasury.
la time of war, or with an ampy in the tichl, resig. mations lake "fleed within thirty days from the date of the order of acoptance. Leaves of absenece are
not grantel by commanding ofticers for witicers onf tendering their resignation, maless the remignation lor uncenditional mot immodiate. Any oflower of the army who acerepts or holde any appointment in the diplomatic or consular servian of the (invermment is considered as having resigned his phace in the armay. This applies to ollcers on the Arofer List, and to bill retired nticeres. execpting these exempord ly law.
RESISTANCE OF THE AIR. A buly mosing in the air experionces a rowistanco which diminish's the velecity with whirl it is anmated. 'Tlont ther reo tarding colcod of the air, on projertiles moving with high velesitios, is wery great, is senti by comparing the arthal ranges of projertiles with those computed under the supposition that thry mowe in banow. Thas it hate been shown dat certain canmom-hathe its not range onc-eighth as far in the air ns they would if they did not.mect with this resistance Wh liocir montion, ind smallatrm jrojectila, which have but litthe mass, are still more affected by it.

Incomprexsible fluid.-- Thae resistanoe experienced by a plame surface moving parablal tw itself through ant incompressible fluid, is "cpual to tha presante of a colum of the that, the hase of which is the moving surface, and its height that dhe to the velocity with which the surface is moved thonght the thuil, or $r^{2}$
from the law of falling boudies, $h-\frac{1}{a}$; in which $h$ is $2 g$
the height, of the velocity, and $g$ the fore of gravity. The rewistance on a griven area is thercfore proportional to the square of the velocity, mul the density of the thind medium.

Let $d, s$, and $v$ represment the demsity or weight of a unit of volume of Haid, the area pressed apon, and the velocity of the mowing surface, respectively, and $Q_{\text {the }}$ resistance in terms of the unit of weiglit, and we have.

$$
q=\operatorname{kr} k s^{2}-;
$$

in which $h$ is a roethefent to be determined logexper iment.
('ompreswille third. - If the medium he formed of compressible gases, as the atmosplaere, the demsity in front of the moviag body will he greater than that heland it : and it will be rambly seen that the bolly will meet with a resistance which increases more rapidy than the square of the velocity, in such ammner that the coetheient, $k$ or the density of the medinm. d. should be increased by a quantity which is a function of the velocity itself, or, whit is the same thing, hy adding another term to the resistance which shatl be proportional to the cube of the velocity. In examining the table of resistances, obtained hy IItton by firing a one-pound ball into a ballistic penduhum, at diferent distances, with velocities varying from 300 to 1,900 feet. Piobert found, that if $r^{2}$ in the foregoing expression be replaced by the binomial
$\operatorname{term},\left(x^{2}+\frac{r^{3}}{r}\right)$, in which $\frac{1}{r}=\frac{1}{1427} \mathrm{ft}$. the expression would nearly satisfy the result: of experikid
 sertion of a projectile the general expression for the resisange in air becomes,

$$
Q=.1 \pi r^{2}\left(1+r^{r}\right) v^{2} .
$$

In this expression, it is the resistance, in pounds, on a sumare foot of the cerss-section of a projeretila moving with a velocity of one foot: $r$ is a limear fuantity depending on the velocity of the projectike: For all service spherical projectiles, $A=$. On0:it 4 : and for all service velopitios $r=1,42$ feet. The value of I for the ritle-musket bullet has heen determinet at the Washington Arsemal, and found equal to 0.0003 s.
 thiril lase on the eqgerat than the the apherial form



 thre, promsure, and logeronmerse (ondition: in the


 projectile be romgh or irragular, lhe value of than


The monim of a busty falling tarongh the asir, will be worderated hy itm wroplat, and rotariled lige the




 Hhis, the holy will mose with a uniform blaw -
 point. The bugoyant effort of the air is eqpul to the whenther ol

 athe demity of the air. Whan the projerate tan- 1with a resisiance requal to its weright, we shall have.

$$
r\left(1-\frac{d}{l}\right)=.1 \pi R^{2} r^{2}\left(1+\frac{r}{r}\right)
$$

in which the weight of the displaced air in ran-ferreod to the firse member of the "opation. As the domits of the air is wery slight eompared to that of leal oir iron, the materials of whicla projectiben are made. .
may be neglected. Making this whime and whbut 4 thting for $\left.J^{\prime}, \frac{4}{3} \pi J^{\prime 3} I\right)$ ( $g$ having bren divided out of the second member, should be omitted in the first), the expression for the final relncily reduces in

$$
v^{2}\left(1+\frac{r}{r}\right)=\frac{1 / 1}{3 \Delta}
$$

The resistance on the entire projortile for a welocity of 1 font . is $\mathrm{A} \pi \mathrm{f}^{2}$; diviting this hy-. or the mate. we get the resistance on a unit of mass. Calling this 1

- we have,

$$
\frac{1}{2}=\frac{A \pi R^{:}}{l^{2}}-\text { or } 2 g r=\frac{P}{i \pi l^{2 x}} .
$$

$g$
Substituting for $P$ its value in the coguation of verti"al descent, we haw'

$$
2 g^{\prime}=o^{\circ}\left(1+\frac{r}{r}\right)
$$

from which we see that r depmats only on ${ }^{\circ}$ : but 2 li'l $^{\prime}$

3 g .1
hence. the final velocity of a projectile falling in the air is directly proportioned to the prombet of it- dianmeter and demsity: and inverely propurtanal to the density of the air. which is a factor of .1. The evpression for the value of (e show- that the retarding affect of the air is lees ou the barger and denaer prom jectiles. To adapt it to an oblone projectile of the pointed form. the value of $D$ ) shomble he incratoct. inasmuch as it = wirht is incruascd in fromertion to its eross section). While that of 1 should be dimin-
ished. It follows, therefore, that for the same ealiber au ohboug projectile will be less retarded by the air than one of spherieal form, and consequently with an equal and perhaps less initial velocity its range will be greater. The value of (c) for serviee projectiles will be found ready ealculated in the Tables of Fire. For the purpose of determining the velocity which a projectile loses by the resistance of the air. in moxine through a certain distance, $x$, the force of gravity may be disregarded: in which ease the trajectory deseribed will be a right line.

Let it be the initial velocity, and $x$ the remaining velocity at the end of the distance $x$.

The expression for the resistanee of the air is. as we have seen,

$$
Q=1 \pi R^{2}\left(1+\frac{r}{r}\right) x^{2} .
$$

But we know that the retarding foree of the air is "Lual to the mass of the projeetile against which it acts, multiplied by the first differential coetficient of the velocity, regarded as a fmetion of the time. $P$
with its sign changed, and that - is the mass of the projectile. We have, therefore.

$$
\frac{Q q}{P}=\frac{d v}{d t}=-\frac{g}{P} \cdot A \pi R^{2}\left(1+\frac{r}{v}\right) x^{2} .
$$

Recolleeting that $P=\frac{4}{3} \pi l^{3} D$, and that $2 c=\frac{4}{3} \frac{R D}{g A}$,
the equation reduees to,

$$
\frac{d v}{d t}=-\frac{v^{2}}{2 c}\left(1+\frac{v}{r}\right)
$$

Integrating this equation between the limats 0 and $x$, which correspond to $\mathrm{I}^{-}$and $v$, we have,

$$
t=2 c\left(\frac{1}{v}-\frac{1}{v}\right)-\frac{2 r \log .}{\frac{1+\frac{r}{v}}{r}} \frac{1+\frac{r}{V}}{1+\frac{r}{r}}
$$

Toobtain a rclation betweenthe space and veloci$d x \quad d x$ ty; wh have $r=\frac{d x}{d t}$, or $d t=\frac{d x}{r}$; substituting this in the efuation for the intensity of the retarting foree, and relheing, we have.

$$
d x=-3 c \frac{d v}{v\left(1+\frac{v}{r}\right)}
$$

Integrating betwen the same limits as in the precerling case, we have,

Solving this rffation with reference to $r$, we have.

$$
\left(1+\frac{r}{1}\right) e^{\frac{r}{2 r}-1}
$$

Substituting in the abowe equations we have.

$$
t=2 c\left(\frac{1}{v}-\frac{1}{r}\right)-\frac{r}{r} \ldots \ldots(3)
$$

The logarithms in the above equations belong to the Napirrian system. and are obtained by multiplying the eorresponding eommon logarithm by $2.3025^{\circ}$ $e=2.713$.

Equation (1) gives the pace passed over by a certain projectite when the veloeities at the onmmencement and end of the tlight, are known.

Equation (2) gives the remaining velocity when the initial volocity and the space passed over are known.

Efuation (3) gives the time of flight when thevelocities at the begimning and end and the space passeil over are known.

The distance at which the veloeity $\mathfrak{l}$ is reduccel to $r$. and the duration of the trajectory, being prom portional to $c$, are dircetly proportional to the fur cluct of the diameter and deusity of the projectile, and inversely proportional to the density of the air. This fact shows the great advantage, in point of range, to be derived from using large projectiles over small ones, of solid projectiles over hollow onns, of leaden projectites over iron ones, and of oblong projectiles over round ones. See Didion's Formulas, Eiquations of Motion of Projectiles and Trajectory.
RES JUDICATA.-In haw, a lerm meaning that the subjeet matter of an action has been already decided by a court of competent jurisdiction, and if so, a plas setting up the res judicuta is a sufficieut defense. In order to be binding, however, the snit in the former case mast have been between the same parties.

RESPECTANT. - In Ileraldry, a term employed to describe two animals bortue face to face. Beasts of prey rampant when so borne, are, however, said to be rampant combatant. Also written Resperting.
RESSAIRDAR. - In the East Judies, a native ollicer in a native eavalry regiment who commands the left troop, of a squatron.
RESSALAH.-The Indian term for a squadron of native cavalry.
RESSALDAR.-1u the East Indies, a native officer in a mative cavalry regiment. Ite rommands the right troop of a squadron, and ou parade leads the scutadron. Ressalder Major is the native commandant of a native eavalry regiment.

REST.-1. Iu tacticis, a word of command, wherehy the men are brought to a position of rest; as parate rest in place rest, etc. 2. A support for the muz\%le of a ghm in aiming and firing. The Arbal(st or eross-how, and the carlier hand fire-arms were always thus supported, aud the long gums of the Moors and Arabs are still muiversally provided with a device of this kind. In civilized eountries the rest is employet by the sharp-shooters and in practice-firing. it may consist of a stake or pieket, whose pointed end is driven in the ground. the gun resting in a eroteh at the upper extremity; or, as in some of the European armies, of a device having a serew-puint. ly which it may he attached to a troe or other support. 3. In a lathe, a piece of iron for holding the turning tool, fixed at the end of a side hy a sceserew; the slide can be noved at right angins to the lar of the lathe, and the whole ran be tixed at any part of the bed between the renters. 4. In 1 eraldry, the nante usually given to a charge, varying considerably in the diferent represembations. It appears at loo carly a date to be what it is oftem sald to be-a spear rest. It is sometimes called an orean-rest, and in old rolls, a charion-amt is most likely a rupersentation of some musieat instrument like the pandean pipe. It was a relms batge of the Clures.

REST ON ARMS. - A pusition in the Manum of A rms, exeruted as follows: Buing at a enry, the hastruct or commamals: 1. Pext on, '2. Anss. Baise the piece vertieally with the right hand, advanemg it slightly, grasp it with the left hand at the lower hand, the forasm horizontal; reverse it with both lands, the maz\%le dropuing to the front, the butt passing be-
 mu\%zle ufon the loft tore the hatren to the remht, the


 riarht hame uppermost, face loft know slighty bemt. ("Dismes.) Incline the hoded lowaral flas hathls. 1. ('aryy, 2. Anse (irasp the small of the stork with the riglat hama, back ta the riglat: Parry the
 der, burral tos the front and virtioal, foremran harizontal: artasp tho biece at tho lowor hatal with the lofe hand, bate to the loft, the thamb prominer down warl: briner the risht foot hy the side of the loft. ("wo). Raverse the pioce with lwill hames, the lint passing betwera the breast and right forenral : re-

 Fig. 13.

RETAINED PAX. In the ['nited Šttes sorvion this pay is retained from the soldiar amil the "xpiration of his torm of sorviote, and is forfotol umbess har shall have sorved honsently und faithfully to the date of disclatite, or for any of the following comses: 1. Desertion duriner the perion of anlistmant. 2. Whon diselatyerl (by way of pmaishment for an of fonsi) bufore (expiration of term of sorvioe ly sent
 Department specifying that such forfeiture slatl be matle. 3. Comviction andimprisomment by the ajvil antluritise. 1. When disclarered ass a minor, or for othar cause involving fratul on lie part in the entist.
 ishmomes for miseonduct, of which timely repert shall be mate to the War Dopartment and approved as hasis of forfeiture. In whices case the soldior shall be discharged without character, and shall not be ro-enlisted.

RETAINERS. - It is dechared in the Artichesof W"ar, that all retainers to tha campe, and all pursuass sarvo ing with the armios of the Cnited states in the fiede. though not endisied sobliors, are to be subjuct to orders, according to the rales and discipline of war.

RETAINING WALLS. "lhese, as Dwir matae impios, are walls built to retain earth, samb, or other ineoherent substances in positions amd. forms whiels without their aid they "obuld not matntain. "Jhese substancos, if left to themselves, wilf not stamd with vertical sides, Jut will fall down till thoy atsume a certain sogne. The angle which thas slope makes with the horizontal is called the "angle of repose." This angle varis accoraling to the mature of the material; for example, that of moist soil is about $4.5^{\circ}$.

ac, revetment: b, bottom of ditch, level of gronnd within the work: de, top of rampart; fah, pmapet: ik, bomplette: kle: mass of curli supported by revetoment; m. conter of gravity of

While tine sand assumbs an ancle of aboul 30 . "lop drawing shows a retaming wall of masonory built in permanemt fortification. Prior to Vanban's time the sentprevetmeut or retainiag wall w:a (oombmonly ratisel to the top of the parapet : lont as in this cilat the artillery of a besieger played on the toje of the wall, atul ruined it somafter the sieqe commemede. that engimeer adoped the primejple thencefortla fol-lowed-of raising it no higher than the crest of the



 * Proneth is impartarl (e) tho revelanent whll ham -



 ascanlting party



 נןगerer parts may give way, whilo the loame resbainm.

 for dilterent sitantions and matoriatm, anc lt an lhast given lyy 31 I'oncolet far ordinary materialm, und within ordinary limits:

$$
r=.24 n(11+h)
$$

Whore I!, the height of the whll, athl /h. How sullitional hooight of the hank almove the tor) of the wall,
 fomme. Those formular. however, arro not of abselt practieal value, on acoenat of tho varying metare of the data on which tary atre fommaldo. and of the $1 \cdot x$.
 to allow for causesuffalura which raman lue for\% seen or provided for in the callendations. D'ractical experionoe is fommel to be the only sufo ernide ina all such considerations. In the conistruction of in ro. taining wall, at igrent elomideraturn is, (hat tho. enarth behind it he woll dratined; for if water he nt\}owod to aceumblate bebind the wall, the armeth cet- intor somi-Huid state, in which it erive a very much increased jressure ond the wall. For this jurfuma. londen are left through tha watl culled "wroping loolew:" these holes areahout ! inchashish and $\underset{\sim}{2}$ inclu-s wide. aud are generally jlatol about 1 for every sif su. ft . of wall. Also stones withont mertar are fresplatly built up bohnal the wall, so forminer an ofnom tratum, into whichthe woter dranse and is theonce cearried off throngla the werepine holos.

RETALIATION. - Wir is not rarriced on lyy ar:ns

 subjection of the enemy. When the commander of a bexieged place expeds the nont-combatants. in wriler ta lessen the numior of those who ponsume lyis store of provisions. it is lawfal, thaturhan extrema men-ture. to drive them back. so ats tolan-an an the surremaler. Commanders, whenevar admis-ilher, inforna the
 the non-combatants, and expecially the wommell amal childran. maty be removed luefore tha Pmonhardment commences. But it is nu infraterion of the (ontams n biw of war to omit thus to inferm the commy. Surbriee maty he a meressity. l'ulble war is $n$ btate of
 ments. 11 is a law and rempisite of divilizol wive lance flat men live in politioal, cantinu us warialio.
 Whose constituents beat. Fajoy. atal shifor. atvance


 or mation, amd as sheh is shlojee ford in the hard-linm of tha wars. Nevertlulase the civilization has alvatic. ed duriner the lav-t couturje=. =n has likewise -to adily advanced. ('specialiy in wat on latnd. Fhe diotinetion betwoen the privale individual ludunginer to a homble combtry and the hostile conmery it-elf, with if meth in arms. Tha primajob las betern more sabl mate atelinowledged that the unarmal atizen is to bue spared in person. progurety, and honor as math as the exigenees of war will inlanit. D'rivate citizens are

 disturbed in lis private rolatious as fle comamaner
of the hostile troops can afford to grant in the overruling demands of a vigorous war.

The almost miversal rule in remote finses was, and contimes to be with Jarbarous armies, that the private individual of the hostile comatry is destineal to suffer every privation of liberty and protection, and ewery dismption of family ties. Protection was, and still is with uneivilized people. the exception. In modern regular wars of the Europeans, and their descendants in other portions of the globe, protection of the inoffensive citizen of the hostile comntry is the rule: privation and disturbance of private relations are the exceptions.

Commanding Generals may canse the magistrates and civil oflicers of the hostile commtry to take the oath of temporary allegiance or an oath of fidedity to their own victorious government or rulers, and they may expel every one who declines to do so. But whether they do so or not, the people and theireivil ofticers owe strict obedience to them as long as they hold sway over the district or conntry, at the peril of their lives. The law of war can no more wholly dispense with retaliation than can the law of nations, of which it is branch. Yet, civilized nations acknowledge retaliation as the sternest feature of war. A reckless enemy often leares to his opponent no other means of securiug limself against the repetition of barbarous outrage.

Retaliation will, therefore, never be resorted to as a measure of mere revenge, but only as a means of protective retribution, and, moreovir, cautionsly and unavoidably ; that is to say, retaliation shail only be resorted to after carefal inquiry into the real occurrence, and the character of the misdeeds that may demand retribution. Injust or inconsiderate retaliation removes the belligerents further and further from the mitigating rules of a regular war, and by rapid steps leads them nearer to the internecinewar of savages.

Modern times are distinguished from carlier ages by the existence, at one and the same time, of very many nations and great governments related to one another in close intercourse. Peace is their normad condition; war is the exception. The ultimate objeet of all modern war is a reacwed state of peace. The more vigoronsly wars are pursued. the better it is for hmmanity. Sharp wars are brief.

Ever since the formation and eoexistence of modern nations, and ever since wars have beenme great national wars, war has come to he acknowleciged not to be its own end, but the means to obtain great ends of state, or to consist in defense against wrong; and no conventional restriction of the modes adopted to injure the enemy is any longer admitted; but the law of war imposes many limitations and restrictions on principles of justice, faith. and honor.

RETARDATION. - The vplocity a ball loses in consefuence of a resisting medium is termed reterdation. This varies with the degree of resistance, and the weight of the ball. In case of ordinary sphacrical
projectiles retardation will vary as $\frac{d^{2} v^{3}}{d^{3}}(d=$ the
diameter of the ball, and $x=$ ita velocity). If two slat of differcont diameters, lut of eynal density, be fired ander similar coircumstances, it appears from this that the shot of the larever diameter will range to a greater distanee thas the other: consequently for equal ranges, the elevation of the piece from whic! the larger shot is firmd may le reduced, and the chamess of its striking thr isbject fired at, will he greator, the trajectory being less curvod.

The effeet of a pressure or resistance ( $/$ ) ancting on a projectila or othor bosly is to conse aceromation or retardation ( $f$ ) in velocity, and the amoment of it is known from the elementary law in dymanies rexprossod by the propurtion, $R:$ in ::- $f: g$. whare in is tho weight of the projectile in pominds: or rotarda$\operatorname{tion} \cdot f)=--g . \quad$ Herr. we notice that reteralution
varies inversely as the weight of the projectile. Re. tardation is uegative aeceleration. It is subjeet to the same laws, but is the opposite to it in sign. Hence, the minus sign in the jroportion above.

RETIARIUS. - A kind of gladiator who fought in the amphitheater during the time of the Romans. He was dressed in a short coat, laving a fuscina, or trident, in his left hand, and a net, from which be clerived his name, in his right. With this he endeavored to entangle his adversary, that he might tluen with his trident easily dispateh him. On his hoad he wore only a hat tied under his chin with a broad ribluon.
RETINUE.-The hody of retainers who follow a prince or other distinguished person; a train of attendants.

RETIRADE. - In fortification, a retrenchment. which is generally made with two faces, forming a re-ontrant angle, and is thrown up in the body of a work, for the purpose of receiving troops, who may dispute the ground inch by inch.
RETIRE. - A bugle-sound intimating to skirmishers that they are to fall back. In the Lnited States wervice, this eall is termed "to the rear."

RETIRED FLANKS. - In fortification, those made behind the line which joins the extremity of the face and the curtain towards the capital of the bastion.

RETIRED LIST.- The list of officers retired from an Army. To maintain a reasonably low age among the officers aetively employcd, it is cssential that an army should have some fixed seale for the retirement of the old and enfeebled officers. In the British Army, this matter is wedl regulated, and in most instances the retiring ofticer is allowed a step of honorary rank; which higher rank. however, does not carry present nor prospective advantage.

In the United States service, the whole nmmber of officers of the Army on the Retired List can not at any time exceed four hundred, and any dess number to be allowed thereon may be fixed by the President at his descretion. Retired oflicers of the Army may lie assigned to duty at the Soldiers' Home, mpon a selection by the commissioners of that institution, approved by the Secretary of War ; and a retired officer is not assignable to any ollier duty. Any retired officer may, on his own application, be detailed to serve as professor inany college; but while so serving, such ofticer is allowed no additional compensation. Epon the application of any college, miversity, or institution of learning incorporated under the laws of any State within the UnitedStates, having capacity at the same time to educate not less than one hundred and fifty male students, the Jresident may detail an officer of the Army on the Retired List to act as president, superintendent, or professor thereof; and such otheer may receive from the institution to which he may be detailed the difference between his retired and full pay, but will not receive any additional pay or allowance from the United States.

When any officer has sorved forty-five years as a commissioned otheer, or is sixty-fonr years oht, he may be retired from active service at the discretion of the President. And all such are retired upou the actual rank held by them at the date of retirement; but are withdrawn from command and from the line of promotion, as arestl oflicers on the Retired list. They are entitled to wear the uniform of the rank on which they may be retired. They eontimue to be borne on the Army Register, and ate subjret to the Rulos and Articles of War, and to trial by General Court-Martial for any brench theroof. Thi pay of ofticers on the letired List is of the bay of the rank ujon whiel they are retired. When wholly retired from the service, they are entitled to roeeive, upon retirement, one yors may aml allowanews of the highest rank luehl by duen, whether by statf or regimental commissinn, at the time of their relirement.

RETIREMENT. - In the British Army. a Royal War-
rant, introulucing and regalatine combuleary retirconent from the arms whe issumel in 1877.

 below the rank of lajor, who havo sorvol in laroir prosent rank for meroll yonds withont pronation, aro to be phand un halfejay after a total sarvico of al

 has mat retired on other gromala, mast, mblam


 prosion varying acoording to vircomashimes. In


 Statl onfoctrs, and many ont temporary half-pay on acoomt of siekness, prisate aftaiss, ale.
 mimulars, from time to time, report to the Dijntant Gemeral of the army tha mands of ollicers helomating
 atetive servicu or combmand, with a viow to theotr being breatig before a Ratiring lkmet. 'There re ports in eatchathatate cate contain atsocedte state-
 them. Itabitual intomperanco, gambling, low connpany. or other vices that eonel eotorropt ath oflerer anml lower the professionall stumheral, are "anses suff ticient to loring an atherer before n Boaril, to lne wholly retired. When Hmple twatimony establishes the fact that an offerer has, through vieious indulgrmexs, slighted or meglected his melinary dutios to such at deigree as to make it evielently masafe 10 intrust him with a fommand or responsibility that righafully helongs to his erade, and when it is shown that such hatbits late comtoned for such length of time as to make a permanent reformation improbable, this font, rather than the preserat eondition of the otlicer when he appears before the Board, woighs in the verdict as to his incapacity for artive duty. Othexers on the Jetired Jist are amenatble to the Jules and Artictes of War, amd subject to trial by Court- Martial for it violation thereof. It is mande the doty of all esticers of the army who may become rognizant of thgrant violations of military law by any retired otlicer to report the same to the dejutant Gencral of the army for the acelon of the Gemeral. See Miveluerge, lension, Retired list, Retiring benerd, and Superonnuation.

RETIRING BOARD. - The Secretary of War, umeler the direetion of the Presielent, from time to time assembles an Army lobiring Joural, consisting of not more than nime nor less than tive oflicers, iwofifths of whom are selected Iron the Medical Corps. The Buari, excepting the officers selected from the Medien] Corps, is composed, as far as may le of seniors in rank io the ontieer whose disability is inquired of. 'The membere of the Boare are sworn in every ense to discharge their duties honestly and impartially.

A Rotiring Board maty intuire into and totermine the facts tomehing the nature amb oceasion of the disability of ant otheer who appears to be incapmble of performing the duties of his alliee and has such powers of a Court-Martial nad of a Court of Inguiry as may be necessary for that purpene.

When the l3oarl finds an otherer incaparitated for active service, it tinds amd reports the canse which, in its julgment, has probluced his incophacity, and wheolaer suth cause is an incheme of service.
The procectings and deeision of the Boartl are transmitted to the Serevetary of Wiar, and are laid hy thim before the President for his approval or disajoproval and orders in the case.

When a laetiring Board finds that an otlicer is incapacituted foractiocesproce, and that bis ineapacity is the result of an ineident of service, and such decision is tupproved by the l'resident, said otlicer is retired
 ulliar. r .



 retireal from melise rervion at wholly retirol from

 mattod from tho Srosy lackioler

RETRACTOR. I unviu. hy whla lbu sutallic







 impulse to the shell, which therons it rloar mither

 avonids the powihility of fathor to ant.
 With tho intention of avobliner an pocomator with a

 retreat, more depembing on arranevonemt ant leoflness than reen in thr preliminarion of a bathle. When the conemy pursure, if the retreat is hot to cle getor rate intos at ront, the retreating army mast le aoverod hy a powerfal raar-gunth Which from time to time mast hold the pursuers at lag., while the artillery-q rainama batgage pass elefiles, cross streans, and bwerenmbe olbur special olnstactes. I stromp retrint is mmin. when the reatr is formed by a line of anlinl latalions. of which alternate masses retregt, while these interVoning face abont and oppose the comemy: the lattor afterwarl rotrenting between and tothe rear of thawe which retreated in the tirst instance. Thererereat is thas continued by alternate halting amo falling lank on the part of eacils corps.
RETRENCHMENT. In forlification, a (lufla-ive work, comprising at least elitell anch paraput wibloin somb other work of n fortres., and internled an a phace of rotrent for the defembers, whonee thoy may prolong the defense, or capitulate after the fares if the work itself lave fallen into the enemy's bamis. The retrencolment bears at conside rable resemblance th the reduit except that it is almontalways of enrsh. Ketremehments are made in ravelins. and the re- 2 taring pleces aldermes at the time of ennetructing those works. A retrenclament is thrownacross the entre of a redan or lastion, or from shonhler to shmbleder, when it is apprebended that the salliont angle will fall into the possession of the besieger-: these retrenchments ure usuully male when wanted. Fuch a retrenchanemt across the interior of the Jectan at sidmstopol caused the samguinary repulse of the British on scbt. \&, 1Nin.

RETURN GALLERY.-In fortiticarion, a gallurgo which leads from another gatlery. The line. ('I), in the drawing is the axis uf asallery of departare and A 13 that of the return. The linc 113 is the interior line of the gallery frames: c so the interier line of the same: $E$ F that of the sheetine. Thee corrtsponding line for the remaining laslf of the gallery of departare, amd tlawe of the return, will lee reanlily recognized. The frames os and os bound the efitrances or Landings to the returna.
"The frimes $s, ~ M$ " of the lameling. in the eallety of departare, are put su far apart that. Were the retura gallery all of one piece. it conlel be shosed in or ont Eetween them. The same indea also regulates the re-
lative positions of the landing frames of the gallery of leparture, and the return gallery in all other cases.

In oblique returns, where the angle between the axes of the two galleries is $45^{\circ}$ or greater, the return is run dirently from the main gallery. The first frame of the return being an oblique one. having its stanchions and sills cut with a suitable obliquity, so that. when the frame is placed aloner side of the main gallery, the outside of its stanchions will lie paraliel to the axis of the return. The position of the land-

ing frames $m, m^{\prime}$, is so determined that one of the exterior lines of the sheeting of the return will intersect the exterior edge of the stanchion of a at 0 , and the other the iuterior edgn of $\mathrm{m}^{\prime}$ at $\mathrm{o}^{\prime}$. When the angle between the axes is less than $45^{\circ}$, it would give too wide a landing in the gallery of departure to rim the return direetly from it. A short rectangular return must first lie made to serve as a landing to the oblitque return. To determine the position of the rectangular retirn, so that it shali be the shortest practicable, set off the lines of the gallery of departure and of the oblique return in the nstial mamer. draw a line parallel to the axis ( 1 ), and at the thickness of the gallery frame of the rectangular return from the exterior line of the sheeting: the point where this line cuts the exterior line of the sbeeting of the oblique return, will be the position of the interior edge of the stanchion of the sallery frame of the rectangular return: having next drawn the lines of this return, the position of the other frame, will be at the point, where the outsitle line of the stanchions of the rectangular cuts the outside line of the sheeting of the olnique return. See Gallery.

RETURNS. - The ofticial aceonnts, reports, or statements, rendered to Superior Officers. Commanders of Departments, Regiments, Corps, and Posts make to the Adjutant General's Office in Washington monthly Returns of their respective commands on the forms furnished, and according to the directions printed on them. In like manner Captains fmake montlaly Returns of their companies to Regimental lleadquarters. Regimental Roturns are made in the name of the Colonel, and those of the company in the name of the Captain. Whether those oflicers be present or absent. Monthly returns of Military Departments are sent direct to the Adjutant General of the Army and to Division Ileadquarters. Every Commander of a separate body of troops-aither Division, Brigade, Regiment, or Jetachment-whethcr engaged in campaign, field-service, or ocenpying a temporary camp, or simply in transit from one post to mother, makes the monthly Returns refaired by the Regulations. Any detachment so far separated from the main body to which it herbongs as to render it impracticable for the Commander of the main body to make the muster and inspertion enjoined by degnlations, is a separate command within the meaning and for the parpose of the law. These leturns exhibit separately the several Jeegimentsind Detarhments, and Staff Corps, and the strength of 'ach garrison within the command.

After any action or atfair a Return of tho killed, wounded, ind missing is made, in which the name,
rank, and regiment of each officer and soldier is specified, with such remarks and explanations as may be requisite for the Records of the Department of War to establisl the just claims of any individual who may have been wounded, or of the heirs and representatives of any killed in action. The nature of the wound, the time and pluce of its occurrence, the Company, Jegiment, or Corps, and the name of the Captain, Colonel, or other Commanding Officer, should always be carefully stated. A copy of this returu is promptly forwarded airect to the Adjutant General of the army. After every battle, skirmish, or other engagement, Commanding Ofticers of Regiments, or detached portions thereof, forward direct to the Adjutant Geueral of the army duplicates of the Returns, to be transmitted through intermediate Commanders, of killed, wounded, and missing A Return of all property captured is made by the Commanting Oflicer of the troops by whom such capture wis made to the Adjutant General, at Washington, that the property may be disposed of aecording to the orders of the War Department.

REVEILLE.- The beat of the druni about break of day, to give notice that it is time fo rthe soldiers to rise, and for the sentinels to forbear challenging. The reveille-gun is fired just before the first note of reveille is sounded

REVEIL MATIN.-An ancient Freuch 96-ponnder, double cannon.

REVERBERATORY FURNACE.-A furuace so constructed that matter may be heated in it without coming in dirent contact with the fuel. It consists essentially of three parts, viz., a fire-place at one end; in the middle, a flat bed or sole, on which the material to be heated is placed: and at the other eud a chimney to carry off the smoke or fume. Between the fire-place and the bed, a low partition-wall, called a fire-bridge, is placed, and the whole built over with a flat arch, dipping toward the chimney. The flame plays over the fire-bridge, and is reflected, or rererberated, on the material beneath: hence the name.

REVERONI SYSTEM OF FORTIFICATION.-The enceinte of this system consists of a bastion front casemated on a peenliar principle. The guns are placed on a "bascule," and are only exposed when actually firing. Their recoil lowers them and closes the embrasure. In rear is an carthen retrenchment, while earthen counterguards in front are defended by the casemated flank of a ravelin. The reduit of this work is also easemated.

REVERSE.-1. A change for the worse, or partial defeat. 2. A movement by which an artillery carriage is placed ou the same ground, but faciug in the opposite direction. To execute the reverse, the leaddriver, after gaining seven yards in that direction, moves his loorses toward the left, so that the extreme part of the curve described by the off horse will bo fourteen yards from the line if eleporture (or line occupied by the luads of the leaders at the beginning of the: movement), and that, after passing three Jurds to the left of the original left tlank of the tean and carriage, they will return to the ground occupied by the carriage at the begiming of the movement. The swing-driver follows the lead-driver. The wheeldriver directs his horses so that the right limberwheel describes a loop, which, extending seven yards to the right and eleven to the front of the line of departure, passes a litile to the left of the original left flauk bind then returns, bringing the hind-wheeds in sucla a position that the rear of the earriage oecupies the line of departure. The pairs in front move terording to their distancer from the pole, and mmst keep out of the way of the whecelers, who control the corriage. On the completion of the reverse. the drivars move of their horsen in the new direction. In reversing at a trot, or gullom, the loop is opened a little and the gait moderated so as not to incur the risk of upsetting the rarriages. This mule is genfral. If the earriage have hot two pairs of horses, the laddedriver moves as above prescribed for the

Hwing－driver ；if lut angle pair，the driver moses ats preseribed for the whedelriver．Si＂．Counter－ mutch．

REVER8E ARMS．－Tluat pesirion in thr Mannal ut Arins．exceutad as follows：＇lhe Instrucfor entre
 vartically will the right hamh．while advancing it slighlly；grasp it will tho loft hatal at the lower band，the forearm horizontat；st the mamw fime grasp tho ennat the small of the stock with the rieht home． （＇Two．）lewverse the piece，the muzzle droppling to the front，the fatt prassing belworn the breast and right forearm ：the right hamal grasping the womall of the atock at the booirht of the shomblor，the barrel to the front ame vartical ；the fimerers of the left liand rextereded，and joinal in front of the larrol，the lithe
 \％le to the rant with the laft hamel，the piene inclimed at an angle of forty－live degreses ；stealy it inthis pere sition by pressure of the rieht alloow aratinat tha hodly：＂arry the left hand belsime the back anderasp tlae pin⿻e lectowern the bands．
 hamd．and regrasp it in front at the lowor lyaml，batek of the hamd for the left，the thoms pointior down ward，the right forearm horizontal，the barrel verti－ ral．（＇I＇wo．）Reverse the pieee with both hander the butt passing between the broast und right fore arm：quiekly resume the carry with the right hand． （Thares．）biroj the lefthamb hey tho side．

Whan neressary to march long distamores with
 ponaling position under the lift arm by the com－ mands：1．Left Reverne．2．Anms．＇The pieqe is phaced modar the left arm with the rient hand，the feft hame carriod to the small of the stock，and that rimht hame behind the buek．
＇The piece is similarly restormd by the commatads


KEVERSED．－．In Herildry，the term appliod（1）a chareg turnod inpsulde down．

REVERSE DEFILEMENT．－Whena work is placerl in a bollow formed ly two cmineme＇s，and is exponed to hoth at dirert and reverse fire from thern，it camot be detiled by direed menns，withont giving it at relief generally too areat for firlil works．To atvoid this， Thu methorl of revorse defilement most be resorted to．

Fuppone the work defiled，amed atection be mate by rertical phanes passing thromer the highest foints， 0 and $O^{\prime}$ ．If in this plane a vertioal A l？，ine flawn，corrosponding to the capital of the work，and eight feret be set ofl on this verlian from the priat A．and two verticals be drawn flirough the points






 พ1\％！！



 attack；its sid．a are manlo will the mataral wlopa e，f thor airlis．hatt，whent the laright of thr traswore in







Whosn the saliost of the work in to low arrangerel

 its elirgetion within somar ghride of thas saliobs．

 tire：for this jurrpuse they arre phaved paranorlientar
 they masy bo placod twonty or thirey yarda apmrt



 should not be groator than is indi－ponsably remplaite
 drawing Jiucos from thu dangerons print－tu blie
 which intersectm the lize of tho trawerse furthost froms the salient will efve the best lenerth of the reforireal traverse．The linesilrawn from o and $a^{\prime}$ to e find A． cut tha line of traverse at a and c，thans reๆuiring the traverse to be rim back to a to renver each face amb thank．The dithrolty of defilememt，owinz te the great relief that may lo retuired for the pmagne． the labor of ereeting the traverses and the ronme Which they ocrupy within the work．whirls is fre＂ ［13ently wantoll for the defonse，rostrices its appliat－ tion mastly to enclosed works，which aro tor remain occupled durints sometimf，and whone jowition，fron some print to be defenderl，cannot he shifterl．
The conse of detilement here examined is ilat of works opuen at the grorese ；the same prinwiple＝e and similar methots，would beapplieel tornetomel work－ Aler the plan of the work has been regulated．the


O and $O^{\prime}$ ，and five feet he set olf on emeh of them and then the points（＂and（ ${ }^{\text {a }}$ be joined with 1 ），itis ubvious that the interior corest of the parajuct．A． beiner phated on the line．（ 1 ），will sereen thll the gresmed in the rear of it，is far as the cappital，from the direet fire from 1 ．The parapet．B，beine regulated in a similar minmer，will sereen all the groumal hehind it as far as the same line loat the
 atme that from 0 the parapet 13 ；to prevent this，a frecorse must be creeted on the line of the capital． and a sullicient height be eriven to it to serem both A and 13 from a reverse fire．To effect this．let eigloteen inches be set ofl above the interior arests of $A$ and $B$ ；tho point． J ，beting joined with（＂，and thre point $\mathrm{E}^{\prime}$ with C ；it is hore also obvions，that if
 will eflewtually scroen both the parapets from all reverse tire；because every shot that strikes tha top
arramgement of the traveras noxt demand－the at－ tention ：thu only rnde that can be laid down is，to
 cept the roverse amed anfilatinge fire of the enomy ：
 eral positions，to selecet the one which will eive tha＂ lowest traverse．If it is mot evern probably that a

 ed，it will he bedter to place blue werk levent the
 Plane of lorfile ment。
 strikes the interior shope of the parapret at an mate． arcatar than ；30）it is called motere fire

REVERSE FLANK．＇The extremits of the divivion furthest from the piunt thank．Fré（1）rard f゙ trok．

REVERSIBLE SIGHT．I frunt－ight rectuty in． irmduced by the W＇inchester Irm－tinmpany．The

Hrawing shows the manner of its construction ans! use. lis revolving the sight on its base, $900^{\circ}$ horizontally, it chaneres in appearance from an open sight to a globe sight. It thus permits the marks-

$A=$ Oper.


A= Clused.
man to use either form of sight at will. It may be readily detached from the birrel and replacel by a sight of any other form

REVETMENT.-The interior slopes of the parapets of perminent and field-works, as well as in some cases the silles of the ditehes of the latter, require revetments to enable then to stand at that slope which is necessary, and to endure the action of the weather. The materials made use of in the construction of field-revetments are: fascines, gabions, hurdles, sod, sand-bags, and timber. In siege operations, and in fact in all operations in active warfare, vast quantities of these materials are required, and are daily consumet? in the construction of breastworks, parapets, batteries, magazines, and a variety of miscellaneons purposes. Targe quantities, then, must be prepared or manufartured by the ordinary troops of the line, superintended by their own otficers, who slould be acquainted with all the details neressary for their production.

In permanent fortifications, the revetments are retaining walls of masonry built for the purpose of holding back the earth of which the works are composed. The most ordinary position of such revetments is for the escarp and counterseary of the ditch. The more important of these two is the escarp, which has to hold back the great mass of earth representel by the rampart, parapet, banquette, ete. It is usually of solid briekwork or stone, 5 fect thick at the top, and sloping ontward as it elescents (on the ditch-side only) to the extent of 1 in 6 . Prior to Yauban's time, the escarp revetment was commonly raised to the top of the parapet: but as in this case the artillery of a besieger played on the top of the wall, and ruined it soon after the siege commenced, that $\ell$ ngincer adopted the principle- thenceforth followed -of raising it no higher than the crest of the glacis, or about 7 feet above the natural gronnd, leaving the parapet above of sloped earth only. When the main litel is 24 feet decp, the serrp revetment will be about 30 feet high. Aelditional strength is imparted to the revetment wall by massive butiresses at every 15. Leet called comnterforts. and these, again, are sometimes connected and strengthened by nutsonry arches outside the revetment. The revetment forms it turrible barrier to an assaulting party. See F'uscinp Reretment, Gabion Revetment, Inurdle Revetment, Piset Revetment, Plonk Rezetment, Semel-bag Rezotmont, Srurp Revetment, Sol Revetment, aud Fimber Revetment.

REVIEW.-In military parlance, a review is the inspection by some stalfotherer of any hoty of troops in parade order. Reviews always comprise a mareh past the inspecting-oilicer in column, and a general salute in line; to these is frepuently adderl a mockhattle. For the ansusiment of spectators, and the practicing of the troops themselves in warlike manouvers. The following is the manner of reviewing a battalion of the Enited Sates Army:

Dismountal Tromps.-The reviewing oflicer takes his post in front of the renter of the battalion, the point buing intlicatet by a marker or camp-color previonsly established by the Adjutant; the Adjutant also posts markers at the points where the columm will have to change direction in order that the right flank, in passing, sla ll heat six or ceight yaris from the reviewing officer. The battalion being in line,
bayonets fixed, the Colonel in front of and facing the cuter commands: 1. Prepare for revieur, 2. Tiear open order. 3 Maree. At the third command. the ranks are opened; and the Cfolonel superintends the alignment of the company officers and the front rank; the Leutruant Colonel the rear rank and the Adjutant the line of tile-closers. The Colonel, seeing the ranks aligned, returns to the right of the line of company offierrs, faces to the lefi, commanis: Front, and, passing in front of the company officers to the center, phaces himself, facing to the front, six yards in front of the line of Field Otficers, opposite the center of the battalion. The reviewing otheer now approaches a few yards towar! the Colonel and halts, when the Colonel faces about and commands: 1. Present, 2, Anms. At the second command, the officers and men present arms; the color also silutes, shonld the rank of the reviewing officer entitle him to it, in which case the band, trumpeters, or field-music sound a march, flonrishes, or ruffles, according to his rank; arms having been presented, the Colonel faces about and salntes. The reviewing officer acknowledges the salute by touching or raising lis hat, after which the Colonel faces about and brings the battalion to carry arms. The Colonel then joins the reviewing otticer, who proceeds to the right of the band, and, passing in front of the compeany ofticers to the left of the line, roturns to the right, passing in rear of the tile-closers.

While the reviewing ofhcer is groing around the battallion, the band plays, ceasing when he leaves the riglit of the band to return to lis station ;'the Colonel returns to his post in front of the center, and commands: 1. Close order, 2. March. At the command mareh, the company officers return to their places in line; the field, staff, and non-commissioned staff, remain in their places. The reviewing officer having taken his position, the Colonel commands: 1. Companies right eheel, D. Maree. At the second command, the battalion breaks into colmm of companies : the staff (exeepting the Adjntant) place theraselves in the order of rank from right to left, on a line equal to the front of the column, six yards in front of the leading Captain; the Lieutenant-colonel on a line with the leading company, the Major on a line with the rear company, the ddjutant on a line with the second company from the front, the Sergeant-major on a line with the second company from the rear. each sin yards from the left thank of the column; the noncommissioned staff, excepting the Sergeant-major, place themselves, in the order of rank from right to left, on a line equal to the front of the colmma, six yards in rear of the file-closers of the rear company ; the band wheels to the right and takes post twelve yards in front of the staff. The Colonel then commands: 1. Pa4s in reviein, 2. Forinard, 3. Cruide right, 4. Marer. At the fourth command, the column steps off, the otheers remaining in the positions above prescribed. the band playing: the columu rlanges direction, without command from the Colonel, at the points indieated, the Culone? taking his placesix yards in front of the staff immediutely after the second change; the bamd having passed the reviewing otticer, whecls to the left ont of the colnmm, and takes post in front of, and facing, the reviewing oflicer, wher ${ }^{2}$ it remains till the rear of the column has passed. when it countermarches and returns to its place before the roview, wasing to play as the battalionapproaches its original position. The Colonel and staif, except the Adjutant, salute tagethar when the Colonel is at six yards from the reviewing oflicer, and return to the carry together when the Cofonel has marehed six yarls behind him. The other ofleors, and the mon-commissioned staft, salute and return to the carry at the points preseribed for the Colonel. In salating, all oflleers turn the head, and look toward the reviewing ollicer. Non-commiscionerl officers in command of subdivisions salute as preareribod for a Sergeant. Staff and non-commissioned staff oflleers without swords do not sulute.
 Jutus when at six yarls from the revirwing atloore,


 the bund continuins to play, Thoreviawiose ollorer

 ontheright of the reviewitur chllere, whore ho robunins till the rear of the bathalios has pancol, vheon he for

 after hatwing jassed the reviewing oflicer", the ('olonel commantals: Cimide left ; mal when it arrives on Hot

 sabutes: the saltare being acknowledied bye the roviewing ollerer, frominates the review. Shank it be
 and in domble lime, instorad of rhanoriner the ghille and forming line as abowe, tha" (olonsel (oonnmants

 'Fare hamd, previonsly motified. remaine in is pasilion "plowite the reviewing olllecr, and flaty in donhle 1inte. In passing in revirw in donlale time, there is nos sulnting ; the ('olontrl laving buscedtho rovionving ollicer, places himself on bis right, and the review is

 neuvers as the reviewing otlienermay direct. Whers desirable that a batalion shombl be revirowed before
 "or,the (ommanding (ollicer will receive the review and will he ucompranical by the luspurter.

Sounted Trompe-Thereviewine ontherer lakes los posi in front of the center of the hattation, the jumbt beiner claty indicated hy a suldon, previonsly establislied by the Adjutant: tho Adjumant also jomes principal gitides at the points where the rolumn will have to change areation in ordere that the right flank in passing, shall le at six or eight yards from The reviewing ofticer. The bathalion being in line, the thajor infront of and fineing the fornter, cemm-
 3. Marces. At the thime commmenel, the butlal on takesapen order as prescribed. The reviewing ofti(er now approtches a few yards lowarel the major, and hattewhen the Mibjor fibers athom atm? commanarls: 1. Jreme. 3. 太aber, 3. Jresut, 4. Saber. It the fourlh command, the oflicers and ment jravint sabur: the stambard also salutes. should the rank of the reviewing oflicer entible him to it. in whitle cotse the band or trumpeters sound at march, or the flourishes, ascoriner to his rank: sithors laving locen presumted, the Misor facisubout and salues. The revowing otherer icoluowledges the saluta hy lenctiong or ratisug his hat, after whieh har Major facesalmot and commands: ) ('irry.2. Saber. The Aatjor Hen joins the reviewing otlieer, wha procerols io Whe right of the band, and, pasing in from of the ollicurs to the left of the lime, returns to the rielnt. phesing in rear of the tile-robsers.

While the reviewing atlicor is eromer arommal the battalion. Ala hamd plays. Cobsing whom le leatos the right of the band to retorn to his station; the Major returns to his post in front of the center, aud
 mamd morel, the compatny oflicera retarn t") their places in line: the field, siatl, and non-commis-somed staf1, remain in their places. Thereviewing afleror haviner aken his position. the Major freak the hattalion into columm of compatibes or platoons. right in fromt. At the conmant merelk for loreaking into eobumm, the staff exceptine the dojutant place themselves in the oribur of ratik from ripht to boft. on a lime equal to the front of the columm, six yarls in front of the chice of the leathing sub-division. The Fiedi Otticers. doljutant, and the Serevant-major. take post as prescribed in column: the non-com.




















 grother. when Hae major is at six yarela frome the ra -




 the luearl, amel lomk braight towaral the reviowinse

 the foblier Ibismomotod. If rentiflenl ion an anture frem





 and of the standard. The Wajor, haviller callotod.
 Where lae remains 1 ill the roar of tha batialion lias prassed, when he rejoins the hathation. The hemb uf Whe column having "xecolod mexhal chather of direction to the left, after havine pat-e er thereviewing olficeratlse Jajur rommamals: limita ujt : amel whon the battalion arrive on the arigimal gromast. Hee
 presenta saber, and sulutes as boforn: the -alufe hating leen ackowledred by therevinwing whirer.thas reviow is ended. Instome of chaneine the enille and wheding imolinm.tho Major may commanel. 1. "impusnirs or platemus. 2. Dighlt jirmored. B. Finirs right. 4. Mares: aud form the line ly wherling hy funts to the left.

Irtillery. - The batadion lueng in line. it- com-
 pure fior reciore. It thin cummmand. zatels rapratin
 Front, i. Irair, \&. sabeli, whiclt are exernlayl aproserilsed for the review of at hatters - The (aphaimhating takenthoir pasico the lattationt ("omman lor fiuesto the fromt. "I'he reviewine otlicar now approaclas the lattalon (inmanamler, ant lath- at thirty yats from hime to reeive the -iluta. 'The battaiou Commander then fares thwar I the line and
 cemed. the batalion Commander a woutus at leff
 acknowledred the salutr, the lattaljun (ounmanmbr


 frout of the offieverothe left of the line. refurn- to

 cor is going roumd the bittastion. until he have - the right (io return on lis sations: tha battation compmatuler returns to dis post ia front of the conter and commande: 1. Limi er, 2. FEast. 3. f'it ane. \&
 cevted in cach battery: cach (agnain.at the command
halt, causes his camonere to momet, and then places himself with the croup of his horse foner yard sin front of the head of the horse of the chief of his leading phatoon: the Adjutant and Sergeant-major place themselves fourteen yards from the left flank of the column, the former abreast of the leadors of the leatling carriage of the column, the latter abreast of the leaders of the rear carriage of the column : the trumpeters take post. with the croups of the rear-rank horses fourteen yards in front of the head of the horse of the Captain of the leathing battery. The hattalion Commanderthen commands:1. Passi in revion, 2. Forrourd, 3 tiude right, 4. Maracu. At the third command, the Adjutant and Sergeant-major remain on the left flank of the column. At the command maref, the column passes in review according to the principles prescribed for the review of a battery, exerpt that cach Captain remains at the head of his hattery after saluting the reviewing oflicer: the battalion Commander, immediately after the second clange of direction, places himself with the croup of his horse four yards in front of the head of the horse of the Captain of the leading battery, and, having passed the reviewing officer, places himself on his right, where he remains until the rear battery has passed, when he rejoins the battalion. The trimpeters begim to somed when at forty yards from the reviewing oflicerand wheel out of the enlumn as provionsly explained. The head of the column having executed a second change of direction to the left, after passing the reviewing othcer, the battation Commander commands: Guide left; and, when the battalionarrives on the original gromal, he wheds it into line to the left, prepares it for review as before, presents saber. and salutes; the acknowledgment of the salute ly the reviewing officer terminates the review.
The following general rules are observed for reviews of brigales and larger borlies of troops: All monuted officers remain mounted. A camp-color is planted to indicate the post of the reviewing offleer while the troops are passing in review. Another camp-color is planted fifty yards from the first, to indicate the point where each hattalion is brought to a carry before passing the reviewing officer. The stall of the reviewing officer is in single rank, six yards in his rear; the flag and orderlies place themselves three yards in rear of the statil. When other offleers and personages accompany the reviewing officer, they place themsedses on the left of the staif of the reviewing officer; their own staffs and orderlies place themselves in their rear, The trumpeters, or firld-music, of (ach lirigade, if there be no regimental bands. are consolidated on the right, in rear of the lirigade band. brigades are arranged in line from right to left according to the rank of trigate commatars, the senior on the right; if in therelines, the senior Cummander is in front. Divisions are arranged in the same mamer. When more than one brigade is to be reviewed, the stall-otheers, after the reviewing oflicer passes along the front of each brigade, may remain near its: left, while the reviewing otlicer goes (t) remive the salute from the next higade; on his reforn they rejoin him and acompany him as before. The staff-officers in passing aromind tha troopo. ride inome or more ranks accoriling to the mumber. The troeps pass in rovew in quick time. Bafore the laced of the colmm apronches the post of the reviewing oflicer, be gow wherever lae can best obsserve the movemente of the trocpses. The colonels repeat commants as prescribel in brigater revolations. Whenever the (iemeral of brigate fares fowarl the line to give eommands, the Colomels fire about at the s:me time; they also resume the ir front at the same time with the everal. While the tronpare on the march, the Cobunets canse the ams to be earried at
 hatialion are hremght to at retry whata the harange company arrives at lifly yards from the reve wing of tiar. iednerals of divisions and ewros, and their stallonficers, draw their swordo when they take them
places in column before passing is review; the swords are returned immediately after placing themselves on the right of tha reviewing officer. In reviews of divisions and corps, each battalion, after its rear has passed the reviewing ollicer thirty yards, takts the louble time for one homdral yaris in order not to interfere with the march of the colnm in rear. The troops having passed the reviewing ufticer. return to their camps by the most practicable route, being careful mot to delay the marela of the troops in their rear.

When reviewing a brigate in line, each Colonel takes his poont, facing the frout, thity yards in front of the center of his battalion: the Grineral takes post. facing to the front, thirty yards in advance of the line of Colonels, opposite the center, his staff takea post in single rank six yards in his rear, the orderlices three pards in rear of the staff. The line being formed, the General faces about and commands: 1. Prepare fon revien, 2. Marce. At the first command, the Colonels adol: Rear open order. At the command match. each battalion esecutes the movement as prescribed for the review of a battalion; the Colonel after commanding front returns to his post, thirty yards in front of the center of his batalion. The Colonels having resumed their posts, the General faces to the front. The ranks being open, the reviewing officer, accompanied by his staff, approaches the General,and halts at thirty yards in front of him to receive the salute. The General then faces to the left about and commanils: 1. Present, 2. Arms. The arms being presented, the General and Colonets face to the left about and salute. The revicwing officer having acknowledged the salute, the General faces abont, and commands: 1. Carry, 2. Arms, and resumes lis front. The Generaland staff the return their swords, and join the reviewing ofticer, the General placing himself on his right, the staff place themselves on the right of the staft of the reviewing ofticer. The reviewing ofticer then goes to the right of the line.passes in rear of the line of Colonels to the left, and returns in rear of the file-closers to the right, whence he proceeds to his post, in front of the center of the brigade. While the reviewing otheer is passing in front and in rear of each battalion, it stands at corry arms, the remainder of the time the Colonel causes it to stand at parade rest. The batialions are bromght to the carry at the signal attention from the General given after the reviewing othecer leaves the right of the line. While the reviewing oftieer is passing aromed the line, the brigade land plays. If there be regimental hands, instead of a brigade band, each plays while the reviewing officer is passing in front and in rear of its. batalion. When the reviewing officer leaves the right of the line after passing around the troops, the General returns to his post and draws his sword; the staff draw their swods at the same time. The foneral then faces about and commands; 1. ('lese order, 2. March. The reviewing officer having taken his post. the General commands: 1. (rampenies (or dimisionses) right erthetl. 2. Мarce. At the serome command each battadion forms in column of companies or olivisjons, in the order preseribed for review of a battalion, and cach (oboncl brings his battalion to right
 selves tweller yards in front of the colonel of the leading hattalion, the lorigade hand twolve yarels in front of the pioncers; the Gemeral is thirty yards in from of the bant, his stall in single rank, six yards in his rear, his orderlios there yards in rear of the stall. The General then commands: 1. Perse in ir-
 colnma pases in revinw are ording to the principles prescribel for the review of a batalion. The (irmeral having salaterl, phaes himself on the right of the revinwing otliow, his state at the same time place themselves in single rank un the right of the waill of the mevewing ollicer, the orderlies phat themselwes in rate of the statl. The hand whedsimit of the eolum,
places itsolf opposite the seviewiner oflerer, and ant inmes to phay till the remer hat paserd, whan it follown

 of ouch batalion sabates. If there ber reximental

 the rear company of ita hatation hat pasmeal. I'he hamd then marelies outhe flank of the lathation mat
 next in rear has whereded obt of the radmons. 'Ther rear of the colam having gaserd the reviewing onll erer, the battulions, mblese ontherwian diredent, retum

 eugerl, terminatas the revir.w
 Gioncral and atatl fare to the fromb. 'Jhe reviewing whicor haviner hatherd at thirty gards from the (iom rat, the lattor fares abomi and iommands: I. Deros

 the brignde the before, the hatulions remaining tat a cervef if there low regimental lande. lat one phays while the reviowing oflieer is jassing aromed the troops. The reviewing ollicer having taken hit

 The (Acmeral then commands: 1. P'ases in rerieir, 2. Ferirured, 3. (inide righe. A. Maren. At the thiral command, the (obenct of the diret commands: 1 .
 mand warch, the leading batalion takes wheding distance: the other hatalions, by rommand of their Colonets. take wherling distance in time to follow the battalion preceding in the writer preseribed for review. If the dencrai commands: I. In colman of
 bathation has tak'rn wheling distaner, fommands:


When reviewing a division in line, the bregathes are formed in line an prescribed for the revich of at hrigade, with an interval of sixty gards belwern brigates. (On the arrival of the reviewner oflicer. the Major ( H merald fommanding the division canases his trmapeter tosnand the allention: at this signal, repeated in med brigade, the brigade fommander: prepare the brigades for review, after which the Commanders of the reator and left ligigades briner then to order arma and parable ofst. The reviewing ollicer and (arnerat of division then go to at point thisty yarles in from of the demeral of the right brigrade and halt, when the dioneral of brigade commands: 1. P'resent. ©. Aras. The salute being acknowledged by the reviewing ollicer, the Gemeral commands, 1. (irro, 2. Anss. The reviewing oflicer acempanied by the tieneral of divition, then goes to the right of the righ brigade. passes alome Fis front to its lefs, and procecels in fromt of the (ieneral of the erenter hrigale to recelise the salate. The (ieneral of the centre brigade canses the attentien to br soundell when the reviewing oflicer approaches its right. and presenten arme as hefore "xphaned. Having reederel the salute, the reviewing ollicer goes to the right of tha eenter brigate, pasaes along its from to the loft, ant then promecels to :a jwint thirty rate!s in front of the ferneral of the laft brigade. which brigade is presented ats explaned for the second. The tieneral having passed abone the front of the left brigade. returns to the right af the division, passing in rear of the line. The hand of each brigate phase as the reviowing onder pases atomy the front of the brigate, and also whild he is passing in its rear. If there be regimemal hands inatod of at lrigate band. each phay: white thereviewing and cer is passing in front and rear of it, latation. When the restewing oftier pateres the right of the division from the rear, the (ieneral of the division causes the ottention to loesommed. It thi- signal the brigade Commanders chose the ranke, whed into







 Hingle rank lhirty vartuin front wh the 1 i. .ne ral wh the









 *ime time promply flace thematyan on the ${ }^{\circ} \mathrm{rizht}$
 irr.
 himmenf on the roght of the Tioneral of divi inn: hin


 as som as the colder-os thererar battalion have-alateid the reviewing oflicer

When reviewing at distion of infantry in thra. lines, mats brigade is in lime, the divamia beturen
 prepareal for review at dor vignal chlentere ; tha iricates are sucenceively promented to ther rest wing

 and rear, hefore prowereling to rewive the mathat af the brigatenext in rear. Haviny panom aroumbthe rear birigade. the demeral of diviwion cause - the attention to be sombled. It this -imnal, which in ropeated, "aclo brigade commamber •lones ranks and Whects into columan of ormpanaies or divinions to the right. The diencrat of the latading brigade given the commande for passing in review; the (iomeral- of the conter and rear brigades lurine them tor ordor "romen and pmotede reat or ia plemer reat. A1 :he -ignal gior-
 mover forward: the (iemoratis of the other briganden give the commands for mareding in reviow, ram-ints Them to rhance direction to lhe laft, or half laft, in time to foblow at sixty varela in rear of the b, ricade preceding. 'plac review is complatal as previonsly cxplaimal.
When reviewing ad division in tine of ma-w. dar ls brigate is formed as preacribed for row win lon of maners. The arms are presented, amd the resto winf
 the review of the division in line. Barde brizalde. while the reviessind allicer in pat-ing in it fromt ams rear, stands at comry crmes. the remaind rof the time the Gumeral canses it to stand at jurade rest. Tlae of viewing ollieer hasing jaswad aromad the tromw, the signal uttention is given, at which that tirnoral- if brigade canse thoir hatalions dochanze dirution hey the left thank: the dient rat of the hadine lerizuli. give the commando for pa-aing in rovitw in than of companies or divisions: the (erge rale of the ofler
 in flewe rent. It the sigmal firtourel. rejeated in the lataing bricade, the birigath in wi- forwart. the batalions executine the movernemt -uco ... - ly as (xplained in the review of alorizade in line of in ....
 the commamis for marching in resocu in tint it f $1-$ low the brigade proadine at the di-tamg of sive
 in: ntlicer may pa-a low wern the ditform tatal on from front to rear. and from rear to front.

I corpen of infanty, in line of masern, or in three lines of mawe-with a di-tance of one hom lred ?arls
betwren divisions, is reviewed as fullows: On the arrival of the reviewing uftecor. the General commanding the corps eauses the a!tention to be sounded. which is repeated by the trumpeters of the Generals of division; each diviniou is presented by brigade. as explaned for the review of a divison in line of mass('s: the Goneral of division, necompanied by his statr. joins the reviewing officer and corps commander, in front of his right brigade, aut accompanies them to rocoive the salutes from the brigarles, and while passing in front and in rear of his division: he then remains near the right of his division. The revirwing offiedr having passed around the troops, the General commanding the rorps canses the attention to be sounded, which being repeated by the trumpeters of division and brigade commandors, each brigate is formed in column of masses to the right. The General commanding the corps then canses ithe formord tolse sounded, which being repeatrd by the trompeters of the dirst division, the first division executes the movement. as previonsly cxplained; the other divisions staml in place rest, the Generals causing the formari to lie sounded in tinie to follow the divison precerling at a distanee of one hundred yards. The troops may march in review in colum of masses. If there be regimental bands only, the one at the lead of each brigade wheels out of the column. when opposite the reviewing oflicer. While on the march and passing in review, but one band in rach brigade plays at a time. On approaching the reviewing officer, the Gernfral commanding the corps places himself about fifty yards ia front of the General of the first division: his shat place themselves in single rank six yarlls in his rear, the flag and orderlies three yards in rear of the staff. The General having saluted, places himself on the right of the reviewing officer: the staff, followed by the flag and orderlies, place themsalves on the right of the staff and orderlies of the reviewing othecr. The Generals of division, while their divisions are passing in reriew, place themselves on the right of the corjs commander : each brigade commander, in like manner, places himself on the rimht of the division commander; their statis, followed by their flags and orderlies, place thenselves on the right of the stalf and orderlies of corps or division commanders. When more than one corps is to be roviewod. the reviewing ofther does not go to tho front of each brigade eommander to receive the salute. The Generals of brigade facing the line present arms and salute as the reviewing oflicer arrives opposite his right; lee then causes arms to be carried and resumes his front. The march in review is conducted as explained for a corps. When troops of different arms are reviewed in line they are arranged from right to left in the following order: one. infantry; two. mounted artillery; third, cavalry. In the same arm, regulars, volmoters, ami militia are posted in line from right to keft in the oreler named.

REVISION.- I ro-cxamiuation for omy oorrection. W'lere an oflicer, who orders a <"ourt-Martial], doces not approve thoir provedings, le may, by the enstom of war, return them to the Court for hecexione. and no additional videme rean bu taken on such frrixton.

When a reeord is retarned to the (onrt for Remision, the subsernent procordines thereon should be recorded as follows:

## REVINION:

BALRACKH,

The Comrt resonvened withednewl doors, pursuant in the following ordire at ten o'clock A. s.
(Here insert copy of ordir.)
1'menent:
Ahsfint.
Thar commanication from the ('ommanding (iconeral. Inpartmont of the -..... of chate

188 . or memorandums) containing the instructions to the Conrt, and the rasous of the reviewing authority for rogniring a reconsideration of the findings (or sentence, or correction of the record). was then read to the Coust by the Judge Advocate, and is attached to the record and marked $\qquad$ ?"
The Court then maturely deliberated upon and considered the said commonication, and the reasons set forth for revision; and, on motion, (a.) now revoke the foregoing findings, and having maturely considered the evidence adduced, tind. ete., etco: or (b.) now revoke the foregoingr sentence, and do sentenre, ete., de. on . (c.) respectfully adlueres to the forcoing findings and sentence, - - ; $\mathrm{ur}^{\circ}$, (d.) eorrects the record by, etc., etc.

Colonel, —— I.S. Artillerg.
President.

## 1st Lieutenant - $i$. s. Artillory,

 Julge Advoeate.It is always proper for thi" Court, shonld it so clesire, to give the reasons for adhering to its original tindings aud sentence.

No wituesses, not previously called, can legally be examined before a reconvened Court.

When, however, a Court has crred in its rulings in the rejection of a witness for supposed ineompeleney, or in rejecting offered docnmentary evidence. or in not permitting a proper and legal cuestion to be put to a witness, or in refusing to summon a certain material witness asked for by the prisoner, and the reviewing anthority has reconvened the Court for a reconsileration of its action, the Court may, shond it concur in the viaws submitted, proceed to remedy such error by revoking its findings and wr $n$ tence, and correct the record by permitting the introduction of the excluded testimony. Before the Court thus proceeds to correct the record, the prisoner and his comsel must resume their seats and the record so slate. In conserpurnee of receiving such excluded testimony, the other party may have to call witnesses in rebuttal, which is authorized.

## See Comrtw- M/artial.

REVOLUTION. - Any extensive change in the Constitution of a country suddenly brought about. The two most important events in motern history known under this name are the English Revolntion of the 1 Tith century, and the French Revolution of the 18th. The former began in the early part of the reign of Charles I., with the striggle between that King and his larliament. In 1640 the struggle beeame a civil war, in whin the Parliament obtained the ascendencoy, and bronght Charles to the block in 1649. A liepoblie foliowed, under the Protectorate of Oliver Cromwell, which was smeceeded in 1660 by the restoration of Jomarehy in the person of Charles Il.; lut the arbitrary rule of James Il. brought the King and the people again into antagomism; and, dames having thed the country, William Ill. Wis called to fle thronse mader such conditions and safe-guards as secured the Balanee of the ('onstintion. The French Revolution was a viohent rexetion against that Alsobntism which hat rome in the courso of time to sup)plant the old feutal institutions of the country. It beeran with an onthroalk of insurvectiomary movements at l'aris in oluly, 1789 includiner the destruction of the lastille. Om Jamary ? 1 , 179:3, King Lonis XV'l. was heheaded. The Christian roligion Was reposed, the sactedness of the repulblie athed worslip of reason solemmord, amb al disastrous reign of blood and terror followed which was bromelat (o) an and in 1794. When Robespierre himself sulle red on the quillotine the fate to which he hat comblemmed commoless malitudes of lis countrymen. Among other importiont revolutions in the modrorn worle ure the Anorian lievolation of $17 \% 5$, hy which the Gnilod states throw atr tharir dejemelence on Gircat liritam; the French Revolution of

18：30，which trove（＇harlas X．into exile，and mixal
 will of the perple：as ulse the Ravolution of imer． Whon France rose against Ramia Philjope，and adopted for a tima a repmblican form of govern－ ment，the revolntionary condagion sproding tome porarily wer mont of Comenemal buropa．Biy tho latian Revolation of $185: 80$ ．the varions intur Sowereigns of lady wredriven into wila，and the whate of the peninsula burame，with the incorpora－ tion of the Roman＂rerritories in Is70．subject to Viexor bimmanued．Thace following obsorvations，in

The French Revolution is ant wath so extraurali－ nary that it mand needala the starting－point inany surios of comsideratioms on the affairs of our own lime．Nothing of importance happons in France that is mot a direct emasempence of this wapital fact． which has thoronghly chamgerl the whold comblition of life in that comentry．Diki all that is great，larenic． bold，like everythine which exeeseds the emmen measure of human strenght ，Whe French bewohtion will contime to be for centurios ther sulaje abemt whied the world will halk，upon whirh hey will divide，whith will be the acension of their friant－ shipes and their hatrels，which will furnish the－uhe jeet of dramas and movels．In one sense，the peremels Ravolution is the grary of France，the lireprla epopere par excellener：but，aluast always，mations who have in their history an extrmodinary ewent，expiate it by Jong sutfering，and often by the lose of their national existence．It was thens with dulata，with Grevee，and with Italy．For having created thinga which are mingue，ly which the worh lives anil thrives，these countries have passed through entor ries of hamiliation mat mational death．Nationat life is something limited，medionre，comthet．To do what is extratordinary，of universal interest，thess． narrow trammels mast be rent asmoder ；but in rending them the nation itself is rent ；for the mation is but an assemblage of prejuliese amd station－ ary ideas which mankind as a whole would re－ fase to aceept．＇The nations which created religion， art，sciense，empirce the church，the papacy（all things miversal and not national），were mere than nations：but at the same time less than mations in the sense that they were the vietims of their nork． We think that the Revolution will have for prance ambogons consergunces，but less darablb，herause the work of France was less great and nniversal than the work of Juden，（irecect，and Italy．The exact parallel of the prement situation of that country seems to be that of thrmany in the seventernth cen－ tury．In the sixteenth century，Germany acom－ plished for mankind a work of the first order－the Reformation．She expiated it in the severateenth by an extreme political alasement．It is probable that the nineteenth contury will in like manner he consitered in the history of France as the expiation of the Revolution．Neither nations nor indivithals can with impunity deviate from the midule course． of feasibility and practical good seuse

If the Revolution has given to Framere a poetic and romantic position of the tirst order，it is certain． on the other hand．that，in view merely of the re－ quirements of ordinary statesmamship，it has led her into a strange path．The end which franer sought 10 reach by the Revolution was that which all modern nations pursue：a frame of society just， honest，hamane，gharamecing the rights and the liberty of all with the last possible sacritice of the rights and the liberty of each．France is to－day，after shedding rivers of blooh，still wery far from this end： whike Eingland，which hats not proceeded he the way of revolutions，has mbost reached it．France，in other words，offers the strange spectande of a country tardily striving to come up with the nations she orice scorned as lageards，and learning in the school of the peoples to whom she had claimed to give lessons，－painfully striving to accomplish by
imitation the work in whill Mre fanloll la．Al


 at the emi of the vightembth contery：wo wry
 for a mation mal mankimil inalf to resint．If，r












 their stome，great inert manas，where intelligence in
 （t）＂jvilization，in putting at the wryice of ther state． ly means of taxation und the contereftion，it mar－
 will．Of this form of soxid life．whindi ix awaratly that which lemat roncomane in mation abed latel firi－ sorves its strengeth，binghand has given an the mentel． England has arriwed at the rust libural form of


 in England is not derived from（romwell，wor from
 tire history ；it springs from lorr ingal re－ the rights of the King，the righta of the mobility，the rights of the commons，and of corporations of ivery kind．France followed the opporitt cromer．＂This King had lone since made at com swerp withe riglits of mobles an：conmons，－the nation mateo is chan sweep of the rights of the King．She pro－ cerded philosophisally in a matere where sla shanhat have proceeded historicolly ；sha thomght liborty was to be established ly the sus retionty of the people and in the mame of a contral anthority： whereas liberty is only＂fore won by succor－wive petty，locat comuests，iny slow reformis．Finarlant， who does not prida hacredf upurn any plailasoplay： England，who has never brokin wihl her tradition－， except in a single moment of temporary aberration． followed by a prompt repmentance：Fingland，who． instead of the abohlute hegna of the soverotenty of the people．admit omly the more monderate prineiple that there can be no government withont the perphe nor against the feopho－Dingland is tombay ： thomand times frece than France．whon name an proudty raised the phatheombice banner of the rishth of man．The truth is，that popular somereignty it not the foundation of constithtional govermment．I State so estathished，after the Formbly fashion，is tom strone ；while far from guarmatering all liborties，is absoris all of them：and its form in＂ither the pop－ whar convention，or flse waputism．The matural result of the Revolution comblel now，after all．have hern anything very differont from the（inn－nlate：：mald the Empire ；the natural ro－ult of such a eoncteption of sociaty could not have low anything chor that a system of administrationg at notwork of preferta，is narrow civil code，a madine for－gueczine the ma tion．a swadlling fand in whill it was impo－ihle for it to live and grow．Nothing is more unjust than the hatred with which the Fremell radical erloed res gard the work of Niapolvon．The work of Napulwon， if we except somberens：which were pathonal to that extraordinary man，i－，in tines．nothing mure than the revolutionary programmer romizal in it possible parts．Had Napment bever existent，the final con－titution of the Republic wablat not have differed essentially from tha constiontion of the var VIII．A rery falise itea，in many respects，of bue
man wojety is in faet at the hottom of all French revolutionary attempts. The original error was at tirst hidden under the magnificent outburst of enthusiasm for liberty and the right which filled the first sears of the lievolution ; but this fine enthusiasm once spent, there remained a social theory which was dominant under the Directory, the Consulate. and the Empire, and marked its inpress deep upon all the creative efforts of the time. According to this theory, which we may well qualify as material-i-m in politics, socioty las nothing of a sacred or religious character. It has only one end, which is, that the individuals composing it may enjoy the greatest possible sum of well-being, without concerning themselves about the ideal destiny of mankind. Why talk about elevating and ennobling the human cons"ience: The only question is how to satisfy the greatest mimber, to assure to all a sort of happiness, Fulgar and relative only it must assuredly be, for a gencrons mind would disdain such happiness, and would revolt against the social system which aimer! to sceure it. In view of an enlightened philosoplay, society is a great providential fact ; it is establisheed, not by man, but by nature itself. in order that intelleetual and moral life may be developed on the surface of our planet. There is no such thing in political philosophy as man isolated from all companionship. Human society, the mother of every inleal, is the direct product of the supreme will. Which has decres thent the goon, the true, the hemutiful, shall have their contenplators in the naiperse. This transcembent fauction of humanity is not performed by means of the simple cocxistence of individuals. Society is a hierarehy. Every individual composing it is noble and sacred. every being (even the animal) lus its rights; but all are not equal; all are members of it rast body, parts of an immense organism, which is accomplishing a divine work. The negation of this divine work is the crror into whieh Freneh democracy easily falls. Considering the only object of soriety to be the satisfaction of the individual, they are led to dicregard the rights of ideas, the supremacy of mind. Fot comprehending, morcover, the ineciull. ity of races. because ethnographical differences have in fact disappeared within her limits from time immemorial, France has learned to conceive of social perfection as a kind of universal mediuerity.

If man did not assume the right of nating the animal kinglom subordinate to lis needs, human life would becone impossible. It would be scarcely more possible were we to hold to the abstract conception which mates us regard all men as bringing with them into the world equal rights to wealth and social rank. Sueh it state of things, though just in appearance, would be the end of all virtue : there would be, inevitably, war and latred between the two sexes, sinere mature has ercated lere, in the very heart of the haman speciés, an modeniable diflerence in the part to be played by vach. Tha well-to-do citizen thinks it right that, after destroying royalty ant horeditary nobility, we should sophat hereditary wealth. 'The working man thiuks it riorlt that, having abolished hereditary wealth, we should stop at the ineofuality of the soxes, and even, if he le a person of some sanse. at the inequality of strensth and (atpacity. The most artont mopian, laving sup)pressed. in imagimation, all inequality amonir men, still admits man's right to make nae of animals according to his neads. Ant yot, it is no mume just that one man should be horn rich, than it is that another should be born with a soceind distinction: neithar the onn nor the other lats earmed his position by his own labor. Nobility, it is aloaves argued. has its origin in marit: and as it is perfectly char that merit is mot hereditary, it is casy loshow that hereditary nobblity is an shasurdity, The fallacy of this reasominer consists in the everlasting error of making the state tha arbiter of a sort of dietribulive justioe. The olije et of rank, reirarded as an institution of pulblic utilite, was not to rewart, but to stimmate merit;
to realer certain kinds of merit prosible, and ceven easy. Had it no other effect than to show that justice is not to be louked for in the oflicial constitution of society, it would non the altogether mseless. The device "To the most worthy," rarely applies in politics.

The midale class is somewhat self aleceived, therefore, in thinking (1) establish society on a just basis, by mears of its system of compotitive examinations. special schools, and regular promotion. A man of the prople can easily demonstrate that a child borm of poor parents is excluded from these competitigns. and he will maintain that perfect justice will not be done until all are placed from their birth in identically the same conditions. In other words, if the notion of disiribative justice for each individnal be rigorously carried sut, no organized society is possible. A nation which shonld follow out such a programme would condemn itself to incurable weakness. Suppressing the right of inheritance and thereby destroying the family, or leaving it optional, it would soon be got the better of, either by hose jurtions of its own people who still adhered to the odd order of things, or by foreign nations who still retained these ancient principles. The race which trimmphes is always that in whirh the family and property are most strongly organized. Humanity is a miysterious ladder, a series of resulting forces proceeding one from the other. The many laborious generations of very hard working common people and peasants render possible the existence of a well-to-10 and frugal middle class, which in its turn renders possible the man exempt from material labor, and devoted wholly to matters of universal interest. Each in his station is the guardian of traditional usages which are of importance 10 the progress of civilization. There is but one morality, there is but one knowledge, thare is only one education. There is a single intellectual and noral whole, one glorions work of the human mind to which all, except the egoist, contribute, however smadl a part, and in which, in difforent degrees, all share. We ignore human nature unless we admit that whole clasies of men mast live by the glory and the enjoyments of others. The demoerat regards as a dupe the peasant of the old regime, who works for his noble masters, loves them, and rejoices in the high estate maintained by others at the expunse of his own toil. Doubtless all this is absurd, where life is narrow and confined. where everything is done within closed doors, as in our time. In the present state of society, the advantages that one man has over another have become thiners personal and exclnsive: to enjoy the pleasure or the rank of another seens mere foolishness: but it has not always bern so. When Gubbio or Assisi saw the wedding cavalcade of its young Lord tila past, no one was jealous. Then all shared the life of all: the poor man enjoyed the wealth of the rich man. the monk the pleasures of the worlding. the worlding the prayers of the monk: for all, there was art. joetry, religion. Can the cold considerations of the economist supply the place of all this? Will any such considerations sullice to bridle the arrogance of a demosracy conflent in its strength, and which, not having heen stopured by the fact of royndty, is very likely not to be stopped liy the fact of property? Will there be voicus eloguent enoughtomake fouths of eightern aceept the reasoning of the aged, to persuade whole dasses-young. ardent, believing in pleasure, and upon whom enjoynent has not yet palled-hlat it is mot possibho for all 10 anjoy, for all to lew well-hred, delicate, virthous evon, in a relined semse, but that there must of necessity be learned, well-bred, refined, virtmous people of leisure, in whomand by whom the rest have their enjoyment and their taste of the denal: Events will sloow. The superiority of the church, and the strengeh which still assures her a future, lies in the fact that she alome umberstands this, and makes others understand it. The fhurela well knows that the best men
 higher chaseses ; but she khows alse Hal maturo ham int onded that haman lif. shand have many sugas.
 of many that makes puscillo ther whation of ven: that it is the tosil of many (hat jurnote the moler life of a small number: but she dome mot call then privileged, mor thene wromed, for the werk mankimit


 ordimation to a combum task: you have orgoman.
 hility of trac living, something like the lite of ons blay, the saddest life over livel, evion for the man of the people Lorking unly at the rirlas of iulividnals, it is unjust that ong man shonlat ine sameritioesd Io amother mant but it is met unjust that ath wosthe
 whichanakind is working one. It in for religion to
 world sumerabmant romsuhtions for all the satitiees made lare belows.
This is what the Re:oolutions, after it hat lont the grand and sacred enthasiasen of ifs artier diays, eliat bet suldiciently undersams. The lievehtion liecans timatly irreligions und allowitir. The suciety men dreane of in thos sath hase following the fewer lit whenthey were striving to collent dheir seaterern arhsers, was a sort of reqiment componed of materialists, and in wheh thisciphine hedther phete of wirtue. The wholly negative basis whied the hart ant unimanimative mern of that day assigned tor fored som-
 phe: their rote, the oflimaine of distrast, hats down as a liget prindigle that the vatue of everything may Lee extimated in money, that is to say in phasure. 'The whole meral theory of these stocalle founders of our laws may he sumared mp in jeatonsy. Now jembong is the fombtation of erpuatity, but not of liberty; putting man constantly on his guard aruint the curroichmants of his neighbers, it renters courtesy hetwern the severab chasses impossible. There can le mas society without affection, without tradithons, without resprot, without muthal amenity. With its false mation of virtue which it confounds With the stern vindication of what each ome regarals as his right, the demorraties sehool faitsto see that as nation's great virtue consists in submitting to trathtional incenatitics. For this achool the most virtuobs race is not the race which practices sedf-sacritice. devotion to dhyy, Whealism in all its forms. but the most turbutent, that whieh makes the most rever lutions. The most intelligent demoerats are mach surprised when they are toh! that there reatly are virtums races still in the world-the Lithumians, for example, the Ditmarschers, the l'omeramiansraces that are still fuldal, full of vigurous reserved strength, understanding duty like Kam, and for whem the word revolution hats momang. The lirst result of this ith-natured and sugericial hailume phy, too soon sulstituted for that of the llontesguicus and the 'lurgots, was the supyresision of royalty. Tommats imburd with a materialistio philese ophy, royalty necessarily seemed an anmany. Very few incrons. in 17as, understomb that the contimiance of grod things refuires to be gharded by intitations which are, if yeur phense, a privilege for some hat whichare orgass of hational life, without which certain meds must necessarily athior. Theae litule forlresses. in which were depmeited for safcokeepingr trasures belonging to socicty, sumed feudal astlen. All the time-honored suburtinantoms of ramk, all historic eovenants, all symbolswere repadiated. Royal19. was the first of these covenams, a covenam dating biate a thonsamd yours, a symbol which the puerile
 prehend. No nation hat (virr crobated a legent mare complete than that of this grand (apetimmonarely: a sort of religion. born at Sit. Denis, consecrated at























 omby at Rkams, -the -ancrament of resalty. 'The

 of the tirst rank. To the P'ome whon - - mamon- hin






 him, ho deposes him. Ilim tume perfert tro. mot withstandinge is at ramonizol satut, saint lomion, wh
 his mystic adorers; the egocel dean latre maken no distanction between him and st. Mirlated or ot. ('anh"rine: this porne girl literally lived njwn dhe religinn of Rheims. Incomparable lequal ! sacroal fable: Ind set the rulgar knifo chesignell for striking wif the heals of criminals was litted agaiust it: 'The mane ther of the 21st of damary, is, from the idamiatiprint of view, the mom hiflethes ant of matrontiom the most shameful arowal of inerationde and lan-
 past. that wa- ever made.
bo we man to say that the whl dymaty, what wery memory the newly-organized sorimy sompht th obliterate with that pionliat rancor what in only

 ancient dynasty wis not entily of wriom errar Certatuly it was and if we were mow writite a general phitusophy of French himury, we shmald shm that the King the nolber, the cherey, the parliane the the citios, the miversities of anciont lamere. han all of them failed in their chaty, and that ilde revintion-

 mast always be expiated. France had cone cibal of hur monaroly as some thing unlimital. A King after
 armed to defend the nation and maintain or ratin rights, was for her an athenrlity. From the lish colury, the Fing of Enchand. contantly at -Trife with his subjects, and hampernd hy hartorn is th
 erful chough. The F'resedy Monardyy wa- tax sa-
 antrolled. Bussut war logical in makine the the ory of the king of Framee equare "ith ithe lloly
 tincture of my-ticism, the harons ant commund would ment have -uccoeded in checkmating him. The Grench Monarchy, to prenluce that brilliant mewor.
 the mation. Wheu unce que statc hath ben exmetitut-
ed into this powerful mity, un ler the hand of one man, it was inevitable that France shombldook upon herself as being what the great King hat made her, an all-powerful central autlority, with libertios destroved; and, regariling the King as a superfotation, should treat him like the moll which becomes useless when once the statue is cast. Thas Richelien and Louis XIV, wre the great revolutionists, the trae founders of the Republic. The exact pendant to the co!ossal royalty of Louis XTV. is the Republic of 1793 , with its frightful concentration of power, an unheard-of monster, the like of which had never bern seen. Examples of republics are not rare in history; but these republics are eities, or small eonfederated states. A centralized republic of thirty millions of souls is absolutily without precedent. Given up for four or five years to the vacillations of drunken men, like a Great Eastemin langer of shipwreck, the enormous machine sank iuto its natural place, into the hands of a powerful despot. who. at first. With prodigious skill. succecded in organizing the new movement, but. who enderl like all despots. Become insane with pride, he brought upon the conntry, which had put itself at his mercy, the most eruel fumilation that a nation can "udure ant brought about the return of that druasty which France had expetled with the most degrading insults.

The smalogy of such a course of avents with what took phace in England in the seventrenth century is easily perceived. Fvery one was suruck by it in 1830, when a mational movement substituted for the lewitimate branch of the bunrbons, a collateral branch more disposed to recognize the new needs. Louis Philippe must have seemed a William III., and it was natural to hope that the final result of somany convulsions would be the peaceable establishment of constitutional government in France. With this consoling thought, a sort of peace, a little quiet and oblivion of the past, stole over the poor, tronbled French mind; there was a general amuesty, even for follies and crimes. It was a great mistake: a surprise, the most inconceivabie known in history, was successful; a band of mad-raps whom a constable's staff shonld have sulficed to restrain, overturned a dynasty upon which the sensible part of the nation had based all their political faith and all tieeir hopes. An hour's want of reflection on the* one hand, and an hour of weakness on the other, sulticed to sweep away a theory conceived by the best minds, with, apparently, the most tempting chances of success. Why this singular disaster? Why did not what happened in England also happen in France? Why was not Louls Philippe a William III., the glorious fonnler of a new era in the history of the country: Will it be said that it was the fault of Louis Philippe? That would be unjust. Lonis Philippe made mistakis; but then all governments must be permittel to make them. Whoever shomlal undertake the conduct of human aftairs on combition of being infallible and impeceable, wondd not reign a day. At all events. if Louis Philippe deserved to be dethroned, William 111. deserved it muel more. What Louis lhilippe was chafly reproached with-ampopmarity, inability to make himself loved, at tate for personal power, inliflerence to external pomp, relapses towaril the legritimist party to the detriment of the party which hand mate him King ; attempte to re-establish the royal prerogative-might have beensith more strongly urged against William lll. Why, thon, were the results so diflerent? boubtless it was owing to the difference of time and country. Examts, histurically important. make take plame manoge at surions and heavy people, tirm believers in hereditary right, and who lave an invineible repugnamere to driving their sovireign to extromitios, whirl would be impossibla at an rpoch of intedrechand Ievity and reasoning folly. Besides. tha republican movement of 1649 was intinitely less deep, than that
of 1792. The Engrlishmovement of 1649 dial not go so far as to entablish an momerial antbority. Crom. well was no Napoleon. Finally, the Englīsh republison party had no second generation. Crushad under the restoration of the Stuarts, decimated by persecution or taking refuge in America, it ceaneil to have any considerable intluence upon public affairs in England. In the cighteenth century, England seems to lave made a business of expiating. hy a sort of exagererated loyalty and orthodoxy. her momentary lipses in the middle of the sixteenth. Hore than a homslred and fifty years had to pass away before the death of Charles I. ceased to weigh upon polities, and men could venture to think freely, withont feeling obliged to affect an unbounded attachment to legitinacy. Things wonld have taken nearly the same course in France if the royalist reation of 1796 and $179 \%$ had carried the lay. The Restoration would then have been accomplished much more frankly, ant the Republic would have been in the history of France only what it is in that of Kuglamel, an incident without consequences. Napoleon, by his genius, aiderl by the marvelons resontres of France, saved the Revolntion. gave it a form, an organization, an unprecelentet military prestige. The weak an!l unintelligent reatoration of 1814 could by no mtans uproot an idea which had been deeply seated in the national mind, an:I which had enlisted the sympathies of a whole, energetic generation. France, moler the Restoration, and undor Louis Plilippe, continued to live on the memories of the Empire and the Republic. Whilst in Englaud, from the date of the restoration of Clarles II., and after 1688, the republic was the object of unceasing execration, and a man was illthomght of in soriety who spoke of Charles !. Without calling him the martyr Kíng, or of Cromwell without adhling the epithet usurper-in France it became the rule to write histories of the Revolution in a strain of apology ind almiration. It was unfortunate that the father of the new King had taken a considerable part in the Revolution; people accustomed themselves to consider the new dyuasty as a compromise with the Revolution, not as the heir by substitution of a lawful inheritanme. A new republican party, rallying around a few old patriarchs, survivors of 1793, cane into existence. This party, which had played an important part in July. 1830. but since then had fuiled to give prevalence to its absolute theoretical ideas, made incessant attacks upon the new government. The change in England, in 1688 , was not in the least revolutionary, in the sense in Which we mulerstand the woil: flie change wan not brought about by the people: it violated no right, unless it ware that of the aflaioncal king. With the French, on the contrary, 1830 namaimed the forces of amarchy, and eleeply hamifiatra the legitimist party. That pariy, comprising, in many respects, the most solid and the mest mora! portions of the community, made crucl war bpon the new dyuasty, cither by kecping altogetleer aloof fromit, thus preventing its being settled upoes the sole busis upon which a elyuasty is founded-the solidly conservative element ; or else by its comnivance with the repuhliann !arty. Thas the govermment of the house of Orlats "fitiod to obtain a firm foubdation ; a breath owerturned it. Everything int! bean pardoned oo William IIT. rothing was pardonel to Lomis Philippe. The momarchical irinciple was strong (monuth in Larland to n:adergo a transformation: it was not so in Framee. Certainly if the republican party had had in England, usder ifilliam lli.. the importance which it lasl in France wand lanis Philiphe一 if that party hatl had the sujport of the Stharl faction-the comstitutional dstablishment of England would have been shortliver. Ifere Englanit protited by the immense atvantare whe has in her aptitude for colonization. Anterien was the wasto-weir of the republient party; without that, this party wonld have remained as a virus in the inother country, and would have pre-
vented the restablishament of conatitational wrownment. Nothint that is strong and sine rer ion fow int the world. These republican exiles were the fatheres of the men who, in the hather part of the ejphter.nth conture, carrial on tho Wiar of holepmatener. 'The revoluiomary demont in England, inatomb of binge a disendent, thas became erative; lineliah radimal. ism, instead of tharing the mother commry in pine...s. produced dmories. If framer had berin at cratoniz. ine, instomed of a military mation: if the |rold and ant terprising demont, which in other conntriws furnishers relonists, werre with the Firemelt eapable of anything besedes oonspiracios and lighting for aho
 the republican party, axpelled by the reaction, would have emigrated about the foar ions. ass would have fommed, far away, it miw leramer, which, in accordanere with the law of colonias, wobld now dound lews be an indememelent repuhlie.

A gross arror of hiatorical philusaphy rontribumed to warp the national judgrment upen hfis grave ybue tion of the forms of grovernmom? it was this vary exampe of Amerian The repmblicm whon were forever citing this (xample and gool amp casy to fon). low. Nothing could bo more saperticiti, That colonies acerstomed to arowern themselves in an indepemententashon slowhld heak the tiow which hind them to the mother comentre and these ties broken. should dispense with royaty and provide for their common safoty by a foderative pacet. there is nothing in this but what is matural. Four a colong to werer itself from the throne in this way, as a colting is severed from a trox. carrying its own trom of lifo with it, is in accordance with the immutable principles of colonization principles which are nomeng the conditions of hmman proreres, of that of the Aryan race in particolar. Virginia and Carolina were rapmblice before the war of independence. That war changed in merneer the internal constitution of the sitates: insteat it ondy (ont the cord, now grown irksome, which bound them tow Eurone, and substituted for it a foddral mion. llere was mo revolationary work. There was at the botten of this great movement an eminently conservativeconception of right, an aristocratic and law-ibidiner spirit of provincial liberty. In like mamer, whenever the slight tie which binds ('anada and Anstralia to England shall be broken, those countries, :ccolstomed to gowern themselves, will contime their independent "xistence ahmost without pereciving the change. If France had andartaken in "armest tha" colenization of Ageria, Ageria wombl have had a chance of becoming a republice sooner than Framer. Cobonies, formed of persong whon find themselves cramped in their mative lamb. and who seck a greater liberty than they have at home, are always nearer it remblic than the mother comery, tied by her olld habits and her ancient prejudices. Thme, the re has continued to exist in "ramee a party which toes mot permit the development of constitutional royadty, the radical republican party. The sithation of France Was very diferent from that of Englamd: side by side with the Right, the Left, and the Center, there was an irreconcilable party, utherly refusing to accopt the existing govermment; not saying th the government. "Do snch a thing amd we are with yon;" but giving it to understand: "Whatever yon do, we shall be" arainst yon." The republic is in an sonse the tinal genal of every haman secioly: hat we "an concetive of two very diferent meehods of reaching it. Toestah. lish the republie with a high hand, by destroying every obatacte, is the dream of ardent minds. There is and other way less violent and moresur'; to preserve (he old roval families as precions montoments amblowe. nirs of the past, is not merely the foolish fancy of an anticuary; dymasties thas preserved beome in cortaincritical moments extremely convenient whens in the machinery of constithtional envermment. Will the countries which, like Englamb, hawe follow. ed this course, ever attain to the perfect republic.






 reanly latill out. with, to ble wre, wome wintings. it profirs to phange wer provipicen and thromelt hagas.


 faction of every diariplineal mind the fomdanemtal primiple of the philmephly of firemels histary: That

 antircly ont of propertion to its alymarat (eanme. The sherck was mohing, the ruin was immense.
 in Englam, if Willian 111. han lwon nwon uway by
 gevernment excited. Inthat vase the history of Fing band wond tave bean turned apside down. In lewr-

 able the new dynasty io get ower momemary dithlcultice. In Framee. ein the other hamd, the morad ade generacy of the nation, its want of faitla in royalty. Together with the rary great unergy of the repulaicing party. suthicen to owerturn a harone which had hat ar ruinons foundation. Than it wats daat the disistrons sithation in which France has remamed ever wime the Revolution beeame apparent. If t? Revolution and the Republia had taken root bead deeply in France, the honse of Orbans, and with it parlinmemary erovermment, wobld have been securely conselifated: had the ropublican idea bern domi. namt, it would, after divers alternations of action and reaction, have "arried the comntry, and the Re-
 nor the other of these t wosuphositions were realizal. The republican spirit was strong (chougla to prewent the permanent establishment of (onstitntional) roy: alty: it was not strong (nough to estublish the leepublic. Hence, a false and sincular position, amb one calcubated to prepare the way for a melandany downfall. What happencol in $1 \times 48$ mirrht happen many timas again ; let as eudeavor to discover the sererit law, the hiddurn rasion of this.

When we sue a man the of a colld, we conclasle, not that a cold is a mortal malady, lout that the man was comamptive. The disethes which oceasinnald the death of the government of July was in like manner sbs slight, that we mast abmit the pationts constitution to have been of the fraikest. The slight agitation about the banguets was one of those which a movermment onght to be able to suppart, if it have any capacity of life in it. Why, with every appeasance of heath, was the government of Juty 41 feethe? It was berause it had not that which gives to a govermment enod lungs a smanl heare, end a healthy stomach; we mean the serious adherence of the influemtial portions of the community. The thoroughly hamane feeling which rectrained bumis Philipge from giving battle, whik its indulycuce implits a distrust of his own right, does nen suthere to "xplain his fall. The republican jarty which cotected -he revolution was an imperceptible minority. In al country where the growernmem was lesecintral. ized and where upinions were less divided, the majurity weuld havereninted : but the provinces hatas yre bo idea of oppoxing a movemernt emanating from faris: becidec if the faction which onok part in the movement of the 2tth of Fethuary. 14ta, was intirnificant. the number of those who might bave tefended the vanquished dyanty was not great. The legitimist party were the victors, and whomt hilaling harricades, had, on hat hay. heir revence. The Orleanc dymaty. in apite of it thormglaprightnc... and its rare houesty, hath not known how to speak en
the heart of the nation, nor to make itself lowed. In presemee of this revolution thus brought about by a turbulent minority, what was France to dn? A comatry which has no manimously acceptedrlynasty is always a little awkward and embarrased in its mowements. France yielded: she accepted the Republic insincerely, not believing in it, aud fully decided to be false to it. The opportumity was not wantiag. The vote of the 10 th of December was a plain repudiation of the Repunlic. The party which made the revolution of February was subjected to the law of retaliation. If we may be allowed to use a valgar expression, they had played France a very scurvy trick; France played them a scurvy trick in return. She was much like some honest citizen whom the most mischievions boysshould lay lold of on any day of great riot, and shond clap the red cap of liberty upon his head ; and the worthy man would let them do as they pleased for the sake of peace. but would probably chorish some resentuent. The surprise of the ballot responded to the surprise of the uprising. Assuredly, the conduct of France would have been more dignified and more loyal, if, on the anmouncement of the revolntion. she had openly resisted, politely arrested the functionarios of the provisional govermment at the very outset, and convoked in all the departments some sort of general comeil which would have re-established the monarchy. But several reasons, too readily apparent to be in much need of explanation. rendered this cours impossible at that time. Besides, a nation which has been granted universal suffrage always becomes somewhat given to dissembling. It has in its lands an all-powerful weapon, which renders civll wars neediess. When we are sure that the memy will be obliged to pass througla a defile of which we are the masters, and where he will be forced to receive our fire withont returning it, we de not go out of our way to attack him. France walted, and, in Decemleer 1848 , inflicted a disastrous repulse on the republican party. If February had proved that France was not much attached to the comstitutional monarchy of the house of Orleans, the vote of the 10 th of December proved that she cared no more for the Republic. The political weakness of this great conntry was shown in the strongest light. What shatl we say of what happened afterward? We do not like comps 'f'rtat any more than we do revolutions; we do not like revolutions, for the very reason that they always lead to conps d'etat. We cibnot, lowever plausible it may appear, admit the fundamental pretension of the party of 1848 . That party in the name of we know not what divine right, armgates to itself a power which it accords to no other, slaiming to have made itself so absolutely the master of France that the illegalities committed in order te break the fetters with which it had bound the country, oucht to be considered as crimes, whilst its own revolution of February is only a glorious deed. This is inadmissible. Quis, tulerit Grucchos de wditione guerentes? He who uses the sword slabll perish by the sword. If the muskets aimed at M. Situret and we Duchess of Orleans, on the 2tth of Fibruary, 1848 , wore imocent, the bayonets which invialed the rhamber on the 24 of December, I8:1, wore not grailty. In our view, each of these acts of violenere was a dager-stroke aimerl at the comery-it wound remehing to the most vital parts of her constitution. one step, further into a labyrinth that has no issue.

The Comprror Napoleon III., and the little group of men who shared his eontielenere, formerht to the grovernmant of France a programme which, though not founded apon history, was not wanting in originality: namely, to revive the traditions of the Jimpire, tarn to aceomet its glorious legencl, still so well preserved anong the people, give voide (o) tha* pepmlar sentiment on this subjecet by mexhs of mivirsal suffragie oblain by this suffrige a delegntion of powershindiner on the future and cotahbishing lereditary right, and, in accordance with a cherished
idea of the French nation, rall for adynastic clection ; at home, the jersonal govermment uf the Emperor, with a show of parliamentary government :killfully reduced to a mullity; abroad. a brilliant and active policy, restoring grabually to France by wiar and diplumacy, the place in the front among the nations of Europe, wheh she held sixty years ago, and which she lost in 1814. France, for seventeen years, has allowed this experinent to be tried, with a patience which might be called exomplary, if it were ever grood for a bation to carry forbearance too far when lier destinies are at stake. Ilow has the experiment succeeded? What have been its results? Can it be said, in the first place, that the new Napoleonic house has been fonnded; that is 10 say, has it rallied arombl it those sentiments of affection and personal devotion which alone give strengili to a dynasty? We must not deceive curselves in this mater. Silfishness. scepticism, indifferouer toward its rulers, the pershasion that no gratitume is due to them. have fotally withered the heart of the mation. The question lias become one of self-interest. The wealth of the commomity having greatly incrased, if the question were jroposed in these terms : revolutionno frevutione, the sucoud proposition wonld obstan an immonse majority; but often a country which has no desire for a revolution does all that is needed to produce one. At all events those sentiments of tenber aftertion and fidelity with which the nation once regarded her kines, are no longer to be thought of. The persons laving for the Napoleonic dynaty the same sentiments that a royalist of the Restoration had for the royal family, might easily be counted. There are almost no N Najoleonic legitimists; this is a fact with which the government cannot be too deeply impressed. That part of the programme of the Emperor Napoleon III. which relates to the military glory and the preponderant position of France, was not without grandeur ; and those who, looking to the gencral interests of civilization, are grateful to the Emporor for the war of the Crimea and that of Italy, camot judge with severnty the Whole foreirn policy of the second empire: but it is rear that France as a nation, is by no means in harmony with such views. If it were possible to submit it to the universal suffrage, the plebiscite, wo torz, would obtain a much greater majority ceveu than no revolution. The France of to-day is, beyond all donbt, no more heroie than she is sentimental, The preponderance of one European nation over the rest has, moreover, become improssible in the present state of society. The threatening intentions imprudently expressed on the French side of the Rhine (and it is not the government which has been in this respect the most culpable, or the most wanting in tact) lave kindled a ferling among the Germanic nations. which will subside the moment they shall be reassured with regard to the ambition they may have attributed to the Freneh. From that moment, tho inthence of Prussia in the Cermanic body will ceasc-an intluence which has no other pleat for its existence than the far of Framer. From that moment, also, will probably cease the desire for politi(al unity, - a desire so little in conformity witls the Grrmanic spirit, and whith has never been among the Gormans anything lat an impatiently folerated defensive mensure against a strongly organized neighbor. The change of this single point in the orisrimal plan of the Emporor Najoleon 111. Would smbire to modify evarything connected with the intermal govemment of tha country. The Emperor Napoleon lll., nefer even imagined that he conld farry on the government withont an elective elambur: he sincercly loped that he might for a long time, if not permanentiy, control the elections. It whs a seheme which could only be realized by the aid of constant wars athel constant victories. l'er. sonal wovernment c:an only he maintaincal on fondition of boing always and "verywhere glorious ame sucersful. How comld it be exberterd.
 ly a markrel proserarily, that it womblel go arl forever casting into the batlot-bos the vole which
 ilable that, one day or another, franee womld wish

 hor alfairs. la palilios, wr remanot loner platy with







 equally in the bereinning a desputisum. surrombledhy repulhican tietions; the desjetism destroyed the firotions: with Franceon the contrary, theraprosentative tirlimse destroyed the despotisin. 'Thas diel wot
 shertiner the lacimative hody was then eomblotely ilhsury. Nothing jormses more chourly than the pronte of those menthe of 1 stith how surely the iteral of
 urrerssity, Bponi every state. It is offor? saild flat France is mot fitted for susla atovernoment. F'rance hass rertainly sloww that she thinksothorwise: at all events, if that were trise, we shomble say there is bu lange for Framer. A libral form of government is an alwnhtu necessity for everymomern mation. "Thase which cannot acommodate themselves to it, will perish. In the tirst flade, the liheral regime will give to the nations whith late adoperod it an immonse smperiority over those whichcomat mhapt thomselves to it. I hation whiclt is nat qualitied for liberty of the press, mor for the liberty of hohbling meetings. nor for petitical libery, will ewrainly be surp:tsed ume vampuished by the mations which are tit to be trusted with thess libertics. Jhese last will allatys In lutter miformed, luetter tatight, more thonglitfin), hetter gusprned.

There is still another reasom why if Franco be eomdemmed to the fatal alteration of anarely, or thespotism, har destmetion is jnevitahle. There is mo issume from anmody exerpt through a great mili-
 tha nation, can only maintain its aseentancy on cont dition of beiate constanty victorions abroatl. The rul. "f military restraint at home leads inevitally $\{1$ foreign witr. A vanguished and lamiliated army © :ambt exproise that restraint energetically. Now, in the mrenente state of Europe a nation whels is systematically obliged to engage in forvign wars, is a mation lost. Such a nation will he constantiy provoking against itself coalitions and invasions. This is why the unstable condition of the internal government of France was for her an external danerer. and made leer a warlike nation, notwithstanding that the qeneral sentiment of her people is very pacitic. The equilibrinm of Europe rewuires that ant the nations of the continent shonk have nearly the same political constitution. In ehrine inter sembios cameot be allowed to disturb this harmony. Thus. from whatever point we set out, we arrive at this conclusion, that France must enter without delay upon the path of representatioe qovernment. i prelimimary question baturally sugesests itself here : W"ill the Emperor resign himself limilis chang: Will lıe so far modify a programme which is for lim, not a mere ambitious caleulation, but a fath, an enthnsiasm, the religions belief which exphans his whole life? Dfter having cherished. to tha verefe of fanaticism, an ideal which alone he hollo to lice nohle amd grand, but which France has rejected. will he mot ted an invincible disgust for ilat movernment of peace, of economy of smath ministerial hathles. which has always sppeared to him the personitication of decalence. nul which is asochated in his mint with the memory of at dymaty hebl by lim in sumdl io:










 tory, hase lot musth of thoir force. Subuliutions
 may hase beromm promible. Fanaily rharas teriation, Whichs ware formarly intlexibla, st ilant u lionirben, for exantple, was onlỵ suitod to phay a particular

 able things. "Fhat an boir of N゙apoleon I. Stumbla arcormpliisin a work untagonistir to. Supoledn I. is not

 Hantes rend amon aro only what it makion thom, "Thor
 tha possibility of at comstitutional falare with the.
 (ajet family, whicla becanse well and traly the reprosentative of Fromels mationality, and of Cow third

 out of faults and the mistakes of inexperiou(o, si) a
 misherds. We enjoytur luretits of roysty y, thongh royalty was establishod ioy at sorien of coriman: wo protit hy the results of the levolntion. thonish tha fevolution wats it tissue of atractities. It is at sat law of haman life that we beconne wise only wher we are worn out. We have herat tos ditlicult to please, we have rejectal waretlenote: we reat catimfinted with mediucrity thronerh feat of senmedhins Worse. The coquette wha bas rafuset the must brilliant offers of marriage often rale by atreptiner tho most commonplace. Thuse who have dreamed of a republe withont republicans, plase themacolves in like manner with inamining a reign of the Bomalparte family withomt Bomamartists at combition of things in which that fanily, freed from the sonmiro. mising companionslofy of those who cuthusiastic*al? prepared the way for its secmal acoposion, womht find its lest sumporters, its silfest counsellors, among those who haty not heljert to make it what it is. but have accoptcal it. as a thing lasired by Francotand it capable of opening sone insut ont of the strange perplexity into which fate has lat. It is very true that there is no example of a constitutional dynat? resulting from it conp d'atat. The. Viscontio. Whe Sforzas, tyrants born of republican discords, are ime the stut of which leeritinate monarclifes are mate. such monarchies are founded only by the peculiar stormess and lanteur of the (emmanice rate in barbarous and iguorant ages, whanoblivion is pus-ible. and when mankind lives in that mysterious darkness which is the foundation of respect. Foala riam inrenient. . . Thae strituge chetiance which France has shown to all the litws of history (ompel- 115 to great reserve in surll imburtions. Let us get higher: antl. neglecting whatwer the accilent of to-norruw may disconcert, let us inguire what reasuns exist in the mation why one shoubd have a vonstilutional monarchy, what grommes there are for looping for its success, what fatars may be cutertained in reward to its permanent establishiment.

We lave seen that the pechliar fobate of Franer. a feature which widely mbarate hur from Fongland and the other Europead states ltaly amb -puin.up io acertain point excepted ds, that the remulaliean party constitutes a considerable element uf ler population. This party, which wat stgong enoushlı to overturn Louis Philipue, amd to impore its theory on tha

cember, the object of a sort of proseription. Has it consequently disuppeared? No, indead! The progress it has made in these last thirty years has been very perceptible. Not ouly has it kept possession of the majority in Paris and the largecities, but it has gained whole districts of country besides; the entire circuit of the environs of Paris now belongs to it. The democratic spirit, such as we know it in Paris, with its rigidity, its dogmatic tone, the deceptive simplic. ity of its ideas, its petty suspicions, its ingratitude, has conquered certain rural cantons in a surprising manner. In many a village the relations of farmers and farm servants are cxactly those of workmen and employers in a manufacturing town ; peasants will talk their surly, ratlical, jealous politics to you with as much assurance as the workmen of Belleville, or of the Faubourg Saint Antoine. The idea of equal rights for all, a way of considering the government as a mere public service which is paid for, and to which neither respect nor gratitude is clue, a sort of American impertinence, the pretension to be as wise as the best statesmen, and to reduce politics to the mere consulation of the wishes of the majority-such is the spirit which gains ground more and more, even in the country. Will, however. the republican party ever succeed in beconitg the majority, and in securing the triumple of American institutions in France? It is essential to that party to be always in the minority. If they were finally to effect a social revolution, they might create new classes, but these classes would berome monarchical the moment they became wealthy. The most pressing interests of France, the character of her mind, her good qualities and her defeets, make royalty a necessity to her. The very moment a radical party shall have overturned a monarchy. the journalists, the literary men, the artists. the men of intellect. the men of the worll, the women, will conspire together to establish another; for the monarchy corresponds to the deeply-felt needs of the nation. Our amiability alone suffices to make us bad republicans. The charming exaggerations of the old French politeness, the conrtesy which "places us at the fect"of those with whom we have intercourse, is the very opposite of that stilf, rough. dry manner which the ever-present consciousness of his rights gives to the democrat. France excels only in the exquisite; she loves only what is elegant; she can only be aristocratic. They are a race of gentlemen; their ideal has bewn created by gentlemen, not, like that of America, by honest citizens and serious men of business. l'eople habituated to such things as these are only satistied with a high-bred society, a court and princes of the blood. To hope that great and fine Frencll works will continue to be prorluced in a democratic eommunity (dinns un monde bourgerix) where no inepuality is ad. mitted but that of wealth, is a delnsion. The ginerous and imaginative people who expend the most fervor upon the republican utepia are the very persons who would the the least able to accommotate themselves to such a state of society. They who pursue so eagerly the Amorican ideal forget that the American race has not a vory brilliant past; that it lans never hat a nohility ; that it is orempied exclusively in business and the pursuit of wralth. Onr itleal can only be realized under a goverument shediling splendor upon all that approaches it, and erositing distinctions outsite of wralth. I society where a man's merit and his superiority over another can only be shown in intastrial pursuits and in commorere, is antipathetic ; not that industrial pursuits and commeree do not seem to us homorable, but bromase we sue plandy that the best thates (for exatmple, the fumetions of priest, magistrate。 solmbar, artist. and math of letters) are the inverse of the rommorcial and imbustrlal spirit ; for the dirst duty of those who whelertak these functions is not to seetk to enrich themselves, and never to eonsither the commercial value of what they do. 'I'her repuhlican
party may therefore prevent the estallishment of any liberal government whatsoever, for it will always have it in its power, by inciting seditions, to force any rovernment to arm itself with repressive laws, to restrict the liberties of the people, and to strengthen the military element. Whether it be rapable of establishing itself, is doubtful. The hatred botween it and the priceable portion of the community will continue to grow more and more convenomed, for more and more it will seem to the whole country to be a perpetnal marplot. It will succeed, we fear, only in provoking a kind of periodical crisis, followed by violent expulsions, which the conservative party will maintain to be purifications, but will in truth be debilitations, and which will, in any case, wear upon the constitulion of France in a deplorable manner. In these convulsive Fomitings, excellent elements, essential th the life of a nation, will be thrown out, together with the impure elements. As it happened after 1848, liberal ideas will suffer from their inevitable association with a party which, being full of generons illusions, lass great attractions for vouthful imaginations, and which, besides, holds a great part of its programme in common with the liberal school. It is to be feared that long-standing labits of mind, a certain rigidity, a great deal of routine, and the custom of judging everything by the Parisian standard (a custom easy to be unulerstood in a party which was at the ontset essentially Parisian), will lead that party to believe that revolutions like those of 1830 and 1848 may be repeated. Nothing condd be more fatal. The time for Parisian revolutions is over. We found this opinion less upon the material changes which lave taken place in Paris, than upon two causes which, it seems to us. will have an enormous infloence upon the destinies of the future.

One is the establishment of miversal suffrage. A people in possession of this suffrage will allow no revolutions to be made by its capital. If a revolution should take place in Paris (a thing which is fortunately impossible), we are persuaded that the departments would not accept it ; that barricarles would rise across the railwis's to stay the spread of the conflagration, antl to prevent provisions from reaching the capital ; and that the distnrbance at Paris, soon reduced to starvation, would be but short livcd. The emancipation of the provinces has made great progress since 1848. Another fact, moreover, ought to be taken into great consideration. The whole philosophy of history is governed hy the question of armament. Nothing has so much contributrid to the trimmph of the modern spirit as the invention of gun powder. Artillery has destroyed chival. ry and feudalism, given strength to monarehs and to States, detinitively checkmated barbarism, rendered impossihle those strange cyclones of the Tartar hordes, which, gathering in the heart of Asia, came slaking Europe to its foundations, and terrifying the Clleristian work\}. The nice application of science to the art of war in our tay will lead to revolutions almost as grave. War wíll become more and more a scoientine and mechatical problem; the richest, the most sedentitic, the most ingenious mation will have the aslonntage. If we examine the effects of this change upon the internal atfairs of states, it is clear that the application, on a large scals, of science to armamenta will be to the sole protit of governments. The effect of artillery was to destroy, one after the other, all fendal castles; one discharge of some improved angine will stop a revolution. At epochs When arms are imperfert, a citizen is almost the "gual of a soldiar; but as soon as the aggressive proress becomes a larnet matter, repuiring exact instruments and demanting a sperial elucation, the solflisr has an immense superiority over the nuarmmbimblitule. There is every rason, therefore, to belinve that revolitions begun by citizens, will henceforth be arnshed in the but. The Jesnits, with their usual sagacity, undarstund this, as is seen by their

 sere tha fature of those whon know how lo lomelle
 jereque, very clearly, that the atvantage in this re-

 tiva rivil pesitions, and thorifore more atinable of abmestion. Framora, then, serons destimed for a loner
 lican parly slmald have the mancrieal majority. "Thate is int the nation a comstantly imerensing mas
 iner cevers social jorinceiplo superior to the will of the


 versal sulfrage; lot against this rising the of ac-
 irncerl, make nosteromat of diliconltes. liertor intorestsamd noerls array themselves, and demand that
 reason and kaowledige distinet from the will of tha. indivilual. 'The demeserat ever imagimes thate the mind of the mation is charly mathe up: lae dowes mut allow that thore can posibly be anything in inw least obseuro, hesitating, or contradicotory in juh.
 majority, serm to him vory simale things : but those are helisions. For a long time lo come. jublice opinion will have to he eruessod at, foresereth, suppesed, and, wh to acortain point. guteled. Ilabee there are monarehical interests which, the momont a rejublie is cestablisherl, lecome forminable, wern in the obinion of those who have set up, or allowed others to set up, tho republice 'lhe movement which is groing on in the pobular claseces, temding lo grive to eath in-
 lis rights, is a fact sur evident that it wombl fre sherer madness to wish to ofpose it. The true poliey is to provide for it, and to areommondate oursedves to it. The men of science have neversotight means to arrest the tide: they hatwe done bettor; they lase so wodl detemmined the duws of this bronomenom, that the matigrator knows, from minuto to minute the state of the seat, and protits erreatly by it. 'l'o prevent the rising tide from earrying away the newessary embankments, and comsing, as it retires, fatal reartions, is the essential thing. Now.judging fromaturarnuces.this is just what will hajuen, so loners athe Freneh democracy shad be led liy that acrimonious, quarrelsome. conceitcel Jacolnism whichagitates the comatry, sometimes, even, gives it an impulse, lat will nevorgnide it to as settiod eonstitution. That party may make a revolunion, but it will not reignmore than two monthes aforward. Evon if it shonded surcered in obtaining a majority of votes, whied is bot very probalole, it Womld still establish nothing for the clements at its disposith, thongla excellent for purposes of agitation, are unstable, easily disunited, and lotatly incapabse of furnishing the solid materials of a cobstruction. Its strength. though great. is parily a strengeth of circomstaner. It has happemed io ns at dozen times. during an electoral campaign, to Jeatr the following dialogue: "W0 are not satistiod with the government; it cosis too much: it gererns for the benetit of those who de not think as we lo: wr slatll wote for the most radical opposition candidate." " "lhen You are revolutionists:" " Xot at all; we only want io make an impression on the erovernment: io fore it to chanere ite courso : to hold it vigoronsly in check." "But if the elambur is composed of revolitionists, the govermment is 11 *et." "No: Here will ondy be twenty or thirty of them ; and then the erverminent is so strong? "It hats the chassepunts?" This mave reanoning slows how much the radical party dececives itsolf when it imatrines that the eommiry desires it for itsown sake. I great part of the country uses it as a rod with which to chastise the established aththorities, not as ataff apon which to


 grovernmern a loweth, and with the eontirtion that




 His strance law, llat its hour uf vicisory in the beo

 selves ajplatel itc prontription.



 republices which crated ath admiratble rivili\%atjon in


 chinery is much suore conaplicoterl, Sbain. the


 there are fewor somees of wallh, where materiad


 worse. As al heing of simple seructure ('an rexi-t nmeler many vary different comelifions. Whil-i amimals timely roterinizeil, like man, hatw such rebtriota| limits that slight chaner- in thair hablife product: death, ob our romplisated civilizntions (ammot sup) port crises. They lave if wa may say =on, a dedicato
 A weet of anarely would cau-e incalculable losers: at the (and of a month, jucthaps, tho railway traina
 of infinite precesionse tools and engine whoter motive power is contidencer, and which all jorempparar a protound public trampaility, a government dirmy ustablished amd at the same time thoronghly (r) trolled. Wre know that in the [年itod state mathers are managed otherwise': there: a denree of diontaler is endured, whicla would in lerance exvite crit- of alarm. This comes from the fact that the constitutional foundations of the Cmited states are never really in danger. These liate-governed Amarican states resembla those Enrapean eountries where the dynasty is mot brouglat in question. They repport the buw and the constitution, which to them represent the Eurspean doertine of legitimace. To contuare: countries dike ours, hat wing socialistice ternlemeixe and wheresomany people look to a revolution at io a motans of improving their combition, with -utlo siatos as these completcy (xempt from vocialiom. and where mun, wholly occupied with thaj forivate athairs, ask very little jrotection from the govern ment. is the griatest mistake in philomophical historv that can be ammalied.

The neod of orter fell lyw old Enrouran -ociopiecs. comeding with the improvement- in arms, will, on the whole, give to the erovernments as much streneth as they are daily losimg through the jrogrese of revolmionaury ideats. Jike relimion, the cance ut order will have its [amaties. Womlern - ociotic- have hais pecouliarity, Hat they are earremedy placable so loner as their existence is not in danerer, lont becommpiffless so soon as they lecein to lave donutson their own stability. I communily that has been frightreved is like a man that has been frighemed: it has lost something of its moral conrages. The means (mployed by the Catholic Churd in the 13 thand in the ltith conturies. fo defend its threatenet exist-- nee, will be rewarted to by modern society under more expeditions and less crued. lnet not leas terribud, forms. If the old dyastic. be powerles. ficre. wr if, as is probable. they rofa-e to accept power un-
der conditions naworthy of them, recourse will be had to the Italian paciers and podestas of the Mndlle Ages, to whom will be entrusted the entire business of reconstructing society in accordance with a bloody programme drawn ip beforehand. Chance dictalors, analogous to the Generals of Spanish America, will alone undertake such tasks. As, howerer, the Eurnean races have a fund of filelity which they never part with, and as, moreover, there will remain for a loner time to come survivors of the ancient dynasties, there will probably be a return to legitimacy after each of these crnel dictatorshups. More than once again in the future, the traditional rulers will be entreated to resnme their task, and 10 restore, at whatever cost, to the nations which of old made covenants with their ancestors, a little peace, good faith, and honor. Perhaps they will require much solicitation, and will make conditions about which there will be no dispute. In view of certain oceurrences like those which have recently taken place in Greece, in Mexico, and in Spain, the demorratic party sometimes says, with a smile, "There are no more kings to be found " A return of barbarians, that is to say, a new triumph of the least intelligent aud east civilized portions of mankime over the more intelligent and more civilized. serms at the first glance impossible. Let us have a clear understanding upon this point. There still exists in the world a reservoir of barbaric forces, almost wholly under the control of Russia. So long a* the civilizeil nations retain their powerful organization, the part which this barbarism has to play is reduced almost to nothing; but if (which hleaven forbid!) the lepresy of egoism and anarchy slould cause the destruction of the Western States, barbarism would assuredly resume its proper function, which is to restore the manhood of corrupt civilizations; to bring about a rivifying return to instinct, when reflection has put an end to subordination; to show that the spirit which leals men to devote themselyes freely to death, through ficlelity to a chief (at thing which the democrat holds to be base and foolish), is that which makes a people strong, and gives them the earth for a possession. We must not, therefore shat our eyes to the truth that the democratic theories, carried out to their furthest limit, would result in inter weakness. A nation which should follow this plan, repuliating all idead of glory, of social echat, of individual superiority-having for its sole objeet the contentment of the materialistic desires of the massesthat is to say, aiming only to procure the satisfaction of the greatest number, would lay itself completely open to eonquest, and endanger its very existence. How shall we prevent these sad results, which we have sought to point out as possibilities, and not as things distinctly feared? By the reactionary plan: By restraining, extinguishing, crushing, goveraing more and more? No, a thonsand times no! That policy has been the origin of the whole evil; it would be the means of utter ruin. The liberal programme is at the same time the truly conservative plan. Beyond all doubt a constitutional monarchy, limited and controlled; decentralization; less gevernment; an exceedingly strong organization of the commmbe, the canton, and the department : a strontr impulse given to imdividual activity in art, intellect, science, rade, manufactures and colonization ; a poliey decidedly patific; an abandomment of all projects of territorial agerandizement in liurope; the development of a grood system of primary instructionand of a superior instruction, capable of giving to the merals of the educated chass the basis of a sound philosophy; the formation of an upprer lerishative chamber, chosen by many various modes of election, and providing, together with the simple numerical representation of all the citizens, for the representation of divers intrrests, functions, specialticy and aptitudes ; in sorial (qu'stims, government nentrality: entire liberty of asocriation: gradual serparation of chureh and stato, an all-inumertant condition in the
opinion of the religions world:-such is the dream of those who seek by the aid of calm retlection, unblinded by an intemperate patriotism, a practicable pathway. In some respects, this is a policy of penitence, implying the confession that, for the moment, it concerns us less to continue the lievolution than to correct it. It often seems that France is passing throngh a period of fasting, a sort of political regimen, during which the attitude which best becones Frenchmen is that of the sensible man who is expiating the errors of his yonth; or rather that of the nistaken travellor, finally obliged to take the long way round the hill he had at first attempted to scale. Revolutions, like civil wars are strengthening, if we come out of them; ther kill if they last.

In general, the mistake of the French liberal party is in not understanding that every political construction should have a conservative basis. In Englanel parliamentary government was not possible until after the exclusion of the radical party, an exclusion whicly was effected with a sort of frenzy of legitimacy. Nothing is assured in politicsuntil the heary and solid parts of the nation, which are its ballast, lave been enlisted in the cause of progress. The liberal party of 1830 were too ready to believe they could carry their purpose by main force, in direct opposition to the legitimists. The estrangement or the hostility of the latter party is still the great misfortune of France. Withdrawn from common life, the legitimate aristocracy refuses to society what it justly nwes-patronage, examples and lessons of noble living, of grave and dignified manners. The rulgarity, the total want of education, the great ignorance of the art of living, the ennui, the absence of respect, and the puerile parsimony of provincial life, which prevail in France, are all owing to the fact that those who ought to furnish the comtry with the type of the gentleman, fulfilling poblic duties with universally recoguized authority, tly from society, and more and more give themselves up to a solitary and retired life. The legitimist party is in one sense the indispensable substructure of every political foundation amongst the French; even the United states lave, after their manner, this essential basis of all society, in their religious souvenirs, heroic in their way, and in that class of moral. high-toned, grave, and weighty citizens who are the stonds with which the edifice of the State is built. The rest is but sand; nothing clurable is made of it, whatever talent, whatever warmth of heart, even, is brought to the work. This provincial party which is day by day becoming conscious of its strength, what does it think? what does it wish? Never were views more clearly defined. This party is liberal, not revolutionary; constitutional, not republican; it wishes the control of authority, not its destruction; the end of personal government, not the overthrow of the dyansty. We do not dount that if, in time past, the government had taken a positive stand, had given up the system of otheial candidates, the artificial subdivision of districts (circonsrriptions), ant allowed the detions to be made spontaneously ly the nation, the result would have been to return a chamber decincelly imbued with these principles, and which being considered by the mation as represuting its wishes, would have had sufliciont strometh to act safely owr the most ditfienlt erises. The day will inevitably come when it will he as hard to inderstand why the Empuror Napoleon 111. did not sure this means of obtaining from the country a second signature to his marriage contract with the state, and of dividing with the mation the responsibility of a doult ful future, as it is to comprehend why Lomis Philippe dide not see in the en-operation of mon of eapacity a means of rnlarging the bases of his dymasty. The provinces, in fact, take the elections miels more surionsly than laris. llaving mo political life exrept onde in every six years they give to the elections an importance which Paris, with her habitual
levity, domes not aceord to them. Daris, only infont on makiag lur rulionl protest, sexes in the recetions
 for ironional manifustations. The proviners de
 rasily their representationes, athel thay thraly athera is thath. A rhambur frome eloctol willont inter
 dangerons for the lyansty: Wrand the radical onpor
 monthor of deputios: We thonk jusi the comstary:


 syotem of ollicial candidates complomely disturbs tha working of elertions and impairs their taskworlhiness. not only ly the direet pressurn exortonl ly the mbninistration in faver of its own randidates. But reperexally ly the fatse position in which it platere the independent voter. "Thse aim of the latter is
 whe bext reprosemts his various opinions, or whom lue thinks the most eapable of surving the conntry but Io sel wedt asdo, at whatever eost, the offerial randidate. ('onsodiandy, no more slatules of opin. ions. mo more persomal proforemoes. Since cotrems opinions tind an assured fivers with the mase with whom bold assortions and noisy decolamation have areater foree than more mosherala viaws; and as the domocratide party has also the control of a gemame fanatielism, and an wrignization which no othor party has the liberals fall in with the Murrent, and adopt, in spite of their repugnamere, tha radical candidate. $1 t$ in a very wide-spread ertor in France, to think that we must ask more for ohtain lasis: and that the radical opposition is the instrument of progress, the impeding force of the government. 'This is trute of the moblerate opposition, but not of the radical party, which is an obstacle to progress, an impedintent fo concessoms, owing to the terror it inspires and the reprossive measures it oce casions. Now, more than ever, the aim of pentities should be, not to solve gusestoms, but to leave them to time. The life of mations, like that of individeals. is a compromise between contralictions. (of low many things we must say, that we cannot live with thern or withont them, abld yet we still live! Drince Napoleon wittily satid, a fow vears since, to those who would postpone the (mjoyment of likerty till there atre no longer in Frame vither rival dymasties or a revolntonary barty: "'Iou will wat a long time." History will not blame the polieg of those who, in such a state of things, shan resign thent selves to live ly expedionts. Supmos that a momber of the difer ur of the younger branch of the bonrloon family shonld one dave reion in France it will not he beranse at majority of the Fremelt mation lave beome legitimista or (Orlamists, bat beamse a turn in fortme's whecel has mate some member of the house of Bourbon the use ful man of the moment.

Frame has allowed her dymstic altachments so ermpletely to die cont, that rven lexidimatey could only be restored by anedident. amd with a transitory title. The positivism to-day has sodone abay with all mentaphysies, that ons of the narrowest of illeas is maining eredenee: namoly, that the more reeent a popular vote is, the grenter its forme: so that, uffer the lapse of some fiftern yorars, this strange kind of reasoning is held: "lhe generation which vented sueh a phebiscite has ha part died ; the voter has lost its walidity, and nevels to ber renumed." This is eontrary to the idea of the Middle dees, necording to whieh, the older an asreement the more binding it wis: It is in one sense the negation of the mational principle: for the matiomal principlo, like relimion. suppospe compacets independent of the will of the in dividual, compacts iransmitted and reccived from father to son as a heritage. By refasing to the mation the puwer to bind the fatire all rantrate are reducerd to dife, or fatler. We shomhl sive to time

 thay get what thay ratl diravt gotarmment, whas







 dopurndent wpent is more votr ; lhat it i 4 , in its way
 indivirlaals. Sior can the art uf geverniog bue re





 that a majority in mombers is ans indiration of strongll, and that if the minority dos-s not give wat tothe views of the majority, thoy will ram évery rick of being beaten. but this reasimine ionotesaci.
 vorsed in the bamagoument of arme than the inajority. "We aro twenty, yon aro oms," sats maiver-al sulfrige: "yidll. or wo will forco yon to it!" " Jon are twonty, hut I am in the rierlit; and, thoush lout onte, I con force pon to viold." will reply the armend man. Putu virrn incornient! Haplpy low who, like Bocthius, cam, amid thar ruins of : world, write hiv (tonselation of lhelosophy. The future of Prance in a mystery whileh batlles all shgacite. Other count. ries, interen, areoconpied with qrave problems: Einerlamb, with a calm which we canmot muliratmly atl. mirce, is solving bold quastions whidels with bis are
 lut the discussiom is everywhore circumserihed everywhere thare are closed lists, laws of comban luralils and judares. In Francer, the (a)nvitution itself, the form and even to a cortain costont the very "xistence of seciety, are continamlly" at sakk', ("un any country bear up under such a statu of things?
 is, like the human bouly, a machine mome admirably constructed, curefolly woiglatal and balanced: abo that it creates for itself the organs it neods: and that. if it lots lose them, it supplien itorlf with new ante. It may be, that in our revolutiomary arelor we have carried amputation too far: that, thinking only to drive away disensed superfluties. we have tomroled some organ essential to life, su that tha pationt's obstinaley in mot rooovering may arise from somme lesion we have made in his vital parts. This is a reason for leeing more ratious in future, and fors allowing the pationt, rohust after gh. Though danarerondy ill, to heal his internal wounde, and return to the mormal amblitions of life. lint let us make haste 10 admit that fandio as brillame the lhose of France have their raderoming side. Forance lan not lost the scepter of intullect. of tante. of retined art, of atticism: for a long time to comme she will-till emgate the attention of the revilized worla, and will le to
 The atfatis of France art of such a mature that for"igness become interested in the 1 and puarrel about them, as much ambl oftern more than they da
 The most iroublesome thing alomat her joliticend eondition is the edement of the unfore acons but the amforeseen hat two aspecto: by the aide of the hat chances are the good noms athd we should low ly no metma surprised if, after a suries of sad mi-fortume. France were to conoy voars of singular splemdar. If. weary at last of astoniohine the world. she would make up her mind to a sort of politic:al appea-e ment. what an ample and grlurions (wmperwsation -he might tind in the paths of private enterprise. How sle might rival England in the peateful coutuest of
the globe, and in the subjection of all inferior races to the sway of her civilization: France is very capable of everything except mediocrity. Wharever she suffers, she suffers it. after all, for having attempted too great impossibilities. Whatever misfortune the future may rescre for her, and were her fate one day to excite the pity of the world, the world will not forget that she tried bold experiments by which all profit; that she loved jnstice to the verge of folly: and that her crime, if of crime she be guilty, was to have believed, with a generons impradence. in an ideal incompatible with homan infirmities.
REVOLUTIONARY TRIBUNAL.-The name specially given to the infamous Court of Jndgment-the most extreme republican will scarcoly atfirm that it was a Court of Justice-instituted by the French Convention in Mareh, 1793 , on a motion made by Danton. who considered that such a Court had become necessary, inasmuch as the recent disasters that had befallen the national armies on the frontiers had led to dangerous conspiracies against the Revolntionary Goverument. Its members were chosen from the various Departments, and their appoinment was ratified by the Convention. Their function was to sit in juderment on all persons arcused of crimes against the State, and from their sentence, delivered with appalling promptitnde, there was no appeal. During the "Peign of Terror," when Fouquier-Tinville was "Public Accnser." it acquired a horrible notoriety, abolishing soon almost all forms of justice. neither hearing wituesses on behalf of the accusiol., nor allowing him an opportunity of defense, but blindly executing the orders of the " Committee of Publie Safety," which was merely a tool in the hands of Robespierre. In the Provinces, similar Tribmalas, under the name of "Revolutionary Committees," were establishet, the Commissaries General of which, as, for instance, C'arrier, shot or drowned stuspects in crowds.
REVOLVER.-A Wrapon which, by means of a revolving breech or revolving barrels, can be made to fire more than once without reloading. The in-
tion of a revolving chamber or brecel, piereed with several cylindrical apertures to receive the charges. Being made to revolve, cach motion brouglit a chansber intoline with the one barrel, common to all, whereunon the weapon was ready for use. Numerous matents for this principle have been taken out, including one by the celelorated Marquis of Worcester in 1661. Various improvements were made, especially in the made of causing revolution. an American, by the name of Elisha H. Collier patenting such a weapon in the Inited States and England about 1818. In 1835 Colonel Samuel Colt brought to a conclusion experiments of some years' standing, and patented his world-renowned Colt's revolver, which was a great advance on all previous attempts, and is sub)stantially still in use. Colt's revolver consists of one riffed barrel of considerable strength, and a massive chamber perfotated with six or seven barrels, which are brought into a line with the barrel by action of the trigger. Each chamber has its nipple for a cap, which is brought under the hammer by the motion which brings the chanduer or breech-piece round. In the most recent form of this revolver, the eapped uipple disappears, the cap being comained within the cartridge. The hammer is discharged hy the trigger, and acts nearly horizontally in a forward direction. Under the pistol is a fixed lever-ramrod, which is used in loating the chambers. Besides all this, by withdrawing a bolt, which can be done in a moment, the entire breech-pirce can be taken ont, and replaced by another ready charged, so that by carrying a spare breceli-piece, a person may fire twelve shots in less time than another could fire three if he lat to load between the shots. Colt's revolvers are now extensively used in the naval and military services of America and Europe.

The principal rivals of Colt's revolver have been the Deane and Adams, and Smith and Wesson revolvers, although many more of various sorts have been patented in the interval. The Deane differed in that it could be fired by merely pulling the trigger without also raising the hammer with the finger, as in Coll's;

wention is very far from new, sperimens, with even the present system of rotation, being still in existerer. which were manufactured at the herinning of the 17 th century. Probably the tirst revolver to sugqest itsiff was one in whiclisew ral barrels were monnted on an axis, and made to revolve by the action of the trigeser, so that their powidr-pans came suecessively unter the artion of the lock. This principle was meverntirely abandonech, and in the reign of (imorge IV. was produced a pistol callod the "Marriotte" which hat from four to twenty four sumall harrels bored ma sulid mass of metal, mate to revolve as the trixger was drawn back. At close guartere, such a piston would doubtless lave bern useful; hut its great weight and cumbrous medhaism rendered aim extrembly unstealy. Contemperamenoly from the dirat with the revolving larrels, went forth the format
but this was fomm to be bo damerens in practice that the inventors soon substitutcelam arrangement under which it could he fired fither hy the irigger or hy raising the hammer: and lastly, they introduced the great improvement of a spur behimel the trigger, which must be pressel by the middle finger, while the fordinger discharges the piece throngh the trig. ger. The drawing repersmos the American Arms Con's extracting revolver, usings Smith and W'esson's cartridges, caliber 38. This revolur is very simple, proformine its oflice i.' a satisfactory mamer, with little liability of getting out of orler, and is casily taken aluart low the most unskillfal. Its operation is as follows: Aftor firiner the cartridges, open the arm av in smith of Wesson's, and, by turning it over, a 'puick menement will throw out the empty shells; or, turning it hale-way orer and pulling the extractor
ring quickly back with the fingors, thar mholls fall into the land or on the gromme. "l"he revolver print
 ufacture of a kind of revolving [ims for mandly projectiles, which are rablly ageregatos of mand-arms. The Gatling gun, at revolver of this (latss, in whicols the several hartels turned rombl atcommon axis. Was used daring the American civil war. lant the lsent known gun of this doscrishion is thr Fornola mitrait. leuse ar mitrailleur, of which so museh was hourd duriner the Framen-German war. Jhat most fonmonly used hand a gronp of 25 barrals, sumrounded by a bronze slacuthing, and movable brecela-pieces; is was fired by means of a crooked lamalle or wincla al the right-land sile. The ringere of sucls grans in a level plain is not great; lut among fortiticutions, or in a narrow valley, they may be usod witls very

 arn Revolerr, and Smith of \|'ason hoverer.

REVOLVING-GEAR, Whe mechanjem of gearing, in machine guns, by which the shaft is revolved, It consists of atoothed whece, fastened to the shaft, and worked hy an endlas screw, on a small axle, which pusses transversady throurla the cotse at right angles to the shaft, and is furnished omtside the case with a land-erank: and thus the fork-erlindur. carrier, and barrels are revolved. Soe (iatting finn, and T'rave raingograr.

REVOLVING GUN. A tromeln-londiner mac inine devised for fors signaling to avoid the labor of sponging and ramming home, as in the common grans formerly used for that purposes. The fore part contsists of a barrel open at both ends: the brecell front ahuts in a close-fitting joint agranst the mouth of at chamber, formed in a horizontal whed containing five chambers. A passage commanicates through the top of the breceh-carrier with the reat of the chamber next to the harred. This pussuge is so arranged by means of a catclespring that the communication is interrupted, execpt when a chamber is exactly fitted to the barrel, and thon only can the gum he tired. This gun is not alapted to warfare, being constructed merdy to fire blank eatridge. The wright of the gim is of ewt.
REVOLVING TARGET. I vary (chat) and simple construction designed by Gencral (ieorge W. Wingatra, and used to some externt by the [nited states Army. To constract this target a pit is first ducr ubout is feret long, 8 teet deep, and of feet wide for tarects of the third class, and of proportionate dimensions for targets of the scoond and tirst classes. I stont upriglit post is placed in the eround and firmly braced, its upper end being level with the top of the pit. An iron pin, at the suitable beight, projects
 vice lensjon. 'Thin reward is an ababify pronerally

 -ither in the tiadlor in genel merviere lo the State. It can be: enjoyed by tho rowipiont, in addition to his

 ant enhanced perasion, in ablation lo hiv reqular pert.




 rarll.

RHANA SYSTEM OF FORTIFICATION. '1"lı' Nitglylar fentures of hhis myalen point ont thr atomarlity of
 The bow and arrow, the sword, shimel, and lance are eombined in this ontlinc.

RIBADOQUIN. - An ancient 1 or lis poumdar gim. Also a gowerful rooss-bow for throwinir rlarta.

RIBANDS. Scantlings of wood about 15 forl lones and 4 inchas sfuare, and ucod in rack-lashoing gura platforms (o) k(e+g) the phatorm sereure; thavare alse nesed fer mortar phatforma. 'Two ribands accompany cach platform.

RIBAUD - A soddicer of hho Food-(inurdo of l'hilip) Aughstac of Franc"; uftrrwards this torn was apphen only to the most infamons charactors. Rilouduille was at term of reproucll formerly applied io cowardly solliors. Philip of Valois thins coallerl lis Genoese mercenaries who ho thomght had botrayeal lim.

RIBAUDEQUIN. - 1. A rlariot brastling withsromars. ased in the fourtwonth erontury for the dofense of camps, having small cannon fixed on tho framework of the car. Ributudequius were usually plared on two-whecled carriages and used us a chock against a cavalry charge. 2. 'Jhe name given to urganguns, whirll romsinted of a mumber of tubos placerd in a row like hhose of an organ, evidently the forerunners of the modern mitrmileurs. 3. A warlike machine in the form of a bow, containing 10 or 15 fert in its enrve. It was fixed upon the whll of a fortitted town, for the purpose of casting out a prodigious javodin. Which somotimas killed several monat onee.

RIBBON. - In Heraddry a dimimative of the ordimary called the bend, of which it is one-eighth in wid!l.

RIBBUN COCKADES. - In the British survice the cockades whicll are riven 10 recruits, and arc commonly called the colion:.

RICE TROWEL BAYONET. This buyoncot, the invention of Coloned Fdmmmel Rice. I nified Siatos Ar-

from this upright post, and scrves as the axim upon which the target revolves. Two targutw aro comweeterl ly a cross-pirece, hirough the ceenter of which the pin eir pivot passes. When thenpjer or exposed tarese is hit, the marker raises a dise denoting the value of the shot, amblyates it for at moment over tho perint struck; he then prishes the other tareet laterally and up to the perpendicular. pateles the bublet-liole just made. and stands ready to repeat ats suon th the target then up is lit.

REWARD.- A recompense given for gand service. Rewards are either honorary or perumiory. (ofthe formor, titles, orders, amd erosses are conferred on ollicers and men as marks of distinction for wallantry and good conduct and services remdered to the couniry. The mosi recent reward for military morit is
my. consists of the ordinary ma-ket-bayonet. the blade of which is shortoned amd welded for a thin curved triamgular plate of steed. It is intendell tobe Hecol as at trowed for interenehine purposes, being then detached from the masket: Whe loop "onmecting the shank and base of the blade scrye- as at stiffeming brace, and also to quard the fingers from abrasion in the aet of digging. I similar hade can bu atlixed to the ardinary sword-hyonet handle. which, though beavier than that lirse deecribed, atfords a more conveniunt grasp to the hamd.

The soldicr should never he separated from an intrenching tool of some description. Nany are the instances recorded where it was impensible to forward the intrenehing touls in the from ambil afier the 'xigency fortheir mee had passed and the men were
compeljed to use tin mates, tin cans, fragments of canteens, knives, stieks, ete., in order to get temporary shelter from the enemy's most galling fire.

The writer is a firmadvocate of the tronrel bryonet, having given it numerous practical tests on the Western Prairies in engagements with hostile Indians, and when it was necessary to make cover while open to the fire of sharp-shooters.

General Miles indorses its usefulness as follows: " $]$ am fully satisfied that its utility and value are as well established as that of any article carried by the soldier: that it would increase the efficiency of any army : and that it should he universally aldopted by the entire army. If the opinion of officers commaniing troops in the field is considered of valuc, I believe that opinion is decidedly in favor of its adoption."
The art of atilizing cover is of importance, and the soldier who carries in compact form the means of erecting cover at will, possesses advantages over an enemy not so provided; and if the instrument used for this purpose is also availalle as an offensive weapon, his advantage becomes still more apparent.
In future operations of armies, hasty field entrenchments must play a most important part. The best authorities, from Napoleon I. down to the nost acientifie soldier of this dar, all agree in the opinion that each soldier should carry his own intrenchines tool. By giving each soldier a trowel-bavonet, he is supplied with a light, strong, and serviceable intrenching tool: no addition is made to the weight he is obliged to carry; and he is provided with a weapon as formidable as the triangular or sword bayonet.

The trorel bayonet requires the digger to work on his knees. This is but a slight drawback when the work is of short duration, and it is even in advantage
times, produces most disastrous and demoralizing elfects on masses of cavalry and infantry, whom it hews down in long lines. Spherical projectiles are more certain of ricochet than those of elongated form ; with the latter the first graze asually canses them to tumble, after which their motion is both feeble and erratic. The pieces principally employed for ricochet firing are the 8 -inch howitzer and the 8 and 10 inch siege mortars. The first two may be nsed when the angle of fall is less than ten degrees.
RIDEAU.-A rising groumd or eminence,commanding a plain, sometime's almost parallel to the works of a place. It is a great disadvantuge to have rideans near a fortification, which terminate on the connterscarp, especially when the enemy fire from afar; they not only command the place, but farilitate the enemy's appimaches.

RIDER.- In artillery carriages, a piece of wood, which has more height than breadth; the length being egual to that of the bordy of the axle-tree, upon which the side-pieces rest in a four-wheel carriage, such as the ammunition wagon,block-carriage, and sling-wagon.

RIDGE.-In fortification, the higlest part of the glacis proceeding from the sallient angle of the cov-ered-war.

RIDING ESTABLISHMENT.-The School at Woolwich, establisherl for the instruction of the men of the artillery in riding. It was formed on the organization of the horse artillery under the Duke of Richmond, when Master Gencral. It continued, as a mixed department, with the Royal A rillery until the year 1809, when it was made into a separate and distinct establishment. It consists of 7 olficers, 218 men, and 144 horses.


AT HORK.
when it is being carried out under the enemy's fire, as a man offers in this position a smaller mark for bullets and shrapnel.
Althongh but Jittle used to carth-works, infantry soldiers will soon attain a great rapidity of execution, for it will be to their interest to get quickly under cover. See rilitz Intrenching-tool and F'arrou Knifitrowel and Tent-peg.

RICOCHET.-In gumery, the bounding of a shot along the ground, which takes place when a gun is firef low. Licochet tiring is found extremely usefol both in its actual and moral effect in clearing the face of a ravelin, bastion, or other rather long line of fortifieation. If well directed the ricorbet shot bounding along will dismount guns, scatter the gun-
 Rider.

RIDING-MASTER. - In the British service, an officer in the cavalry, military train, and artillery, whose duty it is to instruct the officers and men in the management of their horses. He is most commonly selected from the ranks: his pay is 9 s . a diby.rising by length of service to 10 s . Gd. and 12s.; besides which, he receives $£ 7$ per troop per annum for riding-house expenses: and he is believed to make some profit out of this allowance. The Riding-master has the relative rank of Lieutenant. and, after an aggregate service of 30 years, including at least 15 years as Riding-master, he has the riglat to retire on 10 s . a day, with the honorary rank of Captain. See Rough

RIDING-SCH00L.-To perfect the troopers in managing their horses and in using their arms, they are exereised in ruming at the hoculs and rings. This is done in the ridingsolhool. For this exercise, four posts- two, 5 feet 6 inches high, and two, 2 feet 6 inches high- (:illed hend-pmsts, are used; also, two josts (alled ring-posts, so made that the upper part, which supports a horizontal arm. may be raised and lowered; from the arm which extends over the center of the track is suspendecl an iron ring 4 in . indiameter, so arranged that it can be easily
mers, and ereatly intimidate the earrison. Tamban first introfuced ricorlat tiring at the siege of Philipssbure in lfisy. The defonse arganst this sort of at tack comsists in carthen traverses along the thrent ened line, or in a bonnet at the moint of parapet nearest the enemy. In the firld, rienchet, where the whatest or she end is mate to bound forward at least ten
side of the track in a similar manner, tha titl ponet being oflposites the tirst short post, and the whort post oppesate the tirst tall perst. Gnearb of the four hemb-posts, and on the groma! on waclo side, half.
 one yard from the track, is placed a ranvas or leather hemed stuferl with haty
bied tropere, when heremos near the lirst tall heat-post, briners down his bistol, fires at the hear with blank cartrider, and comiminer on the track, returns pistol draws saber, taking the position of ghard, and, when on the "upposite wide of the selhool. takes the head on the tall pesat by a righe or frome cut: the head on the gromblagainat infientey, righe cue; the ring at lieren fuine, and the hom! on the short post, aguinst inferety, right print. Tho hemes may be also taken by "xomoting righe paint, and in quarte point, at the head on the tall pest ; "grainest infontry right point at the head on the erromand; and against infuntry frone print at the head on the short post. After the troopers become skillful in the use of their saburs to the right, the exeroisas may be repeated to the left; then with stirrupes crossist, and dinally with the horses bare bick. burdles and bars may also be placed on the track. Sied Iforse. manship.
RIDING THE WOODEN HORSE. A pumisliment formerly resorted to, not only in the l3ritish Army, but in the armies of rother nittions. The horse is deseribed as made of phank, roughly mailed torgether. forming a sharp ridgue to represent the lack of the horse; it was then supporterl by posts to serve as the legs of the animal, nbout for 7 feet loner, the whole being placed on a movable truck. When a soldier or soldiers had to undergo pumishment, they were placel on this horse, with their hamets tied hehind their back, and frequently muskets wore tiad to their legs, to prevent the horse, as was hamoromsly observed, from kieking off.

RIFLE ASSOCIATIONS. General instrnetions for the formation of rifle assoriations in diferemt localities, together with a form of hy-laws, will be found amosed to the Ammal Report of the National Rifle Association for the yoars 1874 and 1875. Those Associations should contine their attention, in the main, tor practice with military rifles, not only on account of the alvantages to be obtained from training the National Guard and the public to the use of military weapons, but because the mumber of those using long-range riftes will of pecessity be limited. It will be found advantageous for such association to cmploy markers by the month, and for the members using them to be charged a certain sum an hour. When not oecupiol in marking these men can be used in improving the range. Boys should never be allowed to serve as markers. Cure sluuld be exercised in the selection of seore-kepers in matches. Unless reliable men are employed. the danger of incorrect scoring, through frand or carclessness, will be very great, and aceidents are apt to oceur. Volunteer seorers may be relisel on for a short matel, lut not for a meeting lasting several days. In all competitions, the prizess should be more humerons than valuable, and a number provided from which previous winners of prizes should be excluded. In this way young slots may be cneouraged, and the danger of having all the grizes carried off by a few menavoidcd. In matches each man, upon entering, should receive a register ticket, $3 \times 4$ inches. The tickets for the diflerent matches, as well as for lifferent distances in the same matel, are designated by different colors. Each one should be numbered and contain blanks for the name of the marksman, the target, amel hour at which he is to shoot, and his score, having a coupon attached containing similar blanks. The assignments of the targets should be made by lot, after all the entries are received, and be at ouce posted upon the bulletin board (which should be placed in a central position), directing numbers so and so to shoot at such and such targets. Teams shond be
 the: (argele tos which thay lital they are asmignod, and
 place thern in a tin frame hoding ton. "Thas urn shomald be callell 11 in twas exerpt in long-raner:
 altormately till they have virell their sighting and seor-
 should catl hisaname and the value of the shote as



 rate of the tidelet, and give it to the man), retaining
 "nt, when shombl take it into hambuarters. Any ultwation on the tickot should always be: required to be initialed. Any man delaying lle matel, shomblue pasactl, and any one areline disereditably disquatificel from compung in other matehes. The latter regulation slanald be rigitly (onforemel in all rater. Commanications with the comperitors, durine a match, should be by notions pusted upon the bulletin board. This thery should be requirel to watch, and their nealewt to do so never be uereptel as an excuse. In order to secure an erquality, target riftos, unless hantieapred, should not le promitted in military matches. Interesting matelow are (re-
 longer distancos, as at 800 yards as against military rittres at 500 yaris. Sperial military rillos, with small bores and heavy charges, shoulit be discriminated against in a similar manner. The best way to sort out the tiekets is to have a bonrel provided with mails, each of which is mumbered from the highemt possible: seore downwards. ley laviug each ticke punched with a hole the size of the nail, it can lee placed upon tha oue bearing a number carresponding to the score entered on it, and all confution in arranging them avoided. The centries for cach mateh should be kept in a separate book. If not, delay and ineonvenience will be incvitable, as they have of necessity constantly to be referred to. "Ihe gencral arrangements for at mateh slonuld be placeal in the hands of the Lxecutive Commitlee or Oflicer, who should attend to all details. They shomble carefully watela hoth markers and seorers. The knowledge that this is being done will do muls to prevent carclesseness in the marking. l'rotests ant come phants not having a substantial foundation sloulal be discouraged. . Nl protests should be leard and decided upon the spot, whenever practicable. If delayed, it is difficult to aseertain the [acts in regard to them. While every endeavor slomat be made to insure fairness in making a lecision. When once made it should be firmly alloced to. The greatebenetit in developing good shots and building up an interest in rifle pracifice will be found to restult from badges offered for competition monthly, not to hecome the property of the winner until won a certain number of times. The longer the strugrle for thee, badges continues the more their pussersion is valued The securing of a proper range is the main ob-tacele with which a new rifte association has to contend. The land should be purchased. if practicalle: if 1 mm . it may be leased. Its location is most important. If not easy of access, it will not be successful. BeFond the erection of the necessary buthe and targets. no buildiags. with the exerptinu of a small storehouse are necessary. If, howewer. a lmilding thould be provided for the residence of the rangekeeper and the storing of the riftes, cte. of the members. it will form a great convenience. The question of laying out the range and the targets should be fully understood. If iron targets are used, twelve will be sufticient for an ordinary ranse. This will allow three third-class targets and two second-chas. to be used togetber, and permit of their heing converted into two first-clans tarents, fur long-range matches. These can be put uip in different manner
upon different days, so as to permit the memoers to practice at any distance by coming at a certain time. Whether the targets should be placed in pairs or upon a line depends upon the ground, and also how it is to be used. If the range is to be used for military class-firing, the targets slould be so placed as to allow of their being ased simulianeously at the same distances, without one firing party being in front of another. For other practice the firing parties may be placed in front of one another, provided an interval of at least 150 feet is preserved.

A moving target adds interest to the range. At Wimbleden it consists of a ranning deer; at Toronto of a running man. In both cases the target is of iron, and runs upon a railway about 60 feet long, and rising at each end aboint is feet. The markers are placed behind a sloot-proof butt at cach end, and start the figure at a signal from the firingpoint. The descent gives it a speed of about 5 miles an hour, and it must be hit while moving. To shoot at a mark of this deserption with success reguires the best qualities of a rifleman, and much experience. See National Pitte Association.


RIFLE-CANISTER.-These are very similar in general appearance to those used in smooth bore cannon. As shown in the drawing, the case is of sheet-iron or tin, with fringed ends which are turned over and soldered or riveted to iron or zine dises. The balls are of iron or zinc packed in rozin or coal-dust, sometimes in discs of wood. They are fitted with solder studs or rings of lead on the outside to take the ritling, or with an expanding cup. See Canister-shot, Cuseslut, and Projectiles.

RIFLE-CANNON.-The general adoption of rifled small-arms necessitated the introduction of rifled cannon. It is plain that the principle has application to all sizes of projectiles, and would therefore be used for the heaviest ordnance as well as for the smallest. Contemporaneous attempts so to adapt it have not been wanting, but they are in many cases isolated in point of time and connection. The first persevering and rational efforts to apply the rifle priaciple to cannon were initiated some twenty years since; and the names of Walirendorff, Cavalli, Lancaster, and others, are identified with the first efforts to overcome the difficulties-of no ordinary char-acter-that beset the fucstion. The yielding nature of lead renders the application of the rifle principle of easy accomplislmment in the case of small-arms; but such is not the case with rifle-camon, where the projectiles are made of iron. The application of this principle to camon also required an increase of strength in the piece. The greater the weight and the length of a projectile, the greater is the opposition from incria and friction which it offers in the bore to the expansion of the ignited charge, and this opposition is considerably augmented if the projectile is constrained to travel through the bore in a spiral course. Hence it is not diticult to comprehend why a rilled gun must be of a strouger tongher, and more dastic material than is necessary for a smosth-hore gun in which the spherical projectale yiededs promptly to the first impulse of the powder-gas to which it presents half its surface, and bonads freely forward throngh the bore, almost unimpeded by frietion; whike the strain on the gun is immensely relieved by the comparatively great windage. A gain, ats the explosive power of a cartridge, and the inortia and frietion of a projuctile, increatse as the cubes of their respective weights, whike the surfuce of the ehamber and the base of the projectile against which the powder-mas acts increases only is the squatres. it follows that the lareer the charge amet the hesavier the projactile, the harder and stronger mont le the imer larrel.

The progress of the art of war depends essentially upon that of the sciences and manufactures, for the manner of fighting depends upon the character of the arms which we possess. These will be more effective, as their mode of construction is more perlect, and as the means employed in their mannfacture produce greater strength and precision. This is particularly the case with reference to cannon, in evidence of which we lave only to call to mind the great revolution in warfare which has taken place since their introduction, and which is contintally taking place as the means of perfecting cannon increase. It is only in recent years that our knowledge of the metallurgy of iron, and also our ability to manufacture and handle, with any desrce of skill, large masses of that metal, have rendered possible the fabrication of the enormous pieces of the present day. But now the great improvements which have been introduced in the mannfacture of iron, in the fabrication of camon, and in the facilities for the transportation and handling of heavy guns, render possible the success of cannon of mammoth proportions. In designing rifte-cannon, the practicability of manufacture and the durability of structure must. be ascertained. The weight, caliber, length, system of rifling, weight and slape of projectile, etc., ete., must be all scientifically calculated so as to insure excellence in range, accuracy, and penetration; and then each and all of these constructional details are liable to alteration, shonld the thorough trial of a specimen gun render any amendment advisable. The first comprehensive experiment with rifled cannon appears, from all accounts, to have been made in Russia, about 1836, on the invention of a Belgian, but did not prove successful. In 1845, Cavalli, a Sardinian officer, experimented with a breech-loading cannon which was rifled with two grooves, for a plain iron projectile, adapted to fit them. In the next year, Wahrendorff. of Sweden, fitted heavy projectiles to take the rifling by attixing lead to the ir clongated sides by means of grooves cut in them. And not long after this. Timmerhaus, of Belgium, invented an expanding sabot. which, being fitted to the base of the projectile, was forced into the rifiegroores, and thus gave rotation. In these early experiments we find the germs of the leading systems of the present day. The solid projectile, fitted to enter the grooves of the gun; the compression of a soft covering on the projectile by the lands of the gun; and the expansion of the rear of the projectile by the pressure of the powder to till the grooves of the gun.
The object of ritting a gin is to increase its accuracy of fire, and. by chabling elongated to be substituted for spherical projectiles, to obtain from it longer ranges. Rifling diminishes the deviations of ordinary projectiles, dne to the following (aluses: 1st. Wint of uniformity in figure and weight around the longitudinal axis of the projectile passing through the center of gravity.
2d. Position of the center of gravity, before or bechind the center of figure. Bd. Resistance of the air. I. By rotating the projectile around its longitudinal anis, the direction of these deviations is so rapidly shifted from side to side, that the projectile lus no time to go far out of its conrse either way. 11. The vilocity of this rotation is such as to make the axis stable on leaving the bore, and to counteract the pessure of the air tending to turn the projectile over, or remer it unsteady in tlight. 11I. A given weight of projectile can be put into such a form as to oppose the least practicable cross-sectiomal area to theair, and thos to recoive the least practicable retardation of velocity. ('ertain peculiar advantages follow from the rotation of the projectile, cansing it to present the same part to the front througlonat its thight. It becomes possible to make a much simpler percussion-fuse, becinse it is only necessary to provicle for action in ond direction in phace of every possille direction. Shedls reguired to act towards the front in any peculiar way have their bursting-charge
and metal phaced with $u$ virw the this abjored. So, again, the conter of gravity may bo lorought to miy desirell part or the sholl, bat this is an important feature in the construction of projewtiles. Kitling gives the power of altaring the furm of projectiles at will. Tha hoal may be matw of any doxired shape for penetration or flight. 'I'lu' projectile may be Fongated so ats to give a diminisherl surface for any resisting medium to act upon; thas in ilight, wolacity is kept up and the rampe: "xternded, or on injuct greater penetration is obtained. Wiopht for wright, the same aflect may eromally be pronthed with an "Oongated projectile hy using a smather forge of powder than withasphericalone. It follows from tha: ilight of an clongated projertile merting with ferss resistance from the air, and kerping up its velosity lecter, that at all but very short ramges the trajoctory is latter; hemee the probalility of hitting an ordinary objoet is greater. 'The powere to vary the length of the elongatell projactile conables all those for the ame gan to be mate of the same weight and hence to require the same eldevations with the same charge of powher. Or it is possible to make a projectile specially heavy if repuired. This obviously camnot be the ease with spherical projestides, which must be of the same size. 'The chiff lisalvantages are, bad ricochet, increased complication, and ixpense of mandacture, liability to injury arising from the necessity of soft stmbs, expanding rings, or a soft lead eont: increased serain on the gun, I widics grenter prohahility of jamming and injury to the bore uncertainty of time-fusr's.

RIFLEDHOWITZERS. - In consideration of the sat isfactory results obtained with the 3.07 -inch Molfatt brecel-loading field-piece, and alsw of the evident sdvantages to be secured by the substitution of a breech-loading rilled howitzer for the 8 -inelt muz-\%he-loading amooth-fore howitacr, of at least equal power to the latter gun-for llank defense aml siege purposes-a result believed to beatainable with this system by a 6 -inch caliber, it was decided to construct such a howitzer on the Molfatt plan for experiments and tests, the shaglit changes in construction resulting either from some obsurved imperfection in the working of the mechanism in the field-piece or from the cmployment of adifferent mature of ammunition in the bowitzer. Alsief acseription here will therefore suftice. The howitzer consists of a steel body, to which is adapted the Mollatt breech-meelaanism, a conical breech-plug closing the bottom of the bore through the ngeney of a strap or yoke, which locks into lugs on the sides of the breceli for the support necessary to resist the shock of discharge, and
which is atturlowl to flo trumions ats an axis of mos-
 of the hawitare with a lever, whereboy the blow falles
 of at Wather strapto insure the operning of the lare wech,

 is raiserd, throws down the block, and by the matme movement thrns with the hinger rosas in elarar the strap. 'Ther locking-belt is bored horoughaxially for the recoption of a tiring-pin, with which to axplosle the charge wholl priment motallice cartriderg are cm-
 of which the wharge ran be ignital by a friction-
 furnished by 'Thomas F "irth de sions, of Shefledrl, Englant. It was cant in an inget, forged to dimensions, and borefl by them to within oncorgurter insh

 block were mato in boston, and were of low steel, containing 0.44 of 1 per cent. of rarbon.

The following are the principal dimensions of the gun:
Diameter of bore arross lanals........ finchers.
Diameter of bore through chamber..
Diameter of breech-block cavity at seat of gas-rbeck
(i. 2 inchas.

Diameter of breech-blowk ravity at
outer ellge.................................
(6. 8 invher.
8. is inclues.

Exterior diamerer of phece at mom\%he 12 inchers.
Saximum dimmeter........................ 11 j indwe.
Diameter of trumions.................... . 5.885 in induc4.
Biameter of rimbses.................... 8. 8. inches.
Distance between-rimbisis............ 16 inches
Diameter of loop (over) vertical.
5. 875 inchus.
trunnions) in brearla-
straps .....................) horizontal.
Length of gun body......................
Total length of gun. $\qquad$
$\qquad$
Length of hor $\qquad$
Length of riffed portion of bore.
5. 0.75 inclues 78 inches.
bength of bevel joining lands to chamber.
(69. (i2:) inclies 64. f22.5 inclecs

1 inch.
litch of rifling, uniform, oneturn in 30 fert.
Number of grooves and lands, wach 18
Width of lands.......... ...................
Width of grooves..............................
Depth of grooves.
0. 510 inch

Pepth of groovers
0. 60:s8 ineh.

Length of trunnions. 0. 0.5 inch.

The principal European Artilleries luwe produced rified howitzers and mortars throwing shatls of 80 kilos, with sulficient accuracy to render theren formi

Elements.	France.	England.	Prussia.	Austria.
	Howitzer of 22 c. m.	Howitzer ot 8 inch.	Mortar of 21 r. m.	Mortar of 8 p).
Nature of the metal of the piece .............. Methord of loading...............................	Cast iron. banded. M1az.7. $\qquad$	Wrought iron with steel tube Muzzle .	Bronze   Breech	Cast iron. Breech.
Caliber of the bore ................milimeters	223.3	203.2	209.3	209.3
Lengtin of rifled portion (in ('alibrers).........	9.8	4.4	5.5	4.1
Number of grooves.	3	4	30	30
Twist (in calibers, alout		14	20	;
Inclination of the grooves to the ermeratrices of the bore ..	$0^{\circ}$ to $6^{\circ}$	$1^{\circ} 6^{\prime} 31^{\prime \prime}$	-	$3^{\circ} 1^{\prime} \mathrm{If} \mathrm{i}^{\prime \prime}$
Weight of the piece ....................... kilus	3.700	2.35:0	3.00 .1	
Weight of the loaded shell.	79.8	81.4	-0.0	85.0
Weight of the interior charge of shefl	4.0	5.9	5.11	4.0
Maximum firing-charge....	6.0	4.53	3.5	. 4
Ratio of the weight of the maximum charge to the weight of the projectile...........	1 to 13	1 to 18	1 to 23	1 W13
latio of the weight of the projectile to the weight of the priece.	1 to 16	1 to 29	1 n 3*	1 to.5.3
Maximum initial velocity ..............meters	207		${ }^{215}$	
Maximnm range....................... in	5.200	4.480	4.010	4.500

dable to covered arches or blimels, such as exists at present.

On page 693 are some clenents for a comparison of these different pieecs.
lt will be spen from this table that the French howitzer and the Austrian mortar of 8 po. permit of the attainment. of the greatest ranges, but also that their weiglats are very consislerable; the Anstrian mortar, particularly appears to have an exurgerated weight relatively to the effects attainable with it ; it is possible by the system of banding to reduce this weight, say, at least 800 kilos., and to gire the piece a greater length of bore, which wonld permit the use of larger charges and of a more progressive powder. hey means of which ranges of 5,000 meters should be obtained.

In order to compare the accuracy of fire, we have calculatec? the ration of $R$ and $q$ of the inean deviations, longitudinal and lateral, to the ranges. The
is rifled. In 1855, Anstria adopted for her infantry of the liue, the rifted musket, with in barrel 37 inches long, and having four wide grooves equal to the land, making one turn in 83 inches. See Rifle.

RIFLEMEN.-Troops armed with rifles, and employed more or less as sharpshooters. The name has nearly lost all meaning, for the whole infantry are now rillemen; but as late as 1854 , the riffemen were quite the exception, the army generally laving the smooth-bore "Brown Bess." There were at that time only two English line regiments of Rifles, with two colonial regiments of infantry, and one llottentot regiment of monnted infantry. The establishment of Ritle regiments was suggested to the British lyy the Americans and French, from the slarp-shooters of which nations the British armies suffered everely. During the Fronch war, the 60th and 95 th legiments were armed as riffemen, tanght light infantry drill, and clothed in dark green, to be as in

Piece.

Piece.	$30^{\circ}$.		$40^{\circ}$.		$45^{\circ}$		$60^{\circ}$.	
	12	$q$	R	$q$	12	$q$	R	$\eta$
French howitzer of 2 c.m.	$\frac{1}{37}$ to $\frac{1}{67}$	5 $\frac{1}{85} 10$ क्रो5	${ }_{4}^{10} 40 \frac{1}{68}$	$4 \frac{1}{5} \sigma 10 \frac{1}{3} \frac{1}{6}$				
English howitzer of 8 inches.*	$\frac{1}{30}$ to $-\frac{1}{6} \overline{9}$							
Prussian mortar of $21 \mathrm{c} . \mathrm{m}$.	- $\frac{1}{7} 8$ to y [ $\frac{1}{9}$				150 ${ }^{15}$	$\frac{1}{158} \text { ह } \text { to } \frac{1}{4+3}$	$\frac{1}{255}$	$9 \frac{1}{32}$
Austrian mortar of 8 po.	T1ד $\frac{1}{1 / 0} \frac{1}{5} \frac{1}{8}$				I 18 to $\frac{1}{88}$	5- $\frac{1}{6}$ to $\frac{1}{1785}$	$\frac{8_{1}^{1} \text { to }}{\frac{1}{50}}$	
Austrian mortar of $6 \frac{1}{2}$ po.	$\mathrm{g}_{6}$ to $\frac{1}{116}$				$5^{\frac{1}{8}}$ to $1 \frac{1}{10} 0$		$\begin{aligned} & \frac{1}{6} \text { to } \\ & \text { id } \end{aligned}$	$\begin{aligned} & \frac{1}{78} \text { to } \\ & 2955 \\ & \frac{1}{235} \end{aligned}$


above table indicates the limits between which these ratios vary for the different angles of fire, indproportion as the range increases.
It will be seen, from a study of the figures in this table, that the French howitzer has above all a notable inferincity in point of accuracy of range. The Prussian mortar has a sensible superiority over the Austrian mortar in point of accuracy of range; but the accuracy in direction of the Austrian mortar is wery much greater than the l'russian. This latter fact would tend to prove that the Prussians, notwithstanding the modifications successfully introduced in the plan of their shell, have not yet succeeded in giving to it a stalility upon its trajectory comparable to that of the Ausirian shell. In respect to this, however, it should be observed that the inclination of the rifing in the Prussian mortar is $7^{\circ}$, while in the Austrian mortar the inclination is only $3^{\circ}$ : it is generally admitted in France that the inclination of the ritling for large pieces should lut little exceed to.
In respect to the effects of fire, the difference of woights of projectiles thrown by the pieces examine d is too small to give rise to the supposition that there would be any appreciable dilfarence in the effects of penetration for the same angles of tire and the same rangesp in point of the effects of explosion, the English shell, owing to its greater burstine charge, ousht to be the most powarful.
From what precedes it is to be concluded that the French howitar, which was remarkable enongh at the time of its adoption, has not to-day a sutherimtly accurate fire to warrant its introduction in:o siegetrains; for the armament of places, ant the provisiomal armanent of coast-battorios, it may possibly dongood service, because, in these two cases, the ef fects of isolated shots may loe very fomidable, not withatanding that, in order to obtain serions effect against the very solidly fonstructed shelters of a place, it is necersary to group the shots upon a small

visible as possible. The 95 th became the Rifle brigade. Experiment has since shown that gray is less conspicuous than green as a uniform-hence it was at first atopted by many volunteer corps.

RIFLE-PIT-A hasty intrenchment, large enough



GHELTELA-PIT FOR SKIRMISIEES.
(0) eoneced a sharp-shooter or skirmishur, and by a small eover in front comalde hina lo use his arma. A

 nel and ritle limllets, bresides facrening them from view, which, in itself, is of greal atcontage. forman recent experiments it has bean ascertained that tha fernetration of rifle halls into mewly exchvated varta
 inches at a range of 10 yorels. The diagrann mbows the dimensions af the prit and parapert that have proved in practice to he very desirable. Aftre it litlle practice, "atch skirmisher will somen surertain the exact form of pit that suits hime. Thar depphan old not be uniform, bat shonld be abome ten inelars where the man's boty will be, and almen dive or six inebes in the other marts. In most instancers the mact will omly lave to improve matural cover, Iftimendmits. the jaramet may be made lhicker and the tremald deeporr, and widened so as 10 give an abondance of room. 'llae matural cover should always be taken
 montse and Shuller-trebuluse
RIFLE PRACTICE. - While initial velorities and proseures are dutarmined siparatedy or conjointly by Hacirspocial mpparatus, nearly all other gtabitios of tho ammanition are ascertained, direcely or incidentally, from rifle pratetice at varions raneres, with suitable rests and oflarerapliances. 'The targel ground and fixtares at the lirankford Arsemal possessing some pereuliar features, a very brief description of their arrangement and use is appended.
The structures pertaining to the grommd concist of one firing house, two turget houses with harir mreens,








 complisled by their mosan indone nerorataly, mafoly,

 solislity. capacity of mbatation for variona montals of small-artus, a fucility in wouring the arm firmby in position, willonot day umene strain bystn any of its


 those qualilientions in thre followine numure: 'The support consists of athery frex-lonte blerk prokting bunn a brick pior, and carrying the rast-iron bud
 tionof its sides. In thin loed-ghato is sunk the pintlo Whiell carrics the trumnions ujen whirlh the clurnsis as arell as the terperndriage move in a vertical plans. Thae chassis controls the recoiling Iop-catriate by ace (ourately plancel and marabed guides, whose surfaces have bearings monen its sides for a longth of thirty two inclues: and, owing to the center if vortiogl mo. tion bering bencuth, the recoil is alwas parallel to the axis of the pifee at rever clevation. The bopearriace contains the arrangements for directly supporting the pirere and these are so constructed ats to thispense with direct screw pressure upon any portion

and two cast-iron targets at distances of three hundred and five hundred yards from the diring house. and of dimensions $12^{\prime} \times 12^{\prime}$ and $15^{\prime} \times 15^{\prime}$ rempectively. The firing house is pervided with an improved fixtel reat on brick pier, logether with arrangements for firing from the shoulder and rest, recoil apparatus, etc. It is also supplied with armorers beveh and tobls, desk, scales, clinometer, levels, telescope, etc. together with the nsmal instruments for determining the state of the atmosphore. The targot housos with their sereens are situated one in front of each tarset, at a distance from it of tifty feet and to the left of the plane of fire. They face their respective targets, and eacla has arrangements for a cameralens,which, lye means of a mirror, throws an image of the tarero, redued to one-twelfth. on the surface of the table at which sits the target recorder. Lithographed target diagrams to seate, one of which, duly dated and mumbered, is placed upon the table at the fommencement of each series of twenty shots, conable the recorler to mark the position of eatch shot as it strikes. thus avoiding the delay and some degree of risk incident to the usual method of recording. These diagrams, moreover, duly signed and numbered, are filed as rouchers to their respective pagen
of it. The points of supirort. in addition to the butt stop, are as usual two, one near the butt and the other at about thirty inches in front; at noither point however, is ans side screw rlamy allowed to aet directly upon the arm. At the rear the stoek rests in a $\mathrm{V}^{*}$ while an inverted 1 deseends upon its
 tically by the pressure of a spring whose tension can he increased at pleasure. Jeanwhile the thrustblock in rear of the butt plate- a solid brass segment moving verlically in a corresponding segmentall bed-adjusts itsilf to the prints of contact with the butt plate The front suppost in also a Vinto which the barral is pressed by the pulished surface of a that leaf spring above, which hater can. like the spring at the rear support, have jts lension increaseal up to the limits of the strength of the rest

The advantages of thisarrangement are perfoctly symmetrical character of the support alforded to the biece the coincidence of the plane of sight with the phane of tire secured, without adjustruent, as a inerex consequence of the style of support ; the absence of all distortion or buckling of the piece ly local atrains. or restraint of its longitudinal reaction. and the fact that the arm can be readily seeured or released from
the rest, since, when the tension of the restraining springs is once adjusted, the piece can be removed or returned anll sernrely clamped, almost with a mere click, and will be found sighted npon precisely the point last aimed at. All bearing surfaces, journads, clevating and traversing screws, etc., about the mat chine are massive, far beyond the requirements of mere sirenglh, and sufticiently highly finished to give great smoothness and steadiness to all adjustments; as is eviclenced by the fact that alterations to the tenth of a minute can be made and read with ease and certainty in any direction by two indrpendent means, the vernier and the micrometer serews. In adjnsting

the lines for the sights of small arms, both means are always need, and a diserepmoney of more than 0 . 1 between them would demand a repetition of the trial. With the fixed rest and targets as described, all (pnestions regarding accuracy and uniformity of flight of projectiles, cau be determined by the usmal method of co-ordinates and centers of impact. Thes sulyject of investigation may be the performance of a known arm with a new ammunition, or a known ammunjtion with a modified arm. A nww arm with its own special ammunition may, too, be under trial as a whole system. but, in any case, the average trajectory, and the degree of closeness and uniformity with whicli the practice adheres to that average trajectory. can be dotermined.

Rifle practice constitutes a brancla of military instruction peculiardy fitted for the National Gliarl. and in which they will always excel. "The "position" and " riming drill" which constitute the foundation of the system, cam be acquired in their nrmorices.and even at ilfeir homes. while the high state of intolligencer existing among them enables them to soon apply apon the range the instraction they have reenved. Ratle pratice is to a groat extent a mattar of jutgenent. particoularly at the longer ranges, and Hee more intelligent men are, the buther they will shoot. Tlas both in England and Canada the volmonecos lase boon foumd to shood better than the rognlars. In addition to the vast increase in military edleexncy resulting from beeoming goorl shoms, it has heen foind that rilla practice las proved to be one of the most agrerable portions of military instrucbion. The honomble riputation of heing a "crack shat" "and the knowlerlere that the desired skill is solely dependent upon individual exertions. has done
mucle to interest the Sational Guard in the subject. and has induced many to join its ranks.

While avery inducement should be made to attract and develop groot individnal slots, so as to constitute a good regimental " team," and for this purpose individual emulation should be enconraged in every way, yet reginental commanders must bear in mind that the true object to beattained is to sceure the general cficiency of the rank and file as riflemen. Nore credīt shonld attach to an organization making high average shooting than to one having a champion team, and all inflnences possible shonld be exercised in that direction. Nor will this conrse interfere with the selection of a grod team. Nothing has been more clearly demonstrated at (reedmos than that shooting is a matter of education, and it will be found that a thorough course of instruction will not only make the regiment efficient as a whole, but invariably develop a number of "crack" shots from among those who supposed themselves to be withont the qualitications requisite for a "Marksman", and the mor" "Marksmen" the better the chances for a strong "team."
Candle practice is specially to be racommender] for the National Gatard. It gives almost the same results as armory target prictice, and, as it may be performed simultaneously by an entire company the saving of time is a great desideratum. Calculating on a basis of one shot a minute, 5 shots by 30 men at a single target require two hours and a laalf, while at candles they conld all be fired in ten minutes. In this practice, a gas pipe with small jets is preferable to candles. Some regiments place a miniature tin target in front of the lights aimed at, having the bull'seye cut out, the flame appearing just behind its center, so that a "bull'seye" extinguishes it. When candles are used, it is an advantage to insert them in a tube with a spiral spring. so as to always keep the flame in one position, as in a carriage lamp. Some regiments have a hench like a carpenter's horse to place the candles on, so as to admit of their heing moved to different parts of the room to suit the light. In this practice the primer used on the regular cartridge does not contain suffecient fulminate to extinguish the flame at a distance of three feet with certainty, In order to meet this defect, special primers can and should be always obtained containing an extra quantity of fulminate Better effects are also found to result from enlarging the aperture into the cartridge. The shells made by the Union Metallic Cartridge Company are unsuited to this practice. The cone-shaped anvil nsed in them blows out, when usid] without powder, at the second discharge, spoiling the shell, and thus making the practice expensive. Nrither the Remington shedl nor that made ly the United States C'artridge Company is liable to this objection, and in both, the opening for the fulminate can be enlarged. As a piece of the cap is frequently forced through the barrel by the explosion of the primer, care must be taken in this practice never to aim in any direction where injury could be eansed by it. The main drill of the National Guard (in the cities at least) must taki place at theirarmories, and practice at the range be but occasiomal, "not to learn, but to test what has been learned:" Orlicers shonld, therefore, devote all the avalable time to the sighting, position, and aiming drill, which form the foumbaion for the whole system. Asthese are aj)t to prove monotonous, candle practice should he frequenty indulged in, this portion of the drill bebing allways intrresting to the men. It is, theretfore recommended that the men slomad be pratetierel in tiring at wantles at the conchasion of cath aming drill. With men of the intelligenere of those composing the National Guard, the improvement that will le fomed to result from a little carefnd bractien of this deseription will be fotmed surprising ; mall a company that at the beginning eould not extinguish more than two or three candles at a vol. ley, in two or three months will jut ont nine ont of
tent amd it is fropucotly observed that hase who have hat the least previous practiere an sporiminer
 will alsa prove valuable ns as sumblata for ball praction in judging the cllirironey of the men in those esames where the hatter cammot lae had; מuse mond shombl be prattored in tarenet tiring whe have net
 provious drill.

There is mo portion of rillo praclice more impert ant than umdrestanding low to retimato diatanco. but the: purestion of how surb at knowlorlere shath b atequired and impartad, forms a very diflevale pro. blem for an alleer of the National Cimmol. In the country, fucilities for the purpose can lo ansily olv. tained; lut in the citios, olldrars, in athlition tor roquiring Uarir men, when upon the ranire and mot firing, to practice in this exproise mast wreve them to acematom themselves io judge distances the bust way thry can, improssing upon them thet, nomatter how acourate markismon they may bo at a fixell target they are worthlass if they eammot culenhate the distancer of an encong: In extimating disancers, the following surtrestions may be valuable: di 50 yards the observer eat mame any one of his cmmrales real. ily, as the sure, complexion, heirht, and firatre ran be determined at that, distance. At 100 yards las should notice those parts whieh are charly visible. and his attention alrawn to the indistineturss of other portions. The lineaments of the face are no longer visible, the butions down tho fromt of the erat apperses one continuons line. "The movements of the mord individually, amd the form and eolor of the mil form, ure, however, perfectly visibte. At 20 y yards. the colors of the uniform, cartringe-lownes, vere, are still visible ; but the face now resconbles at light-colored ball under the cap. At abont site yards tove can distinguish only the different parts of the body amd the rifle. At abont 4 jon tards, the direeton of tho line of march and the movement of the rithes can be aletected, and in cavalry the bolmot, coirass. bright colors of the uniform, ete. At G00 yards the heat looks like at small rombl ball, and the shouldirs sloped off. At 700 or 800 yaris the body las a dwindled appearance, but the legs of men in motion or exfended arms are still distinguishahle. At 900 and 1000 pards the separate files and direction of marels are still apparent. At 1200 yards infantry can be distinguished from cavalry. it 2000 yards a man, or even a horse, looks like a merespere or dot.

Individual practice should be ancouraged by all otheers and particularly in the case of dat Natiomal Guard, to whom every inducement should be male to visit any avalable range for private practue. To prevent aecidonts and ensure the enforemont of the preseribed rules. every man should be reguired to enter his name on arriving at the range: these mon who are the first to arrive shombl have the righl to determine the distance at which they wish to tire. As the men arrive, they will form themselves into squads, cach squall electing a ('iptain, who witkeep the score and inforce the rales of the range. dil arriving subsequently aro to oluy lus orders. If no markers or look-out men are employed, each Capuain must make a defail from his sumat tor smelo purposes. and see that those detalad are properly rolieved. The tiring is to be conducted aceording to the principles above laid down, and every slant fired in rear of the firing point, whether aceidentally or oblere wise. unless firmi into the pit provised for the pure pose, shall be cotered as a miss. "lowe mon lint at the gromad must see that the danger hay is lamaled down, and the appurteuances belonging to the range replaced where they belong, or returned to the kewtser. l'artice upon the range is only intended fotind out and apply what has been learned at drill, ant acquire a practical knowledge of clevations am? the ald lowances required for wind and worther. In all cases, therefore, axtrome deliberation should be usced. No advantage is gained ly firing more than






 of the practior lae greatly realaceral, lat tho quality


 sumt jurlement, whirla make ar relinlhle whot, thas th


## Borlimuremalif.

RIFLE RANGE. - Thar tirst point to rombirler in re.
 not le: taken in the seloction of the groumed in wrater

 etc. While it is impossible los lay dewn prective rules for evory fonture of a romatry, the following


 is most importan: that the eromond helaind the tarerets shondd be thoroughly rennmanderd from rertain points sulliciontly colos of the line of lire to insure safaty to the lookeont men who are to be felaced there in order that the tife may lee ea-ily stoppurd
 ully to be prefirred, as being more araly formmanded toone uphill. The targots ngon a rangro shombd, where the ground permita, be establishad by pairs, with an interval not lose than ten yards butworn ergeh target, and with at marein of at leas 40 yard- at tho sides; the minimum broulth of grommd for a pair of targris should be ! 0 yards, and ant the targets ahond be on the samu lime. Whan, however, the mumber wo bexerciad in rille practice is large, nnd tha breadn of gromot limited. an mmber of tartets may be established, with an interval of ten yard- between cach, to be usad as if fora pair, a margin leeing left at the sides of the outer targets of at least 40 yards. In these cases the number of eneh target shonald be eonspicuously placed upon the butt in rear of it so as in beplanly seen from the firing-point. amd the tiring should be stopped at all the targets whenevor the danger sirnal is shown at any target within 40 yards. "J'ie breadth of ground in rear of the tarret at racha side of the onter ranges. should gradually incrase from 40 to 80 yards. in those casem wan the ranges are parallel; but whon they converge towards the targets, the broadth may or may not be required. aceording to the degree to which the raneres arc made to converge. The thisiances at the targets must never be less than ten yards between range in pairs, and eighty yards botween pairs of raneres, whether they are laid out paralled to each other or fonverge fowarels the targets. if no butts are erecterl, and the ground is level, the spaco behind the tarenta should be about 1,500 sards. d dow di-tancer may, howner, answer. if lutt- are ercted. or if a sinp) hill rises in rent of the targets. Before tepa are taken to proenre grounds for ranges it is ceserntial in soanre the rierht io fire over the land behimb the targets to the extent required. shond it not be desirable to purchase it. Gemerally this distance cannot ber obtained, and a butt num-t loe vereted in rear of the targeto, to arrest stray shut- The height of hlis munt differ arcording to the nature of the background. If the range fee 0n a plain, the regulation size if the hutts is from 3i) to (t) frot high. provided the distance behind the tareet is leos than lo.jor) yarde. Inder ordinary ciremm tances. howserer, the hefighe of the but! mood nost he more datn 20 feet, and when firing towaral wator a buttof le feet in helght will he sutlifient. On some ground there are found natural butts for the tareet - to rost agaiust. To be of use in stophing stray lmillet and therely insure the safety of the publie, the hill should incline $4^{\circ}$ degreter,
at least; if a smaller angle than this, it would, inslead of acting as a stop, incur the chance of a ricochet. and therefore be unsafe. A few furrows from a plough will freguently lessen the chances of ricochets. The length of the butt for a pair of targets should not be less than 45 fect, measured along the top. They are far inferior to natural obstacles, and are expensive to crect and keep in repair. The number of each target should be placed on the butt directly over it in large figures, so as to be conspicuous from the firing-points. Where there are a numher of targets these numbers shoull be painted red and black alteruately. At long ranges Roman figures, made by laying rails on the butt, are more easily discerned than numerals. In crowded localities. where the range is short, and the danger of injury to the public great, a series of shields or screens may be thrown across the practice ground at different distances containing apertures of such a height and width is to permit the passage of all properly directed lullets, and to arrest random shots. These are sometimes high arches of cast-iron, and sometimes upright barriers of stout plank. Two or three sheds with plank roofs, made to slope tourards the target. form a cheap and convenicnt sereen, provided the gronnd hetween them is furrowed so as to prevent the ricocheting of the bullets whicl strike the sheds and glance downwards. In the longer ranges. these shields are objectionable, not only because the high trajectory of the bullet makes it clifficult to place them properly, but because they confine the firing to a single distance, and render the appearance of the target as visible through the apertures so different from what it presents in the "open" as to deprive those using them of many of the advantages that should be derived from target practice, and particularly from acquiring a practical knowledge of distance. If care be taken that none be allowed to practice with ball who have not been through a course of "position and aiming drill," the danger of random firing will be reduced to a minimum , and the prescribed butt be found amply sufficient for all practical purposes. Every range is to be carefully and accurately measured, and the distances defined by a line of small pers, at intervals of 50 yards, commencing at 100 yards from the target, and continuing to 900 yards, or to the extent of the ground, if under that distance. These pegs also serve as guides to prevent firing on a wrong targeta fruitful source of accidents. To avoid the sun, the targets must be placed at the northern ind of the range; or if that is not practicable, at the eastern. In using the ranges the firing parties commence their practice close to the targets and gradually retire. Consequently, as there is not likely to be as much practice at the extrencly long ranges as at the shorter ones, a piece of ground, of a triangular shape may be selecterl for an extensive range, the targets boing placed at the broarlest part, and the firing-points being reduced as the distance is increased. Severial flag-staffs should be placed in such positions upon the range as to make the danger signal so conspicuons when hoisted upon them as to five notice to nll passers-by that firing is going on. Smaller Hasestaffs should also be provided at ench lookout station. In addition to these flag-stafls, a suitable danger flag should also be provided for rach firing-point, to be elevated in answer to the danger signal, as hereafter explainced. Several flags should be erocted above the top of the lank in rear of the targets during the practice, together with one amid way npon the range, to show the direction of the wind. A wooden sockect should le set in the erommd in front of edeh tareset. in which the marker should place the statf of his danger llag when ohlioned to lease his mantelet for any cutuse. This shombld be sot at an angle so as to display the flate cloarly.

The following is a list of the articlos reduired for practice upon the range by a single regiment Iron targets, ofect by 2 fert, complete.

Fhags (when nseod), Red, 6 feet square (or llagstaff).

1
Flags (when used), Recl, 3 feet by 4 fect (danger) Rer!and white. $2 \frac{1}{2}$ foet square
Dark blie, $2 \frac{1}{2}$ fect square....
White, $2 \frac{1}{2}$ feet syuare.
4
4
4
4
Poles-lance, 10 feet long...............................................
Dises (when used), Red flag, langer and for flag staff (as above.
Dises (when nserd). Jlabk and while disc, 18 inch diameter, 3 d class, 9 -inch

2

Discs (when need). Red dise, 21 class, 28-inch in diameter: 3 l class. 8 -inch.

4

Discs (when used), White dise, 2d class, 18 -inch in diameter; 311 class, 9 inch...
Discs (when used), Black dise, 2 d class, 18 incl in cliameter, 3 d class, 9 inch.

4

Poles, $1 \frac{1}{4}$-inch. for 2 l class; for onter, 12 feet 6 inch; center, 10 feet 6 -inch; bull's-eye, 8 feet 6-inch
Polrs, 1 -inclı, for 31 class; for outer, 8 feet 6 inch: center. 7 feet 6 -inch; bull's eye, 6 feet... 900 yards Gunter's chain or cord. labeled every 5 yards. and numbered from 1 to 900 , divided into 18 equal parts

Pins of stout wire, 12 inches long.

Stadometer complete, with 20 yards of chain, cross-staff and tripod for stand. Tripnd rests......... 1
 Large brushes [or coloring targets, $1 \mathrm{lb} . . . . . . . .$. Whiting, fine, without lumps (annually ).... 1 cwt Lampblack................................................ 15 lbs.
$\qquad$
In practice at at range by military organizations it is indispensable that the regulations for practice should be carefally prepared and strictly enforced. Salety, accuracy in marking, and, above all, the avoillance of delays a point to which particular at tention nust be paid) can alone be secured by liaving all officers thoroughly familiar with the prescribed regulations The regimental Inspector of Rifle Practice or (in dofanlt of such an officer) an otheer specially clataled for the purpose, sliould be charged with the entire management of the targets, markers, and scorers, and should be held responsible for all delays or errors on the ground. He will also assist the squad commanders in instructing and correcting the practice of their men. Before the firing commences, the markers and look-out men slionld be posted, and a large red flag hoisted upon the flagstaff in the range. These men, when not attacbed to the range, should be detailed beforehand, and marched to their positions as soon as their party reaches the ground. If a guard is requirerl, it should be posted in the same manner. Jroper reliefs sbonld also be provided from men who liave completed their practice in time to allow those on duty to shoot. Printed orders should be furnished to both oflicers, markers, and look-ont men, at the time they are dretailed, in the following form, and eare be taken that such orders are understood.

Orders for the Senior Officer at euch firing-pointNot to allow any practice to take plinee imti] the large red hag is loisted on the main signal staff, and the sentrics or look-ont men are postod. to prevent all persons whatever from attempting to cross the range and give notice of danger. "To inspect the markers and register-keepers before they take their places, and see that they are providul with all requisites. and properly instructed. To see that the markers and sentries are properly instructed in time, and that they are afforded an opportunity of tiring. To sce that the mon do not load except at the siring. point, and then that they ker'p at a" ready" until they have fired. In all important compertitions, to see"that cach min's trigger is tested at least mee daring the practice. To see that the squads firing are properly equalized. Not to allow a man to tiro
watil the shot of the previous man（hloulel it strikn
 firing＂to be soumded，amel the＂＂douger＂that to low
 flag is raised from tha markeres buit，or any purson or mainal ap川watag in front of lla diring party，and the mo actomul．to allow any liring to pro－
 butt．Whan this ！ag is lowneret，to ordor the
 ger＂llag at the tiring－point to le dropurd．On tha ranges situntod in pairs，to sose that the jartiocs dir＂ by Classes at the same dishaturs，und mot one class in front of anothore When He＂＂itere firimg＂ sombuls to sece that the firing at all the targeds which are within one husulari frot of the tarent at which the＂donger＂Hav，is displayed is diveontinued matil such＂diengor＂Hitg iv lowerod，and the＂（＂ommener firing＂is again sommad．＂I＇o be most partionatar in cantionimer his mon that thay will lue ulmose crertain to injure the marker if they shombl fire on at wromer
 fires on a tarcret difirent from that to whirh he is assigued，to Alobr him from lurther pratelice and report him to the commandine otliore＂los see that all persons who desire fo watch the practice stand （o）the rear and clear of the party，and on no accomat （o）allow any noise or talking anomig the men，whose stention shomlat be fixed on the prateties．To be most particular that the mon kecej）their places in the ranks while the jractice is procurdingr，to allow no irregularity，amd to be alert to prevont accidents． To sere that the proper dises are used by the markers． To nse his lose molemoors to brevent delays，and forward the progrtss of the tiring．

Orders for the Mfurker．－T＇O ser，on taking their places，that they are properly sulphied with thags or discs，brashos，paint，ete．，and whon ready to wave their red llag and witheraw it．Tos ser that the fol－ lowing tlags or dises are raisod to signal the position of the shots which strike the target，and the＂rienchet and danger，＂or＂Ceose for．＂1．Black dise or white Har－onter．2．White dise with black eross，or similar flag－inmer．3．Red dive or dark blate lago－ canter．4．White dise，or roil and white flag－bull＇s． eye：5．Rerl thas waved horiannally twice to and fro in front of the target－ricochet．6．Red flag－ danger，and cosse tiring．To sue that the signal flags are invariably wavid when the wind blows dircctly up or down the range；and（where tlags only are used）whencerer shat strikes the target to the right of the center，that the thag drating its value is inclined to the right，and vief reran ；also， when at shot strikes the target high，that the thag is high as possible，and upright ；and when low，that it is raised only high enomgh to be easily visible above the butt and when using the dise that it is placed immedjatedy in front af tha hit on the target． Tosce that the＂chinger＂thig is hoisted whenever it is necessary to cease firing，to re－color the target， or for any other purpose；aml to allow no ons on any account whatever，to leave the marker＇s butt unil the＂（＂ense fire＂has been sounded，or the＂donger＂ llag has been raised at the firing－points in masimer to the＂danger＂signal；also to sce that the refl flag is kept up（and waved so as to attract attention）so long as the markers are out of the butt，or any per－ son is in the line of range．To see that the＇d den－ ger＂thag is lowered directly the range is clear．To allow no person to enter the markeres butt．exeept those on thaty，without an order from the senior ollicer on the range，nor to allow any one to enter or leave the but except by the regralar path．To cluck all talking or any disinrbance in the markers butt．To sue that the＂denuger＂thag is hoisted and shaken about immedintely；any of the look－ont men＂ithor hoists his flag or gives notice that per－ sots or boats are within the line of fire，and that it is kept up until the rance is clear，and the look－out man lowers his flag．When the tiring is at long


 by tho bullots whon fullinge．It the lirnt hipmal to

 thags．＂tre．in thue propure phare．firll in，and roturn tos



 at ：．．poring lowarels．．© along tho shore（whon liring keaward，voming from to hoist thar rod thas and callomt lothe nonaeommissioned ofllares in the markerem loatt，in a
 matil the said pereson has pasand for thac
（sceording to the direction in whichs late is prex．e．tl－
 to bonts passing dosse in－slarer in tho lime of ranter To give notice to all furranas who maty lee alout to pass the range that they are in danger while the tir－ ing is roing on，und to wiernal them back．fathe performance of his daty（uborw parlicoblarly dariner the cxecontion of the platoon and skirnnishing pras： tiress），to kecp as low as possible to avoid the risk wf briner hit by a rioocduet shot．＂looreturn to his romer mand at the secomd sighal of＂Cotax firing．＂ths pre－ seribed for the narkers．The markor in the butts． if not a marker belonging to the ranare，shoulal invar－ iably be a non－commissioned oftione of a diftererel compreny from that engugerl in firirg，und is responsi－ ble that the correct signals are givern to the several shots which strike the target．The firing parties should not ronsist of more than twenty men＂ach， and only one sofud should be allowed to practice at a time for each target awalable．Such detailed ar－ rangements should be made as will insure the vari－ ous squads being at the firins－points by the time those firing have finishol their practice，and in this way prevent delay．Wै口n cxercising by elassus，if there be a choice of time for practice，the senior clases is always to have the advantige．The men＇s namos are to be contred in a blank return lofore going to the practice－groumd，in the order in which they stand in the ranks．One blank will answer for the stiand assigned to each target to record the porformancers at two distances．Juring the practice．an onlicer or non－commissioned otticur is to knp the rugistur．and will，as cach shot is signaled，call ont its valme and the name of the firer．Ans objection to tha marking must be made before the siecond shot is dirall．All entries during competitions or practice for limal clat－ sitication should be made in ink on the practice－ ground；should any alteration become nerosars．as fine line is to be drawn throngh the figure or leftor． and the corretion mate adjoining it．the initials of the company otheer keejnine the rogister being ins mediately attached to it（thet，3：．．I．．） 10 verify the eircumstances．Inattention to this regulation． or an erasure（which is prohilited），should invali－ date the register．This rule shond be mblured to in all cases to prevent complaints．See Rifle Practice．

RIFLE SHRAPNEL．－T゙le＝！rajnel


Rower Shrapnel． for the 3 －inch J3．J．．．rille，shown in the drawing，are filled in the sime manuer as the splerical sorapnel． The fuse－bole has a composition bouching by which it is distinguinh－ ed from the shell of the same gun which has no bouching．
In the boxershrabucl for the rifled ordnance of the Engli－ls service，the essential features of a shrambel－nhell are embodied．This she＇ll las a cylmelrical irou body，with a cham－ her at the bottom，and four longi－ tudinal grooves insild to facilitate breaking up）：it is cas without any head．I tin ease fur the bursting－
charge fits into the chamber on the shonulder of which rests a wrought-irom disk. The shell is lined with paper, and filled witl balls embedded in rosin. wrought-iron tube passes down the middle of the shell and through a hole in the center of the iron disk, to lead the flame from the fuse to the bursting charge. A hard disk is placed over the top of the bullets. The wooden head is ogival in form, and made of elm corered with thin wrought-iron, which is riveted to the shell. This head contains a soeket and bouching for the fuse. See ' 'ase-shout, 'rojectiles. and Shramuel.

RIFLING.-This operation is performed by means of the rifling machine. The machine is lorizontal, and the gun to be riffed is fixed in front of it and in line with the rifling bar, to whieh a stout head carrying the cutter is fixed. Only a single groove is cut at a time, and that as the eutter is coming fown, the bore bringing the elips of metal before it. All the grooves in the gun are first cut out roughly in succession, and then finely. The distance between the srooves is regulated by a disk fixed to the broceh of the gun, having its periphery equally divided by as many notehes as there are to be grooves. The gun is fixed each time by a pawl, and when a new groove has to be cut is turned round to the next notch. The gun remains stationary while the head rarrying the entter works up and down the bore, so it is necessary to make the bar to which the head is attached turn round more or less at the same time that it adyances and returns, otherwise we shonld merely have a straight groove eut along the bore, instend of the spiral we require to give rotation to the projectile. The gun-metal in whieh the cutter is fixed fits the bore accurately by means of burnishers. It is fastened to a stout hollow iron bar termed the rifling bar. This bar is fixed to a saddle cajable of sliding backward and forward on an endless screw.

The movement of the slitle to which the onter end of the rod is attached (and consequently of the cutting tool) is regulated by another copying arrangement on the other side of the machine. This arrangement consists of two horizontal bars, one lighur than the other, along which travels a weighted lever attacherl to a pinion whieh works the slide. When the ritling head is passing down the bore, this weighted lever travels along the upper bar; but when the maehine is reversed. the lever is prevented by a small movable pieee from returning on the same har, so that the weight falls over on the lower one, and in doing so lraws back the slide and spindle and forces the tool out. By varying the form of the upper surface of this lower bar the depth of the various parts of the groove ean be regulated and altered as required.
The drawing shows a light machine ased in armories for rifling gun-harrels with a uniform twist from one turn in 20 inches to one in 36 inches. The cut-ter-rod earries from one to three cutters, as the rithing is four. five, or six to the cirenmference. An adjustable feed-stop ganges the depth of the rifling, and the racks, which are of steel, are double, to take up all back-lash, so that the cutters cannot ride on the lauds. An oil-pmonj feeds automatically at each end of the stroke. The carriage is gibbed on the outside of the long slide, allowing free access to its working parts. Weight, 1,600 pounds. This maehine ritles by the filing process, which is more eorrect than the planing process, and will turn out about one gum-barrel an hour. See Groove, and System of Rifting.
RIGHT SHOULDER ARMS. - A position in the Manual of $\Lambda$ Irms, executed as follows: Being at a carry, the Instruetor eommands: 1. Right shoulder, 2. Arms. Raise the piece vertically with the right hand: grasp it with the left at the lower band, and raise this hand


Althongh the rithing bar is tixed to the saddle and moves with it, it can revolve independently of it; and toward the cud farthest from the gian is fixed a pinion whieh gears into a rack sliding in the saldde at right angles to the har itself. The miture end of this raek is fitted with two small rollers or frietion wheels which rum along a copying bar fixed to onc side of the rifting machine. This copying lar is inelined at a certain angle to the side of the marhine, and the sreater this ansla, the more the ract is palled out ly tha friction rollers, and the rreater the twist given to the rilling bar and so to the grooves in the gron. 'low' angle can be altered if reforired; and wo can also takeaway thestraght copying har amblnse a curved one, as is done when atmon is to he ritled with incroasing twist. By thus changing the copying lotrs, or their position, we ean use a single machine for uny doseription of rifling. 'I'lu entinner tool inself is of steel and works in and ont of thes luad, lowing drawn in or forcod ont hy moms of a cam attacherl to one amd of an iron rod passing throngh the hollow rilling bar.
till it is at the height of the chin; at the same time embrace the butt with the right hand, the toe bet ween the first two fingers, the other fingers under the plate. (Two.) Raise the plece and place it on the right shonlder, the loek-plate up, the muzzle elevated and inclined to the left; so that, viewed from the front, the line of the stoek from the toe to the guard, shall appear parallel to the row of luttons; slip the left haind down to the lock-plite. (Three.) Drop the left hand by the side. 1. (tory, 2. Anas. Carry the luat slightly to the left, and lower the piece with the right land ; grasp it with the left at the lower band, the hand at the height of the ehin, the barrel to the ramr, anll vertical. (Two). Resmme the carry with the right hand. (Tumes). Drop tha left hand liy the side. Being at a sapport, 10 come to a right shoulder, the Insiruetor commands: 1. fight shouldre, 2. Abas. Grasp tha pioce with the right hand at the small of the stock, and carry it in front of the center of the body. grasping it with the loft hand at the lower hand, the hand int the hejght of the chin. (Two). Carry and place the piece on the right shoulder, the
 wlip the loft hand to lhe lack-plate. ('lames). Irop

RIGID DYNAMICS. -That portion of theroretiond dynimbires which, hased on the theory of the free and


 of their mation the menne invariabla busition with re-
 nuthre can le comsidered as abome, that is traly a Aystran of points, rigid dynamics has for its ain to apply the alastract than'y of tymantios to the conger
 fems of this sort were not resolved by any eentral and adeguate method, but macle chase was workod oul acoroting to a mothod rexporially mpplectafle to its parlicular circoumstances. Tho itront gencral prineiple diseovered ly the Fremelt germeter, rommonly known as /'Jlembert's I'rinotiple, which applies equally to all such problems, and removes the necesaity for specially invecotighting (onch particular caser
 is thus stated in his Trouté de Ioynumiquer: In what ever manner a nomber of bodies ehanere their motions, if we sulpose that the montion which eatels body would have in the following moment, if it were per feety free, is decomponed into two others, one of which is the motion which it really hakes in eonsepuence of thelr mutual actions, then the other comboneont will he such, that if callo body were impress ed by a foree which would produce it alone, the whole system wonld he in equmlibrinm. In this way every dynamical jroblem can le ecompeiled to furnisis the equation of equilibrimm, and so be changed into a problem of staties; and thas the solution of a ditieult and eomplex problem is e-jected by means of the resolution of at mall easier one. 1b' Nembert applied his principle to various problems on the mo. tions and actions of fluids, the precession of the equi noxes, cte.; and subsecpucntly, in it modified form, the same fermoral property was made the basis of a complete syntem of dynamices, by da Granere in his Mésnnique A mulytique.
RIGODON.-Formerly a beat of drum while men who were shelled (a Fremoln punishmont, the severest next to death) were paraded up and down the ranks previous to their being sent qu their destimation.

RIMBASE.-1. A short eylinder at tha junction of a trene nion with the gum. Theremls of the rimbases, or the alooulders of the trumions, are phanes perpendienlar to the axis of the trumnions. Rimbases are for the purpose of strengtherning the trumnions at their jumetion with the piece, and by forming shoulders, to prevent the jurce from moving sidewors in the irmmion-beds. D. The shondere on the stuck of a musket ageninst which the brecell of the barrel rests.

RIMER.-An old name for a palisade in fortitication

RIM-FIRE CARTRIDGE.- I melallic carlridge in which the fulminate is plated in the rime surround. ing the head. This rim being struck at any point, explodes the nowder. Formerly much used in pistols and magazine-gnns. 'Phese entridges are not relouctors.

RIMPLER SYSTEM OF FORTIFICATIGN. In this system it is propused torephere the rartain by a bastion that may Hank the coblateral works and be defended by them, to cover the grarrismon under ciace mates, and prepare an interior ans wedl as exterior defonse. This system rontains excellont ideas. The besieger masi cary two ravelins bofore roadoing the cometerscarp: then he must attare the fansse-braye the bustion, its retronchment. and furthermore drive the defenders from the casmates. The ditches and oulworks are powerfully Hanked and the retrenchments of the bastions are excellent. This fortification is not practieable on aceonnt of the great space it oeropics, of the large garrison it
 1all.

RINGED ARMOR. Armor of thr Nidlla Ager,
 linern or laithar. Sion . 1 rmero


 smaller at tritlo lase in dianmetor than the tram abliber of thar projeretile. All shot rew-ived momat phas thronghl the liarger grace, but are rejeretod if thacy pass throumblı thasilar

RING WADS.- Wisly concinting of at ring of ropre-


RIOT. - The le.gal natre of ath offerne which consist in the assombling of \|are or maro puracons for an illegal purpoas, or for the rarrying out of a legal
 mence in some \&appose ol privato wrong. Sinne degree of violence is indelental to at rim, athe it degree of intimilation fo the meighborhoml. A riot rannot take place unless at leatithere prorsons ate in eonncert. Whem a riot becomes formidable, it is usmal for the antlarities to tabe active monasures to dis-
 l'ance may commanal the persons usacomblect to nisperse peacoably by a form of words coalited laratinge the lkiot Act, waclo is as follows: " ()ur hovereign Lady the (eucon chargetly and commandeth all persons being assombled immodiately to disporse thenselver, and pratceathy to elejsirt tos their hahitations. or tor hair lawfal businces. upon the paims contamed in an det of kingr crorge for pros venting tummats and riotons assemblics God save the (Queen." If the rioters, after this formal prendamation, remain buore than once home afterward, they are guilty of felony, and may le seized amd carricel before a shatice. Sometimes it is diblioult 10 distinguish between stn illectal assconbly and one which is leral, thotiminomy and tumultuons, ind the opinion of the Justice of the l'ance is not teoncolusive as to its illegrality. S゙ometimes the liont Act is read more than once daring the distarbance in which rase the serond or third reading does not supuracole the first.

The great and overwlelming interent cexhibited by the people of the Enited states in the late terrible railroad and labor riots in various parts of the country will eanse na 10 "xtend the limits of this articla. It a period of profommed quiat and repose the antire country was startled by the simultaneous selzure ly lawless men of the fonr great trunk lines betweren the Allantic Seabord and the Worepern seates. In a single day the whole interasa irade of the [nion was suspended. Millions of dollars of capital were palralyzel, thonsands of coterprises were (omfronted with roin, and the whole of this ereat country was threatened with it crisis such as it had nevor colerrienced before. lnstantly the whole mititary power of the general govermment and the groat states ime mediately involved in slac pramble was ealled upon to give protection to the exhlamered commerce of the land. The peaceful comentry resounded with the tramp of armed mon hastening to assert the majesty of the law, on the one side: and with the rush of infuriated mols, on the wther side eratherines io rosist the exceration of the statutes of the land, and to over. furn the very fommations of suciety. Almo-t without warning the American people were brought face to face with a contlict which for a while threatenes? their very exisfoner as a mation. The excitement reco stcadily, and for a time moblaw wa- supreme. From all points came reports of lawlos- violener. of pillage, arson athe murder. Tho worst elements of the Whd Wordd, that bad leen driven out of Eiarejre, suddenly appearcol. and proclaiming their terrible doctrines of destruction and rapince endeavored te revive in this prosperem- and peaceful land the horrors of the Parisiun (ommune. The danerer was
terrible and real, ant for a moment the American people stood appalled, not knowing how far the revolt might extend, or what character it might assume. Never siuce the days of the Civil War had the nation been so profoundly moved, or so painfully apprehensive. On all sides the determination was made plain that the outbreak must be put down; the laws must resume their sway; and the future of this great conntry must not be perilled by mob violence. No man could tell how soon his home would be the mark of the rioter's torch, or his dear ones be at the merey of an iufuriated mob, and this thought brought handreds of thousands to the support of the representatives of law and order. At the cali of the civil authorities armed men came from all quarters, and it was soon apparent even to the most desperate rioters that the people were determined to preserve their institutions and property from violence at any cost. This formidable uprising of the people had the happiest effect, and the revolt succumbed before it. The disturbers of the peace slunk away, or were arrested, and the supremacy of the law re-established. The very originators of the strikes, horrified at the capture and distortion of their movement by the mobs of lawless ruffians, in many iustances, gave their assistance to the authorities in restoriug order. The New York riots will be here moticed at lengtli, as also the action of the general government. We are endebted to the Mistory of the Great Riots, by Edward Winslow Martin, for the substance of this aerouut.

Late on the evening of the 19th of Juidy, 18\%7, a meeting of firemen and brakemem employed on the Erie Railroad was held at Hornellsville, New York, at the close of which a message was sent to the Superintendent of the Erie Railroad, giving lim notice that the men of the Westeru, Susguehanua, and Buffalo divisions had resolved to quit work at one o'clock the next morning. The Snperintendent proceeded at once to Hornelis ville, where he found that the strikers had stopped work, and had taken measures to prerent all passenger and freight trains from leaving or passing through that place, east or west. Simultaneously, the firemen, brakemeu, and switchmen at Salananca, on the Western division, quit work, and when the Superintendeut of that division, who had started out from Dunkirk for Hornellsville by a special train, arrived at Salamanca, his engine was cut loose from the train and put into the engine-house, and the strikers informed him that no engine or train would be permitted to pass Salamauca. At Andover station, on the Western division, one of the striking firemen took engine No. 吅, and went out ou the road without orders or permission from the Company, and on the time of trains, intending, he said, to go to Hornellsville. Up to four o'clock in the afternoon of the 20th the strikers hat given the Company no reasons for their strike. At that hour their Committee handed Superintendent Wright a document containing the following demands. on bellalf of the firemen, brakemen, switchmen and truckmen: That all of the men discharged for taking part in any meeting or going as a Committee to New York shall be reinstated. The brakeme to receive $\$ 2$ a day, the swithmen $\$ 0$, the head switchmen 82.25 , truckmenin yard $\$ 1.50$, truckmen on section 81.40 , and pay no rentals on Company's erounds except as ly argecment. The tiremen to have same pay, or rates of pay, as they received prior to July 1 st, $1 \times 77$, and monthly passes to he erontinued as hefore, and passes to be issued to brakemen and switchmen. These demands were at one e communicated to the Receiver at Niw York. By their action in scizing the Eric Pailroad and stopping its business ly force, the strikers not only violatiol the laws of the state of New York, lut were grinty of resistauce to the orders of the supreme (court of the State. 1he Erie Railroad at this time being managed ly a licereiver appointed by the Court. The otheials of the Eric Railroad promptly made arrangements to have throngh passengers and baggare trans-
ported by the New York Central Railroat, and at the same time reported the scizure of their road to the Goveruor of New York, and asked the protection of the State. The Governor therenpon issued the following proclamation:
Whereas, the Receiver appointed by the Supreme Court of this state to take all care of the management of the Erie Railway and its properties has made known to me that a conspiracy has been formed to prevent his discharging his tuty as such Receiver under the orders of the said Court : that the business of said roall aull the rumning of trains have been interrupted by violeuce which the civil anthorities are unable to suppress; and, whereas, the honor and good faith of the state require that it should protect the said Court and its officers in theexecntion of its order: Now, therefore, I, Lurius Robinson, Governor of the State of New York, by virtue of the authority imposed upon me by the constitutiou and the laws, command ali persons engaged in such unlawful acts to desist therefrom ; and 1 call upou all good citizens and upon all the authorities, civil and military, to aid in suppressing the same and in prerenting breaches of the peace. The law recognizes and protects the right of ali men to refuse to work except upon terms satisfactory to themselves, but it does not permit them to prevent other men from working who desire to do so. Unless the State is to be given up to zuarchy, and its Courts and laws are to be defied with impunity, its whole power must be exerted to suppress violence, maintain order and protert its citizens in their right to work, and the business of the country from lawless interruption within our borders. It is no longer a question of wages, but of the supremacy of the law, which protects alike the lives, the liberty, the property and the rights of all classes of citizens. To the maintenance of that supremacy the whole power of the State will be invoked if necessary.

Orders were despatched from Albany to the 23d (of Brooklyn) and the 74th (of Butfalo) Regiments of the National Guard of the State of New York to proceed at once to lIornellsville to sustain theauthorities. Later on the 54th Regiment, from Rochester, was ordered to the same place. The companies of the 54th were the first to reach Ilorncllsville. They arrived at that place on the evening of the 21 st, about fonr or five hundred stroug. The crowd of railroad men surrounding the trains upon their arrival immediately began shaking hands with acquaintances and gave the soldiers a warm welcome, carrying pails of water along the train. By uine oclock the Company's grounds surrounding the depot and railroad shops wore in full possession of the military authorities. Two pieces of artillery were put in position at the rear of the Company's shops, and guards were stationed around the northeru half of the yard, on which the shops and depot are located. As the Company did not attempt to start out a train, there was no demonstration made by the men engaged in the strike, and good order and juiet prevailed throughout the town. The Cominittee representing the men at the beginning of the strike served a motice on all the liquor dealers forbidding them to sell liquor to railroad men. The President of the viliage also issued a proclamation to the same effect. This, together with the fal that a large number of rairond men signed the Murphy tomperance phedge in the precedind spring, is believed to accome for the quiet existing under surfl exciting circumstances. No marked demonstration was male by the men until tweuty minutes past nine on the morning of the $2 \boldsymbol{2}$ d. The strikers hat informed the railroad oflicials that they would not interfere with the mails, hut that no passenger or freight trains shonld pass over the road. On the morning of the $20 d$, the railroad ofticials, nearly all of whom had gathered at Homellsville, determinerl tor attompt to rum a passenger train west ward from llornellsville. An crigine with a postal car attached wats coupled to two passenger coaches. The
lather were seropiod hy har huprontondent of far


 who. The train then starled from the yaril ganalad for some distane by soldiors statione olon both siofes of the track. At ('ass stawt arossing, athort distance
 Dut le was drivern latek ly the suldiors. Foron this jonst, for at distame of abont lifty rols. io 11 ent

 therew sand on the track. Dut this whe inalliodiont to arive :l leadway of over tive miles an honer. Whorl Hor train renehod tless street arossinge abont two
 torpedoxes wore harown umter the drivines whele of
 to be reaching the groumd fromatl yatartors and by

 as the men silw the rieqory was theirs, with it shout,
 (amo for atamistill and remdored tow Jrakes useless. The soldiers amd passenerers ware orderedont of tha cars and obegod, while ilae men, with clowers, shoved the cars back intothe yard. amb the soldiore maralod latek for the depat. 'Tive congine and postal (oar went on toward bomkirk. Inalf anfour later the compasy startad out train Ko. 7 ont the Bultulo division, also gharelerl by soliters. As the engine and tomder switeled ofl ont the Bublulo track, the engime was
 aside and elimbed ujp to the lemeler; others jumped on the pilot ind wont over the lop of the engine to the cats, when they ordered the firemin, who was an extra man, lo get off. After a short parloy Jue was tak'm from the engine, and the Engineer ran the train batek into the yard, the men cheering as before 'The crowd of seven or eight humdred men suddealy melted away, and during the remainder of the day there was no disturbance, as the lailroad Company made no Curther efforts to rum their trains. 'l'ha strikers were very determined, and were prepmed for at desperate resistance for the civil and military forces. 'lhey had a (:omp in the woods noar Jornellsville, and were well supplied with small-arms and ammomition, besides laving two pieres of cannon. They ware well organized, and their movements were well directed.

The first detachment of the 230 reerinemt, nearly 400 strong, reached Hormellsville on the 23 d . TVhis bromght tho military force at that place to a strenoth of abont 1, woo men. The rioters numbered about 2,000 mest. About nom on the 23ic. a Committee of strikers waited on the railway oflicials to state their grievances. The Chairman of the Committer made a remeral siatement of the canses which forced the men to strike, and said they hand received orders not fo commit depredation. They pornosed to stopthe trims, but not to do violence. Ilo then submitted the following. as the torms which lie thought the mern womble iecopt and go to work. "The wages demanded are just about tha same as tha C'ompany now pay under the ten per cont. redurlion. The brakemen are willing to go to work at the forn for cont. reduction, provided the train matn are paid for any owortime that they may make in being ordered ont and being abaudoned ; also any wortime which they may make while being delayed upon the road. to be paid for at the same rate per day : overrate per day to he *l.s0. The trackman in the flormeds. ville yard to receive $\leqslant 1.50$ mer dar. and be [aid] for overtime at the same rate: the trackmen on sections outside of the yard to receive -1.10 per day. and to jmy no remals for their houses, except as iluy may agree with the Compuny. JJo switemmen thacecpt the ten per cent. reduction, on eonsideration that ten hours shatl constitute a day's work, and all owrtime to be paid for at the same rate per hour- 51.80











 thr arfa wont to werli. 'Tla' Inaintant lowriver ro-




 oflicers, agronts. and man when have romanioc] 1ras:
 thlelity will mot fall lobe properly rerngnized. No
 will be mate th, those matanidenl men who atro, hase beron, or may bre falke to thatir trast, and violators of the dak. dinl all purarans arr. warmed phat no onte
 except his remalar adlicers. Iny othar purast [ire*
 induced to beljeve that the larer masority of the - :3nployés now moylotting thair daty are adomg number the conscion and torror of lawfocs anel downerate mern, most of whom ure strangers, amel have nover
 will be proturtous.
 along the line of the Erae kailway. l'ort derviComingr, Painted Post, Buftabo, and other points were aifected, and the lerie brakenern and firemenat all these places joined the strike amd sfopped the rumning of the trains. AI Bullabo thes strikers wrore exceedingly violent. Viarly in the ufternoon of the 230, an ascinult was made ly nearly fow flomatand rioters on about two hamired sofiliars wlar wore guarding the Jake Shore round homse. Tha military were obliged to leave the buikling whinch was now harrieaded by the moh, who had placed (ars in position as defence against an antack. The (oloneld of the (i5th Rocgiment, with about thirty man aml three otherers, proceded to the round house to retiake it from the mob. They were met with yells of der. ision from the crowd, ind. unther ashower of utones. were obliged to retreat at the domble-quick, and force their way through the yellime roowd at the paing of the bayonct, some of the soldiars hemer bat fy eut on tbe hauds with kuixers. and also vlabloct. $\dot{F}$ our of the soldiers lost thejr muskita, which, however, were alterward rocovered. The ("oloned was budly chaboed. twice knockad down, foreed across the canal, and obliged to take refuge in the Jake Shore paint shop. "The Erie strikers did not contine their law lessuess to their own roal. but invaded the -hops of the lake Nhore and Dive lork (intral roads, and forceol the men (1) s(t)] work, and prevented the wow monts of all freicht and stork trains in the depot sard. The Lake shore men juined in the strike. as we shall see. but que men of the Siew Fork (emeral rond showed mon disposition 10 do so A meeting of citizens was duly sumanoned by the Mayor of Butralo. but it was slimly attemfed. amel Wats captured hy the strikers, whereupon it was adjourned hy the Jayor. ln the meamtime lae secomed detachment of the ead Rerimernt left 13rookly on the afternoon of the 23b of duly aml reathell Filmi ra slortly after seroun oblock oisa tho mornine of the 2fth. It this puint the ('ommaneler wals warned tat the strikers along the rowd womble entuavor in stop the progress of the train. and atoorelimyly sta tioned gratals om the engine and temuler, and on the platforms of the cars. These men were oretered not to fire without canse, but to see that the irain was
not interfered with. The train left Elmira at to oclock, and reached Corning at 10..22 A. M, Several rioters attempted to board the train, but werequickly forced ofi by the guards. Ibout one hundred of them gatbered around the train, gesticnlating and hooting, bnt making , wo further demonstration of violence. As the train moved past the depot. the rioters rushed ahead, and turned the switch. The rngine was moving so slowlr, however, that the train was at once stopped. The mol now hastened up the track and blockaded it by orerturning a baggage car upon it. Several locomotives were also injured. The fireman of the troop train now deserted his engine and joined the mob. The track was tom ap for a short distance by the rioters, and the atdrance of the troop train was effectually stopped. At several points higher up the roal the track was torn up, and ears were overturned. A construction party was at once organized, and, moder the protection of the troops, the track was relaid and the overturnedears righted. The train moved on slowly, at the rate of about one mile per hour. in order to protect the working parties, and reached lain:ed lost abont four oclock in the afternoon. The strikers were at this time about two miles abead of the train, and were damaging the road as fast as was possible. Every effort was made to repair the track and enable the troops to come up with the rioters. so successful were these cfforts, that at half-past four the troops were within half a mile of the rioters. A strong detachnent was immediately thrown out. which, moving rapidly ahcul of the train, soon came up with the rioters as they were engaged in teatring up the rails. At the sight of the troops the strikers Hed to the woods. The damage to the track was at once repaired. and the train passed on to Addison. From this place no farther trouble was experienced until a point half a mile below Hornellsville was reached. Here the engine, tender and baggage car were thrown from the track by a loosened rail. In consequence of the presence of so strong a military force at Ilornellswille, there was no disturbance at that place on the 24 th. The leader of the strikers, was arrested and held by the civil authorities. No effort was mate to rescue him. All through the Dth there was great excitement at Builalo, but the ere was no outbreak. About 600 militia and two batteries of artillery, besides 300 policemen, were held in readiness to move upon the mob at any moment. On the night of the ?th an attempt was made to fire the bridge of the Erie Railroat over the Neversink river, at Port Jervis. Prccantionary measures were taken by the Company at the commencement of the disturbances, an increased mumber of watehmen being stationed at this bridge. This fact modobatedly saved it from destruction, as the next morniug a five gallon can of kerosene oil was discovered umder the bridge, placed in such a position that its ignition would hate carried the flames to the wondwork of the bridge. It is supposed that the ineendiaries berame alarmed before the completion of their arrangements, and thinking that they were dis"overed, fled, leaving the oil hehind them. The gratels at that point were inerased to prevent further trouble.

The Genernor issucd the following prochamation: - I derm it my duty to invite the special attention of all the citizens of this State, and esperially of such persons as are now attempting to interfere hy undawful means with the runniner of railway trains, to the following act passed by the degislature at its last session: Chapter 2til. An act tulPmish Treppasing on Railroads, passial May 10th, 1877: The people of the state of Now York represented in Senate and Assembly do enact as follows: Seetion I.-Any persom when shall wilfully place any obstruction upon any railroad, or loosen, tear up or remove any part of is railromb, or dispace, tamper or in any way intorfore with any uwithles, frogs, rail, tratk, or other part of any railroad, se as to endanger the safety of any
train. or who shall wilfully throw any stone or other missile at any train or any railroal, slall, upon convietion thereof, be punished by imprisomment in a State prison, not exceeding ten years, or be liable to at fine not exceeding $\$ 1,000$, or by both such fine and imprisonment. Sec. 2.-This act shall take effect inmediately. I warn all persons engaged in the violation of the above law to desist thercfrom, and I call upon all sheriffs, magistrates, district attorneys and other civil officers. and upon all good officers to aid in the euforeement of the said law, and of the punishment of all who are guilty of its violation, and I latreby offer a reward of $\$ 500$, to be paid upon the arrest and conviction of each and every person who shall be grilty of a violation of the said act. The failure or mission of any sheriff, district attorney, or other civil ofticer to take the most aetive steps in his power to enforce the provisions of this aet will be considered sutticient cause for his removal." This prochanation had a happy effect in all parts of the State, and especially upon the line of the Erie Railrosd. The offer of a reward wan certain to sow discord in the ranks of the riuters, and convert some of them into intormers.
Feeling themselves strong enough to enforce the law the civil authorities at Hornedlsville now determined to open the Erie Railroad to traffic, and to arrest the more prominent of the rioters. It was tlecided to enforce the law, even shomld a conflict with the rioters be necessary : and the 2bth of July was fixed as the day on which the effort was to be made. In the meintime several prominent gentlemen of the place exerted themselves to bring about a settlement and avert the necessity of using foree. Warrants were jssued for the arrest of over one hundred of the rioters, and the 23 d Regiment was assigned the duty of supporting the civil ofticers in making these arrests. Urders were issued for the regiment to be ready to move at six o"clock A. 3. on the 26th. The Gatling guns were prepared for immediate nse, and the resiment fully comuted upon a sharp eonflict with the mob. The railroad officials had a number of detectives amoug the rioters,and every movement of the strikers was known, as well as the location of their various eamps. Few of the rioters were seen iu lloruellswille, or in the immediate vicinity of their camps, but at a given signal they cond have assembled at least 900 men. Ou a hillwide overlooking the military and railroad head-quarters their outposts could be distinctly seen by day, and at night scores of moving lanterns gare evidience of their vigilance and activity. In different portions of the woods, and not remote from the line of the rodd, they had over half a dozen camps, which had been provisioned by plundering the freight ears in the degot yard at the beginning of the strike. The strikers' eamps would have been surrounded early on the morning
 ment was effected between the railroad officials and the rioters.
Ancifort was mate by the strikers on the Erie Railroad to bring on a strike on the Lake Shore Railroad, whicla extends from Buffalo to Toledu, and forms a part of the New Sork Central's line to Chicago. The disturhance heran at Pulfado, where the Lake Shore men struck on the 22d, and prowent the patsage of freirht trains. At Erie. lemmeylvian, and other points along the road.the train men joined the strike, and stomped the trains, but no further violence was attormpted. No trains were allowed to rom on the line between linfalo and krie, it having been determined mot to malertake for run any trains until the strikers ceand their interference with the road. The Athant ic express from Chicage reached Eric at deven ordeck on the morniug of the elth of fuly. It consisted of four fast mail cars, with heavy mails, two batgeagi lars, and four wad filled pussenger tars. In necoridane with orders from the l'resident the train was ram upon a side track amd derlared abundonet. The passengers were much incensed, and tried to


 the：Buthatodivision lelemraphed to prevont the thik－ （refron taking ont．the train．I merefing of the strikers was held at the depol at there berlack in the aftornoon．＂The matyor，sherill＇，ame a posse of police： were on latme to preserve order．＇lthe mator advised the：Incon to let the train alone and not io interfore

 then laken oft，rum into thar rommel lombs，and tho train was left on the siding．If eontained alowat one lamderel thromgh passubagers for Now lorks amd the cars for the tinn were eonsurted inte at hotel．
 ＂xpress cotme in Tronn（＇hicutere，und，like its prede－
 trains were ledd at Erice antil the morninge of the blidn，
 they were ordered to procered to lkathalo．V＇ronn this lime the trans were rem requbarly over the lake shore reatl．It was beliesed that lhe sitrike would rertamly externe to Nrew Jork city．Flatt rity ist he
 Siver liaitread，and there the Company haso vast in－ terostant stake mat give condsoyment to several thon－

 rrimimals，amd a larerer maltitude of idle amel rerek－ losen men．In andition to these．there are many men of forciorn birth，who，while pursuine some motans of support．are thorourlaly inshued with conmmanistic ideas，mal are ready at any time fo make war upon
 formindable sertion of the population of Now Vork． If was feared that slould the strike rextend to New Sork，these classes would hake it at pretext for riot and violeneco New Sork Joobig the weallhios rity of the［＂nion，amd onc of the great timateial centers of the world，always offers intucements to a mob of desperate chatacters to chgerge in an outhreak in the lojer of plamder．The hard times from whidel the whole conatry was sultermer had pressed bery heari－ ly upon the workingemen of Now York．Many were out of work，and atl ware more or less discontentedl． In case of an outbreak it was rertain that the riolers would he laresty reinforeed from this clats．

The leaders of the eomanmaistie sorietice of New
 tirely of fore igners who have in many rases been members of similar organizations in buroper，reerare ed the exceiting probod as a fitting time to test the areneth of the popmatar sympathy with them．They determined to hold at publice sne eting ostensibly Eor the purpose of expressing sympathy with the work－ ingramen engaged in tho sirikes，but really to tost their strumgh in New ゾork，and sero if therg could commame suflement outside aid to chable thesn to bring on an outhreak．The permission of the ate thoritios beines necessary 10 （mablo them 10 hold
 sion for lotave to hold their morting in Tompkins
 a rall was issited for a mats－mactimp of the＂Jrades Goions at Tompkins Sibtare on the night of Wied－
 mene cigaged in the strikesin other parts of the comm－ try．＇lhe true chatracter of the proposed nue oting wis well umderstood throughont the［aion．and ron－ siderable surprise was manifested at the comese of the New York anthoritios in allowing the moerting lo be hald．The Police（＇ommissioners were convinced． lowever，flat to provent dare meeting wonld be lo increase whatever excitoment amd discontent might exist among the laboring eblsises．and that the beest wity to deprivethe（ommmaists of therir inthereme was to permit them to hohd heir noevtine ated show their designs．They felt comtionemt that the great mass of the workmen of 大icw 耳ork were not
 llat fary would lu uliandel（roma laran to a mill








 of them．






 New Vork，it were remerally sibid，fle trerible romblts would sporat to tlow whole conantry if the abthori－
 would reerive jts leall lsow．
 ing：

 pathies tothe railemal mand now on mrike in difier－ rat lacalitices in tha comatry．



 of the workiner classers．
 ion have becta tha calse of deanoraliziner thomeands of honest workinumen，thorem driviner flocn to acte of madtuess；clesperation and crime that thay would not otherwise have berenguily of hatulaey beren juse ly dealt by

Resolfed．That as these chartered eompanies have beャn the primal eanse of theor cemploy ós miserios and of their conserguences，we loold them turarally respon－ sible for all acts of violepher that prosered from and are the legitimate results of their lyramay amel ab）－ pression．
latwlead．That we view with alarm the \＆rowinte in－ flucace and pown of these corporations over the legs－ ishation of the State and nation，smil bolice if that influmere continues，the exerutiver．judicial，and loer－ islitive branches of the govermment will becomse to－ tally demoralized，the rights of the masems destroyed． and，instad of the voice of the peophle，the posere of the almighty dollar will become absolnte and su－ premas．
 all the working chasses throurlomet the conumtry to mula ats sperdily asposible for the purperse of form－ iner a political jarty．based on tlat haturat rights of habor．I．et un make connmon cance ataims it comb－ mon catimy．
hexolroi，＇That nothiner short of a politiond rasolu－ tion through the latlot hox on the part of the work－ inger clasies will remedy the evils under whicla they sulfer．

Resuled．That it is the purpose of the working－ men＂：party for contiscate throush lecrislattion，ther unjusily gotien wealth of theo legralized amd char－ teral corporation thiverothat are lacked ly the＊hy－ locks and monered svalicate of Europe aind uf this country．
liseriled．＇That we love latw and craler．peatere and tramuility．justion and rightenusmess aboverall el－a． and deprecate anythay and averything that will provert them，and that we are ever realy togive our

＂Fore followine addrese was made to the I＇re－inlent． of the［nited S゙tates：W゚e．the workinsmen of the efity of New－York，in manc－meretimy alsor－mbled，act－ ing from a sense of duty，and pirompted by irue
feelings of humanity ant a sinctre desire for peace and harmony in socicty, do carnsetly and respectfully call your attention to the serious coudition of affairs now existing, and which lave existed for some time past between the operations and the officials of the mining and railroad corporations in sevoralstates of the [inion. The crimson tide of the life-bloml of citizens, soldiers, and hardy workmen have alrearly mingled in sanguinary strife. The heavens have been lit up with the hirid glare of incendiary fires that have raluced to ashes millions of property. Mon have fallen beneath deatly hlows dealt by unseen aud muknown hauds. until it seems as if evil days hat fallen upon us as a nation. Therer millious of the bone and sinew of the country converted into wandering vacrabonds, and a larere portion of those ${ }^{\text {a mplogerl }}$ ou the verge of staryation. Do these evils that have assumed such magniturle aud proportions as to necessitate the issuance of a proclamation on your part to preserve the peace, come within the sope or jurisuliction of national legislation: Whatever maty bes the ratuse of these evils, the only remedy appliad so far as been the bangman's rope aut the solderes bullet. Think you, Mr. President, thesa are offectual and premanent remodies that will insure hencefortlo parace adud good order iu society: Ne think not. Whaterer catuse produces these antagonistic relations between ('mployer and employe must he sousht out and removed. Weaddress you, Mr. l'resident, beratuse yon are one having great puwer and authority conferred upon you by tha ('onstitution. Tou are Commander-in Chief of the armed forces of therse ['nited States, ant dlaring the receess of cougress they are at your absulate disposition. Need we suggest to you the wisdom of extreme caution in the exercise of your national military power, lost the breach of the peace be widencrl. chass fueling intensified, and pablic safety more embang "red? We think, Mr. Prosident, that the situation of affairs is of such an importaut and alarming character that they justify on your part the immediate calling of an extra session of Coneress. These terrible oreturrences and disturbances bedween the employers and employés of mining and railroad companies that lave startled and shocked tha rommonity of late involve, as you well know. what is termerl the relations betwern labor and capital. Wany sre of the opinion that iny interference or action on the part of the government to atjust these relations are eontrary and inimical to the erenius and spirit of morlern civilization and republican institutious; that the funetion of the government is simply to prevert any vislent collisions in socety resulting from the autagonistic relations of these two elements performing sucle important functions iu the affairs of haman society, and that thronglout the bistory of the world so far have been eternally at sworl's points with earh other. Those who take this view of the matter seem to werlook the grat fart that legislation has always doalt with at least one of these fartors namely, eapital; and has almost entirely ignored the other-namuly, labor; which is, in our opinion, the primal catse of the prestont diflimutios. Ilad legislafion affordeal the same opportanities amb mearamtered the same righte and privilowes to labor that it las to *apital these uvil days would not have hofallom us. When raitroad kings can build palares to live in, cosi ing millions, and others die berpuththing homarode of millions to their children, and boast while living that they uever troubled themselves abumt the elcetion of representatives, lut bought them ul) after

 the erparial phblic, it seroms abont time to eronsicler wherher or not legislation camnot eonfir sona justioe and righas mpon labor as will as priviluges to 'apital. W゙: have ulwaye vonsild real that law should be tha



eoursen of the nations and regulate its internal come meree and trullo? ls there any constitutional law that prohibits the State or general government from controlning or supervising the mineral resources of the nation? Should not, also, the telegraph system lee conmected with our postal department? anit last, but uot luast, a govemmental monetary system ratablished that would supersede the present individual corporate banking institutions that are nothing more nor less than parasites on the hody politic. All of these chartered institutions exist by a system of dividenals or profits that procecd diruraty from the laboring classes. In their efforts to make those dividends the blond and marrow are extracted from lahor, until finally, maddened and desperate by the exacling tyranny of capital, remclered ignorant and bratish by poverty, it resorts to brute force amul violence to redress its wrongs. It cannot be expecterl that men acting unter the impetus of starration slould act wisely or well, or allhere to moral principle. The very individuals who are most lond in their tenumeiation of tree acts of the stikers. placed in their situation, mirht do, possibly, if thry hat the courage, far worse. We, as a rlass, view with alarm the growth and power of these pigantic eorporations. Witlding thousands of millions of dollars capital as a power they are fast demoralizing amd corrupting the exemotive, junlicial and lenislativa branches of the governments of botli State and nation; and the riglits of labor and the liberties of the enmmon people, if we continue on in this conrse, will soon be swept away (and hore let us state that a momber of your cabinet. has recommentled as: a measure of political reform in this state the restriotion of suffrage on the lasis of a moneyed qualification, thereby offering a direct insult to every workingman in this State); and when they are gone the revolution commences and the wuancipation of the white wages slaves of the Nortll will cost the liepublic more blood and treasure than ever the enaucipation of the black chattel slaves of the South did, and Gorl knows that cost enough. We look to you, Mr. President to be vigilant in respect of omr interests and welfare, for the prosperity and perpetuity of this nation rests upon the principle of justice to labor. C'lase !egrislation is the foin and evenimal downdall of any nation.

After reading these resolutions the the address the followiug speceln was made in support of the sume : Whe are here to-night to propose a remedy for strikes and hard times. Our remedy is that govermment shall become the superintendent of eftucation, property and trade, and the employer of the people on the lasis of equal rights, opportumities and doplitable compernsation. Ons motto is. "No Rich, No Poor." The mere in which we live is pregnant witly groat political and social problems which art foreing themselves upon us for ablution, and as we are more fivorably circumstanced than other mations the duty rasts with us of experimentine in the science of sorinlogy until the hallowed objerd of perfecting human govermmeut is accomplisherl. Thomgh thas far our efforts have not been crowned with the degree of sucress that was anticipated aml formidable ohstacles still remain to be wverome, let us not relas but rather redouble our efforts to stay the swelting tide of corruption amd strife ant to imaugurate.an eral of virtue amb peanc. Tha arisantic proportions of peculation ami framd developing in political rirrles and the inerens of crime and inetuality througlout the lame are morifying to he as a peoplo, ithd, as the schoming spornlatorsamblequlizel monopolists ate growing richar atul the usafal rlasses poor, a crisis will soon lu retched most fearful to contranplato, unless nu"asures are speedily devised to arrest the evil.

Wir live upon a hand thowing with the milk and bonty of haman subsistornor, yat gamt bovery
 promature duath. Vammoth somedonases are tilled
to repletion with the：productt of industry，white thousamels of pronlacors famish for wathe of lorembl． Dinse foresten mal rank arase cover millions of fartile



 shonlal lighten the himelan of the workumen innl tul． vance the jrosperity of suctety：whereas it is sworve ed from atrme and homlthy iomese and anters inte
 pexads moon a domatad for thoir lathor．＇Thoterh tho earth torms with ammatl harvests and tace lamels of labor prodace an abomdaner of evory eonveniona\％ and hasury of lifa，get，under the hanefal inflacou－ of ateforive systran at quvermmom，which fails to proterol its ritizons ita tha anjoymont of their eqnas］
 itish system of eommeree and industry，whiclt ra－ gards land，as well ats problucts，as an article of traf－ fic amb monopoly，suricty is divilad into laniboreds
 and conditions of ancioty and antagonism are（＇n－ gemdered which poison evory shlare of sooial life． Aftor a comefol invositigation of the catuses of politio． al and sorial revils we are constramed to believe ！lat they are the legitimate＂ffereta of an antiodemocratic fatura in our govermanent amb of an antagronistic system of industry and commerere＇Therofore，to ex． pert at prosperons condition of aftairs by a mere chanere of otlicers，the exposine of fratal or the che munciation of crime，while the present sysem re： mains unchancriol，is to experet results cometrary to the niture of things，for the olpurtumitios open to our publire olliaters to atequire wotalif hy an abuse of the power reposed in them und the fatholous for－ tumes often realized through legalized methods of framl prove ton grant a \｛romplation for fraid haman nature to resist．Therefore，when a reform has to be umlertaken（to be successful）it must be sup） portad by the wholo people that fecl oppressed ；and as they are largely in the majority，they have the powrer to speredily and peacefully chane the form of govermment meler whieh we live．The neressjty of a thorough change is minifest．and momerous are the plans proposed and the efforts made to mitgate the cvils complanere of ；but mitisution is not＂noursh． We helieve tha time has passed for frasmentary pro－ positions of reform to awaken any ronsidaralile de－ gree of enthnsiusm in the people ar to be of any per－ manent valut to society if aceomplishad．Though the efforts to extemel the right of suthrise the form－ ation of trade soriotios，proteraive unions，strikes for more equitable terms of time and wares，ref．， are praisewarthy manifestations of the right spirit． and have beon and still are valublole as a mo：ans of coluotion；yet do arrest the further growth of fratuel and remove the gritut evils there is need of a more comprehensive s．heme than any hithorto proposed， one that shabl conserve the hest inturests of every nsefol elass and colling，and unilo their seatlerod fores in one consolidated army of promeres．To re－ alize the necesary reform and place Ghe fature did woloments of sucicty upon is harmonizing upurard gratle，the govermment and indusiry of the eonntry shonlel be recomstructed upon the prine if les of nat． ural right，jolitial cpuality and mutual protection， and thare are two methots by whichthis mat be ac－ complished．＂Tho most speedy omo is ly poolitions ac－ tion，mud the other is hy the orgmamtion of labur on the basis of mutaral interest．We live under sexi－ ermments that may be peacefully se amended by poo－
 people，and the subordination of their legislative and excentive otlicers，making them just in principle． wise in poliey，and homest in administration．But the present eonstitutions csolmbe amajority of citi－ rens from a voice at the pollsatme set aside the car－ dinal principle of popular sovereignty ly clothing the legishators with anthority io＂nat laws．grant















 prrity ats at nation：
forat．All mombare of tha luman family areano
 monts（laml，wator，air and light）to manatain the ir





 vantages resulting from the experionare of tha patel shonlal be a ronaman inlaritance lo the livinir porn－ cration．

 no interest，therelby protertiner tar perop）le frons the


Fijith．Is all just govornmonta lerivo ilaeir pos－ wros from the eonsint of the governotl，tha right of
 ure ase．without regard 10 sex or comitions．
sirth．Tosworp away the presont multituelinoms ant vexations latws，and to introduce a more simple coble，more asasy to unterstand and olsserve ；also to protect society against usurpation ava peroulation loy publice officiaje，and lulp to（rlurate the porsple in

 sentatives．the peop le should reserve the soverejign right to ratify or rejecol the ants of their jublice ser－ vints，and toprotere the personat rientis of the incli－ vidual arrainst any whlue leceisation in respect to fredom of surcth，religious jeclicef．Wahits of dress and diet and the like．

Secenth．Solong as the tsistence of an army or nayy may be dermed mecessary，they should be re－ modrellad to correspond with the prinetiphes of equat bay and rations：and opportuntite should lee af－ fordod to rise from the ranks 10 the command，and from the forecaselfe to tha sfuarter dock

Fighth．To avoin］the will comscouremens of oflicial patronage amd party bisc，all oflicurs shomld recelvi their eommissions direet from the people，while （rlerks．mechanics and alher operativen shonld be taken from the list of conmuentat aplonams as their namess stand recorded．or bo alrawis，as the mames of jurory are alrawn，from the wheed．

 monts of the age and to grard against the ewpidits of eontractors，the framblalent primeiple of intera－s on money，the impositions of the lasting sy：tem． amd the extortions prateriecd ly railroad－．tra－com－

 all public improvemonts．such as peas roarla．rail． roads．gis works，water works．mining optratums canals，pust whluow，lelegraphs．（xpreseme the should be publice property and lue conducted ly sonve ernment，at reasomable rates for the interest of so （はいげ．

7enth．To adyance material seionce．eleselop the resources of the emontry，and profort the n－rial chassus against the avarice of＇apbitalisio or flat de－
rangements of tradte the rarions branches of useful industry should be instituted by the government unon equitable principles, as to time and compensation. and thereby furuish employment to those who might otherwice be ille and suiler the pangs of powerty, or be tempted to 'rimur 2

Elcuenth. To provide for the proper education of the people. schools, colleges and institutions of science slould be supported by the government. aud be free to all: amd to enable the preople to convene frequently to consider subjects of public interest, and review the acts and propositions of their public servants, the primary or public school houses should be open at least two evenings in each week for the use of the people.

Tinelfth. The irreatest degree of benetit to be realized from combined effort will How from the most comprehensive union of interests, upon the principle of erpality: to aftain which, govermment must nitimately ahsorb and direct every department of use extenting io the citizens equal opportomities. f'qual compensation for services performed, and ergual protection in seasons of sickness, disability and old inge. Accordingly, let us lasten the realization of a just and wise system of government, established npon the principles above stated.

Fatirly computed, thore were probably less than ten thousand jersons on the groind. Nearest the stand were the internationalists and societymen; next to them a row three or four deep of mere listeners: and on the rim an ever-moving comoregation of idlers, who only served the purpose of deluding one into the belef that it was a great throng. The crowd was generally tane and apparenlly amless. It lackerd chthusinsm. 'The speakers themselves scemed to feed the want of symputhy that is ordinarily expressed in loarty checrs, and were content with the mild hurralus of the few malcontents who surrounded the platforms. The railway men did not put in an abrpearance, or if so, in such small nmmbers that their presence was not notable, while of somieties the representation was small and without organization. In fact, julging from the comments of the more intelligent, the occasion was regarded as one which hat been created for the benetit of a few demagrogues and ward politicians, rather than for the illusiration of any broad principle. From the berginning (1) the end of the meeting there wes not the slightert "xhilition of a dangerous parpose on the part of the watlering, and incendiary remarks, whether in Eng lish or German, fall upon the eat still-horn. The orators had apparently lost leart. The stamds were thronered with noisy beys, and there was an utter want of the vim and snap that characterizes an ordinary political meetior. Pr-rhaps all this result was duc to the fact known to every person on the seomme that while not a policeman showed his uniform in the reowd, or invited the slightest antagronism, tive humdred sturty men, armed to the teeth, wore within earshot, reidy to sweep down on the instant it amy point where a disturbance michat ocenr, and meirly a thousand more wore in reserve, waiting with roady lands to preserve peale and maintain the fair mame of the metropolis. ('ertain it is. that the somcallher " dangerons class" of Nrw Sork, if thery wrer prosent, never in their history witmessed surb a mastorly preparation'to punish, innd, if newessary, ormsh them, as was then shown. The ation of the poliere force was simply supert. 'The men secmed to rise out of the ground, dum when the merting dissolved, ams the four caleium inmeners that hat been used to light the sifuate wert extinguishod, the lone lolue line that reachend across tha square, and stradily presed brofore it those: whon loitrate told the story in five minumes that rommmonism in Now York was a
 vailocl, the wildewalks of the scouare range with the arias of latekstars, wommen ind children linerl tha stope of the adjacent homers, or innoroontly rhowed their way umoner the multitule, mal faces eromerally

Wore anything but the expression of excilement or anxiety which might be expected to attach to the occasion. Of the eight or ten thonsand thus assembled, probubly not more than three thousand were activejy identitied witl the trades nnions and international societies, and many of the formor openly expressed their condemmation of the attempt of a few men to rreate further trouble and distress at this time. The bulk of the erowd was composed of peop)le who curionsly desired to see what was goine on, and twok good care to be sufficiently near tha highways to make ar carly exit in case of a demonstrution by police or military.

The intervention of the military power of the Fect. eral sovernment in behalf of the endangered railroad projerty of the country was a phase of the great ont. brak which was certain? not contemplated by the strikers in commencing their movement, When the Governor of West Virginia called upon the President for assistance, there was a feeling of gencral surprise throughout the country: and when it was larned that the force sent in answer to his call numbered but a few hundred men, it was feared by many that it was not in the power of the general government to deal witl such a movement as vigorously as it demanded, inasmuch as the army wes too small and Was scattered over so wide anextent of country. In ardition to this, the use of the Federad army in the affairs of the States under the previous administration had so shocked the best sentiment of the coun. try that many persons feared the eniployment of the army in the present instance wonld lead to results ctually deplorahle. The eonrse of the President and his advisers proved in the main entirely satisfactory to the country, and demonstrated that the constitutional use of the army is in no way dangerons to the independence or rescrved rights of any of the States; and the firmuess and moderation which marked the action of the grovernment called forth praise from all marties. The task before the President was a very chelicate one; he was to fulthll his constitutional duty of protectug the States against internal disorders which they coukl not suppress, and he was at the same time to treat the disturbance as a matter strictly within the jurisdiction of the Stutc, or in other vords he was not to take the euforcement of the laws ont of the hamls of the State authorities, but was merely to sustain them in their efforts to suppress the disordor, and to do ihis hom mast place the Federal troops under the orders of the Governor of the State into which they were sent, and must still retain the gencral direction of them. In other words, the Federal troops were to be so many policemen loand to the States to euable them to cxecute their laws. Happily for the whole country, the Presidunt was fully imbued with this view of his duty in the matter, and his course was in aceorlance witlı it.

The presence of the Enitedstates troops hat? every where the bappitest eflect. Though the detathments sent to the varions points of dangre were small, they were everywhere respected, and feared by the rioters. Their discopline amd steadiness made it certain that they would obey orders literally amd promptly, and the eharacter and experience of the otheers were a grarantee llat while they woukd deal with the disfurbane with forlmatance and moderation, they would ulso put down resistance to them promptly and with vegor if ealled nonot to att. Wharever the regulars appeared. the riotors slumk away not a hand was raisul arainst them; and their service was confimed ontirely to gramed rhaty. The foree at the dise posal of the govirnment was, as has bern satu, small and was scathrof over the whole country. It became modesary to concentrate as strong a force as possible in the Notates of West Virginia, Daryham umal Ponmaylumit, and at the carliast moment. Jenr this
 ife const ports. and the troops that hisel heen stationed in the Southern States by President Grant for

 (1) ati with cabtion, bat also with vigur and fronapt ners. This line of eomduct was striothy nelhereal to. Tha troojes behaved with admirable firimuess, payime no attoblion to the jorers athl insulte of tha rioters, and avading in every way giving provocation to the anob. Juring tha wholio disturbmace tha Nigmal Corps of the army remdered inaportant surviere in forwatrding tothe war departanent inewsof the events at therir respective: posso. The despatela's of the signal oflieers were recularly laid herore the ("ubinet, and wore always fommd free from rxagge ration nad

 mation.
 folmer, 187\%, rontabued two articles relatime to the
 csted in the purstion thant we erive the substanere of then here: The first is from tha pen of Colonel Thomas A. Sront, the Jresilent of the leonnsylvania
 of the roublew, und stating the meressations of the rail road compranjes, makis the foblowing dechactions This insure etion, which extemded thromeg fourtorn States, amb in many casis steressafally defied the lo(al anthoritios, juresonts a state of factis almost as wirious as that which prevalited at the outbreak of the ('ivil Ẅar. Culess ourownoxpriance is to differ ent. tirely from gther countrion-and it is mot rasy los.a why it should, with the ineroasing popatation of omr large citios and business centers, mat the incsitable assemblage at such points of the virious and evil-alis-bosed-the late trouhles may be hat a prelulde to offor manifestations of mol viokenee with this able ad peril. that nuw, for the lirst time in Aneriona hise fory, has an organzed mob) learmell its power to terrorize the law blsiding citizens of great rommonities. Whith our recent experionee before us, it is believed that no thoughtal man ran argue in favor of delay Wy the proper anthorities in dealine with lawlessand riotoun assomblages. Delaysimply leads to desiruction of property, :mal may lead in the asm to the destruction of life. 'Plue fore used to repress such assemblages should be as prompt in its manifestation as the ovil with whicle it deals. 'The interests concermed are ton grave to admit of alelas. The raising of the black that and the atoppatere of all vesseds on the Groal Lakes and on the Mississippl amd Ohin rivers would aot prouluce one the of the damage to the whobe eobutry that has resulted from the recent stoppage of the ereat trunk lines. The barning of the vessels and their cargoes on these waters would raise a storm of wrati which no mold would dare to face, and wonld be visiod by the [nited Stales quvernmont, under existing lawis with most exemplary pomisimust. But what distinetion can be established burwern such a orime and the hideons destruetion at l'ittsburgh of over ame thomsame cirht hundrat cars lanlen with the products of the various States, fogther with the agimes ready to move them to their destinalion, mull the station buildings and mathine shops that were ahsolitely essumtal to their proper care and mowement, and which, with other like alaings, resulted in the stop)
 tween the states not only on one highway. but on many important lines. throngh the voncerted action of the mob and its lemers? In the city of Pittsburah much haman life and many private dwellings and whur property wore sucritiond as the result if moh violenre ; indeed, it is almost a marvill that a large portion of that city was not destroyed by tre. Only the prevaling direction of the wind arorted greater and more moneral dianster.

The anthority of the I niterl States. now potent to protect commerce moviner upone the waters, shomble be extually potent when the same commerce is exposed to greater peril upon land. Thain brings us


 Jatons atl fator, waintomionally, the riotern amal the


 perndiner for a mos) cemstantly attracta dangerema


 an efteretive malitary oremotasion, whirels at the present time is the canse in porlatpus not masore that tive ont of thirty-arventiatom of the I nion, tha (iove
 ther riot. If the Níato bas nos such serantization, or if the military fores of thas state prose imathanate


 fail tor refise for rall upon the ["nitorl Situtes goverrn-
 life and property within the limits of that (ammonwealth?
 miseligef are altorded by tha aeressarily long interval which mast matpe in the grean atiate of laws lafore the Fefleral nathority an intervene in cates where its intervemtion is most imperative ln fact. as our recant expurionmes has shown, tha only romals which coukl prormer prompt proteretion and inmmanity from intarforrane wre those whose mífortuntes had made them bankrupt. and phaed them in the
 atl states cosirts. 'To the ath of theose romele the ["nited Status Marslatl romble call HIr ["nited States tronps, atnd tan rioncer dareal to resist tho poswer represuntes] by the small but almirably e]inciplin. ad detachanents puartored near the scene of ro cont tronbles. If will hardly be contended that the railway compmoies must become bankropt in orelor to make secure the uninterrupted mosernent of trasfice over theoir lines, or to entitle them to the edieniont protection of the ["nited states erosermment. If as bondholder or other eretlitor is entitlol to the proteretion of the Ferleral courts to prevent the thetenemed impaniment of the vilue of a property through leqal proceediness, hat certainly should not be left widoont remedy against lawless violence which hav artually. destroyed tove security for his investmont. abl has. as at l’ittshargh, comvertel millions of alollars intu scrap iron and ashes. The laws whicts griva the Fenleral eonarts the sumanary foross of injunction to restrain so comparatively tritling a wrong as an in. fringrment of a patent-rieht, certainly must have bern intended or sught to give the [niterl Statew aththerity to prevent a wroneriloing, whish not only desiroys a jarticular robal, but almo paralyzes the ontire commorce of the country and wastes the statomal wealth. It is demenstrable that during the recent disturbinces the erovernment of the (nited states Was itself a dirert loser, and throngh the geveramment the tax-payers of the whole foblitry to a firy large amount, by the diminution of the hational res V-mues arising form theinterruption of bu-ino - and Hec interference with many of the operations on Which the internal tixtes of the combtry are levied, as well as by the dimantion f the enstoms revemues ax all the imports durime thits proriou, instema of beiner forwarded in thoir elestinations: were neer-ararily placod in store of eobrad withont paymeut of any Guty to the ensermment for the tima beine sup. pose that this state of things had continued for sixty days. would not the [nited siates erorernment have been deprived of mearly all the riventes on which it redies (o) mext its current abligations

Certaingy it cannot have been eomemplated in the formation of our erovernment that the (nited states atuthorities should submit to see the transportation of the mails. (ewtering the enormom financial and
business trabsactions of the whole country, and the movement of smpplies required for its own varions departments, wade dependent upon the grace and favor of rioters, whose misconduct in almost any other form wonld have secured their immediate arrest and condign pmoishment. Ioring the recent riots the movement of Cnited States troups was impeded at several points, and large quantities of ammunition and other Fideral stores on their way to the Pacitio coatst were forcibly detained for days. The operations of the national government in some parts of the country were as completely blucked as in the carly days of the Civil War. Thore certainly shonld be a protection against sucle dangers, and a remerly for such wrongs. If the govermment of the Thited States is to exorcise its power of protection or of remerly, it perhaps can do so only throngh an adeguate exhihition of the military force that may be given it for such purposes loy Congress. The important guestion is to ascertain in what way the govermment can so exhibit its military force as to sereure the utmost possible efliciency in the enforcement of law and order, without jarring or distmring the seueral framework of our instatutions and onr laws. It seems to be indispensable, in the light of recent events, that whatever force is to he used by the worernment in surh emergencies should be so distributed amd controlled that it may le coucentrated uponany point or points that may be threatened within a $f e$ w hours of any outbreak. Several companies of regular troops: that were quartored at Baltimore, Philadelphia, Pittshurgh, Reading, Seranton, Lumisville, Chicago, and other places, during the recent riots, hat to be transported for such distances thatt, if they had been mompelled to mareh instead of moving liy rail, they wonld have been powerless to avert mischief. It was only by the fear or favor of the rioters that the United states were able to concentrate their forces where they did. In some cases formal resolu. tions wore passed by the strikers that no trouns should be allowed to pass over the lines. In dersey (iity a mols endeavored to prevent the departure of a İnited States battery and the troops comnected thorewith. On the Erie Ratilway, betwoen Cornell and llornellsville, a few lawlessmen, by tearing up tracks, destroying bridges. and tampering with switeles, were able seriomsly to retard the military forces of the State, which were there under the orlars of the Governor to re-establish law and order. What is necded, cherefore, would elearly seem to be that proper forces shonld be so disposed at prominent prints-large eities and nher great basiness centers, in many of which the govermment has arsenals, cus-fon-houses, mints, navy yards, and other property of its own toprotect-that their mosements can he combined rapidly and they be directedatainst points of danererso as to be able to act eflectively and witla derstion hafore violence can become triumphant.

With the experience of other coumtrios fo warn ame wide us, and espocially with the "xperionce of Enerland, where the rights of the people have for ages berne grarderemad asserterl as jealously as they niways lave frem and should bremong ourselves, we shall have only ourselvestoblame il.through apathy, demargotyism, or weakness we leave oursolves majrepared fobmert an issure which, from all the cevidences of Whe times is only too likely arsin to be forerdupon us. With the appronele of winter, and tha loss of ant-door cmployment which severe weathererven in the most prosperons times, emtails, the conntry will heve to deal not only with the deserviner among the memployed, who wan be reathed and helped through local orermizations, lut with vast numbers of idle, dangerous and, in many cases, desperate men, who
 "f their possiblapower for mischisf. Such ment, malase ronfronted by a thorongla corganization in the "ities States and wher arommunition, backed by the power of the Federal erovermoment and an momistakable pmblic opinion, will neod lut lithe urging to
renew the scenes whicll have already brought such diserace mpon the American name. It surcly may be boped that at the appreraching session of (enteresis the earnast, unprejudiced and patriotic men of both houses will disenss this grave subject independently of party lines, and with the united resolve to secure equity to all interests, and to take all necessary measures $t$ s secure protection to life and property and impurtial enforecment of the laws, including tho gharantee to every man of the right to work for sum compensation as lie may agree upon with other mem, free from interference or intimidation. The ablelawyers of the senate and IIonse will perhaps frame a law which will give to the owners of every b ighway carrying inter-State commerce, whether by lamd or water, in whirh citi\%ens of different States are interested, or carrying the United States mails or other government propurty, the right to appear by petition properly verificd before the tribumal of the LTuited States, in order to show that the movement of such traflic has been interfered with by umawful combinations, by threats or by violence, and which, upon such showing, will give those tribumals the right, wheu nereessary to call upon the United States, in the form now authorized by law to enforce their process by arresting the rioters and the suppression of all such unlawful combinations.

The magnitude of the evil to be met and dealt with can hardly be overstated. The remedy to be provided should be equally prompt and effective. It must be discussed and adopted in the interest of the whole country, and not of any partieular class; for the interests of all classes of our citizens are the same in the maintenance of domestic peace and civil order. But to no one class in the commonity is an albsolute assurance of peace so important as to the men who have no capital but their labor. When the accumnlations of labor are put in peril by lawlessness, capital may always protect itself by suspending the enterprises which give labor its value amd iusure its reward. Anarchy mot only deprives the laboring man of his present snbsistence, but puts in jeopardy all his hopes of improvement for his own future and the future of his family.

The second article reforred to is entitled "Fair Wages," anl is sigued "A Striker," and contends that the rights and value of labor, which were acknowledged here forty years ango because the country wanted lands, now turns the laboring men's earnings against them. and the country's prosperity becomes their disaster. The writer cuncludes as follows:

Let us put this matter in a plain way, as we understand it and use rommlnumbers, instead of fractions, as we lave to deal with lundreds of millions, dividing the subject into sections.

First. In the United States the amonnt of rapital invested in railway property last your was 4. $470,000,000$, male 1 pof $52.250,000,000$ capital stoek, and se,220,000,000 bonded deht. The gross earnings ware $500,000,000$, or about right and a half per reent on the edapital. The rumning expenses (of which the bulli was for labor) were * $310,000,000$, leaving \$ $\$ 85.000 .000$ as intercest to the eapitalist, or barely four per cent. on his investment. Labor is athateded inte this raterprise as a preferential creditore to be pride unt of the erross earnings hefore the
 dollar. Forr, ats capital comld not build the rouds nor cugip' them withont labor, so the 'morprise, when complete, cannot bu run without labor. (ap) ital, thorefore, takes a batck seat when it comes to the pushe, and acknowledges not only that ditbor has the largest interest in the concorn. bit takes the hirst fruits. I take the railroad as as sample ont of all (anferprises, and if we conld get at fignow, there is no donht it is a fair sample of the crowd. If, Hern, labor is the more important and cessentiad factor in ther restit, when it comes to the gutestion which of the two hall suffer in moments of genoral distressther (ab)italist in his procket or the haboror in his

 the other.
Aecome, It is manifostly ungust has. Hew workinerman should be subjectiel ta amber wages in baid times, if he hat mot the aftivalemt of aver wates in grod times. If railrond compmates in concort with the haborine chas had (established a tarifl of babor, and patid at bonas on wages al every distribution of
 protits of the romal, so that rath man beromata a shareholder in his very small way, thern he wombl have submitted to hear his shate of distres whentall were aidlede en to share tremble, hat toshare it equally and alike.
 lind, by the lawson demandand supply, their mataral
 and neither one hat my rights it chan enfore wh the
 bike the produer market - hable lo matural flurthat tions. If that were so, we shoultal mot complain. But it is mot. The labor market has ent tol he like the stork and share market-a fow larere capitalisus "omed it and make what prices they pleases. This wort of grame may ruin the gamblers in stocks and injure those who invest, but the trouhle is contined mostly to those who canalfore it. laut not so when the same practice onerates in har labor market. The capitalist must mot gamble with the l) reat of 1 he" workingman, or if her dowe, las him regated where that spectation bed france me handred youre agen, when the findomers made a corner in flome whe the people broke the ring with the axe of the gullotine

Fometh. When the railway combanies obtanad privile eres and rights over private property, and became, by foree of law, the great hadowners of the Shate, hohling its movable property as well, and comtrolling every avenue and tepariment of hasiness. public and private, they lecemme powerfat monopehico. The state endowed them with jowers to frater lws of their own, and deprived eitizns of their jronery. menns, facilities of trmanort, to vest it all in their corporations. Thus medowed, they camot pretend they are no more than ordinary commereial enterprises. They ate reegumible to the state for the result of their oneratims if they disturh fatully the order of our concerns. They are mot independent. The State has elams mon them it hats mot on private concerns. They may not ace per liabidities and then desdine responsibility-: If lewereves the state to cecide what the people are contitled to in return for all they have conceder to these companies, and to enforece such claims

Fofth. The English Parliament leginhated on the gurstion of the number of hours a workingman shond labor. It limits them to son many. It legishates for his heald and supply of light and water. In all thesematters the capiatist hat an interest. (H1" does as mueh for his horse.) But when it comes 10 the ghestion of a proper amount of food and elothing, of warmth and shelter, the gevermment dedines to interfere. It leaves the guestion of fair wages to be adjusted betweren conployer and "mphoven!"
Commenting upon these isticless. The Philudiphis Timen jurtinemly said: "Ther rhicef importance of these two artieles lies in the fact that they are writton by men whorepresent what are supposed to be the two most opposite views of the labor guestion. One is the leading raidroad man of the countrs, the head of the great corporation which had to stand the brumt of the recont outhreak of viouence. The ather, though monown to fame. is exidently a fair representative of the resthes. diseontented spirit that actuated that outbreak, and though he eantiousIf eleprecates a resort to violence he leares no dombe ais to where his sympathies were. And yet neither of these representalive men really discusses the yturs.
 indect, makes no preterice of doing so. The merely


 maturally relate to the promersation of orilor anel har

 'striker.' on the allur hamit. It An mothing tosay or to



 I'nformmately the capitalint, awtherailensill man for

 untior his cown eyin, and it in al lithe alianpuintine to


 prothe at all."



 prower tor poter is: wha lath witnconed the fuilure of the loral and ("ven of the stateranthorition, and the fatal delaysur a system that was anver denignerl for
 trusted to him somere only when the wrong arm of
 protert them. Naturally and jumitially. Mr. Aome woukd atrengthen thone defencers of law and order Which his own experione hat found mont ranworthy. He womdrely upon the Federal jowor to protert the eommerer be we en the Stateo, and wombd provide for the prompt and absedy warrise of thim jwwerin every sreat emergency: Wi- doult if the comery will follow him in this or be willing tor relivere the local anthoritios from the reapomibility for the protection of property and the permeration of order within their juristiction.
There is one thing, bowever. in Mr. seol1": paper which all clatses will readidy recounize and that is the entire contidence which fie diejhays in the homor and intelligence of American workiagmen and his practical belief in the community of interest betweren embloyers amd emploged. A railrond president represents both the owners and operatons of the road, and it concerns the one clats quite as math ato the other that the businese of the rome shatl be afely (airrict on. It is probable that he would not cesion diseent from the "striker's" propos"tion, that when it comes to a darstion of which shall sulfer in monments of armeral distress 1 he damamdo of labor come tirat, since this his been practically ateknowledeal he cerybody, and combthes rapitatime have dome. withon their carnings whin the last year that haboreps might hase beand. So, too, with the anly practigal suggestion whidn the Vioreh - 1 meriencis "striker" has to make. that woakingmen, if they are for be subject to under wages in bald :ime. should have the equivalent of over wages in good thmes. sinere that is also generatly acknowledged and in a limited sence has beengencrally acted on. If any sy-temion dividing a proportion of the protit amonir employs would secure contuntand and universal happines. there is little doubt that employers would ghaty adont it and would tind it protitable: : only surha nyivem is mush more ea-ily surgeceat than fally elaboratod and carried into eftect. Thae first thing that we
 ly, and in a spirit of motual Irust, and it is a goom sign that the mosis comservative and aminomety re--potable periodical in the country has umbertaken to direet the discur-ion into a protitable chamnel. it may be only an acedene that the representative "mmoyer approaches the sulyent in a mure cathonice -pirit than the representative striker, hat it lows at lewst that the leuting men of the coumry are willing to meret the i-wen of the day and anxious to shle them for the gend of all aliki:"

While the tronkles we have detailed were in progress in the siate of New York, many other States and localities thromghont the United States were alrealy or rapidy becoming involved in disturbances in many cases more violent and deplorable. Alomat the middle of July, 187\%, the biltimore of Ohin Railroad Company made a reduction of ten per cent. in the pay of its employés. The pay of all the employed, of whatever grade, was equally diminished, no invidious distiuctions being made. All aecepted the chang quietly except the firmen and the men who rum the freight trains. The first-class firemun on thin road hat been receiving 81.75 por dat; the reduction bronght their waiges to $\$ 1.58$. The firemen of the secomel class were reduced from 51.50 to 51.35 per day. These men refused to accept the reluction. and stopmet work. As soon as this became known. numerons applications were made to the company, by men out of work, for amployment in the places if the men who had "struck." The eompany, having the large momploved class along its line to choose from, hat no difticulty in filling the places of the strikers, generally with experienced tiremen who were eagerly seeking employment. Here the matter might have rested had the soher goorl sense of the strikers cone to their aid. They had refused to work for the wages offered by the Baltimore © Ohio Company, and had abandoned their post. In so doing thes had exereised an modisputed right. llaving left the service of the company, they should have recognised the tact that they had no longer any inferest in its action, and shonld have souglit employment elsewhere. Unfortmately for themselves and for the whole country they chose a different lime of combuct, and me which changed thesympathy which the country had felt for them in their privations to the sternest condemnation of their lawlessuess. The leaters of the sirikers now resolverl to eomped the railroad company to recall the ortar for the retuetion of wages. They helieved that they eonh accomblish this by taking foreible possession of the road at certain poiuts, and preventing the passage of all freight trains until the company shohld be driven, by the loss of its business, into an arceptance of their demand for a retura to the old wages. They adidnot seem to be aware that by seizing the property of their late employers, and stopping the business of the road, they were assuming the character of criminals and committing oflonses against the laws of the land of so grave a bature that the anthorities would be compelled to crusli them by force.

On the morning of the $16 t h$ of July, aboint forty firemen and brakemen of freight trains on the Balbimore \& Ohio Railroad,in Jaltimore, refused to acsept the reduction in their wages, which was to go into effect that day. and stopped work. The strikers dsembled at Camelen dumetion, about three miles from Baltimore, and stopped a freight train, persualing the fireman to leave his engine, and refusing to allow another to take his place. It the re-- puest of the railroal oflicials, the city authorities sent a pooliee foree to the spot and dispersed the strikers. The trains were then ran durines the dity withont further delay. Thin, however, was hat the leegiming of the tronble. Thio news spreal rapilly ablonge the road, and the disaffection soon ratached
 ryland. and Koyser, (irafion, and Whoelingr, in West Vircinia, the most important points un the line of
 terminus. At Martinsburg the lbaltimore of ohio ("omplany bave large slops, und thore is alwats a large conecontration of the rolling stork and comployére of the roat there. As som ats ther news was recervel from lationore the litemen and the brake mern stopped work and tonk part in the strike. I'bey numbered abont one bandred men. They ass mabl.



ed by the strikurs io mow eithar way, and all arriving at Martinsburg were compellet to halt; the rngines were meompled and run on to the side tracks, and the firemen and train hands joinet the strikers. The railrod officials, finding themselves powerless, applied to the Mayor and city authorities for protection. The strikers were ordered by the Mayor to disperse and cease their malawful interference with the property of the railroad company,but refused to obey the command, which the otheials were unable to enforce.

The Govemor of West Virsinia called for assistance. ath the Jresiclent rirected the Secretary of War to send a sufticient force at once to Martinsburg. It the sane time lie issued the following proclamation to the rioters: Iltereas, It is provided in the Constitution of the United States that the Uniterd States shall protect every State in this Cnion on alpplication of the Eegislature, or of the Executive when the Le rislature cannot he convened, against domestic violence; and Hherefs. The Govermor of the State of West Virginia has represented tlat domes. the violence exists in sairl State at Martinsburg, and at varions other points along the line of the Baltimore \& Ohio Railroad, in said State, which the anthorities of said state are unable to suppress; and, Wherear, By linws in pursuance of the above it is provided (in the laws of the United States) that in all cases of insurrection in amy State, or of obstruction to the laws thereof, it shall be lawful for the Presidrat of the United states, on aipplication of the Legislature of such State, or of the Executive when the lecrislature cannot be convened. to call forth the militia of any other State or States m to employ such part of the land and naval forec as may be necessary for the purpose of suppressing such insurrection or cansing the laws to he duly executed; and, itherear. The Legrislature of said State is not now in session and cannot be convened in time to meet the present emergeney: and the Executive of said State, under section 4 of Article $\mathbf{N V}^{\circ}$. of the Constitution of the Tnited States and the laws passed in purstaner thereof, has matle application to me in the premises for sucll part of the military force of the Cuited States as may be neeessary and ademate io proteet said State and the citizens theroof against domestic violence, and to enforce the rlue execution of the laws; and. Whereas. It is required that whenever it may be necessary in the judgment of the President in use the military force for the purpose aforesalid, le shall forthwith, by prochamation, enmmand such insurgents to disperse and retire peacenbly to their respective lomes within a limited time: Now, therefore. I, Rutherford B. Hayes, Presilent of the United States, do hereby make proclamation and command all persons engaged in said unlawful and insurrectionary procedings to disperse and retire peaceably to their respeetive abodes on oi before twelve o'elock noon on the 19th day of luly instant, and hereafter abandon sajd combinations and submit themselves to the laws and constituted anthorithes of said State, and I invoke the aid and co-speration of all goot ritizans thereof to bphohd the laws and preserve the public petce. In witness wherof. I have hereunto set my land and cansed the seal of the United States to be aflixed.

Disalferotion continucel on sprad aloner the road. The passenger and mail trains had not bian interfer pd with thus far. lut the strikers at C'mulserland, Keyser, fraftom, and other points, were form in their detromination that an fremegt trains should be run. It Keysur, on the night of the 13th.a moding of workme'n was hela, at which the following resolutions werr adopted: Rexulerl, 'lhast wi, the men of the Third Divison, will abide by the derision of oner brothar dijvisions in regard to wages in the future, and that we will stay by thom in the present tronble matil sued decision is arrived at, as we have beron oppressed? loy sur superior oflicers bryomed embitrance. Cexented, 'That we, the men of the Thim! Hi-

Vision, lase soberly and ralmly ronsindervel the stald we have takern, and dochare that at the fromat state of waters which the company have imponsed aperal us, we commot live aul jrovile our wives am! chalderen with the meressariog of life, athl that wo only ask for
 rios. Resolred. That we mbobld ther other alivisions in thr step) thay have taken in regatil to the prearot tromble.
 as at the other pointson the lime, the oriminal strikurs
 utable persobss, who were stitardod by the hosue of
 and yotrds und set the eoty abthorities at dethanco. A. The trains sent ont from Dartinsburer righehed ('unaberland, they ware somperd ly the rioners, and the ernginerers athd tirmonen wore forcent (o) abathdent therir pests. 'Jhus the blockadn, whiols had lroon hroken at Hartinshurg ly the l"elaral tromas, was establisha ed with eatal rigor at ('mbler hame. It Whareling tho westurn terminne of tho main line of the lintinorre doho Railroad, the excitement was vory grent. The mon emploved there stomed work, and juitud in the strike, hat attempted nos violenew. The company atterapted to fill the phaces of the strikers with a party of men [rom Sitentornville, (hio, but the new conmers worm warned off lyy the strikers, who thereat "netl them with assasnination if they went to work. "Jher state of altairs along the line of the lantimore od Ohio Ratrond batd now horembe ao throttening that the force of regralars was largely athymented. "lhe froubles continual to inerease, and bronght on the Baltimore riots.

One of the Baldtinore papers, rommenting upon the character of the mol) in that eity, satid: "The mumber of railroul employés rngaged in the rioting hore has from the first not exceeded I50: Jot at the ondset of the alfair they were joined by thousands of laborers and merhanies ont of employment, and by the contire criminal mases of the city, viger for an seen. sion $t^{\circ}$ ) plander. A large number of man besides these, in various ocembations, who have suffered a redaction of wares of late, are in a sullen temper with their employers and with (itpitalists ernerally. Thuy iungine that they have been wronged, and weleome what they think is an attempt of the railrond men to right a similar wrong. Some have artively aided the rioters, and nearly atll have fermented the moveanent by reckless and inthmmatory talk. The commanistic character of the riots is shown by every incident. The mob) which aswaileal the fill Veorimant, Fridab night, wis not eomposed of ralionad mon, but was a miscellancous assemblage of laborers. 'The erowd Hat stomed the ['nitod states troone to-day probably lad not a single striker in its midst. So of the grangs gathered upty thr police in thr mamerous eombite uround C'anden station last night. Siome were thieves and rowdies, and others were workingonem. usually well-behaved. but now crazed by the excitement of dhe ontbreak. It is an mable fact that most of the men who yelled " bratal " in the. crowd that surwed acainst the lines of tha molice and tho soldiers last night had evidently money rnongh to buy whiskey, for they were haldedrunk, Soma of the strikers siffirm that they and their friends wese takine no part in the daw less acts, and that the movement has passed altorether out of their hands. "lowe prejudice against the Batimore Ot Oho railrond anong the working flasses, and to some extent among jeople in the higher walks of life. furnished at the beginning a strong fund of sympathy to sustain the strike. It was arrently believerl that the pelico of the eompas. ny has been to starve its men in order to heefl up it ten per cent. dividemd. There is no doubt that this mejudice was the real basis of the ombreak. Ibes. perate men took monatage of it to defy the law. refrine upon popular support."

The tronbles were not to be antinad to the सates of Milyland and West Virginit. Athont this tine
thr (iowarior of Jonnuylvaniar ranural tha fullowing Welocrran to bo forwarilond frona Harriblargr to tho: 1'resulent of the I nitoe] Stale-4









 dommestie: violeur-.
 and fsumd the followiner mordanation
 [Jited Stales that the ['nited Sitates slalll proteret corory state in thin ['nion on application of the loogeralature, or uf the lixurotive when the lagi-lature can-




 rapiaire that in all rases of insurferefion in any State or of obstraction to the lats thereof, whemevir in the

 obstruction to tha laws ho shatl forthwith ly jurorela-
 tire peareably iot hair respertive alondes withina lime
 President of thre ["nited sitates, do lorrebo admonish all grood citizens of the [̌nted states and all peracons within the territory and jurisdiction of the [nited Statos againstadiner, conatonano ing atoctinge or tatsing part in such unlaw ful prowerlmgs, and I for horeby warn all persons congaged inor connecefot] withtla* adid domestice volonere and olstrurtion of the laws to disperse amb retire peaceably to their respertive abures on or before twelve ofremek nom on the :24b daty of July instant. In testimony whereof. I have loreunto adt my hatnd and catmal the soin] of the ['nited States io lue alfixed.

It the same time l'resident Wayes orderenl fencoral Mancock to procered to Philadelphia with such trosps as conld boe spared from baltimore, and orders wero despatched to the Fiakiern posts to reinforce (ieneral Hazoock at Phibadelphia with cevery abailabor man. On the same day orders were insued by the (iovernor of P(omstlvania placing the entire militia fore of the state under arms. Jathe meantine the strike surest rapid!y along the line of the I'ennsybania latalrond. from J'ittsburgla eastward. It eleven oreduck on Saturday, duly ㄹat, the Irain men of the I'ennsylunia IRalroad at Jltoona struck, and taking pósorso suon of the road and shoges at that juint, rifu-ad io allow the pasager of freight trains. They were joinad by a large mmoner of tramps and fonfor- from the city: and towards nirhtfall numbered several thousamblmen. Jo disturhance wasatfompted ons:aturday. On Aumdiy the sidd, the newn from litioburgh was received and corated groat excitcoment. The rioters decelared that no more troops should parn dltoma on thoir way to l'ittshurgh: and whon it was announced, early onsumbay morning. that st thelachmont of 250 mon mader (ronerols Theaver and J.vle. were nearing the rity, the strikure grefleared to =fop them

The tran hearing the tromps entered Nitoonan-lowlyand cautionsaly. Is it reached the depot the enGrime was takend off, in order that a heariar charine mipht be cenacceted with the rain for the purpurae of taking it over the monntain wost of Altonona. The monntain engine was backadrat of the ronnd house but as it appeared. the rioters, who heid surrounded the depot to the number of at least 3.000 men, and who wert terribly excitod, took pmanession of the


Betver then ordered his men to march down and bring the engine out igatin. but man reatelang the round house they were survonded hy the mob, and finally surrendered the ir arms. Practically, then, fienpral Beaver was left withont any commant, exeept the men under General hyle and Colonel Snowden. abont 160 all told. and ali Philadelphitns. Tlase troops remained at the depot in a broilines sm for an home and a half, and were then ordered flown the track to break into the romad house in order to get the motive power to take the train over the moint. ains. The mob had increased be this time to fully 5,000 excited and violent men. This rommel homse is sithated on the side of a cutand betweentwobiders which cross the road. The troops passerl under the western bridge, eastward from the romed homes, the hillside on the right being dense with rioters, the homses on the left being oceupietl ly striktrs, and a mob filling the two bridges. The nen were armed, some with the muskets surrendered ly the Clearfied militia. About twenty of the strikers were gnarding the gate of the round house, and when the troops had been marched up prepared to force the gate, the mobs showered upon them every vile epithet, threat, and insult that coold be invented, and gatye them every reason to apprehend that any attempt to open the gite loy them would be the signal for an instantincous and terrible assanlt.

The rioters crowded up against the troops, standing shoulder to shonleler with them, shaking their fists in the faces of the men, aud throwing stomes, some of which wounded a number of the iVeccacos Legion. 'lherioters-those who were armen] -stond with vindietive looks, their right hands resting upom their hips or thrust in their briasts, as if prepared to shoot at the slightest provocation. Having received information that the piston-roll of the lowomotive latd bern removed, and the tires drawn from the furnace, it was concluded not to essaty the edfort of taking ont an engine: that was useless, ant toincur a foolish sacritice of life. The troops would have bern at a grest disalvantage, and had a coontlict taken place, would have lien severely hamelled. They withdrew from the vicinity of the ronnd honse when the condition of the locomotive was ascertaincel.

1 body of strikers then oflered the trocops a spe"ian train to the cast, if they wonld promise to leave. This was declined, howrer. Colonel Snowden finding, upon inquiry, that it was impossible to go west on account of obstructions to the road and inability to secure an rnorive, determine al mon a feint, by groing east, as if to Philadelphia, and opon reaching llmatingdun to go south and endenvor to make Pittslmarel from that direction. or await the arrival of reinforrements. [jou nearing I Iuntingelon, Colonel snowden recemed a dispeatch statime that the rioters hat assembled there in force, and that the train on the road to Bedford had been overturned and the roud romplately blockuterl.
('olonel Snowden then telegretphed to the superintendent of the latrisbures tivision whother the troop condel get to that eity, and the reply eamethat transportation could not be farnisherd to that point on acrount of the condition of the mobs assembled in the depot, and feotarmined not to allow the trons to return. This mob, he wis assured, mombered is, (Mo tromg, rod was vowing revenere against the troops, beranse, as was reported, they believed them all permatarily interested in the Pennsylvania lailromal. In order to aboid any destrudion to railroatel property, which the subserintendent thonerht would surely consur if the troopse came to the city, derefused lo sive them tramsurtation. The command then tra-
 twenty-thoe miles wost of the state capstat, and wateal thare for thw 7.30 areommondation 1 rain ( Mon dat mormory to procoad to lanckille. Onthetrain
 who hat rethrned from Nltumat the (icomeal rematn-
ing at that place, whore he wats ormered to await further orders. It woul, have beron jerfect folly for the troops to remain at that place a moment later than they did, owing to the inflamed condition of the strikers. It was upon a cilm reviaw of the situation that Colonel Snownen took the responsibility of coming eastward, after all his ritorts to get (t) littshurgh hat failed.

At bailey's Station the men had no breakfast, and ware in poor condition when they got to Rockvilke. lleve the Philadelphia trongs sejarated from the other soldiers on the train, aml marchiner flown the track, ajpareatly making for the laurisburg depot, but after tramping for is mile or so, they took tha ruad to Englestown. It whs neccosary to keep the burpose of this movement a secrot, even from the other soldiers who had determined io go direct to town. Some of the rioters soon leamed that these troopss hatd left the tratck, and it was surmised they hat taken the Northern (emtral road, and were going ly the city in that direction, and endenvored to intercept them.

The other troops took the track, amal were cap. tired, as we slatl sec larther on. In the meantime, how'ver, Colonel Snowlen, with all his men, and all their accontroments and clothing, even to their haivy overcoats, took the Englistown rostd, and made a long circuit of about twelve miles to Proerress, a villige about two miles nertheast of Harrisburg. and thence in a direct line marched to the State arsmal, thas completely decerving the rioters, who hal formad their plans with great care to capture the troops. who executed their movement without the loss of a single article lelonging to the command, and reached the arsmal about five o'clock on Monday afternoon. Froma this time until the arrival of the Governor and the State forres, on their way to Pittsburgh, the situation at Altoona remained unchanged. The rioters held possession of the road, allowing no freight trains to pass. but making no affort to interfere with the passenger trains. The strikers at llarrisburg began their operations on the morning of Sumday. July abl. About ten o'clock several railroaders, encouraged ly a large number of persons. Went to the lacomotives of several freight trains,and demanded that the cogineers and firemen shomld leave their engines. The fimand was readily compliod with, and as the railroat men descended from their engines thay were grested with lourd cheers from their friends. There hat beea indications on Saturday night of a strike along the midalle division, but the railroad anthorities were unwilling to helieve that tromble would take place. The interference with a freight train aud the houting and stonimg ont of soldiers who passed through forlittsburest from lhilatelphia were attributed to irresponsible outsiders ly them, bat all theirhopes were dispelled on Sumbay morning at tem orelock, when. at the command of several ipparent strangers, the enginecrs and firenom of several freight trains destonded from their locomotives after having housed them. All the freight trans were dosected. The round houses in the upper portion of the eity eontainel] about forty locomotives. and over twelve handreal cars were standing on lite sitiners in the same virinity. The strike was general on the middle divi-
 fucted by it. Of thase four on tive lmondred were employed in Jharishurg, most of them in the l'mensyania round loonses. I rround rolleceled at the i'ansylvania depot early on Sumlay morning, amel ly two ordock in the afternoon it had swollen to severan thousands. Many of them eongregated ont of idle ruriosity dut a robsiderable namber were attructed ly a dhetrmination tointerfore with the bassate Ihroigh the eity of soveral lamelred Jhiladedphia soldiers dostined for l'itstmors. II was also lelieved That among the military woudd besererat companies
 were manke 'l'le anmmoniton for the experted
 arsonal, but it wat downed prodrot, omsiderime the
 mand the order, and the atmanation was retarnel to the arsamal. Had any of the military arriven, it is highly probiable they woblel have enemanteral romsiderable dilliculty in passing throughthe rity, the ringlenders in the strikn having expreswid inderminafion to throw all pessibhe obstaches in their way.
 of them railroaders, was addressed on at emomon, a frew homdrad yards above the dopot, by a man mancel 'Torlect, who justitied the strikers in their coours. and predicted therir trimughant warmess. Ho. वmon-
 He intimateel that if atheicket loy trompe they ham a
 brethen had fleme in the atimy al Jittomagh. 'lore bett spoke from the top of a liox-car, and when he refermed to the militury lue was londly whered. .If
 About eight bolock the day ixprese rabl. detaimed mary five lonurs he the car tire at l'ittshargh, arrived.

Tho (rowat gathered alount the train, and woreral
 railroad whiciat ordered the angine to he taken to the round house. 'The passengers were eompertid to liencerat harisburg. Onthe train were abome a do\%ensolilitrs, what had grown tired of the surviou which they hand rembered at Altoona. Quite a mumber of them wore sick: and one of thom, named Ballenger.a perfumer, of Philadedphat, whe hat heon instruck. was taken to the larrishurg hopital for treatment.

The princtipat arsenat of the state of P 'anmstraniat containing a bary supply of arms and ammonition of all kinds, is located at Harrishores. The ammanition fur the troops called into serviee lay the: (ionremor was beiner prepated there. In view of the threatening condition of alfars, it was teremed heet to station : Enarid of dity tropses at the arsenal. This was done ons sunday, abd the force was inereased during the mext day or twe as rapilly as possible. By direction of the state anthoritica acen eamon, meopving a position in the Capitol gromals, were spikicd. on Sunday aftumon, is a precatuionary mensure
buring the daty the Mayor of llarristurg issued at prochanation, calling upon the people to desist from gathering in crowds on the streete, and to remain guine untilan amicable soptement of the trouble rouhl be had : and requested the satemberepers to dese the ir houses during the excilement. The proclamation was whereded. and the Mayor attempted to adderess the moblater in the day. at lhe dopett, he was rudely hastad aside. During Romday and Monday he rioters hat verything the ir own way at harrisburg. The police force of that dity numbered twenty men, and was tooxmatl to ofler the slightest resistance to the mob. No violenere was dene bex the strikers to property, beetan- no resintance was affered to the will of the mols. The railroad otlicials promptly withdrew the ir trains where opposition to their roming was displayed ly the mol. amd no ctiort was mate to risk the iompany's property. Tho workmen in soveral of the large indutrial establishments in the city stopled work and joined the strikers. When were also reinforcent largely he the roughs and disreputable dasises of the town. During the night on ittemp was made to throw a train from the track as it was coming into larrishurg by the Reading Railroad. with several romb panies of state tromps, hat the eftort very formately fatiled.
On the $22 d$, the tran mon at Colmbin, 103 miles west of Philadelphia, and an importam point on the matern division of the Pemeylvania road, joined the strike. All engimes were housed, amd no freight trains: were permitad to move either way. During the day











 (ohumbia, they wendal fire the railonad buildimen and







 "ity of tlu" (nion, wita rewnert to prymation, and

 workingmen tind (rmplon mont in the varioun imlum arial wiahlichmonts. Dike all harge cotion I'hiladel-
 who would la examingly troublacome to manage in case of a riot of any elecereco of imbertance. It was crotain that the strike on the D'anm-vamia Railonal Would extem to Philadelphiat amd liy no morans nurs that the empleyte of the nether remils anterine the
 vania men. It was therefore of the hichact importance that mensures -bouk ho taken at onow to provomt the strike fromasmming the charater of a rion. Sthas been related. tha President of the Pron-y-
 ties fur protection for the companys property in the city of Maladelphia ant the Mayor re"ponded to this recgues by detailing a fore of 150 poliement, for daty in the vicinity of the depot mat yards of the I'consylyania Company at W"ot Philadolphat. Tho (aty military companies were mat to l'ittelnargh on Friday, the enth, ind from that time the duty uf prome terting all the vast interests at onake in Ihiladelphia dewhed upon the Hayor amd prolice forere.
lhiladelphia was prifonmtly exoted ley the or-w. from Pitsharg on tha sedt. ['ntil a late brour of tha* night, the stred. ware thronged with per-un- taiger to learn the news from the seme of tromble. For the tirst time simer the chose of the rivil war, tha afternow papers isisurd sunclay alitions, which were quickly lought up, and reat witl the mout painful interest. It was maderatocel that the train men at the Wies Platadelphia garels would join in the* -trike, and there was a very ceneral fear on the part of the vitizens that the strikers wombl be thrown asinde. as they had been at Pittuburgh. by the mob, and that Philadelphata might be the ereme of a lerrible outbrealk. Such, inderd, wombl have been the cate hat for the almarable eombluet of the Wayor and him - tal)ordinates, ant the gallantry of the piolier fore e

Upon the receipt of the news of the fightimg and conflagration at Pittsburgh, the Mavor. Who hat
 phis thepot, issuad the followins premelamation to the prople of Jhiladephiar

Ithe recus, V"iokemer, thmalt, and rion win in varions portions of thin Commonusalath, the the ata injury of domestir induatry and trade, and tio the di-credit of the fair mame and fame of American institutions and her form of enw rmment, the perfertion of which we last sear cedehrated in this the city of the Republices birtin: and. W\% ren.. It is if thie highest importance that the sreat name which Philadelphia has made for herself amone the nations of the earth during the Centemial year hall be presorved, and that she shall lee spared the horrible -rapes enacted in our sister cities: Xus, fherefore

I, William S. Sokley, in the mame of the Commonwealth of Penssymania, and by virtue of the authority vested in me by law, do appeal to all citizens. of every occupation aud calling, to render it moeces. sary that, in the performance of my duty. I should be called upon to suppress outbreak and violence, which I assuredly will do if the ofcasion remuires it, and land over the offeuders to condign punishment. And I make this appeal in the firm belief that the eitizens of Philadelphia appreciate, as I do, the importance of maintaining peace and good-will among all classis of society, and I hereby pledge myself to give a patient hearing, and to do impartial justice. als I best know how, to all persons who desire it. Let all the people resume and continue their lawful occupations, and avoid assembliug and organizing logether for discussion or otherwise at the present time. This is the surest and best means of presersing the honor and fair name of the (ity" of Brotherly Love.
The Pennsyl vania Railroad was not the only sufferer from the strike in Ponnsylyauia. The roads extending through the coal regions soon became inwolved in it. The first onthreak in this section of the State occurred on the night of the 202 of July. The militia had begun to assemble in obedience to the orders of the Governor, and some companies had started for Harrisburg, at which place they were ordered to report. To prevent them from reaching their destination a party of rioters, on the night of the Ded, set fire to the Lebanon Valley Railroatd bridge nyer the Schuylkill at Realing. The bridge was entirely consumed and the dircet communication between Reading and Harrishurg broken. The lose to the Reading Railroad Company by the desiruction of this bridge was $\$ 150.000$. On the $23 d$ there wan great excitemeat at Reading, and during the day the city was in a state of riot and disorder. The railroad men formed but a part of the disorderly throngs; the greater part of these erowits consisted of loafers, disreputable characters, and tramps.

The General Manager of the Reating Railroad appealed to the Sheriff to call out his posse to protect the railroad and the company's property. This the Sheriff dectined to do. Little or nothing was done by the city anthoritice to check the disorder, and duriug the day the rioters had their own way. Abont nightfall a detachment of the 4th Regiment from Allentown arrived at Reading. The tracks being 10 rn up, the soldiess were obliged to leave the ears and mareh to the depot. The main line of the Philatelphia \& Reading roud passes through Reading on seventh street. Pem Street is the main highway rumning in an opposite direction from, and crossing Seventh Street at right angles. From Penu Street northward, for two squares, two lines of track are laid leading fo the new depot. These are laid through a deep cut with a havy stome wall 1 wenty feet higl on each side. From the moment of leaving the cars, the (roon)s hat been threatened by a furious mob. The oflicer in command, in view of the threatening denonstrations of the mod, decided that it would be better to mareh to the depot hirmugh the deep cut, the steep sides of whicla would afford hetter protertion to his flanks than could be hat in the open strect. He therefore directed his mareh towards the rut. but the soldiers had scorenty entered it before they wore greetarl with at arribli volley of stomes from the sides of the crut. Where the gratest crewald had assemblad.
liatel shots were alst fired at the troups. ITpen reaching Pemustrod the regment was athacked by another moll and lost pationere. (One of the merin, without orders, lischargedhispicere, and immatialdIf the regiment tired a vollevinto the moth. By this discharge ton proms were killed and forty womed. ed. Many of these were imocont hystambers, as is Erenerally the "ase. The moh Neallered and thed in berror, and the troops marched into the depar, in which they took up their puarters. (buards wore
statioued about the building, and citizens were not permitted to cuter it. The firing upues the mob by the 4 th leeginent produced the greatest excitement in Reading: and the death and injury of so large a number of inuecent persons intemsified this feeling. The tronse were severely denounced by the eitizens, many of whom joined the mob, and were loud in their threats of veng"ance, committing in their noreasoning anger the mistake for which the people of Pittsburgh paid so terribly. Still, as it was neeessary to take prompt measures to check the mob, the city authorities, who were joined by a detachment of armed citizens and a number of the Reating Railroat Cond and Iron Police, rommeneed on the $24 t h_{1}$ to assert the authority of the law, and to put down the outhreak. During the afternoon the police officials wore informed where the strikers had stored a portion of their ammanition, and the Chief of Police with a small detail of othecrs, proceeded to an unfrequented hassment in a guiet part of the cily, forced an entrance, and succeeded in capturing two large buxes of old-fashioned muskets that the strikers had procured from the relics of an old military company. The roung man who had informed the police of the whereabouts of the maskets narrowly escaped death at the hands of an infuriated mob. The strikers admitted that they had phenty of arms, and the olthcials were ready to helieve the boast. It was decidell by the anthorities, in consideration of the threats of the mol, against the troops who had taken part in the firing of the previons night, to send them away from Reading, as the best means of avoiding further trouble. It was hoped that their plates could be filted by severad companies of the 16th Thegiment from Comshohocken and Norristown, Which reached Reading about ten c'elock on Tucsday morning. These troops left the cars about five miles below Reading, and marched into the city, taking up their unarters at the depot where they joined the $4{ }^{4} 1$ Regiment.
These new soldiers, having heard of the killing of the ten eitizens, conferred with the representatives of the strikers. and it was not long thefore many of the Conshohoclien military frecly expressed themselyes as being ready and willing to throw down their arms or give them to the rioters. One soldier remarked, - We are workingmen and we don't fight against workingmen. We want bread at home, but we don't want to rob our fellow-workingmen for it. No, sir ; we cane up here to protect property, but not to murder the poor men of Reading." Shortly after this many of these soldiers, arm-in-arm with the railroaders, were roing about the back streets in a jolly state of intoxication. As.they staggered along they made many threats of violence, and the ritizens became intensely alamed at the sitmation. People coming in from the eonntry reported several of the roads lined with the soldiers, without their grons, walking home in the absence of suitable railroad transportation. In other worls, they were deserting. At these things helped to fan the flame of prejudice and excitement against the military that first arrived and then tirall into the crowd. By half-past three orlock in the afternom the rinters hat won over so many of the ('onsl:ohoeken frooj)s, and these were so ogren in their expressions of hostility to the 4 ha liegiment and of sympathy with the mis, that limere was dunger of a contliet betwern the two divisions of troops. To avert this danger, the aththorities determinel to and both divisions out of the city at once. Acoordingly, at four ordock, ther vacated the fir gartore at the depot, and mashed out of lawaling by diferent routes to their homes. Racting was now emtirely depmenent unin the efforts of the local anthorities. Nonat nightall a form of about 300 regular tronps, with four pients of artillary, whon had been disemlarked an the outskits of the city, marelsed into Rading. Four companias proceceded to the depot, where they were quartered, abda bathery of artillery oceupical is commantiner cminemere on the southern
section of the city and wont into camp. The mowl looked on in silenee, ant daring to blter a word of insmit. On the exth, the anthorities forling strobs enomert, warmined to begin the work of remaring the railromb tracks fund arresting the datares of the rios. The police oflicials wore atir at arly dawn, und a platom of thirly men, chell of themarniol with a Suracer rithe, accompanied thern. Thisdetachonerat formed a guard for at honst a thomand mon what were carly at work in repatiring the tratke forn mp by the moh. This was sumesisfally areomplishard, and by ten welock all through trains from tidewation to the coml fielde were raming withond molestation

 ing conceract in acta of incondiarisu, intimitation, and rion. Aresita were stemdily befing mate, and at fast an the ofltakle brompht thoir brisoners in, ther were rither tuken to juil at onee or admineal to hail. But one of the acerased was able to Gornith mematity It was generally erncerled that sume ond woll-infome ed as to the plans and persomality of the rimers had given the information upon which thene arrests were mate, Tha prisoners were palde, nervons and (rembline when hrought to the station. They were: arrestal in various subous and on street corners. nom in other hationts of diseremathbe peeple. They were pated ina clocely moverod van and hurried off to jail in defa:lt of hail, followed by at large (row: These arreste were malde very quistly, for the jurpore of mantaining petace and order, and preverting axitement.

For some ditys Roming was: monasy and exaterl, and arrests continued to be mate hy the poliede: hat mo further outheak weursed, and the eity gradmat Iy setted down into its acrenstomed quict. "On the Fith of August, the ('oroner's jury, whield had leen summoned a diag or two after the eontliet with the mob to consider the eanse of the death of the kil feel on that oeeasion, rembered the follnwing verdiet, in which sulstantial justiere is done to the trouss

Foras. The said persons rame to their doath by a tiring of the military upon the rioters.

Seroud. That the soldiars composing a portion of the 4 th Reginsent, lia. N. G.. numbering thous two homdred men, while marching throngh the rail road ent alones fievent strect, were continually as sailed with tones and brickbats from the time they entered the cent at Walmut strect bridge matil they approteled bemistred. a distanee of two somares, the assant beorming sevorer the further they mowed, and being accompanicel with pistol shots after they had reached thashington strent hridere: that eluring satid march many of the soldiers were b:ally womid ad by the missiles, sume of them beine finocked down two or throntimes. Notwidstandingan order from the commanding oflieer not to fire a single shot from one of the military was at signal for others to tire, which soon became isenoral. It would ho ex perting tor muth of homan mature, esperially on the
 tire under the fearful peril in which they were plate ed, and when onese the firiner commenced, the wel leys of ston' and yistol shots comtiming, and being repectally directed against their ranks, the inguent "Hmot censare them for the mamer in which they acted.

Thime. That the military wore here as the rearesumtatives of public orter, under divections of MajorGeneral Boltom, who was doubtersantine under tha Stata eivil authority, said orders havine heen daly communicated to General Reeder, commanding thi tha Rewingent, who was instrueted to report io the Sheritt, Mayor or railroad othedials. Having hem met before reaching Reading by several otlicers of the ralroad combany, who informed him that the railroad teper was in pessession of the moth. be left the cars, with command, at a shore distance above the depor, and marehed down the railroad 10 the akepoot. Upon reaching the depot and finding it in pres
 meither the- Sheritf mer the Mayor (ther hatter , othcial


 handu of the moh, and whild complsine with thim reatment the tirimg of the military towk phace. It thas

 his rommand, wan abting within hin inatructionm. and if anty blane is to bo atamend to the aremon of the military, it mus be horme hy the smperior collo er in rommand.

Fomerth. 'Tlat while the dometha were immerlinte If awiner to tha firing of tha wrolliers, who wore at the proper phate under presper anthorits: where the disorder was rating. get the responmilility for the "rrible tragedy of Monday night is direroly ateribntable to thone whe comanem the lawhere borly as
 who were intigating the rionsus procerelings. While many ware present mot an inciting to riot, bat ont of idhe emriosity, they, meverthelest, hy their premence. grave aidand remplederee to the mols apirit whe initiated the disturbanes. The latter are the permins primarily responsihbe for all the mabacopuent trouble
 be held to the severest acrommability.

Fifth. The absence of the Mayor from the city man be a sulliciont exenoe for the inactivity of the city anthoritices at the lime.

Niate. While on the ond hand the testimeny clearIy shows that the ('hief of I'oliere was fathfol in the discharge of his oflicial floty, it is a matter of requet to the inguest that the testimony deres not equally "ommend the SherifT in the diselharge of his duny: on the eontrary, thoush twereraphed for early on Wonday morning, 2bl July, and laving reached the city by special train, provided ley the railroad rompatny, at tive o'clock A. m. . We nevertheless marle no at tempt to provide for the preservation of the public peace, although marnestly appeated to and urem 10 orgauize a posse be a mumber of citizens during the day. It is well known that during the whole of Monday the city was under the power and in the control of the mob, whose progres was hourly gathering strength, and that therefore at nowi Mesers. Woothen and Miller offered in furnish a sullicient number of men, with arms and ammunition, wornstitute a posse comitutus, and smpress the riot if the Sheriff would give the authority for so doing. This ofter was dectined by the Sheriff, who sieniticantly remarked that the mob anso had arms. All that the Sherifl of lierks county dis in this fearful emerecters, after wastine the whole day in his oftice duine nom thing at all, was to iswhe his proclamation. after tive oblock in the evening, calling upon citiza- to remain an home. In conclusion thereof, or in atecorddance with evidente presented, the inguest beliewes that the Sheritf, hatwing nequected and refused to perform what was his ohvious duty, is in a meavenre responsible for the events which followed.

From Readine the strike errotal rapidly into the minine regions of Pemuslymial. Attempte were mate by the miners at l'ontsville and shamokin.in the scharlikill diancict, to hring on riots on the 2 thla and 2.th. but were failares. . As shamokin the rioter-were
 The citizens mave an unswerving support to the anthoritics, and the dinger was aberted. It Maneld Chunk an effort was made to induce the firenter and hrakemen ou the behigh id Sucguedanna Railrond to join in the strike, but the majority of the men refued to leave their work. "lowe Tahigh Valley Railroad men joined the strike on the 2.sth, und there was eonsiderable exeitemont at loethlederm. The trainswere stopped, and the engineere amit tiremen fored to abamon their locomotive. (In the same day the brakemen and firemen on the eatern division of thit road. extending from Eastonto Math Chunk. -track.
and lonckaded the roalk. The Lehieh tailey men at Baston joined the strike during the night, and those at Wilkesbarre took similar action about the same time. This placest the entire line of the Lehigh Valley dailroad in the hands of strikers. All freight trains were stopped, and the strikers announced that while they would allow the company to carry the mails over its line. no passenger trains wonld be permitted to rum. The railroad otlicials then gave orters to stop all irains, and to make no attempt to cary the mails. Bethlehem and Wilkesbarre were the centers of the trouble. The principal weitement yas at the latter place. On the night of the 25th all the passenger trains were stopped at llilkesbarre, but on the morning of the ebth some of them were permitted to depart, in order that the men employed on them might reach their homes. The strikers contimued to hold the road until the last of Jnly. The company then determined to run their trains in spite of the sirikers, and on the 31st succeeded in getting a train throngh from Bethlehem to Mauch Chonk, They annomed to their employés that their abandomment of their posts was rirtually a withdrawal from the service of the company and that their places wonld be supplied with new men. This was done in a great measure. Applieation was made to the (roternor for assistance, and a force of State militia and rogulars was ordered to proteet the road. Thestrikers declared their intention to stop the trains, and on the 1st of August, the day appointed for the resumption of traflic, a large crowd assembled at the depot at Wilkesbarre, resolved that no trains shond pass that point.

Seranton, the most important point in the coal region, was profoundly agitated from the first of the troubles. On the afternom of the ettle the strike was begun by the employés of the Latakiwnat lrom aud Coal Company. Is soon as the goug sounted at noon, the nen, to the number of abont 1.500 . stopped work and struck, and all operations ceased in the rolling-mills, foundries and steel works. The strike was first declared in the ohl rolling-mill, at a given signal, and the men retired from the buidding, leaving the red-hot bars in the rolls, and the fires glowing in the furnaces. They then proceeded in procession to the company's steclworks, where work was immediately suspeuded, and the employés joining the strikers, the entire party marched to the foumdries and sbops, where similar scenes were pateted. The men said that it was impossible for them to live on the wages they had heen receivjng, and on the 15 th of the month their jay was cut down ten per cent. more. A meeting was held in the affernoon, and it was resolved to demand a restoration of the last ten per eront. reduction. On the night of the 283 , the men mandoymat the Meadow lirook Mincs in the subnrl) of Scranton, struck for higher pay, about 300 of them turning but. At six o'elock on the evening of the dth the firemen in the cmploy of the Delaware, Lackawanna of Western and the Dolaware it Hudson Companies strusk work. As suon as the bell in the romind honse demoted the hour of six. the men converod their congines into the yard, drew the fires from them, and left them in good order. A coal train which left Seranton at tive o'clock was returned, and placed side ly side witl about twenty ther trains laden with blatek climonds in the gatri. The firemen retired fron their work peraceathly, and in the eourse of anversations hald with several of them, they deciared that they would protert liferand property with thair lives if nurd be. Smporintendent
 atware de llmanon (iompany in the afterioon to the rflect that the eompany womlel make no conuession, mad the firemen on that line sirnck simmanamonsly with those on the Delaware, Larcawamma de W"esto ern road. The men took all the passenger trains to their destinations. and as soon as they arrived at the depot the fires were drawn and the rigines placed in the yards, It was momomeed by the railroad ofli-
cials that no freight, coal or passenger train would run until the difieulty was settled. The strike was solely on the part of the fremen, and the coginears, condinctors and brakemen were not concerned in it. The etfect of the strike on the road was to prevent all shipments of coal, and to make the mines thronghout the Lackawanna valley idle.

In view of the excitement prevailing in tho city,
 ing proclamation:
In view of the excitement throughont the country occasioned by the labor troubles and the lamentable Ioss of life and property in our own and other states, it hecomes the dnty of all good citizens to use their best efforts to preserve peace and aphold the law. Pecognising, aserery one mast the unfortunate condition of the bnsmess, and fiuancial interests of all classes of the commmity, and especially the hardship and suffering of the laboring men. We buast yet unite in maintaining to the fullest extent the majesty of the law and the protection of life and prouerty. I therefore earmestly urge all good citizens, and especially the workingmen themselves, 10 abstain from all excited discussion of the prominent question of the day. The laboring men of ons city are vitally intarested in the preservation of peace and good order and the prevention of any possible flestruction of property. I trust the leading men among the workingmen fully realize that the interests of the whole city are their interests, and that any riot or destruction of life or property can work only mjury to all classes and to the good name of our city. Svery taxpayer will realize that any destruction of property will have to be paid for by the city, and would by so mueh increase the murden of taxation. ln one day Pittsburgh has put upon herself a loat that her taxipayers will struggle under for years. In conclusion, I again earnestly urge upon men of all classes in our city the necessity of sober, careful thought and the criminal folly of any precipitate action.

The excitement contimed to increase, and, on the 25th thousands of miners flocked into Seranton, swelling the crowds abont the depot, and adding to the danger. The strikers deciared that they would allow the mails to pass ummolested, but wond suffer no passenger cars togo through. The excitement increased to fever heat when the moraing mail tram from Binghampton, for New York, arrived at 9.50. The strikers were indiguant to find that an exprese car and three passenger coarhes were attached, together witl the mail car. Exciting demonstrations were made at the varions stations along the line, and at Great Bend, forty miles north of Seranton,a crowd of fire handred songlit to detach the passenger cars, but were deterred by the engincers. On arriving at the snturbs of Scranton, the train was boarded by a number of the strikers, who, as soor as it reached within a fow yarls of the depot, cut off the passenger and express carsand permitted the mail to pass At the depot an excited crowd boarded the tranand the jostmaster was about to fut on the mails when informed by the railroat otheials that the train would go no further umless the passenger cars wore allowed torm. This decision canserd mach indignation among the strikers, amd sevoml nttered lond threats of seizing the engine and ranning the mail to New Vork, lut wiser counseds prevaled, and a meeting was forthwith hedd on the platform, when it was resolved lo folegraph the Govermor and l'ostmaster-General, alprising them of the state of atlatirs, and disclaiminer all responsibility on the part of the men for the detention of the mails, whiela were carriced batck to the postontlere. The reply was awaited with anxjety, and the telegraph otfice antl depot were crowed ed till moon, when at flag was llnng from a window of the hodd-yuartors of the strikers. It was a eall for a mee eliner, and there was a rush for the hatl at once, home but diremen mal brakemon beiner admitted. $\Lambda$ despateln (rom the (iovernor was radi amid cheers, stating that he hat instrueted the Superintendent to
 parod a statement for pulbiration in the lanal papros.




 day hy the action of the miners, whe reperesontof nes less than forty thomsata! mon in the seranton dim. trict, nsking an incrame of twent - tive for font, on their witero. I comanittoo of six wated on the (iral

 endared repmated reductions antil their wages land
 propuse fo combure it any fonerar. 'J"hey further statod That if the man on tha railroad soturnoid towork, they would hald out natil such limu at their watas wera






 not satistiod with guitting work, refuscol lo allow the promps of the mines for be worked. "Jote men whe atfermpted to ran the pmans, the work of which whe mofersury to kexp tha mines frome llootling were driven aw:y lye the strikers, and the cherine Were "slat down." The water wats thas allowet to grin statily won the mines. tlooding them, and injuring theni th the extent of many thousand elollars. 'This wilful destraction of the jreperty of their employers by the miners wassimply shemelal. A ches-


 nearly lion, 000 foms of conal tomarket. Land weok it did not moml it tithe of that quantity, and mext work it will mot semd any". The miners of the f) (latwore d Iludson ('sumb ('ompany yuit worls festerelay
 pany are in enforead itlleness om aremont of the desiruction of athanl-lonnse and hriture on their gravity railroad. 'The healdouser whicis was situated in
 Whres o'elock this morningry atmoh whith siarjricest
 horing trew. They satmated the woomberk of the head-house, athd then ret it oft with at matth. It made al litree blaze, whirla was jatinly visible here.
 stopytere from llawley in Pittston. It wat not the work of thr ("ompany's "mployés. Jut of "utside persons, whot leok that mode of forciner the strike
 recontly locen workiner on full time at their mines and the best of feeleng exist hetweren themeselves amit their workmen. Tlac lantor ato indignant at the dastardly int, and the prosjects are that the burmend fropert! will thot be replacerl until the dispute be[wern labur and ceppital is dimally solle ed.
"The watchaman who wis driven fromen the lacalhouse states that the place was set on tire by mo few--r than at lumetred men, who danced about the thaze like demons, and shouted in fiemolish exoltation while the work of olestruction was gringon. Sinjerintombfant Smitlo states that the act will make the combat
 Working on full time, and shipping 30.000 lons : woek. "The men in the company"s employ had made
 of the hemathonse is the worls of nantirlera. who want ad to force them into a sriko. Sin at mine in the balley is at work, and the most of theme are thlliner fast with water. An inder of the jmportatere of thonding a mine can lu' olbaned fron the face that in skis the Dianond tolliery was idle three days for the ro-





 will ocqur.
"The Bayor wate wry metioe in his efterta (1) bring











 by the action of the Mayor, whot sedrt for there exerent-





 miltw. than proceredeal to inform the Sing rintorndent
 that no one takine an ale tive juati in the strike - lasulal


 station aloner the line but mo deanomstrations were mate. A despatela was forwareled lo biaglamporon to start Nio. 4 train from there to Now York, alld it
 Passonerar abd freitht trallice wac mew fairly (htalo-
 warce. Tackawanna \& Viestorn laniroad strike hal burst. The railroad men were bitterly deponnered for their surremere by the miners, whe gumble redle-
 valley. The mincrs avowed thair intertion to renttimue the strike motil their forms wera aroreptod by the cond companios. 'They lecoanme mere aral more turbulfont every day, ant it at lact lowamme revident fothe latyor of siranton that the prowence of frowns at that city was necessary. "The (invernor was informed of the stato of siltiairs, and decoided to gos to the nssistance of keranton witla atore of state militia and recgnlars.
seranow continacel to be troubled wish the eescoitement arising from the minerse rint. In spite of tha jowerfal protection altorded ly the troens. ilye werk-
 risl (stablislaments slowly, beine rendorend afraid to gen to work by the therafo of lhe minere who still romatined illo. I lethor from siranton, writan dug.
 most determincel atlitude. atml from preacont pornsbeets, it is safo to saly, will prolong the strike in the lackawama and Wyoming valles- for sis montho. if no sottlement is made. In important mowtins of alelvates from crery mine in Luzorne ( (annty willlu* held hera 10 -matrow be alpuint atemeral Fixacotive
 of securing jerfort unity of action, an that ther mon at all the mines will risume work simultadernsly whenerer dace time for resumption has rerme. il mammoth slore was ofened here torlay lov 11a. Vin-
 nereessities of the ir mumber who are in lli-ittos. avel it was speredile filled with provisions. JBsines men placed a dozem teamsat their disuosal, frece of chasgu. for the purpusic of rectiving ant distributing sulp)p) ies. aud the seene aloont the sore was animated in the extreme. Farmare in the sursmanding combtry have made them donation- of potato patehes, and many of the miners have gome off in qumes in do work in the comotry and receive pay in frovinions.

The disaffection in the coal regions continued to increase, and assumed its most formidable proportions after the railroad trombes had been satisfactorily adjusted. By the middle of August nearly all the mines in the Lehigh, Schuylkill, Lackawama. and other mining districts were idle, and more than sixty thousand men were out of work. The miners presented a general grievance, declaring that their wages were too low to enable them to live, and demanded an increase of from ten to twenty per cent. Though there were many isolated acts of violence committed in tbe coal regions, there was no gencral out breik.

The New York Division of the Pennsylvania Railrond, the Central Railroad of New dersey, the Erie Railroad, the Lehigh Valley Railroad, and the Morris and Esses Division of the Delaware, Lackawanna and Western Ralload, terminate at Jarsey City and Hoboken, opposite Kow York. As the strike had affected all these roads to a greater or less degree, it was feared that it woukl break out in Jersey City. Tha tplace contains a lare population of railroad men, and a much larger number of persons in the lowest walks of life who are always ripe for an outbreak. Lying just across the river from New York, a mob in dersey City would be rapidly reinforced by the dangerous element of the metronolis. The anthorities were resolved to be ready for the danger if it.should come, and to meet it promptly and firmly. The strike on the western lines and the ontbreak in Pittsburgh prodnced ereat uncasiness and excitement on the New Jersey roads, and the Goveruor was informed ly many of the railroad otticials that it might be necessary for them to ask the protection of the State for their property. The officers of the Pennsylvania road were especially apprehensive, ats the trouble on their main line had heen so great. Trouble from employés was not dreated so much as from the turbulent populace. In influx of ruffiane from New York was feared, and the char:teter of such reinforcements to the mole justified the gravest apprehensions. During the night of the 23 d , and the small hours of Honday morning, the (tovernor was in receipt of despatehes from various pontsalong the company's line, indicating approaching tronble at Trenton or Newark. These were afterwards learned to be premature, but they induced the (fovernor to issur orders to the various military commands of the State to assemble at theirarmories ready for service. By daylight the thl lRegiment had gathered, fully equipped, at their amory, adjoining the C'ity Mall, Newark Avenuc, Jersey City, and in halls close ley. The Th, 300 men, was at Trenton; the 9th, 3aill men, at Hoboken. The 1st and 5 th of Newark, 801 men, were at Newark. Forty ronds of ammunition were supplied to each man. General Mott, in charge of the brigate, hat his hearguarters at Trenton. and was in constant communication with dersey City: Whmemorning had fully come, it was felt that although the militia had posibily been called] out rather hastily yel it was not to be regretcol. Jersey City's iflment of "roumha" seemed to have increased durine the night. The inen, who hat conn from minown yuaters, lomaseal near saloons and talked constantly about. the strike. No threat was made, but citi\%ens enemer ally irrew unconsy an tho day alvancerl.

Thise first shathow of actual trouble wats at nime ordock, when one of the employes called upon the Siperintendent, and sati! he was antlorizeld to inform him that the tiremen would strike ahont noon. The superintentont expressed a wish that a commitue of the mens should wat upon him, an La committere of six did sor. He argued with them that
 tions had eatused the strike, and that any further action of employts was not needed in that direction. If they loft the ir engines, the moh in New York and
 tunity to cinted here the terrible sedero of Pittiburgh
and Baltimore: for all of which they would be primarily responsible. Itis talk had great influence. The men resolved not to strike, but to contime work unless assailed by the populace. A meting that hat! been called for eleven o'clock was not held, and the superintendent. congratulating himself apon having such sonsible men, felt assured that if he conld prevent any demonstration from outsiders, he lad attained his end. Towards noon and later the arrival of regular troops on their way to Philadelphia beeame known. A battery of light artillery with four field-pieces arrived from Fort llamilton and passed down the freiglit-yard to be loaded upon the flats. This display made the loungers on the corncrs and in the vicinity of the yards imagine that precantionary measures on a gigantic scale were taking place. They began to feel their unimportance and grew more excited. There were perhaps 700 or 800 of these mapleasant persons at different railway crossings and at open places. The liquor, that the times are never hard (nough to prevent them from obtaining, began to take effeet, and they enrsed the troops right bravely. And then they retired to the salwons for reinforcements. It had been the intention of the Chief of Police to close the rmm-shops, but the order did not appear to be put into effect. About four P. m. everylbody was very nervous, not excepting the anthoritiea at police head-yuarters. There they fell to work drafting a proclamation. While that literary business was in progress, the light artillery was made realy to start They occupied four flats with their guns, five cattle-ears with the necessary number of lurses, and two or three passenger coaches with the men. To these cars were atded another coach, and a baggage ("ar contained forty-seven of the regular troops that had arrived between one and two from New London, Connecticut. They lauded at the Adans Express dock, Which is retired and not within the ken of persons in the freight-yard. The engine that was to take the train stood in the yard, and some rough men gathered around threatening to shoot the enginees and conductors if they moved the train of troops. These officials naturally were frightened, and when it became generatly known that threats hat been made, all sorts of fears were expressed. A posse of seventyfive police were immediately hrought out, and they pushed from the track a crowd. possibly of 1.500 men and boys. The men who hat threatened the engineer disappeared. The train of troops was finally ready, and the Superintendent said it should go, The engincer still hesitated. No other engineer would consent to take lis place. The others said they were not called infon to do any man's work exeept their own. At length the engineer consented to take charge of his engine if the Superintendent wouk aceompany him. The Superintendent did not hesitate a moment. The Milstone way passenger train was also just reacly to start. Two tracks Were eleared, and with this passenger train betwern it and the mob, the military train left the station. The enginery was in his place. The two trains inov. ed slowly down the track, side hy side. faster and fastor. Finally, while every one was expecting tronhe the military train shot priekly alnead, and the danger was over. Tha Superintemient came back to his post and arranged for tho further tramportation of 1 roops. At six oblock twenty-seven stilors from the I'nited states stemmer Colorado embarked for the Navy Vard at Philadephis. They started on an lowr and a half's motio." 'Wheir departure oxeited no demonstration. Whore troops arrived at half-past six from Nowport. They eomprisel fon oflicers and 1.1 anen of Batteries N. IB, E, and F . They fillow four coachus, and started at half gast , ight with it protection train on their exposed side. The tran acompanied them only a short distance. At nine codock three lateries from Boston, mmbering about as many meti as tha Newport detachment, arrived amb ikjarted withent the lemst disturbance. At six



 of hasiness, avobliner all gatheriners in the aroct, so

 by word, art atul srintiment, aid the mathorilias in




 the statate for dastration of proprerty by matim. Than vhale power of the state will be aveil for the main-

 prebent any moxeskity for the use of the state forme. Tivern unter my lame, at the ("ity of "Trenton, on thim 23 l , lay of July, A. 1). $1 \times 7 \%$.
 with many 1 liromerh passenerove "lace inconning trains were sonnewhat late, latving lxern detained at l'hilstlal. phit. Ill evening trains werr whifted and shantod in the company's yarels, the poliece kecopiar up their line from the siat ion to leailroad Ivames. Abobt nime o'clock sombe freight cars ame way pasadacer tratis
 miles from the station. A samat of poliere went out to the gry, and rematimed on ernard matil relieverl hy militin. Ibefachmonts of state trools were brouslit from 'lrent on during the afternoon, and posited att tho bridge over the Rarilan, at New Bramswiok, and taw bridige ower tho Hatkepsack, betwern Newark annd I Iarsey ('ity. These important brideres werestrongly Enarded thronghont the period of the disturhatmer.
 roul in the llaroknsatck matelows were ghatded by tifty men. 'The mex: day this guard wist redievel hy the 5th Vetrean lacerment of Newark. It Newark, New l’ranswick and 'Tronton there was consiberable excitemont, but no elfort was made to bring on it strike. Tha massenger trains were run as nswal, and the freight trains. whict were discontinnald in consequemee of the tronbles at lhiluldphit. :md other points on the matn line of the roabl, were resumed as soom as the route beyond I'biladelybia was elear. By the night of the 24 the the dimerer on the lemens. vaniat radd was over; thore had buen nostrike uf the (mployes, and tha mob had foumd the civilam military forces sostrong that they wisely decided not to attempt an whtorak. On the evening of the esth. the firemen and larakemen of the Marris \& Exsex division of tha Delaware lackawamma d Wistorn Ratroad joined the strike, which, us wo hatere related dsewhere, lad already beorm on the matin line of this pond in Pemasylvania. Ther men were efulet and orderly, amb attempted no violebere 'There was not muel life in the serike, and on the lith the wem at the eastern end of thas line nerred to restme work at their former wiges, trustiner of the company to in-
 Was aceepted, amel the strike finalls came for an ent.
 Faston, I'emnsylvaise did 110 tunite in this sethement until some days later. "loe next robill to join
 men on this road struck on the esth, and stepplet the running of the freight trains. "Joperincipal listurb. ance was at Phillipsharg, opposite Easton. The New dersey Central man there mited with the employés of the Morris e Essex romat, and with them put a stop to the lusiucse of both roank. ()n both roade the strikers refused to allow the rumbing of passenger trains. Ther stated that the math might be earried wer the lines in the jonatle cars, but mo other eurs should be rum. The :uthoritios of hoth roads thereupon refuscd iosend out ant trans umtil their roads were freed from the interference of the rioters. Thourla all the strikers refrained from any

 "ry of their rempls, it way how rtain lows low? this








 forble rellort was matre tor provert the railromal willrials fromer rusmaning the rumaing of the traise. but


 tho lawe womlal he in vain. (

 wark. Thastriker* on the e日sterit and of the. Siow

 outbroak at l'hillipshares. Weiner thas inolntod. and overaworl hy tho military, tho strikors at l'hillijus


 perioncel in New darsey.
"The exeitomant eprad rapidly wontward, and following the line of tha liallimore of (hio Thailroant,
 thirty miles froms C'olumbme, there Baltimore of 'hios



 of the State. On the 1sth of Jinly the brakemen and tiremegn of the Baltimore © ()hoolatilond at Sewark struek work, amd rofated to allow the froight trains of the roat to pass the point. Sll arriving 9 rains were stopued, the cengines incoupled from the coirn, the dires put out, and the encinerers and firmmen forccol to abamelon their posts. The strikers were (puict and arderly at dirst the only viondence beine the threminir of al man from a camel-hatek encimo for attempto iner tos start the tires. The Sherift rif Lickiner county repaired to the depot, and, alterreatiner the livot det, orelared the strikcors to tisjuras. 'Tliey refusad to comply with his demand, and he reported the disthrhanee to the Gowernor of ohin, aml asked for ab military Eorme to enable him to prea.ove arder. The Governor elirectad in reminemit to repair to Newark to assist the Sheriff, and iswatel a prochanation comamamdiner the strikurs to alesist from |resonal intimitation and inturference with jroperth. The trungs roachaed Sowark duriner the nitht of the 21-t, and hy the next morniner were on duty at the railway elapot and sards. 'The militia soon' masle is evideat that they were in sympallyy with the railroael strikers, - o that it was lyy mo means certain that ilaey (ounled loe
 the I'an ITandle rosul now joined in the strike. that road having become involber at I itteburelo and at its western end: and during the 22d al larero fommber of them reachal lewark from ? bumionn. The min(rafrom the eoall amd iron remions buar Sowark were in active sympatly with tho strikers. and :s-urcd them of assistance whomeser ablled tuph. Fur the time thestrikers attempeod nev viole ace at Sevark, lat
 I (6umbitle was sont by the Sewark -triker- 10 ('olumbure to intuce the ratronal ment at that puint In join in the strike. Weotinge of the brakemen and tiremben of the lhatimore of (thios and Pan llabdle
 lus, and reanhutions were andopted dematnding it resturation of the old rates of pay. "1"lu* striker- at none left their work to await the answere of their respertive companic: Their domands were refuscd,
and on the morning of the $2: 3 \mathrm{~d}$ a meting was hold at the linion depot for the propose of enforcing the strike $A$ large gang of men gathered about the depot and yards early in the day, but it was observet] that but few railroad men were among the erowel. The main body was made up of idlers, curiosity seechers, and in set of rongh, and non-railroaders. Who seemet to haye sudedenty come to the front. From the depot the mob hastened into the city, resolved to force the employés in the private establishments of Colmbus to ruit work. The rinters mumbered between two hundred and three hundred men. The first place visited was a rolling-mill on the banks of the olentangy. The employe were ordered to cease work. As there was a gencral disposition among the mill men to join the strikers, they casily ontaine a promise that the mill would shat down ats som ats the heat on hand wats finished, which was done. 'The mol, then went to the Smith Pipe Works, farther north, and commanded an immerliate suspension. some were in favor even of letting the metal in hating out of the erporia. There was a charge of tive tons nearly ready to pour out, and had the therat been carried out, the hot metal would have fired the building and destroyed the fine property. The superintendent sensibly told the mob lic woild shat down as soon as the heat was ofl'. The erowid then left. Before night every establishment containing an mo gine, on the west side of the river, had been elosed ㅍ.

The officials of most of the roads coluntarily clowed the railway slopss for the time, thas deprivine the mob of the opportunity of compelling them to elose. The through lines declined to reedive froight, and freight houses were generally closed up). Brakemen and switclamendeclared that they had nothing to do with the raids on private establishments, and did not approve them: but few railrnal men were seten in the mob. The Nayor of Columbus, on the afternuon of the $23 d$, issued a proclanation calling on the rioters to disperse and cease their.interference with private property. Sewal humered special policemen were sworn in. The railroad athorities derided to make no riforts to run their trains until the strike had been put down by the rivil authorities, and thens to give un provacation to the mol. The promptness with which the citizens enrolled hemselves in the sperial police force and the chetermination exhibited by the State and city authorities to pat down mols viblenee at any cost, greatly temoralized the rioters. On the morning of the $24 t h$ nearly atl the mannfac turing establishments that were forcibly dowed on the previous day were repered, the operative rathrning to work on heing assured of protection. Colmmbas was exated, bat fult thronghont the day. On the $25 t^{2}$, the devernor issined the following prodamation: Owing to tronble evisting between railroald companies and hacir comployis great weitement "xiste throughont the State. Of this mufortunate statco of affairs lawless and disreputable persons are taking advantagr and mongering life and property. The civil antlonities, state, county and mmiropail, ats well as military, must and will averwhere exert their prower to enfore the lat in every repert. The
 dones, and in no other way can the order wheh is athonlutely urcesary to puhberand private satily twe mathatined to avert abl danger, and in order to sumrespolly mect all rexistane to the thomeng weme tion of law 1 horeioy call on latw-abiding incon of all

 dirertion and control, organize themedves into :a

 men will remond prompily and inewrfully to this call.

Exory eftom was mate (o) phace the military foren of the state in at condition for surviere atad the deworo mination of thu (x)
mol, viok riotors. No fur:her disturbance occurred, and for days mattors remained unchanget. The failure of thai strikes at other points disheartaned the strikers. and they made no residance to the running of the trains on their roatik. By the 2nd of August beth the Baltimore © Ohin and Pan Itandle roads had resumed their freight trallic. When it was certain that the strike was dead, the troons were withdrawn from Newark, and the C'olmons companies were dismisswl. Other parts of the state wre alfected by the nutbrak. Zanesville, on the line of the Baltimore \& Ohio lailroad, was one of the first to be plunged into the excitement. The train hands took part in the strike about the time it was hegun at Newark: and on the morning of the 234 a mol of about two thomsand men assembled in front of a new hotel in prowss of erection, and ordered the men at work on the building torstop. The demand was at onee complied with, and the moh then visited in succession the varbus manufacturing establishments of the town, and compelled the workmen to abandon their posts, thas forcing over fifty establishmmens into idleness. The rioters also compelled the street railway rompany to disentinue the running of their cars No greater violence was attempted, but the proceedings of the rinters thoroughly alarmed the citizens, and a vigilance conmittere, compesed of about one thousand of the most reliahle citizens of Zanesville, was organized and arned. They were placed on luty on the afternoon of the 【3d, and at once began the arrest of such rioters as conld be secured. Under their protection the street cars resumed their trips about there sedock in the afternson, and the mob slunk away: From this time Zanesville was quiet. The strike on the railroat was adjusted between the Baltimore \& Ohio Company and its employés, and the mob did not venture again : 0 raise its head.
(leveland, on Lake Erie", is an important railroad point. The Lake Shore \& Hichigan Southern Jivision of the New York Central Railroad passes through it. This road engaged in the strike at an early period, the trombles along its line beginning at Buthato. The strike quickly fipeat to Cleveland. On the morning of the 200 of July the men in the Lake Shore d Nichigan Southern shops, to the number of 250 or 300 , puit work, held a meeting and addiressed a commmication to the Superintendent, embodying the following demands:

Fiost - An incrase of twenty per cent. on wages received Inly 1s1, and that such advance date from July 1 st.
seromd-That assurances be given ly the company that no employé shail suffer on aceoont of his paritieipation in the strike.

A ('ommittee waited on the superintendent, and wre informed that he could give no answer until the mater was laid hefore I'resident Vanderbilt, and that he would forward it immediately. Before leaving, the Commitlee assured him that no pronerty slombl be destroyed, but that the men were determined that no work should be done in the shops until the demand was acered to. These mom had been raciving from nind on to lwenty-one contsper hons, accorling to skill, and were binning on ten hours lime.
The nex muse was ly the hands in the freight de-
 Their demand was that the company shonk pay them © 1.50 a day for ten homers work imd -2 Por the same ammant of work on sunday; that they be paid in propertion for overwork: that they be pad for the time lost by the strike, and biat they recoive their pay by the 15 th of ado menth. These propositions were also forwarded to New York by the Superintendent. Tharing the afternoon a meeting was held by the shop and froight men for the purpuse of conmeriner ation among themselves and with the train mati atrats ont at (b)llinweses. A committer

tiremon and with othora who might lx win it mike. 'The mosting was orelorly thromghotit. Mul whon n
 dencoins was noticod in the rooms, the l'rawilant arose and wadd that they wanted nothing fronn thr politi-- inans, as the men wero perforoly able tor allomd to their own hasiness. ('oblinwoml, a short rlistamer from ('le velanci, was the point where the Lake shore

 along the trak. 'Tho strikers praserverl orter and
 loons 10 rloser sumi jurmilleal nome of thoir mont to
 will freight rars and the ramal honse was full of on-




 for them. The men in the machine slops, with tre
 Indiannpolis Railroad, went ont on strike on the Disk, as they were refasel the incrasa of twonty jur eont. which they elemanded on Naturday. It nesen the shope mon lecld atmetting the thir shopes wrovive any commmanation from the (ompany in response fo their demand amd the estanblishment of at regular pay-day. Fone comines, they dexided to strike, and when leaving worr mot by their l'resitlent, whatdressed them. He exprassed regere at having been
 ats l'resident of the company, he owerl a montal obsligation to stockhohers and implogés, ame that embarrassmont mast neoresarily arisu in adjusting matters so an to fultil his duties to both. He blamed the dithentis on ton much catting of rates, and satid that mo one had done mome toward a pooling of rates than he. A consultation was then lichd at which a compromise was made, the men receiving an advance of ten per remp. on and after dugist lst, amd working ton hours mstosid of diglat hours; they, on their part. ngred to go back to work the nuxt morning. The mivance wis to be general, benctitting the lrain men also. Aneflort wat mude by the Lake Shoremen to induce the employe of the Athantic de Great Wrestern road to join in the strike, lom the later liad the inticpendence to rofuse. statinir that their relations with thar company wore satisfactory.

A lettor from ("ullinwoed, on the 2ttle, thus desoribes the stato of alfairs there: "Fberythage presents the aphearance of at Sumbly in a New linglame village at Collinwood. the littor station where the Lake Shore round lumse amb shous are locented. 'Tlure are un orowds, ne threats-simply the men sitting aromal in small groups, arrayed in thest lowliday attire, talking over the situations. The ment have been amxions of late to bave the ramaming catthe cars undoated, but the vari-master of the Erie division has spemet to lu vory slow in toing this. They saly that it is crucl to let the amimals suffor.
 Arivento Painesvilleand others will prabably follow. A very large mumbor of tho mamals lave died. One car comatining 1 , $\delta 00$ fowls gives fortl an almost inpolerable stench. 'The deat hots are being cormed nw:y 0 the soajo facturies. amd many of them burior (1) sivotl the plague that mast soon follow if the deatl animal matter is not removed. Gireat tromble arises from insutheiont mans of watering dat catta, and scores of them are constantly dying of thirst. There is, of course, much foceling atainst sumbe of the ofliceials of the road, the mens saling that if the aflewars hat treated them properly they wemlal not have complained of the redurtions. At the first meeting. lield at tom a. a... the prosperets of their propessitions hering aereded te ware foblly disemsed. The sum of what wat ceppessed wats that I'resiblent Vinn derbilt eamot exureise his powner lure as he comble in a monarelyy. 'This is a ropublic, and the poor man



 port of monopoly thon the laborer will tw bonerar

 pese i num gralorul toran my train down to flewe haml; I


 plaint lios in tha fact that the 1mon rare only paik




 clity at any moncont. In thim way [low sanall jay
 this state wntil the last of July, when therestikes an
 becomme plain ta the men that they conlel not warry
 movernents of the rosid, und signition to the (iveneral Superimbendemt flovir willinerness to retarn to work at the reducol waters. Tha siuperintronfont agrearl


 business of thw road should justify surd a - $10 \mathrm{j} \%$. By
 the Lake *hore road.

There was considurable excitumrat alma at Cimein. uati. Un the 2bid of July the trainmen on the (Haid \& Mississippui Railroand joined in the siriko, and pros vomblathe pasage of trains. The employos of the ("incimati, llamilton o I ardon lhailroart havimer bern informed that their wates would be redurect denpers
 fuction, and anmounced thetir intention to strike if it should tre enforced. 'Ther anthoritios of this romd therenpon reconsiderod theirelereision, and the waty remained unchanged. This defermination wat annonnced to the: mon on the night of the $22 d$ ant runsturently they took no part in the striku. ('irs-in-
 in the market places on the afturneon of the $2 \boldsymbol{2}$ (h) and were wencrally attended ly men who had no interesta in the railroath emtering ("incinnati. "Tlow were addressed by sbeakers of the commonist -tami and the excitoment was fanmed to at hiplt pitols. ("incomas:i contains a larege pupulation of ibly and vicious persons, who are always rably bo join in an outhreak. I large part of the militia force of tha city haul been sent to Newark bulusle the rioters there in check, amd the greacriation of wrder clepencloel maindy upon the perlio amblao better thas of citizens. I'la mornines of the as and uf duly fommal Cincimnati in afererish amal dangerous-tate The rioters, who fomprised the wor-l flementi- of the phato, had taknon courger. from the fact that they had not aeem interfarml with. amel land incroacod se rapudly that they now comprival a larer amb formind-
 throateninge anif hat (oompletely wristell the -trike from the hande of the rablocead ineot. Fiarly in the
 posed mostly of hoys from thirtecn to twemttonn
 ing men. With their lamals bedhimel their back- -ur
 Is the half-pas? two ?rain wat about toleavo. a luy
 Which hat not yot hece womblad to the train, atard pulled the throtthe 'the engineer. who wat me:n fig. jumpuad on the chatine in time fos sove it from de. struction. The erowilthen demameled that he should
 came from the I'resident to ron the exgine into the
romme honse and abandon all trains for the day. The mob headed by two or three villainous-looking men, then started for the mathine and remar shops of the (:ompany to force the ensployés to quit work. At the rail shop they were met hy anotheer of the road, whoasked them if they were railrontl men or strikers. They answered. "No." but thes winted those shops closed up. The workmen at last yielded. against their will, and left the shop. The crowd then went through the yatd, taking each shop in succession. and compelling the men to quit work. This was the nature of the strike on the Cincinnati, Hamilton \& Dayton rowd. The company's employés declared that if they had been permitted they wonld themselves have driven batk the moh ind started the trains. A letter from Cincinnati sald: "Loud courclemnation is heard on all liands of the inactivity of the police, who have, so far stood by and watched the progress of the rioters without lifting a hand. The entire militia force of the city is two bundred miles away, and it is beginuing to be felt that the omly protection of life and property is to be fomm in vigilance committees and individual efforts by citizons. The demand for muskets and revolvers lais been so great as to completely exhamst the stock of the gun stores. It is noticed that these arms are bought by the respectable part of the commanity. liankers are beginning to fear raikls upon their v:ults. aud anxiety is felt by the officials of the Lnitedstates sub-treasury, where several millions in currency are locked up in old safes. Threats have heen made by the commumsts that they will luru the great mannfacturing establislaments, and no one would be surprised if they were carried into exechtion. There are men in this city who were engaced in the pillage and arson at Pittshurgh, and they do not hesitate to say that they rame lere on the same mission. This afiermoon the Mayor delivered it speech to the thieves atad rapscallions at the Cincinnati, llamiltom \& Dayton depot, entreating them not to burn and (lestroy. "What good would it do you," he asked, "to set fire to buildings:" "It would show that we are men," answerest al voice in the erowd.

The early evening trains on the Indianapolis, Cincimati \& Lafayette road were stopped by uncompling the carsas fast as the engineersattempted topull them ont. Thousands of men doing business in the city and living in the distant suburbs have no means of getting home to their families to-night. If the present condition of affairs contimmes, the old stage-coach will be brought into reguisition for transporting mails and pasengers. Business is almost ontirely suspended. it being impossible to nove goors in iny direction."

At mirlatiall on the 23d Cincinnati was almost at the merey of the mob. Juring the night a party of thieves and tramps, having no connection with the railroad atrike, set fire to the bridge of the Ohio de Miscissippi liailroad over Mill ('reots. The alarm was quickly given, and the fire was put out. The rioters who had been engaged in the effort to burn the bridge then withurew to a point on the river sutliciently remate to serare then from the inmerference of the posliter, and passet the nithot there. At early dawn on the etth they seizerl all the milk and market wagtons coming info the city ley that road, and gutterl them. The donger which thrathened (ine innation the morninge the $2+1$ h wits very erreat, amb aroused the authurinices to the necessity of taking more vigorous action than they latel yet thonght necessary. The otlicers of the varjous railroals rumniner from Cine:inmati, with the exerption of the ohio d Mississipur roatl, whicl! was still romered in the strike, cletermined to run their trains in spite of the moln, and accordingly armed their amployés with revolvers amt coupling pins. A number of these armed imployes wore placed
 fook to interfere with the ramaner of the trains, they were met by the determined amploye's, who informed thern that they could not sureered in their objects without fighting. The rioters did not choose to liflıt,
and the trains were unmolested. Tlue men of the Ohio of llississippi road refused to join the rioters in plamelering, amt by this refusal greatly disheartened the mot. I merting of the Police Commissioners was held in the morning, and a call was made unon the citizens to voluntece as specrial policemen. Larqe numbers of citizens responded to the call, and on every side a stern determination was manifested to make slort work of the mob shonld the necessity for a contlict arise. The rioters were overawed by this determination on the part of the citizens, and gratually slunk away. By the night of the 2th the danger in Cincinnati was practically over. The city confinned in a feverish state for several days longer, but bo further trouble was experienced. A number of arrests of rioters were made by the police, and the mob was shown that the sternest measures would be nsed against it.

The strike on the Pittsburglk, Fort Wayne \& Chirago road, which, began at Allegheny City, Pennsylvania, rapidly extended west ward. It eight o'clock, on the niglat of the 21st of July, the trainmen of this company at Fort Wayne joined in the strike. The freight irain, which should have left Fort Wayne for Chicago at eight orolock, was made up, but the brakemen and firemen refused to go on duty. The engineer and condurtor dectined to take the train out without any crew, and the officials were nnable to obtain smbstitates for the strikers. Every employe of the company jeremptorily refused to take their places. In a very short time a crowd of several liundred men had gathered at the railway station and proceeded at once to spike the switches. Synads were detailed to guard the main and side tracks extending through the city, to prevent the passage of trains. News of the strike spread rapidly, amel soon the crowd swelled to severit thousimd. The employés of the Wabash and other railways appeared in force, and encouraged the strikers to persist, offering to reader any assistance required. Tlie excitemeat was quickly at fever leat. and the officials announced to the strikers their determination to run trains ont at all hazards, and the men beclared that no train shonld be moved from the city by any power less formidable than the Lnited States troops, until the order making the ten per cent. reduction in wages was rescinded. Some of the general ofticers of the road attempted to turn the switches. but were driven away without accomplishing anything. They got on an engine and made repeated efforts to take the train out of the yards, but were forced to desist. One engine wiper, who volunteered to serve as fireman, was taken off the engine by the strikers and subjected to rourh asage. Master Mechanic, Superintendents and Masters cí fransportation were also compelled to dismonnt from the locomotive. The police made severa? ineffectual eflorts to seatter the mols, and at two o'clock, on the morning of the 2\%d, the Nayor reat it proclamation ordering the rrowd to disperse and refrain from disortlerly condurt and obstruction of trafic. Dle was lissed down. The proclamation was printed and cirenlated anong the strikers, who paid no attention to it.

On the morning of the 2Bd of July the aspect of atfairs at Fort Wayne was very thratening. About. Mght o'clock a large force of strikers visited the externive shops of l'ittsburgh, Fort Wayne:and Chicago Ratibay, where 1,000 men are employed, and insisted that they shomlal be (elosed ul). 'The ment satd they would not stope work antil they received arders from the oflicials, lut they were threatened with
 up, and the fires put out. ('ommilteres then went fasi and west on hamd equrs, and induced the seetion and trackmen for a considerable distance to stop work. These men came to the city in the afternoom, and added a vary misly element to the erowd already assembled. I rimor prevailed that all the railroal shops and manafactories in the rity would be compellod to shme down, but they ran all day as usuat
withont interferenera In the aformon the atrikers
 of the railrome oflcials, mating that they would not resume work until the form was replaced an it exist. ed prior to Jums lat, lwith as to mamber and rate of wages, ant insisting unon the abandonment of all elassifirations in therank and pay of enginerers. They also adopedel an address to the strikera, which whe primed and circonated, and hatd aterod efteret. 'The uldress was as fotlows:
 road points of terribla sumerifices of life and preperty is something hat slombld be justly whsideral hey yoin all. "The latest wespathens show that at wery smatl percomatage of strikers are taking an andive part in the
 erty, but that it is mostly done ley omtsidere, who by
 the wishes of the strikers. Your friemita and co-taborers herehy lesire to axprese the "arimet hope, and will give therir assistance, that yon will, shond any surch thing oeene hare, andeavor, by every mans in your power, to proteret the broperty of the conpmay in this city. Younare perfectly abde to bring abont a compromise withent violence, or sulfer others to thestroy the property of the company. To destroy proparly will positivedy not remedy the mater. but.on the contrary, ramse a slow restoration of better times. Do your work justly.homorably, quicely and thoughtfully, and allow wo disinterested persons to metelle with the propertiey you heljeel to ereate.and which stand as everlastine momments to your skill, perseverance and energy. Do ats you would be done ley, and do not act in foo ereat haste. If the company has been unjust in its temands apon yon, settle it is pareably as yon can without allowing the destracion of railroad institutions, that - to a vire great ex-tent-constilute the future prosperity, life, comfort and pride of our city.

The City ('ouncil met in suecial sessionduring the afternoon, and issued a call to the strikers to disperse. An extra police fore of 20 men was orderad to be sworn in at once, which wats done, and the Nayor was directed to closer all the drinking saloons of the eity. The strikers remained tirm. 'I'hey took possession of the depots, yards and shops of the company, and prevented the passage of all frejght trains. At the same time they made arrangements to guard the emmpany's property from injury or destruction. Up to this time the littsburgh, Fort Wayne © Chi cago Railroad was the only road entering Fort Wayne whieh was atreeted by the strike. On the 2thi, however, the train men on the Wialrash and the Grand Rapids © Tndiana Railroads demanded aninarease of ten per rent. in their wages, and notition the ofticers of their respective roals that they would strike if their demands were not complied with. During the night of the 24th. Fort Wayne was ably grarded by large bodies of armed men, who weri kept on duty fo proteet the rallway shops, rolline stock and private mambactories. "lhe strikers furnished grards wherever desired, and rendered all the protection to property which was necessary. It a bate hour two gangs if dranken tramps, mimbering from tifty to a humbed each, gatheret at the soork yards and railway bridge acrose the St. Nary: river and made vicinus demomstrations and ugy threate. The strikers, upon being apprised of thes. sent spuads of men on band ears th dicperse the moh, which they did most ettertually, drivine all of the trampseme distance berond the rity limits. The men were kept geving on the hand eare all night to prevent the gathering of any more such assembages. During the evening at large mob of seotion and track men from the Western division of the road, many of them under the intluence of liguor, seized a number of hand cars and embered Cohmbias ('ity, where the Piltsturgh of Fort Wiane Company was bitidig a mew depot, and compelled the men amployed therein to stop work. These hands dranik
 for ibre city on hand rarm, inaking threatis of vio,
 ine of the theratemed invawion, tow an "ngine and conch and went cont and nut the mals. 'I'he stri-
 franken rablate to lurn bark aml abambon their inIrallad invasien of fort Wayne. 'Thererikes in this as in orlarer instances wore haformaly on the yide of


 Railway and wore net mollestol. Gon the nieht of the elth the strikers monifiel all of the ir mamber



 themselver. 'Therir fare way remiterl, howerer, by the conductore atm all ditliculey wat that avaideri.
 (tago Rairomal madn no nttrmpt to mowe the tains of their rosal. 'They apmanden to the Gownors of the Siates through which therir lime ran for protere tion, and ordoreal tho diccomtinuance of all trainThe strikers tharalum took pomessien of the romel. and those at Allarineny ('ity nad Forst Wayme, arting in concert, ran the passenger trains with considerab ble regularity. On the night of the enth a sement merting of the strikers was ladl at Fort Watyme. which, among other thinga. detcraineod to iak formal possamion uf the romd, and ran it 10 suit themsedves. 'The strikers sideced there of therir own number to fill the poritions hell the the Siaperinternwent, Master Meronamic and Master of Trancportation. These ofliciads som learnoll that it was tha iatention of the strikers to take possossion of their oflers and somtrol the tolecraph wires and determineld to hode their ofliees against any attempt th oust them. 'Jley obtained fom tha e city athoritios a strong guard of police for thoir ollicers and made their preparations for rewistance. 'Ilne strikers, upon hearing of these preparations, wisely decided not to attempt the sermure of the oflices, which would surely bring them in contliet with the civil authorities. They had practical jussession of the road, and the seizure of the onliers memtuned would have given them mo real advanage. On the morning of the 2fith a 'ommitter of the Pits:burgh di Fort Whaye striker left for Pittsturern to confer with ther railroad otlierer:, having receved an invitation to dos $=$. They were joined at Crestline, Alliance and other stations by Committees from those points bound on a simidar "rrand. On the same day a commitlere of twentytwo train mon of the Wabach Railroad, which hadd beren sent to 'poledn to eonfer with the onlicers of that road. returned to Fort Wayne. A meeting of the Wabash amployes was at once called, and the committer stated the results of their conference. "riney reported a very satiofactory interview with the I'resident of the read. who had agrect to redrecs their rat grievances and to alvanco their pay whonever the bisiness of the company womld admit. The moting was very shomy, ond andent desirine to (2) to ixtremes. Bather combels tinnlly prevailed. and at mon the morting atjourned, having decided to abandon the strike if the comblowe at other porfions of the lime would don the same. A Commitere was appointad to go to Tatayme and Laryansport to urge the cessation of the sitrike. lan this wan not neressary, as the men at those flaces telecraphord that they had decided to resume work ans som ans the ('ompany desiret) them to do so.
The collapme of tha strike on the Wabush lailroad raused a perctptiblediscouragement of the Pittshurgh Elort Warme strikers, and they were from this time somewhat less defiant than before. though they thedared themselves confildent of bringing the co mpany to their terms. The sentiment of the people, who were put to great inconvenience by the embargo on
freight trathe: and on tracel, was turning sueedily against the strikers. On the night of the 2bth the eitizens of Fort Wiayne held a moeting, and plederd their support to the authorities in their efforts to put down the strike and place the railroad company in possession of their property. The commitece appointed by the Fort Wianic strikers proceeded to Bittsburgli, and had an interview with the othicials of the road. The result was a refisal by the Company to grant the demands of the strikers, and a resolve on the part of the strikers to continue their movement. On the afternoon of the 2?th anceffort was made by the othicers of the road to start a train from Fort Wilyne. An engine was ron from the round house into theyard, but the strikers gathered en masse, and took the engine back. having forced the engiacer and firemen from their posts. The city anthorities now demanded that the strikers should cease their interference with the railroad, lut met with a stubborn refusal. Not being strong enough to enforce the law, a call was made num the Governor of Indiana for trons. As has been related, the strike on the Fort Wayne road at Allegheny C'ity, Pennsylvania, ended on the arrival of the Governor at littsburgh with troops. Seeing that they were powerless to resist the force brought by the Governor, the Allegheny strikers surrendered to the Company and ceased their interference with the railroad. 'This surrender greath disheartened the strikers at Fort Wayne and at other points on the road. Towitrds the last of 3 uly many of the men began to witholritw from the strike, which they now sat was hopeless, and these desertions still firther disheartened their comrates. On the $2 d$ of August the Sherite notified the men that troops were on their way to Fort Wayne, and that the blockade of the railroad would be raised the next day regardless of consequences. He advised them not to provoke a contlict in which their defeat was certain. A mecting of the strikers was then heid, and the men decited that they would return to work, provided that the superintendent would promise that no man slould be removed for taking part in the strike, and that he would use his personal inthence with the Board of Directors ts have all the grievances of the strikers redressed. He readily gave these pledges, and the men therenjom abandoned the strike and reported for duty. From this time there wasno further trouble on the Fort Wayne roall. Other puints of Indiana were also much exciter by the strike. The ohind Mississippi Railrond runs across the sombern part of Indiana. The strike extended rapidly along this road from Cincimati towards St. Louis. On the 2el of July freight trains were stoppedat Vincemes on this roali, but passenger trains were mot interfered with. Ne viokence wax resorted to by the men on this line, and after holding out for several days, the strikers, disheartened by the failure of the movement in other parts of the comery, surrentered to the Company: and returned to duty. On the edad the train mename shop men on the Vandaliat Railroad struck at Terre Hante and other puints along the road. The ma-Thine-shops at 'Terre llate, cmploying about six hundred hene, were closed. The strikers were quiet and orderly, and passed resohtions derdaring that they would absatin from drinking intoxicating liquors during thestrike.

One of the princigal centers of excitement was Indianajolis, the: capital of the state. The strike began there on the einh, and cmbraced all the lines rentering the city. The freight trains were stemped, and on some of the roads only the mail and express cars were allowed to be taken over the line. Ther fodituapolis and st. domis men
 trains afong the catire route to lie owr.

On the efth of duly the (iovernor of ladiana issued the following proclanation: Bany disalferned amployre of the railroad companies iloing business in this state have remouncoul dhair emphoments be(:anco of allemed ariovances and have comspired to
enforee their demands by detaining trains of their late emplovers, scizing and controlling their property intimidating their managers, prolibiting by violence their attempts to conduct their bosimess, and driving away passengers and freight offered for transportation. The peace of the community is sesionsly disturbed. By these lawless acts every class of society is made to sutf (\%. The conduct and hap)piness of many families now bertics to the grievances are sacrificed. A controversy which lelongs to our courts or to the province of peaceful arbitration or negotiation is made the excuse for an obstruction of trade and travel over chartered highways within our State: the commerce of the entire conntry is interfered with, and the reputation of our community threatened with dishonor among our neighbors. This disregard of law and the rights and privileges of our citizens and of those of sister States cannot be tolerated. The machinery provided by law for the adjustment of private grievances must be used as the only resort against debtors, individual or corporate. The process of the courts is deemed sufficient for the enforcement of civil remedies as well as the penalties of the criminal code, and mast be executed equally in cach case. To the end that the existing combination be dissolved and destroyed in its lawless form 1 invoke the aid of all law-abiding citizens of our state. I ask that they denounce and condemm this infraction of public order and endeavor to dissuade these offenders against the peace and dignity of our state from further acts of lawlessness. To the jurliciary 1 appeal for the prompt and rigid administration of justice in proceedings of this nature. To the Sheriff of the several counties I commend a careful study of the duties imposed upon them by the statnte which they lave sworn to discharge. I admonish each to use the full power of his county in his preservation of order and the suppression of breaches of the peace, assuring them of my learty co-opreation, with the power of the State at my command, when satisfied that occasion requires its exercise. To those wha have arrayed themselves against govermment and are subverting law and order and the best intereste of society, by the waste and destruction of property, the derangements of trains and the ruin of all chasses of labor, I appeal for an immediate abaudonment of their unwise and unlawful confederation. I convey to then the voice of the law. which they cannot afford to disregard. I trust that this admonition may be so promptly hecder that a resort to extreme measures will be unnecessary, and that the anthority of the law and the dignity of the state, against which they have so grievously offended, may be restored and duly respected hereafter.
The Indiana Central, Lafayette \& Illinois, and Bloomington it Western Railriade were being operated at the time of the strike ly reccivers appointed by the United states Circuit Court. The Judge ordered the United States Marshal to protect these roads against the interference of the srtikers, and it wis annomered that the force of United States troops guartered in Indianapolis would be used, if necessiry, wenforce the orders of the Court. The necessity for cmphoying fore never arose. however. The failure of the strikers in other parts of the commIry, and the manifest determination of the citizens to uplold the authoritic's in their repressive mansures. divheartened the strikers. Throughout the whole movement all the strikers refratined from violence, and sonvoided a contlict with the civil anthorities. Aftor lowding out for a fow days they hergan to show signs of weakness, and gradually surrenderall to their respective companies. By the 1st of Augnst, the Pronhle was over, and lnditila was at peace again. The roads had resumed their business, and no further interruption with them was experieneed.
('hicomo was grickly affected ly the strike. The city contains a large and well-organized party of sorialists and commmists, who on several orrasions






 Whe the edty，and the employmont of all the wase



 2ed of Juty，and were romsed to fover heat by tho u＇ws of the terrible outhorak at billabmerh．＂The commonists seremed to mexnt，in the geoneral mmeani－ mese that prevalod．1lacir opportunity for ploneriner


 He Unital Niture：
 frece now being mantaneql by the workingmen of the erreat railroarls thromenomit the land，wr expert that every member will remiter all pessible motal
 port all reawomalse motatmes whish may for fomm norerssary to them．

Comasmes：－We call porrattontionto fle following
 if adoperel．solve the elitlicoulty mow hending on all
 steps should be taken by tha nationn government to rmable it to take posscsixion of and wherate all the railroads and telegraple lines in the＂omontry，as is now thate in all the more mbancoel rommeries of Euroje，thus dest roying the prosent and most powar－ ful monopoly of modern times．Nemme．The ess tablishment in every state，and by the mational ger－ ermment，of an eighl hour work day hat wholoy－ ing all the idle workmen wherever inereasing mom－ bers，comstantly addal to by the rigid introduction of babor－saving machomery is a constant menace los nill laose fortmate c＇mongh io lave employment．and mast invariathly reduce wages lo a rato comsistent with Hace standarel of living．＂Tlue most ignorant and umeducated workers whose labor ean le utilized．
It was hoped by the commmaist leaders that these tocuments would liring them large reinforcements from the ermuine workiner rlasses．Throterhont tha
 among the cilizons of Chicher．All wrere apprelsem－ sive of the wered of the exeitement with the proorer Casces of the dily，many of whom wore sympathiz－ ers with the combumishs．Tha lator remarked that lew did not foar the lrish or fiermans．hat the large ＂lass of hatf－stvage Bohemians who inhabit the ham－ leer district of the city，along thes sombla branch of the river．Thesemon work for tifty＂ents a diy，are
 ripe for anything．Meetings wore hodel charing the
 Nerthwestern，amd Milwankee \＆St．Piall Railroad men，but their procedings were kept sorot．＂No oure knows what took place．＂says a lettor from（＇hi－
 torlay，it seems that they pascol resolntions of sym－ 1uthy for their striking brethren East．Tha exeite－ ment contimed during the ebt．The strects were theongen with people hurrying from point to point in search of news．and spreading tho most alarminer rumors．＇Tlue railroad men apporated to be the most
 their dread as on the previousday being exated ly the commanisis．The city athorities．in the mo：nin－ time，were quietly but rapilly praparing to deal with the mols．It was decider，if a rontliet diderome．it put down the outbreak at onecemb with vigror．Mus－ kots were sent to the varjons station－hontses for lle Hes of the polier．smel threx pieress of canmon were flaced in datare of an artillery（ompany oremmized
 were orileral baller arman hy the liosermor and








 wars nt once improvinal atml speakera majplial in quirk surerekjon．Six man aldrewnell thr erows at









 the most morning at len crolocok，for sign the platorm
 catrying thoir bommer hooring such inmeriplions as ＂W゙e wanl Work，Not（Harity：＂＂Jif！ly W゙ork， ur De：ath hy P＂ight．＂It was＂virlont。（an tho aiglat of
 was approaching a crisis．（om the mornatere of tho
 of the railrand lands．Early in the morninethe em－
 millew to the oflicers of that romat amd obemanded the restoration of their former wates．The fiepleral fil－ perimentent refused to areede to their domand， amel the Committee witholrew．＇lolue comploye＇s of the road at onere stop）eal work and joimed the strike． The Company mate no effort to satat ont any trains during the dity，and comsecpucontly there was mon dis－ thrbance．At nine coclock the freiteh men on the lllinois Contral，who work in amel aroumd the yarls， yuiesty slopped work．They were thee swithlamen and lielpers who make nu，the trams，mumberiner ：blout twernty－five ：the laborers whon hapalle freitht in the freight housen，mumbering abomt one hundred． and the men who pixk，aswort，and otore the freight in the cars．mumberiug about forty．They wre in ritad to strike ly a delegation from the Wichigan （＂ntral，and hy the general ferling of dissatiofaction at the reduction of paty which pervated wery chars of railroad emplowés．The strike wat orderly，and the men＂xhibited no ill dispontion，save in excepo tional cases．The tirst adion fakern loy the freierfotencer was the ioformal appointmont．hy geoneral ansernt．of a delegation of four from the switelnmen and train－ makers to call upon the Mastier uf＂lomajurtation， amel ascertain whether the wage cemblent be rentor－ （d．He received them pleasumtly．and talkiol to lhem fairly and squarely．＇l＇he mon＇on acod roasomably and like men．They said that they repreanted only the switehmen．On July 1 st a special reduction，motex－ temdiner to other cmplofés，had boen mate in their pay，aud they felt that injuatice laad heren clone in making them sperially suly ject in a therease in ：alary Thay had bern called upon to join in the eregeral strike，and they now wanted io know wherlefo Ine fare doing so，a restaration mightot not lue promined． If not．they would have netanan to grive the whats sirikers for unt joining them，ans！so would lue foreed into the sevolt．The delagution chaimed that there rethetions hat lnap made only on the men they re－
 faplaimel that it was a mi－taken indea that mempas reduction lad been mande by－kippiug（a ratain depart－ ments．leaving them natisinshed．（If coneres．if the men wished to srike，le could net prosemi it．ande．
 wonle try to prevent it，and proverve the harmany which hat alwaysesived．Ekt if they did－top worli．

He would shat up the freight honsen at once. The Committee left dissatistich, however, and went ont and reported to the men, who started immediately to go to the Michigan Southern yards to consult with the inen there. The result was the visit of another hetegation to the officials, which was more unsatisfactory than the first.

The rerowd, composed of somz 500 Michigan Central and Illinois Central men, then started in proces. sion to visit the other yards and enforce a strike. They proceeded first to the Baltimore at Ohio, where the men fell in readily and without much persinasion. The crowd of howling int and boys then marchet to the look lsland yard, between Fifteenth and Sixternth Strects, where they took the men wif tharir fonginces and tuld them they must quit. The mols shut the water off the tanks, and when everything was fixel to snit them, they startid for the Chicago, Burlimeton de Quiney. llere the mudid not offer the manst fecble resistance, but left their congines and switches at the worl of command from the mob. The agent of the Rock lsland freight house shut the doors at their approach, but was soon compelled to upen them arain. The crowd visited the Chicago diton freight ilepot, but weremet by the men of that roat whon had quit the Company, having stopped the 1ralfic, both passenger and freight.
The numerons outrages of the mob warned the civil authorities to be on the alert, and every effort was made to prepare for an emergency. The First and Seconal Volunteer Regiments and the Ellsworth Zouaves were held in readiness at their armories: the Graml Army of the Republic prepared to turn out with full ranks whenever callal mpon: and a large number of mecial policemen were sworn in andarmed. The Mayor issned the following proclamation:

HThereses, The railroatl troubles and strikes which have taken place in several of the large cities in the conntry have, in most cases, becon attended with incendintism and plunder: and. Whereas, some of the employés of a few of the railroads in this city have struck for an advance of wages, and have been joined hy the operatives in some of our factories: amd, whereas, it is feared that the bad and vieions element in this commonity will seize this as a favorable opportunity to destroy property and commit phoneter : theretore. 1, by the anthority vested in me as Mayor of the city of Chinergo, call on all good citizens to aid in enforcing the laws and ordinances, and in sutppressing riot and ciber disorderly condnct. To this end I riquest that the "itizens organize patrots in their respective neighborhoods, and keep their women and children off the pulhic highways. Promel of the desurved reputation of all classes of our persple as law-abiding ritizens, I trust and believe no act will he suffered or permitted by any of them now which woukd disgrace us in our own estimation and that of the country at large. The workingmen most ramember that ail indusirios are suffering from itmancial depression thromghont the country, and that acts of violence, instead of temaing to rertify lhoir wrongs, witl tome to deprive them of all sympatliy. The city unvornment has mate ample preparation on broted the lives and propery of all citizens, and any law lese ado will be pronplty detected and pmishati.

This was followed by a siccoma, closing the tiofuor sutoms of lloreity, is fullows:

Wherows, The pnblid mind is mmbuly excited owing to rumors of strikiss, abul the fate that some earitidl and bad mon are comererating and vombeavoring to promote "onfusion amb disurter, and deeming it for

 prejulices; threrfore, by virlue of the power imel ant luority vesterlin ma as Mayor of the rebly of ('hisat-
 ed, ant that moliduor be sold hy any licensed waloon krepor or others from and after six ordock P. m. of this date until further rontiop, waler pematy of tha law and forfeiture of liatose. All pmatolenen and
policemen are lewohy instructed to see that this urder is promptly and vigoromsy enforced.

On the same lay, the Governor of Illinois issued a proclamation, in which, after reciting that troubles were occnrring in certain States, he called ulon the people to aid in maintaining the prace; conjoined vigilance mpon Mayors, sheriffs and others in authority in suppressing violence, and declared all these questions must be regulated by ballots instead of mobs. The merchants of the city ilso armed their enyployés and made preparations to defend their cetablishments against the mob. "The strike," suid] a Chicagoletter, written on the 25th," has brought business it the banks to a complete standstill. 'Tha Express Companiss are mable to recuive currency for shipment. hence the city banks are mable to respond to the calls of country institntions for funds: The impossibitity of obtaining currency from New Jork is alno inconvenient, and jlaces some of the banks who had previously telegraphed these for funds to be forwarded lys express, in an awkward position. Exclange is virtually unsalable from the fact that it is seemed useless to remit East with the expectation hlat it will go through.

The police and the mobs have met face to fare abont one dozen times. On Twenly-second Street, which penetrates the Iumber districts, two skirmislies oceurretl. The police were attacked with stones, clubs, and missiles of all kinds, but they did not lose their temper nor their patience, and bloodshed was aroided. They have been provoked to the very verge of matness several times turing the day; many of them have been hurt severely with clnbs and stones, but they have obeyed orders and behav"datlmirably. At noon on the 25th, the aspect of affairs seemed so threatening, and the size of the communist mob appeared to be increasing so rapidly, that the Mayor issued a proclamation asking all grod citizens to organize themselves into safety guards in their respective wards, calted upon all to respect the laws, mad asked aid and encouragement for the military companies then under arms. This was followed soon after by an adress signed by the Mayor and a number of the leading merchants, bankers and journalists of the city, calling for a grand mass-meeting at the Taberuacle at half-past three P. m. At this morting there were fully sisty thomsand business men present, and a resolution was andopted approving the conrse of the anthorities, and standing by them in their eflorts to preserve the peace. A special meeting of the City Conncil was also beld, and a resolution was adopled giving the Mayor plenary powers. The merchants held meetings in clifferent parts of the city at night, for the purpose of effectiner an organization. The strengtl of the mob was varionsly estimated at from 25,000 to $40,000 \mathrm{men}$. During the night they catused serious trouble. I mob gathered at the chicago, Burlington \& Quincy round house soon after lark, amd began to put out the fire in the engines. For mearly an Ciour they stoned the buitling and crowded around the yardin, when all at onee a squad of police that had been sumomoned rushed up aml were met by a volley of stones. The ollicers drew their revolvers amd fired on the mol, which retroated at the first fire. There men fell; one was carried iway ly the mols. It is said that sixtere weres wummed by the tiringe, which lasted ten mimutes. 'floe oftioners at hemeth exhansted thoir cartridges and chareded mpon the rowd with their chabs, when they retreated. Soon aftor the sumal retired the rabble returned and soppeal the strent cars on the Ilalsteanstrest viaduct. soning the immates untit thy alighted. One war was form to pheress, and the others lakin to the stables. The rioters next irroke into a gun slosp, completely gullot it, faking away tifty hreech- foading shot guns, one lomdred and difty revolvers, and severnl kege of
 Tiridtreport, unt gave no further tromble daring the duy.

 frosperet was so threatrainer datal it wha deantoll leme to hold them at ('hicaneo.

Chicacen was profobmily excilonl on the monning of the éthl at duly, atul it was eromerally foll that the






 morninir a mereling of self-stylal workinermon, mainly mate up of romghe mad loafers, was comperod at
 stations. Noborly semmed to kbow what was eronace on, but it was anderstomblat ecrain coarpentors amil rabinm makers, reprosembing, or chatming to reproo sent, thair respuetive tralles, ware qathered there for conferente. 'Ther moh began to gather, and surged up and down on the sidewalk and in the stroet, is lowling, velpiner mob of irraumonible itlints. They talkerl of what they were going to to, and how thry hatl gotten things ald their own way, every langatage excopt Chinese be ing userl. The conmomistio elemont Wath lation represonted, many of the lowest clase of
 o'rlexek a body ofotwenty-five pulicemen apparared un the serne. . is they neared the sureine crowd, the loonting and welling becomar territice amb the mob began to peli the oflieers with loricks, wones, aud other missiles. 'The poliee stomel the attack efuletly for a fow minntes; but this encouraging the mob to greater violence a colaree was ordored, amel the men turnod upon their ascailants, hitting rierlat aml left with their (luhs, and hitting los lurt. Outside the police sution was another detac|lment of ollicers, mumbering about a seore, who speredily eame to the atswistance of their comrales. There was a very lively fight for a fow minutes, but discijpling and orginiza linn provid loo muth for the rioters, who were sum pat 10 roust. 'Ther police hatving disposed of the ont. sisers, foreed their way into the hall. In the second story laty found a panicestriclical moh of perhates om handreal and fifty, who, in their frantic efforts to escaper, rim hither and thither like rates in a pit. Many jumped from the wimiows. and so gaturl the sireret, hat some seizad chatrs and other pieces of furniture, witı which they attemptedtotefomel themsolves. I goond many ware latit dhring these operations. but nome fatally, and only one of the specian poliese received any xamage. De was led back to the sation, where it was foumd that, aside from at cut on the heat, of we ereat depth, he wats all right. and he remained on station daty during the das. Theserow spread itself over the neighborhomd. many of the rioters heving recovied a lesson which will lead them to respert the poliee at trille more in the future. While the rioting about Turnor lall was in progrese, a crowd of boysamd romglis gathered about the llalstead strect viaduet. The strect cars were stopjud, and for some time it appertod as if the reneths were to hase reverybing their own way. d detachment of twenty-five policemen sent to diopurae them was received with stoness and revolvers. The police returned the dire with round effect, knocking ơer several of the rioters with their bullets. but the remwd, being constathly swelled by reinforce. ments, maintained theirgroand. Štomes wore thrown at the police from the roofsof homere andifom alley. ways. llaving exlansted their ammanation, the of tiecrsat beneth retired. the mob following, lwoting. reding. amb throwings stomes. On mexting with a
 and mate a vigorous elatige on the rioters. and sonttered them in all directions.

This defeat by no means elishtartemed the moh. and they wathered again at the llabetuad Sireet viataluct. By elevern ócolerk they mombereal fully teu

 al to inmpire than with the shlore of mangige : and it



 alfairs was sh lhroatorning lhat a metamer bond of per

 proasch ufthe puljer. who marelaci from tha Ilarri-
 Had to the wher side of the visulace howlinis like





 frustraterl liy a free use uf the batom antl as diuplas of gistols, from which blank araritgen wore dirad. Tha mols than fitchod itwilf leadlenser down : bse the
 Wront east, in the direction of the 'hoseago, lbarlineg-
 monnent of inatotivity during which the polico forme rd in line amel freparial for at charer". "1lhis was the signal for a wowor of stonss. piolol shots und wher mssiles. For a little time the wildent disoreler presvailad, and it was evident that tho pulice werre julat a little atarmond, ans well they tairhat have beren, at tha

 short intervals, in reply to stones that were beinge continually pelteal down from all sider. W゙itla evory moment of clelay, during whicla the rioters were winhasmed, the: beljef grew is their mimele that tho poslice were not firing bullets, and they leceran surgine near at central focus. several timesi dida fow of the mora daring attompt lobreak in upon the potico. and "ach time they were surecessfully repulsed. The polico had now bat a lew rounds of ammanition loft. and it was evident they condel not stand haeir grountl manch longer maless roinforcements came. Siecoitis that the rioters were arain elosing in on his mon, as if they knew they could not fire many more times. the Siergent gave the orler to lis innato fire wif rapidly all the charges they latel left, and at the samu time to withoraw across the vinduct towards the stalion. The order was obeyed, and the poliere having exbansted their ammantion, formend in line and started back aceross the vialuct. "The tremembons crowil of madelened ronghs at once started in hat pursult, theowing valley after volleg of stomes, which
 tempted io genard their retreat at first, but sumb found it absalutely impossible, amel they tarned ind 17ed. The chase for life awd death was nome of the wildest exeitoment. The vast throms lmmer rlowely thpon the herels of the poliere, and did mat cerase in pursur till the later arriverlal Fifiewnth strect. The pusition of the police was now eritionl in the ratrome.
 sistance should come it was phain they womld nover reach the station. It this moment, however, a chacer was heard. and a body of vetoran cavalry dashed inin the street and rode rapilly at the rioters. This force was followed by several large wagons. learing reinforcements of police. Then" (amme wb an a rum. and the men dismamoterl and joinet thoir comarade who had matle so gallaut a stamb arainst the molb. When the rioters sib ilucavalry ami roinformentent of police they turned to retreat. Then herann the most destructive areme of the morminer. $\quad$ I- they ran the police began firing. The of the mob was- hot through the brain and instantly killed; another was killed by a projectile larled by ome of his own marty. "The police asal their clabse oftectively. sparing bin one. The pulice mati no attempt to cross the


The cavalry pushed on over the bridge and drowe back the rioters. During the remainder of the day the cavalry were kept on duty in the vicinity of lialstead Street, breaking up rrowds wherever they would collect, and capturine rioters, over one hmiIred of whom weresent to the station houses. Ahout weven o'elock orders were received by the serond Illinois Regiment to proceed at once to the seene of disturbance. The men were instantly gotten under arins, and the regiment set out on the donble quick for Itaktead Street, atecompanied by two pieces of artillery.

During the day additionald companies of regular troops arrived. The regulare were posted at various Doints in the city which were believed to be in danger. The Second Ithincis Regiment was kept on duty at the IJastead Strert viaduct, and the First legiment was stationed close by. Parties of cavalry and police patrolled the city during the day, making many arrests. The rioters did not dare to gather in force again, but small crowds constantly assemblo ed on the streets as fast as broken up, and white no elfort was made to oppose the troops with force, the rioters vented their rage by cursing them roundly. Several minor encounters took place between the police and the mol during the afternoon, but no general outbreak was attempted. The rioters were still noisy and loud in their threats, but they were ton thoroughly cowed by the determined attitude of the military and police to attempt a renewal of their efforts of the morning.

The night of the 26 th passed away withont further disturbance, the city being held by the regulars, the volunteers and the police. The rioters were fevcrish and restless, limt aroided a confliet. They had lost their courage, and were afraid to meet the force opposed to them. On the morming of the with a "rowd was reported to be gathering in the equarter known as "Bridgeport." 'Tlaree cavalry emmpanies and two companies of the Becond Regiment were ordered to the spot. The Board of Trade cavalry and Colonel Agramonte's veterans, sume three homdred strong. repaired to the secne. supported by the infantry. The moh was dispersed without dithenlty. The Hadstead Strect viaduct, the scene of the disturbance on the previous day, was held by the seceond Regiment. The eavalry patrolled the western part of the city throughous the day. The mob was sullen and cross, but it was beaten, and the danger was at an end. The police and the cavalry had orders not to allow people to gather in crowds in the streete, and this order was rigidly enforeed. The Mayor issued the following proclamation:

The city authorities having dispersed all lawlessness in the city, and haw and order being restored, I now urge and repuest all business men and employ"ry senerally to resume work, and give as mach empoyment to their workmen as possible. I consider this the tirst daty of our masiness commmity. I am now amply :bble to protect them and their workmen. het every one resmue oprations, and report any intrefernce at polier hem-phartors. Citizens' organi\%ations must continue in foree, and on no account refan their vigilanece as the canse of tromble is not lucal and not yet removed. All such organizations shonk form themsedves into promanent hodios. rontinue on duty and report regularly as heretofore.

From this time the exeitement in C'hicago gradhallys subsidel. The commmist leaders and the if desperate followers saw that they were no mateln for the fores: at the command of the anthorities, and were territied by the wholesahe arrests of their commades. They slonk sut of sight, and in alay or two ("hicago was enjoying its mormal repose. Ther railroad ment dishererneneat ley the fature of the strikes on other parte of their roade, surrendered to their respeective companiss. and remond to duty at he old wares.
wher parts of 1 linnos shared in the general ex-


oria a mols weizel several of the railroads entering the city, and attempted to stop the rimning of the trains: The local anthorities took prompt measures to put down the outbreak, and the volunter companies of the town were ordi rech out to assist the police. On the D(ith of July the police mald a gallant charge on the mob, and arrested there of the principal lealars. The prisomers were taken to the jail, and the mol) followed with the intention of rescuing them. The military at once repaired to the jail, anil forecel lack the moty at the point of the bayonet. The moth, deprived of its leaders, was powerless, and though threats were frecty intulged in, no further violence was attempted. On the zith of July the Governore of Illinois issued the following prodimation :

H'hereax. Certain persons active in the violation of lat have assumed to interfere with and prevent the movement of railroad trains in this state and have songht to intimidate lonest workingmen engaged in the avocations by which they earn their daily breath, and to compel them to rease from their babor; and

HThereas. This conlition of atfairs continues, and is intolerable, entailing ats it does disastrous consequences, the nature and (xtent of which it is imposwible to foresee: Therefor 1, Shelby M. Cullom, Governor of Itlinois, acting minder and by the authority of the laws of this State, do command all such riotous and disorderly persons to desist and return to their homes, and for call upon all sheriffs, Mayors, and other officers charged with the exechtion of the law's to break up all conspiracies against the rights of property and of persons, and to that end to employ every lawful means in their power, and do enjoin upon all good citizens to assist in bringing about the restoration of order, the resumption of husiness, the moving of trains, and the revival of manufactures. I further give notice that the entire military force at my disposal as Commander-in-Chief of the militia will be employed for the support of the civil anthorities in this endeavor, and that orders will be given to the troops to use whatever amount of force may he neeessary to eompel obedience to the laws. In testimony whereof have heremuto set my hand aud cansed the great seal of the State to be affixed.

There were slight disturbances at Decatur, Elfingham. Galesbarg, Joliet, and C'arbondale, but no outbreak. Braidwood, an important place in the mining regions, was profoundly excited by a strike of the miners, but no trouble was experienced. At Eastst. Louls, on the Minois shore of the Mississippi River, mplosite the city of St. Louis, there was quite a formidable strike, and the Statc athorities were compelled to break it mp by a concentration of the State tronis.

The city of St. Louis is the terminus of a number of important railway lines, The Mississippi is here spanned by a magnificent iron bridge which gives St . Lonis direct comertion with the States lying east of the great river. The eastern end of the bridge is at Enst St. Louis, in the state of Illinois. Here the shops and round houses of the various railroads using the bridge are located. East St. Louis is thus a very important rallroad point, and being so closely conneted with its greater neiglabor over the river, the strikes on the two sides of the river were reatly: one movement, and masi he treated as such. On the 2eth of July, signs of excitement and disaffection began to show themselves at bast st. l,onis. A secrat meting of the railrosdmen was held in the afternoon, at which it was resolved to make a formad demand upon the varions hinco centering at Not. Louis for minerease of wages, mint to inangurate anemerat strike. shomd the demand be refued. After the arlournment of the secer meeting, an ont-doormedinig was organizol. in which sternt two hundred mombers of the Firench, dicrman, Bolemian, amd Eneriah sections of the workingmen's parly of the Tniled shates from st. Lomis participated. Their
 asm. Several :perdies were made hy the leaders of

His wrodion, in which they ullored sympathy for lhe









 followinis racolations:




 Workingmon's party uf the fonited statose, hartily sympathize with lla- comployós of all the milroatco of the reonntry who are attempting los serourr just and "fuitahhe reward for their labor. la, woded, 'lhat we will stand by them in this most rieflemom strugerle.
 genel and evil report, fothe ent of the strugerse.


 a general strike was lown on all the Foats at fiant
 nombered ly the strikers that passourer athl matil
 freight frains would he permitied topats. Thar morn wers guiat and orderly, but determined. 'The Come
 no difort torn their froight trains. The men of the Joledo d Whabsis road had not latd their wates reduced. and decomred that, thanglo they hasl wo
 followship for the erniphote of the other roalds. In refort was made during the morning to start afroight train on the chicaco if dton roitl, lat tha strikere Molped it and took it back into the gard. Vverything was very fuice in the Enion depot, and in the yards of the (nion Railway \& Transit Connany of St. Jonis duriag the morning. Once stork train was allowed to cross the bridere, lat nome were permit. tud to pase after twelve bedock. The amployes of
 fiftern in numbrro, struck with tue tiramen and hrake men of the railroat. 'Tha ermployés of the ('mmpany on the st. Lanim side of the river, whose duties are performed at and in the vicinity of the L'nion depot in moving trains in tha gard, through the thanel. and across the britge, dill not formally strike, hut they were ide for the reason that there was nothing for thanto do, actlostrikers arrose tho river womld mot permat the frefirlt trans to pras. The Tramsit Company rexeinded thair ordarfor at relurtion of tem per cent. on wages, ant notitiod their amplovés fo that effeet. but the latter fook no notiore of it. Dur-


 yet, dor hat the employés manifered any disposiionn to take action in the matter. The St. Lanis.
 need with the Enion depmet. but las its wwn dejot in the somblern part of the cily. Everylhing was quict on that roabl, and business was prousessing in the
 suctial fermit to the National stock yotrl people to
 fur the stock there. Theg ako pormitod tho [aion datilway \& Transit ('ompany to seleet ten men to switels jassenger trains coming to the delaty depost at East Sit. Lonis, amd destimed for the city". On the morning of the 241 h , the East tit. Louns sikikers, en-
 thorities changed their plan of "peration am! re-



 halt there. whind is cumbabary with all traiam, mad Whan the train was jolst gotting in buntion, \& wriker



 claraton wat ariol





 woblel not intorfore will patainger lravol. Voudary




 sonsion in the ranks of the mrikers, many of thern comtending that the train Gomshl be allowiol for pro-
 hour was - pernt in wrangling mamig the mon, and th.
 gro, and it is unnerossary to cay it wont very rapilly
 the ghssergerss insidea, and twor or threse of the badios
 se'imus when the train tonk it duparture. W"lant the mail train on tha ('airo narrow esanere road arrivad
 from the mail eosach, and tha conductor perexemberl without his jassongers. In the meantime the leade.rs telegraplacd aterosis the river to their reparasentat tives in late eity not 10 allow any mare prasernorer [risins to pald ant from the [nion depost. . It elewan o'clock, iwanty-five strikers. boaralull an (engine and
 the ["nion depot. "]"his wis the first apperaranoes of How strikers in the limits of St. Lomic proper, and their arrival cansed a great sensation in that hitlorto guiat neighborloorl. Tle ${ }^{\text {g }}$ fuickly ulighted from the engine that had hornce them over, and. with at shout proceeted uerosis the depnt sited-, where they seized two engines helonering to the Di-souri robll. and, monntion the engrines, steanad rapully mp tha track a mila and a half to the mathinu shops of that comprany. The workmon in the empley of the Dim
 bering two hundreal amel tifty, had locen adviect by the strikers that they wonlal le visitul duriner lhe thys, and when the strikers arriverl, thay receivel them eordially, though they eontimued therir work: and in answer to the quesion whether they were willing to strike, replied that the l'acisic" "ompany had pattially acorded to their demands, and they thought they shoulal cont inne at work. " lbut Toli must help ise whe" repliced the leater of the strikers, ${ }^{\text {a }}$ aud in order to do llos gon must dut work." I lome conference betwern the strikers smal workmen eusubd, and, at the end of half an hour. the former. desparinge of sue ossin indueing the late ter to strike, withdrew. A manlor of puliermen
 the entrance of the strikersinto the shapse. lant the ir e-ITorts were fruitless. From lore tha strikers ri. turned to the [nion depot. and at twoodocek, whea the belleville paranger aceommondation train on tho C'aires road was about lo start ome one of, flue Jeabl. inse strikers. stepperl aboted the engite and whis. fered to the enginect, who, with the titeman imame diately left their posts, and the -irikers unmonnmet that the train wonld sut be permiteed toleate the dejoot. (ifticers of the road expontmbatell. but for over iwo homrs the strikers wore firm in their refusal io grant the reopuest. At the cond of that tinse the frain War: allowed to gon. A harigeforce of pioliee ware un
hand but did mot modertake to interfere with the strikers. Three or four thousiand people, composed of discontented and unemployed laboriug men, gathered under the depot sheds, and much incendiary talk was engaged in.

Is a result of these riotous demonstrations the polied eleared the saloons in the neighborhood, and ordered them to be kept closed. About four o'clock another engine, with the flat cars loaded with 400 strikers from the eastern shore, arrived at the depot, and were received with loud cheers by the crowd. The strikers disembarked, formed in line, and, with the music of the fife and drum, warched in the direction of the Pacifir machine shops. At every street crossing the procession was joined by numbers of sympathizers, and by the time the shops were reached there were $2,000 \mathrm{men}$ in mareh. Arrived at the shopss, they fonnd that the shopmen, being adviset of the thpprothen of the strikers, had already yuit work, and were on the platform ready to receive the strikers. A representative machinist received the visitors and made a speech to them, saying the shopmen had concluded not to strike, but to quit work in deferencu to the demands of the strikers. They had no canse of complaint against their employers, but would not return to work until the strikers had secured a redress of their wrougs.

From this place the strikers marched to the North Missouri Railroad track on the levee. where they took possession of an engine and ten flat cars, and boarding them proceeded to the round house of that company in the northern part of the city, where they were met by the employes of the company. A conference was helci, ind sis a result the cmployés agreed that no more freight trains should be allowed to go out on the rond from St. Lonis. The strikers returned to the Enion depot at six o'clock.

The arrival of the troops had no perceptible cffect in cooling the ardor of the strikers, the leaders declaring that they would avoid collision with the troops, but were detemmined to carly their point at every risk. By nightall nearly all the strikers lad deserted the eastern side of the river, and were congregated at the Union depot, where they passed the night. During the day there was great popular excitement throughout the city, and the strike was the absorb.ng theme of conversation. A serions feeling of apprehension was abroad among the people, and a general belief prevailed that the crisis was bound to result in hlood and devastation. The city anthorities had been very passive since the heginning of the strike, and their attitude excited much indignant comment at the time. It was based upon the fact that there were not 1,000 stand of arms in St. Louis at the disposal of the authorities, and it was deemed hest not to undertake to interfere with the mob until it conld be done in an effective manner. In thes monatime every exertion was made by the municibal authorities, in concert with a number of prominent cilizens, to nbtain arms and ammunition for a force of five thousand men. On the night of the 241 h the Internationalist, wr Communist leaders, who huve a large following in St. In ouss, held moretings in several parts of the city, which were atternded by monster madiences. The most incondiary speeches were mate and threats of burming the bindings of the anewspapers, whicle hat eriticised themenly, were indulged in. Processions of excited men marched through the streets yelling and making other noisy femenst rations. A large proportion of the rity police force had been withlrawn from the regular beats and lowd in roadimess at the points of danger.
'The morning of the 'asth found the city greatly exrited. Ahont nime o'elork a (rowd of 1.00 ) mon assembled in latas' market place aromulastand eront(d] by the workingmen's pirty, while two or thee thonsand spectators gathored in the vicinity. The crowd was made n! mostly of wirc-workers who had struck. and strikers from othor mannfacturing entablishments. It tran o'clock they formed in col
umn and marchet past the ('ity Jall to Turner Hall, where the executive committee of the workingmen's party was in session. Half am bour later a body of 500 , madr $11 p$ chiefly of negroses, was sent to the levee, and marched its entire length for the purpos: of inducing the roustabouts to join them. The strikers said they wre to receive explicit orders from hour to hour. and expected to stops all manufacturing estahlishments before night.

A crowd of 2,500 people gathered at the Union depot, hut nothing of importance occurred there The only passenger train which passed over the hridge during the morning was the Toledo, Wabash d Western, the strikers making an exception in favor of that road because of its position toward the enrployés in the past. On all the other rouds only the postal cars were allowed to leave. The Chicago d Alton people refused to be dictated to, and at the regular hour sent out their postal car and laggage car and one passenger coach. The train reached East st. Lonis, but the strikers refused to allow any but the engine and postal car to proceed. This discrimination was declined, and the whole train was backed over to the depot on the city side. The Missouri Pacitic machine shops and freight depots and yards ware closed, and none of the men were at Work. They toll the othicers of the road that they were satisfied to work, but that it would only precipitate an attack and general trouble with the strikers. The position of the men was approved by the company, and the shops and depots closed by mutual consent. The company sent ont ibree or four freight trains between one and five o'clock in the morning, but decided not to start any more for the present.

A large delegation of strikers from the city visited Cheltenham, four miles west of the city. during the morning, and ordered the men ont of the smelting and tire clay works. They offered their employers to continue at work if protected, and a request was sent to police head-quarters for a detail of police, but it was refused. The police force was on duty at station houses, and the city was almost entirely unpatrolled. The force was kept in reserve, to be used only when the strikers shonid resort to violener or a mob should be formed. Another urgent request for a detail was received from officers of the Union Street Railway, an important line, which runs from tiourtls and Locust Streets to the Fair Grounds. The employés notified the company that unless the recent cut of ten per cent. was restored, they would strike at twelve o'clock and stop the cars. Fears wre entertained for the safety of property. The police were instructed to be in readiness to march to the stables uןon the commission of any overt act, lut not before.

A "(itizen Organization for the Protection of Property" wis organized at the Four Courts. Neetings ware held by citizens in varions parts of the cita, and companies were also formed and othereral. Thise at omee reported for duty, amel by nightatl the organization numbered 1.500 armed mev. I company of tifty men was organized for gun-boat service, and placed on the eity harbor steamer, with orilor to patrol the river. The work of organization was denrided on rapidly, and by monn the noxt day 10,000 ritizens had enrolled themselves. At ters orelock wn the morning of the 2tith a pruecession of 2,000 mon, comsisting partly of workingmen who lad joined the strikers, but mostly of loafers and idners, marehed from Lacias Market on the minnfarfuring district nortls of 17 ashington Avenme. 'l'hey tirst visited Bebehers' sugar relinery, where some 400 'mployes were foreed to tuit work on the day before, and timeling the doors closed, broke them open, rushed in, extheruished the fires in the furmaces inm displaced the machinery, so the employés eomld not retara fo work, as they latel unommed their intention of doing. Many of the workingmen protested ugainst injuring or destroyiner property and abom
donmed the processiom；but fla anole contimacial its batrels，visiting abont forty differont factorias and
 aterereating monrly anc thensibul，lo quit their werls and clone the dours，althought the canloyós in many cases earnastly protestad atoninst heing inforforail
 mones elomal by the mots．No reximet of persome wits slmwn，women atnd mirls beiner trated in the sathe manter as the noll．All wre formed for stop work whether they were willing er mot．＇J＇Ja enpera－ tions of the mol）were gemerally motorm．
 －© the ollictrsof all the steamberat companies and in－


 tortionate ？ ing frem sixty to ons alumbral jxem ceent．They were
 the whati tutil tivio dematmes were compleled with．

 workshops and place of mannfartare in St．Lomis． As was to bave luon expacelot，the nerremes were by far the most turbulent and mamamacreable of the rioi－ ers．But little busimess was transanferl in the city． Many of the stores wero clomal，and the work if arminer ame drilling the citizons＇fore at the lounr （＂unts was earried on rapidly．The S゙berifl atso or．
 ernor arrived in the＂ity during the morning and gave his add to the work of muppressing the disorder． The arming amd drilling of the cilizone was carried on arefively all morning it the Four C＇ourts buikliner． No ontward demonstration was mate up）to noen sase that heavy ratards ware on patrol daty in front of the buidding．Two darge brass fiedel－piecoes doaded with shrapmel，and with horses attacheod and reinly to mowe at at moment＇s notiore，were kepl in wating in The yard of the jatil in charge of a comanathy of sixty men．About half－pust ton öclock a large＂Towd marehing in prosession arrived in front of the fentr Courts butding．The riotore broke ranks at oner＇， sund surging up to the patyoment pressed hard upon the emmeds，who were doing duty on tho side－wnlk． The guatds wore immodiately 「einforead by eletaids from within and the companies were formed tor re sist anattack．A detiteloment of poliere left the builat－ ing at it rma，chareded the rioters，drove them latek a slort distance，and arrested twe of their loatlers．． few stones were thrown，hat the mob made no elfort at resistanee．Is the poliee withelrew，the mob） prossed up close to the side－walks agitin．and jevered atad taunted the military foree in the most insinting manmer，daring them to tire and commence at tirlat． The police pressed tho＂rowd backugata，and it with－ drew for a stuatro withomat resistance． 1 number of moisy and unrnly men were arrestod by the police and confued in the jail，No disturbance ocroursed luring the day．In the aftermon thes（zoncernor of Misconri issued a proclamation ealling upon the rinturs to cease their disordirly eombluct nut inter－ feronee with private property，and to disperse．By thu morning of the enth the city anthorition felt theni－ solves strong etoongh to put down the mols，and de－ temmined to check the disturbance．The rioters，1t］ to this periond，hate beed ancourtiged by the fathere of the prolice to stop their law lossincos．and many of them wore eomvinced that noither the layor，the policer，nor the citizens＇fore would dare proveke a contliet with them．They were now to dearn thair error．It an early laur in the 2ith the mob began
 wards of two thousand men were congregated in tha immodiate vicinity，wating to obry the orders of their sobetled exemive committoe．the body spe cinlly delegated todirect the movement of the erowd． The dast prochanation of the Mayor und that of the state（Fovernment ennmmading thento disperse and





 that any attornu）on the pmrt of poliof or militin to

 tirn andl that an armod lore womlal ant dare lo mor－
 it was resolval by lise rity anthorition lo break it up


 Wrore ordered to jorereed to the hall nad make the are rests．＇That there shomblor ne fathro，live lamalral
 lional（inarl，will mone pioere of artillery，were ordor－
 cerowd ofter any resintance，or atiompt on reacene the


Abont three ordork the military forer．heablenl by


 while the piowe of artillery was propared for aretion． Tle military atranced no［urflacr，but the orrlore was
 hall．About ome－half of the poliere swept down wh the mobly a gallesp，acatcering lhe rionters right and left， driving fully thee thousand men lnefore them．＂They drew their pistols nud chargad on the crowd\}, riding their lurse allong the siduwalks，using their revolv－ ers as clubs whila the least hesitarcy to move on oce corred．In tive minntes the：street was cleared，and not a rioner was io be seem in the viofinity of sinnme ler＇s lTall save those in custody．bu the meantiane the other part of the police：foreco land adranced to the foot of the siairs leasling to the abose ladl．The whole squad went up，and two minutes later they brought down about seventy men whon they found in the hall，atud placed them betweron limes of forliees， armed with momets，and the whole thing was wer－ Every one in the upper part of the boniding was ar－ rented．One man attempted resistance，bint ablow over the bead from a chab subelued hisn very（quickly． Javingr secured their prisoners，the police and mili－ tary marched back to the Four Courts，datul wre greeded along the route with eheers from the eitizens． After the departure of the polices，a few or the mob returned and indulged in bitter domanciations of their leadors for deserting incom，but it was covilent that the backbove of the riotoms asmomblage was complotely broken，and that they would not likely have such another lase gatherinir．Inother victory wat won ly the anthoritios earlier in the day．Whan the 27th opened，the［nion depot was hold by a force of sirikers．Thae civil authorities resolveni to put an cond to this state of antrairs，and at claven oivock a battaljon uf four laumbed mon was dese patehed ［rom the Four Courts（0）the Enion bepot， with orders to take prossessiou of and uecapy that building and drive out the strikers．The atrival of the military was as surprise to the strikers．who hell the depot in large force．Abont hadfopant eleven the battalion marched in with laadeol rithes and tixal beyonets．Withont the loss of a monemt the arder was given to cloar the building and yards，and ther tronps executed it with a will，arivime out the strik－ ers with the bayonet．The movenemse of the froops wore ereeted with cherers and yall．The tlepor and vard－leing secured，the authoritio announced that
 in st．Touns．Encouratred by dav promive of protec－ tion．some of the rostels on the weat－ithe of the Dim sisijppi resumed their frejertat trathic on the Zith，and the rest preparct to do at in the next day or two． The city anthoritios also anmonmed their readinese tw furuish ：rmed euards for－ $11 \%$ h－hw sind manulsc－
turing estabishments as elesired to resume work. Three meetings wore called by the Exemutive Committee of the workingmen's party, in various parts of the city, on the night of the atih, but two of them were total fallures, the speakers not apuraring, and the small crowels which gathered at the sijpointed places soon dispersing. The third meeting brougbt together quite a large crowd, but before the meeting opened the crowel was dispersed by a force of five humelred policemen. The mob was now thorough?y cowed, and the danger was over. The $28 t h$ of Jnly phased away quietly in St. Louis, there boing no disturbance of any kinc!. A number of the leaders of the outbreak were arrested and imprisone : their followers inade no attempt to rescue them, having no desire to meet the five thousand arnud citizens. the regulars, and the police who now stood ready to crush any uprising. On the 28 th, nearly all the roads on the St. Lonisside of the Mississippi resumed their freight business. Sunday the gyth, passed away tranquilly. and by Monday the danger was at an end in sit. Louis, and the business of the city had resumed its acenstonud course. The expulsion of the strikers from the Union depot on the arth contined the strike to East St. Louis. The strikers congregated there in considerable force, and, being very bitter over their defeat in the city, deelared that they would maintain the blockade on the lllinois shore with even errenter vigor. They were not to sinceped, however. The (Mhio \& Mississippi, and the St. Lonis \& Southeastern Railroads were being aperated by receivers appointed by the [nited States C'ourt. The Court ordered the United States Marshal to prevent the strikers from interfering with these roads. The strikers resisted, and the Marshal, being umable to axecute the orders of the Court, asked for troops to assist him. 1 lis appeal was granted, and orders were sent from Wishingtongranting the Marshal all necessary military assistance.

The City of San Francisco contains a large Chinese population. Between these and certain portions of the white inhabitants there has always been a bitter enmity. The working classes are especially hostile to the Chinese, as they regurd them as rivals in the labor market: but the bitterest enemies of the Mongolians are the "lloodlums," or the idle loafers, street loungers, and "bummers" of the city. Many riots have oceurred between the Chinese and their (nemies in San Francisco, and not long since it was seriously proposed by the whites to organize a delitherate movement for the purpose of compelling the Chinese to leave the entire state of ('alifornia. It was well understood in San Francisco that this feeling of latred to the Chinese only lacked a favorable opportumity to break out into open hostility. The news of the Jabor tronbles in the Eastom and Western States was received with profound interest in San Francisco, especially by the working classes. On the evening of the 230 a workmen's medting was liekt, and was attended ly abont 10.000 persons. 'These riots wre in no way ronnected with tho railroul riots east of the Rocky Jomntains. They were as brutal and unprovoked outloreak of the worst elements of the city, and were cansed by mothiner buta lowe of violence and disorder on the part of those who romacred in thom. Is they oceurral simultaneously with the railroad trombles in the Eist, they are erencrally dassed with them: and for this reasom have beren notieced here.

The anthracite coal restions of Pemenslvania," gern"rally rocogni\%ed ats the 'northern." "middle", "and soulhern' coal basins, ar" romprised within or bounded ly a line of mountain, which, forming itwiff some distance eastwarel from Mamoh ('himk. lakios, under the mance of the 'Sicomd llountain.' : sonthwestorly coursie to the Susyurhanma liver, leaving the towns of Manchl Chank, Thmatrat, I'oths. ville, and 'Tremont to the morth; thence in a morth-
 nearly sontliwest from Tower City; themee morth-

Westwardly, an " Berric's Mountitu, again "rossing Ho Susquehanna; thence southwestwardly to Taylorsville. as the "Mahantongo Mountain'; thence nothwestwardly again in the direction of the Suspuehanna, as the " Line Mountain'; thence bearing in a southeasterly direction, as the " Little Mountain,' leaving Shamokin, Ashand, Shenandoah, and Mahamoy City to the south, to a point in Union Township, Sehuylkill Connty. Jlere the monntain runs almost due nortl for some miles, as the " Catawissa Nountain,' when its course is again changed to southCasterly, as the 'Nescopeck Momatain'; thence north and nortliwest, as the 'TVoming Mountain:' and thence again in an easterly direction, runnine north of Wilkesbarre and Scranton, as the - Shickshinny Mommain.' Within the area inclosed by this mountain lies all the at present discovered anthracite coal of lennsylvania. It embraces not only the large basins before named, but also a number of comparatively small detached coal fields.... Within this area are enclosed the coal producing portions of ("arbon. Schuylkill, Dauphin, Northmberland, Colmombia, and Luzerne Counties, and it is to a great extent occupiod by a series of majestic mountains, the Sharp, the Broad, the Bir Malanoy, the Little Malanoy, the Locust, the Green, the Macauley, and others." Dauphin and Columbia are agricultural as well as mining counties, but the others are strictly mining counties. By the remsus of $18 \pi_{0}$, the population of the purely mining counties was as follows : Carbon, 28,144: Schuylkill. 116.428; Northumberlantl, 41.444 ; Lazerne, 160.755. Since the census of 1870 the population of these counties has largely increased.
The business of mining coal has drawn large bodies of men to these counties, and has gathered them at fixed points, in cities, towns, and large mining settlements. The amount of arable land being small, on acronnt of the monntainous character of the country, but a limited portion of the area is under cultivation. The natural formation of the country is very favorabe to lawlessness. I walk of a few minutes from any of the towns, in almost any direction, lads to glens and haunts where one might bide in safety for months from the police.

Not only is the singular feature presented of nearly the whole popalation of the coal regions living in cities, towns ind small stetlements, often called "patches," but the character and habits of the population in the several seftlements differ widely from each otber. Scranton. Wilkesbarre, Mauch Chunk, Potsvinle, and Tamaquat are all busimess centers, wherein are lorated banks, manufacturing establishments, the general ottices of railroads and coal companies, large stores, aud where, to a mreat extent, the wealth of the region naturally clusters. The cities and towns are not only business centers, but of f(r additional inklucements, soc $\cdot \mathrm{ia}$, celucational, and religious, to the coal operator ant those whose means enable them to retire from business, in the selection of a phace of resibence. Asa consequence, they have lost, in a great degrese, the distinctive character of mining seftloments, and difer, perhaps, from other phaces of equal size througlaout the rountry only in bring more cosmopolitan; this arising from the wide range cmbrated liy their business operations, and the varied rhatracter of the inhabitants. Towns sucl, as Ashlame, Shommdoals, Mahanoy ("ity, Nlinorsville. Sl. ("hir, lla\%lecon, Pitistom, Jlymonth, and many others of large population, to a certain degrex partuke of the character of husiness and social croters, thet the mining classes, being laverely in the majority, requlate and altogether control them. Besides these two classes of towns there are a great number of 'patches' or settlements, whose population is cutircly composcel of miners and laborcrs and those whose business is directly or indirectly commerted with the mines. Wrlale the admixture of the foreign element provades every part of the region, in large cities and towns native lom citizens of the
 the power of the foreigher is ansobolate. In thene lame will further tivisions ure: make, some boing ulmont exdusively compmen of Irishmen, with mativer of Quenens amb other eromation, Irelund, largely in then majority. It surlo lowns mot only have the manmers,
 Ineon tramphanted, but aven the lemal pre judiens incident to cerrain lewalitios in that lomatiful hat in many respacts mafortumate land. (bminer luere from fron the rontrist with the Iamelloriand band agent in Iredand, with no surromandiner intlumens to trach them thatir erres, they tranker at projulice whicht has grown with their igrowh and strollathorl witl
 whom they derive the ir sumaimenceramh meder whene

 an instriment of oppreswion, mater the intluencer, sometimes, of real wrones, but more fropurnily under a mistaken belief of oneromblament unem their rights,a spifil of resistance is aronseel, which wieke.l and designing wretebes loave so disel and controlled ans to render the mudeneted commationion of horrial crimes not only may, but, to a wertain extemt, symmathized with. Thiat her ahowe is mus jutitiation for sucle a state of atfairs is trun; nevertheleses, it explaine, or temds toexphan, the pessibility of its existence. Such is the region hat hat beome notorious throughout the Grion as the country of the Monlie Marnires amb the secme of their terrible crimes.

The order of the "Monlie Magraires" is of foreign hirlh, and was imported into this cometry from Irelancl. It wate oreanized there ly the Irish perasantry as a means of opposing a combined resistance to the exactions of the landords. Bormela to this country by the emirrants who fommen whe in the eom regionis of Pemsydania, it berame an organization which songht tio control the relations of theminers towarts thuir employers and to comped the hatter to sulumit to any chemand the former might impoee won them. The "Ancient Ordir of llibernians" is a largu and powerfal Irish socinty extending thromernent the United States. 1ts olijecestare professedty bencerolent. It is regularly ineorporated under the latws of the varimes Site in which it exists. Outside of the coal racions of pernastrania. there is no positive proof that the society is at all criminal in its charater. The worst diarger hast has been benught against it is that it supported amb continned its rolations with the Mollice Magrires after their exposure, and raised a harre sum lyy assessmentingon it members throughont the t'nion todefray the experase of the defense of the Mondies charged with erime in the roal rewions. The order is secret, and wiedds an immonse inthence over its mombers. lis mentars are Roman Catheolies, zotwilhstanding the fact that it Las beren nominetime endemmed ly the Iloly sere and is undor the ban of the ("hurelt, The Sollie Magnires were all members of the Ineiant Order of Hibernians. In the eomal tidds of Pomeydamia, they eontrolled the Order. and gate the ir sexietys name to it. Hence we shatl speak of the orter simply" as the Mohle Magnires. The principat work of the orter in Iretand was the shonting of the agents of the Irish landords. It is wail to have recement its name from a ferocious lrishwoman who particnlarIy distinguishard herself in this work. Thu Molline
 When it beemme vident to the anthoritios that en orm-
 and (:arton. The members of this organzation were popularly tormerl "laukshots." They gabe considerable trouble to the ant lowities, but were not comsiderel esperially dangerome during the next tive or sid years. The great demand for comal which the stimulus of the Civil War produced. and which set it about the yarar 1 sta, drew an immene promation to the Pennsylvana coal bidhls, and as a very large
groportion wi the newenner were !ri am th, the
 "l with the grewth of the popalation. The asiat-



 trinty by thor anthoritio.





 threntson the part of the Nonlice and ine farteon
 draft, or repermonting the capitaliats con rating tha-






 and miners wore warnel that if they went le work. thay would dos: an the preil of tsar live. [bern
 armed Mollies foltored the town of Mand ('luink.
 a number of the priwnera. From thim time on to 18bita, more than fifty mardera were commithel in Schnylkill (ommty. Of thene twenty-a wom, wr more

 The erhief strmghold of this order, hownere was ('arbon ('onaty, where they hat mathers wery murds their own way. Duriner all this while none of the Wonlies hat hern conviden of the crimes they hand committed. Arrests uf suspectad pattion had bern mate, and they had beron lirought to trial in -ome instances: lat the State daad beem unabla (1) (envict them. The friends of the prisoners were nlways an hamd, roaty to swear ter anything newessary to so-
 der was tried for an ollonse, a conveniont clibi waset up amb sustuined by an many withewe an wore thomght necessary. In ancopuital was thas reatily werured, and the law was remd red powerless to panish the gnilty parties. Latrer rewards were offered ly the civil athorities and the cobloming commanis, and stremons efforts were mate to bring the marderers to justice. hat up to $1 \times i \mathrm{i} 1$. no Mollice has aver burn convicted of murder in the tirst merrer. Son strong had the Mollies become, espectally in suhuykill ame Carbon commtios, that thy dial not bediew the amthorities eomald puni-h them, and recravided themsedyes as at liberty to (arry ont beir phate an they liked.
is hate been atid, hate anthoritios of the cometion
 reign of lawlessnes in the ir midat was dueto is powcrfal secret urganization of fri-hmen. and the hat learned that it was known as the Mollie Magairmo but beyond this thay combld discorer mothine. DeInetives had bern sit to work to ferret ont the myso terions weder.but had bean batled and foreed ongive up their efforts in dexpair. The Mullies, secure in
 romtinued ineir lorrid work. and langloel at the anthurities. Mernwhile the re-pertable ialabitanto of the emal regiom lived in as state of constamt terror. N゙oman cond ted] when his life might be taken or his property destroved ly tho werible order. whiels struck it-blows in the diark and without a-igning any reaton for them. So sirong hat the Mollia- be:-
 the very madhinery of the haw he cansing hemetbe* to $1 \times$ e elected to publio whices in the commes of chaydkill amb Cathon. llavine qaincol jumocion of the arlices they promedeal to manipulate the pulb-
lic funds in the interests of their oreanization. The y became a potent influence in state politics, and dohn Kehoe, connty delegate for the Schnylkill branch of the Ancient Order of Hihernians, openly boasted of his ability to extemd the intluence of the society into national politios. Hollies were repentedly elected as county commissioners and seltool directors. In one instance a member of the society was sent to the lesislature, and ane of their members ran for an associate justiceship, but was fortunately beaten at the polls. So powerful did the Mollies lecome in the coal regrions, and so general was the feeling of terror and insecurity which they aroused, that the prosperity of that section begin, to be seriously affected. It was seen that the immense jnterests centered there were at the mersy of a mob of lawless rutfians, and thiat if these men were permitted to extend their power. rapital and respectable industry of all kinds would be (riven from the coal-fields. It was therefore resolred by certain parties deeply interested in the welfare of the conl counties that the Mollie Maguires whould be exposed and lorought to justice.
The Ameient Orter of IIbermians exists in Great Britain and Ireland, as well as in the Cnited States. It is coutrolled in this comentry and abroad by a Directory, known as the "Board of Erin." selected from members in England, Irelamd, and Scotlind. These regulateand give out the sigus and pusswords of the order, which are changed every three months. The Inaclequirtars of the order in the United States are at New York. 'The national ofticers are elected by the State oflicers, and consist of the National Dedegate, National Secretary, National Treasurer, and President of the Board of the City and C'ounty of New Vork. EaclıState lias its own officers. The heatlquarters of the order in Pemnsrivania are at Pittsburgh. The officers consist of a State Delegate. siate Treasurer, and State Secretary. They are rlected by the County officers, whot also consist of a Comnty Delegate, Comnty Treasurer, and CountySecentary. The county ollicers are elacted by county conventions, which are made up by the ofticers of the varions divisions. The division officers are the Division Master or Body-master, Secretary and Treasurer, and are elected by the mombers of their respective divisions. No man can he a member of the orler but an lrishman or the son of an Irishman, dind a Roman Catholic. It is statet? that there are over six thousand divisionsor lodges in the Enited states and that the membership of the orter is over one fundred thousimid. From this large body of men. with the exception of a portion of a division (No. 2) in Philadelphia, not one word of rondemmation of the Hollie Nagnires of the enal regions has bern heard. On the contrary, wery effort his been mithe and money has been liberally subseribed to eaable them to escape justice.

The signs and passwords of the Oriler show its foreign character and sympathios. They are changal every three months. Inaddition to the signs and passwords eriven in the aceoment of Jokemma's initfation, the following were furnished by him in lis "viclence before the Courts at the trials of the Mollies: Hay ISth, $1 \times 74$ : Passwond.-"That the trouble of the"country may soon be at ancend." - Insirer.- "Aud likewise the men who will not her defend." Quarrehlaisg Toast. -" lou slould not dispute with a
 Niciut Password.-"Long nights are nmpleasant." Amsarer.- "I hojee they will he at an end." Sitin. - The front finger ami thamb al the right hame to foncela the neck-ties or fop bulton of the whirt. . 1 nsares. Kigelat hamel te riby weross forchead tomelning hatir. Jugust foth. INTH: Passwomb.-" Whatt do you think of the Hiyo chection? I think the fair Wres has made al had sideetion." - 1 nsirer.-"Whom dhe you think will duty betray:" Qrammelana Tonst"。 "Don"t gat your temperd so higla," Insurer.

Sot with at fricmil." SiraN. J'utting the thumb of right hamd into the porket of the pantaloons. In -
serer.-Putting the thmmh of left hand on lower lip. Ian.11.1875, Password: (rueatiou.-"Crladstone's jolirg mast be fut down: Ihe is the support of the British crown." - !rester"- "But our C'atholie lords will not support his plan, For tame to their church they will firmly stand." QuabrellemeToast: Question."Don't give way to anger." Anxare". " 1 will obey a frient." Night Passwond: Quextion.-"The mights are setting shorter." Ansirer.- "They will soon be at their shortest." Body-Master's Toast.- "Let every lrish peasant Esponsing Erin's ranse, In college green They may be seen There making Irish laws." Sign.-Nuil of the right thumb across the bridge of the nose. 1 usartr:-Tip of the fors-finger of the left hamal to the chin. Nay 4th, 18 in : Password: Question.-- What is your oninion of the Tipperary "eetion? 1 think England broke her constitution by Mitchell's rejection." Insarer.- "Hnt dimn't O'Connell resign his onth and seat? Tes, and by agitation gainet the emancipation." Quarmelling "Toast : Y'lestinu.-"Keep your temper cool." Arastrer."I will bot raise it to a friend." Bodr-Master's T'oast. -"There's that every Irishman may stand to his cause, And subdue the Britislı govermment and its coercion laws." Sign.-The fore-finger of the right hand in the left sleeve of the coat. - Insaer. The thimb of the luft land in the left side vest-pocket. Nowemher 4th, 1875: 1'assword.-"IIere's health to every lrishman That lives in Ireland, To assemBle romed in Dublin Town Inmenory of Great Dan." Anwicer-"When born he found our conntry in chans and slavery; ITe labored hard to set her free, But now le's in the chay." Qvamielling Toast; Question. - "You seem to be getting vexed." Ins-rer.-"Not with you, sir"," NriHT Password: Ques-tion.-"These nights are tine". Insert". "Jes; we shall have a dine harvest." Siss.-Tip of the forefinger of the right hand to the hole of the right ear. Insurtr. - Tip of the fore-finger of the left hand to the liole of the left ear. Jannary 22d, 1876: PassWORD: Question.-"Ilome rule in Ulster is making great progress." Ansirer.-"Ies, if every lrishman would support the cau-e." Question.-"I wonder if Ireland can gain temant right "" Ansacer.-"I'es, if supported by the Irish members." Night Password: Qnestion.-"Moonlight is pleasant." Ansicer. - "Yes, so is freedom." Quarmellang Toast: Quen-tion.- "Be calm, sir." Imsirer.- "I am never 100 boistcrous." Budx-Master's Toast.-"llere's to every Jrishman that crossed the Atlantic wave, That they may return with heart and hand their native lind to save."

Members of the Order are contined to the divisions to which they belong, and latve no right to attend the meetings of other divisions. This is a check ap)fin the spread of clangerons information. A mensber in good standing may change his division, but for such a purpose a caril of recommendation from the Body-Master of his late division is necessary. Slomild it be proposed to use the card ont of the comenty, the connty delegate platers mpon it lis private mark. The card nity be presented to either a Body- Dister or a County Delegate; if the former, the earl is forwarded to the ('ounty I)elegate for the voritication of his private marl:. In leaving the Stale, a travedling earel, which ilko bears the County Delegate's private mark, is used. The use of the Body-Master's toast, which is given to those officers Hont, is to enahbe Hem to recogni\%e eath other. The (fuarralling toast is used :o prevent broils amoner He mombors. If a blow is struels after it is given. the offender is liable to expulsion from the order. Amones the Moblie Maguires there is a thoroughly arrangex system for the commission of crimes. i member laving made complaint of erratin parties who hate offobled him, or who are considered dingroromes to the oreler, the mathor is referred to the Bobly-Master, or a mereting of the division, or to a menting of the Borly-Masters of all the divinioms and wher leating men of the Order

Murder is the most rommon of all forms of pom-
 is the well hown principhe of the (Order. It is quite" (nough for at man to incur the dialike of ome single

 Hace and with all the ngeravated features of ansunssimation. 'Thangh the ermduct of the marderers is in Hire higtasis derere rowardly, they are regarded as herove ly the Nollios, and largerewards have beren paid ly the somely for tha killing of particularly obs. moxions individuals. Shomat atmember remmit a marlar or a robbery on his individual necoumt, the ned is endersed by the sexioly, and its whole intha-
 When a member is arrevided for at crime. the wethers atre nssegsed in a "ertain strm for tha purpowe of mising monay to ampley combed to defend him. The next strep is to thal wituesses cmomeln to estal), lisk :an "alihi." l'arjury in suchat "and being count"d a virtue by the Nollies, the witmenses are always forlheming. Evidener of my kind that is wantod. (an be promptly furnished lay He Order. Surb is the Orbar of the Mollio Magnires, and such are its leading features. 'Though its mombers atatm to be Roman Cathoties, the Orider has berenamathematized by the lioman Cithodic Chureh. The Church, however, has so far failed to intluence its mombers. Theforder Itourindes in spite of the clergy, and while professing the ntmest devotion to the ('hureh, encourages crime and wiekedness.
The following formations for steret Riot futy, pre pared for the Natomal Gard of Now York, hy (icon"ral Wim. 1f. Brownell, have secured most fatering recognition from all quarters. It mast be acknowiadged that to provite a plan which would be eifeelive under all circumstances for the curdling of riots is simply impossible, as every oreasion may present diferent features, so that the menns to conjuy mast be left to the oceasish: for instance. were riohers in possession of hrildinge and hat the advantage of shder from roos, windosw, doorways, elc., or had barricates of all conceivable kinds, bach oceasion would presemt new combinations, and onle the cool judgronent of the ofticer commanding contld provide
 all of these ditheultics are recognized respecting all fortificd mobs, we are not prevented from providing phans to disperse riotemex mobs in the strecte, and it is for this purpose these formations are presentel. A large proportion of all riotulus mobs consists of gutple who are present simply through curiosity, with no desire to commit a hexach of the pare, yet before they are aware of it are identitied as rioters, and giving countenance to the outhreak with the ir presence, and it is presumed are willing chongh tastart for home, if they an be froct from the mob, particularly affer a demonatration from the troops. It will be observed that provisions are made. in the movements here provided, to sesure this mast desirable objece, as eqponstanities are offered at every intersecting street. Moderation that will canse rinious mobs to secure the slighest contictences, or an impression that there is hasitation on the part of the troops, rannot be afforded, hence movements shand show derision, be promptly exeruted, and rid of all forms that will calace delays, ratber depending apon force of hahit secured through close appliation in the drill room. The movenconts are simply combinations from Lepon's ralea, and may le readily execulted.

Ther asxembly for riot duty shouh be with service miform, oweremats, ir mot worn, slmge in horec collar form over left shoulder, the tie muderand to the rear of the right arm pit, canterns with water, and haversackes with rations, if possible knapsalcks to be Daken if ordered to a distant point. A smat! detachment of reliable men, in charge of an experiencod olticer. should be left in the armory for its protec. tion. Rérnits nad others, not haviag the requi.

Hite inatrictions for streat work, whould be left withs

 riatly in the defonse of tho building, shomblel it lace

 lance vorps. "Ther regiment matald lae equalizers inta
 fore leavine the urmory demala of markmenth will bre madre, suthecint in mamber to provide easch company
 march, if their company is in columan of foura, jume outside of line of file clice ra, and if in lise. in rear of tile alesiser. It is not momat to have larige aromels in front of atr armory on the ordiary encamions of
 that moder the circmantancose of " Riot (and] "still greater mambers will rompregate. Whila theote
 many, and the du!y if the (ommandant, demand that "cery fremation be fakern to provile. for any "rnargency, and it is this that prompts the firn formation upon laving the armery.
 "f lmidingss on buth sides. Armorios lowated (s) (a, rners usually have the main chtrance ona wide atron, and are provided widh an rait on the side moree, whicla is more maresw: hade:- Hewe ciremmataneres.
 that will oblige the crosed to pressant the smalicest front chring the formation.
If the march is to be toward the lefo of the exit, form the first and tifth (or fourth, if only "ight "ompaniea) divisions. As the elonerway may ant be wide enougha for two colmons of fours io paiss, beth divisions should be faced to the right : the first division. wits the (aptain, filc clow-re and sharpshocters, Gri the rieght of the column; the tifth divinion, with ther Captain, file closers and sharpshorners, on the left of the column. At the command, 1, Fiorerard: : D. 1hareh given by the (oblonel, both divisious march by zhe flank, in parallel columns, the fifth divesion on tho. rirht, across the street to the fence, or building-line. When the (chice of the first division commands: 1 . Firme diviaion: 2, By the kft flent; 3, >aвch. The Chief of the tifth division commands: 1 , Fifth diviwion; 2, By the right flenk; :3, Mares. The tirst division eontinuses the march, driving the crowd entirely trom the street and sidewalks, and halts inside. the building-line of the limt cromsertrect. The fiftlt division is marehed company distance to the rear and hatert: or, if near a crosinger arect, inside the building-line. The other divising move ont suecesso ively in columns of fours, riehn in front, and form line ley "fours left." in trace of the dirat divi-inn, carla at company distance. Ill divisions havine become part of the coham, the fifth divirion will be faced about, oftieers, tile edomern ant sharpishorers in fromt, and moved up to company diatance.
If the marelt is to be to the rieght of the exit, the first and fifth divisions march out by the left hank. with the first division on the right, ind, after reaching building-line, the firsi division exceutes .. 1 , tho righe flent: march," and procecela as previously ex. plained: the fifthativion. "lny the hit flank, murech." and halled after marching company diatane or to the buidding-linc. The other divinions mareh out -uccessively in column of fours. left in front. amp form line ly ". fours right." in the trace of firm division. the fifih divition facing abous. and all cloring up to company di-tance.

If the exit is near ab corner to the left, and the mareh is to be to the Jeft. the tirs and tifthe divisions are anarched out : the fir-t division is haltol just in. side the buildine-lines and the fifth divition is marehed a suthricint distance to the Tuar io admat Ahe imberior divisions in the cohmme which march ont as follows: columan of fours. right in front ; the fourth enes ont first and forms liue by . fours riebe," and when near the tiftu "fours right alont"; the
second and third mareh out sheorssively and form in rear of the first, when the fifth division faces about and all elose to company distance.

If the exit is near a corner to the riglit, and the march is tolu to the right, the first and fifth divi. sions are formed and marched ont; the tirst division forms line "by the right flenk, march." and marches company distance, or to the buikling-line, and halted ; the fifth division forms line "by the left flenk, matrch." and marches to the rear sulficient distance to admit the interior divisions, which march ont in colnmens of fonrs. left in front, in the following order: the fourth, forming line by "fours left." and when near the fifth division executing "foms left ubout; the second and third then follow, forming line by "fours right" in rear of tirst division, when the fifth division faces about and all elose to company distance.

Morching to the place of distrobance in fumbers. column order. Beiner on the street in eoliumn of tlivisions, right in front, the Colonel commands: 1 , Flanked colkm ordere: 2, Mareh. At the first command Chief of first division commanels: 1, Fiost division ; 2, Stand fast. Clief of fifth division: 1, Formerd: 2, Gubide right. Captains of third, fifth, and seventli companies command sueh eompany: 1 , Right firmored, fuarx right. Captains of fourth, sixth, and eighth companies command sucb company; 1 , Left formard, fours beft. The command "March" is repeated by all Captains of interior divisions and chief of fifth division, The companies of the interior divisions form the columus as ordered, file elosers darting througla the intervals between fours, and sharpshooters passing arouml the rear (in donble

time $)$. 10 thes side of the gratio. The several come panies rlone up until thry are united in colomon of fours, the lowh of rath thank whmmen marelainc in frace of the llank fours of the leathing division. Tha rear division is mareheal up umtil the flank fones unile: with thererest of the columms. The le ft gulafey of the right combataies of the tirst and tifth divisions - war the right guides of the left compliniace, wha
shall be the guiders of the divisions, and the dresse ing, if necersiary, shall be on the ernter. Dl] offirers, musicians, colors. signalmen, effo. will be placed jn the interior of the column. The Colonel wherever he deems bis presence neecessary. Lieatenant-coloned botween thirl amd fourth companies, to supervisu rioht wing. Majur between serenthand eighth (or fifth and wisth. if eight companies), to supervise left wing. Staff, non-commissioned staff, and colors, in the center of the oblong. One brummer or trumpeter (the latter preferred) hetween third and fourth, and one betwern fifth and ixtll companies. Chief of first division in rear of line of sharpshooters. ('hide of rear clivision in front of line of sharpshonters. If the place of disturbance is at a distance and haste is demanded, it would probably be unnecessary to drive people from the sidewalks, metil the tronblesome district is reached; therefore, to facilitate thos march, the column may le narrowed as follows. 11 can be, at any time, widened, as shown firther on. The formation having been perferefl and the "Forward, Wrarek " commanderd, the Colonel slirects the chit f of the first division to order a subbient momber of bours from right and left to rear (equal mumber from each flank) to enable the front to mareh with Hanks inside of the corb-line. The luead of the flank columns will unite in colmma with the rear fours of the first ilivision, and confurm to their movements. The Commandant of the rear division will order a sufficient number of fours from riglat and left to the front (executing it aceording to primeiples of "right. aml left forward, fours right and left ") to mite with the rears of the flank eolumns. Whenever the column is halted, the rear division will be faced to the rear by cummand of its ehiof (surh dirision about face), and will be faced to the front at the eommand formard to the eolumn. Should the column be attorked it can be halted, and the Colonel may fommand : 1. Flenti compamirs; 2, Fontor right and left: 3, March. 4. Flank compunies: 5. Halt. The last command being given as line is formed. Fours thrown to the rear and front, forming line will the flank columns. The rear tivision will face to the rear, as previonsly explainud. First Sergeants of thank companies will be in the lime and eovered by the second sergeant of next company.

If at any time it may be necessury 10 ontirely drive the crowd from the strmets amd sillewalks, the Colonel will commanel: 1, 1st division; 2, Rear fomers front into line. B, Dlasch. At the command mutreh, tlank columan companies will conform to the increased front leads of the columms marehing in rear of the fank fours on the sidewalk and rear division completing its front. with the fours previnusly thrown to the front. If unly one four has been thrown to the front from alach llank, the division line will mitt with them, sis the Hank fonrs must mareh in trace of the rear of the flank columns. If more than no four was thrown to the front from each flank, at the command to widen the rear division marches forward. and, as the line is ceven with its layding tlank fours (they having ohliturel with the thak colimms) the Chicf commands F'lonh fours: 2. Ifft and right frout into line; 3, March, when they exeente the rommand on the lead. ing fours and mate with the division line.

To form tlanked column order from colmm of eompanies, right in front, the (olonel commands: 1 , Flankel columa oreler: 2. Fimm first und fifth (or fomerth, if eight compmomios) divisions: 3, Malber. It sconid command, Captains of lirst and ninth (or stevfinth, if eight companiess), command: spelt compary right ohligue. ('iptains of secomel and lenth (or eighth, if eight ionmpunies), commankl: sweh rompmics lefte whlique. ('aphains of end momberod intorior comphat nies, third, tifth and seventh, eommand: wuch rompany riyht firarard: fomers right. (aptains of vevenmombered interior $\cdot o m p a n i t s$, fourth, sisth and eighth, cobmmand: surh comentuy lefl forerome, fomes lofte. "The" thitel conmomal "maroh." is rupeated hy all the caprtains W When the left of the lits company mothes

How centes of thu strad, it will be matredrad forwhed,



 of the first rompany stapping to the rime of the right guide of the second, whor shatl le the esuide of tha

division, and the dressing, if necessary, shall be on the renter. As soma as the division is formed, its rhief will order th suflleient mumber of fours from right malleft to rear (cepal mumber from rach flank), to emable the division from to march with thanks inside of the curb. The interior companis will form the column, as ordered, file closers darting through the fours, and sharpshooters passing around the rear to the side of the gride (in douthe time): the several companies closing up until they are united in cohmms of fonss. the lowad of cach colume marching ins trace of the fours thrown to the rear of the 1st division. The rear division will he formed on the same principle as explained for the tirst excepting that the file doners and sharpshooters will phee themselves in front, and fous: from right andleft be thrown to the front, "xecuting "right and left forward, fours right and left," and conform ter the columen ahated, the division marching forward and completing the " thanked column order."

When the exit of an armory faces a larere open space, the lanked colum urther mat he formed as follows: First company being in column of tiles (double rank), right in from; secont company on the left of the tirst. in column of tiles (Iouble rank), left in front - both mareh out in parallel columns. When the head of colnmens are clear uf the doorway the first company executes columa right and the seceond company column left: as the rears have exented the change, the tirst company forms line be the left flank, the second company by the rigin thank, thus forming the first division and moving forward. Ln meantime the odd monbered compranies are form-
 compmaic: laft in fromt, moll march out a4 follews

 tum of fours, mationg wilh the rizht llathk fome ef
 l.fathank four. Whan the ninth and fouth remp)

 into line roppertiver, llan forming the rear divinion nuld eomplaing the formation. 'I lae column (am the marreswed as previonaly applnimel. In chatering lij reation rare mant lae olservert tor lave the man ond

 more rapidly than the marehise thank. 'Therenmmand for (hanging would be mimply. F. "Cohnan
 econting a whed.

The iscablting or tightiag formation is [ormend siteet-riut arder. This formation is simply a colmon

 mand for forming divisions lating preflaceld wial "xetrituriot arder." To form from "flankmi molums
 2. Frlenk conn punirs lift and right. front intu line : 3.

 center. ('hief of rear division commandla:1. s"urh division; a formourd; 3, finide contor. ('apuains of right flank companies command: 1. Such contrpunty: 2. laft freme into line. Captuins of the left thank companies rommanl: 1, šurh compatey; 2, lighe frome inter line. At command "motroh," r"peaterl by all Commandante, 1 d division will march divicion disturer and halt.


Flank companiew will eacert front into linc. from a haht, as exphaimed in Taction in fulich time, corresponding compani- uniting abd forming the in-
terior divisions, file closers darting through the intervals, and sharpshooters passing, in donble time. around pither thank. Rear division is marehed forward, company distance, and halted. When divisions are formeal rither from "rolumne of forms." "compunits." or " culumh urdur." the right guide of each left company will remain on the right of his company, aud will he covered by the left gruide of the right company; the guide of divisions will be center. Right anil left guides of divisions will place themselves in rear of the extreme thank tiles of their respetife compamies, all uffifers and file closers in rear of the division, and elices of divisions, excepting the rear tivision. in rear of the center of their respeetive divisions. Sharpshooters, as the column of divisions is formed, will be placed in column (as in column of skirmishers), witl equal intervals betwern the flanks of divisions, exfepting those belonging to rear division, who will continue to marchin front of that division. Colonel wherever he may deem his presence necessary. Lientenant Colonel to be between 1st. and こnd. division. Major between 4th and 5 th (or 3 d and 4 th should there be fonr divisions). Statf, noncommissioned staff, music, and colors, between 2! and $3 d$. or $3 d$ and 4 th divisions. In this formation distances between divisions may be increased. or derectsed, either uniformly or not, as circumastances may demand. Sharpshooters, in either case, regu latiug the length of their intervals. In case of obstruction to the advance during action, interior divi sions may be put under cover if available, althongl the front and rear shond cach have a livision at hand for support or relief, as may be necessary. Being formed instreet riot order, the column ean be moved either to front or rear, by simply facing to the rear or front, as may be desired. Should fronts not be wide enough to cover sidewalks, they may be increased with rear rank men on each tlank. If an avenue of unnsual width is entered, the front and rear divisions may be reinforced by men from the interior divisions. "To afford fire prosage from front to rear for officers or messengers, for quiek communt cation, all divisions, when formed in strect riot order excepting 1 st and rar, will cause one four to break to the rear from the left of right company, the left guide of such company (who has cofered the gruide of the division) plaeing himself on the left of front rank, and proserving the interval necessary for the fonr. When a division celases to be a rear division, officers, file closers, and sharpshooters pass flrough the intervals created in the center, and place themselves in their proper places in the rear.

If moving forward, and driving the mob, numbers of it will naturalls break right and beft through the intersecting streets. either for the purpose of attacking the flanks, or to escape the effects of severe meat sures from the troops; in either pase the flanks, whild [assing, should be coverad, and for this purpone is provided the following important morrment:

Isan intersetingstrect is approachud theconmand is wiven: 1, 1st and 2d. dirisionk. 2, Arma: 3. Port. A1 this command shoulel the mob be large and ageress sive the seeome division, the rear four in ing ortered. "front into line" (allotlicersin front passing throuch the interval lofore closing it), the left gutbe taking his plafe as provionsly explaned, may be moved mp gulackly to within a fow yarels of the 1st. Is tha streot is reached the commame is grisen: 1. 1st. dirision: 2. Compunics right and lett turn: 3. Manerн: just as the jublding lime is reached, wach Coptain giving the propre command to his company. 'This being the quiretest chanere of direction for a front, amil bring done promply and resulutely, resulves itself into at rash on the mols. Thac "turns" being rem[leted, compranes ate halfed just inside the line of buildings. Should the fromes not be sullicient to (ommmaml the street turnod into, they will he widenallimmediataly will rear rank meris, to extemel tha* linne. Sharpshootros of the turned companios will sesure positions (with eover, if posalile) where bley
may command a clear viow of the moh coit off, and select the leaders, so that shond firing be ordered they can pick olf the most active rinters. During the 1 xecution of the turns the column is still advanc:iner. and forcing the main body of the mob ahead of it. The 2d division now having beconse the 1 st (and all other divisions having changed their numerical designation), and must execute the same as explainel above, at the next street, again dividing the mob, and so at eath strect presenting new and freslif fronts, without unnecessary exposure; in fact each eliange beinge in itself a dirert attack on three sides. The first rivision must not, under any rircumstances, approach the thrning points in face of a crowd, mitil the second division is close at hand to take its place as the leading division. As the rear of the column passes, the turned tlank companies will be faced to left and right, execute columm, left and right, and formed to the front as the riar division, file closers and slorpsbooters placing themselves in front, thas completing again the formation and shatting out the mob. Should the mob in the rear be violent. as the column has passed, the reur division of the main column will be halted, faced about, and cover the formation of the flank companies, which will form division between the one halted and the main colnmn.


Should it be deemed necessary at any time io reliove the tirst, or iny division, cren in the middle of a block, the same sysmem an be rmployed as explained for passing an intersecting struat. It is ad milleel that some exposume momst exisi. With the formation in "strect riost order" it would be comparatively slight, as the intarior divisions, shondel Hhe rasistance be suvers, contld be moned back to full fistunce on more if desirel, so that missiles thrown at the 1 st division would not be apt to reath the 2d. It is not necessary that whoriong distanees be protsurval. Staff ollicers, colors, and musie: will pass throurg the intervals provibed in the eenter of tho division, whemewr the division thev are infront of


 (right and loft) the Matac: as explained for at comsing -treet, as the int"grity of thedisisionshembl be prescrsud. Advancines in "strmot rion ordior," 与hendil it
 inge a romber into amother sireal if th the right. the sooroml division will lee mosed ufe ofose to the tirst, the right comatany of the lirst division will contina the marels forward; as lle whanging point is remelt(4) the rear rank will extemd to the left ; the loft ewtapany exerutos the left turn, thereromblivision (huth (ompanics) right turn, as thre buiding-lime is reatho erl, and conimues the march, hoth romonthies of the tirat division hatimet the luilelingoline. when the rolumu hav passed, they face to tho right, march 10 Har right athil form "hy the left hank" ay rear sivi bion. If the elanige is to be to the beft, the Jeff cennpany of the firs division alvances mad its rear rank extemels to the right. the right contrany exuenting the right turn, the semond division exertiting the left thra and contiming the mareh. Jooth fank compranies, ats the coblumn passes, excerbte left face, marel to the left and form "by the right thank" at the rear division. All divisions in rest of the second everute the "turn" at the changiug puint. WhilembVancing in strate rior order, slamblat atre opening beromeloel. such as a scpuare, or park, the thanked columen oreder may be used, or such formations provided by 'lactise for tield work, as the cirrumstaneres may demand. Whaile double rank farmation is roscommemded, these movennents con lu' exeroted in single rank, of necessary owing to lack of nimblors. Shoutd the reginuent equalize with rounpanies of suf. lisiont size. the same primetoles can be used with phatoms and companies as rexplaned for companies and divisions. If it may be desirable to divide the foreo. for thar purpose of thanking harricatas, matres. ing in prarallel strents or detaching eompanios for speodial duty, thre divisions (or eompmates, if large "notgh) are suflicient for "strent riot orilar."
foirings are left to the julgment of the oflleer commanding, but great eantion is athised in charly indionting the front that is to lire. It is sumerested that ond trumputar or drummer in eath wing be used, to indieate cease firing. If a drummer, a shost sharp) roll should he given. As the din in a stret fight woukd prevent to agreat extent, commands boing heard elearly, the C'ommamdant may employ his statI otlicers to communicute comomutads directly to atlicers. when the noise is greas. The Lienteriant fuluneb and Major rill eaclebe prozided with it noncommissioned staft otherr, to enable them to promptly report anything of importance ; in this connetion it will be remombered that intervalis to pase throneh are providud in the column for this purpose. The usual manmer of direeting dressings mast bre omitted in the face of an angry mob, and the latbit semped in company drills of perfecting alignments be depermbedmon, the dressing in colnman leing always foward the reuter.

Shargshooters shoukd be gemoratly supervised by the Inspertor of Ritle lractice who should be especially dotailed for that purpose. When the cootmann is in "strpet riot" oreler, sharpshooters will be constathty on the abort, and if the district is dangerous, wately the windows and roofs of houses on the side opposite thejr thanks, and should a latle weeur, will immediately seize any prominence that will afford them vire of the mon, those of the 1 st and id divisions watehing the fromt, and those of the ratr division watehing the rear, hut must bot fire until individually ordered, unless they have sperial ur arenerat instruetion to the contrary. Of comrse during a general engasemont with rioters. they conlal be instrmeted to piek off any who are nopeod as assailants. Deacersof mbse are usually shrewd conongly to know the importane of elisposing of commanding otlicers of troops, and thereby. in sombe instances,



 aг" гоsintiug.







 farmad as rear divisiens, the cathe suoveranot will be" "xoratted by ther division in rear of the rear -r"-

 will be of the nimost impostancos, and fronn whirls-
 with me moved tor rar tornathle the truns toboran out on the lime. Whale it is of eomere dacirable for move the forrs bark in wriler, there great abjowe is tw

 most fractiosalla for the ocereasion. "1"he frombremain


By these formations it masy beren that moveral
 tionary formation in leaving the aranory. 2. I rot bmon consistine of ath oblonge marchang insin, the
 widened so as to contirely char bur truct. \#3. "Jla turns while in strate riot order, allourdine foretereimon to the flanks while passinge. 4. Thas repurated rhangen of frontarimsed by tha latidig division of the cobl.
 streets, the 21 divisiom ats it grassos berominer tha tirst, and so on to the end, ome (company or divinion is not reguired to bear the whole brant of there resistance as the changes oretur as often as it bucomma neressary, to protect tho llanks. \%. Frequent reparation of the moh. Rerpeeting this fosture, it may be elaimed that the turhalent rement rat off woulil soon tmite again with the main boly: very possibhe. lut it must be lurne in mind that the most active of the riofers would he jn the front, anel to mejurate any from their fallows (even if but temporary), wonld bin of vast assistanee in rumbling the riot, hesjdes attoril. ing a means of escape for many innocent perpple. $t$. The pioce buiner at arms port. is colutelued firmoly with both hamds. can lue umed as a prowerfal punshing lever, at the sametime be ready for chareve havonets or tiring, or to wate the butt as exjulained in the hayo net exercise. 7. A contmuons inl sance on the main body of the mon. X . The simplicity of thw ** stret.

 umn of dicixions, "to:. ह1e. : Artillery can be emphoyed withont elunging the formation. In a mireot of ordiuary width a regiment with live divisions ean hohl four eity blot-ks at one time and, if rampanin. are large enongh to ojurate with jlatom formation, nime boets mat be ledd.

In prowiding these formations it is not sujperacel that an alvance will he ant mbrokern march: it is therefore very important far all otherers to watedy the movemetht of the columb and guard agaibst ronfusion that might follow a sudden chook. Command-
 tering dangerons districts, and not expmet their men
 stroets with buikliness on both sites might loe surh in etfect. Those formationcaresimjly lactioal: menhota fer the wection wr fewtaction of hatricade . defending or assumbing of fortitiod hnildints, attack or dofense in gemeral of fortition plares. abol matters incidemal thereto, shombd le sulijects for pris:ate instruction and discossion, st publiedty miglt ternd tes nentralize the erteret of any theis-are that miont be 1"inployed.

RISBAN.- In fortifiration, any that piece of ground apon which a fort is constructed for the defense and security of a port or harbos. It likewise means the fort itself.

RISBERME. - A work comprosed of fascines, sucl, as is sometimes constructed at the bottom of a townwall. A sort of glacin of fascinc-work used in jotties, the sides of which, fowards the sea, are so formed as to withstand its violence.

RISING.-In 11 waldry, a term inplied to a bird when represented openiug his wings as if about to take flirht.

RISING FROM THE RANKS.-To pass through the successive stages in the ranks until a Non-commissioned Othere attains the rank of a Commissioned ()theer. Eiuch Kon-commissioned Otheer risiug from the ranks in the Enaglish Army rereives, on getting his commission, a grant of ti50 in the cavalry, and of $£ 100$ in the infantry, to enable him to prirebase his outhit.

RIVET. - I metal pin for commerting two plates of metal or other material together. 'i'lie rivet is put through holes in both plates, and the projecting ends are then beaten down so as to represent the heat of at adil on each side, and thus hold the plates in close contact. Rivets are of most essential importance in armor making, and in building iron ships. Thes are ofter jut through the holes and beaten down while red-hot, in order that the coniraction of the rivet as it cools, may produce more intimate contact of the phates. The principle of the rivetiug-machine is simply the bringing a powerful lever to bear upon the lefid of the rivet. so that the smith can hammer mpon the other and softened end withont displacing it. See IRireting-metrhines.

RIVETING FORGE.- - vinriely of forge much used in arsenals and foundings shops. The drawing shows a portable riveting-forge. having a pot rotatable by

gearing. and laving three doors, so as to employ there operatives: it contains a grate-like basket. which allows the bons from the tuyere to pass through. At the hottom of the haslset is a grate and a (onth-rakar, ojuctated from the outside. Beneath

shown and known ats the "Sputre-Linked Malleable Tron Chain," which is very satisfactory in operation. It is more durable than cog gear and more reliable than friction nulleys. It is positive in its action, and from its construction it camot slip, and may, therefore, be rmo slack, with much less friction irpon thr journals and beurings. As it neither stretches nor contracts by lieat or dampness, it is always the sime in all kinds of exposure. To use the chaiu, place it upon the whees, witl the open hook of the link ont. To hook or whook a link, make an angle, as reprosented in the drawing, and slide the link ont by is side motion ; the two depressions on the side of the link are for this purpose.

RIVETING MACHINES. - As mamufacturers in the Cnited States of Mr. Ralph H. Tweddell's various Jlydranlic Machines for riveting, so extensively used in England, Messes. William Sellers \& Co., have largely incrased the applications of his invention in riveting armor-plates, etfo. as well as improved the machines. The improvements in their steam riveting machines have been in the direction of groater strength and increased duribility, and the application of the best fratures of the byalranlit system to the steam system. That is to say, they now make the steam riveters do their work ly prasiare, and not by impact or blow. Where the boiler pressure can be varied to suit the size of the rivets being driven, and can be maiutained at it uniform pressure during the entire work, the stemm rivetor will be in all respects as effective as the hydraulic in statiouary machines.

The attractive feathre of the hydranlic system is, that the pressure to be applied in each caser is ganed at the accumnlator by an adjustment of the weights, which determine the pressure per :quate incli on the ram of the machine. If the water be admitted to the machine from the accumulator slowly, the pressure on the ram will be that in the accommator as determined by the weights, and if the vallye is opened quicliy. so as to admit in very. free flow of water and a consequent rapid fall of the accummlator, there may be an increase of the pressure over that due to the weight from the impetus of the falling load on the accumnlator, but not amonnting to any injurious increase.

The very much higher pressure per square incla at which liydranic machines are run, as compared to "ither steam or premmatic machines. makes the crlinder smaller, and consequently the machines are less cumbersome with equal power. a matter of very great importance with purtable riveting machines, ind of some moment in many linds of stationary riveting machines. The hydrandie riveting machine can be usced wherevor power by belt is obtainable. and the pumps and accommbator may by placul at any point most convenient for the application of the power, fheir distance from the riviting machine involving no serions loss in etliciency

Very uxtended experience with the hydranlie riveting marlime sysion in its varions forms has lod to make allerations in the stean-systers wl riveting 10 borige it to the sume standarel ol rxablenere. So lomg as it was believed that blows ware meded fo do good riviting by power, the: improvemente in the machines were in the diraction of matsing ihemstronLerr and buther able to whllstamd the severe shocks which soosuce or lator break down all such stratemres. Hydratalice riveting de monstrated mot omly thit the work comld tre as well done without a blow, but that it. could be bether dome withont al lione, and that
the erate is the tuyere box. A fan is provided for croatinge at blaks.

Farions devies have beqn resoded for for tans-
 Alf the suandard Fíystonce forges have what in here
the rivoted maturiad was strenger when se securcd than when subjerted to the more sevore trosifment mmber implu\%. Wany experiments with sleath riveting marhimes lad to the aboption of a systom of vory small stothtopipe comerelons from the boiler to ine riveter, compled will an insmake






 single excepilion that the regralatity of the stoman prossure is still left 10 the diserelion of the prevents
 or is cougherod to runt the divelor me great Ironlate is
 stemerivating syasem is very sitiofatory

The drawiner slows what is known as ibu lotanalio


for a great variedy of the lighter worti. The most
 clastio blow, the force of which estu lse varial at the will of the operatur, from a shight to atory bow, ly more or less pressure inpliod to the trealle, and without moving the work in any manner.
 instantly the hlow of the deammer, allowing the operafor lo withdraw his work. In nductuhle ansil ablows vises or other suitable contrivamees to le attached, for hobling work of difteremt shapeo and thineknesscos, and ati extra trealle (slown in congras ing) is furnishal with earl machane to allow torod visus to loe uperated bye the foot if desired.

The work, while in the machinte, is stationary. thats insuring tho hammer slwats strikiner on tharivet and heading it expally Both tandis of the "perator being fiexe, he is able to hatulle the work wilh case and rapidity. The hatamer heing rotated while the blows are eriven, the work can he riveped









 vancitue or retirinu, the ume of artille ry atol of firlel.













 fire of artillery.

 to a fortiticution, and sumblal be - 11 armarded an for make the crosshiter of it a dillianlt. if not almatardons.
 the comanmaications of al comatry ("ontrorge are thome
 ing. 'These should be sereured by sponge inclamad works, armod with nrtillery of such power as ter
 adrantageous proint. If the stroant is natrigable. steli works furm a place of refure for the eraft that fly on it, ant whicla, filling into the hande of the
 and icsict him in rarrying ou his onmeations. Tho
 the force that ram he delached fromilu-main body for

 Hiled with arillers, will prese a formidathle wistarlde
 not be so mumerous tiv en eriplae the eflicibency of the defombling army by dispur-itat. They -hombly be rather in the nature of haten for forbuerary fuitum of ohwreation along the river. -ecure" ngainst (appture bye conp de metin, and Iltrathe ning Tu the flanks and rear of the crossing irmy.

A bridge is proterateil lys is teferle-pemts. How- mature

 parties. a mere redsul or lumelte will amply -utlire TWo or there pherus of artillery mat be"pat in it. but it is preferable to loceste hatteria-. (1) the oppon-ite.
 fire in fromt of it. Digainat a larer forio wall - 11 bplied with arsillery, il ľ. of warks must br Horown


 linte.

The obreration of crossinge al river by an army in


 disadrantace. Judicious lase of artillery is if the
first importance. The tirst lhing to be done is to grain a footing on the opposite side. This is usually accomplished by stratagem or hy surprise. Before a large opposing force can arrive. batteries mast be established on the side from which the crossing is made to eover with their fire a harge aren of gromod opposite. Every arailable piece must be put in, and the ratemy kert back until bridges can be laid and a strong lins of finfantry passed over and intrenched. Sitge guns, owing to their great range and powar, are the bost adapted for this service. The batteries should be extended 1 np and down the stream for three or more miles on each side of the crossingplace; this, for the main purpose of entilading the thanks of the enemy and preventing him from bringing his artillery to bear upon the crossing. The place for crosing should be selected, as far as practicable, with a view to advantageons positions for batteries. The convex sitle of a curve with hills Jominating the opposite side gives every advantare. This securrs a cross-fire upon the opposite peninsnla, mader cover of which the infantry line and light field batteries can be thrown forward to a distance of 1 wo or three thousand yards and established in an intrenched line as represented in the drawing.

If the enemy has gun-boats on the river, especially if they are iron-clats, provision against them must be made by laying across the chamel lines of submarine mines, with heavy batteries established for their protection. These batteries must be strongly intrenched. Thw operation of crossing a river by an army presed in rear by another, is the reverse of that just clescribed. When practicable, the concave side of a bend is selected, across which a line of temporary intrenehments is constructed : batteries are establisurd on the opposite side, and the army willdrawn under protection of their fire. The batteries shoukl cover themselves with gmopits, and give apecial attention to sueh artillery as the enemy may loring forward for the purpose of mathing the plare uf crossing. Sce Brielges.

RIZAMEDAR.-In the East Indion, an whicer commanding a small body of horse

ROADS. - When it is proposed to construct a line of road. (xtembing hetween two places, the ofticer upon whom such duty devolves, first makes himself well acrbuainted with the surface of the country bying between the two places; he is than to select what he thinks, all circumstances being taken into consideration, the best general route for the propused road. But previonsly to latying it ont with accuracs, it is necessary to make an instrumental survey of the country, alone the ronte thus selocted; taking the levels from point to point throughout the whole distance, and makitag borings in all places where exeavationd are required, to determine the strata throngh which such cuttings are to be carried, and the remusite inclinations of the slopes or slanting sirles as whll of the cutiongs as of the combankmonts to bo formed by the material thas obtained. It is also requisite, in the selection of the route for the proposed road, to have regaral to the supply of matrials, not only for tirst ronstructing it. but for maintaming it in repair.
 to phan and scotion: the platn of the road boing on a seade not less lhan dif yards to an inch, and the seefion not lase than 30 fert to an inclt. T"he buss of

 ami e:arefully determined limitation slandel be impoond on the arelivitites or imelinations on evory line
 duotion of hills in a combtry where much inctutality of surfare exishs, is attonded with ereat labor and "xp.nse. gratur ratos of inclination mast be allowerd to hills or roats where the ratlic: is not sumbernt to




'There is one certain inclimation or acelivity, whide cansess, at a miform spect, tha traces to slacken, and tho carriages press on the horses, unless a drag or brake is nsed; the limiting inclination within which this effect does not take place is called the angle of repane. On all ancolivilies less steep than the anglo of repose, a rertain amoment of tractive forre is neressary in thr descent, as well as in the ascent: and the mean of the two drawing torees, ascending and descending, is equal to the forre along a level road. The exact course of the road, and the degree of its acelivities being determined, the next thing to be considered is the formation of its surface. The qualities which ought to be imparted to it , ara $\mathrm{t}^{\text {wo }}$ foll: first, it should be smooth; seeondly, it should be hard: and the goodness of the road will he exactly in proportion as these qualities can le imparted to it, and permanently maintained upon it. The means resorted to aceompilish these objects are: 1. Gratrl Roath. A coating of four inehes of gravel should bu spread over the road bed, and vehicles allowed to pass over it, till it becomes tolerahly firm-men being required to rake in the ruts as fast as they appear; a second coating of 3 or 4 inches of gravel should be then added and treated like the first, and tinally a third cobling. 2. Broken Stome Ronde or Mcddam roads. Fromeli engineers valne uniformity in size of the froken stone loss than McAdam. They use all sizes from $1 \frac{1}{2}$ inches to dust. Mcadam consirlers from 7 to 10 inches of depth of stone on the road sutticient for any purpose. He earnestly advocates the principle, that the whol science of roadmaking consists, in most eases, in making a solid diry path on the natural soik, and then keeping it dry by a durable water-proof eoating. 3. Broken stonc roads with a paved bottom or fomdation, or Tilford Roods ; a road thus constructed will, in most cases. cost less than one entirely of brokenstone. 4. Roads of 11 wod. The abundance, and consequent cheapmess of woud renders its employment in road-making of great value. It has been nsed in the form of logs, of charcoal of planks.and also of blocks. When a road passes over soft, swampy ground it is often made jas. sable hy felling straight young trees, and laying them side by side across the road at right angles, or very nearly so, to its length. This is the primitive and very well known corduroy road. A very good road has been lately made through a swampy forest, by felling and burning the timber, and covering the surface with clarcoal thas prepared. Timber from 6 to 18 inches through is cut 24 feet long, and piledup lengtlawise in the center of the road abont five feet higin, and then covered with straw and earth in the manner of coal pits. The eartir required leaves two good ditches, and the timber, though not split, is easily ehared; and when charred the earth is re moved to the side of the ditehes, and the coal raked down to a width of 15 fret, leaving it two feet thick at the cranter and onc at the sides. 5. I'lank Fords. Two parallel rows of small sticks of timber (called wepers) are imbodded in the road three or four feet ajoart. Planks, 8 feet lomg and 3 or 4 inches thick, arw latid on these sleepers across them. A side track of arth faturn ont tupon is carefully gratmi. I lefp ditches are dige on each side to inswite perfect drainare: and thas we have tho plank roath. (i. Ronedo of Eurth. These roade are deticient in the important repuisites of smonthmes and larabess, but they are the whly bouls nsually made in the fiedd to carry on military eperations. Their shape when well made, is propery formed withas slopeot lat 1 in 20 watis way from the center. Its dramagr shombl he mathe thor-
 has thain 1 in 125. Tras should be removed from the bortars of the rosul, so as most to intureepl the sun and wind. The habor expenderl upon it, will,
 or rut in the road shonld, howerer, be at once tilled up with goonl materials, fur the wherels fall intorbem like hatmmers, decpening them at rach stroke amd
thas inerensing the dow ruchive offert of thereming where. Ther areswesemion of a remed embraters 1 .


 transersed protile for at road on leved gromad is two indined phanes merting in llowe conter of romb, amb having their angle slightty sommded. om a ate phohat the tramserse protile slombel be a single slope ine line ing inwardy to tha face of the hill. B, semetpathest te.
 the matural watereconseses of the ecountry: 5. The
 the mature of the sail.
 fixed edamber edosed by a mowahle beepoli-barck,
 of the bared, lying abowe the axis of the lared and in
 by masing a looked catcla-lover, at the end of the tang of the lireech-hloek, out of its wotheh in the tange of the remerer. This depresses the forward emb of the Hork sen as on expose the damber. The reaction of the breech-block spring lying undementl, the block


 the eartridee from falling out of the ehamber bedore uther machimes of the same diameter of evlinder



## RAND'S LITTLE GIANT ROCK DRILL.

provide for lakintr ujp wiar ats fitm an it ocrours. Tho




 the hose withont tha dete of wroleh or kpanmer: it daes nost leak, amd las no graskets that ean drop woll.









'Thr foll grue emeraving oprosito shows this drill
 sible of the colutnon withont takiner down the slrill or moviner the eolunne 'I'he arm is mata so that by fooseving onf bat it can be swome aromand (c) any




 signed, and rostily asalable as an onerime as well as


 adjemerel by a lanil whed, while the menthe is in mothotho foint of emtoll buing slown ly a perinter moving over a grahnatoal seale. The mathone is run stha wille-s) hy the ebtenti. It the sume time an orelinary ballanvernor proferets the machine from rambing away


 governor. Whase olijece is 10 shacken spered whenever the atir pressing reatobe the maximam olesired-
 the Corliss pathern, amb vory heavy. "The air sumd
 iron sole-plate and tio-rom, which take the strain in alireet lines. Thw hearings are of hass, very largeamd fitted for taking up warar. Thu eranksareaf wrought
 The lly wherl is vary heary, in orlare to mive smoth motion whent it is dearat lor rint ond side at atime. The methot of absorbing the heat of eomberession is beliervello be the nowst perfece in use. hajections of water into the evtinder is not freasible in eold adimates, owing to the frowing of the water in the nir jipms. It the same time the urelinary east-iron jatele ets for circulating water arombl the a ylinder mevely surve (o ki"j) the metallic parts of the matchime from becoming overlataterl, and have lat an insianiticamt -ffeet in eooliner the air. In lais conmore asor the aireylinder is mate of hamd brass, owing to the better comblurtivity whis matherial, and ats thin ats it can lue mate with saterty: the cedinder latide are loblow and
 piston and piston-rod are hollow, and by means of a teleseopir arratherment of tubing at the lawk and of the air-cylinder.are kept supplied with colld water. The piston jateking comsists of four eomponit ion riners arrangrd in pars at vath emb of the piston. Buofore escapinge the water of the piston eirenlation is mate to pass betweren these rings, completely around the piston in rentate with the insing cylineler wallo.

ROCKET GAUGES. Brass rinest Which :ure employ.
 proper dimensions.

ROCKETS. - Projectiles set in motion by forme re--idner within thomselves. and prorforminer the fwofold funtions of parees atht projectiles. 1 rockel is casemtially comporid of it sifuly cato of paper ur wrought irom, emelosing a composition of miftre cher-
 the ingredients arr proportioned fer atower rate of combustion. If penetration aud range be retpuiad.

 af al Congreverondit.

I'lat ronding is art in motion bs the reatrion of is


 from the vollt, will innulate atamet athl wel in inction



 Whit very erath catas itt cerome, its joroprollinerg forme



 gria, and that whicll it offors (1) llae motion of tho

 bore it follows. that if the size of the vornt bee seome

 the gas, which increanes as the serot diminislow alone limit the reduction of the wize of tho vernt For vents of the sume mi\%n。 but of ditferent shapme
 ly, will be most favorable to the dient of the rowere A conloal form of vent, with the lareser oritio. ment
 than onf of a-lim!risal form.

As the rompusition of a rocked lnerne in paralle. layors of uniform llickness. tho :thomat of gaverenerated in any given time or the volocity ot it-ait frosu the casce, flepends on the extent of the intlanaly
 yuiren atratace of intamamations it is uncoesatry to form a very Jong cavity in the mass of the (onnjou-

 by briving the rompeostion around at winclle which is aftorward withulrawn : but in the latrer onac. the composition is driven into the (anse in as solitl man=

 contric witle the canc: its shape shoulal he mate conical to faribita* the drawimg ont of the - pindle. and io diminisle the strain wh the rave mear its head. by reducing the amount of surface where the pros. sure on the mait of surfare is ereatest.
 composition ienitem: tho flanme inmmoliatoly spread"Wer the surface of the bore formine the eras. Which issues tion the vent. 'Jhe recape is low in the first moments, is the do n-ity of the eras is se slight: but as the surface of the intlammationt is laree remb-


 combe all of the scereral resistanmen whieln the racket alwaya otters to motion. Thesor resinances are ind ertia, friction, the eonnponent of weiglat in the dirta. tions of motion, aud. atter motonn takts Hace. the resistance of the air. 'The consiant preane on the hamd of the bore accelerates the motion of tlae rocket

force: after this, it will remain constant until the burning surface is sensibly diminished. IV lien the gas ceases to flow, the rocket loses its distinctive character, and becomes, so far as its movement is concerned, an ordinary projectile. The increase in the surfare of combnstion whereby more gas is debeloped in the same time, and the diminntion in the weight of all the remaining composition, cause the point of maximmm velocity to be reached with increased rapidity. If the weight of the rocket be incorased, the instant of maximum velocity will be prolonged, but the amount will reman the same. I change in the form of the rocket whieh increases the resistance of the air. will have the effect to diminish the maximum velocity. The maximum velocity of Frencb rockets, and the distances at which they are attained, are given in the following tablo:-

Caliber.	Distance. Maxm. Velocity	
$2 \frac{1}{2}$ inches.	121 J ds.	273 yds
$33_{2}^{2}$		

According to the calculations of Piobert, for small rockets it takes about $\frac{3}{4}$ second for the gas to attain its maximum velocity of 837 yards.

It is ruadily seen that the" jropelling force of a rocket rhanges its direction with the axis along which it acts: it follows, therefore, that withont some mouns of giving stability to this axis, the path deseribed will be very irreqular. and so much so, at times, is to fohl upon itself; and instances have been known where these projectiles have returned to the point whence they started. An example of this irregnlar motion may be seen in " serpents," a species of small rockets without guicle-sticks. The two means now used to give steadiness to the flight of a rocket are, rotation, as in the case of a rifle-ball, and the resintance of the air, as in an arrow.

The first is ex(mplitied in Ilale's rocket. where rotation is produced around the long axis by the escape of the gas through five small vents situated oblicuely to it. In his first arrangement, the inventor placed the small rents in the base, completely surrounding the large central rent, so that the resultant of the tangential forces aeted around the posturior axtremity of the axis of rotation. In 1855, this arrangement was changud by reducing the number of the small rents to three, and placing them at the base of the head of the rueket. The rocket thus modified is the one now usid by the United States Government for war purposes.

A Congreve rocket is guided by a long wooden stick attached to its base. If any canse net fo turn it from its proper direetion, it will be opposed by resistances equal to its moment of inertia and the lateral action of the air against the stick. The celtect of these resistances will be increased by placing the center of gravity near the lead of the rocket, and by increas. ing the surface of the stick. In signul rockets, where the case is made of paper, the stick is attached to the side loy wrapping around twine; and there is but ont large vent. which is in the conter of the case. In arer-rockets the stick is attached to the ernter of the base, and the large contral vent is replacod by severitl smatler ones lucated near its circumforence. The former arrangement is not so fayomabe to acouracey as the lattor, inasmath as rotation will be prosdured if the force of projulsion and the resistaner of the air do not ace inthesame line. Rockets are gen-- rally fired from tuhex or gutters: but should wecasion
 rare boing taken tu raise the forward ond by propping it up) with astick or stome. As the motion is slow in the first moments of its llight, it is more liable to be deviated from its proper direction ath this time tham any other: for this reason the anmelucting tube should low as long as pratidathle say formentive to tern fow. 'fake that purijon of the trajeetory where the velocity is moniform. The woight of the rucket applind at its conter of oravity, and ating in at vertient directim, and tho propelliner foroo acting in the di recotion of -its langth, are two furmes the obligute re-
sultant of which movies the rocket parallel to itself; but the resistance of the air is oblique to this direction: aud acting at the center of figure, a point situated betweren the center of gravity and extremity of the gruide-stick, jroduces a rotation which raines the stick, and therehy changes the direction in which the gas acts. As tluse forces are constantly acting, it follows that each element of the trajectory has less inclination to the horizon than the elemont of an ordinary trajectory in which the velocity is regarded as erplal. When the velocity is not uniform, the position of the center of gravity has a certain moticcable intluence over the form of the trajectory. To muderstand this it is neeessary to consider that the component of the resistance of the air which acts on the head of the rocket is greater than that which acts on the side of the stick. It is also necessary to consider that the pressuse of the inflamed gas acts in a direction opposite to the resistance of the air, that is to say, from the rear to the front, and that the eenter of gravity is near the rear extremity of the case.

At the begimning of the trajectory, when the motion of the rucket is acechrated, its incrtia is opposed to motion, and beiner applied at the center of gravity. whicla is in ras of the vent, the point of application of the moving force, it acts to prevent the rocke from turning over in its flight. But when the composition is consumed, the center of gravity is thrown further to the rear, and the velocity of the rocket is retarded, the inertia acts in the opposite dircetion, and the effect will then be, if the center of gravity or inertia is sufticiently far to the rear, to canse it to turn over in the direction of its length. If the rocket be directed toward the earth, this turning over will be cotnteracted by the acceleration of relocity due to the weight, and the form of the trajectory will be preserved.

When the wind acts obliquely to the plane of fire, its component perpendicular to this plane, acting at the center of firure, will canse the rocket to rotate around its centor of gravity. As the center of tigure is situated in rear of the center of gravity, the point will be thrown toward the wind. and tlee propelling force acting always in the direction of the axis, the rocket will be urged toward the direction of the wind. To make an allowance for the wind, in firing rockets, they should be pointed toward the opposite side from which the wind comes, or with the wind instead of against it. If the wind act in the plane of fire from front to rear, it will have the effect to depress the point. and with it the elenents of the trajectory in the ascending lranch, and elevate them in the descending branch; as the latter is shorter than the former, the effeet of a front wind will be to diminish the range. Tla converse will be true for a rear wind

Rockets were used in India and China for war purposes before the theovery of gunpowder; some writers fix the date of tharir invention about the close of the niuth century. Their inferion force and aceuracy limited the sphere of their operations to incendiary purposes, until the year 1804. When Sir William Crngreve furnod his altention to their inmorowement. This ofticer sulsstituted shert-iron cases for those formed of japer, which cmabled him to use a more powerfnd composition ; he alsn mate the guide-stick shotler and ligliter, and removed a souree of inaccuracy of thelit by attitching the stiak to the comer of the hase instemd of lixing it to the nide of the case as laform. Hu also states that be was comabled by his improvemonts to incrase the range of fi-pdr. rockots from 600 to 2.000 yards. Under his direco tion they wore prepared, ind used suceressfally at the siege of bonkgite and the battle of leipsic. At the latior place they wore sowed by a special corps. Tlu advantage claimed for rockets owor cammon are. mmlimitod si\% of projuctile : pertatility; freedom from rexoil: rapulity of diselatrere; and the fereor which their moias and tiory trail produce on mount-
 in thejr construction in oriler to whain mecorncy of flight, and the unerertainty of prowrving tho romp." sidion wninjureal for a langth of lime, are dinlembtion not yet entirely overennas, and whiselo have murds

 Macidunelel's /hele liosket.

ROCKET TROUGH. A small ruckel with n larmispharisal liead of wood, which is freformily anples:
 with at smooth interior, must ta platord from the -hange to the point where the rockret is for start ; tin tabes lave been recommonded, bat are fomarl not tos answor. The rocket is then plated in the rimi of the trongh, the quick-match with which it is pro-

vided is lighted, and the rocket starts with very great velocity, penetrates the charge, und lires it.

When the rocket has to puss ellosws, or when it is desired to lire several mines at the same monent, a rocket is placed at each turn of the trough, with its quick-mateh sceured aroumd a nail; the first rocket arriving at the point where the other is placed, fires it. In ordor the better to insure the first rocket firing the second, a quant ity of powder ( $\frac{1}{1}$ ounce) shonld be sattered about the mateh of the latter, protected by a wedgecl-shaped slip of deal, nailed to the bottonit of the trough; the rocke meeting this passes over the powder, which its riphil inotion would otherwise disperse.

1 rocket may be made to easily turn in a circular irongh, when the radius of that part is not less than twier the length of thr rocket. in order to prevent the smoke of the rharge penetrating the gallery through the trough, one or two small iron traps may he placed in tho trough, which, bejug raised by the rocket. fall again by their own weioht, and cut ofl all commmanation between tbe gallery and the charge.

A rocket six inches long will travel 100 yasds at lenst, and its velocity is so great, that two rockets fired at the smme moment, to run very diflerent distances, leave no perceptible intorval in the tines of theirarrival. This property of rockate renders it ensy to proportion the truins of mines $t 0$ be dired simultaneously, which, with the powder-hose, requires great nicety.

The ordinary rocket for this sorvice contains ${ }^{3}$ of an ounce of a composition formed $\frac{2}{5}$ of tine poweler. $\frac{1}{b}$ of saltpeter, and $\frac{1}{3}$ of charcoal dust. These ingre. dients should be verv carefully mixerd, to make the roeket burn uniformly. Its usial dinmeter is nearly $\frac{3}{4}$ of an inch, and entire weight ubout $1 \frac{1}{2}$ onnce. Rockets may Io mato mach smaller when required. Soe Bor-trap and Monts.

ROCKET WAGON.-A ronverance diflerine from the ordinary field ammmation wagon in the hase
 rockets, resting vertically in each hox, and in having no center boxes.

ROCK FIRE. - A fomposition which burns slowly, is ditlieult to extinguisla, and is used to set tre io buiklings, ships, ete. That whioh is put into shells is east in cylindrical eases of paper having a primintr in their axes. The composition consists of rusin 3 parts; sulphur. 4 : miter. 10 : regulus of anfimony.


 them throngl, miove No. Z~ melt the tallow firmt, then the resin, stirring the mixture with rlathlan
 -mall funatitios at is time stirring tho whole (*on stantly with large Rpatalas. Iad ons fortion of the
 work with great prosantionto prevont it fronatakinge tire. W゙bentlo "()HApesition beromames of a brown volor, atol white vapors are divangated, the flre is permittal tos es down ; uml whorn tho counposition in sulleiently thind the rases are lillad with the lasth. not more than three-foniths fall.

The cases uro made of rockot-lamper in the tamn
 aro made of cartridgropaper. pasted ufter the firmt turn, ant rolleel hard. The mases arrearrangeel in a
 in tho contar of which is as spindle to subport the
 hold in plare hy short rovindricosi sponts attached tor the lower side of a Jescrenir which rosts on the top of the frame. 'l"he eomponstion is poured into tha reservoir, atmel the france is gently shatern to mottle ther romposition in the ratrex unill they are fillod. When the romposition las beeome soblid, thar cylinders are taken out of the frame ame irimmed; ithe priming tubes are chargorl with compostion No. I
 the ends of the rylinders are lase dipped in monleod poweler. When rock-tire rannot be had tes put into shatls, tha paper cases may he fillod with port-fire composition, driven as usiabl; or pioces of port-lire may lse insertod in the slaclls. Sice ('immpoitiones and Hiremortiss.

ROCK MORTARS. - Excavations resembling thr interior of mortars, formet out of solid rorks, of which there are several in the Island of Malta, exeronted upos a large srale for the defense of the harhors, ve. The following interesting exprorments lave been made on two of these mortars situated in st. Julian's and St. George's Bays. Jet. . It Nit. Julian's. 140 pounds of poweler was inclosed in a sort of cask prepared to tit the chamber of the mortar, and being foclged there, as large cane tube tilled with apitekmatch. was applied to a groove cut along the upper surface of the bore torereive it, and a bottom of wool rove ered the chamber. The stones were than piled, by four mon, within the mortar as they were brouglit to it in baskets contaning about 120 ponntle cacls ;
 were first put in, then tifty baskets of wher stones. from 60 to 30 pounds, then $n f t y$ more of 90 it is pounds each, amounting in the whole to upward of 10 tons. "This opration beine completetl, at piece of portire was fixed to the end of the tulbe at the month. which commonionted throusha bole in tho cask to the powder. In this manner it wis tired as is ushal in proving ordnance, and ranged about 700 yards. 2d. The same mortar was loaded with 1 Nit pounds of powder and about ten tons of stonce: they spread considerably more than the firm time but did not ranere aute so far. The "xplosion this time cracked the mortar in at direrion nearly vertical. leavine a fissure in the rork atbout one-t welfth of an incla wifle. ton feet in the rear and four feet in front. 3d. The other mortar of similar dimensions wat fored with is charge rather larger than the tirst of these but the efteet was not duite so consinlerable; from whence it is concluded that tha tirst proportion should not be exoeded, especially if after repeatiod. The atones use: in these experiments were colvietly fragments of the rock, which, haviner been expenced to the air, were become sommthing larder, and elid not sntfer so much as misht be expected from such violent explosions. which in some degree resembled the tremendons diseharere of a voleano.
RODLICH LITTER. -1 litrige litter for two or more
wounded men, suspended betwern two oxen. The drawing shows the manmer of its construction am? use. It is too large and nowieldy to be of prac-
theory was established, and his new mode of casting was idopted by the 17 ar Department. As at resali of Cencral Rodman's theory, he elaimed that he

tial or any general applieation: and, moreover, the movements of all oxen are very slow, and this unfits them for purposes of military transport. See Litter.

RODMAN CUTTER. - An instrument used for making indentations in castings. The indenting part of the tool is in the form of a prramid, laving a rhombus for its base, the diagonals of whieh are respeetively me inch and two-tenths of an inch: the height of the pyramid one-tenth of an inch. In late experiments the form of the pyramid has been changed and improved somewhat by causing it to make a longer line, and mark minite differences more accurately. The volume of an indentation made with this tool is taken as the measnre of the work required to produce it, and is inversely proportional to the hariness of the specimen, that is (denoting $k$
by $I I$ the hardness of any speeimen). $I I=-\ldots$ (1)
h denoting any 'onvenient constant, and $x$ the volume of the indientation corresponding to $M$.

It has been found by experiment that a pressure of 10,000 on the base of the pyramid makes an indentation, in the softest metals used in guns, about nine-tenths of an inch long. The maximum indentation, one ineh in length, of the instrument is therefore assumed as the unit of hardness; and denoting by $Y$ the volume eorresponding to an indentation one inch in length, we obiain from equation (1),

$$
1=\frac{K}{\mathrm{r}}, \text { or } h^{\kappa}=\mathrm{l}
$$

ind, in general.

$$
H=\frac{\mathbf{1}^{\prime}}{v}
$$

or, putting $l=$ the number of tentls of an inch in the length of any given indentation.

$$
H=\frac{\mathrm{I}}{v}=\frac{1000}{l^{3}}
$$

vinet pyramids are to each other as the cubes of any similar dimensions.

A pressure of less than 10.000 will probably be found better suited to the purpose, with the improved tools. A hetter standard of comparison may be fomed in some metal of an uniform density and hardness, easily obtainable in all places. The silver coin of the country will best fulfill these eonditions. The volume of the cavity made in this, by the adopt(d unit of pressure, may be assumed as the unit of harlness ; and this, divided by the volume of the 'avity' in any samph- tested, will denote the hardness of that sample as compared with that of silver coin. Bee Cirrular c'utter.

RODMAN GUN. - The principal dillienlty formerly "xperienecd in mambacturing very large cast-iron cannon was the injurious strains produced by cool. ing the easting from the exterior. As far back as the yoar 1844, (baneral Rodman, of the Ordmante 1) partment, souglat to diseover the moans to overcome this clibienty. $\Delta$ fier mone observation and study, he developed his theory of the strains profluced ly eooling a casting like that of a cmmon, and as a remerly for them lue proposed that eamon should be cast on a liollow rore, and cooled by a stram of water, or nir, passing throngh it. Aflar an claborate serios of experiments the truth of his
conld east camon of any practicable size, and asked that a 15 -inch cast-iron gun might be made. This was done in 1860, and the gum was sucressfully test"d shortly afterwards. General Rodman then projceted a 20 -incll gun, which was made at the Fort Pitt Foundry in 1863, under lis directions.

Formerly it was eustomary to luse but one kind or size of grain of powder for all eannon. Whatever their size. General Rodman proposed for his large cannon that there should be a proportional inerease in the size of the grain, expecting thereby to get as ligh a veloeity for the projuetile withont a corresponding inerease in the strain on the breceln or weak part of the piece; this led to the introduction of our present mammoth powder. Ife also thought that the poweler which wonld produce the least strain on the gun, giving certain initial velocity to the projectile, would be that whieh should develop its gas as the space behind the projectile incrased; or in other words, that the powder should burn on an inereasing instead of a decreasing surface. With this objeet in view he proposed to compress the substance of the powder into short hexagonal prisms, which could be easily fitted together withont loss of spuce. These prisms were perforated with longitudinal holes, from which the rombustion of the powder spread. While this idea has to a eprtain extent been eonfirmed by experiment, this powder las not been oflicially adopted in this country ; it is understood that it has been to a eertain extent in Russia for service in heavy rifle-guns.

The several operations in the manufacture of this gun are molding, casting, cooling, and finishing. These are noticed in detail under the separate headings. When these several operations have been complied with, a ring, about three inches thick, is taken off the gun-head parallel to the faee of the muzzle, and an near thereto as is practicable. This ring is not reamed out or turned npon the exterior, but is a section of the rougli casting. When two rings are taken from the same head, the one nearer to the muzale is marked number 1, the other number 2. In the 1itinch gun the distance of ring No. 1 from the face of the muzzle measured to the center of the ring is 3.7 inehes; and of ring No. $2,7.5$ inches. In a 10 -inelı grun the distance of No. 1 is three inches : of No. 2 , Gis inches. Eaeln ring is cut through by planing a groove 0.5 inch wide from the exterior to the core

until the initial strain breaks the unplaned part, and the ring springs apen. The width of the groovent the exterior in now measured, nind its increase over O. 5 inels clivided by the original ciremmferemee of the ring will be the cxtension per inels of the metal on the exterior. This extension per ineh is then eompared with the extension per inel ohtained by aetual experiment witha specimen of the same iron,
 will be the initial tonsion．


 warels 0．fin incols，showiter it fotal extencion onl ha＊ exterior of 0.15 inch， 1 lern

$$
\begin{array}{ll}
0.15 & 11.15 \\
\pi .34 & 119.34
\end{array}=.110127
$$

Tol the extension perineln of menal an the extrotior． ［pon examinalion of the tests of this motal we tial

 initial tension of the ring，supporing the irons to jons s．as the same tomarity and elastioly，and that fare braking of the ring entirely relieves it of stain，which
 initial strain upun the strength of the ornm，let us suppose that the initial strain of extemsion turen the exterior of at ern one chliber thick and of whide the tenacity of iron is ： 3 ，onot pronuls per spuare inch
 surface of the bore will be stblejectod to atompers sive strain of $5 \overline{5}, 000$ potmels pros stuatre ine 1.

Now if we suppuse the tangential st rain due to the attion of a contral force，suchas dirad gimpowder， to decrestace direrety the the distance trom the asis of the hore incromes，and that an interior foree jus： sulliciont io reliew the medal at the surface of the bure from＂ompression has been appliet，thern will the exterior of the gim le brought to astratin of ex－ tension of 20 ，000（monds per splara inds．Now in－ crease the intorior prosicure of gias antil the metal at the surface of the bore is umilor ：t temsile strain of 30,000 pontuds per subare inch．and the ternsile sitain of the metal on the exterior of the erm will bo in－
 the whole thickness of the walls of the gon wernd be bronglat to tha braking strain at the same instant， whech is the object of initial stratn．But in practice we know that the stran dan to a eentral force di－ minishos in a higiter ration than dirmoly as the dis． tance from the axisatnd this would require an incronse of initial strain in order to bring the outer portions of metal to the breaking point at the same tims，while on the other hand the fact that a given increase of losed or strain will proslane at mach ereater extension whenappled to a sperimon near to its breaking strain than when applied to the same specimen when sirainct wibin，or＂vencemsiderably above the limits of its promamont elastiojty，conse＇s the maximman reo sistanee of ：eran，havine too little intial strain，to approach more noarly than it wonld otherwise to 10 what its maximum resistunce would be with a proper initial strain．

The law uf diminution of tangential stran from the bore ouf ward in it erm is not and ratuot be ac－ curately known，nor，therefore，can the＇xactly pro－ per initial strain le determined．lant．as the fore－ going reasomings slows，after the jutial strain shatl





 womlal giva．








 lengrth of time thor tire is kept op in the pit．＇flow

 or 20，＂6．The more rapiol the combine the himerer the
 the extarior the eroatar the tomsions．If a highar dene

 of wedmed iron．If the iron is mot high，it mondel tr kope in fusion aml evenly yirral till a satisfactory result is obtaincel．lap phaning thronsth the ringe for initial ten＊ion lhey shomld he an rlangel in How

 that the initial strain will brogk the motal thas lu－ft． In other words．tho planimer shombl bro comtinumed till the ring prarls．＇The＇hackness of the melal broken slonald be arooratoly motasurcel，as also the amoment of opening in its exterior．For lo－inely gans tho thickness of the loroken part of the rimer shonald low about oncetenth of the whole hajekneses of the rinis． Sbould it be lems．more water and atonerer eontimued tire in the pit will rorrect the defeot．The amarman of intial tension ont the exterior，which General lionl man thonghat shond ohtain in a propery fonstruretorl gim，was abont one－latif the ultmate tenacity of the metal．I Blommtield whin－iron，when enaploved in 20－inclo guns，sbould be so far decarbommed iss in have a density of 7.0410 T．26，with al lemarity of B3，000 pounds．Whern employed in 12 －ineh rillos it shomld have a density of fromi $7.2 t ; 10$ 万． $3 \times$ ．with a $1 \cdot n-$ acity of 82,000 pounds．W゙hon erspuloved for 12 －incla shot to be chilled at the point it aboild lave at len－ sity of from 7.82 ta $7.35 \%$ Kielmmot gran－iron，whem for 10 －ineh ritles，should have a density of from 7.2 s 10 7 .30 ，with a donatity of 82,000$)$ pounts

In tha manafacture of 4．5－inch sicere ritle the atp plication of the water－cooling proceson in imprarticahbe， owing to the great lengtis atnd small size of the bore． These guns are，thereform，fooled from the extarior． The best quality of gen－iron should be comployed in
 from 7.20 to 7.95 ．The gums shonlul be cemberd slowly in covered pits．＇The following：are volite of the pair． ticulars and eharges of Rolumingus

Nини of tinn．	单	$\begin{aligned} & \text { N } \\ & \text { E } \\ & 5 \end{aligned}$			Survice（latrue．		$\begin{aligned} & \bar{\vdots} \\ & \equiv \\ & \vdots \\ & = \end{aligned}$	$\begin{aligned} & \bar{\Xi} \\ & \vdots= \\ & \vdots \\ & = \end{aligned}$
Sinooth Rores． ：OH－inch sith	$\begin{gathered} \ln . \\ 243.5) \end{gathered}$	$\begin{gathered} 11 . \\ 210 . \end{gathered}$	［11．   （ia．	1．hs．   150200	$\begin{aligned} & 1,1 \mathrm{~s}: \\ & 1 \mathrm{~m} \end{aligned}$	1．h\％．	$\begin{aligned} & 1,1, \\ & 10 \leqslant 0 \end{aligned}$	1．1．0
lioinch do．	190.	16is．	$4 \times$	491010	50 matmanoth．	17	$\begin{aligned} & 14111 \\ & 14251 \end{aligned}$	3：311
13－inch ils．．．．．．．．．．	17.18	（15\％）．$\%$ ］	11．4	2ご31	：311（＇illnonl．	7	130011   $i$   1051	204
10－inclı ハ1ヶ．．．．．．．．．．．．．．．．．．	13ti． 16	110．）．$\%$	32.	1．10．5：）	  ale fur slast．	3	12\％	1（k）
R－intil lo．．．．．．．．．．．．．．．．．	123．5	110.	25.17	E4his	10	1	（ix	$4{ }^{4}$

be repual fo that estimated on the hypothasis that this stran is inversely as the elistanee from the asis

RODMAN PRESSURE PLUG.- In invention used when it is clesired to asrertain the pressure per square inch exerted by the powaler on the surface of the bore of a piece. To apply this instrument. it is first taken apart by unscrewing thecap and removing the piston ant dise containing the knife. The whote is then thoroughly oiled with sperm oil. "This done, place a copper dise in the phag, and after it the dise containing the knife, the latter being stid down so as not to colt the ropper disc. Next pass the piston into the hole in the stem of the cap, and serew the rap into its place. For this operation the plug is held horizontally in a vise. A small copper gasTheck is then inserted into the hole on top of the piston; a woolen drift is used to set the gas-rileck firmly in its place, and a small wad of cotton-waste is inserted over the gas-check: the pling is now put into the empty cartrilge-bag, with its groovel end at the botton and center of the bag, and the bag tiod firmly 10 it from the outside, with twine passing around the grooves on the bottom of the plug. The powder is next put in, care being taken to olistribute it evenly arouml the plug. The bag is tied close to the powder so as to make the cartridge firm and compact. When inserting the cartridge into the gum, fare is taken that the plug, when at the bottom of the bore, is, as nearly as possible, in the axis of the piece. Ifter the discharge, the pling is removed from the bore by it rake made for the purpose; the cap is unserewed, the copper lise is renoved, and, after being wiped, the cut marle upon it by the knife is measured, from end to end, witl it pair of dividers. The dividers are then applied to the scale and passed down the two long lines mitil they intersect a cross line the length of which corresponds to the width of the divinders; the figures at this point imdicate the number of pounds pressure to the square inch. Pressure plugs are of three sizes: one for the 12 -inch ritle and 13 -inch and 15 -inch smooth-bores; one for the 100 -poumder Parrott ritle and 8-inch and 10 -inch smooth-bores: and one for smaller calibers.

RODMAN TESTING-MACHINE.- $A$ marhine used to determine the capacity of any metal to resist a tensile, transeerse, torsional, or crushing force. It is also used to obtain the indenting force. By acombination of levers and cog-wheels, the action of the power employed is greatly angmented and transmitted to the sperimen under trial. The machine consists essentially of asystem of three levers, $A C$,
of strain than 1,000 pormaix are noted on the small lever, which is providel with a sliding weight, and gradmated from zero to ten, cach number representing an adelitional hundred poumls. OI the first demomination there are ten weights, representing a strain of 10,000 pounds, and of the serond, there are nine weights, representing a strain of 90,000 pounds. The agirregate strains of all the weights, or the capacity of the machine, being 100,000 pounds.

The crrors incidental to the use of this machine are due to thrie causes: 1st. Weight of its differ. ent movable parts. 2d. Motion of the centers of gravity of the levers towards or from their fulerums. Bd. Friction.

The firnt canse of error is avolded in practice by means of the atjusting weights alrearly lescribed. The system is lronght into perfect "quilibrium, su that any jncrase of 11 will be balanced by a proportionate increase of 1 .

The serond canse of error is comparatively unimportant, because the levers $A\left({ }^{\prime}\right.$ and $A^{\prime}{ }^{\prime \prime}$ are so adjusted as never to make al large angle with a horizontal line passing through the fulcrum, and in the case of the lever $\bar{I}^{\prime \prime}{ }^{1+\prime}$, which makes atarger angle, the shape is such as to bring the center of gravity very near the center of motion. Let $D$ denote the distance through which the renter of gravity noves; a demete the distance of the center of gravity from the center of motion: $I$ denote the angle described by the lever during the breaking of a specimen. In general the levers are so adjusted that the line connecting the centers of gravity and of motion is horizontal whef the movement of the lever is half completed. . . $\mathrm{I}=a$ versine $\frac{1}{2} \mathrm{~L}$. It is evilent that one or both of these factors is very small in each case.

The third cause of error is mate as small as possible by the use of knife-edges and sterl-plates, and is practically inconsiderable.

The determination of the absolute breaking and other strains involve the elimination of errors the to friction, ete., but for obtaining the comparative strength of sperimens, the machine is all that can be tlesired. See T'esting-machines.

ROGNIAT LINE.- 1 system of tefense has been proposed hy General Rogniat, the spirit of the arrangement of which partakes both of the bastioned lme with double flanks, and of the line with inter. vals. Points of 250 yards apart are taken for the

$\Lambda^{\prime}\left("\right.$, and $\Lambda^{\prime \prime} C^{\prime \prime \prime}$. The position of the fulerum in "ach of these rases is clenoted by $I^{+} F^{*}$ amd $F^{\prime \prime \prime}$, re-
 thon of the weightsis demoted by Wr. The levers are connerteal hy rigid rods. The menhanical andeantage of the levers $A(E) 10$ to 1 : that of $A^{\prime} C^{\prime \prime}$ is atol 1 . antl that of $\mathrm{S}^{\prime \prime} \mathrm{C}^{\prime \prime \prime}$ is 10 to 1 . We have, tharrefore, lys the formula for compomad levers,

$$
\text { IV } 10 \quad 20 \quad 10
$$

$$
\frac{1}{\prime}=\frac{-1}{1} \times \frac{20}{1} \times \frac{10}{1}=2000 . \text { a weight uf ont }
$$

pomble therefore applied to the phat forms of the sus. peneling rob on the same lever, "xirts a for"e of 200 penmels on the strape conmereling with the man lever, atal of 2,000 pounde at the print where the strain atctu upon the sampla"
'Tho wrights used are of two denominations. vis, half-ponds and tive poumb, representing resperlively 1,000 and 10,000 penmuls. Smatler incroments
salients of thr lumettes: their faces and the llanks are placed in defensive relations; and between them a revlan, with at ban-coupsée is placed to flank the fices, withont intercepting the fire of the lanks ; : straight curtain is carriod from the redan. atul leaves an intarval of ton yards between it and the fanks of the lanettes for sorties. With regard to the profiles, the landtes receive the minimum protile both for the parapet and elitch. The rethans are simple epandemants fo eover ammon firal in barbette: and the cortaing comsist of a tronsle with the parth thrown in front. (o) form a paramel, whicll is so arranged that the infantry may march from the trench in order of battle ovarit.

The alvantuges clamed for this syatem are first, the short timu required to form the works, by which an army nay intreneln its lield of batale in one night; secome the limettes form the tirst line of the oricir of battle. and ematain only infantry, and the batterices
are phaced in the retans, where lary are mores sontre, protect here lumelles, and withedraw the lire uf the
 taine are well diefonded ly infantry, when tath sally from themat andements warning, amdaided bs the light artillery nod mavalry, when doben he thromph the intervals 1 er weren the rurtains and haneters, and atanck the encomy in lamk. If the lhanks of his pusi-
 niat propases to throw of townets the renr a strung

 andacent lunctar.
lines with intervals arw peonlarlyathued to wry well disetplined and uetive tronjus. The works Herown in advaneremstitute the first lime of the order of bathle, against which tha birst whork of the 'memy is partially hirown tway, and he dare mot
 trate through the inturwals would axpense his thanks to a close and dendly arose-fire. If the anemy is repulsed, the main body of the army, whicti is drawn up in rear of the worke immediatedy assumes the offervive, and, by a bigerons admano mowement, chargen the enemy in turn, relying on the worke to aver its retreat if driven batk. The every ambination of this nature the thanks are the wak points: they should rest, if priadicable, on semme unassailuhbe point, as a marsh, river. ole.; othorwise very strong works should be theswat up) for protection. Sire limes.
ROGUE'S MARCH.-1) risive music perfurmed in driving away a persom under pepalar indignation, or when a soldier is drommed ont of a reximent.

ROI D'ARMES.-King-atminss, hu ollerer formerly of ereat anthority in armies; he direded the It ratds. presided at their chapters, and had the jurisdietion of armori's.
ROLL CALL.-In military lifo it is necessary. for the sake of discijpline and to prevent soldiers from wambering about indiserimimately at all hours, as wall an for the purpose of having them avalable at any moment in rase their services are repuiret, that the men of a reqiment, company, or detaedment should be present to answer their names during certain fixed periods of the day, or at any time the Commandine Otheremy think advisable. This ace is tremed Foll-rall. In ihe L"nited states, there are daily at last three roll-walls, vi\%, at revill, retrent. and tatten. They are made on the company parad ss by the Ist Sergeants, superintended !yy "ronimissioned Offeer of the company. It all established boll-colls. cesept dreseparade, after the eompmies are dismissed, each ottierer superintending the company rollcall reports, to the Adjutation other oftioer idesigmated, the result of the roll-call; the Adjutant or atticer designated reports the result of the roll-call to the Commandine Otherer. Immediately after mecille roll-call (after stableduty in the cavalry), the tents or guarters, and the space aromid them, aro put in order ly the man of the companicso superinten led by the chiefs of squalds, and the entard-homse or ghatidetent by the ghard or prisomers.

ROLLER HANDSPIKE.-An implament for working the eccentric rollers of casemate eariages, and is made of round iron tapering to fit the mortion in the eccentric. It may be made single like : truck hatadspike, or with two brandees to fit in both morlises of the roller at the same time.
ROLLERS. Solid eylinders of woud. used in mount. ing guns upon their carriages, or shifting them from one carriage to another, and in moving them ons the stomat. Their dimensions vary with the serviee for Which they are intemed. Whena grm is moved on rohlers, they must be herizontal, and handejikes should be applied to ghardagainst recedem, when the run has a tendeney to roll ofr. The rollersmast be flated at right angles to the direction in which they are intended to move. projectinge equally on car shile of the axis of the gun. The gen upon rollers maybe moved.



 sive roller of irm, wrighiner abom th toma, having


ROLLING BOARD. . 1 smonth, pion of phank, with
 which the hantel is phaced in mane it. It is amphoyed in making tho camen of pert-lires mon the like.

ROLLING FIRE.-1. A Jisclarge of monketry ly
 in which they stamet. 2. A tire where the axiu ef ther piece is paralld, or marly so, with the ground or
 in a suremsion of rieorlacta.

ROLLING-HITCH. In corditre, anda-fal hitch form-

 ing part low enary it arrous and up throngh tho bight. Siere "orrduge.

ROLLing Mill. - One of the motime impertant of mendern inventons for the working of metals. It was tirst introdnech practially by Mr. ('arl) in 1rwt. and since then has eradually liverome more and mure usoful, as its cipabilition have beren 小eveloped. Thee rolla may be "nyravel so as to inprems a patlern on the har an it bassis through; this is done by the

 way, a mandred or rod of irm being fited inside the twhe, in suminin the pressure of thar rullera.

In its simplest forma rollingor-mill consiots of two cast-iron cylinders ghaced with their axe horionntally one abow the other, at thown in the drawing. and comected by spur-gearing sas as to rewolve at the same velocity". The surface of the rolls may be cither smooth, in is the case in the flatemills, or grooved inte varions patterns, as in these need for The production of merchant bars. Thae reduetion in the size of the bloom is effected hy regnlatiog the:

vertieal distance betworn the twere rell- by the naof growes diminishing regularly in -izo, or loy is combination of both methock.
As the direftion of relation of the rollh - is combant molder ordinary eirenmetanco. it is necestary, after the bar has passed through one growne to return it by lifting it (uver the tom roll. in corder fo bring it in gustion to pass through the next analler whe and -o (a) in succession. This may the asily dune with Honms of emall size. Inat is atiended wiblern-iderable ditionlyy when it in requited to handle large
 loss of time and conseatuent wato of iron ble caliny. from expestre to the atmosplace in a histily heatend condition for a longer time than is aboblutaly required. Viry hatay mill-, - ath as ary uned for armor-phates. requiri (an he reversed at each pascave of the pile the distance between the roll- beine diminishad catd time. See 1 Poms.

ROLL OF A DRUM.- Tlu* continucurand uxiform

Weat of the drum for a certaintimt. What is known as the iong-roll is :l beat by which troops wore formerly assemblu? at any particular spot of rendezvous or parade.

ROLL OF ARLS - A heraldic reeord of arms, either verbally blazoncel or illuminated, or both, on a longr strip of vellum, rolled up, instead of being folded into leaves. Rolls of arms are the most important and most authentic materials for the history of early Heraldry. In Enceland they go back to the roign of llenry III. . the ohlest being a cons of a roll of that reisn, containing a list of the arms borne by the Sovereign, the Princes of the Blood, and the principal Barons and Knights between 1216 and $12 \% 2$, ber bally buzoned without drawings. The original has beren lost, but the copy, which, having been made by Glover. Somerset ITerald. in 1586, is called "Glover's Roll." is in the English College of Arms. This roll exhibits Ileradry as at that early perion already consolidated into a system. In the British Miseman is a copy of another roll of the middle of the 13 th century, contaling 700 coats tricked, that is, drawn in pew and ink. The Roll of Cafrlaverock is a heraldic poem in Norman-French, reciting the mames and Irms of the linights present at the sioge of Caerdaverock in 1300. It has beren published with notes ly Sir N. H. Nicolas. Copies exist of rolls of the Knights whowere with Edward l. at the Battle of Falkirk.

ROMAN CANDLE.- I long and strong fube charea I with stars, whiclu are thrown ont successively hy a charge of powder placed nnder each star. The "nds of grmbarreds, 20 inches long, are used for ("azes. When paper cases are used, make them about . 65 to . 7 ineh jnterior diameter, and 1 -inch exterior diameter: roll them like port-fire cases. Three drifts of diffrent lengths are used; they are made of lickory or other hard wood, with brass tips on the lower emils.

Put in the ease a ladleful of clay and drive it with ten blows of the mallet ; then a lableful of composition, which is driven in the same way; next a charerer of powder and a slar, which is gently pressed down, then another ladleful of composition, a second charger of powder, and another star, driving the composition ambluressing down the war gently : continne until the tems stars are in. and add a half larleful of romposition. Prime the candle with at sand of quirk-matel $f$ inches long. hedd in place ingainst the side of the case by a little composition driven in on its ends. Cover the embl of the c:undle with at sip) of paper pasted on. Roman candlos are insorted in holes boredi in frames, or tied witl wire or twine in the direction in which they are to throw their stars. The stars used for Roman candles have a hole thronerh their axes commomicating the fire to the chare be low, which throws it ont. Sere Fibucorks.

ROMAN LEGIONS. - To a truly illustrions lirenchman, whose reverses as a minister can never whecure his arhiovements in the world of letters, we are indebted for the most profombl and most fotpant costimate that we poscoss of the importanere of the (ter manic: "ement in European rivilization, and of the axtent to whial the luman rare is indebted to those brate warriors who long were the unconducred an-

 away sin* h. Gmizot delivered from the chair of moslern hishory at laris his conray of lectares on tho hislory of civili\%ation in Europe. During those Jatrs the spirit of rarnest infuiry into hhe gernas and primary developments of existing institutions has le fonme more and more active and miversal, and the morited erlobrity of X. (ingot's work has proportionately incrostical. Its admirable analysis of the


 erises of times jast, hy whish the eharat teristios of
 af thase erfat rerises. of the ('pereh d. 1). ! when

Fermany tonk up arms for her independence atgannt Roman infasion, has for Enerland this ome attraction - that it forms part of her national history. Nawl Arminius becusupine or msuecessfulher Germanic ancestors wonld have heen enslavedor exterminated in their original seats along the Eybler and the: Elbe. Great Britain would newr have borme the name of England, and the mighty English nation, whose race and language are now overmming the earlb, from one end to the other, would have bern utterly cut ofl from existence. Arnobl may, indeed, go too far un sationg that they are whally uncomectad in race with the lemans and Britons, who inhabited that country lufore the invasion of the Saxons: and that. "nationally speaking, the history of ('iesar's invasion lats no more to do with them than the natural history of the animals which then inhabited the forests." There seemas ample evidence to prove that the IRomanized Celts whom her Tentonic forefathers found there infinenced materially the character of that matom. But the main stromm of her people was and is Germanic. The English kinguage amply proves this. Arminius is more truly one of Britain's mational heroes than Carnetacons; and it was his own primeval fatherland that the brave German reseutd whon he slamghtered the Roman legions eighteen conturies ago, in the marshy glens between the F ippe, and the Ems.

Dark and disheartening, even to horoic spirits, must have semet? the prospects of Germany when Arminius planned the general rising of his countrymon against Rome. IIalf the land was oceupied by Roman garrisons: and. what was worse many of the Germans seemed patiently acquieseent in their state of bondage. The braver portion, whone pat triotism could be relied on. was ill armed and undisciplined. While the "nemy's troops consisted of veterans in the highest state of equipment and training, familiarized with victory, and eommanded by otlicers of proved skill and valor. The resonrces. of liome seemed fommbless : bertenacity of purpose Was helicyed to be invincible. There was no hojee of foreign sympathy or aid]; for "the self-governing powers that had filled the (Old Wrorld hat bent one after another before tha rising power of Romes, and had v:misherl. The earth sumed left void of imbependent nations.

The German chioftain knew very well the gigantio power of the oppressor. Arminins was no rude savagce fighting out of mere amimal instinct, or in ignorance of the might of his adversary. Jle was familiar with the Roman lamguage and civilization: he had served in the Roman armies: he had bren admitted to the Roman ritizenship and raised to the rank of the equestrian order. It was part of the subtle porlicy of lome to confar rank and privileges on the wouth of the leading families in the nations which She wisbed to enslave. Among other yomng ferman rohoftains, Irminius and his brother, who were tho heads of the noblest house in the tribe of the charusci. hatl bren selected as fit ohjects for the exercise of this insidious systern. Roman retinements and dignities sucereded in drotionalizing the brother, who assumed the lioman name of lolavits, and adlacred fol lome throughont ald lecr wars against his -ountry. Arminias remained mbought by lomors
 aspired bo amd ohtained from lioman emmity a highot title than rever fould have been !riven him liy lkoman favor. It is in the fage of lame's ermatest historian that his name has comme down to us with the prond additiom of " Liborator hamd habie (bormaniat". OHten must the fonmer rhicftain, while meditating the expleit whirli has ilas immortalizal him, bave amadonsly rowolved in his mind the fate of the many great men who had been erushed in the attompt which ho was about to renew-the attempt to stay the (hariot-wheres of trimmphant Rome. Conld hir lowne to sucered where Hannibal and Dithratatex hav prophed: What had been the doom of Viriat


 tere wh the desolate site where Nomathtis oneo had


 and the wallant lareineretorix, who int tar list year




 futchered incold homod in a lemann dungeom.
It was true that liome was mo lomarer lace groat military rejuhlir whinh for somany ares had - late lored the kinerloms of the world. Hor system uf grovernme'nt wats changely : amblafor a montiry of revolution and civil war, she had placed literself uncher the dosumtism of at single ralar. Jut the diari-
 like spirit scomed monabled. "l'be tirst year of the rmpirt han hern signali\%ed by conculests as valuable as any wincol by the republie in a correspomeling
 sanctionct by ereat anthoritios, fosmpuose that the


 11). hut he himself, until Arminius broke his spirit, had followed! avery ditferont enurse. lBesiles his Spanish wars, his Geherals, in a sorios of gernerally
 [rontior from the Alps to the Dammer, and had reduced into subjurtion the large and important rountries that now form the teritorios of all Austria sotulh of that river, and of East Switardand, lawor Wirtemberar Bavaria, the Viblallime, ame the 'Jyrah. While the progress of the leman arms thas pressed the liormans from the sollth, still more formialathe inroids hat bern made by the inumerial legions on the west. Roman armiss, moving from the proviace of Giabl, astablished at rlain of fortresses alome thes righat as well is the left bank of the IRhine, and, in a series of viotorions campaigns, advaneed their toritus ats far an the lifbe, which now semmed added to the list of vassal rivers, to the Nile, the lhhime, the Rhome the Dannhe, the 'lagus. The Feine. and many more, that acknowlodged the sumpematy of the Tibur. LRoman theuts alan, salinge from the harbors
 ries. con-operated with the lamb-forme of the empire and semad todisplay evern more decosively than her armits. ber owerwhelming superiority ower the ruble Germanit tribes. Tharoughome the terriasy thas invaded, the lommens had, with their usmat military
 of xerolpation wats kept on font ready tor mowe ins. tamly on uny spot where any popmatar outhereak might be attermpted.

Vast. howeror. and almirably aryani\%al as the fabris: of Roman power appearid on the frontiors amdin the provinces, there was rotemess at the core In lkome's moneasing hostilities with foreign foros, and still more in her loner series of desobating rivil Wars the frow midelle chasses of laty hat abmos? wholly disaplearerl. Ihove the position which they
 itself: bemeath that position, at deyradod mass of porerty and misery was formenting. Slases, the chatere sweopings of every conturat (oomatry, shoths of Ifricans. Samdinians, Aviaties, Illyrims. and others, mathe up the malk of the population of the $\mid$ talian fuminsula. The fonlest protligate of mamers was arne ral in all ramks. In maiversal weariness of ruvoJution amb civil war, and in ennscionsmoss of baing tom delased for sedf-govermment. the mation hat sidmmilled itself for the absolnt aththorify of Jighstus Alulation was now the chiof fometion of the semate: abul the efifis of womias ablel acoomplishments of ari ware divoted to the elaboration of equmently false panegrices upon the prince and his fatoritio cour-

 Ha robela worth of hi4 wwos somblrymen ; the ir lora-






 repaik. His suml mast have harnefl within him at the comlomplation of suchs a raco yiolding (or torme





 bown, without military horom, withomt traininer io

 robtorprise, that probably Srminius wonlal haver ro-
 patrioti*n wread him on. Amonger tho fiernathe of high rank who land nust rombly submitted to the





 forbatle his suit, anil strove qu prectudn all (\%)!manniration betwern him and his dinghter. "tha-mbla, however. sympathized far more with tho horoid- - init of har lover than with the dimasererving patiog of luer father. An clopement batfled the jreatations of s. grestes, who. disappointed in his hojex of preve moting The marriage accosed Arminias boforo tha lionath Govoruor of haviner rarriod olf his hanarlator, and of plaming treason against Rums. Thans assalided, and drembing to sec his bride torn from bim by the ollicials of the forefign appresisor, Armiains dolayed mo longer, hat bert all his enorerios to ormanize and "xu('ute a grueral insurrection of the groat mass of his countrymen who hitherto had submattond in sulden hatred to the Roman dominion.

I chanere of (rovernors hatd recently taknon place which, while it matorially faverenl the ultomate surcess of the insurgents. served. by the immatiate alygravation of the Romatn ofpuresions which it prom chuced. to make the native poputalion more umitaro ally easar tutake arms. Giburills, who wat afterward fimperor, had recemty been reablad from the (obmmand in Germany, amd semt into l'amonia to put down it dangerous revolt which hind broken out g-
 batrints were thas dedivered from the stern wajervision of ome of the most suspicions of mankind, and wore also relieved from having to comtame againat tho high military talents of a vileran commander. who thoronghly under:ond their matinnal charatitr. and also the nat nre of the comumes. whicd he himsadf had jrincipally sulnducel. In the romen of liluer.
 who hat hately returnad from ihe procom-ulato of


 gratitications, a minute atoplathanto with the prinCiples and practico of their own national juriopras dences. a carcfu\} traininer in the erlanols of the rhat oricians and a fondmos for athor partaking in ar watching the intellowtual strife of foremsie orater had luanma gemerally diturad. wishout homavir. haviner homanizal the ohd lamman zonit uf romel indifference for human fedingsand lmman sufferimes. and without acting as the Joist cheoks on maprimi iplod avarice amd ambition, or on habi!ual mu? arose profligity. dechetomed fu goxern the dapraved amb debased native of syria a combery where atur-
age iu man and virtue in woman had for centuries been unknown. Varus thought that he might gratify his licentions and raparions passione with equal impunity among the high-minded sons and pure-spirittold daughters of Germany. Wharn the General of an army sets the example of outrages of this description. he is snon faithfully imitated by hisofficers, and surpassed by his still more brutal soldiery. The Romans now habitually indulged in those violations of the sanctity of the domestic slirine, and those insults upon honor and modesty, hy which far less gallant -pirits than those of our Teutonic ancestors have often been maddened into insurrection.

Arminius found among the other German Chiofs many who sympathized with him in his indignation at their country's abasement, and many whom arivate wrongs had atung yet more deeply. There was little difticulty in collecting bold leaders for an attack on the oppressurs, and little fear of the populatiom not rising readily at those leaders' rall. But to declate open war agsinst Rome, and to concounter Varus's army in a pitched battle, would have heen merely rushing upon certain destruction. Varus had three legions under him, a foree which, after atlowing for dotachments, camot be estimated at less than fourteen thousand Roman infantry. He had also eight or mine lmadred Roman cavalry, and at least au equal number of horse and foot sent from the allied states, or raised among those provincials who had not received the Roman franchise. It was not merely the numiser, but the quality of this force that mate them formidable : and, however contemptible Trarus might be as a General. Arminius well knew how athirably the Roman armies were organized and officered, and how perfectly the legionaries understood every maneuver and every duty which the varying emergencies of a stricken field might require. Stratagem was, therefore, indispensable: and it was necessary to bind Varus to their schemes until a favorable opportunity should arrive for striking a decisive blow.
For this purpose, the German confederates freguented the leadguarters of Varus, which seem to have been near the center of the modern conntry of Westphatia, where the Roman General conducted himself with all the arrogant security of the governor of a perfectly submissive province. There Varus gratified at once his ranity, his rhetorical tastes, and his avarice, by hodding courts, to which he summoned the Germans for the settlement of all their disputes, while a bar of Roman advocates attended to argue the cases before the tribunal of Varus, who did not onit the opportmity of exacting court-fers and acrepting lribes. Varus trusted implicitly to the re--pect which the Germans pretended to pay to his abilities as a julge. and to the interest which they alleered to take in the forensic eloguence of the ir conquerors. Deanwhite a suceestion of heavy rains rendered the country unore dithente fur the operations of regular fromps, and Arminius, seeping that the infatuation of Varus was completes, secertly directed the tribes near the Weser and the Euns fotake up arms in open revolt against the Romans. This was repremented to Varus as an oceasion which required his prompi attendance at the sput; bat he was kept in studied iornorance of its hoing part of a concerted national rising ; and he still looked on Aminius as his submissive vassal, whes aid he might rely on in facilitating the march of his tronpsayainst the rebeds, ant in extimgnishing the local disturbance. He the resfore set his army in motion, and marehed (ask ward in a line paralle to the eromse of the lippe. Fion some distance his ronte: lay along a level plain; but on arriving at the tract betwem the curw of the uppor part of that strem and the sourese of the Fems. How connery assumes a very different charatera and here, in the territory of the modern lithe principality of Lippe, it way inat Arminius had fixed the sceme of his moterprise. A womly and hilly region intervencs betweren the hatso of the two rivers. and forme the
watershed of their streams. This region still retains the name (Tcutoberger $=$ Tentobergiensis saltus) which it bore in the days of Arminias. The nature of the gronnd las probally also remained maltered. The eastern part of it, round Detmold, the modern capitat of the priucipality of Lippe, is described by a modern (ierman scholar, Dr. Platte, as being a "tableland intersected by numerous deep and narrow valleys, which in some places form small plains, surrounded by steep mountains and rucks. and only accessible by narrow detiles. All the valleys are traversed by rapid streams, shallow in the dry season, but snbject to sudden swellings in autnmn and winrer. The vast forests which cover the summits aud slopes of the hilis consist chicfly of oak; there is litthe anderwood, and both men and horse would move with ease in the forests if the ground were not hroken by gullys, or rendered impracticable by fallen trees." This is the district to whicir Varus is supposed to have marched; and Dr. Platte adds, that "the names of several localities on and near that spot seem to indicate that a great hattle has once heen fought there. $W_{0}$ find the names 'llas Winnefeld' (the field of victory). 'die Knochenhahu' ( the bone-lane), 'die Knocheuleke' (the bone-brook), 'der Mordkessel' (the ketthe of slaughter), and others."

Contrary to the usmal strict principles of Roman discipline, Varns had sulfered his army to be accompanied and impeted by an immense train of baggagewagous and by a rabble of camp followers, as if his troops had been merely changing their quarturs in a friendly country. When the long army quitted the firm level ground, and began to wind its way among ti:e woods, the marshes, and the ravines, the dithiculties of the march. even without the intervention of an armed for, became fearfully apparent. In many places, the soil, sodden with rain, was impracticable for cavalry, and even for infantry, until trees had been felled, and a rude canseway formed through the morass. The duties of the engineer were famile iar to all who served in the Roman armies. But the crowd and confision of the colnmas embarrassed the working parties of the soldiery, and in the midst of their toil and disorder the word was suddenly passed through their ranks that the rear guard was attacked by the barbarians. Varus resolved on pressing forward; but a havy discharge of missiles from the woots on either thank tanght him how serious was the peril, and he saw his best men falling round lim without the oppormity of retaliation; for his light-armed auxiliaries, who were principally of Germanic race, now rapidly deserted, and it was impos. sible to deploy the legionaries on such broken ground for a clarge agranst the enemy. Choosing one of the most open and firm spots which they could force their way to, the Romans halted for the night; and. faitlof to their mational discipline and tactics, formed their camp amid the harassing atticks of the rapidly thronging foes, with elaborate toil and systenatic skill, the traces of wheh are impressed permanently on the soil of so many European comitries attesting the presence in the olden time of the imprial eagles.

On the morrow the Romans renewed their march. the weteran oftioers whan served under Varus now prohably directing the operations, and hoping io find the Germans drawn up to meet them, in which case they relied on their own superior dise ipline and tactics for sucha a virlory as shmbld reassure the supremato of Rome. But irminius was far foo sage a commander to lead on his followers, with their mavidy broadswords and inedie iend defansive armor, against the Roman legionaries, fully armed with helmet, cuirass, greaves, and shied who were skilled to commence the conilict with a murderous volley of javelins, harled upon the foe when a few yards distant, and then, with their short rut-and-llerist swords. to luw their way through all opmosition, preserving the ntmost stantiness and cootness, and obrying each word of emmmand in the midst of strife and slanghter
 rade. Arminins sullicend the Romans to marell ond from their camp, to form lirat in line for antion, nus then in column formarching withont the show of on. pmition. Far some distanere Varas was alloweralo


 havy torrents of rilin, which burst mimin the devolrit IWrions, ats if the angry gode of (iermany wore pour-

 of high woody eroumb, which is one of the oft'shoents of the great Herevinn forest, and is situated be-

 formed heres so at to add to the mataral dillicultio's "f the passager. Fatigus and discouragemont now beran to betray ibemselves in the Roman ranks.
 : bandonal from tho imossibility of foremer them atong: ant, as this happernol, mathy soldiersleft the ir ramks and crowded round the wagons to secure the most valuable jertions of thoir property : each was buy about his own allairs, and purposely show in bearing the worl of ommand from his oblicurs. Arminins now gate the signal for a eremeral athatck. The tieree shome of the (ivermans peatod thromeh the gromom of the foreses, and in thronging multiturlas Fhey assated the ranks of the invalders, pouring in Chods of dares on the encumberi legromaries, as they strugged up the ghas or flommered in the marasses, and watehing every opportmity of charging through the intervals of the disjointed cohmon, and *W cutling off the communisation bet ween its sever. al lofgades. Aminins, with a closen land of personal retainers round him, "haced on his rountrymen by voier and cxample. He and his men almed their wapons partionarly at the borses of the Roman cavalry. 'The womoded animals, slipping about in the mire and their own hood, the we the riders and phonged amone the ranks of the legions, disord cring allaround them. Varos now ordered the trosps to be combermarthed, in the hope of rathing the nearest Roman garrison on the lippe. But retreat now was as impracelicable as atvancra and the fallinge back of the Romans only mamented the comage of their assailants, and coused fiererer and more freviuent charges on the banks of the lishesertened army. The Roman oflicer who commanded the cavalry, Numonius Vala, rode off with his siluadrons in the vain hope of escaping ly thes abondoning his comrades. Gnathe to keep together or forer their way across the woods and swampe the horsomon were over powcred in detail, and slanghtered to the last man. The Roman infantry still held tegether and resisted, but mare through the instinct of dise iplime and hawery than from any hope of suceress or escape. Varus. after being sinerely womded in a charge of the firemans against his part of the column. committed suiride to avoid fallimer into the hands of those whom he had exasperated hy his opprestions. One or the Lientenant-gencras of the army fell hirhting; the othar suremdered to the encmy. But merey io a fathen foe hat never been a loman virtue and those among bur leggions who now had down their arms in hope of $\quad$ quarter. drank deep of the cup of suffering which lome had held to the lips of many a brawe but mo fortunate renemy. The infuriated (Germans shaygtored the ir oppersure wilh dediberate furecity, and hose prisoners who were not hewn to pieces on the apot wre only preserverl to perish ly a more ervel death in cold inders.

The buak of the lioman army forught steadily and stublworny, frequenty repelling the masses of the assaidants, but eradually lowing the compactars: of their array, and bernming waker and weaker heneath the incessum shower of darts and the roiterat-
 mans. It dasi, in a series of desperate attacks, the





 womls in mavaling clloris at Alight. Fow, wry fow. "Wer saw again the loft hank of the Khime. Gat le,


 of that drendfal day. Thio traces of a forlhe athomit at forminer a ditch iand momad attomeal in after wars
 nixht of sullicring and le wair. bat on the morrow. this ermant alsh, wom ont with hanere womme ami toil, was rharged hy the victorithe dicrmansand -ith.
 at the altars of the drities of the whe matholotey of the North. A serere in the momatain ridlen, throngh
 byrmont, latals from thespot where the beat of tha. bittla rased to the bixatarstaine a clatere of hrold
 small shere of wator, overshadowed by a erose of
 ome of the sacred erriwes of the anciont (rarmans, and it was here that the deman raphives wore sam in sacritice loy the virporious warrions of Arminims. Niever whs vietory more ferisive, never wats the liberation of an "priwsisw fecople more instantancous and complete. Throurlont (ivmany the laman garrisons Wrore assailedand cut off: ind, within a frow wedse after Varns land fallen, the fierman soil was freed from tha font of an invalder.

At Rome the tidings of the hathe were reeeived with an agony of trror, the regorts of whith we should derm exargerated, dial they not come from Roman historians themselves. They mot only tell emplaticnlly low groat was tha iwe whicfl the Romans feli of the prownes of the (itrmans, if their varions tribes comald lo bromght tomite [or a combmon purpose, but also they reveal how weakenel and delmased the population of laty had become.
 tus, when he heart the calamity of Varns. rent his garment, and was in ereat athiction for the trongs Te hadllast, and for terror respecting the Germans and the (ranls. And his chiet alarin was, that he expected them to phis om ugainst laly and Rome; and there remaned no Roman youth fit for military duty that were worth spaking uf, and the aljaid prepulations that were at all serviceal)ie had beron wasted away. Yet he propared for the emergence. as well an his means allowed. and whern none of the citi\%ns of military age were willing to enlint, la made them cast hois, amb phished by contiscation of groods and disfranchisemint every fifth man ammen those moler thiry-five, and every temth man of thase abow that aree. At last, when he fomme that not even thas rould he make many come forward. he pat some of them to death. So he mathe as conscription of discharged wotarans and of comaneipated slaves, and, colloreting as lare a forer as he could, sent it, under Tiberias, with all spect inse Crermany:"

Dion mentions, also, a mumber uf territio purtemt. What were believed tu have omerrets at the time and the marration of which is not immaterial, as it shass the state of the publie mind, when such things wers so bedieved in and so interpereded. The summit of the $\mathrm{N}_{\mathrm{p}}$ s were aid to have fallem, and there coltumas of tire to have blazed ap from thema. In the (ampur Martins. the temple of the war-got, from whom the fomblar of liome had sprung. Was "truck by a thmodertholt. The nighty hoamens glowed se beral times as if on tire. Miny conmets mavad forth tomether ; and fiery meteros. Shaped like speare, hat she from the northern quartor of the sky down intu the Koman canmps. It wa-saik, too, that a - tatne
of Vietory which lead stond at a place on the frontier. pointing the way toward Germany, hat of its own gecord turned round, and now pointed to ltaly. These and other prodigies were beliesed ly the mill titude to ateompany the slanghter of Varns's lewions, amd to manifest the anger of the sods against liome. Angustus himself was not free from superstition: but on this necasion mu supernitural terrors were necded to increane the alarm and grief that he felt, and which made hime even months after the news of the lattle had arrived. often beat his hedd arainst the wall, and exelaim, "Quintilius Varus, give me back my legions." We leam this from his biographer Suctonius: and. indeed. every ancient writer who alludes to the overthrow of Varusattests the importance of the blow against the Roman power, and the bitterness with which it was fell. The Germans did not pursue their tiotory herond their own territory: but that victory serured at once and forever the in Cheperdence of the Tentonic race. Jome sent, indeed, her legions again into Germany, to parate a temporary superiority, but all hopes of permanent compuests were abandoned by Augustus and his suecesoms. The strong blow which Arminius lad struck never was forgotten. Roman fear disguised itself under the specions title of moderation, and the Rhine lecanne the acknowledged boundary of the two nations until the fifth century of the present era when t'se fermons becane the assailants, and carved with their comquering sworts the provinces of imperial Bome into the kingdoms of modern Europe
It will be interesting in this connection to append a brief account of that civil war in which Ciesar and Pompey contended for the mastery over Rome and the Republic. In his first Commentary Casar recordefl his campaigns in Gamb,-campaigns in which be reduced tribes which wert, if not hostile, at any rate foreign, and by his success in which he carried on and maintained the potency, traditions and purport of the doman Republic. $l^{t}$ was the ambition of the lioman to be master of the known wordd. In his ideas no more of the world was really known than had become Roman, and any extension to the limats of this world could only be male by the addition of so-called barbarons tribes to the number of loman subjects. In redueing (iam, therefore and in fighting with the Germans, ind going over to Britain, Ciesar was doing that which all grood komans wished to see done, and was rivaling in the Whest the ereat deeds which Pomprey had accompished in the East. In his second fommentary he is forced to deal with a subjeet which must have been less gratifying to doman readers. He ruates to us the victories which he won with Roman legroms over other lewions ergally Roman, and by which he succeeded in thestroying the liberty of the lipmblic. It mast he acknowletiod on Cersar's behalf that in trath liberty had fallen in Rome before ('exatre time. Power had produced wealth, and wealth hat protherd corraption. The tribes of liome were bought and sold at the varions elections, and a few greab oligatels, bither of this faction or of that, divided among themselves the places of trast and honor and power, and diden with hands ever oguenfor the grasping of public wealth. An hanest nam with feran hamds and at remsetenere, with seruphes and a love of eountry, become antited for publie empleyname. (ato in these ditye was simply ridianous; and even Ciecons thongli he was at trinmer, was mach too bonest for the times. Laws were wrestefl from their purposes, and the very Tribmes of the people had beecme the worst of pyams. It was neecessary, perhaps, that there should be at master ;-suat least ('esear themarh. He had, no dombt. sey this metessity durinmall these yeare of fighting in (amb, and had ressulved that he womld not jue hase than First in the new ordar of dhings. So he reossed 1her Rulhi"on.

The rater of this somolemmmentary will find it

ture, less of new strange life, and less of that sound, heathy, joyous fereling which sprang from a thornugh conviction on Cexar's part that in crushine the Gath he was doing a thoroughly goord thing. To us. and our way of thinking, lis doings in Gaul were stained with terrible erracley. To him and to his Romans they were foul with no sueh stain. How other Roman eonguerors acted to other conquered people we may learn from the fact, that Cosar obtained a character for great merey by his forbearance in (ratal. lle always writes as though he were free from any sting of conscionce, as he tells us of the pmishments which policy catle on him to inflict. But as he writes of these civil wars, there is an absence of this feeling of perfect self-satisfaction, and at the same time lie is muclifess eruel. Decatombs of Ganls, whether men or women, or elildren, Je could see burned or drowned or starved, mutilated or tortared, without a shmeder. He conld give the command for such operations with less remorse than we feel when we order the destruction of a litter of undesirable pupples. But be could not bring himself to slay Romim legionaries, wem in fair fighting, with anything like self-satisfaction. In this he was either soft-hearted or had a more thorough feeling of country than generals or soldiers who have fought in civil contests since his time have slown. In the Wars of the Roses and in those of Cromwel] we recognize no such feeling. The American Generals were not so restrained. But Cexar seems to have valued a loman legionary more than a tribe of Ganls.

Nevertheless he crossed the Rubicon. We have all heard of his reossing of the labicon, but Ciesar says nothing about it. The Rubicon was a little river, now almost if not altogether unknown, running into the Adriatic between lavema and Ariminum-Rimini,-and driving the provinces of so-called Cisalphe Gaul from the territory under the immediate rule of the magistracy of Rome. Cqesar was, in to say, at home morth of the Rubicon. Ite was in his own province, and had all things mader his command. But he was forbidden ly the laws even to enter the territory of Rome proper while in the command of a Roman province: and therefore, in crossing the Rubienn. he disoleyed the laws, and put himself in (Ipposition to the constituted anthorities of the city. It does not appear, however, that rery much was thought of this, or that the passage of the river was in truth taken as the special sign of Casar's purpose, or as a deed that was irrevocible in its conserpuences. There are variens pretty stories of Casar's hesitation as he stood on the briak of the river, doubting whether lie would plange the world into rivil war. We are told how a spirit appeared to him and led him aeross the river with martial musir, and how (Gesar, declaring that the die was cast, went on and erosed the fatal stream. But all this was fable, invented on Casar"s behalf by Romans who came after Czestr. C'asar's parpuse was, no doubt, well understond when he brought one of his legions down into that comer of his province, but , illers to treat with himen triendly terms weremade by Pompey and his party aftur he had established himeelf on the Roman side of the river.
When the civil war began. Cessar hat still, acaroling to the assignment mate to him. two years and it lailf left of his alloted period of gevernment in the three provinces but his viotories and his jower had bere watelaed with ansious eyes from Rome and the somate had attempted to decres that he shombl be resalled. Pompey was monger Cesarss frienel, nor (lid Cusar expert his frimadship). Pomper. who had hately buyed his cards but badly, and mist have felt that he had phayed them hadly, hand luen froed from his bondage to Ciesar by the death of (rassus, the third trimmir, hy the death of Intin, (hesar's damerhter, and hy the roburse of things in lomes. It had bern an mathral alliane arramed hy (foser with tha sole view of chiphing his





 hin in tokcon of honor. Jhe ham boen allowed ther




 unel in all thinge lanply, Jobat driven tho swarm-





 from the factions of lure own citi\%als, ho hatd lwon
 Thre chatracter of Jompry than the position whicla. liy his movaried suroersors. Jue hatd mate for himself in (luc minds both of the noblles and of the people. Evorn up io this lime, "vorn aflor (4esar"s wars in Gamb, there was sumbthing of divinity langiag about
 Ha lad been imperjons, but ralm in matancr aut
 not inmotiant in making good his chams: ormad,

 false, polilic, ambitions, very lrave and a leoman (o) the batkbonce. liat hebad this fationg, this weak.
 did not quite know what it was hat he flesiredto dor ho did unt cleatly ser his future. 'Vho things tos be done were so great, that le hat not ceased to dombt eomeroning them whos the noment rame in which
 ed. That liatle fale of (hesar stambine on the briclge over the kutheon ponderiner as to his future courzá . divided betwern obediense and rebedlions it is
 and nosurit division. (iesar knew very wod] what he meant amb what Jue wantord.
(hesar is full of his wromes as be beerins his secoond narrative. He tedls us how his own friemels are sjoncod in the Senate amb in theroly flow his eme
 how no ond is allowed to say a word for him. "? 'onnpey himself," he sitys. "urged on be tho conemia's of ('resar, and bucausi la was amwilling that any onv should copual himself in homor", land thrnod himedf altogrether from Ciesar's friemiship, and latel grome bate to the fellowshaj) of their comanom ememide (rhemies whom ha himself tian ereated for ('ibsar laring the time of their allinuce. It the s:ane time ronserious of the seandall of these two harions which he had stopped on their destimed road Io Asia and Syria and iaken into his own haml. ho was :mximas that the question shoubl ber reforem to arms." Tlase two learions are viry grievous to (itsar. One was the legion which, is we remember, Jompey land given up to frioudship. -and the Requblic. When, in the begiming of these contests lutwern the two rivals, the fimate had docided on weakeniner enoll by demamding from cath a Jowion. Pompry hat asked (at-ar for the restitution of hat whicll lime had so kindly lent. (iesar, (on promil to rufuse payment. of tha deht, liad somt that to his former friond. sumd had akso sent muother Jeriom, as demanded to the Senate. They wore reduited nominally for sarvice in the Eetst, and now were in the hants of him who
 It is no wonder that Ciusar talles of the infinny or scandal of the two legions: J10 riptats his com. paint as to the two legrions arain and arain.

In the month of danuary (insar was at liaverman just north of the Rabicon, anl in his own province.

 forma. Ifa mual lay down lisa arang or lao will bo.










 fond lime who has* thinge. Ifohas but one logion wish hion, bus flat legion decelares that it will olrey him. himand the

 Wै (om atyprocithe the spirit of this allusion to the





 (os so mucle suspensuftra anything for tho Jarjuhlir: "ombia patíroi-


 and pathic be aboblisherl. suml harat- -whent that is drme, - all dillicollies may be setileal in :t few min-
 word that if ('amar will oro lastek into liand and dis-
 Bat Pomprey and the comatls with their trongus will unt stir tiJJ (:asitr shall have yiven security for his

 mean nothing. (ircar. (onnlalaing hittery of injustice, sedula a portion of tis smatl army milj farthor juto the Roman urritory. Dlare Aniony enesto

 he was not attacked and driven back liy Jompry.
 maler the command of lompery were met irnstworthy
 s) no doubt fo the two legimes rearet their aomsmander'. At any rate.the eomsular forres with I'onnpry and the Cominls and a lost of Sconator- retreat southwards to Brundusium, Jrindisi, intobuliner to leatve laty by the port which we khall wive hefore Jong when we go tastwaris.

During this retreat. the tirm blood in the civil war is spilt at Cortinium, at town which if it now stoon at all, would stamd in tho Ahbruzzi. (ivsar there
 session of the town. The Pomperitn otherer-whom lee tinds there he sends away. aml allows theme even to (arry with them money which be bedieves to hase been taken from the publice transury. Theronghout his rotte southward the soldiers of l'ompery who had heretofore lwon his soldiors.-return to him.
 follows them. thonigh ]'omprey hatd boantata, whern tirst warnod to beware uf ("aciar, that lus had only to slamp upon [talitm sai] umb lowionk would arisio from the carth ready to nhey him. IJ. knows. Jowever, that away tran lanme, in hor provinces. in
 Jy. sardinia, and Ifrica, in Nauritania and the twor Sjatins, there are dRoman loerons which as yot krass no tresar. It may be better for l'ompey that he shouhl stampl his font -umewhrre out uf laty. It

 a part of his armse amb follows with tha ramaindor

effort to intercept him and his fleet. but in that fes fails. Thus lompey deserts Rome atud ltaly,-ind never again sees the imperial eity or the fair land.
('eseat explains to us why lee does not follow him anemy and madeavor at once to put inn end to the struggle. Pompey is provided with shipping and he is not; and he is aware that the forre of Tiome lies in her provinces. Horeover, Rome may be starved by Pompry, unless be, ('ánar, can take rare that the corn-growing comentries, which are the granaries of Rome, are left free for the use of the city. lle must mak" sure of the two Gauls, and of Sardinia, and of sicily, of Ifrica too, if it may be possible. He must wîn to his couse the two Spains, of which at least the northern province was at present devoted to Pompey. ITe sends one lientenant to Sarelinia with a legion, anotber to Sieily with three legions.
and from sicily over into Afriea. These provinces have bern allotted to partisans of Pompey : but Carsar is successful with them all. To Cato, the virtuons man, had been assigued the government of Niejly; but C'ato finds no Pompeian army ready for his use, and, complaining bittery that be has been deceived and betrayed by the head of his faction, runs away, and leaves his province to Ciesiars officers. Cesar sletermines that lie himself wił] carry the war intos Spain. Bat he found it necessary first to go to Rome, and Cesar, in his accome of what he did there, hardly tells us the whole truth. We quite go along with him when lie explains to us that, having collected what sort of a Senate he could,-for I'ompey had taken away with him such Sebators as he touk induce to follow him, -and having proposad to this meagre Senate that ambassators should be sent to Pompey, the Gonate accepted his suggestion: but that nobody could be intureel to go on such an rrand. Pompey had atready declared that aft who remained in Rome were his inmmies. And it may protably be true that Cosar, as lae says, found a certain Tribune of the people at Rome who opposed him in all that he was thoing, though we shoutal imasine that the opposition was not violent. Jut his rabl object in going to Rome was to tay hand on the treasure of the Repablic,- He sanetius serarimm, which wats kept in the templo of saturn for special emergencies of State. That lie should have taken this we do not wonder: but we do wonder that he shomld have taken the tromble to say that he did not do so. The professes that he wasso himelered by that vexatious Tribune, that be cond not accomplish the purposes for which he had come. Bnt lie curtainly did take the money, and we cannot donbt but What he wont to Rome especially foret it. Ciesar, on his way to Spain, goos to Marselles which, mrer the bame of Xassilia. Whes at this time as it is now, the most hlariving mereantile port on the Mediterranean. It belonged to the province of Further Gaul, hut it was infact a colony of Greek 1raders. Its poscession was now neressary to Civar. The matistrates of tho town, when cithed upon for thar adhesion, craw a most sensible ansiver. The prorest that they are vary fond of Ciesar, and very fomel of Pompery. They don't moderstand all these athairs of lame, and regret that two smeh excellent men
 hoble thoir own town. (hesar spoaks of this derision ats an injury to limself, and is instigated by stom wrones against him on hesiege the city, whitel he does both by bame and sea, leaving ollicers there for tho prorpose, and eroing on limadelf to spain.

It this time all Spaliz was helel by three ohlocers. devoterl to the canse of lompery, lataglo, from what
 from the south. Iframins commanded in the north stad vast, hoteling the southeres spars of the l'yrenees. Detreins, wha was stationed in lasibinia, in the smathwest, acomeding fo the ngremont, lare



borhoorl of Iterelit (leridit), on the little river Sicoris, or begre, which runs into the Ehro. They are near the mountains here, and the nature of the fighting is controlled by the rapidity and size of the rivers, and the ineguality of the ground. Ciesar describes the campaign with great minuteness, imparting to it a womderfu interest by the clearness of his narrative. Afranius amel Petreins hold the town of llerda, which is full of provisions. (Gesar is very much pressidal by want, as the corn and grass have not yet grown, and the rountry supplies of the former year are almost exhamsied. So grovat are his difliculties. that tidings reach Rome that $A$ franius has contuered him. lluaring this, many who were still dinging to the city, dombtal as to the side they would take, go dway to Pompey. But Cosar at lasts manages to make llerta ton loot for the Pomprian Generals. Jle takes his army over one river in coracles, such as he hat seen in liritain: he turns the course of another; fords a third, breaking the eourse of the stream by the bolk of his horses; and britges a fourth. Afranins and Petreins find that they must leave Ilerda, and pseape over the Ebro among the half-barbarous tribe further sonth, and make their way, if possible, among the ('eltibri, -getting out of Aragon into C'iatile, as the division was mate in after-iges. Cesar gives ns as one reason for this intended maren on the part of his enemies, that Pompey was well known by these tribes, but that the name of Cesar was it name as yet obscure to the barbarians. It was not, however, easy for Afranins to pass over the Ebro without Cesatr's leave, and C'essar will by no means give him leave. He intercepts the Pompeians, and now turns ujon them that terrible cngine of want from which he had sulfered so much. He continnes so to drive them abont, still north of the Ehro, that they can get at no water: and at last they are compelled to surrender. During the latter days of this contest the Afranians, as they are ealled-loman legionaries, as are the soldiers of Cosar-fraternize with their brethren in Cresar's camp, and there is something of free intereourse hetween the two Ronum armies. The upshot is that the soldiers of A franius resolve to give themselves up to Casar, bargaining, huwewr, that their own (ienerats shall be secure. Afranius is willing enougl; but his brothergeneral, Petreins, with more of the Roman at heart, will not hear of it. We shall hear hereafter the strange fate of this Petreins. Tle stops the conspiracy with exsrgy, and forces from his own men, aud even from Afranios, an oath agamst surremeler. He orders that all Ciesurs's soldiers found in their camp shall he killed, and, as Cosar tells us, brings back the affair to the old form of war. But it is all of no avail. The Aframans are so driven ly the want of water, that the two Generals are at last comperthed to capitulate and lay down their arms. Five words whichare used by Cusar in the description of this affair give us atrong instance of his conciseness in the use of words, and of the eapah lity for eomeiseness whiel the latin bungure atrords. "J'remebantur Ifranimi pabulatione atpabantor egrai" "The soldiers of Dfranins were mach distressed in the matter of forage, and rould abtain water only with erceat diflirulty." These twenty words trans. late these tive which ('iesar uses, perhaps with fatir acouracy; but many more than twenty wonld probably have hean used by any Finglish historian in dealing with the samm liacts.
 rosity. So many eoncfuered cants lue would have sohl is slaves, slaughtering their leaders, or lee woulel have (at ofl their hambs, or have driven them down Home the river mad have allowert them to perish in the wators. IBut his compurred foes are Romman sol. diers, und be simply demands that the army of Aranius shall be disbanded, abd that the lemilers of is shall in, whither they ple:ase. lhe makes them a secocti in which he coplains how Datly they have treated him. Nivertheless la will hart no one. Ile


 koल at shldier who dosey not wish to staty will him,
 able lo pay ont if his uwa famls. 'Thost: whe have
 who have nowe ho will tirsi fodel, ant aftorwarels bake back, if not to latly, at any rate to the borilurs of laby. The property which his onw sehtiors lave taken from them in the ehanees of war shall be refarmed to them, amd he oul of his own perket will

 Ho bamks of the Viar, which diviles the l'rovince




 to whom we romenaber that ("asar latal wiven the

 to he one of thase who shew hin in the ('ajsito, olshains a maval victory over the momb more dumarons Hent of the Massilistas. They had prepariol neverntorn big shign, "motes longia" they are called by

 Jow thines wemt on at llarsellles both by serit am? Band after this attatr.

In his chroniele of the tialle ware, ('asur in (and book completoll the narrative of a yoar's campatign. In tranting of the civii war he devotes llue tirst and scound books to the doings of one your. 'There are thrue diatinct episulasof the forar's campaign narrated in the sowoml:-the taking of Marseilles, the sulsjugation of the southern provioce of spain, if that
 radily,-and the destrmation of a Foman army in Afriea under the hamls of a barbarian king. But of all Cinsares writings it is perbitges the latist inturesting.
 and in fact contains (hitefly "assar's records of the (l)-
 by telling us of the chormons cxaromen mata buth by
 town was now ladj by Domitius on the part of Pom-pery-tos supplement whom at sea a certain Nasidins
 remembered, was attackiner the harbor on behalf of C'asar, and hat atrouly obtaintad a victory user the Massilians bufore Nissidins rame up) : and Trebonims, alco on the part of ('ibsar, was hesieging the town from the lami. This Decemus limate was one of those conspirators who afterwards comspired acranst (atear amd slew him, -and Trolmonins was anotlar of the momber. 'The wise lirceks of the city, more wise
 when lee first represserl his wish ho have the town on his side, that really to them there was no dillerente betwornt'onpey and ('insor, inth of whom they loved with all theor hearts.-- but they had been eompelled to become partisans of Pompery, the Pomberian Comaral, bomitius, being the dirst on chter their fown: and now they find themsidves obliored to fight as Pomprians indefence of their wealth amel their homes. Thus driven by necossity, they fight well amb dotheir Wry hest to fivor the side whiteh we must Jane forwarll eall that of the Rejobllions against an antocrat;
for, dlaing this siege of Jarseibless. Ciesar hat beon appointed hotator, mad ataw to that celleret had bern pasiol at lome. Where the prasing of sum at law was
 the Comstas, and of all the senators who were Jompevs friemes.

The Nassilians hat now chowen thois side atmel they do their viry beat. Wi, are lohl that the tiasearean troops. from the very ligh ground on whicls 'Tretmonins had placed his camp. could look down into tho







 "f that duy (laponded all that thay land," mandely,





 only opり"rtanty of doing amorlat for ibocir own pros-
 lass of life would maly renme a little monner than to
 shoulal the city la takro." (iamar, as la wrote thin,

 and, writing. ferenhanorel theremoney with whirh,
 silians. When the time came it did not sult him to




 though the time for surlo wrothing mast have heon
 always the lamds of ("atosar.

Nasidits, whom we maty atl Vomyny's Admiral, was of no use at all. Tho Hassilhans, tempten by his coming, atack bravely the shif) whiclo horare the thate of young Brotus: but young Drutus is formatick for them, and the mbatpy Dassilians rom twe uf their liggest ressels agranst mel uther in thoir andeabor to pin that of the Ciesurata . Ahmiral hotwoent thom. Tha' Massilian theet is utterly disperwey. Five are sumk. Four are faken: one getsotl with Nisfelins, whos runs away, making no effort to dight; wha bats boran
 assistance, lout only to protomel to give An-jstamer. (bne slipe gets batk into the harbor with tha satl tislings: not the Massiliams- despairing only for a mument at the first hlesh of the bad mews delormine that their walls may still be defembed. Thar lown wis yery well supplial with such thinge ats wore neral-

 maml. We are told of groat pubde (wolve fent long will sharp iron bouls io thom, which the hosioger: rould throw with suld force from the nergines on their walls as toblrive them throngh four tiers of the wieked crates or stationary shiods whid, the (atesareans built up for their protection. bebleving that no forco could Arive a weapon through theme. As wo remal uf this we cinnot hut think of Armstrong and W"hitheld
 works. Theseturrible darts, thrown from " hablistiv" " are very sore upon the casareams: they Harefore contrive an immense tow (r, so higla hat it canmost be
 ierial subject io tire shatl be on the matsibs.-which theyereet story liy story, of verygreat -trenysh. And

 probably not an cingineer himas.lf. is dicpoorel to
 of the ercetion which (ipsir gives. and cmeatyors to realize the way in which it is dome. that ('asore mast
 truth ne was not at this sicer himself, and hadd nothing to do with the plamuing of the tower, amolmat inthis instanee at leasel have got a writton doseription irom hisenticere-as he probably alial burfore when he built the momorathle bridere wrer the lihime. And

way or shed.-musculum or muscle Casar calls it : and with this they form for themselves it passage from the big tower to a special point in the walls of the town. This muscle is so strong with its sloping row that nothing thrown umon it will break or burn it. The Massilians try tubs of flaming pitclı, and great fragments of rock; but these simply slip to the ground and are pulled away with loner poles anel forks. And the Chesareaus, from the height of their grat tower, have so terrible an advantage! The Massilians cannot defent their wall, and a breach is made, or almost mate.

The Massilians can do monore. The very gends are against them. So the pht on the habit of supplicants, and go forth to the conumerors. They will give their eity to Cesar. Cusar is expected. Will Trebonias be so very good as to wait until Cesar comes? If Trebonius should proesed with his work so that the soldiers shouk absolutely get into the town, theu-Trebonius knows very well what would happen then. I littie delay camot lurt. Nothing shall be dome till Cresar comes. As it hap. pens. Ciewar has already especially ordered that the city shall he spared ; and a kind of truce is made. to endure till Cesar shall come and take possession. Trebonins has a dittienty in keeping his sombers from the plunder: but he doos restrain them, and besiegers and besieged are at rest, and wait for Cowar. But these Massilians are a crafty people. The Cesarean soldiers, having agreed to wait take it easily and simply amnse themselves in these days of wating. When they are cquite off their gunard, and a high wind favors the scheme, the Massilians rush but and succeed in burning the tower, and the muscle, and the rampart, and the sheds, and all the implements. Even though the tower was built with brick, it burns freely-so great is the wind. Then Trebonius goes to work, and does it all again. Becamse there is no more wood left round about the eamp. he makes a rampart of a new kind-hirherto unheard of-with bricks. Doubtless the Cesarean soldiers had first to make the bricks, and we can imagine what were their feelings in reference to the Massilians. But however ihat may be, they worked so well and so hard that the Massilians soon sec that their late snecess is of no avail. Xothing is left to them. Neither perfity nor valor can avail them. and now again they give themselves up. They are starved and suthering from pestilence, their fortitieations are destroyd they have no hope of aid from without-and now they give thenselves u-intending no fraud. "resp dedere sine tirande constituunt." Domitus, who is the Pompeian General, manages to *sape in a ship. ile starts with three ships, but the one in which le himself sails alone escapes the hands of "young" l’rutus. Surely now will Marseilles be treat"l with worse treatment than that whicls foll on the Ganlish cities. But surh is hy иo means Cresar's will. Cirsar takes their pubic ireasure and their ships, and reminding them that he spares them rather for their name and old character than for any merits of theirs shown towards him, leaves two legions amoner them, and gues to Rome. It Avarisom, when the Ganls hat fought to defend their own libertios, he had destroyed everybory:-at Mesia he had decreed the death of every inlahatant when they lat simply asked him leave to pase harough his camp: at Txellodumme lae had rat ofld the hames and peked ont the eyes of (ratals who hat dared to fiesht for their country. But the (ianls were barbarians whom it was nocessary that ("ascar choukl pacify: The Massilians wore Groks, and a divili\%el peopld-and might low very いい.finl.
Before comine on to Marseilles there had been at lithe more for Comser to do in spain. Where, as has then previonsly narratecl, he hat just comperleel Afranius and Pedreius to lay down their arms and dishamed their legrons. Joined with hem hat been a third Pomperian Cimeral, onn Varro-a tralv dis-
tinguished man, though not, perhaps, a very great Grencrat-of whom (iesar tolls us that with his Roman policy he veeted betwean lompecian and Casarean tactices ill, monfonately for limself, he declared for pompey and the wronge side, wind he heard that Alranins was having bis own way in the neighborhood of Lerida. But Varro is in the south of Spain, in Antalusia-or Batica, as it was then callect-and in this sonthern province of Spain it semen that Cessar's canse was more popular thath that of Pompey (iaciar, at any rate, lras but lintle dittionlty with Varro. The Pompeian othece is deserted br his legions, and gives himself up wory quickly. Ceesar does not care to tell us what he dial with Varro, but we know that he treated his brother Roman with the mimost courtesy. Varro was a very learmed man, and a friend of "Ciecro's, and one whi wrote books, and was a credit to Rome as a man of letters if not as a Gencral. We are told that he wrote 490 volumes, ami that la lived to be righty-cight-a fate very uncommon with Romans Who ineddled with public affairs in theme days. Cresat made everything smooth in the south of Spain, restoring the moner and treasures which Varro had taken from the towns, and giving thanks to everyboly. Then lac went on over the Byrences to Marseilles, and made things smoth there:

But in the mean time things were not at all smoth in Africa. The name of $\Lambda$ frica was at this time given to a mall province belonging to the R'public, lying to the east of Numidia, in which Carthage bad stoud when Carlhage was a city containing that promontory which juts out toward Sicily, and having Utica as its Roman capital. It has been already vaid that when Cesar determined to gain possessiont of certain provinces of the Republia before he followed Pompey across the Adriatic, he sent a Lientenant with three legions into Sicily, desiring him to go on to Africa as soon as things should have been arranged in the island after the Casaram fashion. The Sicilian matter is not very trouhlesome, as Cato, the virtuous man, in whose hands the government of the islame had been intrusted on lowatif of the Republic. leaves it on the arrival of the Cesarean legions, complainitg litterly of Pompey"s condurt. Then (:esar's Lieutenant goes over to Africa with two legions. as commanded, proposing to his army the expulsion of one Attius Trarns, who lad, aceorling to Casar's story. taken irregnlar possession of the province. kerping it on behalf of Pompey, but not allowing the Governor appointed by the Republic so much as to put his foot on the shore. This Lieutenant wasa great favorite of Cesar, by mame Curio, who had been elected Tribune of the people just when the Senate was making its attempt to recall (iesar from his command in Gian. In that emergency, Curio as Tribune had been of service to Csesar, and Casar loved the roung man. He was one of those who, though monle hy birth, hat dung themselves among the people, as C'atiline had dime and Clollus.--unsteady, turbulent, unscrupulous, vicions, needy, fond of pleasure, rapacious, but well chlucated. brave and clever. Cgear himself had beres such a man in his youth, and conld easily forgive such fanls in the dhameter of one who, in addition to such virtues as have heren named, bossessod that farther and great"r virtue of loving basar. ('asar expected great things from Curio, and trusted him thoromgldy. Curio. With many shijes and his two lerions, lands in $\Lambda f$ ric:al, and prepares to win the province for his ercat friend. He does whtain some little alvantare, so that he is "allend "lumperater" by his soblieres, -a name not given to a deneral till he has been vietorions in the liede ; lmt it secms dear, from ('insar's telling of the stury, that C'urio's own otheres amb own soldicers distrusied him, amd were doubtfal whether they would follow him, or would take pos-
 ge ower to Attios Vartus. who had bern their combmander in Italy lafore they hand destred from Pome
 is immeln chombt. It is not only or chiofly of Allinm Vanus their Roman anemay, "lant they are nfrain:
 Nomidia, whos will cortuinly thenf for Vorms and at-




 aro badly with ('urio, shomld ('uria) luc diatant from

 bim in his desime to light, makes : siperela tor the le
 sar trives us for worde of this yoorlo, and latat Cesear monst himself later jut the worde logedhar.

It is horen in the thind jurson. He.- that is ("urio.


 breaks into the firm forisom and juts the very words
 ho stys, " were roplied by all the lowns: nor is it

 no battle, but driven ber dhe result of sume deed, Hed from Italy. De, whanin ('esestr holda bost dratr, inul Sicaly amf Afrian willont which he eamotot holal lemae arad Italy, Casar has intranted to your danome. Thare are mone who advise yon to desiert me, for what a an be mote despable fo shed men than flat they at the same time slomhl circamvernt meand fitston ujon you a [onl crinte :

JBut your- have joul not hemed of the thinge elone by ('asar in Ajain, two armies leatenat wo (rencrals conclured. two provincer gaimed, and all this done in forty days from that on whicla t'\{equr tirst saw his ramemy"' ('an those who, uninjured, were mable to stamd iseanst him,
 who followed Cesar when vicotory on lois sido was ancertain, now that fartune lats doclared huradf, will you go over to the compucred sicle when you are about to rablize the reward of your \%eal ?
But, jerhape thonghyoulave (iesar, yon distrast me. 1 will not say moch of my own desarts towarels yon,

- which are imberal dess dis yet lhath I land wishod or yon had expertod." "Iolnen, haviner thas dechared that he will not spoat of himsilf, he does venture to say a fuw words on the subject. " But why should I pass owor my wwn work, and the result that las buen it yot inclioverd, and my own fortame in war? Is it dicjuleasing to you that I brought over the whole army, sufe, without losiner a ship: That, as I conme, at my lirst onslatught, I shombl lave dispersed the fleal of the enemy? That, in two days, I should have leden Iwice victorionss with my ('avalory: that I shonld have cot ont two lamalred transperts from die enemy'sharbor: that I slomidhave sor harassad the embmy that neither by land nors sat conld they get food to supply their wants? Wrill it please you tor repudiate such fortune and such gitidance. and to commeer yourself with the diserace at Cortuinem, the tigha from laly." namely. Pumper's tlight to byratiltfim, " the surremfer of Spain, athe the evils of this Arican war? I inded have wished lo be (athed (ice war's soldier, and you haverableql me your Imperator. If it repents you of lawing done so. prive yon biack the compliment. (ive me bark my ewn name. lest it serom that in searn you lave called mo hy that tinle of homor." This is viry piritad: :mal the incorely rlastormal atsererion ly (asear that Courio thas - puke to his soldiers is in itself intoresting. as showine us thas way in whicle the legromaries were treated by there Commanders, and in which the orreatoot (emeral, of that or of ans aum. thmoght it motural that at leater slomld address his troops. It is of value, also, as *howing the dinliculty of keepuing any legion true to either wide in a civil war, in whícli. on either side. thermen must tight for a Commanderthey hat la:arnod








 \#b小e for all pomterity.








 terrible Juhat. Thon (s)moa at rumor which rear-hos



 Romain friomels, amel to his lionaan conernjo dulas
 Salmea, with atmall fore\% of cavalry, and turio is Ied to imariace that olthat las nen cimo. sand that Sabora has beon sent with -anay abllo tha roliofof
 and that sumall body of Nomidian horsomato. Wir ser from the vary first that ('urio is eloomed. ('atear. in at few loureliner words. makes his apoulegy. "Thes young nam's youtla had Bunds to do with it. and his high sultit: lais former suceren loot, and his own fathe in his own good fortune" 'Jhere is no word of reproach. ('urio makios another sjefern to his soldiers. "Hasten tos your jrey." he says, "hasten to Your whory!" Thiey du hasten.-sfier such is faslion that when the formonat of themern reached Salouras troops, the hindlermost of themare scatteren? far lanck on the reand. Thay aro cat to pieces lis disha. (turio is invited by ond of lise officers 10 cs(aide back to his tent. But Ciasar tolls us that Corio in that last moment replied that having lost the army will which (hesar hath 1 rusted him. lue woule] never agam louk (ixsar in the face. That lie did sity some suld words ats these and that thoy were
 "So fierhting le is slam:"-and there is an end of fla man whom ('iperar loved.

What then haturened was very situ for a Roman army. Many lury down to the ships at the seat but there is somuch terror. an muld connfusionl. and things are so baddy done. that but vors flew gret wrer tosicily. Ther romainder andeavor lo give ela-fnsdyes ip to Varus: aflor doing which. Fould they hate done it.their position womlid not have beent very Jad. A Roman surrebdering to a lkoman womld, at

 his prege and Vartis does not dare to oppone the barbarian king. Juba kills the most of them. bite sende afcw, whom dee thinks may serve his purpuse amal
 Which Juba lochaved bo worsa than Ceesar haloitually
 not only a laonam munt rogard a lioman as muro

 thoir own behalf. Romsans were so recarded. We. are than told that the harbarian Kione of Numidia robe-
 frain: sud the names of two special lioman Senator('usarmends down to posterity as laviner hem amoner that lyat number. An far is we can -pare 1luma. they shald herpared.



names Publius Servilius to act in conjunction with himself. The meaning of this is, that, as Cesar had been reated Dictator, Pomper having taken with him into Bllyria the Consula of the previons year. Cesar was now the only magistrate under whose authority al Cousul could be elected. No doubt he did choose the man. bat the dection was supposerd to have been made in aceordance with the form of the Repmblic. He remained at Rome as Dietator for deven days. during which he made various laws, of whicb the chice abject was to lessen the insecurity ransed by the disruption of the ordinary conrse of things; and then le went down to Brindisi on the track of Pomper. He had twelve legions with him, but he was badjy off for shipe in which to tramsport them ; and howns that the health of the men is bat, an antumn in the south of Italy having been severe on men accustomed to the healthy climate of Gand and the north of Spain. Pompey, he tells us, hati had a whole vear to prepare his army.-a whole year withont warfare. and hal collected men and ships and mones, and all that support whicle assent gives, from Asia and the Cyelades, from Coreyra, $A$ thens, Bithynia. ('ilicia, Phenicia, Eqypt, and the free states of Achaia. He had with him nine lioman legions, and is expecting two more with his father-in-law Scipio out of Syria. 1le has three thousand archers from (rete, from Sparta, and from Pontus: he has twetve hondred slingers, and he has seven thousand cavalry from (valatia, Cappadocia, and Thrace. A valorons Prince from Macedonia hat brought him two huudred men, all monnted. Five humdred of Galatian and German cavalry, who had lieen left to overawe ]'olemy in Egypt, are brought to Pomper by the filial care of young Cuens. The tho had armed eight hundred of their own family retainers, and had brought them armed. Antiochis of Commagena sends him two hundred mounted archers,-mercenaries, however, not sent without promise of high payment. Darlani,-men from the land of old Troy, Bessi, from the banks of the llebrus, Thessatians and Macedonians, have all heen crowded together under Pomper's standard. We foel that Cixsar's mouth waters as he recounts them. But we feet also that he is preparing for the trimmphant record in which he is about io toll us that all these swarms did he seatter to the winds of heaven with the handful of Roman legionaries which he at last succeeded in landing on the shores of Illyria. Pompey has also collected from all parts " frumenti vim maximam"-"ia great power of corn indeed," as in lrishman would say, translating the worls literally: And he has covered the sias with his ships, so as to hinder Ciesar from coming out of Italy. 1 c has eicht Vice-admirals to command his various fleets,-all of whom Ciesar names: and over them all as Admiral-in-Cliof, is Sibuins, who was joint-consul with Casar before Casar went to Gaml, amd who was so harassed durime his ('msulship hy the Cgesarans that he shat himself up in his house, and allowed Ceresar to rule as sole Consul. Now he is about to take his revenge: but the vengeance of such an one a Bibulus tamot reach Cessar.
(sesar having ler] his lexions to Brintisi, makes them : speren whind atmost beats in imporane anything that he ever said or dicl. He tells them that as they have now noarly finished all his work for him,
they have only yed to bay low the lapoblio with Pomper the criat, and all the forese of the lapmb. tie- - to which, however, have to he added Kiner Pololemy in Lipylt, King Pharnaces in Asia, and Kine thba in Numblat fory had heder leaw beo hind them at Brindisi all their litte property, the apmils of former wars, so that thoy may pack the tighter in the boats in which he mans lo sum them across to tllyria, if omly they can menpe the mor--ios of ex-fomsul Admirnl Bibulus. There is mo suresestion that at any future time the will rerover their property: For their fobure hopes thay are to

they declare their readiness to ohey him. Jte takes over seven legions, escaping the daners of those "rocks of "evil fame." the Acroceramia of which Horace tells is. -and eseaping bibulus also, who seems to have shat himself np, in his ship as he did before in his house during the Consulship. Cosar serems to have made the passage with the conviction that lata be fallen into the hands of bibulus everything wond have been lost. And with ordinary precaution and diligenere on the part of Bibulus such would have been eventually the result. Yet he makes the attempt-trusting to the Fortune of Casar and he suceeeds. He lands at a place which he (alls Pallaste on the const of Epirus, considerably to the south of Dyrrachinm, in Illyria. At Dyrrachium Pompey had landed the year before, and there is now sturet that wealth of provision of which Cgesar has spoken. But Bibulus at last determines to be active. and he does manage to fall upon the empty vessels which (iesar sends back to fotch the remainder of his army. "Having come ujon thirty of them, he falls upon them with all the wrath occasioned by his own want of circumspection and grief, and burns them. And in the same tire he kills the sailors and the masters of the vessels-hoping to deter others." Ciesar tells us, "by the severity of the punishment." After that we are not sorry to hear that he potters bout on the seas very busy, but still incapable, and that he dies, as it seems, of a broken heart. He does indeed, catch one ship afterwards-not laden with soldiers, but coming on a private renture, with child. ren, servants, and suchlike. dependants and follow"rs of Cresar's camp. All these, including the chitdren, Bibulus slaughters, down to the smatlest chidd. We have, however, to remember that the story is told by Cresar, and that Cesar did not love Bibuhes.
Narc Antony las been left at Brindisi in command of the legions which Cessar could not bring across at his first trip for want of sufficient shijp-room, and is pressed very much by Ciesar to make the passageThere are attempts at treaties male, but as we read the account we fect that Casar is only obtaining the delay which is necessary to him till he shall have heen joined by Antony: We are told how by this time the camjes of Ciesar and lompery have been brought so near torether that they are separated only by the River Apsus-for Chesar had movet northwards towards l'ompey's stronghold. And the soldiers talked together acoss the stram: " nor, the while, was any weapon throw-by compact between those who talked." Then Cesar semds Vatinius, as his ambassador, down to the river to talk of peace; and Vatinius demands with a loud voice "whether it houd not he allowed to citizens to send legates to citizens, to treat of prace a thing that has been allowed even to deserters from the widds of the Pyrences and to rohbers- especially with so excellent an objcet as to hinder citizens from fighting with citizeus." This aerms so reasonable, that a day is named, and Labi-enus-who has deserted from Clesar and become Pompeian comes to treat on one side of the river. and Catinins on the other. But-so C'esar tells the story himself-the (asarean sotdiers throw their weapons at their odd dencrat. They prolably camot rendure the voice or sight of one whom they regard as a renegade. Tabienus escapes under the protection of those who are with him-hot he is full of wrath against Casar. "After this," -ayshe." let us cease to speak of tratios, for therecan be no prace for as till (axar's heat has bew bronght to us." But the colloguise neer the little stram no doubt amswered Cosar's purposes.
('ansar is very anxions on ar his legions nere from Italy and cerenseolds Antony for ant loringine them. There is astory - which he does mot tell himself- What tre put himsejf into a small lomt, interting to cress (aver to Brinlisi in astom, to harry matters, mat that herememrared the a westruck master of the bont ber reminding him that he wobld carry" (hesar and his fertume's." The story gowes on to sity that the sailors
attempted the erip, hat were driven bisek by the fornpest. It last there pringe tup menth wind, and Anfonv vonthras with his flonilha, althonels the warm


 ward by favorimer loreeges towarde the whore in the wory sight of l'ompery and his solihorsat ly yrachima. 'lwo ships, low erer, later lohind, mal fall ineo the lumbs of one otacilius, an othorer bromerine lo l'ome

 that lue will not hurt the men. " Whore you mity sre"."
 presenere of mind." The recruit dona dley have mo
 cilins, altore ther disregarding his onth, like atrue
 disrectarding their word also, and knowing modoubt to at fration thr worth o! the word of Otacilins, rme theor ship ashate in the night, and, with math tightinge gat sufe to Intony. Casume implines that the recrubse equ would lave known lsetter land lary not
 Wrabher combined lated failod to tourds the amodent

 nit vitiis."
 "F Syria with his leceions into Marembonin almost sur-
 his way. Ile gots together a ludy of senators, who are fogive evileme that he cosunts the money fairly as lue takes it out of the temple. Jat letters come from Pompery just as he is in the act, and lue dues mot dare to delay lis jemorney even to complete so
 and fos share lis command at the ereat battle that

 Maredonia, 10 try what Triemde he has there, fo lake citios, and to ext food. Ho is mow in atand which lats seremed sperially to botong to lomary: lut even
 simply ansions to be friende with the stronerest looman if the chay. They have to julge whell will win, and to adhere to him. For the poor frecks there is math ditliculty in forming it julgment. Dresently wo slanll see the way in whinh ('ibsar aves alesson on that subjeret to the citirens of Gomphoi. In the manal lime he joins his own forces to those dately froumbt by Antony oul of laly, ame resolvos that he will forere l'onnpey to a tirrlat.

Wie may divide the rematimier of his last book of the serond ('ommentiry into two episodes.-the first beine the story of what orcurred within the lines at Porrat, amb the secound the account of the crowning battle of Pharsatian. In the firct l'umprey wits the vice Eor, but the victors, great as it was, has won from Qhe world! zery little notice. In the seromel, as all the world knows, Casar was trinmulant and lenceforward domamant. And yol the aftairat I'elrat should have mate it Pharsaliat inneressary, and indered ime possiblo. 'T'wo reasons have conspired to make Pompey's complevte sucecoss at l'etra unimportant in the world's esteem. This Commentary was written not by l'omurey. fort by (sestr; und, then, mafortamately for Pomprey, Phatralia was allowod to follow l'arai. It is mot very mas to morave ('ixsor's story of the doness of the two armies ott letra. Sors wore this ever sos oisy a taxks, would our limits or the purport of this vohnmie allow us to attomptet to give that hatrative in full io our readera. (ituar hat manared to join the lecrims which lue labl himself bronght from Italy with those which hat aressiol afterwituls with Antony, and was now ansious for a battho. His ment. thonghis fewar in momber than they who fallower Pomper, were tit for fighting and kiew all the work of sobldicertner. Pomines suen were for the mot pert beginners:-lat they wore leaming, and erory werk









 mides morth of leyrablifan, 「rom whence there was


 ent his ruck, tating in for thar use of lits army at rer-
 of the rock, l'ompery placed his armos, and bate ins-
 self as all Roman (ionerals knew hesw to elo, with a bank amil ditcla and twonly-fonr tursets nut rartls.

 miles, - more lam thirtecon linerlish miles,- -e that within his works lar mirht have ats muldel sparce fin grossible to rive him grase for his lorsos. Sis platerl, ho hat ald the world at luis hark to ferel hism. Not only conlel he eret at that weralth of suroces whicela las had amassed at lyrmabian, und whidh were safe:
 Fisypt wore open to his ships. 'T'wo things only were wantine to him, sutlicient grass for his loorsom, and water. Tha. Illyrian country at bis back was ome so majorobluctive, being roush and monntainesmathat the inhabitants themselves were in ordinary times feel
 thimer of what might hapluen, ham taken care 10 rmpty the shore-bnuses and to leave the fown behind lim destitute and impoverishoul. Noverthe fom (he sar, haviner got the bouly of lis crmemy, as it were imprisoned at l'etra, was lettrmaned to kerop his prisonerfast. So roumdand in front of l'ompryy lines. he also mate other lines from sea to mait. Ihe began by recting turrots and placing small dotachune ints on the little hills outside l'omprey lincs, so as to prevent his enemy from gettingtle grass. Then he joined these townors by lines, and in this way surronmded Ho other lines, - thinking that os Ponaney would not be ablale to semb out his horswane for fortuc; and ugrath. that the horses inside at l'etra might gradnalJy be starvere : and arain " that the reponation,"-"ancororitatem,"-"whioll in the estimation of foreign nations helonered chirdly to l'omper in this war. womld be lessened when the story shoild have heern
 hy̌ (":exitr, and did not lare to dínht."

We are, perhaps, too much elinposed to think rating our himory eursorily-that (iamar at thas time was everyboly, and Hast Pompry was hardly worthy to be hing foe sud grassuge in the Commentary ats that above Iranslated they atre mot many. but af fow sutlice show that this dilen is ere roncons. Lf to this periond in their juint courses 13ompey hatl heen the artater man: Cocear latil dume rery much, but l'omaney hand done more-and new he hatd ou his side almost all that wat wealthy and respectable in Roms. 11 e led the Conserviative patig, and was will confident that lae laal only to bide his time, and that Cisar mast fall before lime. Ciesar and (expareans were to limas the pirita of the Revolution were in lorance to bous Cb b... 10 Charles X... amel to boumoluiliplue. luefore they hat made their powere vedible and formidable: ats the Reform lBill and ('alhanle Emancipation were to such men :a facorere IV, and Lard Eildon, while y"t they conlal lee (apposed aml posiponeli. It was impossible to Pompry that the swerehings of Romes
 should at least previal wer himself and over the Jioman sumale. "ble was said att that time," we art

with boasts among his own people, that he would not himself deny that as gentral he should be considered worthless if Cesar's legrious shonld now extribate themselves from the position in which they had rashly entangled themselves withont rery great loss"-"muximendetrime nto" loss that would amount wellnigh to destrmetion. And lie was all but right in what he said. Thore was a great deal of tighting for the plots of grass and diflerent bits of rantagc-gromud-fighting which must have taken place almont between the two lines. But Cesar suffered moder this disadvantage, that his works, being mach the longest, repuired the groatest mumber of men to creet them and prolong them and keep. them in order: whereas I'ompey, who in this respect had the least to do. laving the inner line, was provided with mach the greater mamber of men to do it. C'esar's men, being veterans, had always the advantage in the actual fighting: but in the mean time Pomper's untried solders were obtaining that -xperimee which was so much needed by them. Nevertheless Jompey suffred very much. They combl not get water on the rock, aud when he attempted to sink wells, (ixair so pervericd the water-courses that the wells gave no water. Ciesar tells us that le even dammed up) the streams, making little lakes 10 hold it, so that it should not trickle down in its molergromol courses to the comfori of his enemies; hut we shonld have thomght that any reservoirs so made must soon have ovorllown themselves, and have been useless for the intended purpose. In the mean time Caxar's men hat no bread but what was made of a crrtain wild cabbage-"chara"-which grew there, which they kneaded up with milk, atmel lived upon it eherefully, though it was not very matatable. To show the Pompelams the sort of fare with whieh real feterans could be content to break their fasts, they threw loaves of this composition atross the lines, for they were close together and could talk to eacle other, and the Pompeians did not besitate to twit their enemies with their want of provisions. But the C'asareans had plenty of water-and plenty of meat: and they assuri Ciesar that they woild rather vat the bark off the trees than allow the pompetans to escape them.

But there was always this for Cissar to fear-that Pompey should lamd a detaehment behind his lines and ittiack him at the back. 'To hinder this Cexar mate another intrenehment, with ditch and bank, rimning at right angles from the shore, and was intending to join this to las main work by a transperse line of fortiticatious running alcog that short portion of the coast which lay betwern his first lines and thee scoond, when there came upon him the disaster which nearly destroyed him. While he was digging his trenches and buthing his turreto the fighting was so fregurnt that, as ("esar tellsms, on one day there were six battles. Pompey lost two thousamd legionarios, white (besar lost no more than twenty; but rvery (besarean engitgit in a certain turret was woundeel; and fonm otlicers lost thejr eyes. Ciasar estimates that thirty thons. and arrows were thrown upon the men defending
 had two homderd and thirty holes made by these arrow's in his own shield. We ran omly sarmise that it mast have been a very bige shiedel, and that thare must have berat mume pouble in comoting the holes. Cisesar, however, was so mand pleased that ha rave Goseva a large sum of money-大omethima
 mediate ranks, made him at once first centarion-or l'rimipilas of the legions. We remember no other rearod of such epurck promotion-in prose. Thore is, inderd, the well-known case of a common sator whon did a gallant action and was mada lirst-lioufombent on the spot; but that is told in verse, and tha common kailor was a latly.
Two pertidions Gimnls to whon ('usar land buen
vory kind, but whom he had bren obliged to eheek ondecomt of certain gross pecoulations of which they hawl lown grailty, thongh, as he tells us, lue had not time to pminis them, went orer to lomper, and tohd l'ompey all the seerets of C'usar's ditelies, and forts. :und mounds-tinished and matinished. Before that, Cisar assures us, not a single man of his had gronu over to the enemy, thongla many of the enemy had come to lain. But these perfidious Gatals did a worlal of mischief. Pompey, hearing how far C'besar was from having his works along the sea-shore finished, got together a luge heat of boats. amb suc. cerded at night in throwing a large body of his men ashore between C'esar's two limes, thas dividing Cibsintes two foreces, and coming upon them in their weakest point. Ciesar admits that there was a panic in his lines, and that the sanghter of his men was very great. It seemp that the very size of his owa works produced the ruin which befell them, for the different parts of them were divided one from amother. so that the men in me position comld not sureor thase in another. Tlae atfair ended in the lutal ronte of the Ciesarean army. Ciesar actually fled, and had Pompey followed him we mast sipppose that then thare mast be an end of (ixesar. Ifo acknowledges that in the two battles fonght on that day he lost 960 legionaries, 32 othcers, and 32 standards. And then Cusar tells us a story of Labicmus, who had been his most trusted Lientenant in the Gallic wars, but who hat now gone over to Pompey, not choosing to fight against the Repablic. Labiemins demanded of l'ompey tine Casarean captives, and comsed them all to be slamghered, asking them with scorn whether veterans sueh as they were aceustomed to run away. Cisar is very angry witli Labienus; but Libiemus might lave défended himself by saying that the satuglter of prisoners of war was a custom he lad learned in Gaul. Is for those words of scorm, Cessar could lardly have beard them with his own tars, and we can mderstame that lae slomed take delight in saying hare things of Labienus.
Pompey was at once proclaimed Imperator. And Pompey used the mame, thongh the victory had, alas! leen gained over his own fellow-romontrymen. "So great was the effert of all this on the spirits and confidenee of the Pomperans, that they thought no more of the carrying on of the war, but only of the victory thay had gained." And then Cesur throws seorn nuon the Jompeians. making his own apology in the same words. . They did not care to remember that the small number of ome soldiers was the calase of their trimaph. or that the unevenness of the gromme and narrowness of the defiles bad anything to do witly it: or the oceupation of our lines, and the panic of our men butween their double fortitieations, or our army cut into two parts, so that one part conld not hetp the other. Now did they add fothis the fact that our mem, pressed as they were, fonld not enngage themselves in a fair conflict, and that they inChed sumfered more from their own mumbers, ind from the narrowness of the raviacs, than from the enemy. Nor were the ordinary chaners of war brought to mind, - how smatl matters, such as some unfoundel? suspidion, a sudden panic, a remembered superatilion, may ereate great misforfme; nor how often the finult of a General, or the mistake of an of firer may bring injury upon an army. But they spread alimad the report of the victory of that day throughont all the world, sendiner forth letters and takes as though they had eonquered sololy by their own valor, nor was it possible hat there shoulal after this be a reverse of their eircumstamees." Such was the allair of l'etra, by which the relative position in the world-history of Cowar and l'mupey was vory nearly made the reverse of what it is.
('asar now acknowlederes that ho is driven 10 "hange the whole plan of his campaign. He addreases at sereel (o) his men, and explaing for them that this defosal, like that of (iergovia, may lead to






 his army after theor dofent aro very tobldinar.




 crensed toil; ind every man hormed wish atesire to
 hy ('axaly spreerlt, that they thomatht that they



 bows him with only lialf abont. Dfler a shome while Pompey gives up 1 las puranil. Ilis father-jn-law. Scipio, has lorometht agreal army from the east, and is
 tace how shorl it time since it was that ('tesar hinsedif was l'onprey father-in-law, aml that l'onmey was ("asar"s friend branase, wibh fen axorions a love. las

 -ar, makint his way inte Thessaly by at more sonth-
 ('alvinas. who land leren watching sedpios: and who hatery suaped falling into l'ampery hands before
 chance conld interfere, the ferle were always kind 10) ('insar.

Then Cinsur tobls ws of his tratturnt of two lowns in "Thesisaly, (iomphi, and Detropoblis. Unlurkily for
 Now thofame of Pompey"s victory at letta lat been *prathl abroat: and the (fomphians, who, io give Hem their due, - would latve heren just as willing th
 on the wiming site that they might lablat their littlo "wn in safoty, lelievel that thiogs were going batly with Casear. They therofore shat theirgatesamainst

 but l'onpry mast come quickly to their atel. P'om-
 plians' abpacity to bold their own is very short-lived. It about three orolock in tha afternom ('susar lewins to hesider the fown, atul hefore sumet he has taken it, and rivern it to he atcked hy his suldices. The Hen of Meropolis wera also gening to slete their grates, hut lackily they luear josi in time what had happened it (iomplia, and open them insteat. Wherempone (ibsar slawers protertion upon Metropolis: and all the other towns of Thessably. hearines what hate beet done. alse learn what ('sesar's favor H1ublis.
'omproy, havinge juined his army ho that ot seipio. shares all his homors with his father-in-latw. When We léarthis wo know that l'ompery position was not comfortable, and that he was umber eonstraint. Ile wise a man who would share his bonor with no one
 at prosent was not a pleasibt one. It was mush for a Romall commander to have with him the lannan Senater. Lut the Senalorsso placed wonld be apt to be lews whedient than trained soldiers. They exernacruse him of kerping them in Theresaly beatise he likes th lord it over surh followers. But they were. nevertheless, all certain that ('sexar was about to be destroyed.
 rewards of victory whicla they think that they will conjoy at Roma whon their oligarchy aball have been rea'stalilished by lompurys. arms.
before the great day arrives lablemmes atain appeats on the steme: and C'asar puts intu him month a




 A very smatl party of that armes rematias. Wans

 Many lave grome lamer. Nany have lown hoft on the














 Lathemus. athl wo dembt whoflare thoy wero forer spoke'n. It lomerh the battle-liolal i- rhomen. - matar
 Enigens in Thesenly. The latile has anajoired worlal
 tamght toregarel ats the hathe of the flatin on which
 Commentary, bors does that of the risur: aud the
 serons to be at matter of doubt reven mow. 'Tha
 separate madern (ircore from "lorkey aml is mot


 cr alstain from tighting. Thencame Lahornme with his valut-, and his oatho atol at length the lay aml the field were chancon. (sear al any rate was redely. It lhis time (evatr was tifty-lwo gearn old. and l'ompey was tive years his efoler.
('asar tolls us that l'ompey laal 110 robliorts, or

 but (tasire states their mamberat 4. .0) of or whethinge over two-thirels of tho full numbrer. lle dewe mut forget to tell us ance again latat among these elowen were the two legions which he hat given up in ohediemer to the demand of the sionate. J'ompey lims. self. with thesu two very legions. placed himaelf un the left awily from the river : amblture also were all
 slintrers, archers, and "athlyy. S"ipios commanmed in the contre with lae leerions low latal brought out of Syria, So ('iscir tolls ks. We learn from otlaer
 wins. lying on the river-ad lomitius. whum we remember as trying to hold Mar-alles against younc
 horls, or eight lugions. which should latwe mumber-
 trlls us, be led but 2.2.not legionarikes, so that his ramke wore deticitont by more than a half. If was his enstom. ha laml hic temth lexion to the right. away from the river. Tlue nintly, [erribly ilannal ly, what had befallen it within the lineos at l'ctra. joined to the rleventh, lay next the river, forminer pratt of ("xsar's left wing. Intomy comanandol the
 times rall- hy one matue abd somettur- hy the other. the centre. -and sulla the right. ('asar plares) hime. molf oothe right, with hivelehth legrom, opyosill. te Jompey. Lofar as we can hearn. lhare was latt litale in the mature of the ground to side vither uf them: - and sot the tight bervon.

great interest, in the aceount of the actual battle as it is given by Casar. Cresar makes a speech to his army, which was, as we have already learned, and as he tells us now, the aceustomed thing to do. No falser speech wat ever make by man, if he spoke the words which he himself reporis. He first of all reminds then how they themselves are witnesses that he has done his best to insure peace; -and then he calls to their inemory certain mock treaties as to peace: in which, when seekingly delay, he had pretended to engage himself and his enemy. We hat never wasted, he told them, the blood of his soldiers, nor did he desire to deprive the Republie of either army-"alterutro exercitu"-of Pompey's army or of his own. They were both Roman, and far be it from him to destroy anght belonging to the Republic. We must acknowledre that Casar was always chary of Roman life and Roman blood. He would spare it when it could be spared : but he could spill it like water when the spilling of it was necessary to his end. He was very politic; but as for tenderness, - neither he nor any Roman knew what it was. Then there is a story of one Crastinus, who declares that whether dead or alive he will please ('esar. He throws the first weapon against the enemy and does please (cesar. But he has to please by his death, for he is killed in his cffort. Pompey orders that his first rank shatl not leave its order to advance. but shall receive the shoek of Casar's attack. Cæsar points out to ns that he is wrong in this. because the very exeitement of a first attack gives increased (mergy and strength to the men. Cesar's leginnaries are told to altack, and they rash over the space intervening between the first ranks to do so. But they are so well trained that they pause and catch their breath before they throw their weapons. Then they throw their piles and draw their swords, and the ranks of the two armies are close bitted against eacll other. But Pompey had thought that he eould win the battle, almost without calling on his legionarics for any exertion. by the simple strategic movement of his numerous cavalry and auxiliaries. The outnumbered Cosar altogether, but in these arms he could overwheln him with a cloud of horsemen and of archers. But Cessar also had known of these clouls. He fought now as always with a triple rank of legionaries, - but hehind his third rank,-or rather somewhat to their right shonder, - he had drawn up a choice body of men picket from his third line. -a fourth line as it were, -whose business it was to stand against Pompey's clouds when the attempt shomld be mate by these donds upon their right thank. Cæsar's small body of cavalry did give way before the Pomperian clouds, and the horsemen amil the archers and the slingers swept round upun ('iesar's flank. But they swept round upon destruction. Cexsar gave the word to that foneth line of pheked men. "Inli-they", ways Casar, "rom forward with the greatest rajuidity, and with the ir stamelards in adrance attacked the ravalry of Pomper with such violfone that none of them eovid stand thair ground; - so that all not only were foreecl from the gromal, but being at onee driven in pasis, they sought the shelter of the highest montains near them. And when they were ilme removed, all the arehers athl the slingers, desolate and marmed, without any one to takir care of them. Were killed in
 attack of cavalry which wasto win she hatile without giving troulb to the legions.

Ciesar acknowleages that Pompey's Iegiomaries drew their swords hrowly and began their hare of the fightimg well. 'lan'o at once be tells us of the failure on the part of the eavalry ame of the wanglter of the peor anxiliary slingers, and in the very next sentence give us to muderstand that the batile was Won. Thongl D'ompery legions were so much more: numurous tham those of Cosar, we were told that Casar's thirdline attacked the Pomperian legronaries when they wer" "ulefessj" worn out. The few "o.
horts of picked men who in sucll marvelous manner had dispersed Pompey's chouds, following on their success, turned the flank of Ponpey's legions and carried the day. That it was all as Cosar says there can be little doubt. That he won the battle there can, we presume, be no doubt. Pompey at once Hew to his camp and endeavored to defend it. But sucla defense was impossihle and Pompey was driven to seek succor in tlight. He found a horse and a fey companions, and did not stop till he was on the sea-shore. Then he got on board a provision-vessel, and was heard to complain that he had been betrayed by those very men from whose hands he had expected victory. We are told with much picturesque effect how Cesar's men, hungry, aceustomed to endurance, patient in all their want, found Pompey's (amp) prepared for victory, and decked in luxurious preparation for the senatorial victors. Conches were strewn, and phate was put out, and tables prepared, and the tents of these happy ones were adorned with fresh ivy. The senatorial happy ones have but a bad time of it, either perishing in their flight, or escaping into the desert solitudes of the mountains. Chesar follows up his conquest, and on the day after the battle compels the great body of the fugitives to surrander at diseretion. He surrounds them on the top of a hill and shuts them out from water, and they do surrender at discretion. With stretched-out lands, prone upon the earth, these late conquerors, the cream of the Roman power, who had so lately sworn to conquer ere they slept, weeping, beg for mercy. Casar, having said a few words to them of his clemency, gave them their lives. He recommends them to the care of his own men, and desires that they may neither be slaughtered nor robbed. Cassar says he lost only 200 soldiers in that battleand among them 30 othicers, all brave men. That gallant Crastimus was among the 30. Of Pompey's army 15,000 had been killed, and 24.000 had surrendered! 180 standards and 3 eagles were taken and brought to Cresar. The numbers seem to us to be almost incredible, whether we look at those given to ns in regard to the conqueror or the conquered. Casar's account, however, of that day's work has hitherto been taken as authoratative and it is too late now to question it. After this fashion Was the battle of Pharsalit won, and the so-called Roman Republic bronght to an end.

But Cresar by no means thought that this work was done:-nor indeed was it nearly done. It was now clearly his first duty to pursue Pompey, -whom, shond he escape, the ontside provinces and distant allies of the Republic would soon supply with another army. "Casar thought that Pompey was to be pursmed to the neglecting of all other things." In The mean time Pompey, whon seems to lave been panic-struck by lis misfortunce, fled with a few friends down the Egean Sea, pieked his young wife up at an island as he went, and made his way to Eyypt. The story of his murder hethose who had the young King of Egypt in their kepoing is well-known and need mot detain us. Gesar iclls it very shortly. Pompey semds to yomg Phomy for succor and aswistance, trusting to past frienciship between himself and the young kinges father. Polemy is in the hands of cumbehs, adventurers, and cout-throat soldiers, and lats mo voice of his own in the matter. But these rutlians think it well to lave lompey out of the way, :mat therefore they murder him. Achilas, a royal satrap, and Septimins, a Ruman soldier, go out to Pompery vessel, as messongers from the King, and induce them to conde down into the ir boat. Them, in the very sight of his wife, he is slatughered, and his had is carried away an proof of the deed. Such was the emd of Pompery for whom no fortme had scemed to be too great, till Casmr came upon the seene. We are told by the Roman poct, Lacan, who took the lathle of Charsalia the how ditlicult theme, that Cexsar could bear no superior, and bompey no "pual. The ponet probahly wished to make the latter the more
magnanimons by the rombarimon．＇lo nes as we rx－
 at lonat as jablous of power as his son－in－law，anul
 cluding all whers from athare in thre jow ore which lee coveted．Pompey in the trinnvirate admitted his
 forver：（＇sesur in the Irimmvirate simply male a stephingestone of the great hanit who wis his iffler． Pombry at Thequaly was formed todivide at lonst the numeof his puwar with hejpio，his lant father－jis－law but Cuesar never gave a shratl of his mantle to be worn by another soldier．

In speaking，how wrer，of the लhatater of formacy， and in comparing it with that of his gromter rival，it may probably be saiol of him that in all his contests， both military and politionl，he was governal ly a love of old Rome，atnd of the Repulile as tho grate est national institution which the worlal has orer known，und by a feeling which wo catl patriotism， nad of which（exsar wis，－perhaps，we maysay．too great to be rapabile．Jompey desined to leati．lint to
 for the thinge of old，with no reverenow for the pati， utterly destilate of that temblermess for our formor fontstips which makes so many of us rlisp with phesiounte fombess to convicted rrors，hesirial to eromite ont of the dust of the：Rapublice－which fate
 somothiner which shoulal be better and iruer than the Republic．

The last seven elapters of the haird hook of this Comsmentary form th commerncement of the record of the Alexamdrime war，which，heyomi thome sevon
 have wrillen any（ommentary amidst the nucessary toils of whr，ancl the perhaps more prossing emarg－ emeries of lis politisal comition，is ome of the mar－ Vils of human power．He tolla nos mow，that having thelyed but afew daty in Asia，he followed Jompry tirst to Cypros and then to lisynt，laking wits him ＂s his entire army three thonsand two hambed men．
＊The rest，woriont witl wounds，aml lattles，and toil，and the erreatness of the journey，combl not fol－ low lim．＂But he directed that legions shondd be matle wip for lim from the remmints of $l^{\prime}$ omper＇s brokin army，and，with a gotlike trust in tise obie－ dience of absent vasals，he went on to birypt．IIe fells us that hos was kept in Alexandria by Etesian winds．But wr know alao that Chopatsa came to him at Nexambria，requiring lisis serviees in lur con－ test for the crown of Exyph；and knowinir at what price she bourht them，we doult the persistont mal． ignity of the Etcsima wimls．Hind Cleepatra been a swarlay Nubian，as some buve portrayed hor，íasar， we think，would hate left Alexandriat thonata tha Etesian winds hat hown in lis vary teetlo．．Il winds filled Ciesar＇s satls．Ciesily grota possoxsion of Cleon－ pattrits brother l＇tolemy，wher，in aceordatuee with their father＇s will，Was to lave rejanerl in（onlunc－ tion with his sister，and the Jexamblrians riaramainst lim in great force．He plays I＇botinus，the sirvant of King Ptolemy．has his own ambassablor slain， and burns the royal theet of lisypt．－burnine with it， unfortunately，the ereater part of the rowal library． －T＇lese things were tha beginning of the Nexand－ rine war．＂These are the last woris of＂iusar＇s last Commentary sier fermum 11 urs．

ROMANS：－Before the estallishment of the mess at the llorse Guards，which was formorly phid ont ？f the King＇s privy purse，and sulseduchtly ©harged in the extratordinaries of the army，the（aptain of the（Fuarl at Et．James＇s kipt a thble for fow sub－ altorns attached to that disty．In order to enable
 mumber of men were allowed to work in the metro－ polis．en combition that they left their jaty in the hamis of their Onlours：these mon wore called Ro－ zerthe．

ROMAN WALL．－Traces are formd in（irent Bri－
thin of fomr great walls bailt by the leoman（＇os，


 ［roverl ianafliainit to krapt hask the northarn harlare
 of all the：walls，from thre solwhy to Niew castle：on

 that of lladrian，which was gitarimel ly 10，0100 men．
KOMAN WARS．In the infancyor lionnre，sur luml many wark but fow comsule－in lar muturity who

 lare wars，cor rathor invasions，after（hat evont，werre




 I＇hilip and Alexamer，at which time sho gracionsly gave the（irreks thoir liburty，i．t．gave theral liw．

Attalns，liong of l＇orgamba，alying abont this ime， Juft his kingilom to the lionainso lyy will：or，in
 bownr，he draformi giving than a hoorlloes vicerory， sumb clanked an iomohle dereliction of rierht walar the spericass matse of a volamtary domation．Intioclame， the gratit ling of Assyria，was destined bext tofall bufore thent．He wasat this perioul the moot jewner－
 and latd he aecopted the advireand aid of Jlamibal， there would hase berot at laast al chance for hic ase
 foariner lost，if anythins shomlal la done．Ilamonial Would have all the credit，was carifal to go dirn－1］y contrary to tha advice of that（iseneral．＂The lers－ natns cheated him almost without loses of bloond
 mmplsed over him－extortad from him an inmense trilnute and laft lim unly enongh tos graros tha tri－
 sharial the fate of（artlage，amd anar）y at tho sambe time：Corinth，one of the melnmet citios of（ireerce， was utterly destroy＂ul ly Mummins，the C＂onsul，for oftering seme intignily to the lomann emblassulors －and Fimmantia，the capital of Suain．This city after sustaininir a siocre of fourteen years．was rechuced
 any lonerer，fired the erity over their own lwads，and atl perishod in the thames；abd spain leceame a lioman provinッチ。
 fall of the firarchi．toenther with variont di－tar－ hances next arive to view in tracing the histury uf Romes．Then follow the redtertion of Anmilia．innl the civil wars in tha rephblic．exaleal bit the ambin－ tion of Marins and Siylat．Which tworabtal in tho perpetund dicatorshiph of the lattor．Dut it will not compoort with our prisemt desigh to enter into al de－ tatil of thase particonlar events．liomat was perhapis nover more puwarfal or happy than in the day－wf ＊（cijus Sfricamas，or abmat the times of the limaic Wars．She then exporionceal ereat misfortume－and calamities：but thon＊untowstral evernco insoleat uf Weakening or exhau－ting ler，a：alled forth，nay，evert
 bal．she row invimuble：and while lhat consmamate warrior held bis qromad in laly．she sent arnote into Spain．Africa，Gircere and Macedons．I great part
 soon shared the filta tif the＂mpire of（arthave ：nam in those days with the Romans．©o proclaim war
 quer．

When we look for a period in the lioman history， in which thare is the ereatest maton of power，wis－ dom，virtue and lappiness，it will dombles－be fromm thot fatr from the times of which we are now＝1，
ing. Tlue Romans, in carlier times of the republic, Ware mora virtmons and matriotic han now-bnt then they were weak; in the Angustan age they were ecrtamly more palightened, scientific and polished -but thon they were less brave; or if not less brave, their virtue was forever gone, and with it, the foundation of their prosperity and happiness. The conquest of Africa, $A$ ia, and Greece at once poured into the coffers of Rome immense, incalculable riches. On this almost boundless tide of prosperity a set of mon were soon seen floating, of a very different claracter from Cincinnatus. Fabricius and Regulus. To the most desperate bravery they united mbonded ambition : and to the strongest expression of regard to their comntry they united a total want of principle. The wealth of the world like a mighty river, poured into Rome' : and many individuals acquired fortumes which transcended royal magnificence.

The (levation of Rome to such an astonishing height of power and splendor, drew to lee men of parts, of taste, of ambition and enterprise-and in short, men of every description, and almost every mation. The descondants of the ancient Romans soon became fow in compratison with the fommense multitude, who by some means or other, acquired citizenship, or obtained a residence in Italy ; and Rome lerself experienced as great a change as the nations slie conguered: for while she drew the arts, elegance and science from Greece, she drew wrathth, lusury, effeminaty, and corruption from Asia and Africa, and sloe drew a swarm of hungry fortme limers from every cormer of the earth. who penetrated her inmost recesses-ontnmmbered and overWhelmed her ancient people-in short, conumered their conqucrors, corrupted their morals, and put a tinal period to their liberties.

The civil wars of Rome which soon follow the period of which we have been speaking, mufold to the reader a spertacle equally dreadful and disgusting. Many persons who had witnessed the destruction of Carthage were still alive, and saw all Italy deluged in blood by Marins and Sylla. From the destraction of Carthage to the perpetual dictatorship of Sylla, was a little rising of seventy years. During the latter jart of this period, Lucins Sylla, envying the power and giory of Cains Marius, involved the republic in a most bloody, disgraceful, and destructive war. After variousturns which their affairs took in the progress of this evintful strugglo-after they had destroycol half a miltion of men, including the best part of the Roman people-had humbleal Rome and laly-lad shed the noblest blood, and prostrated the dignity of the repuhlie, Syla, an execrable monster of eruclty, tyranny aud ambition, was able to trimmpl over virtue, liberty and justice. He srated limself fuictly in the exereise of despotic power, and berame perpetual dictator. Rome never saw another moment of freedom.

The Romans, in the times of Sciןsio, may be compared witl the Grceks in the time of Themistockes, and tho frimmpls of (ircece ovor Persia, with that of Rome over Carthage. In both cases the conguerors wore corrupted by wealth, and imbriated by lisury. Wranght wo furiburand say, that the Jolopomonesian war, which sureeeded tho elrvation of Grecee, sand laid the fommation of her ruin, resembled the civil wars of Romes, begun by Dlarins and Sylla"arried on by Casar aml l'onjey, and terminated by
 trer-the nature of theire civil policy, stmot the immense ( $x$ xent of tluir fonquests, rubblat them still to be powarfal, in spitc of all their eorruptions: amel hatd they been otherwise, there seemed to be no nation no:ir thent who conld have durived advantare from
 roulowed with mivirsal dominion, that they might $\cdot$ vidence to the worlal how far athation (an be hatppy, and how long she can exist without virtur or frioulon.s.
'Ilor ambition of thre dematrogues ans woll is of the
despots and tyrants of lione, in ome essential article, led them to promote the true and just policy of the empire : that was to attach the provinces as strongly as possible to the interest of Rome-to dissolve thrm down to one conmon mass - to preserve thejr extansive turritories entire-to cement them together by various alliances, and to preserve the empire medivided. The strength of empires consists in their union. The Greeks wanting this, soon failcil: and, in our own times, Poland, which onght, from her momerous adrantages, to have beren one of the most powerfal kingdoms in the world, has ex. hibitcel a deplorable spectacle of weakness and misery, by motans of her itsternal divisions. Onr own romntry hatl well nigh been swallowed in the same gnlf.

The lRoman community, launched at once on such a saa of luxury, wealth, and glory, was varionsly atrected. Whale all were struggling for emineme and power, it fortunately happened that the reins of government fell into strong and energetic hands. Of this description, generally speaking, wore most of the first competitors, and of the trimmirates. The softening powes of luxury--the sudden immation of Grocian elegance and refinement, and the elevation of conscious greatness and empire, combincd with her native gravity in forming the genius of Rome. Alrout this perjod. it began to bud ; soon affer this was its fairest bloom and richest maturity. If the genius of Rome was of a heavier mould than that of Grecee, it possessed a more commanding gravity: if it had less fire, it was more tranquil, majestic, and solemm; and more hearts will vibrate with phoasure to the plaintive and elegant notes of the Romin, than to the electric fulminations of the Grecian muse.
In the year 680 from the bunding of the city, the republic was freed from the tyranoy of Sylla, by the death of that odious tyrant. But two men, of far more "stensive views and refined ambition than either Marius or Sylla, were already prepared to run 1he same race. Cneus Pompey, had, ly various arts, as well as by great abilities, become the most jojullar man in Rome, and was considered as the greatest commander in the Republic. Crassus possessed that authority and influence which great eloguenee and immense wealth, combining withall the wiles of ambition, could procure him. IIe was the richest man in Rome. While Pompey, who warmly esponsed the llarian fiction, strove to gain the fayor of the people by abrogating many of the tyrannieal laws of Sylla, Crassus employed his amazing woalth in donations, distributions of corn among the poor, in public foasts and entertamments: and it is satid that he supported, at his own private expense, the greatest part of the citizens for several montlis-exbembitures suthecient to have exhansted the treasures of the erreatest princes. Juthe progress of their contest for powar, their animosities broke forth on erery ocrasion, in opposition more or less direct, aml by means more or less violent.

It this perion, while the destinies of Rome semed to hamg in dombtinl suspense, three characters ap)pearal of vory dillerent complexions, but equally extraorlinary, equally to lo remembered, but with very dilburent sensations. in posterity;-Catiline, Cire ero, and Cesar. One of thase men procumed for himscif jmmortal fame by hisatrocoons villatiny, ome by lisunrivalled eloquence, and one ley his ambition, hravery, and grood forthme. Jnlins Cissur may lue regarded ats the greatest of the Roman commanders. In hin the military genius of Rome displatyed its utmost stronerlh and jerfoction; but, ats yet, Jo was not known in that group of groat eharaciors amb persomates, who, now inflathed with ambition, wrer proparing to earve and divide the worlatimong them. harins ('atiline is allowerd by all writers to have pus.
 viruc; instomd of which lie lude every principle. bud practised everg vice which eombl form a most
infumons, atrocions and atuncloned villain. Possurnsed of n body ant mind equally stroner ami vigoroms.

 stained from no (rime which rombl subserve his pleasures he valued no labor or peril to gratify his ambition. ('atiline prowiviner hithself mot innoner the most favored rivals who were conelomg the mistress of the wortd, dotermined on tretting laro into his possession liy violemore flis ant was the same as the irs, but his mana wore nore unwarathtable.
 extensive and daringe comspuracies reeorded in history. The lemang objoctsof his conspiracy wese, for put ont of the way ly ont gencral mas*itcre, all wlan woutd be likely to apmes his mestares-io pillage the city of lanne-to sei\% all phblice treasures, arsemats and stomes lo eatablish at despotie: fowarnment - 10 revolutioni\%e the wholerepmblic, ant to arcomplish all these monsures ly an armed force.

This sumsuinary plot was detecored and crusherd by Cicero, the great and justly echebrated wratoe of Romer. The aseompliecs of ('atilime were seized and put to death: and (hatione himself, who hat as. sombled thatmy of twelve thoustand men, wat rncombtered, defeatedund slan. Jut if leome escaped this threatoning ernlf, it was that shomight fall into a suare, apparently loss dreatful, but egually strong and conclasive as to her fite. Ilar diage of virtue and glory wore past: henceforth she was to heralad with arod of iron. The dissensions of Pomprey and Crassus were quieted by lhe mediation of Casar, who stepped in betwern them, ontwitted them both, and berame the leat of the first trimuvirate. Ilaving amicubly urreed to govern in copartnership, Pompry chose Spain, Crassus chose the rich and luxurions provinces of $A$ sia, and to Caesur was alloterel the powerful amd warlike nation of (isal, as yot uneon. gursod. What was the result? Pompey hasked for a moment in the splendors of liome, and his fame was Irmoneted ly thee eloguence of ('icero. Crassus was sain by the Parthians, condaroring to enlarge his territories, and Cows conquered the Ganls ind thous. and battlex. I'ompxy conld not bear an (xpual, nor C'asur a superior. They wore mutually jealousthey ditfared- they prepared for war. "The Senate and mobility of Rome, and pride and strength of Italysided with Ponupey: Cisar relies wholly on those veternn legions with whom he had subuluet the tleree and martial tribes of Cratul and Germany. No civil war ever equatled this. It was a melancholy sight to sed Rome sivin up to tyranny and bloodtosee that angust and vencrable ropublie for ever abandoned to her evil genius. These were not the feable biektrings of petly controveray; Marius and Sylla, the laders of the formor civil broils, bore litthe comparison with ('irsas at the hetul of his legrions, or with the great Pompey, who eoukl almost raise armies out of the earth by the stamp of hix foot.

This eventful struggle was at length closed by the battle of Pharsalia, rendered iruly famous by the gramd object for which they fonght-the greatness of the force employed on either side, and the transomblent reputation of both commanders. The Roman Fompire was the prize; and both the armies amd the Cuncrals were the best the world conld aftord. Jomper was utterly defeated, and many of his army, won ovar by the nagnanimous elemeney and generosity of Ciesar, were content to change sides. "the conduct of Pompry in this battle, which was to dis. cide his fate, has ever bern consilered asstrange and mancountable. So tar from displuying that enuragr. intrepidity, and foztitude, and thone powers of command which he was supposed to possess, that, from the vory first onset, he appenred like a man frightemesd ont of his semses: he searcely attempted to rally his men-was among the foremost that thed, and neve er matde another effort to retrinve las canse. From facts so slaring, we are almost indueed to believe that mnel of l'ompey's greatness, as a soldier and com-

Hancler, "onsisted in therlegant irawing of Cirero, mat othor partinl writres. '1'bre trate leat of bravery, skill, und fortiturl is $\{0$ s.o. therut dimplayed whers they are most moressary to sore them shime in clan-




 in nothing. Among philowendurs, matlecomaticians, ports. abli wrators, her ronlil shime. He cestal phan
 gain and improve an advantage. For mevon yours in lis (abllis wars, his life wat at entimanl merios of fa-



 ('larist, and föd from thr bulding of the rity. I'ompery lled an matapyy "xile inte Figypt, and was there
 'l"has the reins of gervermument foll inte thar leands of
 workl. The chemency of ('iesar on this oceusion was as illnstrions as his victorices latht been. Ife chtoreal into mo measures evginst many bersons, whon, hender professions of mentrality, hat evilently sided with lompey: He did nothing which loore any ramonbance to the larrid proseriptions of Marins and Syllat. Ife endeavored, in most instaneres, to forger sime forgive. But the reign and trimmpla of Julius ('man was short. He soon foll at sateritice to that mirit of freedom and inclepentlence which hat rained his country to her exalted rank: for thongla the demons of diccord, ambition, and party rag", had now for a long period, amed all their shafis at good and virthous men though torrente of the richest boom hadel tlowed incessantly for many years, yet some amen were still left whose eonstancy and virtue ever stemmed the sirong current of the times. Cato and Cicero were still alive, whost stam virtuea and commaneling eloguence continued to remind the Romans of thair better days. From the hatte of Plarsalian to the death of C'sar was eight yoars. During this period he went on and prospered. Bẙ a rapid series of journcys and experditions las saw, awed ant sul) jugated all places and all opposition. lifsarn pervitled, his vigilanee dateredrl, his spirit auimatred, his generosity won, and his power croshed in all directions. His great und active genins seemed universally to hear down all before him: but in reality not all: a plot at lengtl was laid, as it were in his own bosom, which hurled him in a moment from the high summit whither he had climbed.

Brutus and Cassius, at the head of ahout sixty Scmators, entered into a conspiracy to lake lim off by assasination. Their object was to arrest the progress of despotic power, to rastore the authority of the semate, ind tha ancient forms of the repmblic; an object lamable in itself, hut, ulas, how far from being practicable: Their phot was deeply latid, but sems to have been carried imo effeet not without a woulerfol concurrence of accitent, or rather of providence. Whilst (ipsar was on his way to the semate honse, where he was to perish, a slave, it is sabl, who had discovered the conspiracy, pressed forward in the crowd to apprise him of his danger. but conld nut wet to him for the press. Another person put into his hambls a puper. which would have saberd him, containing an account of the conspiracy: this he hameded to his sereretary withont brenkiner the seal. Ifier le was sonted in the senate honse the concpirstors approachaed amal despatched him with their dirgers without resistance. and retired to the capitol, where they put themselves in a state of defenco. Thus fell the first and dombtless the greatest of the Cirsars, in the Jtith your of his age, and in the sth of his sole administration. No Roman ever achiored more arduchs enterprises than lue. IIe rose to supreme power, in opposition
to men of great abilities and of much greater re－ sources than limself．Whatever standing he ac－ guired，he maintained，and his comemies could only destroy hin by treachery，under the mask of frient hip．Rome did not owe to Casar the loss of her liberties；they were lost before he was born．lle was allured to seize the dazzling prize，which to all observers．lad evidently become the sport of fortune． and was liable to be graspel by him who was bohd est and most lucky．Ilad Pompey presailed over Cosar，it is highly donbtful whether Rome would have experienced a happier destiny．
The fall of Casar sermed only to accelerate the establishment of imperial government．Octavius，the grand nephew of Cresar，and heir，by will，to his fortunes and name，was soon at the head of allew triunvirate，viz．himself，Mark Antony，and Lepi－ dus．This new trimmirate，proclaiming themsclves the aveugers of C＇asar，now hastened to make wat upon the conspirators，whose army was lieaded by Brutus and Cassius．llad the Roman people de－ sired their ancient liberty，which they certainly would had they muderstood the import of the worl， or had they entertained any just notions of freedom， they now enjoyed an opportunity of regaining it： but so far from that，the triumvirate were dble to ＂xcite the popular intignation against the conspira－ fors，and in fact，gained the people over to their canse．The standard of liherty was deserted，and the wretched infatuated people were now employed in rivetting those chains which were never more to be broken．The conspirators were erushed with little tronble：and in shedding the blood of the last patriots of Rome．the sublime Cicero fell a victim to the merciless rage of Antony，and the base and cruel policy of Octavius．It soon appeared that the tri－ momirs had combined with no other view than as a present expedient，which was to be laid aside when nccasion should offer．Accordingly Lepidus was very quickly rejected，and as he was neither a soldier nor a stateman，he had no means of redress．Antony and Octavius presently dittered，and once more mar－ shalled the forces of that mighty people umber their hostile standards．Their quarrel wis decided at the hatlle of Actimm．A short time after which，Antony expired in Erypt，and left Octavius without a com－ petitor．

In the $30 t h$ year before Christ．and ideth from the building of Rome，commeneed the imperinl reign of Uctavius，under the titles，of Emperor and Augus－ ths．Rome now became an empire in the more strict and proper sense of the word ：and notwithstanding the degeneracy of the Roman people，it continued for several centuries to le the most powerful＇mpire in the ancient world．Tha commotions and wars－ the huxury and wealh the corruptions ambloss of public virtue among the limmans，dial not extinguish but rather calleal forth and perfected their genius for literature．The seienese were assidnonsly cul－ fivatret，and incol of learning recerived the warmest patronage amb the amplest encouragement from those great and opnlent mon whose wealth was fmmense， and whose tratle was in states aml kingloms：in－ derel，many of those great men wore themselves the fityoritess of the muses．They studied the libersl seri－ chors and derant arts with a diligence searcely known in mothrn times．Scipio Africames．accoril ing to the tastimony of Cinero，was as eminent for mratal improvement，as he was in the art of war． （＇ato was a man of great learning and wishom ；and those great mon who composid the two trinmvir－ ates， in the liberal scioneres．

Whan we consjetur that Ciero was a profecsion－ al man－that for ：l course of jears，many of the most
 aced by him－that he was astatesman and aterat Comeler in the politios of his time－that Im was，at times，a ceivil macristrate，it soldier，and at grovernor， atnd patron of provinces，we may truly be astomish．
ed at the extent and success of his stumes．llis vo－ hminous writings which have come down to us，and whicll form the most perfere standard of classic ax－ cellence，leave us in doulot which to set foremost， whether the strength of his molerstandines or the powers of his imagination－or which we shall ad－ miro most，his genius or industry．It is no partial admiration by which those writings are preserved： the united voice of all enlightened nations have de－ clared their merit，and juiged them worthy of im－ mortality．The same may be said of the writings of Virgil，ind ILorace，and many others．But the ap－ probation of men of taste andearning，in all nations has set the literary productions of the Augustan age above all panegyric．They will be read and ad－ mired so long as works of genius and taste are held in estimation．The Roman empire now appeared in its utmost splendor．Thougli less virtuous and happy，and probably less powerful than in former periods，yet the concentrated wealth of the world， the extermal pomp of so vast a monarcliy，threw round her a dazzling glory which the most distant nations beheld with admiration and dreid．Embas－ sadors from remote kingdoms daily arrived to do homage，to court alliance，or solicit protection．

Angustus held the reins of government：there was no competitor－no rival．The people long fatigued with war，were very glal to enjoy peace，though un－ （ley the reign of a despot．There was no Brutus nor Cissius to conspire or to assassinate．Cato was no more；and Cicero，one of the last hminaries of Rome， had been murdered，and his head and himds cut off and fixed apon the tribunal，where the thmoders of his eloquence had so often struck terror to the hearts of tyrants．The spirit which amimated the Romans in the llays of Fabricius was gone for ever：liberty bad taken her flight from the earth，or had retired to the sequestered bown of the savage，while gorge－ ous pride lifted her head to heaven，amb trampled on inmocence，equity，and law．Angustus was an art－ ful，insidions tyrant ：whilst one of the triumvirate， he had been carefnl to destroy all the virtuons men who had escaped the bioody proseripuions，the civil wars，and the violent commotions which were before his time．W＇hen his power was confirmed，he en－ deavored to fascinate the people－to hull them into security－to incbriate them with haxury－to dazzle them with his pomp and glory，and by all possible mears to extinguish in them the true Joman spirit， and so to publity and sweeten sluvery itself，as to cause them to drink it down with a pleasing relish： he succembel；for never was a people so changed in temper，habit，mote of thimking，and national char． actor．Bnt detraction itself camost deny that Au－ gustus was a Goneral．a Statesmam，and a very great man．Though void of the magnanimous spirit of Cincinnatus，Brutus，and Regulus，yet le aflected to revere the character of the andient liomans，and seemed desirons that a semblance of freedom shond still mark the character of lis countrymens．When he saw himself in the undisturbed possesmion of em－ pire，the severities of his administration relaxid．and he held the reins of government with lenity，dignity and wishom．Few monarchs have enjoyad a longer or more prosperons reign．Itis genius was less war－ like than that of Julime Cisear；yet in the course of his reign，he had various opportmalies of showing himself capable of commanding armates anel of di－ recolig vory rxtonsixa military operations．lath his greatness wis of the 1 randuil and pacitie kind．and Lu showerl lithe amh ition to cmlarge liis dominions．
 Ioner．It was his lomas that lee fommel Rome built of Liriek，lat that be left it lailt wl marhle．

The Roman rupire，luring a period of 20 years from the accession of $A$ ugusims lo that of Commo－ dus，contained the midille and somblesm parts of Enroju＊the borthern parts of Ifris：a，ant the went－ －品 parts of $\lambda$ sis．In the lirmetions and advice of Ahylstas tu his shctessur，it was warmily recom－
 cortlingly, the weak and rethonimate limperors hand nos inclination nos ability to des it, ant the valiant
 fonding what thoy alroaty hat; whila the wise and prodent wrere kensihly impromed wils tha proprioty

 wo shatl directly wer that it compiralomdod, ts an "legant hiskotian remurks, " Ha fairost phert of tha. earth, nut the mose vivilizol portion of mankind."
 dilions wore mate to the rompire, and we lntieve,
 Eumope, flu (tallie and Garman jrovinces were ent


 purar 'I'rajan, in order to prosionald the war with tho
 1)anulue: the ruins of whicheremain tot this day, and alford a sublime sperimen of anciont architeriare.

The cruclay, drpravity, folly, and anormons vices of the Emprerors gemorally form at siking fature in this period. They sean lo have beon utforly losi to all sense of justice, honor or duty. JTant they followed the examples of Julins or Sigensins (atsar, the Romans wonld scarcedy hatie had reason to regret the establishment of af form of gevormmont whicla resended then from deplorable wars and wast ing rove ohntions, urged on ly the ritre of varions puwerfal partios strececting one mother. Indered, it is siarprising that the illustrions eximples of those freat men should be resarted immediatedy, imes so soon forgotton; and it can be decounted for in no other way than by sapposing that the reids of geveroment fell into the wenkest and vilest of hathde. When we: consider the advantares the first Emperors of lemme possessed, it can scarcely be doubtad that many of them wore the lowest, the most detostable and ablan-
 of the (ottoman Turks, thonerh burbatoms amd hloody tyrants, were almest without a stain in comparison with those "harpyfooted furies." The llenrys and Filwards of Enirfind: the Lonises of France: the Gothir, and Chinese momarclis were sages, philosophers, jhilanthropists, ablsatints, in comparison with them; mor cin we read the listory of loone withont wouderinir how it was pessihle fur that once powerful and magnonimous [eop)de to be so sunk and depraverl as to emblure the tyrnany of suld monsters, instead of hurling them with indiensut scorn from the throne whide they so deeply disarneced.

If the fate of Joband, in our own times, stands as a beacon wxhbiting a druadful testimomy to the mat tions of the carth of the cflecta of bad gevernment ; We maty ertainly dorive a still stronger lestimony from this perion of the keman history. The wars of Marins and Syja, of Ciesar amel Pompey, and of Anginstus ame Intony, Jad demonstrated the pow'er of individuals to enslive the siate. Those was: had admost exterminated the anciont Romatns-they had extinguished almost all the great and eminent families, and quite all the great mon who darial to speak and act like Romans. At the sime time an immense multitude of fortigmers from all latrts of the world ponted into Romm: amd the army, which always governed Rome, was composid of a mereenary rapacions erew. ata roid of public spirit as of abl somse of justier and lomor. An rampire governed by a l'rine a protligate and abandoned as wak and itr. norant, and whid wis merely the tool of a mutinoms, ill-disciplined. and vieious soldiery, must certamby experience the worst of governmenta; and mmat feel their worst effects: nceorilingly, the Justre of Rome fiaded-her power deeayod--har virtueand happincea were for ever lost, and she was abomboned to devery evil and calamity.

From varions internal (oanses, the strensth of the Roman empire declined grently during the two first














 Wall knew how nerovary it was for him to milemers
 thed to "Xlerminale that virtue which mon-t lane thrown combianal rmbarracoments in tha: way of his ambitions schames. गarorons, the great friond of Firgil and llorace, still liverl; but lar only liverl a- a flattoror, to form mew morlose of adnlations, amel to arrl the cringing parasito. In the reonste of the roiten of the twelve (hasars. the Roman horizons. Whicla land beren onere illaminated with ofor inmernse constalla-
 rocs, and sages, was lefl in dreary diarknesw. And if
 fow lights on that once splondith horizon, bat surbs as most resconbled the horrial glare of tartarean fires.
 Quintilian, Tacitus, Juvenat, I'matarell, Juatin, and Gralon, were scattered down this tract of time : loneg ufter which Jonginus loourished; amd Varcons . DureJins, the fimperor, was a ereat plitosoplar, and in ornament of the rejulblice of leblers.
'The mature amd form of the Roman lourion, amilitary establishment amb grame instrmment of the lRaman power, by which lamme conquerad and govern-

 as well as ly some of his sucressors. "The main strength of the lemion consisted in a Joody of infantry, divided into ten mohorts and fif!rofive companie's. Which eompanias were more or lass fall. Fiacole corhort was commanded by a l'refect or Tribume, ami rach company lyy a Centurion. 'The tirst pobert, which nlways claimed the post of homor and carried the eagle, contained 1,105 soldiars, the most ajpurosed for bravery and tidelity. The remaining colnorts consisted each of ons : and the infantry of a lecrion, in its most improved state imonnted io $6,100 \mathrm{men}$. Theirarms, which were anifurm, consisted of athelmet with a lofty crest, a breastjuate or coat of mail. greaves on their legs, and on thoir left arm a eon(ave latker, of an ovial form, four feet in length and two amd at balf in broadth. The buckler was formed of light wood, covered with bull's hicle and strengthencol with plates of brass. The pilum. a long and heavy spena, was the most effective of the Roman wrapons. Wibh this they wamally conturered. It was about six foet longe, and torminated in a triangrubar point of steel cighteen inches in length, 'This Ireadful javalin. When . lanmelsed from the sigor of a Roman arm," often pierceol hethntets. breast plates. and bucklers: nor was there nony avalry that chose to venture within ile reach. Wharn the pilnm was thrown. which was commonly within the dietance of ten or even six yards, the soldier drew his sword and elosed with the enemy. 'Tlue sword was a two-reloged, fhort, well-Remperenl blate tiated to strike or jush, the lather of which the liomano wore instructed to jrifer.
The lewion, in hattle array. stond eight elecep. pros serving the distance of three fert hetween both the ranks and files: so that cach ome hate as sulliofent space (1) mowe atal wield his arms int amel this lonse order wate areat celarity to their moveramos. It is
 strengets of the phalane was unable to contend with
the aetivity of the legion. But conld the phalanx of Alexander have contended with the legion of Julins Casar, each nuder the eye and animated by the spirit of those great commanders, a different conclusion perhaps might be drawu. A body of cavalry, consisting of ten troops or squadrons, was an essential appendage of each legion. The first troop of horse was the enmpanion of the first eohort and cousistod of 182 men. The other nine eonsisted each of tib men, and were attached to the remaining nine cohorts. The caralry of a complete legion amounted to 720 men. Their defensive arms were, a hillmet, a very oblong shield, light boots, and a eoat of mail. Their effective weapons were a javelin and a tong broadsword. Thus the regular infantry and cavalry of a legion amounted to 6.826 men ; bevides which, several light armed troops, ealled auxiliaries, where attached to it, which, together with ali the various attendants for baggage, dc, swelled eaclı legion to upwards of $12,000 \mathrm{men}$. To every legion were assigned ten engines of the larger size, and tif-ty-five of the smatler, for throwing large stones and heavy darts. The foree of these engines was such as to produce astonishing effects on walls and towers, and they are thought by some writers of note to have been little inferior in utility to cannon. The camp, of two complete legions usually vecupied an exact square of nearly roo yards no eaeh side. This spot was levelled by the pioneers, and the tents were then pitehed in the form of regular, broad strectsthe pratorium or Geueral's quarters in the center. The whole square was then surrounded by a rampart 12 feet high. compactly formed of wood and earth, and also inclosed by a ditel 12 feet broad and deep. When this camp was to be left, it is incredible how soon the legions would be in motion. Their tents being struck and packed, "ael legionary loaded himself with his arms, kitelen furniture and provisions, sometimes for many days; and, wit⿳⺈ this weight, which says Mr. Gitbon, would oppress the delicaey of a Eodern soldier, they would mareh, by a regilar sted, 20 miles in six hours.
The military diseipline of the Romans was exceedingly strict. They were aceustomed to various athletic exereises; and their armor in running and leaping, was scarcely considered as an inembranee. Such were some of the military arrangements of the Romans; and, in order to form some idea of their armed force, it may be observed, that the peace establishment of Adrian and his successors consisted] of thirty of these formidable lesions, which were usually stationed on the banks of large rivers, and along the frontiers of their extensive dominions. The author just cited says, that under the Emperors, the lecrions were more or le'ss permanently stationed, as follows, viz. three legions in Britain-sixteen on the Rhine ind Danube, where it was early disenvered that most force was necessary-ight on the Euph-rates-and in Egypt, Africa, amel Spain, a single legion was sufficient for each. Besides all these, a powerful armed force was always stationed in Jtaly, to watch over the safety of the capital, and of the bimperor. These were called city cohorts and pratorian graards; and we shall see hereafter. that these troops were principally instrumental in the ruin of the impire.

From the fall of the Roman umpirt a period of darkness ensucd, cqually dreadful for its lengts mul for the number and greatness of its calamitios 1 : $: 0$ on mankind. To trace the history of thase times, is like making a progress through chaos, amidst upler, nother, ant surrounding thrkness. We will tirst noties tho fortunes of constantinople commonly called the bustern, and in late promis of history, the treek empire. The surcessors of Constantine, whom, in this article, it will lw impossihle for us even to mane, were more fortumate in the cast than in the west. The mumberless swarms of harharians, whic h, in theare times, poured down from the north of bue ripe, geracrally diremed their course more wost wath
ly and inundated France, Spain, Italy, and even Afriea. The empire of Constantinople was various in its extent ; sometimer its territories were very extensive, and at others were limited almost to the eity walls. Bnt this city was destined to enjoy a great and almost peculiar felicity. It stood unrifled and unimpaired through all the storms and revolutions of the dark ages. It was never taken by the barbarians of the north, nor of the east. It was even fortunate enough to escape the rage of eivil war, and to survive for many ages to trimmph over the vices of its degenerate intabitants; till, at length, it was taken by Hahomet Il., Emperor of the Turks, in the year 1453.-97 years after the conquest of Rome by the Goths. During this long period, the reader will find few things in the history of Constantinople worthy of very partieular notice. That empire neither ahounded in heroes, philosophers, poets, orators, nor historians. Yet the preservation of that one eity to so late a period, was eertainly an importan link in the chain of events whieh restored the arts and sei enees. The writers of the Middle Ages, and especial ly the Crusaters, speak in the highest terms of the greatness and splendor of Constantinople. Her final subjugation to the Turks appears to have been a just judginent of Providence upon her. since, though bearing the Christian name. she almost uniformly earried a hostile front to all Christian powers-made more wars upon them, and exercised more animosity towards them, than she did towards Pagans and Mahometans. If we except Constantinople, the whole of Europe from the fall of Rome to the estublishment of Charlemagne, rescmbled a troubled ocean. The most splendid cities, the most populons countries, and the most delightful regions of the earth, were harassed and overwhelmed with ruin and desolation. We naturally first turn our eyes toward Italy, whose wretchet inhabitants were the severest sulferers of all. The historians of those times say that their sufferings exceeded all conception-that neither pens nor pencils can deseribe the barbarity, the rage, and the violence of their savage conquerors. All their effects were converted into plunder; their men of every age and character were put to the sword or dragged into slavery; their women subjectal to the most brutal violence, and their cities and villages wrapped in flames.

We can give the rader no juster idea of the miseries of Rome, than by noticing to him, that during this period, that devotel city was besieged and taken hy storm five times in the space of twenty years. Those northern invaders, after having conguered and in a measure destroyed the unwarlike inhabitants of the Roman provinces, fell with a fury upou one another, and several gloomy centuries were wasted away in the horrors of the most bloody and desolating war. The Hediterrancan Sea dill not secure the morthern shores of Africa from those terrible invasions. An immense horde of Yandals found their way thither and settled in those frnitfut countries. But their settlement.so far from taking a regular, consistent and pacific form, remained a perpetual scourge and accompliwhed the utter ruin of thase once opalent regions. Mankind in those umbapy times, seemed utterly lost to all mental improvennent as well as to all sense of hamanity. For several ages the whole buman race scarcely proluced one ornamont, or cond boast of me ilinstrions character to illumine the universal gloom, or to cast a partial beam of light through the intellectual chates: so far from it. What those days were spent in destroying the noblest works of art and genins. A diligent seareh was mate for the most valuable productions of antiepuity, mot to preserve and trasure up, but to demolish, io burn, and to destruy. Nor did barbarians alone pursue the work of destrtetion; the superstitions of the apmate Christian Chureh, in too many instances. lont their aid to that infermat work. In this cur. sury survey, it would be impossihle to notice the slight shatices of difference in the sithation of the me
merons provinces of tha laman rmprire dud as these times promberal ow historians, it world bw arFogance to attompt tel lell the renter what was

 pire of 'hine stond dirm in ita strength, havmer alrendy fourished for many agos. India and lorevia have bern subject to changer, divivions and revolu tions from time immonorial-asperally the formor:
 ans who ever wrote correctly the Persian history. I' was hut partially known brione, and hat beres far
 rople was only known be the incredible swarms off Darharians which issumf from it. and averwholman the vivilizal workl. of the hiestory of Arabia we whall senat have encasion the purak; and coneroming

 wholly ignorant, as also of the midile remions of Af ricol. The Ialand of fireat Iritain hay berin known in history since the timb of its compurent by Julias ('gesar. 'The Britons made a formidable resistane to his arms, and wore never hat partially compured. When the Roman compire fell, that ishand shared in the gromeral caltmitics. The British called over to therir aid the saxons, a mation from Girmany, to nos sist them against the fury of the lides and somes. by whom they were invaled. The saxome led hy llengist and llorsa, wo powerfol chiceftain- reatily oheyall the call, atad, worording to the finhion of the age come over in such mumbers, as bot only for re-
 the Britens themselves. They therefore solthed in the sombern part of the ishand, and at leneth erected themselver intos sacon betty but independent kingdoms, commonly called the saxon heptaredy. These were at length united into one government by Ege bert, whe, about the your soo, reigned over them ail and fommed the English monarehy. This hrings the English history to the close of the puriod which was to be the sulbjee of the presentarticle. Arabia forms the sonthwest corner of Dian. It is a tract of commtry considerably more than at thousamil miles epuare. and is peninsulated by the l'ersian (inlf on the anst. and the lied seat on the west of it. This great come try is supposed to have inen peopled originally by the family of Ishmad the son of Ahraham. (of lish mael it wis foretold, that he should be an archer, and that his hand should be amainst wery man, and essery man's hand arainst him. This predietion seems to have been fally accomplished in his posterity: The Arabe have ever beph cexellent horsemen and arelares, formidable with the bow and the lanceand they have been wilf men, and has dwelt in the desert. A singular circumstance in theiz history is, that they have never been compuered or subjugated hy any mation, althongh it has been attompted successively by the Chatiemons, the Persians, the Romans, and in late ages, by the 'Turks. In the beginning of the seventh century, atire broke ont in Arabin, when for a while, threatened to involve in its flames all Europe and Asia. It is remarked ly an able historian, as a womberful synchronism, that the very same year in which the Roman pontill was prodatimed unibersal hishop, Mahomet, the gramd impestor, forged the Alouran in a eave of Mocea. The usurpations of the Romish chureh were complete-thehent was at its full growth, and was then ready to berin his reinn. It would thence seem probalile, that the beast and the false prophet began and will end their career nearly logether.

It is at matter of doubs, whether the great exploits and astonishing clevation of some ment are to be set down to the account of their extraorimary naturad endowmernts, or to a farorable coincidence of erents in the world around them. Mahomet. from an oltseure parentage, birthandeducation, rose to a height, and with a rapidity, almost without a parallel. From the ocempation of a tradesman lie retired to a cave

 reation lae wrote tha keran ont the plate lemen uf




 their grand "pash, an we do the hirllo of (bri-t. The

 and, in a whoth lime, ull the meighboring comatrim. His religion sprond with his arms, and was conlorac. al wherever lace conturael.

 a very whort times, all the Wiat of $A$ inn, the morth of - frica, and the sonth of Europ) Were (exertum loy this dramelful imumbation; which, if powhible, way more samerninary and oxtorminating than that of the

 Martel, whe def(aned then with erreat chamerer near
 one diy. This hatere was forght in the year fast
Mathonet declated himerlf to he the fireplate of Gexd. sint inte) the world to conlightion and reform mankind : and that ho wasclothed with greater liyht annl powers than rither Noses or ("lotint. Ilis decetrincs and morality woro drawn from surla worerw as would best sutit the prejudices and ohtain rurrency tmong the mations whom he eompurem. 'They were cextractiol from the Jowishand Christian sierip)-tures-from oriental tralitions-from the legendary trash of the rablies, and inderd. from the inventive gronise of Mahomet himself, whese knowledere of mankind enabled him to foreson how they might eariest be led amd gevernced. He tanght the unity of (ioxl, and the uniwersality of his providence, or rath(er, in the strietestocense, the docerines of the fatalist
llis scheme of morality allowed the full indulgrone of the passions, being exactly sulted to the most depraved mind; and he somamaged the uffairs of a fulure state, that they conld have no intluenco in faver of virthe or in ojperition to vice.

It was not withont reason, that he relien on the matural disposition of mon for tha mhtimate succers of his duetrines, but his main arguments, for their propagation, were fire and sword.
The kingloms of Eurupre in general, as to their extent and boundaries, seem to have been parcedled out by accident, or more properly hy nature. Spain is markeri ont by occans and momians- france by octams, mountains, and river--(iermany and Italy in like manner. Is (arly as the period under consideration, someremote vestanes may lo. di-covered of the present European establishanemts. Early in the sixth century, Closis laid the fonmetation of the Fronch monarchy; at which time the rage of emigration by nations hatl gromeral!y sulsided, cither becmase the wilds of Europe hat pured forthatl their claring spiritso or lierause a general repletion of the southern provinces had remdered a kind of rethes necessary. No part of Europe hat oftener heen traversed and ramsacked than France: but as they fomd less plamer there, they generally pashed forward to ohber eomeries. The Frank at length mado a settlement there, after having driven ont and do troyed several condic mations, who had previnuly disjossessed the lomats and ancient Gaul. From the leramks the country is - 1 ppused to hatwo ontaineal the name of France. The Franks, after maintaining long and bloody ware with subecpucut invaders for sureral ages, nt lempht fombl themselves united ly a more regular form of governaneat under Clovis. who is reckemed the founder of the first dyansty of Frencla monarevis.
During the perion now before ble the face of Europe was changedas wo have already stated, by the Gothic :and saracen cruptions. The tirst cario of
these barbaroas invaders was to destroy and forever to obliterate the inhabitants, the institutions the mamers and customs of the commtries which they subulued. A far more difficult task than this was to maintain their acquisitions against subserguent invaders: for the north of Europe, like an mmense storehouse of mations, poured forth innumerable hordes, in rapid succession. These were equally hostile to each other, and knew nothing but to make war-to kill and ravage wherever they came. Whether it was owing, however, to the softening influmere of mild climates, combined with the seattered rays of science, humanity, and order which had escaped the overwhelming flood of darkness: or whether to the imperecptible influence of varions unknown canses upon individuals-the people in the south and west of Europe, instead of sinking into a savage state, began, in the sixth century, to assume a regular form of government, which, thongh bad in itself. yot, under the influence of a natural eourse of cansesultimately led on to the present state of Europe. The uorthern barbarians rentertained a high sense of freedom, and each of them considered himself as entitled to a liberal share of whatever his tribe should conquer. Eacls great chieftain, therefore, granted ont and divided the ronguered lands to the Jigh of ficers next himself, and they subdivided the same among the ir followers or vassals: under this express condition, that each man slonld do military service a rertain part of his time to his immediate lord, and that each lord or great vassal of the court shonldalso do military service to the Grand Chieftain or King. This division of property which prevailed in every part of Eurone, was grounded wholly on military policy: it became, in fact, the only organized sristem of defense for scveral centuries, and has obtained the name of the foudul system. This system of property, govermment, and war, although it must be regarded as a haply change from a direful plunge of the human species into amarcly. and all the degradations of a savage state, yet was radically defective and certainly conduced to protract the ages of darkness. Still, however, it left room for the slow operation of canses which would naturally eorrect, improve, and elevate the human mind; and which would at length originate other causes, far more effieient and rapid in rending the weil of darkness, and once more ushering tha mations into the light of science and civility. Those who would see this subject handled with great degance and perspicuity, may find it in the first volume of Pr. Robertson's Ilistory of Charles V. We shall here only observe that the exorbitant power of the middle noler was the grand defect of the feudal system. The great lords held the power of life and death over theirown subjects: and also the right of making war in their own defense. Of course, if with such an extent of prorogative, they confederated. they always outweigliet the king-if they were at wat with "ach other, which was often the ense, the King hat mon control over them, becanse it was impossible for him on raise or command :m army without their assist ance. On the one hand, therefore the hands of the monarels were tied : and, the other, the lowesi order were litte better than abject slaves to their inmediate governors. The feldal gevermments were at 10 great remose from tha very worst of wigarehies. The want of nower in the prince. and the fore of the mation so dividel, rembering them weak aganst invasion. This weakness was increased by the joalonsies and turbulener of the great loads, who frequently occasioned civil warsoblat length reduced theme to an sate of anardiy, from which they could only be recovered amd re-united by union, and a strong sernse of comman dancer.

In the midnt of the llurethatine waves of war, revolution, and anarely, the powerful genims of ("harlemaqne orected ancw (mpire in burone: which, for al moment hid fair to cont short the reign of darkness. and resestablish those institutions which improve ami
adorn socicty: His dominion comprehended tho fairest parts of Enrope; France, Germany and Italy. This event took place in the beginning of the ninth century. But as unthing can be more uninteresting than the sterile histories of the wars and revolutions of the dark ages, so, even what is known of the battles, the sieges, the victories, the conquest.. the elewation, and the grandeur of Charlemagne, will be little more improving to the reader of listory, than to tell him that Charlemagne was a soldier of fortune-that he fought bravely, and was generally victorions; in a word, that he established a huge empire, consisting of a heterogeneous mass of crule materials-incongruous, disjointed members, and which he governed for several years not by any regular phan of civil policy, which the bations were then as incapable of recciving as of organizing, but by a strong military arm, which he wielded with dexterity and success ; and that, when he expired, his empire fell into piecer. In justice, however, to this great monarch, it must be noticed that he was far from resembling the fierce, cruel, and barbaroms chieftains of the Goths or Saracens. Instead of deserving the title of Atrila, the semurge of Gort, ambl. the teromof men, he is jnstly celelmated for cultivating the arts of peace - for encouraging men of learning and wisdom, and for promoting various important civil institutions. Perbaps, but for him, Europe had still remaned under the cloud of Goblbic ignorance. He merits an honorable rank among those great and powerful minds, which evinced the possibility of checking the strong current of the times; and, conded he have lived and reigned for a century. he might have raised Europe from her degraded state. But time, and a long series of events, could only mature those seeds of order and virtue, which nuder his administration began to vegetate, but which, in a manner, disappearel with him, and left the world in still palpable darkness.

During the 283 years following the reign of Commodus, and up to the extinction of the Western Empire under Alugustulus, there is little else to contemplate luat the most deadly disorders, the most agonizing struggles, and the deepest and most ostensible decay. But an cmpire containing a hundred and twenty millions of people-founded in power, wealths and policy-sirengthened by every ansiliary of hus. man greatness-triumplaing over all enenies, ant? elevated almost beyond the reach of invasion, could only perish by the gradnal progress of internal disorder. The misfortumes of lRome sprung from her own hocom, and it can scarcely be said that she had enemies, till she lat formed and trained them to the arts of wat. In the 180 th year of the Christian era, Commolns ascembed the throne. No reign was more inanspicious than his, nor is the memory of any prince more dephy covered with infamy. He formed a perfect coutrast to his illustrious father, Marcus Aurrlius. It wonld be impossible in this compend to draw a charaster more black, detestable and depraved than that of Commondos. A detail of his vices would ecenpy more space than wr can allow to the whole subject of this article. Wr, can say but litthe more than that, during his repign, the administration of govermment was totally abandoned, and the mumerous prop)s of a falling ('mpire, which had existerl a century before this, were mow no more. At the seat of govermment there was nothing but lusury, riot and murder. In the provinces, extreme disorder, rapacity, misery and rewolt prevailed. On the frontiers, the burning of cities and the blowl of thousands marked the footsteps of invasion. In Italy, disalfedion, conspiracy, jealonsy, terror, detestation, revenere, fury and despair, surromed the thronefilled the cajpital-inspired every heart, and painted destmetion on every fare. In the army there was lieentionsness, nutrage, mutiny and desertion. 'Tlec soldiers, in multitades, forsook their standards, and in mumberess and fierec handiti, infosted the highways. The redress of wrongs and the recovery of
rights expired with ejvil justice ; and while the annpire folt those strones but vain stacerles, whicla were


 illustrious paredtacre gave ligh cexprotalions of ('onnmonhes, but his comluet serem hanisheal all forpats. Ha.


 matnity that the: name of so infamons at anomer
 ons roign produced calamitias to his comatry, ufter his vieres lamblest royeal him, and he was mon mere. Jle
 by his favorite mistress, than the chatere of the army aind somate clothed with the innorial purple. flatoo tion l'ertimax. He wats above (if) yents of ato hald served under the ilhastrions Andonines-and was al. ways noted cobually for bravery moi wivelom. He hait risen froma aprivale soldier, llarangh all the grades of military homor to that of tratorian prefere
 dom, which lie wis destined to woar and to grace only loner enomgh to demonstrite his morit, and to emroll his mame amosigst the most excollont of the Ramman lomperors.

11 the legrenerate Ramans diseovered their mistaku, in chevating to the throme a man whose administration whs uttorly repugnant to their wishes, hu andeln somer discovered his, in thinkinge it pussible (0) renosute the empire, now eromer rapidty into an irrecoverable doelone. The Roman armies. Which umber the Sopios had subthent Africa and Isis

 beromd the Eithtrates. were now the seorn and ridicule of the barbarimus. Plorough a total want of tharipline, all suborlination was host-ath military sparit; nothing remained but discord, sedition and ontmage. I'ottinax commanced antolministration vior orons, systematit: and comprehensive. The empire, Harough hor wide: regions felt his power, and suw and reverod the equity Hat marked all his movements. It was soon perepivel that I'rertimax wombl gim ta suppress those irregalaritios and resore the dise of line of thearmy to its ancient severity-that he would revive the institutions of civil justice, and retrieve the fallen dignity of the Roman namue. But alas! his noble intentions and exeeblent solsemes could not be elfeetanted by mortal prowess ; the mation was too fat gone-too dorply sunk in vice end laxary. The palace. the court, and the capital were lilled and surroumed with a swarm of ixarable villains, whom the viera of (ommonlus had remblered necessary - Whom his westaness had embondemed. and the corraption of the times had furnished in abumblbunce. 1 lis first care was to elisplace these-to exalt men to power whos were wotlly to rale, :ant io restrain and panisle the insoldence of the pretorian gramels.

The hatd just entered on this silutary but arifuons work, when lo was informed. one day, that at motiny was raising in the army. Hhe hail only time to walk lo the gate of his palace, wherb lue percoived al large body of sohliers raphlly advancing with ansry chathors and menacing imprecatinns. As they drew near, lae stood his groumd and with a firm dignitydemanded Hwir business. Withont making my reply. a Seythian soldior struek him dead at a blow. His head wins severed from his body and carricel on at pote to the ramp; where immedititely after the compire was olfered at publice sate to the highest hidder. It was bide of bive surdid wretch, who ansumed the purple, but who, in al fow days, suthered all the severitios of the fate of l'artinis. without any of the pity amd regret which will follow the memory of that great man to the latest posterity. It is a matter of resret that so litthe is knownof Purtinas, that sof fow eiremmstances have cscaped oblivion, whieh would
more rebarlv ehariate his private rharacher: and


 howevor, Hnlle in allewiny him (o) rank with tho:
 comery was grideal by juatio his atthority wat








 joycal a lobiger and more fortmater rojen. Lint what

 comeled from the lowest to tho fighous rank anomer
 smblen, that historians hate giverat hine the peronliur "ppellation of tha truniox hall of firtures.

Frem the death of I'erlinax lifl that of Augnalalus. Uue lise of the Roman Jimperors of the Wrat, wat 280 years, darine which time mo hres than fiftyoux
 notmes it is bot Hecessury io reerorl: ablal for an ateconnt of their vires (fror little mole is recorded
 of the declime of the Roman rompire ; on which gart of history, (iblobon is tho ablest amil mast elofitht
 deavors of that writer to sulswert (hristiamily, abld to substilute, no one knows what, in its place, are obvious to every reader: yot his morit as at writur comont be questioned: and althomgh his ophonition to Christianily betraved him imen many grossabsurdities shited to the remplexion of his projaticess yet his history of the derlime and fall of the Jomasn dintpire is one of the moblest of historicent prodnctions. So muth has been already said conerorning the declint of the Roman empire that the rentler may be surprised when he molerstands that it stoch upwards of 1wo centurits after this period. But that tompire conld only die a tingoringr doallo. West of it lay thas Athontic Ocean, south lay Afrien, which, sime the fall of (:arthure, was without pow゚or. (ast hy Asias, dissolved in laxury, always ready to lne conguered, as som ats attacked, and enslated as soon an iuvind. ed; and so far from subduing Rome that they were (even too (ffominate to maintain a form of governnemt over themsedves.

The barbarna- nations which lay moreth of the monpire were indeed mamerous and warlike; but they condl not subulue the Romans, till they had loarned of them the art of war. And tlu power of Ronle, umber the Emperars, hay chiedy in the nothern prote inces, where it was most nemede. Is we base ald reatly sain. sixteen or tweaty learions gendrally lay bordering on the lihine and inambe. "floe birban rians, in these times, were erentrally poorly clothed and fed, and lad few arms. as wedl as lithe knowlcalge of the art of war. Their invisions were like those of a hungry lion, when fierce appetite impels To rush on the point of the spear, in order 10 secize its prey; and their chief dilliculty was want of union. "Their tribes were composed of warlike tierce, ime J.thous spirits: but 2 hey were unselthed, barbarons: roving. independemt, and joalous of the power of their chinefs, as wedl ats tematious of the lonnor of their tribes. let the mations romposiner the northcral hive condal not but experiemet at gradend improvement. Their proximity lo a ervat and entightoncal people, with whon they were at perpetas! wartheir strengrin of body-ileir intellectual viror, and their ambibion to açuire those arts which las so long rendered the liomans invincible, must, in time. have producel their natural and ummoidahle effects. In the barbarian armies and countries tbere must
have been a multitude of Romans: mombers laving flel from justice, or indured to rove, from disgust at their own capricious and tyranical government would naturally seek an asytum in the wilds of Enrope, and among a more free and equitable perpla. Numbers being detained there would, at lengtly yield to meressity, and voluntarily remain in a land, whither they hat been dragred as eaptives, assimilating by degrees to its customs and habits.

The Gauls and Germans, from the period now before us, composed the strength of the Roman arnies; and great numbers of these nations, whom we shall indiscriminately call the Goths, and Vandals, and Ihns, were now aldmitted into the Roman service either as legionaries or ansiliarics. Some of them were promoted to the highest stationa, both civil and military, and even wore the imperial diadem and purple. Many of these, cither neverlad, or else lost all attachment to Rome; and rejoining their countrymen, carried and diffusad among them the arts of war. and alvantages of diseiplined valor. From the reign of Commodus to the extinction of the Western Empire, history presents one uniform scene of disorder, vice and misery. We have almost constantly before our eyes, a great cmpire going rapidly to destruction under the influence of bad government. A very few of the Emperors. however, Chring this dreary period, were both able statesmen and commanlers. Had it been their fortune to have arigned in happier times, and over a more virtuous jeople. their administrations would have done more important service to mankind. But their best measures and greatest exertions, seemed ouly to hatve the effect of medicines given to the sick after his disease has become incurable; they might a little procastinate, but could uot prevent the moment of tissolution. About the year of Christ 26a, the Emperor Valerian was taken prisoner by the Persians, when no less than thirty persons in varions parts of the empire assumed the imperial purple, with the titles of Cessar and Augustus: and each of then endeavored to support his claims and titles by the swort. There can be no stronger proof than this of the extreme wretchedness of those times. All was tumult. war, distrust, cruclty and the most bloody revolutions. But there are two eircumstances in the periol of history now before us, which merit the parlicular attention of the reader, viz. the entablislment of the Cliristian Religion throughout the empire, hy means of the conversion of the Emperor Constantini, surnamed the Great; and his removal of the seat of government from Rome to the ancient city of $13 y$ gantimm, which he rebuilt and called Coustantinople, or the City of ' 'maxtiontine. We havealready moticed the rapid pread of the Cliristian Religion. In the days of Constantine it had juenetrated almost wery part of the empire. No sooner, therefore, did that prinece declare in faver of it, than it became the religion of the court, the eapital, and som of the empire itself. 'This was truly an amazing change, and forms one of the most memorable aras in exedesiastical history; a meek and humble religion unknown to the work, or if known, despised and persecuted. set on foot by a few olsecure persons in ludea, and propatented only by the foree of rational eonviction. spreat and prevaled against all opposition werbarnod the altars and sildoced the oracles of the heathen; and at last, through hosts of prejudiees forlifeed by intiquits, and sandiond by universal onstom, mathe its wiy to the throne of the (bisars. It was like a "stone cut out of a mountain withont hands, incoming a great momentain and tilliag the whole rarth." There are varions aceromes eiven, and varions opinions formed, cone raing the conversion of Constantime. Whether his mind was swayed ly the power of trull, or hy temporal, political and interested motives, is mot asy to determine. It is related and believed hy some that his ronversion was mirarolons. They say that he saw in the hemans the sign of the eross, with this instription in rat
diant letters, By this rompure, and that upon this he immetlately embracul Cliristianity. His life and conduct were by no means eminent for christian virtue, nor was he wholly free from crimes of the decepest die.

From this period the Christian Church was loanded with honor, wealth and power: nor did her virtues ever sustain a severer trial. The chief dignitaries of the empire conld scarcely duless than imitate their master, and Christianity suon became a necessary qualification for public otlice. The chureh now no longer appeared in her andent simplicity amd parity; lords and princes were among her emverts, and she was dresset in robes of state. Her eeremonises were increasicl-her forms of worship were loalded with pomp and plendor-her doctrines were intermingled with the senseless jargon of a philosophy equally absurd and vain; and the way seemed prepared, not only for the decay of Cluristian doctrine and morality, but of every science which distingnisle's civilized from savage nations. After various wars and competitions. Constantine, in the year of Christ. 320. became sole master of the Roman empire. Hle cartainly did whatever could be done, by an accomplished General and statesman, towards restoring the empire to its ancient glory. But, alas! he did not reign owr the ancient Rumans. His people had been often defeated, lumbled, cosslaved. and trampled in the dust. The true Roman spirit was loner since utterly extinguished; amd, as we had occasion to ouserve. Italy itself was filled with a mighty hetorogeneous mass of population, of no fixed charaeter. His strong genius for a moment sustainerd, but could not ultimately salve, the falling fabric. The ambition of Constantine gave a more fatal blow to the Roman empire than even the vices of Commodus. To secure to himself a glory equal with that of Romulus, he formed the resolution of changing the seat of empire. The place mpon which he pitched as a new ("aljital, and which should immortalize his name was indeed well chosen. The ancient city of Byzantimm enjoyd the finest port in the world, on the straits of liosphorns, which communicate with those inland seas, whose shores are formed by the most opulent and delightful countries in Europe and Asia. Thither Constantine cansed the wealth of the empire to be conveyed, and directly a new and splemidid city arose wbicll was able to rival aneient Rome. That prond capital, so long the mistress of empire suddenly became but a satellite, and was forsaken by honor, walth, and glory: since the Emperor, and all who were devoled to his imerest, used every possible means to exalt the now seat of empire.
This wound was deatly and incurable. It proved fatal not only to one eity, but to the western empire. Rome was itherly ahamoned by Constantine. nor was it much alleviated undur his suceessors, among whom a permanent divition of the empire taking phece. Rome and ltaly fell under the government of a series of weak, miserable, short-lived tyrants who rose hy conspiracy and foll by murder in rapid succession; till, in the 4igth -ywar of the Christian Era, Augustulus, the last of the Roman Emperors, wats conchered and dethroued hy Ohacer. King of the Heruli, who. at the herd if an immensarmy of barbarians, overran all laty, and put a prrion to the western "mpire. Thus anded home, iffer having
 of her duration, ber chasactor, :mel the nature and axtent of luer resources, we shatl not hesitite to pronome her the most powerful and important city which "rer wistem, and ass standing at the head of the first ramk of citios. But if this remark is true of Rome in the times of which we are now speaking, it will serve to awaken our admirntion. When we consider that Rome survived even this shock: and, as though destincel to hear rulde, from hemer the heal of a pewerfol cmpire, she sorn berame the hat of an
 hor wing over all 巨hrope.


Liompu.

ROMPU. - [n |horadery, a |rrin al!-
 part is lakratolf, atme remmins above it in the fireld.

RONCONE. "Tho Hame givall by sombe tulhors 10 thor rumenfo at kiml of patlizan.




 thronerh

RONDEL. In forsification, a romat lowir. somm timus rerretol at thr forot of at hasithm.

KONDELLE - I small round Alid! whidl was formorly used ing light-armool inlontry. It wasalmot
 l'ikuman who carriad tho mondelle.

RONFLEURS. F'redlorick Ilw: (irnat, apjlial this





ROOKER AMBULANCE SADDLE - In ordinary cavalry saldlle, faving ant attaclamont fomsisting of two nopight birs cont and hinged in the mililles a




(o) le more or less inclined, to suit the rider. Whon the: unfight bars are paced in the canvas, they need

not again he taken out, but may be foldal at the l:ingres. and, with the straps inside, may be rolled
into : (9)



Whan jnlowelol lo low nseal it maty be thas adt

 krys in the lower rints of 1 low oprighta in tha eyo.



 tirat burkled the lewne miaplas in fremt of the formanel; thern hy the mithtles


 form or arraneromednt of this contrivanco is mbown


 mombur of artioloos at soldior latio torarry.
 fibres, and diflar omly frome iwine in their mosels

 manilat homit, matle froma flo loaf-atalker of mave tertilis, are also "mployed. Ispercially for tho lareo


 The spineser hats a large bomollo of the fibre loosely Eathereal aromml his waish. from whirh ho full wht a fe.w tibres, und attuchas themen to a lomek itn the thrning-whece or whirl, which is shatmoney, and is worked lyy an asistant. Experionere tearlan him what anmber of fibres to (lraw out, and loow ta twist them so is to hold tirmly on to the lorok. Jle then walks slowly latckwitd down the roleseround, gradually drawing out or roipulating tho pulling Ont of tha filfers so as to make an "quad yarn. Which Trorivesthe nerosiry twist fronn the whirl. Whorn he has grot to the end of the walk, another phinner takesthe yarn from the loook of the whirl, and tiven it to a reed, which is then sed in motion, athal ho attachas at seromb portion of lump Irom his own supply to the look, and procerets down there walk as the previons one hith done. In the montime. the first spimner graluslly walks mj) the gronmd, (are fully gruiding his longth of yarn as it is wound on the reet. When lue reaches the reed it stopere and he watis until the serembleminners length is conngleted. If e then in his thrn takes it off the hook. and twiolm it on to ints own: and tha* reed beiner again started. reserves the additionall largh from the second matn. and sa on until the full denith repuired is mithe mp. 'I'lu next operation is called rarging, and comsints in stretching out the mumber of varns requiried for a rope. Thase are all slighty twisted again mbaratdy, and streteled to an ritual length. Than. if they are intented for tarred robes, each yarn is drawn separately, eithor bebethwise or in a hank. through a kettle of hot tar. The sujurflnoms tar is removed hy drawing it thromgla aldele lined with oakum. In the uext process. ealled laying. iwo on more yarns are attached so books on a whirl. so that when it is turned they will be twisted together the contrary way of the original twist thes received in the first spimning. When this is done it is called at strand. Then as many of thases -atimls as are raquired for the rope arestrequed at full length, and are attacherd at cache cad to whirls, One of tha whirhs las but one homk, to which all the etrands are attached : the wther has as many hooks as there are strands.one alwass being central, aml al strand is attarched to it. The whirls are the m put in motion. but in opposite directions. and this eatuses the outer strands to be latal with erveat regularity and firmmoss around the central ont. Such is the ordinary pro-
 rented whichprotuce ropes with such matheamatical
precision that the strengll of the rope may he calculated with great rexathess. Captain Huddart has the merit of effecting these improvements; and very few applications of mechanism are more beattiful in their details than those which he has worked ont. They, however, do not alter the principle of the manuficture. Within the last few years a ureat improvemont has been patented by Mr. Edward Sung of Edinburgh, and is now in protitable use in the large establixhment of the Edinburgh and Lejth Ropery Company. It eonsists of a machine which spins the yarn from material supplied as before by hamd, but it does away with the long walk, and cain be used in a small room.

Large ropes are cithrr what is called cable-luid or haurser-luit. The former consists of three large strunds, each mate up of three smaller strands, A (able-laid rope of eigint inches circumference ismade up in this way of nine strands, , wach containing 37 original yarns, or altogether 333 yarns. A lawserlaid rope consists of only three strands, each containing a sufficient number of yarns to make up) the recgnired thickness. The nimerous lives and the vast property depending on the efficiency of the ropes employed in shipuing have caused a great amount of ingenuity and care to be brought to bear on the manufacture. One very great improvement of modern times has been the introduction of wire ropes, which are now extensively used in rigging ships, and for other purposes. They are generally made of iron wire, sometimes but not always galvanized. The twisting is effected in the same way as that in whiel the strands of a hempen rope are laid together.
The following toble shows the weight which manila rope in daily use will sustain, simply and when rove in tackles. Hemp rope is about one-third stronger. Due allowance has been made for loss of strength by wear and tear. Look for the weight to be raised, or the next larger, in the cohmon headed with the number of sheaves in the purchase of tackle. The cirenmference of the rope reguired will be found on the same line in the left-haml colmmn.

	Smile.	Number of Sheaves in Purchase.				
		:3		$\cdots$	6	7
	540	1,080	1,350	1,48	1.620	1,455
11	S44	1,648	2,110	2,321	2.532	2.743
	1,215	$\because, 430$	3,0:38	3,342	3.645	3,949
13	1, (6) 4	3,308	4,135	4.559	4.962	5.376
	2.160	1.320	5,400	5.940	(6,4ヶ6)	7,020
2	2,734	5,468	5,835	6,519	8,202	8,886
	3,3\%5	(6,550	8,438	9,282	10,125	10,969
	$4,0 \times 4$	8,168	10,210	11,231	12兄:	13,2\%3
	4,860	9,720	12.150	13.365	14.540	15,795
: 1	5, 304	11,408	14,260	15.6885	17112	18,538
\%	6,415	12,830	16,048	17.658	19,245	20,854
3	7,594	15.188	18,985	20, $8 \times 4$	- 22, $¢ \times$	24,681
	$8,(2+4)$	17.280	21,600	2:3,760	25, $2 \times 0$	28,080
	9, 753	1:,516	24,3933	215,831	29,259	$31,69 \%$
	10.933	21,870	27,388	30.072	32, 395	35.503
$4{ }^{1}$.	12.184	24,3188	30.460	33,50f	34,552	3! ,5,98
	13,5010	27,000	33.750	37,125	40,500	$48.85 \%$
	14, $4 \times 1$	2: 21.16	37,210	40,931	44,659	45.373
	16,33,	32, 6i\%	+1,888	45.128	49,00\%	53, 08:
	17,054	35, 3008	41,885	49,373	53,462	20,350
	18,2-2	: 3,504	45, $6: 30$	50.119	55,756	6;0.31:
	19,805	39.6110	49.513	54,465	59,415	64,365
42	21,42]	12,812	53.5153	58.308	84, 313	69.618
$8{ }^{3}$	23,100	(16, 2010	57,950	(33.725	69, 360	75.075
	24, M.13	4!,786	62, 208	(14.418	4,54!	80, 740
	$32,44 \times$	1,4, $8: 9$	81,120	8! 1.20	1	10.5, 104

will bear withumt breaking, multiply the square of the circumfercnue by the tainitar number.


For ropes in durly use, the unit should be diminished one-third to meet the reduction instrength by wear and exposure. A safe general rule for all ropes is this: One-fourth the strure of the circumference gives the breaking weight in tons of 2000 lbs . When using tackles, multiply the weight thus found by one-half the number of sheaves in the blocks. Straps are applied by passing them around the object, putting one bight through the other, and hooking to this: or after putting it throngh, wimbing all ihe strap around the rope or spar, and hooking to both bights.
Ropes slould be placed in the upper stories of buiddings, coiled up and labeled : large ropes on skids, allowing lree circulation of air : small ropes hung up to the joists. on pins or liooks. Ropes shonld not be eniled until perfectly dry; they should be uncoiled every year. and stretched nut for several days in the dry seasm. Ropes long in store lose their strength. See Blochs, (oordag :ind Tackis.
ROSARD SYSTEM OF FORTIFICATION.- la this system, the bastions and ravelins are retrenched, and the flanks are formed of good casemates, which sefure the defense of the main diteh. The tenaillons and comntel-gnards, however do not sufficiently cover the bastion and ravelin. The first covered-way has retrenched places of arms, and the second is defended by lunettes, which communicate with the place by means of galleries. The great defect of the syon tem is the possibility of reaching the enceinte from the eovered-way of the ravelin.

ROSE.-The heraddic rose is drawn in a conventional form, as in the drawing, and never with a stalk. except when expressly directed by the words of blazon. Being sometimes argent ind sometimes: gules, it camnot be designated jroper: lut when blazoned "barbed and seeded proper," it is meant that the harbs are to be green, and the seeds gold or yellow. The rose gules was the badge of the Plantagenets of the louse of Lancaster, and the rose argent of that of York. The York rose was sometimes surrounded with rays as of the sun, termed rose in soleil. Is a mark of cadency, the rose has heen used as the difference of the seventh son.

ROSE ENGINE. - $A$ peenliar kind of turning lathe having special chucks for the production of those patterns of eurved lines called ly the Freneh ravettos. from the slight risemblance which they bear to : full-hown rose, ant hewe the term roseetugine. The rose-engine lathe difiers from the eommon lathe in this, that the center of the circle in which the work revolves is not it tixetl peint, but is made to oscifllate with a slight motion while the work is rewotving upon it, the tool being all the time stationary, and hemee the figure will he "out of rombl," as the turners call it, or will deviate from the circular ligure ats much and as often as the motion is given to the cen1 ( r .
HOSETTES. TWo small lmuches of ribhons, that were attached to the locups hy whirh the gorget of an ollieer was suspembed on his chest.

ROSIN. An rxulation from treas bedonging tothe ("onifurn or lirtribe, amel the resinlare left in the still, uftur the oil or spirit of turpontinu las bowndisuillerl. It is very combumible, and is used in light-ball and chrtass immunsition.
ROSS SCHINDER. - - I mano grivern io foot-soldiars whon wrere in the hahit of using tha ? fismome or glatergiverome to hamsintine the knighas hersurs.

HOSTER ROLLSTER. A Ifxiol artlor preamered in militury departuments as the romation in whirh indi-
 sarve. In Vmelamd. reximonts proceral an foreign


 of sorviac: shomble be by rostor, bul ohlorers or athlisterl men, when iletaileal, most sorve whether rose tor lue kopt or hos having purformed the survire. they may aproal tosumerior mathority if they de.ons




 any lar dectailad for duties of the dirmt and mercond


 sergeants, corjurnts, ami privatos formatistinct ros.
 iners take thaties of the tirst colanis in the orelur stated, vi\%, the: tirst, for the dernil, tukos the: gramel ganede: the mext, the inturjor grarels: the: last, the pulie es

 third elass, the surnior othirer takom the larerot jarty. 'Tho party tirst for rlotail takes the sorviure ont (if (matip).

When the ohlicer whose torer it is, is not nble ter take il. or is mot prosent at the hour of marrohing,




Rotiry lbriture ('rane.

1st, ermal guards aml ontposis: : 2d. intorior gaturds. as of magazine, hospital, cte: : Bl. orderlios: tho.
 tarlaments to protect laborers on military works. as field-works, commmaications, elc.: Dd, working parties on such works: $\mathrm{B}_{\mathrm{d}}$. detadmments to protect fitt-
 Martial, amelall fistintes, without arms, in or out of
 separate roster, and conme hofore fatigue.

The rosters are distinct for end chas. Oblicers are namod on them it the order of rank. The detaths are taken in surcession in the order of the roster, berimime at the bead. Liontenants form bue roster, and lst and sd lidedtuants are ontered on it alfernately. The subior 1st hientemant is the tir-t ont the roster: the senior $\mathrm{D}_{\mathrm{l}} \mathrm{l}$ lidutenant is the serond. eto. Tha' Captains form one roster, and ire exempt

ed its post. the allioer whose tour it was atament then take it. He takes the porr of the ollierer who has takion his. Whan an whicer is prevemted ly sickmas from taking his tome. De becomes tirst for datait on being restored induty the eremeral rale heoner that the ofticer longest ott duty is the tiret for detail. These
 soleliers. "Duties of the first and seconel classes are credited on ther roster when the grnarts or detach. ments hate passed the (latin of semtinels, or an interior inuard has reatehed its pros: fatierme dution when the partices have pasacal the chain or lectun the dhties in ramp. Fviry ofliotr non-commissinned otlicer. or soldier, on duly of the fir-t class, ur who is of the nust detail for sutill duty, latkes, when acelieverl. the daty of the secomel or third elasis that has fallen to him during that time. umles- he has marched for detathment of more than twenty-fonr hours.
ROSTHORN GUN METAL.- iv alloy composed of
55.04 parts eopper : 42.36 zine: 1.77 iron ; amb 0.83 tin: or, according to another analysis, 57.6:3 copper: 40.22 tin ; 1.86 iron: and 0.15 tin.

ROTARY BRIDGE CRANE.-A novel form of rotary crine possessing many advantages for certain kinds of work in fombries. It consists of a mast and jib, as in an ordinary jib crane, but is provided with a circular overluead track carrying the outcr cod of the jil), or the rotary bridge, so that the latter may easily have a much greater length than the jib of an ordinary jib crane, and so that all diagonal braces are dispensed with and the entire space muder the bridge left unobstructed. Cranes of this construction are luilt of capacities from 3 to 12 tons for opfration by hand, and of any desired capacity for operation by power.

The engraving on page Tsi shows the mamer of its arrangement. The frame consists of wrought-iron

Cranes of this type ean be adapted to heavy amt light work of all kinds, especially in foundries, erieting shops, etc. When arranged for operation by power their capacity can be indefinitely extentui. They are particularly applicable to existing buildings the shape of which thoes not adapt them to the application of traveling-cranes, and in whicll the construction does not aderpately provide for the strains which would result from the use of the jib cranes. See Bridge Crane, C'ranes, and Jib Crane.

ROTARY PLANING-MACHINE.-This time and labor-saving machine, so constantly employed in the armory, is a comparatively reent invention. Its construction, and method of attachment and operation, are easily understood after an examination of the drawing herewith, representing the inachine as mate by Messrs. Manning, Maxwell \& Moore, New Tork. 'The machine is especially adapted to facing

channel beams, the mast and the bridge each beiner composed of $t$ wo such channel irons. The oprrating mechanism, for the operation by hand, is contained wholly within the two housings at the foot of the mast, and its construction and actionare identical with those of the jibcrane, to which a reference is made for further particulars. The same mochanism is also utilized for hoisting and lowering at several speeds, and for causing trivel of the trolley in either direction upon the bridge. Rotation is effected by simply pushing or pulling the suspended load, "xcept in cranes of lares size, which are provided with a power mechanism for this purpose. The construction of the upper bearing of the crane, by which the head of the mast is carried, is such as to avoid any severe lateral strains upon the roof, the weight being carried, at one end of the britge, by the mast, and at the other by the circular track which is supported from the ground by suitable posts.

This type of crane allords all the convenienees ot the ordinary jib crane, while avoiding the limitalion in the vertieal movement of the load imposed by the diagomal hraces of the later. It also avoids the savore lateral strains upon the building which result from the use of jib cranes. and thus dispenses with the houvy walls or bracing necessary, where jib crance are employed, fo alford the proper support of the upper cud of the mast of such cranes. The poate supporting the circnlar track can easily lue so placed is to canse little if iny obstruction ubon the floor, or, if the roof le stiff abourla, the track may be homer dirnetly from it willout resorting to special posts. The bridge, being smphorterl at boils ends, can eortvenimenty have mach wrater span than the jib of a jil crane, the outer end of whidh is neceessarily overhung. With rotary bridge crames of ordinary ("ipacity a span of 50 feet is entirely feasible, and in this way the crame can be made to cover a circular lloner 100 frect in diameter.
off valve seats, ete. It has two horizontal dises, the upper secured by radial arms, adjusted to suit the position of the studs in the valve seat; the Iower, carrying the cutter and its slide, revolves freely against the upper, and is brdd in its place by a king bolt passing through its center. "This lower plate is also secured by a circular gibupon its circumference, which admits of taking up the wear. It is an annular gear, haring teeth cut on its inner periphery, from which it receives its rotary motion by means of its connection with the bevel gear and crank. The crank may be replaced by a pulley if power be convenient. The donble bevel shaft acts like a back gear and admits of a change of speed. Either bevel is thrown into gear at pleasure by the morement of a pin in a slot operated by the hand wheel. If the outer bevel is in action, it gears directly into the lower plate; if the inner bevel, it is slow geared to the onter, and that to the plate. The revolving lower plate is fitted with a $V$ slide and the tool post. and is fed by a serew and star wheel, arranged to give a large variation in the feed, from roughing to finisling, ete. The cutter is conveniently fed down by the opxation of a nut on the cuttor spindle acting against the tool post. The radial arms which secur" this machine to the studs are so finished with slots as to give a wide ramge of adjusiment. The nuts and their boarings, in the washers which jam the radial arms, are curved to atmit of their being firmly scoured without springine the machine, even thourh the studs shombl be a little nut of lime. Ta case the stud holes in amall valves seat shombl comme inside the plates, four other radial arms are furnished with the machine, fitterl with a TV slon, and with a hole at the other end eorresponding to the lole for the oble shad, thus atlording facilities for extreme cases.

The points clamed for this lool are the great sat ving in time amt labor over old metluds; also at saving in liles, and the fact that the jols may be done
necurately, an the plates may lese set trine with the
 the new face will he likewine raw. It is reatily seme that the work dene in caterly in line whth the iravel of the valve stem, therehy fireventing the yoke from Blipping aj and down the valve, as wedl ats all "xara friction on the walve storn. No nuere material meel be romoved than is ahmalutely moressary to traw ap, thas saving tha: satat. 'The work is don' hy a comatin-
 of the ordimary planor avoidet. "1herer is aloos no hreaking on of the ratere. Thar ming elatmed ly the makeres ower the ofld meflexts is frem 75 to sio
 used. After the ment is planed, the marhane wan be lifted off and placed on a table which is suppliacl with stationary adjustine colnmos ared wher for londiner the valve, when the veler is phaned. In many instances, when the work is done in romml homese, the table is cescential to a more perfect amp satisfac: tory joh. It is ratimated that an ordinary lecomortive value seat can be thoromply trued nip in twa lumes. 'These marhinwsere strong and well fithod In), are easily handled.and will be found an exerellemt tool in every respert. 'They are principally made in three sizes, 1s, 22. and 26 inclus.
The following drawing represema a machine sporrially designed for faring plan surfaces, in iron work, where large mombere of piecesof the same kind are used; on this class of work it is withent doult

 tromes, he wenld be at reat relative to dae earth's








 Hat it dexs not, and the weper rompiote in triating as all ahsoluto rotation, ar rotation manarain relation to a linc- lhat joining the warth and mosen- which in itself turning. If we take the juterval- of ther ands "ronsing tha" meridian, we timl 21 hourn-a manch Cleser apporeximation: hat still mot exact berames our line of referonce-that jomine tha carth and man -is slowly lurning. Wimild we have un abselute
 ly fixed that its motion will he athonlat?ly inw milhe. such is the line joining any fixed star with the wirth.

 mations of the same tixed star. The difference laciween abolate and relative rotation in any phanet gives rise to the differenes betwern thexidieral and the selur day: amd the phanct's yrar contains juat one more of the former than of the latter. Now,

guperior to any reciprocating planer that can be made: in many eases the finished work (am ber removed and replaced by mew work while the machine is still facing at ine opposite ead. There are 28 cutters, in the 2 -inch. machine shown, sedured in a herave phate whed, banded with wranght iten. and driven by worm and worm-whed: this plate whed has a heary steel spindle, and is rarried in a traveling head on the beol plate, the work remaining stationary. It has an antomatie variable feed. and the heait is moved back ly an independent countershaft. This mathine will face al surface 25 inches high and 11 feed long. 'The 18-inch machine hat 22 entlers, and will face a surfare 18 inches high amd of feet lomer. The 82 -inelt machone has 3 ti cutters, and will face a surface $3: 2$ inches hirh and 14 feet long. The woights of the mathines are 18500, 8000, and 1!020 pounds respectively.
ROTATION. - There is. perlaps, no elememary inder Which has been the suljeet of so mueh popmar misconception as that of rotation. 'This is prolably das to the varnemess of the detinitions commonly riven. All motion that we cem onsures is relative; for instance, any fixed ohjert on the carth's surface has an cortain motion metation to the earbh's axis. in comsefuence of the dimmal rotation: the bartly itsedf has a certain motion refative to the sun, in comserpucuce of its ammal revolutuon: the sum has a certain motion relatire to the so-called tixed stars; and it is possible that the whole stellar system may have a mothon epatiee to something in space beyomd its boumbaries. Now, the motion of an oliject on the earth's surface differs according to the way it is measinect: a passenger sitting in a railway carriage is at rest if his motion relutive to the carriage be conaidered: he has the same motion as the earriare if it be measured relation to the raila; and if the car-
suppose for a moment that the rarth were to
 would he ine sidereal day in the yoar and there would be $n$ solar day at all-in ofiner words, there would be no rotation of the earth with reference io the line joining it with the sum: that is, the carth, would hirn always the same site to the sum : yet it would loe absolutrly rotating aboul its axis omee in a year. This is the case which we chocrow in the mon's motion relative for the earth, amb we ser at once that the moom must rutate ahserolute ly-that is, with reference to fixed directions in space-in the exact time in whel she rompletes one revolation ahout the carth. Those whon say the mon donesme rotuto on her axis make precisely the same mi-sake as those who fancied that the earth is immewable, and that moom, sun, and stars revolue about it every day. There is a physichl mase for this peomerity in the monnes motion, whichleads te wery important conserguene with referemee to the future of the solar sysitum.
several dementary thenrems regarding rotation may now be enume iated : lout the pronfsethough wery simple, will be given morely in outline. Any dis. plarement arhateter given to a plane digure in its uwn
 equivalent io ia singrec rotution ahout : definite axis. let 1 . B he any two pointe of the figure and let them be displaced to $\mathbf{A}^{\prime}$. $13^{\circ}$ respertively. Inin AA
 moding in (). Then, it is easy in show that (1.)
 point of the plane figure in its first amel second pesitions. (2.) $\mathrm{AOA}^{\prime}=13013^{\circ}$; and this is therefore the angle through which the whole had furned about the print (). If A. ${ }^{\prime}$ 'and [3I3 are parallel, this construction fails; but in this case, if A13 and A'B' do
not intersect, the motion is simply one of translation: if they do intersect, the point of intersection is the axis. Any nomber of successive rotations about dif ferent points constitute, of course, a displacement,

and are therefore reducible to one rotation. Two equal and opposite rotations abont different points give rise to a mere translation. The first two of these propositions are true of tigures on a sphere as well as on a plane surface; for the figure above has only to be drawn with great circles instead of straight lines, and the proof applies letter for letter. only, lere, the first ease of exception eannot occur because two great circles munt intersect. Hence it follows that if the center of a sphere be fixed, any displacement whatever is equivalent to a rotation ahout some axis; that is, after any motion whatever of a rigid body, one point of which is fixerl, there is always one line of particles which remains undisturbed. Hence rotations about any mumber of axes passing through the same fixed point may be compounded into one; and generally, any motion whatever of a rigid boty may be decomposed into two, one of which is a motion of translation of some chosen point, and the other rotation ahout some axis through that point. Thms, in the case of the moon, we have a motion of translation of its center in its orbit, and one of rotation about its axis; or we may combine them into a single rotation in the period of a lunar month about a fisedaxis passing through the earth's center. Again. any"displacement of a plane figure in its plane, or of a spherical figure on a sphere, may be produced by the rolling of a curve fixed in the figure upon another fixed on the plane or sphere. Ilence, the most general motion of a body with refermee to one point, consists in the rolling of a cone fixed in the body upon another fixed in space, their vertices being at the chasen point. To this, when the cones in tuacstion are right circular cones, betong the precessum and mutution of the carth and of at top). the evolutions of an ill-thrown guoit, ete. See liotation of Projectiles.
ROTATION OF PROJECTILES.--The principal caluse of the thevation of a projectike is its rotation eombined with the resistance of the air. It is proposed, in the first place, to slow how rotation may be produced, and in the second, to show how rotation combined with the resistance of the air, produces deviation.

If the projectile be splerical and homogeneons. rotation is produced by the bounding or balloting of the ball in the loore, arising from the windage. In this rase the axis of rotatisu is horizontal, ant passes through the eenter of the ball; the direstion of rolation elepents on the side of the projectike Which strikes the surface of the hore last, if it strike on the upper sible, the front surface of the projectile will movernpard ; if on the lower sithe, this surface will tuste downwart. The velocity of rotation from this caluse depernds on the windige or depth of the indemations in the hore, the charge being the same. It has bern found to be, for ordinary wime. age about 30 feet for a 24 pelr. Shell tirect with $2 \frac{1}{3}$ the of powethr.

If from the strueture of the hall, or from some dafred of mamatacture, the center of gravity do not wincide with the "rolter of tigures rotation isencrally takes plaw around the emter of gravity. This arises
from the fact that the resultant of the charge acts at the center of figure, while inertia, or resistance to motion, acts at the center of gravity, and is perpendicular to a plane containing the resultant of the charge and the centers of figure and gravity. For the same charge, the velocity of rotation is proportional to the lever arm, or perpendicular. let fall from the center of gravity to the resultant of the charge knowing the position of the center of gravity of the ball in the bore, it is easy to foretell the firection and velocity of rotation. In general terms, the front surface of the projectile moves toward the side of the bore on which the center of gravity is situated, and the velocity of rotatiou is greattist when the line joining the centers of gravity and figure is nerpendicnlar to the axis of the bore.

The effect of rotation in producing deviation of projectiles may be studied noder two heads: Ist. When the projectile is spherical and concentric. 2d. When it is splerical and eccentric.

The simplest case is that of a homogeneous splecical projectik, rotatiug aronnd a vertical axis passmg through the center of gravity.

Let $-1 B r^{\prime} D$, in Fig. 1, represent the great circle cut out of the sphere perpendicular to the aris of


Fig. 1.
rotation, and suppose rotation to take place in the direction $A C B$ and the motion of translation in the direction $A B$; it is evident that each point of the circle moves in the direction $-\lambda B$, with a velocity which is equal to the velocity of translation, plus or minus the component of its velocity of rotation in the direction of the axis $A B$, which is equal to the projection of the arc over which the priut moves in a unit of time on the tine $A B$. The points $O$ and 1) have the greatest velocity in the direction of this line, $A B$, and the points $A$ ant $B$ the least. All the points in the semi-cirele $1 C B$ rotate in a forward direction, and the components of their relocities of rotation must be added to that of translation; white the points in the semi-circle ( 11 I I move backward in rotation, and the components of their velocities must be subtracted from it. A body moving in the air draws with it a film of the particles which surround it, and these particles set jn motion the adjacent particles, and so on from one layer to another: the number of particles set in motion and their reaction on the surface of the projectile, depend on the velocity of the moving surface; now it has been shown that the surface if $r^{\prime} B$ mores with it greater velority than the opposite side, the reaction, or pressure ujon it, nust be greater than npon the latter, and the projectile will be urged in the direction ('I).

In leig. 2, let I (") l) represent the great circle cut ont of an eccentric projectile perpendicular to


Fis. .
the axis of rotation, and containing the eenter of figure ( $)$, and the center of gravity ( ${ }^{\prime}$. Suppose the
motions of rotation mad transiation to take funce as in thr precerling catse, it follows that the sinhe rathes will operate in this, as in 1 lo proveding atme, to deviate the projuctile in the direstion (' //; but there is another and more jowarfal canse opratine to deviate the projectile int the same rlisections, and that is, the greator pressure on the side d $/$ /f urising from the greater surface offered to lhe air in consequence of the erocont rioity. Thess plemomernataty be easily illostrated by the vary simple and ingonions apparatus dovimed by l'rof. Dagmas, of Jorlia. dat
 catcely suspendenl in a ringe and made to revolve very rapidly aromad its vertiond axic, ly moans of at


Fige s.
string, after the manner of a ton; let this rine the suspernted at the extremily of a wooten lever $/ f^{\prime}$, Which, in turn, is suspronded by it delicate wire from the reiliner, so that it may rotnte frody in a horizontal direction: let $I$ be a rounterpoise, and $/$ the direction of atroner courrent of air blowine ubon the cylinder from it fan-blower. It is invariably fonnd, that the axis of the cylimder will move in the opposite direction from the sike which is moving toward the current of air from the blower (see dirnetion of the arrows); hut if there be no sotation of the cylinder the axis will rematin sationary.

The following conclusions are obvious:-If arojectile be splerical anti concentrie, rotation takes place from contact with the surface of the bore around a horizontal axis, and the coleret will be to shorten or lengthen the ranere, as the motion of the front surface is downward or apward.

If the projectile be cecontric, the motion of the eront surface is gencrally toward the side on which the conter of gravity is situated, amd the deviation takes place in this direction.

The extent of the deviation for the same charge, depends on the position of the center of sravity; the horizontal deviation heing the greatest when the centers of gravity and figure are in a horizontal plane, and the line whicll joins them is at right angles to the axis of the piece: the vertionl devistion will be the greatest when these conters are in a vertical plane, and when the line which joins them is at right angles to the axis of the piece. If the axis of rotation coincide with the langent to the trajeefory throughont the dight, atl points of the surface have the same velocity in the direction of the motion of translation, and there will be no ひleviation. This explains why it is that a riffe-projectile will mose through the air more accurately than it jrojeetile from it smooth-bored grum. See lhe tiotion. Initint Belocity of Rotation, Joutution, and lilority of line uetion.

ROTTBERG SYSTEM OF FORTIFICATION.-Jhis enceinte consists of a lult of ixolitted forts and colvaliers, the rampart of whirla is casemated. I case mated wall, situated in the diteh at the saliont of the bastion arljoining the cavalier, serves to llank that work. The exterior fronts of the forts are coveret by a couvre-face formed of a tomble covered-way; the inner one serving as reduit is sceured amainst entilate by a casemate! bommet. 'lhe ditels, which is partially wot. receives its efense from the catalies and the thanks of the bastions. The mavelin amel its recluit are casemated; hut the easemates of the gorge of the redint are opened to the rear to be exposed to the view of the place, whilst the alitch hefore the faces is defended by a reverse gallery com-


 'The lose of one fort dowe mot rontaid the fnll of lhe othrs.

ROTTEN-STONE . 1 minforal $\cdot$ onsimting Milfly of



 the State of Now lork. It is lirown; utherergyinh,
 to peowder, and is well-known tomolders, being mach uscal for "daninur and polishinar brass amd othor metals.

ROUGE CROIX. - Onc of the jursuivants attuc ding (o) the laraldic calablishanent wf lingland, gencrally
 institution is macertain. 'flur tilde is deriverd from the Rad (ross of Kit. (irngere, tha Jutron kuint of Fimq的mel.

ROUGE DRAGON. - Tho lita of a נursulivanc'y' fombled ly denry Vil. on the day luefore his corcsmation. 'low mame is taknon [rom the sulusemet Finsign of Cadwatinlyr, the last king of the Britons, anrestor of that Mc cimech. Tha redi dragen was also


ROUGHING. - A mode of tratiner loorac- bhooes daringe slippery weather, when ier is lying on lhe gromad. The old mote of carrying out this operation is considereal un inconvernent and "xocedlinely injurious plan. A new mothod of ronghing is rocomananded
 Royal linginecrs, which consists in the insartion of at small, pointer, square phag of motel, measuring from 1 to 3 incios (neitrly always the former) at the heel, and, if desirable, ai the toe athor of rach shore in at simple square hole puncherd at these points. Thu" result is stated to be most satisfactory, horsees being enabled, in the most frosty state of the roads. to do their work as in ordinary weather. 'lle army horses at "hatham werr so roughed during the winter of $1 \times \%$, and nothing eonuld have been moris satisristory.
'Ihre term roughing is also applied to the action ot a rasp on a fuse to make it bite in the fave-liole.

ROUGH RIDER. - In tho artillery or cavalry, an Instructor of ecpuitation, and assistant to the Jiding. master. Oue is allowed to ench truop or hattery.

ROULEAUX. - Kommed bundles of fiacoines, which are ticel together. They serve to cover men when the works are pusled chose to a besieged town, or to mask the lead of a work.

ROULETTE. - In instlument usidl in (engraviner mechanical drawing, and plotting, formakincr dotto lines. It has a wheed and points, which, for use on papor, is dipped into India-ink, so that the proints impress a series of black dots or marks as the instrument passes over the paper. Different pitterns of dots are used for mational, state, county, and town ship lines, canals, rutds, railways. "tc. S'r /hittingprl.
ROUND. - In artillery, a romm of ammunition " cumprelients the charge of powoler, the projertilo. and the priming or frictiontube. Tos fire ohe wo mores remends is 10 discharee each genn in sureersion from 3 battery or a portion of it, until the furn comes round for the first gun to tire aguin. Light artillery can conne into action and fire one rommil in 2s sece onds. timing from the oreler .. Ievion fromt." In the dischatere of the piece: and in 15 seconds if the first cartridee and shot be carried in a box on the g:un axle-tree.
ROUND-BAR.-In ordnamer, a metallic cylinder. which has beon reduced from a larger collinder by rolling friction.

ROUND BULLET. - The oblyect of small-arms is to attain animate objects: their projectiles are therefore, mathe of lead. and itre qe'nerally knowin as bul lets. They are both romed and oblong: lint in con-
sequence of the great improvements that were made of late, in adapting the principle of the rifle to smallarms, the oblong ball is now very generally used in all military services, the round bullet being chiefly retained for use in case-shot.

Round buflets are denominated by the number contaned in a pound; this method is often used to express the caliber of small-arms: as, for instance, - the caliber of the old musket was 15 to the pound. and the rifle was 32 . In 1856, these two calibers were replaced by one 24 to the pound, that of the new rifle-musket. The number is sometimes prefixed to the word gauge in which case the rifle-musket would be called a 24 garge gun. This morle, however, is principally used to designate sporting-arms.

The oblong bullet is denominated by its diameter and weight : for instanee, the new riffe-musket ball has a diameter of 0.58 in., and it weighs 540 grains. See Bulltt. Oblong Bullet, and Projectiles.

ROUNDEL.-1. A disk of iron laving a central aperture, throngh which an assembling-bolt passes. It serves to separate the stock and cheeks. ?. A shield used by the Norman soldiers. 3. A semicircular bastion in early fortification as introduced by Albert Dürer. This bastion was abont 300 feet in diameter and contained romy casemates for the troops. Also written Roundelle.

ROUNDHEADS.-A name given by the adherents of Charles I., during the English civil war, to the Puritans, or friends of the Parliament, who distinguished themselres by having their hair closely cut, while ne Cavaliers wore theirs in long ringlets.
ROUNDLE-ROUNDLET.- In 1leraldry, a general name given to cbarges of a circular form, which, in English lleraldry, have more special names indicative of their tinctures the ronndle or being, for example, called a
Foundle bezant; and the roundle gules, a tortecux.
ROUND POWDER.-In case of emergeney, and when powder camot be procured from the mills, it may be made, in a simple and expeditions manner, as follows: Fix a powder-barrel ou a shaft passing through its two heads, the barrel haring lellges on the insile; to prevent leakage, cover it with a close canvas gflued on, and put the hoops over the canvas. Put into the barrel 10 lbs of sulphur in lumps, and 10 lbs of charcoal, with 60 lbs of zinc balls or of small shot (down to No. 4, 0.014 in. in diameter nearly): turn it, by hand or otherwise, 30 revolutions" in a minute. "To 10 lbs of this mixture thus pulverized, add 30 lbs. of nitre, and work it two hours with the balls; water the 40 lbs. of composition with 2 quarts of water, mixing it ecqually with the hands, and granulate with the graining-sievc. The grains thus made, not being pressed, are too soft. To make them lard, put them into at barrel having 5 or $t$ ledges projecting about 0.4 in . inside; give it at first 8 revolutions in a minute, increasing gradually to 20. The compression will be proportionate to the charge in the harrel, which shonidn not, however. le more than half full; continne this operation until thu density is such that a cubie foot of the powder shall weigh $85.50 \%$, the mean densty of round powWhr; strike on the staves of the barrel from tine to time, to prevent the adhesion of the powiler. Sift the grains and dry the powder as nsual. That whinh is too tine or foc coarse is returned to the pulverizinebarrel. This pow lor is romul, and the grain is sutilciently hard on the surface, but the interior is soft, which makes it untit for keeping, and may ranse it to burn slowly. This ilefect may be remedied by making the grains at first very small, and ley rolling them on a shect or in a barrel, watering them from time to time, and adding pulverized eomposition in small proportions: in this way, the grains will be formed be successive layers; they are then separatchacenrding tosize, glazel! mut dried. It appoars from experiments that the simple incorparation of the
materials makes a jowder which gives nearly as bigh ranges with camon as grained powder. The incorporated dust from the rolling-barrel may be used in case of necessity. See Gunpmeder.
ROUND ROBIN.- A name given to a protest or remonstrance signed by a number of. persons in a circular form, so that no one shall be obliged to head the list. The Round Robin originated in France, and the name is lerived from the words rond, round, and ruban, a ribbon.
ROUNDS. An Officer, or Non-commissioned Officer who. atteuded by one or more men, visits the sentinels on post, in order to ascertain whether they are vigitant. The design of ronds is not only to risit the gruards, and Feep the sentinels alert, but likewise to discover what passes in the ontworis, and beyond them. See Grand Rounds and Visiting Ruendis.
ROUND-WIRE.-In ordnance, a metallic eylinder which las been reduced from a larger cylinder by ruhbing friction.
ROUT.--To put to romet is to defeat and throw into confusion. It is not a retreat in good order, but also implies dispersion.
ROUTE.-An open road : the course of march of troops. Instruction for the march of detachments, specifying daily marcles, the means of supply, are given from the headquarters of an army in the field, and are called marching routes.
ROUTE MARCHES. - Three marches are used in peace to conduct a body of troops from one station to another. They are used in war for the purpose of assembling the fractions of an army on its base of operations, of conducting troops through a district or country where there is no enemy, etc. The health, comfort and convenience of the troops are the princijal things to be considered in arranging the detaits of their execution. When the body of troops to be moved is large it should be subdivided into smaller bodies, and these detachments arc sent by different roads. Caution must be taken to prevent the crossing of the columns on the march, as one would then have 10 wait to allow the other to pass, and the delay caused to the waiting column would be irksome in the extreme. Since, in executing marches of this kind, there is no danger to be expeected from an enemy, the precantions taken in the other kinds of marches to guard against attack may be omitted. Route marches are designated as ordinary, forced and reil, according to the manner in which they are made. The ordinary ronte march does not exceed 20 miles per day. Forced marches are extremely exhausting upon the troops and shonld not exceed 30 miles per day. They should only be resorted to in time of peace under pressing circumstances. They are nuch used in war, when a rapid concentration of troops is to be made, or when a strateqical combination is to be effected. Railroads have become in recent years the great factor in rapid and cheap means of moving troops, and are of especial service when the time given to the troops to reach their destination is short, and the distance is grent. The marches made hy the several corps of the French army in 1805, by which this army was assembled upon the Rhine is an example in point. Napoleon issucd his orders for the corps to move on three dinlerent rontes, tach of the seven corps being divided into thre divisions, following each oller on three successive days. The arrangenents were perfect : all "rossings of columns were avoided; the marehes for each day were of proper length: the great natural rontes were followed, and the detachmenta arrived in suceession and without interference at their clestination. See Mrarches.

ROUTE STEP.- $\Lambda$ styte of mareli, whereby the mea carry their arms at will, keeping the mukiles clevaterl: they are not reguired to presarve silence, or to keejs the step, hat eacle man covers the file in his front. The column of fours is the habitual wolumn of route. The route step is at the rate of from two
miles and a batf to three miles juar homer. 'The rolumn of fours being in march, to mareh in the route step, the Cuptain commands: 1. Fomate repp, 己̈. Matecte. At the command mareh, the men curry their somas at will, keeping the muzzles clevaled; they are mot required to preserve silence, or to ksep theate]), Int ench'man eovers the file: in his from1. 'f"ho ranks preserve the distance of thirty-two inchas fronn math other. 'To resmme the cmeneed sitep, the' ('uptain commande: 1. ('ompamy, 』. Artuntus At thasecomd eormmand, the arma are brought io the right shoukler, and the carlenered step) is resumed. The compuny marehing in linc may shas mareln in the route step, the rear rank falling latek to thirty-two inelorg. Jole rompany in ronte stop rhanges itircetion by the same commands as whon in the embenced step.

ROUTINE. - Capacity or the faculty of arranging ; a certain medhod rather ardiniorl by habit and practice than loy study and rule. It simnifics ulso a general enstom or usice, estahlishomb by habit, and followed mecleanically.
marhine for arsenal nse. The "pimetho is of strefol litteal to a stred tube with which it revolvers, and in
 contined tos that tube where it is rasily takes up by metas provided for the purpose, and the tronlale
 in lhe sanne brariners in which it revolvers is wholly avoirled. The spindle lieat is carried on a bever connueded lyy a mujreral joint io a swinging arm. Ag this arm is strongly weblem amb is provided with a long bearing on the outside of the stave forming the apper lowring for the vortical shaft at the corner of the mathine, additional supports are dispenserl with, und the fable is left rlear for tlas: reecention of large work. Through the agency of arm and lover the eutter ean be casily brenight in any part of the work. liotls the spintle leat and the stual courying the intromerdiate pulley are movable, to anable throm to be shifted to take np the slatk of the bedt. The spimele hats a vertical adjustment of $1 \frac{8}{g}$ jacolves, and the champe are madre domble farerl and reversible. bither a sprins rest for kecping the cutter from the


ROUTING MACHINE.-A shaping-mathine which works by means of a routrrecutter. adjustable itself and revolving above a bed with universal horizontal adjusiment, so as to permit the eutter to follow aloug a traced line, and thas eut to a shape, or groove to a depth, the work upon the inhle. It is alapted for work in metal or stone : in the latter ease, black diamonds are used. Pancling in relicf or intarrio, raised or sunken carving, circular slotting, sloling, key-seating, beveling, and bordering may be done uponit.

The drawing shows a very conrewient routing
work until the lever is depressed, or a solid rest, as shown in the drawing, may be used, but the solid rest is safer and more conveniont. The table will take on a plate $21 \times 32$ inches which can be completely ronted without being shifted more than once. Six cutters, from $\mathrm{T}^{\frac{1}{5}}$ to $\frac{1}{2}$ inch in diameter, and a tool bor fitting the side of the body accompany each machine. An attachment for cutting straiglit lines is also used. The speed is 7.000 to 8,000 revolutions

ROWEL. - The pointed part of a rieling spur. made in a circular form, with rays or points like a star.

ROYAL. -1 A small mortar which carries a shell whose diameter is 5.5 inches. It is mounted on : bed like other mortars. 2. In England, one of the soldiers of the first regiment of foot, cilled the Royal, and supposed to be the oldest regular corps in Europe.

ROYAL ARTILLERY INSTITUTION.- In (establisllment organized at Woolwich in the year 18:38. The building was erected at government expense, and is supported partly by subscriptions from the ofticers of the regriment and partly by government. It contains a museum, Jecture-roon, laboratory, theatre, and printing press. Reports, verbatim, of all leetures which have betu delipered are issued periodically to all its menbers. It is a repository for the sale of military hooks, stationcry, cte.

ROYAL CORPS OF ENGINEERS.- A component portion of the Army of the British Empire. A similar Corps exists in all regular armies. It is tle scientific and constructive branch, intrusted with the making and defending of all military wortis, and the attack ind eonquest of similar works belonging to an eneny. It is true that civilians are of ten cmployed to construct the buildings themselves, at a stated price; but the Military Engineers make the plans, and are responsible to the country for their efficleney. For a number of years past, contractors have been at work on fortifications at Portsmontl and in other parts of the kingdom, but on plans and under ordere for which the Engineer Department of the Govermment is responsible.

The Royal Engineers of the United Kingdom form one Kegiment or Corps. The ofticers. in tine uf peace, are scattered all over the world. There is no lalf-juay, except on permanent retirement : and no unemployed list. They have much wear and tear of earlier age than otlur officers. Their regnlar pay corresponds to the aetive pay of other otticers of the same rank: but they exclusively receive in addition extra puy, amounting to one-lialf their ordinary pay when on duty at lome, and counaling their orlinary pay when cmployed abroad or in the London district. There is an establishment of Engineers in each military command, to conduct and superintend all the military buildings and works. The entire force is under a particular bepartment of the War Othce, that of the Inspector Gemeral of fortifications. Until the yrar 1Fib, the daties of Military Engineers were discharged by otheers taken from the regular army. In that year, however, the Corps of Engineers was formex, irreatly to the advantage of the military service. In 1783 , it was made a hoyme Corps, and a disinetive uniform adopted. Several companies of artificers were, in 1812, converted into sappers and miners, and plaect under the Engincurs.

The non-commissionerl oflieers andi privates of this valuable (orps are all workmen who bave learned some meehanical trade: hence thrir skill in all consuruche opreations. The ordnance Survey has been intrusted to the Corps. For many purposis the monare lent, they atterne to sperial and peronliar work: and at surl times lleir conblument is alwaty increasfol. They often buy their dischareme in order to oro into rivil ('mployments, when the mospects are very goorl. The men anljsi for fle years, with powerto revoratio (if wanted) for nime more; but they vail parchase their discharget at any time They have 10 pray more for their dischatire than othor (orpse in the ariny, having recerived more instruetion at the mat-
 enter the Royal Military Joatomy as carleds hy open eompetition. and buss ont from time to line for commissions. Whan in the Corps, promotion is hy seniority, the purchase systom havine nuver beed in-
 there are linerinerr lbarracks. The (orp) is erouped into buttadions and compunics. "ľhere are 482 onticors of Royal buginurs sirving in India, their sulordinates being nialives. Siee rerpos of lingimeros.

ROYAL ENGINEER INSTITUTION. - A similar Institution to that established by the royal artillery at Woolwich, but of older date (1813), and formed at Chatham. It centains a library of 12,000 volnmes, and publishes yearly a volume of professional papers, with the view of conveying, to all members of the Institute, the knowledge and experience acquired by each officer of the corps. It publishes besides it small monthly paper, printed at the exponse of the Institution.

ROYAL GUN FACTORIES.-Government establishments at Woolwich for the eonstruction of great guns for the use of the Britisl Army and Navy. For a very long period there had been at Woolwich a small factory for the manufacture of brass cannon, but gums of cast-iron were obtained from prirate toundries by eontract. It Jast it was determined that Government should become in part its own gunfounder, and extensive work-slops were erected in 1855-6. The adoption of the Armstrong wroughtirou gun into general use in the service, in 1859, arrested the further making of cast-iron guns, and occasioned again a great expenditure in the erection of shops and costly machincry, which have since been adapted to other systems of wronght-iron ordnance adopted into the service under the name of "Woolwich." The faetories may now fairly be regarded as among the most remarkable sights in the Fingdom. In each department, whatever tbe process, it is repeated over and over again, till long parallellines of similar mills are seen, each busily fashioning a separate grm. Iron at red-leat is first wound round a solid core (representing the bore of the future gun), as tape miglit be rounel a pencil; and then by the action of successive blows from a steam-hammer (there is one of 100 -tons), the strips are welded into a compact cylinder of wrouglit-iron of extreme density. This cylinder, after undergoing several heatings, and also ponndings with the steam-lammer, is encompassed with wrought-iron rings of immense strength, which are shrunk on, and then transnitted to the boring mill. Jere the proper ealiber is imparted to it; in another department, the bore is rifled; in another, the ontside of the gun is carefully turned; and in yet another, the whole is polisined and browned. A gun is several wecks in its passage throngh these many wrocesses. By the ingenaity of Sir William Armstrong, the Superintendent, and Dr. John Anderson, his able assistant, every part of the difticult manufacture has been reduced to a cquestion of machinery. Jany thonsand guns lave to this time beenturned out complete of whichujwards of 7.000 are now available for military and naval use. Tine cost of the guns as now made is, on an average, as follows: 12-pounder, £82; 20-pounder, £124; 40pounder, ²06; 70-pounder, $£ 375 ; 35$-ton gun, 42,156 . The Joyal Gun Factory at Wroolwich was estimated to cost for 18 万is- 9 the sum of $£^{2} 203,948$, of whiels $t^{5} 5$, 242 were for management; $£ \% 8,656$ for the wages of autificers and laborers; £12,6\%1 for buildings and mathinery: and $\pm 104,190$ for stores to be consumed in the manufacture of guns. Much of the machinery now uned in the mamfacture of guns was orignally developed at the ungineering and founting establishment of sir Willian Armstrong d Co., at Jlswick. whith was for some time used as an atnxiliary and supplament to the gan fartory in Woolwieh Arsemal, the grns being turnell ont at a contract price, payable after they had passed a rigid inspertion. Tilhe comection betwern the (iovernment and the Elswick firm crised] in 18ti3. Sec (iun-muking.

ROYAL GUNPOWDER FACTORY.-The estalulishment al Waltham Jbory, in which mueh of the gunpowder recuited for the Britisi Army and Navy is made. It is built on all the newest and most apbrovet principhes to insure: safety, reonomy and - llicioney; but even here accidents oceasionally happen in this dangerous manufacture, and roofs and siules, purposely luft loose so as to offer but little resistanco, are scattered tar the winds. Between the
different mills matl-bunks are raised, mitl grovers of
 as far as possibla, limit the eatavtrophe when ume honses is unfortumately (xxploded. A Rerioss of retised camals, ut the same time is ready los thend the whole place, or to afford a procarions shatione to the men 'mployed, if time be available to mak" nse of it.


 There are about 200 workanco. I'lern the ganpowder is made, it is sent down tha lema, to the magszines at W0olwich und I'urll'口't.
ROYALLABORATORY.- Ancxt(nsiv'militarymme nfacturing department in Wondwich Arswal. N1though it has existed for many years, it was only in 1850 that the present very lares establishament was organized. Jere are formatrios for the exating of shot, shcoll, \&rape, "tro; apjaratne for the mamafacture of percussionderajps, which are formond-landreis at It time-out of the colpree sheed; presses where riflebublets are squmenel intos simpe : fuses in sull stages of manufacture and a thonsand other instances of connhined incembity and powor. ('onspicuous among the mechanjsm may be montioned the making of paper for curtribgos, and subserpumtly tho making and dilling of the cartridges thamsolvis. (iovernment liberally erants permission (through the ll itr Oflle e) to inspect the factory. The eost of the Lablyoratory varies considerataly, accordiner to the aceumulation of stores. In addition to the leoyal Laboratory, there are nlso Laboratories - thongh on a reomparatively small seale-at l'ortsmonth amd I)(vonport. Sce labomatory.

ROYAL LABORATORY FUSE. - Thlis fuse fonsists of the following pirts: A, the brass stock or body: 1 , the brass serew-phag closing raar end of fuse; ( ${ }^{\text {a }}$, the land planarer; 1), the brass thimble; E, the brass safe-ty-wire: and lo, the fummate. The boty las a soliot lead, having on the ontside a square recess for fuse wrench, und on the inside a sharppin projecting from the center. The serew-phag, 13, has athole throngh its center which is covered by a thin disk of brass secured on by solder ; two small recesses in the bot-

tom of the phug facilitate its insertion with a wrench. The leat phinger, C lass also a central hole through it, in the front end of which is placed the fulminate cap: the plungre lats also two slirlat projections from its sides upon which rests the hrass thimble. D. Rumaing thromgh holes in the leads of fuse body and thimble, and to one side of center and resting on tobl of the plunger, is the twisted sufety-wire, E. ln order to prevent the easy withdrawal of the safety. wire a snatl hole is bored into one side of fuse hody and down to the hole throngh which the wire is inserted, and into this is ponred melted lead. A strong cord facilitates the extraction of the wire before firing. lnserted in at louded shell with the safety-wire reinoved.atnd meeting with a resisting object in fight. the plunger is thrown forwarl sheering off the shonlders: the fulminate striking the pin is jgnited, the brass disk closing hole through screw plag is blown out, amd the bursting-clarge of sluedl irnited. See fuse.

ROYAL MARINE ARTILLERY AND LIGHTINFAN
TRY.- 1. A limited number of candidates will he nominated to compete for admission into the lioyal Nityal College, (ireenwich, as probationary Lientenmets in the loyal Marines.
II. The exautination will be conducted hy the Civil

Service (ommaissionters, antl will be locld onces a yerer commoneing on tho merond Wivenesday in dugust.
 or chove 18 yours of ngo wh the: 1nt of (octolore following that "xamimation.
$11^{\circ}$. Inblir notico will bu given in May of rach


 ful in thr competition, will be nllowed to competo aguin at the next examination if mot wever age ; lut at

 compern more than twice.
Vi. Every camlidate widl be rexpirod to be at least 5 freet 5 incleses in height mad to pass the merliral examination acoording to the preseribued regnlation, ane
 the Navy. IJ emonst bre in gerel !ualth, and fre⿻ from any physical defect of body, imperliment of speech, dufect of sight or hesring, ind ulso from stny prodisposition to conatitutional or hereflitary flisertse, or wakness of may kind. and must be in all reepuerets well cheveloped, ind artive in proportion to lis ate. Any cumblate rejectod at the metlionl examimation will, subject to the arpleroval of the Board, be finally excluded from the Royal Varimes.

V1J. Each candidate, befor" the examination, will be required to produce the following certificates, vi\%. : (1) A registrar's certificate of birth, or decelaration thereof mate bofore in mayistrate. (2) $A$ rertiticate of good comblet for the two yours previous from tho mastors of the seloools at which he may have been coluctated: or, if educated it home, from his tutors, or the clergyman of the parish in which he las re-
 ind physical tevelopment from the Medical Jirector (reneral. (4) 1 certificate of height.

VIIl. A canclidate will be required to pass a preliminary examination in the following subjects, the miximum number of marks obtainable for cach being as stated:-

1. Writing English from dictation Marks. correctly in a grood legible hand No marks allowed
2. Arithmetic.

300
3. Algebra (including fuadratic equations and the three progressions).
4. (Geometry (up) io the standard of the sixth book of Eucljul's Elements)

$$
600
$$

5. Plane trigonometry (imeluding riefinitions, fundamental formulaz, and the solution of plane triangles).

800
IX. The further examination will be proceeded with immediately on the conclusion of the pretiminary eximanation. Candidates who fail in the preliminary examination will be informed of their fallure as soon as possible. and they will then be released from further attendance.
X. The subjects of the further examination and the maximum of marks obtainable for rach subject will be as follows :

1. Applied mathematies (viz., Maximmm
elementary states, dy- Marks. namics. and hydrostatics)

1000
2. Plysics (vi\%. somad, liglat, hoat, magnetism, and electricity..

1000
3. Chemistry …..................... . 600
4. Latin............................................. 1500
5. Greck................................. 1000
6. Finglisll lamuace and composition........................ 1000

## 7. History ancient and mod- ern. with geography......

8. Fremelı
9. German. Spanish, or Ital-
ian .................................. 1000
10. Drawing
! Frechinnd .......
100
400
400

## $: 1900$

N1. A candidate may be examined in as many of the above subjects as bechuose's. A certain number, corresponding to a merely dementary knowledge, will be dedncted from the marks gained by a cambldate in each snloject, except drawing and applicel mathematics.

NII. To qualify, a candidate mast pass to the satisfaction of the (ivil Service Comminsioners in the subjects specified in Par. VIIl., and in two at leust of the subjects of the further examination. IIe must also obtain such an aggregate of marks as shall indicate, in the judgment of the Commissioners. a competent amount of general proticiency.
XIII. The successful cundidates will be appointed Lieutenants on probation. They will proceed to the Royal Naval College at Greenwich at the commencement of the season following the examination, viz. on the 1 st of October.

IMY. At the end of the first session they will be examined, and commissions in the Light Infantry will be granted to all who shall pass a satisfactory examination. The dates of the commissions sogranted will depend upon the number of marks obtained. Those who do not piss satisfactorily will be finally excluded from the Royal Marines.
XV. From those who pass lighest at this examination, ofticers will be selected to fualify themsetves to fill vacancies in the Royal Marine Artillery

SVI. The officers thus selected will remain at the College a sccond session, at the end of which they will be examined, and, if they pass satisfactorily, will receive commissions in the Artillery.

STIC. Officers who fail to obtain commissions in the Artillery may retain their rank as Lientenants in the Light Infantry.

XV1II. Artillery aud infantry officers will be posted on the list of their respective corps in the order in which they pass their final examination at Grenwich.

NXI. Officers of the Royal Marines on probation will receive $5 s .3 \mathrm{l}$. a day. "Those who are permitted to remain a second session to qualify for the artillery will be allowed 1s. Ed. a day mess allowance during that session.
XX. Officers, on passing ont, will join their respective divisions, and be instructed in their drill and military duties for service ashore and athot.
XXI. Each successfol candidate at the examination for cutry must deposit the sum of $£ 80$ with the Accountant General of the Navy before he can be appointed Lientenant on prohation for the Royal Marines, to provide for hise eumpment at the Royal Naval College and on joining lis division.

XX1l. The uniform for ofkeers on prohation will lue a llue patrol jacket, blue working jacket, mess jacket, undress trowsers, sword, and forage cap.

ROYAL MARINES.- A borly of men raised for service as soldiers, either on shore or on boarel ship, and placed under the control of the Board of Admiralty. The whole rewiment is nover alloat, only portions of it, the rest being stationed at sone of the naval saport towns. "The Jooyal Marines were first ratucd in lfiti, and have heen considerably strengethaned sinke tha commencement of this cratury. 'lhey rank, whon acting with the troops of the line, betworn the 49 th and soth regiments. The liny:a Marines ife a non-purchase corpos, and the oflicers, as in tha artillary and engincers, rise by seniority. The "orps now possesses a marinc force of artillary, cousisting of 13 companies, which is a most eflecetive and valuable body of men. The lemed-ctarters of the lagal Marine Irtillery are at bastney, near Portsmontl. Many of the clicef grarisons in the south of limelame have divisions of the Jarines ruartered in them, such ats Woolwich, Chatham, Iortsmonth,

Plymouth. The strength of the corps amounts to 14,000 men and 287 ohlicers. See Marines.

ROYAL MLLITARY ACADEMY. - 1. The Royal Military Academy at Woolwich is maintained for the purpose of aflording a preparatory education to cundidates for the Royal Artillery and IRoyal Engincers: this edncation will be chiefly technical, and will in no obligatory subject be carrica beyond the point useful to both corps alike.

Regulations fir Admission. etc.
2. Admission to the Royal Military Leademy as cadets will be granted to the successfnl candidates at an opea competitive examination. The examinations will be conducted by the Civil Service Commissioners.and held twice a year, December and July.
3. Notice will be given from time to thae of the day and place of the examinations, and of the vacancies to be competed for at each examination.
4. The limits of age will be from sixteen to cighteen, the candidates being required to be within those limits on the 1 st day of the January next following for the winter examination, and on the 1 st of July for the summer examination.
5. Candiatates for admission to the Dccember or July examination must send to the Military Secretary, not less than one month before the 1 st December or 1st July respectively, in application to be cxamined, accompanied by the following papers:-(a) An extract from the register of his birth, or in default, a declaration made by one of his parents or guardians before a magistrate, giving his exact age. (b) A certificate of good moral character, signed by a clergyman of the parish in which he has recently resided. or by the thtor or latad of the school or college at which he has received his education for at least the two preceding years. or some other satisfactory proof of good moral character.
6. When a candidate who has once been examined applies to be examined isgain, he will only be required to forward a certificate as to moral character for the interval between the two examinations.
7. The number of trials allowed will not exceed three.
8. All candidates will be inspected by a Medical Board ; and no candidate will be allowed to proceed to examination by the Civil Service Commissioners unless certified by the Board to be free from bodily defects or ailments, and in all respects, as to height and physical qualities, fit for her Majesty's service. Cases of exceptional shortness of stature will bereferred to the War Office for special consideration.
9. A candidate will be required to satisfy the Civil Service Commissioners in the following subjects :(1) Mathematics, viz. (a) arithmetic, and the use of common logarithms; (b) algebra, including equations, progressions, permatations and combinations, and the hinomial theorem; (c) geometry, up to the standard of the sixth book of Euclid; (d) plane trigonometry, inclading the solution of trinngles. (2) French, German or some other modern language, the examination being limited to translation from the language and granmatical questions. (i) Writing Euglish correctly and in a goorl legible hand, from dictation, and English connosition. (4) The elements of geometrical drawing, including the construction of phane seales and the use of simple mathemationl insiruments. (5) Gography. I thorough knowleare of each of the four brameln's of mathematies will be rednircd. The Commonsioners may, bowever, if they think tit, clispense with this prelimintry examination, cxcept as regards mathematics, Enghish composition, and geometrixal drawing, in the case of any candiatate who has satistited them on a previous occasion.
10. No marks will he alloted for the above preliminary examimation "xeepting for mathematics ( 2000 ), for Cuglish eomposition (500), and for geometrical drawing (300).
11. The "further cxamination" will be proceeted with immediately on the conclusion of the " prelim-
imary "xamination." (andibates who fail in the preliminary examination will be informed of the ir tail
 from further athondans.
12. The subjects of the furthere exumimation and the maximmon mamber of marks ohatable for (atch subject will bu as follows:
(1) Mathematics, vi\%. furlher questions and problems on ther subjerels of the qualifying cxamination, ami the chamente of the fotlowing suljojer es: theory of ("plations; analytical geometry; conie srotions; soltil goometry; diflerential and integral calcufins; staties; and dymamies
(2) English: English litwature: limited to spectited athors ; and English history, limited torertain fixel perionds: the ant!ars:and perionds bang motified le forehand
(3) Classic*, viz $\qquad$
(4) Frened, the examination to be partly colloruial.
(5) Cicrunant lie examination to he partly colloguial

1larks.
(fi) Any on of the following languges at the option of the canclibate, vi\%. Italian, IGussian, Shanish, or llindostanee: He examination to be partly colloquial $\qquad$
(7) Kxperimental sciences, viz. (iu) (themistry and hatat or (b) dectricity and magnetism.
(8) Gencral and physical geography and geolory.
(9) Drawing, frew-hand $\qquad$
Of these nine subjects, candidates will not be allowed to take up more than four, exclusive of drawing. In all the sulpjects, a sery great importance will be attached to the acenracy in mumerical results.
13. A certain number will ve deducted from the marks gained by a cundidate in each subject, except mathematies ; and the remainders will be added to the marks gained by the camdidate in the preliminary examination in mathematics, English composition, and geometrical drawing. The resulting total will determine the candidates plate in the eompetitive list; the successful candidates being those who stand first on the list up to the number of vacancies competed for.

## Optiunal Examination in Mathematiox.- Intaited syllabue.

14. Further questions and problems on the sulbjects of the qualifying examination. The theory of equations: lirst principles. Analytical geometry: problems on straight line and circle. Conie sections: elementary properties, with easy prohkems, both on the analytical and geometrical methods. Solid geomelry : tirst prieniples, with easy exercises. Ditlerential calculus. Ditherentiation of functions of one independent variable. Taylor's and Maclanrin's theorems: applications. Mnxima and minima of functions of one independent variable. Nethod of intinitesimals: first principles, with casy applications. Tangents and normals to curves. Points of intlexion. Curvature of curves. Involutes and evolutes. Integral calculns. Elementary integlations. Integration consideredas summation. Rectitication und quadrathre of plane curves. Staties : equilibrium of forecs and couples in one plane. Friction: center of gravitr: mechanical powers. Problems on thementary statics: the graphical or geometrieal method of treating such proble:ns should be stuched as well as the analytical. No applications of tle differential calculus to staties will be required. Dynamies : elementary prineiples: projectiles ; motion of a heary partiche on a smooth curve; centrifugal force; simple penduham. Prob-
 calenlus will be requirell.

## Tremas of l'uymenel.

15. The trems of parment formaterat the Royal Military Acadmeny are regulated by the following arliclos of her Migiouly warrant of the 2ath lacerme ler frion, for the pay and promotion of the Army:
f'aymut for cordet. - I'luc payment to be cont ributc:d
 paid lalf-y"arly in :"dvanee: -
imually.
Queen's caldens (if any )................................. Ni .
For the sum of ath ofitior of the Army of Nayy whe hats the in the werviere, and whose family is loft in pecuniary disiross (sulbjewt to the approval of the Seeretary of state)......
For the sun of an olliorer lowh thar rank of Con-
 and ('aptainor Commander in the Navy, or an Insiructor at the lioyal Military College or Staff Collegro.
For the son of a Consuch or learimental firkl-nilicer in the Army, or of a (raptain or Command or in the Navy, or of a l'rofessor at he Royal Military Academy, or Royal Military Colkege, or Staff Collewe.
For the son of a fienural-onlieer who is not Coloncl of a liegiment, or of a Vice or lewar-admiral.
For the son of an Acmiral or of a firmeraloniterer who is Colonel of a Regiment or in reeceipt of Inchian Colonel's atlowances (1)

For the son of a private gentleman.................... 125
Scate of payment, hoir computed.-10 detarmininer the rate of payment -
a. I General-oflicer on the half-pay of his last regimental commision shall pay in accordance with such regimental sank.
b. Ohieres who have sold their commissions shatl be regarded as private gentlemen.
. Onficers on retired full or half-pay after 25 years service, or oflicers of less than 25 years' serviere if placed on half-pay by reduction of establishment, or on arcount of ill health, shall pay in accordance with their last sulntantive regimental rank. The cases of offiecers voluntarily retiring to half-pay before completing 25 years' service shall be specially consitered.
d. Officers of the departments of the Ariny and Nary according to their relative rank, of the permument staff of the militit, aljutants of the volmoter force, as well as Indian military and naval oflicers, shall be treated on the same terms as military or maval oftieers.
The sons of deceased otherers shall be contributed for in accordance with the foregoing regulations in rerard to the rank or clasitieation of their fathers.
Sickesse and ruxtication. - If a cadet be alsent a whole term in consequener of siekness or rustication. a payment of $£ 10$ shall be required for the privilege of his name being kept on the rolls of the "wtablishment, and for a vacancy being gharantect at the commencement of the next term.

Orphans.-In the case of a catet who is an orpham, whose annual contribution is only $\mathfrak{E}^{2}$ (0) the amount to be paill when absence extends iver a whole term shall be determinerl ly the Secretary of state.
sickness.- If a cadit be absent from siekness during a portion of the term. his pay shall continue to be issued and credited to his accoment, but no refund of the contribution shall be permitted.

Thatication. - If a cadet be rusticated or removed during aterm, his daty pay shall cease from the date on which he is sent away, and the contribution made for the half-year whall be forfeited.

I'ay aj rudet.-The pay of a cadet shall be 3s. a day. It is issued to cover the expenses of regimemtal cloth-
ing, messing, washing, and other contingencies. All other necessary expenses of this nature, as well as weekly pockrt money, postage of letters, bootmakers' and tailors' bills for repairs, ele., whieh cannot be covered by his pay, shall be charoreable to his parent or guarlian in addition to the regulated contribution.

Extra paymernts for cadets. - Each cadet on first joining shall he required to pay, in addition to the regulated contribution, a sum of 20.2 to cover the expenses of miform, books, etc., annl to bring with him the articles of clothing of which loe will receive uotice, and which must afterward be kept up at his own expense. He shall also be required to pay the regulated contribution in advance. for each half-year of the time during which he remains nonder instruction, and a deposit of if on account, for contingent expenses, which latter sum he shall be required to make up on returuing to the Royal Military Icademy after each vacation, to oover any expense that may be incurred on his account cluring the ensuing halfyear.

## Government and Orgunization.

16. The Field Marshal Commanding-in-Chief will be the President of the layal Military Academy.

1\%. An independent inspection by a Board of Yisitors, appointed by the Secretary of State for War, and reporting to him, will be made once a year. Such Tisitors will not be a permanent body, but will not all be changed at the same time. The report of this Board will be presentex to Parliament.
18. The Academy will le under the control of a Governor, a military man, selected with special reference to his gualifications for superintending both instruetion and discipline, and appointerl by and responsible to the Secretary of State for War, through the Field Marshal Commanding-in-Chiof.
19. The Governor, by virtue of his office, will have local rank superior to that of any of the officers employed under him.
20. The tenure of the appointment is regulatal by the following article of the royal warrant of the 27 th December, 1580 :- The appointment of Govermor of the Royal llilitary Academy
shall he for seven years, with power of re-appointment ; but shall in all cases terminate after fourtecen years, or at the age of sixty.
21. The Governor, with the approval of the Sceretary of State for War, will have the power of appointing and removing the Professors and Instruce tors.
22. The organization will be on a military basis.
23. The Goveruor will be solely rexponsible for diseipline anal for the general smperintendence of the studies.
24. Te wila be assisted in the arrangememes of the sturlies by the Aorrmey lBoard, composed of the Professors or 'senior Instructors of the ditherent branches. The head of earh braneli will have the general power of supervision and inspection over the stuslies of his department, with the duty of reporting on them to the Governos.
25. The Governor will from time to time assemble and confer with all tho l'relessors and hastructors of (ateh separate branch om matters relating to it.
26. The (anvernor will be assistad ly a Stall'-othieer, not under the rank of Coptain, who will berere
 corrispomelone and aceoments of the cstablishanent. fund makn all local payments comm"ctod ther"witls, and refeive the romtribations for the ratlets. This appointment will be for seven years, with power of「t-aplouintmont.
27. The cadrys will form one rompany under' a Conpuin, assisted by four Lioutomans, (harged witls the discipline out of sturlios and the drill, one of whon will he Arljutant and Qnarlormaster.
28. The Profasors and Instrurtors may be ather military mon or civiliams.
29. The Profesurs and Instructors will have rertuin limited powers of pmishment, within and with.
out the halle of stury at the diseretion of the Governor, to whom they will report all punishments whirh they may intlict.
30. Thr Chaplain will be specially appointed ly the Secretary of State, and will give instruction ir elassics.
31. The tenure of office of the Professors and Instructors is regulated by the following article of the royal warrant of 27 th December $18 \% 0:-$ The Professors and Instructors at the Royal Hilitary Academy shall be appointed for six years, with power of re-appointment. Their term of office shall not continue after the age of fifty-tive, unless an exteusion be specially recommended hy the Governor and approved by the Secretary of State.
32. No Professor or Instructor will be permitted to give private instruction to a eadet, either during the vacation or at any other time, or be allowed to prepare candidates for allmission to the Academy.
33. The Governor will have the absolnte power of rustication and removal, and also of sentencing a cadet for misconduct to loar places in the list of successful candidates for commissions; when expulsion is necessary, the case will be referred to the Serretary of State through the Field Marshal Command-ing-in-Clisef.
34. The name of any catlet expolled for misconduct will be recorted in the office of the Field Marshal Commauding-in-Chicf, and will be made known to the First Lord of the Aslmiralty, and to the Secretary of State for India, in order to prevent his being arlmitted into her Majesty's naval, military, or Indian scrvice.
35. A sword will be given at each final examination as a special reward for excellence in conduct.
36. The (bovernor will enuse registers to be kept of all serjous punishments awarded, and of the oflences which have cansed them.
37. IIe will inspect accounts of every description commecter with lhe Academy, and certify those which require it.

## Conerse of Instruction.

38. The lengtla of the course of instruction will be two years and a hallf.
39. If any cadet fail to come up to the required standard at two examinations. or be foumd unable to gualify in his studies for a commission within three vears; to be counted from the commencement of the term in which lie first joins, or to acruire a sufticient proficiency in military exercises, he will be removed. No extensicn of the above period of three years will be granted on account of absence from any cause excepting illness. Cases of protracted absence on account of illness will be spucially referred for decision to the Secretary of State for War through the riched Narshal Commanding-in-Cluief.
40. The following subjects will form the course of obligatory studies:-(1) Mathematics, including a thorough knowledge of plane trigonometry; practical mechanics, with the application of mathematics to machinery. (2) Fortitication, field ant permanent; such a contre as issuitalble to catots mualifying for the Arillery, and tine requisite amonnt of geometrical l!rawing. (3) Artillery: such a course as is suitable to caldets gualifying for the Engineers. (1) Military lrawing with field skeching and rocomaissance. (i) Military history and guography. (6) French or (iomman, at the student's clonice. (\%) Elementary chemisury and physics. (Q) Drills and excreises.
41. In addition to the obligatory course every cadet will be allowed, at lis option, to take up eertain voluntary sulyeets, viz:- (1) Higher mathematiss. (2) llishlor portions of fortitication. (3) Any of the following haminigis :-Grman or Frenelt, Italian, Russian, Spanish, or Ilimdostance. (4) Ireehand, figure, and handseapu drawing. (5) lligher (-hemistry. (i) Latin and (f) (irock; instrurtions in these subjurets to be eriven hy the Chaphain.
42. Marks will be assigncil to the obligatory sulb-
jects of instruction in the following propmrtions:
Mathematios and mocronniess, 7 : fortitisationn, 7 ; art illary, 5 ; military drawing and refommaissmero, f;
 French or tiorman, 2 ; chomemary rhmoistry and
 and eompany drill, d; Eymmatios, $\frac{3}{2}$; ritling and mword exereises, $\frac{1}{2}$; artillery, 2 ; tutal 3 ?
43. 'The volantary subjexts shall be valued as fol-
 3 ; latin, 2 ; (rreek, 2 ; any of the following lan-
 Fhh, or llindostamere, $2:$ frepland, fisure and landscape drawing, 总; lighere chemistry, 2.
44. No ohnientory subject shati gain a roblet any
 marks in it.
45. No cadet wil] be emsural a eomminsion unless be fumbify by obaining at least onw-half marks in
 fortification, and artillery, amd one-half of the total aggregate of the marks illoted to all the ohbligatory subjectis.

4ti. No voluntary subjeret shall gain a ratlet any marks unless low ohtain at minmam of at least onethird of lher marks assigned to that portion of it in which la is examinet. 'The marks ganed in the voluntary subjuets will he adced to those ohtained in the olsligatory subjects to make a susomol total, arcording to which cadets shall be finally placed.
47. The periondeal examinations will be entirely comblusted by examinersindupendent of the Arademy the whule of the marks cexept those reserveri for note-books and drawing leeing alotted according to their results.

## Stetf" of the Extablishment.

48. The following will be the Statl of the establish-ment:-Covernor, Secretary and Treasurer, Captain commanding company, :3 Lieutemants, Aeljutant and Quartermaster, Medical (Jficer, Chaplain, 4 Professors and Instructors of mathematies and meedanises, 4 Professors and Instruetors of fortification and geometriculdrawing, 2 Professors and Instructors of artillery, 4 Jrofessors and Instructors of military drawing.ete.. and Professor and lnstructor of military history and geography, 2 l'rofessors and Instructors of Frencla and Girman, l l'rofessor and Instructor of figure and latndscape drawing,and 1 Professor and Instructor of chemistry.
49. The par and allowances of the otlicers are Togralated hy the following articele of her Majesty's warrant of the 27 th Derember 1870:-The pay of the ofticers of the Royal Military Aeatemy slall be as follows:
Guvernor, elson) yearly, inclusive of all allowanees exrept quarters, and in athlition to his muattached pay is at Gencral-ollieer or his pay as Colonel Commandant of royal artiliery or royal engincers, in the crent of his holding such rank; Secretary and Treisurer, not of lower rank than Captain, t400 yearly, ineli: sive of all allowances except quarters, amd in addition to regimental pay: (aptain of company, 12 s . daily, and regimental jony (alao forige allowance for one horse, quarters, fuct, and light, amel 2 soldier sorvints) ; lieutenants, caclu 4s. daily, and rerimental pay (also fuarters, fued, and light, and i solelier -(rvant): Alljutant and Quartermaster. 5 s . (lably, and reqimental pay as Liemtenant (nlso tharters, fuel.amel liqht, forare iblowance for 1 horse. and $\partial$ soldior servants): Surgeon, accordine to his rank in the drmy

 fessor of mativematies, if a civilim, éño to f\%oo yearly, by a triomial incretse of $£ 50$; Professor of mathematics, if an olliore efon yearly, without in-
 10 f500 each yourly, by a triennial increase of $£ 50$ : Instructors of mathemasics, if oftecers. f450 yearly, without increase; lrofessor of fortitication, f5is) yearly; Instructors of fortification and genmetrical

Irawing, farla flyof l'rofessor ol artillory, fis50;




 fhemistry, \& 100 .
 clack ald remanaration of (very kind ixacol any arlatiomal pay, beyom his ordimery requenent pay, to Whicha an chlicer may loe contielid ly brevet rank or as a reward for rlistinguiched corviro in the tiond, and us preson haranflor to ber alpointed to any of the above apprintments shall bue entitherl to jernsons or superamanationallowane for services in such apo pointment.
50. The ajpointmernts of lilitary ?rofosoors and lustructors are opern to oftierers of alif ranks.
51. Noperson whatevar loclonging to ilu lional Military deatemy is to roorive a present from any callot, or from tho relations or frionds of anyy cadot.

5:2. ('omminaions as liontomants in the royal artilbery or rowal engincers will be conforred ujorn candidiates who gualify in accorelime with Pars. 39 to 45.

5is. The rommissions of surll Lientenants as are rabommended ly the Governor of the dcademy, and afterwards pass through theor bracelimal course at Woolwiels and Cbatham in a satisfactory masuncer, will be antedateal if montls.
ROYAL MILITARY ASYLUM.- In Educutional Govermment Institution at Cholsest, mear, but wlobly distinet from, the IRyral llospital for pensioned soldiers. Its object is the suitable chlucation for trade, cte., of 500 male chilimen-eramerally orphans-of British soldiers. For lhese there are a moilel school and an infant sclool, aml the boys lave a complete military organization, with searlet uniform, ham, -1e. As a result of their training, a large projortion of the pupils nltimately volunteer into the Army. The Shool was originally established in 1 s003 by the late Duke of York, whence it is still commonly known as the "Duke of York's Schoul." Originally a similar school for soldiers' daughters was jncluded but was not found to answer, and has been discontimenl. Attacherl to the School is a trainitg establislement for military schoolmasters, known as the Nommal School. The total cost of the whole Institution is ubout $£ 11,500$ per annum.

ROYAL MILITARY COLLEGE AT SANDHURST.-

1. The Royal Military ('ollege js maintained for the purpose of alfording a special military education to Sub-lieutenants of cavairy and infantry recently appointed, and to suecessful endidates in the competitive examimations for commiscions.
2. The number of sub-licutemants sumbeted to the ('ollege will vary according to the regnirements of the servire.
3. The dates of atmission will be the 10th of Felsruary and 10 th of september in cuch year.
4. The College terms will be-(14) from the 10 th of February to the 30th of July, with suspension of stuly luring a fortnight at Easter: (D) from the 10th of september to the 15 th of December. The intermediate periods will constitute the vacations.
\%. The Commander-in-C'hief will he the President of the lioyal Militury College.
5. The Coblege will he timler the rommanal of a Governor, wha will he solely responsible for discipline and for the weneral superintendemer of the sturlies.
T. IIe will be assisterl in the arrangenuent of the studies by a buard, composed of the Professors or Senior Insiructors of the different loraneloes. The lead of each branch will have the ereneral power of -uperrision and inspection oser the stulies in his department, with the duty of reporting on them to the Goreruor.
6. The Governor will be assisted by゙ a Staff-ofticer, who will be responsible in his temporiry absence for the charge of the estabisinment. This officer will
lave the custody of the recorts and the rorrespond conce of the Collcge, and will give the dovemor such assistance as he may reguire.
7. The Quartermaster will perform the duties of Acting Commissary.
8. 'The Sub-lientenants, being commissioned oftieers, are under the Mutiny Act und Articles of Wrar. and mnst ronform to her Majesty's regnlations in all respects. While resident at the College, they will be subject to snch rules and regulations as are, or may be from time to time, established for the maintenance of good order and discipline.
9. The Governor will have the power of removing for a period not beyond the corresponding perion in the next term any Sub-lientenant gnilty of insubordinate or ungentlemanlike conduct, or of repeated acts of irregularity, and will report the circumstances to his Royal Highoess, the Field Marshal Command. ing-in-Chief.
10. Sub-lieutenants reported for habitnal inattention to their studies, or failing to pass satisfactorily through the probationary eximination at the ent of their first term, will be specially brought under the notice of his Royal Hishness, with a view to their cases being considered as to the necessity of removal from the College.
11. In cases requiring more serions notice, a student if commissioned, will be liable, on the report of the Governor to his Royal Highness, to be removed from the service, or, if not commissioned, to be removed from the list of candidates awaiting their commissions.
12. Snb-lieutemants who misconduct themselves daring their residence at the College will be liable to the forfeiture of the antedate to which they would otherwise beentitled in aceordance with Par. 28 . They will also. if temporarily removed from the College for misconduct, be liable, under the provisions of the royal warrant of the 15 th of February, 1875 , to the forfeiture of pay for snch perion as the Secretary of State may direct.
13. The Sub-lientenants will be distributed in divisions of not less than 25 , each division being under the immediate charge of one of the Professors or Instructors selected by the Govarnor.
14. The officers of divisions will be the channel of communieation on all subjects between the Sub-lientenants and the Govarnor. They will mess with their divisions, and will exercise a general superintundence over them, for which they will be responsible to the Governor.
15. During the hours of stury the Sub-licutenants will be under the charge of the l'rofessors and lnstruetors, to whose orders they will be required to pay implicit obediener.
16. Sulb-lientenants will salnte the Governor and Assistant to the Governor on all occasions, whether in or out of maiform, and the Professors and lnstructors when on lluty, on parade, or when under instruction.
17. The Sinh-lientenants will he required to appar at all times in uniform, exrept when on leave of absence, or otherwise excmptel by the Governor.
18. The stuly undress may be worn at all timus when Sub-licoutronants are umber instruction, with the execption of riding or parade, when they will wear their moldress miform. The forage cap will be worn witl tla sturly mulress.
19. The course of instruction for each Suh-lieutenant will last during two terms. The folluwing will be the subjorts of sturly:-(r) Qucron's Rownlations amd Ortars for the Army, regimental interior ereonesmy, accounts, and rorresponelencr ; (b) miliary law; (c) the clemonts of tactics: (d) field fortitication, and ila clements of permancont fortitication; (e) milisury toporraphyand recomnaissance; ( $f$ ) infatatry and ficlid artill-ry drill, ribling, and gymmation.
 berequirert to pass an cexamination in the field and on paper, and those who pass the examination will be grazetted to regiments in which there may be vacun-
cies for sub-lientenants, with a vicw to their completing the period of service requirod lefore they ran be promoted to the rank of Lieutenant.
20. On the pass list of the examination prescribed in the foregoing paragraph, Sub-licutenants will be placed in one of the three classes, arcording to their proficiency, as shown at the examination.
21. The examination will be qualifying, not competitive, ond the candidates will be arratored alphabetically in each class.
22. The stamdard of qualifications for the respertive classes will be decided upon from time to time by the Secrotary of State for War, and anuounced to the Sub-liwitenants at the commencoment of their course.
23. Marks will be allotted to the subjects in the following proportions:-Qnecn's Regulations, ete., $1 \frac{1}{2}$; military law, 2 ; clements of factics, 3 ; lortification, 3 ; millitary topograply and reconnaissance, 3.
24. In tactics, fortification, and military topography and reconnaissance, one-fourth of the marks will be reserved for notes and drawings done during the course.
25. In accordance with the power vested in the Secretary of State by Art. 3 of the royal warrant of the 30th October, $18 \% 1$, he has decided that the Lieutenants' commissions of officers who pass in the 1 st class will be antedated two years: and those of ofticers who pass in the 20 class, 12 months. No antedite will be granted to officers who pass in the third class.
26. Every antedate will date back from two years subserfuent to the date of the original commission as Sub-lientenant. No commission as Lientenant will he granted until the officer las served two years as Sublieutenant.
27. Under the provisions of that portion of Art. 3 of the royal warrant of the 30 th of October, $18 \div 1$, which is amended by the royal warrant of the 30 th of January, 1875. Sub-lientenants may be remored from the service if they fail to pass the examination at the Royal Military College within two years from the date of their commissions as Snb-lieutenants. They will be allowed to be re-examined once, at the Military College, provided two years from the date of their commissious as Sub-lieutenants shall not have expired.
28. In order to cosure due diligence during the whole period of residence, there will be a probationary examination at the end of the first term in the work of the term. No N゙ub-lieutenant will be permitted to reside for more than one year at the College, except in cases of protracted illness, or long absence from any unavoidable cause, or his being prevented from unavoidable cause from undergoing the final cxamination.
$3 \approx$. The mess-rooms, ante-rooms, and quarters of the sub-lieutenants are furnished in all essentials by the government; plate, linen, and chima, and every article of mess equipment, are supplied by the govermment, and no contributions un those acconnts will be required from Sub-lieutenauts.
29. Tho messes will be conducted in evory respert like a regimental mess, with strict regard to comomy
30. All mmarrical ollicers of the College will be required to mess with the Sub-limenamts. Those otherers who are marriad will mess with the Sublioutomants if required to do so by the Governor.
31. Sis?-licutumats will provide themselves, before they join the Colleger, with the preseribed uniform.and with the booksand instrmments sequired for thoir instruction.
32. Sub-lientenants will pay for their messing and Washing. 'The imount duc from earlh ollicer for his messing and washing will he patel by him monthly to the fiymanater of the collegre.
33. All Sulb-lientemants will be required to contrilmte a certain sum monthly to met the expenses of a speceal lanndry which has bern found to be requisite.
:38. No person whatever belonging to the Koyal

Military Colleng will recope a prosent frotn any Suh lisutemant, or from the relations of friemels of any Gub-licultmant.

ROYAL REGIMENT OF ARTILLERY. A luttalion msually comprisos 8 ('onnpanin's. It a lime whon
 - ompanics and troops, ateragine sobucwhat ever lat men rachs. At other (innes, the enombaties have vat
 hatalionse of fout-artillury are desionatorl by ordinal
 (roops of lobscoartillery are ilosiguated by littres,
 for each cominatis and tronp; lut rome of thesp aro
 and sieges, a brigute of this artillery ustally eonsists
 vision of the regnlar arms. Eanch complay will its rquota of gims und stores of all kimes. ronstitulos
 tutes a horsc-buttery. It Ias heen yroposed to abandon the terms romporn!/iml erorop) attugether, as beiner properly applicable omly toinfantry and cavalry, and to use only the termbuttery; but this change las not yot taknol place. Amone the oflicers of the layat Artillery, there are no Majors, Ensigns, or Cornets: equivalent sorvices are rondered hy othecers otherwise designted. 'The men are chiclly classitied as gimnors and drivers.
'The Army Eatimates fur 1850- (fo will atiord pretty eorrect information concerning the present slate of the Royal Artillery.

Royal Front itrtillery.
Comminsioned Ollicers...................... !1א
Non-commiovioned Onlleers,............. 1, 885
Rank und File, ..................................2む,351
Royal IIorse Artiller!!.
Commissioned Ollicers.................... $i 8$
Fon-eommiswioned (oflifers.............. 148
Rank and File...................................... 2, 130
'lotal, 2~,400 2
Of this mumber, 8707 are plaeed at the disposal of the East Indies, to be paid for out of Indian revenues. 'lhere were also voted 5308 horses for the foot-artillery, and 1880 for the horse.
ROYAL SCOTS. - The regimental title given to the 1st Reginnerst of Foot. It is supposer to le the olelest regular corps in Europe; themen origimally came from seotland, and entered the French army, but afterwards returned to Fingland in 1633 , during the reign of Charles $I$, and then received the tille of Royal Regiment of Foot

ROYAL SMALL ARMS. - The following arms, cte. are manufuctured at the Koyal small-arms Faetory: 1. Martini-Menty rilles and carbines. 2. 'Triangular bayonets. 3. Nword-bayonets of various patterns. 4. The Enfield breech-loading revolver. 5. Lances 6. Leather scabbards for triangular and sword bay゚onets. The details of the Martini-Henry systen and the prineipal leatures of the Enfieldrevolver have been sed forth in the articles Martini-1lenry Rithe andi Enfield Breech-loading Revolver. Inatsmuch as these arms diller in many points of fabrieation from the usual processes anil operations employed in mannfarturing small-arms, we herewith give a detailed deseription of the fabrication of the MartiniHenry ritle:
The barrel is made of soft or mild sted prepared ly the "Siemens-Martin" process, this metal having been found to be of avery moform nature. The larrel bars or molds are obtained by contract in lengths of 15 inches, the diameter for rifle bars being $1 \frac{1}{2}$ inch. The barrol har is lacated to at white heat and passed throurly the barrel rolling-mill, whieb consists of ten phits of rolls arrunged aliermately horizontally and vertically. when it is drawn out in one heat to the fall length required (about $30^{\circ}$ incles), taper in form, ind solid. It is next passed to the liyder forging machine, where the "Kinox
form" is forged (int the loreerelt rasl and thre liareme





 ing the bure," and is vory carofally tected (o) sece that


Fig. 1.
the starting of the hore is trus and rorrect. The barrels are now ready for drilling.

The barcels while being drilled are placed vertieally in a machine, Fig . 1. where they revolve with a speed of 300 revolutions per minute, the Loles alrearly made at cach end acting as guides for the set of three drills used in this operation. The method of using thenc drills insures a long hole of small diameter being drilled perfectly truc, and until this method was tried and adopted this was found to be a most diflicult task: The drills eonsist of, first, "the corcedrill," for roughly cuting away the metal. This is run in half an inch, when the barrel is taken ont and emptied of swarf or cuttings by placing it oser a jet-pipe, when a strong stream of washing liquor thoronghly clears out the bore. Another half inch is drilled in the same manner, and the bore again washed out. The second drill or half-round bit is now used. This drill is 0.130 ineh in diameter,and having only a cut of 0.05 inch to make in clearing the hole, is run down the one inch the eore-drill has cleared without any risk of deviating frone the trath. The barrel is thra again washed ont and No. 3 drill made ase of. This has a stock titting the hole already bored, and euding in a small ${ }^{3}$ in ineln drill. Which, being supported by the stock, clrills awuy the center perfeet! y true with the axis of rotation, ready for the "core" or "roughing drill" to start again. If this system is rigidly carrice out inell by inch it is possible to drill a hole there or four feet deep with an error of less than $0.000^{5}$ inch. I set of drills consists of these three just described, and three sets of difterent lengths are used. When one-half of the harrel lias been drilled, it is turned end for end, and the operation repated until the lioles meet in the center. This system of drilling originated at the Royal Small-arms Factory, and is not in extensire use elsewherc.

After drilling, the hole is bronched out with long square bits. on one vide of whieh a strip of oak is placed. Lontr strips of writing piper are evenly placed betweren the strip and bit, one upon another, and the bit is rua through the barrel until the hole
is broached out to the required diameter. This operation is more of a burnishing character than a cutting one, producing a fine, clear, polished surface, down which a shade is readily thrown by holding the barrel at the proper angle to the liglit. As shadows thrown off straight surfaces are projected in straight lines on any true surfuce on which they are thrown, the eye can be taught by practice to deteet any inaccuracy in the bore of a barrel by the appearance of the edges of the shadow thrown down it. In order to insure absolnte certainty that no harrel should be passed on for the exterior to be turned which had not the bore perfectly true, the following meehanical test has been devised, riz: A stcel rod is stretehed taut between two horizontally fixed head-stocks, having a collar in the center and at one end, whieh fit the bore lonsely, so that the barrel can freely revolve on the rod. If the bore is straiglt, the end of the barre] where there is no collar on the rod will run perfertly true; but if not straight, it will rerolve eccentrically. and its motion is easily detected by any unskilled person. Every barrel is passed through this test before the exterior is commenced upon. The bore is also tested for size by the collars on the rod.

The next operation is to support and lold the bore true while the outside is turned perfectly concentrie with it. After a number of experiments to find ont a means of fixing a true turned bush or coliar on a rough exterior, the present metlod of rumning sulphur in a liquid state between the barrel and bush was adopted. By this means thr exterior of a barrel can be turned perfectly true with the bore withont injury to the inside. The barrel is placed vertically, when two plugs, whose centers coincide with the axis of the barrel are placed in the breeel and muzzle: the bush is then held over it and melted sulphur is ponred in between barrel and bush. This rives a bearing for the outside perfectly true with the bore. The barrel is next rough-turned, finished-turned, draw-polished, gauged, ehambered for proof, and screw-thread cut in brecch end, to take the "hutts" used to close the breech during first proof. This system of turning a barrel enables its exterior to be brought to a definite size, and is greatly superior to the old method of grinding barrels on a large stone and afterwards striking them 11p. The barrels now undergo the first-proof test which is necessary in order to detect inferior quality of metal and flaws which do not appear on cither the exterior ur interior surfaces. The tirst-proof clarge is $7 \frac{1}{2}$ drams of
sawn to length and brazed on. The barrel is now tinished-bored and set, and is then ready for rifling.

The rilling is done with a cutter having a head of suitable form for the rifling required. This is fitted into a groove cut in a box about eight inches in length and fitting the bore. It is drawn through the barrel by a rorl fastened to one end of the cutter box, the other end of the rod being coupled into the spindle of the bad-stock or traversing saddle. On the spindle is a pinion geared into a sliding rack carried by the same saddle. The end of the rack is fitted to slide backward and forward along a fixed har, which can be set at any angle necessary to rotate the spindle and cutter box to the amonnt of spiral required. From four to tive cuts are needed for eaeh groove, and the cutter is fed up by a screw tapped into the end of the cutter box, to which a rod is attached, which works throngh the center boss of a hand wheel. A spiral groove is cut along this rod,in which a feather fixed in the boss of the hand wheel slides, enabling the feed-screw to be screwed in or out by the hand wheel as required. An index is connected with the hand wheel, enabling the operator to read off the depth of cut. The barrel is fixed in a rotating chuck. which is divided so that any mumber of grooves required can be cut inside the bore. The rifling is of miform twist of $1 \mathrm{in} 2 \underset{\sim}{2}$ inches, or one and a half turns in the length of bore ( 33 inches). The form of rifting is that known as the "jlenry ritling;" the grooves are seven in numb, $r$, and are 0.007 inelı in depth.

The barrel is suspended inside a lollow rotating spindle by a plug inside the muzale end, running on a plug tixed in headstoek at the breech end. A guidescrew is seeurely fixed on the rotating spindle, and carries a mut fixed to traversing tool-holder, which holds a peculiar form of chasing tool. The teeth for cutting the screw-thread on the breech end are on the umbler side. so that, being set over the top of the rotating barrel, it cau be lifted in and out of the thread which is being cut, in the shortest possible time and distance, without chopping the thread. The screw being entirely finished, the barrel is then driven from it, while the breech end of it is chambered up for the cartridge. The entire operation of boring and reaning is performed in the lathe re. presented in Fig. 2. The barrel is now breceled up to body, the action assembled for proof, and the rifte undergoes the second-proof test. The secondproof charge consists of 5 drams of powder, a bullet weighing 715 grains, and a cork made half an inch


Kig.
powder, a lead plas of 715 grans, and over the lat 1 in thickess. The barrels are proved in at proof ter at fork wat hatf an inch in thickness. Twanty hatory something similar to that used for the first barrels are proved at the same time in a castiren proof. proof lathry.

Thes sent for the front sight is mext cross-millet and dove-tailed, and tha steel fur the front sight is

The back sight-hed is soldered on to the barrel, and atso securcel in its place by two sorews. Both the hack sight and front sight are adjustem *ind reg-
ahated from the axis of the bore, and when viewing the barrels for sighting the greatest care is taken to see that both sights are exatly in pesition. The body and harrel are browned separately, the following being the browning mixture at present in nse:

> Spirits of wime.
> Spirits of nitre.
$\qquad$ is ouncer
$\qquad$ .......
$\qquad$ . .8

Tincture of sterl.................... 8
Nitrie acide.
$\qquad$
$\qquad$ 1
Suspharie acid.
$\qquad$ ... 3
Blue vitriol. $\qquad$ 1 gallon
The proress is ats follows: The barrels and bodios are tirst seathed in a solution of sondit for twemty minutes and are then washerd in at clean water. Jhe browning mixture is applied, and they are plased in a damp heat for about one and a half hours, when they are sealderl again, and when con! the rust is seratched off. 'This jrocess is reparated four times. and then the harrels are chanced oft and oiled. 'The whole operation of browning requires about cight hours.
The borly which is to contain the breech action is made from a speceially tough class of midd sterl. Bars of this metal, 1 or 5 fret in length and 2 inches by $1 \frac{1}{2}$ inch in section, are obtained by contract. The body is blocked direct off the end of the bar by tive blows under a 15 ewt, steam-hammer. The firsi bow gives a rough tigure, and merisures oft the guantity of metal required. The second blow fullers in the sides of the body, in displace the metal when working the hole through it. The third blow, by means of a chisel in


Fig. 3.
the upper die, splits the metal in the center, driving out the sides of the borly to till the die, and leaving the impression of the hole to be mate through the borly full size at the top. The fourt? blow drives a full-sized drift, phaced in the hole jnst matle by the chisel, clean throngh, shearing down the sides, and driving through the small piece left at the botom of the hole. The bole made throngh the body is now : iuches by ? inch by $2 \begin{aligned} & 3 \\ & 1\end{aligned}$ inches, and the metal wasted is only $3 \frac{1}{6}$ oz. in weight. The fifth blow cuts the body off the bar. A mandrel is now driven in the hole, and a hlow is struck upon the ands to symare then up, when the body is ready for stamping. The body is reheated and a cold sted mandrel driven into it, when it is at once placed under a powerful steam-hammer. On the anvilof this hammer is the lower die of a pair, the inpression cut in the puir of dies being that of the finished size of forged body. "he heary and suelden blow is given, with foree suflicient to make the motal tlow into every corner of the impression. If this is not done at the first blow, it cannot with safely be attempted by a sceond blow without relrating, as the
surplus metal Inown over bertwen the fares of the dies in the form of a thin din, chillod and blark, and this vould swallow uy itssde the force of a seremel blow and furiaps split oum of the dies. 'The borly is next anmended, seata pickled oit, lin-trimmed, and passed as "tinisher forged."

The hole in the booly is first alrifted ont by means of bong slighty tapered ilrifts, which are drawn through it, and the heste proxheed in this manner is used ats a starting print for all the subsequent oprations. After drifting, fomr loodies aro phaced on a revolving cross-shaperd fixing, the arms of which exarelly fit tha holles in the borfies, while a trimsverse slide carrying two tond-lolders, onc on cach side, turns up both sides of the fomr bodies at one opration. This opration leaves the sides of the borly equal in thickness and true with the comer hole. 'Twedve bodies are next iixed on at rewolving head, and the harred ends are all cut square and true, the stock rods bring treaterl in the same manner. The hole for the barrel is then orillect, tapped, and the lure thrown up by the tapping is smocethed down. The face is cascol, so that when a gange is serewed in it stands exactly true. 'The body is now pheed in a dribling jeg, aun the adjusted face is serewed tight up against a rib in the jerg, while the six axis holes of various sizes are drillect, thro in tach side. The drills rum through hardened stee! bushers fixed in the sides of the drilling jeg. These axis holes, after being tested for accuracy, become, in conjunction with the large hole in the body, the base points for the remaining ojecations.

A number of drilling-machines now operate to cut away the metal so ats to form the sucket to receive the stock butt. The hole is drilled and tapped to receive the serew end of the stock-bolt. which secures the butt in the sorket. Pins in the axis honem in the left side of the body. hold it while the knuckle seat for brecel-hlock is roughly cut out and the seat milled ont square and true. A number of minor milling, brilling, and tapping operations bring the body into the shape and figure reguired, and it is then screwed on, or "brecehed uנ]," to the barrel. The barrel is now placed vertically with the end of the chamber resting on the collar of a plug, which enters and exactly fits the chamber, and the face of the barrel is drawn very tightly down on this collar hy means of plugs prished through axis holes in the body. Small mills are now run on a spindle through the bork axis-hole and finish cutting out the knuckle seat of the block to a positive length from the face of the barel. This length betwern the kmuckle seat of the block and the fitce of the barrel is rigidly maintidinet, so as to iusure that any block will interdhange or fit in any body. In order to insure that this may be the case, each brectheod-up barrel and body is accurately gauged with hardened stee gauge-blocks. Care is also taken to see that the strilier hole, in the face of the grange-hock, coincides with the axis of the bore of barrel to insure the cap of the cartridge being strack in the center. The barrel and horly are now passed on for assembling the action for seconel pront.

A particular form of emery whecl, called a "rim whed," is employed for finishing upsome of the compouent:. Its use has cnabld hamsilled labor to take the place of a high class of skilled workmen, and the work is better finished. For instance, the slot of the hack-sight leaf is tirst drifteel to its true size. By this it is held in a tixing attached to a vertical axis. and both edges with caip attached can he passed aeross the face of the rim whel, maintaining it perfectly true, and griuding the adges of the leaf and cap jarallel to each otber. The sides are clone in the same manner. llaving giver a description of the processes of manufacture for the barrel. and body, it will he unnecessary to deseribe the manufacture of the other components. The method pursued in the manufacture of all is preciscly that followed in the case of the body. . Ill the parts are first of all forged
in dies, the fin is trimmed off, they are piekled to re move scale, and then undergo numerous milling, drilling, and other machine operationsuntil they are brought to the correet figure, when they are viewed, ganged, and either case-hardened, browned, blued. hardened, and tempered, ete., as the ease may be The barrels of carbines and pistols are treated in the same manner as the rifle barrel. In order to insure an absolute interchangeability of the various parts the most exaet system of gauging is a necessity, and the striet view which is enforeed prevents the possibility of any defective parts being assembled in an arm.

The blade of the triangular bayonet is made of tool or sharp steel, the soeket of mild steel, the loeking ring of wrought iron, and the locking-ring serew of steel. The blade and socket are welded together; the blade is tapered under a Ryder hammer, and then rolled out in segmental rolls to the required leugth


Fig. 4.
and a triangular figure. The socket is stamped to size and then goes through several machine operations, such as drilling, milling, slotting, ete. The blade is hardened and tempered, ground and polished, the socket being browned. The locking-ring is well blued, and its serew is ease-hardened. The breeeh-bloek, lever, butt-plate, and iron screws are ease-hardened. This is done by carefully packing them in iron boxes, in whieh they are surrounded with bone cuttings or animal eliareoal. An iron plate is laid on the top of the box. and it is placed in a furnace and raised to a red heat. The length of time that the various artieles are left in the furnace depends on the amount of ease-hardening required; and when removed from the furnace they are chilled in a tank of eold water. They are then eleaned, oiled, and examined by ganges to ascertain whether the ease-hardening has altered their form. The following components are hardened by being raised to a certain temperature and then cooled in oil. They are afterwards tempered loy "blazing," that is ly heating them again until the oil or suet with which they lave been covered bursts into a flame: Striker, main-spring, indicator, extractor, sight-spring, eateh-block spring, trigger-spring, bloek-axis pin, ex-tractor-axis, sight-slide, and sted screws, etc. The following components are lhed: Upper and lower bands, upper and lower bant-pins, guard and band swivels, fore-end hook-serews, sight-leaf, lever catchblock and pin, guard, nose-eat, the rod-holder, wte. They are polished, eleaned with lime to remove all grease, and are then covered with powdered char-
coal and raised to a temperature of about $550^{\circ}$ Fahrenheit.
A milling-machine and a screw-head slotter combined. arranged for taking the short milling euts, is shown in Fig. 3. The box-shaped bead is placed on a planed iron table, which is surrounded ly a groove to eatho oil and chips. The cross slide is adjusted by a serew that projects in front, and squared by a wreneh. The sliding-table is operated for a hand lever and the motion is ganged hy an adjustable stop behind. A vertieal movement is communicat-


Fig. 5.
ed to the knee slide by means of a rack and gear, operated by a hand lever in front, as shown in the drawing. For slotting screws, a sliding vise is furnished, so arranged that the front or movable jaw tightens on the serew to be slotted by means of two springs under the jaw. The jaw is linked so that it is operated wholly by the hand lever whieh feeds the vise. With the machine with the lever vertical motion, serews can also be fed up under the saw whiel greatly increases its eapacity. Countershaft has adjustable self-oiling hangers. Fig. 4, represents the usual form of slotting-machine, supplied with slotting-bar counter-halances, so as to run without jarring. It is driven by a variable erank, with quiek, return motion; has bearing for slotting-bar adjustable vertically, to suit the different heights of work; has eompound tables, with circular plate and eentering stud ; and the feed is self-acting, so as to be perfeetly balaneed. Fig. 5, represents the serew polishing machine, with bearings so inclosed as to entirely prevent the admission of the emery used for polisling the work. This is the peculiar property of this machine, and being specially adapted for polishing small parts of arms, etc., sueh as serews, studs, muts, collars, etc., which are usually finished with oil and emery, its durability is thus seeured. The counter-shaft of this machine has a speed of 450 turns per minute. The machines here deseribed together with those illustrated and discussed in the article-Fabmoation of fire-arms-will assist the reader in gaining a knowledge of light gun machin. ery. See Einfield Brcech-loading Revolver, Fabrica. tion of Firearms, Martini-IIenry Rifle, and Smallarms.
ROYAL WARRANT. - An aet of the Sovereign, authorising, for military purposes, the Secretary of State for War to issue Rules and Regulations for the gridance of the several Departments of the Army. Royal warrants, where the Army is eoneerned, relate to all matters touching the soldier, his pay, clothing,
travelling, fond, etc., and are issuct from time to tinn, by the War Oftice, it Ajmy Circulars, for the observances of atl eormeremed.

RUBBERS.-Strong luavy fihes, gonerally matho of an inferior kinel of siece; they masione from 12 to 18 inches long, from $3_{1}^{3}$ inch to 2 inches on evary side, zand are madre very eonvex or fish-bellien]. lanhbers are only for coarse mamafarturinur purposias, when the object is rather to brightern the surface of the work than to give it any sjueritio ferm, suc: Filk.

RUBBLE.- A common kind of minomry, in which the stomes are irregnlar in sive and shape. Walls faced with ashlare are gomerally packeel with rubble at the lanck. Linbble is of varions kinds, aroerrling to the amount of thessing given to the stontes. Common rubble is built with stomes loft ulnost as they come from the fuarry. Hammer-dressed mablede is so ralled whels the stones are: squared with the mason's hammer; coursed rubble, when the stones


RUBEN AND FORNEROD COMBINATION-FUSES. -These two Swiss fuses are alike in principle, ams differ only in that the larger one las two tiers of burning romposition amd is capable of burning 20 seronds, twier the length of time-as a time-fnsethat the smaller one can lurn. The fuses consist of three principal parts, the hody, A, the inertia igniter, $B$, and the perenssion-fusc attarhment, $C$. A and $B$ constitnte the time-fuse. The former is mate of an alloy of copat parts of learl and tin, while. I3, and C , are of bruss. The body, 1 , is provided on its exterior with aserew-throarl lyy means of which it is comnected with the sleel]; thr ecntral cylundrical part is also provided wilh a serew-thread, into which fits the assembling screw of igniter, I3, which binds all the elifferent prarts of the time-fuse together.

The botly i of the largur fuse (Fig. 1,) is composed of three parts, $\|, b, c^{\prime}$; the upper part o, or the

kig. 1.
regulator, is a ring of truncated form ; it has a priming chamber, and a ciammel on its under side, inclosing compressed menled powder. The chamber opens externally upon a thin part of the wall and internally npon the core. 'The channel is covered by a disk of foil. The rim of the regulator is divided into 50 equal parts, each one representing one-tifth of a second. The part, $b$, has also a chamber anm? similar channel of compressed mealed powder; the chamber opening on top for commanication with the channel of $a$, and on the outside for escape of ens, the outside nopening heing covered with wax. Between, $u$, ambl. b, and glued to the top of, $b$, is a wasleer of thick cloth, with a small hole through it just over opening to chamber of, $b$. The lower part, $c$, bas on its under side a circular clannel of rifte-powder cowered by a perforated disk of colyer-a piece of gituze separates the powder and copper rins: is vertical clanmel filled with rifle powder allows a communication betwern poweler in, $b$, and the rifte powiler in, $c$; separating, $b$, and, $c$, and glned to the top of latter, is a washer of cloth exactPy similar to one scparating, $u$, and, $b$. The outside rim of this piece is also mraduaterl into 50 cqual parts, each one reading one-fifth of a seconel.

The igniter. 13 , consists of the jarts, $d_{,}, f, f$, and $g$; the stock, $d$, has a crlindrical cavitr. at the center of the bottom of which projects as sharp pin-point:
four ramlial lanlas at bottonn of (onvity allows thes gas from irnitere tos coscapes and sporead into a circalar groove aromme the sutsile: of tho storek; a hrass washer separates the laceagonal rim of the hestr] if The stork from the rogilator or part, a, of the borly. It the bottom of the stork there is at cylimelrival
 that in the ieniter, and! also oroverol with at solation of rubber. Tha eylindrial phanger, $:$, bas in the renter of its base a rores which roontaines the fulmi. nate: priming, which is believed to be mate of tive parts chlorate of potasma, onve of sulphirle of antimony, and one of powderid glass, all roalled witls a solntion of robbre ; the crown-shaperl sprines, is stamperl out of a thin pirce of siecl; it bas fourspring leaves; the botlom of the spring is shapued to fit thes base of the plunger and to expose the fulminate in plunger; the screw-('ap, g, elones the top of thas stork, 7; a long throngh its conter allows the cylintrical projection on top of planger to pass through and centers the phonger in spring and cylindrical cavity of stock.

The perenssion attarelnment, $r$, consists of five parts. $h_{0} k, m, n, n$; the hollow (rylindricul stock h has a solid bottom, pierred witla a sustl central hole for pissage of gas from the fulminatiner composition into the shell; this hole is closerl lyy piece of fine netting. or granze, to prevent the fowder in the shell from penctrating fuse-stock or bouly; a sloulder turned on its exterior fixes its position in the fusehole of shell; the eylimelrical phonere, he, has throurl its axis a longitudinal channel. at the liead of which is secured a sharp steel projecting point; forward movement of the phmger, "xerpt upon impact in flight, is prevented by a stecl crown-shaped spring, $m$, similar to the one herctofore described. A hollow cylinder, $n$, centers tho plomger and is long enough to permit the pin point to reach and pierce the fulminate on impact; tle stock is closed by a brass ring, o, resting on a shoulder turned in top of stock.

The action of the combination is as follows: Ipon the inflammation of the eharge, the plunger is thrown back, the spring being compressed, and the plunger, with its fulminate, strikes the metallic point; the gas dne to the conseqnent ignition passes through the openings in the wall of the tube, spreads into the circular groove around the outsite of the tube, ignites the priming of the burning column, and thus canses the inflammation of the section of this colnmu in contact witl it ; inflammation spreads along the

burning prism, and, reachine its origin, is eommunicated fothe second tier (if fuse is set for more than 10 seconds), and so on to the chamber and recess of rithed powder which communicates with the powder in shell. The combustion of the priming of compressed powder produces sufficient heat to melt the thickness of metal which eloses the priming-chamber. and thus affords a lirome ontlet to the gas from the buruing column. From experiments inade in

Switzerland, it is believed these fuses offer entire security against premature iguition, the shells being given the most violent slocks which could be received in transportation, loading, or moading. 'The ignition is very certain, even with rednced charges.

Should the fuse strike any resisting object before the burning romposition has reached the point to which the time-fuse was set, the plunger or perenssion attachment. C, is thrown forward, the spring bring compressed, and the pin point pierces the fulminate at base of igniter, $B$, and the gas rewning has direct access to bursting charge of the shell.

The smaller fuse shown in Fig. 2, has the same general features as the larger ; it differs from it in that it has but one layer of eomposition, which burns 10 secontis. The body, $\lambda$, is in two parts only: the regulator with its circular groove of eompressed mealed powder has on its outside rim 50 equal divisions represeuting fifths of seconds. The lowr part of the, $b$, covers the percussion attachment, $C$, and has running vertically through one side a bole filled with rifle-powder ; this is the channel of communication between burning composition of timefuse and bursting charge of shell. The conical ontside surface of the igniter, $B$, is roughened to facilitate turning of the assembling screw which binds the different parts of the fuse: by looseuing and tightening this screw the regulator is set to the required time. The different parts of this fuse function as those of the larger fuse. See Fuse.
RUB-IRON.-A plate on a carriage or wagou-bed, against which the fore-whecl rubs when turning short, is called a onheel-guerd phute in a field artillery-carriage: one is placed on each side of the stock.

RUFFLE.-A low vibrating sound, which is beat upon the dram, but not so loud as a roll. It is generally performed in paying military compliments to general oflicers, and at military funerals.

RULE BRITANNIA.-One of the national anthems of Great Britain, which has heen described by Southey as "The politieal hymn of this country as long as sle maintains her political power." Its original appearance was in a mask entitled difred, the words by James Thompson, the poet, and David Matlet, and the music lyy Dr. Arue, which was performed for the first time on Aug. 1, 1740, before F'rederick, Prince of Wales, at his residence at Cliefden. The words of the ode are believed to be the composition of Mallet. Alfred was altered lyy Mallet in 1751 , when three stanzas of Rule Britinuin were omitted, aud three others, by Lord Bolinglooke, substituted for them; but it is the ode in its original form that has taken root.

RULE NISI. - In the English and Irish courts of law, is a teehnical term denoting the first step in an interlocutory application to the Conrt, such as an application for a new trial. The usual coursce is for the party who takes the initiative to move, er parte, for a Prule Xisi, i.e..an order of the court that something shall be done, unkss the opposite parly, within a certain times, nsually three or six days, show cause, i.e., seme grod reason why the thing proposet should not be done. When the party whains a rule nisi, be sends a copy of it to the other party, whomust then, at the time dppointed, show canser, aind if the camse is decmed sullicient, the rule is diseharged, $i .0$, the applieation in refuscel; if the canse is insullicient, the rute is made absolute, i. f., the opposite party is bound to (d) the thing asked, otherwise he will be liable to some disadvantage or to imprisonment areording to the nature of the smbjece matter.

RULES OF FIRE. - Those for ordnance which fire horizontally, resuit from the knowledge of the mean temeetory, which, like the mean trajoctory of the musket, conprises ald the canmes of errom whith ran mon]ify the fire; bu: the 1rajedory of artillery projectikes being more renstant in its form. the resilts are more
 ber of the arm inereatus, wach particular trajectory approaches more nearly the meche trajeton! $\%$.

When caniater is fired, the balls, having broken the case, escaje in the form of a cone, and striking a gainst cach other, and against the sides of the piece, diverge more or less accordiug to the distance; but the greater part of the balls are found to be near the center, and the rules of fire are still based upon the knowledge of the mean trajactory.

RUMP PARLIAMENT. - in order to bring about the condemation of Charles I., Oliver C'romwell, on Dee. 6, 1648, sent two regiments, under the command of Colonel Pride, to coerce the IIouse of Commons. Forty-one members of the " Long Parliament" who were favorable to accommodation were imprisoned in a lower room of the house, 160 were ordered to go home, and only 60 of the most violent of the Independents were admitted. The clearance was called I'ride's P'urge, and the privileged members ever afterward passed by the name of the Rump, forming, as it were, the fag-end of the "Long Parliament". This assembly, in conjunction with the army, brought about the arraigument, trial. and condemnatian of Charles I. Five years later the "Rump Parliament." forgetting that it was but the creature of the army, attempted to make a stand against certain demands on the part of the soldiers. The result was that Cromwell filled the Ilouse with armed men; the speaker was pulled out of the chair, the mace taken from the table, the room cleared, the door locked, and the Parliament declared to be dissolved. Supreme in the three Kingdoms, Cromwell convoked an assembly which assmmed the title of Parliament, and acquired from the name of one of its most prominent members, a leather-seller, called Praisegod Barebones, the name of the Barebones Parliament. The Barebones Parliament, after subsisting five months, was dissolved, and Cromwell, raised to the dignity of Protector, convoked two Parliaments, and dissolved them for refusing to sanction his measures. On Oliver Cromwell's death, and Richarl's succession to the Protectorate, the military Maleontents, coalescing with the Independents in Tichard's Parliament, declared the expulsion of the Rump illegal, and restored that Assembly to its functions. With the revival of the Rump, its quarrel with the army revived; and the troops, again surrounding Westminster Hall, expelled it on Oci.30, 1659, a provisional government of othcers assuming the direction of affairs. But the general dissatisfaction having led to a coalition between the Presbyterians and Royalists, the army, unable to earry on the goverument, was reduced to the necessity of once more restoring the Cump, which had been twice ignominionsly expelled. The advance of Monk, Lowever, with the army of Seotland led to a general cry throughout the country for a Free Parliament. A number of the members who had been excluded by Pride's Purge reappeasing in the Ilouse. placed the Independents in the minority ; and on Mar. 16, 1660, the despised and derided Rump at last solemmly decreed its own dissolution. The most prominent nembers of the Rump Parliament were Vane and Hazleric.

RUMSEY GUN.-A breech-loading ritle having a fixed chamber closed by a movable breceli-hloek, which slides in the line of the harrel by indirect action, being moved by levers from Jonow. The arm resembles in its eneneral features the Winchester. Its pecoliarity consists in having wo magazinetubes, one on each side of the barrel and bencath it. From these the carlridgesare fod allernately into the corresponding eariors, whicharemowed up and down by lewers operated by a sliding-rod. This rod is drawn to and from the operator by two thambpisces, one of which, for the right hamb, is within the trigger-guart, and the other fies along the barre in a position readily acessible lye the fingers of the left hand when supherting the picer in the natural position of liring. 'l'he mechanism for commmicating this rewipmoal motion to the carrier levers, consists mainly of an osciliating lever lying hetween the other
two, und its contections in the form of springs, stops, aml pins, which ure dexigncal for diaecting the stroke on cuch of its sides alternatoly.

RUN.-The greatost theree of ewifthess in mardling. It is executed on the same principhes as the deuble-quick, but with greater spucel. In lingland. the Junning lrill forma part ot llae (raining of at soldier. It commes malor the heme of gymmatio training, sum is ordorod to be carricel out in nill infantry regiments. The otyouet of it is to make the mon supple, active, mad cupable of boring fatigue. On alternate days the men rmath witmsandaeomterments.

RUNNING FIGHT.- $A$ battle in which omw [harty flees and the othor pursues, but the party tleeing keeps 1 ph the contest.

RUNNING FIRE. -I comstant dire of masketry or cambon.

RUNNING FUSE.-The ruming-fuses most used are those known in Dingland as Bichford's fust, and in this conntry as shefity-fuse und Toly's fuse. 'The common fuse ordimarily nsed in hasting with powder is of this kimd. It consists cessemintly of a colnmm of tine manpowiler enelosed in Ilas, hempl, or (onton, and mate (t) with dillerent coverings aceordiner to the use to which it is applied. Whan intendedfor immediate use on lislat work in dry groumd, it is unprotected by alditional covarings. Whacn intembed for use in wed grommd or undar water, it is covered with varnished tape or guta-perchat.

These fuses canse ignition hy conveying flame to the charge to be exploded. "liey are somewhat macertain in their rate of harning, but average ahout once yard in a minute. 'lase ordinary varictices mast be kept in atoon, wry place, and preserved from contuet with greate or nil. The gutta-purcha-covered varicties are liable to become injureal by keeping. from the deterioration of the guttioperchat Before using, care mast be taken that cracking of the ent-th-percha has not oceurred. They shonld be able to resist water for twenty-four hours. See fiuse.

RUNNING THE GAUNTLET. . I punislument formerly enforced in the English Nitvy, and which was intlicted also on soldiers. The mode of procedure was as follows. When a soldier was sentenced to ran the gamatlit, the regrinent was paraded in two ranks, faeing one another, eath soldier having a switeh in his hand, and as the criminal ran between the ranks maked from the waist Hpwards, Ju wats lashed by the soldiers. While he ran the dram beat ut euchemb of the ranks. Sometimes he ran three. five, or seven times, aceording to the natare of the oflenee. Itajpily such a barbirous mmishment no longer disgraces that Irmy or Navy.

RUPTURE OF SHELLS.- When the charge of powder contained in at shell is intlamed, the gases developerd expand into the cavity, the expinsive foree increasing and producing rupture when sulficient to overeome the tenacity of the metal. lapture will take place in the direction of least resistance, or following the least thickness of metal. If the shell be suluriéal and bomogeneous, and the cavity also be spherieal and concentric with the exterior, the surfice of rupture must be composed of linos normal to both the interior and exterior surfaces of the shell.

Let $l$ be the radins of the exterior, $: m$ d $r$ the rat dius of the interior surface; 7 , the lomitity of the metal (omposing the shell, and $f$. the presisure of the gase's on a mit of surfice refuitul to overeome the tenacity of the metal.
let "be the rulius of thr coirde in whiel the surfice of rupture interscets the interior surface of the shell, or the interior circle of mpture. The ellietive pressure cexrted an the aren of this circle to produce rupture is equal to the sum of the components of all the nomml pressures, ating on the shorisal senment of which it is the base, taken perpenticoulary to the plame of this circle: therefore $\pi p{ }^{\text {th }}$ is the pres. sure of the gases which tende to bratk the phere.

Under this supposition, ruphure should fullow the
surface: of the fruatum of a cone of whicle this eircole is the smatler base. '1"he surface of this frothont is


 $r$; its surface is therefore efflall to $\pi f^{\prime} r$. Thas surfacto of the lareser eome, whose gencratrix is the: ralios of the extarior sphore, lecing to the sumallor as $/ L^{z}$ is to に" $r^{2}$, will he $\pi r^{\prime} r \frac{-2}{r^{2}}$; and their didference, or the arese


$$
\pi r^{\prime} r\left(\frac{\mu^{2}}{r^{2}}-1\right)
$$

If the pressurf of the gases arterd normally to the surface of rupture, or in the direction of the tenacity, this surface maltiplied by 9 would give the total resistance, to which the pressure of the gases sloundel be c(gual: lout it acts obliffurly, sutl to proxhere ruj]ture shomld be increased by a patantity which depends apon the angle which the jressure makes with the normal. Denoting this fuathtity by d, we slall have the relation.

$$
p \pi c^{\prime 2}=T \pi \prime^{\prime} r\left(\frac{i^{*}}{r^{2}}-1\right)+a_{i}
$$

or,

$$
p=T \frac{r}{C^{\prime}}\left(\frac{n^{2}}{r^{2}}-1\right)+\frac{d}{\pi v^{r^{2}}}
$$

In this expression, the value of $d$ is unknown, and cannot be practically determined, but it evidently diminishes as the direction of the pressure approathes the normal to the surface of rupture, and when they coincide, $d$ becomes 0 . At the same time ('increnses. and the value of $p$ diminishes, mint ('becomes erpal to $r$. its maximum value. Therefore, the section of easiest rupture of thollow sphere passes througla it great circle, and the pressure whiel is in equitibrit, with the tenacity of the metal, will be given by making $(!=r$, and $d=0$, in the foregoing formula, which will then become,

$$
p=T\left(\frac{R^{2}}{r^{2}-1}\right)=T\left(\left(\frac{R}{r}\right)^{2}-1\right)
$$

When the pressure is less than this value of $p$, the shell will resist rmpture; when grater than this valne, rupture will take place.

The required pressure being known, the corresponding density will result from Noble's formula,

$$
p=14.63 \frac{a}{1-a d}
$$

this density multiplied by the weight of water that will fill the cavity gives the weight of the burstins charge. Sce Projectilex and Shells.
RUSE. - -1 trick or stratagem. The suceess of it ruse depends mainly on the Commander's knowledge of human bature in general, and of his oppoment: charater in partiontar. Its object is to der"ive Ins enomy as to your designs. If you desire it grneral setion, sprad reports of the wablues of your army and alयe: to avoid one. If the contrary put on it bold face, aml appear slesirous io cmatige. The cint julowment of rusc or stratatem is particularly applicable to operations having for their object the fore iny of any long line which it is impossible for an ent emy to praard it all proints, such is mountain rinces. rivers, entrumelned lines, etc.

RUSSELL IN TERRUPTER.- In cleetrical intorrupt ar devised hy lieut. A. II.Rusinell.Ordnance Corpsi. s. Army. for the Schultz. chronoscone. 'The change comsists in replacing the defached mercury inter. rupter now in use by a light metallic pringe which is pressed against the inning-fork on the iuncr side of
one prong, making the fork its own interrupter when the electrical curreut is passed through it. The drawing shows the new device. $B$, is a brass plate which is fastened to the table by the screw, $l$, working throngh the slot, $g$, into the base of the clamp. This screw should have a milled head, as at, d'. Rivetcel or screwed to the plate $l$ is an elastic strip. $e_{8}$ fitted with a screw, or simply with projections as at, $f^{\prime \prime}$ to hold the spring. s. A screw, $t$, works throngh the plate, 13 , against the strip, if therehy raising or lowering the end of the later. By this means the spring, x, for which a piece of watch-spring may be used, cau be pressed against the platinum point, $p$, fixed on the inner side of the comnterpoise, $m$, of the tumingfork. The fork and the spring are connected with the opposite poles of a galvanic battery, and the current is mate and broken at. $\mu$. by the vibration of

the fork. For adjnstment the plate, $B$, is slipped under the table and fastened by the serew, $d$, so that the spring, $x$, is just ont of conitact with the print, $p$. The wires being adjusted, the circuit is completed att, $p$, by a turn of the screw, $t$, and the electro-magnets becoming magnetized draw the prongs apart.

RUSSELL MAGAZINE,-This magazine, devised for the lloterkiss gun, is intended to provide for one continuous supply of the cartridges by the insertion of tin boxes containing five cartridges each in the chamnel of the butt-stock. Each box contains a spring, which assists gravity in producing a rapid descent of the eartridges. The fecding apparatus is a combination of a ratchet and spiral spring. To the inside of the magaziue-tube springs are secured by solder. The oppo ite side of the tube is slotted for the reception of the sliding-bar or ratchet, to which springs are attached in a similar manner. Pivoted to the har is an arm at the front of which is a projection, over which hooks a corresponding projection on the breech-bolt. When the breech-bolt is withdrawn the arm and ratchet are compelled to move with it until the projection rides under a beveled shoulder at the end of the groove in which it slicles, when the arm is released and the magazinespring returas it and the ratchet to their first position. It will thus be seen that the ratchet is moved automatically, being drawn back by the bolt and returned by the magazine-spring. When the ratchet is withdrawu each spriag connected with it passes behind the head of the cartridge next iu rear of it; when returned the cartridges are carricd forward, the od replacing the 1 st, whelh will have entered the chamber, the 30 the $2 d$, and so on. The magazine carries 9 cartridges.
RUSSELL MAGAZINE-GUN.-This gun devised by Lient. A. II, Russell, Orduance Corps, U. S. A., contains many features of novelty. The breechclosing bolt operates by a handle preferably at the side of the arm as in other bolt guns, but instead of a partial rotation of the bolt in focking and unlocking, the force applied to the handle is at all times in a direction nearly parallel with the bore of the barrel. The locking is effected by a cross-shaft in


This breaks contact at. $p$; the prour hice back and thas bolt a little longer than the diameter of the comtinues to vibute, the romblat being made and hroken at every vibration a battery of four bunsen's cells works the interrupter. The advantages of this device over the old interrupterare as follows: 1. The adjustiments are execedingly sinate, and they reguire bat lithe time, while with the detached mercory interrupter they are very delicate and dillicult. 2. The manipatation is very shmple and rapint, a mero turn of the seresv protucing vilration. 3. The use of the mereury cup is entiredy avoided. A. Extra alectro-magneis for the interripter are dispensent with, and ibe strength of the hattery can be greaty refluech, 2. The arrangement is cheap and simple, and not casily teranged This internpter has hem in constant inse for several gears, and it has hoon practically and successfully testerlwith the machine.
tha holt a little longer than the diameter of the bolt, having cam-shapod pols. which extend into scats in the receiver. In opering the brecel these cam projections are thrned by the first movement of the liandle, which is a pivial movement, until the bolt is macked, when a farther backward movemont of the hamdle qives a powerfin eam action to start the eart ridge, and at the same time slighty starts the firing-pin backward. The tinal chosing movement has the same powerfal action to soat the cartringe in its chamber. The magaze feeds the cartridge gidewise, cilher up through the bothom of the receiver, as in the lee gam, or at the side of the ree ceiver, and in the lather case a swinging pasher forces the upper one of the colmm of cartridges sidewise into the receiver in fromt of the loolt. Lient. Russell has invernted a very simple metaltic feed case.


constructed of a single piece of bent shert metal, which will centrin just enough cartrideres to till the magazine of this gun, from which the maknzine ent lw recharged as rapidly as a single emrtridge combl be phaed in the receiver. "These ford cases are lithe if any more costly than pajer boxes, atmat are to he theown away when empty. (enpt. hivermore. (". S. A., has jointly with lional. Ruserll, made improvemonts in magazine arms, and has also invented a series of breech movemants for smallonrms. Sor Mhaczine-que.

RUSSELL PRISM RANGE FINDER. Thin instrument is shown in perspertive in Fir. 1. A is the" prism, 13 the frame; $n, b, r, d$, and $r$ are the ateretures for oherrvations; $l, l, l$, the clampas which retain the prism in place; and $m$ is the ring to which the string may be uttached. Nour each aporture is shown an arrow-mark to indicate approximately the directions in which the observer shonhl look into tise prism. The apromere at "has two of these marks, the righthand one for use in comnection with the aperture 10 and the lefthand one with the : aperture $e$ is used in comection with $d, b$ with $a$, and


Fig. 1.
$c$ also with $a$. A square, marked on the surface between the apertures d and o, indicates that they correspond to a right angle, and the acute-angle mark between the apertures $c$ and $a$ indicates their nse together for laying off anacute angle. The apertures $a$ and $b$ are used together for laying ont an obtuse angle. No ! andle is provided but the instrument is to be graspad by the sides between the thamb and forefinger, usually of the hand opposite the object seen by retheetion. The tip of the finger should usnally cover the aperture opposite to the one into which the ohserver is looking, in order to cut off colored ravs which might interfere with clear vision. For ins-


Fig. ${ }^{2}$
tance, while looking through a and obtaining the rettection through b, the obserwer should cover $e$; and while obtaining the reflection through $c$ he should cover ; white looking into $d$ he should cover $n$, de. The proper image to be selected is emsily fomm, as it remains steady, while other images which may be seen move very quickly, when the prisin is thened horizontally. The principles of reflection are the same as for the Weldon prism.
Thare triangular prisms might be substituted for the one six-sided prism, and with this arrangement the method of observation might be learned rather more readhy; as there would be no need of covering up the apertures, while the field of view would be somewhat eularged. Fig. 2, shows such an arrangement: A. B, and Care triangular prisms mide on the Weldon principle- $A$ for a right angle, 13 and 0 for acute and obtuse supplementary angles respertively. The frame D supports the ilaree prisms. It is doubiful, however, if any real or very great advantage would here obtain over the six-sided singleprisin form. See Nolan Range-finder, I'ratt. Ringefinder, Telemeter, Hatkin Range-finder, and Heldon lange-finder.

RUSSENSTEIN SYSTEM OF FORTIFICATION. -This systan dowedy follows lagan. Only the bations are: very simple. Sirong reverments are given to the "schatis.
RUSSET LEATHER. When new, rasset leathrer (quipucent wouldlow striking, but probsably would mot aceord wedl with the plammess of our army miforms. Thay would ler rather conspicusus in the tiod and easily diseoloremb, prearenting anapearance the reverse of military spruerness. When repaira ure mate the now parts would form a atriking contrant to the older ones-sinco there is no blacking in this case to rember thom miform in color. When n-w, russet lesther woud furaish handsome horse remipments, but the stains ine ident upon the swating of the animal, rain, and the spattering of mus could not be casily edraced. Any endeavors to dean such harness would probably rosult in leaving aroas of a murky redhish-frown color.
The question of whether the Army shonld be supplied with oak or hembeketanned leather has been agitated from time to time during and since the war. Thre government still dings to wak, and mearly all its specifieations call for oak-tanned leather, cotwithstanding the fact that the greater gart of the leather ased during the war was bad hembors, rendered more worthless by attemptsto make it imitate oak leather. A large portion of the 'ather sold to the government sime the war has dembthess been hemlock. Of late yours the methods of tanning with hombek bark have improwel with astomishing rapidity, and now it is the chief material used. Juring the past fow years hembeck leather has risen greatity in the estimation of eonsumers. There can be mo doubt that as now made it is a valuable product.

There are few Army oftieers who knoss anything about leather, and it is not possible for Army Inspectors, no mater how greal their egotism may be, to detect imitations that defy the skill of expert tanners themselves. Lieutenant D. A. Lyle, U.S. Army, in a report made in 185\%, urged that a mixed commis. sion of Army ofticers, civil or mechaniral cngineers, and practical tamers be appointed ly the government to make a scientific investigation into the relative merits of the several tamages and to determine detinitrly, if possible, for what purposes the different tannages eould le advantageonsly used. These points should be settled in time of peace. when there is no pressing need for large supplies. See Marness and lifather.
RUSSIAN ARMY. - One of the chief Continental Armies of Europe. Early in 1850, a new Bill was sulhmitted to the Emperor and the Imperial Conneil for the reorganization of the Russian Army, and by an L'kase dated November 16 of the same yar, it became the military law of the country. This liall lays down, as a first principle, that the defense of the lussian territory is a sacred duty incumbent on every Russian subject without distinction of class or position. Military service is therefore obligatory, and sulstitutes are not adnitted into the ranks of the army. thl young men who have attained the age of 20 are liable io be drawn as Conseripts. A drawing by lot takes place to decide who shatl remain at home, after madergoing six week's training. These men, for 6 consecutive years, form part of the reserve. The duration of military service is fixed at Is years, divided as follows: Foirr years under the Colors: 1 wo on Fourlough; nime in the deserve. with the exception of the 1Iorse Artillery: Cavalry, and Frontier (inards. The defenee of the comentry is provided for hy regular troops or Land Forees and Niational begions. The Land Forces are composed of -1. The active army, completed by the annual ('ontingents: $\underset{\sim}{2}$. The Reserves, composed of time-expired soldiers, called into the ranks in time of war; 3. The Cossacks: 4. Specially organized troops. The Vintional Legions are composed of all the men not incloded in the regular army, but eapable of
hearing arms, from the age of 20 inclusive up to that of 40 . They are divided into two classes:-1. Men destined to fill up the vacancies in the ranks of the army, or to complete the Reserve in case of pancity of numbers ; 2. Men forming the Duots of the Legions. There are besides two classes of volunteers admitfed into the army: young men who have completed their education in public shools, amd those who have formed or still form part of the Legions. The former are bond to serve in the active army for 3 or 6 months or 2 years, according to their education and proficiency. Those who have, on drawing for the conscription, been exempted from joining the Colors are incorporated in the National Legions, and are compelled te go throngh an annual course of training. Other classes of individuals may also be exempted from service in the active arury, such, for instance, as fathers of families: but they are liable to be called out in case of au insufficient supply of Conscripts.

Russia has a male population of 36 millions, and the number of young men who amually attain the age for being drawn in the conseription is set down at 600,000 . Estimating the mortality of the men under 4 per cent., and those not on active duty at 2 per cent, the defensive forces of Russia have been computed as follows:

Age.	Active   Army.	Reserve.	Legionaries.	
			$\begin{gathered} \text { 1st } \\ \text { Series. } \end{gathered}$	$\underset{\text { Sories. }}{\substack{\text { 2ndl }}}$
21	200.6001	...	200.006	.
22	192,000	$\ldots$	196,000	...
23	184.000	...	192,000	...
24	$17 \% .000$	...	188.0011	...
$2 i$	170.000	...	184,000	$\ldots$
26	168,000		180,000	
27	,	157,000	,	176.000
28	...	154,000	$\ldots$	172,000
29	...	151,000	...	16:9,000
30	...	148,000	...	166.0016
31	...	14.5,000	...	16i3,000
$3 ?$	...	142.000	...	1860,000
33	...	139.000	...	157,000
34	...	136,000	...	154,000
35	...	133,000	...	151,000
36	...	...	.	2\%5,000
37	...	...	$\ldots$	209,000
38	$\cdots$	$\ldots$	...	263,000

Naking, without counting the time-expired soldiers, 5,806,000 men. The active army, it will ]ee secn, is set down at $1,086,000$ men. In time of peace, however, this number is not kept under arms, for although in special branches the duration of the service is fixed at 7 years, the Infantry is generally discharged during the last 2 years of service: so that the army may ratly be set down at 800.000 men under the colors, and 3m,000 more on furlongh. Is an allunct to this army of $1,000,000$ of men, the
 of whom may be called upon in fill aj) the ranks. The reserve se composed of $1,305,000 \mathrm{men}$, and hy the time this part of the law romes in forere, they will he all good, solid troops, having passed through the ranks of the army. The serond class of lemionaries, as shown in the above hable, is composed of $2.2 \pi 5,000 \mathrm{men}$, all of whom will be trained in the new of arms when drawn hy the conseription, and Hey will count amengst them mearly half a million of time expircl tronps. The Russinin pace footing is catimated to have been inereased by ahout 50, ofio man in 18\%.5. The treops reinforect are chactly the Cavalry and Ilorse Artillery, who have becel piut on at permanent war fooling, and, beiner mostly slatjonwalong railway lines in the western provinces, are retady for immediate action in the tichl.

The liussian Tarritory is divided into 14 military districts; the rountry nccupied by the Cossacks of the Don forms a separate district, with a special organization. The permanent army is divided into $4 \pi$ divisions of infantry, 7 brigades of rifles, 10 divisions of cavalry, 50 lrigades of ficld artillery, 20 batteries of horse artillery, 5 brigades of engineers; the numerical strength of the whole active army may he put dows in peace time at $3: 3,043$ officers and $735,539 \mathrm{men}$, and in time of war at 43,355 officers and $1,358,672$ men. The infantry is eomprosed of 12 regiments of the guard, 16 regiments of grenadiers, 4 Caucasian regiments, 4 battalions of rifles of the guard. 20 of riftes of the line, 4 Caucasian and 4 Turkestan rifles, and 148 regiments of infantry, giving a total of 196 regiments of the line. These are massed into 3 divisions of infantry of the guard, 4 of gremadiers, 40 of infantry, and robrigades of rifles. The division in the Russian army is the highest unit, there leing no Corps didrmée except in the guards. Each division of infantry is composed of 2 brigades, each brigade of 2 regiments of 3 battalions each, with the exception of the 2 brigades of the 4 Cancasian divisions, which have 3 regiments. Each battalion is composed of 4 companies. The cavalry is divided into active cavalry and reserve squadrons. The active cavalry comprises 10 regiments of the guard, 77 of the line (including 21 of Cossacks), and 4 of Caucasian troops. The guards are composed of 4 regiments of cuirassiers, 2 of lancers, 2 of hussars, 1 of grenadiers, and 1 of Cossacks. The Russian cavalry is divided into 20 divisions viz. 4 of the guards ( 3 mixed and 1 division of Cossacks), 14 of the line, and 2 of Caucasian cavalry. Each division comprises 4 regiments divided into 2 hrigades: 1 of lancers, 1 of dragoons, 1 of hussars, and I of Cossncks; each remiment having the same number. Thus the 1st division contains the 1st hussars, the 1st lancers, etc. Each brigade of cavalry of the guard has 2 regiments; the $2 n d$ division has 3 brigades. Each regiment has 4 squadrons, with a strength of 224 combatants.

The reserve squadrons, whose duty in time of peace is to train horses and provide their regiments with them, will in time of war fill the vacancies produced by the rampaign.

The ficld artillery is composed as tollows :
 Batterles of mitrailleurs

## Giving n total of

91	$\cdots$	752	4	"	1504	
$\underline{17}$	"	376	$1 \cdot$	،	768	-
88	*	2.256	${ }^{6}$	4	56.50	"

Each brigade of foot artillery is composed of 6 batteries ( 3 batteria's of 9 -prs, 2 of 4 -prs. and 1 of mitrailleurs). The horse artillery of the regular army is composed of 21 batteries and 5 batteries of the guard, 2 depot and 1 instruction batteries; each hattery is formed of 6 gims. The organization of these batteries into brigades has been clanged with the exception of those of the guard, which are still formed into 1 brigale. 'lliroughout the rest of the army. 2 batteries are attached to each division of cavalry, and come under the immediate command of the Dijvisional Commander. These will, however, he soon increased to fibateries of the guard ( Cossack), and 2s batteries of ordinary horse artillery ( Cossack), of 8 guns each. 'There will be hesides 14 Cossarels batteries in reserve. The 5 hrigades of enginecty comprise 1 batalion of sappers of the guard, 1 of gremadiars, and ! of sappers and miners, total. It hatalions; ti half-battaliens of pontoon train. There wre at the time of the reorganzation of the army 3 classes of troops which chit not belong to the antive army: (1) the Lucal or sedentary Tromp. (25 battalions of carrison infantry, and 18 batalions of infantry of thi line): (2) the lutwior service Troops ( 71 Datalions) : and (3) the Rescrve Troops ( 72 l3attalions of the lime, 10 of riftes, 5 f spuadt:ons of cavalry, 6 hricades of artillery, abl i hattalions of sinpp(ri). In the milit:Iry districts of linssia in Asia, the present organizationi has bern matintained for the

Jocal troops; but in theoblarmistrictsthey haveloen reorganized, and form now 2: regiments of 4 companies cath of garrison infantry, and la9 matralions of depot tronos. When the army in mobilised, the strengh of the depot hattulions is raised to 1000 ment eath ly means of the men of the lat dass of the militia. On war breaking out, the dud class of the milita will be formed into lof infantry batalions of 4 companiry (ach athl will a menimal strengtl of forg men. The thaty of thes. lathalions will be to kew u! the eommunieations ant grarel the rear of the army in the fiedd and to garvison the towns. 'The Coseack trompare divided intor regiments and sentrias (sections of 100 ment); the strengith of and regiment varies aceorling to the mamber of sotnias callad ont. "The whole male population is obliged to serve. By ath order issued in 18:\%, the cossades have been formed ino a berly of men perfectly orranizel in time of peatere, casily assombled and added to tha cavalry divisions in time of wat. Under the new arsangements they will sujply 62 regiments and 22 batteries in time of war. In peatere time they have 21 regiments and 8 horse hatheries muler armis. The strength of the Cossackes lies betwern 50, ofoo and 55,000 men , with a reserve of 30,000 more.
Thue supreme command of the lenssian army is restel in the Eimueror, with a War Ministry ander him. This Midistry is divided into bureaur, indudinge a war council of promanme committees, who dend withall the tednaical questions appertaining to the different branches of the service. The mode in Russiat of oflicering the army does not differ much from that of other Continental Armies. The young men who deeide on a military career proceed at the age of if to one of the military schools. Whenee, ath the age of 19 or 20 , having fassed an examination, they obtain an ensigney, and thenfollow the varions grades withont further examination. A seeond cap)tainey is reached in about 8 years' service, and then merit can gain the epmulettes of al Gencral in a very short time. Candidates for the Staif have to pass through the Nieholas Stafl' Acadrmy. 'The Russian infintry is armed with Berdan brecelo-loaling rithe.

The chvalry of the Russian army consists of two divisions of cavalry of the Cinard, severn of the Line.

Authorized Wiar Establishment of a Russian Cavalry Regiment.

	$\begin{aligned} & \text { liegi- } \\ & \text { ment. } \end{aligned}$	$\begin{aligned} & \text { Syusl- } \\ & \text { ron. } \end{aligned}$
Oltieer Commanding	1	
Lieutenant Coloncls..	$\because$	
Regrimental Adjutant.	1	
". Eaymaster	1	
" Quartermaster.....	1	
". Instructor at Arms.	1	$\ldots$
Oliecre commanding Non-Combatints	1	$\ldots$
Trumpet Major.	1	$\ldots$
Senior Surgeou	1	$\ldots$
Junior Surgeon.	1	
Veterinary Surgeon	1	$\ldots$
Chaplain	1	
Stuadron Commandir.	1	1
Captain.	4	1
Staff Captain.	4	1
Lieutenants.	8	:
('ormets..	\&	$\cdots$
Serior Scrgeants Major	1	1
Cadets	-	$\stackrel{1}{2}$
Junior Sergeants Major	14	4
Non-emmissioned Olticers.	518	14
Trumpreters.	118	4
Privates...	$6{ }^{\text {difi }}$	(in
Ollicers surremts.	28	7
	841	207

and one of the Cancasus; the first division of the: Guarld eontains si wiol regimemte, that of the Cauchans four, all ohare six reximents. lian is composen of forar sematrons; than there are fiti reviments. or 20.4 equadrons, of regular cavalry in tho army. With the axeqption of thase of the (inaraland of the
 of Iragoonco two of tamers. mod 1 wo of hassars. All dragoons, and the rar rank in lonssar and lancor regiments, are urmed with berdan's breach-londing rarbine. (brirassidrs, lumsars and laners, and all
 hrech-doading revolver. Dragomandare armed wita a long rille of the Kirinker converted pattern- eventhally they will be servel gut with leretan's they carry sia rounds wach. All moment troops wear a sabre, varying in shajn and waight for the diflerent tramehes. There are iwo rextah) ishments for cavalry, namedy, the Witr, and the Deace; in the fommer there are 1208 men pres spuadron, in the later 112 men.

The gemerally recornised constitution of a brigade of artillery is four batialions of eight grans atach. To each clivision of infantry there is attardat a brigate. consisting of two !-pomaders and two d-pounders. The Crenadier Arlilhry lBrigade of the Cancasus has three monntain butteries in addition, and 19 th, 20th, and dast Cansasian Divisions have an extra f-jomender allached to them. The llorse Artillery brigade of the Guard consists of tive $t$-pounder hatteries. The other seven Horse dirigates hawe but two batteries of the same caliber: Herce are thas

$$
\begin{aligned}
& \text { 4. Batteries, rilled } \quad . . \quad \text {... } 9 \text {-jomonders, } \\
& 105 \\
& 18 \text { Jorse Batteries, rifled } \\
& 4 \text {-pounders, } \\
& 3 \text {-peminders. } \\
& 4 \text {-pounders, }
\end{aligned}
$$ and it is intended to raise 50 mitrailleuse hatteries. The guns are mostly bronze, Limpis brecch-loalers, the weight of the 4 -pounders heing 6 ( 6 , ., of the 9 pounders, $12 \frac{1}{4}$. The smaller gin carries 130, the larger 120 rounds of ammmition. The fuses are mostly pereussion; the time-fuse is, however, being rapidy introduced into the service. The harger gun is frequenty used as a siege piece, its projectile weighing 30 lbs . All non-commissioned oflicurs and gunners are armed with short dragoon sword and Treech-loading revolver, for whicla they carry 12 rounds in a small pouch.

The Corps of Engineers in the Russian army consists of "Sappers ind Mincts" and "l'ontoniers;" Hue former include engineer field jarks, siege parks, telegraph parks, whilst the latter merely the bridging corps. There are 11 battalions of sappers, and six halfi-bathations of pontoniers; cach of these latter carries sufticient pontoon boats to make a bridere 700 feet in length. As in the infantry, so in the sappers. each battalion is composed of fonr eompanirs: the peace and war establishment being entirely distinet. The Infantry of the Russian army comsists of three divisions of Guards, four of Gremadiers, 41 of the Line, and seven brigades of lifles; each division is eomposed of four reginemts, those of the Guards mmbered aceording to their division, those of the Gremadiers from 1 to 16, whilst those of the Line rum from 1 to 164: the regiments of regular Ritles are styled numerically from 1 to 20 ; the brigades of Tirkestan and the Cancasus have territoriad designitions. Each regiment is composed of three battations except in the case of those from its to st inchusive, which have four battadions. These are again subdivited into tive companies, four of the Lime, one of Riffes-Whese latter companies, on sersice, are amalgamated and form an extra hattalion styled the Combined Rithe Battalion. Battalions have four separate establishments, viz.: -1 . The Wiar Establishment. 2. The lnerensed Peace Establisdment. 3. The Peace Establishment. 4. The Cadre Eshablishment. The total strength of the Russiau Infantry is 188 regimants, consisting of 580 battalions, with 32 rifle battalions in additiou. making a total of 612 battalions of the regular army; but

there are also 48 frontier battalions of irregular troops. Eventually the whole of the infantry will be armed with the Berdan rifle, which as yet, however, has only been served out to the division of the Guard, and Grenadier division, and Rifle battalions. The Krinka and Earle rifles now are the prineipal weapons in use. Every soldier carries, in two pouches, 60 rounds. Forty rounds in addition are carried by the regimental train, and 60 more by the army reserve train. Non-commissioned ofticers of line bat-

Authorized Establishment of a Battalion of Sappers and Miners.

	Battalion.	Company.
Colonel Commanding.	1	...
Lieutenant Colonel...	1	
Battalion Alljutant .............	1	
"، Paymaster ..........	1	..
"" Quartermaster......	1	...
Instrnetor in Arms...	1	...
Administrative Officers.	2	...
Batalion Drummer.	1	...
." Bugler...............	1	...
Senior Surgeon.................	1	...
Junior ${ }^{\text {- }}$	1	
Captains..	4	1
Subalterns..	16	4
Cadets....	4	1
Sergeants Major.....	4	1
Senior Non-com. Otheers...	16	4
Junior "*	56	14
Sappers and Miners............	832	208
Drummers......................	12	3
Buglers.	12	3
Officers' Servants.	20	5
	988	244

talions, and all ranls in the Guard and Grenadier divisions, carry a slort, two-edged sword in addition to the bayonet, which is invariably fixed when troops are on the move.

In addition to the above the men receive a " mess allowance," varying in amount, hut averaging about 11 d . per diem, and the following rations free-Flour, 21 bs ; barley, $11 \mathrm{~b} . ;$ salt, $\frac{1}{1} \mathrm{oz}$.
Authorized War Establishment of a Half Batalion of Pontnniers.

	Half   Battalion.	Company
Colonel Commanding.	1	$\ldots$
Battalion Adjutant....	1	...
"، Paym'ster \& Q 'rm'ster	1	...
" Drummer.............	1	...
" Bugler.	1	
Senior Surgeon.	1	$\ldots$
Vrtcrinary Surgeon. ............	1	
Captains..........................	$\stackrel{1}{2}$	1
Licutcnants..	2	1
Sub-Licut'rnants.	2	1
Ensigns...........................	2	1
Sergeants Major.................	2	1
Amior Non-com. Ollicers.....	10	-
. m mior.	28	14
l'ontonicrs.	240	120
Drivers.....	120	60
Drummers.	¢	3
Bughers.	,	,
Onlicer's bervants..	8	4
	433	214



Wir will give a brief acerome of the campaipro of 1א0x 2!9. To, the military atmon, it will be aproof that it dows mot do in then days of the hreceth-lomaler
 nad that, after all as Napmeen pithily "xpremect it,

 belwern the sulamand the ('xar that han been mhanburine for many yare leoke ont. llastily conclad-
 kiewith h, (iovermor (iomorahand (ommander-in-Chis-f of the Cathextas, conamencel proparations for the ahbingation of Armeniat. Irresionetive of the matural
 Black Sica, a campaign in Anatolia mocemsarily must forma pertion of the plan of may war wared leewern the Porte and Ras lia. The vat resturees

 extent from the hardy mometainere of Armenia, comergurnly tha aim ams onject of the latminn War Ninister is, by deresively atherking the ( Otoman on this sille, to himder mon from being despateleed to Euroge to swell the armiow there. The forees at the disposal of laskiewited for his operations amounted at this time to 51 battalioms of infantry, 11 stuatrons of cavalry, if reqimemts of ('ossacks. $12 \frac{2}{2}$ batterios of artillery, numbering 1.34 ghas. The polley of Presia, in spite of the rermindere, was still undefined, and it was thought more than prehable she would take adyantage of the fact of lins iats ewnyli("ations, and once more derlare war. She had only just ceded to the Czar two rich provinces, and paid a very heayy war eontribution, so Paskicwitch deened it advisable to be quite prepared for her entering into an alliance offensive and defensive with the Turk. To gnard againat any coalition of troops, the lussian General organised a corps moder Pankratieff, consisting of six bettalions, two regiments of Cossacks, and sixteen grans, which he posted at Khoi, in Persian territory, be it minded. Another evil has to be grarded against in all wars between Russia and Turkey, and that is insurrection in the Cancasian provinces. 'They were, it was known, ripe for revolt, and it was rumored Dabomedan emissarics hat been travelling through the Abkhasian and Mingrelian country, codeavoring to incite the people ${ }^{\text {o }}$ o rise. To guard against this, Paskiewitch oceupied the Caucasian comery with fifteen battalions, three squadrons of cavalry. forty-two rums, and four regiments of Cossacks. Tlus there were left for the expeditionary army- 30 hatialions, $\alpha$ siquadrons of cavalry, 11 regiments of Cossacks, 06 gruns. The ports of Poti and lbatomm were as for many years they had been, the object of IRnssia's desire ; consequently, Paskiewitch detailed one columu to act on the shores of the Black Sea whilst, with the remainder of his army, he determined to operate in two columns: 1he main or central one advancing by the Allaghoz clatin was to reduce the frontier towns of Akhalzik. Akhalkulaki, Hertwitz, Kars, and Ardahan; whilst the left corps, pushing across the Ararat range, was to subjugate the province of Bayazid, and guard the blank ayanst the attacks of the Kurds. who, it was known, attracted hy " loot," would swoop down from V"an and Moush. In fact, the enrps operating on Poti and on bayazid Wrre acting as winrs of the main army admancing into Armenia. The right, or Batomm army. was placed under the command of Major (iencral llesse, and consisted of -s battalions of infantry, it tield guns. I regiment of Cossacks.

The Jeft, or layazial colum, was under the order of Thasachavadzi, the reighing prince of the Abkhasians, and numbered 3 battalions of infantry, 8 field pieces, 1 reciment of Cossacks. Whilst at Natschevan kecping open frec communication between theleft wing and main army were poited ᄅ battalions. Paskirwitoh himself commanded the main column, which was to be masied in the merghbor-

Pay of Non-commissioned Officers and Men.

	Guard.		Line.	
	$\begin{aligned} & \text { Annual } \\ & \text { Pay. } \end{aligned}$	Daily Pay.	$\begin{gathered} \text { Amual } \\ \text { Pay. } \end{gathered}$	Daily Pay.
Sergeant Major.	$\begin{array}{llll}4 & 8 & \\ 5 & 15 \\ 5 & 15 & 11\end{array}$	$\begin{array}{ccc}\varepsilon & 8 . & d . \\ 0 & 0 & 3^{3}\end{array}$	$f$ 8    3 17     17    0	
Senior Non-commissioned Officer.	215	$\begin{array}{llll}0 & 0 & 1 \frac{3}{4}\end{array}$	014	$00^{0} 000{ }^{2}$
Junior Non-commissioned Officer.	2148	000013	013	$\begin{array}{llll}0 & 0 & 0 & 5 \\ 0 & 5\end{array}$
Bombardier and Lance Corporal.	$\begin{array}{lll}1 & 0 & 9\end{array}$	0 0 0 0 $0{ }_{4}^{3}$	$\begin{array}{llll}0 & 9 & \sim\end{array}$	$00^{0} 0000^{3}$
Private, Drummer, and Bugler..	013 013	$00^{0} 0$	$\begin{array}{llll}0 & 8 & 8\end{array}$	$\begin{array}{llll}0 & 0 & 01\end{array}$

Authorized Establishment of Infantry Regiment, Battalion, and Conpany of the Russian Army.

	Regiment.	Battalion.	Company.
Regimestal stajti.			
Ficld Otheer for interior Economy..	1	$\ldots$	
Executive Field Ofticer................	1	$\ldots$	
Regimental Adjutants...	3	$\ldots$	...
Paymaster.................	1	...	...
Quartermaster.	1	...	
Instructor in Arms..	1	...	...
Officer in command of Non-combatants..	1	$\ldots$	...
Regimental Drummer.	1	$\ldots$	...
"" Bugler....	$!$	$\ldots$	
Senior Sutgcon.......	1	...	...
Junior surgeons....	4	$\ldots$	...
Chaplains...	2	$\ldots$	...
Battation starff.			
Colonels..	4	1	...
Battalion Adjutants...	4	,	...
" Drummers..	4	1	
" Buglers...	4		
Captains.....	20	5	1
Licutenants...	20	5	1
Sub-Lieutenants.	20	5	1
Ensigns.............	20	5	1
Cadets..	20	5	1
Sergeants Major.	20	5	1
Senior Non-eommissioned dffieers.	80	20	4
Junior - "	240	60	12
Corporals...	400	100	20
Privates...	2.960	740	148
Drammers	$\mathrm{G}_{0}$	15	3
Buglers..	${ }_{60}$	15	3
Officers' Servant	so	20	4
	4.034	1,004	200

N.B. Farh Company is provided with the following tools:-12 hatchets, 6 shovels, 3 picks, 3 axes, 1 ss yllise.
hood of Goomri, and amounted to 18 battations of infantry, 9 squadruns of cavalry, 7 regiments of Cossacks, 5 fichd guns. The Russian commander folt that his forces were too weak for him to hope to reduce Fraroum in one campaign, for prior to an advance arross tha Soghanly range, it would be mesessary to seize all hine fortitied places, many of them very strongly garisoned, in the provineres of Kars, of Akhabik, and of bayazid. He therefore determined to dovote his whele time to subjugate these
 lowing year. There wore many reasons in fator of Goomri bering chasen as the hase of operations in Armenia. In the lirst place, the ground betwern it and Kars was open, and fatible for the :novements of large bodies of troogs; in the second place, it mo
abled a blow to be struck at one of the main Turkish fortresses, without exposing the Russian frontier to the danger of an attaek: and thirdly, it threatened the lank of any army thancing by the Soghanly range to the relief of Ardatan or Akhalzik. There were other minor reasons, too, which led to the selection of (ioomri : it was in a central position, and easily furnished with supplies; the siege train, quartered at Erivan. cond mowe rasily be moved by this road than any other; and lastly, the suljugation of Kars gave thi Russians possession of the large valloy watered ly the Kars and Arpal rivers, with an abundance of grain and forage. Then, as now, the Ottoman organisation was ill adapted for offensive warfare, and it never scemed to have struck Paskicwitch that the Turks could phan a counter-stroke.

Drior to commencing operations, thu linssian ('onn-mamber-in-Chicf therew forwari a dotaclament umber
 of labrajom. 'This force mumberad 3 battalions, fithe (isssacks, 4 grans, and formad armometing link wits

 idwitch massed his troogs at fommri, which now eonsinted of lat 15 lathalions of iafantry, 8 silusidrons of cavalry, lifecriments of tossarlks, 5y gims.
-rosict the Arpa 'Te hai, sarrying with him in his vast
 that day at 'Jikhais, in 'lurkish torritory, and the moxt morning moverl io Maskni, "nconmaring slight opposition from a small party of 'Turkish lorsise. A

 an the sonthera faco. the northorn and anstern being
 struction of regnlar niegre works. Mureovir, the or:-


Disignation of tolamm.
Inf. Finv. fimng.


Tonal
cupation of grouml on the sonthorast face cuts ofl communication more complatily with Virzeromm. Conserfurnty, on the 171h, Paskiewiteln moved rin Xza:kuito Mingardjik, where he halted for the night, and the following day advanced to Kitcik-kif; but during this march his tlank was exposed to attack, and The Tnrkish commander was not slow to take alvantage of the opportanity plescnted him: be made a vigorous sortie, which for some time promised success; but the conduet of his irregalar lineds and Karaknpaks threw the main force into confusion, and he was eventually compelled to redire with leavy loss, the casmalties amongst the Rassims amomoting do twelve killed and thirty-nine wounded. On the 201h of June the sifge prark reached Jaskiewitch, and inabled him to conmence his offensive operations atrainst the city. At the same time he was tware Hhat Kiossa Mabomed lasha was alvancing in all haste to relieve the fortress, so he threw $11 p$ some field works on the banks of the Kars river to gutrd his left flank. On the 2and of Jume, covering the work by a feigned athark on the citarlel. I'askiewitch openid his first parallel. and on the 23rd as smalted the place on the south and sonth-western filces with mumerons colmmns. At 8 A. M. be wis in possession of the enceinte, when the lasha surrendered the citarlel with 151 guns and 11.000 men berame prisomers of war. Fiossa lahomed Pasha, hearinur of the fall of liars, abandoncel his intention of erossiner the Soghanly, aml moved north towards Hoonkiar-Dooz. D'sskiewiteh now determinul to (apture Akhalkalaki. For this purpose he left Kars, with a strongegarison, wher General lieromann. and on the lith of July, moving to Zaim, and ibener, by the ratern shore of Lake Tehildar, fo diberh 1) ight. On the 2ent. he sent Colonel Abukotf oo the conmander of the fortress of Ikhalknlaki with a llar of trice, to domand the surrember of the place. This was fired on, and that ofticer killed. Outhe
 it, with fourterer gans and B(x) men. Thu lassian soldirrs, infuriatmi at the combluct of the "larks for having fived on their lage of truce, slew upwards of (i0) nion. Withom losing a moment of time, the Rassion licheral iledarhal the chief of his staff, Gen(ral Sicken, 10 Hertwoi\%, whid) surrendered with-
out firing al shot. Thirteen guns and 300 men fell with the place. General llesse, in the meantime, with the right column, had captured Poti, with fortythree guns, thirteen standards. and 2,000 men. By the eapture of Akhalkalaki and Kars the routes by the Bordjom mountains and Arpa-Tchai were now opened to the Russians: and on the 26th of July the much needed reinforcements reached Paskiewiteln from Tsalki and Goomri. On the 1st of August, the Russian Commander learned that the Osmanli forecs had reached Ardahan and were moving forward intending to attack him. The Russians, nothing loath to accept hattle, advanced towards Akhalzik, reaching Kiolteli-kni on the 3 l inst. On the ath, he attacked the troops and drove them back, but Kiossa Mahomed Pasha was able to effect his junction with the garrison of Akhalzik, where now were encamped 30,000 men. On the ninth, after a hard batthe, in which the Russians were victorions, the Turks abandoned their guns and fled towards Ardahan. On the 10th, Paskiewitch commenced the siege of Aklallzik, and by the 1 :th had completed the investment of the place. On the 15th, breach-batteries were opened, and on the $16 \mathrm{~h}_{\mathrm{h}}$ of August, after a desperate fight, the place was capturerl. The garrison fought with the most determined valor, and it is computed that upwards of 5,000 men were slain in the defence. Out of 400 artillerymen whomand the guns on its walls, but 50 were left to tell the tale. Thirteen humdred Lazis out of a body of 1,800 rerently ralsed were slain. Sixty-seven guns, and fifty-two standards, were cuptured : the kussian loss being only 128 killed and $49 \%$ wounded. In consernence of the heroism displayed ly the defence, Paskiewitel permitted the garrison of the citadel to march out with all the honors of war. On the 18th the Russian Marshat determined to reduce Aitzkui, and despatched Colonel Vidbelski, with tive eompanies and six guns, to offect this. The phace surrendered, with twenty-four piecess of artillery, without attempting a defence.

In the meantime orders hat been sent to Bergman, in Kars, to move on Ardalaw. and the Commanier-inChief, on the 18th inst., directed Monravieff to mareh for the same place. This otbeer, however, learned on his roat there that the fortress had capitulated to Bergmann on the $16 \mathrm{c}_{1}$ inst. The left column in the meantime had been equally successful. Having subjugated the whole province of Bayazid. with the exception of the citadel, which was left masked. Prince Tchavachavadzi had marched as far as 'Toprak Kale. He had been reinforced by two battalions and four guns from Khoi, and Bergmann had also sent il force down from Kars to keep open communication with him. On the 20th September, the Prince, inding that his flank was threatened by the Pashat of Moosh, at the head of a large body of Kurds, determinet to recapture Bayazid, and hold it. For this purpose he returned, and attacked a body of 3,000 Kinrds, who were covering the place, when the garrison fled, and with the loss of hut ten mon Bayazid, with his twelve grons, and three standards, fell into the hands of the Russians.
Early in september, the Prince, laving made all arrangements for the goverment of the province, advanced into Alashgird plain, seized the fort of Toprak kiale which was nceupied hy kurds during his absence and busied himself with collecting suphlies on the fertile district.
Oh the 190 h inst., the Pashat of Moosh having advanced to Cirakon; the l'rine determined to attack lim, and on the following day defented him, with: loss of fivo men his own casmalties amomeng to sixtyseven. On the S8th, inding that the lashan of Van was rousing all the Kiurds in the district, and foring that his commmiations might bee cent offi, he retired on bayaziel. Winter now setting in, Paskiewitch felt that his forees were far too weak to alfompt the sub). jugation of Erasomm in one campaign. We there fore- left strong garrisons in the principal towns, and returneld with he main portion of his arme to lase
sian territory: General Barbuteff was left in cona mand at Akhalzik with 2,300 infantry, 326 cavalry, and four guns. Brermann was left at liars with 2.400 infantry, and 280 cavalry, and twelve guns: whilst Pankratie ff wecmpied Bayazil and the neighhoring towns with 8,004 men, 376 cavalry, and eighteen guns. Thus, with a force of 20,000 infantry, 5,000 cavalry, and nincty-six guns, Paskiewitch had completely conpucred the provinces of Kars, Akhalzik, Bayazid, and Pori in the short space of five months, had captured three fortresses and sevcral fortified towns, 313 gnns, aud 8,000 prisoners graced the Russian Geacral's triumph, whilst his own casualties only amounted to 3.200 killed and wounded. As may be imagined, the greatest consternation reigned at Constantinople. On learning of the reverses in Armenia, the Generals in command were immediately disgraced, and two new officers who were in favor at court were sent to superade them.
Every effort was made to raise the army in Anatolia. Envoys were sent to Pervia to endeavor to draw her into the war, and emissaries were despatched to Ahkhasia, Ghariel, and Mingrelia, to stir up revolt there.

The plan of the new Turkish Generals, Salegh and llakki Pashas was an follows. An army of 80,000 men and bif gums was to be massed at Erzeroum, and advanced dion the soghanly rauge on Kars; whilst a second army of 50.000 men and 50 gmos was to be massed on Van to act on the Russian flank.
In February, laskiewitch heard that the Turks were advancing on Akhalzik, abd he at onee detached Mouravielf to Surann with six battalions and cighteen guns to cover that fortress, whilst General Ilesse was directed to suppress the insurrection in Ghuriel as promptly as possible.
On the 28th of February, Osman Bey entered the city of Akhildzik. The garrison retired into the citadel, and there succeeded in keeping him at bay. The Turks, with their usual ferocity, commenced a system of carnage, and, as at Bayazid in these latter days, so at Akhalzik in 1893, every Christian inhabitant was slain.

Monravieff in the meantime pushed forward with vigor to relieve the place, and on the 2 sth attacked the Turks, defeated them with a loss of 3,000 men, and relieved the garrison.
Hesse, after some sharp skirmishes in which his casualties amounted to 187 men, sneceeded in suppressing the relellion in Ghuriel. The snow having cleared away, and the roads being tolerably practicable for troops, in April Paskiewiteh determined to renew his operations for the subjugation of Erzeroum. Pankratielf, at Bayazid, was directed to proceed with four batialions and twelve guns to Katchewenk on the Arpa-Tehai, whilst Paskiewitch, on the 19th of May having settled the difticulty with Persia, rejoincd head-cuarters at Akhalkalaki, and none fons soon, for he here learued that the Turkshad $15,000 \mathrm{men}$ near Ardaham, marehing to the relief of that fortress, whilst 50.000 men were at Hassan Kale, on the westerm slopes of the Soghanly Dagh. On the 2ith May, Pinkratieff was directed to march on Karaljuran, mear Kars, to cover thai fortress Paskicwitch at the same time pushed forward to Beghli Almed. Salegh lasha had now reached the soghanly. Finding that the majority of the lanswians were at Kars, he determined to move lowards Akhalzik, Mouravidlf was scent to comenteract this movenent to Tsurskals; and on the $\boldsymbol{Z}$ d of bune this Gencral attacked the Turkish forces, defeated them. and twok one sum and 1,200 prisoners. The Omanli being thas checked in their ndvance on the northem road, Paskinwitsh felt free to concentrate all his troops and advance on Eraeromm. This movement was carried out in three columns, the right under He command of Mouraviefl', the left muler tie comthathe of Pankratideff, and the third under the Com-mander-in-Clicf; the 1 woroads leading from Karsanel Eraeromm diverge at kotanli and meet agath at

Kuipri Kui, the first or somblermmost rond passing

 Deli Mussit, Kíara Orelath, und \%owin, Sialogh J'asha, at the luad of thre main borly of ihe 'Jurkish
 Ionez; whilst Hakki l'ashan, wibl l.3uf inf:ntry, 7,00) envalsy, and sixtoron phas, torok uf the an-

 file, $n$ knoll in the erontre of the phatemu dommands all thas roads. ind this was sitrongly insrenclud by

 forward strong partios of (atvalry to patrol the sura Kamysh detike, and thas draw ofli athention fron his matn altark. lBurlsoth, with ᄅ, (0) infantry, was now sent into the clelile, whilat the (ommanmerer-in-("hief, with 14,000) men ant tifty erans, movod towards tho T'chalsir l3abs. On the fisth of Jume. Burtsoff mate at threatenced attack on llakki l'asha's comp. Fearing assemalt, this firncral drow in allilor ontposts, and flas the Rassian Commamber-in-('litef was ronalbled to eross the sioglanly lange without tiring a shot. On the 1 \%iln inst. lowever, Oxman l'aslan, with 1,200 mont, wish delached to dearele\% to rexonnoitre. and on the: 1 Th le was attacked by Mouravioti and driven Jrak, not on his own army, but on Salegh Pashons forces at Zawin. Further conembment now was uncless. and l'askiewiteh dotermined los attack the 'Turkish (omantander-in- bhief, who was posterd on the $Z_{2}$ (-win plate'au with 40,000 mem. I'ankratieff was sent to the left bank of the Chansin to prevent Hakki l'aslat falling back and joining his elioff, and burtwolf was warned to attack the Mellidooz position directly the Turkes showed a disposition to abamolon it. On the l!th, laskiewitelt, passing Kanli. deseronded towards Zewin; Sulegh l’ashatal. vanced to mose him. but was driven hatk into his entrencled position, which was inmordiately attackerl by the lussians, who drove the Turks off in complete disorder, captured 500 prisoners und twelve guns. The following day, Paskicwiteh, leaving a foree at Zowin, and erossing the Chansu, aseended the Kiara Orghan to attack Inakki Pashat at Dellidooz. Xfter a sharp tioht. the "lirks werr defented, the commander and tiftecen gums being taken.

Being aware that promptitule constitutes half the batte in tighting will Oriental nations, Paskiewitch set oir in pursuit of the 'lurks, and on the 23d inst. reached Kiujuri kiui, whicll he found to have been almadoned. We at once placed himself at the hear of a tlying eohmm of eavalry, dighteen horseartillery grans, and dasiord on llassan Kiale. elose was the pursuit, that selegh lashat had only just time to escape from the place: leaving twentynine guns in the hamels of the linssians. On the eth the whole of the Russian army concentrateal at Hassan Nale, and a parlementaire was sent in to the Governor of Er\%eromm, lemanting its surrender. This was refused: so on the 2jth Paskiewiteh andvaneed to the Nathitchai stream, and on the 2ith seizel the Devi Boym heights unmolested. On the 2xth the city surrendered, a slight skirmish taking place between the excited soldiery in the citadel and the Ruscian troops is they entered the town. 150 gnus, four Pashas, and about eight thousamd prisoners falling into the hinds of the Russian General. Thus, in tive short wroks from the commencensent of the campaign, I askiewitch had been enabled to elfect his objeet. He subscruently moved towards Trebizond, and ocenpied Batboort. Insurreetions amoner the Lariz, however, broke ont, and this, coupled with the badness of the roads, prevented him advancing further than ( m mish khane. In Angust the Treaty of Adrimople having been duly signed, the liassians evincuated all the condured provinces with the exception of Nlihalzik, Jkhalkalaki. and Kars.

The frontier line was laid down afresh, and ans re-
mained matlered simee theme drests. In the war of

 Was acrain raleal lo tho "Jorks. It im mot emr pros
 doubt if an insfasce has osexareal in tre history of
 buint of thr sworrl, lationg loren twjer orded by it stroke of the mom.

RUSSIAN BERDAN RIFLE. I browrla-louding small-arm laving a lixal rhatular rloned hy a movablo Irarob-block, whirds robatos about a horizental axis at tov to the axis of tho barrol, Jying above the
 lỵ Jrawing hack the lockiner-lole to its full extent, thereby corkiner the piecer, and then throwins the breeroli-bler:k tupward and forward by the lanalle on its side. It ju closiod loy slatting the browelo-block, and is lecked by the friction of there rear face of the
 iner-bolt guide, acsinst which thw longitudinalamotion of the hinge-strap slide, to which the hork is attacherd, allows it boribly to slible undor the inthence of the discharge. 14 is alse ladrl in phare hy the "he trance of the lorking-loolt into the cemntor-bore of the diring-pin logle when the pirere is tircel. In alrawe ing back the locking-loolt wopen the piece it rombpresses the spiral manspring which surronmeds it, and riding over the point of the spring-sear is caught by it and retained against the fension of the mainspring when the support of the band is withorawn. When relensed throngh the trigerer in the ususl way it is impedled against the firing-pin, and so disclarges the piece, Extraction is accomplished ly an extractor swinging on the joint-scrow und strack above its center of motion by the forward cnd of the breerllblock near the completion of its movement in opening. Ejertion is catased hy accelerating the movement of the extricetor by the ejector-spring, one end of which has a solid bearing on the linge-strap slide, and the other resting on the extractor above the eenter of motion; as the shell passes out it is leflected by the beveded surface of the ejector-stud, and is thrown clear of the piece.

RUSSIAN BRIDGE.-The Russians use in their briage equipages a very light kind of ponton formed of a frame-work covcred with canvats. The frame is composed of two side-frames, construeted of $t^{\prime \prime}$ seantling. These two frames are conneeted below ly movahle transoms,with terons at each end which dit into mortises in the bottom sills, and alowe by two transoms, one at exach culd, which are laid on the top) string-pieces. ahout 2 fcet from the rallo, ind lashed to them. The canvas eover is stretchold over the hottom, sides, and ends, hronght oser the ends. and lashed to the top trinsoms. It is secured along the sicles of the top string-pieces by small nails, patsing througla eyelet holes aloug the edges of the cloth. It is $10_{3}^{2}$ wide, $30^{\prime}$ long in the middle, $23^{r}$ long alongr the edges, and is paintert black on both sides. I plank is laid along the bottom for the pontonears to stand on, and the cables are attuched to the toje transoms. There are special supports for the hand-ropes. The Biragn trestle and abutments are used with these pontons.

RUSSIAN FUSE. - This fuse consists of a fuse-plug made of a mixture of lead and tin. conical in shape, the head of which projects beyond the external surface of the shell, and of a paper fusc. filled with tine powder rammed hard, whicle is introllsced into the fuse-plug just before firing. There are two sets of these fusers, and three lengths in each, which burn in the first set. $2_{4}^{3 \prime \prime}, 4^{\prime \prime \prime}$, and $5^{\prime \prime}$. and in the second $3 \frac{5}{2}^{\prime \prime}, 4 \frac{1}{2}$ ", and $5_{2}^{1 "}$

These wore the fuses wsal lyg the lassians in the Crimea. since whiela new system las heen actopted, in which the fuse-plag is matle of jupler mathé, and the fuse-tube of lend.
RUSSIAN GOVERNMENT.-With thr aloolition of scrfiom, Old IRussia disappeared for evor. and Now

Russia arose from its grave. The old distinction of classes into nobles ant bondsmen was marged into that beantiful weapon of constitutional despotism, known on the Continent as universal compulsory serrice in the army. Henceforth, instead of fighting for their King, Emperor, or Czar, the people of wneh happy lands now fight for their comptry only. It is true the common populace is so blinded by its prejudices, that it is apt not to moderstand the difference as long as the conntry is untler the immediate and irresponsible control of its whilom Sovereiga; and Russia forms no exception to this rule. Consequently, though the form has somewhat changed, the material remains the same; and where it has altered it has been sagaciously made use of to fit into the new order of things, and to form an integral portion of the new system. Tlus the result of abolishing serfage was the creation of a fresh national feeling; the ex-bondsmen felt that he had a stake in his newly-acquired soil; whilst, on the other hand, the noble felt that a new dauger was threatening himby the growth of this national consciousness and the growing conviction in the ex-serf that he really was a unit in the empire, and that many units piled up, on the top of the other, amounted to a very considcrable sum, and no mean force if united in action. To counterbalance these ideas it was necessary to shape certain grooves for the new national feeling to rum in. Thus three principal channels were fashioned. 1. Compulsory military service. 2. The institution of communal self-government. 3. The rennion of the Schismatics and other dissidents under the paternal care of the Orthoslox Greck Church, as represented by the Holy Synod, as represented by the Czar, who in ture represents the Diety himself, in Russia. These grooves having been duly fashioned, the next thing to be clone was to furnish a reservoir for them to run intn-a vast reservoir that would contain the national fond for long years to come, and prevent its overfiowing the channels cut for it, and causing serious damage at home. This great goal was set up in the shape of Panslavism ; the olject of Pauslavism being the reunion of all the various Slav races in Austria, in Prussia, and in Turkey, under the sceptre of him who rules at St. Petersburg. The attention of the freshly-made freeman was thus to be diverted from home matters to foreign affairs, and his hlack bread spread with the butter of glory abroad rather than with the fat of the land at home, for which it appears that the noble has a remarkable fancy. Of the working of this new system, of the lad that exists, and the good that is latent in the communal system; of the atrocities of the IIoly Symod; of the burden the armys imposes upon the nation.we shall speak in the proper place. The above rapid sketels is simply designed to give in a few words the character of the clange that has come over Russia, and made her again an enemy and a standing menace to the peace of Europe, and the canse of liberty, commorec, and progress. Aud if, as Gethe says, " Tha grod against ignorance battle in vain," it may well he imagined what a very formidable task Europe has before her, when she shall be called upon to wase war against the bottompess ignorance of eighty niillion souls, all well armed with hreels-loaders and Krupp guns. T'mer subl rireumstimees. it may well be asketl why Europes should submit to a enntimal therat in orter to enable a Muscovite nobility to preserve their station against those principles of indivithal liberty and local self-government they are so proud of printing to as the lever that is to raise Slavonic: Rassia on the ruins of an effele western civilization, and to rerencrate the shugesh hlowd of worn-ont Limope? In shomt, wiys shombl Europeralfow the linsuian teakers and ruitrips to imperte the devolopment of liburly at home, ly imposing a $1 y$. rannie rule on rates abromb, under the atch-pminy title of national glory? is the eometry too smallanil ton poor to support its treming pepulation? $1 *$ it a kind of magnitied Montenegro, that mast prefore:
extend its boundaries to feedits starving population? If so, there would, perhaps, be some excuse for its periodieal attacks on somebody or other-on the Khan of Khiva yesterday, the Sultan of Turkey today, and probably the Shah of Persta to-morrow. But we find exactly the contrary to be the case; for whilst Europeaus count their inhabitants to the square mile in some cases by thousands, and inamost cases by the hendred, we find in liussia a population of alont ten to the square mile. Let any one try to stretch lis imagination to the wonderfill extent of fancying himself in the possession of 309.760 square yards of soil-or the use of it-and he will have an accurate idea of the position of the Russian in his mative land. Is there any biped, be he white, yellow, ar black, belonging to the working casses-to the classes to whom labor is a necessity-who would not be satisfied with such a possession, or at any rate be content to ancrease it ly legitimate means, and thus in possession of material independence, would not also be in possession of his moral independence, and defy the intrigues of those who will not work themselves, but buy up streams of living blood aud buslels of money in exchange for a few tinsel tatters of impalpable, evanescent glory?

The reply is self-evident; so self-evident that the Russian government has never propounded the question, and works mpon a system by which they hope it will never be proposed. What this system is we now propose showing, for it is the most important element foreign nations have to consider in their relations with Russia. It is the government that does everything, withont comsulting the people. There is no appeal to the nation. What the Czar and his Nobles decree has to be performed. and is performed in the same unreasoning, slavish spirit of obedience, which the liberation of the serfs has in no way changet. In dealing with Rossia, we have to deal with a crafty, mprincipled, Asiatic government, and a mass of ignorance in all things that concern the Rnssian's relations with foreign uations and ideas. Not that there are not communities upon communities who cultivate the soil in peace, and successfully ; whose villages are all that could be desired from an agricultural and social point of view. Of these there are many; and there is an amount of good nature and common sease in the Russian peasant that only needs time aud opportunity for development to make him one of the most peaceable and industrious of men. But just for this very reason, bectuse he has the capacity for attaining matcrial and moral independence, the vast army of drones do ali they can to stifle these good (fualities in a mass of bigotry, ignorauce, and superstition. Be it well understood-what we find to protest against is not the mere existence of the people of Russia, bat of the Russian government, which is a great deal worse than the Turkish rule, and for the simple reason that the Russian govemment has not the same excuse which the Turkish hats, of being a weak government that has fallen into the hands of the Jews and (irems. The Russians diseovered that the Crimemn war had opened the cyes of the people to the fact, that Russia was not altogether the blessed paradise her rulers tried to make them believe, and that an entire re-constitution of the government system was necessary to satisfy the growing diseontent. 1low to dio this and yet alter nothing; how to give liberty and yet at the same time to curlail it, was mo casy task. But it was accomplishect. The Caar, whose othicial title is Auto-rrat-Eilf-ruler-of all the linssias, is the fountainhead of all laggislation. Ail laws proceed from him; he alome makes them; he alone can mmake them. This is done as follows:-All dereres of the Czar pmblished hy the Sonate are laws: all derrees published by other departments of the state are only to toe regarded as dereres; and theorctieally, disotodionce to these decrecs, or masers, can only be punished when such phathment can be legally justitiod, and it is prowed hat the ulase in fuestion was
known to the colprit. As a matler of fiter, there is,
 ministrative nkase, or imporial sumblorind law, they both ammant to the same thing, anci exoltor in the ir requmsible (\%ar.
'flor "xecontive jowor is ulso in tho huncla of tho Coar, mat nll departments are in his mame: 'Jhe Minisure of loblice, for instamer, is responsille to 10 one but the Čar. A matn disappents; mad intuirios show that he has brentarestod by the prolice ; thare the mattir amds, aml it chernde potirely ulwn the police or tho. (\%ar whother or not he evor reapperars. Life maler mueh cimennstuncos woulf ho ansulportable, wore it mot that the commamos rotain 4 sperios of selfegovernment that invests them with as show of libery. Of the matare of sumbliberty suttlee it to may that the systom is hased on lhe primeiple, not of
 out, but apon the division of the use of thes soil, whind is al very diflemont mather altogedtur. It is, in short, a system that fully complays the spure time and all the spatre lorstins of the peasantry to carry out, and prevents them from agitating for that represenfution of the people in the couneils of the matiom, w inch is the tirst stop to liberty. 'To keep the pestnathery in this circumseribed oasis of lucal liborty in the connmanac, or aire, and prevent their union with atach other in the eatuse of aniversal and gemeral liberty, is, of course, the ehief oljeget ant aim of the mobility. Compulsory nervice is onn of these menns. The climele atlords another. T'o bring all ble various serers of Russia under the control of the parish priest and lloly Symod, who can commamd the assiatanee of the civil anthorities amd of the military unthorities, is the great object, for the prompt attuinment of which such measures have been taken as those that furnished the material for the line Book pulaiahed recontly by the British Government. An imperial ukase was jublished in 1871 , subjeeting all the hateroblox, or dissenting, ehurehes to the anthority of the lloly Synod. This is equivalent to an acet of parliment, in England, plaeing all the Nonconformists, Catholies and Jews under the administration and authority of the Chmech of England. 'Ihus the Uniates were ordered to conform in all respeets to the hubits of the Orthodox elergy-to alter their chnrenes in eonformity with the system adopted by the Urthodox chureh. Sriests who eomplied with therse instructions were to be eompensated for any peconjary losses; disobedient priests to he transferred to some other place, or banished. An incuisiforial commission sat in permanence at Sielller, before which the clergy were summoned from time to time, and examined as to their conduet. These mensures were cnergetionlly enforced, but met with great resistance, especially on the part of the inlabitants of Chelm. Iablin, lopil, and Siedlers. On hearing of this, Count Tolstoi gave strict orders that the nercsisary mensures were to be enfored with the utmost rigor, and no bencles, organs, rosarics, matsbells. etc., to be allowed in the churches moder may prelense whatever. Most of the clergy yindelet: the peasintry, however, refused to obey the tyranical order, and many contlicts, resulting in lose of life, occurred in maty places. It llyncirvio\%, the peasants clefended their church by furce, but were thefeated by the Cossacks, and eviory one of the comoregation simmoned to sign forthwith a decelaration of Jis conveasion to the Orthotox chureh. Ou their refusing, every man received fifty stobes of the kinut. (vory woman twraty-five, and every child, irrespective of age or sex, ten blows. One woman, what: especially energetio in lar refisal, reeceved more thim one hundred blows, and is doseribul as haviner her thesk completely maslied. Theser lorutalities wore raking place finst at the samo time of the weddlong of the Duke and Duchess of Edinhurgh, and created so rainful a feeling at St. Peterchmerl that they were suspended for a time. In fart. so great vatio the indignation aroused amongst the foreign commanity,





 This wis in danuary, 18:4. In Fohbonry the at rocio

 and "hmaterl thern down" Whan they tosek refuge and bivoruackid int the forests. J"ines to al larger amoman were impersesi upron the congregation, their (crops trampled down, and, in one rase, six lamedrad marrical min banished tor Cherenn (on the 1 lth of
 broaking- all day lomg, whilst thoir wives and familises rematmed at homer, with athmber of Cossateks ghartered upon theon. Ender suell "irramistances, it is not surpuising lo read, in Connt 'Iolstoi's repurt
 the crror of their ways in 1876 , and were convertul to the Orthotos fatith.
llaving thas malergone a preliminary preparation for their subsequent complete subjection to the atutocrat eovernment, which is supposiod to represent proteraal soliciturle and antlority, the lawsian is then jut into the drilling mathine provided by the miliiary system, and which ever afterwards holols him in its iron grasp. When the man who stole a loaf exensed the uet by saying he manst livo, the Matristrate appropriately replicel that lee did not see the necessily at all. On the same principle, the existence of the Russian is only regarded as a necessity in so far as he forms an clomont in the army which keepos the govermment and its friends on its legs. Conserpucntly it is mecessary that the army shomld be subjected to the strielest discipline, and be as perteet as possible. A sketch of the machine is therefore necessiry to understand the working of the system. See Ruxsinn frmy.

There is, unfuestiomably, a falling-oft in the rigid bearing, in the smart performance of movemants that used formerly to be a charmeteristic feature of Russian infantry. "There is, perlatps, a little too muels of the french laisser-aller ; and as regraris the drill for action in loose order, it is performed withont either the precision or dasld of the Prussian or Austrian armies. Respecting the cavalry, all that can he satirl is, that the addition of the Cossacks bas deprived it, to sonte extent, of its gallant and soldierly hearong. The regulars have leurnt from the Cussacks their binl halsits. The teams of the artillery are excell'nt, and the movements rapid. There is, however, at great dearth of men able to lay a gun. The distiuction between divisional and corps artillery appears to be unknown. - The most important elencut in an army is its oflicers; and bere great change's have been effeeted of late years. Formerly, it great many whicers got a commission throngh mere fatyor; but this abuse has been reformed by the able Wiar Dinister, Genceral Jilatine. No man can mow obtain a commission without undergening a strict vammination. To bromote the means of military rducation, General Milutine created "Jumker," or, "ts we shonkd saly, Cadet Schools. These schoobls, since their creation, have turned ont upwards of 10,000 candidates for commissions, and 2,000 cathuts duly quadifietl for commissions now bass through thom every fear; they remain at the dioposition ol the State, and get appointments as vacancos occur. ln spite of many pratisewortly cellorts (o) ralse it, the intellectual level of the ofticers is not high: lut they know the romtine of their masiness thoromglaly well, and are reararded generah; with respect and atfection by their inur. As to the question, "IIas lZussit a (ieneral "" it would be dithentt to answer it. The match to lihiva, and the more recent campaign in Central Asia, has not revealed the existence of any man of geuius in the Russian ratuks.
ln time of peace the Russian infantry has no ready-
formed reserve, with the exeeption of the skelaten of a battalion of the Reserve Regiment of the Guard, which has to be created in time of war. There is something quite peculiar about this resiment which requires little detail to be macle intelligible. When the decree is issuct for the mobilisation of the army, it hecomes necessary to ereate 1 fit hattalions of re-kerves-that is to say, onc hatalion for wach infantry regiment, with the exception of the Ginards and the Grenadiers. This latter is the sole four-battalion resurve reament to be cruated in case of war : it consists of twelve line companies ant four companies of lifles, the reserve battalions having no lifle companies. Up to the present time, there exists no machinery in the lassian service for the formation of infantry reserves in peace-time : all that is provited is, that. in the event of the formation of a reserve being dermed atvisable a Firld-othicer, and four otheers of lower rank. tosether with a Quartromaster and iwo elerks belonging to the aetive or local troops, should be transferreti to these reserve battalions. An intention, however, is entertained of drawing up the cadres thoronghly on paper in time of peace; but as there are reallyno cadres at the eommand of the govermment, the question yet remains musettled. 'The strength of the reserve battalions of the line and the Guards is estimated at 960 men. To provide the requisite reserves in the event of mobilisation would require 168 battalions, and an effective of 168,000 men. When the nobilisation is decreed, 192 depot battalions are created for the supply of mon to the line, and nine depot battalions for the Ritles. But a mobilization in Russia is a matter of no very small difficulty. on accoant of the extent and scanty population of the territory, as well as the scarcity of commmaication, and the precantions which require to be taken against the population in Poland and other provinces. The country, indeed, is diviced into a certain number of recruiting districts: lut as the corps belonging to these distriets are generally quartered elsewere, when the order for mobilisation goes forth, there is a charsezeroixtz of men and horses all over the empire. As regards the artillery, its mobilisation requires a supplement of 40,000 horses. Ender the most favorable circumstances, the mobilisation of the Russian army cannot be effected under from five to six wecks. Such, in few words, is the character of ofticial Russia. But there is another Rnssia-the linssia of the masses, motficial Russia, which slowly, but surely, is modifying and influencing the government and its principles; so that, even in the army, thare is a marked difference between the old generation and the younger, that is much in favor of the latter.

Down to the time of the Crimean war, Russia was an earthly paralise for all diplomatists of the old school. Enjoying great social consideration, and living in an almost constant round of splendid festivities, they lad only very light and very simple dulies to perform. They never required to undertake such conplicated operations as calculating the strength of political parties or the force of public opinion. All the springs of govermment were to be fonud within a radius of a mild from the Winter l'alnee; and beyond this small enchanted circle there was nothing for a tiplomatist to observe. The ('zar und his Ninisters workeel the ereat mathine as they pleased, free from control and extrancous advice. and the nation confined itself to umpuestioning obedience. If any voice did happen to rise from the crowd, it was very som silenced. (bnee, in amoment of haroir sulf-forgetfalness, a rash news baturer editor vantured timidly to hint that some new soats in the imperial garden wore not phite in perfort taste; but the all-sening eyr of the pressecemsor was upon lim, and loe was severcly punished for venturfog to criticise seats that hat leren fortunate renomer to obtain thr imperial nuproval : These haleyon diys for old-fashioned diplomatists and statesmen of the Metternich type are now beginning to be numbered
amongst the things of the past. The Czar, though still as antocratic as ever in the legal sense of the term, no longer drives the machine by his own unaided energy. There are still, it is truc, no regularly constituted political parties, no National Assembly: but the great silent inert mass, composed of eighty millions of human beings, has begun to show, here and there symptoms of himan intelligence and human will. and the government is mo longer at liberty to act entirelyas it pleases. Russia luas now, in fact, many of the blessings which belong to arlvanced political development, and which eomplicaternormously the art of govesmment. There is a press which, though liable to be gagged oceasionally, eriticises things much more important than rustic seats in imperial gardens ; and a public which, though enthosiastically loyal to the head of the State, insists sometimes on having opinions of its own. There was a Slavonic Committee which supplied the Servians with a Commander-in-Chief, and sent several thonsand volunteers to fight the Turks; and there are even secret societies which aim at overthrowing the government and inangurating a Socialistic millemium. In a word, this is the unofficial Russia, which exercises a cortain influence on the government, and which must therefore be taken into consideration by diplomatists and shatesmen in their endeavors to forecast the policy of the country.

Between St. Peterslmrg and Mosenw their exists an antagonism of long standing. Ever since its foundation, St. Peterslurg bas striven to be a European eity and to adopt all the produets of WestEuropean civilization. Moscow, on the contrary, strives to bedistinetively Russian, and aftects to look down on her younger rival as a half-taste parcenu. Abaucloned by the imperial family and the heads of administration, she glories in her ancient monuments and her ancient spirit. and boasts that she still holds the first place in the veneration and love of the Russian people. All Moscovites are more or less imbued with this Platonic hostility to the capital on the Neva, and love to reproach its inhabitants- the Ministers and olher official dignitaries not excepted-with gross ignorance of Russia and the true Russian character, hut when they come to discuss the present and future of their conntry, they are by no means manimous. We easily distinguish amongst them two groups or coteries, holding peenliar views, which distinguish them from each other. The one is composed of the Slavophils, the other may becalled the Moscovites proper. These groups are often confounded, and the confusion is excusable, for many worthy Moscovites themselves do not clearly distingrish between the two and consider that they belong to both: but in reality there is a decided distinction, for the leaders are by no means at one, and do not generally entertain very friendly relations. The chief dilierence may be briefly stated. The Slarophils ure the representatives of the old Russian orthodox spirit. They idealize and admire ancient Russia condrmin the swepping reforms of Peter the Great, and the foreign principles of administration in rogne since his time, profess an inorelinate admiration for the unedueated, uncorrupted peasantry, aspire to the ereation of a spreifically Rassian culture on the basis of the Slavonic character and Eastern orthodoxy, are decply imbued with Slaronic patriotism, and hope to see some day a great Slavonie federution or lanslavonic' ('mpire. With regart 10 questions of lome polley, thoy are allerents of the Mir, or Rural Comunne, with its perioslical realloment of the samel, alvocate the fostring of native industries by mesns of proteetive 1arifts, desire the elimination of the Gorman element and German influence from the atministration, and would like to sce the chureh emancipated from the supervision and control of the State. 'flue party of the Jloscovites proper is at once more modern in its conceptions and more modest in its nims. Thongh desiring equally to see the Ger. man influence climinated from the administration,

It has no frediner of hostility to l'ctor the (ireat and Westorn colture, and mosentimontal loce of anciont
 munner of civilization mad enlighternment from Wi.st. crn Paropm, and shows no sympathy with institutions simply becanse they are fuceially lanswian. (on the contrary, it boldes that the social and pentitat devolojement of the cometry must be fumdamonally the same an that of the Weat-Eurojeran nations. ambliatils


 principles which are sitpunsed to lee ladeden in tha Slavonie nature amb in (irovk orthodoxy, this party - less dreamy and wisarinits eroneration thins that Rusmia shouldolovelop loor instôtutons by the !eght of modern experiance, and ralond lat pulitical inflaence by the same montas as other mations.

In ordinary times the intluene of the Joscovite spirit, is ropreantorl hy these two partics, is very sumil. 'The Potorshorgians look upon is with kindly condescenvions as an aniable provincialisun, and nome Romsiams are rather prtan of it, as they are of the whl pieturesque Imildings of the Kremilin; but it has little jractionl significance. Therestavophils, with their mystical prineiples, which have an interr'st for those whon study the philosophy of history rather than for practical alministrators stamd apart from the bnay erowd in a region of philosophied nhstratetion. If thry iadulge in any practical activity, it takes the form of colucating foung lulgarians or semding ecelesiastion vestments and sacrod vessels fothe Slaver of Turkey and Anstria. All this, how-- ver, is changed when certain political complications arise. As moom as the Disictra (fuestion is raiscel, and Russia finds herself in antagonism with Wrestern firsope, Hoscow alway comes prominently to the front, ats the representative of Joly lussia and of the grentine national spirit. Words which at ordinary seasons would only provake a smile are now listemed 10 with allention athl respect. For the moment the two sections of Moscovite society combine. The Slarophats declare that the time lats come for emancipating the Shavonic brethren, and poroceting them swainst the insidious influcaces of Western Einope; Whilst tha more moderate party urge the government to uphold the honor of the country, and maintain legitimate Russian intuence in the shavonie world. In view of the national danger, the government well thinks it necessary to know the real sentimente of the people, and considers that Noscow is the truest representative of these sentiments. The Czar visits the anciont eapital, and the inhabitants show him unbounded devotion-hmmbly urging him, in more or lens disguised linguage, to impregnate himadf with the gennine mational spirit, to close his ears to thesednetive voiec of foreign eounsellors, and to act as a Czar who can redy implicitly on the boundless dovotion and self-sacritice of his ioyal subjects. Thongh his \$lajesty may be a man of cool lead and mann. pulsive character, he eamot remain wholly inapervious to the patriotie excitement. It was during one of those visits that Alexander 11 . pronommeed the famons sjuech, in which he pledered himself to act indeperndently, if the pos:ers would not act with him, for the protection of the Christians in Turkey.

Thus we see, though autocracy is still whshaken in liasaia, that section of unotlicial Russin whicol is represented by Joseow exereises a cortain intluenee on the imperial government, and conserfuently its views and aims are worthy of attontion. Now the bulwark of anoflicial liussia of the masses-is undoubtedy the Zamstro. It is improssible to trame late this word Zumston ly any othar رllame than foeal govermment. but the very existence of subd an institution, hedged in as it is, amd as we have atready seen, by the government and its antoeratic principles, is in itsclf a most remarkable fontmre: and it is from this institution that the futare, not only of Russia, but of all the Slavonic races, is experetad io
hossonn forth in a perforetion sor far distant that it आust be regarded us C'topian - at any ratc, им far лs

 Jinrope in matlocient quatntity to allow of "acol individual hodding his own acres, whellor persomally or commomally.

 iricl Zemst vo connsishe of a Zamatvo Assambly and is
 lambowners of the disarict amd mamlars colosesen hy the monicipal und country rommonitjes. Neither
 be a mombre of the Zamstro. Nor can any ancmber
 of otljere im threce yoars. The Kincontive is atosen by the Aswembly, and consists of a l'resident mal wo Aswiatants, who are paid by the Asscambly. '1'he Ex -
 scmbly, and depends upon it entirely. The provin. cinl Zemstro is constitned in a jreceisoly simblar manner divided into an $\Lambda$ ssembly and an Fixcerutive. Both Zimstvos mect once a year.

By this means the govermment bas transforced a great burden fron its own shoulders to those of the people, whicl! has accordingy no small sum to fray for the privilege. The peopla are place in at condition thereby-and it is part of their cluty- 10 jorovide for their material and moral progress ; but at the sube time, in making these concessions, the government las not ecrled one jot of its own riglits. The Zemstvo may build hospitals, appoint surgeons and doctors, construct rouds, and opnen schools. all at its own exprase. But further than this it cannot go. On the policy of the central govermment, it has fut the smallest, if indecd any, intluonee: still, as we said before, the development of the Zemstro is the only hope the Russian has of progressing ; and, Hongh slowly, it is doing its work. Thus there was a debate recontly in one of the Lral Zemstres, whern a proposall was brourht forward by a Colonel Steinfeldt, to award an inerease to the sehool funcls of 15,000 roubles. The proposal was supported ly one peasant only, and that peasant an ex-serf. He sajd -"It has been fully proved that, with the education of the laborer, his wealh also inereases. Even for this reason alone, it would be the duty of the Zemstvo 10 promote the caluse of education by all the means in its power. Those who suy that the exisiing town schools suffice, and that we have no need of primary village schools, forget hat the case is the same for ins as with the buffet here in the antr-chamber. It is open to all : quite true! But, it does not suit out pockets. We do not want champagne and sirasburg pies." But, in spite of the sturdy perasant's good common sconse, the proposition was almost Hmanimonsly rejected. Nor are sueh matters contined to the remote districts of the Ural. The Zemstvo of Olessa, for instamue, emonly boast of thirteen schools, with 500 pmpils mon which it expernds a sum of 6,000 to 7,000 roubles; whilst the sale of play-ing-eards, which is a monopoly of the Zemstro, brought in a net protit of 32,000 ronbles. But then gambling is a vice to which the liussians, especially The himher chasses, are notorionsly addicted. more so than in any other commtry. Sill it is satisfactory to find even one peasamt endeavoring to promete the catuse of edncation. Some of the sced has fallen on grod ground, On the other hand, mothing exemphities the spirit in which the govermment instituted and rogards tho Zomstro so much as the fact. that when several Zemstros endeavored to introduce compulary education. the home ministry placed its velo on the proposil, saying-" 'All compulsion prevents, but does not forwird. the development of the groul!"

Of the eountry which is thas governed. we tind that European Ruscia comprises $2,261,657 \mathrm{sq}$. miles, with it population of $78,281,447^{\text {; }}$ A siatic Rassia,
$6,170,882 \mathrm{sq}$. miles, with a popmlation of $7,294,495$ forming a tatal of $8,43,549 \mathrm{sq}$. miles, with a population of $85,510,942$. Gifted with an almost boundless territory, with enormous tracts of land yet unrechamed from the primitive wilderness. witl mines which yjeld prolific stores of wealth, what a power of expansion such a population must necessarily possess! What will that population be within a centary? What, even in the year 1900 ? Evidently an enormous, perlaps irresistible. power for good or for evil. A solid foundation for Europenn despotism. or a glorions aid to that rationally free and constitutional government which appears to be so safe and wise in aetion. Russia may abandon a poliey which exhausts the encrgies of the people, in adding to its already overgrown dominions countries it cannot benefit by ; but its present Czar does not seen to have forgotten the ambitious lessons of Peter and Catherine, whilst directing his attention to promoting the prosperity of the vast cmpire be possesses. Russia, with all her eraft and erime, has yet been the pioneer of civilization in the sterile and savage north: it is now time that she shonld rest in her dazzling and feverish progress, and, turning back her eyes on the lands and peoples she has subdued, dewote herself to cultivating the one, and elevating the other. Her nobles and oflicers art among the most polished gentlemen of Europe; but her people are yet scarcely more than semi-Asiatic hordes, leeply plunged in barbarism and superstition, and almost as much an anomaly in Europe as the Turks. In political, as well as in social promress, it may be certainly pronounced that "The bells of tine are ringing changes fast."
The present age is one of transition for Russia. She cannot continue into the future that which she was in the past. Nature cries aloud, in tones of commauling eloquence, to empires as well as to men-
"Advance, or perish!" The statesmen of Russia are too wise to remain insensible to an injunction which is as unalterable as destiny, as "unshannable as death." Should their successors be blind to the great problem which will stand before them for solintion, the works of an empire's progress and redemption will be done in other ways. Czardom is not necessarily eternal; and revolution may aceomplish what the slow and silent progress of gemind reforms could not effect. In spite of political statistics and ominous inferences, we have great hope for the fature of Russia. The young giant is wilful and sullen, but we think he is growing wiser, though it may not appear so at the present moment.

RUSSIAN GUN. - The linssian artillery may be said to he in a transition state, experiments being continnally curried on if not to change its maturiel, to modify the present orduance so as to allow that branch of the army at least to bear comparison with that adopted or on the joint of being adopted by other armies. The gums of the Russian artillery are 4-pr. and 9 -pr. B. L. 1k. gums for the most part of bronze. The 4 -pr., of 3.3 inch caliber firesatprojectile weighing 12lbs. Thu 9-pr. gun which forms three-lifths of its actual armament, fires a shel] wetghing et Jbs. with a charge of $2.6!$ Ils., and possesses an initial volocity of 1060 fect only. Experiments have beren madn of late with steel guns of the krupl) sysi(m, as well ids with the 9-pr. modidied. The improvement male in that gim by means of casting the mutal in metallic molds and then chilling it. have cmabled it to mbtain an initial velocity of 1369 focto lt dilfors slightly frem the old !-pr., the dimensions of the chambiors being mate to allew the use of a charere of 7.23 lh s. of powder". The projectile is provilled with 2 belts of roplere in lion of is lewhlon cout. In order to obtain a diater trajectory in long rameres, a trumsated shot-botom similar to one proposed by Whitworth las beren tricel. The weiglt of the ernin and that of the projeretile are the satmo as in the olst O-pr. Sico Rukxiun Rilling.

RUSSLAN LIFE SAVING ROCKET.-The Iassian

Life-saving Rocket is made of sleet iron, about oneteutlı ( $U^{\prime \prime}$.1.) of an inch in thickness. The body is a cylindrical tube, elosed at the front end by a metallic head,held in position hy four short serews. 'The rear end is closed by a diaphragm, which is porforated by six vents or fuse holes, equidistant ercumferentially, whose centers are on the eircumference of a circle concentric with the diaphragm. An axial hole in the diaphragm has a female screw thread cut on its interior surface to engage the male thread on the rocket stick. The body is fastened to the perforated disk by crimping and by short iron pins. 'The eydinder is filled with rocket composition The body of the stick is made of light wood, cylindrical near the base and tapering to the front, forming the frustum of a cone. The front end of the stick, which serews into the rocket, is made of wrought iron, hollow at its base for the insertion of the wooden body. The latter is held in place by serews. The rear end of the londy is rounded and on one side carries a strong iron hook, about five ( $5^{\prime \prime}$ ) inches in length, with its point turned towards the front, and eurved slightly outwards from the axis of the stick. A enrved stee] spring is placed between the point of the hook and the shank strap to prevent the egress of the ring of the rocket chain after firing. This hook is bolted to the wooden body of the rocket stick. When prepared for packing, the rocket sticks are serewed into the rockets and the fuse holes or vents are covered by disks of water-proof tarred cloth. The diameter of the disk is enough larger than that of the rocket to admit of its being fokled over the end of the rocket and secured by several turns of twine, tied tightly around it. The whole rocket, except the wooden body, is then treated with a coat of black paint. The cap or disk must be cut away before firing, in order to expose the fuse holes.

The principal dimensions and weights are as follows:

	Inches.	Centimeters.
(Lengtlı ${ }_{\text {L }}$.	25.25	64.12
Rocket body 2 Exterior diammer	3.2	8.13
(Interior diameter	3.0	7.62
Total length of rocket	27.2	69.08
Total length of rocket stick	29.2	74.16
Total length of rocket and stiek	55.5	140.97
Leugth tilled with composition	23.1	58.67
Maximum diameter of stick	2.8	7.11
Diameter of vents or fuse lioles	0.6	1.52
Number of vents, six	ounds.	Kilo

Average weight of rocket and stick $\quad 25.5 \quad 11.56$
The rocket stand is a rectangular tube of sheetiron mounted upon a wooden tripod. The crosssection of the tube is square with one of its diagonals situated in a vertical plane when the stand is in position for use. This lollow parallelopipedonal tube is formed from a single piece of sheet-iron. The longitudinal faces forming the lower eflge do not join to complote the regular figure, except for two ( $2^{\prime \prime}$ ) inclies at the lower end, bnt are bent ontwards from each other, forming two jarallel flanges. These hanges are $1^{\prime \prime} .7$ wide, and have a space half an incla wide betwen them throuthout their length, which scrves as a rhamel for the grappling look on tho nader sidue of the rocket-sidek to slide in when the rocket is tiresi. It is alson ancecssary for the stme purperse in placine the rocket in position before tiring. "Flar ran end of the scyuare lube is bound and strengehomed ly a hame of strap iron ${\underset{\sim}{\prime \prime}}^{\prime \prime}$ wide and one-tintl ( $11^{\prime \prime} .1$ ) of an inch thick. The frort end of the tube is reinforeed in asmilar mamer, but with this dilfor"uce: Thw hand at its loweredge has a eylindrical tube $1^{\prime \prime} .7$ in diamoter, projereting to the front $2^{\prime \prime} .3$, for the purpose of holding tha ring of the rockof chain. 'l'his short tube embraces the front ends of the thanges of the borly, and has a longitudinal slot, corresponding in width to the spate hetwean tho Hanges along its upper surface to permit the jassage
 is colt in the Jower side: to aceommandate tho ujper link of the rocket rhain when the: ring inplaced oser the projarting tuler. Natr the midelle of tha longifindimal bottom flange on the right-hand side of the

 ing from its nalar mbe near the midelles 'T'srongh this eyobole pasces the hori\%ontal axis. In acorresponding prosition on the left side is a srmierorentar brass phate attached to tho other lamere. Thar are of this phate is irmalutud intodegreces, in orelar to indirate the revation of the axis of the main tuber. A lag amd reve-hole at the rember of this are ulmits of the insertion of the lorigontadaxis. A slatted brass mipport with holess piereatl through the upper emds of the vertical arms sustanas the horizontal axis that "arrites the rocket tale and its gradanted are. A "lanp serew passes florough this support from the: rimht side and champes the are in any given position. All motion in attitule within the limits of flace sade is geverned by this screw. The lower end of the support terminates in a cylindrical trnon $3^{\prime \prime} .2$ in lenghamd $1^{\prime \prime} .2$ in dismoter, which lits in a currespondinge hole in the tripord head. 'Two mlipticat "pronimes opposite to cach other, are mado in the upper sides of the tube for the insurtion of the port-fire to lirnite the rocket composition.
'The following are the princepall dimansions, weirhts, ('te., of the stand:
luclacs. C'ontimeters.
Toral length of rocket-inho.........53.3 183.5.38

	(1ixturior. . 4.:	10.92
section, striate	(laterior... 4.1	10.41
Wreight of rocket stan	30.0	17.6!
Weight of rocket chait	小. 6 \% 5	2.17
Weight of port tire latn	(1).5625	0.95
Totul weight without	king box.d-1.1875	20.13
Weight of coil of rocke	line. . . . . . (iz. 0	2 Z .12

A port-fire loblece or firing statif necempanies the



 serow und swing the stand aromat motil it pents in the desired disertione. (lamps the vertient spinatle
 regairea elevation may bre givern; after which the serrew mast bu tightanad, in ordar to ratain the

 into the reotangular tabo with the loove ons the nitek gliding down Intworen the flanges on the lower side of the tuls. Wharn the laosk strikres tho landlat tha:
 tion for liring. Dlace the fakes or the faking box in front of the stand, pat the ring of the chain over the rylindrical thbular jrojaction on the front and of the stand, letting the chain attacemed ios the line lang below. Stand doar of the: lises, and, wilh a port-fire inserted in the: holder. advance and ignite the rorkcet hy thrasting tho port fire erently through one of the - Iliptical openings in the rocket tulm. ('aremast be taken not to disturb the aim. An instant after tas combosition in the base of the rorket is ignited, the latter leapos forward guided by the rocket tubse, and as it lanves the thare the hook engages the ring of the clatin attacherl to the line and carries out the chain and line. The whatn should lwe fuctemed to the line hefore wanterl for ube. Fice lijfonming liucherv.

RUSSIAN PRINCIPALITIES. The promer lhat extrmels from ten humdred and lifty-lour, the year of laroslaf's death, to twolve landred amd twenty-four the year of the tirsi appearance of tha Tatars, pr, to take the French chronology, from the reign of llenry the lijest to the death of lhilip Augustas is one of the most ronfuct amb trombled in linselan liverory. As tha barbarian emstom of division contimad to prevail ever the Byzantinc ideal of political unity,

rocket stand. It is a simple wooden handle with at bent head of brass. The brass heal is hollow and is slited on the sides so ate to form at rade clamp. The port-fire is inserted in the split end of the head and then ignited in the usumb manner. The rocket-chain is a hand-made iron chain. six foet in lenglh, ferminated at one and by a ring two inches in diameter. The rines is placed over the tuhular projection on the front end of the rocket stand in tiring. The other (and of the chain is fastened to the end of the rocket line. The rocket line is a loosely-twisted hemp-line ahont the size of the No. 8 or No. 9 service lines.
The following is the methorl of using:--The rocket stand is taken from the box, the legs of the tripod
the national territory was casclescly partitioned. The princely anarchy of Eastern Europe has itc farallel in the feudal anarchy of the West. M. Pogodin reckons during this period sixty-four principalities which had an existence more or less prolonged, two hmodred and ninety-three priuces who disputed the throue of kief and other domains, and eightr-three civil wars, in some of which the whole conntry was engaged. l'here ware, besides, foreign wars to angment this enormous mass of historical facts. Against the Polovtsui alone the chroniclers mention cighteca campaigns, while these barbarinns made no less than forty-six invasions of Fussia. It is imposaible to follow the national chroniclers in the
minute details of their annals: we will only treat of the principalities which lated some thme and of the facts which were most important. 'The ancient names of the Slav tribes have everywhere disappeared, or remain only in the names of some of the towns.for example that of the P'obtchané in Polotsk, and that of the severiane in Novgorol-severski. The elements of which Russia was now eomposed were no longer tribes, but principalities. We hear no more of the Firivitchi or the Drevliané, but of the principalities of Smolensk and Vohyruia. These little states were perpetually dismembred at each new partition between the sons of a prince, and then were reeonstitnted to be divided anew into appanages. Notwithst:unding all these ricissitudes, some of them maintained in stealy existence, corresponding to certain topographical or ethographical conditions. Without speaking of the distant principality of Tmutorakan. situated at the foot of the Catucasus in the center of Turkish and Cireassian tribes, and reckoning eight sucecssive princes, the following are the great divisions of Russia from the eleventh to the thirteenth century : -

The principality of Smolensk occupied the important territory which is, as it were, the central puint in the mountain system of Russia. It comprehends the ancient forest of Okof, where three of the lirgest lussian rivers, the Volga, the Dnieper, and the Dwina, take their rise. Hence the political importance of smolensk, attested by all the wars to gain possession of it; hence also, its commercial prosperity. It is noticeable that all its towns were built on one or other of these three great rivers: therefore the entire commerce of ancient lussia passed Hrough its hands. Besides Smolensk we must mention Mojaisk, Viasma, and Toropets, which was the capital of a secondary principality, the property of two celebrated princes, Mstislaf the Brave and Mstislaf the Bold. The principality of Kief was $f_{i}$.he, Russia in the strict sense of the word. Its situation on the Dnieptr, the neighborhood of the Greek Empire, the furtility of the Black Land, long secured to this state the supremacy over the leussiun princ.palities. On the south it bordered directly on the nomats of the steppe, against whom her princea were forced to raise a burrier of frontier towns. They often took these barbarians into their pay, granted them lauds, aml constituted them into miliTary colonies. The principality of Pereiaslavl was a depentence of Kielे; Vuishegorod, Bielgorod, Tripoli. Torshok, were at times erected into principalities for princes of the same famil. On the tributaries of the right bank of the Jnieper, notably the Soja, the Desma, and the Seim, extented the two principalities of Tchernigof, with Starolub and Lubeteh; and also of Novgorod-Serraski, with Putivl, Kursk, ami Briansk. The principality of Tchernigof, which reached towards the Upper Oka, had therefore one font in the basin of the Volga : its princes, the Olgovitchi, were the most formitable rivals of kiof. The: princes of severski were always engaged in war with the Polovtsui, their neighbors on the somuth. It was a priare of severski whore exploite against these Darlarime format the suloject of a sort of cpice porm, 'alla, ll be song of lger, or the Aecome of lar's Expodition.

Another principality, whose very axistriwe consisted in widhess war agitinst the nomads, was the double principality of Ria\%an and Murom, Uue prin cipal towns of which wro Riazan, Jurom, Durciaso lav-Riazanaki, sithat"el on the Oka, Konmmat the junction of the Moskeva will the (kal ant l'ronsk
 lomatary. This principality was placed in the wery hane: of the Muromians ani Moshtehoraki, Fimish tribes. The replutation of its inhabitants, who wern reckonerl extrimely warlike in their elaracter, and remuly ant lirutal in therir manmors, was no doubt party the result of the mixtars of the Rascian race with the ancient inlathitants of the commery, and of
their perpetual and bloody struggle with the nomad tribes. The double principalitio's of Suzlat, with their towns of Suzdal, Rostof. lurief-Polski on the Kolosha, Vhamir on the Kliazma, Iaroslay, and Pereiaslavl-Zalieski, nere sithatid on the Volga and the Oka amongst the thickest of northern forests,and in the middle of the Finnish triles of Muromians, Meria, Vesui, and Tcheremisa. Although placed at the farthest extremity of the Russian word. Suzdal exercised, an important influence over it. We shall find its princes now establishing a certain political anthorityover Novgorod and the Rassia of the Lakes, the result of a double economic dependence; now intervening victorionsly in the quarrels of the Russia of the Duieper. The Suzdalians were rough ant warlike, like the Riazanese. Already we can distingaish among these two people the characteristics of a new nationality. That which divides them from the Kievalus and the men of Novgorod-Severski, oecupied like themselves in the great war with the barbarians, is the fact that the Russians of the Dnieper sometimes mingled their blood with that of their enemies and becamed fused with the nomad, essentially mobile Turkish races, whilst the Russians of the Oka and the Volga united with the Finuish tribes, who were agricultural and essentially sedentary. This distinction hetween the two forcign elements that entered the Slav blood has doubtless contributed to the difference in the characters of the two branches of the Russian race. From the eleventh to the thirtcenth century, in passing from the basin of the Dnieper to the basin of the Volga, we can already Watch the formation of Great and Little Russia.
The principalities of lief, Tchernigof, NorgorodSeverski, Riazan, Murom, and Suzdal, sitnated on the side of the steppe with its devastating hordes, formed the frontier states of Russia. The same part to play on the northwest, oposite the Lithuanians, Letts, and Tchudi, fell to the principality of Polotsk which occupied the basin of the Dwina; and to the republican principalities of Novgorod and Pskof on the Lakes Ilmen and Peipus. To the principality of Polotsk, that of Minsk was attached which lay in the basin of the Duieper. The posscssion of Minsk was often disputed by the Grand Princes of Kief. To Novgorod belonged the towns of Torjok, YolokLamski, Izborsk, and Veliki-Luki, which were at times capitals of particular states. Southeast Russia comprehented: Volhynia, in the fan-shaped distrihution of rivers formed by the Pripet and its tribiataries, with Vladimir-in-Volhynia, Lutsk,Turof, Brest and even Lublin, which is certainly Polish ; Gallicia nroper, or Red Russia, in the basins of the San, the Dniester, and the Pripet, whose ancient inhabitants, the White Kroats. seem to have sprung from the stock of the Danmbian Slavs. Her chief towns were Galitch, founded by Viadimirko about cleven hundred and forty-four, P'eremuisl. Terebovl, and Zwenigoroh. The neighborhood of llungary and Polind gave a special character to these principalities, as well as a more adranced civilization. The epie songs speak of Gialicia, the mative land of the hero Dink Stepanovitcla, as a fabulously rich combtry: The Aecount of lgor's Expedition gives us a high idea of the power of these princes. -Iaroslaf Oimomuis) of Giallicia !" eried the port to one of them, "them art wated very high on thy throne of wrought gold: with the regiments of irmi thon sustanest the Carpathians: flow closest the gates of the bambe ; thou harrest the way to the king of ifungary; thon opernest at thy will the gates of Kicf, and with thine arrows thou strikest from afir!"

The disposition of these diftern or sisteen principalitics contirms all that we have said abont the essuntial unity of the contiguration of the Russian soil. Not onfe of the river basins forms an isolitad and closed regiens. There is no lime of heights to cstablish harriara betwen themor political frontiers. The greater mumber of the Ruswian prine palities belong to the basin of the lnieper", but extend eworywhere
breyond its limits. The prineipality of Kief, with Jareinalave, is marly the only ons "ombletely comlinal within it; hut Colloynia puts the lasin of the Dnicene in emmanication with those of the lime and the Vistuh, Pohotsk with the basins of the Dnieper and the Dwina, Novgoreel-heverski with the Masin of Hese Don, Telermigef ame Smohensk with the basin of the Volga. Watrerourses everywhere establishord commanientions lertwen the principalitios. Alrealy Ruswia, Aowgh hrokro up into appangers, hat the germs of at great uniter empiru. 'The slight colvesion of nenrly all the states, and their freguent dismemberments, prevented them from ever becoming the homes of real mationalities. The principalities of Smolensk. Therernigef, and liazan lave never poss wessed as detinite an historic esistoner as the dur hy of Brefarme or the connty of Toulonse in Franere of the durlife of Saxony, Suthin, and bavaria in Germany.
The interests of the princese, therir desire 10 create appanages for each of their chithront, cansed a fresh division of the lassian territory at the denth ot ewry sovereign. Thare was, howewer, a certain cohesion in the midst of all these vicissitudes. There was a unity of race und language, the more sensible, notwithstanding all diatectie differemes, becouse the Russian prople wis surrounded everywhere, exerpt at the sonthwert, by cutirely strange races, Lithani:nes, Tchuli, loinns, Turks, Magyars. Thore was a mity of religion: the linssians dillered from nearly all their neighans, for in contrast with the Western Slave, Poles, Telueki, and Moravians, they representad a particular form of Christianity, not owning any tid 10 lome, and rejecting latin as the language of the Church. There was the unity of historial development, as up to that time the liusso-Slavs had all followed the same road, hat aceepted Greek civiliyation, submitted to the Variagi, pursued certanin arcat condrprises in eommon.-such as the experlitions against Byzantium and the war with the bomads. Finally there was political unity, since after all, in (Gallicia as in Novgorod, on the I)nieper as in the forests of Suzdal, it was the same family that tilled the thrones. All these princes clescended from Rurik, Suint Vadimir, and laroslaf the Great. The fact that the vars that lad waste the country were civil wars, was anew proof of this unity. The diffurent parts of Russia could not consider humselves strangers one to the other, when they saw the l'rinces of 'Tehernigof and Suzdal taking up arms to prove which of them was the elldest, and which conserguently land most right to the title of Gramd l'rince and the throne of Kief. There were desendants of Rurik who groverned, successively, the remotest States of Russia, and who, after having reigned at Tmutorakan on the straits of Ienikale, at Norgorol the Great, at Toropets, in the comentry of Smolensk, ent ed by establizhing their right to reign at Kief. In spite of the division into appanages, Kief continued to be the center of lassia. It was there that Oleg and Irer Lad reigned, that Vladimir had baptized his people, and Laroslaf had established the metropolis of the faith, of arts, and of mational civilization. It is not surprising that it should have been more fiercely disputed thau all the other Russian cithes. Ruswia had many princes; but she hat only one Grand l'rince, the one that reigned at Ficf. H1" lated a recognized supremacy over the others which he nwed not only to the importance of his capital, hat (1) his presition as cldest of the royal family. Kibef. the mother of all cities, was always to belong to the eldent of the ducemdants of laurik; this was the ennsequence of the patriarchal syatem of the shas. as was the enstom of division. When the Grand l'rince of kiel died, his son was not his rightfnl heir: but his uncle or brother, or whichever of the l'rinces wats the cldest. Then the whohe of Russia, from the Ballic to the Black Sea, hedel itself in readimess to support the clams of this or that candidate. It was the same with the other principalities, where the
 the mertroneliw of the revion. 'The rivil wara, them,
 sim anity. What worr thry, after all, bat family वमarrin!
"The fersistront ronllice but wern the Byzanthn law,
 fither, and the old mational laws of ho Slaves wherh
 was an ine shanstible soure of civil wars. Lewen hat
 ways dispeneed to recognize it. 'Ihnas, althourg tho deliest of laroslaf's groms hat in his favor the formal will of his father, giving him the throme of Kiaf and thongh laroslaf on his death-bed had derired his other sons to respert their ader brother as they hat done their parent, and look on him nes their futhers. hianlaf at oner found his brother suiatoslaf ready to take up arms and owertarn hiv thronce. Jow was obliged in ton lommedand seventy-three to seek refuge at the Comrt of 1 enry the Fourth of Girmany, who sent an cmbassy to Kiof. commanding Sviatestaf to restore the throme to Isiatlaf. Siviatoslaf received the German "nows with such condersy, made them such a display of his trensures mod riches, that, dazza dol by the gold, they adopted a gacifie poliry. Itenry the Fourth himsedf, disarmest by the liberalitios of the lanssian J'rince, spoke no more of chastising the usurper. Isiaslaf did not return to Kief till af ter the death of his rival in ton hundred and seventy: six. When his own deatly trok place, in ten hundred amb seventy-eight, his son Sriatopolk diel not suc. ceed him immediately. It was necessary that all the heirs of laroslaf should be exhausted. Fsevolod, a brother of Isiaslaf, whose daughter married the Emperor Ilenry the Fourth or llenry the Fifth-it is not guite certain which-reigned for fiftem yess, from ten hundred and seventy-eight imtil ten humdred and nincty-three. In accordance with the same prineiple, it was not the son of Vsevolod, Vladimir Monomakh, who suceeded his father ; but after the crown had been worn by a new generation of princes, it returned to the blood of Isiaslaf. Vladimir Monomakh made no opposition to the claims of Sviatopolk Isiaslavitch. "Jlis father was older than mine." he said, "and reignel first in Kief," so he quited the principality which he had governed with his father, and valiantly defended against the barbarians. But every one was not so respectful to the national law as Vadimir Monomakh.

Two terrible civil wars desolated Russia in the reign of the Grand Prince Sviatopolk, between ten hundred and ninety-three and eleven bundred and thirtecell : one about the principality of Tehernigof, the other about Volhynia and hed Russia. Sviatoslaf had enjoyed Tchernigof as bis share on which Tmutorakan in the Taurill, Murom and Riazan in the Finn country, were annexed. Isiaslaf and Vsevolot, (irand Princes of Kief, had despoiled the sons of Sviatoslaf, their brother, depriving them of the rich territory of Tehernigof, and only leaving them Tmutorakan and the Finnish country. Even Vladimir Monomakl, whom we haveseen so disinterested, hat acecped a share of the spoil. The injured princes were not people to bear this meckly, especially the elder, Oleg Sviatoslavitch. one of the most energetic mon of the eleventh century. IIe called the terrible Polovesui to his aid, and subjected Russia to frightul ravages. Vladimir Monomakh was moved by these minfortunes: he wrote at tonching letter to Oleg, expressing his sorrow for having accepted Tchernigof. At his instigation a Congress of Princes met at Lutbetch, on the Dnieper. in ten hundred and ninety-seven. Seated on the same carpet, they resolved to put an end to the civil wars that handed the country as a prey to the barbarians. Olec recorered Tclernigof, and promised to unite with the Grand Prince of Kief and Vladimir Monomakh against the Polovtani. The treaty was ratified by the oath of pach prince, who kissed the cross and
swore, "that henceforth the Russian lamd shall be considered as the country of all ; and whoso slall dare to arm himself against his brother becomes our common enemy."
In Vollyyia the prince, David, was at war with his nephews. Vasilke and Volodar. The Congress of Labetch had divided the disputed territories between them, but searecly was the treaty ratified than David went to the Grand Prince Sviatopolk and persuaded him that Tasiko had a design on his life. With the light faith habitual to the men of that date, the Grand Prince joined David in framing a plot to attract Vasilko to Kief on the occasion of a religious festival. When he arrived he was loaded with chains, and the Grand Prince convoked the boyars and citizens of Kief, to denounce the projects of Vasilko. "Prince." replied the boyars, much embarrassed, "thy tranquility is dear to us. Vasilko merits leath, if it is true that he is thine enemy: lont if he is calumniated by David, God will avenge on David the bood of the imocent." Thereon the Grand l'rince delivered Vasilko to his enemy David who put out his eyes. The other descendants of laroslaf the First were indignant at this crime. Tadimit Monomakh united with Oleg of Tchernigof, his ancient eueny, and marched against svatopotk. The people and clergy of Kief succeeded in preventing a civil war between the Grand Prince and the confederates of Lubetch. Sviatopolk was [oreed to disavow David, and swear to join the avengers of Tasilko. David defended himself with vigor, and summoned to his hedp, first the Poles, and then the Hmgarians. At hast a new congress was assembied at Vititchevo in the year cleven humdred, on the left bank of the Dnieper, a town of which a deserted ruin is all that now remains. As a punishment for his crime, Davill was deprived of his principality of Vhadimir in Volhynia, and had to content himself with four small towns. After the new settlement of this affair, Monomakh ied the other princes against the Polovtsui, and inflicted on them a bloody defeat; seventeen of their khans remained on the fidd of battle. One khan who was made prisoner offered a ransom to Monomakh; but the prince showed low deeply he felt the injuries of the Christians, - he refusel the gold, and cut the brigand chicf in pieces.

When Sviatopolk died, the Kievans unanimously declared they wond have no Grand Prince but Viadimir Monomakh. Vladmir dectined the houor, alleging the claims of Oleg and his brothers to the throne of Kief. During these negotiations a sedition broke out in the rity, and the Jews, whom Bviatopolk lata made the instrmments of his fiscal exactions, were pillaged. Monomakh was forced to yield to the prayers of the citizens. During his reign, from deven hundred and thirteen until dewn hundred and twenty-tive, he obtained great suecesges against the Polovtsui, and Petchenegi, the" Torki, the Tcherkesui, and other nomads. lie gave an asylum to the remains of the Khazarui, who built on the Oster, not far from Thernigof, the town of Bralowerga. The ruins of this rity that remain to day prove that this Finnish people rminently (apahle of culture, and already civilized by the (iructs. were further advanced in the arts of construction and fortification than even the Ruswims themselves. According to one tradition, Monomakh also made war on the Emperor Alexis Comnemus, a Russian amy invanded Thrace, and the Bishop of Ephesus is satid to have brought gifts to kiaf, among vthers a cup uf carmedian that had bolonged to Augustus, hexides in reown and a throne, still presurvel in the Jhasenu at Wosenw, umber the namenf the arown and throne of Jonomakh. It is now known that they never be lonerel to Pladimir, but it was the poliog of his diesor"mbints, the Tsars of Moscow, to projagate his legemi. It was of conserpuence to them to prove that these tokens of their power were traceathe to their kievan ancestor, and that the lussian Mono-
makh, grandsom of the Greek Monomachas, had been solemnly crowned lyy the Bishop of Ephesus as Sovereign of Russia. The Grand Prince made hisauthority felt in other parts of lassia. A 'rince of Minsk, who had the temerity to kindle a civil war, was promptly dethronct, and died in captivity at Kirf. The Novgorodians saw many of their luyars kept as hostages, or else exilect. The Prince of Vladimir in Volhyniat was deposed, and his states given to a son of the Grand Prince.

Homomakh has left us a curions paper of instructions that he compiled for his sons, and in which he gives the m much good advice, enforced by examples drawn from his own life. "It is neither fastiug, nor solitule, wor the monastic life, that will proreure you the life eternal,-it is well-doing. Do not forget the poor. bat nourish them. Do not bury your riches in the bosom of the earth. for that is contrary to the precepts of Christianity. Beafather to the orphans, judge the cause of widows rourself. . . . . J'ut to death no ove, be he innocent or guily, for mothing is more sacred than the soul of al Cliristian.
Love your wives, but beware lest they get the power over you. When you have fearnt anything useful, try to preserve it in yourmemory, aud strive ceaselessly to get knowledge. Without ever leaving his palace, my father spoke five langnages, a thing that foreigncers admire in us.

I have madraltogether twenty-three campaigns withont counting those of minor importance. I have concluded nineteen traties of peace with the Polortsui, taken at least a hundred of their princes prisoners, and afterwards restored them to liberty: besides more than two handred whom I threw into the rivers. Noone has travelled more rapidly that I. If Ileft 'fohernigof very early in the morning, I arrived at Kief before vespers. Sometimes in the middle of the thickest forest I raught widd horses myself, and hound them together with my own hands. How many times 1 have been thrown from the sadule by buffaloes, struck by the horns of the deer, trampled under foot by the elands! A furions boar once tore my sword from my belt: my saddle was rent by a hear, which threw my horse down nuder me: Ifow many falls I had from my horse in my youtl, when, heedless of danger, I broke my head, I wounded my arms and legs! But the Lord watched over me!" Vladimir completed the establishment of the Slav race in suzdai, and founded a city on the Kliazma that bore his name. and that was lestined to play a great part. Such, in the beginning of the twelfth century, when Louis the Sixth was fighting with his barons of the Isie de France, was the ideal of a Grand Prince of Russia.
Of the sons of Vadimir Monomakh, luri Dolgoruki became the father of the princes of Suzdal and Moscow, and Mstislaf the father of the princes of Galitchand Kief. These two branches were ofter at emmity, and it was their rivalry that struck the final how at the prosperity of Kiff. When Isiaslaf, son of Mstishaf, was called to the throne in eleven lumired and forty-six by the inhahitants of the capital, his uncle, luri Dolgoruli, put forward his rights as the ellest of the family. Kief. which had been already many times taken and rotaken in the strife between the deserondants of Oleg of Tchernigof and the descemdants of Vladimir Monomakh, was fited to bedisputed anew betwern the uncle and the nephew. It was almost at war botween the Ohi and Now Rossia, the Russia of the Dniener and that of the Volga. The princes of suzdal. who dwelt afar in the foreste in the northwest, establishing the ir cule ovar the remnants of the frimish races, were to become greater sud greater strangers to Kidevan Russia. If they still "roveted the" "mother of lassim cities," becanse the title of Grand I'rince was attardand to it , they at least began to obey and to vencrate it less than the other princes,
lari Dolgoruki found an ally against Isiasiaf in one of the Olgovitchi, sviatosfaf, who thirsted to
avener his bromber lear, delhromed and kejn primone





 soms of Olocr. Bat hari is vour molde, nud cats wo
 makh?" Dffer the wat lamd lased some lime, ato"isive buthe was fomght. At thr hallfo of Pareiak-
 fure, will two attombants, in Kiof. Tlo inhabitants. who hadlow many - ilizens in this war, cholared thay

 retired to Vladinar in Vollaymat, whene hodemandcol halp from his hrother in-hw, the King of llun-

 mate his umele prisuncr. Codrerstanding that the
 uhlost, and derelared himsalf the partisan of another son of Monomakli, the ald Viatehestaf, Jrince of "lurof. He was prochamed (irand l'rince of Kidef, itopelad his ucphew lsinslaf as his heir, nmd during his reign, from cleven bundred and fifty to cheven lmandred athd lifly-four, qave splendid fides to the lans-
 sand wat beatern under the walls of kicef. Vach of these pritue's lad laken barbarians into his pay: Iuri, the Polovisuit lsiuslaf, the lBlack Caps, that is, the


The obstinate l'rince of Suzelal did not allow him-
 tohesafaf, who only dosired peate and quict. in vain addressed him letters, setting forth his rights as the eldest. "1 had alremby a heard when you entered the world," he said. Iuri proved himself intructahle, and went into diallicia to effect an function with hisally Vladimirkn, lrinceof Galitell. This V'ladimirko had vionad the oath he had taken and contirmat by kissing the cross. When they reproachedhim, he sail, with a meer, "lt was smela a little cross!" Topreverit this dangerons co-operation, Iciaslaf, witle ont wating the expeeted arrival of the lhangrians. legan the pursuit of lori, and came mp wilh him on the: borders of the Rut, a small tributary of the Dmieper. I bloody battle was fought. where he himself was wounded :mad harown from his horse, but the Su\%dalians mod their allies the Polovisui were combpletely dofonted in eleven hundred and tifty-one. Ispaslaf survived this vietory only lhree years. After his da:th and that of Viateheslaf. Kixf passed from hand tolumd. Iuri finally rowhed the smperme object of his desires. He made his evtry into the cal\}ital in chavel hamberd and fifty-five, and liad the consolation of dying Grand Prince of Kicf, at the moment that at ligele was being formed for his $\mathbf{x}$ pulsion, in eleven hundred and tifty-sevon. "I thank there grad forl," cried one of the confederates wh learning the news, "for having spared us, by the sudden deab of our cnemy, the obligation of shedding hishood :" The confederates enteral the town: once of them assumed the title of Crand lrince, the others divided his territories. Wencefortlı there existed mo aramd principality, properly speaking and with the erowing power of Suzdal, Kief ceased to lue the chpital of Jusisia. I fimal lisateter wits still res servad for it.

In eleven bmalred and sixty-nine Andrui bogolinbski, son of Iuri Dolgornki, and Prinew of Suzdal, being disatreeted to Mstislaf. Prince of Kicf. formed ageninst hima coalition of "loven princes. Ils contided to his som Metislaf and his soilevod Boris sn imnense army of Rostovians, Varlimirians, and Suzdalions to marrl agminst Kief. This time tho Russia of the forests trimmbed over the Rassia of the steprees, and after at three days sioge Kief was taken hy assanlt. "This mother of lussian cities."
 "lु)






 wror tak"म ataty."

F'rom this time dar Jol of therajuital of Siatint Vha


 lumals of tha roitrning fatmilies of sumblonsk, 'J'rbor-
 lirand! !rince. "l"ho conter of linsciat is changeol. It

 bondren antl wixty-nime irromeoliable. The ehronis: rivil wars of this jart of \{iassit, amd the maltitualas and growing perwar of tha monatit harales, renderod the hanks of the: Ini*ger mainhalnitable. In twolve hondred and threce If ief was agetn sucked by the lonlovesni, whom the Olgovitchij of Trehernigof had takcon intu lheir niy. On this soil, incersantly the: proy of war and in asion, it was inpossible to fonnd a lasting order of lhings ; it was impossible that a regular system of government shonld be established. - that civilization shonhd drovopo and maintain itself. Less richly emdowed by nature, aud loss civil. ized, the Russia of the forists was at least more trancuil. It was there that a grame principality was formed, called 10 fultil hish deatinas, but which, unhappily, was to hesceparated for three lumalred yours, by the southern slep) there, from the Black Sca; that is, from Byzantine and Westorn riviligation. See Rusxirn Repmblics.

RUSSIAN REPUBLICS.-Noverorbd has been, from the most remote antiquily, the political reuter of the lassia of the northwest. The origin of the Slass of the llmen, who laid the foumelations of it, is still meertain. Some learmol lissians. such as 11. Kostomarof, suppose them to belong to the Slavs of the south, others to the Slave of the Battie; others, agram, liko \$1. Biclan mad M. Hovaiski, make them abranch of the krivitch or smokensk Slave. We find the Novgorodians, at the opening of Russian history, at the batd of the conferleration of tribes whisti first expelled and then rectlled the Variagit to reign over lussia. Noverorod, from very ancient times, was divided into two parts, sapabated by the course of the Volkhof, which rises in lake Ilmen and falls into the Sadogat. On the riglat bank was the side of St. Sophia, where Iaroslaf the Great built his celehrated cathedral: where the Noverord kruml was situated, enclosing both the palaces of the Arehbishop and the Prince; and where: the famons Russian monmment was consecrated in eighteen laundred aml sixty-two. On the laft hank is the sinde of eommerce, with its Court of laroslaf: the bridge which joins the two latresuf the city is celchrated in the annals of Novgorod. The sidu of suint sophia includes the Nereviky or Nerwian quarter, ats well is those of Zangorodid. or the suburbs. and of the potiors. The side of commoree comprised the quarters of tho (arbenters and slavs. Juciont doemments also speak of a Prossian or Xithmanian puarter. Some of these mames seem to indieato that many races have eoncurred. as in ancoiont Rome, for form the city of Noverord. Gilbert of damoy, who visited the republic abont fourtern hundred ind thirlem, has left us this description of it: " Noscoron is a prodigiously lare town, simated in at beatiful platin, in the midet of rat forests. The soil is low, suloject in inmulations, marshy in fhers. The town is surround[i] ly imporfect ramparis, formed of gabions; the towers are of stom". Portions of those ramparts still exist. and allow us th form an inlea of the immense extent of the ancient city. The kreml forms
its acropolis. The cathedral has preserved its frescoes of the twelfth century; the pillars painted with matges of saints on a golijen ground: the imposing figure of C'hrist on the cupolat the banner of the Virgin, whicli was to revise the courage of the besieged. on the rimparts: the tomb of sit. Vadinir Iaroslavitch, of the Archbishnp Nikita, by whose prayers a tire was extinguishen, of Mstislaf the Brave, the devoted defender of Novgorod, and of many other saints and illustrious people. Without conntine the tributary citjes of Fovgorod, such as Pskof, Ladoga, Izborsk, Veliki-Luki, statruit-Rısa, or old Russin, Torjok, biejitelif, its primitive territory was divided into five comnties. which included the land to the sonth of the likes Ladoga and Onega Its enmurests formed five bailiwicks or cantons. occupying the whole of Northern lassia, ind ratend ing as fir as Siheria. These bailiwicks wore the Zavolotclié, or the lathd dying beyond the canton, hetween the Onega and the Mezen: Russian Lapland: Permia, on the Epper liama: Petchorit, on the river of the same name : and Jugria, on the other side of the I rad Mountains To these we must idel Ingria, Kiarelia, and part of Livonia amd Esthonia.

Novgorod, which hat summoned the Variag Princus, was ton powerfal, with one loundred thonsamd inhabstants and three homelred thonsand subjects, to allow itself to be Iyramnized over. An ancient tradition speaks vagriely of a revolt agramst Rurik the Old under the hero Viadim. Sviatoshaf, the connoeror of the Bulgaria of the Danmbe, undertook to govern it by mere agents, but Noverod insisted on having ome of his sons for its prince. "If You dw not come to reign over ns." said the citizems, "we shall know how to find ourselves other princes." Iaroslaf the Great. as a reward for their devotion, accorded them immonse privileges, of which no reeord can be found, but which are constantly invoked by the Novgorodians, as were the true or false chatters ol Charles the Great by the German cities. These republicans conld not exist without a prince, but they rarely kipt one long. The assembly of the citizens. the zetclé, convoked by the bell in the Court of Iaroslaf, was the real sovereign. The republic called itselt "My Lord Novgorod the Great." "M1 Mon cin equal God and the great Novgorod :" was a popular saying. From the distance of the city from the Russia of the Dnicper, and its position towards the Baltic and Western liorope, it took little part in the civil wars of which Kidf was the ohject and the center. The Novgarodians profited by this in a certain sense; for, in the midst of the strifes of princes and of freguent changes in the grand principality, no sowareign was strong enough to give them a master. Thre conld choose between princes of the rival families. It conld impose conditions on him whom they chose to reign over them. If discontented with his manamement, the wepelled the prince and bis hand of autrustions. Acoording to the areustomend lurmula, "tliey made a reverence, ame sluswed him the way" to leave Fovgorod. Sometimes, to limder his evil designs, they liept him prisoner in the Archbishopes palatee, and it wate left to his suecoessor to set hime at liberty. Often arevolition was accomphatiod by a eroneral pillige of the partisaths of the lallen prines. and they were even flowned in the Volkhof. I (rrand Prince of Kilef, Sviatopolk wished to foree his son on them. "Send him here"." said the Noverorolimns, "if he has a spare head"." The princes themselves contributed to the fremuent r-langes of raign. They folt themselves only lailfrubres in Novgorod. sis they acorepted amy bther aplanate with joy. Flhes, in edeven humdrad and thirty-two, Vsevolod (inbried abandomerd Noverorml to reign at l'oreinslayd. W"homhishoges of Kiof were corusbud, and he wished to return to Yoverorod, the citizno rujupted him. "Sou forgot your bath 10 die
 were youl will." 1'rescmaly they thonirht better" of it. and took lam batek. lour yeurs afterwards lue was
again obligex to fly In a great vorehe. to which the citizens of Pskof and Ladoga were summoned, they solemmy condemmed the exile, after reading the heads of very rharacteristic accusations: "IJe took no eare of the poorer people: he dexired to establish limseff at Pereiaslavi; at the battle of Mount Idanof, against the men of suzdal, he and his drujina were the first to leave the battle-fiedel; he was fickle in the ruarrels of the prine es, sometimes uniting with the Prince of Telernigof, sometimes with the opposite party."

The power of it Prince of Novgorod rested not on dy on his drujima. whirh always followed his fortimes, and on his family relations with this or that powerful principality but also on a party formed for him in the heart of the republic. It was when the oppusiag party grew too strong that he was de. throned. and pojular vengeance exercised on his adlerents. Novgorod heing above all a great eome mercial city, its divisions were frequently cansed by diverging econmic interests. Among the citizens, some were occupied in trade with the Yolga and the East, others with the Dnitper and Gruece. The former mathrally songht the abliance of the Princes of suzdal, masters of the great Oriental artery: the latter that of the Princes of Kief or Thernigof, masters of the road to the sonth. Faldy of the two parties tried to establish a prince of the family whose protection they suluglat. If lie fell, yet succeeded in esaraing from the town, he wonld try to regain his throme by the arms of his family, or to install himselfand his drujina either at Pskof, like Vsevolod-Gabried, who hecame prince of that town, or at Torjok, like Iarosiaf of Suzdal, and thence he would blockade and starve the great city. The Prince of Suzdal was sonn the most formidable neighhor of Novgorod. We have seen that Ludrei Bogolinhski sent an army against it, then that his nephew Iaroslaf besieged his ancient subjects till Mstislaf the Bold freed them by the battle of Lijetsk in twelve lmmdred and sixteen. He was the son of Mstislaf the Brave, who had defended them against Fsevolod Bigr-Nest, and against Suzdal and the Tehudi. The remains of "the Brave" rest at Saint Sophia, in a bronze sarcophagus. It is son, "the Bold," was of far too restless a nature to die also at Nov. gorod. Ile rednced the principality to order, and then assembled the citizens in the conrt of Iaroslaf and said to them. "I salute Siant Soplia, the tomb of my father, and you, Novgorodians. I am going to reconmuer Galitch from the strangers, but I shalt never forget yon. I hone 1 may lie by the tomb of my futlier, in Satint Soplia." The Novgrorodians in vain entreated him to stay. This was in twolve hmmired and eigliteen. Wi have seen him use his last armies in the tronbles of the southeast, and die Prince of Caditell.

After his departure the republic summoned his neplew, sviatosiaf to the throne: but he could not come to terms with the magistrates and a populace equally turbulent. The posidnik. Tverdisjaf, cansed one of the boyars of Novgorod to be arrested. 'l'his was the signal for a general rising : some took the part of the boyar, others that of the posathik. During eight days the bell of the kremi sounded. Fimally both factions burkled on their mirasses and drew hreir swords. Tverdislaf raised his eyes to Saint Soplan, amberied, "I shall fall first in the batHe, or (God will justify me by giving the victory to my brothors." Ten men only perished in this skirmish, and then peate was re-cistablished. The prinee, who necolsed 'rurdis!af of lowing the catses of the tronbla, demanded that he shomble be dejosed. The vetrhe inguired what rerime he hat committed. "None". replicel the prince, "but it is my will." "I am satistied," exclamed the posadnik, "as they do not acerse mo of any fants as to you, my brothers, You can dispose alike of posadniki and princes." The assembly then gave therir derision. "l'rianee, as you do not recuse the posudnik of any finlt, remem-
ber that you hase sworn to depmes we matiatrate withont irial. Ho will remain obr posadnik, wa

 H. Was replacel hy Vervolon!, whe of his hrothers, whon was expelled two yars later. 'The Kuvalian party having mate sume prowness, they recalleal the

 be :bble to agres. wilh the Noverorodians. laroshat was ngain put to flight, and replaced ly Viverond of simolentk, whos wis expellecl in his tum. "The (Eramd !rines of suzdal now interposerl, keved a -omtribution on Noverorol, and a prime of Tromernigrof was imposed on them, who hatemed in twate

 limes changed their rabers. batoshaf himself came batk for a third and even atourth tims. A famias (a) much reduced the Novgorentians that forty-two thousame corpses were burid in two ermeteries alone. These promed ritizens implored atrangurs to lake then as slates for the price of a morsel of hreab. The same yatar a dire hestroyed the whole of ond cuarter of Noverorod. 'The calamitios subderel their thrbulence. larnslaf sucemed in enserning Hom despotically till be was ratled to till the throne of the (iramd l'riner in twolle hundred and thirlysix. He beft them, as their prince, his som, Nexancler Niowki.

From the fact that no lymasty of princes coukd es. tablish itself at Novgored, that no princely hame could take a place among the mative aristocracy, it follows that the republio kept its ancient liberties and rustoms imtare moder the short reigns of its rulers. In an fussian cities, it is trme, the combtry existed side by side with the I'rince and boyars, the assembly of citizens side he side with the prinee's mon, and the native militia side by side with the foreign |rujian: but at Novgorod the comiry, the vetelé, and the municipal militia had retained more vigor than clewhere. The town was more powerful than the Prince, who reigned ly virtue of a constitution, traces of which may be olserved, no doubt, in other regions of Russia, but which is foumd in its original form at Novgorod alone. Eheh mew monarch was compelied to take an oath, by which he bound himself to observe the luws and privileges of Iaroslaf the Great. Thic constitution, like the perter conventer of Poland, signitied distrust, and was intended to limit the power of the Prince and his men. The revenums to which he hal a right, and which formed his civid list, were carefully limited, as ahso were his judicial and political functions. He levied tribute on certain cantons, and was entitled to the commutation for crimes us well as to certuin thes. In some bailiwieks he had his licutenant, and Novgorod had its own. He coudd not execute justive without hedp of the posaluik, nor reverse any judigment: nor, above all, take the suit beyond Kovge rotl. This was what the Novgorselians feired most. and with reation. The day when the people of Novgorod berhought themselves of appeating to the tribunal of the Grand Prince of Moscow whe fatal 'o the independence of the republic. In the contlicts between the men of the prince and those of the eity, a mixed eonrt delivered judgment. The l'rince, in more than his men, could acguire villages in the territory of Novgorol, nor create colonies. He was forbidelen to hunt in the woods of Staraiai I Iusa oxcept in the antumn, and had of reap his harvests at a specitied scason. Though they that mistrusted their Prince, the Nowgorodians had need of him to molerate the ancient say anarelye. As in the days of lurik, "family armed itself against f:mily, and there was no justice." In Novgorod the verelié hand more extensive powers, and acted more regularly than in the other Russian cities. It was the velche Which nominated and expelleal mrinees. imprisonad them in the archicpiscopal palace, and formady ar-
 herided pencer and war, julderel the State criminals.
 hand till the tatl of the repmblice, the decision- were ulways made, mot by a majorisy, bat by umamity of voices. It was a kind of liherent colle. The matjurity had the ramore of drownine thr minority in


 Conat of Jaroslaf, somatime ins sam sophia's. As
 shichl." Siwgerond orernsiomally saw on the hanks of

 submitted of the erneral assembly, the quations ware sometimes deliberated in at smaller council, rompored of mentable (iti\%ers, of acting or patat ma-

The chicf Novgrorodian magistrates were, lirmt, the posaluik, callow by romemporary (icrman writers The burgomaster, who was changed mearly ats often
 of the inllomential famidics, one of which alone gave a dozen posudniki to Novgrosed. 'the lirst magistrate was chatred to Acfemf divic privileges, and shared with the Primer the judicial power and the right of distributing the taxes. The governed the city, commanded it army, directed its diphomacy, sealed the acts with its seat. The second ollicer was the tuixataki, who was a military chief,a ('oloned who had the Captains of the town militia under his orders. He had a special tribmat, am! semes to have lee specially intrusted with the defence of the rights of the people, thus recalling the Roman Tribomes. And besides the ('aplains there was a staruste, a sort of district Mayor. for carll gharter of the bown.
The chiff document of the Novgorodian daw is the Letter of Justice, of which the definite publication may be placed at fourtecn hundred and siventyone. It contains the same principles ats the Corle of laroslaf the Great. As in all the carly Germanic and Srandinavian laws, we find the right of private reveage, the fixed price of blood, the "boot," or fine for injury inflicted, the oath admitted as evidence, the judgment of Got, the judicial duch, which was still resorted to by Novgorod even after its Hecadence, in the sixteenth century: We also find rocords of corporal punishments. The thies was to be branded ; on the second relapee into crime, he was to be lang. Territorind property acquires a greater importance, and, a sure evidence of Muscovite inlluenee, a second court of appead is almitted, the appeal to the tribunal of the Grand l'rince.
From a social point of view, the constitution of Noverod presents other analogies with the constithtion of Poland. Groat inetumber then existed between the different plasens of society. An aristocracy of boyars hat ultimately formed itself, whose internal ginarrels agritated the town. Below the boyar: came the dieti bnyarskié, a kind of inferior nobility; then the differmen classes of citizens, the merchantmen, the bleck pormbe, and the pasants. The merchants formed an association of their own, a sort of guid. romed the Chureh of Saint John. Military societies also existed, bands of independent adyentirers or followers of some boyar who, innpelled by hanger or a restless spirit, -ollght adventures afar on the great rivers of Northern Russia, pillaging alike frients and (nemies, or cetablishing military colonies in the midst of Temad or Fiunish tribes.
The snil of Novgurnel was sandy, marslyy, and unproductive : hone the famines and pestilences that so often depophlated the cosmery. Novgorod was fored to eatend itsold in order to dive: it became therefore a commercial and colmiong city. In the wnth century konstantin relates how the slave left Nomegard, or Norgorod, descended the Dnieper by Milinisea, or smolensk, Tediutza, or Lubeteh. Teleer-
niguf, Tuishogrorod, Kicf, and Vititchevo; crossed the Cataracts of the Duieper, passet the naval stations of Saint Gregory and Saint Etherins, at the month of the river, gut siread themselves over all the shores of the Greek Empire. The Oriental coins and jewels found in the barrows of the Ilmeushow that the Novgorotians hai an early and extensive commerce with the East. We see them exchange iron and weapons for the precious metals found by the Iugrians in the mines of the Urals. They traved witly the Baltic Slars ; and whea the latter lost their independence. and a flourishing centor, Wislyy, was formed in the Isle of Gothlambl, Norgorod turned to this sicle also. In the twelfth century there was a Golhic market and a Variag Chureh at Noveorod. and a Novgoroulian Chorch in Gothland. Whenthe Germans began to dispute the commeree of the Bit1e with the Seandinwims, Norgorod became the seat of a German market, whieli finally absorbed the Gothic one. When the Janse Leagne became the mistress of the North, we finl the Germans esLablished not only at Novgorod, but at Prkof and Ladoga, at all the ontlets of the network of Novgo. rodian lakes. There they obtained eonsiderable privileges, even the right to aeguire pasture-lame. They wire masters, antl at home in their fortitied markets, in their stockade of thiek planks, where no Russian had the right to penetrate without their leave. This German trading company was governed by the most narrow and exelusive iteas. No Russian was allowed to belong to the company, nor to carry the wares of a German, an Englishman, a Walloon, or a Fleming. The company anthorized a wholesale commeree only, and, to maintain its gools at a high priec, it forbade imports beyond a certain amount. "In a worl," says a Gernath writer, Riesenkampf, in "Der Deutsche Hof," " during three centuries the llanse League held a monopoly of ail the external commeree of Northern Russia. If we inquire what protit or loss it brought this country, we must recognize that, thanks 10 it , Novgorod amd Pskof were deprived of a free commeree with the West. Russia, in order to salisfy the first wants of civilization, fell into a state of complete independence. It was abamboned to the good pleasure and pitiless egotism of the German merchants."

The ceelesiastical eonstitution of Novgorod presents a special character. In the rest of linssia the clergy was Russian orthodox. At Novgorod it was Novgorodian before everything. It was only in the twafth century that the Slavs of Ilmen, who had been the last to be eonverted, could have an Archbishop that was neither Greck nor Kiesam, lmt of their own race. From that time the Archbishop was elected by the eitizens, by the vetché. Without waitiner to be invested by the metropolitan bislom at Kief, he was at once installed in his eppeopa? palace. He was one of the great personages, the first lignitary of the republie. In poblie itets lis name was placed lrefore the others. "With the hbessing of Arehbishop Itoses," says one letterfatent, " possi?nik Baniel aml tuisatski Abrabam salute yon." He had a smperiority over the Prince on the gronmd of bring a mative of the rometry, whilst the deserendant of Rorik was a forcigner. In rebirn, the reventes of the Arehbishop, the tratsures of Saint Soplait, were at the service of theremblie. In the fourterenth iontury we fimi an Irchbishos] buidanar at his own expetase a kroml of stone. In

 by the limhmaians. 'The ('hureh of Noveroml was eamentially a mational chureh; the reerleciastice took part in llatemporal affairs, the laty in the spiritaal. In the fomrteconth century the vetche put to death the lurotical strigulniki, proseribud incount superstitions. sand burnt the sorerrors. As the ditzoms of Nowere robl nominatorl their Arelbbishom, they romblalsu lepense hom. The orthodox religion externdel witl be Novgorod colonization among the Fimoish tritus.

In opposition in the Finms, the interests of the Church and thw republic: were itlentical. It was religion that contributed to the splendor of the city, and that specially profited by its wealth. Novgorod was full of clurehes and mongsteries, fonnded by the piety of privato individuals Novgorod, which had shaken off the political supremacy of Kief, wished also to free itself from its religions (ominationand nolonger to be obliget to seek on the Dnieper the investiture of its Archbishop, lut to make him an indepentent metropolitan. It failed. When lloseow beeame of importanee, she threatenced not only the political, but the redigions supremacy of Novgorod. Religion was, in the lands of the Museovite Princes, an instrument of goverument. The Novgororlian prolate alwaymade common canse with his fellow-eitizens. and endured with them their master's bursts of anger.

The literature of Noxgorod was as national as the Clorrol herself. The pious chronicles of the Nowgorolian eonvents shamelall the quarrels and all the passions of thejr fellow-citizens. "Evin their style." says M. Bestujef. "roflects vivilly the artive, busi-ness-like eharacter of the Novgorodians. It is short, and sparing of words; bat their narratives embatice more completely than those of other liussian comntries all the phases of aetual life. They are the historians, not merely of the primers, mal boyars, bat of the whole eity. The lives of the saints are the lives of Novgorodiausaints; the miracles they relate are to the gloy of the city. They tell for example, that Christ appeared to the artist eharged with the paintings under the dome of Saint Sophia, and said to him: "Do not represent me with my hand extended for thlessing, but with my hand closed, because in it I hold Fovgorod, anl when it is opened it will be the end of the eity.'" The tale of the panic excitel among the soldiers of Andrei Bogolinbski by the image of the Virgin wounded by a Suzdalian abrow was spread abroad. Novgorod has its own cyele of epie songs. Its heroes are not those of the likevan puems. There is Vasili Buslaté vitch; the buld boyirr, who with his fathfal Arujina stood up to his knces in bood on the bridge of Tolkhof, hobliner in ehnck all the muxhiki of Novgorme, whom he had defiel to combat. Vasili Buslaévitela is the true type of these proud advemturers, who knew neither friemolnornemy, - a true Novgorodian olicrarch, it hero of civil war. Still more popmlar was Sidko, the rieh merchant, a kiml of Novgorodian Sindbad or Clysses.a worthy representative of a peophle of merelimis and atventurers, who songht his fortune on the wares. A tempest rose, and men drew lots to ibecidis who should be sacriticed to the wrath of the gods. Sadko threw a little woolden ring into the water, the others flung in iron rings: O prodigy : the others swam, his sink. He obeyed his destiny, ant throw himself into the waves, but he was reecivell in the palace of the king of the sea, who fested him in varions ways and wished him to marry his dangliter. Then sublanly Sako foumd himself on the shoric with great treasines, but what wre these compared for the treasures of the city? "They see that 1 am a rieh merchant of Norgorod. but Novgornd is srill rieler than 1.0

Of all the (owns suljoet to Novgorod. Pskof was 1he most important. On the point formed by the: junction of the Pskoval sud the Velikaita rises its kreml, with !ts erumbling rimparts, its romed sates
 mass of ruins, and the strect-buys amuse themselves by throwing stomes in the Pakovat 10 frightern the latudetrsses. Pskof is only a poor little: place with ten thousand sunls. Seareely anything remains of its past splembor save the ('anthedral? of the Trinity al. me emd of the kremb. 'There rest in metal eotions the bones of the lumt-lovad priners, Vacolot-Git. bricland Dovmont, a convortad lathathian who came in the thirtecnth contury 10 defond the repmblis agtinst his own compatriots. The old fown still has many fourches andmonts' cries: the distant view
of it is luantiful, and on filedays the firad rity s.ans to swake at thr rhimes of is immmorable: lofls, which rione as merrily as in the days of ite glarions past. Nestor makes l'skof the mative land of same







 the greater ratermese hy the l'skovians. When the Guzdalian pary falod at Noveroron, it was eremently the contrary farty that frimmplat in lakkof. Ahont twelve hanilreal and formaron the little republire renttracted an ollomsive atud defonsive allianor with the

 Novgorotl. "This was playing rallare al thomerons game. In twelve hambled and forty, one 'lverdillo deliveredthe (ity uts follu livonians, atrl it was mot sel frer till iwelve limmlred stml forly-lwo. J'rems this montent I'siof eraced to mix in the civil wars of Noverorod. It hat emonel| to da with its own af-

 l'skof the (ircat :" hat it was omly in thirlain lam-
 its ledp agatast Masmos, king of sweden, formally recornized its interemeleme hy the treaty of lablstof, amb enordaded abond of fratornal friomishij. Noweronl beramo the elocr brothor, amel l'skof the yomber. The oreqhazation of lakof is almost hat of its anejobl metropolis. We again tind the l'rince, the Vetehta, the division into funtrers, if) to the mumber of six, atch one having its Hayor.

In the twalfth cemtury a new Noverorollan colony was fommed between the Finma and the Viatka, whichremanedarepuldic until the difteenth conlury. "Thlis $\quad$ listant rommry," stys M. Bustujef-liumin, "í still quito Noverorodian. When the Praveller has
 construming the huts. There are no longer whule lines of lovels joined ome to the other, as on this side of the river, but there is a hieh house, where the eonet, rooms, atod ellioes are starrounted by at rampart of males and united moder the same roof: in a wort, it is a Novgoroditn house. Vour hear the Noverordinn dialeat: you see the Novgoredian (al). 11 isthe Noverorol colonizationstill livines." In elevern humdred and serventy-four some alventhrers from the (ircat Repablic came from the liama o o ta• Viat and advanced from east to west, and fommed a colony on this riv's, whirls is to-day the village of Nikulitsnin. Another band defested tha Theremisa. amd on their torritory raised lowhkarof, at present ealled Kotelnitelt. Then the two hands rexulated and peatrated into the Votiak comatry. On the right bank of the Viatka, on the summit of a higk tumbtain, they pereejved it eity sureounded by a rampart and it ditelt, which cemtanet one of the sametaries of the people. As pions as the rome pandons of ('orter and Pizarro. the lassian atornturers prepared themsidves for the acsamit by a fast of several dars, then invoked sitints Boris athl (ileb, and captured the town. Next, at the moulh of the kilhimovitsa, in the Tiatka, not very far uff, they latilt the eity of Khbunof, which buewte, umber the name of Viatks, the extuital of all the colonies. It fitd no witls. Int the housis, built elone fogether, formed atn unbroken rampart arsabis the conemy a wall amel deformer. At the mewsof this suceess other coblonists llocked from Nowgorod and the forests off the north, and fommed other eenters of pupnlition. These bold pionerers had more than onece to remate sommethes astanst the aborigimat Finns or the Titar imvaders, sometimes agetinst the pretensions of Norgrorod, or the Grand Prime of Noseow. W: find among them, as in the metropolis, boyars, merchants
 thoir military chicfs. 'I'lout'pirim of religions inte-



 writos to the primato of Viatka, "livernalrary to the
 yon lare lo hlosa dhen marriamo.e."

In thic contrection, we will briofly revie w the bat-
 Sit, ant thre inflatoce of the Thatars on lenssian doe vilopsuront. ['p to this time the hinoory of linsuis
 Slavonia, likr (iand, lasd rerroved lannan rivilization amel ('hrialianity from the fismb. 'I'lor Kiorthmon land lorourlat it an orestheation whith ramalls that of tha (iormans ; and it lame enjogord a cortain w-mblame of maty under laroslaf, like the V゙om mualer (harlas the (iroal, while it was afterwards dise

 precodenteal misfortome ; it was insated and subju-

 the climato tor retare its development by many armote
 mother fo lensxia"; fate was anothor sitep-mother.
"In those timus." siay the Russian chatentlers, "there canur Henn us for our sins, unknown mations. No ome cound tell their origin, whenet: they came what religion they profossid. (ind alone knew why Hoy were, fod and perlapgs wise men lrarnol in bookss." Mhen we lhink of the horrore of the whole of Eiurope at tho arrival of the Honcrols, ant the ant grtish of at lerederick, of a sinnt louns, an lumocent ther Fourth, we maty inarine the terror of the linse sians. 'Thry bore the first shock of those mysterious focmen, who were, so the people whisperex, Gog and Magog, who, according to Joirville"。"were to come at the ent of the world, when Antichrist is 10 Itestroy "verything." "1"he T'n-ta, or Tatars, surn to have been a trihe of 1 le graat Mongol race, living at the foot of the Altai, wion in spite of theje longcontinued disontls frogurntly foumd means to lay Waste China by their intanions. The partrat drawin of them remotles in many ways those alotaly tracal
 the Avars, and other nomat pooples of former invasinns. "The "lotzoix, or the las," says a ("hinese writer of the thirtenth century, "oceujy themedves exclasively with their florks; \{hey an wamelering ceasolessty from pasture to patiture, from river to river. "They are irnorant of the mature of st town or a wall. 'Thry are unacquainted with writinar and books: their treaties ara rumelaled orally. From infancy thry are acenstomed to ritle, fo sim their arrows at rats amd hirds, atml thas acquire the comeraqe essential to their life of wars and rapiae. They haver nejtler redigirsus cercononies nor jodicial institutions. From the !rines to the lowest amoner the prople all ford upon tha flosh of the animals the skins of whidh the whe for cluthing. The stromest amone them have fle lareres and fattest morselo at fogst: : the ohl men are put off with the fracrenents that are left. 'They respeet mothing hat atrenerth and bravery ; ace and weakness they despise. Whanthe father dies, her mon marries his goungest wives." i Dussulman writer adds. That they adore tho sun, and practise polygamy amt the commenty of wives. This pastoral people dhat not take an interest in any Ihemomumon of mature execpt the growth of eract. The mamos they gave to their monthis were surgest al hy the ditferent aspects of the prairie. Dorn horsemen, they had no infantry in war. 'They ware ig. morant bf the art of sieges. "lbut," says at Chinese author, "when they wish to take a town, they fall on the suburban villages. Each leader scizes ten men. and every prisoner is fored to carry a celain quantity of woot, stones. and other materials. The
use these for filling up fosses or digging trenches. In the capture of it town the loss of ten thousand men was thought uothing. No place could resist them. After a slege all the population was massacred, without distinction of eld or roung, rich or ponr. heautiful or ugly, those who resisted or those who yielded; no distinguiwhed personescapeld death, if a defence was attempted." It was these rongh tribes that Temutchin, or Genghis Khan, who ruled from cleven lundred and fifty-fonr unt it whe humdred and twent $y$-seven, sueceeded in umiting into one nation after forty yars of obseure striggles. Then in a general congress of their princes he proclatimed himself Emperor and declared that, as there was only one sun in heaven. there onght to be only one Emperor on the carth. At the head of the forces he emonered Mantcluria, the kingdom of Tangut. Northern Chin, Turkestan, and Great Bokhara, which never recovered from this disaster, and the plains of Western isia as far as the Crimea. When he died. he left to be dividet between his four sons the largesi empire that ever existed. It was daring his corrquest of Bokhimia that his lieuterant Telref and Subudai-hagadur subdued in the parsage a multitude of Turkish penples, passed the Caspian by its southern shore, invaled Georgia and the Caucasus, and in the southern steppes of Russia came in contact with the Polortsui.
The hereditary enemies of the Rnssims proper, the Polortmi, asked the Christim Printes for help against these XIomgols and Turks, who were their brothers ly a common nrigin. "They hase takeu our country," said they to the descendants of Saint Vladimir: "to-morrow they will take yours." Mstislaf the Bold, then Prince of Galitch, persuaded all the Ilynasties of Sonthern laussia to take up arms against the Tatars : his nephew Daniel. P'rince of Folhyna, Mstislaf Romanoviteh, Grand prinue of Kief. Oleg of Kursk, Mlstislaf of Tchernigof. Vladimir of Smolensk, Vsevolod, for a short time I'rince of Novgorod, responded to his ippeal. To cement his allimnee with the linssians, Basti, khan of the Polortani. embraced orthodoxy. The Russian army had alrealy arrived on the Lower Dnieper, when the Tatar ambissadors made their appearance. "IVe hare come by Gol's commandagainst mar slaves and grooms, the accursel Polovtsui. Be at prace with us; we have no puarrel with you." The Ruswims with the promptitucle and thoughtlessness liat characterizell the men of that time, pat the ambassadors to death. They then went farther into the stoppe, and encountered the Asiatic hordes on the Kalkil, it amall river running into the Sea of Azof. The Russian rhivalry on this memorable day showed the sam" "disorler and the same ill-athiset eagerness as the French chivalry at the opening of the English wars. Mstis)af the Bold, Daniel of Galiteh, and Oleg of liursk wore the first to rush into the midst of the infidels, without waiting for the l'rinces of Kief, and even without givires them warning, in order to gain for themselves the honors of vietory. In the mithle of the eombat the Polovisui were sidzed with a panife and fell back on the lussian ranks, thas throwinger them into disorder. The ront became generat, and the lathers sparred on their steeds in hopes of reaching the buieper.
Six prinees and seventy of the chidf horars, or voinvolui, remainel on the tield of batile. It was tha" (reey eimel loitiers of the Russian chivalry. llardly a tonth of the arouy waperl; the kiavans alone left tem thousamb deat. 'The Grand Prince of Kiar, however, Mstialall Romanovitelh, still orenpied a fortitied camp on the banks of the kitlkit. Ahandomell hy the rest of the army, he tried to defemd himself. Ther Tatars oftured to make terms: he mirght relire on payment of a ransom for himself and his drujina. 1lo rapitulated, and the ronditions were brokom. ITis graral was masselered, and he and his two sons-in-law were stilled under planks. Tlee Tatares hela their festivals over the inanimate boties in

Twelve humired and twenty-four. After this thonderbolt, which struck terrior into the whole of Rhasia. the Tatars paused and returned to the East. Nisthing more was heard of them. Thirteen years paseed, during which the princes reverted to their purpetual discords. Those in the northeast had given no help to the Russians of the Dnieper: pertajes the Grand Prinee, Iuri the Secome of Suzdal, may have rejoforel orer the hamiliation of the Kidevans and Crillibians. The Mongols were forgotten; the chronicles. how ever, are filled with fatal presages in the midst of scarcity, famine and pestilence, of incendiaries in the towns and calamities of all sorts. they remark on the comet of twelve hmmedred and twenty-four, the earthatuke and ectipse of the sun of twe hemmed and thirty:
The Tatars were busy finishing the confuest of China, but presently one of the sons of Genghis. l'gudei or Oktai, sent his nephew Batui to the West. As the reflux of the Polovtsuif had annonnced the invasion of twelve hundred innd twenty-four, that of the Suxin nomads, a tribe akin to the Khirghiz. who took refuge on the lands of the Bulgarians of the Volga, warned men of a new irruption of the Tatars, and indicated its direction. It was no longer Sonth Russiad but Suzdalian lassia that was threatened. In twelve hundred and thirty-seven Batui conquered the Great City, eapital of the half-eivilized Bulgarni, who were, like the Polovtsni, ancient enemies of Ruswia.and who were to be included in its ruin. Bolgary was given up to the thames, and its inhabitants Were put to the sword. The Tatars next plunged into the deep) forests of the Volga, and sent a sorecerer and two uthecers as envoys to the Princes of Riazan. The three princes of Riazan, those of Pronsk, Kolomma, Moseow, an! Narom advaneed to meet them. "If you want peace," said the Tatar, "give us the tenth of your goods." "When we are detad," replied the Rusian Princes, "yon can have the whole." Though abandonel by the princes of Tchernigof and the Grand Prince luri the second. of whon they had implored hedp, the dynasly of Riazan accepted the unequal struggle. They were completely erushed: nearly all their princes remained on the tield of battle. Legend has embellished their fate. lt is told how Fuodor preferred to die rather than see his young wife, Euphrasia, the spoil of Batni, and how, on learning his fate, she threw harself and her son from the window of her chamber. Oleg the llandsome.found still alive on the battle-field, repelled the caresses, the attention, and religion of the khan, and was cut in pieces. Riazan was immediately taken by assault, sacked, and burned. All the towns of the prineipality suffered the same fate. It was now the turn of the Grand Prince, for the Russia of the northeast had not went the honor of falling in a great battle like the lhussia of the somthwest, united for noce against the common enemy. The Suzdalian army, commanded by a son of luri the second, was beaten on the day of Kolomna, on the Oka. The Tatars burned Moscow, then hesieged Vladimir on the Kiliazma, which Iuri the secont had alandoned to seek for help in the North. Itis two soms were charged with the defence of the eapital. I'rimes amd hoyars, feeding there was molternative hat death or acervitude, prepared to die. The prin cesses and all the nobles patyal Bishop Mefrophanes to sive ham the tomsure; and when the Thears rushed into the down hy all its sates. the vampuishedretiral into the "alluetrat, where ilwey perished, men and women, in a gencral conlagration. Suzdal, lesstof, laroslav, fonitern towns, immitule of villages in the (ramd l'rimepality. were all given ower to the dlames in twedve inndred and thisty-eight. The 'latars thom went to sodk tha Grand l'rince. who was cheamperd on the sit, almost on the fromtine of the pessecssions of Novegurobl. Luri the Fecond could nether arenge his people nor his family. After the lattle the Bisinop of Rostof fomm his headess corpsie. lis nephew Vasilko, who was taken prisoncr, was
stablay for refusing on serve bathi. The immensw Thararmy, after having sackel Towe look Torjok; there" "the linssinn hatade foll berneath the swort of
 tory of Nowgoros; was inveled: the ereat remblie

 of lignatios, about tifty milew from Novgormel, then returnel 10 the sumberat. on the way the sumall
 for so lome and intlictorl on theom sor moth lose, that it was ralled hy then the wickel thwn. It popmala tien wat warminaterd, and the prince, Vasili, will a child, was " drownel in bemel."
The two followine vare wore sumt he the 'latars
 laf, and Trelorniguf, defonded with desperation by its priners. Neat Matarn, erandon of dimarhis Khath, matided arainst face famoms town of Kief, Whase maner restumberd themgh the was and in the books of the Arab writers. F'rom the left hamk of the lonicper the larlarian almirel bloe great city on
 river with its white walls amel towneralornd by By-
 las of erohl amb silver. Manern oflered the Kiverans terms if surrender: the fate of liazan, of Telernigof, of ladimir, the capitals of powerful states, anbumend to them the lot that awated them in case of refusal, yet the Kideans dared to massare the envoru of the khan. Mikhat, their (iramel Prinee, ilent: his rival. Waniol of (Aalitch, did not care to remain. On hearing the report of Mangr, Batui came to ase sault kief with the bulk of hisarmy: The errindiner of the wortern clatiots, the hellowings of the hallinlows, the crics of the ramels, the nighing of the horses, the howlinge of the Tatars, rembered it impossibie, says the amalist. (o) bear yome own voice in the (own. The Tatars assalad the I'olish chate, and knorked down the walls with a hathering-ram. "The lievans, supported by the brawe Dnitri, a Gallician boyar, clefembed the fallen rampart- till the end of the day, then retreated to the clarch of the Tithe, which they surromaded by a palisade. The last defenders of Kx ief foumb themselves grouped aromat the tombof Iaroshaf. Next day they perished. The khan gewe the heyar his life hat the Mother o1 Rassian citios' was sacked. This third pillage, which took place in twelve hmmerd and forly, was the most terribie, Fiven the tombs were not respectcal. All that remains of the Church of the 'Tithe is a tew framento of masaic in the Musomm at Kice saint sophia and the Donastery of the (atacombs were delivered ujs to be phamberal." Folhynia and Gullicia still remained, but their princes could not detend them, and Rasian found jtself. with the exception of Novgorod and the northwest emmtry, umder the Tatar yoke. The princes had thed or were dead; humbeds of thonsande of Russi:ns were dragged into captivity. Men saw the wives of boyars. - who had newr known work, who a short time aro hat heen elothed in rich garments, adormed with jew els and collars of gold, surrounded with slaves, now reduech to be the slaves of bardarians amel the wives. (nrming the whel of the mill, mat preparing their "arare foocl."
If we look for the canses which rentered the defeat of the brave Russian mation so complete, we may, with Kianmsin, indicate the following:Thongh the Tatars were not mote alvancel, from a military poimt of viow, tham the lassians, who had made war in Greece and in the If at against the most warlike and civilized peophe of Europe. yet they hat an enormons superionity of mumbers. Bathii prolably had with him tive lumedred thonsamd warriors. This immense army mowd like one man: it could successively ammihiate the small armies of the priuces, of the militia of the towns, which presented themselves one at a time to its hlows. The Tatars had fomm Rosesia divided arajust itsolf. Even




 whon formel the balk of the prentation, allower
 fare. It was mot by a weak mation that lanseia was
 Khan, hat! tilleol How Eiase with the eflory of their
 promil of thar exploits, animated by the recollereton of a homdred victorice, and reinforead be 1he mum-
 them th the: Wirst. Whath the lerinerat of falitech, of Sollonia, amd of Kiof arriwel as fugitions in low

 of lialitell, smmoneal ('larimondon to arms. Lonis the Xinth prepared for a crusade. Ferederiek the Siecond, as Emperor, wrote to the aborerigns of the Wiat: "? ${ }^{\prime}$ bis is the moment to open the eyes of benty and simb. now that the brase prine on whom we reckencel are dead or in slawery:" Tha 'latars invaleal Hangary, gate bathe to the l'oles in liognit\% in Silesia, hat their progrese a long whild arrestand by the courascoms defomse of olmut\% in Moravia, by the Tchet vopevol, Iaroslaf, and stopped finatly, learning that a large army., commanded ley the King of Bohemia and the Dukisuf Anstrianal kiarinthia, was apperoarling. The news of the deatl: of oktat.
 Battii from the Ifest, and charing the long march from Germany lis army mecessarily diminished in number. The Tatars were no tonger in the vant plains of Asia and Fastern Eurone, but in a broken hilly country, brisiling with fortresses, defonded hy a population more dense and a chivalry more num(rous than those of Russia. 'To sum up, all the fury of the Nongol tempest spent itself on the Slavonic race. It was the lanssians who fonght at the lialka, at Kolomnat, at the Sit; the Poles and Silesians at Licenit\%: the Bohemians and Moravians at Olmut\%. The Germans sulfered mothng from the invasion of the Monguls but the fear of it. It exhansted iterelf principally on those plains of Russia which seem as continnation of the sleppes of $A$ sia. Only in lanssian history did the invasion produce great results. About the same time batai built on one of the arms of the Low ronga a rity called Sarai, or the Castle, which became the capital of a powerful Tatar Empire, the (roblden forde, extending from the Cral and (aspian to the moutlo of the Wamble. The (enken Horte was formed not only of Titar-Mongrols, or Nogatis, who even now survive in the Northern ('rimea, but particularly of the remains of anciemt nomaks. shel as the l'etehnergi and Pol(ivtoni, whose descondants seem to be the present kalmucks and Baslikirs: of Turkish tribes lending to he sedentary, like the 'Tatars of Astrakhan in the preant day: and of the l'inuish popotations alreaty establishetl in the comery and which mixed with the invalers. Oktai, Kuink, and Mangu, the first three succesors of Gemerhis Khan, elected hy all the 1 ongol Primes. twok the title of Great llars, and the Golden Horde recogrizel their authority: but under his fourth successor, Kilubulai. Who nisurpeld the throne :med established himsilf in Chima, this hond of vassalage was broken. The (iolden llorele herame an intepentemt state in twelve humbed and sixty. Cuited and powerim unter the terrible 13atui, whe died in twelve humdred and fifty-five. it fell to pieces under his succersors: but in the fourtwenth century the Kian ťabek reunited it anew, and wave the llơere a serentl perined of prosperity: The Tatars, who were parans whon they entered hussia. umbraced the fath of flam front twelve humed ande seven-ty-two and bequme its most formidable apostles.
larnolaf, after his defeat at Lipetsk, entered Suzdal on the tragic Weath of his brother, the Grand

Prince Inri the seond, in twe ve hundred and thir-ty-eight, and found his inheritance in the most deplorable condition. The towns and villages were burnt. the combtry and roads covered with uaburies? corpses; the survivors were hiding in the woods. He recalled the fugitives and began to rebuild. Batuin, who had completed the devastation of South Rusxia, summoned laroskaf to do him homage at Sarai, on the Volga. Iaroslaf was receivert there withdistinction. Bitui confirmed his title of Grand Prince, but invited him to go in person to the Great Khan, supreme chief of the Hongol nation. who lived on the banks of the river Sakhalian, or Amar To do this was to eross the whole of Russia and Asia. Iaroslaf bent his knces to the new master of the world, Oktai, sueceeded in refuting the accusations bronght against hiun by a Russim boyar, and obtained a new contirmation of tis title. On his return, in twolve hondred and forty-six, he died in the desert of exhanstion, and his faithful servants brought his hody lack to Vladimir. Wlis son Andrei suerced ed him at Suzdal, and ruled until twelve hamdred and fifty-two. His other son, Alewander, reigned at Novgorod the Great. Nexander was as brave as he was intelligent. He was the hero of the North, and yet he forced himself to aceept the neeessary humiliations of his terible situation. In his youth we ser him fightins with all the enemies of Novgorod, LiFonian knights and Teludi, Swedes and Finns. The Norgorodiaus fonnd themselves at issne with the Scandinavians ou the subject of their possessions on the Nevil and the Gulf of Finland. As they had helped the natives to resist the Latin faith, King John obtaned the promise of Gregory the Ninth that a crusule, with plenary indulgences, shond be preached against the Great Republie and its protegés, the pagans of the biblic. llis son-in-law, Birger, with an inmy of Scandinavians, Finns. and Western Crusallers, took the commind of the forces, and sent word to the Prince of Novgorod, "Defend yourself, if youran: and know that Iamalready in your prove inces." The Russitns on their side, feeling that they were fighting for orthodoxy, opposed the Latin crusale with a Greek one. Alexander humbled himself in siant Sophiat, received the benedietion of the Arehoishot, Spiridion, and addrussed an energetic harangue to his warriors. Ife had no time to await reinforecments from Suzdal. He attacked the Swedish camp, which was situated on the ljora, one of the southern athluents of the Neva, which had given its name to Ingria. Alexander won a brilliant victory, which gitined him his surname of Nevski, and the honor of hecoming one of the patrons of Saint Petersburg minder leter the Great, the second congucror of the swedres. By the orders of his great sheresson, his bones repose in the Jonastery of Alexander Nevaki. 'I'he batthe of the Neva was preserved in a dramatic legend. An Ingrian chief todd Alexander how, on the eve of the combat, he had soen at mysterions barupe, mammed by two warriors with mhining brows, gliele throngh the night. They were Boris and (xlei), who came to the resene of their forms kinmman. Other acromats have preserved to in = the individual esploits of the Russimn heroesA Babricl, Sknilaf of Novgorod, dames of PoJotsk, Rabas, who threw down the tont of Birger, and Alexamber Nevali himself, who will at stroke of the lanee "imprinted his seal on his farce." Notwithstameling the triampls of such a servios, Aloxander and the Novsorodians conlal not agree' : shott lime yfter he reIired to l'wreiaslavi-Zilieski. 'I'he prond republicens soon had reason lo regred the exile of hise secomel (hamillus. The order of the Swordbearers, the int dufaliarahe ratemy of orthorloxy, took Pskuf, then stloy: Ilse dormans imposed tribuse on the Vojanc: Vissales of Noverorod, censitructed the fortress of kio. boris on the territory of the Newa, toble the Rascian lown of 'I'uscof in Fistlaconia, and pillaged the mor-- bands of Nowerood within serontern milen of their ramprits. During this time the Trehadi and the

Lithuanians captured the peasinta, ant the cattlo of the itizens. At linst Alexander allowed himself to be touched by the prayers of the Arehbishop) and the: penple, isscmbled an army, expelled the Germans from Konoorié, ama next from Pskof, hung as traitors the (alptive Yojané and Tehndi, and put to death six knigh1s who fell into his hands. This war between the 1 wo raees and two religions was eruel and putiless. The law of nations was luardy recocnized. More than once Germans and Russians slew the ambassathors of the other side. Alexander Nevski fiually gave battle to the Livonian knights on the ice of Like Peipus, kulled four hundred of them, took tifty prisoners, and exterminated a multitude of Telnuli. Fuch was the Battle of the Ice, which took place in twelve hundred and forty-two. He returned in triumph to Noverorod. llagging with him his prisoners loaded with irons. The Grand Master expeeted to see Hexander at the gates of Riga, and implored hel ${ }_{[ }$, of Denmark. The Prince of Novgoroh, satisfied with having delivered Pskof, concluded peace, recovered eertain districts, and consented to the exchange of prisoners. At this time lnnocent the Fonrth, deceived by filse information, addressed a bull to Alexander, as a devoted son of the Chureh, assuring lim that his father Iaroslaf, while dying among the Horde, had desired 10 submit limself to the throne of Suint Peter. Two Cardinals brought him this letter from the Pope in twelve hundred and tifty-one.
it is this hero of the Neva aud Lake Peinns, this Vanquisher of the Scandinavians and the Livonian knights, that we are presently to see grovelling at the feet of a barbarian. Alexander Nevski perceived that in presence of this immense and brutal foree of the Nongols, all resistance was madness, all prike ruin. To brave them was to complete the overthrow of Russia. His conduct may not have been divalrous, but it was wise and humane. Alexader disthained to play the hero at the expense of his people, like his brother Andrei of Suzdal, who was immediately obliged to fly , abandouing his conntry to the vengeance of the Tatars. The Prince of Novgorod was the only prince in Russia who had kept his independence, but he knew Batui's hands could extend as far as the Imen. "God has subjected many peoples to me," wrote the barbarian to him: "will you alone rofuse to recognize my power? If you wish to keep your land come to me : yon will sce the splendor and glory of my sway." "Then Alexander went to Sarai with his brother Andrei, who was disputing the Grand Principality of Vadimir with his macle, Sviatoslaf. Batui deelared that fame h:ul not exaggerated the merit of Alexander, that he firl oxechled the common rum of Rnssian Princes. He enjoined the two brothers to show themselves, like their father larosliff, at the Great Ilorde; they returned from il in twalve hundred and fifty seven. Fubuk hat confirmed the one in the possession of Thedimir, and the other in that of Novgorod, adding to it all South Russia and Kicf. The year twelve lumblrod and sixty jut Alexander's paticome amd also lise politic obedience to the Tatars to the proof. L̛lavtehi, to whom the Khan Berkai had contided the allairs of all Rassia, demanded that Noveorod should submit to the ecusus and pay tribute. It was tha hero of the Nevia whor was charged with the humilialine and dimgerous mission of persuading Noseromb. When the posithik expressed in the vetché lha apinion that it was nefessary 10 submid to the strongest, the people raised at tartible ery and murdered him. Vasili himself. Alexander's som, de-- lated actimet a father "who bromght servitude 10 free mon," sul retired to the l'skovitus. It needed a sent of iron lemper to resist the universal dismb. probstion and rommsel the Nowgorodians fo the commission of llo cowardly thongh necessary aet. Aloxander arrested his son, and penished with detilh or mntilation the boy:urs who hasd leal him into the revolt. 'The velcolé decided tor refuse the tribute, and
sont thatk thi Mongol ambassadors with prosents. Howerar, on theremoor of the approath of the 'latars, they roprote
 when they saw the ollecer of the klan at work, the Papalation revolted teratin, and thr Princo was olsliged to kerp graral ons the: ollicers night and day. In valn the boyars alvised the ritiann lo give in : ussumbled around Satat Sophia, the peophe dee lared they would die for lihery and homor. Noxander Haen threatened to guit the eity with his mem, and abmudon it to the full vernerone af the khans. This memace conquered the prise of the Novgoronlians.
 register in hand, from homise to homse in the hamiliatedume silent ejty tomakolbelist of the inlabitants.
"The hoyars," suys líaramsin, "might still he vain of their ramk and lhare rielory, hut the ample ditizens hat lont with liceir nationul honer their most provions posse'ssiont."
fusuzelial atso Alexander foumel himself in the
 ln twolve humberd aml sixty-two the inhabitants of V'ablimir, of sumalal, and of Rostof all arose against the rollectors of the Tatar impest. The people of larostavl slew one renequde nameal Zorim a formor monk, who hat berome a Dostem fanatio. 'Terrible reprisula were sure to follow. Alexabeler set out with pressents for the IIorile it the risk of leaving his lead lacere. Ute had likewise to exerse himsedf for having refused the donerols a borly of the atuxiliary linwians, wishing at last to spare the hood and the religious seruphes of his subjects. It is a remarkible fact that, over the most profound humiliations of the Rnscian mationality, tha eontemporary history always throws a ray of glory. At the moment that Alexander went to prostrate himself at sarai, the Suadalian army, united to that of Novgorod, and 'ommandml by his son l)mitri, ciefeated thr livonian knights, and took Dorpat ly assanlt. 'Tho Khan larkai gave Alexander a kind greeting, aceepted his explamations, dispensed witil the promised eontingent, lut kept him for a year near his Court. Alex ounder's health broke down; on his return he died before reaching Vhadimir. Whan the news arrived at his Capitah, the Metropolitan Kirill, who was finishing the litargy, turned towards the falloful, and satid: "Lamara, my dear chilitren, that the Sun of lRussia is set." "Utie are lost" eried the people. breaking forth into sobs, Alexander by this potiry of resignation, which his elivalrous heroism docs not permit us to despise, had secured some repose for exhansted liussia. By his victories over his enemies of the lfost he hial eiven it some erbery, and hindered it from derpairing under the most crusling tyranm, material and moral, which al lit ropean people liad ever sultered.

The Jonerol klans, after having devastaterl and abased Rassia, did not introfoce any direet politionl chanere. They left to each country its laws, ifs courts of justice, its natural chiefs. This hotuse of Audrei Bogolaboski continued to reign in Su\%dal, hat of Inanel Romanovitely in (ialitels and Vollynia, the Olgovitehi in Teliernigof, and the deseredidats of Ragyolod the Viriag at Polotsk. Novgorod might contime to expet and reenll its prinoses, and the dynastien of the south to dispute the throne of litef. 'The Kussian states found themselves unter the Moneral yoke, in much the same situation ats that of the Christinus of the Grecosiov peminsula thee centhoies later. under the Ottomans. The linssians remained in possession of all their lands, which their nomatel concuerors, eneamped on the steppers of the Fist aud somth, disdamed. The'y were like their Danubian kinsmen, a sort of rayaths, over whom the aththority of the khans was exerted with more or lass rigor, but whom their congucrors never trical in any way 10 Tatarize. Let us see in what consisted ed the ohbierations of the vanquishesh, and their relattions with their conquerors, during the Mongol yoke.

 Khan "pporannity of julging their disputa.s. W゙t have mand how they land ter ge, not only tu the khan of the (imidran llurtle, but oflon alser to the (irand K lans ut the rextremity of Asiat, on the lumeders of tho Siaklatian or Amur. 'They mert thores the: chicfse of tho. Mongel, 'Tistar, Thibetan, ant lbakharian horde.e,




 aty the mastor of tho: world, "for," said he, "whert
 Irampuillity will reign on the "arlh." la the ("ase of refusal, "neither deep) stits mor inaccessible monnlain" would plate the King of france leyond the powar of his wrath. 'To the princes of A sam and Rus sia la displayed the presoms of the king of France. atrocting foronsider then sts tributes and signs of submission. "Wle will fermd for him to conlonat you." hes sad to them, and Joinville assurces us that this threat, amel "the Foar of the: King of France"." deeidedmany to throw themselves on his mercy. This journey to the (irand! Ilorde was torrible. The road went through deserts; or countrios rance rich, but changed by tho "Patars into viat wastes. Few Who went retarned. l'lanus ('arpinas, convoy of Innoerent the lourth, satw in the etophes of the Kirghiz the dry honcs of the boyars of the wnaplyy laroslaf, who had diad of thirst in the sand l'hanas Carpinas thas describes the Batui's (ourt on the Volga: -It is croweded ame brilliant. Dlis army consists of six hundred thonsand men, once hamelred and fifty thonsund of whom are Tatars, and four hasuled and lifty thousand etrangers, (loristians as well as infidels. On Good Friday we were condacted to his tont, between two lires, becatase the Tatars pretead that a fire puritios everything, und robs even poison of its danger. We lad to make many prostrations, and enter the teut without lonching ilhe threshold. Batni was on his throne with one of his wives; his brothers, his children, and the l'atar lords were seated on bencles; the rest of the assembly were on the ground, the men on the right, the women on the left.... The khan and the lords of the C'onrt omptied from time to time (when of gold and silver, while the musicians marle the air ring with their metodies. liani has a bright eomplexion; he is aftable with his men, hat inspires general terror." The (ourt of the (iraml Khan was sill more magniferent. Planus Carpinms found there a lassian named Kum, who was the favorite and special goldsmitlı of Gaink or Kinink, and laboruguis discovered al'arisian goldsmith, gamad Cuillanme. Much money was needed for suceess cither at the Court of the Grand Khan or of laatui. Presents had to be distributed to the Tatar Princes, to the favorites above all, to the wives and the mother of the khan. At this terrible tribumat the Russian I'rinces bad to struggle with intrigues and corruption: the heads of the Headers were often the stakes of these dreadful trials. The most danmerous enemies they rncountered at the 'Tatar Conrt were not the barbarians, but the lassians, theriv rivals. The history of the Russim Prinees at the Iforde of Sarai in twelve hmalred and forty-six, and Mikhail of Tver in thirteen hundred and nineteen, the one assassinated by the renceratle Domstr, the other ly the renogade lomanem, ai the instigation and under the eyes of the Grand Prince of Moscow.

The condured poople were oblifed to pay a capitation tax. which welghed as leavily on the poor as (1n the rich. The tribute was paid either in money or in furs: hose who were anable to furnish it became slaves. The khans had for some time farmed out this revenue to some Khiva merchants, who collected it with the ntmost rigor, and whom they protected by appointiog superior agents called baskeki, with strong guards to support them. The excesses
of these tax-gatherers excited many revolts: in twelve handred and sixty-two, that of Suzdal; in twelve lundred and eighty-four, that of Kursk; in thirteen hundred and eighteen. that of Kolomna; in thirteen hundred and twenty-seven, that of Tree, where the inhabitants slew the baskak Sherkal, and bronght upon themselves frightfin reprisals. Later, the Princes of Moscow themselves farmed not only the tax from their own subjrets, but also from neighboring coumtries. They became the farmers-general of the invaders. This was the origin of both their riches and their power.
Besides the tribute, the Rnssians had to furnish to their master the blood-tax, a military contingent. Already at the time of the Hnns and lvars, we have seen Slays and Goths accompanying the Asiatic hordes, forming their vanguards, and being as it were the hounds of Baian. In the thirteenth century the Liussian Princes furnisled to the Tatars select troops, especially a solid infantry, and march. ed in their armies cach at the head of his drujina. It was thus that in twelve hnudred and seventy-six Boris of Rostof, Gleb of Biélozersk, Feodor of laroslavi, and Andrei of Gorodets followed Mangu Khan in a war against the tribes of the Cancusns, and sacked Dediakof in Daghestan, the capital of the lasui. The Mongols scrupulonsly reserved to them their part of the booty. The same Russian Princes took part in an expedition against au adventurer named Lachan by the Greek historians, formerly a kecper of pigs, who had raised Bulgaria. The descendants of Monomakh behaved still more dishonorably in the tronblesin the interior of Russia. They excited the Mongols against their countrymen and aided the invaders. Prince Andrei, son of Alexander Nevski, in twelve hundred and eighty-one, in concert with the Tatars, pillaged the provinces of Vladimir, Suzdal, Murom, Moscow, and Pereiaslavl, which he was disputing with Dmitri, his elder brother. IIe helped the barbarians to profane chnrehes and convents. In thirteen hundred and twenty-seven it was the Princes of Moscow aud Suzdal who directed the military execution against Tver. In twelve hundred and eighty-four two of the Olgovitchi reigned in the land of Kursk; one of them, Oleg, put the other to death in the name of the khan. Servitnde had so much abased all characters, that even the annaiists share the general degradation. They blame, not Oleg the murderer, but Sviatoslat the victim. Was it not his unbridled conduct that caused the anger of the khan? No prince could ascend the throne without having received the investiture and the iarluik, or letters-patent, from the klan. The proud Novgorodians themselves rejected Mikhail, their l'rince, saying, "It is true that we have chosen Mikhatl, but on the condition that he should show us the iarluik." No Russian State dared to make war without being authorized by the klian. In twelve Jundred and sixty-nine the Novgorodians asked leave to marclı against Revol. In thirteen hundred and three, in un assembly oí primees, and in the presence of the Metropolitan Maximms, a decree of the Khan Tokhta was read, enjoining the princes to put an end to their dissensions, and to content themselves with their appanages, it being the will of the Grand kihan that the Grand I'rinejpality should enjoy peate. Whem the llongol ame bassadors brought a letter from their soverefign, the IRassian Princes were obliged to ment them on foot, prostrate themselves, spread procious carpots madre their fect, present them with a cup filhorl with gohd pieces, and listen, knecling, while the inthik was he. ing read.
Fiven when the Tatars had concuered the linssians. they respected theirbravery: Matrimonial alliances wrecontracted between their princes. Almat twolve humdred and spventy-two GIch, l'rince of lićlozarsk, took a wife out of the khan's family, which abrearly professol Christianity, and Feodor of Reazan hecame the son-in-law of the klan of the Nograis, who as-
signed to the foung couple a palace in Sarai. In thirteen hundred and cighteen the Grand Prince Iuri married as sister of Uzbek Khan, Kontchaka, who was baptized by the name of Agatha. Towards the end of the fourteenth century the Tatars were no longer the rude shepherds of the steppes. Mingled with sedentary and more cultivated races, they rebuilt fresh cities on the ruins of those they lad destroyed: Kruim in the Crimea, Kazan, Lstraklan, and Sarai. They had acquired a taste for luxury and magnificence, honored the national poets who sang their exploits, pirpued themselves on their chivalry ind even on their gallantry. Notwithstanding the difference of religion, a reconciliation was taking place between the aristocracy of the two countrins, between the Russian and the Tatar Princes. The Russian historians are not entirely agreed as to the nature and degree of inflnenceexerted by the Mongol yoke on the Russian development. Karamsin and M. Kostomarof believe it to liave been considerable. "Perhaps," says the former, "our mational character still presents some blots which are derived from the Mongol barbarism." M. Suloviof, on the contrary, athirms that the Tatars hardly influenced it more than the Petchenegi or Polovtsui. \1. Bestu-jef-Riumin estimates the influence to have been spe. cially exerted on the financial administration and military organization. On one side the Tatars established the capitation-tax, which has remained in the financial system of Russia; on the other, the conquered race had a natural tendency to adopt the military system of the victors. The Russian or Mongol Princes formed a caste of soldiers henceforth quite distinct from Western chivalry, to which the Rassian heroes of the twelftl century belonged. The warriors of Diniel of Galitch, it is said, astounded the Poles and Hungarians by the Oriental character of their equipment. Short stirrups, very high saddles, a long caftan, or floating dress, a sort of turban surmounted by an aigret, sabers and poniards in their belts, it bow and arrows, -such was the military costume of a Russian Prince of the fifteently century. On the other side, many of the peculiarities in which the Mongol inthence is thought traceable may be attributed as well or better to purely Slas traditions, or imitations of Byzantine manners. If the Muscovite Princes inclined to autocracy, it was not that they formed themselves on the model of the Grand Jhans, but that they naturally adopted im. perial ideas of absolutism imported from Constantinople. It is always the Roman Emperor of Tsargrad, and not the leader of Asiatic shepherds, who is their typical monarch. If from this time the Russian penal law makes more frequent use of the pain of death and corporal punishment, it is not only the result of imitation of the Tatars, but of the evergrowing influence of Byzantine laws, and the progressive trimmph of their principles over those of the ancient Code of Taroslaf. Now these laws so very easily admitted torture, flogging. mutilation, and the stake, that there is no need to explain anything by Mongol usages. The habit of prostration, that of beating the forchead, of affecting a servile submis. sion, is certainly Oriental, but it is also byzantine. The sechsion of women was common in ancient Russia, the eustoms of which were noulded by Greek missionaries, and the lonssian trem was derived from tha H(slanic plan of women's quarters, rather than from the Oriental harem; ail the more beranse the Tatar women, before the conversion of the Jongols to Inlamism, do not appear to have been secluded. If the linssians of the seventeentli century scem strane fo us in thoir long robes and Oriental fashions, we must remember that the French and lalians of the fifterntle century, dressed by Venetian mercrants, displaycel the same taste. Ibut in brance fashions male advances, while in Russia, isolated from the rest of Europe, they remained stationary.

From a social point of view, two Russian expres. sions sucm to datc from the Tatar invasion : tchernut,
or the black people, to desimnate the lower orders; and krestienin, signifying the pasant, that is, 1 hu typieal Christian, wha was alway a atranerer to the Mongel customs aboperl for a short time by the are istoreracy. As to thro atmonnt of Momern or 'Titar blowd mixed with the blocel of the Russians, it must have becon very small: the ariatocrary of the two comatrisa may have contracted marriages, at certatin
 Princes by their ennerrsion to urthodosy, but the (wo races, as a whon, remained atrangers. Buen to-
 the Tatar cantons, "90n thomen fonverted to ('hristimity, are still Thatar. If tha Mongol yokr inlluanserf Russian developmont, it is vary imbirectly. By moparating lassit from the West, by making it a political alependency of A siat, it perpenated in the country that byantine halforivilization whene inferoority to buropen rivilization bamme daty more obvious. If the linswians of ther seventeenth rentury differ so much from Western nations, it is above all becanse they have remanal at the point whener all set ont. Again, the Tatar comguest also fatwore! indirwetly the establishamon of abolate power. The Muscovife Prinere, responsible to the kahn for the public trampility and the colleetion of the tax, betug all the while whtchel andsupperted by the baska-
 ance of the towns, the resistance of the subordinate princes, the lurbulence of the hoyars, and the privileges of the free peasants. 'The (irand Prince of Moscow hat no comsideration for his subjerets becanse no man hat any consideration for him, and because his life was always at stake. The Mongol tyrany bore with a terrible weight upon all the Russian hierarely, and subjected more closely the nohles to the princes and the preasunts to the mobles.

- The Princes of Moscow," says Karamsin, "took the hamble title of servants of the klans, and it was by this menns that they became powerful monarchs." Nodoubt under any cireumstances the Russian principalities would have onded by losing themselves in the same dominion, but lassian unity would have been made like l'rench unity, without the entire destruction of local autonomies, the privileges of the towns, and the rights of the subjects. It was the crushing weight of the Mongol domimation that stifled all the germs of political liberty. We may say, with Mr. Wailace, that "the first Tars of Muscovy were the politicaldeseendants, not of Russian Princes, but of Tatar khans." The hird indirect result of the conguest was the giowth of the powerand riehes of the Clurch. In spite of the saintly legends about the martyrdom of certuin princes, the Tatars were a tolerant nation. Rubruquis saw in: the presence of the Grand Khan Mangu, Nestorians, Mussulmans, and shamans celebrating their own particular form of worship. Knink had a Christian chapel near his palace; Ehabitai reqularly took part in the feast of Laster. In twelve hundred and sixty-one the Khan of Sarai authorized the erection of al churela and an orthodox bishopric in his Capital. The Mongols had no sectarian hatred against bishops and priests. Withes sure political insinct, the Tatars, wery like the Sulums of stambul, understood that all these men could excite or calm the people. . After the first fury of the concuest was passied, they applied themselves to gaining them over. They excepted priests ami monks from the capitation-tax ; they received them well at the llorde, and wave pardons at their intercession. They settled diepures of orthodox prelates, and established peace in the Clourch as woll as in the State. In thirtern hundred and thirteen the khan Uabek, at the prayer of Deter, Metropolitan of Moscow, contirmed thi privileges of the Chureh, and forbade that it should be cheprived of its possersions. "for," says the ediet. "these possessions are sacred. becalise they belong to men whose prayers preserve our lives and strengthen our armies." The right of justice was formally gramted to the Clurch. Sacri-
loger wat punichad lay deatlo. The convents aten incrased in mambers and riches. They hlled ranormonsly: wore they mot the mafest asylums? 'Their pasants mal merwats maltiplical: was mot the prose tretion of the ('hurch the surest: (iifts of land wore - Howered on then, as in France: in the yoar ton humdrom. It was thos that the great cerlowiatical patrimony uf lenssia was foumderl, a wenithy reserve of revernus and rapital, on which more than onere in national rises the IRnsbian soverofgne were ghat to draw. The Church, which, evern in its wrakness, hat steatily temded to unity and antorerary, was in place at the service of the erown a power which had become vormenus. The Metropelitans of Musenw Were almost always the faithfol allian of the (irame Prinors. Sier liksvian Army, dinssian liovernanene, and liussian I'rincipalitirs.

RUSSIAN RIFLING.-Thre Insuians have adopted the l'rench ritling for heavy ordanece. They have, howeva, had rilled several of their smaller fortressguns with six grooves, and thrir fiedrl-piores have beren ritlerl in a similar manner ; but, instead of placing the sturls in pairs, and having twolve of them, they use only six placed ulternatoly. Their ritling has an equal twist. and the grooves aro slightly narrowed at the botom. In the field-pieces they are sloped off. on one side to allow the projectile, the bearings of whichare also sloped off, to wedge itself tightly ; but these slight moditications possess no advantage over the fittings adopted for the French service.
More recently the Russians lave adopted loth the ecntering and the compressing $>y$ :tems of rilling with their ster] ordnance.

RUST.- Oxide of iron, which forms on the surface of iron from cxposure to atmosplurrie intluence or contact with acid. The following forms a grond preservative against rast, and is a grod composition for guns when packed in boxes for transit, viz., one part white lead, seven parts tallow.

Among metal-workers and particularly among the skilled artisans engaged in the production of smallarms the perfection of a cheap, simple and, at the same time, reliable, process of coating the smaller parts-as for instance, in the guns, the functional pieces of the systems-for the prevention of rust, has been the subject of study and experiment for very many years. When it is considered that so inconsiderable a War Establishment asthat of the United States demands the manufacture of some 30,000 Springfield riftes pro annum to keep up the reasonable complement in reserve, and that private manufactures year by year average an aggregate of ten times that numiber of military and sporting arms, the value of the suggested improvement is most sensibly appreciatech. The essays: which have been made in this country and Europe, in the direction of proteeting steel and irou against the corroding effects of air and moisture, have involved experiments with paints, varnishes, glazes, cmamels, galvanizing, elec-tro-depositing, and finally; the magnetic-oxide coating proeess, which up to the present time seems to claim the best results. This last named process was the discovery, some ten years baek, of Prof. Barif. and is generally termed the " Barff-ing." The Barff theory subjects the parts to be trated to the action of super-heated steam, in a retort or chamber, until such a temperature is reached as will assure the oxydization demanded. The discovery is now controlled ly the Bower-Barff C'o., an English organiza(ion which has an agener in the Enited States. Besides the Bower-Barff there have bern two or three processes. in the direetion of anti-rust coating by oxide, practically developed in this country, hat, we understand, withont satisfachory result:" Though there is no question of the vahue of the Barff-ing proeess as applied to large bodies of iron and stecl. its ditticulties and uncertainties in treating smatl pieces, like the action and the limb-work of gun systems, have thus far, we be liewe, deterred the manufacturers
from its adoption. 'The interchangeable theory of small-arms production demands a mathematically correct and umiform preservation of the contour, proportion and volume of each part, and such possible incidents as the erection of seale on the metal. the distortion of lines, or the expansion or shrinkage of volume, through ton great heat or inexpert handling, are of course not to be entertained. For some months past it bas been not altogether a secret in orlnance circles that the yery yexatious problem of coating gun parts with oxide, in such manner as in assure not only an excellent color but entire protee tion against corrosive influences, has been solved through the very intelligent and patient experimenting of Colonel A. R. Butfington. Commandant of the National Armory at Springtield.
The information in our possession at present as to Colonel Buttington's process, from the Army and Navy Journal, is derived from a correspondent who has been for many years a manufacturer of machime plant and special tools for gmomaking and an expert in the selection and treatment of metals. We learn that the experiments, which lave proceeded by slow degrees from the plane of investigation to that of practical application, have been of long continuance, and that the testing has been of a character exceptionally severe and thorough. In pursuing his experiments Colonel Buftington has always kept in view the practical rather than the theoretical, and the result of his work is the formulated system of an industrial expert rather than the more ambitions but less available selreme of a consulting engineer. "Every one skilled in the art of aslu or baked bluing processes and the time and care required for the acid process of barrel browning," says the correspondent, "will be pleased to learn that by immersing and keeping the parts in such a condition for six minutes, in a bath of saltpeter, 10 parts, and of black oxide of manganese. 1 part, heated to about 600 degrees Far., a beautiful blue black color will be semured which will wear equal to, if not better than, the best acill process." The operation requires no skilled labor, a cast-iron pot deep enough to cover the parts to be treated, arranged in such manner that a uniform lieat can be maintained. being the only apparatus needed. At the National Armory, they are using this process for all the gunparts formerly blued-such as butt-plates, triggerguards, bands, tips, etc. They are also treating the bayonets, and are about to try the process with the
barrels. Especially uotable is the fact that this proc'ss will not prejudicially affeet the spring temper. and will draw case-hardened parts, requiring toughness, to the proper spring teniper. The economical advantage is thus differentiated between the old process and the new-the old barrel lirowning by acid requires at least fonr and better six days time, while the new process consumes six minutes-the former demanding anexpert and the latter a laborer. The barthing process, as is well known, lakes from ten to fourteen hours, with the constant liability of doing a positive or permanent damage to picces thus treatel.

It will be seen from the foregoing that, though Colonel Buffington's process is applicable both for browning and anti-corrosive purposes, It has not yet been applied to the parts of the action, other than the springs. The very economical results of the new process are thus far most pronounced, the saving of time and labor leing considerable. We now look fur a trial of the anti-rust virtues or the process upon the holt-action and limb-work of the several repeating rifles. Should Colonel Buffington have merely suecreded in substituting a new formula for the old mucertain bluing and browning processes, he will have soored a success; if he has at last hit upon a real anti-mst treatment he has gained a victory.

RUSTRE.--In Heraldry, one of the subordinaries, consisting of a lozenge with a circular opening pienced in its center. Ancient armur was sometimes composed of rustres sewed on cloth.
RUSTRED ARMOR.-Armor of the Middle Ages, composed of flat oval rings sewed on quilted leather or linen and overlapping each other half way.
Rustre.
RYSWICK.-The Peace of Ryswick was a treaty concluded in 1697 at Ryswick, a Dutch village between Delft and the llague, which was signed by France, England, and Spain on Sept. 20 , and by Germany on Oet. 30. It put an end to the sanguinary contest in which England had been engaged with France. It has been often said that the only equivalent then received by England for all the treasure she lad transmitted to the Continent, and for all the blood which had been shed there, was an acknowledgment of William's title by the King of France; but it must not be forgot bow much the Allies were benefited ly the cheek given to the gigantic power and overweening ambition of France.

 'TIIE SUPIMFMENTS.


REFERENCES TO ADDITIONS OR SUBJEC'TS COMPILED SINCE THE PUBLICATION OF THIS VOLUME, AND WHICH ARE FOUND IN ALPHABETICAL ARRANGEMENT IN THE SUPPLEMENTS.


 TIIE SUPIPIEMBNTS.
ArTLCLLE.

REFERENCES TO ADDITIONS OR SUBTECTS COMPILED SINCE TIIE PUBLICATION OF THIS VOLUME, AND WHCI ARE FOUND IN ALPIIABETICAL ARRANGEMENT IN THE SUPPLEMENTS

Article.	Number of Supplement.	Year.	Page.	Remarks.


 THE SUPPDEAENTS.


REFERENCES TO ADDITIONS OR SUBJECTS COMPILED SINCE THE PUBLICATION OF THIS VOLUME, AND WHICH ARE FOUND IN ALPHABETICAL ARRANGEMENT IN THE SUPPLEMENTS.

Article.	Number of Supplement.	Year.	Page.	Remarks.
-				
				-

REFERENCES TO ADDITIONS OR SUBJECTS COMPLLED SINCE THE PUBLICATION OF TIHS VOLUME, AND WHICH AIEE FOUND IN ALPILABJTTCAR, ARHANGEMENT IN THE SUPPLEMENTS.
Ahticle.

FEFERENCES TO ADDITIONS OR SUB.JECTS COMPILED SINCE TIIE PUBLICATION OF THIS VOLUME, AND WHICH ARE FOUND IN ALPIABETICAL ARRANGEMENT IN THE SUPPLEMENTS.


 THJ SUPJ」にシNENTS．

references To Additions or subjects compiled since the publication of THIS VOLUME, AND WHICH ARE FOUND IN ALPHABETICAL ARRANGEMENT IN THE SUPPLEMENTS.
ARTICLE.

REFERENCES TO ADDITIONS OIR SUB.HEOTS COMPLLED SINCE THE PUBLICATION OF THIS VOLUME, AND WIHCII ARE FOUND IN ALPIABETICAL ARRANGEJENT LN THE SUPPLIEMENTA.


REFERENCES TO ADDITIONS OR SUBJECTS COMPILED SINCE THE PUBLICATION OF THIS VOLUME, AND WHICH ARE FOUND IN ALPHABETICAL ARRANGEMENT IN THE SUPPLEMENTS.

Artcers.		year.	$\mathrm{Pageg}^{\text {a }}$	Rearars


 'THE SUPIMEMENTM


REFERENCES TO ADDITIONS OR SUBJECTS COMPILED SINCE THE PUBLICATION OF THIS VOLUME, AND WHICH ARE FOUND IN ALPHABETICAL ARRANGEMENT IN THE SUPPLEMENTS.

Article.	$\underset{\text { Nusiber of }}{\text { Suplemext }}$	Year.	Page.	Remaris.

REFERENCES TO ADDITIONS OR SUBJECTS COMPILED SINCE THE PUBLICATION OF THIS VOLUME, AND WIHCH ARE FOUND IN ABPIIABETICAR ARKANGEMENT IN THE SUPILEMENTS.


REFERENCES TO ADDITIONS OR SUBJECTS COMPILED SINCE TIIE PUBLICATION OF THIS FOLUME, AND WHICH ARE FOUND IN ALPIIABETICAL ARRANGEMENT IN THE SUPPLEMENTS.

Ampreice.	(tumber	year.	Pame.	Remarmat


*HEMMirs)
University of California SOUTHERN REGIONAL LIBRARY FACILITY 405 Hilgard Avenue, Los Angeles, CA 90024-1388 Return this material to the library from which it was borrowed.




$\times 10 \mathrm{sh}, 9$




## 


||1||1|||||||||||| 31158010641024


##  $=$ $\vdots$ 5


(


[^0]:    Mandans and Cherokres. 1. Lodge of a Manlan chiff. 2. Seelp of a man; feathers as mementoes American portable cradle, G. Cherokee vilage. T. Air-burial. 8, Mandan vilage ame canoes, 0. M IX -490

[^1]:    two distinct parts, viz., the bure proper, or space

[^2]:    (Signature)
    To -- - - . .
    On the abowe proposal is acrepted the foblowing (Signature)

